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Build Skills

Problem-Solving Strategy 5.2 Newton’s Second Law: Dynamics of Particles

IDENTIFY the relevant concepts: You have to use Newton’s second
law for any problem that involves forces acting on an accelerating
body.

Identify the target variable—usually an acceleration or a force.
If the target variable is something else, you’ll need to select another
concept to use. For example, suppose the target variable is how
fast a sled is moving when it reaches the bottom of a hill. Newton’s
second law will let you find the sled’s acceleration; you’ll then use
the constant-acceleration relationships from Section 2.4 to find
velocity from acceleration.

SET UP the problem using the following steps:
1. Draw a simple sketch of the situation that shows each moving

body. For each body, draw a free-body diagram that shows all
the forces acting on the body. (The acceleration of a body is
determined by the forces that act on it, not by the forces that it
exerts on anything else.) Make sure you can answer the ques-
tion “What other body is applying this force?” for each force in
your diagram. Never include the quantity in your free-body
diagram; it’s not a force!

2. Label each force with an algebraic symbol for the force’s
magnitude. Usually, one of the forces will be the body’s weight;
it’s usually best to label this as 

3. Choose your x- and y-coordinate axes for each body, and show
them in its free-body diagram. Be sure to indicate the positive
direction for each axis. If you know the direction of the acceler-
ation, it usually simplifies things to take one positive axis along
that direction. If your problem involves two or more bodies that

= mg.

maS

accelerate in different directions, you can use a different set of
axes for each body.

4. In addition to Newton’s second law, identify any
other equations you might need. For example, you might need
one or more of the equations for motion with constant accelera-
tion. If more than one body is involved, there may be relation-
ships among their motions; for example, they may be connected
by a rope. Express any such relationships as equations relating
the accelerations of the various bodies.

EXECUTE the solution as follows:
1. For each body, determine the components of the forces along

each of the body’s coordinate axes. When you represent a force
in terms of its components, draw a wiggly line through the orig-
inal force vector to remind you not to include it twice.

2. Make a list of all the known and unknown quantities. In your
list, identify the target variable or variables.

3. For each body, write a separate equation for each component of
Newton’s second law, as in Eqs. (5.4). In addition, write any
additional equations that you identified in step 4 of “Set Up.”
(You need as many equations as there are target variables.)

4. Do the easy part—the math! Solve the equations to find the tar-
get variable(s).

EVALUATE your ans er: Does your answer have the correct units?
(When appropriate, use the conversion ) Does it
have the correct algebraic sign? When possible, consider particular
values or extreme cases of quantities and compare the results with

i t iti t ti A k “D thi lt k ?”

1 N = 1 kg # m>s2.

gF
S

� maS,

Example 5.17 Toboggan ride with friction II

The same toboggan with the same coefficient of friction as in
Example 5.16 accelerates down a steeper hill. Derive an expres-
sion for the acceleration in terms of g, and w.

SOLUTION

IDENTIFY and SET UP: The toboggan is accelerating, so we must
use Newton’s second law as given in Eqs. (5.4). Our target variable
is the downhill acceleration.

Our sketch and free-body diagram (Fig. 5.23) are almost the
same as for Example 5.16. The toboggan’s y-component of accel-
eration is still zero but the x-component is not, so we’ve
drawn the downhill component of weight as a longer vector than
the (uphill) friction force.

EXECUTE: It’s convenient to express the weight as Then
Newton’s second law in component form says

aFy = n + 1-mg cos a2 = 0
aFx = mg sin a + 1-ƒk2 = max

w = mg.

axay

mk,a,

From the second equation and Eq. (5.5) we get an expression for

We substitute this into the x-component equation and solve for :

EVALUATE: As for the frictionless toboggan in Example 5.10, the
acceleration doesn’t depend on the mass m of the toboggan. That’s
because all of the forces that act on the toboggan (weight, normal
force, and kinetic friction force) are proportional to m.

Let’s check some special cases. If the hill is vertical ( )
so that and we have (the toboggan
falls freely). For a certain value of the acceleration is zero; this
happens if

This agrees with our result for the constant-velocity toboggan in
Example 5.16. If the angle is even smaller, is greater than

and is negative; if we give the toboggan an initial down-
hill push to start it moving, it will slow down and stop. Finally, if
the hill is frictionless so that , we retrieve the result of
Example 5.10: .

Notice that we started with a simple problem (Example 5.10)
and extended it to more and more general situations. The general
result we found in this example includes all the previous ones as
special cases. Don’t memorize this result, but do make sure you
understand how we obtained it and what it means.

Suppose instead we give the toboggan an initial push up the
hill. The direction of the kinetic friction force is now reversed, so
the acceleration is different from the downhill value. It turns out
that the expression for is the same as for downhill motion except
that the minus sign becomes plus. Can you show this?

ax

ax = g sin a
mk = 0

axsin a
mk cos a

sin a = mk cos a and mk = tan a

a

ax = gcos a = 0,sin a = 1
a = 90°

ax = g1sin a - mk cos a2

mg sin a + 1-mkmg cos a2 = max

ax

ƒk = mkn = mkmg cos a

n = mg cos a

ƒk:

(a) The situation (b) Free-body diagram for toboggan

5.23 Our sketches for this problem.
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A cue ball (a uniform solid sphere of mass m and radius R) is at
rest on a level pool table. Using a pool cue, you give the ball a
sharp, horizontal hit of magnitude F at a height h above the center
of the ball (Fig. 10.37). The force of the hit is much greater 
than the friction force ƒ that the table surface exerts on the ball.
The hit lasts for a short time . (a) For what value of 
h will the ball roll without slipping? (b) If you hit the ball dead
center , the ball will slide across the table for a while, but
eventually it will roll without slipping. What will the speed of its
center of mass be then?

1h = 02

¢t

BRIDGING PROBLEM Billiard Physics

3. Draw two free-body diagrams for the ball in part (b): one show-
ing the forces during the hit and the other showing the forces
after the hit but before the ball is rolling without slipping.

4. What is the angular speed of the ball in part (b) just after the
hit? While the ball is sliding, does increase or decrease?
Does increase or decrease? What is the relationship between

and when the ball is finally rolling without slipping?

EXECUTE
5. In part (a), use the impulse–momentum theorem to find the

speed of the ball’s center of mass immediately after the hit.
Then use the rotational version of the impulse–momentum the-
orem to find the angular speed immediately after the hit. (Hint:
To write down the rotational version of the impulse–momentum
theorem, remember that the relationship between torque and
angular momentum is the same as that between force and linear
momentum.)

6. Use your results from step 5 to find the value of h that will
cause the ball to roll without slipping immediately after the hit.

7. In part (b), again find the ball’s center-of-mass speed and
angular speed immediately after the hit. Then write Newton’s
second law for the translational motion and rotational motion
of the ball as it is sliding. Use these equations to write
expressions for and as functions of the elapsed time
t since the hit.

8. Using your results from step 7, find the time t when and 
have the correct relationship for rolling without slipping. Then
find the value of at this time.

EVALUATE
9. If you have access to a pool table, test out the results of parts

(a) and (b) for yourself!
10. Can you show that if you used a hollow cylinder rather than a

solid ball, you would have to hit the top of the cylinder to
cause rolling without slipping as in part (a)?

vcm

vvcm

vvcm

vvcm

v

vcm

mass mh

R

10.37

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution. 

IDENTIFY and SET UP
1. Draw a free-body diagram for the ball for the situation in part (a),

including your choice of coordinate axes. Note that the cue
exerts both an impulsive force on the ball and an impulsive
torque around the center of mass.

2. The cue force applied for a time gives the ball’s center of
mass a speed , and the cue torque applied for that same
time gives the ball an angular speed . What must be the
relationship between and for the ball to roll without
slipping?

vvcm

v

vcm

¢t
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21.24 .. BIO Base Pairing in DNA, II. Refer to Exercise 21.23.
Figure E21.24 shows the bonding of the cytosine and guanine mol-
ecules. The and distances are each 0.110 nm. In this
case, assume that the bonding is due only to the forces along the

and combinations, and
assume also that these three combinations are parallel to each other.
Calculate the net force that cytosine exerts on guanine due to the
preceding three combinations. Is this force attractive or repulsive?

O¬H¬NN¬H¬N,O¬H¬O,
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Figure E21.23

NEW! Applications of Physics 
Throughout the text, free-standing captioned photos 

apply physics to real situations, with particular emphasis 
on applications of biomedical and general interest. 

Application Moment of Inertia of a
Bird’s Wing
When a bird flaps its wings, it rotates the
wings up and down around the shoulder. A
hummingbird has small wings with a small
moment of inertia, so the bird can make its
wings move rapidly (up to 70 beats per sec-
ond). By contrast, the Andean condor (Vultur
gryphus) has immense wings that are hard to
move due to their large moment of inertia.
Condors flap their wings at about one beat per
second on takeoff, but at most times prefer to
soar while holding their wings steady.

Application Tendons Are Nonideal
Springs
Muscles exert forces via the tendons that
attach them to bones. A tendon consists of
long, stiffly elastic collagen fibers. The graph
shows how the tendon from the hind leg of 
a wallaby (a small kangaroo) stretches in
response to an applied force. The tendon does
not exhibit the simple, straight-line behavior of
an ideal spring, so the work it does has to be
found by integration [Eq. (6.7)]. Note that the
tendon exerts less force while relaxing than
while stretching. As a result, the relaxing ten-
don does only about 93% of the work that was
done to stretch it.

Application Listening for Turbulent
Flow
Normal blood flow in the human aorta is lami-
nar, but a small disturbance such as a heart
pathology can cause the flow to become turbu-
lent. Turbulence makes noise, which is why
listening to blood flow with a stethoscope is a
useful diagnostic technique.
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TO THE STUDENT

HOW TO SUCCEED IN
PHYSICS BY REALLY
TRYING
Mark Hollabaugh Normandale Community College

Physics encompasses the large and the small, the old and the new. From the atom
to galaxies, from electrical circuitry to aerodynamics, physics is very much a part
of the world around us. You probably are taking this introductory course in calculus-
based physics because it is required for subsequent courses you plan to take in
preparation for a career in science or engineering. Your professor wants you to
learn physics and to enjoy the experience. He or she is very interested in helping
you learn this fascinating subject. That is part of the reason your professor chose
this textbook for your course. That is also the reason Drs. Young and Freedman
asked me to write this introductory section. We want you to succeed!

The purpose of this section of University Physics is to give you some ideas
that will assist your learning. Specific suggestions on how to use the textbook
will follow a brief discussion of general study habits and strategies.

Preparation for This Course
If you had high school physics, you will probably learn concepts faster than those
who have not because you will be familiar with the language of physics. If Eng-
lish is a second language for you, keep a glossary of new terms that you
encounter and make sure you understand how they are used in physics. Likewise,
if you are farther along in your mathematics courses, you will pick up the mathe-
matical aspects of physics faster. Even if your mathematics is adequate, you may
find a book such as Arnold D. Pickar’s Preparing for General Physics: Math Skill
Drills and Other Useful Help (Calculus Version) to be useful. Your professor
may actually assign sections of this math review to assist your learning.

Learning to Learn
Each of us has a different learning style and a preferred means of learning.
Understanding your own learning style will help you to focus on aspects of
physics that may give you difficulty and to use those components of your course
that will help you overcome the difficulty. Obviously you will want to spend
more time on those aspects that give you the most trouble. If you learn by hear-
ing, lectures will be very important. If you learn by explaining, then working
with other students will be useful to you. If solving problems is difficult for you,
spend more time learning how to solve problems. Also, it is important to under-
stand and develop good study habits. Perhaps the most important thing you can
do for yourself is to set aside adequate, regularly scheduled study time in a
distraction-free environment.

Answer the following questions for yourself:
• Am I able to use fundamental mathematical concepts from algebra, geometry

and trigonometry? (If not, plan a program of review with help from your
professor.)

• In similar courses, what activity has given me the most trouble? (Spend more
time on this.) What has been the easiest for me? (Do this first; it will help to
build your confidence.)

xi
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• Do I understand the material better if I read the book before or after the lec-
ture? (You may learn best by skimming the material, going to lecture, and then
undertaking an in-depth reading.)

• Do I spend adequate time in studying physics? (A rule of thumb for a class
like this is to devote, on the average, 2.5 hours out of class for each hour in
class. For a course meeting 5 hours each week, that means you should spend
about 10 to 15 hours per week studying physics.)

• Do I study physics every day? (Spread that 10 to 15 hours out over an entire
week!) At what time of the day am I at my best for studying physics? (Pick a
specific time of the day and stick to it.)

• Do I work in a quiet place where I can maintain my focus? (Distractions will
break your routine and cause you to miss important points.)

Working with Others
Scientists or engineers seldom work in isolation from one another but rather
work cooperatively. You will learn more physics and have more fun doing it if
you work with other students. Some professors may formalize the use of cooper-
ative learning or facilitate the formation of study groups. You may wish to form
your own informal study group with members of your class who live in your
neighborhood or dorm. If you have access to e-mail, use it to keep in touch with
one another. Your study group is an excellent resource when reviewing for
exams.

Lectures and Taking Notes
An important component of any college course is the lecture. In physics this is
especially important because your professor will frequently do demonstrations of
physical principles, run computer simulations, or show video clips. All of these are
learning activities that will help you to understand the basic principles of physics.
Don’t miss lectures, and if for some reason you do, ask a friend or member of your
study group to provide you with notes and let you know what happened.

Take your class notes in outline form, and fill in the details later. It can be very
difficult to take word for word notes, so just write down key ideas. Your professor
may use a diagram from the textbook. Leave a space in your notes and just add
the diagram later. After class, edit your notes, filling in any gaps or omissions and
noting things you need to study further. Make references to the textbook by page,
equation number, or section number.

Make sure you ask questions in class, or see your professor during office
hours. Remember the only “dumb” question is the one that is not asked. Your col-
lege may also have teaching assistants or peer tutors who are available to help
you with difficulties you may have.

Examinations
Taking an examination is stressful. But if you feel adequately prepared and are
well-rested, your stress will be lessened. Preparing for an exam is a continual
process; it begins the moment the last exam is over. You should immediately go
over the exam and understand any mistakes you made. If you worked a problem
and made substantial errors, try this: Take a piece of paper and divide it down the
middle with a line from top to bottom. In one column, write the proper solution to
the problem. In the other column, write what you did and why, if you know, and
why your solution was incorrect. If you are uncertain why you made your mis-
take, or how to avoid making it again, talk with your professor. Physics continu-
ally builds on fundamental ideas and it is important to correct any
misunderstandings immediately. Warning: While cramming at the last minute
may get you through the present exam, you will not adequately retain the con-
cepts for use on the next exam.



TO THE INSTRUCTOR

PREFACE
This book is the product of more than six decades of leadership and innovation in
physics education. When the first edition of University Physics by Francis W.
Sears and Mark W. Zemansky was published in 1949, it was revolutionary
among calculus-based physics textbooks in its emphasis on the fundamental prin-
ciples of physics and how to apply them. The success of University Physics with
generations of several million students and educators around the world is a testa-
ment to the merits of this approach, and to the many innovations it has introduced
subsequently.

In preparing this new Thirteenth Edition, we have further enhanced and
developed University Physics to assimilate the best ideas from education
research with enhanced problem-solving instruction, pioneering visual and
conceptual pedagogy, the first systematically enhanced problems, and the most
pedagogically proven and widely used online homework and tutorial system in
the world.

New to This Edition
• Included in each chapter, Bridging Problems provide a transition between the

single-concept Examples and the more challenging end-of-chapter problems.
Each Bridging Problem poses a difficult, multiconcept problem, which often
incorporates physics from earlier chapters. In place of a full solution, it
provides a skeleton Solution Guide consisting of questions and hints, which
helps train students to approach and solve challenging problems with
confidence.

• All Examples, Conceptual Examples, and Problem-Solving Strategies are
revised to enhance conciseness and clarity for today’s students.

• The core modern physics chapters (Chapters 38–41) are revised extensively
to provide a more idea-centered, less historical approach to the material.
Chapters 42–44 are also revised significantly.

• The fluid mechanics chapter now precedes the chapters on gravitation
and periodic motion, so that the latter immediately precedes the chapter on
mechanical waves.

• Additional bioscience applications appear throughout the text, mostly in the
form of marginal photos with explanatory captions, to help students see how
physics is connected to many breakthroughs and discoveries in the biosciences.

• The text has been streamlined for tighter and more focused language.
• Using data from MasteringPhysics, changes to the end-of-chapter content

include the following:
• 15%–20% of problems are new.
• The number and level of calculus-requiring problems has been increased.
• Most chapters include five to seven biosciences-related problems.
• The number of cumulative problems (those incorporating physics from

earlier chapters) has been increased.
• Over 70 PhET simulations are linked to the Pearson eText and provided in

the Study Area of the MasteringPhysics website (with icons in the print text).
These powerful simulations allow students to interact productively with the
physics concepts they are learning. PhET clicker questions are also included
on the Instructor Resource DVD.

• Video Tutors bring key content to life throughout the text:
• Dozens of Video Tutors feature “pause-and-predict” demonstrations of

key physics concepts and incorporate assessment as the student progresses
to actively engage the student in understanding the key conceptual ideas
underlying the physics principles.

Standard, Extended,
and Three-Volume Editions

With MasteringPhysics:
• Standard Edition: Chapters 1–37

(ISBN 978-0-321-69688-5)
• Extended Edition: Chapters 1–44

(ISBN 978-0-321-67546-0)

Without MasteringPhysics:
• Standard Edition: Chapters 1–37

(ISBN 978-0-321-69689-2)
• Extended Edition: Chapters 1–44

(ISBN 978-0-321-69686-1)
• Volume 1: Chapters 1–20

(ISBN 978-0-321-73338-2)
• Volume 2: Chapters 21–37

(ISBN 978-0-321-75121-8)
• Volume 3: Chapters 37–44

(ISBN 978-0-321-75120-1)

xiii
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• Every Worked Example in the book is accompanied by a Video Tutor
Solution that walks students through the problem-solving process, provid-
ing a virtual teaching assistant on a round-the-clock basis.

• All of these Video Tutors play directly through links within the Pearson
eText. Many also appear in the Study Area within MasteringPhysics.

Key Features of University Physics
• Deep and extensive problem sets cover a wide range of difficulty and exer-

cise both physical understanding and problem-solving expertise. Many prob-
lems are based on complex real-life situations.

• This text offers a larger number of Examples and Conceptual Examples than
any other leading calculus-based text, allowing it to explore problem-solving
challenges not addressed in other texts.

• A research-based problem-solving approach (Identify, Set Up, Execute,
Evaluate) is used not just in every Example but also in the Problem-Solving
Strategies and throughout the Student and Instructor Solutions Manuals and
the Study Guide. This consistent approach teaches students to tackle problems
thoughtfully rather than cutting straight to the math.

• Problem-Solving Strategies coach students in how to approach specific types
of problems.

• The Figures use a simplified graphical style to focus on the physics of a situa-
tion, and they incorporate explanatory annotation. Both techniques have
been demonstrated to have a strong positive effect on learning.

• Figures that illustrate Example solutions often take the form of black-and-
white pencil sketches, which directly represent what a student should draw in
solving such a problem.

• The popular Caution paragraphs focus on typical misconceptions and stu-
dent problem areas.

• End-of-section Test Your Understanding questions let students check their
grasp of the material and use a multiple-choice or ranking-task format to
probe for common misconceptions.

• Visual Summaries at the end of each chapter present the key ideas in words,
equations, and thumbnail pictures, helping students to review more effectively.

Instructor Supplements
Note: For convenience, all of the following instructor supplements (except for the
Instructor Resource DVD) can be downloaded from the Instructor Area, accessed
via the left-hand navigation bar of MasteringPhysics (www.masteringphysics.com).

Instructor Solutions, prepared by A. Lewis Ford (Texas A&M University)
and Wayne Anderson, contain complete and detailed solutions to all end-of-
chapter problems. All solutions follow consistently the same Identify/Set Up/
Execute/Evaluate problem-solving framework used in the textbook. Download
only from the MasteringPhysics Instructor Area or from the Instructor
Resource Center (www.pearsonhighered.com/irc).

The cross-platform Instructor Resource DVD (ISBN 978-0-321-69661-8) pro-
vides a comprehensive library of more than 420 applets from ActivPhysics
OnLine as well as all line figures from the textbook in JPEG format. In addition,
all the key equations, problem-solving strategies, tables, and chapter summaries
are provided in editable Word format. In-class weekly multiple-choice questions
for use with various Classroom Response Systems (CRS) are also provided,
based on the Test Your Understanding questions in the text. Lecture outlines in
PowerPoint are also included along with over 70 PhET simulations.

www.masteringphysics.com
www.pearsonhighered.com/irc
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MasteringPhysics® (www.masteringphysics.com) is the most advanced, educa-
tionally effective, and widely used physics homework and tutorial system in the
world. Eight years in development, it provides instructors with a library of exten-
sively pre-tested end-of-chapter problems and rich, multipart, multistep tutorials
that incorporate a wide variety of answer types, wrong answer feedback, individ-
ualized help (comprising hints or simpler sub-problems upon request), all driven
by the largest metadatabase of student problem-solving in the world. NSF-
sponsored published research (and subsequent studies) show that Mastering-
Physics has dramatic educational results. MasteringPhysics allows instructors to
build wide-ranging homework assignments of just the right difficulty and length
and provides them with efficient tools to analyze both class trends, and the work
of any student in unprecedented detail.

MasteringPhysics routinely provides instant and individualized feedback and
guidance to more than 100,000 students every day. A wide range of tools and
support make MasteringPhysics fast and easy for instructors and students to learn
to use. Extensive class tests show that by the end of their course, an unprece-
dented eight of nine students recommend MasteringPhysics as their preferred
way to study physics and do homework.

MasteringPhysics enables instructors to:
• Quickly build homework assignments that combine regular end-of-chapter

problems and tutoring (through additional multi-step tutorial problems that
offer wrong-answer feedback and simpler problems upon request).

• Expand homework to include the widest range of automatically graded activi-
ties available—from numerical problems with randomized values, through
algebraic answers, to free-hand drawing.

• Choose from a wide range of nationally pre-tested problems that provide
accurate estimates of time to complete and difficulty.

• After an assignment is completed, quickly identify not only the problems that
were the trickiest for students but the individual problem types where students
had trouble.

• Compare class results against the system’s worldwide average for each prob-
lem assigned, to identify issues to be addressed with just-in-time teaching.

• Check the work of an individual student in detail, including time spent on
each problem, what wrong answers they submitted at each step, how much
help they asked for, and how many practice problems they worked.

ActivPhysics OnLine™ (which is accessed through the Study Area within 
www.masteringphysics.com) provides a comprehensive library of more than 420
tried and tested ActivPhysics applets updated for web delivery using the latest
online technologies. In addition, it provides a suite of highly regarded applet-
based tutorials developed by education pioneers Alan Van Heuvelen and Paul
D’Alessandris. Margin icons throughout the text direct students to specific exer-
cises that complement the textbook discussion.

The online exercises are designed to encourage students to confront miscon-
ceptions, reason qualitatively about physical processes, experiment quantitatively,
and learn to think critically. The highly acclaimed ActivPhysics OnLine compan-
ion workbooks help students work through complex concepts and understand
them more clearly. More than 420 applets from the ActivPhysics OnLine library
are also available on the Instructor Resource DVD for this text.

The Test Bank contains more than 2,000 high-quality problems, with a range of
multiple-choice, true false, short-answer, and regular homework-type questions.
Test files are provided both in TestGen (an easy-to-use, fully networkable pro-
gram for creating and editing quizzes and exams) and Word format. Download
only from the MasteringPhysics Instructor Area or from the Instructor Resource
Center (www.pearsonhighered.com irc).>

>

www.masteringphysics.com
www.masteringphysics.com
www.pearsonhighered.com/irc


xvi PREFACE

Five Easy Lessons: Strategies for Successful Physics Teaching (ISBN 978-0-
805-38702-5) by Randall D. Knight (California Polytechnic State University, San
Luis Obispo) is packed with creative ideas on how to enhance any physics course.
It is an invaluable companion for both novice and veteran physics instructors.

Student Supplements
The Study Guide by Laird Kramer reinforces the text’s emphasis on problem-
solving strategies and student misconceptions. The Study Guide for Volume 1
(ISBN 978-0-321-69665-6) covers Chapters 1–20, and the Study Guide for Vol-
umes 2 and 3 (ISBN 978-0-321-69669-4) covers Chapters 21–44.

The Student Solutions Manual by Lewis Ford (Texas A&M University) and
Wayne Anderson contains detailed, step-by-step solutions to more than half of
the odd-numbered end-of-chapter problems from the textbook. All solutions fol-
low consistently the same Identify/Set Up/Execute/Evaluate problem-solving
framework used in the textbook. The Student Solutions Manual for Volume 1
(ISBN 978-0-321-69668-7) covers Chapters 1–20, and the Student Solutions
Manual for Volumes 2 and 3 (ISBN 978-0-321-69667-0) covers Chapters 21–44.

MasteringPhysics® (www.masteringphysics.com) is a homework, tutorial, and
assessment system based on years of research into how students work physics
problems and precisely where they need help. Studies show that students who use
MasteringPhysics significantly increase their scores compared to hand-written
homework. MasteringPhysics achieves this improvement by providing students
with instantaneous feedback specific to their wrong answers, simpler sub-problems
upon request when they get stuck, and partial credit for their method(s). This
individualized, 24 7 Socratic tutoring is recommended by nine out of ten students
to their peers as the most effective and time-efficient way to study.

Pearson eText is available through MasteringPhysics, either automatically when
MasteringPhysics is packaged with new books, or available as a purchased
upgrade online. Allowing students access to the text wherever they have access to
the Internet, Pearson eText comprises the full text, including figures that can be
enlarged for better viewing. With eText, students are also able to pop up defini-
tions and terms to help with vocabulary and the reading of the material. Students
can also take notes in eText using the annotation feature at the top of each page.

Pearson Tutor Services (www.pearsontutorservices.com). Each student’s subscrip-
tion to MasteringPhysics also contains complimentary access to Pearson Tutor Ser-
vices, powered by Smarthinking, Inc. By logging in with their MasteringPhysics ID
and password, students will be connected to highly qualified e-instructors who
provide additional interactive online tutoring on the major concepts of physics.
Some restrictions apply; offer subject to change.

ActivPhysics OnLine™ (which is accessed through the Study Area within 
www.masteringphysics.com) provides students with a suite of highly regarded
applet-based tutorials (see above). The following workbooks help students work
through complex concepts and understand them more clearly.

ActivPhysics OnLine Workbook, Volume 1: Mechanics * Thermal Physics *
Oscillations & Waves (978-0-805-39060-5)

ActivPhysics OnLine Workbook, Volume 2: Electricity & Magnetism *
Optics * Modern Physics (978-0-805-39061-2)

>
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1

1
LEARNING GOALS

By studying this chapter, you will

learn:

• Three fundamental quantities of

physics and the units physicists 

use to measure them.

• How to keep track of significant 

figures in your calculations.

• The difference between scalars and

vectors, and how to add and sub-

tract vectors graphically.

• What the components of a vector

are, and how to use them in 

calculations.

• What unit vectors are, and how 

to use them with components to

describe vectors.

• Two ways of multiplying vectors.

UNITS, PHYSICAL
QUANTITIES, 
AND VECTORS

Physics is one of the most fundamental of the sciences. Scientists of all dis-
ciplines use the ideas of physics, including chemists who study the struc-
ture of molecules, paleontologists who try to reconstruct how dinosaurs

walked, and climatologists who study how human activities affect the atmos-
phere and oceans. Physics is also the foundation of all engineering and technol-
ogy. No engineer could design a flat-screen TV, an interplanetary spacecraft, or
even a better mousetrap without first understanding the basic laws of physics.

The study of physics is also an adventure. You will find it challenging, some-
times frustrating, occasionally painful, and often richly rewarding. If you’ve ever
wondered why the sky is blue, how radio waves can travel through empty space,
or how a satellite stays in orbit, you can find the answers by using fundamental
physics. You will come to see physics as a towering achievement of the human
intellect in its quest to understand our world and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’ll
need throughout our study. We’ll discuss the nature of physical theory and the use
of idealized models to represent physical systems. We’ll introduce the systems of
units used to describe physical quantities and discuss ways to describe the accu-
racy of a number. We’ll look at examples of problems for which we can’t (or
don’t want to) find a precise answer, but for which rough estimates can be useful
and interesting. Finally, we’ll study several aspects of vectors and vector algebra.
Vectors will be needed throughout our study of physics to describe and analyze
physical quantities, such as velocity and force, that have direction as well as
magnitude.

? Being able to predict the path of a thunderstorm is essential for minimizing
the damage it does to lives and property. If a thunderstorm is moving at 
20 km h in a direction 53° north of east, how far north does the thunderstorm
move in 1 h?

>



1.1 The Nature of Physics
Physics is an experimental science. Physicists observe the phenomena of nature
and try to find patterns that relate these phenomena. These patterns are called
physical theories or, when they are very well established and widely used, physi-
cal laws or principles.

CAUTION The meaning of the word “theory” Calling an idea a theory does not mean that
it’s just a random thought or an unproven concept. Rather, a theory is an explanation of
natural phenomena based on observation and accepted fundamental principles. An exam-
ple is the well-established theory of biological evolution, which is the result of extensive
research and observation by generations of biologists. ❙

To develop a physical theory, a physicist has to learn to ask appropriate ques-
tions, design experiments to try to answer the questions, and draw appropriate
conclusions from the results. Figure 1.1 shows two famous facilities used for
physics experiments.

Legend has it that Galileo Galilei (1564–1642) dropped light and heavy
objects from the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether
their rates of fall were the same or different. From examining the results of his
experiments (which were actually much more sophisticated than in the legend),
he made the inductive leap to the principle, or theory, that the acceleration of a
falling body is independent of its weight.

The development of physical theories such as Galileo’s often takes an indirect
path, with blind alleys, wrong guesses, and the discarding of unsuccessful theo-
ries in favor of more promising ones. Physics is not simply a collection of facts
and principles; it is also the process by which we arrive at general principles that
describe how the physical universe behaves.

No theory is ever regarded as the final or ultimate truth. The possibility always
exists that new observations will require that a theory be revised or discarded. It is
in the nature of physical theory that we can disprove a theory by finding behavior
that is inconsistent with it, but we can never prove that a theory is always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They
certainly do not fall at the same rate. This does not mean that Galileo was wrong;
it means that his theory was incomplete. If we drop the feather and the cannon-
ball in a vacuum to eliminate the effects of the air, then they do fall at the same
rate. Galileo’s theory has a range of validity: It applies only to objects for which
the force exerted by the air (due to air resistance and buoyancy) is much less than
the weight. Objects like feathers or parachutes are clearly outside this range.

Often a new development in physics extends a principle’s range of validity.
Galileo’s analysis of falling bodies was greatly extended half a century later by
Newton’s laws of motion and law of gravitation.

1.2 Solving Physics Problems
At some point in their studies, almost all physics students find themselves think-
ing, “I understand the concepts, but I just can’t solve the problems.” But in
physics, truly understanding a concept means being able to apply it to a variety of
problems. Learning how to solve problems is absolutely essential; you don’t
know physics unless you can do physics.

How do you learn to solve physics problems? In every chapter of this book
you will find Problem-Solving Strategies that offer techniques for setting up and
solving problems efficiently and accurately. Following each Problem-Solving
Strategy are one or more worked Examples that show these techniques in action.
(The Problem-Solving Strategies will also steer you away from some incorrect
techniques that you may be tempted to use.) You’ll also find additional examples
that aren’t associated with a particular Problem-Solving Strategy. In addition, 

2 CHAPTER 1 Units, Physical Quantities, and Vectors

(a)

(b)

1.1 Two research laboratories. (a) Accord-
ing to legend, Galileo investigated falling
bodies by dropping them from the Leaning
Tower in Pisa, Italy, and he studied pendu-
lum motion by observing the swinging of
the chandelier in the adjacent cathedral. 
(b) The Large Hadron Collider (LHC) in
Geneva, Switzerland, the world’s largest
particle accelerator, is used to explore the
smallest and most fundamental con-
stituents of matter. This photo shows a 
portion of one of the LHC’s detectors 
(note the worker on the yellow platform).



1.2 Solving Physics Problems 3

at the end of each chapter you’ll find a Bridging Problem that uses more than one
of the key ideas from the chapter. Study these strategies and problems carefully,
and work through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics prob-
lems, which is why this book offers dozens of Problem-Solving Strategies. No
matter what kind of problem you’re dealing with, however, there are certain key
steps that you’ll always follow. (These same steps are equally useful for prob-
lems in math, engineering, chemistry, and many other fields.) In this book we’ve
organized these steps into four stages of solving a problem.

All of the Problem-Solving Strategies and Examples in this book will follow
these four steps. (In some cases we will combine the first two or three steps.) We
encourage you to follow these same steps when you solve problems yourself.
You may find it useful to remember the acronym I SEE—short for Identify, 
Set up, Execute, and Evaluate.

Problem-Solving Strategy 1.1 Solving Physics Problems

IDENTIFY the relevant concepts: Use the physical conditions
stated in the problem to help you decide which physics concepts
are relevant. Identify the target variables of the problem—that is,
the quantities whose values you’re trying to find, such as the speed
at which a projectile hits the ground, the intensity of a sound made
by a siren, or the size of an image made by a lens. Identify the
known quantities, as stated or implied in the problem. This step is
essential whether the problem asks for an algebraic expression or a
numerical answer.

SET UP the problem: Given the concepts you have identified and
the known and target quantities, choose the equations that you’ll
use to solve the problem and decide how you’ll use them. Make
sure that the variables you have identified correlate exactly with
those in the equations. If appropriate, draw a sketch of the situation
described in the problem. (Graph paper, ruler, protractor, and com-
pass will help you make clear, useful sketches.) As best you can,

estimate what your results will be and, as appropriate, predict what
the physical behavior of a system will be. The worked examples in
this book include tips on how to make these kinds of estimates and
predictions. If this seems challenging, don’t worry—you’ll get
better with practice!

EXECUTE the solution: This is where you “do the math.” Study the
worked examples to see what’s involved in this step.

EVALUATE your answer: Compare your answer with your esti-
mates, and reconsider things if there’s a discrepancy. If your
answer includes an algebraic expression, assure yourself that it
represents what would happen if the variables in it were taken to
extremes. For future reference, make note of any answer that rep-
resents a quantity of particular significance. Ask yourself how you
might answer a more general or more difficult version of the prob-
lem you have just solved.

Idealized Models
In everyday conversation we use the word “model” to mean either a small-scale
replica, such as a model railroad, or a person who displays articles of clothing (or
the absence thereof). In physics a model is a simplified version of a physical sys-
tem that would be too complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball
(Fig. 1.2a). How complicated is this problem? The ball is not a perfect sphere (it
has raised seams), and it spins as it moves through the air. Wind and air resistance
influence its motion, the ball’s weight varies a little as its distance from the center
of the earth changes, and so on. If we try to include all these things, the analysis
gets hopelessly complicated. Instead, we invent a simplified version of the prob-
lem. We neglect the size and shape of the ball by representing it as a point object,
or particle. We neglect air resistance by making the ball move in a vacuum, and
we make the weight constant. Now we have a problem that is simple enough to
deal with (Fig. 1.2b). We will analyze this model in detail in Chapter 3.

We have to overlook quite a few minor effects to make an idealized model, but
we must be careful not to neglect too much. If we ignore the effects of gravity
completely, then our model predicts that when we throw the ball up, it will go in
a straight line and disappear into space. A useful model is one that simplifies a
problem enough to make it manageable, yet keeps its essential features.

Direction of
motion

Direction of
motion

Baseball is treated as a point object (particle).

No air resistance.

Baseball spins and has a complex shape.

Air resistance and
wind exert forces
on the ball.

Gravitational force on ball
depends on altitude.

Gravitational force
on ball is constant.

(a) A real baseball in flight

(b) An idealized model of the baseball

1.2 To simplify the analysis of (a) a base-
ball in flight, we use (b) an idealized model.



The validity of the predictions we make using a model is limited by the valid-
ity of the model. For example, Galileo’s prediction about falling bodies (see Sec-
tion 1.1) corresponds to an idealized model that does not include the effects of air
resistance. This model works fairly well for a dropped cannonball, but not so well
for a feather.

Idealized models play a crucial role throughout this book. Watch for them in
discussions of physical theories and their applications to specific problems.

1.3 Standards and Units
As we learned in Section 1.1, physics is an experimental science. Experiments
require measurements, and we generally use numbers to describe the results of
measurements. Any number that is used to describe a physical phenomenon
quantitatively is called a physical quantity. For example, two physical quantities
that describe you are your weight and your height. Some physical quantities are
so fundamental that we can define them only by describing how to measure them.
Such a definition is called an operational definition. Two examples are measur-
ing a distance by using a ruler and measuring a time interval by using a stop-
watch. In other cases we define a physical quantity by describing how to
calculate it from other quantities that we can measure. Thus we might define the
average speed of a moving object as the distance traveled (measured with a ruler)
divided by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference stan-
dard. When we say that a Ferrari 458 Italia is 4.53 meters long, we mean that it is
4.53 times as long as a meter stick, which we define to be 1 meter long. Such a
standard defines a unit of the quantity. The meter is a unit of distance, and the
second is a unit of time. When we use a number to describe a physical quantity,
we must always specify the unit that we are using; to describe a distance as
simply “4.53” wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that
do not change and that can be duplicated by observers in various locations. The
system of units used by scientists and engineers around the world is commonly
called “the metric system,” but since 1960 it has been known officially as the
International System, or SI (the abbreviation for its French name, Système
International). Appendix A gives a list of all SI units as well as definitions of the
most fundamental units.

Time
From 1889 until 1967, the unit of time was defined as a certain fraction of the
mean solar day, the average time between successive arrivals of the sun at its high-
est point in the sky. The present standard, adopted in 1967, is much more precise.
It is based on an atomic clock, which uses the energy difference between the two
lowest energy states of the cesium atom. When bombarded by microwaves of pre-
cisely the proper frequency, cesium atoms undergo a transition from one of these
states to the other. One second (abbreviated s) is defined as the time required for
9,192,631,770 cycles of this microwave radiation (Fig. 1.3a).

Length
In 1960 an atomic standard for the meter was also established, using the wave-
length of the orange-red light emitted by atoms of krypton in a glow dis-
charge tube. Using this length standard, the speed of light in vacuum was
measured to be 299,792,458 m s. In November 1983, the length standard was
changed again so that the speed of light in vacuum was defined to be precisely

>
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Light
source

Cesium-133
atom

Cesium-133
atom

Microwave radiation with a frequency of
exactly 9,192,631,770 cycles per second ...

... causes the outermost electron of a
cesium-133 atom to reverse its spin direction.

An atomic clock uses this phenomenon to tune
microwaves to this exact frequency. It then
counts 1 second for each 9,192,631,770 cycles.

Light travels exactly
299,792,458 m in 1 s.

(a) Measuring the second

(b) Measuring the meter

0:00 s 0:01 s

Outermost
electron

1.3 The measurements used to determine
(a) the duration of a second and (b) the
length of a meter. These measurements are
useful for setting standards because they
give the same results no matter where they
are made.
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299,792,458 m s. Hence the new definition of the meter (abbreviated m) is the
distance that light travels in vacuum in 1 299,792,458 second (Fig. 1.3b). This
provides a much more precise standard of length than the one based on a wave-
length of light.

Mass
The standard of mass, the kilogram (abbreviated kg), is defined to be the mass of
a particular cylinder of platinum–iridium alloy kept at the International Bureau
of Weights and Measures at Sèvres, near Paris (Fig. 1.4). An atomic standard of
mass would be more fundamental, but at present we cannot measure masses on
an atomic scale with as much accuracy as on a macroscopic scale. The gram
(which is not a fundamental unit) is 0.001 kilogram.

Unit Prefixes
Once we have defined the fundamental units, it is easy to introduce larger and
smaller units for the same physical quantities. In the metric system these other
units are related to the fundamental units (or, in the case of mass, to the gram) by
multiples of 10 or Thus one kilometer is 1000 meters, and one cen-
timeter is meter. We usually express multiples of 10 or in exponential
notation: and so on. With this notation, 
and

The names of the additional units are derived by adding a prefix to the name
of the fundamental unit. For example, the prefix “kilo-,” abbreviated k, always
means a unit larger by a factor of 1000; thus

A table on the inside back cover of this book lists the standard SI prefixes, with
their meanings and abbreviations.

Table 1.1 gives some examples of the use of multiples of 10 and their prefixes
with the units of length, mass, and time. Figure 1.5 shows how these prefixes are
used to describe both large and small distances.

The British System
Finally, we mention the British system of units. These units are used only in the
United States and a few other countries, and in most of these they are being replaced
by SI units. British units are now officially defined in terms of SI units, as follows:

Force:  1 pound = 4.448221615260 newtons (exactly)

Length: 1 inch = 2.54 cm (exactly)

 1 kilowatt  = 1 kW = 103 watts  = 103 W

 1 kilogram  = 1 kg  = 103 grams  = 103 g

 1 kilometer = 1 km  = 103 meters = 103 m

1 cm = 10-2 m.
1 km = 103 m1

1000 = 10-3,1000 = 103,

1
10

1
10011 cm2

11 km21
10 .

>
>

1.4 The international standard kilogram
is the metal object carefully enclosed
within these nested glass containers.

Table 1.1 Some Units of Length, Mass, and Time

Length Mass Time

(a few times the size of the largest atom)

(size of some bacteria and living cells)

(diameter of the point of a ballpoint pen)

(diameter of your little finger)

(a 10-minute walk)
 1 kilometer  = 1 km  = 103 m 

 1 centimeter  = 1 cm  = 10-2 m 

 1 millimeter  = 1 mm = 10-3 m 

 1 micrometer = 1 mm = 10-6 m 

 1 nanometer  = 1 nm  = 10-9 m 
(mass of a very small dust particle)

(mass of a grain of salt)

(mass of a paper clip)
 1 gram  = 1 g  = 10-3 kg 

 1 milligram  = 1 mg  = 10-3 g = 10-6 kg 

 1 microgram  = 1 mg = 10-6 g = 10-9 kg 
(time for light to travel 0.3 m)

(time for space station to move 8 mm)

(time for sound to travel 0.35 m)
 1 millisecond  = 1 ms = 10-3 s 

 1 microsecond = 1 ms = 10-6 s 

 1 nanosecond  = 1 ns  = 10-9 s 



The newton, abbreviated N, is the SI unit of force. The British unit of time is the
second, defined the same way as in SI. In physics, British units are used only in
mechanics and thermodynamics; there is no British system of electrical units.

In this book we use SI units for all examples and problems, but we occasion-
ally give approximate equivalents in British units. As you do problems using
SI units, you may also wish to convert to the approximate British equivalents if
they are more familiar to you (Fig. 1.6). But you should try to think in SI units as
much as you can.

1.4 Unit Consistency and Conversions
We use equations to express relationships among physical quantities, represented
by algebraic symbols. Each algebraic symbol always denotes both a number and
a unit. For example, d might represent a distance of 10 m, t a time of 5 s, and a
speed of 

An equation must always be dimensionally consistent. You can’t add apples
and automobiles; two terms may be added or equated only if they have the same
units. For example, if a body moving with constant speed travels a distance d in
a time t, these quantities are related by the equation

If d is measured in meters, then the product must also be expressed in meters.
Using the above numbers as an example, we may write

Because the unit on the right side of the equation cancels the unit s, the prod-
uct has units of meters, as it must. In calculations, units are treated just like alge-
braic symbols with respect to multiplication and division.

CAUTION Always use units in calculations When a problem requires calculations using
numbers with units, always write the numbers with the correct units and carry the units
through the calculation as in the example above. This provides a very useful check. If at
some stage in a calculation you find that an equation or an expression has inconsistent
units, you know you have made an error somewhere. In this book we will always carry
units through all calculations, and we strongly urge you to follow this practice when you
solve problems. ❙

1>s

10 m = a2 
m
s
b15 s2

vt

d = vt

v

2 m>s.
v
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(g)10214 m
Radius of an
atomic nucleus

(f)10210 m
Radius of an
atom

(e)1025 m
Diameter of a
red blood cell

(d)1 m
Human
dimensions

(c)107 m
Diameter of
the earth

(b)1011 m
Distance to
the sun

(a)1026 m
Limit of the
observable
universe

1.5 Some typical lengths in the universe. (f) is a scanning tunneling microscope image of atoms on a crystal surface; (g) is an artist’s
impression.

1.6 Many everyday items make use of
both SI and British units. An example is
this speedometer from a U.S.-built auto-
mobile, which shows the speed in both
kilometers per hour (inner scale) and miles
per hour (outer scale).
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Problem-Solving Strategy 1.2 Solving Physics Problems

IDENTIFY the relevant concepts: In most cases, it’s best to use the
fundamental SI units (lengths in meters, masses in kilograms, and
times in seconds) in every problem. If you need the answer to be in
a different set of units (such as kilometers, grams, or hours), wait
until the end of the problem to make the conversion.

SET UP the problem and EXECUTE the solution: Units are multi-
plied and divided just like ordinary algebraic symbols. This gives
us an easy way to convert a quantity from one set of units to
another: Express the same physical quantity in two different units
and form an equality.

For example, when we say that we don’t mean
that the number 1 is equal to the number 60; rather, we mean that 
1 min represents the same physical time interval as 60 s. For this
reason, the ratio equals 1, as does its reciprocal

We may multiply a quantity by either of these160 s2>11 min2.
11 min2>160 s2

1 min = 60 s,

factors (which we call unit multipliers) without changing that
quantity’s physical meaning. For example, to find the number of
seconds in 3 min, we write

EVALUATE your answer: If you do your unit conversions correctly,
unwanted units will cancel, as in the example above. If, instead, you
had multiplied 3 min by your result would have

been the nonsensical . To be sure you convert units prop-
erly, you must write down the units at all stages of the calculation.

Finally, check whether your answer is reasonable. For example,
the result is reasonable because the second is a
smaller unit than the minute, so there are more seconds than min-
utes in the same time interval.

3 min = 180 s

1
20 min2>s

11 min2>160 s2,

3 min = 13 min2a
60 s

1 min
b = 180 s

Example 1.1 Converting speed units

The world land speed record is 763.0 mi h, set on October 15,
1997, by Andy Green in the jet-engine car Thrust SSC. Express
this speed in meters per second.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We need to convert the units of a
speed from mi h to We must therefore find unit multipliers
that relate (i) miles to meters and (ii) hours to seconds. In Appen-
dix E (or inside the front cover of this book) we find the equalities

and We set up
the conversion as follows, which ensures that all the desired can-
cellations by division take place:

 = 341.0 m>s

 763.0 mi>h = a763.0 
mi

h
b a

1.609 km
1 mi

b a
1000 m

1 km
b a

1 h

3600 s
b

1 h = 3600 s.1 km = 1000 m,1 mi = 1.609 km,

m>s.>

> EVALUATE: Green’s was the first supersonic land speed record (the
speed of sound in air is about 340 m s). This example shows a use-
ful rule of thumb: A speed expressed in m s is a bit less than half
the value expressed in mi h, and a bit less than one-third the value
expressed in km h. For example, a normal freeway speed is about

and a typical walking speed is
about 1.4 m>s = 3.1 mi>h = 5.0 km>h.
30 m>s = 67 mi>h = 108 km>h,

>
>

>
>

Example 1.2 Converting volume units

The world’s largest cut diamond is the First Star of Africa
(mounted in the British Royal Sceptre and kept in the Tower of
London). Its volume is 1.84 cubic inches. What is its volume in
cubic centimeters? In cubic meters?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Here we are to convert the units
of a volume from cubic inches to both cubic centimeters

and cubic meters Appendix E gives us the equality
from which we obtain . We

then have

 = 11.84212.5423 
in.3 cm3

in.3
= 30.2 cm3

 1.84 in.3 = 11.84 in.32a
2.54 cm

1 in.
b

3

1 in.3 = 12.54 cm231 in. = 2.540 cm,
1m32.1cm32

1in.32

Appendix F also gives us so

EVALUATE: Following the pattern of these conversions, you can
show that and that . These
approximate unit conversions may be useful for future reference.

1 m3 L 60,000 in.31 in.3 L 16 cm3

 = 3.02 * 10-5 m3

 = 130.22a
1

100
b

3

 
cm3 m3

cm3
= 30.2 * 10-6 m3

 30.2 cm3 = 130.2 cm32a
1 m

100 cm
b

3

1 m = 100 cm,



1.5 Uncertainty and Significant Figures
Measurements always have uncertainties. If you measure the thickness of the
cover of a hardbound version of this book using an ordinary ruler, your measure-
ment is reliable only to the nearest millimeter, and your result will be 3 mm. It
would be wrong to state this result as 3.00 mm; given the limitations of the meas-
uring device, you can’t tell whether the actual thickness is 3.00 mm, 2.85 mm, or
3.11 mm. But if you use a micrometer caliper, a device that measures distances
reliably to the nearest 0.01 mm, the result will be 2.91 mm. The distinction
between these two measurements is in their uncertainty. The measurement using
the micrometer caliper has a smaller uncertainty; it’s a more accurate measure-
ment. The uncertainty is also called the error because it indicates the maximum
difference there is likely to be between the measured value and the true value.
The uncertainty or error of a measured value depends on the measurement tech-
nique used.

We often indicate the accuracy of a measured value—that is, how close it is
likely to be to the true value—by writing the number, the symbol and a sec-
ond number indicating the uncertainty of the measurement. If the diameter of a
steel rod is given as this means that the true value is unlikely
to be less than 56.45 mm or greater than 56.49 mm. In a commonly used short-
hand notation, the number means The numbers in
parentheses show the uncertainty in the final digits of the main number.

We can also express accuracy in terms of the maximum likely fractional
error or percent error (also called fractional uncertainty and percent uncer-
tainty). A resistor labeled probably has a true resistance that
differs from 47 ohms by no more than 10% of 47 ohms—that is, by about 5 ohms.
The resistance is probably between 42 and 52 ohms. For the diameter of the steel
rod given above, the fractional error is or about 0.0004;
the percent error is or about 0.04%. Even small percent errors
can sometimes be very significant (Fig. 1.7).

In many cases the uncertainty of a number is not stated explicitly. Instead, the
uncertainty is indicated by the number of meaningful digits, or significant figures,
in the measured value. We gave the thickness of the cover of this book as 2.91 mm,
which has three significant figures. By this we mean that the first two digits are
known to be correct, while the third digit is uncertain. The last digit is in the hun-
dredths place, so the uncertainty is about 0.01 mm. Two values with the same
number of significant figures may have different uncertainties; a distance given as
137 km also has three significant figures, but the uncertainty is about 1 km.

When you use numbers that have uncertainties to compute other numbers, the
computed numbers are also uncertain. When numbers are multiplied or divided,
the number of significant figures in the result can be no greater than in the factor
with the fewest significant figures. For example, 
When we add and subtract numbers, it’s the location of the decimal point that mat-
ters, not the number of significant figures. For example, 
Although 123.62 has an uncertainty of about 0.01, 8.9 has an uncertainty of about
0.1. So their sum has an uncertainty of about 0.1 and should be written as 132.5,
not 132.52. Table 1.2 summarizes these rules for significant figures.

As an application of these ideas, suppose you want to verify the value of 
the ratio of the circumference of a circle to its diameter. The true value of this
ratio to ten digits is 3.141592654. To test this, you draw a large circle and meas-
ure its circumference and diameter to the nearest millimeter, obtaining the values
424 mm and 135 mm (Fig. 1.8). You punch these into your calculator and obtain
the quotient . This may seem to disagree
with the true value of but keep in mind that each of your measurements has
three significant figures, so your measured value of can have only three signif-
icant figures. It should be stated simply as 3.14. Within the limit of three signifi-
cant figures, your value does agree with the true value.

p

p,
1424 mm2>1135 mm2 = 3.140740741

p,

123.62 + 8.9 = 132.5.

3.1416 * 2.34 * 0.58 = 4.3.

10.000421100%2,
10.02 mm2>156.47 mm2,

“47 ohms � 10%”

1.6454 � 0.0021.1.64541212

56.47 � 0.02 mm,

� ,
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1.7 This spectacular mishap was the result
of a very small percent error—traveling a
few meters too far at the end of a journey of
hundreds of thousands of meters.

Table 1.2 Using Significant 
Figures

Multiplication or division:
Result may have no more significant figures
than the starting number with the fewest 
significant figures:

Addition or subtraction:
Number of significant figures is determined by
the starting number with the largest uncertainty
(i.e., fewest digits to the right of the decimal
point):

27.153 + 138.2 - 11.74 = 153.6

1.32578 * 107 * 4.11 * 10-3 = 5.45 * 104

0.745 * 2.2

3.885
= 0.42

The measured values have only three significant
figures, so their calculated  ratio (p) also has
only three significant figures.

424 mm

135 mm

1.8 Determining the value of from the
circumference and diameter of a circle.

p
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In the examples and problems in this book we usually give numerical values
with three significant figures, so your answers should usually have no more than
three significant figures. (Many numbers in the real world have even less accu-
racy. An automobile speedometer, for example, usually gives only two significant
figures.) Even if you do the arithmetic with a calculator that displays ten digits, it
would be wrong to give a ten-digit answer because it misrepresents the accuracy
of the results. Always round your final answer to keep only the correct number of
significant figures or, in doubtful cases, one more at most. In Example 1.1 it
would have been wrong to state the answer as Note that when
you reduce such an answer to the appropriate number of significant figures, you
must round, not truncate. Your calculator will tell you that the ratio of 525 m to
311 m is 1.688102894; to three significant figures, this is 1.69, not 1.68.

When we calculate with very large or very small numbers, we can show sig-
nificant figures much more easily by using scientific notation, sometimes called
powers-of-10 notation. The distance from the earth to the moon is about
384,000,000 m, but writing the number in this form doesn’t indicate the number
of significant figures. Instead, we move the decimal point eight places to the left
(corresponding to dividing by 108) and multiply by that is,

In this form, it is clear that we have three significant figures. The number
also has three significant figures, even though two of them are

zeros. Note that in scientific notation the usual practice is to express the quantity
as a number between 1 and 10 multiplied by the appropriate power of 10.

When an integer or a fraction occurs in a general equation, we treat that
number as having no uncertainty at all. For example, in the equation

which is Eq. (2.13) in Chapter 2, the coefficient 2 is
exactly 2. We can consider this coefficient as having an infinite number of signif-
icant figures The same is true of the exponent 2 in and 

Finally, let’s note that precision is not the same as accuracy. A cheap digital
watch that gives the time as 10:35:17 A.M. is very precise (the time is given to the
second), but if the watch runs several minutes slow, then this value isn’t very
accurate. On the other hand, a grandfather clock might be very accurate (that is,
display the correct time), but if the clock has no second hand, it isn’t very precise.
A high-quality measurement is both precise and accurate.

v0x
2.vx

212.000000 Á 2.

vx
2 = v0x

2 + 2ax1x - x02,

4.00 * 10-7

384,000,000 m = 3.84 * 108 m

108;

341.01861 m>s.

Example 1.3 Significant figures in multiplication

The rest energy E of an object with rest mass m is given by 
Einstein’s famous equation , where c is the speed of light
in vacuum. Find E for an electron for which (to three significant
figures) . The SI unit for E is the joule (J);

SOLUTION

IDENTIFY and SET UP: Our target variable is the energy E. We are
given the value of the mass m; from Section 1.3 (or Appendix F)
the speed of light is 

EXECUTE: Substituting the values of m and c into Einstein’s equa-
tion, we find

= 8.187659678 * 10-14 kg # m2>s2

= 181.8765967821103-31+12*8242 kg # m2>s2

= 19.11212.9979245822110-312110822 kg # m2>s2

E = 19.11 * 10-31 kg212.99792458 * 108 m>s22

c = 2.99792458 * 108 m>s.

1 J = 1 kg # m2>s2.
m = 9.11 * 10-31 kg

E = mc2
Since the value of m was given to only three significant figures, we
must round this to

EVALUATE: While the rest energy contained in an electron may
seem ridiculously small, on the atomic scale it is tremendous.
Compare our answer to the energy gained or lost by a
single atom during a typical chemical reaction. The rest energy of
an electron is about 1,000,000 times larger! (We’ll discuss the sig-
nificance of rest energy in Chapter 37.)

10-19 J,

E = 8.19 * 10-14 kg # m2>s2 = 8.19 * 10-14 J



1.6 Estimates and Orders of Magnitude
We have stressed the importance of knowing the accuracy of numbers that repre-
sent physical quantities. But even a very crude estimate of a quantity often gives
us useful information. Sometimes we know how to calculate a certain quantity,
but we have to guess at the data we need for the calculation. Or the calculation
might be too complicated to carry out exactly, so we make some rough approxi-
mations. In either case our result is also a guess, but such a guess can be useful
even if it is uncertain by a factor of two, ten, or more. Such calculations are often
called order-of-magnitude estimates. The great Italian-American nuclear physi-
cist Enrico Fermi (1901–1954) called them “back-of-the-envelope calculations.”

Exercises 1.16 through 1.25 at the end of this chapter are of the estimating, or
order-of-magnitude, variety. Most require guesswork for the needed input data.
Don’t try to look up a lot of data; make the best guesses you can. Even when they
are off by a factor of ten, the results can be useful and interesting.
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Test Your Understanding of Section 1.5 The density of a material is
equal to its mass divided by its volume. What is the density of a rock of
mass 1.80 kg and volume (i) (ii) 
(iii) (iv) (v) any of these—all of these answers
are mathematically equivalent. ❙

3.000 * 103 kg >m3;3.00 * 103 kg >m3;
103 kg >m3;3.0 *3 * 103 kg>m3;6.0 * 10-4 m3?

(in kg>m3)

Example 1.4 An order-of-magnitude estimate

You are writing an adventure novel in which the hero escapes
across the border with a billion dollars’ worth of gold in his suit-
case. Could anyone carry that much gold? Would it fit in a suit-
case?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Gold sells for around $400 an
ounce. (The price has varied between $200 and $1000 over the
past decade or so.) An ounce is about 30 grams; that’s worth
remembering. So ten dollars’ worth of gold has a mass of 
ounce, or around one gram. A billion dollars’ worth of gold 11092

1
40

is a hundred million grams, or a hundred thousand 
kilograms. This corresponds to a weight in British units of
around 200,000 lb, or 100 tons. No human hero could lift that
weight!

Roughly what is the volume of this gold? The density of gold is
much greater than that of water , or ; if its
density is 10 times that of water, this much gold will have a vol-
ume of , many times the volume of a suitcase.

EVALUATE: Clearly your novel needs rewriting. Try the calculation
again with a suitcase full of five-carat (1-gram) diamonds, each
worth $100,000. Would this work?

10 m3

1000 kg >m311 g>cm32

1105211082

Test Your Understanding of Section 1.6 Can you estimate the total number
of teeth in all the mouths of everyone (students, staff, and faculty) on your campus?
(Hint: How many teeth are in your mouth? Count them!) ❙

1.7 Vectors and Vector Addition
Some physical quantities, such as time, temperature, mass, and density, can be
described completely by a single number with a unit. But many other important
quantities in physics have a direction associated with them and cannot be
described by a single number. A simple example is describing the motion of an
airplane: We must say not only how fast the plane is moving but also in what
direction. The speed of the airplane combined with its direction of motion
together constitute a quantity called velocity. Another example is force, which in
physics means a push or pull exerted on a body. Giving a complete description of
a force means describing both how hard the force pushes or pulls on the body and
the direction of the push or pull.

Application Scalar Temperature,
Vector Wind
This weather station measures temperature, a
scalar quantity that can be positive or negative
(say, ) but has no direction. It
also measures wind velocity, which is a vector
quantity with both magnitude and direction (for
example, 15 km/h from the west).

+20°C or -5°C

PhET: Estimation
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When a physical quantity is described by a single number, we call it a scalar
quantity. In contrast, a vector quantity has both a magnitude (the “how much”
or “how big” part) and a direction in space. Calculations that combine scalar quan-
tities use the operations of ordinary arithmetic. For example, 
or However, combining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the
simplest vector quantity, displacement. Displacement is simply a change in the
position of an object. Displacement is a vector quantity because we must state not
only how far the object moves but also in what direction. Walking 3 km north
from your front door doesn’t get you to the same place as walking 3 km southeast;
these two displacements have the same magnitude but different directions.

We usually represent a vector quantity such as displacement by a single letter,
such as in Fig. 1.9a. In this book we always print vector symbols in boldface
italic type with an arrow above them. We do this to remind you that vector quan-
tities have different properties from scalar quantities; the arrow is a reminder that
vectors have direction. When you handwrite a symbol for a vector, always write
it with an arrow on top. If you don’t distinguish between scalar and vector quan-
tities in your notation, you probably won’t make the distinction in your thinking
either, and hopeless confusion will result.

We always draw a vector as a line with an arrowhead at its tip. The length of
the line shows the vector’s magnitude, and the direction of the line shows the
vector’s direction. Displacement is always a straight-line segment directed from
the starting point to the ending point, even though the object’s actual path may be
curved (Fig. 1.9b). Note that displacement is not related directly to the total
distance traveled. If the object were to continue on past and then return to 
the displacement for the entire trip would be zero (Fig. 1.9c).

If two vectors have the same direction, they are parallel. If they have the same
magnitude and the same direction, they are equal, no matter where they are located
in space. The vector from point to point in Fig. 1.10 has the same length
and direction as the vector from to These two displacements are equal,
even though they start at different points. We write this as in Fig. 1.10;
the boldface equals sign emphasizes that equality of two vector quantities is not
the same relationship as equality of two scalar quantities. Two vector quantities
are equal only when they have the same magnitude and the same direction.

The vector in Fig. 1.10, however, is not equal to because its direction is
opposite to that of We define the negative of a vector as a vector having the
same magnitude as the original vector but the opposite direction. The negative of
vector quantity is denoted as and we use a boldface minus sign to empha-
size the vector nature of the quantities. If is 87 m south, then is 87 m
north. Thus we can write the relationship between and in Fig. 1.10 as

or When two vectors and have opposite directions,
whether their magnitudes are the same or not, we say that they are antiparallel.

We usually represent the magnitude of a vector quantity (in the case of a dis-
placement vector, its length) by the same letter used for the vector, but in light
italic type with no arrow on top. An alternative notation is the vector symbol with
vertical bars on both sides:

(1.1)

The magnitude of a vector quantity is a scalar quantity (a number) and is always
positive. Note that a vector can never be equal to a scalar because they are
different kinds of quantities. The expression is just as wrong as

!
When drawing diagrams with vectors, it’s best to use a scale similar to those

used for maps. For example, a displacement of 5 km might be represented in a
diagram by a vector 1 cm long, and a displacement of 10 km by a vector 2 cm
long. In a diagram for velocity vectors, a vector that is 1 cm long might represent

“2 oranges = 3 apples”
“A
S

= 6 m”

1Magnitude of A
S
2 = A = ƒ A

S
ƒ

B
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A
S

A
S

.B
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� �B
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A
S

� �
B
S

A
S

�A
S

A
S

�A
S

,A
S

A
S

.
A
S

B
S

� A
S

A
S
¿

P2.P1A
S

P4P3A
S
¿

P1,P2

A
S

4 * 2 s = 8 s.
6 kg + 3 kg = 9 kg,

Ending position: P2

Displacement A

Starting position: P1

P2

P1

P1

S

A

Path taken

S

Handwritten notation:

Displacement depends only on the starting
and ending positions—not on the path taken.

We represent a displacement by an arrow
pointing in the direction of displacement.

Total displacement for a round trip
is 0, regardless of the distance traveled.

(a)

(b)

(c)

1.9 Displacement as a vector quantity. A
displacement is always a straight-line seg-
ment directed from the starting point to the
ending point, even if the path is curved.

P2 P4 P5

P1 P3 P6

A� 5 B 5 2AA
S

A
S S S

Displacement B has
the same magnitude
as A but opposite
direction; B is the
negative of A.

S

S

S

S
Displacements A and A�
are equal because they
have the same length
and direction.

S S

S

1.10 The meaning of vectors that have
the same magnitude and the same or oppo-
site direction.



a velocity of magnitude 5 m s. A velocity of 20 m s would then be represented
by a vector 4 cm long.

Vector Addition and Subtraction
Suppose a particle undergoes a displacement followed by a second displace-
ment . The final result is the same as if the particle had started at the same initial
point and undergone a single displacement (Fig. 1.11a). We call displacement

the vector sum, or resultant, of displacements and We express this rela-
tionship symbolically as

(1.2)

The boldface plus sign emphasizes that adding two vector quantities requires a
geometrical process and is not the same operation as adding two scalar quantities
such as In vector addition we usually place the tail of the second
vector at the head, or tip, of the first vector (Fig. 1.11a).

If we make the displacements and in reverse order, with first and sec-
ond, the result is the same (Fig. 1.11b). Thus

(1.3)

This shows that the order of terms in a vector sum doesn’t matter. In other words,
vector addition obeys the commutative law.

Figure 1.11c shows another way to represent the vector sum: If vectors and
are both drawn with their tails at the same point, vector is the diagonal of a

parallelogram constructed with and as two adjacent sides.

CAUTION Magnitudes in vector addition It’s a common error to conclude that if
then the magnitude C should equal the magnitude A plus the magnitude B. In

general, this conclusion is wrong; for the vectors shown in Fig. 1.11, you can see that
The magnitude of depends on the magnitudes of and and on the 

angle between and (see Problem 1.90). Only in the special case in which and are 
parallel is the magnitude of equal to the sum of the magnitudes of and 
(Fig. 1.12a). When the vectors are antiparallel (Fig. 1.12b), the magnitude of equals 
the difference of the magnitudes of and Be careful about distinguishing between
scalar and vector quantities, and you’ll avoid making errors about the magnitude of a vec-
tor sum. ❙

When we need to add more than two vectors, we may first find the vector sum
of any two, add this vectorially to the third, and so on. Figure 1.13a shows three
vectors and In Fig. 1.13b we first add and to give a vector 
sum we then add vectors and by the same process to obtain the vector 
sum
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(a) We can add two vectors by placing them
head to tail.

A
S

B
S

C 5 A 1 B
S S S

(b) Adding them in reverse order gives the
same result.

A
S

B
S

C 5 B 1 A
S S S

(c) We can also add them by constructing a
parallelogram.

A
S

B
S

C 5 A 1 B
S S S

1.11 Three ways to add two vectors. 
As shown in (b), the order in vector addi-
tion doesn’t matter; vector addition is
commutative.

(a) The sum of two parallel vectors

(b) The sum of two antiparallel vectors

A
S

B
S

C � A � B
S S S

A
S

B
S

C � A � B
S S S

1.12 (a) Only when two vectors and
are parallel does the magnitude of their

sum equal the sum of their magnitudes:
(b) When and are

antiparallel, the magnitude of their sum
equals the difference of their magnitudes:
C = ƒA - B ƒ .

B
S

A
S

C = A + B.

B
S A

S

(a) To find the sum of
these three vectors ...

A
S

B
S

C
S

(b) we could add A and B
to get D and then add
C to D to get the final
sum (resultant) R, ...

S S

S

S

SS

A
S

D
S

B
S

R
S

C
S

(c) or we could add B and C
to get E and then add
A to E to get R, ...

S S

S

SSS

A
S

B
S

R
S

E
S

C
S

(d) or we could add A, B,
and C to get R directly, ...

S S

S S

A
S

B
S

R
S

C
S

(e) or we could add A, B,
and C in any other order
and still get R.

S S

S

S

A
SB

S

R
S

C
S

1.13 Several constructions for finding the vector sum A
S

� B
S

� C
S

.
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Alternatively, we can first add and to obtain vector (Fig. 1.13c), and then add
and to obtain 

We don’t even need to draw vectors and all we need to do is draw and
in succession, with the tail of each at the head of the one preceding it. The 

sum vector extends from the tail of the first vector to the head of the last vector
(Fig. 1.13d). The order makes no difference; Fig. 1.13e shows a different order, and
we invite you to try others. We see that vector addition obeys the associative law.

We can subtract vectors as well as add them. To see how, recall that vector
has the same magnitude as but the opposite direction. We define the dif-

ference of two vectors and to be the vector sum of and 

(1.4)

Figure 1.14 shows an example of vector subtraction.
A vector quantity such as a displacement can be multiplied by a scalar quan-

tity (an ordinary number). The displacement is a displacement (vector quan-
tity) in the same direction as the vector but twice as long; this is the same as
adding to itself (Fig. 1.15a). In general, when a vector is multiplied by a
scalar c, the result has magnitude (the absolute value of c multiplied by 
the magnitude of the vector ). If c is positive, is in the same direction as 
if c is negative, is in the direction opposite to Thus is parallel to 
while is antiparallel to (Fig. 1.15b).

A scalar used to multiply a vector may also be a physical quantity. For exam-
ple, you may be familiar with the relationship the net force (a vector
quantity) that acts on a body is equal to the product of the body’s mass m (a scalar
quantity) and its acceleration (a vector quantity). The direction of is the same
as that of because m is positive, and the magnitude of is equal to the mass m
(which is positive) multiplied by the magnitude of The unit of force is the unit
of mass multiplied by the unit of acceleration.
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With A and 2B head to tail,
A 2 B is the vector from the
tail of A to the head of 2B .

With A and B head to head,
A 2 B is the vector from the
tail of A to the tail of B .
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S S
Subtracting B from A ... ... is equivalent to adding 2B to A.
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1.14 To construct the vector difference you can either place the tail of at the head of or place the two vectors and 
head to head.
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A
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A
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2A
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23A
S

(a) Multiplying a vector by a positive scalar
changes the magnitude (length) of the vector,
but not its direction.

(b) Multiplying a vector by a negative scalar
changes its magnitude and reverses its direction.

S

2A is twice as long as A.
S S

S
23A is three times as long as A and points
in the opposite direction.

1.15 Multiplying a vector (a) by a posi-
tive scalar and (b) by a negative scalar.

Example 1.5 Addition of two vectors at right angles

A cross-country skier skis 1.00 km north and then 2.00 km east on
a horizontal snowfield. How far and in what direction is she from
the starting point?

SOLUTION

IDENTIFY and SET UP: The problem involves combining two dis-
placements at right angles to each other. In this case, vector addi-
tion amounts to solving a right triangle, which we can do using the
Pythagorean theorem and simple trigonometry. The target vari-
ables are the skier’s straight-line distance and direction from her

starting point. Figure 1.16 is a scale diagram of the two displace-
ments and the resultant net displacement. We denote the direction
from the starting point by the angle (the Greek letter phi). The
displacement appears to be about 2.4 km. Measurement with a pro-
tractor indicates that is about 63°.

EXECUTE: The distance from the starting point to the ending point
is equal to the length of the hypotenuse:

211.00 km22 + 12.00 km22 = 2.24 km

f

f

Continued

PhET: Vector Addition



1.8 Components of Vectors
In Section 1.7 we added vectors by using a scale diagram and by using properties
of right triangles. Measuring a diagram offers only very limited accuracy, and
calculations with right triangles work only when the two vectors are perpendicu-
lar. So we need a simple but general method for adding vectors. This is called the
method of components.

To define what we mean by the components of a vector we begin with a
rectangular (Cartesian) coordinate system of axes (Fig. 1.17a). We then draw the
vector with its tail at O, the origin of the coordinate system. We can represent any
vector lying in the xy-plane as the sum of a vector parallel to the x-axis and a vec-
tor parallel to the y-axis. These two vectors are labeled and in Fig. 1.17a; 
they are called the component vectors of vector and their vector sum is equal
to In symbols,

(1.5)

Since each component vector lies along a coordinate-axis direction, we need
only a single number to describe each one. When points in the positive 
x-direction, we define the number to be equal to the magnitude of When

points in the negative x-direction, we define the number to be equal to the
negative of that magnitude (the magnitude of a vector quantity is itself never neg-
ative). We define the number in the same way. The two numbers and 
are called the components of (Fig. 1.17b).

CAUTION Components are not vectors The components and of a vector are just
numbers; they are not vectors themselves. This is why we print the symbols for compo-
nents in light italic type with no arrow on top instead of in boldface italic with an arrow,
which is reserved for vectors. ❙

We can calculate the components of the vector if we know its magni-
tude A and its direction. We’ll describe the direction of a vector by its angle
relative to some reference direction. In Fig. 1.17b this reference direction is
the positive x-axis, and the angle between vector and the positive x-axis A
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A little trigonometry (from Appendix B) allows us to find angle :

We can describe the direction as 63.4° east of north or
north of east.

EVALUATE: Our answers 2.24 km and are close to our
predictions. In the more general case in which you have to add two
vectors not at right angles to each other, you can use the law of
cosines in place of the Pythagorean theorem and use the law of
sines to find an angle corresponding to in this example. (You’ll
find these trigonometric rules in Appendix B.) We’ll see more
techniques for vector addition in Section 1.8.

f

2f = 63.4°1

90° - 63.4° = 26.6°

 f = 63.4°

 tan f =
Opposite side

Adjacent side
=

2.00 km

1.00 km

f

0 1 km 2 km

1.00 km

2.00 km

Resultant displacement
f

N

EW

S

1.16 The vector diagram, drawn to scale, for a ski trip.

Test Your Understanding of Section 1.7 Two displacement vectors, 
and have magnitudes and Which of the following  could

be the magnitude of the difference vector (There may be more than one
correct answer.) (i) 9 m; (ii) 7 m; (iii) 5 m; (iv) 1 m; (v) 0 m; (vi) ❙-1 m.
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(b)
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Ax 5 Acosu

Ay 5 Asinu

The components of A
S

1.17 Representing a vector in terms 
of (a) component vectors and and 
(b) components and (which in this
case are both positive).
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is (the Greek letter theta). Imagine that the vector originally lies along the
and that you then rotate it to its correct direction, as indicated by the

arrow in Fig. 1.17b on the angle If this rotation is from the toward
the as shown in Fig. 1.17b, then is positive; if the rotation is from the

toward the is negative. Thus the is at an angle of 90°,
the at 180°, and the at 270° (or If is measured in this
way, then from the definition of the trigonometric functions,

(1.6)

In Fig. 1.17b and are positive. This is consistent with Eqs. (1.6); is in
the first quadrant (between 0° and 90°), and both the cosine and the sine of an
angle in this quadrant are positive. But in Fig. 1.18a the component is nega-
tive. Again, this agrees with Eqs. (1.6); the cosine of an angle in the second quad-
rant is negative. The component is positive is positive in the second
quadrant). In Fig. 1.18b both and are negative (both and are
negative in the third quadrant).

CAUTION Relating a vector’s magnitude and direction to its components Equations (1.6)
are correct only when the angle is measured from the positive x-axis as described above.
If the angle of the vector is given from a different reference direction or using a different
sense of rotation, the relationships are different. Be careful! Example 1.6 illustrates this
point. ❙

u

sinucosuCyCx

(sinuBy

Bx

uAyAx

1u measured from the +x-axis, rotating toward the +y-axis2

Ax = Acosu  and  Ay = A sinu

Ax

A
= cosu  and   Ay

A
= sinu

u-90°).-y-axis-x-axis
+y-axisu-y-axis,+x-axis

u+y-axis,
+x-axisu.

+x-axis
A
S

u

Example 1.6 Finding components

(a) What are the x- and y-components of vector in Fig. 1.19a?
The magnitude of the vector is , and the angle

(b) What are the x- and y-components of vector in 
Fig. 1.19b? The magnitude of the vector is , and the
angle

SOLUTION

IDENTIFY and SET UP: We can use Eqs. (1.6) to find the compo-
nents of these vectors, but we have to be careful: Neither of the
angles or in Fig. 1.19 is measured from the toward the

We estimate from the figure that the lengths of the com-+y-axis.
+x-axisba

b = 37.0°.
E = 4.50 m

E
S

a = 45°.
D = 3.00 m

D
S

ponents in part (a) are both roughly 2 m, and that those in part (b)
are 3m and 4 m. We’ve indicated the signs of the components in
the figure.

EXECUTE: (a) The angle (the Greek letter alpha) between the posi-
tive x-axis and is measured toward the negative y-axis. The angle
we must use in Eqs. (1.6) is We then find

Had you been careless and substituted for in Eqs. (1.6),
your result for would have had the wrong sign.

(b) The x- and y-axes in Fig. 1.19b are at right angles, so it
doesn’t matter that they aren’t horizontal and vertical, respec-
tively. But to use Eqs. (1.6), we must use the angle

Then we find

EVALUATE: Our answers to both parts are close to our predictions.
But ask yourself this: Why do the answers in part (a) correctly
have only two significant figures?

Ey = E sin 53.0° = 14.50 m21sin 53.0°2 = +3.59 m

Ex = E cos 53.0° = 14.50 m21cos 53.0°2 = +2.71 m

u = 90.0° - b = 90.0° - 37.0° = 53.0°.

Dy

u+45°

Dy = D sin u = 13.00 m21sin1-45°22 = -2.1 m

Dx = D cos u = 13.00 m21cos1-45°22 = +2.1 m

u = -a = -45°.
D
S

a

(a) (b)

Dy (�)

Dx (1)

y

x
a

D
S

Ex (1)
Ey (1)

y

x

b

E
S

1.19 Calculating the x- and y-components of vectors.

By is positive:
Its component
vector points in
the 1y-direction.

Bx is negative: Its component
vector points in the 2x-direction.

Both components of C are negative.

(a)
y

x
Bx (2)

By (1)
B
S

S

u

(b)
y

x
Cx (2)

Cy (2)
C
S

u

1.18 The components of a vector may
be positive or negative numbers.



Doing Vector Calculations Using Components
Using components makes it relatively easy to do various calculations involving
vectors. Let’s look at three important examples.

1. Finding a vector’s magnitude and direction from its components. We
can describe a vector completely by giving either its magnitude and direction or
its x- and y-components. Equations (1.6) show how to find the components if we
know the magnitude and direction. We can also reverse the process: We can find
the magnitude and direction if we know the components. By applying the
Pythagorean theorem to Fig. 1.17b, we find that the magnitude of vector is

(1.7)

(We always take the positive root.) Equation (1.7) is valid for any choice of x-
axis and y-axis, as long as they are mutually perpendicular. The expression for
the vector direction comes from the definition of the tangent of an angle. If is
measured from the positive x-axis, and a positive angle is measured toward the
positive y-axis (as in Fig. 1.17b), then

(1.8)

We will always use the notation arctan for the inverse tangent function. The nota-
tion is also commonly used, and your calculator may have an INV or 2ND
button to be used with the TAN button.

CAUTION Finding the direction of a vector from its components There’s one slight com-
plication in using Eqs. (1.8) to find : Any two angles that differ by 180° have the same
tangent. Suppose and as in Fig. 1.20; then But both

and or have tangents of . To decide which is correct, we have to
look at the individual components. Because is positive and is negative, the angle
must be in the fourth quadrant; thus or is the correct value. Most pocket
calculators give In this case that is correct; but if instead we have

and then the correct angle is 135°. Similarly, when and 
are both negative, the tangent is positive, but the angle is in the third quadrant. You 
should always draw a sketch like Fig. 1.20 to check which of the two possibilities is the
correct one. ❙

2. Multiplying a vector by a scalar. If we multiply a vector by a scalar c,
each component of the product is the product of c and the corresponding
component of 

components of (1.9)

For example, Eq. (1.9) says that each component of the vector is twice as
great as the corresponding component of the vector so is in the same direc-
tion as but has twice the magnitude. Each component of the vector is
three times as great as the corresponding component of the vector but has the
opposite sign, so is in the opposite direction from and has three times the
magnitude. Hence Eqs. (1.9) are consistent with our discussion in Section 1.7 of
multiplying a vector by a scalar (see Fig. 1.15).

3. Using components to calculate the vector sum (resultant) of two or
more vectors. Figure 1.21 shows two vectors and and their vector sum 
along with the x- and y-components of all three vectors. You can see from the
diagram that the x-component of the vector sum is simply the sum 1Ax + Bx2Rx

R
S

,B
S

A
S

A
S

-3A
S

A
S

-3A
S

A
S

2A
S

A
S

,
2A
S

D
S

� cA
S
21Dx = cAx  Dy = cAy

A
S

:
D
S

� cA
S

A
S

AyAxAy = 2 m,Ax = -2 m
arctan1-12 = -45°.

-45°21u = 315°
AyAx

-1-45°21315°135°
tanu = -1.Ay = -2 mAx = 2 m

u

tan-1

tanu =
Ay

Ax
  and  u = arctan

Ay

Ax

u

A = 2Ax
2 + Ay

2

A
S
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Suppose that tanu 5

Two angles have tangents of 21: 135° and 315°.
Inspection of the diagram shows that u must be
315°.

5 21. What is u?

y

x

Ay 5 22 m

Ax

135°

315°

Ax 5 2 m

Ay

A
S

1.20 Drawing a sketch of a vector reveals
the signs of its x- and y-components.
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of the x-components of the vectors being added. The same is true for the 
y-components. In symbols,

(1.10)

Figure 1.21 shows this result for the case in which the components 
and are all positive. You should draw additional diagrams to verify for your-
self that Eqs. (1.10) are valid for any signs of the components of and 

If we know the components of any two vectors and perhaps by using
Eqs. (1.6), we can compute the components of the vector sum Then if we need
the magnitude and direction of we can obtain them from Eqs. (1.7) and (1.8)
with the A’s replaced by R’s.

We can extend this procedure to find the sum of any number of vectors. If is
the vector sum of the components of are

(1.11)

We have talked only about vectors that lie in the xy-plane, but the component
method works just as well for vectors having any direction in space. We can
introduce a z-axis perpendicular to the xy-plane; then in general a vector has
components and in the three coordinate directions. Its magnitude A is

(1.12)

Again, we always take the positive root. Also, Eqs. (1.11) for the components of
the vector sum have an additional member:

We’ve focused on adding displacement vectors, but the method is applicable
to all vector quantities. When we study the concept of force in Chapter 4, we’ll
find that forces are vectors that obey the same rules of vector addition that we’ve
used with displacement.

Rz = Az + Bz + Cz + Dz + Ez + Á
R
S

A = 2Ax
2 + Ay

2 + Az
2

AzAy ,Ax ,
A
S

 Ry = Ay + By + Cy + Dy + Ey + Á
 Rx = Ax + Bx + Cx + Dx + Ex + Á

R
S

E
S

, Á ,D
S

,C
S

,B
S

,A
S

,
R
S

R
S

,
R
S

.
B
S

,A
S

B
S

.A
S

By

Bx ,Ay ,Ax ,

Rx = Ax + Bx  Ry = Ay + By  1components of R
S

� A
S

� B
S
2

O
x

y

By

BxAx

Rx

Ry

Ry 5 Ay 1 By Rx 5 Ax 1 Bx

Ay A
S

B
S

R
S

The components of R are the sums
of the components of A and B:

S

S S

R is the vector sum
(resultant) of A and B.

S

S S

1.21 Finding the vector sum (resultant)
of and using components.B

S
A
S

Problem-Solving Strategy 1.3 Vector Addition

IDENTIFY the relevant concepts: Decide what the target variable
is. It may be the magnitude of the vector sum, the direction, or
both.

SET UP the problem: Sketch the vectors being added, along with
suitable coordinate axes. Place the tail of the first vector at the
origin of the coordinates, place the tail of the second vector at the
head of the first vector, and so on. Draw the vector sum from
the tail of the first vector (at the origin) to the head of the last
vector. Use your sketch to estimate the magnitude and direction
of . Select the mathematical tools you’ll use for the full calcula-
tion: Eqs. (1.6) to obtain the components of the vectors given, if
necessary, Eqs. (1.11) to obtain the components of the vector
sum, Eq. (1.12) to obtain its magnitude, and Eqs. (1.8) to obtain
its direction.

EXECUTE the solution as follows:
1. Find the x- and y-components of each individual vector and

record your results in a table, as in Example 1.7 below. If a
vector is described by a magnitude A and an angle measuredu,

R
S

R
S

from the toward the then its components
are given by Eqs. 1.6:

If the angles of the vectors are given in some other way, per-
haps using a different reference direction, convert them to
angles measured from the as in Example 1.6 above.

2. Add the individual x-components algebraically (including
signs) to find the x-component of the vector sum. Do the
same for the y-components to find See Example 1.7 below.

3. Calculate the magnitude R and direction of the vector sum
using Eqs. (1.7) and (1.8):

EVALUATE your answer: Confirm that your results for the magni-
tude and direction of the vector sum agree with the estimates you
made from your sketch. The value of that you find with a calcula-
tor may be off by 180°; your drawing will indicate the correct value.

u

R = 2R 2
x + R 2

y  u = arctan 

Ry

Rx

u

Ry.
Rx,

+x-axis

Ax = A cos u  Ay = A sin u

+y-axis,+x-axis
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57.3 m

y (north)

36.0°

x (east)
O

17.8 m
72.4 m

32.0°

u

R
S

A
S

B
r

C
S

1.22 Three successive displacements and and the
resultant (vector sum) displacement R

S
� A

S
� B

S
� C

S
.

C
S

B
S

,A
S

,

Example 1.7 Adding vectors using their components

Three players on a reality TV show are brought to the center of a
large, flat field. Each is given a meter stick, a compass, a calcula-
tor, a shovel, and (in a different order for each contestant) the fol-
lowing three displacements:

72.4 m, 32.0° east of north

57.3 m, 36.0° south of west

17.8 m due south

The three displacements lead to the point in the field where the
keys to a new Porsche are buried. Two players start measuring
immediately, but the winner first calculates where to go. What
does she calculate?

SOLUTION

IDENTIFY and SET UP: The goal is to find the sum (resultant) of
the three displacements, so this is a problem in vector addition.
Figure 1.22 shows the situation. We have chosen the as+x-axis

C
S

:

B
S

:

A
S

:

Comparing to Fig. 1.22 shows that the calculated angle is clearly
off by 180°. The correct value is , or 
west of north.

EVALUATE: Our calculated answers for R and agree with our esti-
mates. Notice how drawing the diagram in Fig. 1.22 made it easy
to avoid a 180° error in the direction of the vector sum.

u

39°u = 180° - 51° = 129°

u = arctan
9.92 m

-7.99 m
= -51°

R = 21-7.99 m22 + 19.92 m22 = 12.7 m

Example 1.8 A simple vector addition in three dimensions

After an airplane takes off, it travels 10.4 km west, 8.7 km north, and 2.1 km up. How far
is it from the takeoff point?

SOLUTION

Let the be east, the north, and the up. Then the components of
the airplane’s displacement are and From
Eq. (1.12), the magnitude of the displacement is

A = 21-10.4 km22 + 18.7 km22 + 12.1 km22 = 13.7 km

Az = 2.1 km.Ay = 8.7 km,Ax = -10.4 km,
+z-axis+y-axis+x-axis

Distance Angle x-component y-component
58.0° 38.37 m 61.40 m

216.0°
270.0° 0.00 m

Ry = 9.92 mRx = -7.99 m
-17.80 mC = 17.8 m
-33.68 m-46.36 mB = 57.3 m

A = 72.4 m

east and the as north. We estimate from the diagram that 
the vector sum is about 10 m, 40° west of north (which corre-
sponds to 130°).

EXECUTE: The angles of the vectors, measured from the 
toward the are 

and , respectively. We may now use 
Eqs. (1.6) to find the components of :

We’ve kept an extra significant figure in the components; we’ll
round to the correct number of significant figures at the end of
our calculation. The table below shows the components of all the
displacements, the addition of the components, and the other cal-
culations.

Ay = A sin uA = 172.4 m21sin 58.0°2 = 61.40 m

Ax = A cos uA = 172.4 m21cos 58.0°2 = 38.37 m

A
S

270.0°36.0°2 = 216.0°,
1180.0° +190.0° - 32.0°2 = 58.0°,+y-axis,

+x-axis

u L
R
S

+y-axis
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1.9 Unit Vectors
A unit vector is a vector that has a magnitude of 1, with no units. Its only pur-
pose is to point—that is, to describe a direction in space. Unit vectors provide a
convenient notation for many expressions involving components of vectors. We
will always include a caret or “hat” in the symbol for a unit vector to distin-
guish it from ordinary vectors whose magnitude may or may not be equal to 1.

In an x-y coordinate system we can define a unit vector that points in the
direction of the positive x-axis and a unit vector that points in the direction of
the positive y-axis (Fig. 1.23a). Then we can express the relationship between
component vectors and components, described at the beginning of Section 1.8, as
follows:

(1.13)

Similarly, we can write a vector in terms of its components as

(1.14)

Equations (1.13) and (1.14) are vector equations; each term, such as is a vec-
tor quantity (Fig. 1.23b).

Using unit vectors, we can express the vector sum of two vectors and as
follows:

(1.15)

Equation (1.15) restates the content of Eqs. (1.10) in the form of a single vector
equation rather than two component equations.

If the vectors do not all lie in the xy-plane, then we need a third component.
We introduce a third unit vector that points in the direction of the positive 
z-axis (Fig. 1.24). Then Eqs. (1.14) and (1.15) become

(1.16)

(1.17) � Rx ın � Ry   ≥n � Rz kN

 R
S

� 1Ax + Bx2ın � 1Ay + By2 ≥n � 1Az + Bz2 kN

B
S

� Bx ın � By ≥n � Bz kN

A
S

� Ax ın � Ay ≥n � Az kN

kN

 � Rx ın � Ry ≥n

 � 1Ax + Bx2ın � 1Ay + By2 ≥n

 � 1Ax ın � Ay ≥n2 � 1Bx ın � By ≥n2

 R
S

� A
S

� B
S

 B
S

� Bx  ın � By  ≥n

 A
S

� Ax  ın � Ay ≥n

B
S

A
S

R
S

Ax ın,

A
S

� Ax ın � Ay ≥n

A
S

A
S

y � Ay ≥n

A
S

x � Ax ın

≥n
ın

1^2

Test Your Understanding of Section 1.8 Two vectors and both lie in 
the xy-plane. (a) Is it possible for to have the same magnitude as but different
components? (b) Is it possible for to have the same components as but a different
magnitude? ❙

B
S

A
S

B
S

A
S

B
S

A
S

y

x
O

Ax i

Ay j

j

i

A
S

^^

^

^

y

x
O

j

î

^

A 5 Ax i 1 Ay j
S

S
We can express a vector A in
terms of its components as

(b)

^ ^

(a)
The unit vectors i and j point in the
directions of the x- and y-axes and
have a magnitude of 1.

^ ^

1.23 (a) The unit vectors and 
(b) Expressing a vector in
terms of its components.

A
S ≥n.ın

y

x
z

O

î

ĵ

k̂

1.24 The unit vectors and kN .≥n,ın,



1.10 Products of Vectors
Vector addition develops naturally from the problem of combining displacements
and will prove useful for calculating many other vector quantities. We can also
express many physical relationships by using products of vectors. Vectors are not
ordinary numbers, so ordinary multiplication is not directly applicable to vectors.
We will define two different kinds of products of vectors. The first, called the
scalar product, yields a result that is a scalar quantity. The second, the vector
product, yields another vector.

Scalar Product
The scalar product of two vectors and is denoted by Because of this
notation, the scalar product is also called the dot product. Although and are
vectors, the quantity is a scalar.

To define the scalar product we draw the two vectors and with their
tails at the same point (Fig. 1.25a). The angle (the Greek letter phi) between their
directions ranges from 0° to Figure 1.25b shows the projection of the vector

onto the direction of this projection is the component of in the direction of
and is equal to (We can take components along any direction that’s con-

venient, not just the x- and y-axes.) We define to be the magnitude of multi-
plied by the component of in the direction of Expressed as an equation,

(1.18)

Alternatively, we can define to be the magnitude of multiplied by 
the component of in the direction of as in Fig. 1.25c. Hence 

which is the same as Eq. (1.18).
The scalar product is a scalar quantity, not a vector, and it may be positive, neg-

ative, or zero. When is between 0° and and the scalar product iscosf 7 090°,f

B1Acosf2 = AB cosf,
A
S # BS =B

S
,A

S
B
S

A
S # BS

A
S # BS = AB cosf = ƒ A

S
ƒ ƒ B
S
ƒ cosf

(definition of the scalar
(dot) product)

A
S

.B
S

A
S

A
S # BS

Bcosf.A
S

B
S

A
S

;B
S

180°.
f

B
S

A
S

A
S # BS

A
S # BS

B
S

A
S

A
S # BS.B

S
A
S
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Test Your Understanding of Section 1.9 Arrange the following vectors
in order of their magnitude, with the vector of largest magnitude first. (i) 

(ii) (iii) (iv) 
❙13ın � 5≥n � 2kN2 m.

D
S

�C
S

� 13ın � 5≥n � 2kN2 m;B
S

� 1-3ın � 5≥n � 2kN2 m;5≥n � 2kN2 m;
A
S

� 13ın �

Place the vectors tail to tail.

(Magnitude of A) times (Component of B
                                       in direction of A)

(a)

f

B
S

A
S

S S

(b) A # B equals A(B cos f).
SS

(c) A # B also equals B(A cos f)
SS

S

(Magnitude of B) times (Component of A
                                       in direction of B)

S S

S

B cos f

f

B
S

A
S

A cos f

f

B
S

A
S

1.25 Calculating the scalar product of
two vectors, A

S # BS = AB cosf.

Example 1.9 Using unit vectors

Given the two displacements

find the magnitude of the displacement 

SOLUTION

IDENTIFY and SET UP: We are to multiply the vector by 2 (a scalar)
and subtract the vector from the result, so as to obtain the vector

. Equation (1.9) says that to multiply by 2, we
multiply each of its components by 2. We can use Eq. (1.17) to do
the subtraction; recall from Section 1.7 that subtracting a vector is
the same as adding the negative of that vector.

D
S

F
S

� 2D
S

� E
S

E
S

D
S

2D
S

� E
S

.

E
S

� 14.00 ın � 5.00 ≥n � 8.00kN2m

D
S

� 16.00 ın � 3.00 ≥n � 1.00kN2m and

EXECUTE: We have

From Eq. (1.12) the magnitude of is

EVALUATE: Our answer is of the same order of magnitude as the
larger components that appear in the sum. We wouldn’t expect our
answer to be much larger than this, but it could be much smaller.

= 16.9 m

= 218.00 m22 + 111.00 m22 + 1-10.00 m22

F = 2F 2
x + F 2

y + F 2
z

F
S

� 18.00ın � 11.00 ≥n � 10.00kN2 m

� 3112.00 - 4.002ın � 16.00 + 5.002 ≥n � (-2.00 - 8.00)kN4 m

F
S

� 216.00ın � 3.00 ≥n � 1.00kN2 m � 14.00ın � 5.00 ≥n � 8.00kN2 m
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positive (Fig. 1.26a). When is between 90° and so that 
the component of in the direction of is negative, and is negative
(Fig. 1.26b). Finally, when (Fig. 1.26c). The scalar product
of two perpendicular vectors is always zero.

For any two vectors and This means that
The scalar product obeys the commutative law of multiplication;

the order of the two vectors does not matter.
We will use the scalar product in Chapter 6 to describe work done by a force.

When a constant force is applied to a body that undergoes a displacement 
the work W (a scalar quantity) done by the force is given by

The work done by the force is positive if the angle between and is between
0° and negative if this angle is between 90° and and zero if and are
perpendicular. (This is another example of a term that has a special meaning in
physics; in everyday language, “work” isn’t something that can be positive or
negative.) In later chapters we’ll use the scalar product for a variety of purposes,
from calculating electric potential to determining the effects that varying mag-
netic fields have on electric circuits.

Calculating the Scalar Product Using Components
We can calculate the scalar product directly if we know the x-, y-, and z-
components of and To see how this is done, let’s first work out the scalar
products of the unit vectors. This is easy, since and all have magnitude 1
and are perpendicular to each other. Using Eq. (1.18), we find

(1.19)

Now we express and in terms of their components, expand the product, and
use these products of unit vectors:

(1.20)

From Eqs. (1.19) we see that six of these nine terms are zero, and the three that
survive give simply

(1.21)

Thus the scalar product of two vectors is the sum of the products of their respec-
tive components.

The scalar product gives a straightforward way to find the angle between
any two vectors and whose components are known. In this case we can use
Eq. (1.21) to find the scalar product of and Example 1.11 on the next page
shows how to do this.

B
S

.A
S

B
S

A
S

f

A
S # BS = AxBx + AyBy + AzBz

(scalar (dot) product in
terms of components)

+ AzBx kN # ın + AzBy kN # ≥n + AzBz kN # kN
+ AyBx≥n # ın + AyBy ≥n # ≥n + AyBz ≥n # kN

= AxBx ın # ın + AxBy ın # ≥n + AxBz ın # kN
+ Az kN # Bx ın + Az kN # By ≥n + Az kN # Bz kN

+ Ay ≥n # Bx ın + Ay ≥n # By ≥n + Ay ≥n # Bz kN

= Ax ın # Bx ın + Ax ın # By ≥n + Ax ın # Bz kN

A
S # BS = 1Ax ın � Ay ≥n � Az kN2 # 1Bx ın � By ≥n � Bz kN2

B
S

A
S

ın # ≥n = ın # kN = ≥n # kN = 112112cos90° = 0

ın # ın = ≥n # ≥n = kN # kN = 112112cos0° = 1

kN≥n,ın,
B
S

.A
S

A
S # BS

sSF
S

180°,90°,
sSF

S

W = F
S # sS

sS,F
S

A
S # BS = B

S # AS.
AB cosf = BA cosf.B

S
,A

S

A
S # BS = 0f = 90°,

A
S # BSA

S
B
S

cosf 6 0,180°f

If f is between
0° and 90°, A # B
is positive ...

... because B cos f . 0.

S S

(a)

f

B
S

A
S

If f is between 90° and 180°,
A # B is negative ...

... because B cos f , 0.

S S

(b)

f
B
S

A
S

If f 5 90°, A # B 5 0
because B has zero component
in the direction of A.

S

S S

S

(c)

f 5 90°

B
S

A
S

1.26 The scalar product 
can be positive, negative, or zero, depend-
ing on the angle between and B

S
.A

S

A
S # BS = AB cosf
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130.0°

53.0°

y

x

f

B
S

A
S

j

î

^

1.27 Two vectors in two dimensions.

Example 1.10 Calculating a scalar product

Find the scalar product of the two vectors in Fig. 1.27. The
magnitudes of the vectors are and 

SOLUTION

IDENTIFY and SET UP: We can calculate the scalar product in two
ways: using the magnitudes of the vectors and the angle between
them (Eq. 1.18), and using the components of the vectors 
(Eq. 1.21). We’ll do it both ways, and the results will check each
other.

B = 5.00.A = 4.00
A
S # BS EXECUTE: The angle between the two vectors is 

so Eq. (1.18) gives us

To use Eq. (1.21), we must first find the components of the vectors.
The angles of and are given with respect to the and
are measured in the sense from the to the so we
can use Eqs. (1.6):

As in Example 1.7, we keep an extra significant figure in the com-
ponents and round at the end. Equation (1.21) now gives us

EVALUATE: Both methods give the same result, as they should.

= 12.40721-3.2142 + 13.195213.8302 + 102102 = 4.50

A
S # BS = AxBx + AyBy + AzBz

By = 15.002 sin 130.0° = 3.830

Bx = 15.002 cos 130.0° = -3.214

Ay = 14.002 sin 53.0° = 3.195

Ax = 14.002 cos 53.0° = 2.407

+y-axis,+x-axis
+x-axisB

S
A
S

A
S # BS = AB cos f = 14.00215.002 cos 77.0° = 4.50

130.0° - 53.0° = 77.0°,
f =

Example 1.11 Finding an angle with the scalar product

Find the angle between the vectors

SOLUTION

IDENTIFY and SET UP: We’re given the x-, y-, and z-components
of two vectors. Our target variable is the angle between 
them (Fig. 1.28). To find this, we’ll solve Eq. (1.18), 

, for in terms of the scalar product and the magni-
tudes A and B. We can evaluate the scalar product using Eq. (1.21),

A
S # BSfAB cos f

A
S # BS =

f

B
S

� -4.00ın � 2.00 ≥n � 1.00kN
A
S

� 2.00ın � 3.00 ≥n � 1.00kN and

, and we can find A and B using
Eq. (1.7).

EXECUTE: We solve Eq. (1.18) for and write using
Eq. (1. 21). Our result is

We can use this formula to find the angle between any two vectors
and Here we have and and

and Thus

EVALUATE: As a check on this result, note that the scalar product
is negative. This means that is between 90° and (see

Fig. 1.26), which agrees with our answer.
180°fA

S # BS

f = 100°

 cos f =
AxBx + AyBy + AzBz

AB
=

-3.00

214.00 221.00
= -0.175

= 221.00

B = 2B 2
x + B 2

y + B 2
z = 21-4.0022 + 12.0022 + 1-1.0022

= 214.00

A = 2A 2
x + A 2

y + A 2
z = 212.0022 + 13.0022 + 11.0022

= -3.00

= 12.0021-4.002 + 13.00212.002 + 11.0021-1.002

A
S # BS = AxBx + AyBy + AzBz

Bz = -1.00.By = 2.00,Bx = -4.00,
Az = 1.00,Ay = 3.00,Ax = 2.00,B

S
.A

S

cos f =
A
S # BS
AB

=
AxBx + AyBy + AzBz

AB

A
S # BScos f

A
S # BS = AxBx + AyBy + AzBz

S
A extends from origin
to near corner of red box.

S
B extends from origin
to far corner of blue box.

y

x

z

j

î

^

k̂

A
S

B
S

1.28 Two vectors in three dimensions.
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Vector Product
The vector product of two vectors and also called the cross product, is
denoted by As the name suggests, the vector product is itself a vector.
We’ll use this product in Chapter 10 to describe torque and angular momentum;
in Chapters 27 and 28 we’ll use it to describe magnetic fields and forces.

To define the vector product , we again draw the two vectors and 
with their tails at the same point (Fig. 1.29a). The two vectors then lie in a plane.
We define the vector product to be a vector quantity with a direction perpendicu-
lar to this plane (that is, perpendicular to both and and a magnitude equal to

That is, if then

(magnitude of the vector (cross) product of and (1.22)

We measure the angle from toward and take it to be the smaller of the two
possible angles, so ranges from 0° to Then and C in Eq. (1.22)
is never negative, as must be the case for a vector magnitude. Note also that when

and are parallel or antiparallel, or 180° and That is, the vector
product of two parallel or antiparallel vectors is always zero. In particular, the
vector product of any vector with itself is zero.

CAUTION Vector product vs. scalar product Be careful not to confuse the expression
for the magnitude of the vector product with the similar expression 

for the scalar product To see the difference between these two expressions,
imagine that we vary the angle between and while keeping their magnitudes constant.
When and are parallel, the magnitude of the vector product will be zero and the scalar
product will be maximum. When and are perpendicular, the magnitude of the vector
product will be maximum and the scalar product will be zero. ❙

There are always two directions perpendicular to a given plane, one on each
side of the plane. We choose which of these is the direction of as follows.
Imagine rotating vector about the perpendicular line until it is aligned with 
choosing the smaller of the two possible angles between and Curl the fin-
gers of your right hand around the perpendicular line so that the fingertips point
in the direction of rotation; your thumb will then point in the direction of 
Figure 1.29a shows this right-hand rule and describes a second way to think
about this rule.

Similarly, we determine the direction of by rotating into as in 
Fig. 1.29b. The result is a vector that is opposite to the vector The vector
product is not commutative! In fact, for any two vectors and 

(1.23)

Just as we did for the scalar product, we can give a geometrical interpretation
of the magnitude of the vector product. In Fig. 1.30a, is the component of
vector that is perpendicular to the direction of vector . From Eq. (1.22) the
magnitude of equals the magnitude of multiplied by the component of 
perpendicular to Figure 1.30b shows that the magnitude of also equals
the magnitude of multiplied by the component of perpendicular to Note
that Fig. 1.30 shows the case in which is between 0° and 90°; you should draw a
similar diagram for between 90° and 180° to show that the same geometrical 
interpretation of the magnitude of still applies.

Calculating the Vector Product Using Components
If we know the components of and we can calculate the components of the
vector product using a procedure similar to that for the scalar product. First we
work out the multiplication table for the unit vectors and all three of whichkN ,≥n,ın,
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1.29 (a) The vector product 
determined by the right-hand rule.
(b) the vector product
is anticommutative.
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are perpendicular to each other (Fig. 1.31a). The vector product of any vector
with itself is zero, so

The boldface zero is a reminder that each product is a zero vector—that is, one
with all components equal to zero and an undefined direction. Using Eqs. (1.22)
and (1.23) and the right-hand rule, we find

(1.24)

You can verify these equations by referring to Fig. 1.31a.
Next we express and in terms of their components and the corresponding

unit vectors, and we expand the expression for the vector product:

(1.25)

We can also rewrite the individual terms in Eq. (1.25) as 
and so on. Evaluating these by using the multiplication table for

the unit vectors in Eqs. (1.24) and then grouping the terms, we get

(1.26)

Thus the components of are given by

(1.27)

The vector product can also be expressed in determinant form as

If you aren’t familiar with determinants, don’t worry about this form.
With the axis system of Fig. 1.31a, if we reverse the direction of the z-axis, we

get the system shown in Fig. 1.31b. Then, as you may verify, the definition of the
vector product gives instead of In fact, all vector prod-
ucts of the unit vectors and would have signs opposite to those in Eqs. (1.24).
We see that there are two kinds of coordinate systems, differing in the signs of
the vector products of unit vectors. An axis system in which as in
Fig. 1.31a, is called a right-handed system. The usual practice is to use only
right-handed systems, and we will follow that practice throughout this book.
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(b) A left-handed coordinate system;
we will not use these.

(a) A right-handed coordinate system
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1.31 (a) We will always use a right-
handed coordinate system, like this one.
(b) We will never use a left-handed coordi-
nate system (in which and 
so on).
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Example 1.12 Calculating a vector product

Vector has magnitude 6 units and is in the direction of the
Vector has magnitude 4 units and lies in the xy-plane,

making an angle of 30° with the (Fig. 1.32). Find the vec-
tor product 

SOLUTION

IDENTIFY and SET UP: We’ll find the vector product in two ways,
which will provide a check of our calculations. First we’ll use
Eq. (1.22) and the right-hand rule; then we’ll use Eqs. (1.27) to
find the vector product using components.
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EXECUTE: From Eq. (1.22) the magnitude of the vector product is

By the right-hand rule, the direction of is along the 
(the direction of the unit vector ), so we have

To use Eqs. (1.27), we first determine the components of 
and

Then Eqs. (1.27) yield

Thus again we have .

EVALUATE: Both methods give the same result. Depending on the
situation, one or the other of the two approaches may be the more
convenient one to use.
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1.32 Vectors and and their vector product 
The vector lies in the xy-plane.B
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Test Your Understanding of Section 1.10 Vector has magnitude 2 and
vector has magnitude 3. The angle between and is known to be 0°, 90°, or 180°.
For each of the following situations, state what the value of must be. (In each situation 
there may be more than one correct answer.) (a) (b) (c) 
(d) (e) ❙(Magnitude of A
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CHAPTER 1 SUMMARY

Significant figures: The accuracy of a measurement can be indicated by the number of significant
figures or by a stated uncertainty. The result of a calculation usually has no more significant figures
than the input data. When only crude estimates are available for input data, we can often make use-
ful order-of-magnitude estimates. (See Examples 1.3 and 1.4.)

Scalars, vectors, and vector addition: Scalar quantities are numbers and combine with the usual
rules of arithmetic. Vector quantities have direction as well as magnitude and combine according 
to the rules of vector addition. The negative of a vector has the same magnitude but points in the
opposite direction. (See Example 1.5.)

Scalar product: The scalar product of two
vectors and is a scalar quantity. It can be expressed
in terms of the magnitudes of and and the angle 
between the two vectors, or in terms of the components
of and The scalar product is commutative;

The scalar product of two perpendicular
vectors is zero. (See Examples 1.10 and 1.11.)
A
S # BS � B

S # AS.
B
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fB
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S
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C = A
S # BS (1.18)

(1.21)A
S # BS = Ax Bx + Ay By + Az Bz

A
S # BS = AB cos f = ƒ  A

S
ƒ ƒ  B
S
ƒ  cos f

Vector components and vector addition: Vector addi-
tion can be carried out using components of vectors.
The x-component of is the sum of the 
x-components of and and likewise for the y- and 
z-components. (See Examples 1.6–1.8.)
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 Rz = Az + Bz

 Ry = Ay + By

 Rx = Ax + Bx

Unit vectors: Unit vectors describe directions in space.
A unit vector has a magnitude of 1, with no units. The
unit vectors and aligned with the x-, y-, and 
z-axes of a rectangular coordinate system, are espe-
cially useful. (See Example 1.9.)
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Vector product: The vector product of two
vectors and is another vector The magnitude of

depends on the magnitudes of and and 
theangle between the two vectors. The direction of

is perpendicular to the plane of the two vectors
being multiplied, as given by the right-hand rule. The
components of can be expressed in terms
of the components of and The vector product is not
commutative; The vector product
of two parallel or antiparallel vectors is zero. (See
Example 1.12.)
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(1.22)

(1.27)

 Cz = Ax By - Ay Bx

 Cy = Az Bx - Ax Bz

 Cx = Ay Bz - Az By

C = AB sin f

Physical quantities and units: Three fundamental physical quantities are mass, length, and time. 
The corresponding basic SI units are the kilogram, the meter, and the second. Derived units for
other physical quantities are products or quotients of the basic units. Equations must be dimension-
ally consistent; two terms can be added only when they have the same units. (See Examples 1.1 
and 1.2.)

Significant figures in magenta

p 5  5  5 3.14
C
2r

0.424 m
2(0.06750 m)

123.62 1 8.9 5 132.5

A 1 B
S S

5 1 A 
SA 

S

B
S

B
S

O
x

y

By

BxAx

Rx

Ry

Ay A
S

B
S

R
S

y

x
O

Ax i

Ay j

j

i

A 5 Ax i 1 Ay j
S

^

^ ^

^

^ ^

Scalar product A # B 5 AB cos f

f

B
S

S S

A
S

A � B is perpendicular
to the plane of A and B.

A � B
S S

S S
S S

(Magnitude of A � B) 5 AB sin f 
S S

A
S

B
S

f



Discussion Questions 27

An air-conditioning unit is fastened to a roof that slopes at an angle of
35° above the horizontal (Fig. 1.33). Its weight is a force on the air
conditioner that is directed vertically downward. In order that the
unit not crush the roof tiles, the component of the unit’s weight per-
pendicular to the roof cannot exceed 425 N. (One newton, or 1 N, is
the SI unit of force. It is equal to 0.2248 lb.) (a) What is the maxi-
mum allowed weight of the unit? (b) If the fasteners fail, the unit
slides 1.50 m along the roof before it comes to a halt against a ledge.
How much work does the weight force do on the unit during its slide
if the unit has the weight calculated in part (a)? As we described in
Section 1.10, the work done by a force on an object that undergoes
a displacement is 

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. This problem involves vectors and components. What are the

known quantities? Which aspect(s) of the weight vector (mag-
nitude, direction, and/or particular components) represent the
target variable for part (a)? Which aspect(s) must you know to
solve part (b)?

2. Make a sketch based on Fig. 1.33. Add x- and y-axes, choosing
the positive direction for each. Your axes don’t have to be hori-
zontal and vertical, but they do have to be mutually perpendicu-
lar. Make the most convenient choice.

3. Choose the equations you’ll use to determine the target 
variables.

EXECUTE
4. Use the relationship between the magnitude and direction of a

vector and its components to solve for the target variable in

W = F
S # sS.sS

F
S

part (a). Be careful: Is 35° the correct angle to use in the equa-
tion? (Hint: Check your sketch.)

5. Make sure your answer has the correct number of significant
figures.

6. Use the definition of the scalar product to solve for the target
variable in part (b). Again, make sure to use the correct number
of significant figures.

EVALUATE
7. Did your answer to part (a) include a vector component whose

absolute value is greater than the magnitude of the vector? Is
that possible?

8. There are two ways to find the scalar product of two vectors,
one of which you used to solve part (b). Check your answer by
repeating the calculation using the other way. Do you get the
same answer?

1.50 m

F
S

35°

1.33 An air-conditioning unit on a slanted roof.

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q1.1 How many correct experiments do we need to disprove a the-
ory? How many do we need to prove a theory? Explain.
Q1.2 A guidebook describes the rate of climb of a mountain trail
as 120 meters per kilometer. How can you express this as a number
with no units?
Q1.3 Suppose you are asked to compute the tangent of 5.00 meters.
Is this possible? Why or why not?
Q1.4 A highway contractor stated that in building a bridge deck he
poured 250 yards of concrete. What do you think he meant?
Q1.5 What is your height in centimeters? What is your weight in
newtons?
Q1.6 The U.S. National Institute of Standards and Technology
(NIST) maintains several accurate copies of the international stan-
dard kilogram. Even after careful cleaning, these national standard

kilograms are gaining mass at an average rate of about 
when compared every 10 years or so to the standard

international kilogram. Does this apparent change have any impor-
tance? Explain.
Q1.7 What physical phenomena (other than a pendulum or cesium
clock) could you use to define a time standard?
Q1.8 Describe how you could measure the thickness of a sheet of
paper with an ordinary ruler.
Q1.9 The quantity is a number with no dimen-
sions, since it is a ratio of two lengths. Describe two or three other
geometrical or physical quantities that are dimensionless.
Q1.10 What are the units of volume? Suppose another student tells
you that a cylinder of radius r and height h has volume given by

Explain why this cannot be right.pr 3h.

p = 3.14159 Á

1y = year2
1 mg>y

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

BRIDGING PROBLEM Vectors on the Roof

www.masteringphysics.com
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Q1.11 Three archers each fire four arrows at a target. Joe’s four
arrows hit at points 10 cm above, 10 cm below, 10 cm to the left,
and 10 cm to the right of the center of the target. All four of
Moe’s arrows hit within 1 cm of a point 20 cm from the center,
and Flo’s four arrows all hit within 1 cm of the center. The contest
judge says that one of the archers is precise but not accurate,
another archer is accurate but not precise, and the third archer is
both accurate and precise. Which description goes with which
archer? Explain your reasoning.
Q1.12 A circular racetrack has a radius of 500 m. What is the dis-
placement of a bicyclist when she travels around the track from the
north side to the south side? When she makes one complete circle
around the track? Explain your reasoning.
Q1.13 Can you find two vectors with different lengths that have a
vector sum of zero? What length restrictions are required for three
vectors to have a vector sum of zero? Explain your reasoning.
Q1.14 One sometimes speaks of the “direction of time,” evolving
from past to future. Does this mean that time is a vector quantity?
Explain your reasoning.
Q1.15 Air traffic controllers give instructions to airline pilots telling
them in which direction they are to fly. These instructions are
called “vectors.” If these are the only instructions given, is the name
“vector” used correctly? Why or why not?
Q1.16 Can you find a vector quantity that has a magnitude of zero
but components that are different from zero? Explain. Can the
magnitude of a vector be less than the magnitude of any of its com-
ponents? Explain.
Q1.17 (a) Does it make sense to say that a vector is negative?
Why? (b) Does it make sense to say that one vector is the negative
of another? Why? Does your answer here contradict what you said
in part (a)?
Q1.18 If is the vector sum of and what must
be true about the directions and magnitudes of and if

What must be true about the directions and mag-
nitudes of and if 
Q1.19 If and are nonzero vectors, is it possible for and

both to be zero? Explain.
Q1.20 What does the scalar product of a vector with itself,
give? What about the vector product of a vector with
itself?
Q1.21 Let represent any nonzero vector. Why is a unit vec-
tor, and what is its direction? If is the angle that makes with the

explain why is called the direction cosine for
that axis.
Q1.22 Which of the following are legitimate mathematical opera-
tions: (a) (b) (c) 

(d) (e) In each case, give the reason
for your answer.
Q1.23 Consider the two repeated vector products 
and Give an example that illustrates the general
rule that these two vector products do not have the same magni-
tude or direction. Can you choose the vectors and such that
these two vector products are equal? If so, give an example.
Q1.24 Show that, no matter what and are, 
(Hint: Do not look for an elaborate mathematical proof. Rather
look at the definition of the direction of the cross product.)
Q1.25 (a) If does it necessarily follow that or 

Explain. (b) If does it necessarily follow that
or Explain.

Q1.26 If for a vector in the xy-plane, does it follow that
What can you say about and Ay?AxAx = -Ay?
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EXERCISES
Section 1.3 Standards and Units
Section 1.4 Unit Consistency and Conversions
1.1 . Starting with the definition find the num-
ber of (a) kilometers in 1.00 mile and (b) feet in 1.00 km.
1.2 .. According to the label on a bottle of salad dressing, the
volume of the contents is 0.473 liter (L). Using only the conver-
sions and express this volume
in cubic inches.
1.3 .. How many nanoseconds does it take light to travel 1.00 ft
in vacuum? (This result is a useful quantity to remember.)
1.4 .. The density of gold is What is this value in
kilograms per cubic meter?
1.5 . The most powerful engine available for the classic 1963
Chevrolet Corvette Sting Ray developed 360 horsepower and had
a displacement of 327 cubic inches. Express this displacement in
liters (L) by using only the conversions and

1.6 .. A square field measuring 100.0 m by 100.0 m has an area
of 1.00 hectare. An acre has an area of If a country lot
has an area of 12.0 acres, what is the area in hectares?
1.7 . How many years older will you be 1.00 gigasecond from
now? (Assume a 365-day year.)
1.8 . While driving in an exotic foreign land you see a speed limit
sign on a highway that reads 180,000 furlongs per fortnight. How
many miles per hour is this? (One furlong is and a fortnight
is 14 days. A furlong originally referred to the length of a plowed
furrow.)
1.9 . A certain fuel-efficient hybrid car gets gasoline mileage of
55.0 mpg (miles per gallon). (a) If you are driving this car in
Europe and want to compare its mileage with that of other European
cars, express this mileage in Use the conver-
sion factors in Appendix E. (b) If this car’s gas tank holds 45 L,
how many tanks of gas will you use to drive 1500 km?
1.10 . The following conversions occur frequently in physics and
are very useful. (a) Use and to con-
vert 60 mph to units of (b) The acceleration of a freely falling
object is Use to express this acceleration
in units of (c) The density of water is Convert
this density to units of 
1.11 .. Neptunium. In the fall of 2002, a group of scientists at
Los Alamos National Laboratory determined that the critical mass
of neptunium-237 is about 60 kg. The critical mass of a fissionable
material is the minimum amount that must be brought together to
start a chain reaction. This element has a density of 
What would be the radius of a sphere of this material that has a
critical mass?
1.12 . BIO (a) The recommended daily allowance (RDA) of the
trace metal magnesium is for males. Express this
quantity in (b) For adults, the RDA of the amino acid
lysine is 12 mg per kg of body weight. How many grams per day
should a 75-kg adult receive? (c) A typical multivitamin tablet can
contain 2.0 mg of vitamin (riboflavin), and the RDA is

How many such tablets should a person take each
day to get the proper amount of this vitamin, assuming that he gets
none from any other sources? (d) The RDA for the trace element
selenium is Express this dose in 

Section 1.5 Uncertainty and Significant Figures
1.13 .. Figure 1.7 shows the result of unacceptable error in the
stopping position of a train. (a) If a train travels 890 km from Berlin

mg>day.0.000070 g>day.

0.0030 g>day.
B2

mg>day.
410 mg>day

19.5 g>cm3.

kg>m3.
1.0 g>cm3.m>s2.

1 ft = 30.48 cm32 ft>s2.
ft>s.

1 h = 3600 s1 mi = 5280 ft

1L = liter2.km>L

1
8 mile,

43,600 ft2.

1 in. = 2.54 cm.
1 L = 1000 cm3

19.3 g>cm3.

1 in. = 2.54 cm,1 L = 1000 cm3

1 in. = 2.54 cm,
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to Paris and then overshoots the end of the track by 10 m, what is
the percent error in the total distance covered? (b) Is it correct to
write the total distance covered by the train as 890,010 m? Explain.
1.14 . With a wooden ruler you measure the length of a rectangu-
lar piece of sheet metal to be 12 mm. You use micrometer calipers
to measure the width of the rectangle and obtain the value 5.98
mm. Give your answers to the following questions to the correct
number of significant figures. (a) What is the area of the rectangle?
(b) What is the ratio of the rectangle’s width to its length? (c) What
is the perimeter of the rectangle? (d) What is the difference
between the length and width? (e) What is the ratio of the length to
the width?
1.15 .. A useful and easy-to-remember approximate value for the
number of seconds in a year is Determine the percent
error in this approximate value. (There are 365.24 days in one year.)

Section 1.6 Estimates and Orders of Magnitude
1.16 . How many gallons of gasoline are used in the United
States in one day? Assume that there are two cars for every three
people, that each car is driven an average of 10,000 mi per year,
and that the average car gets 20 miles per gallon.
1.17 .. BIO A rather ordinary middle-aged man is in the hospital
for a routine check-up. The nurse writes the quantity 200 on his
medical chart but forgets to include the units. Which of the follow-
ing quantities could the 200 plausibly represent? (a) his mass in
kilograms; (b) his height in meters; (c) his height in centimeters;
(d) his height in millimeters; (e) his age in months.
1.18 . How many kernels of corn does it take to fill a 2-L soft
drink bottle?
1.19 . How many words are there in this book?
1.20 . BIO Four astronauts are in a spherical space station. (a) If,
as is typical, each of them breathes about of air with each
breath, approximately what volume of air (in cubic meters) do
these astronauts breathe in a year? (b) What would the diameter (in
meters) of the space station have to be to contain all this air?
1.21 . BIO How many times does a typical person blink her eyes
in a lifetime?
1.22 . BIO How many times does a human heart beat during a
lifetime? How many gallons of blood does it pump? (Estimate that
the heart pumps of blood with each beat.)
1.23 . In Wagner’s opera Das Rheingold, the goddess Freia is
ransomed for a pile of gold just tall enough and wide enough to
hide her from sight. Estimate the monetary value of this pile. The
density of gold is and its value is about $10 per gram
(although this varies).
1.24 . You are using water to dilute small amounts of chemicals
in the laboratory, drop by drop. How many drops of water are in a
1.0-L bottle? (Hint: Start by estimating the diameter of a drop of
water.)
1.25 . How many pizzas are consumed each academic year by
students at your school?

Section 1.7 Vectors and Vector Addition
1.26 .. Hearing rattles from a snake, you make two rapid dis-
placements of magnitude 1.8 m and 2.4 m. In sketches (roughly to
scale), show how your two displacements might add up to give a
resultant of magnitude (a) 4.2 m; (b) 0.6 m; (c) 3.0 m.
1.27 .. A postal employee drives a delivery truck along the route
shown in Fig. E1.27. Determine the magnitude and direction of the
resultant displacement by drawing a scale diagram. (See also Exer-
cise 1.34 for a different approach to this same problem.)

19.3 g>cm3,

50 cm3

500 cm3

p * 107.

1.28 .. For the vectors and
in Fig. E1.28, use a scale

drawing to find the magnitude
and direction of (a) the vector
sum and (b) the vector
difference Use your
answers to find the magnitude
and direction of (c) 
and (d) (See also Exer-
cise 1.35 for a different ap-
proach to this problem.)
1.29 .. A spelunker is survey-
ing a cave. She follows a pas-
sage 180 m straight west, then
210 m in a direction east of
south, and then 280 m at east of north. After a fourth unmea-
sured displacement, she finds herself back where she started. Use a
scale drawing to determine the magnitude and direction of the
fourth displacement. (See also Problem 1.69 for a different
approach to this problem.)

Section 1.8 Components of Vectors
1.30 .. Let the angle be the angle that the vector makes with
the measured counterclockwise from that axis. Find 
the angle for a vector that has the following components: 
(a) (b) 
(c) (d) 

1.31 . Compute the x- and y-components of the vectors 
and in Fig. E1.28.
1.32 . Vector is in the direction clockwise from the

. The x-component of is . (a) What is the
of ? (b) What is the magnitude of ?

1.33 . Vector has y-component . makes an
angle of counterclockwise from the y-axis. (a) What is the
x-component of ? (b) What is the magnitude of ?
1.34 .. A postal employee drives a delivery truck over the route
shown in Fig. E1.27. Use the method of components to determine
the magnitude and direction of her resultant displacement. In a
vector-addition diagram (roughly to scale), show that the resultant
displacement found from your diagram is in qualitative agreement
with the result you obtained using the method of components.
1.35 . For the vectors and in Fig. E1.28, use the method of
components to find the magnitude and direction of (a) the vector
sum (b) the vector sum (c) the vector difference

(d) the vector difference 
1.36 . Find the magnitude and direction of the vector represented
by the following pairs of components: (a) Ax = -8.60 cm,
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(b) (c) 

1.37 .. A disoriented physics professor drives 3.25 km north, then
2.90 km west, and then 1.50 km south. Find the magnitude and direc-
tion of the resultant displacement, using the method of components.
In a vector-addition diagram (roughly to scale), show that the result-
ant displacement found from your diagram is in qualitative agree-
ment with the result you obtained using the method of components.
1.38 .. Two ropes in a vertical plane exert equal-magnitude
forces on a hanging weight but pull with an angle of 86.0° between
them. What pull does each one exert if their resultant pull is 372 N
directly upward?
1.39 .. Vector is 2.80 cm
long and is above the x-
axis in the first quadrant. Vector

is 1.90 cm long and is 
below the x-axis in the fourth
quadrant (Fig. E1.39). Use com-
ponents to find the magnitude
and direction of (a) 
(b) (c) In each
case, sketch the vector addition
or subtraction and show that
your numerical answers are in 
qualitative agreement with your sketch.

Section 1.9 Unit Vectors
1.40 . In each case, find the x- and y-components of vector 
(a) (b) (c) 

(d) where 
1.41 .. Write each vector in Fig. E1.28 in terms of the unit vec-
tors and 

1.42 .. Given two vectors and 
(a) find the magnitude of each vector; (b) write an expres-

sion for the vector difference using unit vectors; (c) find
the magnitude and direction of the vector difference (d) In
a vector diagram show and and also show that your
diagram agrees qualitatively with your answer in part (c).
1.43 .. (a) Write each vector
in Fig. E1.43 in terms of the
unit vectors and (b) Use unit
vectors to express the vector 

where
(c) Find the magnitude and direc-
tion of 
1.44 .. (a) Is the vector

a unit vector? Jus-
tify your answer. (b) Can a unit
vector have any components
with magnitude greater than
unity? Can it have any negative components? In each case justify
your answer. (c) If where a is a constant,
determine the value of a that makes a unit vector.

Section 1.10 Products of Vectors
1.45 . For the vectors and in Fig. E1.28, find the scalar
products (a) (b) (c) 
1.46 .. (a) Find the scalar product of the two vectors and 
given in Exercise 1.42. (b) Find the angle between these two vectors.
1.47 .. Find the angle between each of the following pairs of
vectors:
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1.48 .. Find the vector product (expressed in unit vectors)
of the two vectors given in Exercise 1.42. What is the magnitude
of the vector product?
1.49 . For the vectors and in Fig. E1.28, (a) find the magni-
tude and direction of the vector product (b) find the mag-
nitude and direction of 
1.50 . For the two vectors in Fig. E1.39, (a) find the magnitude
and direction of the vector product (b) find the magnitude
and direction of 
1.51 . For the two vectors and in Fig. E1.43, (a) find the
scalar product (b) find the magnitude and direction of 
the vector product 
1.52 . The vector is 3.50 cm long and is directed into this page.
Vector points from the lower right corner of this page to the
upper left corner of this page. Define an appropriate right-handed
coordinate system, and find the three components of the vector
product measured in In a diagram, show your coordi-
nate system and the vectors and 
1.53 . Given two vectors and 

do the following. (a) Find the mag-
nitude of each vector. (b) Write an expression for the vector differ-
ence using unit vectors. (c) Find the magnitude of the
vector difference Is this the same as the magnitude of

Explain.

PROBLEMS
1.54 . An acre, a unit of land measurement still in wide use, has a
length of one furlong and a width one-tenth of its length.
(a) How many acres are in a square mile? (b) How many square
feet are in an acre? See Appendix E. (c) An acre-foot is the volume
of water that would cover 1 acre of flat land to a depth of 1 foot.
How many gallons are in 1 acre-foot?
1.55 .. An Earthlike Planet. In January 2006 astronomers
reported the discovery of a planet comparable in size to the earth
orbiting another star and having a mass about 5.5 times the earth’s
mass. It is believed to consist of a mixture of rock and ice, similar
to Neptune. If this planet has the same density as Neptune

what is its radius expressed (a) in kilometers and (b)
as a multiple of earth’s radius? Consult Appendix F for astronomi-
cal data.
1.56 .. The Hydrogen Maser. You can use the radio waves
generated by a hydrogen maser as a standard of frequency. The fre-
quency of these waves is 1,420,405,751.786 hertz. (A hertz is another
name for one cycle per second.) A clock controlled by a hydro-
gen maser is off by only 1 s in 100,000 years. For the following
questions, use only three significant figures. (The large number of
significant figures given for the frequency simply illustrates the
remarkable accuracy to which it has been measured.) (a) What is
the time for one cycle of the radio wave? (b) How many cycles
occur in 1 h? (c) How many cycles would have occurred during the
age of the earth, which is estimated to be (d) By
how many seconds would a hydrogen maser clock be off after a
time interval equal to the age of the earth?
1.57 . BIO Breathing Oxygen. The density of air under stan-
dard laboratory conditions is and about 20% of that
air consists of oxygen. Typically, people breathe about of air
per breath. (a) How many grams of oxygen does a person breathe
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in a day? (b) If this air is stored uncompressed in a cubical tank,
how long is each side of the tank?
1.58 ... A rectangular piece of aluminum is cm long
and cm wide. (a) Find the area of the rectangle and
the uncertainty in the area. (b) Verify that the fractional uncertainty
in the area is equal to the sum of the fractional uncertainties in the
length and in the width. (This is a general result; see Challenge
Problem 1.98.)
1.59 ... As you eat your way through a bag of chocolate chip
cookies, you observe that each cookie is a circular disk with a
diameter of cm and a thickness of cm.
(a) Find the average volume of a cookie and the uncertainty in the
volume. (b) Find the ratio of the diameter to the thickness and the
uncertainty in this ratio.
1.60 . BIO Biological tissues are typically made up of 98% water.
Given that the density of water is estimate the
mass of (a) the heart of an adult human; (b) a cell with a diameter
of (c) a honey bee.
1.61 . BIO Estimate the number of atoms in your body. (Hint:
Based on what you know about biology and chemistry, what are
the most common types of atom in your body? What is the mass of
each type of atom? Appendix D gives the atomic masses for differ-
ent elements, measured in atomic mass units; you can find the
value of an atomic mass unit, or 1 u, in Appendix E.)
1.62 ... How many dollar bills would you have to stack to reach
the moon? Would that be cheaper than building and launching a
spacecraft? (Hint: Start by folding a dollar bill to see how many
thicknesses make 1.0 mm.)
1.63 ... How much would it cost to paper the entire United
States (including Alaska and Hawaii) with dollar bills? What
would be the cost to each person in the United States?
1.64 . Stars in the Universe. Astronomers frequently say that
there are more stars in the universe than there are grains of sand on
all the beaches on the earth. (a) Given that a typical grain of sand is
about 0.2 mm in diameter, estimate the number of grains of sand
on all the earth’s beaches, and hence the approximate number of
stars in the universe. It would be helpful to consult an atlas and do
some measuring. (b) Given that a typical galaxy contains about
100 billion stars and there are more than 100 billion galaxies in the
known universe, estimate the number of stars in the universe and
compare this number with your result from part (a).
1.65 ... Two workers pull horizontally on a heavy box, but one
pulls twice as hard as the other. The larger pull is directed at 25.0°
west of north, and the resultant of these two pulls is 460.0 N
directly northward. Use vector components to find the magnitude
of each of these pulls and the direction of the smaller pull.
1.66 .. Three horizontal ropes
pull on a large stone stuck in the
ground, producing the vector
forces and shown in 
Fig. P1.66. Find the magnitude
and direction of a fourth force on
the stone that will make the vec-
tor sum of the four forces zero.
1.67 .. You are to program a
robotic arm on an assembly line
to move in the xy-plane. Its first
displacement is its second
displacement is of magnitude 6.40 cm and direction meas-
ured in the sense from the toward the The result-
ant of the two displacements should also have a
magnitude of 6.40 cm, but a direction measured in the sense22.0°
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from the toward the (a) Draw the vector-addition
diagram for these vectors, roughly to scale. (b) Find the components
of (c) Find the magnitude and direction of 
1.68 ... Emergency Landing. A plane leaves the airport in
Galisteo and flies 170 km at of north and then changes
direction to fly 230 km at of east, after which it makes
an immediate emergency landing in a pasture. When the airport
sends out a rescue crew, in which direction and how far should this
crew fly to go directly to this plane?
1.69 ... As noted in Exercise 1.29, a spelunker is surveying a
cave. She follows a passage 180 m straight west, then 210 m in a
direction of south, and then 280 m at of north.
After a fourth unmeasured displacement she finds herself back
where she started. Use the method of components to determine 
the magnitude and direction of the fourth displacement. Draw the
vector-addition diagram and show that it is in qualitative agree-
ment with your numerical solution.
1.70 .. (a) Find the magnitude and direction of the vector that
is the sum of the three vectors and in Fig. E1.28. In a dia-
gram, show how is formed from these three vectors. (b) Find the
magnitude and direction of the vector In a dia-
gram, show how is formed from these three vectors.
1.71 .. A rocket fires two engines simultaneously. One produces
a thrust of 480 N directly forward, while the other gives a 513-N
thrust at above the forward direction. Find the magnitude
and direction (relative to the forward direction) of the resultant
force that these engines exert on the rocket.
1.72 .. A sailor in a small sailboat encounters shifting winds. She
sails 2.00 km east, then 3.50 km southeast, and then an additional
distance in an unknown direction. Her final position is 5.80 km
directly east of the starting point (Fig. P1.72). Find the magnitude
and direction of the third leg of the journey. Draw the vector-
addition diagram and show that it is in qualitative agreement with
your numerical solution.
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1.73 ... BIO Dislocated Shoulder. A patient with a dislocated
shoulder is put into a traction apparatus as shown in Fig. P1.73.
The pulls and have equal magnitudes and must combine to
produce an outward traction force of 5.60 N on the patient’s arm.
How large should these pulls be?
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1.74 ... On a training flight, a
student pilot flies from Lincoln,
Nebraska, to Clarinda, Iowa,
then to St. Joseph, Missouri, and
then to Manhattan, Kansas 
(Fig. P1.74). The directions are
shown relative to north: is
north, is east, is south,
and is west. Use the method
of components to find (a) the
distance she has to fly from 
Manhattan to get back to Lincoln,
and (b) the direction (relative to
north) she must fly to get there.
Illustrate your solutions with a
vector diagram.
1.75 .. Equilibrium. We say
an object is in equilibrium if all
the forces on it balance (add up
to zero). Figure P1.75 shows a
beam weighing 124 N that is
supported in equilibrium by a
100.0-N pull and a force at
the floor. The third force on the
beam is the 124-N weight that acts vertically downward. (a) Use
vector components to find the magnitude and direction of (b)
Check the reasonableness of your answer in part (a) by doing a
graphical solution approximately to scale.
1.76 ... Getting Back. An explorer in the dense jungles of
equatorial Africa leaves his hut. He takes 40 steps northeast, then
80 steps north of west, then 50 steps due south. Assume his
steps all have equal length. (a) Sketch, roughly to scale, the three
vectors and their resultant. (b) Save the explorer from becoming
hopelessly lost in the jungle by giving him the displacement,
calculated using the method of components, that will return him to
his hut.
1.77 ... A graphic artist is creating a new logo for her company’s
website. In the graphics program she is using, each pixel in an
image file has coordinates where the origin is at the
upper left corner of the image, the points to the right, and
the points down. Distances are measured in pixels. (a) The
artist draws a line from the pixel location to the location

She wishes to draw a second line that starts at
is 250 pixels long, and is at an angle of measured

clockwise from the first line. At which pixel location should this
second line end? Give your answer to the nearest pixel. (b) The
artist now draws an arrow that connects the lower right end of the
first line to the lower right end of the second line. Find the length
and direction of this arrow. Draw a diagram showing all three lines.
1.78 ... A ship leaves the island of Guam and sails 285 km at

of west. In which direction must it now head and how
far must it sail so that its resultant displacement will be 115 km
directly east of Guam?
1.79 .. BIO Bones and Muscles. A patient in therapy has a
forearm that weighs 20.5 N and that lifts a 112.0-N weight. These
two forces have direction vertically downward. The only other
significant forces on his forearm come from the biceps muscle
(which acts perpendicularly to the forearm) and the force at the
elbow. If the biceps produces a pull of 232 N when the forearm is
raised above the horizontal, find the magnitude and direction
of the force that the elbow exerts on the forearm. (The sum of the
elbow force and the biceps force must balance the weight of the
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arm and the weight it is carrying, so their vector sum must be
132.5 N, upward.)
1.80 ... You are hungry and decide to go to your favorite neigh-
borhood fast-food restaurant. You leave your apartment and take
the elevator 10 flights down (each flight is 3.0 m) and then go 15 m
south to the apartment exit. You then proceed 0.2 km east, turn
north, and go 0.1 km to the entrance of the restaurant. (a) Deter-
mine the displacement from your apartment to the restaurant. Use
unit vector notation for your answer, being sure to make clear your
choice of coordinates. (b) How far did you travel along the path
you took from your apartment to the restaurant, and what is the
magnitude of the displacement you calculated in part (a)?
1.81 .. While following a treasure map, you start at an old oak
tree. You first walk 825 m directly south, then turn and walk 1.25 km
at 30.0° west of north, and finally walk 1.00 km at 40.0° north of
east, where you find the treasure: a biography of Isaac Newton!
(a) To return to the old oak tree, in what direction should you head
and how far will you walk? Use components to solve this problem.
(b) To see whether your calculation in part (a) is reasonable, check
it with a graphical solution drawn roughly to scale.
1.82 .. A fence post is 52.0 m from where you are standing, in a
direction north of east. A second fence post is due south from
you. What is the distance of the second post from you, if the dis-
tance between the two posts is 80.0 m?
1.83 .. A dog in an open field runs 12.0 m east and then 28.0 m in
a direction west of north. In what direction and how far must
the dog then run to end up 10.0 m south of her original starting
point?
1.84 ... Ricardo and Jane are standing under a tree in the middle
of a pasture. An argument ensues, and they walk away in different
directions. Ricardo walks 26.0 m in a direction west of north.
Jane walks 16.0 m in a direction south of west. They then
stop and turn to face each other. (a) What is the distance between
them? (b) In what direction should Ricardo walk to go directly
toward Jane?
1.85 ... John, Paul, and George are standing in a strawberry
field. Paul is 14.0 m due west of John. George is 36.0 m from Paul,
in a direction south of east from Paul’s location. How far is
George from John? What is the direction of George’s location from
that of John?
1.86 ... You are camping with two friends, Joe and Karl. Since
all three of you like your privacy, you don’t pitch your tents close
together. Joe’s tent is 21.0 m from yours, in the direction 
south of east. Karl’s tent is 32.0 m from yours, in the direction

north of east. What is the distance between Karl’s tent and
Joe’s tent?
1.87 .. Vectors and have scalar product and their vec-
tor product has magnitude . What is the angle between these
two vectors?
1.88 .. Bond Angle in Methane. In the methane molecule,

each hydrogen atom is at a corner of a regular tetrahedron
with the carbon atom at the center. In coordinates where one of the

bonds is in the direction of an adjacent 
bond is in the direction. Calculate the angle between
these two bonds.
1.89 .. Vector has magnitude 12.0 m and vector has magni-
tude 16.0 m. The scalar product is . What is the mag-
nitude of the vector product between these two vectors?
1.90 .. When two vectors and are drawn from a common
point, the angle between them is (a) Using vector techniques,
show that the magnitude of their vector sum is given by

2A2 + B2 + 2AB cos f

f.
B
S

A
S

90.0 m2A
S # BS

B
S

A
S

ın � ≥n � kN
C–Hın � ≥n � kN ,C–H

CH4,

+ 9.00
- 6.00B

S
A
S

37.0°

23.0°

37.0°

30.0°
60.0°

50.0°

37.0°

Figure P1.74

Lincoln Clarinda

St. Joseph
Manhattan

166 km
235°

106 km
  167°NEBRASKA

IOWA

KANSAS MISSOURI

147 km
85°

N

EW

S

Figure P1.75

100.0-N pull

30.0°

40.0°

F
S



Challenge Problems 33

(b) If and have the same magnitude, for which value of will
their vector sum have the same magnitude as or 
1.91 .. A cube is placed so that
one corner is at the origin and
three edges are along the x-, y-,
and z-axes of a coordinate sys-
tem (Fig. P1.91). Use vectors to
compute (a) the angle between
the edge along the z-axis (line
ab) and the diagonal from the
origin to the opposite corner
(line ad ), and (b) the angle
between line ac (the diagonal of
a face) and line ad.
1.92 .. Vector has magnitude 6.00 m and vector has magni-
tude 3.00 m. The vector product between these two vectors has
magnitude . What are the two possible values for the scalar
product of these two vectors? For each value of , draw a
sketch that shows and and explain why the vector products in
the two sketches are the same but the scalar products differ.
1.93 .. The scalar product of vectors and is . 
Vector has magnitude 9.00 m and direction west of south.
If vector has direction south of east, what is the magnitude
of ?
1.94 ... Obtain a unit vector perpendicular to the two vectors
given in Exercise 1.53.
1.95 .. You are given vectors and

A third vector lies in the xy-plane. Vector 
is perpendicular to vector and the scalar product of with is
15.0. From this information, find the components of vector 
1.96 .. Two vectors and have magnitudes and

Their vector product is 
What is the angle between and 
1.97 .. Later in our study of physics we will encounter quantities
represented by (a) Prove that for any three 
vectors and (b) Calculate 

for the three vectors with magnitude and
angle measured in the sense from the toward 

the with and and with magni-
tude 6.00 and in the Vectors and are in the 
xy-plane.

CHALLENGE PROBLEMS
1.98 ... The length of a rectangle is given as and its width
as (a) Show that the uncertainty in its area A is

Assume that the uncertainties l and w are small, so
that the product lw is very small and you can ignore it. (b) Show
that the fractional uncertainty in the area is equal to the sum of the
fractional uncertainty in length and the fractional uncertainty in
width. (c) A rectangular solid has dimensions and

Find the fractional uncertainty in the volume, and show
that it equals the sum of the fractional uncertainties in the length,
width, and height.
1.99 ... Completed Pass. At Enormous State University
(ESU), the football team records its plays using vector displace-
ments, with the origin taken to be the position of the ball before the
play starts. In a certain pass play, the receiver starts at

where the units are yards, is to the right, and ın+1.0ın � 5.0≥n,

H � h.
W � w,L � l,

a = Lw + lW.
W � w.
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is downfield. Subsequent displacements of the receiver are 
(in motion before the snap), (breaks downfield),

(zigs), and (zags). Meanwhile, the
quarterback has dropped straight back to a position How
far and in which direction must the quarterback throw the ball?
(Like the coach, you will be well advised to diagram the situation
before solving it numerically.)
1.100 ... Navigating in the Solar System. The Mars Polar
Lander spacecraft was launched on January 3, 1999. On December
3, 1999, the day Mars Polar Lander touched down on the Martian
surface, the positions of the earth and Mars were given by these
coordinates:

-7.0 ≥n.
+12.0ın � 18.0≥n-6.0ın � 4.0 ≥n

+11.0 ≥n+9.0ın
≥n

x y z

Earth 0.3182 AU 0.9329 AU 0.0000 AU

Mars 1.3087 AU �0.4423AU �0.0414 AU

Figure P1.91
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b c
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In these coordinates, the sun is at the origin and the plane of the
earth’s orbit is the xy-plane. The earth passes through the 
once a year on the autumnal equinox, the first day of autumn in the
northern hemisphere (on or about September 22). One AU, or
astronomical unit, is equal to km, the average dis-
tance from the earth to the sun. (a) In a diagram, show the posi-
tions of the sun, the earth, and Mars on December 3, 1999. (b) Find
the following distances in AU on December 3, 1999: (i) from the
sun to the earth; (ii) from the sun to Mars; (iii) from the earth to
Mars. (c) As seen from the earth, what was the angle between the
direction to the sun and the direction to Mars on December 3,
1999? (d) Explain whether Mars was visible from your location at
midnight on December 3, 1999. (When it is midnight at your loca-
tion, the sun is on the opposite side of the earth from you.)
1.101 ... Navigating in the Big Dipper. All the stars of the
Big Dipper (part of the constellation Ursa Major) may appear to be
the same distance from the earth, but in fact they are very far from
each other. Figure P1.101 shows the distances from the earth to
each of these stars. The distances are given in light-years (ly), the
distance that light travels in one year. One light-year equals

. (a) Alkaid and Merak are apart in the
earth’s sky. In a diagram, show the relative positions of Alkaid,
Merak, and our sun. Find the distance in light-years from Alkaid to
Merak. (b) To an inhabitant of a planet orbiting Merak, how many
degrees apart in the sky would Alkaid and our sun be?

25.6o9.461 * 1015 m

1.496 * 108

+x-axis

Figure P1.101

Mizar
73 ly

Megrez
81 ly

Dubhe
105 ly

Merak
77 ly

Phad
80 ly

Alioth
64 ly

Alkaid
138 ly

1.102 ... The vector called the position vec-
tor, points from the origin to an arbitrary point in space
with coordinates Use what you know about vectors to
prove the following: All points that satisfy the equation

where A, B, and C are constants, lie in a
plane that passes through the origin and that is perpendicular to the
vector Sketch this vector and the plane.Aın � B ≥n � CkN .

Ax + By + Cz = 0,
1x, y, z2

1x, y, z2.
10, 0, 02

rS � xın � y ≥n � zkN ,



34 CHAPTER 1 Units, Physical Quantities, and Vectors

Chapter Opening Question ?
Take the to point east and the to point north. Then
what we are trying to find is the y-component of the velocity vec-
tor, which has magnitude and is at an angle 
measured from the toward the From Eqs. (1.6)
we have So the
thunderstorm moves 16 km north in 1 h.

Test Your Understanding Questions
1.5 Answer: (ii)

When we multiply or divide, the number with the
fewest significant figures controls the number of significant figures
in the result.
1.6 The answer depends on how many students are enrolled at
your campus.
1.7 Answers: (ii), (iii), and (iv) The vector has the same
magnitude as the vector so is the sum of
one vector of magnitude 3 m and one of magnitude 4 m. This sum
has magnitude 7 m if and are parallel and magnitude 1 m if

and are antiparallel. The magnitude of is 5 m if 
and are perpendicular, so that the vectors and 
form a 3–4–5 right triangle. Answer (i) is impossible because the
magnitude of the sum of two vectors cannot be greater than the
sum of the magnitudes; answer (v) is impossible because the sum
of two vectors can be zero only if the two vectors are antiparallel
and have the same magnitude; and answer (vi) is impossible
because the magnitude of a vector cannot be negative.
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103 kg>m3.
Density = 11.80 kg2>16.0 * 10-4 m32 = 3.0 *

vy = v sinu = 120 km>h2 sin53° = 16 km>h.
+y-axis.+x-axis

u = 53°v = 20 km>h

+y-axis+x-axis

1.8 Answers: (a) yes, (b) no Vectors and can have the
same magnitude but different components if they point in different
directions. If they have the same components, however, they are
the same vector and so must have the same magnitude.

1.9 Answer: all have the same magnitude The four vectors 
and all point in different directions, but all have the same

magnitude:

1.10 Answers: (a) (b) or
(c) (d) (e) (a) The scalar product
is zero only if and are perpendicular. (b) The vector product is
zero only if and are either parallel or antiparallel. (c) The
scalar product is equal to the product of the magnitudes

only if and are parallel. (d) The scalar product
is equal to the negative of the product of the magnitudes

only if and are antiparallel. (e) The magni-
tude of the vector product is equal to the product of the magni-
tudes only if and are
perpendicular.

Bridging Problem
Answers: (a)

(b) 4.5 * 102 N # m
5.2 * 102 N
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2
LEARNING GOALS

By studying this chapter, you will

learn:

• How to describe straight-line motion

in terms of average velocity, 

instantaneous velocity, average

acceleration, and instantaneous

acceleration.

• How to interpret graphs of position

versus time, velocity versus time,

and acceleration versus time for

straight-line motion.

• How to solve problems involving

straight-line motion with constant

acceleration, including free-fall 

problems.

• How to analyze straight-line motion

when the acceleration is not 

constant.

MOTION ALONG 
A STRAIGHT LINE

What distance must an airliner travel down a runway before reaching
takeoff speed? When you throw a baseball straight up in the air, how
high does it go? When a glass slips from your hand, how much time

do you have to catch it before it hits the floor? These are the kinds of questions
you will learn to answer in this chapter. We are beginning our study of physics
with mechanics, the study of the relationships among force, matter, and motion.
In this chapter and the next we will study kinematics, the part of mechanics that
enables us to describe motion. Later we will study dynamics, which relates
motion to its causes.

In this chapter we concentrate on the simplest kind of motion: a body moving
along a straight line. To describe this motion, we introduce the physical quantities
velocity and acceleration. In physics these quantities have definitions that are
more precise and slightly different from the ones used in everyday language.
Both velocity and acceleration are vectors: As you learned in Chapter 1, this
means that they have both magnitude and direction. Our concern in this chapter is
with motion along a straight line only, so we won’t need the full mathematics of
vectors just yet. But using vectors will be essential in Chapter 3 when we con-
sider motion in two or three dimensions.

We’ll develop simple equations to describe straight-line motion in the impor-
tant special case when the acceleration is constant. An example is the motion
of a freely falling body. We’ll also consider situations in which the acceleration
varies during the motion; in this case, it’s necessary to use integration to
describe the motion. (If you haven’t studied integration yet, Section 2.6 is
optional.)

? A bungee jumper speeds up during the first part of his fall, then slows to a halt
as the bungee cord stretches and becomes taut. Is it accurate to say that the
jumper is accelerating as he slows during the final part of his fall?



2.1 Displacement, Time, and Average Velocity
Suppose a drag racer drives her AA-fuel dragster along a straight track (Fig. 2.1).
To study the dragster’s motion, we need a coordinate system. We choose the x-
axis to lie along the dragster’s straight-line path, with the origin O at the starting
line. We also choose a point on the dragster, such as its front end, and represent
the entire dragster by that point. Hence we treat the dragster as a particle.

A useful way to describe the motion of the particle that represents the dragster
is in terms of the change in the particle’s coordinate x over a time interval. Sup-
pose that 1.0 s after the start the front of the dragster is at point 19 m from the
origin, and 4.0 s after the start it is at point 277 m from the origin. The
displacement of the particle is a vector that points from to (see Section 1.7).
Figure 2.1 shows that this vector points along the x-axis. The x-component of 
the displacement is the change in the value of x,
that took place during the time interval of We 
define the dragster’s average velocity during this time interval as a vector
quantity whose x-component is the change in x divided by the time interval:

In general, the average velocity depends on the particular time interval cho-
sen. For a 3.0-s time interval before the start of the race, the average velocity
would be zero because the dragster would be at rest at the starting line and would
have zero displacement.

Let’s generalize the concept of average velocity. At time the dragster is at
point with coordinate and at time it is at point with coordinate 
The displacement of the dragster during the time interval from to is the vec-
tor from to The x-component of the displacement, denoted is the
change in the coordinate x:

(2.1)

The dragster moves along the x-axis only, so the y- and z-components of the dis-
placement are equal to zero.

CAUTION The meaning of Note that is not the product of and x; it is a single
symbol that means “the change in the quantity x.” We always use the Greek capital letter

(delta) to represent a change in a quantity, equal to the final value of the quantity minus
the initial value—never the reverse. Likewise, the time interval from to is the
change in the quantity t: (final time minus initial time). ❙

The x-component of average velocity, or average x-velocity, is the x-
component of displacement, divided by the time interval during which¢t¢x,

¢t = t2 - t1

¢t,t2t1

¢

¢¢x≤x

¢x = x2 - x1

¢x,P2.P1

t2t1

x2.P2,t2x1,P1,
t1

1258 m2>13.0 s2 = 86 m>s.

14.0 s - 1.0 s2 = 3.0 s.
1277 m - 19 m2 = 258 m,

P2P1

P2,
P1,
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Position at t2 5 4.0 sPosition at t1 5 1.0 s

P1 P2

O

Displacement from t1 to t2

x1 5 19 m
Dx 5 1x2 2 x12 5 258 m

x2 5 277 m
xx-axis

FINISHSTART

When the dragster moves in the +x-direction, the displacement
Dx is positive and so is the average x-velocity:

x-coordinate of
dragster at 1.0 s

x is positive to the right of the
origin 1O2, negative to the left
of it.

x-coordinate of
dragster at 4.0 s

Dx
D t

258 m
3.0 s

5 86 m/s5vav-x 5

2.1 Positions of a dragster at two times during its run.
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the displacement occurs. We use the symbol for average x-velocity (the
subscript “av” signifies average value and the subscript x indicates that this is
the x-component):

(average x-velocity, straight-line motion) (2.2)

As an example, for the dragster and
so Eq. (2.2) gives

The average x-velocity of the dragster is positive. This means that during the time
interval, the coordinate x increased and the dragster moved in the positive 
x-direction (to the right in Fig. 2.1).

If a particle moves in the negative x-direction during a time interval, its aver-
age velocity for that time interval is negative. For example, suppose an official’s
truck moves to the left along the track (Fig. 2.2). The truck is at at

and is at at Then 
and The x-component of average

velocity is Table 2.1 lists
some simple rules for deciding whether the x-velocity is positive or negative.

CAUTION Choice of the positive x-direction You might be tempted to conclude that
positive average x-velocity must mean motion to the right, as in Fig. 2.1, and that negative
average x-velocity must mean motion to the left, as in Fig. 2.2. But that’s correct only if
the positive x-direction is to the right, as we chose it to be in Figs. 2.1 and 2.2. Had we
chosen the positive x-direction to be to the left, with the origin at the finish line, the drag-
ster would have negative average x-velocity and the official’s truck would have positive
average x-velocity. In most problems the direction of the coordinate axis will be yours to
choose. Once you’ve made your choice, you must take it into account when interpreting
the signs of and other quantities that describe motion! ❙

With straight-line motion we sometimes call simply the displacement
and simply the average velocity. But be sure to remember that these are
really the x-components of vector quantities that, in this special case, have only
x-components. In Chapter 3, displacement, velocity, and acceleration vectors
will have two or three nonzero components.

Figure 2.3 is a graph of the dragster’s position as a function of time—that is,
an x-t graph. The curve in the figure does not represent the dragster’s path in
space; as Fig. 2.1 shows, the path is a straight line. Rather, the graph is a pictorial
way to represent how the dragster’s position changes with time. The points 
and on the graph correspond to the points and along the dragster’s path.
Line is the hypotenuse of a right triangle with vertical side ¢x = x2 - x1p1p2

P2P1p2

p1

vav-x

¢x

vav-x

vav-x = ¢x>¢t = 1-258 m2>19.0 s2 = -29 m>s.
¢t = 125.0 s - 16.0 s2 = 9.0 s.-258 m

¢x = 119 m - 277 m2=t2 = 25.0 s.x2 = 19 mt1 = 16.0 s
x1 = 277 m

vav-x =
277 m - 19 m

4.0 s - 1.0 s
=

258 m

3.0 s
= 86 m>s

t2 = 4.0 s,
t1 = 1.0 s,x2 = 277 m,x1 = 19 m,

vav-x =
x2 - x1

t2 - t1
=

¢x

¢t

vav-x

Position at t1 5 16.0 sPosition at t2 5 25.0 s

O

Displacement from t1 to t2

x2 5 19 m
Dx 5 1x2 2 x12 5 2258 m

x1 5 277 m
x

FINISHSTART

When the truck moves in the 2x-direction, Dx is
negative and so is the average x-velocity:

This position is now x1.This position is now x2.

P2 P1

Dx
D t

5 229 m/s5vav-x 5
2258 m

9.0 s

2.2 Positions of an official’s truck at
two times during its motion. The points 
and now indicate the positions of the
truck, and so are the reverse of Fig. 2.1.

P2

P1

Table 2.1 Rules for the Sign 
of x-Velocity

If the x-coordinate is: . . . the x-velocity is:

Positive & increasing Positive: Particle is 
(getting more positive) moving in -direction

Positive & decreasing Negative: Particle is 
(getting less positive) moving in -direction

Negative & increasing Positive: Particle is 
(getting less negative) moving in -direction

Negative & decreasing Negative: Particle is
(getting more negative) moving in -direction

Note: These rules apply to both the average 
x-velocity and the instantaneous x-velocity

(to be discussed in Section 2.2).vx

vav-x

-x

+x

-x

+x



and horizontal side The average x-velocity of the
dragster equals the slope of the line —that is, the ratio of the triangle’s verti-
cal side to its horizontal side 

The average x-velocity depends only on the total displacement 
that occurs during the time interval not on the details of what 
happens during the time interval. At time a motorcycle might have raced past
the dragster at point in Fig. 2.1, then blown its engine and slowed down to 
pass through point at the same time as the dragster. Both vehicles have the
same displacement during the same time interval and so have the same average 
x-velocity.

If distance is given in meters and time in seconds, average velocity is meas-
ured in meters per second Other common units of velocity are kilometers
per hour feet per second miles per hour and knots

Table 2.2 lists some typical velocity
magnitudes.
11 knot = 1 nautical mile>h = 6080 ft>h2.

1mi>h2,1ft>s2,1km>h2,
1m>s2.

t2P2

P1

t1

¢t = t2 - t1,
¢x = x2 - x1

¢t.¢x
p1p2

vav-x = ¢x/¢t¢t = t2 - t1.

38 CHAPTER 2 Motion Along a Straight Line

2.3 The position of a dragster as a 
function of time.

Slope 5 rise over run 5

For a displacement along the x-axis, an object’s average x-velocity
vav-x equals the slope of a line connecting the corresponding points
on a graph of position 1x2
versus time 1t2.

x (m)

x2

P1

p1

P2 p2

x1

t2

t (s)
O

400

300

200

100

1 2 3

Dragster track
1not to scale2

4 5

Dx 5 x2 2 x1

Slope 5
x-v

elo
cit

y

Dt 5 t2 2 t1

t1

Dx
Dt

2.4 The winner of a 50-m swimming
race is the swimmer whose average veloc-
ity has the greatest magnitude—that is, the
swimmer who traverses a displacement 
of 50 m in the shortest elapsed time ¢t.

¢x

Test Your Understanding of Section 2.1 Each of the following auto-
mobile trips takes one hour. The positive x-direction is to the east. (i) Automobile
A travels 50 km due east. (ii) Automobile B travels 50 km due west. (iii) Automo-
bile C travels 60 km due east, then turns around and travels 10 km due west. (iv) Auto-
mobile D travels 70 km due east. (v) Automobile E travels 20 km due west, then turns
around and travels 20 km due east. (a) Rank the five trips in order of average x-velocity
from most positive to most negative. (b) Which trips, if any, have the same average 
x-velocity? (c) For which trip, if any, is the average x-velocity equal to zero? ❙

2.2 Instantaneous Velocity
Sometimes the average velocity is all you need to know about a particle’s
motion. For example, a race along a straight line is really a competition to see
whose average velocity, has the greatest magnitude. The prize goes to the
competitor who can travel the displacement from the start to the finish line in
the shortest time interval, (Fig. 2.4).

But the average velocity of a particle during a time interval can’t tell us how
fast, or in what direction, the particle was moving at any given time during the
interval. To do this we need to know the instantaneous velocity, or the velocity
at a specific instant of time or specific point along the path.

CAUTION How long is an instant? Note that the word “instant” has a somewhat differ-
ent definition in physics than in everyday language. You might use the phrase “It lasted
just an instant” to refer to something that lasted for a very short time interval. But in
physics an instant has no duration at all; it refers to a single value of time. ❙

¢t
¢x

vav-x,

Table 2.2 Typical Velocity 
Magnitudes

A snail’s pace

A brisk walk

Fastest human

Freeway speeds

Fastest car

Random motion of air molecules

Fastest airplane

Orbiting communications satellite

Electron orbiting in a 
hydrogen atom

Light traveling in a vacuum 3 * 108 m>s

2 * 106 m>s

3000 m>s

1000 m>s

500 m>s

341 m>s

30 m>s

11 m>s

2 m>s

10-3 m>s
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To find the instantaneous velocity of the dragster in Fig. 2.1 at the point we
move the second point closer and closer to the first point and compute the
average velocity over the ever-shorter displacement and time
interval. Both and become very small, but their ratio does not necessarily
become small. In the language of calculus, the limit of as approaches
zero is called the derivative of x with respect to t and is written The
instantaneous velocity is the limit of the average velocity as the time interval
approaches zero; it equals the instantaneous rate of change of position with time.
We use the symbol with no “av” subscript, for the instantaneous velocity
along the x-axis, or the instantaneous x-velocity:

(instantaneous x-velocity, straight-line motion) (2.3)

The time interval is always positive, so has the same algebraic sign as
A positive value of means that x is increasing and the motion is in the pos-

itive x-direction; a negative value of means that x is decreasing and the motion
is in the negative x-direction. A body can have positive x and negative or the
reverse; x tells us where the body is, while tells us how it’s moving (Fig. 2.5).
The rules that we presented in Table 2.1 (Section 2.1) for the sign of average 
x-velocity also apply to the sign of instantaneous x-velocity .

Instantaneous velocity, like average velocity, is a vector quantity; Eq. (2.3)
defines its x-component. In straight-line motion, all other components of instan-
taneous velocity are zero. In this case we often call simply the instantaneous
velocity. (In Chapter 3 we’ll deal with the general case in which the instanta-
neous velocity can have nonzero x-, y-, and z-components.) When we use the
term “velocity,” we will always mean instantaneous rather than average velocity.

The terms “velocity” and “speed” are used interchangeably in everyday lan-
guage, but they have distinct definitions in physics. We use the term speed to
denote distance traveled divided by time, on either an average or an instantaneous
basis. Instantaneous speed, for which we use the symbol with no subscripts,
measures how fast a particle is moving; instantaneous velocity measures how fast
and in what direction it’s moving. Instantaneous speed is the magnitude of instan-
taneous velocity and so can never be negative. For example, a particle with instan-
taneous velocity and a second particle with are
moving in opposite directions at the same instantaneous speed 

CAUTION Average speed and average velocity Average speed is not the magnitude of
average velocity. When César Cielo set a world record in 2009 by swimming 100.0 m in

, his average speed was But because he swam
two lengths in a 50-m pool, he started and ended at the same point and so had zero total
displacement and zero average velocity! Both average speed and instantaneous speed are
scalars, not vectors, because these quantities contain no information about direction. ❙

1100.0 m2>146.91 s2 = 2.132 m>s.46.91 s

25 m>s.
vx = -25 m>svx = 25 m>s

v

vx

vxvav-x

vx

vx,
vx

vx¢x.
vx¢t

vx = lim
¢tS0

¢x

¢t
=

dx

dt

vx,

dx>dt.
¢t¢x>¢t

¢t¢x
vav-x = ¢x>¢t

P1P2

P1,

2.5 Even when he’s moving forward, this
cyclist’s instantaneous x-velocity can be
negative—if he’s traveling in the negative
x-direction. In any problem, the choice of
which direction is positive and which is
negative is entirely up to you.

Example 2.1 Average and instantaneous velocities

A cheetah is crouched 20 m to the east of an observer (Fig. 2.6a). At
time the cheetah begins to run due east toward an antelope that
is 50 m to the east of the observer. During the first 2.0 s of the attack,
the cheetah’s coordinate x varies with time according to the equation

(a) Find the cheetah’s displacement
between and (b) Find its average velocity
during that interval. (c) Find its instantaneous velocity at 
by taking then then (d) Derive an0.001 s.0.01 s,¢t = 0.1 s,

t1 = 1.0 s
t2 = 2.0 s.t1 = 1.0 s

15.0 m>s22t 2.x = 20 m +

t = 0
expression for the cheetah’s instantaneous velocity as a function of
time, and use it to find at and 

SOLUTION

IDENTIFY and SET UP: Figure 2.6b shows our sketch of the 
cheetah’s motion. We use Eq. (2.1) for displacement, Eq. (2.2) for
average velocity, and Eq. (2.3) for instantaneous velocity.

t = 2.0 s.t = 1.0 svx

Continued
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EXECUTE: (a) At the cheetah’s positions
are

The displacement during this 1.0-s interval is

(b) The average x-velocity during this interval is

(c) With the time interval is from to a
new . At the position is

The average x-velocity during this 0.1-s interval is

vav-x =
26.05 m - 25 m

1.1 s - 1.0 s
= 10.5 m>s

x2 = 20 m + 15.0 m>s2211.1 s)2 = 26.05 m

t2t2 = 1.1 s
t1 = 1.0 s¢t = 0.1 s

vav-x =
x2 - x1

t2 - t1
=

40 m - 25 m

2.0 s - 1.0 s
=

15 m

1.0 s
= 15 m>s

¢x = x2 - x1 = 40 m - 25 m = 15 m

x2 = 20 m + 15.0 m>s2212.0 s22 = 40 m

x1 = 20 m + 15.0 m>s2211.0 s22 = 25 m

x1 and x2

t1 = 1.0 s and t2 = 2.0 s Following this pattern, you can calculate the average x-velocities
for 0.01-s and 0.001-s intervals: The results are and

As gets smaller, the average x-velocity gets closer
to so we conclude that the instantaneous x-velocity at

is (We suspended the rules for significant-
figure counting in these calculations.)

(d) To find the instantaneous x-velocity as a function of time,
we take the derivative of the expression for x with respect to t. The
derivative of a constant is zero, and for any n the derivative of is

so the derivative of is 2t. We therefore have

At this yields , as we found in part (c); at

EVALUATE: Our results show that the cheetah picked up speed from
(when it was at rest) to to

This makes sense; the cheetah covered
only 5 m during the interval to but it covered 15 m
during the interval to t = 2.0 s.t = 1.0 s

t = 1.0 s,t = 0
1vx = 20 m>s2.t = 2.0 s

1vx = 10 m>s2t = 1.0 st = 0

vx = 20 m>s.t = 2.0 s,
vx = 10 m>st = 1.0 s,

vx =
dx

dt
= 15.0 m>s2212t2 = 110 m>s22t

t 2nt n-1,
t n

10.0 m>s.t = 1.0 s
10.0 m>s,

¢t10.005 m>s.
10.05 m>s

(a) The situation

(b) Our sketch

(c) Decisions       Point axis in
direction cheetah runs,
so that all values will
be positive.

1       Place origin
at vehicle.
2       Mark initial

positions of cheetah
and antelope.

3       Mark positions
for cheetah at 1 s
and 2 s.

4       Add the known
and unknown
quantities.

5

2.6 A cheetah attacking an antelope from ambush. The animals are not drawn to the same scale as the axis.

Finding Velocity on an x-t Graph
We can also find the x-velocity of a particle from the graph of its position as 
a function of time. Suppose we want to find the x-velocity of the dragster in 
Fig. 2.1 at point As point in Fig. 2.1 approaches point point in the 
x-t graphs of Figs. 2.7a and 2.7b approaches point and the average x-velocity
is calculated over shorter time intervals In the limit that shown in
Fig. 2.7c, the slope of the line equals the slope of the line tangent to the
curve at point Thus, on a graph of position as a function of time for straight-
line motion, the instantaneous x-velocity at any point is equal to the slope of the
tangent to the curve at that point.

If the tangent to the x-t curve slopes upward to the right, as in Fig. 2.7c, then
its slope is positive, the x-velocity is positive, and the motion is in the positive 
x-direction. If the tangent slopes downward to the right, the slope of the x-t graph

p1.
p1p2

¢tS 0,¢t.
p1

p2P1,P2P1.ActivPhysics 1.1: Analyzing Motion Using
Diagrams
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and the x-velocity are negative, and the motion is in the negative x-direction.
When the tangent is horizontal, the slope and the x-velocity are zero. Figure 2.8
illustrates these three possibilities.

Figure 2.8 actually depicts the motion of a particle in two ways: as (a) an x-t
graph and (b) a motion diagram that shows the particle’s position at various
instants (like frames from a video of the particle’s motion) as well as arrows to
represent the particle’s velocity at each instant. We will use both x-t graphs and
motion diagrams in this chapter to help you understand motion. You will find it
worth your while to draw both an x-t graph and a motion diagram as part of solv-
ing any problem involving motion.

As the average x-velocity vav-x is calculated
over shorter and shorter time intervals ...

... its value vav-x 5 Dx/Dt approaches the
instantaneous x-velocity.

The instantaneous x-velocity vx at any
given point equals the slope of the tangent
to the x-t curve at that point.

5 40 m/s
vx 5

160 m
4.0 s

Dt 5 1.0 s
Dx 5 55 m

vav-x 5 55 m/s
      

  Slope of tangent 5

instantaneous x-velocity

p1 4.0 s

160 m

t (s)
1 2 3 4 5O

x (m)

400

300

200

100

(a) (b) (c)

t (s)
1 2 3 4 5

p2

p1 DxDt

x (m)

OO

400

300

200

100

t (s)
1 2 3 4 5

p2

Dt 5 2.0 s
Dx 5 150 m

vav-x 5 75 m/s

p1

Dx
Dt

x (m)

400

300

200

100

2.7 Using an x-t graph to go from (a), (b) average x-velocity to (c) instantaneous x-velocity In (c) we find the slope of the tangent
to the x-t curve by dividing any vertical interval (with distance units) along the tangent by the corresponding horizontal interval (with
time units).

vx.

The particle is at x , 0 and moving
in the 1x-direction.

From tA to tB it speeds up, ...

... and from tB to tC it slows down,
then halts momentarily at tC.

From tC to tD it speeds up in the 
2x-direction, ...

... and from tD to tE it slows down
 in the 2x-direction.

The steeper the slope (positive or negative) of an object’s x-t graph, the
greater is the object’s speed in the positive or negative x-direction.

Slope positive:
vx . 0

Slope zero: vx 5 0

Slope negative:
vx , 0

(a) x-t graph (b) Particle’s motion

tA 5 0

tB

tC

tD

tE

v

0
x

v
0

x

0
x

v

v

v 5 0

0
x

0
x

0

A

B

x
C

D

E
t

2.8 (a) The x-t graph of the motion of a particular particle. The slope of the tangent at any point equals the velocity at that point.
(b) A motion diagram showing the position and velocity of the particle at each of the times labeled on the x-t graph.

Test Your Understanding of Section 2.2 Figure 2.9 is an x-t graph of
the motion of a particle. (a) Rank the values of the particle’s x-velocity at the
points P, Q, R, and S from most positive to most negative. (b) At which points is

positive? (c) At which points is negative? (d) At which points is zero? (e) Rank
the values of the particle’s speed at the points P, Q, R, and S from fastest to slowest. ❙

vxvxvx

vx

R
t

S

Q

P

x

2.9 An x-t graph for a particle.



2.3 Average and Instantaneous Acceleration
Just as velocity describes the rate of change of position with time, acceleration
describes the rate of change of velocity with time. Like velocity, acceleration is a
vector quantity. When the motion is along a straight line, its only nonzero compo-
nent is along that line. As we’ll see, acceleration in straight-line motion can refer
to either speeding up or slowing down.

Average Acceleration
Let’s consider again a particle moving along the x-axis. Suppose that at time 
the particle is at point and has x-component of (instantaneous) velocity 
and at a later time it is at point and has x-component of velocity So the
x-component of velocity changes by an amount during the time
interval

We define the average acceleration of the particle as it moves from to to
be a vector quantity whose x-component (called the average x-acceleration)
equals the change in the x-component of velocity, divided by the time inter-
val

(average x-acceleration,
straight-line motion)

aav-x =
v2x - v1x

t2 - t1
=

¢vx

¢t

¢t:
¢vx,

aav-x

P2P1

¢t = t2 - t1.
¢vx = v2x - v1x

v2x.P2t2

v1x,P1

t1

42 CHAPTER 2 Motion Along a Straight Line

(2.4)

For straight-line motion along the x-axis we will often call simply the aver-
age acceleration. (We’ll encounter the other components of the average accelera-
tion vector in Chapter 3.)

If we express velocity in meters per second and time in seconds, then average
acceleration is in meters per second per second, or This is usually writ-
ten as and is read “meters per second squared.”

CAUTION Acceleration vs. velocity Be very careful not to confuse acceleration with
velocity! Velocity describes how a body’s position changes with time; it tells us how
fast and in what direction the body moves. Acceleration describes how the velocity
changes with time; it tells us how the speed and direction of motion are changing. It
may help to remember the phrase “acceleration is to velocity as velocity is to position.”
It can also help to imagine yourself riding along with the moving body. If the body
accelerates forward and gains speed, you feel pushed backward in your seat; if it accel-
erates backward and loses speed, you feel pushed forward. If the velocity is constant
and there’s no acceleration, you feel neither sensation. (We’ll see the reason for these
sensations in Chapter 4.) ❙

m>s2
1m>s2>s.

aav-x

Example 2.2 Average acceleration

An astronaut has left an orbiting spacecraft to test a new personal
maneuvering unit. As she moves along a straight line, her partner
on the spacecraft measures her velocity every 2.0 s, starting at time
t = 1.0 s:

Find the average x-acceleration, and state whether the speed of the
astronaut increases or decreases over each of these 2.0-s time
intervals: (a) to (b) to 
(c) to (d) to 

SOLUTION

IDENTIFY and SET UP: We’ll use Eq. (2.4) to determine the aver-
age acceleration from the change in velocity over each time
interval. To find the changes in speed, we’ll use the idea that speed

is the magnitude of the instantaneous velocity vx.v

aav-x

t2 = 15.0 s .t1 = 13.0 st2 = 11.0 s;t1 = 9.0 s
t2 = 7.0 s;t1 = 5.0 st2 = 3.0 s;t1 = 1.0 s

t t

20.8 m/s15.0 s1.2 m/s7.0 s

21.6 m/s13.0 s1.6 m/s5.0 s

21.0 m/s11.0 s1.2 m/s3.0 s

20.4 m/s9.0 s0.8 m/s1.0 s

vxvx
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Instantaneous Acceleration
We can now define instantaneous acceleration following the same procedure
that we used to define instantaneous velocity. As an example, suppose a race
car driver is driving along a straightaway as shown in Fig. 2.11. To define the
instantaneous acceleration at point we take the second point in Fig. 2.11
to be closer and closer to so that the average acceleration is computed over
shorter and shorter time intervals. The instantaneous acceleration is the limit of
the average acceleration as the time interval approaches zero. In the language
of calculus, instantaneous acceleration equals the derivative of velocity with
time. Thus

(instantaneous x-acceleration,
straight-line motion) (2.5)

Note that in Eq. (2.5) is really the x-component of the acceleration vec-
tor, or the instantaneous x-acceleration; in straight-line motion, all other
components of this vector are zero. From now on, when we use the term
“acceleration,” we will always mean instantaneous acceleration, not average
acceleration.

ax

ax = lim
¢tS0

¢vx

¢t
=

dvx

dt

P1

P2P1,

The upper part of Fig. 2.10 is our graph of the x-velocity as a
function of time. On this graph, the slope of the line connect-
ing the endpoints of each interval is the average x-acceleration

for that interval. The four slopes (and thus the
signs of the average accelerations) are, respectively, positive, neg-
ative, negative, and positive. The third and fourth slopes (and thus
the average accelerations themselves) have greater magnitude than
the first and second.

aav-x = ¢vx>¢t

vx-t
EXECUTE: Using Eq. (2.4), we find:

(a)
The speed (magnitude of instantaneous x-velocity)

increases from to 
(b)

The speed decreases from to 
(c)

The speed increases from to 
(d)

The speed decreases from to 

In the lower part of Fig. 2.10, we graph the values of 

EVALUATE: The signs and relative magnitudes of the average accel-
erations agree with our qualitative predictions. For future refer-
ence, note this connection among speed, velocity, and acceleration:
Our results show that when the average x-acceleration has the
same direction (same algebraic sign) as the initial velocity, as in
intervals (a) and (c), the astronaut goes faster. When has the
opposite direction (opposite algebraic sign) from the initial velocity,
as in intervals (b) and (d), she slows down. Thus positive x-accelera-
tion means speeding up if the x-velocity is positive [interval (a)]
but slowing down if the x-velocity is negative [interval (d)]. Simi-
larly, negative x-acceleration means speeding up if the x-velocity is
negative [interval (c)] but slowing down if the x-velocity is posi-
tive [interval (b)].

aav-x

aav-x.

0.8 m>s.1.6 m>s0.4 m>s2.
aav-x = 3-0.8 m>s - 1-1.6 m>s24>115.0 s - 13.0 s2 =

1.0 m>s.0.4 m>s-0.3 m>s2.
aav-x = 3-1.0 m>s - 1-0.4 m>s24>111.0 s - 9.0 s2 =

1.2 m>s.1.6 m>s-0.2 m>s2.
aav-x = 11.2 m>s - 1.6 m>s2>17.0 s - 5.0 s2 =

1.2 m>s.0.8 m>s
0.2 m>s2.

aav-x = 11.2 m>s - 0.8 m>s2>13.0 s - 1.0 s2 =

The slope of the line connecting each
pair of points on the vx-t graph ...

... equals the average x-acceleration
between those points.

2.10 Our graphs of x-velocity versus time (top) and average 
x-acceleration versus time (bottom) for the astronaut.

Speed v2
x-velocity v2x

Speed v1
x-velocity v1x

P2P1O
x

2.11 A Grand Prix car at two points on the straightaway.
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Example 2.3 Average and instantaneous accelerations

Suppose the x-velocity of the car in Fig. 2.11 at any time t is
given by the equation

(a) Find the change in x-velocity of the car in the time interval
to (b) Find the average x-acceleration in

this time interval. (c) Find the instantaneous x-acceleration at time
by taking to be first 0.1 s, then 0.01 s, then 0.001 s.

(d) Derive an expression for the instantaneous x-acceleration as a
function of time, and use it to find at and 

SOLUTION

IDENTIFY and SET UP: This example is analogous to Example 2.1
in Section 2.2. (Now is a good time to review that example.) In
Example 2.1 we found the average x-velocity from the change in
position over shorter and shorter time intervals, and we obtained
an expression for the instantaneous x-velocity by differentiating
the position as a function of time. In this example we have an exact
parallel. Using Eq. (2.4), we’ll find the average x-acceleration
from the change in x-velocity over a time interval. Likewise, using
Eq. (2.5), we’ll obtain an expression for the instantaneous 
x-acceleration by differentiating the x-velocity as a function of
time.

EXECUTE: (a) Before we can apply Eq. (2.4), we must find the 
x-velocity at each time from the given equation. At and

, the velocities are

The change in x-velocity between and is

(b) The average x-acceleration during this time interval of dura-
tion is

aav-x =
v2x - v1x

t2 - t1
=

4.0 m>s

2.0 s
= 2.0 m>s2

t2 - t1 = 2.0 s

¢vx = v2x - v1x = 64.5 m>s - 60.5 m>s = 4.0 m>s

t2 = 3.0 st1 = 1.0 s¢vx

v2x = 60 m>s + 10.50 m>s3213.0 s22 = 64.5 m>s

v1x = 60 m>s + 10.50 m>s3211.0 s22 = 60.5 m>s

t2 = 3.0 s
t1 = 1.0 s

t = 3.0 s.t = 1.0 sax

¢tt1 = 1.0 s

t2 = 3.0 s.t1 = 1.0 s

vx = 60 m>s + 10.50 m>s32t 2

vx During this time interval the x-velocity and average x-acceleration
have the same algebraic sign (in this case, positive), and the car
speeds up.

(c) When we have . Proceeding as
before, we find

You should follow this pattern to calculate for 
and the results are and

respectively. As gets smaller, the average
x-acceleration gets closer to 1.0 so the instantaneous 
x-acceleration at is 

(d) By Eq. (2.5) the instantaneous x-acceleration is
The derivative of a constant is zero and the deriva-

tive of is 2t, so

When ,

When

EVALUATE: Neither of the values we found in part (d) is equal to
the average x-acceleration found in part (b). That’s because the
car’s instantaneous x-acceleration varies with time. The rate of
change of acceleration with time is sometimes called the “jerk.”

ax = 11.0 m>s3213.0 s2 = 3.0 m>s2

t = 3.0 s,

ax = 11.0 m>s3211.0 s2 = 1.0 m>s2

t = 1.0 s

= 10.50 m>s3212t2 = 11.0 m>s32t

ax =
dvx

dt
=

d

dt
360 m>s + 10.50 m>s32t 24

t 2
ax = dvx>dt.

1.0 m>s2.t = 1.0 s
m>s2,
¢taav-x = 1.0005 m>s2,

aav-x = 1.005 m>s2¢t = 0.001 s;
¢t = 0.01 saav-x

aav-x =
¢vx

¢t
=

0.105 m>s

0.1 s
= 1.05 m>s2

¢vx = 0.105 m>s

v2x = 60 m>s + 10.50 m>s3211.1 s22 = 60.605 m>s

t2 = 1.1 s¢t = 0.1 s,

Finding Acceleration on a vx-t Graph or an x-t Graph
In Section 2.2 we interpreted average and instantaneous x-velocity in terms of the
slope of a graph of position versus time. In the same way, we can interpret aver-
age and instantaneous x-acceleration by using a graph with instantaneous veloc-
ity on the vertical axis and time t on the horizontal axis—that is, a graph
(Fig. 2.12). The points on the graph labeled and correspond to points and

in Fig. 2.11. The average x-acceleration during this interval is
the slope of the line As point in Fig. 2.11 approaches point point 
in the graph of Fig. 2.12 approaches point and the slope of the line 
approaches the slope of the line tangent to the curve at point Thus, on a graph
of x-velocity as a function of time, the instantaneous x-acceleration at any point
is equal to the slope of the tangent to the curve at that point. Tangents drawn at
different points along the curve in Fig. 2.12 have different slopes, so the instanta-
neous x-acceleration varies with time.

p1.
p1p2p1,vx-t

p2P1,P2p1p2.
aav-x = ¢vx>¢tP2

P1p2p1

vx-tvx
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CAUTION The signs of x-acceleration and x-velocity By itself, the algebraic sign of
the x-acceleration does not tell you whether a body is speeding up or slowing down.
You must compare the signs of the x-velocity and the x-acceleration. When and have
the same sign, the body is speeding up. If both are positive, the body is moving in the pos-
itive direction with increasing speed. If both are negative, the body is moving in the nega-
tive direction with an x-velocity that is becoming more and more negative, and again the
speed is increasing. When and have opposite signs, the body is slowing down. If 
is positive and is negative, the body is moving in the positive direction with decreasing
speed; if is negative and is positive, the body is moving in the negative direction
with an x-velocity that is becoming less negative, and again the body is slowing down.
Table 2.3 summarizes these ideas, and Fig. 2.13 illustrates some of these possibilities. ❙

The term “deceleration” is sometimes used for a decrease in speed. Because it
may mean positive or negative depending on the sign of we avoid this term.

We can also learn about the acceleration of a body from a graph of its position
versus time. Because and we can write

(2.6)ax =
dvx

dt
=

d

dt
a

dx

dt
b =

d2x

dt 2

vx = dx>dt,ax = dvx>dt

vx,ax,

axvx

ax

vxaxvx

axvx

vx

v2x

v1x

t2t1
t

O

p1

p2

Dt 5 t2 2 t1

Dvx 5 v2x 2 v1x

Slope of tangent to vx-t curve at a given point
5 instantaneous x-acceleration at that point.

For a displacement along the x-axis, an object’s average x-acceleration
equals the slope of a line connecting the corresponding points on a
graph of x-velocity (vx) versus time (t).

Slope 5
 av

era
ge a

cc
ele

rat
ion

2.12 A graph of the motion in 
Fig. 2.11.

vx-t

?

Slope zero: ax 5 0

The steeper the slope (positive or negative) of an
object’s vx-t graph, the greater is the object’s
acceleration in the positive or negative x-direction.

Object is at x , 0, moving in the 2x-direction (vx , 0),
and slowing down (vx and ax have opposite signs).

Object is at x . 0, moving in the 2x-direction (vx , 0),
and speeding up (vx and ax have the same sign).

Object is at x . 0, moving in the 1x-direction (vx . 0);
its speed is instantaneously not changing (ax 5 0).

Object is at x , 0, instantaneously at rest (vx 5 0), and
about to move in the 1x-direction (ax . 0).

Object is at x . 0, instantaneously at rest (vx 5 0), and
about to move in the 2x-direction (ax , 0).

Slope positive:
ax . 0

Slope negative:
ax , 0

(a) vx-t graph for an object 
moving on the x-axis

(b) Object’s position, velocity, and acceleration on the x-axis

0

A

B

C

D

E

t

vx

tE

tA 5 0

tB

tC

tD

0
x

0
x

0
x

0
x

a

a

v
a 5 0

v

v 5 0

0
x

a

v 5 0

v
a

2.13 (a) A graph of the motion of a different particle from that shown in Fig. 2.8. The slope of the tangent at any point
equals the x-acceleration at that point. (b) A motion diagram showing the position, velocity, and acceleration of the particle at
each of the times labeled on the graph. The positions are consistent with the graph; for instance, from to the velocity is
negative, so at the particle is at a more negative value of x than at tA.tB

tBtAvx-tvx-t

vx-t

Table 2.3 Rules for the Sign 
of x-Acceleration

If x-velocity is: . . . x-acceleration is:

Positive & increasing Positive: Particle is 
(getting more positive) moving in -direction

& speeding up

Positive & decreasing Negative: Particle is 
(getting less positive) moving in -direction

& slowing down

Negative & increasing Positive: Particle is 
(getting less negative) moving in -direction

& slowing down

Negative & decreasing Negative: Particle is 
(getting more negative) moving in -direction

& speeding up

Note: These rules apply to both the average 
x-acceleration and the instantaneous 
x-acceleration .ax

aav-x

-x

-x

+x

+x



That is, is the second derivative of x with respect to t. The second derivative of
any function is directly related to the concavity or curvature of the graph of that
function (Fig. 2.14). Where the x-t graph is concave up (curved upward), the 
x-acceleration is positive and is increasing; at a point where the x-t graph is
concave down (curved downward), the x-acceleration is negative and is
decreasing. At a point where the x-t graph has no curvature, such as an inflection
point, the x-acceleration is zero and the velocity is not changing. Figure 2.14
shows all three of these possibilities.

Examining the curvature of an x-t graph is an easy way to decide what the
sign of acceleration is. This technique is less helpful for determining numeri-
cal values of acceleration because the curvature of a graph is hard to measure
accurately.

vx

vx

ax
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The greater the curvature (upward or downward) of
an object’s x-t graph, the greater is the object’s
acceleration in the positive or negative x-direction.

Object is at x , 0, moving in the 1x-direction
(vx . 0), and speeding up (vx and ax have the
same sign).

Object is at x . 0, moving in the 2x-direction
(vx , 0), and slowing down (vx and ax have 
opposite signs).

Object is at x . 0, instantaneously at rest 
(vx 5 0), and about to move in the 
2x-direction (ax , 0).

Object is at x 5 0, moving in the 1x-direction
(vx . 0); speed is instantaneously not 
changing (ax 5 0).

Object is at x . 0, moving in the 2x-direction
(vx , 0); speed is instantaneously not 
changing (ax 5 0).

Slope positive: vx . 0
Curvature upward: ax . 0

Slope positive: vx . 0
Curvature zero: ax 5 0

Slope negative: vx , 0
Curvature zero: ax 5 0

Slope negative:
vx , 0
Curvature upward:
ax . 0

Slope zero: vx 5 0
Curvature downward: ax , 0

0

A

B

C

D

E
t

x

(a) x-t graph

tC

tD

tB

tE

tA 5 0

(b) Object’s motion

0
x

0
x

0
x

0
x

v

v

v 5 0

v

v

0
x

a

a 5 0

a

a 5 0

a

2.14 (a) The same x-t graph as shown in Fig. 2.8a. The x-velocity is equal to the slope of the graph, and the acceleration is given
by the concavity or curvature of the graph. (b) A motion diagram showing the position, velocity, and acceleration of the particle at
each of the times labeled on the x-t graph.

2.4 Motion with Constant Acceleration
The simplest kind of accelerated motion is straight-line motion with constant
acceleration. In this case the velocity changes at the same rate throughout the
motion. As an example, a falling body has a constant acceleration if the effects of
the air are not important. The same is true for a body sliding on an incline or
along a rough horizontal surface, or for an airplane being catapulted from the
deck of an aircraft carrier.

Figure 2.15 is a motion diagram showing the position, velocity, and accelera-
tion for a particle moving with constant acceleration. Figures 2.16 and 2.17 depict
this same motion in the form of graphs. Since the x-acceleration is constant, the

graph (graph of x-acceleration versus time) in Fig. 2.16 is a horizontal line.
The graph of x-velocity versus time, or graph, has a constant slope because
the acceleration is constant, so this graph is a straight line (Fig. 2.17).

vx-t
ax-t

Test Your Understanding of Section 2.3 Look again at the x-t graph in
Fig. 2.9 at the end of Section 2.2. (a) At which of the points P, Q, R, and S is the 
x-acceleration positive? (b) At which points is the x-acceleration negative? (c)
At which points does the x-acceleration appear to be zero? (d) At each point state 
whether the velocity is increasing, decreasing, or not changing. ❙

ax

If a particle moves in a
straight line with constant
x-acceleration ax ...

... the x-velocity changes
by equal amounts in equal
time intervals.

However, the position changes by different
amounts in equal time intervals because the
velocity is changing.

t � 2Dt
0

t � 3Dt
0

0
t � Dt

t � 4Dt
0

v
t � 0

0

a

v

v

v

v
a

a

a

a

x

x

x

x

x

2.15 A motion diagram for a particle
moving in a straight line in the positive
x-direction with constant positive 
x-acceleration The position, velocity,
and acceleration are shown at five equally
spaced times.

ax.
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When the x-acceleration is constant, the average x-acceleration for any
time interval is the same as This makes it easy to derive equations for the
position x and the x-velocity as functions of time. To find an expression for 
we first replace in Eq. (2.4) by 

(2.7)

Now we let and let be any later time t. We use the symbol for the 
x-velocity at the initial time the x-velocity at the later time t is Then
Eq. (2.7) becomes

(constant x-acceleration only) (2.8)

In Eq. (2.8) the term is the product of the constant rate of change of 
x-velocity, and the time interval t. Therefore it equals the total change in 
x-velocity from the initial time to the later time t. The x-velocity at any
time t then equals the initial x-velocity (at plus the change in x-velocity

(Fig. 2.17).
Equation (2.8) also says that the change in x-velocity of the particle

between and any later time t equals the area under the graph between
those two times. You can verify this from Fig. 2.16: Under this graph is a rectangle
of vertical side , horizontal side t, and area . From Eq. (2.8) this is indeed equal
to the change in velocity In Section 2.6 we’ll show that even if the 
x-acceleration is not constant, the change in x-velocity during a time interval is still
equal to the area under the curve, although in that case Eq. (2.8) does not apply.

Next we’ll derive an equation for the position x as a function of time when the
x-acceleration is constant. To do this, we use two different expressions for the
average x-velocity during the interval from to any later time t. The first
expression comes from the definition of Eq. (2.2), which is true whether or
not the acceleration is constant. We call the position at time the initial posi-
tion, denoted by The position at the later time t is simply x. Thus for the time
interval the displacement is and Eq. (2.2) gives

(2.9)

We can also get a second expression for that is valid only when the 
x-acceleration is constant, so that the x-velocity changes at a constant rate. In this
case the average x-velocity for the time interval from 0 to t is simply the average
of the x-velocities at the beginning and end of the interval:

(constant x-acceleration only) (2.10)

(This equation is not true if the x-acceleration varies during the time interval.) We
also know that with constant x-acceleration, the x-velocity at any time t is given
by Eq. (2.8). Substituting that expression for into Eq. (2.10), we find

(constant x-acceleration only) (2.11)= v0x + 1
2 axt

vav-x = 1
2 1v0x + v0x + axt2

vx

vx

vav-x =
v0x + vx

2

vav-x

vav-x =
x - x0

t

¢x = x - x0,¢t = t - 0
x0.

t = 0
vav-x,

t = 0vav-x

ax-t

vx - v0x.
axtax

ax-tt = 0
vx - v0x

axt
t = 0)v0x

vxt = 0
ax,

axt

vx = v0x + axt

ax =
vx - v0x

t - 0
  or

vx.t = 0;
v0xt2t1 = 0

ax =
v2x - v1x

t2 - t1

ax:aav-x

vx,vx

ax.
aav-xax

Constant x-acceleration: ax-t graph
is a horizontal line (slope 5 0).

Area under ax-t graph 5 vx 2 v0x
5 change in x-velocity from time 0 to time t.

O

ax

ax

t
t

2.16 An acceleration-time graph
for straight-line motion with constant 
positive x-acceleration ax.

(ax-t)

Constant
x-acceleration:
vx-t graph is a
straight line.

During time
interval t, the
x-velocity changes
by vx 2 v0x 5 axt.

Slope 5
 x-acceleration

Total area under vx-t graph 5 x 2 x0
5 change in x-coordinate from time 0 to time t.

vx

vx

v0x

O
t

t

vx

axt

v0x

2.17 A velocity-time graph for
straight-line motion with constant positive
x-acceleration The initial x-velocity
is also positive in this case.

v0xax.

1vx-t2

PhET: Forces in 1 Dimension
ActivPhysics 1.1: Analyzing Motion Using
Diagrams
ActivPhysics 1.2: Analyzing Motion Using
Graphs
ActivPhysics 1.3: Predicting Motion from
Graphs
ActivPhysics 1.4: Predicting Motion from
Equations
ActivPhysics 1.5: Problem-Solving Strategies
for Kinematics
ActivPhysics 1.6: Skier Races Downhill



Finally, we set Eqs. (2.9) and (2.11) equal to each other and simplify:

(constant x-acceleration only) (2.12)

Here’s what Eq. (2.12) tells us: If at time a particle is at position and
has x-velocity its new position x at any later time t is the sum of three
terms—its initial position plus the distance that it would move if its 
x-velocity were constant, plus an additional distance caused by the change
in x-velocity.

A graph of Eq. (2.12)—that is, an x-t graph for motion with constant x-
acceleration (Fig. 2.18a)—is always a parabola. Figure 2.18b shows such a
graph. The curve intercepts the vertical axis (x-axis) at the position at 
The slope of the tangent at equals the initial x-velocity, and the slope
of the tangent at any time t equals the x-velocity at that time. The slope and 
x-velocity are continuously increasing, so the x-acceleration is positive; you
can also see this because the graph in Fig. 2.18b is concave up (it curves
upward). If is negative, the x-t graph is a parabola that is concave down (has
a downward curvature).

If there is zero x-acceleration, the x-t graph is a straight line; if there is a con-
stant x-acceleration, the additional term in Eq. (2.12) for x as a function of 
t curves the graph into a parabola (Fig. 2.19a). We can analyze the graph in
the same way. If there is zero x-acceleration this graph is a horizontal line (the 
x-velocity is constant); adding a constant x-acceleration gives a slope to the 
graph (Fig. 2.19b).

vx-t

vx-t

1
2 axt 2

ax

ax

vx

v0x,t = 0
t = 0.x0,

1
2 axt 2

v0xtx0,
v0x,

x0t = 0

x = x0 + v0xt + 1
2 axt 2

v0x + 1
2 axt =

x - x0

t
  or
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During time interval t,
the x-velocity changes
by vx 2 v0x 5 axt.

Constant x-acceleration:
x-t graph is a parabola.

(a) A race car moves in the x-direction
with constant acceleration.

(b) The x-t graph

v0x

vx 5 v0x 1 axt

x

xx

x0x0

O

x

O
t

t

Slope 5 vx

Slope 5 v0x

2.18 (a) Straight-line motion with con-
stant acceleration. (b) A position-time (x-t)
graph for this motion (the same motion as
is shown in Figs. 2.15, 2.16, and 2.17). For
this motion the initial position the ini-
tial velocity and the acceleration 
are all positive.

axv0x,
x0,

The graph with constant x-acceleration:
x 5 x0 1 v0xt 1 axt21

2

The graph we would get
with zero x-acceleration:
x 5 x0 1 v0xt

The effect of
x-acceleration:

axt21
2

The graph with zero x-acceleration:
vx 5 v0x

The graph with constant x-acceleration:
vx 5 v0x 1 ax t

The added velocity
due to x-acceleration:
axt

(a) An x-t graph for an object moving with
positive constant x-acceleration

(b) The vx-t graph for the same object

x

x0

O
t

O
t

v0x

vx

2.19 (a) How a constant 
x-acceleration affects a body’s 
(a) x-t graph and (b) graph.vx-t

Application Testing Humans at High
Accelerations
In experiments carried out by the U.S. Air Force
in the 1940s and 1950s, humans riding a
rocket sled demonstrated that they could with-
stand accelerations as great as . The
first three photos in this sequence show Air
Force physician John Stapp speeding up from
rest to in
just 5 s. Photos 4–6 show the even greater
magnitude of acceleration as the rocket sled
braked to a halt.

421 mi>h21678 km>h =188 m>s

440 m>s2
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Just as the change in x-velocity of the particle equals the area under the 
graph, the displacement—that is, the change in position—equals the area under
the graph. To be specific, the displacement of the particle between

and any later time t equals the area under the graph between those two
times. In Fig. 2.17 we divide the area under the graph into a dark-colored rectan-
gle (vertical side , horizontal side t, and area ) and a light-colored right
triangle (vertical side , horizontal side t, and area . The total
area under the graph is

in agreement with Eq. (2.12).
The displacement during a time interval is always equal to the area under the

curve. This is true even if the acceleration is not constant, although in that
case Eq. (2.12) does not apply. (We’ll show this in Section 2.6.)

It’s often useful to have a relationship for position, x-velocity, and (constant)
x-acceleration that does not involve the time. To obtain this, we first solve 
Eq. (2.8) for t and then substitute the resulting expression into Eq. (2.12):

We transfer the term to the left side and multiply through by 

Finally, simplifying gives us

(constant x-acceleration only) (2.13)

We can get one more useful relationship by equating the two expressions
for Eqs. (2.9) and (2.10), and multiplying through by t. Doing this, we
obtain

(constant x-acceleration only) (2.14)

Note that Eq. (2.14) does not contain the x-acceleration This equation can be
handy when is constant but its value is unknown.

Equations (2.8), (2.12), (2.13), and (2.14) are the equations of motion with
constant acceleration (Table 2.4). By using these equations, we can solve any
problem involving straight-line motion of a particle with constant acceleration.

For the particular case of motion with constant x-acceleration depicted in
Fig. 2.15 and graphed in Figs. 2.16, 2.17, and 2.18, the values of and 
are all positive. We invite you to redraw these figures for cases in which one,
two, or all three of these quantities are negative.

axv0x ,x0 ,

ax

ax .

x - x0 = a
v0x + vx

2
b t

vav-x ,

vx
2 = v0x

2 + 2ax 1x - x02

2ax 1x - x02 = 2v0x vx - 2v0x
2 + vx

2 - 2v0x vx + v0x
2

2ax :x0

 x = x0 + v0x a
vx - v0x

ax
b + 1

2 ax a
vx - v0x

ax
b

2

 t =
vx - v0x

ax

vx-t

x - x0 = v0x t + 1
2 ax t 2

vx-t

1
2 
(axt)(t) = 1

2  
axt

2)axt
v0xtv0x

vx-tt = 0
x - x0vx-t

ax-t

Table 2.4 Equations of Motion
with Constant Acceleration

Includes
Equation Quantities

(2.8) t

(2.12) t x 

(2.13) x

(2.14) t x vx x - x0 = a
v0x + vx

2
b t

axvx vx
2 = v0x

2   + 2ax 1x - x02

axx = x0 + v0x t + 1
2 ax t

2

axvx vx = v0x + axt

PhET: The Moving Man
ActivPhysics 1.8: Seat Belts Save Lives
ActivPhysics 1.9: Screeching to a Halt
ActivPhysics 1.11: Car Starts, Then Stops
ActivPhysics 1.12: Solving Two-Vehicle 
Problems
ActivPhysics 1.13: Car Catches Truck
ActivPhysics 1.14: Avoiding a Rear-End 
Collision
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Example 2.4 Constant-acceleration calculations

A motorcyclist heading east through a small town accelerates at a
constant after he leaves the city limits (Fig. 2.20). At
time he is 5.0 m east of the city-limits signpost, moving east
at (a) Find his position and velocity at 
(b) Where is he when his velocity is 

SOLUTION

IDENTIFY and SET UP: The x-acceleration is constant, so we can
use the constant-acceleration equations. We take the signpost as the
origin of coordinates and choose the positive x-axis to point
east (see Fig. 2.20, which is also a motion diagram). The known
variables are the initial position and velocity, and

, and the acceleration, The unknown
target variables in part (a) are the values of the position x and the 
x-velocity at the target variable in part (b) is the value
of x when vx = 25 m >  s .

t = 2.0 s;vx

ax = 4.0 m >  s2.v0x = 15 m >  s
x0 = 5.0 m

(x = 0)

25 m >  s?
t = 2.0 s.15 m >  s.

t = 0
4.0 m >  s2

Eq. (2.12) and the x-velocity at this time by using Eq. (2.8):

(b) We want to find the value of x when but we
don’t know the time when the motorcycle has this velocity. Table
2.4 tells us that we should use Eq. (2.13), which involves x, , and

but does not involve t:

Solving for x and substituting the known values, we find

EVALUATE: You can check the result in part (b) by first using 
Eq. (2.8), to find the time at which 
which turns out to be t 2.5 s. You can then use Eq. (2.12),

, to solve for x. You should find ,
the same answer as above. That’s the long way to solve the problem,
though. The method we used in part (b) is much more efficient.

x = 55 mv0xt + 1
2 
axt

2x = x0 +
=

vx = 25 m>s,vx = v0x + axt,

 = 5.0 m +
125 m >  s22 - 115 m >  s22

214.0 m >  s22
= 55 m

x = x0 +
v 2

x - v 2
0x

2ax

v 2
x  = v   2

0x + 2ax1x - x02

ax

vx

vx = 25 m >  s,

 = 15 m >  s + 14.0 m >  s2212.0 s2 = 23 m >  s

vx = v0x + axt

 = 43 m
 = 5.0 m + 115 m >  s212.0 s2 + 1

2  14.0 m >  s2212.0 s22
 x = x0 + v0xt + 1

2 axt
2

vx

EXECUTE: (a) Since we know the values of , , and , Table
2.4 tells us that we can find the position x at by using t = 2.0 s

axv0xx0

19651
AWx

19651
AWx

x (east)
x 5 ?
t 5 2.0 s

O

v0x 5 15 m/s vx 5 ?

ax 5 4.0 m/s2

x0 5 5.0 m
  t 5 0 

OSAGE

2.20 A motorcyclist traveling with constant acceleration.

Problem-Solving Strategy 2.1 Motion with Constant Acceleration

IDENTIFY the relevant concepts: In most straight-line motion prob-
lems, you can use the constant-acceleration equations (2.8), (2.12),
(2.13), and (2.14). If you encounter a situation in which the accelera-
tion isn’t constant, you’ll need a different approach (see Section 2.6).

SET UP the problem using the following steps:
1. Read the problem carefully. Make a motion diagram showing

the location of the particle at the times of interest. Decide
where to place the origin of coordinates and which axis direc-
tion is positive. It’s often helpful to place the particle at the ori-
gin at time then Remember that your choice of
the positive axis direction automatically determines the posi-
tive directions for x-velocity and x-acceleration. If x is positive
to the right of the origin, then and are also positive toward
the right.

2. Identify the physical quantities (times, positions, velocities, and
accelerations) that appear in Eqs. (2.8), (2.12), (2.13), and
(2.14) and assign them appropriate symbols — x, 
and , or symbols related to those. Translate the prose into
physics: “When does the particle arrive at its highest point”
means “What is the value of t when x has its maximum value?”
In Example 2.4 below, “Where is the motorcyclist when his
velocity is ” means “What is the value of x when

” Be alert for implicit information. For example,
“A car sits at a stop light” usually means 

3. Make a list of the quantities such as x, and t.
Some of them will be known and some will be unknown.

ax,v0x,vx,x0,
v0x = 0.

vx = 25 m >  s?
25 m >  s?

ax

v0x,vx,x0,

axvx

x0 = 0.t = 0;

Write down the values of the known quantities, and decide
which of the unknowns are the target variables. Make note of
the absence of any of the quantities that appear in the four
constant-acceleration equations.

4. Use Table 2.4 to identify the applicable equations. (These are often
the equations that don’t include any of the absent quantities that
you identified in step 3.) Usually you’ll find a single equation that
contains only one of the target variables. Sometimes you must find
two equations, each containing the same two unknowns.

5. Sketch graphs corresponding to the applicable equations. 
The graph of Eq. (2.8) is a straight line with slope . The

graph of Eq. (2.12) is a parabola that’s concave up if is
positive and concave down if is negative.

6. On the basis of your accumulated experience with such prob-
lems, and taking account of what your sketched graphs tell you,
make any qualitative and quantitative predictions you can about
the solution.

EXECUTE the solution: If a single equation applies, solve it for the
target variable, using symbols only; then substitute the known val-
ues and calculate the value of the target variable. If you have two
equations in two unknowns, solve them simultaneously for the 
target variables.

EVALUATE your answer: Take a hard look at your results to see
whether they make sense. Are they within the general range of val-
ues that you expected?

ax

axx-t
axvx-t
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Example 2.5 Two bodies with different accelerations

A motorist traveling with a constant speed of about
passes a school-crossing corner, where the speed limit is

about . Just as the motorist passes the school-
crossing sign, a police officer on a motorcycle stopped there starts
in pursuit with a constant acceleration of (Fig. 2.21a). (a)
How much time elapses before the officer passes the motorist? (b)
What is the officer’s speed at that time? (c) At that time, what dis-
tance has each vehicle traveled?

SOLUTION

IDENTIFY and SET UP: The officer and the motorist both move
with constant acceleration (equal to zero for the motorist), so we
can use the constant-acceleration formulas. We take the origin at
the sign, so for both, and we take the positive direction 
to the right. Let and represent the positions of the officer and
the motorist at any time; their initial velocities are and

, and their accelerations are and
. Our target variable in part (a) is the time when the offi-

cer passes the motorist—that is, when the two vehicles are at the
same position x; Table 2.4 tells us that Eq. (2.12) is useful for this
part. In part (b) we’re looking for the officer’s speed (the magni-
tude of his velocity) at the time found in part (a). We’ll use 
Eq. (2.8) for this part. In part (c) we’ll use Eq. (2.12) again to find
the position of either vehicle at this same time.

Figure 2.21b shows an graph for both vehicles. The straight
line represents the motorist’s motion, 

. The graph for the officer’s motion is the right half of a 
concave–up parabola:

A good sketch will show that the officer and motorist are at the
same position at about , at which time both
have traveled about 150 m from the sign.

EXECUTE: (a) To find the value of the time t at which the motorist
and police officer are at the same position, we set by
equating the expressions above and solving that equation for t:

t = 0  or  t =
2vM0x

aPx
=

2115 m>s2

3.0 m>s2
= 10 s

vM0xt = 1
2 aPxt

2

xP = xM

t = 10 s1xP = xM2

xP = xP0 + vP0xt + 1
2 aPxt

2 = 1
2 aPxt

2

vM0xt
xM = xM0 + vM0xt =

x-t

v

aMx = 0
aPx = 3.0 m>s2vM0x = 15 m>s

vP0x = 0
xMxP

x0 = 0

3.0 m>s2

22 mi>h2110 m>s
34 mi>h2

115 m>s Both vehicles have the same x-coordinate at two times, as Fig. 2.21b
indicates. At the motorist passes the officer; at the
officer passes the motorist.

(b) We want the magnitude of the officer’s x-velocity at the
time t found in part (a). Substituting the values of and into
Eq. (2.8) along with from part (a), we find

The officer’s speed is the absolute value of this, which is also 
.

(c) In 10 s the motorist travels a distance

and the officer travels

This verifies that they have gone equal distances when the officer
passes the motorist.

EVALUATE: Our results in parts (a) and (c) agree with our estimates
from our sketch. Note that at the time when the officer passes the
motorist, they do not have the same velocity. At this time the
motorist is moving at and the officer is moving at 30 m s.
You can also see this from Fig. 2.21b. Where the two curves
cross, their slopes (equal to the values of for the two vehicles)
are different.

Is it just coincidence that when the two vehicles are at the same
position, the officer is going twice the speed of the motorist? Equa-
tion (2.14), , gives the answer. The
motorist has constant velocity, so , and the distance

that the motorist travels in time t is . The officer has
zero initial velocity, so in the same time t the officer travels a dis-
tance . If the two vehicles cover the same distance in the same
amount of time, the two values of must be the same. 
Hence when the officer passes the motorist and

—that is, the officer has exactly twice the motorist’s
velocity. Note that this is true no matter what the value of the offi-
cer’s acceleration.

vPx = 2vM0x

vM0xt = 1
2 vPxt

x - x0

1
2 vPxt

vM0xtx - x0

vM0x = vMx

x - x0 = 31v0x + vx2>24t

vx

x-t
>15 m>s

xP = 1
2 aPxt

2 = 1
2 13.0 m>s22110 s22 = 150 m

xM = vM0xt = 115 m>s2110 s2 = 150 m

30 m>s

vPx = vP0x + aPxt = 0 + 13.0 m>s22110 s2 = 30 m>s

t = 10 s
aPxvP0x

vPx

t = 10 st = 0

POLICE

Police officer: initially at rest,
constant x-acceleration

The police officer and motorist
meet at the time t where their
x-t graphs cross.

Motorist: constant x-velocity

xPO

aPx 5 3.0 m/s2 vM0x 5 15 m/s
CROSSING

xM

40

80

120

160

x (m)

x
O 1210862

t (s)

Motorist

Officer

4

(a)

(b)

SCHOOL

2.21 (a) Motion with constant acceleration overtaking motion with constant velocity. (b) A graph of x versus t for each vehicle.



2.5 Freely Falling Bodies
The most familiar example of motion with (nearly) constant acceleration is a
body falling under the influence of the earth’s gravitational attraction. Such
motion has held the attention of philosophers and scientists since ancient times.
In the fourth century B.C., Aristotle thought (erroneously) that heavy bodies fall
faster than light bodies, in proportion to their weight. Nineteen centuries later,
Galileo (see Section 1.1) argued that a body should fall with a downward acceler-
ation that is constant and independent of its weight.

Experiment shows that if the effects of the air can be neglected, Galileo is
right; all bodies at a particular location fall with the same downward acceleration,
regardless of their size or weight. If in addition the distance of the fall is small
compared with the radius of the earth, and if we ignore small effects due to the
earth’s rotation, the acceleration is constant. The idealized motion that results
under all of these assumptions is called free fall, although it includes rising as
well as falling motion. (In Chapter 3 we will extend the discussion of free fall to
include the motion of projectiles, which move both vertically and horizontally.)

Figure 2.22 is a photograph of a falling ball made with a stroboscopic light
source that produces a series of short, intense flashes. As each flash occurs, an
image of the ball at that instant is recorded on the photograph. There are equal
time intervals between flashes, so the average velocity of the ball between suc-
cessive flashes is proportional to the distance between corresponding images.
The increasing distances between images show that the velocity is continuously
changing; the ball is accelerating downward. Careful measurement shows that
the velocity change is the same in each time interval, so the acceleration of the
freely falling ball is constant.

The constant acceleration of a freely falling body is called the acceleration
due to gravity, and we denote its magnitude with the letter g. We will frequently
use the approximate value of g at or near the earth’s surface:

(approximate value near 
the earth’s surface)

The exact value varies with location, so we will often give the value of g at the
earth’s surface to only two significant figures. On the surface of the moon, the
acceleration due to gravity is caused by the attractive force of the moon rather
than the earth, and Near the surface of the sun, 

CAUTION g is always a positive number Because g is the magnitude of a vector quan-
tity, it is always a positive number. If you take the positive direction to be upward, as we
do in Example 2.6 and in most situations involving free fall, the acceleration is negative
(downward) and equal to . Be careful with the sign of g, or else you’ll have no end of
trouble with free-fall problems. ❙

In the following examples we use the constant-acceleration equations devel-
oped in Section 2.4. You should review Problem-Solving Strategy 2.1 in that sec-
tion before you study the next examples.

-g

g = 270 m>s2.g = 1.6 m>s2.

g = 9.8 m>s2 = 980 cm>s2 = 32 ft>s2
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Test Your Understanding of Section 2.4 Four possible graphs are
shown for the two vehicles in Example 2.5. Which graph is correct?

vx-t

(a) (b) (c) (d)

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

❙

2.22 Multiflash photo of a freely falling
ball.

PhET: Lunar Lander
ActivPhysics 1.7: Balloonist Drops Lemonade
ActivPhysics 1.10: Pole-Vaulter Lands
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Example 2.6 A freely falling coin

A one-euro coin is dropped from the Leaning Tower of Pisa and
falls freely from rest. What are its position and velocity after 1.0 s,
2.0 s, and 3.0 s?

SOLUTION

IDENTIFY and SET UP: “Falls freely” means “falls with constant
acceleration due to gravity,” so we can use the constant-accelera-
tion equations. The right side of Fig. 2.23 shows our motion dia-
gram for the coin. The motion is vertical, so we use a vertical

coordinate axis and call the coordinate y instead of x. We take the
origin O at the starting point and the upward direction as positive.
The initial coordinate and initial y-velocity are both zero.
The y-acceleration is downward (in the negative y-direction), so

(Remember that, by definition, g itself is
a positive quantity.) Our target variables are the values of y and
at the three given times. To find these, we use Eqs. (2.12) and (2.8)
with x replaced by y. Our choice of the upward direction as posi-
tive means that all positions and velocities we calculate will be
negative.

EXECUTE: At a time t after the coin is dropped, its position and 
y-velocity are

vy

ay = -g = -9.8 m>s2.

v0yy0

The Leaning Tower Our sketch for the problem

2.23 A coin freely falling from rest.

Example 2.7 Up-and-down motion in free fall

You throw a ball vertically upward from the roof of a tall building.
The ball leaves your hand at a point even with the roof railing with
an upward speed of the ball is then in free fall. On its
way back down, it just misses the railing. Find (a) the ball’s posi-
tion and velocity 1.00 s and 4.00 s after leaving your hand; (b) the
ball’s velocity when it is 5.00 m above the railing; (c) the maxi-
mum height reached; (d) the ball’s acceleration when it is at its
maximum height.

SOLUTION

IDENTIFY and SET UP: The words “in free fall” mean that the accel-
eration is due to gravity, which is constant. Our target variables are
position [in parts (a) and (c)], velocity [in parts (a) and (b)], and
acceleration [in part (d)]. We take the origin at the point where the
ball leaves your hand, and take the positive direction to be upward
(Fig. 2.24). The initial position is zero, the initial y-velocity

is and the y-acceleration is ay = -g = -9.80 m>s2.+15.0 m>s,

v0yy0

15.0 m>s;

In part (a), as in Example 2.6, we’ll use Eqs. (2.12) and (2.8) to
find the position and velocity as functions of time. In part (b) we
must find the velocity at a given position (no time is given), so
we’ll use Eq. (2.13).

Figure 2.25 shows the and graphs for the ball. The 
graph is a concave-down parabola that rises and then falls, and the

graph is a downward-sloping straight line. Note that the ball’s
velocity is zero when it is at its highest point.

EXECUTE: (a) The position and y-velocity at time t are given by
Eqs. (2.12) and (2.8) with x’s replaced by y’s:

= 15.0 m>s + 1-9.80 m>s22t

vy = v0y + ayt = v0y + 1-g2t

= 102 + 115.0 m>s2t + 1
2 1-9.80 m>s22t 2

y = y0 + v0yt + 1
2 ayt

2 = y0 + v0yt + 1
2 1-g2t 2

vy-t

y-tvy-ty-t

Continued

y = y0 + v0yt + 1
2 ayt

2 = 0 + 0 + 1
2 1-g2t 2 = 1-4.9 m>s22t 2

vy = v0y + ayt = 0 + 1-g2t = 1-9.8 m>s22t

When and 
after , the coin is 

below the origin (y is negative) and has a downward velocity ( is
negative) with magnitude 

We can find the positions and y-velocities at 2.0 s and 3.0 s in
the same way. The results are and at

and and at 

EVALUATE: All our answers are negative, as we expected. If we had
chosen the positive y-axis to point downward, the acceleration
would have been and all our answers would have been
positive.

ay = +g

t = 3.0 s.vy = -29 m>sy = -44 mt = 2.0 s,
vy = -20 m>sy = -20 m

9.8 m>s.
vy

4.9 m1 s1-9.8 m>s2211.0 s2 = -9.8 m>s;
vy =y = 1-4.9 m>s2211.0 s22 = -4.9 mt = 1.0 s,
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When these equations give and
. That is, the ball is 10.1 m above the origin (y is

positive) and moving upward ( is positive) with a speed of
This is less than the initial speed because the ball slows

as it ascends. When those equations give
and . The ball has passed its high-

est point and is 18.4 m below the origin (y is negative). It is mov-
ing downward ( is negative) with a speed of The ball
gains speed as it descends; Eq. (2.13) tells us that it is moving at
the initial speed as it moves downward past the ball’s
launching point, and continues to gain speed as it descends further.

(b) The y-velocity at any position y is given by Eq. (2.13) with
x’s replaced by y’s:

When the ball is 5.00 m above the origin we have so

We get two values of because the ball passes through the point
twice, once on the way up (so is positive) and

once on the way down (so is negative) (see Figs. 2.24 and
2.25a).

vy

vyy = +5.00 m
vy

vy = �11.3 m>s

v 2
y = 115.0 m>s22 + 21-9.80 m>s2215.00 m2 = 127 m2>s2

y = +5.00 m,

= 115.0 m>s22 + 21-9.80 m>s22y

v 2
y = v 2

0y + 2ay1y - y02 = v 2
0y + 21-g21y - 02

15.0-m >s

24.2 m>s.vy

vy = -24.2 m>sy = -18.4 m
t = 4.00 s,

5.2 m>s.
vy

vy = +5.2 m>s
y = +10.1 mt = 1.00 s, (c) At the instant at which the ball reaches its maximum height

, its y-velocity is momentarily zero: We use Eq. (2.13) to
find . With and , we get

(d) CAUTION A free-fall misconception It’s a common mis-
conception that at the highest point of free-fall motion, where the
velocity is zero, the acceleration is also zero. If this were so, once
the ball reached the highest point it would hang there suspended in
midair! Remember that acceleration is the rate of change of veloc-
ity, and the ball’s velocity is continuously changing. At every
point, including the highest point, and at any velocity, including
zero, the acceleration in free fall is always

.

EVALUATE: A useful way to check any free-fall problem is to draw
the y-t and graphs as we did in Fig. 2.25. Note that these are
graphs of Eqs. (2.12) and (2.8), respectively. Given the numerical
values of the initial position, initial velocity, and acceleration, you
can easily create these graphs using a graphing calculator or an
online mathematics program.

vy-t

-9.80 m>s2
ay = -g =

y1 =
v 2

0y

2g
=
115.0 m>s22

219.80 m>s22
= +11.5 m

0 = v 2
0y + 21-g21y1 - 02

ay = -gy0 = 0,vy = 0,y1

vy = 0.y1

Before t 5 1.53 s
the y-velocity is
positive.

Before t 5 1.53 s the
ball moves upward.

After t 5 1.53 s
the ball moves
downward.

(a) y-t graph (curvature is
downward because ay 5 2g
is negative)

5

10

15

220

215

210

25

225

0

(b) vy-t graph (straight line with
negative slope because ay 5 2g
is constant and negative)

431
t (s)

2

vy (m/s)

431
t (s)

2

5

10

15

y (m)

220

215

210

25

0
After t 5 1.53 s
the y-velocity is
negative.

2.25 (a) Position and (b) velocity as functions of time for a
ball thrown upward with an initial speed of 15 m>s.

Example 2.8 Two solutions or one?

At what time after being released has the ball in Example 2.7 fallen
5.00 m below the roof railing?

SOLUTION

IDENTIFY and SET UP: We treat this as in Example 2.7, so 
and have the same values as there. In this example, how-
ever, the target variable is the time at which the ball is at y = -5.00 m.

ay = -g
v0y,y0,

The best equation to use is Eq. (2.12), which gives the position y as
a function of time t:

This is a quadratic equation for t, which we want to solve for the
value of t when y = -5.00 m.

y = y0 + v0yt + 1
2 ayt

2 = y0 + v0yt + 1
2 1-g2t 2

The ball actually moves straight up and
then straight down; we show 
a U-shaped path for clarity.

t 5 0, v0y 5 15.0 m/s

t 5 1.00 s, vy 5 ?
y 5 ?
y 5 ?

y 5 ?

y 5 5.00 m

y 5 0

y

t 5 4.00 s
vy 5 ?

vy 5 ?
t 5 ?

t 5 ?
vy 5 0

ay 5 2g

t 5 ?, vy 5 ?

5 29.80 m/s2

2.24 Position and velocity of a ball thrown vertically upward.
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2.6 Velocity and Position by Integration
This section is intended for students who have already learned a little integral
calculus. In Section 2.4 we analyzed the special case of straight-line motion with
constant acceleration. When is not constant, as is frequently the case, the equa-
tions that we derived in that section are no longer valid (Fig. 2.26). But even
when varies with time, we can still use the relationship to find the
x-velocity as a function of time if the position x is a known function of time.
And we can still use to find the x-acceleration as a function of
time if the x-velocity is a known function of time.

In many situations, however, position and velocity are not known functions of
time, while acceleration is (Fig. 2.27). How can we find the position and velocity
in straight-line motion from the acceleration function 

We first consider a graphical approach. Figure 2.28 is a graph of x-acceleration
versus time for a body whose acceleration is not constant. We can divide the time
interval between times and into many smaller intervals, calling a typical one

Let the average x-acceleration during be From Eq. (2.4) the change
in x-velocity during is

Graphically, equals the area of the shaded strip with height and width
—that is, the area under the curve between the left and right sides of The

total change in x-velocity during any interval (say, to is the sum of the x-
velocity changes in the small subintervals. So the total x-velocity change is
represented graphically by the total area under the curve between the verticalax-t

¢vx

t2)t1

¢t.¢t
aav-x¢vx

¢vx = aav-x ¢t

¢t¢vx

aav-x.¢t¢t.
t2t1

ax1t2?

vx

axax = dvx>dt
vx

vx = dx>dtax

ax

Substituting the values 
and m, we findy = -5.00

g = 9.80 m>s2,v0y = +15.0 m>s,y0 = 0,

EXECUTE: We rearrange the equation so that is has the standard form
of a quadratic equation for an unknown x,

By comparison, we identify and 
The quadratic formula (see Appendix B) tells us that this equation
has two solutions:

=
v0y � 2v 2

0y - 2g1y - y02

g

=
-1-v0y2 � 21-v0y2

2 - 4112g21y - y022

2112g2

t =
-B � 2B2 - 4AC

2A

C = y - y0.B = -v0y,A = 1
2g,

112 g2t 2 + 1-v0y2t + 1y - y02 = At 2 + Bt + C = 0

Ax2 + Bx + C = 0:

Test Your Understanding of Section 2.5 If you toss a ball upward with
a certain initial speed, it falls freely and reaches a maximum height h a time t after
it leaves your hand. (a) If you throw the ball upward with double the initial speed,
what new maximum height does the ball reach? (i) (ii) 2h; (iii) 4h; (iv) 8h; (v) 16h.
(b) If you throw the ball upward with double the initial speed, how long does it take to
reach its new maximum height? (i) (ii) (iii) t; (iv) (v) 2t.

❚
t12 ;t>12 ;t>2;

h12 ;

2.26 When you push your car’s acceler-
ator pedal to the floorboard, the resulting
acceleration is not constant: The greater
the car’s speed, the more slowly it gains
additional speed. A typical car takes twice
as long to accelerate from to

as it does to accelerate from 0 to
50 km>h.
100 km>h

50 km>h

sense, since it refers to a time before the ball left your hand at
. So the correct answer is .

EVALUATE: Why did we get a second, fictitious solution? The
explanation is that constant-acceleration equations like Eq. (2.12)
are based on the assumption that the acceleration is constant for all
values of time, whether positive, negative, or zero. Hence the solu-
tion refers to an imaginary moment when a freely
falling ball was 5.00 m below the roof railing and rising to meet
your hand. Since the ball didn’t leave your hand and go into free
fall until , this result is pure fiction.

You should repeat these calculations to find the times when the
ball is 5.00 m above the origin The two answers
are and These are both positive values
of t, and both refer to the real motion of the ball after leaving your
hand. At the earlier time the ball passes through 
moving upward; at the later time it passes through this point mov-
ing downward. [Compare this with part (b) of Example 2.7, and
again refer to Fig. 2.25a.]

You should also solve for the times when In this
case, both solutions involve the square root of a negative number, so
there are no real solutions. Again Fig. 2.25a shows why; we found in
part (c) of Example 2.7 that the ball’s maximum height is

so it never reaches While a quadratic
equation such as Eq. (2.12) always has two solutions, in some situa-
tions one or both of the solutions will not be physically reasonable.

y = +15.0 m.y = +11.5 m,

y = +15.0 m.

y = +5.00 m

t = +2.68 s.t = +0.38 s
1y = +5.00 m2.

t = 0

t = -0.30 s

t = +3.36 st = 0

t =
115.0 m>s2 � 2115.0 m>s22 - 219.80 m >s221-5.00 m - 02

9.80 m>s2

You can confirm that the numerical answers are 
and . The answer doesn’t make physicalt = -0.30 st = -0.30 s

t = +3.36 s



lines and (In Section 2.4 we showed this for the special case in which the
acceleration is constant.)

In the limit that all the become very small and their number very large,
the value of for the interval from any time t to approaches the instan-
taneous x-acceleration at time t. In this limit, the area under the curve is
the integral of (which is in general a function of t) from to If is the 
x-velocity of the body at time and is the velocity at time then

(2.15)

The change in the x-velocity is the time integral of the x-acceleration
We can carry out exactly the same procedure with the curve of x-velocity ver-

sus time. If is a body’s position at time and is its position at time from
Eq. (2.2) the displacement during a small time interval is equal to 
where is the average x-velocity during The total displacement 
during the interval is given by

(2.16)

The change in position x—that is, the displacement—is the time integral of 
x-velocity . Graphically, the displacement between times and is the area
under the curve between those two times. [This is the same result that we
obtained in Section 2.4 for the special case in which is given by Eq. (2.8).]

If and is any later time t, and if and are the position and
velocity, respectively, at time then we can rewrite Eqs. (2.15) and (2.16)
as follows:

(2.17)

(2.18)

Here x and are the position and x-velocity at time t. If we know the x-acceleration
as a function of time and we know the initial velocity we can use Eq. (2.17)

to find the x-velocity at any time; in other words, we can find as a function 
of time. Once we know this function, and given the initial position we can use 
Eq. (2.18) to find the position x at any time.

x0,
vxvx

v0x,ax

vx

x = x0 + L
t

0
vx dt

vx = v0x + L
t

0
ax dt

t = 0,
v0xx0t2t1 = 0

vx

vx-t
t2t1vx

x2 - x1 = L
x2

x1

dx = L
t2

t1

vx dt

t2 - t1

x2 - x1¢t.vav-x

vav-x ¢t,¢t¢x
t2,x2t1x1

ax.vx

v2x - v1x = L
v2x

v1x

dvx = L
t2

t1

ax dt

t2,v2xt1

v1xt2.t1ax

ax-tax

t + ¢taav-x

¢t’s

t2.t1
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Total area under the x-t graph from t1 to t2
5 Net change in x-velocity from t1 to t2

Area of this strip 5 Dvx
5 Change in x-velocity
during time interval Dt

O

aav-x

ax

t1 t2
t

Dt

2.28 An graph for a body whose 
x-acceleration is not constant.

ax-t

Example 2.9 Motion with changing acceleration

Sally is driving along a straight highway in her 1965 Mustang. At
when she is moving at in the positive x-direction,

she passes a signpost at Her x-acceleration as a func-
tion of time is

(a) Find her x-velocity and position x as functions of time. 
(b) When is her x-velocity greatest? (c) What is that maximum 
x-velocity? (d) Where is the car when it reaches that maximum 
x-velocity?

vx

ax = 2.0 m>s2 - 10.10 m>s32t

x = 50 m.
10 m>st = 0,

SOLUTION

IDENTIFY and SET UP: The x-acceleration is a function of time, so
we cannot use the constant-acceleration formulas of Section 2.4.
Instead, we use Eq. (2.17) to obtain an expression for as a func-
tion of time, and then use that result in Eq. (2.18) to find an expres-
sion for x as a function of t. We’ll then be able to answer a variety
of questions about the motion.

vx

2.27 The inertial navigation system
(INS) on board a long-range airliner keeps
track of the airliner’s acceleration. The
pilots input the airliner’s initial position
and velocity before takeoff, and the INS
uses the acceleration data to calculate the
airliner’s position and velocity throughout
the flight.
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EXECUTE: (a) At Sally’s position is and her 
x-velocity is To use Eq. (2.17), we note that the inte-
gral of (except for ) is . Hence we
find

= 10 m>s + 12.0 m>s22t - 1
2 10.10 m>s32t 2

vx = 10 m>s + L
t

0
32.0 m>s2 - 10.10 m>s32t4dt

1t ndt = 1
n + 1 t n+1n = -1t n

v0x = 10 m>s.
x0 = 50 mt = 0, (c) We find the maximum x-velocity by substituting ,

the time from part (b) when velocity is maximum, into the equa-
tion for from part (a):

(d) To find the car’s position at the time that we found in part
(b), we substitute into the expression for x from part (a):

EVALUATE: Figure 2.29 helps us interpret our results. The top
graph shows that is positive between and and
negative after that. It is zero at the time at which is
maximum (the high point in the middle graph). The car speeds up
until (because and have the same sign) and slows
down after (because and have opposite signs).

Since is maximum at , the x-t graph (the bottom
graph in Fig. 2.29) has its maximum positive slope at this time.
Note that the x-t graph is concave up (curved upward) from 
to when is positive. The graph is concave down
(curved downward) after when is negative.axt = 20 s,

axt = 20 s,
t = 0

t = 20 svx

axvxt = 20 s
axvxt = 20 s

vxt = 20 s,
t = 20 st = 0ax

= 517 m

- 1
6 10.10 m>s32120 s23

x = 50 m + 110 m>s2120 s2 + 1
2 12.0 m>s22120 s22

t = 20 s

= 30 m>s

vmax-x = 10 m>s + 12.0 m>s22120 s2 - 1
2 10.10 m>s32120 s22

vx

t = 20 s

Now we use Eq. (2.18) to find x as a function of t:

= 50 m + 110 m>s2t + 1
2 12.0 m>s22t 2 - 1

6 10.10 m>s32t 3

x = 50 m + L
t

0
310 m>s + 12.0 m>s22t - 1

2 10.10 m>s32t 24 dt

Figure 2.29 shows graphs of , and x as functions of time as
given by the equations above. Note that for any time t, the slope of
the graph equals the value of and the slope of the x-t graph
equals the value of .

(b) The maximum value of occurs when the x-velocity stops
increasing and begins to decrease. At that instant, 
So we set the expression for equal to zero and solve for t :

t =
2.0 m>s2

0.10 m>s3
= 20 s

0 = 2.0 m>s2 - 10.10 m>s32t

ax

dvx>dt = ax = 0.
vx

vx

axvx-t

vxax,

25

x-t graph curves
downward after
t 5 20 s.

x-t graph curves
upward before
t 5 20 s.

x-velocity
increases before
t 5 20 s.

x-velocity
decreases after
t 5 20 s.

x-acceleration is
positive before t 5 20 s.

x-acceleration is
negative after t 5 20 s.

vx (m/s)

O

10

20

30

5 10 15 20 25 30
t (s)

x (m)

t (s)
O

200

400

600

800

5 10 15 20 25 30

ax (m/s2)

O

1.0

2.0

5 10 15 20 30

�1.0

t (s)

2.29 The position, velocity, and acceleration of the car in Example 2.9 as functions of time. Can you show that if this motion contin-
ues, the car will stop at t = 44.5 s?

Test Your Understanding of Section 2.6 If the x-acceleration
is increasing with time, will the graph be (i) a straight line, (ii) concave up
(i.e., with an upward curvature), or (iii) concave down (i.e., with a downward 
curvature)? ❚

vx-t
ax
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Straight-line motion with constant acceleration: When
the x-acceleration is constant, four equations relate the
position x and the x-velocity at any time t to the 
initial position the initial x-velocity (both 
measured at time and the x-acceleration
(See Examples 2.4 and 2.5.)

ax.t = 0),
v0xx0,

vx

Freely falling bodies: Free fall is a case of motion with
constant acceleration. The magnitude of the acceleration
due to gravity is a positive quantity, g. The acceleration
of a body in free fall is always downward. (See Exam-
ples 2.6–2.8.)

(2.4)

(2.5)ax = lim
¢tS0

¢vx

¢t
=

dvx

dt

aav-x =
v2x - v1x

t2 - t1
=

¢vx

¢t

Constant x-acceleration only:

(2.8)

(2.12)

(2.13)

(2.14)x - x0 = a
v0x + vx

2
b t

vx
2 = v0x

2 + 2ax1x - x02

x = x0 + v0xt + 1
2 axt 2

vx = v0x + axt

Straight-line motion with varying acceleration: When the
acceleration is not constant but is a known function of
time, we can find the velocity and position as functions
of time by integrating the acceleration function. (See
Example 2.9.)

(2.17)

(2.18)x = x0 + L
t

0
vx dt

vx = v0x + L
t

0
ax dt

Straight-line motion, average and instantaneous 
x-velocity: When a particle moves along a straight line,
we describe its position with respect to an origin O by
means of a coordinate such as x. The particle’s average
x-velocity during a time interval is
equal to its displacement divided by 
The instantaneous x-velocity at any time t is equal to
the average x-velocity for the time interval from t to

in the limit that goes to zero. Equivalently, 
is the derivative of the position function with respect to
time. (See Example 2.1.)

vx¢tt + ¢t

vx

¢t.¢x = x2 - x1

¢t = t2 - t1vav-x

(2.2)

(2.3)vx = lim
¢tS0

¢x

¢t
=

dx

dt

vav-x =
x2 - x1

t2 - t1
=

¢x

¢t

x

p1

p2

O
t

�
x

5
x 2

2
x 1

�t 5 t2 2 t1
t2t1

x1

x2

Sl
op

e 5
v av

-x

Slope 5 v x

vx

v2x

v1x

t2t1
t

O

p1

p2

Dt 5 t2 2 t1

D
v x

5
v 2

x
2

v 1
x
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Average and instantaneous x-acceleration: The average
x-acceleration during a time interval is equal 
to the change in velocity during
that time interval divided by The instantaneous 
x-acceleration is the limit of as goes to zero,
or the derivative of with respect to t. (See Examples
2.2 and 2.3.)
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The superhero Green Lantern steps from the top of a tall building.
He falls freely from rest to the ground, falling half the total dis-
tance to the ground during the last 1.00 s of his fall. What is the
height h of the building?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. You’re told that Green Lantern falls freely from rest. What does

this imply about his acceleration? About his initial velocity?
2. Choose the direction of the positive y-axis. It’s easiest to make

the same choice we used for freely falling objects in Section 2.5.
3. You can divide Green Lantern’s fall into two parts: from the top

of the building to the halfway point and from the halfway point
to the ground. You know that the second part of the fall lasts
1.00 s. Decide what you would need to know about Green

BRIDGING PROBLEM The Fall of a Superhero

Lantern’s motion at the halfway point in order to solve for the
target variable h. Then choose two equations, one for the first
part of the fall and one for the second part, that you’ll use
together to find an expression for h. (There are several pairs of
equations that you could choose.)

EXECUTE
4. Use your two equations to solve for the height h. Note that

heights are always positive numbers, so your answer should be
positive.

EVALUATE
5. To check your answer for h, use one of the free-fall equations to

find how long it takes Green Lantern to fall (i) from the top of
the building to half the height and (ii) from the top of the build-
ing to the ground. If your answer for h is correct, time (ii)
should be 1.00 s greater than time (i). If it isn’t, you’ll need to
go back and look for errors in how you found h.

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q2.1 Does the speedometer of a car measure speed or velocity?
Explain.
Q2.2 The top diagram in Fig. Q2.2 represents a series of high-
speed photographs of an insect flying in a straight line from left to
right (in the positive x-direction). Which of the graphs in Fig. Q2.2
most plausibly depicts this insect’s motion?

the BMW reaches Elwood’s Car Wash. How are the cars’ average
velocities between these two times related?
Q2.8 A driver in Massachusetts was sent to traffic court for speeding.
The evidence against the driver was that a policewoman observed the
driver’s car alongside a second car at a certain moment, and the
policewoman had already clocked the second car as going faster than
the speed limit. The driver argued, “The second car was passing me. 
I was not speeding.” The judge ruled against the driver because, in
the judge’s words, “If two cars were side by side, you were both
speeding.” If you were a lawyer representing the accused driver, how
would you argue this case?
Q2.9 Can you have a zero displacement and a nonzero average
velocity? A nonzero velocity? Illustrate your answers on an x-t graph.
Q2.10 Can you have zero acceleration and nonzero velocity?
Explain using a graph.
Q2.11 Can you have zero velocity and nonzero average accelera-
tion? Zero velocity and nonzero acceleration? Explain using a 
graph, and give an example of such motion.
Q2.12 An automobile is traveling west. Can it have a velocity
toward the west and at the same time have an acceleration toward
the east? Under what circumstances?
Q2.13 The official’s truck in Fig. 2.2 is at at

and is at at (a) Sketch two
different possible x-t graphs for the motion of the truck. (b) Does
the average velocity during the time interval from to 
have the same value for both of your graphs? Why or why not?
Q2.14 Under constant acceleration the average velocity of a parti-
cle is half the sum of its initial and final velocities. Is this still true
if the acceleration is not constant? Explain.

t2t1vav-x

t2 = 25.0 s.x2 = 19 mt1 = 16.0 s
x1 = 277 m

vx-t

vx-t

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

(a)
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t
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(e)

vx
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Figure Q2.2

Q2.3 Can an object with constant acceleration reverse its direction
of travel? Can it reverse its direction twice? In each case, explain
your reasoning.
Q2.4 Under what conditions is average velocity equal to instanta-
neous velocity?
Q2.5 Is it possible for an object (a) to be slowing down while its
acceleration is increasing in magnitude; (b) to be speeding up
while its acceleration is decreasing? In each case, explain your 
reasoning.
Q2.6 Under what conditions does the magnitude of the average
velocity equal the average speed?
Q2.7 When a Dodge Viper is at Elwood’s Car Wash, a BMW Z3 is
at Elm and Main. Later, when the Dodge reaches Elm and Main,

www.masteringphysics.com
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Q2.15 You throw a baseball straight up in the air so that it rises to
a maximum height much greater than your height. Is the magni-
tude of the acceleration greater while it is being thrown or after it
leaves your hand? Explain.
Q2.16 Prove these statements: (a) As long as you can neglect the
effects of the air, if you throw anything vertically upward, it will
have the same speed when it returns to the release point as when it
was released. (b) The time of flight will be twice the time it takes
to get to its highest point.
Q2.17 A dripping water faucet steadily releases drops 1.0 s apart.
As these drops fall, will the distance between them increase,
decrease, or remain the same? Prove your answer.
Q2.18 If the initial position and initial velocity of a vehicle are
known and a record is kept of the acceleration at each instant, can
you compute the vehicle’s position after a certain time from these
data? If so, explain how this might be done.
Q2.19 From the top of a tall building you throw one ball straight
up with speed and one ball straight down with speed .
(a) Which ball has the greater speed when it reaches the ground?
(b) Which ball gets to the ground first? (c) Which ball has a greater
displacement when it reaches the ground? (d) Which ball has trav-
eled the greater distance when it hits the ground?
Q2.20 A ball is dropped from rest from the top of a building of
height h. At the same instant, a second ball is projected vertically
upward from ground level, such that it has zero speed when it
reaches the top of the building. When the two balls pass each other,
which ball has the greater speed, or do they have the same speed?
Explain. Where will the two balls be when they are alongside each
other: at height above the ground, below this height, or above
this height? Explain.
Q2.21 An object is thrown straight up into the air and feels no air
resistance. How is it possible for the object to have an acceleration
when it has stopped moving at its highest point?
Q2.22 When you drop an object from a certain height, it takes time
T to reach the ground with no air resistance. If you dropped it from
three times that height, how long (in terms of T ) would it take to
reach the ground?

EXERCISES
Section 2.1 Displacement, Time, and Average Velocity
2.1 . A car travels in the �x-direction on a straight and level
road. For the first 4.00 s of its motion, the average velocity of the
car is . How far does the car travel in 4.00 s?
2.2 .. In an experiment, a shearwater (a seabird) was taken from
its nest, flown 5150 km away, and released. The bird found its way
back to its nest 13.5 days after release. If we place the origin in the
nest and extend the to the release point, what was the
bird’s average velocity in (a) for the return flight, and (b) for
the whole episode, from leaving the nest to returning?
2.3 .. Trip Home. You normally drive on the freeway between
San Diego and Los Angeles at an average speed of 

and the trip takes 2 h and 20 min. On a Friday after-
noon, however, heavy traffic slows you down and you drive the
same distance at an average speed of only 
How much longer does the trip take?
2.4 .. From Pillar to Post. Starting from a pillar, you run 200 m
east (the ) at an average speed of and then
run 280 m west at an average speed of to a post. Calculate
(a) your average speed from pillar to post and (b) your average
velocity from pillar to post.

4.0 m>s
5.0 m>s,+x-direction

143 mi>h2.70 km>h

165 mi>h2,
105 km>h

m>s
+x-axis

vav-x = 6.25 m>s

h>2

v0v0

2.5 . Starting from the front door of your ranch house, you walk
60.0 m due east to your windmill, and then you turn around and
slowly walk 40.0 m west to a bench where you sit and watch the
sunrise. It takes you 28.0 s to walk from your house to the wind-
mill and then 36.0 s to walk from the windmill to the bench. For
the entire trip from your front door to the bench, what are (a) your
average velocity and (b) your average speed?
2.6 .. A Honda Civic travels in a straight line along a road. Its
distance x from a stop sign is given as a function of time t by the
equation where and 

Calculate the average velocity of the car for each
time interval: (a) to (b) to 
(c) to 

Section 2.2 Instantaneous Velocity
2.7 . CALC A car is stopped at a traffic light. It then travels along
a straight road so that its distance from the light is given by

where and (a)
Calculate the average velocity of the car for the time interval 
to (b) Calculate the instantaneous velocity of the car at

and (c) How long after starting from
rest is the car again at rest?
2.8 . CALC A bird is flying due east. Its distance from a tall build-
ing is given by 
What is the instantaneous velocity of the bird when ?
2.9 .. A ball moves in a straight line (the x-axis). The graph in 
Fig. E2.9 shows this ball’s velocity as a function of time. (a) What are
the ball’s average speed and average velocity during the first 3.0 s?
(b) Suppose that the ball moved in such a way that the graph seg-
ment after 2.0 s was instead of Find the ball’s
average speed and average velocity in this case.

+3.0 m>s.-3.0 m>s

t = 8.00 s
x1t2 = 28.0 m + 112.4 m>s2t - 10.0450 m>s32t3.

t = 10.0 s.t = 5.0 s,t = 0,
t = 10.0 s.

t = 0
c = 0.120 m>s3.b = 2.40 m>s2x1t2 = bt 2 - ct 3,

t = 4.00 s.t = 2.00 s
t = 4.00 s;t = 0t = 2.00 s;t = 0

0.0500 m>s3.
b =a = 1.50 m>s2x1t2 = at 2 - bt 3,

vx (m/s)
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2.0
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t (s)
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2.10 . A physics professor leaves her house and walks along the
sidewalk toward campus. After 5 min it starts to rain and she
returns home. Her distance from her house as a function of time is
shown in Fig. E2.10. At which of the labeled points is her velocity
(a) zero? (b) constant and positive? (c) constant and negative? 
(d) increasing in magnitude? (e) decreasing in magnitude?
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is the velocity of the turtle zero? (c) How long after starting does it
take the turtle to return to its starting point? (d) At what times t is
the turtle a distance of 10.0 cm from its starting point? What is the
velocity (magnitude and direction) of the turtle at each of these
times? (e) Sketch graphs of x versus t, versus t, and versus t,
for the time interval to 
2.16 . An astronaut has left the International Space Station to test
a new space scooter. Her partner measures the following velocity
changes, each taking place in a 10-s interval. What are the magni-
tude, the algebraic sign, and the direction of the average accelera-
tion in each interval? Assume that the positive direction is to the
right. (a) At the beginning of the interval the astronaut is moving
toward the right along the x-axis at and at the end of the
interval she is moving toward the right at (b) At the
beginning she is moving toward the left at and at the end
she is moving toward the left at (c) At the beginning she
is moving toward the right at and at the end she is mov-
ing toward the left at 
2.17 . CALC A car’s velocity as a function of time is given by

where and (a)
Calculate the average acceleration for the time interval to

(b) Calculate the instantaneous acceleration for 
and (c) Draw and graphs for the car’s motion
between and 
2.18 .. CALC The position of the front bumper of a test car 
under microprocessor control is given by 

(a) Find its position and accel-
eration at the instants when the car has zero velocity. (b) Draw x-t,

and graphs for the motion of the bumper between 
and

Section 2.4 Motion with Constant Acceleration
2.19 .. An antelope moving with constant acceleration covers the
distance between two points 70.0 m apart in 7.00 s. Its speed as it
passes the second point is (a) What is its speed at the
first point? (b) What is its acceleration?
2.20 .. BIO Blackout? A jet fighter pilot wishes to accelerate
from rest at a constant acceleration of 5g to reach Mach 3 (three
times the speed of sound) as quickly as possible. Experimental
tests reveal that he will black out if this acceleration lasts for more
than 5.0 s. Use for the speed of sound. (a) Will the period
of acceleration last long enough to cause him to black out? (b)
What is the greatest speed he can reach with an acceleration of 5g
before blacking out?
2.21 . A Fast Pitch. The fastest measured pitched baseball left
the pitcher’s hand at a speed of If the pitcher was in
contact with the ball over a distance of 1.50 m and produced con-
stant acceleration, (a) what acceleration did he give the ball, and
(b) how much time did it take him to pitch it?
2.22 .. A Tennis Serve. In the fastest measured tennis serve,
the ball left the racquet at A served tennis ball is typi-
cally in contact with the racquet for 30.0 ms and starts from rest.
Assume constant acceleration. (a) What was the ball’s accelera-
tion during this serve? (b) How far did the ball travel during the
serve?
2.23 .. BIO Automobile Airbags. The human body can survive
an acceleration trauma incident (sudden stop) if the magnitude
of the acceleration is less than If you are in an auto-
mobile accident with an initial speed of 
and you are stopped by an airbag that inflates from the dashboard,
over what distance must the airbag stop you for you to survive
the crash?

165 mi>h2105 km>h
250 m>s2.

73.14 m>s.

45.0 m>s.

331 m>s

15.0 m>s.

t = 2.00 s.
t = 0ax-tvx-t,

10.100 m>s62t 6.14.80 m>s22t 2 -
x1t2 = 2.17 m +

t = 5.00 s.t = 0
ax-tvx-tt = 5.00 s.

t = 0t = 5.00 s.
t = 0

b = 0.100 m>s3.a = 3.00 m>sa + bt 2,vx1t2 =

15.0 m>s.
15.0 m>s,

15.0 m>s.
5.0 m>s,

5.0 m>s.
15.0 m>s,
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Figure E2.11

2.11 .. A test car travels in a straight line along the x-axis. The
graph in Fig. E2.11 shows the car’s position x as a function of
time. Find its instantaneous velocity at points A through G.

2.13 . The Fastest (and Most Expensive) Car! The table
shows test data for the Bugatti Veyron, the fastest car made. The
car is moving in a straight line (the x-axis).

O 10 20 30
t (s)

405 15 25 35

vx (km/h)

20

30

40

60

10

50

Time (s) 0 2.1 20.0 53
Speed (mi h) 0 60 200 253>

(a) Make a graph of this car’s velocity (in ) as a function
of time. Is its acceleration constant? (b) Calculate the car’s average
acceleration (in ) between (i) 0 and 2.1 s; (ii) 2.1 s and 20.0 s;
(iii) 20.0 s and 53 s. Are these results consistent with your graph in
part (a)? (Before you decide to buy this car, it might be helpful to
know that only 300 will be built, it runs out of gas in 12 minutes at
top speed, and it costs $1.25 million!)
2.14 .. CALC A race car starts from rest and travels east along 
a straight and level track. For the first 5.0 s of the car’s motion, 
the eastward component of the car’s velocity is given by

. What is the acceleration of the car when
?

2.15 . CALC A turtle crawls along a straight line, which we will
call the x-axis with the positive direction to the right. The equation
for the turtle’s position as a function of time is 

(a) Find the turtle’s initial
velocity, initial position, and initial acceleration. (b) At what time t
12.00 cm>s2t - 10.0625 cm>s22t 2.

x1t2 = 50.0 cm +

vx = 16.0 m>s
vx1t2 = 10.860 m/s32t 2

m>s2

mi>hvx-t

Section 2.3 Average and Instantaneous Acceleration
2.12 . Figure E2.12 shows the velocity of a solar-powered car as
a function of time. The driver accelerates from a stop sign, cruises
for 20 s at a constant speed of and then brakes to come
to a stop 40 s after leaving the stop sign. (a) Compute the average
acceleration during the following time intervals: (i) to

(ii) to (iii) to (iv)
to (b) What is the instantaneous acceleration at

and at t = 35 s?t = 20 s
t = 40 s.t = 0

t = 30 s;t = 10 st = 40 s;t = 30 st = 10 s;
t = 0

60 km>h,

Figure E2.12
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2.24 . BIO If a pilot accelerates at more than 4g, he begins to
“gray out” but doesn’t completely lose consciousness. (a) Assum-
ing constant acceleration, what is the shortest time that a jet pilot
starting from rest can take to reach Mach 4 (four times the speed of
sound) without graying out? (b) How far would the plane travel
during this period of acceleration? (Use 331 m s for the speed of
sound in cold air.)
2.25 . BIO Air-Bag Injuries. During an auto accident, the
vehicle’s air bags deploy and slow down the passengers more gen-
tly than if they had hit the windshield or steering wheel. According
to safety standards, the bags produce a maximum acceleration of
60g that lasts for only 36 ms (or less). How far (in meters) does a
person travel in coming to a complete stop in 36 ms at a constant
acceleration of 60g?
2.26 . BIO Prevention of Hip Fractures. Falls resulting in hip
fractures are a major cause of injury and even death to the elderly.
Typically, the hip’s speed at impact is about If this can be
reduced to or less, the hip will usually not fracture. One
way to do this is by wearing elastic hip pads. (a) If a typical pad is
5.0 cm thick and compresses by 2.0 cm during the impact of a fall,
what constant acceleration (in and in g’s) does the hip
undergo to reduce its speed from 2.0 m s to (b) The
acceleration you found in part (a) may seem rather large, but to
fully assess its effects on the hip, calculate how long it lasts.
2.27 . BIO Are We Martians? It has been suggested, and not
facetiously, that life might have originated on Mars and been car-
ried to the earth when a meteor hit Mars and blasted pieces of rock
(perhaps containing primitive life) free of the surface. Astronomers
know that many Martian rocks have come to the earth this way.
(For information on one of these, search the Internet for “ALH
84001.”) One objection to this idea is that microbes would have to
undergo an enormous lethal acceleration during the impact. Let us
investigate how large such an acceleration might be. To escape
Mars, rock fragments would have to reach its escape velocity of

and this would most likely happen over a distance of
about 4.0 m during the meteor impact. (a) What would be the
acceleration (in and g’s) of such a rock fragment, if the accel-
eration is constant? (b) How long would this acceleration last? (c)
In tests, scientists have found that over 40% of Bacillius subtilis
bacteria survived after an acceleration of 450,000g. In light of your
answer to part (a), can we rule out the hypothesis that life might
have been blasted from Mars to the earth?
2.28 . Entering the Freeway. A car sits in an entrance ramp to
a freeway, waiting for a break in the traffic. The driver accelerates
with constant acceleration along the ramp and onto the freeway.
The car starts from rest, moves in a straight line, and has a speed of

when it reaches the end of the 120-m-long
ramp. (a) What is the acceleration of the car? (b) How much time
does it take the car to travel the length of the ramp? (c) The traffic
on the freeway is moving at a constant speed of What dis-
tance does the traffic travel while the car is moving the length of
the ramp?
2.29 .. Launch of the Space Shuttle. At launch the space
shuttle weighs 4.5 million pounds. When it is launched from rest, it
takes 8.00 s to reach and at the end of the first 1.00 min
its speed is (a) What is the average acceleration (in

) of the shuttle (i) during the first 8.00 s, and (ii) between 8.00 s
and the end of the first 1.00 min? (b) Assuming the acceleration is
constant during each time interval (but not necessarily the same in
both intervals), what distance does the shuttle travel (i) during the
first 8.00 s, and (ii) during the interval from 8.00 s to 1.00 min?

m>s2
1610 km>h.

161 km>h,

20 m>s.

145 mi>h220 m>s

m>s2

5.0 km>s,

1.3 m>s?>
m>s2

1.3 m>s
2.0 m>s.

>

2.30 .. A cat walks in a straight line, which we shall call the 
x-axis with the positive direction to the right. As an observant
physicist, you make measurements of this cat’s motion and con-
struct a graph of the feline’s velocity as a function of time 
(Fig. E2.30). (a) Find the cat’s velocity at and at

(b) What is the cat’s acceleration at At
At (c) What distance does the cat move dur-

ing the first 4.5 s? From to (d) Sketch clear graphs
of the cat’s acceleration and position as functions of time, assuming
that the cat started at the origin.

t = 7.5 s?t = 0
t = 7.0 s?t = 6.0 s?

t = 3.0 s?t = 7.0 s.
t = 4.0 s

2.31 .. The graph in Fig. E2.31 shows the velocity of a motorcycle
police officer plotted as a function of time. (a) Find the instantaneous
acceleration at at and at (b) How far
does the officer go in the first 5 s? The first 9 s? The first 13 s?

t = 11 s.t = 7 s,t = 3 s,

2.32 . Two cars, A and B, move
along the x-axis. Figure E2.32 is
a graph of the positions of A and
B versus time. (a) In motion dia-
grams (like Figs. 2.13b and
2.14b), show the position, veloc-
ity, and acceleration of each of
the two cars at 
and (b) At what time(s),
if any, do A and B have the same
position? (c) Graph velocity ver-
sus time for both A and B. (d) At what time(s), if any, do A and B
have the same velocity? (e) At what time(s), if any, does car A pass
car B? (f) At what time(s), if any, does car B pass car A?

t = 3 s.
t = 1 s,t = 0,
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2.33 .. Mars Landing. In January 2004, NASA landed explo-
ration vehicles on Mars. Part of the descent consisted of the fol-
lowing stages:

Stage A: Friction with the atmosphere reduced the speed from
to in 4.0 min.

Stage B: A parachute then opened to slow it down to in
94 s.
Stage C: Retro rockets then fired to reduce its speed to zero over a
distance of 75 m.

Assume that each stage followed immediately after the preceding
one and that the acceleration during each stage was constant. 
(a) Find the rocket’s acceleration (in ) during each stage. 
(b) What total distance (in km) did the rocket travel during stages
A, B, and C?
2.34 . At the instant the traffic light turns green, a car that has been
waiting at an intersection starts ahead with a constant acceleration
of At the same instant a truck, traveling with a constant
speed of overtakes and passes the car. (a) How far
beyond its starting point does the car overtake the truck? (b) How
fast is the car traveling when it overtakes the truck? (c) Sketch an
x-t graph of the motion of both vehicles. Take at the inter-
section. (d) Sketch a graph of the motion of both vehicles.

Section 2.5 Freely Falling Bodies
2.35 .. (a) If a flea can jump straight up to a height of 0.440 m,
what is its initial speed as it leaves the ground? (b) How long is it
in the air?
2.36 .. A small rock is thrown vertically upward with a speed of

from the edge of the roof of a 30.0-m-tall building. The
rock doesn’t hit the building on its way back down and lands in the
street below. Air resistance can be neglected. (a) What is the speed
of the rock just before it hits the street? (b) How much time elapses
from when the rock is thrown until it hits the street?
2.37 . A juggler throws a bowling pin straight up with an initial
speed of 8.20 m s. How much time elapses until the bowling pin
returns to the juggler’s hand?
2.38 .. You throw a glob of putty straight up toward the ceiling,
which is 3.60 m above the point where the putty leaves your hand.
The initial speed of the putty as it leaves your hand is . 
(a) What is the speed of the putty just before it strikes the ceiling?
(b) How much time from when it leaves your hand does it take the
putty to reach the ceiling?
2.39 .. A tennis ball on Mars, where the acceleration due to grav-
ity is 0.379g and air resistance is negligible, is hit directly upward
and returns to the same level 8.5 s later. (a) How high above its
original point did the ball go? (b) How fast was it moving just after
being hit? (c) Sketch graphs of the ball’s vertical position, vertical
velocity, and vertical accelera-
tion as functions of time while
it’s in the Martian air.
2.40 .. Touchdown on the
Moon. A lunar lander is
making its descent to Moon
Base I (Fig. E2.40). The lander
descends slowly under the retro-
thrust of its descent engine. The
engine is cut off when the lan-
der is 5.0 m above the surface
and has a downward speed of

With the engine off,0.8 m>s.

9.50 m>s

>

18.0 m>s

vx-t
x = 0

20.0 m>s,
3.20 m>s2.

m>s2

321 km>h
1600 km>h19,300 km>h

the lander is in free fall. What is the speed of the lander just
before it touches the surface? The acceleration due to gravity on
the moon is 
2.41 .. A Simple Reaction-Time Test. A meter stick is held ver-
tically above your hand, with the lower end between your thumb
and first finger. On seeing the meter stick released, you grab it with
these two fingers. You can calculate your reaction time from the
distance the meter stick falls, read directly from the point where
your fingers grabbed it. (a) Derive a relationship for your reaction
time in terms of this measured distance, d. (b) If the measured dis-
tance is 17.6 cm, what is the reaction time?
2.42 .. A brick is dropped (zero initial speed) from the roof of a
building. The brick strikes the ground in 2.50 s. You may ignore air
resistance, so the brick is in free fall. (a) How tall, in meters, is the
building? (b) What is the magnitude of the brick’s velocity just
before it reaches the ground? (c) Sketch and y-t graphs
for the motion of the brick.
2.43 .. Launch Failure. A 7500-kg rocket blasts off vertically
from the launch pad with a constant upward acceleration of

and feels no appreciable air resistance. When it has
reached a height of 525 m, its engines suddenly fail so that the
only force acting on it is now gravity. (a) What is the maximum
height this rocket will reach above the launch pad? (b) How much
time after engine failure will elapse before the rocket comes crash-
ing down to the launch pad, and how fast will it be moving just
before it crashes? (c) Sketch and y-t graphs of the
rocket’s motion from the instant of blast-off to the instant just
before it strikes the launch pad.
2.44 .. A hot-air balloonist, ris-
ing vertically with a constant
velocity of magnitude 
releases a sandbag at an instant
when the balloon is 40.0 m above
the ground (Fig. E2.44). After it is
released, the sandbag is in free fall.
(a) Compute the position and
velocity of the sandbag at 0.250 s
and 1.00 s after its release. (b) How
many seconds after its release will
the bag strike the ground? (c) With
what magnitude of velocity does it
strike the ground? (d) What is the
greatest height above the ground
that the sandbag reaches? (e)
Sketch and y-t graphs for
the motion.

2.45 . BIO The rocket-driven sled Sonic Wind No. 2, used for
investigating the physiological effects of large accelerations, runs
on a straight, level track 1070 m (3500 ft) long. Starting from rest,
it can reach a speed of in 0.900 s. (a) Com-
pute the acceleration in assuming that it is constant. (b)
What is the ratio of this acceleration to that of a freely falling body
(g)? (c) What distance is covered in 0.900 s? (d) A magazine article
states that at the end of a certain run, the speed of the sled
decreased from to zero in 1.40 s and that
during this time the magnitude of the acceleration was greater than
40g. Are these figures consistent?
2.46 . An egg is thrown nearly vertically upward from a point
near the cornice of a tall building. It just misses the cornice on the
way down and passes a point 30.0 m below its starting point 5.00 s
after it leaves the thrower’s hand. Air resistance may be ignored.

1632 mi>h2283 m>s

m>s2,
1500 mi>h2224 m>s

vy-t,ay-t,

5.00 m>s,

vy-t,ay-t,

2.25 m>s2

vy-t,ay-t,

1.6 m>s2.

5.0 m

40.0 m to ground

v 5 5.00 m/s
Figure E2.44

Figure E2.40
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(a) What is the initial speed of the egg? (b) How high does it rise
above its starting point? (c) What is the magnitude of its velocity at
the highest point? (d) What are the magnitude and direction of its
acceleration at the highest point? (e) Sketch and y-t
graphs for the motion of the egg.
2.47 .. A 15-kg rock is dropped from rest on the earth and
reaches the ground in 1.75 s. When it is dropped from the same
height on Saturn’s satellite Enceladus, it reaches the ground in 
18.6 s. What is the acceleration due to gravity on Enceladus?
2.48 . A large boulder is ejected vertically upward from a volcano
with an initial speed of Air resistance may be ignored. 
(a) At what time after being ejected is the boulder moving at

upward? (b) At what time is it moving at down-
ward? (c) When is the displacement of the boulder from its initial
position zero? (d) When is the velocity of the boulder zero? (e) What
are the magnitude and direction of the acceleration while the boulder
is (i) moving upward? (ii) Moving downward? (iii) At the highest
point? (f) Sketch and y-t graphs for the motion.

2.49 .. Two stones are thrown vertically upward from the
ground, one with three times the initial speed of the other. (a) If the
faster stone takes 10 s to return to the ground, how long will it take
the slower stone to return? (b) If the slower stone reaches a maxi-
mum height of H, how high (in terms of H) will the faster stone
go? Assume free fall.

Section 2.6 Velocity and Position by Integration
2.50 . CALC For constant use Eqs. (2.17) and (2.18) to find 
and x as functions of time. Compare your results to Eqs. (2.8) 
and (2.12).
2.51 . CALC A rocket starts from rest and moves upward from the
surface of the earth. For the first 10.0 s of its motion, the vertical
acceleration of the rocket is given by , where
the y-direction is upward. (a) What is the height of the rocket
above the surface of the earth at ? (b) What is the speed
of the rocket when it is 325 m above the surface of the earth?
2.52 .. CALC The acceleration of a bus is given by 
where (a) If the bus’s velocity at time is

what is its velocity at time (b) If the bus’s
position at time is 6.0 m, what is its position at time

(c) Sketch and x-t graphs for the motion.
2.53 .. CALC The acceleration of a motorcycle is given by

where and 
The motorcycle is at rest at the origin at time (a) Find its
position and velocity as functions of time. (b) Calculate the maxi-
mum velocity it attains.
2.54 .. BIO Flying Leap of the Flea. High-speed motion pic-
tures of a jumping, flea yielded the
data used to plot the graph given in Fig. E2.54. (See “The Flying
Leap of the Flea” by M. Rothschild, Y. Schlein, K. Parker, 
C. Neville, and S. Sternberg in the November 1973 Scientific

210-mg13500 frames>second2
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B = 0.120 m>s4.A = 1.50 m>s3ax1t2 = At - Bt 2,

vx-t,ax-t,t = 2.0 s?
t = 1.0 s
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t = 1.0 sa = 1.2 m>s3.
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+

ay = 12.80 m>s32t

vxax,

vy-t,ay-t,

20.0 m>s20.0 m>s

40.0 m>s.

vy-t,ay-t,

American.) This flea was about 2 mm long and jumped at a nearly
vertical takeoff angle. Use the graph to answer the questions. (a) Is
the acceleration of the flea ever zero? If so, when? Justify your
answer. (b) Find the maximum height the flea reached in the first
2.5 ms. (c) Find the flea’s acceleration at 0.5 ms, 1.0 ms, and 
1.5 ms. (d) Find the flea’s height at 0.5 ms, 1.0 ms, and 1.5 ms.

PROBLEMS
2.55 . BIO A typical male sprinter can maintain his maximum
acceleration for 2.0 s and his maximum speed is After
reaching this maximum speed, his acceleration becomes zero and
then he runs at constant speed. Assume that his acceleration is con-
stant during the first 2.0 s of the race, that he starts from rest, and
that he runs in a straight line. (a) How far has the sprinter run when
he reaches his maximum speed? (b) What is the magnitude of his
average velocity for a race of the following lengths: (i) 50.0 m, 
(ii) 100.0 m, (iii) 200.0 m?
2.56 .. On a 20-mile bike ride, you ride the first 10 miles at an
average speed of What must your average speed over the
next 10 miles be to have your average speed for the total 20 miles
be (a) (b) (c) Given this average speed for the
first 10 miles, can you possibly attain an average speed of 
for the total 20-mile ride? Explain.
2.57 .. CALC The position of a particle between and

is given by 
(a) Draw the x-t, and graphs of this particle.

(b) At what time(s) between and is the particle
instantaneously at rest? Does your numerical result agree with 
the graph in part (a)? (c) At each time calculated in part (b), is the
acceleration of the particle positive or negative? Show that in each
case the same answer is deduced from and from the graph.
(d) At what time(s) between and is the velocity of
the particle instantaneously not changing? Locate this point on the

and graphs of part (a). (e) What is the particle’s greatest dis-
tance from the origin between and (f) At
what time(s) between and is the particle speeding
up at the greatest rate? At what time(s) between and

is the particle slowing down at the greatest rate? Locate
these points on the and graphs of part (a).
2.58 .. CALC A lunar lander is descending toward the moon’s
surface. Until the lander reaches the surface, its height above 
the surface of the moon is given by , where

is the initial height of the lander above the surface,
, and . (a) What is the initial velocity

of the lander, at ? (b) What is the velocity of the lander just
before it reaches the lunar surface?
2.59 ... Earthquake Analysis. Earthquakes produce several
types of shock waves. The most well known are the P-waves (P for
primary or pressure) and the S-waves (S for secondary or shear).
In the earth’s crust, the P-waves travel at around while
the S-waves move at about The actual speeds vary
depending on the type of material they are going through. The time
delay between the arrival of these two waves at a seismic record-
ing station tells geologists how far away the earthquake occurred.
If the time delay is 33 s, how far from the seismic station did the
earthquake occur?
2.60 .. Relay Race. In a relay race, each contestant runs 25.0 m
while carrying an egg balanced on a spoon, turns around, and
comes back to the starting point. Edith runs the first 25.0 m in 
20.0 s. On the return trip she is more confident and takes only
15.0 s. What is the magnitude of her average velocity for (a) the
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first 25.0 m? (b) The return trip? (c) What is her average velocity
for the entire round trip? (d) What is her average speed for the
round trip?
2.61 ... A rocket carrying a satellite is accelerating straight up
from the earth’s surface. At 1.15 s after liftoff, the rocket clears the
top of its launch platform, 63 m above the ground. After an addi-
tional 4.75 s, it is 1.00 km above the ground. Calculate the magni-
tude of the average velocity of the rocket for (a) the 4.75-s part of
its flight and (b) the first 5.90 s of its flight.
2.62 ... The graph in Fig. P2.62 describes the acceleration as a
function of time for a stone rolling down a hill starting from rest.
(a) Find the stone’s velocity at and at 
(b) Sketch a graph of the stone’s velocity as a function of time.

t = 7.5 s.t = 2.5 s

acceleration during the last 5.1 s? (c) What is his average accelera-
tion for the entire race? (d) Explain why your answer to part (c) is
not the average of the answers to parts (a) and (b).
2.66 .. A sled starts from rest at the top of a hill and slides down
with a constant acceleration. At some later time the sled is 14.4 m
from the top, 2.00 s after that it is 25.6 m from the top, 2.00 s later 
40.0 m from the top, and 2.00 s later it is 57.6 m from the top. (a)
What is the magnitude of the average velocity of the sled during
each of the 2.00-s intervals after passing the 14.4-m point? 
(b) What is the acceleration of the sled? (c) What is the speed of
the sled when it passes the 14.4-m point? (d) How much time
did it take to go from the top to the 14.4-m point? (e) How far
did the sled go during the first second after passing the 14.4-m
point?
2.67 . A gazelle is running in a straight line (the x-axis). The
graph in Fig. P2.67 shows this animal’s velocity as a function of
time. During the first 12.0 s, find (a) the total distance moved and
(b) the displacement of the gazelle. (c) Sketch an graph
showing this gazelle’s acceleration as a function of time for the
first 12.0 s.
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2.63 .. Dan gets on Interstate Highway I–80 at Seward,
Nebraska, and drives due west in a straight line and at an average
velocity of magnitude After traveling 76 km, he reaches
the Aurora exit (Fig. P2.63). Realizing he has gone too far, he turns
around and drives due east 34 km back to the York exit at an aver-
age velocity of magnitude For his whole trip from
Seward to the York exit, what are (a) his average speed and (b) the
magnitude of his average velocity?

72 km>h.

88 km>h.

Y

34 km
76 km

Aurora ork Seward

N E B R A S K A

Figure P2.63

2.64 ... A subway train starts from rest at a station and acceler-
ates at a rate of for 14.0 s. It runs at constant speed for
70.0 s and slows down at a rate of until it stops at the
next station. Find the total distance covered.
2.65 .. A world-class sprinter accelerates to his maximum speed
in 4.0 s. He then maintains this speed for the remainder of a 100-m
race, finishing with a total time of 9.1 s. (a) What is the runner’s
average acceleration during the first 4.0 s? (b) What is his average
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1.60 m>s2

t (s)
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Figure P2.67

2.68 . A rigid ball traveling in a straight line (the x-axis) hits a
solid wall and suddenly rebounds during a brief instant. The 
graph in Fig. P2.68 shows this ball’s velocity as a function of time.
During the first 20.0 s of its motion, find (a) the total distance the
ball moves and (b) its displacement. (c) Sketch a graph of for
this ball’s motion. (d) Is the graph shown really vertical at 5.00 s?
Explain.
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Figure P2.68

2.69 ... A ball starts from rest and rolls down a hill with uniform
acceleration, traveling 150 m during the second 5.0 s of its motion.
How far did it roll during the first 5.0 s of motion?
2.70 .. Collision. The engineer of a passenger train traveling at

sights a freight train whose caboose is 200 m ahead on25.0 m>s
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the same track (Fig. P2.70). The freight train is traveling at
in the same direction as the passenger train. The engi-

neer of the passenger train immediately applies the brakes, causing
a constant acceleration of in a direction opposite to the
train’s velocity, while the freight train continues with constant
speed. Take at the location of the front of the passenger train
when the engineer applies the brakes. (a) Will the cows nearby wit-
ness a collision? (b) If so, where will it take place? (c) On a single
graph, sketch the positions of the front of the passenger train and
the back of the freight train.
2.71 ... Large cockroaches can run as fast as in short
bursts. Suppose you turn on the light in a cheap motel and see one
scurrying directly away from you at a constant If you
start 0.90 m behind the cockroach with an initial speed of

toward it, what minimum constant acceleration would
you need to catch up with it when it has traveled 1.20 m, just short
of safety under a counter?
2.72 .. Two cars start 200 m apart and drive toward each other at
a steady On the front of one of them, an energetic
grasshopper jumps back and forth between the cars (he has strong
legs!) with a constant horizontal velocity of relative to the
ground. The insect jumps the instant he lands, so he spends no time
resting on either car. What total distance does the grasshopper
travel before the cars hit?
2.73 . An automobile and a truck start from rest at the same
instant, with the automobile initially at some distance behind the
truck. The truck has a constant acceleration of and the
automobile an acceleration of The automobile over-
takes the truck after the truck has moved 40.0 m. (a) How much
time does it take the automobile to overtake the truck? (b) How far
was the automobile behind the truck initially? (c) What is the
speed of each when they are abreast? (d) On a single graph, sketch
the position of each vehicle as a function of time. Take at
the initial location of the truck.
2.74 ... Two stunt drivers drive directly toward each other. At
time the two cars are a distance D apart, car 1 is at rest, and
car 2 is moving to the left with speed Car 1 begins to move at

speeding up with a constant acceleration Car 2 contin-
ues to move with a constant velocity. (a) At what time do the two
cars collide? (b) Find the speed of car 1 just before it collides with
car 2. (c) Sketch x-t and graphs for car 1 and car 2. For each
of the two graphs, draw the curves for both cars on the same set 
of axes.
2.75 .. A marble is released from one rim of a hemispherical
bowl of diameter 50.0 cm and rolls down and up to the opposite
rim in 10.0 s. Find (a) the average speed and (b) the average veloc-
ity of the marble.
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2.76 .. CALC An object’s velocity is measured to be 
where and At the

object is at (a) Calculate the object’s position and acceleration
as functions of time. (b) What is the object’s maximum positive dis-
placement from the origin?
2.77 .. Passing. The driver of a car wishes to pass a truck that is
traveling at a constant speed of (about ). Ini-
tially, the car is also traveling at and its front bumper is
24.0 m behind the truck’s rear bumper. The car accelerates at a
constant then pulls back into the truck’s lane when the
rear of the car is 26.0 m ahead of the front of the truck. The car is
4.5 m long and the truck is 21.0 m long. (a) How much time is
required for the car to pass the truck? (b) What distance does the
car travel during this time? (c) What is the final speed of the car?
2.78 .. On Planet X, you drop a
25-kg stone from rest and measure
its speed at various times. Then
you use the data you obtained to
construct a graph of its speed as a
function of time t (Fig. P2.78).
From the information in the graph,
answer the following questions: (a)
What is g on Planet X? (b) An
astronaut drops a piece of equip-
ment from rest out of the landing
module, 3.5 m above the surface of Planet X. How long will it take
this equipment to reach the ground, and how fast will it be moving
when it gets there? (c) How fast would an astronaut have to project
an object straight upward to reach a height of 18.0 m above the
release point, and how long would it take to reach that height?
2.79 ... CALC The acceleration of a particle is given by 

(a) Find the initial velocity such
that the particle will have the same x-coordinate at as it
had at (b) What will be the velocity at 
2.80 . Egg Drop. You are on
the roof of the physics building,
46.0 m above the ground (Fig.
P2.80). Your physics professor,
who is 1.80 m tall, is walking
alongside the building at a con-
stant speed of If you
wish to drop an egg on your pro-
fessor’s head, where should the
professor be when you release
the egg? Assume that the egg is
in free fall.
2.81 . A certain volcano on
earth can eject rocks vertically to
a maximum height H. (a) How
high (in terms of H) would these rocks go if a volcano on Mars
ejected them with the same initial velocity? The acceleration due
to gravity on Mars is and you can neglect air resistance
on both planets. (b) If the rocks are in the air for a time T on earth,
for how long (in terms of T) will they be in the air on Mars?
2.82 .. An entertainer juggles balls while doing other activities.
In one act, she throws a ball vertically upward, and while it is in
the air, she runs to and from a table 5.50 m away at a constant
speed of returning just in time to catch the falling ball.
(a) With what minimum initial speed must she throw the ball
upward to accomplish this feat? (b) How high above its initial
position is the ball just as she reaches the table?
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2.83 . Visitors at an amusement park watch divers step off a plat-
form 21.3 m above a pool of water. According to the
announcer, the divers enter the water at a speed of 

Air resistance may be ignored. (a) Is the announcer cor-
rect in this claim? (b) Is it possible for a diver to leap directly
upward off the board so that, missing the board on the way down,
she enters the water at If so, what initial upward speed
is required? Is the required initial speed physically attainable?
2.84 ... A flowerpot falls off a windowsill and falls past the win-
dow below. You may ignore air resistance. It takes the pot 0.420 s to
pass from the top to the bottom of this window, which is 1.90 m
high. How far is the top of the window below the windowsill from
which the flowerpot fell?
2.85 ... Look Out Below. Sam heaves a 16-lb shot straight
upward, giving it a constant upward acceleration from rest of

for 64.0 cm. He releases it 2.20 m above the ground.
You may ignore air resistance. (a) What is the speed of the shot
when Sam releases it? (b) How high above the ground does it go?
(c) How much time does he have to get out of its way before it
returns to the height of the top of his head, 1.83 m above the
ground?
2.86 ... A Multistage Rocket. In the first stage of a two-stage
rocket, the rocket is fired from the launch pad starting from rest but
with a constant acceleration of upward. At 25.0 s after
launch, the second stage fires for 10.0 s, which boosts the rocket’s
velocity to upward at 35.0 s after launch. This firing
uses up all the fuel, however, so after the second stage has finished
firing, the only force acting on the rocket is gravity. Air resistance
can be neglected. (a) Find the maximum height that the stage-two
rocket reaches above the launch pad. (b) How much time after the
end of the stage-two firing will it take for the rocket to fall back to
the launch pad? (c) How fast will the stage-two rocket be moving
just as it reaches the launch pad?
2.87 .. Juggling Act. A juggler performs in a room whose ceil-
ing is 3.0 m above the level of his hands. He throws a ball upward
so that it just reaches the ceiling. (a) What is the initial velocity of
the ball? (b) What is the time required for the ball to reach the ceil-
ing? At the instant when the first ball is at the ceiling, the juggler
throws a second ball upward with two-thirds the initial velocity of
the first. (c) How long after the second ball is thrown do the two
balls pass each other? (d) At what distance above the juggler’s
hand do they pass each other?
2.88 .. A physics teacher performing an outdoor demonstration
suddenly falls from rest off a high cliff and simultaneously shouts
“Help.” When she has fallen for 3.0 s, she hears the echo of her
shout from the valley floor below. The speed of sound is 
(a) How tall is the cliff? (b) If air resistance is neglected, how fast
will she be moving just before she hits the ground? (Her actual
speed will be less than this, due to air resistance.)
2.89 ... A helicopter carrying Dr. Evil takes off with a constant
upward acceleration of Secret agent Austin Powers
jumps on just as the helicopter lifts off the ground. After the two
men struggle for 10.0 s, Powers shuts off the engine and steps out
of the helicopter. Assume that the helicopter is in free fall after its
engine is shut off, and ignore the effects of air resistance. (a) What
is the maximum height above ground reached by the helicopter?
(b) Powers deploys a jet pack strapped on his back 7.0 s after leav-
ing the helicopter, and then he has a constant downward accelera-
tion with magnitude How far is Powers above the
ground when the helicopter crashes into the ground?
2.90 .. Cliff Height. You are climbing in the High Sierra where
you suddenly find yourself at the edge of a fog-shrouded cliff. To
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find the height of this cliff, you drop a rock from the top and 10.0 s
later hear the sound of it hitting the ground at the foot of the cliff.
(a) Ignoring air resistance, how high is the cliff if the speed of
sound is (b) Suppose you had ignored the time it takes
the sound to reach you. In that case, would you have overestimated
or underestimated the height of the cliff? Explain your reasoning.
2.91 ... Falling Can. A painter is standing on scaffolding that is
raised at constant speed. As he travels upward, he accidentally
nudges a paint can off the scaffolding and it falls 15.0 m to the
ground. You are watching, and measure with your stopwatch that it
takes 3.25 s for the can to reach the ground. Ignore air resistance.
(a) What is the speed of the can just before it hits the ground? (b)
Another painter is standing on a ledge, with his hands 4.00 m above
the can when it falls off. He has lightning-fast reflexes and if the
can passes in front of him, he can catch it. Does he get the chance?
2.92 .. Determined to test the law of gravity for himself, a student
walks off a skyscraper 180 m high, stopwatch in hand, and starts his
free fall (zero initial velocity). Five seconds later, Superman arrives
at the scene and dives off the roof to save the student. Superman
leaves the roof with an initial speed that he produces by pushing
himself downward from the edge of the roof with his legs of steel.
He then falls with the same acceleration as any freely falling body.
(a) What must the value of be so that Superman catches the stu-
dent just before they reach the ground? (b) On the same graph,
sketch the positions of the student and of Superman as functions of
time. Take Superman’s initial speed to have the value calculated in
part (a). (c) If the height of the skyscraper is less than some mini-
mum value, even Superman can’t reach the student before he hits the
ground. What is this minimum height?
2.93 ... During launches, rockets often discard unneeded parts. A
certain rocket starts from rest on the launch pad and accelerates
upward at a steady When it is 235 m above the launch
pad, it discards a used fuel canister by simply disconnecting it.
Once it is disconnected, the only force acting on the canister is
gravity (air resistance can be ignored). (a) How high is the rocket
when the canister hits the launch pad, assuming that the rocket does
not change its acceleration? (b) What total distance did the canister
travel between its release and its crash onto the launch pad?
2.94 .. A ball is thrown straight up from the ground with speed

. At the same instant, a second ball is dropped from rest from a
height H, directly above the point where the first ball was thrown
upward. There is no air resistance. (a) Find the time at which the
two balls collide. (b) Find the value of H in terms of and g so
that at the instant when the balls collide, the first ball is at the high-
est point of its motion.
2.95 . CALC Two cars, A and B, travel in a straight line. The dis-
tance of A from the starting point is given as a function of time by

with and The
distance of B from the starting point is with 

and (a) Which car is ahead just
after they leave the starting point? (b) At what time(s) are the cars
at the same point? (c) At what time(s) is the distance from A to B
neither increasing nor decreasing? (d) At what time(s) do A and B
have the same acceleration?

CHALLENGE PROBLEMS
2.96 ... In the vertical jump, an athlete starts from a crouch and
jumps upward to reach as high as possible. Even the best athletes
spend little more than 1.00 s in the air (their “hang time”). Treat
the athlete as a particle and let be his maximum height above
the floor. To explain why he seems to hang in the air, calculate the

ymax

d = 0.20 m>s3.g = 2.80 m>s2
xB1t2 = gt 2 - dt 3,
b = 1.20 m>s2.a = 2.60 m>sxA1t2 = at + bt 2,

v0

v0

3.30 m>s2.

v0

v0

330 m>s?
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ratio of the time he is above to the time it takes him to go
from the floor to that height. You may ignore air resistance.
2.97 ... Catching the Bus. A student is running at her top speed
of to catch a bus, which is stopped at the bus stop. When
the student is still 40.0 m from the bus, it starts to pull away, mov-
ing with a constant acceleration of (a) For how much
time and what distance does the student have to run at 
before she overtakes the bus? (b) When she reaches the bus, how
fast is the bus traveling? (c) Sketch an x-t graph for both the stu-
dent and the bus. Take at the initial position of the student.
(d) The equations you used in part (a) to find the time have a sec-
ond solution, corresponding to a later time for which the student
and bus are again at the same place if they continue their specified
motions. Explain the significance of this second solution. How fast
is the bus traveling at this point? (e) If the student’s top speed is

will she catch the bus? (f) What is the minimum speed
the student must have to just catch up with the bus? For what time
and what distance does she have to run in that case?
2.98 ... An alert hiker sees a boulder fall from the top of a distant
cliff and notes that it takes 1.30 s for the boulder to fall the last
third of the way to the ground. You may ignore air resistance. 

3.5 m>s,

x = 0

5.0 m>s
0.170 m>s2.

5.0 m>s

ymax>2 (a) What is the height of the cliff in meters? (b) If in part (a) you
get two solutions of a quadratic equation and you use one for your
answer, what does the other solution represent?
2.99 ... A ball is thrown straight up from the edge of the roof of a
building. A second ball is dropped from the roof 1.00 s later. You
may ignore air resistance. (a) If the height of the building is 
20.0 m, what must the initial speed of the first ball be if both are to
hit the ground at the same time? On the same graph, sketch the
position of each ball as a function of time, measured from when
the first ball is thrown. Consider the same situation, but now let the
initial speed of the first ball be given and treat the height h of
the building as an unknown. (b) What must the height of the build-
ing be for both balls to reach the ground at the same time (i) if is

and (ii) if is (c) If is greater than some
value a value of h does not exist that allows both balls to hit
the ground at the same time. Solve for The value has a
simple physical interpretation. What is it? (d) If is less than
some value a value of h does not exist that allows both balls
to hit the ground at the same time. Solve for The value 
also has a simple physical interpretation. What is it?

vminvmin.
vmin,

v0

vmaxvmax.
vmax,

v09.5 m>s?v06.0 m>s
v0

v0

Chapter Opening Question ?
Yes. Acceleration refers to any change in velocity, including both
speeding up and slowing down.

Test Your Understanding Questions
2.1 Answer to (a): (iv), (i) and (iii) (tie), (v), (ii); answer to (b): (i)
and (iii); answer to (c): (v) In (a) the average x-velocity is

For all five trips, For the individual trips,
we have (i) (ii) 

(iii)
(iv)

(v) In (b) both have

2.2 Answers: (a) P, Q and S (tie), R The x-velocity is (b) positive
when the slope of the x-t graph is positive (P), (c) negative when
the slope is negative (R), and (d) zero when the slope is zero 
(Q and S). (e) R, P, Q and S (tie) The speed is greatest when the
slope of the x-t graph is steepest (either positive or negative) and
zero when the slope is zero.
2.3 Answers: (a) S, where the x-t graph is curved upward (con-
cave up). (b) Q, where the x-t graph is curved downward (concave
down). (c) P and R, where the x-t graph is not curved either up or
down. (d) At (velocity is not changing); at Q, ax 6 0P, ax = 0

vav-x = +50 km>h.
vav-x = 0.¢x = -20 km + 20 km = 0,

vav-x = +70 km>h;¢x = +70 km,+50 km>h;vav-x =
¢x = 60 km - 10 km = +50 km,vav-x = -50 km>h;

¢x = -50 km,vav-x = +50 km>h;¢x = +50 km,
¢t = 1 h.vav-x = ¢x>¢t.

(velocity is decreasing, i.e., changing from positive to zero to neg-
ative); at (velocity is not changing); and at 
(velocity is increasing, i.e., changing from negative to zero to pos-
itive).
2.4 Answer: (b) The officer’s x-acceleration is constant, so her

graph is a straight line, and the officer’s motorcycle is moving
faster than the motorist’s car when the two vehicles meet at

2.5 Answers: (a) (iii) Use Eq. (2.13) with x replaced by y and
The starting height is 

and the y-velocity at the maximum height is so 
and If the initial y-velocity is increased by

a factor of 2, the maximum height increases by a factor of 
and the ball goes to height 4h. (b) (v) Use Eq. (2.8) with x replaced
by y and The y-velocity at the maximum
height is so and If the initial 
y-velocity is increased by a factor of 2, the time to reach the maxi-
mum height increases by a factor of 2 and becomes 2t.
2.6 Answer: (ii) The acceleration is equal to the slope of the

graph. If is increasing, the slope of the graph is also
increasing and the graph is concave up.

Bridging Problem
Answer: h = 57.1 m

vx-taxvx-t
ax

t = v0y>g.0 = v0y - gtvy = 0,
vy = v0y - gt.ay = g;

22 = 4
h = v0y

2>2g.v0y
2 - 2gh

0 =vy = 0,y = h
y0 = 0vy

2 = v0y
2   - 2g1y - y02.ay = g;

t = 10 s.

vx-t

S, ax 7 0R, ax = 0

Answers
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3
LEARNING GOALS

By studying this chapter, you will

learn:

• How to represent the position of a

body in two or three dimensions

using vectors.

• How to determine the vector velocity

of a body from a knowledge of its

path.

• How to find the vector acceleration

of a body, and why a body can have

an acceleration even if its speed is

constant.

• How to interpret the components of

a body’s acceleration parallel to and

perpendicular to its path.

• How to describe the curved path

followed by a projectile.

• The key ideas behind motion in a

circular path, with either constant

speed or varying speed.

• How to relate the velocity of a mov-

ing body as seen from two different

frames of reference.

MOTION IN TWO OR
THREE DIMENSIONS

What determines where a batted baseball lands? How do you describe
the motion of a roller coaster car along a curved track or the flight of
a circling hawk? Which hits the ground first: a baseball that you sim-

ply drop or one that you throw horizontally?
We can’t answer these kinds of questions using the techniques of Chapter 2,

in which particles moved only along a straight line. Instead, we need to extend
our descriptions of motion to two- and three-dimensional situations. We’ll still
use the vector quantities displacement, velocity, and acceleration, but now
these quantities will no longer lie along a single line. We’ll find that several
important kinds of motion take place in two dimensions only—that is, in a
plane. We can describe these motions with two components of position, velocity,
and acceleration.

We also need to consider how the motion of a particle is described by different
observers who are moving relative to each other. The concept of relative velocity
will play an important role later in the book when we study collisions, when we
explore electromagnetic phenomena, and when we introduce Einstein’s special
theory of relativity.

This chapter merges the vector mathematics of Chapter 1 with the kinematic
language of Chapter 2. As before, we are concerned with describing motion,
not with analyzing its causes. But the language you learn here will be an essen-
tial tool in later chapters when we study the relationship between force and
motion.

? If a cyclist is going around a curve at constant speed, is he accelerating? If so,
in which direction is he accelerating?



3.1 Position and Velocity Vectors
To describe the motion of a particle in space, we must first be able to describe the
particle’s position. Consider a particle that is at a point P at a certain instant. The
position vector of the particle at this instant is a vector that goes from the ori-
gin of the coordinate system to the point P (Fig. 3.1). The Cartesian coordinates
x, y, and z of point P are the x-, y-, and z-components of vector Using the unit
vectors we introduced in Section 1.9, we can write

(position vector) (3.1)

During a time interval the particle moves from where its position vector
is to where its position vector is The change in position (the displace-
ment) during this interval is ¢ rS � rS2 � rS1 � 1x2 - x12ıN � 1y2 - y12≥n �

rS2.P2,rS1,
P1,¢t

rS � xın � y≥n � zkN

rS.

rS
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Position vector of point P
has components x, y, z:
r 5 x i 1 y j 1 zk.

Position P of a particle
at a given time has
coordinates x, y, z.

z

y

x
x

zk
P

O

y

z

rr

r

xî

^ ^ ^

y ĵ

^

3.1 The position vector from the origin
to point P has components x, y, and z. The
path that the particle follows through space
is in general a curve (Fig. 3.2).

rS

z

y

x

O

Particle’s path

P1

P2

v2
S

The instantaneous
velocity vector v is
tangent to the path
at each point.

S

v1
S

3.3 The vectors and are the instan-
taneous velocities at the points and 
shown in Fig. 3.2.

P2P1

vS2vS1

Position at time t1

Position at time t2

z

y

x

O

Particle’s path

P1

P2

r2
S

DrS Displacement
vector Dr points
from P1 to P2.

S

vav 5
S DrS

Dt

r1
S

3.2 The average velocity between
points and has the same direction as
the displacement ¢ rS.

P2P1

vSav

. We define the average velocity during this interval in the same
way we did in Chapter 2 for straight-line motion, as the displacement divided by
the time interval:

(average velocity vector) (3.2)

Dividing a vector by a scalar is really a special case of multiplying a vector by a
scalar, described in Section 1.7; the average velocity is equal to the displace-
ment vector multiplied by the reciprocal of the time interval. Note that
the x-component of Eq. (3.2) is This is
just Eq. (2.2), the expression for average x-velocity that we found in Section 2.1
for one-dimensional motion.

We now define instantaneous velocity just as we did in Chapter 2: It is the
limit of the average velocity as the time interval approaches zero, and it equals
the instantaneous rate of change of position with time. The key difference is that
position and instantaneous velocity are now both vectors:

(instantaneous velocity vector) (3.3)

The magnitude of the vector at any instant is the speed of the particle at that
instant. The direction of at any instant is the same as the direction in which the
particle is moving at that instant.

Note that as points and in Fig. 3.2 move closer and closer
together. In this limit, the vector becomes tangent to the path. The direction
of in this limit is also the direction of the instantaneous velocity This leads
to an important conclusion: At every point along the path, the instantaneous
velocity vector is tangent to the path at that point (Fig. 3.3).

It’s often easiest to calculate the instantaneous velocity vector using compo-
nents. During any displacement the changes and in the three
coordinates of the particle are the components of It follows that the compo-
nents and of the instantaneous velocity are simply the time deriva-
tives of the coordinates x, y, and z. That is,

(components of 
instantaneous velocity)

(3.4)

The x-component of is which is the same as Eq. (2.3)—the
expression for instantaneous velocity for straight-line motion that we obtained in
Section 2.2. Hence Eq. (3.4) is a direct extension of the idea of instantaneous
velocity to motion in three dimensions.

vx = dx/dt,vS

vx =
dx

dt
  vy =

dy

dt
  vz =

dz

dt

vSvzvy,vx,
¢ rS.

¢z¢y,¢x,¢ rS,

vS.¢ rS
¢ rS

P2P1¢tS 0,

vS
vvS

vS � lim
¢tS0

 
¢ rS

¢t
�

d rS

dt

vSrS

vav-x = 1x2 - x12>1t2 - t12 = ¢x>¢t.
1>¢t,¢ rS

vSav

vSav �
rS2 � rS1

t2 - t1
�

¢ rS

¢t

vSav1z2 - z12kN
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We can also get Eq. (3.4) by taking the derivative of Eq. (3.1). The unit vec-
tors and are constant in magnitude and direction, so their derivatives are
zero, and we find

(3.5)

This shows again that the components of are and 
The magnitude of the instantaneous velocity vector —that is, the speed—is

given in terms of the components and by the Pythagorean relation:

(3.6)

Figure 3.4 shows the situation when the particle moves in the xy-plane. In this
case, z and are zero. Then the speed (the magnitude of is

and the direction of the instantaneous velocity is given by the angle (the
Greek letter alpha) in the figure. We see that

(3.7)

(We always use Greek letters for angles. We use for the direction of the instan-
taneous velocity vector to avoid confusion with the direction of the position
vector of the particle.)

The instantaneous velocity vector is usually more interesting and useful than the
average velocity vector. From now on, when we use the word “velocity,” we will
always mean the instantaneous velocity vector (rather than the average velocity
vector). Usually, we won’t even bother to call a vector; it’s up to you to remem-
ber that velocity is a vector quantity with both magnitude and direction.

vS
vS

u

a

tana =
vy

vx

avS

v = 2vx
2 + vy

2

vS)vz

ƒvS ƒ = v = 2vx
2 + vy

2 + vz
2

vzvy,vx,
vS

dz>dt.dy>dt,dx>dt,vS

vS �
dr
S

dt
�

dx

dt
ıN �

dy

dt
≥n �

dz

dt
kN

kN≥n,ın,

O

Particle’s path in
the xy-plane

vy

vx

y

x

a

vS

SThe instantaneous velocity vector v
is always tangent to the path.

S
vx and vy are the x- and y-
components of v.

3.4 The two velocity components for
motion in the xy-plane.

Example 3.1 Calculating average and instantaneous velocity

A robotic vehicle, or rover, is exploring the surface of Mars. The
stationary Mars lander is the origin of coordinates, and the sur-
rounding Martian surface lies in the xy-plane. The rover, which we
represent as a point, has x- and y-coordinates that vary with time:

(a) Find the rover’s coordinates and distance from the lander at
(b) Find the rover’s displacement and average velocity

vectors for the interval to (c) Find a general
expression for the rover’s instantaneous velocity vector . Express

at in component form and in terms of magnitude and
direction.

SOLUTION

IDENTIFY and SET UP: This problem involves motion in two
dimensions, so we must use the vector equations obtained in this
section. Figure 3.5 shows the rover’s path (dashed line). We’ll use
Eq. (3.1) for position the expression for displace-
ment, Eq. (3.2) for average velocity, and Eqs. (3.5), (3.6), and (3.7)

¢ rS � rS2 � rS1rS,

t = 2.0 svS
vS

t = 2.0 s.t = 0.0 s
t = 2.0 s.

y = (1.0 m>s)t + (0.025 m>s3)t3

x = 2.0 m - (0.25 m>s2)t2 y (m)

x (m)
O

0.5

1.0

1.5

2.0

0.5 1.0 1.5

Rover’s path

t 5 0.0 s

2.0

2.5
a 5 128°

t 5 1.0 s

t 5 2.0 s

v2
S

v1
S

v0
S

r0
S

r1
S

r2
S

3.5 At the rover has position vector and instanta-
neous velocity vector Likewise, and are the vectors at

and are the vectors at t = 2.0 s.vS2rS2t = 1.0 s;
vS1rS1vS0.

rS0t = 0.0 s

Continued



3.2 The Acceleration Vector
Now let’s consider the acceleration of a particle moving in space. Just as for
motion in a straight line, acceleration describes how the velocity of the particle
changes. But since we now treat velocity as a vector, acceleration will describe
changes in the velocity magnitude (that is, the speed) and changes in the direc-
tion of velocity (that is, the direction in which the particle is moving).

In Fig. 3.6a, a car (treated as a particle) is moving along a curved road. The vec-
tors and represent the car’s instantaneous velocities at time when the cart1,vS2vS1
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for instantaneous velocity and its magnitude and direction. The tar-
get variables are stated in the problem.

EXECUTE: (a) At the rover’s coordinates are

The rover’s distance from the origin at this time is

(b) To find the displacement and average velocity over the
given time interval, we first express the position vector as a func-
tion of time t. From Eq. (3.1) this is

At the position vector is

From part (a), the position vector at is

The displacement from s to is therefore

During this interval the rover moves 1.0 m in the negative 
x-direction and 2.2 m in the positive y-direction. From Eq. (3.2),
the average velocity over this interval is the displacement divided
by the elapsed time:

The components of this average velocity are
and .vav-y = 1.1 m>s

vav-x = -0.50 m>s

� 1-0.50 m>s2ın � 11.1 m>s2≥n

vSav �
¢ rS

¢t
�
1-1.0 m2ın � 12.2 m2≥n

2.0 s - 0.0 s

� 1-1.0 m2ın � 12.2 m2≥n

¢ rS � rS2 � rS0 � (1.0 m)ın � (2.2 m)≥n � (2.0 m)ın

t = 2.0 st = 0.0

r
S

2 � 11.0 m2ın � 12.2 m2≥n

t = 2.0 srS2

rS0 � 12.0 m2ın � 10.0 m2≥n

rS0t = 0.0 s

� 311.0 m>s2t + 10.025 m>s32t34 ≥n

� 32.0 m - 10.25 m>s22t24ıN

rS � xın � y≥n

rS

r = 2x2 + y2 = 211.0 m22 + 12.2 m22 = 2.4 m

y = 11.0 m>s212.0 s2 + 10.025 m>s3212.0 s23 = 2.2 m

x = 2.0 m - 10.25 m>s2212.0 s22 = 1.0 m

t = 2.0 s

(c) From Eq. (3.4) the components of instantaneous velocity
are the time derivatives of the coordinates:

Hence the instantaneous velocity vector is

At the velocity vector has components

The magnitude of the instantaneous velocity (that is, the speed) at
is

Figure 3.5 shows the direction of the velocity vector , which is at
an angle between and with respect to the positive 
x-axis. From Eq. (3.7) we have

This is off by ; the correct value of the angle is 
, or west of north.

EVALUATE: Compare the components of average velocity that we
found in part (b) for the interval from to 

with the components of
instantaneous velocity at that we found in part (c)

The comparison shows that,
just as in one dimension, the average velocity vector over an
interval is in general not equal to the instantaneous velocity at
the end of the interval (see Example 2.1).

Figure 3.5 shows the position vectors and instantaneous
velocity vectors at 1.0 s, and 2.0 s. (You should calcu-
late these quantities for and ) Notice that is
tangent to the path at every point. The magnitude of increases as
the rover moves, which means that its speed is increasing.

vS
vSt = 1.0 s.t = 0.0 s

t = 0.0 s,vS
rS

vS
vSav

v2y = 1.3 m>s2.1v2x = -1.0 m>s,
t = 2.0 s

vav-y = 1.1 m>s21vav-x = -0.50 m>s,
t = 2.0 s t = 0.0 s

38°52° = 128°
a = 180° -180°

arctan
vy

vx
= arctan

1.3 m>s

-1.0 m>s
= -52°

180°90°a

vS2

= 1.6 m>s

v2 = 2v 2
2x + v 2

2y = 21-1.0 m>s22 + 11.3 m>s22

t = 2.0 s

v2y = 1.0 m>s + 10.075 m>s3212.0 s22 = 1.3 m>s

v2x = 1-0.50 m>s2212.0 s2 = -1.0 m>s

vS2t = 2.0 s

� 31.0 m>s + 10.075 m>s32t24 ≥n

vS � vxın � vy ≥n � 1-0.50 m>s22tın

vy =
dy

dt
= 1.0 m>s + 10.025 m>s3213t 22

vx =
dx

dt
= 1-0.25 m>s2212t2

Test Your Understanding of Section 3.1 In which of these situations
would the average velocity vector over an interval be equal to the instanta-
neous velocity at the end of the interval? (i) a body moving along a curved path
at constant speed; (ii) a body moving along a curved path and speeding up; (iii) a body
moving along a straight line at constant speed; (iv) a body moving along a straight line
and speeding up. ❙

vS
vSav
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is at point and at time when the car is at point The two velocities may
differ in both magnitude and direction. During the time interval from to the
vector change in velocity is , so (Fig. 3.6b). We
define the average acceleration of the car during this time interval as the
velocity change divided by the time interval 

(average acceleration vector) (3.8)

Average acceleration is a vector quantity in the same direction as the vector 
(Fig. 3.6c). The x-component of Eq. (3.8) is

which is just Eq. (2.4) for the average acceleration in straight-line
motion.

As in Chapter 2, we define the instantaneous acceleration (a vector quan-
tity) at point as the limit of the average acceleration vector when point 
approaches point , so and both approach zero (Fig. 3.7). The instanta-
neous acceleration is also equal to the instantaneous rate of change of velocity
with time:

(instantaneous acceleration vector) (3.9)

The velocity vector as we have seen, is tangent to the path of the particle.
The instantaneous acceleration vector , however, does not have to be tangent to
the path. Figure 3.7a shows that if the path is curved, points toward the concave
side of the path—that is, toward the inside of any turn that the particle is making.
The acceleration is tangent to the path only if the particle moves in a straight line
(Fig. 3.7b).

CAUTION Any particle following a curved path is accelerating When a particle is moving
in a curved path, it always has nonzero acceleration, even when it moves with constant
speed. This conclusion may seem contrary to your intuition, but it’s really just contrary to
the everyday use of the word “acceleration” to mean that speed is increasing. The more pre-
cise definition given in Eq. (3.9) shows that there is a nonzero acceleration whenever the
velocity vector changes in any way, whether there is a change of speed, direction, or both. ❙

To convince yourself that a particle has a nonzero acceleration when mov-
ing on a curved path with constant speed, think of your sensations when you
ride in a car. When the car accelerates, you tend to move inside the car in a

aS
aS

vS,

aS � lim
¢tS0

 
¢vS

¢t
�

dvS

dt

¢t¢vSP1

P2P1

aS

¢vx>¢t,
(t2 - t1) =aav-x = (v2x - v1x)>

¢vS

aSav �
vS2 � vS1

t2 - t1
�

¢vS

¢t

t2 - t1 = ¢t:
aSav

vS2 � vS1 � ¢vSvS2 � vS1 � ¢vS
t2,t1

P2.t2,P1,

                This car accelerates by slowing
            while rounding a curve. (Its
      instantaneous velocity changes in
   both magnitude and direction.)

(a)

P2

P1

v2
S

v1
S

v2

(b)

P2

P1

Sv1
Sv1 Dv 5 v2 2 v1

S S S

S

Sv2

To find the car’s average acceleration between
P1 and P2, we first find the change in velocity
Dv by subtracting v1 from v2. (Notice that
v1 1 Dv 5 v2.)

S S S

S S S

P2

P1

Sv1

DvS

Sv2

(c)

The average acceleration has the same direction
as the change in velocity, Dv.S

aav 5
S DvS

D t

3.6 (a) A car moving along a curved road from to (b) How to obtain the change in velocity by vector subtrac-
tion. (c) The vector represents the average acceleration between and P2.P1aSav � ¢vS/¢t

¢vS � vS2 � vS1P2.P1

?

P2

P1

P1

P1

P2

a 5 limS

DtS0

DvS

DvS

D t

a 5 limS

DtS0

DvS

D t

... we take the limit of aav
as P2 approaches P1 ... 

Acceleration points to
concave side of path.

Only if the trajectory is
a straight line ...

... is the acceleration in the
direction of the trajectory.

S

... meaning that Dv and D t
approach 0. 

S

To find the instantaneous
acceleration
a at P1 ... S Sv1

Sv1

Sv1

Sv2

Sv2

(a) Acceleration: curved trajectory

(b) Acceleration: straight-line trajectory

3.7 (a) Instantaneous acceleration at
point in Fig. 3.6. (b) Instantaneous
acceleration for motion along a straight
line.

P1

aS



direction opposite to the car’s acceleration. (We’ll discover the reason for this
behavior in Chapter 4.) Thus you tend to slide toward the back of the car when it
accelerates forward (speeds up) and toward the front of the car when it acceler-
ates backward (slows down). If the car makes a turn on a level road, you tend to
slide toward the outside of the turn; hence the car has an acceleration toward the
inside of the turn.

We will usually be interested in the instantaneous acceleration, not the average
acceleration. From now on, we will use the term “acceleration” to mean the instan-
taneous acceleration vector 

Each component of the acceleration vector is the derivative of the correspon-
ding component of velocity:

(components of 
instantaneous acceleration)

(3.10)

In terms of unit vectors,

(3.11)

The x-component of Eqs. (3.10) and (3.11), is the expression
from Section 2.3 for instantaneous acceleration in one dimension, Eq. (2.5).
Figure 3.8 shows an example of an acceleration vector that has both x- and 
y-components.

Since each component of velocity is the derivative of the corresponding coordi-
nate, we can express the components and of the acceleration vector as

(3.12)

The acceleration vector itself is

(3.13)aS �
d2x

dt2 ıN �
d2y

dt2 ≥N �
d2z

dt2 kN

aS

ax =
d2x

dt2   ay =
d2y

dt2  az =
d2z

dt2

aSazay,ax,

ax = dvx>dt,

aS �
dvx

dt
ıN �

dvy

dt
≥N �

dvz

dt
kN

ax =
dvx

dt
  ay =

dvy

dt
  az =

dvz

dt

aS.
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ax

ay
aS

3.8 When the arrow is released, its
acceleration vector has both a horizontal
component and a vertical 
component (ay).

(ax)

Example 3.2 Calculating average and instantaneous acceleration

Let’s return to the motions of the Mars rover in Example 3.1.
(a) Find the components of the average acceleration for the inter-
val to (b) Find the instantaneous acceleration
at

SOLUTION

IDENTIFY and SET UP: In Example 3.1 we found the components
of the rover’s instantaneous velocity at any time t:

We’ll use the vector relationships among velocity, average acceler-
ation, and instantaneous acceleration. In part (a) we determine the
values of and at the beginning and end of the interval andvyvx

= 1.0 m>s + 10.075 m>s32t 2

vy =
dy

dt
= 1.0 m>s + 10.025 m>s3213t 22

vx =
dx

dt
= 1-0.25 m>s2212t2 = 1-0.50 m>s22t

t = 2.0 s.
t = 2.0 s.t = 0.0 s

then use Eq. (3.8) to calculate the components of the average
acceleration. In part (b) we obtain expressions for the instanta-
neous acceleration components at any time t by taking the time
derivatives of the velocity components as in Eqs. (3.10).

EXECUTE: (a) In Example 3.1 we found that at t � 0.0 s the veloc-
ity components are

and that at t � 2.00 s the components are

Thus the components of average acceleration in the interval
to are

aav-y =
¢vy

¢t
=

1.3 m>s - 1.0 m>s

2.0 s - 0.0 s
= 0.15 m>s2

aav-x =
¢vx

¢t
=

-1.0 m>s - 0.0 m>s

2.0 s - 0.0 s
= -0.50 m>s2

t = 2.0 st = 0.0 s

vx = -1.0 m>s  vy = 1.3 m>s

vx = 0.0 m>s  vy = 1.0 m>s

Application Horses on a Curved
Path
By leaning to the side and hitting the ground
with their hooves at an angle, these horses
give themselves the sideways acceleration
necessary to make a sharp change in direction.
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Parallel and Perpendicular Components of Acceleration
Equations (3.10) tell us about the components of a particle’s instantaneous accel-
eration vector along the x-, y-, and z-axes. Another useful way to think about 
is in terms of its component parallel to the particle’s path—that is, parallel to the
velocity—and its component perpendicular to the path—and hence perpendicu-
lar to the velocity (Fig. 3.10). That’s because the parallel component tells us
about changes in the particle’s speed, while the perpendicular component 
tells us about changes in the particle’s direction of motion. To see why the paral-
lel and perpendicular components of have these properties, let’s consider two
special cases.

In Fig. 3.11a the acceleration vector is in the same direction as the velocity 
so has only a parallel component (that is, The velocity change 
during a small time interval is in the same direction as and hence in the
same direction as The velocity at the end of is in the same direction as

but has greater magnitude. Hence during the time interval the particle in
Fig. 3.11a moved in a straight line with increasing speed (compare Fig. 3.7b).

In Fig. 3.11b the acceleration is perpendicular to the velocity, so has only a
perpendicular component (that is, In a small time interval the¢t,aŒ = 02.a�

aS

¢tvS1

¢tvS2vS1.
aS¢t

¢vSa� = 02.aŒaS
vS1,

aS

a�

aŒ

aSaS

(b) Using Eqs. (3.10), we find

Hence the instantaneous acceleration vector at time t is

At the components of acceleration and the acceleration
vector are

The magnitude of acceleration at this time is

A sketch of this vector (Fig. 3.9) shows that the direction angle 
of with respect to the positive x-axis is between and .
From Eq. (3.7) we have

Hence .

EVALUATE: Figure 3.9 shows the rover’s path and the velocity and
acceleration vectors at 1.0 s, and 2.0 s. (You should uset = 0.0 s,

b = 180° + 1-31°2 = 149°

arctan
ay

ax
= arctan

0.30 m>s2

-0.50 m>s2
= -31°

180°90°aS
b

= 21-0.50 m>s222 + 10.30 m>s222 = 0.58 m>s2

a = 2a 2
x + a 2

y

aS � 1-0.50 m>s22ın � 10.30 m>s22≥n

ax = -0.50 m>s2  ay = 10.15 m>s3212.0 s2 = 0.30 m>s2

t = 2.0 s

aS � axın � ay ≥n � 1-0.50 m>s22ın � 10.15 m>s32t≥n

aS

ax =
dvx

dt
= -0.50 m>s2  ay =

dvy

dt
= 10.075 m>s3212t2

the results of part (b) to calculate the instantaneous acceleration at
and for yourself.) Note that and are not in

the same direction at any of these times. The velocity vector is
tangent to the path at each point (as is always the case), and the
acceleration vector points toward the concave side of the path.aS

vS
aSvSt = 1.0 st = 0.0 s

a = 128°

b = 149°
y (m)

x (m)
O

0.5

1.0

1.5

2.0

0.5 1.0 1.5

Rover’s path

t � 0.0 s

2.0

2.5

t � 1.0 s

t � 2.0 s

v2
S

v0
S

v1
S

a2
S

a1
S

a0
S

3.9 The path of the robotic rover, showing the velocity and
acceleration at and and and

and aS22.1vS2t = 2.0 s
aS12,1vS1t = 1.0 saS02,1vS0t = 0.0 s

P

a

a ||

aS

vS

S

Particle’s path

Component of a
perpendicular to the path

Normal to
path at P

Tangent to path at P

Component of
a parallel to
the path

S

3.10 The acceleration can be resolved
into a component parallel to the path
(that is, along the tangent to the path) and a
component perpendicular to the path
(that is, along the normal to the path).

a�

aŒ

v1
S

S

S

Changes only magnitude
of velocity: speed changes;
direction doesn’t.

(a) Acceleration parallel to velocity

a

Dv

S Sv2 5 v1 1 DvS

a

v1
DvS S

S

Changes only direction of
velocity: particle follows
curved path at constant
speed.

(b) Acceleration perpendicular to velocity

f

S Sv2 5 v1 1 DvS

3.11 The effect of acceleration directed (a) parallel to and (b) perpendicular to a parti-
cle’s velocity.



velocity change is very nearly perpendicular to , and so and have dif-
ferent directions. As the time interval approaches zero, the angle in the fig-
ure also approaches zero, becomes perpendicular to both and and 
and have the same magnitude. In other words, the speed of the particle stays
the same, but the direction of motion changes and the path of the particle curves.

In the most general case, the acceleration has components both parallel and
perpendicular to the velocity as in Fig. 3.10. Then the particle’s speed will
change (described by the parallel component ) and its direction of motion will
change (described by the perpendicular component so that it follows a
curved path.

Figure 3.12 shows a particle moving along a curved path for three different
situations: constant speed, increasing speed, and decreasing speed. If the speed is
constant, is perpendicular, or normal, to the path and to and points toward the
concave side of the path (Fig. 3.12a). If the speed is increasing, there is still a per-
pendicular component of but there is also a parallel component having the
same direction as (Fig. 3.12b). Then points ahead of the normal to the path.
(This was the case in Example 3.2.) If the speed is decreasing, the parallel com-
ponent has the direction opposite to and points behind the normal to the path
(Fig. 3.12c; compare Fig. 3.7a). We will use these ideas again in Section 3.4
when we study the special case of motion in a circle.

aSvS,

aSvS
aS,

vSaS

a�)
aŒ

vS,
aS

vS2

vS1vS2,vS1¢vS
f¢t
vS2vS1vS1¢vS
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... acceleration is
normal to the path.

(a) When speed is constant along a curved
path ...

P

Normal at P

aS

vS

... acceleration points
ahead of the normal.

(b) When speed is increasing along a curved
path ...

P

Normal at P

aS

vS

... acceleration points
behind the normal.

(c) When speed is decreasing along a curved
path ...

P

Normal at P
aS

vS

3.12 Velocity and acceleration vectors for a particle moving through a point P on a curved path with (a) constant speed, (b) increas-
ing speed, and (c) decreasing speed.

Example 3.3 Calculating parallel and perpendicular components of acceleration

For the rover of Examples 3.1 and 3.2, find the parallel and perpen-
dicular components of the acceleration at 

SOLUTION

IDENTIFY and SET UP: We want to find the components of the
acceleration vector that are parallel and perpendicular to the veloc-
ity vector We found the directions of and in Examples 3.1 and
3.2, respectively; Fig. 3.9 shows the results. From these directions
we can find the angle between the two vectors and the components
of with respect to the direction of .

EXECUTE: From Example 3.2, at the particle has an
acceleration of magnitude at an angle of with
respect to the positive x-axis. In Example 3.1 we found that at this
time the velocity vector is at an angle of with respect to the
positive x-axis. The angle between and is therefore

(Fig. 3.13). Hence the components of acceler-
ation parallel and perpendicular to are

a� = a sin 21° = 10.58 m>s22sin 21° = 0.21 m>s2

aŒ = a cos 21° = 10.58 m>s22cos 21° = 0.54 m>s2

vS
149° - 128° = 21°

vSaS
128°

149°0.58 m>s2
t = 2.0 s

vSaS

aSvSvS.
aS

t = 2.0 s.

EVALUATE: The parallel component is positive (in the same
direction as ), which means that the speed is increasing at this
instant. The value tells us that the speed is
increasing at this instant at a rate of per second. The per-
pendicular component is not zero, which means that at this
instant the rover is turning—that is, it is changing direction and
following a curved path.

a�

0.54 m>s
aŒ = +0.54 m>s2

vS
aŒ

Parallel component of acceleration

Perpendicular
component of acceleration

Position of rover at t 5 2.0 s

Path of rover

21° a ||

a

aS

vS

3.13 The parallel and perpendicular components of the acceler-
ation of the rover at t = 2.0 s.

PhET: Maze Game
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3.3 Projectile Motion
A projectile is any body that is given an initial velocity and then follows a path
determined entirely by the effects of gravitational acceleration and air resistance.
A batted baseball, a thrown football, a package dropped from an airplane, and a
bullet shot from a rifle are all projectiles. The path followed by a projectile is
called its trajectory.

To analyze this common type of motion, we’ll start with an idealized model,
representing the projectile as a particle with an acceleration (due to gravity) that
is constant in both magnitude and direction. We’ll neglect the effects of air resist-
ance and the curvature and rotation of the earth. Like all models, this one has lim-
itations. Curvature of the earth has to be considered in the flight of long-range
missiles, and air resistance is of crucial importance to a sky diver. Nevertheless,
we can learn a lot from analysis of this simple model. For the remainder of this
chapter the phrase “projectile motion” will imply that we’re ignoring air resist-
ance. In Chapter 5 we will see what happens when air resistance cannot be
ignored.

Projectile motion is always confined to a vertical plane determined by the
direction of the initial velocity (Fig. 3.15). This is because the acceleration due to

Conceptual Example 3.4 Acceleration of a skier

A skier moves along a ski-jump ramp (Fig. 3.14a). The ramp is
straight from point A to point C and curved from point C onward.
The skier speeds up as she moves downhill from point A to point E,
where her speed is maximum. She slows down after passing point
E. Draw the direction of the acceleration vector at each of the
points B, D, E, and F.

SOLUTION

Figure 3.14b shows our solution. At point B the skier is moving in
a straight line with increasing speed, so her acceleration points
downhill, in the same direction as her velocity. At points D, E, and
F the skier is moving along a curved path, so her acceleration has a
component perpendicular to the path (toward the concave side of
the path) at each of these points. At point D there is also an accel-
eration component in the direction of her motion because she is
speeding up. So the acceleration vector points ahead of the normal
to her path at point D, as Fig. 3.14b shows. At point E, the skier’s
speed is instantaneously not changing; her speed is maximum at
this point, so its derivative is zero. There is therefore no parallel
component of and the acceleration is perpendicular to her
motion. At point F there is an acceleration component opposite to
the direction of her motion because now she’s slowing down. The
acceleration vector therefore points behind the normal to her path.

In the next section we’ll consider the skier’s acceleration after
she flies off the ramp.

aS,

A

Direction
of motion

B

C

D
E

F

(a)

(b)

3.14 (a) The skier’s path. (b) Our solution.

Test Your Understanding of
Section 3.2 A sled travels over
the crest of a snow-covered hill. The
sled slows down as it climbs up one
side of the hill and gains speed as it
descends on the other side. Which of
the vectors (1 through 9) in the figure
correctly shows the direction of the
sled’s acceleration at the crest? (Choice 9 is that the acceleration is zero.) ❙

or 9: acceleration 5 0

Sled’s path
1 5

2 4

8 6

3

7

Trajectory

ax 5 0, ay 5 2g

a
v0
S

S

• A projectile moves in a vertical plane that
  contains the initial velocity vector v0.
• Its trajectory depends only on v0 and
  on the downward acceleration due to gravity.

S

S

y

O
x

3.15 The trajectory of an idealized
projectile.



gravity is purely vertical; gravity can’t accelerate the projectile sideways.
Thus projectile motion is two-dimensional. We will call the plane of motion the
xy-coordinate plane, with the x-axis horizontal and the y-axis vertically upward.

The key to analyzing projectile motion is that we can treat the x- and 
y-coordinates separately. The x-component of acceleration is zero, and the 
y-component is constant and equal to (By definition, g is always positive;
with our choice of coordinate directions, is negative.) So we can analyze pro-
jectile motion as a combination of horizontal motion with constant velocity and
vertical motion with constant acceleration. Figure 3.16 shows two projectiles with
different x-motion but identical y-motion; one is dropped from rest and the other is
projected horizontally, but both projectiles fall the same distance in the same time.

We can then express all the vector relationships for the projectile’s position,
velocity, and acceleration by separate equations for the horizontal and vertical
components. The components of are

(projectile motion, no air resistance) (3.14)

Since the x-acceleration and y-acceleration are both constant, we can use Eqs.
(2.8), (2.12), (2.13), and (2.14) directly. For example, suppose that at time 
our particle is at the point and that at this time its velocity components
have the initial values and The components of acceleration are 

Considering the x-motion first, we substitute 0 for in Eqs. (2.8) and
(2.12). We find

(3.15)

(3.16)

For the y-motion we substitute y for x, for for and for 

(3.17)

(3.18)

It’s usually simplest to take the initial position as the origin; then
This might be the position of a ball at the instant it leaves the

thrower’s hand or the position of a bullet at the instant it leaves the gun barrel.
Figure 3.17 shows the trajectory of a projectile that starts at (or passes

through) the origin at time , along with its position, velocity, and velocityt = 0

x0 = y0 = 0.
1at t = 02

y = y0 + v0yt - 1
2 gt2

vy = v0y - gt

ax:ay = -gv0x,v0yvx,vy

x = x0 + v0xt

vx = v0x

axay = -g.
ax = 0,v0y.v0x

(x0, y0)
t = 0

ax = 0  ay = -g

aS

ay

-g.
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3.16 The red ball is dropped from rest,
and the yellow ball is simultaneously pro-
jected horizontally; successive images in
this stroboscopic photograph are sepa-
rated by equal time intervals. At any given
time, both balls have the same y-position,
y-velocity, and y-acceleration, despite hav-
ing different x-positions and x-velocities.

a

a

a0

At the top of the trajectory, the projectile has zero vertical
velocity (vy 5 0), but its vertical acceleration is still 2g.

Vertically, the projectile
is in constant-acceleration
motion in response to the 
earth’s gravitational pull.
Thus its vertical velocity
changes by equal amounts
during equal time intervals.

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.

y

O
x

Sv1

Sv0

Sv2

Sv3

v2xv1xv0x

v0x

v3x

v1x

ay 5 2g

v1y v1y

v3yv3y

v3x

v0y v0y

3.17 If air resistance is negligible, the trajectory of a projectile is a combination of horizontal motion with constant velocity
and vertical motion with constant acceleration.

ActivPhysics 3.1: Solving Projectile Motion
Problems
ActivPhysics 3.2: Two Balls Falling
ActivPhysics 3.3: Changing the x-velocity
ActivPhysics 3.4: Projecting x-y-Accelerations
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components at equal time intervals. The x-component of acceleration is zero, so
is constant. The y-component of acceleration is constant and not zero, so 

changes by equal amounts in equal times, just the same as if the projectile were
launched vertically with the same initial y-velocity.

We can also represent the initial velocity by its magnitude (the initial
speed) and its angle with the positive x-axis (Fig. 3.18). In terms of these
quantities, the components and of the initial velocity are

(3.19)

If we substitute these relationships in Eqs. (3.15) through (3.18) and set
we find

(projectile motion) (3.20)

(projectile motion) (3.21)

(projectile motion) (3.22)

(projectile motion) (3.23)

These equations describe the position and velocity of the projectile in Fig. 3.17 at
any time t.

We can get a lot of information from Eqs. (3.20) through (3.23). For example,
at any time the distance r of the projectile from the origin the magnitude of the
position vector is given by

(3.24)

The projectile’s speed (the magnitude of its velocity) at any time is

(3.25)

The direction of the velocity, in terms of the angle it makes with the positive 
x-direction (see Fig. 3.17), is given by

(3.26)

The velocity vector is tangent to the trajectory at each point.
We can derive an equation for the trajectory’s shape in terms of x and y by

eliminating t. From Eqs. (3.20) and (3.21), which assume we find
and

(3.27)

Don’t worry about the details of this equation; the important point is its general
form. Since , , , and g are constants, Eq. (3.27) has the form

where b and c are constants. This is the equation of a parabola. In our simple
model of projectile motion, the trajectory is always a parabola (Fig. 3.19).

When air resistance isn’t always negligible and has to be included, calculating
the trajectory becomes a lot more complicated; the effects of air resistance
depend on velocity, so the acceleration is no longer constant. Figure 3.20 shows a

y = bx - cx2

 cos a0 tan a0v0

y = 1tana02x -
g

2v0
2cos2a0

x2

t = x>1v0 cosa02
x0 = y0 = 0,

vS

tana =
vy

vx

a

v = 2vx
2 + vy

2

r = 2x2 + y2

rS2
1

vy = v0 sina0 - gt

vx = v0 cosa0

y = 1v0 sina02t - 1
2 gt2

x = 1v0 cosa02t

x0 = y0 = 0,

v0x = v0 cosa0  v0y = v0 sina0

v0yv0x

a0

v0vS0

vyvx

y

O
x

v0
S

y

x

v0
S

v0y 5 v0 sin a0

v0x 5 v0 cos a0

a0

3.18 The initial velocity components 
and of a projectile (such as a kickedv0y

v0x

soccer ball) are related to the initial speed
and initial angle a0.v0

Successive images of ball are
separated by equal time intervals.

Successive peaks decrease
    in height because ball
       loses energy with
          each bounce.

Trajectories
are nearly
parabolic.

(a)

(b)

3.19 The nearly parabolic trajectories of
(a) a bouncing ball and (b) blobs of molten
rock ejected from a volcano.

PhET: Projectile Motion
ActivPhysics 3.5: Initial Velocity Components
ActivPhysics 3.6: Target Practice I
ActivPhysics 3.7: Target Practice II
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100

50

O

2100

250

x (m)
100 200 300

With air
resistance

Baseball’s initial velocity:
v0 5 50 m/s, a0 5 53.1°

No air
resistance

y (m)

3.20 Air resistance has a large cumula-
tive effect on the motion of a baseball. In
this simulation we allow the baseball to
fall below the height from which it was
thrown (for example, the baseball could
have been thrown from a cliff).

Conceptual Example 3.5 Acceleration of a skier, continued

Let’s consider again the skier in Conceptual Example 3.4. What is
her acceleration at each of the points G, H, and I in Fig. 3.21a after
she flies off the ramp? Neglect air resistance.

SOLUTION

Figure 3.21b shows our answer. The skier’s acceleration changed
from point to point while she was on the ramp. But as soon as she

3.21 (a) The skier’s path during the jump. (b) Our solution.

Problem-Solving Strategy 3.1 Projectile Motion

NOTE: The strategies we used in Sections 2.4 and 2.5 for straight-
line, constant-acceleration problems are also useful here.

IDENTIFY the relevant concepts: The key concept to remember is
that throughout projectile motion, the acceleration is downward
and has a constant magnitude g. Note that the projectile-motion
equations don’t apply to throwing a ball, because during the throw
the ball is acted on by both the thrower’s hand and gravity. These
equations apply only after the ball leaves the thrower’s hand.

SET UP the problem using the following steps:
1. Define your coordinate system and make a sketch showing

your axes. Usually it’s easiest to make the x-axis horizontal and
the y-axis upward, and to place the origin at the initial 
position where the body first becomes a projectile (such as
where a ball leaves the thrower’s hand). Then the components
of the (constant) acceleration are and the
initial position is 

2. List the unknown and known quantities, and decide which
unknowns are your target variables. For example, you might be
given the initial velocity (either the components or the magni-
tude and direction) and asked to find the coordinates and veloc-
ity components at some later time. In any case, you’ll be using

y 0 = 0.x0 = 0,
ay = -g,ax = 0,

(t = 0)

Eqs. (3.20) through (3.23). (Equations (3.24) through (3.27)
may be useful as well.) Make sure that you have as many equa-
tions as there are target variables to be found.

3. State the problem in words and then translate those words into
symbols. For example, when does the particle arrive at a certain
point? (That is, at what value of t?) Where is the particle when its
velocity has a certain value? (That is, what are the values of x and y
when or has the specified value?) Since at the highest
point in a trajectory, the question “When does the projectile reach
its highest point?” translates into “What is the value of t when

” Similarly, “When does the projectile return to its initial
elevation?” translates into “What is the value of t when ”

EXECUTE the solution: Find the target variables using the equa-
tions you chose. Resist the temptation to break the trajectory into
segments and analyze each segment separately. You don’t have to
start all over when the projectile reaches its highest point! It’s
almost always easier to use the same axes and time scale through-
out the problem. If you need numerical values, use 

EVALUATE your answer: As always, look at your results to see
whether they make sense and whether the numerical values seem
reasonable.

g = 9.80 m >  s2.

y = y 0?
vy = 0?

vy = 0vyvx

computer simulation of the trajectory of a baseball both without air resistance and
with air resistance proportional to the square of the baseball’s speed. We see that air
resistance has a very large effect; the maximum height and range both decrease,
and the trajectory is no longer a parabola. (If you look closely at Fig. 3.19b, you’ll
see that the trajectories of the volcanic blobs deviate in a similar way from a par-
abolic shape.)

leaves the ramp, she becomes a projectile. So at points G, H, and I,
and indeed at all points after she leaves the ramp, the skier’s accel-
eration points vertically downward and has magnitude g. No mat-
ter how complicated the acceleration of a particle before it
becomes a projectile, its acceleration as a projectile is given by

ay = -g.ax = 0,
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Example 3.6 A body projected horizontally

A motorcycle stunt rider rides off the edge of a cliff. Just at the
edge his velocity is horizontal, with magnitude Find the
motorcycle’s position, distance from the edge of the cliff, and
velocity 0.50 s after it leaves the edge of the cliff.

SOLUTION

IDENTIFY and SET UP: Figure 3.22 shows our sketch of the motor-
cycle’s trajectory. He is in projectile motion as soon as he leaves
the edge of the cliff, which we choose to be the origin of coordi-
nates so and His initial velocity at the edge of
the cliff is horizontal that is, , so its components are

and To find
the motorcycle’s position at we use Eqs. (3.20) and
(3.21); we then find the distance from the origin using Eq. (3.24).
Finally, we use Eqs. (3.22) and (3.23) to find the velocity compo-
nents at 

EXECUTE: From Eqs. (3.20) and (3.21), the motorcycle’s x- and
y-coordinates at t = 0.50 s are

The negative value of y shows that the motorcycle is below its
starting point.

From Eq. (3.24), the motorcycle’s distance from the origin at
t � 0.50 s is

From Eqs. (3.22) and (3.23), the velocity components at 
t � 0.50 s are

vy = -gt = 1-9.80 m>s2210.50 s2 = -4.9 m>s

vx = v0x = 9.0 m>s

r = 2x2 + y2 = 214.5 m22 + 1-1.2 m22 = 4.7 m

y = - 1
2 gt2 = - 1

2 19.80 m>s2210.50 s22 = -1.2 m

x = v0xt = 19.0 m>s210.50 s2 = 4.5 m

t = 0.50 s .

t = 0.50 s,
v0y = v0 sin a0 = 0.v0x = v0 cos a0 = 9.0 m>s
a0 = 021

vS0y0 = 0.x0 = 0

9.0 m>s.

The motorcycle has the same horizontal velocity as when it left
the cliff at but in addition there is a downward (negative)
vertical velocity The velocity vector at is

From Eq. (3.25), the speed (magnitude of the velocity) at t =
0.50 s is

From Eq. (3.26), the angle of the velocity vector is

The velocity is below the horizontal.

EVALUATE: Just as in Fig. 3.17, the motorcycle’s horizontal motion
is unchanged by gravity; the motorcycle continues to move hori-
zontally at covering 4.5 m in 0.50 s. The motorcycle ini-
tially has zero vertical velocity, so it falls vertically just like a body
released from rest and descends a distance in 0.50 s.1

2 gt 2 = 1.2 m

9.0 m>s,

29°

a = arctan
vy

vx
= arctan a

-4.9 m>s

9.0 m>s
b = -29°

a

= 219.0 m>s22 + 1-4.9 m>s22 = 10.2 m>s

v = 2v 2
x + v 2

y

vS � vxın � vy ≥n � 19.0 m>s2ın � 1-4.9 m>s2≥n

t = 0.50 svy.
t = 0,

vx

At this point, the bike and
rider become a projectile.

3.22 Our sketch for this problem.

Example 3.7 Height and range of a projectile I: A batted baseball

A batter hits a baseball so that it leaves the bat at speed
at an angle . (a) Find the position of the

ball and its velocity (magnitude and direction) at (b) Find
the time when the ball reaches the highest point of its flight, and its
height h at this time. (c) Find the horizontal range R—that is, the
horizontal distance from the starting point to where the ball hits the
ground.

SOLUTION

IDENTIFY and SET UP: As Fig. 3.20 shows, air resistance strongly
affects the motion of a baseball. For simplicity, however, we’ll
ignore air resistance here and use the projectile-motion equations
to describe the motion. The ball leaves the bat at a meter or
so above ground level, but we’ll neglect this distance and assume
that it starts at ground level Figure 3.23 shows our(y0 = 0).

t = 0

t = 2.00 s.
a0 = 53.1°v0 = 37.0 m>s

sketch of the ball’s trajectory. We’ll use the same coordinate
system as in Figs. 3.17 and 3.18, so we can use Eqs. (3.20) through

Continued

3.23 Our sketch for this problem.



82 CHAPTER 3 Motion in Two or Three Dimensions

(3.23). Our target variables are (a) the position and velocity of the
ball 2.00 s after it leaves the bat, (b) the time t when the ball is at
its maximum height that is, when and the y-coordinate at
this time, and (c) the x-coordinate when the ball returns to ground
level .

EXECUTE: (a) We want to find x, y, and at The
initial velocity of the ball has components

From Eqs. (3.20) through (3.23),

The y-component of velocity is positive at t � 2.00 s, so the ball is
still moving upward (Fig. 3.23). From Eqs. (3.25) and (3.26), the
magnitude and direction of the velocity are

The direction of the velocity (the direction of the ball’s motion) is
above the horizontal.

(b) At the highest point, the vertical velocity is zero. Call the
time when this happens ; then

The height h at the highest point is the value of y at time :

= 44.7 m

= 129.6 m>s213.02 s2 - 1
2 19.80 m>s2213.02 s22

h = v0yt1 - 1
2 gt1

2

t1

t1 =
v0y

g
=

29.6 m>s

9.80 m>s2
= 3.02 s

vy = v0y - gt1 = 0

t1

vy

24.2°

a = arctan a
10.0 m>s

22.2 m>s
b = arctan 0.450 = 24.2°

= 24.4 m>s

v = 2v 2
x + v 2

y = 2122.2 m>s22 + 110.0 m>s22

= 10.0 m>s

vy = v0y - gt = 29.6 m>s - 19.80 m>s2212.00 s2

vx = v0x = 22.2 m>s

= 39.6 m

= 129.6 m>s212.00 s2 - 1
2 19.80 m>s2212.00 s22

y = v0yt - 1
2 gt2

x = v0xt = 122.2 m>s212.00 s2 = 44.4 m

v0y = v0 sin a0 = 137.0 m>s2sin53.1° = 29.6 m>s

v0x = v0 cos a0 = 137.0 m>s2cos53.1° = 22.2 m>s

t = 2.00 s.vyvx,

1y = 02

vy = 021

(c) We’ll find the horizontal range in two steps. First, we find the
time when (the ball is at ground level):

This is a quadratic equation for . It has two roots:

The ball is at at both times. The ball leaves the ground at
, and it hits the ground at .

The horizontal range R is the value of x when the ball returns to
the ground at 

The vertical component of velocity when the ball hits the
ground is

That is, has the same magnitude as the initial vertical velocity
but the opposite direction (down). Since is constant, the

angle (below the horizontal) at this point is the nega-
tive of the initial angle 

EVALUATE: It’s often useful to check results by getting them in a
different way. For example, we can also find the maximum height
in part (b) by applying the constant-acceleration formula Eq. (2.13)
to the y-motion:

At the highest point, and You should solve this
equation for h; you should get the same answer that we obtained in
part (b). (Do you?)

Note that the time to hit the ground, , is exactly
twice the time to reach the highest point, . Hence the
time of descent equals the time of ascent. This is always true if the
starting and end points are at the same elevation and if air resist-
ance can be neglected.

Note also that in part (b) is comparable to the 52.4-m
height above the playing field of the roof of the Hubert H.
Humphrey Metrodome in Minneapolis, and the horizontal range

in part (c) is greater than the 99.7-m distance from
home plate to the right-field fence at Safeco Field in Seattle. In
reality, due to air resistance (which we have neglected) a batted
ball with the initial speed and angle we’ve used here won’t go as
high or as far as we’ve calculated (see Fig. 3.20).

R = 134 m

h = 44.7 m

t1 = 3.02 s
t2 = 6.04 s

y = h.vy = 0

vy
2= v0y

2+ 2ay1y - y02 = v0y
2- 2g1y - y02

a0 = 53.1°.
a = -53.1°

vxv0y

vy

= -29.6 m>s

vy = v0y - gt2 = 29.6 m>s - 19.80 m>s2216.04 s2

R = v0xt2 = 122.2 m>s216.04 s2 = 134 m

t2 = 6.04 s :

t2 = 2v0y>g = 6.04 st2 = 0
y = 0

t2 = 0  and  t2 =
2v0y

g
=

2129.6 m>s2

9.80 m>s2
= 6.04 s

t2

y = 0 = v0yt2 - 1
2 gt2

2 = t2 Av0y - 1
2 gt2 B

y = 0t2

Example 3.8 Height and range of a projectile II: Maximum height, maximum range

Find the maximum height h and horizontal range R (see Fig. 3.23)
of a projectile launched with speed at an initial angle 
between and . For a given what value of gives maxi-
mum height? What value gives maximum horizontal range?

a0v0,90°0°
a0v0

SOLUTION

IDENTIFY and SET UP: This is almost the same as parts (b) and (c)
of Example 3.7, except that now we want general expressions for h
and R. We also want the values of that give the maximum valuesa0
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of h and R. In part (b) of Example 3.7 we found that the projectile
reaches the high point of its trajectory so that at time

, and in part (c) we found that the projectile returns to
its starting height so that at time 
We’ll use Eq. (3.21) to find the y-coordinate h at and 
Eq. (3.20) to find the x-coordinate R at time . We’ll express our
answers in terms of the launch speed and launch angle 
using Eqs. (3.19).

EXECUTE: From Eqs. (3.19), and 
Hence we can write the time when as

Equation (3.21) gives the height at this time:

For a given launch speed the maximum value of h occurs for
and —that is, when the projectile is launched

straight up. (If it is launched horizontally, as in Example 3.6,
and the maximum height is zero!)

The time when the projectile hits the ground is

The horizontal range R is the value of x at this time. From 
Eq. (3.20), this is

 =
v0

2 sin 2a0

g

R = 1v0 cos a02t2 = 1v0 cos a02
2v0 sin a0

g

t2 =
2v0y

g
=

2v0 sin a0

g

t2

a0 = 0

a0 = 90°sin a0 = 1
v0,

=
v0

2 sin 2a0

2g

h = 1v0 sin a02a
v0 sin a0

g
b - 1

2 ga
v0 sin a0

g
b

2

y = h

t1 =
v0y

g
=

v0 sin a0

g

vy = 0t1

v0y = v0 sin a0.v0x = v0 cos a0

a0v0

t2

t1

t2 = 2v0y>g = 2t1.y = y021
t1 = v0y>g

vy = 021
(We used the trigonometric identity ,
found in Appendix B.) The maximum value of is 1; this
occurs when or This angle gives the
maximum range for a given initial speed if air resistance can be
neglected.

EVALUATE: Figure 3.24 is based on a composite photograph of
three trajectories of a ball projected from a small spring gun at
angles of and The initial speed is approximately
the same in all three cases. The horizontal range is greatest for
the angle. The ranges are nearly the same for the and 
angles: Can you prove that for a given value of the range is
the same for both an initial angle and an initial angle

(This is not the case in Fig. 3.24 due to air resistance.)

CAUTION Height and range of a projectile We don’t recom-
mend memorizing the above expressions for h, R, and . They
are applicable only in the special circumstances we have
described. In particular, the expressions for the range R and maxi-
mum range can be used only when launch and landing
heights are equal. There are many end-of-chapter problems to
which these equations do not apply.

R max

R max

90° - a0?
a0

v0

60°30°45°

v060°.45°,30°,

a0 = 45°.2a0 = 90°
 sin 2a0

2 sin a0 cos a0 = sin 2a0

Launch
angle:
a0 5 30°
a0 5 45°
a0 5 60°

A 45° launch angle gives the greatest range;
other angles fall shorter.

3.24 A launch angle of gives the maximum horizontal
range. The range is shorter with launch angles of and 60°.30°

45°

Example 3.9 Different initial and final heights

You throw a ball from your window 8.0 m above the ground.
When the ball leaves your hand, it is moving at at an
angle of below the horizontal. How far horizontally from your
window will the ball hit the ground? Ignore air resistance.

SOLUTION

IDENTIFY and SET UP: As in Examples 3.7 and 3.8, we want to
find the horizontal coordinate of a projectile when it is at a given
y-value. The difference here is that this value of y is not the same 
as the initial value. We again choose the x-axis to be horizontal and
the y-axis to be upward, and place the origin of coordinates at 
the point where the ball leaves your hand (Fig. 3.25). We have

and (the angle is negative because the
initial velocity is below the horizontal). Our target variable is 
the value of x when the ball reaches the ground at .
We’ll use Eq. (3.21) to find the time t when this happens, then use 
Eq. (3.20) to find the value of x at this time.

y = -8.0 m

a0 = -20°v0 = 10.0 m>s

20°
10.0 m>s

3.25 Our sketch for this problem.

EXECUTE: To determine t, we rewrite Eq. (3.21) in the standard
form for a quadratic equation for t:

Continued

1
2 gt2 - 1v0 sin a02t + y = 0
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The roots of this equation are

= -1.7 s  or  0.98 s

=
B110.0 m>s2 sin1-20°2

�2110.0 m>s22 sin21-20°2 - 219.80 m>s221-8.0 m2
R

9.80 m>s2

=
v0 sin a0 � 2v 2

0 sin 2a0 - 2gy

g

t =
v0 sin a0 � 41-v0 sin a02

2 - 4 A12 g By

2 A12 g B

We discard the negative root, since it refers to a time before the
ball left your hand. The positive root tells us that the ball reaches
the ground at t � 0.98 s. From Eq. (3.20), the ball’s x-coordinate at
that time is

The ball hits the ground a horizontal distance of 9.2 m from your
window.

EVALUATE: The root is an example of a “fictional” solu-
tion to a quadratic equation. We discussed these in Example 2.8 in
Section 2.5; you should review that discussion.

t = -1.7 s

= 9.2 m

x = 1v0 cos a02t = 110.0 m>s23cos1-20°2410.98 s2

Example 3.10 The zookeeper and the monkey

A monkey escapes from the zoo and climbs a tree. After failing to
entice the monkey down, the zookeeper fires a tranquilizer dart
directly at the monkey (Fig. 3.26). The monkey lets go at the
instant the dart leaves the gun. Show that the dart will always hit
the monkey, provided that the dart reaches the monkey before he
hits the ground and runs away.

SOLUTION

IDENTIFY and SET UP: We have two bodies in projectile motion:
the dart and the monkey. They have different initial positions and
initial velocities, but they go into projectile motion at the same time
t � 0. We’ll first use Eq. (3.20) to find an expression for the time t
when the x-coordinates and are equal. Then we’ll use
that expression in Eq. (3.21) to see whether and are
also equal at this time; if they are, the dart hits the monkey. We

ydartymonkey

xdartxmonkey

make the usual choice for the x- and y-directions, and place the ori-
gin of coordinates at the muzzle of the tranquilizer gun (Fig. 3.26).

EXECUTE: The monkey drops straight down, so at all
times. From Eq. (3.20), We solve for the time
t when these x-coordinates are equal:

so

We must now show that at this time. The monkey is
in one-dimensional free fall; its position at any time is given by 
Eq. (2.12), with appropriate symbol changes. Figure 3.26 shows
that the monkey’s initial height above the dart-gun’s muzzle is

, so

ymonkey = d tan a0 - 1
2 gt2

ymonkey-0 = d tan a0

ymonkey = ydart

t =
d

v0 cos a0
d = 1v0 cos a02t

xdart = (v0 cos a0)t.
xmonkey = d

3.26 The tranquilizer dart hits the falling monkey.

d tan a0

y

xO

v0

a0

d

Trajectory of dart
with gravity

Trajectory of dart
without gravity

Monkey’s
fall

Dart’s
fall

Dart’s
fall

Dart’s fall

Without gravity
• The monkey remains in its initial position.
• The dart travels straight to the monkey.
• Therefore, the dart hits the monkey.

Dashed arrows show how far the dart and monkey have fallen at
specific times relative to where they would be without gravity.
At any time, they have fallen by the same amount.

With gravity
• The monkey falls straight down.
• At any time t, the dart has fallen by the same amount
  as the monkey relative to where either would be in the
  absence of gravity:  Dydart 5 Dymonkey 5 2 gt2.
• Therefore, the dart always hits the monkey.

1
2
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3.4 Motion in a Circle
When a particle moves along a curved path, the direction of its velocity changes.
As we saw in Section 3.2, this means that the particle must have a component of
acceleration perpendicular to the path, even if its speed is constant (see Fig. 3.11b).
In this section we’ll calculate the acceleration for the important special case of
motion in a circle.

Uniform Circular Motion
When a particle moves in a circle with constant speed, the motion is called
uniform circular motion. A car rounding a curve with constant radius at constant
speed, a satellite moving in a circular orbit, and an ice skater skating in a circle
with constant speed are all examples of uniform circular motion (Fig. 3.27c;
compare Fig. 3.12a). There is no component of acceleration parallel (tangent) to
the path; otherwise, the speed would change. The acceleration vector is perpendi-
cular (normal) to the path and hence directed inward (never outward!) toward the
center of the circular path. This causes the direction of the velocity to change
without changing the speed.

From Eq. (3.21),

Comparing these two equations, we see that we’ll have
(and a hit) if at the time

when the two x-coordinates are equal. To show that this happens,
we replace t with , the time when .
Sure enough, we find that

1v0 sin a02t = 1v0 sin a02
d

v0 cos a0
= d tan a0

xmonkey = xdartd>1v0 cos a02

d tan a0 = 1v0 sin a02tymonkey = ydart

ydart = 1v0 sin a02t - 1
2 gt2

EVALUATE: We’ve proved that the y-coordinates of the dart and
the monkey are equal at the same time that their x-coordinates
are equal; a dart aimed at the monkey always hits it, no matter
what is (provided the monkey doesn’t hit the ground first).
This result is independent of the value of g, the acceleration due
to gravity. With no gravity the monkey would remain
motionless, and the dart would travel in a straight line to hit him.
With gravity, both fall the same distance below their 
positions, and the dart still hits the monkey (Fig. 3.26).

t = 0gt 2>2

1g = 02,

v0

P B
C

A

3.27 A car moving along a circular path. If the car is in uniform circular motion as in (c), the speed is constant and the acceleration is
directed toward the center of the circular path (compare Fig. 3.12).

(a) Car speeding up along a circular path

Component of acceleration perpendicular to
velocity: Changes car’s direction

Component of acceleration parallel to velocity:
Changes car’s speed

aS

vS

(b) Car slowing down along a circular path

Component of acceleration parallel
to velocity: Changes car’s speed

Component of acceleration
perpendicular to velocity:
Changes car’s direction

aS

vS

(c) Uniform circular motion: Constant speed
along a circular path

To center of circle

Acceleration is exactly
perpendicular to velocity;
no parallel component

aS

vS

Test Your Understanding of Section 3.3
In Example 3.10, suppose the tranquilizer dart 
has a relatively low muzzle velocity so that 
the dart reaches a maximum height at a 
point P before striking the monkey, 
as shown in the figure. When the 
dart is at point P, will the monkey 
be (i) at point A (higher than P),
(ii) at point B (at the same height 
as P), or (iii) at point C (lower
than P)? Ignore air resistance. ❙



We can find a simple expression for the magnitude of the acceleration in uni-
form circular motion. We begin with Fig. 3.28a, which shows a particle moving
with constant speed in a circular path of radius R with center at O. The particle
moves from to in a time The vector change in velocity during this
time is shown in Fig. 3.28b.

The angles labeled in Figs. 3.28a and 3.28b are the same because is
perpendicular to the line and is perpendicular to the line Hence the
triangles in Figs. 3.28a and 3.28b are similar. The ratios of corresponding sides of
similar triangles are equal, so

The magnitude of the average acceleration during is therefore

The magnitude a of the instantaneous acceleration at point is the limit of this
expression as we take point closer and closer to point :

If the time interval is short, is the distance the particle moves along its
curved path. So the limit of is the speed at point Also, can be any
point on the path, so we can drop the subscript and let represent the speed at
any point. Then

(uniform circular motion) (3.28)

We have added the subscript “rad” as a reminder that the direction of the instan-
taneous acceleration at each point is always along a radius of the circle (toward
the center of the circle; see Figs. 3.27c and 3.28c). So we have found that in uni-
form circular motion, the magnitude of the instantaneous acceleration is
equal to the square of the speed divided by the radius R of the circle. Its direc-
tion is perpendicular to and inward along the radius.

Because the acceleration in uniform circular motion is always directed toward
the center of the circle, it is sometimes called centripetal acceleration. The word
“centripetal” is derived from two Greek words meaning “seeking the center.”
Figure 3.29a shows the directions of the velocity and acceleration vectors at sev-
eral points for a particle moving with uniform circular motion.

vS
v

arad

arad =
v2

R

v
P1P1.v1¢s>¢t

¢s¢t

a = lim
¢tS0

v1

R

¢s

¢t
=

v1

R
 lim
¢tS0

¢s

¢t

P1P2

P1aS

aav =
ƒ ¢vS ƒ
¢t

=
v1

R

¢s

¢t

¢taav

ƒ ¢vS ƒ
v1

=
¢s

R
  or  ƒ ¢vS ƒ =

v1

R
¢s

OP2.vS2OP1

vS1¢f

¢vS¢t.P2P1
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These two triangles
are similar.

The instantaneous acceleration
   in uniform circular motion
        always points toward the
            center of the circle.

R

P2

P1

R

O

(a) A particle moves a distance Ds at
constant speed along a circular path.

v1
S

v2
S

Df

Ds

O

(b) The corresponding change in velocity and
average acceleration

v1
S

v2
SDf

DvS

(c) The instantaneous acceleration

R

O

vS

arad
S

3.28 Finding the velocity change 
average acceleration and instanta-
neous acceleration for a particle mov-
ing in a circle with constant speed.

aSrad

aSav,
¢vS,

Acceleration has
constant magni-
tude but varying
direction.

Velocity and
acceleration
are always
perpendicular.

(a) Uniform circular motion

vS

vS

vS
vS

vS arad
S

arad
S

arad
S

arad
S

arad
Sarad

S

vS

vr

vr vr

vr

vr
ar

ar ar
ar

ar

Acceleration is
constant in magnitude

and direction.

Velocity and acceleration are perpendicular
only at the peak of the trajectory.

(b) Projectile motion

3.29 Acceleration and velocity (a) for a particle in uniform circular motion and (b) for
a projectile with no air resistance.
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CAUTION Uniform circular motion vs. projectile motion The acceleration in uniform cir-
cular motion (Fig. 3.29a) has some similarities to the acceleration in projectile motion
without air resistance (Fig. 3.29b), but there are also some important differences. In both
kinds of motion the magnitude of acceleration is the same at all times. However, in uni-
form circular motion the direction of changes continuously so that it always points
toward the center of the circle. (At the top of the circle the acceleration points down; at the
bottom of the circle the acceleration points up.) In projectile motion, by contrast, the direc-
tion of remains the same at all times. ❙

We can also express the magnitude of the acceleration in uniform circular
motion in terms of the period T of the motion, the time for one revolution (one
complete trip around the circle). In a time T the particle travels a distance equal to
the circumference of the circle, so its speed is

(3.29)

When we substitute this into Eq. (3.28), we obtain the alternative expression

(uniform circular motion) (3.30)arad =
4p2R

T2

v =
2pR

T

2pR

aS

aS

Example 3.11 Centripetal acceleration on a curved road

An Aston Martin V8 Vantage sports car has a “lateral acceleration”
of 0.96g � This is the maximum
centripetal acceleration the car can sustain without skidding out of
a curved path. If the car is traveling at a constant (about

or ) on level ground, what is the radius R of the
tightest unbanked curve it can negotiate?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: The car is in uniform circular
motion because it’s moving at a constant speed along a curve that
is a segment of a circle. Hence we can use Eq. (3.28) to solve for
the target variable R in terms of the given centripetal acceleration

144 km>h89 mi>h,
40 m>s

10.96219.8 m>s22 = 9.4 m>s2.
and speed 

(about 560 ft)

This is the minimum radius because is the maximum cen-
tripetal acceleration.

EVALUATE: The minimum turning radius R is proportional to the
square of the speed, so even a small reduction in speed can make R
substantially smaller. For example, reducing by 20% (from 
to ) would decrease R by 36% (from 170 m to 109 m).

Another way to make the minimum turning radius smaller is to
bank the curve. We’ll investigate this option in Chapter 5.

32 m>s
40 m>sv

arad

R =
v2

arad
=
140 m>s22

9.4 m>s2
= 170 m

v:arad

Example 3.12 Centripetal acceleration on a carnival ride

Passengers on a carnival ride move at constant speed in a horizon-
tal circle of radius 5.0 m, making a complete circle in 4.0 s. What
is their acceleration?

SOLUTION

IDENTIFY and SET UP: The speed is constant, so this is uniform
circular motion. We are given the radius and the period

so we can use Eq. (3.30) to calculate the acceleration
directly, or we can calculate the speed using Eq. (3.29) and then
find the acceleration using Eq. (3.28).

EXECUTE: From Eq. (3.30),

arad =
4p215.0 m2

14.0 s22
= 12 m>s2 = 1.3g

v
T = 4.0 s,

R = 5.0 m

We can check this answer by using the second, roundabout
approach. From Eq. (3.29), the speed is

The centripetal acceleration is then

EVALUATE: As in Example 3.11, the direction of is always
toward the center of the circle. The magnitude of is relatively
mild as carnival rides go; some roller coasters subject their passen-
gers to accelerations as great as 4g.

aS
aS

arad =
v2

R
=
17.9 m>s22

5.0 m
= 12 m>s2

v =
2pR

T
=

2p15.0 m2

4.0 s
= 7.9 m>s

PhET: Ladybug Revolution
PhET: Motion in 2D



Nonuniform Circular Motion
We have assumed throughout this section that the particle’s speed is constant as it
goes around the circle. If the speed varies, we call the motion nonuniform circu-
lar motion. In nonuniform circular motion, Eq. (3.28) still gives the radial com-
ponent of acceleration which is always perpendicular to the
instantaneous velocity and directed toward the center of the circle. But since the
speed has different values at different points in the motion, the value of is
not constant. The radial (centripetal) acceleration is greatest at the point in the
circle where the speed is greatest.

In nonuniform circular motion there is also a component of acceleration that is
parallel to the instantaneous velocity (see Figs. 3.27a and 3.27b). This is the com-
ponent that we discussed in Section 3.2; here we call this component to
emphasize that it is tangent to the circle. The tangential component of accelera-
tion is equal to the rate of change of speed. Thus

(nonuniform circular motion) (3.31)

The tangential component is in the same direction as the velocity if the particle
is speeding up, and in the opposite direction if the particle is slowing down
(Fig. 3.30). If the particle’s speed is constant, .

CAUTION Uniform vs. nonuniform circular motion Note that the two quantities

are not the same. The first, equal to the tangential acceleration, is the rate of change of
speed; it is zero whenever a particle moves with constant speed, even when its direction of
motion changes (such as in uniform circular motion). The second is the magnitude of the
vector acceleration; it is zero only when the particle’s acceleration vector is zero—that is,
when the particle moves in a straight line with constant speed. In uniform circular motion

in nonuniform circular motion there is also a tangential componentƒdv
S
>dt ƒ = arad = v2>r;

d ƒvS ƒ
dt

  and  ` dv
S

dt
`

atan = 0

arad =
v2

R
  and  atan =

d ƒvS ƒ
dt

atan

atanaŒ

aradv

arad = v2>R,
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Application Watch Out: Tight 
Curves Ahead!
These roller coaster cars are in nonuniform
circular motion: They slow down and speed up
as they move around a vertical loop. The large
accelerations involved in traveling at high
speed around a tight loop mean extra stress
on the passengers’ circulatory systems, which
is why people with cardiac conditions are cau-
tioned against going on such rides.

3.30 A particle moving in a vertical loop
with a varying speed, like a roller coaster
car.

arad
atan

Speed slowest, arad minimum, atan zero

Speed fastest, arad maximum, atan zero

vS

Slowing down;
atan opposite to vS

Speeding up; atan in
same direction as vS

aS �a� 5 arad
S

of acceleration, so ❙ƒdv
S

/dt ƒ = 2arad
2 + atan

2 .

Test Your Understanding of Section 3.4 Suppose that the particle in
Fig. 3.30 experiences four times the acceleration at the bottom of the loop as it
does at the top of the loop. Compared to its speed at the top of the loop, is its
speed at the bottom of the loop (i) times as great; (ii) 2 times as great; (iii) 
times as great; (iv) 4 times as great; or (v) 16 times as great? ❙

21212

3.5 Relative Velocity
You’ve no doubt observed how a car that is moving slowly forward appears to
be moving backward when you pass it. In general, when two observers meas-
ure the velocity of a moving body, they get different results if one observer is
moving relative to the other. The velocity seen by a particular observer is
called the velocity relative to that observer, or simply relative velocity. Figure
3.31 shows a situation in which understanding relative velocity is extremely
important.

We’ll first consider relative velocity along a straight line, then generalize to
relative velocity in a plane.

Relative Velocity in One Dimension
A passenger walks with a velocity of along the aisle of a train that is
moving with a velocity of (Fig. 3.32a). What is the passenger’s velocity?3.0 m>s

1.0 m>s

FPO
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It’s a simple enough question, but it has no single answer. As seen by a second
passenger sitting in the train, she is moving at A person on a bicycle
standing beside the train sees the walking passenger moving at 

An observer in another train going in the opposite direction
would give still another answer. We have to specify which observer we mean,
and we speak of the velocity relative to a particular observer. The walking pas-
senger’s velocity relative to the train is her velocity relative to the
cyclist is and so on. Each observer, equipped in principle with a meter
stick and a stopwatch, forms what we call a frame of reference. Thus a frame of
reference is a coordinate system plus a time scale.

Let’s use the symbol A for the cyclist’s frame of reference (at rest with respect
to the ground) and the symbol B for the frame of reference of the moving train. In
straight-line motion the position of a point P relative to frame A is given by 
(the position of P with respect to A), and the position of P relative to frame B is
given by (Fig. 3.32b). The position of the origin of B with respect to the ori-
gin of A is Figure 3.32b shows that

(3.32)

In words, the coordinate of P relative to A equals the coordinate of P relative to B
plus the coordinate of B relative to A.

The x-velocity of P relative to frame A, denoted by is the derivative
of with respect to time. The other velocities are similarly obtained. So the
time derivative of Eq. (3.32) gives us a relationship among the various
velocities:

(relative velocity along a line) (3.33)

Getting back to the passenger on the train in Fig. 3.32, we see that A is the
cyclist’s frame of reference, B is the frame of reference of the train, and point P
represents the passenger. Using the above notation, we have

From Eq. (3.33) the passenger’s velocity relative to the cyclist is

as we already knew.
In this example, both velocities are toward the right, and we have taken this as

the positive x-direction. If the passenger walks toward the left relative to the
train, then and her x-velocity relative to the cyclist isvP>B-x = -1.0 m>s,

vP>A-x = +1.0 m>s + 3.0 m>s = +4.0 m>s

vP>A

vP>B-x = +1.0 m>s  vB>A-x = +3.0 m>s

vP>A-x = vP>B-x + vB>A-x

dxP>A

dt
=

dxP>B

dt
+

dxB>A

dt
  or

xP>A

vP>A-x,

xP>A = xP>B + xB>A

xB>A.
xP>B

xP>A

4.0 m>s,
1.0 m>s,

3.0 m>s = 4.0 m>s.
1.0 m>s +

1.0 m>s.
3.31 Airshow pilots face a complicated
problem involving relative velocities. They
must keep track of their motion relative to
the air (to maintain enough airflow over the
wings to sustain lift), relative to each other
(to keep a tight formation without collid-
ing), and relative to their audience (to
remain in sight of the spectators).

3.32 (a) A passenger walking in a
train. (b) The position of the passen-
ger relative to the cyclist’s frame of refer-
ence and the train’s frame of reference.

Cyclist's 
frame

Train’s
frame

Velocity of train
relative to cyclist

Position of passenger
in both frames

(a)

A (cyclist)

B

P (passenger) B (train)

yA yB

P

OBOA

xB,
xA

xP/A

xP/BxB/A

vB/A

(b)

The sum in Eq. (3.33) is always an
algebraic sum, and any or all of the x-velocities may be negative.

When the passenger looks out the window, the stationary cyclist on the ground
appears to her to be moving backward; we can call the cyclist’s velocity relative
to her Clearly, this is just the negative of the passenger’s velocity relative
to the cyclist, In general, if A and B are any two points or frames of
reference,

(3.34)vA>B-x = -vB>A-x

vP>A-x.
vA>P-x.

vP>A-x = -1.0 m>s + 3.0 m>s = +2.0 m>s.



Relative Velocity in Two or Three Dimensions
We can extend the concept of relative velocity to include motion in a plane or in
space by using vector addition to combine velocities. Suppose that the passenger
in Fig. 3.32a is walking not down the aisle of the railroad car but from one side
of the car to the other, with a speed of (Fig. 3.34a). We can again
describe the passenger’s position P in two different frames of reference: A for

1.0 m>s
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Problem-Solving Strategy 3.2 Relative Velocity

IDENTIFY the relevant concepts: Whenever you see the phrase
“velocity relative to” or “velocity with respect to,” it’s likely that
the concepts of relative velocity will be helpful.

SET UP the problem: Sketch and label each frame of reference in
the problem. Each moving body has its own frame of reference; in
addition, you’ll almost always have to include the frame of refer-
ence of the earth’s surface. (Statements such as “The car is travel-
ing north at ” implicitly refer to the car’s velocity relative
to the surface of the earth.) Use the labels to help identify the target
variable. For example, if you want to find the x-velocity of a car

with respect to a bus your target variable is 

EXECUTE the solution: Solve for the target variable using Eq. (3.33).
(If the velocities aren’t along the same direction, you’ll need to use
the vector form of this equation, derived later in this section.) It’s

vC >B-x.1B2,1C2

90 km >  h

important to note the order of the double subscripts in Eq. (3.33):
means “x-velocity of B relative to A.” These subscripts obey

a kind of algebra, as Eq. (3.33) shows. If we regard each one as a
fraction, then the fraction on the left side is the product of the frac-
tions on the right side: You can apply this
rule to any number of frames of reference. For example, if there
are three different frames of reference A, B, and C, Eq. (3.33)
becomes

EVALUATE your answer: Be on the lookout for stray minus signs in
your answer. If the target variable is the x-velocity of a car relative
to a bus make sure that you haven’t accidentally calcu-
lated the x-velocity of the bus relative to the car If you’ve
made this mistake, you can recover using Eq. (3.34).

1vB>  C-x2.
1vC >  B-x2,

vP>  A-x = vP>  C-x + vC>  B-x + vB>  A-x

P>  A = 1P>  B21B>  A2.

vB >A-x

Example 3.13 Relative velocity on a straight road

You drive north on a straight two-lane road at a constant 
A truck in the other lane approaches you at a constant 
(Fig. 3.33). Find (a) the truck’s velocity relative to you and (b)
your velocity relative to the truck. (c) How do the relative veloci-
ties change after you and the truck pass each other? Treat this as a
one-dimensional problem.

SOLUTION

IDENTIFY and SET UP: In this problem about relative velocities
along a line, there are three reference frames: you (Y), the truck (T),
and the earth’s surface (E). Let the positive x-direction be north
(Fig. 3.33). Then your x-velocity relative to the earth is

The truck is initially approaching you, so it
is moving south and its x-velocity with respect to the earth is

The target variables in parts (a) and (b) are
and respectively. We’ll use Eq. (3.33) to find the first

target variable and Eq. (3.34) to find the second.

EXECUTE: (a) To find we write Eq. (3.33) for the known
and rearrange:

The truck is moving at in the negative x-direction
(south) relative to you.

(b) From Eq. (3.34),

vY >  T-x = -vT >  Y-x = -1-192 km>  h2 = +192 km>  h

192 km>  h

= -104 km>  h - 88 km>  h = -192 km>  h

vT >  Y-x = vT >  E-x - vY >  E-x

vT >  E-x = vT >  Y-x + vY >  E-x

vT >  E-x

vT >  Y-x,

vY>  T-x,vT >  Y-x

vT >  E-x = -104 km>  h.

vY>  E-x = +88 km >  h.

104 km >  h
88 km >  h.

You are moving at in the positive x-direction (north) rel-
ative to the truck.

(c) The relative velocities do not change after you and the truck
pass each other. The relative positions of the bodies don’t matter.
After it passes you the truck is still moving at toward the
south relative to you, even though it is now moving away from you
instead of toward you.

EVALUATE: To check your answer in part (b), use Eq. (3.33)
directly in the form The x-velocity of
the earth with respect to the truck is the opposite of the x-velocity
of the truck with respect to the earth: Do you
get the same result?

vE >  T-x = -vT >  E-x.2

1vY >  T-x = vY >  E-x + vE >  T-x.

192 km >  h

192 km >  h

N

EW

S

x

Earth (E)

Truck (T)

You (Y)

vY/E
S

vT/E
S

3.33 Reference frames for you and the truck.
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the stationary ground observer and B for the moving train. But instead of coordi-
nates x, we use position vectors because the problem is now two-dimensional.
Then, as Fig. 3.34b shows,

(3.35)

Just as we did before, we take the time derivative of this equation to get a rela-
tionship among the various velocities; the velocity of P relative to A is

and so on for the other velocities. We get

(relative velocity in space) (3.36)

Equation (3.36) is known as the Galilean velocity transformation. It relates
the velocity of a body P with respect to frame A and its velocity with respect to
frame B and respectively) to the velocity of frame B with respect tovSP>B,1vSP>A

vSP>A � vSP>B � vSB>A

d r
S

P>A>dt
vSP>A �

rSP>A � rSP>B � rSB>A

rS

frame A If all three of these velocities lie along the same line, then Eq.
(3.36) reduces to Eq. (3.33) for the components of the velocities along that line.

1vSB>A2.

(b)

yA

zA

xAOA

yB

zB

xBOB

P

vB/A
S

rP/B
SrP/A

S

rB/A
S

Velocity of train
relative to cyclist

Position of passenger
in both frames

f 5 18°

v
P

/A
5

3.2 m/ s

vP/B 5 1.0 m/s

v
B

/A
5

3.0 m/ s

(a) (c) Relative velocities
(seen from above)

1.0 m/s

B (train)

B

A (cyclist)

P (passenger)

Train’s
frame

Cyclist’s
frame

3.0 m/s

3.34 (a) A passenger walking across a railroad car. (b) Position of the passenger relative to the cyclist’s frame and the train’s frame.
(c) Vector diagram for the velocity of the passenger relative to the ground (the cyclist’s frame), vSP>A.

If the train is moving at relative to the ground and the passen-
ger is moving at relative to the train, then the passenger’s veloc-
ity vector relative to the ground is as shown in Fig. 3.34c. The Pythagorean
theorem then gives us

Figure 3.34c also shows that the direction of the passenger’s velocity vector rel-
ative to the ground makes an angle with the train’s velocity vector where

As in the case of motion along a straight line, we have the general rule that if
A and B are any two points or frames of reference,

(3.37)

The velocity of the passenger relative to the train is the negative of the velocity
of the train relative to the passenger, and so on.

In the early 20th century Albert Einstein showed in his special theory of rela-
tivity that the velocity-addition relationship given in Eq. (3.36) has to be modi-
fied when speeds approach the speed of light, denoted by c. It turns out that if the
passenger in Fig. 3.32a could walk down the aisle at 0.30c and the train could
move at 0.90c, then her speed relative to the ground would be not 1.20c but
0.94c; nothing can travel faster than light! We’ll return to the special theory of
relativity in Chapter 37.

vSA>B � �vSB>A

tanf =
vP>B

vB>A
=

1.0 m>s

3.0 m>s
  and  f = 18°

vSB>A,f

vP>A = 213.0 m>s22 + 11.0 m>s22 = 210 m2>s2 = 3.2 m>s

vSP>A

vP>B = 1.0 m>s
vB>A = 3.0 m>s
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Example 3.14 Flying in a crosswind

An airplane’s compass indicates that it is headed due north, and its
airspeed indicator shows that it is moving through the air at

If there is a 100-km h wind from west to east, what is
the velocity of the airplane relative to the earth?

SOLUTION

IDENTIFY and SET UP: This problem involves velocities in two
dimensions (northward and eastward), so it is a relative velocity
problem using vectors. We are given the magnitude and direction
of the velocity of the plane (P) relative to the air (A). We are also
given the magnitude and direction of the wind velocity, which is
the velocity of the air A with respect to the earth (E):

We’ll use Eq. (3.36) to find our target variables: the magnitude
and direction of the velocity of the plane relative to the
earth.

EXECUTE: From Eq. (3.36) we have

Figure 3.35 shows that the three relative velocities constitute a
right-triangle vector addition; the unknowns are the speed and
the angle We find

a = arctana
100 km>h

240 km>h
b = 23° E of N

vP>E = 21240 km>h22 + 1100 km>h22 = 260 km>h

a.
vP>E

vSP>E � vSP>A � vSA>E

vSP>E

vSA>E = 100 km>h  due east

vSP>A = 240 km>h  due north

>240 km>h.

EVALUATE: You can check the results by taking measurements on
the scale drawing in Fig. 3.35. The crosswind increases the speed
of the airplane relative to the earth, but pushes the airplane off
course.

240 km/h,
north

east

N

EW

S

a

vP/E
SvP/A 5

S

vA/E 5 100 km/h,S

3.35 The plane is pointed north, but the wind blows east,
giving the resultant velocity relative to the earth.vSP>E

Example 3.15 Correcting for a crosswind

With wind and airspeed as in Example 3.14, in what direction
should the pilot head to travel due north? What will be her velocity
relative to the earth?

SOLUTION

IDENTIFY and SET UP: Like Example 3.14, this is a relative
velocity problem with vectors. Figure 3.36 is a scale drawing of
the situation. Again the vectors add in accordance with Eq. (3.36)
and form a right triangle:

As Fig. 3.36 shows, the pilot points the nose of the airplane at an
angle into the wind to compensate for the crosswind. This
angle, which tells us the direction of the vector (the velocity
of the airplane relative to the air), is one of our target variables.
The other target variable is the speed of the airplane over the
ground, which is the magnitude of the vector (the velocity
of the airplane relative to the earth). The known and unknown
quantities are

due eastvSA>E � 100 km>h

direction unknownvSP>A � 240 km>h

due northvSP>E � magnitude unknown

vSP>E

vSP>A

b

vSP>E � vSP>A � vSA>E 240 km/h,
at angle b

east

N

EW

S

vA/E 5 100 km/h,S

vP/A 5
S

vP/E,
north

S

b

3.36 The pilot must point the plane in the direction of the
vector to travel due north relative to the earth.vSP>A

We’ll solve for the target variables using Fig. 3.36 and
trigonometry.
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EXECUTE: From Fig. 3.36 the speed and the angle are

The pilot should point the airplane west of north, and her
ground speed is then 218 km>h.

25°

b = arcsina
100 km>h

240 km>h
b = 25°

vP>E = 21240 km>h22 - 1100 km>h22 = 218 km>h

bvP>E EVALUATE: There were two target variables—the magnitude of a
vector and the direction of a vector—in both this example and
Example 3.14. In Example 3.14 the magnitude and direction
referred to the same vector here they refer to different vec-1vSP>E2;

Test Your Understanding of Section 3.5 Suppose the nose of an
airplane is pointed due east and the airplane has an airspeed of Due to
the wind, the airplane is moving due north relative to the ground and its speed rel-
ative to the ground is What is the velocity of the air relative to the earth? 
(i) from east to west; (ii) from south to north; (iii) from
southeast to northwest; (iv) from east to west; (v) from south to
north; (vi) from southeast to northwest; (vii) there is no possible wind velocity
that could cause this. ❙

212 km>h
212 km>h212 km>h

150 km>h150 km>h150 km>h
150 km>h.

150 km>h.

tors and 
While we expect a headwind to reduce an airplane’s speed rela-

tive to the ground, this example shows that a crosswind does, too.
That’s an unfortunate fact of aeronautical life.

vSP>A2.1vSP>E
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CHAPTER 3 SUMMARY

Position, velocity, and acceleration vectors: The position
vector of a point P in space is the vector from the
origin to P. Its components are the coordinates x, y, and z.

The average velocity vector during the time
interval is the displacement (the change in the
position vector divided by The instantaneous
velocity vector is the time derivative of and its
components are the time derivatives of x, y, and z. The
instantaneous speed is the magnitude of The velocity

of a particle is always tangent to the particle’s path.
(See Example 3.1.)

The average acceleration vector during the time
interval equals (the change in the velocity vector

divided by The instantaneous acceleration vector
is the time derivative of and its components are the

time derivatives of and (See Example 3.2.)
The component of acceleration parallel to the

direction of the instantaneous velocity affects the speed,
while the component of perpendicular to affects the
direction of motion. (See Examples 3.3 and 3.4.)

vSaS

vz .vy ,vx ,
vS,aS

¢t.vS2
¢vS¢t

aSav

vS
vS.

rS,vS
¢t.rS)
¢ rS¢t
vSav

rS
(3.1)

(3.2)

(3.3)

(3.4)

(3.8)

(3.9)

(3.10)

az =
dvz

dt

ay =
dvy

dt

ax =
dvx

dt

aS � lim
¢tS0

 
¢vS

¢t
�

dv
S

dt

aSav �
vS2 � vS1

t2 - t1
�

¢vS

¢t

vx =
dx

dt
 vy =

dy

dt
 vz =

dz

dt

vS � lim
¢tS0

 
¢ rS

¢t
�

d r
S

dt

vSav �
rS2 � rS1

t2 - t1
�

¢ rS

¢t

rS � x ıN � y ≥N � z kN

Projectile motion: In projectile motion with no air
resistance, and The coordinates and
velocity components are simple functions of time, and
the shape of the path is always a parabola. We usually
choose the origin to be at the initial position of the
projectile. (See Examples 3.5–3.10.)

ay = -g.ax = 0
(3.20)

(3.21)

(3.22)

(3.23)vy = v0 sin a0 - gt

vx = v0 cos a0

y = 1v0 sin a02t - 1
2 gt2

x = 1v0 cos a02t

Uniform and nonuniform circular motion: When a particle
moves in a circular path of radius R with constant speed 
(uniform circular motion), its acceleration is directed
toward the center of the circle and perpendicular to 
The magnitude of the acceleration can be expressed
in terms of and R or in terms of R and the period T
(the time for one revolution), where (See
Examples 3.11 and 3.12.)

If the speed is not constant in circular motion
(nonuniform circular motion), there is still a radial
component of given by Eq. (3.28) or (3.30), but there
is also a component of parallel (tangential) to the
path. This tangential component is equal to the rate of
change of speed, dv/dt.

aS
aS

v = 2pR/T.
v

arad

vS.
aS

v (3.28)

(3.30)arad =
4p2R

T2

arad =
v2

R

Relative velocity: When a body P moves relative to a
body (or reference frame) B, and B moves relative to A, (relative velocity along a line)

(3.33)

(relative velocity in space)
(3.36)

vSP>A � vSP>B � vSB>A

vP/A-x = vP/B-x + vB/A-x

Dx

Dy

y1
Sr1

S
Dr

DvS

Sr2

v2
S

v2
S

v1
S

v1
S

x1 x2

y2

y

O
x

y

O
x

S

aav 5 
S Dv

D t

S

vav 5 
S Dr

D t

y

O
x

Sv
Sv

Sv
Sv

vx

vx

ay 5 2g
vy

vy

vx
vy

vS

vS

vS
vS

vS arad
S

arad
S

arad
S

arad
S

arad
Sarad

S

vS

A (ground
observer)

B (moving air)

P (plane)

SvP/B
SvP/A

SvB/A
vP/A 5 vP/B 1 vB /A
S S S

we denote the velocity of P relative to B by the
velocity of P relative to A by and the velocity of B
relative to A by If these velocities are all along the 
same line, their components along that line are related
by Eq. (3.33). More generally, these velocities are
related by Eq. (3.36). (See Examples 3.13–3.15.)

vSB>A .
vSP>A ,

vSP>B ,
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You fire a ball with an initial speed at an angle above the sur-
face of an incline, which is itself inclined at an angle above the
horizontal (Fig. 3.37). (a) Find the distance, measured along the
incline, from the launch point to the point when the ball strikes the
incline. (b) What angle gives the maximum range, measured
along the incline? Ignore air resistance.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. Since there’s no air resistance, this is a problem in projectile

motion. The goal is to find the point where the ball’s parabolic
trajectory intersects the incline.

2. Choose the x- and y-axes and the position of the origin. When
in doubt, use the suggestions given in Problem-Solving Strat-
egy 3.1 in Section 3.3.

3. In the projectile equations from Section 3.3, the launch angle
is measured from the horizontal. What is this angle in terms

of and ? What are the initial x- and y-components of the
ball’s initial velocity?

4. You’ll need to write an equation that relates x and y for points
along the incline. What is this equation? (This takes just geom-
etry and trigonometry, not physics.)

fu

a0

f

u

fv0 3.37 Launching a ball from an inclined ramp.

BRIDGING PROBLEM Launching Up an Incline

EXECUTE
5. Write the equations for the x-coordinate and y-coordinate of the

ball as functions of time t.
6. When the ball hits the incline, x and y are related by the equa-

tion that you found in step 4. Based on this, at what time t does
the ball hit the incline?

7. Based on your answer from step 6, at what coordinates x and y
does the ball land on the incline? How far is this point from the
launch point?

8. What value of gives the maximum distance from the launch
point to the landing point? (Use your knowledge of calculus.)

EVALUATE
9. Check your answers for the case � 0, which corresponds to

the incline being horizontal rather than tilted. (You already know
the answers for this case. Do you know why?)

u

f

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q3.1 A simple pendulum (a mass swinging at the end of a string)
swings back and forth in a circular arc. What is the direction of the
acceleration of the mass when it is at the ends of the swing? At the
midpoint? In each case, explain how you obtain your answer.
Q3.2 Redraw Fig. 3.11a if is antiparallel to Does the particle
move in a straight line? What happens to its speed?
Q3.3 A projectile moves in a parabolic path without air resistance.
Is there any point at which is parallel to Perpendicular to 
Explain.
Q3.4 When a rifle is fired at a distant target, the barrel is not lined
up exactly on the target. Why not? Does the angle of correction
depend on the distance to the target?
Q3.5 At the same instant that you fire a bullet horizontally from a
rifle, you drop a bullet from the height of the barrel. If there is no
air resistance, which bullet hits the ground first? Explain.
Q3.6 A package falls out of an airplane that is flying in a straight
line at a constant altitude and speed. If you could ignore air resist-
ance, what would be the path of the package as observed by the
pilot? As observed by a person on the ground?
Q3.7 Sketch the six graphs of the x- and y-components of position,
velocity, and acceleration versus time for projectile motion with

and 0 6 a0 6 90°.x0 = y0 = 0

vS?vS?aS

vS1.aS

Q3.8 If a jumping frog can give itself the same initial speed regard-
less of the direction in which it jumps (forward or straight up), how
is the maximum vertical height to which it can jump related to its
maximum horizontal range 
Q3.9 A projectile is fired upward at an angle above the horizon-
tal with an initial speed At its maximum height, what are its
velocity vector, its speed, and its acceleration vector?
Q3.10 In uniform circular motion, what are the average velocity
and average acceleration for one revolution? Explain.
Q3.11 In uniform circular motion, how does the acceleration
change when the speed is increased by a factor of 3? When the
radius is decreased by a factor of 2?
Q3.12 In uniform circular motion, the acceleration is perpendicu-
lar to the velocity at every instant. Is this still true when the motion
is not uniform—that is, when the speed is not constant?
Q3.13 Raindrops hitting the side windows of a car in motion often
leave diagonal streaks even if there is no wind. Why? Is the
explanation the same or different for diagonal streaks on the
windshield?
Q3.14 In a rainstorm with a strong wind, what determines the best
position in which to hold an umbrella?
Q3.15 You are on the west bank of a river that is flowing north
with a speed of Your swimming speed relative to the1.2 m>s.

v0.
u

R max = v 2
0 >g?

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.
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3.11 . Two crickets, Chirpy and
Milada, jump from the top of a vertical cliff. Chirpy just drops and
reaches the ground in 3.50 s, while Milada jumps horizontally with
an initial speed of How far from the base of the cliff
will Milada hit the ground?
3.12 . A rookie quarterback throws a football with an initial
upward velocity component of and a horizontal velocity
component of Ignore air resistance. (a) How much time
is required for the football to reach the highest point of the trajec-
tory? (b) How high is this point? (c) How much time (after it is
thrown) is required for the football to return to its original level?
How does this compare with the time calculated in part (a)? 
(d) How far has the football traveled horizontally during this time?
(e) Draw x-t, y-t, and graphs for the motion.

3.13 .. Leaping the River I. A car traveling on a level horizontal
road comes to a bridge during a storm and finds the bridge washed
out. The driver must get to the other side, so he decides to try leap-
ing it with his car. The side of the road the car is on is 21.3 m
above the river, while the opposite side is a mere 1.8 m above the
river. The river itself is a raging torrent 61.0 m wide. (a) How fast
should the car be traveling at the time it leaves the road in order just
to clear the river and land safely on the opposite side? (b) What is
the speed of the car just before it lands on the other side?
3.14 . BIO The Champion Jumper of the Insect World. The
froghopper, Philaenus spumarius, holds the world record for

vy-tvx-t,

20.0 m>s.
12.0 m>s

95.0 cm>s.

and (a) Sketch the path of the bird between 
and (b) Calculate the velocity and acceleration vectors
of the bird as functions of time. (c) Calculate the magnitude and
direction of the bird’s velocity and acceleration at 
(d) Sketch the velocity and acceleration vectors at At
this instant, is the bird speeding up, is it slowing down, or is its
speed instantaneously not changing? Is the bird turning? If so, in
what direction?

Section 3.3 Projectile Motion
3.8 . CALC A remote-controlled car is moving in a vacant parking
lot. The velocity of the car as a function of time is given by 

(a) What are and , the x- and y-components of the veloc-
ity of the car as functions of time? (b) What are the magnitude and
direction of the velocity of the car at ? (b) What are the
magnitude and direction of the acceleration of the car at ?
3.9 . A physics book slides off a horizontal tabletop with a speed
of It strikes the floor in 0.350 s. Ignore air resistance.
Find (a) the height of the tabletop above the floor; (b) the horizon-
tal distance from the edge of the table to the point where the book
strikes the floor; (c) the horizontal and vertical components of the
book’s velocity, and the magnitude and direction of its velocity,
just before the book reaches the floor. (d) Draw x-t, y-t, and

graphs for the motion.

3.10 .. A daring 510-N swim-
mer dives off a cliff with a run-
ning horizontal leap, as shown in
Fig. E3.10. What must her mini-
mum speed be just as she leaves
the top of the cliff so that she will
miss the ledge at the bottom,
which is 1.75 m wide and 9.00 m
below the top of the cliff?

vy-t
vx-t,

1.10 m>s.

t = 8.00 s
t = 8.00 s

ay(t)ax(t)
35.00 m>s - 10.0180 m>s32t24ın � 32.00 m>s + 10.550 m>s22t4 ≥n.

vS �

t = 2.0 s.
t = 2.0 s.

t = 2.0 s.
t = 0b = 1.2 m>s2.

v0

Ledge

1.75 m
9.00 m
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water is and the river is 60 m wide. What is your path rel-
ative to the earth that allows you to cross the river in the shortest
time? Explain your reasoning.
Q3.16 A stone is thrown into the air at an angle above the horizon-
tal and feels negligible air resistance. Which graph in Fig. Q3.16
best depicts the stone’s speed as a function of time t while it is in
the air?

v

1.5 m>s, 3.7 .. CALC The coordinates of a bird flying in the xy-plane are
given by and where a = 2.4 m>sy1t2 = 3.0 m - bt 2,x1t2 = at

(a)

t

v

(b)

t

v

(c)

t

v

(e)

t

v

(d)

t

v

Figure Q3.16

Figure E3.10

EXERCISES
Section 3.1 Position and Velocity Vectors
3.1 . A squirrel has x- and y-coordinates at time

and coordinates at time For
this time interval, find (a) the components of the average velocity,
and (b) the magnitude and direction of the average velocity.
3.2 . A rhinoceros is at the origin of coordinates at time 
For the time interval from to the rhino’s aver-
age velocity has x-component and y-component

At time (a) what are the x- and y-coordinates
of the rhino? (b) How far is the rhino from the origin?
3.3 .. CALC A web page designer creates an animation in which a
dot on a computer screen has a position of 

(a) Find the magnitude and
direction of the dot’s average velocity between and

(b) Find the magnitude and direction of the instanta-
neous velocity at and (c) Sketch the
dot’s trajectory from to and show the velocities
calculated in part (b).
3.4 . CALC The position of a squirrel running in a park is given 
by .
(a) What are and , the x- and y-components of the
velocity of the squirrel, as functions of time? (b) At ,
how far is the squirrel from its initial position? (c) At 
what are the magnitude and direction of the squirrel’s 
velocity?

Section 3.2 The Acceleration Vector
3.5 . A jet plane is flying at a constant altitude. At time it
has components of velocity At time

the components are 
(a) Sketch the velocity vectors at and How do these two vec-
tors differ? For this time interval calculate (b) the components of
the average acceleration, and (c) the magnitude and direction of
the average acceleration.
3.6 .. A dog running in an open field has components of veloc-
ity and at For the time
interval from to the average acceleration
of the dog has magnitude and direction meas-
ured from the toward the At 
(a) what are the x- and y-components of the dog’s velocity? 
(b) What are the magnitude and direction of the dog’s velocity?
(c) Sketch the velocity vectors at and How do these two
vectors differ?

t2.t1

t2 = 20.0 s,+y-axis.+x-axis
31.0°0.45 m>s2

t2 = 20.0 s,t1 = 10.0 s
t1 = 10.0 s.vy = -1.8 m>svx = 2.6 m>s

t2.t1

vy = 40 m>s.vx = -170 m>s,t2 = 30.0 s
vy = 110 m>s.vx = 90 m>s,

t1 = 0

t = 5.00 s,
t = 5.00 s

vy1t2vx1t2
r
S

� 310.280 m>s2t + 10.0360 m>s22t24ın � 10.0190 m>s32t3≥n

t = 2.0 s,t = 0
t = 2.0 s.t = 1.0 s,t = 0,

t = 2.0 s.
t = 0

12.5 cm>s22t24ın � 15.0 cm>s2t≥n.
rS � 34.0 cm +

t2 = 12.0 s,4.9 m>s.
-3.8 m>s
t2 = 12.0 s,t1 = 0

t1 = 0.

t2 = 3.0 s.15.3 m, -0.5 m2t1 = 0
11.1 m, 3.4 m2



insect jumps. When leaping at an angle of 58.0° above the hori-
zontal, some of the tiny critters have reached a maximum height
of 58.7 cm above the level ground. (See Nature, Vol. 424, 
July 31, 2003, p. 509.) (a) What was the takeoff speed for such a
leap? (b) What horizontal distance did the froghopper cover for
this world-record leap?
3.15 .. Inside a starship at rest on the earth, a ball rolls off the
top of a horizontal table and lands a distance D from the foot of
the table. This starship now lands on the unexplored Planet X. The
commander, Captain Curious, rolls the same ball off the same
table with the same initial speed as on earth and finds that it lands
a distance 2.76D from the foot of the table. What is the accelera-
tion due to gravity on Planet X?
3.16 . On level ground a shell is fired with an initial velocity of

at 60.0° above the horizontal and feels no appreciable air
resistance. (a) Find the horizontal and vertical components of the
shell’s initial velocity. (b) How long does it take the shell to reach
its highest point? (c) Find its maximum height above the ground.
(d) How far from its firing point does the shell land? (e) At its
highest point, find the horizontal and vertical components of its
acceleration and velocity.
3.17 . A major leaguer hits a baseball so that it leaves the bat at a
speed of and at an angle of above the horizontal.
You can ignore air resistance. (a) At what two times is the baseball
at a height of 10.0 m above the point at which it left the bat? (b)
Calculate the horizontal and vertical components of the baseball’s
velocity at each of the two times calculated in part (a). (c) What
are the magnitude and direction of the baseball’s velocity when it
returns to the level at which it left the bat?
3.18 . A shot putter releases the shot some distance above the
level ground with a velocity of above the horizon-
tal. The shot hits the ground 2.08 s later. You can ignore air resist-
ance. (a) What are the components of the shot’s acceleration while
in flight? (b) What are the components of the shot’s velocity at the
beginning and at the end of its trajectory? (c) How far did she
throw the shot horizontally? (d) Why does the expression for R in
Example 3.8 not give the correct answer for part (c)? (e) How high
was the shot above the ground when she released it? (f) Draw x-t,
y-t, and graphs for the motion.

3.19 .. Win the Prize. In a carnival booth, you win a stuffed
giraffe if you toss a quarter into a small dish. The dish is on a shelf
above the point where the quarter leaves your hand and is a hori-
zontal distance of 2.1 m from this point (Fig. E3.19). If you toss
the coin with a velocity of at an angle of above the
horizontal, the coin lands in the dish. You can ignore air resist-
ance. (a) What is the height of the shelf above the point where the

60°6.4 m>s

vy-tvx-t,

51.0°12.0 m>s,

36.9°30.0 m>s

50.0 m>s
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quarter leaves your hand? (b) What is the vertical component of
the velocity of the quarter just before it lands in the dish?

v 5 6.4 m/s

60°

2.1 m

?

Figure E3.19

3.20 .. Suppose the departure angle in Fig. 3.26 is and
the distance d is 3.00 m. Where will the dart and monkey meet if
the initial speed of the dart is (a) (b) (c) What
will happen if the initial speed of the dart is Sketch the
trajectory in each case.
3.21 .. A man stands on the roof of a 15.0-m-tall building and
throws a rock with a velocity of magnitude at an angle of

above the horizontal. You can ignore air resistance. Calculate
(a) the maximum height above the roof reached by the rock; (b) the
magnitude of the velocity of the rock just before it strikes the
ground; and (c) the horizontal range from the base of the building
to the point where the rock strikes the ground. (d) Draw x-t, y-t,

and graphs for the motion.

3.22 . Firemen are shooting a stream of water at a burning build-
ing using a high-pressure hose that shoots out the water with a
speed of as it leaves the end of the hose. Once it leaves
the hose, the water moves in projectile motion. The firemen adjust
the angle of elevation of the hose until the water takes 3.00 s to
reach a building 45.0 m away. You can ignore air resistance;
assume that the end of the hose is at ground level. (a) Find the
angle of elevation (b) Find the speed and acceleration of the water
at the highest point in its trajectory. (c) How high above the ground
does the water strike the building, and how fast is it moving just
before it hits the building?
3.23 .. A 124-kg balloon carrying a 22-kg basket is descending
with a constant downward velocity of A 1.0-kg stone is
thrown from the basket with an initial velocity of perpen-
dicular to the path of the descending balloon, as measured relative
to a person at rest in the basket. The person in the basket sees the
stone hit the ground 6.00 s after being thrown. Assume that the bal-
loon continues its downward descent with the same constant speed
of (a) How high was the balloon when the rock was
thrown out? (b) How high is the balloon when the rock hits the
ground? (c) At the instant the rock hits the ground, how far is it
from the basket? (d) Just before the rock hits the ground, find its
horizontal and vertical velocity components as measured by an
observer (i) at rest in the basket and (ii) at rest on the ground.

Section 3.4 Motion in a Circle
3.24 .. BIO Dizziness. Our balance is maintained, at least in
part, by the endolymph fluid in the inner ear. Spinning displaces
this fluid, causing dizziness. Suppose a dancer (or skater) is spin-
ning at a very fast 3.0 revolutions per second about a vertical axis
through the center of his head. Although the distance varies from
person to person, the inner ear is approximately 7.0 cm from the
axis of spin. What is the radial acceleration (in and in g’s) of
the endolymph fluid?
3.25 .. The earth has a radius of 6380 km and turns around once
on its axis in 24 h. (a) What is the radial acceleration of an object at
the earth’s equator? Give your answer in and as a fraction of g.
(b) If at the equator is greater than g, objects will fly off the
earth’s surface and into space. (We will see the reason for this in
Chapter 5.) What would the period of the earth’s rotation have to
be for this to occur?
3.26 .. A model of a helicopter rotor has four blades, each 3.40 m
long from the central shaft to the blade tip. The model is rotated in
a wind tunnel at (a) What is the linear speed of the
blade tip, in (b) What is the radial acceleration of the blade
tip expressed as a multiple of the acceleration of gravity, g?

m>s?
550 rev>min.

arad

m>s2

m>s2

20.0 m>s.

15.0 m>s
20.0 m>s.

a.

a

25.0 m>s

vy-tvx-t,

33.0°
30.0 m>s

4.0 m>s?
8.0 m>s?12.0 m>s?

42.0°a0



3.29 . A Ferris wheel with
radius 14.0 m is turning about a
horizontal axis through its cen-
ter (Fig. E3.29). The linear
speed of a passenger on the rim
is constant and equal to

What are the magni-
tude and direction of the passen-
ger’s acceleration as she passes
through (a) the lowest point in
her circular motion? (b) The
highest point in her circular
motion? (c) How much time
does it take the Ferris wheel to
make one revolution?
3.30 .. BIO Hypergravity. At its Ames Research Center,
NASA uses its large “20-G” centrifuge to test the effects of very
large accelerations (“hypergravity”) on test pilots and astronauts. In
this device, an arm 8.84 m long rotates about one end in a horizontal
plane, and the astronaut is strapped in at the other end. Suppose that
he is aligned along the arm with his head at the outermost end. The
maximum sustained acceleration to which humans are subjected in
this machine is typically 12.5g. (a) How fast must the astronaut’s
head be moving to experience this maximum acceleration? (b) What
is the difference between the acceleration of his head and feet if the
astronaut is 2.00 m tall? (c) How fast in rpm is the arm
turning to produce the maximum sustained acceleration?

Section 3.5 Relative Velocity
3.31 . A “moving sidewalk” in an airport terminal building
moves at and is 35.0 m long. If a woman steps on at one
end and walks at relative to the moving sidewalk, how
much time does she require to reach the opposite end if she walks
(a) in the same direction the sidewalk is moving? (b) In the oppo-
site direction?
3.32 . A railroad flatcar is traveling to the right at a speed of

relative to an observer standing on the ground. Someone
is riding a motor scooter on the flatcar (Fig. E3.32). What is the
velocity (magnitude and direction) of the motor scooter relative to
the flatcar if its velocity relative to the observer on the ground is
(a) to the right? (b) to the left? (c) zero?3.0 m >  s18.0 m >  s

13.0 m >  s

1.5 m >  s
1.0 m >  s

1rev >  min2

7.00 m >  s.

3.27 . BIO Pilot Blackout in
a Power Dive. A jet plane
comes in for a downward dive
as shown in Fig. E3.27. The
bottom part of the path is a
quarter circle with a radius of
curvature of 350 m. According
to medical tests, pilots lose
consciousness at an accelera-
tion of 5.5g. At what speed (in

and in mph) will the pilot
black out for this dive?
m>s
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3.33 .. A canoe has a velocity of southeast relative to
the earth. The canoe is on a river that is flowing east rela-
tive to the earth. Find the velocity (magnitude and direction) of the
canoe relative to the river.
3.34 . Two piers, A and B, are located on a river: B is 1500 m
downstream from A (Fig. E3.34). Two friends must make round
trips from pier A to pier B and return. One rows a boat at a constant
speed of relative to the water; the other walks on the
shore at a constant speed of The velocity of the river is

in the direction from A to B. How much time does it
take each person to make the round trip?
2.80 km >  h

4.00 km >  h.
4.00 km >  h

0.50 m >  s
0.40 m >  s

14.0 m

Figure E3.29

v 5 13.0 m/s

Figure E3.32Figure E3.27

1500 m

vcurrent

BA

Figure E3.34

3.28 . The radius of the earth’s orbit around the sun (assumed to
be circular) is and the earth travels around this
orbit in 365 days. (a) What is the magnitude of the orbital velocity
of the earth, in (b) What is the radial acceleration of the earth
toward the sun, in (c) Repeat parts (a) and (b) for the
motion of the planet Mercury 
orbital period = 88.0 days2.

1orbit radius = 5.79 * 107 km,
m >  s2

 ?
m >  s?

1.50 * 108 km,

3.35 . Crossing the River I. A river flows due south with a
speed of A man steers a motorboat across the river; his
velocity relative to the water is due east. The river is 800 m
wide. (a) What is his velocity (magnitude and direction) relative to
the earth? (b) How much time is required to cross the river? 
(c) How far south of his starting point will he reach the opposite
bank?
3.36 . Crossing the River II. (a) In which direction should the
motorboat in Exercise 3.35 head in order to reach a point on the
opposite bank directly east from the starting point? (The boat’s
speed relative to the water remains ) (b) What is the veloc-
ity of the boat relative to the earth? (c) How much time is required
to cross the river?
3.37 .. The nose of an ultralight plane is pointed south, and its
airspeed indicator shows The plane is in a wind
blowing toward the southwest relative to the earth. (a) In a vector-
addition diagram, show the relationship of (the velocity of the
plane relative to the earth) to the two given vectors. (b) Letting x
be east and y be north, find the components of (c) Find the
magnitude and direction of 

3.38 .. An airplane pilot wishes to fly due west. A wind of
(about ) is blowing toward the south. (a) If the

airspeed of the plane (its speed in still air) is (about
), in which direction should the pilot head? (b) What is

the speed of the plane over the ground? Illustrate with a vector
diagram.
3.39 .. BIO Bird Migration. Canadian geese migrate essen-
tially along a north–south direction for well over a thousand kilo-
meters in some cases, traveling at speeds up to about If
one such bird is flying at relative to the air, but there is a100 km>  h

100 km>  h .

200 mi>  h
320.0 km>  h

50 mi >  h80.0 km>  h

vSP >  E.
vSP >  E.

vSP >  E

10-m>s35 m >  s.

4.2 m>s.

4.2 m >  s
2.0 m >  s.



value of t is the velocity of the plane perpendicular to its
acceleration?
3.46 .. CALC A bird flies in the xy-plane with a velocity vector given
by with and

The positive y-direction is vertically upward. At
the bird is at the origin. (a) Calculate the position and accel-

eration vectors of the bird as functions of time. (b) What is the
bird’s altitude (y-coordinate) as it flies over for the first time
after
3.47 ... CP A test rocket is
launched by accelerating it
along a 200.0-m incline at

starting from rest at
point A (Fig. P3.47). The
incline rises at 35.0° above
the horizontal, and at the
instant the rocket leaves it, its
engines turn off and it is sub-
ject only to gravity (air resistance can be ignored). Find (a) the
maximum height above the ground that the rocket reaches, and (b)
the greatest horizontal range of the rocket beyond point A.

1.25 m>s2

t = 0?
x = 0

t = 0
g = 4.0 m>s2.

b = 1.6 m>s3,a = 2.4 m>s,vS � 1a - bt22ın � gt≥n,
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wind blowing from west to east, (a) at what angle relative
to the north–south direction should this bird head so that it will be
traveling directly southward relative to the ground? (b) How long
will it take the bird to cover a ground distance of 500 km from
north to south? (Note: Even on cloudy nights, many birds can
navigate using the earth’s magnetic field to fix the north–south
direction.)

PROBLEMS
3.40 .. An athlete starts at
point A and runs at a constant
speed of around a circu-
lar track 100 m in diameter, as
shown in Fig. P3.40. Find the x-
and y-components of this run-
ner’s average velocity and aver-
age acceleration between points
(a) A and B, (b) A and C, (c) C
and D, and (d) A and A (a full
lap). (e) Calculate the magnitude
of the runner’s average velocity
between A and B. Is his average speed equal to the magnitude of
his average velocity? Why or why not? (f) How can his velocity be
changing if he is running at constant speed?

6.0 m>s

40 km>h

3.41 . CALC A rocket is fired at an angle from the top of a tower
of height Because of the design of the engines, its
position coordinates are of the form and

where A, B, C, and D are constants. Further-
more, the acceleration of the rocket 1.00 s after firing is

Take the origin of coordinates to be at
the base of the tower. (a) Find the constants A, B, C, and D, includ-
ing their SI units. (b) At the instant after the rocket is fired, what
are its acceleration vector and its velocity? (c) What are the x- and
y-components of the rocket’s velocity 10.0 s after it is fired, and
how fast is it moving? (d) What is the position vector of the rocket
10.0 s after it is fired?
3.42 ... CALC A faulty model rocket moves in the xy-plane (the
positive y-direction is vertically upward). The rocket’s accelera-
tion has components and where

and At the
rocket is at the origin and has velocity with

and (a) Calculate the velocity
and position vectors as functions of time. (b) What is the maxi-
mum height reached by the rocket? (c) Sketch the path of the
rocket. (d) What is the horizontal displacement of the rocket when
it returns to 
3.43 .. CALC If where b and c are positive con-
stants, when does the velocity vector make an angle of with
the x- and y-axes?
3.44 .. CALC The position of a dragonfly that is flying 
parallel to the ground is given as a function of time by

. (a) At
what value of t does the velocity vector of the insect make an angle
of clockwise from the +x-axis? (b) At the time calculated in
part (a), what are the magnitude and direction of the acceleration
vector of the insect?
3.45 .. CP CALC A small toy airplane is flying in the xy-plane
parallel to the ground. In the time interval to , 
its velocity as a function of time is given by

. At whatvS � 11.20 m>s22t ın � 312.0 m>s - 12.00 m>s22t4 ≥n

t = 1.00 st = 0

30.0o

r
S

� 32.90 m + 10.0900 m>s22t24ın � 10.0150 m>s32t3≥n

45.0°
rS � bt2ın � ct3≥n,

y = 0?

v0y = 7.00 m>s.v0x = 1.00 m>s
vS0 � v0xın � v0y ≥n

t = 0g = 1.40 m>s3.b = 9.00 m>s2,a = 2.50 m>s4,

ay1t2 = b - gt,ax1t2 = at 2

aS � 14.00ın � 3.00≥n2 m>s2.

y(t) = C + Dt3,
x1t2 = A + Bt 2

h0 = 50.0 m.
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Figure P3.40

3.48 . Martian Athletics. In the long jump, an athlete launches
herself at an angle above the ground and lands at the same height,
trying to travel the greatest horizontal distance. Suppose that on
earth she is in the air for time T, reaches a maximum height h, and
achieves a horizontal distance D. If she jumped in exactly the same
way during a competition on Mars, where is 0.379 of its
earth value, find her time in the air, maximum height, and horizon-
tal distance. Express each of these three quantities in terms of its
earth value. Air resistance can be neglected on both planets.
3.49 .. Dynamite! A demolition crew uses dynamite to blow an
old building apart. Debris from the explosion flies off in all direc-
tions and is later found at distances as far as 50 m from the explo-
sion. Estimate the maximum speed at which debris was blown
outward by the explosion. Describe any assumptions that you
make.
3.50 ... BIO Spiraling Up. It is common to see birds of prey
rising upward on thermals. The paths they take may be spiral-like.
You can model the spiral motion as uniform circular motion com-
bined with a constant upward velocity. Assume a bird completes a
circle of radius 6.00 m every 5.00 s and rises vertically at a con-
stant rate of Determine: (a) the speed of the bird relative
to the ground; (b) the bird’s acceleration (magnitude and direc-
tion); and (c) the angle between the bird’s velocity vector and the
horizontal.
3.51 .. A jungle veterinarian with a blow-gun loaded with a tran-
quilizer dart and a sly 1.5-kg monkey are each 25 m above the
ground in trees 70 m apart. Just as the hunter shoots horizontally at
the monkey, the monkey drops from the tree in a vain attempt to
escape being hit. What must the minimum muzzle velocity of the
dart have been for the hunter to have hit the monkey before it
reached the ground?
3.52 ... A movie stuntwoman drops from a helicopter that is 
30.0 m above the ground and moving with a constant velocity
whose components are upward and horizontal
and toward the south. You can ignore air resistance. (a) Where on
the ground (relative to the position of the helicopter when she
drops) should the stuntwoman have placed the foam mats that
break her fall? (b) Draw x-t, y-t, and graphs of her motion.
3.53 .. In fighting forest fires, airplanes work in support of
ground crews by dropping water on the fires. A pilot is practicing

vy-tvx-t,
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3.64 .. A World Record. In
the shot put, a standard track-
and-field event, a 7.3-kg
object (the shot) is thrown by
releasing it at approximately
40° over a straight left leg.
The world record for distance,
set by Randy Barnes in 1990, is 23.11 m. Assuming that Barnes
released the shot put at 40.0° from a height of 2.00 m above the
ground, with what speed, in and in mph, did he release it?m>s
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by dropping a canister of red dye, hoping to hit a target on the
ground below. If the plane is flying in a horizontal path 90.0 m
above the ground and with a speed of at
what horizontal distance from the target should the pilot release the
canister? Ignore air resistance.
3.54 .. A cannon, located 60.0 m from the base of a vertical 
25.0-m-tall cliff, shoots a 15-kg shell at above the horizontal
toward the cliff. (a) What must the minimum muzzle velocity be
for the shell to clear the top of the cliff? (b) The ground at the top
of the cliff is level, with a constant elevation of 25.0 m above the
cannon. Under the conditions of part (a), how far does the shell
land past the edge of the cliff?
3.55 .. An airplane is flying with a velocity of at an
angle of above the horizontal. When the plane is 114 m
directly above a dog that is standing on level ground, a suitcase
drops out of the luggage compartment. How far from the dog will
the suitcase land? You can ignore air resistance.
3.56 ... As a ship is approaching the dock at an impor-
tant piece of landing equipment needs to be thrown to it before it can
dock. This equipment is thrown at at 60.0° above the hori-
zontal from the top of a tower at the edge of the water, 8.75 m above
the ship’s deck (Fig. P3.56). For this equipment to land at the front
of the ship, at what distance D from the dock should the ship be
when the equipment is thrown? Air resistance can be neglected.

15.0 m>s

45.0 cm>s,

23.0°
90.0 m>s

43.0°

(143 mi>h),64.0 m>s

would the ball be above a fence 3.0 m (10 ft) high if the fence
was 116 m (380 ft) from home plate?
3.60 ... A water hose is used to fill a large cylindrical storage
tank of diameter D and height 2D. The hose shoots the water at 45°
above the horizontal from the same level as the base of the tank
and is a distance 6D away (Fig. P3.60). For what range of launch
speeds will the water enter the tank? Ignore air resistance, and
express your answer in terms of D and g.

1v02

3.57 . CP CALC A toy rocket is launched with an initial velocity of
12.0 m s in the horizontal direction from the roof of a 30.0-m-tall
building. The rocket’s engine produces a horizontal acceleration of

, in the same direction as the initial velocity, but in the
vertical direction the acceleration is g, downward. Air resistance
can be neglected. What horizontal distance does the rocket travel
before reaching the ground?
3.58 .. An Errand of Mercy. An airplane is dropping bales of
hay to cattle stranded in a blizzard on the Great Plains. The pilot
releases the bales at 150 m above the level ground when the plane
is flying at in a direction 55° above the horizontal. How far
in front of the cattle should the pilot release the hay so that the
bales land at the point where the cattle are stranded?
3.59 ... The Longest Home Run. According to the Guinness
Book of World Records, the longest home run ever measured was
hit by Roy “Dizzy” Carlyle in a minor league game. The ball
traveled 188 m (618 ft) before landing on the ground outside the
ballpark. (a) Assuming the ball’s initial velocity was in a
direction above the horizontal and ignoring air resistance,
what did the initial speed of the ball need to be to produce such a
home run if the ball was hit at a point 0.9 m (3.0 ft) above ground
level? Assume that the ground was perfectly flat. (b) How far

45°
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Figure P3.56

3.63 .. A grasshopper leaps
into the air from the edge of a
vertical cliff, as shown in Fig.
P3.63. Use information from
the figure to find (a) the initial
speed of the grasshopper and
(b) the height of the cliff.

Water
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2D

Figure P3.60

36.0 ft

10.0 ft

Figure P3.62
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Not to
scale

50.0°

Figure P3.63

3.61 .. A projectile is being launched from ground level with no
air resistance. You want to avoid having it enter a temperature inver-
sion layer in the atmosphere a height h above the ground. (a) What is
the maximum launch speed you could give this projectile if you shot
it straight up? Express your answer in terms of h and g. (b) Suppose
the launcher available shoots projectiles at twice the maximum
launch speed you found in part (a). At what maximum angle above
the horizontal should you launch the projectile? (c) How far (in
terms of h) from the launcher does the projectile in part (b) land?
3.62 .. Kicking a Field Goal. In U.S. football, after a touch-
down the team has the opportunity to earn one more point by kick-
ing the ball over the bar between the goal posts. The bar is 10.0 ft
above the ground, and the ball is kicked from ground level, 36.0 ft
horizontally from the bar (Fig. P3.62). Football regulations are
stated in English units, but convert them to SI units for this prob-
lem. (a) There is a minimum angle above the ground such that if
the ball is launched below this angle, it can never clear the bar, no
matter how fast it is kicked. What is this angle? (b) If the ball is
kicked at 45.0° above the horizontal, what must its initial speed be
if it is to just clear the bar? Express your answer in and in km>h.m>s
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3.66 ... On the Flying Trapeze.
A new circus act is called the
Texas Tumblers. Lovely Mary
Belle swings from a trapeze, proj-
ects herself at an angle of and
is supposed to be caught by Joe
Bob, whose hands are 6.1 m above
and 8.2 m horizontally from her
launch point (Fig. P3.66). You
can ignore air resistance. (a)
What initial speed must Mary
Belle have just to reach Joe Bob?
(b) For the initial speed calculated
in part (a), what are the magnitude
and direction of her velocity when Mary Belle reaches Joe Bob?
(c) Assuming that Mary Belle has the initial speed calculated in
part (a), draw x-t, y-t, and graphs showing the motion of
both tumblers. Your graphs should show the motion up until the point
where Mary Belle reaches Joe Bob. (d) The night of their debut per-
formance, Joe Bob misses her completely as she flies past. How far
horizontally does Mary Belle travel, from her initial launch point,
before landing in the safety net 8.6 m below her starting point?

vy-tvx-t,
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3.68 .. A rock is thrown from the roof of a building with a veloc-
ity at an angle of from the horizontal. The building has
height h. You can ignore air resistance. Calculate the magnitude of
the velocity of the rock just before it strikes the ground, and show
that this speed is independent of 
3.69 . A 5500-kg cart carrying a vertical rocket launcher moves
to the right at a constant speed of along a horizontal
track. It launches a 45.0-kg rocket vertically upward with an initial
speed of relative to the cart. (a) How high will the rocket
go? (b) Where, relative to the cart, will the rocket land? (c) How
far does the cart move while the rocket is in the air? (d) At what
angle, relative to the horizontal, is the rocket traveling just as it
leaves the cart, as measured by an observer at rest on the ground?
(e) Sketch the rocket’s trajectory as seen by an observer (i) station-
ary on the cart and (ii) stationary on the ground.
3.70 . A 2.7-kg ball is thrown upward with an initial speed of

from the edge of a 45.0-m-high cliff. At the instant the
ball is thrown, a woman starts running away from the base of the
cliff with a constant speed of The woman runs in a
straight line on level ground, and air resistance acting on the ball
can be ignored. (a) At what angle above the horizontal should the
ball be thrown so that the runner will catch it just before it hits
the ground, and how far does the woman run before she catches
the ball? (b) Carefully sketch the ball’s trajectory as viewed by 
(i) a person at rest on the ground and (ii) the runner.
3.71 . A 76.0-kg boulder is rolling horizontally at the top of a
vertical cliff that is 20 m above the surface of a lake, as shown in
Fig. P3.71. The top of the vertical face of a dam is located 100 m
from the foot of the cliff, with the top of the dam level with the sur-
face of the water in the lake. A level plain is 25 m below the top of
the dam. (a) What must be the minimum speed of the rock just as it
leaves the cliff so it will travel to the plain without striking the
dam? (b) How far from the foot of the dam does the rock hit the
plain?

6.00 m>s.

20.0 m>s

40.0 m>s

30.0 m>s

a0.

a0v0

3.65 ... Look Out! A snow-
ball rolls off a barn roof that
slopes downward at an angle of

(Fig. P3.65). The edge of the
roof is 14.0 m above the ground,
and the snowball has a speed of

as it rolls off the roof.
Ignore air resistance. (a) How far
from the edge of the barn does
the snowball strike the ground if
it doesn’t strike anything else
while falling? (b) Draw x-t, y-t,

and graphs for the
motion in part (a). (c) A man 1.9 m
tall is standing 4.0 m from the
edge of the barn. Will he be hit by the snowball?

vy-tvx-t,

7.00 m>s

40°
v0 5 7.00 m/s

40°

4.0 m

14.0 m

Figure P3.65

v0

8.2 m

6.1 m

8.6 m to net

53°

Figure P3.66

1965
1
AWx

100 m

40.0 m

15.0 m

53.0°

Figure P3.67

3.67 .. Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump
across a river on a motorcycle (Fig. P3.67). The takeoff ramp was
inclined at the river was 40.0 m wide, and the far bank was
15.0 m lower than the top of the ramp. The river itself was 100 m
below the ramp. You can ignore air resistance. (a) What should his
speed have been at the top of the ramp to have just made it to the
edge of the far bank? (b) If his speed was only half the value found
in part (a), where did he land?

53.0°,
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Figure P3.71

3.72 .. Tossing Your Lunch. Henrietta is going off to her
physics class, jogging down the sidewalk at Her hus-
band Bruce suddenly realizes that she left in such a hurry that she
forgot her lunch of bagels, so he runs to the window of their apart-
ment, which is 38.0 m above the street level and directly above the
sidewalk, to throw them to her. Bruce throws them horizontally
9.00 s after Henrietta has passed below the window, and she
catches them on the run. You can ignore air resistance. (a) With
what initial speed must Bruce throw the bagels so Henrietta can
catch them just before they hit the ground? (b) Where is Henrietta
when she catches the bagels?
3.73 ... Two tanks are engaged in a training exercise on level
ground. The first tank fires a paint-filled training round with a
muzzle speed of 250 m s at above the horizontal while
advancing toward the second tank with a speed of rela-
tive to the ground. The second tank is retreating at rela-
tive to the ground, but is hit by the shell. You can ignore air

35.0 m>s
15.0 m>s

10.0°>

3.05 m>s.



102 CHAPTER 3 Motion In Two Or Three Dimensions

resistance and assume the shell hits at the same height above
ground from which it was fired. Find the distance between the
tanks (a) when the round was first fired and (b) at the time of
impact.
3.74 ... CP Bang! A student sits atop a platform a distance h
above the ground. He throws a large firecracker horizontally with a
speed However, a wind blowing parallel to the ground gives the
firecracker a constant horizontal acceleration with magnitude a.
This results in the firecracker reaching the ground directly under
the student. Determine the height h in terms of a, and g. You can
ignore the effect of air resistance on the vertical motion.
3.75 .. In a Fourth of July celebration, a firework is launched
from ground level with an initial velocity of at 30.0°
from the vertical. At its maximum height it explodes in a starburst
into many fragments, two of which travel forward initially at

at with respect to the horizontal, both quantities
measured relative to the original firework just before it exploded.
With what angles with respect to the horizontal do the two frag-
ments initially move right after the explosion, as measured by a
spectator standing on the ground?
3.76 . When it is 145 m above the ground, a rocket traveling ver-
tically upward at a constant relative to the ground
launches a secondary rocket at a speed of at an angle of
53.0° above the horizontal, both quantities being measured by an
astronaut sitting in the rocket. After it is launched the secondary
rocket is in free-fall. (a) Just as the secondary rocket is launched,
what are the horizontal and vertical components of its velocity rel-
ative to (i) the astronaut sitting in the rocket and (ii) Mission Con-
trol on the ground? (b) Find the initial speed and launch angle of
the secondary rocket as measured by Mission Control. (c) What
maximum height above the ground does the secondary rocket
reach?
3.77 ... In an action-adventure film, the hero is supposed to
throw a grenade from his car, which is going to his
enemy’s car, which is going The enemy’s car is 15.8 m
in front of the hero’s when he lets go of the grenade. If the hero
throws the grenade so its initial velocity relative to him is at an
angle of above the horizontal, what should the magnitude of
the initial velocity be? The cars are both traveling in the same
direction on a level road. You can ignore air resistance. Find the
magnitude of the velocity both relative to the hero and relative to
the earth.
3.78 . A 400.0-m-wide river flows from west to east at

Your boat moves at relative to the water
no matter which direction you point it. To cross this river, you start
from a dock at point A on the south bank. There is a boat landing
directly opposite at point B on the north bank, and also one at point
C, 75.0 m downstream from B (Fig. P3.78). (a) Where on the north
shore will you land if you point your boat perpendicular to the
water current, and what distance will you have traveled? (b) If you
initially aim your boat directly toward point C and do not change
that bearing relative to the shore, where on the north shore will you
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land? (c) To reach point C: (i) at what bearing must you aim your
boat, (ii) how long will it take to cross the river, (iii) what distance
do you travel, and (iv) and what is the speed of your boat as meas-
ured by an observer standing on the river bank?

30.0 m/min400.0 m

B C

A

Figure P3.78

3.79 . CALC Cycloid. A particle moves in the xy-plane. Its coor-
dinates are given as functions of time by

where R and are constants. (a) Sketch the trajectory of the parti-
cle. (This is the trajectory of a point on the rim of a wheel that is
rolling at a constant speed on a horizontal surface. The curve
traced out by such a point as it moves through space is called a
cycloid.) (b) Determine the velocity components and the accelera-
tion components of the particle at any time t. (c) At which times is
the particle momentarily at rest? What are the coordinates of the
particle at these times? What are the magnitude and direction of
the acceleration at these times? (d) Does the magnitude of the
acceleration depend on time? Compare to uniform circular motion.
3.80 .. A projectile is fired from point A at an angle above the
horizontal. At its highest point, after having traveled a horizontal
distance D from its launch point, it suddenly explodes into two
identical fragments that travel horizontally with equal but opposite
velocities as measured relative to the projectile just before it
exploded. If one fragment lands back at point A, how far from A (in
terms of D) does the other fragment land?
3.81 .. An airplane pilot sets a compass course due west and
maintains an airspeed of After flying for 0.500 h, she
finds herself over a town 120 km west and 20 km south of her
starting point. (a) Find the wind velocity (magnitude and direc-
tion). (b) If the wind velocity is due south, in what direc-
tion should the pilot set her course to travel due west? Use the
same airspeed of 
3.82 .. Raindrops. When a train’s velocity is east-
ward, raindrops that are falling vertically with respect to the earth
make traces that are inclined to the vertical on the windows
of the train. (a) What is the horizontal component of a drop’s
velocity with respect to the earth? With respect to the train? 
(b) What is the magnitude of the velocity of the raindrop with
respect to the earth? With respect to the train?
3.83 ... In a World Cup soccer match, Juan is running due north
toward the goal with a speed of relative to the ground. A
teammate passes the ball to him. The ball has a speed of 
and is moving in a direction east of north, relative to the
ground. What are the magnitude and direction of the ball’s velocity
relative to Juan?
3.84 .. An elevator is moving upward at a constant speed of

A bolt in the elevator ceiling 3.00 m above the elevator
floor works loose and falls. (a) How long does it take for the bolt to
fall to the elevator floor? What is the speed of the bolt just as it hits
the elevator floor (b) according to an observer in the elevator? 
(c) According to an observer standing on one of the floor landings
of the building? (d) According to the observer in part (c), what dis-
tance did the bolt travel between the ceiling and the floor of the
elevator?
3.85 . CP Suppose the elevator in Problem 3.84 starts from rest
and maintains a constant upward acceleration of and
the bolt falls out the instant the elevator begins to move. (a) How
long does it take for the bolt to reach the floor of the elevator? (b)
Just as it reaches the floor, how fast is the bolt moving according to
an observer (i) in the elevator? (ii) Standing on the floor landings
of the building? (c) According to each observer in part (b), how far
has the bolt traveled between the ceiling and floor of the elevator?
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3.86 .. Two soccer players, Mia and Alice, are running as Alice
passes the ball to Mia. Mia is running due north with a speed of
6.00 m s. The velocity of the ball relative to Mia is 5.00 m/s in a
direction east of south. What are the magnitude and direction
of the velocity of the ball relative to the ground?
3.87 ... Projectile Motion on an Incline. Refer to the Bridging
Problem in Chapter 3. (a) An archer on ground that has a constant
upward slope of aims at a target 60.0 m farther up the
incline. The arrow in the bow and the bull’s-eye at the center of the
target are each 1.50 m above the ground. The initial velocity of the
arrow just after it leaves the bow has magnitude At what
angle above the horizontal should the archer aim to hit the bull’s-
eye? If there are two such angles, calculate the smaller of the two.
You might have to solve the equation for the angle by iteration—
that is, by trial and error. How does the angle compare to that
required when the ground is level, with 0 slope? (b) Repeat the
problem for ground that has a constant downward slope of 

CHALLENGE PROBLEMS
3.88 ... CALC A projectile is thrown from a point P. It moves in
such a way that its distance from P is always increasing. Find the
maximum angle above the horizontal with which the projectile
could have been thrown. You can ignore air resistance.
3.89 ... Two students are canoeing on a river. While heading
upstream, they accidentally drop an empty bottle overboard. They
then continue paddling for 60 minutes, reaching a point 2.0 km far-
ther upstream. At this point they realize that the bottle is missing

30.0°.

32.0 m>s.

30.0°

30.0o
>

and, driven by ecological awareness, they turn around and head
downstream. They catch up with and retrieve the bottle (which has
been moving along with the current) 5.0 km downstream from the
turn-around point. (a) Assuming a constant paddling effort
throughout, how fast is the river flowing? (b) What would the
canoe speed in a still lake be for the same paddling effort?
3.90 ... CP A rocket designed to place small payloads into orbit
is carried to an altitude of 12.0 km above sea level by a converted
airliner. When the airliner is flying in a straight line at a constant
speed of the rocket is dropped. After the drop, the air-
liner maintains the same altitude and speed and continues to fly in
a straight line. The rocket falls for a brief time, after which its
rocket motor turns on. Once its rocket motor is on, the combined
effects of thrust and gravity give the rocket a constant acceleration
of magnitude 3.00g directed at an angle of above the hori-
zontal. For reasons of safety, the rocket should be at least 1.00 km
in front of the airliner when it climbs through the airliner’s alti-
tude. Your job is to determine the minimum time that the rocket
must fall before its engine starts. You can ignore air resistance.
Your answer should include (i) a diagram showing the flight paths
of both the rocket and the airliner, labeled at several points with
vectors for their velocities and accelerations; (ii) an x-t graph
showing the motions of both the rocket and the airliner; and (iii) a
y-t graph showing the motions of both the rocket and the airliner.
In the diagram and the graphs, indicate when the rocket is
dropped, when the rocket motor turns on, and when the rocket
climbs through the altitude of the airliner.

30.0°

850 km>h,

Chapter Opening Question ?
A cyclist going around a curve at constant speed has an accelera-
tion directed toward the inside of the curve (see Section 3.2, espe-
cially Fig. 3.12a).

Test Your Understanding Questions
3.1 Answer: (iii) If the instantaneous velocity is constant over
an interval, its value at any point (including the end of the interval)
is the same as the average velocity over the interval. In (i) and
(ii) the direction of at the end of the interval is tangent to the path
at that point, while the direction of points from the beginning
of the path to its end (in the direction of the net displacement). In
(iv) and are both directed along the straight line, but has a
greater magnitude because the speed has been increasing.
3.2 Answer: vector 7 At the high point of the sled’s path, the
speed is minimum. At that point the speed is neither increasing nor
decreasing, and the parallel component of the acceleration (that is,
the horizontal component) is zero. The acceleration has only a per-
pendicular component toward the inside of the sled’s curved path.
In other words, the acceleration is downward.
3.3 Answer: (i) If there were no gravity the monkey
would not fall and the dart would follow a straight-line path
(shown as a dashed line). The effect of gravity is to make the

(g = 0),
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Answers

monkey and the dart both fall the same distance below their
positions. Point A is the same distance below the monkey’s

initial position as point P is below the dashed straight line, so point
A is where we would find the monkey at the time in question.
3.4 Answer: (ii) At both the top and bottom of the loop, the accel-
eration is purely radial and is given by Eq. (3.28). The radius R is
the same at both points, so the difference in acceleration is due
purely to differences in speed. Since is proportional to the
square of the speed must be twice as great at the bottom of the
loop as at the top.
3.5 Answer: (vi) The effect of the wind is to cancel the airplane’s
eastward motion and give it a northward motion. So the velocity of
the air relative to the ground (the wind velocity) must have one
150-km h component to the west and one 150-km h component to
the north. The combination of these is a vector of magnitude

that points to the
northwest.

Bridging Problem

Answers: (a) (b) f = 45° -
u

2
R =

2v 2
0

g

cos1u + f2sin f

cos2u

21150 km>h22 + 1150 km/h22 = 212 km>h

>>

v,
arad

g = 0

1
2 gt 2
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? This pit crew member is pushing a race car forward. Is the race car pushing
back on him? If so, does it push back with the same magnitude of force or a
different amount?

LEARNING GOALS

By studying this chapter, you will

learn:

• What the concept of force means in

physics, and why forces are vectors.

• The significance of the net force on

an object, and what happens when

the net force is zero.

• The relationship among the net force

on an object, the object’s mass, and

its acceleration.

• How the forces that two bodies

exert on each other are related.

4 NEWTON’S LAWS
OF MOTION

We’ve seen in the last two chapters how to use the language and mathe-
matics of kinematics to describe motion in one, two, or three dimen-
sions. But what causes bodies to move the way that they do? For

example, how can a tugboat push a cruise ship that’s much heavier than the tug?
Why is it harder to control a car on wet ice than on dry concrete? The answers to
these and similar questions take us into the subject of dynamics, the relationship
of motion to the forces that cause it.

In this chapter we will use two new concepts, force and mass, to analyze the
principles of dynamics. These principles were clearly stated for the first time by
Sir Isaac Newton (1642–1727); today we call them Newton’s laws of motion.
The first law states that when the net force on a body is zero, its motion doesn’t
change. The second law relates force to acceleration when the net force is not
zero. The third law is a relationship between the forces that two interacting bod-
ies exert on each other.

Newton did not derive the three laws of motion, but rather deduced them from
a multitude of experiments performed by other scientists, especially Galileo
Galilei (who died the same year Newton was born). These laws are truly funda-
mental, for they cannot be deduced or proved from other principles. Newton’s laws
are the foundation of classical mechanics (also called Newtonian mechanics);
using them, we can understand most familiar kinds of motion. Newton’s laws
need modification only for situations involving extremely high speeds (near the
speed of light) or very small sizes (such as within the atom).

Newton’s laws are very simple to state, yet many students find these laws diffi-
cult to grasp and to work with. The reason is that before studying physics, you’ve
spent years walking, throwing balls, pushing boxes, and doing dozens of things
that involve motion. Along the way, you’ve developed a set of “common sense”
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ideas about motion and its causes. But many of these “common sense” ideas
don’t stand up to logical analysis. A big part of the job of this chapter—and of the
rest of our study of physics—is helping you to recognize how “common sense”
ideas can sometimes lead you astray, and how to adjust your understanding of the
physical world to make it consistent with what experiments tell us.

4.1 Force and Interactions
In everyday language, a force is a push or a pull. A better definition is that a force is
an interaction between two bodies or between a body and its environment (Fig. 4.1).
That’s why we always refer to the force that one body exerts on a second body.
When you push on a car that is stuck in the snow, you exert a force on the car; a
steel cable exerts a force on the beam it is hoisting at a construction site; and so
on. As Fig. 4.1 shows, force is a vector quantity; you can push or pull a body in
different directions.

When a force involves direct contact between two bodies, such as a push or
pull that you exert on an object with your hand, we call it a contact force.
Figures 4.2a, 4.2b, and 4.2c show three common types of contact forces. The
normal force (Fig. 4.2a) is exerted on an object by any surface with which it is in
contact. The adjective normal means that the force always acts perpendicular to
the surface of contact, no matter what the angle of that surface. By contrast, the
friction force (Fig. 4.2b) exerted on an object by a surface acts parallel to the
surface, in the direction that opposes sliding. The pulling force exerted by a
stretched rope or cord on an object to which it’s attached is called a tension force
(Fig. 4.2c). When you tug on your dog’s leash, the force that pulls on her collar is
a tension force.

In addition to contact forces, there are long-range forces that act even when
the bodies are separated by empty space. The force between two magnets is an
example of a long-range force, as is the force of gravity (Fig. 4.2d); the earth
pulls a dropped object toward it even though there is no direct contact between
the object and the earth. The gravitational force that the earth exerts on your body
is called your weight.

To describe a force vector , we need to describe the direction in which it acts
as well as its magnitude, the quantity that describes “how much” or “how hard”
the force pushes or pulls. The SI unit of the magnitude of force is the newton,
abbreviated N. (We’ll give a precise definition of the newton in Section 4.3.)
Table 4.1 lists some typical force magnitudes.

F
S

4.2 Four common types of forces.

F (force)
S

F
S

• A force is a push or a pull.
• A force is an interaction between two objects
  or between an object and its environment.
• A force is a vector quantity, with magnitude
  and direction.

Push

Pull

T
S

nS

f
S

nS

nS

wS

(d) Weight w: The pull of gravity on an object
is a long-range force (a force that acts over
a distance).

(a) Normal force n: When an object rests or
pushes on a surface, the surface exerts a push on
it that is directed perpendicular to the surface.

S
(b) Friction force f: In addition to the normal
force, a surface may exert a frictional force on
an object, directed parallel to the surface.

S

S

S
(c) Tension force T: A pulling force exerted on
an object by a rope, cord, etc.

4.1 Some properties of forces.

Table 4.1 Typical Force Magnitudes

Sun’s gravitational force on the earth

Thrust of a space shuttle during launch

Weight of a large blue whale

Maximum pulling force of a locomotive

Weight of a 250-lb linebacker

Weight of a medium apple 1 N

Weight of smallest insect eggs

Electric attraction between the proton and the electron in a hydrogen atom

Weight of a very small bacterium

Weight of a hydrogen atom

Weight of an electron

Gravitational attraction between the proton and the electron in a hydrogen atom 3.6 * 10-47 N

8.9 * 10-30 N

1.6 * 10-26 N

1 * 10-18 N

8.2 * 10-8 N

2 * 10-6 N

1.1 * 103 N

8.9 * 105 N

1.9 * 106 N

3.1 * 107 N

3.5 * 1022 N
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4.5 The force , which acts at an angle from the x-axis, may be replaced by its 
rectangular component vectors x and y.F

S
F
S

uF
S

(a) Component vectors: Fx and Fy
Components: Fx 5 F cos u and Fy 5 F sin u

O

y

x
u

Fy

S

Fx

S

F
S

O

y

x

Fy

S

Fx

S

(b) Component vectors Fx and Fy together
have the same effect as original force F.

S S

S

S S

A common instrument for measuring force magnitudes is the spring balance.
It consists of a coil spring enclosed in a case with a pointer attached to one end.
When forces are applied to the ends of the spring, it stretches by an amount that
depends on the force. We can make a scale for the pointer by using a number of
identical bodies with weights of exactly 1 N each. When one, two, or more of
these are suspended simultaneously from the balance, the total force stretching
the spring is 1 N, 2 N, and so on, and we can label the corresponding positions of
the pointer 1 N, 2 N, and so on. Then we can use this instrument to measure the
magnitude of an unknown force. We can also make a similar instrument that
measures pushes instead of pulls.

Figure 4.3 shows a spring balance being used to measure a pull or push that
we apply to a box. In each case we draw a vector to represent the applied force.
The length of the vector shows the magnitude; the longer the vector, the greater
the force magnitude.

Superposition of Forces
When you throw a ball, there are at least two forces acting on it: the push of your
hand and the downward pull of gravity. Experiment shows that when two forces

1 and 2 act at the same time at the same point on a body (Fig. 4.4), the effect
on the body’s motion is the same as if a single force were acting equal to the
vector sum of the original forces: 1 2. More generally, any number of
forces applied at a point on a body have the same effect as a single force equal to
the vector sum of the forces. This important principle is called superposition of
forces.

The principle of superposition of forces is of the utmost importance, and we
will use it throughout our study of physics. For example, in Fig. 4.5a, force 
acts on a body at point O. The component vectors of in the directions Ox and Oy
are x and y. When x and y are applied simultaneously, as in Fig. 4.5b, the
effect is exactly the same as the effect of the original force . Hence any force
can be replaced by its component vectors, acting at the same point.

It’s frequently more convenient to describe a force in terms of its x- and 
y-components and rather than by its component vectors (recall from Section 1.8
that component vectors are vectors, but components are just numbers). For the case
shown in Fig. 4.5, both and are positive; for other orientations of the force ,
either or may be negative or zero.

Our coordinate axes don’t have to be vertical and horizontal. Figure 4.6 shows
a crate being pulled up a ramp by a force , represented by its components 
and parallel and perpendicular to the sloping surface of the ramp.Fy
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4.3 Using a vector arrow to denote the
force that we exert when (a) pulling a
block with a string or (b) pushing a block
with a stick.

4.4 Superposition of forces.

(a) A 10-N pull directed 30° above
the horizontal

10 N

10 N

30°

45°

(b) A 10-N push directed 45° below
the horizontal

F1
S

R
S

O

F2
S

Two forces F1 and F2 acting on a body at
point O have the same effect as a single force
R equal to their vector sum.

S S

S



CAUTION Using a wiggly line in force diagrams In Fig. 4.6 we draw a wiggly line
through the force vector to show that we have replaced it by its x- and y-components.
Otherwise, the diagram would include the same force twice. We will draw such a wiggly
line in any force diagram where a force is replaced by its components. Look for this wig-
gly line in other figures in this and subsequent chapters. ❙

We will often need to find the vector sum (resultant) of all the forces acting on
a body. We call this the net force acting on the body. We will use the Greek letter

(capital sigma, equivalent to the Roman S) as a shorthand notation for a sum.
If the forces are labeled 1, 2, 3, and so on, we abbreviate the sum as

1 2 3 (4.1)

We read as “the vector sum of the forces” or “the net force.” The compo-
nent version of Eq. (4.1) is the pair of component equations

(4.2)

Here Fx is the sum of the x-components and Fy is the sum of the y-components
(Fig. 4.7). Each component may be positive or negative, so be careful with signs
when you evaluate these sums. (You may want to review Section 1.8.)

Once we have Rx and Ry we can find the magnitude and direction of the net
force acting on the body. The magnitude is

and the angle between and the can be found from the relationship
The components Rx and Ry may be positive, negative, or zero, and

the angle may be in any of the four quadrants.
In three-dimensional problems, forces may also have z-components; then we

add the equation to Eq. (4.2). The magnitude of the net force is then

R = 2Rx
2 + Ry

2 + Rz
2

Rz = gFz

u

tanu = Ry>Rx.
+x-axisR

S
u

R = 2Rx
2 + Ry

2

� gF
S

R
S

gg
Rx = aFx  Ry = aFy

gF
S

� Á � aF
S
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R
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Example 4.1 Superposition of forces

Three professional wrestlers are fighting over a champion’s belt.
Figure 4.8a shows the horizontal force each wrestler applies to 
the belt, as viewed from above. The forces have magnitudes

, , and . Find the x- and 
y-components of the net force on the belt, and find its magnitude
and direction.

SOLUTION

IDENTIFY and SET UP: This is a problem in vector addition in
which the vectors happen to represent forces. We want to find
the x- and y-components of the net force , so we’ll use the
component method of vector addition expressed by Eqs. (4.2).
Once we know the components of , we can find its magnitude
and direction.

EXECUTE: From Fig. 4.8a the angles between the three forces 1,

2, and 3 and the -axis are 
and The x- and y-components of the three forces are

F2x = (50 N) cos 0° = 50 N

F1y = (250 N) sin 127° = 200 N

F1x = (250 N) cos 127° = -150 N

u3 = 270°.
u2 = 0°,u1 = 180° - 53° = 127°,+xF

S
F
S

F
S

R
S

R
S

F3 = 120 NF2 = 50 NF1 = 250 N (a) y

x

(b)

x- and y-components
of F1

F2 has zero
y-component.

S

F3 has zero
x-component.

S

F1
S

F2
S

F3
S

F1x

F1y

53°

y

x

Net force
R 5 F

Rx

Ry

u 5 141°

S S

S

The same goes for
the x-components.

O
x

y

F2y

F2xF1x

Rx

Ry

F1y F1
S

F2
S

R 5 SF
S S

The y-component of R
equals the sum of the y-
components of F1 and F2.

S

S S

R is the sum (resultant) of F1 and F2.
S S S

4.8 (a) Three forces acting on a belt. (b) The net force 
and its components.
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4.7 Finding the components of the 
vector sum (resultant) of two forces 1
and 2.F

S F
S

R
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From Eqs. (4.2) the net force has components

Continued

= 80 NRy = F1y + F2y + F3y = 200 N + 0 N + 1-120 N2

= -100 NRx = F1x + F2x + F3x = 1-150 N2 + 50 N + 0 N

� gF
S

R
S

F3y = (120 N) sin270° = -120 N

F3x = (120 N) cos270° = 0 N

F2y = (50 N) sin 0° = 0 N

4.6 and are the components of 
parallel and perpendicular to the sloping
surface of the inclined plane.

F
S

FyFx

x

We cross out a vector when we replace
it with its components.

O

y

Fy
Fx

F
S
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4.2 Newton’s First Law
How do the forces that act on a body affect its motion? To begin to answer this
question, let’s first consider what happens when the net force on a body is zero.
You would almost certainly agree that if a body is at rest, and if no net force acts
on it (that is, no net push or pull), that body will remain at rest. But what if there
is zero net force acting on a body in motion?

To see what happens in this case, suppose you slide a hockey puck along a
horizontal tabletop, applying a horizontal force to it with your hand (Fig. 4.9a).
After you stop pushing, the puck does not continue to move indefinitely; it slows
down and stops. To keep it moving, you have to keep pushing (that is, applying a
force). You might come to the “common sense” conclusion that bodies in motion
naturally come to rest and that a force is required to sustain motion.

But now imagine pushing the puck across a smooth surface of ice (Fig. 4.9b).
After you quit pushing, the puck will slide a lot farther before it stops. Put it on
an air-hockey table, where it floats on a thin cushion of air, and it moves still far-
ther (Fig. 4.9c). In each case, what slows the puck down is friction, an interaction
between the lower surface of the puck and the surface on which it slides. Each
surface exerts a frictional force on the puck that resists the puck’s motion; the dif-
ference in the three cases is the magnitude of the frictional force. The ice exerts
less friction than the tabletop, so the puck travels farther. The gas molecules of
the air-hockey table exert the least friction of all. If we could eliminate friction
completely, the puck would never slow down, and we would need no force at all
to keep the puck moving once it had been started. Thus the “common sense” idea
that a force is required to sustain motion is incorrect.

Experiments like the ones we’ve just described show that when no net
force acts on a body, the body either remains at rest or moves with constant
velocity in a straight line. Once a body has been set in motion, no net force is
needed to keep it moving. We call this observation Newton’s first law of
motion:

Newton’s first law of motion: A body acted on by no net force moves with
constant velocity (which may be zero) and zero acceleration.

Test Your Understanding of Section 4.1 Figure 4.6 shows a force 
acting on a crate. With the x- and y-axes shown in the figure, which statement
about the components of the gravitational force that the earth exerts on the crate
(the crate’s weight) is correct? (i) The x- and y-components are both positive. (ii) The 
x-component is zero and the y-component is positive. (iii) The x-component is negative
and the y-component is positive. (iv) The x- and y-components are both negative. 
(v) The x-component is zero and the y-component is negative. (vi) The x-component is
positive and the y-component is negative. ❙

F
S

The net force has a negative x-component and a positive 
y-component, as shown in Fig. 4.8b.

The magnitude of is

To find the angle between the net force and the -axis, we use
Eq. (1.8):

u = arctan
Ry

Rx
= arctan ¢ 80 N

-100 N
≤ = arctan 1-0.802

+x

R = 2R 2
x + R 2

y = 21-100 N22 + 180 N22 = 128 N

R
S

The arctangent of �0.80 is �39°, but Fig. 4.8b shows that the net
force lies in the second quadrant. Hence the correct solution is

EVALUATE: The net force is not zero. Your intuition should suggest
that wrestler 1 (who exerts the largest force on the belt,

) will walk away with it when the struggle ends.
You should check the direction of by adding the vectors 

1, 2, and 3 graphically. Does your drawing show that 

1 2 3 points in the second quadrant as we found
above?
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F1 = 250 N

180° = 141°.u = -39° +

. . . . . . . . . . . . . . . . .
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. . . . . . . . . . .
. . . . . . . . . .

(a) Table: puck stops short.

(b) Ice: puck slides farther.

(c) Air-hockey table: puck slides even farther.

4.9 The slicker the surface, the farther a
puck slides after being given an initial
velocity. On an air-hockey table (c) the
friction force is practically zero, so the 
puck continues with almost constant
velocity.



The tendency of a body to keep moving once it is set in motion results from a
property called inertia. You use inertia when you try to get ketchup out of a bot-
tle by shaking it. First you start the bottle (and the ketchup inside) moving for-
ward; when you jerk the bottle back, the ketchup tends to keep moving forward
and, you hope, ends up on your burger. The tendency of a body at rest to remain
at rest is also due to inertia. You may have seen a tablecloth yanked out from
under the china without breaking anything. The force on the china isn’t great
enough to make it move appreciably during the short time it takes to pull the
tablecloth away.

It’s important to note that the net force is what matters in Newton’s first law.
For example, a physics book at rest on a horizontal tabletop has two forces act-
ing on it: an upward supporting force, or normal force, exerted by the tabletop
(see Fig. 4.2a) and the downward force of the earth’s gravitational attraction (a
long-range force that acts even if the tabletop is elevated above the ground; see 
Fig. 4.2d). The upward push of the surface is just as great as the downward pull
of gravity, so the net force acting on the book (that is, the vector sum of the two
forces) is zero. In agreement with Newton’s first law, if the book is at rest on
the tabletop, it remains at rest. The same principle applies to a hockey puck
sliding on a horizontal, frictionless surface: The vector sum of the upward push
of the surface and the downward pull of gravity is zero. Once the puck is in
motion, it continues to move with constant velocity because the net force acting
on it is zero.

Here’s another example. Suppose a hockey puck rests on a horizontal surface
with negligible friction, such as an air-hockey table or a slab of wet ice. If the puck
is initially at rest and a single horizontal force 1 acts on it (Fig. 4.10a), the puck
starts to move. If the puck is in motion to begin with, the force changes its speed,
its direction, or both, depending on the direction of the force. In this case the net
force is equal to 1, which is not zero. (There are also two vertical forces: the
earth’s gravitational attraction and the upward normal force exerted by the sur-
face. But as we mentioned earlier, these two forces cancel.)

Now suppose we apply a second force 2 (Fig. 4.10b), equal in magnitude
to 1 but opposite in direction. The two forces are negatives of each other, 

2 1, and their vector sum is zero:

1 2 1 1

Again, we find that if the body is at rest at the start, it remains at rest; if it is ini-
tially moving, it continues to move in the same direction with constant speed.
These results show that in Newton’s first law, zero net force is equivalent to no
force at all. This is just the principle of superposition of forces that we saw in
Section 4.1.

When a body is either at rest or moving with constant velocity (in a straight
line with constant speed), we say that the body is in equilibrium. For a body to
be in equilibrium, it must be acted on by no forces, or by several forces such that
their vector sum—that is, the net force—is zero:

(body in equilibrium) (4.3)

For this to be true, each component of the net force must be zero, so

Fx � 0 Fy � 0 (body in equilibrium) (4.4)

We are assuming that the body can be represented adequately as a point particle.
When the body has finite size, we also have to consider where on the body the
forces are applied. We will return to this point in Chapter 11.
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4.10 (a) A hockey puck accelerates in
the direction of a net applied force 
(b) When the net force is zero, the 
acceleration is zero, and the puck is 
in equilibrium.

1.F
S

(a) A puck on a frictionless surface 
accelerates when acted on by a
single horizontal force.

(b) An object acted on by forces
whose vector sum is zero behaves
as though no forces act on it.

F1
S

aS

SF 5 0
a 5 0

F1
S

F2
S

S

S

Application Sledding with Newton’s
First Law
The downward force of gravity acting on the
child and sled is balanced by an upward nor-
mal force exerted by the ground. The adult’s
foot exerts a forward force that balances the
backward force of friction on the sled. Hence
there is no net force on the child and sled, and
they slide with a constant velocity.
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Inertial Frames of Reference
In discussing relative velocity in Section 3.5, we introduced the concept of frame
of reference. This concept is central to Newton’s laws of motion. Suppose you are
in a bus that is traveling on a straight road and speeding up. If you could stand in
the aisle on roller skates, you would start moving backward relative to the bus as
the bus gains speed. If instead the bus was slowing to a stop, you would start
moving forward down the aisle. In either case, it looks as though Newton’s first
law is not obeyed; there is no net force acting on you, yet your velocity changes.
What’s wrong?

The point is that the bus is accelerating with respect to the earth and is not a
suitable frame of reference for Newton’s first law. This law is valid in some
frames of reference and not valid in others. A frame of reference in which
Newton’s first law is valid is called an inertial frame of reference. The earth
is at least approximately an inertial frame of reference, but the bus is not. (The
earth is not a completely inertial frame, owing to the acceleration associated
with its rotation and its motion around the sun. These effects are quite small,
however; see Exercises 3.25 and 3.28.) Because Newton’s first law is used to
define what we mean by an inertial frame of reference, it is sometimes called
the law of inertia.

Figure 4.11 helps us understand what you experience when riding in a vehicle
that’s accelerating. In Fig. 4.11a, a vehicle is initially at rest and then begins to
accelerate to the right. A passenger on roller skates (which nearly eliminate the
effects of friction) has virtually no net force acting on her, so she tends to remain
at rest relative to the inertial frame of the earth. As the vehicle accelerates
around her, she moves backward relative to the vehicle. In the same way, a pas-
senger in a vehicle that is slowing down tends to continue moving with con-
stant velocity relative to the earth, and so moves forward relative to the vehicle
(Fig. 4.11b). A vehicle is also accelerating if it moves at a constant speed but is
turning (Fig. 4.11c). In this case a passenger tends to continue moving relative to

Conceptual Example 4.2 Zero net force means constant velocity

In the classic 1950 science fiction film Rocketship X-M, a space-
ship is moving in the vacuum of outer space, far from any star or
planet, when its engine dies. As a result, the spaceship slows down
and stops. What does Newton’s first law say about this scene?

SOLUTION

After the engine dies there are no forces acting on the spaceship, so
according to Newton’s first law it will not stop but will continue to
move in a straight line with constant speed. Some science fiction
movies are based on accurate science; this is not one of them.

Conceptual Example 4.3 Constant velocity means zero net force

You are driving a Maserati GranTurismo S on a straight testing track
at a constant speed of . You pass a 1971 Volkswagen Beetle
doing a constant . On which car is the net force greater?

SOLUTION

The key word in this question is “net.” Both cars are in equilibrium
because their velocities are constant; Newton’s first law therefore
says that the net force on each car is zero.

This seems to contradict the “common sense” idea that the
faster car must have a greater force pushing it. Thanks to your

75 km>h
250 km>h

Maserati’s high-power engine, it’s true that the track exerts 
a greater forward force on your Maserati than it does on the
Volkswagen. But a backward force also acts on each car due to
road friction and air resistance. When the car is traveling with
constant velocity, the vector sum of the forward and backward
forces is zero. There is more air resistance on the fast-moving
Maserati than on the slow-moving Volkswagen, which is why
the Maserati’s engine must be more powerful than that of the
Volkswagen.



the earth at constant speed in a straight line; relative to the vehicle, the passenger
moves to the side of the vehicle on the outside of the turn.

In each case shown in Fig. 4.11, an observer in the vehicle’s frame of refer-
ence might be tempted to conclude that there is a net force acting on the passen-
ger, since the passenger’s velocity relative to the vehicle changes in each case.
This conclusion is simply wrong; the net force on the passenger is indeed zero.
The vehicle observer’s mistake is in trying to apply Newton’s first law in the
vehicle’s frame of reference, which is not an inertial frame and in which New-
ton’s first law isn’t valid (Fig. 4.12). In this book we will use only inertial frames
of reference.

We’ve mentioned only one (approximately) inertial frame of reference: the
earth’s surface. But there are many inertial frames. If we have an inertial frame
of reference A, in which Newton’s first law is obeyed, then any second frame
of reference B will also be inertial if it moves relative to A with constant
velocity We can prove this using the relative-velocity relationship 
Eq. (3.36) from Section 3.5:

Suppose that P is a body that moves with constant velocity with respect 
to an inertial frame A. By Newton’s first law the net force on this body is zero.
The velocity of P relative to another frame B has a different value, 

But if the relative velocity of the two frames is constant, then
is constant as well. Thus B is also an inertial frame; the velocity of P in this

frame is constant, and the net force on P is zero, so Newton’s first law is obeyed
in B. Observers in frames A and B will disagree about the velocity of P, but they
will agree that P has a constant velocity (zero acceleration) and has zero net force
acting on it.

P>BvS
B>AvSB>A.� vSP>AvS

P>B �vS

P>AvS

B>AP>B � vSP>A � vSvS

B>A.vS
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You tend to continue moving in a
straight line as the vehicle turns.

You tend to continue moving
with constant velocity as the
vehicle slows down around you.

You tend to remain at rest as the
vehicle accelerates around you.

t 5 0

t 5 Dt

t 5 2Dt

t 5 3Dt

v � 0
t 5 0

t 5 Dt

t 5 2Dt

t 5 3Dt

t 5 0

t 5 Dt

t 5 2Dt

The vehicle rounds a turn
at constant speed.

aS

aS

vS

Initially, you and the
vehicle are at rest.

Initially, you and the
vehicle are in motion.

(c)(a) (b)
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aS

aS

aS aS
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aS

aS
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vSvS

vS
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4.11 Riding in an accelerating vehicle.

4.12 From the frame of reference of the
car, it seems as though a force is pushing
the crash test dummies forward as the car
comes to a sudden stop. But there is really
no such force: As the car stops, the dum-
mies keep moving forward as a conse-
quence of Newton’s first law.
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There is no single inertial frame of reference that is preferred over all others for
formulating Newton’s laws. If one frame is inertial, then every other frame moving
relative to it with constant velocity is also inertial. Viewed in this light, the state of
rest and the state of motion with constant velocity are not very different; both occur
when the vector sum of forces acting on the body is zero.

Test Your Understanding of Section 4.2 In which of the following
situations is there zero net force on the body? (i) an airplane flying due north at a
steady and at a constant altitude; (ii) a car driving straight up a hill with a

slope at a constant (iii) a hawk circling at a constant at a constant
height of 15 m above an open field; (iv) a box with slick, frictionless surfaces in the back
of a truck as the truck accelerates forward on a level road at ❙5 m>s2.

20 km>h90 km>h;3°
120 m>s

4.3 Newton’s Second Law
Newton’s first law tells us that when a body is acted on by zero net force, it
moves with constant velocity and zero acceleration. In Fig. 4.13a, a hockey
puck is sliding to the right on wet ice. There is negligible friction, so there are
no horizontal forces acting on the puck; the downward force of gravity and the
upward normal force exerted by the ice surface sum to zero. So the net force

acting on the puck is zero, the puck has zero acceleration, and its velocity
is constant.

But what happens when the net force is not zero? In Fig. 4.13b we apply a
constant horizontal force to a sliding puck in the same direction that the puck is
moving. Then is constant and in the same horizontal direction as . We find that
during the time the force is acting, the velocity of the puck changes at a constant rate;

vSgF
S

gF
S

4.13 Exploring the relationship between the acceleration of a body and the net force
acting on the body (in this case, a hockey puck on a frictionless surface).

(a) A puck moving with constant velocity (in equilibrium): S F 5 0, a 5 0
SS

(b) A constant net force in the direction of motion causes a constant acceleration in the same
direction as the net force.

(c) A constant net force opposite the direction of motion causes a constant acceleration in the same
direction as the net force.
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that is, the puck moves with constant acceleration. The speed of the puck increases,
so the acceleration is in the same direction as and .

In Fig. 4.13c we reverse the direction of the force on the puck so that acts
opposite to . In this case as well, the puck has an acceleration; the puck moves
more and more slowly to the right. The acceleration in this case is to the 
left, in the same direction as . As in the previous case, experiment shows that
the acceleration is constant if is constant.

We conclude that a net force acting on a body causes the body to accelerate in
the same direction as the net force. If the magnitude of the net force is constant,
as in Figs. 4.13b and 4.13c, then so is the magnitude of the acceleration.

These conclusions about net force and acceleration also apply to a body
moving along a curved path. For example, Fig. 4.14 shows a hockey puck mov-
ing in a horizontal circle on an ice surface of negligible friction. A rope is
attached to the puck and to a stick in the ice, and this rope exerts an inward ten-
sion force of constant magnitude on the puck. The net force and acceleration
are both constant in magnitude and directed toward the center of the circle. The
speed of the puck is constant, so this is uniform circular motion, as discussed in
Section 3.4.

Figure 4.15a shows another experiment to explore the relationship between
acceleration and net force. We apply a constant horizontal force to a puck on a
frictionless horizontal surface, using the spring balance described in Section 4.1
with the spring stretched a constant amount. As in Figs. 4.13b and 4.13c, this hor-
izontal force equals the net force on the puck. If we change the magnitude of the
net force, the acceleration changes in the same proportion. Doubling the net force
doubles the acceleration (Fig. 4.15b), halving the net force halves the accelera-
tion (Fig. 4.15c), and so on. Many such experiments show that for any given
body, the magnitude of the acceleration is directly proportional to the magnitude
of the net force acting on the body.

Mass and Force
Our results mean that for a given body, the ratio of the magnitude of the net
force to the magnitude of the acceleration is constant, regardless of the
magnitude of the net force. We call this ratio the inertial mass, or simply the
mass, of the body and denote it by m. That is,

or or (4.5)

Mass is a quantitative measure of inertia, which we discussed in Section 4.2. The
last of the equations in Eqs. (4.5) says that the greater its mass, the more a body
“resists” being accelerated. When you hold a piece of fruit in your hand at the
supermarket and move it slightly up and down to estimate its heft, you’re apply-
ing a force and seeing how much the fruit accelerates up and down in response. If
a force causes a large acceleration, the fruit has a small mass; if the same force
causes only a small acceleration, the fruit has a large mass. In the same way, if
you hit a table-tennis ball and then a basketball with the same force, the basket-
ball has much smaller acceleration because it has much greater mass.

The SI unit of mass is the kilogram. We mentioned in Section 1.3 that the
kilogram is officially defined to be the mass of a cylinder of platinum–iridium
alloy kept in a vault near Paris. We can use this standard kilogram, along with
Eqs. (4.5), to define the newton:

One newton is the amount of net force that gives an acceleration of 1 meter per
second squared to a body with a mass of 1 kilogram.
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4.14 A top view of a hockey puck in
uniform circular motion on a frictionless
horizontal surface.

4.15 For a body of a given mass m, the
magnitude of the body’s acceleration is
directly proportional to the magnitude of
the net force acting on the body.
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At all points, the acceleration a and the net
force Σ F point in the same direction—always
toward the center of the circle.

S

S

Puck moves at constant speed
around circle.
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(a) A constant net force SF causes a
constant acceleration a.
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(b) Doubling the net force doubles the
acceleration.

(c) Halving the force halves the
acceleration.

x
m

2a
S

x
m

a
2

S

SF 5
S

F1

S1
2



114 CHAPTER 4 Newton’s Laws of Motion

This definition allows us to calibrate the spring balances and other instruments
used to measure forces. Because of the way we have defined the newton, it is
related to the units of mass, length, and time. For Eqs. (4.5) to be dimensionally
consistent, it must be true that

or

We will use this relationship many times in the next few chapters, so keep it in
mind.

We can also use Eqs. (4.5) to compare a mass with the standard mass and
thus to measure masses. Suppose we apply a constant net force to a body hav-
ing a known mass and we find an acceleration of magnitude (Fig. 4.16a).
We then apply the same force to another body having an unknown mass 
and we find an acceleration of magnitude (Fig. 4.16b). Then, according to
Eqs. (4.5),

(same net force) (4.6)

For the same net force, the ratio of the masses of two bodies is the inverse of the
ratio of their accelerations. In principle we could use Eq. (4.6) to measure an
unknown mass but it is usually easier to determine mass indirectly by meas-
uring the body’s weight. We’ll return to this point in Section 4.4.

When two bodies with masses and are fastened together, we find
that the mass of the composite body is always (Fig. 4.16c). This
additive property of mass may seem obvious, but it has to be verified experi-
mentally. Ultimately, the mass of a body is related to the number of protons,
electrons, and neutrons it contains. This wouldn’t be a good way to define
mass because there is no practical way to count these particles. But the con-
cept of mass is the most fundamental way to characterize the quantity of mat-
ter in a body.

Stating Newton’s Second Law
We’ve been careful to state that the net force on a body is what causes that body
to accelerate. Experiment shows that if a combination of forces and
so on is applied to a body, the body will have the same acceleration (magnitude
and direction) as when only a single force is applied, if that single force is equal
to the vector sum In other words, the principle of super-
position of forces (see Fig. 4.4) also holds true when the net force is not zero and
the body is accelerating.

Equations (4.5) relate the magnitude of the net force on a body to the magni-
tude of the acceleration that it produces. We have also seen that the direction of
the net force is the same as the direction of the acceleration, whether the body’s
path is straight or curved. Newton wrapped up all these relationships and experi-
mental results in a single concise statement that we now call Newton’s second law
of motion:

Newton’s second law of motion: If a net external force acts on a body, the
body accelerates. The direction of acceleration is the same as the direction of the
net force. The mass of the body times the acceleration of the body equals the net
force vector.
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1 N = 1 kg # m>s2

1 newton = 11 kilogram211 meter per second squared2

4.16 For a given net force acting 
on a body, the acceleration is inversely
proportional to the mass of the body.
Masses add like ordinary scalars.
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(a) A known force SF causes an object
with mass m1 to have an acceleration a1.

S
(b) Applying the same force SF to a
second object and noting the acceleration
allow us to measure the mass.

(c) When the two objects are fastened
together, the same method shows that
their composite mass is the sum of their
individual masses.
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In symbols,

(Newton’s second law of motion) (4.7)

An alternative statement is that the acceleration of a body is in the same direc-
tion as the net force acting on the body, and is equal to the net force divided by
the body’s mass:

Newton’s second law is a fundamental law of nature, the basic relationship
between force and motion. Most of the remainder of this chapter and all of the
next are devoted to learning how to apply this principle in various situations.

Equation (4.7) has many practical applications (Fig. 4.17). You’ve actually
been using it all your life to measure your body’s acceleration. In your inner ear,
microscopic hair cells sense the magnitude and direction of the force that they
must exert to cause small membranes to accelerate along with the rest of your
body. By Newton’s second law, the acceleration of the membranes—and hence
that of your body as a whole—is proportional to this force and has the same
direction. In this way, you can sense the magnitude and direction of your acceler-
ation even with your eyes closed!

Using Newton’s Second Law
There are at least four aspects of Newton’s second law that deserve special atten-
tion. First, Eq. (4.7) is a vector equation. Usually we will use it in component
form, with a separate equation for each component of force and the correspon-
ding component of acceleration:

Fx � max Fy � may Fz � maz (4.8)aaa

= aF
S

m
aS

� maSaF
S
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(Newton’s second 
law of motion)

This set of component equations is equivalent to the single vector equation (4.7).
Each component of the net force equals the mass times the corresponding com-
ponent of acceleration.

Second, the statement of Newton’s second law refers to external forces. By
this we mean forces exerted on the body by other bodies in its environment. It’s
impossible for a body to affect its own motion by exerting a force on itself; if it
were possible, you could lift yourself to the ceiling by pulling up on your belt!
That’s why only external forces are included in the sum in Eqs. (4.7) and (4.8).

Third, Eqs. (4.7) and (4.8) are valid only when the mass m is constant. It’s easy
to think of systems whose masses change, such as a leaking tank truck, a rocket
ship, or a moving railroad car being loaded with coal. But such systems are better
handled by using the concept of momentum; we’ll get to that in Chapter 8.

Finally, Newton’s second law is valid only in inertial frames of reference, just
like the first law. Thus it is not valid in the reference frame of any of the acceler-
ating vehicles in Fig. 4.11; relative to any of these frames, the passenger acceler-
ates even though the net force on the passenger is zero. We will usually assume
that the earth is an adequate approximation to an inertial frame, although because
of its rotation and orbital motion it is not precisely inertial.

CAUTION is not a force You must keep in mind that even though the vector is
equal to the vector sum of all the forces acting on the body, the vector is not a
force. Acceleration is a result of a nonzero net force; it is not a force itself. It’s “common
sense” to think that there is a “force of acceleration” that pushes you back into your seat

maSgF
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maSma
S

gF
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4.17 The design of high-performance
motorcycles depends fundamentally on
Newton’s second law. To maximize the
forward acceleration, the designer makes
the motorcycle as light as possible (that is,
minimizes the mass) and uses the most
powerful engine possible (thus maximiz-
ing the forward force).

Lightweight
body (small m)

Powerful engine
    (large F)

Application Blame Newton’s 
Second Law
This car stopped because of Newton’s second
law: The tree exerted an external force on the
car, giving the car an acceleration that
changed its velocity to zero.

ActivPhysics 2.1.3: Tension Change
ActivPhysics 2.1.4: Sliding on an Incline
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when your car accelerates forward from rest. But there is no such force; instead, your iner-
tia causes you to tend to stay at rest relative to the earth, and the car accelerates around
you (see Fig. 4.11a). The “common sense” confusion arises from trying to apply Newton’s
second law where it isn’t valid, in the noninertial reference frame of an accelerating car.
We will always examine motion relative to inertial frames of reference only. ❙

In learning how to use Newton’s second law, we will begin in this chapter
with examples of straight-line motion. Then in Chapter 5 we will consider more
general cases and develop more detailed problem-solving strategies.

Example 4.4 Determining acceleration from force

A worker applies a constant horizontal force with magnitude 20 N
to a box with mass 40 kg resting on a level floor with negligible
friction. What is the acceleration of the box?

SOLUTION

IDENTIFY and SET UP: This problem involves force and accelera-
tion, so we’ll use Newton’s second law. In any problem involving
forces, the first steps are to choose a coordinate system and to iden-
tify all of the forces acting on the body in question. It’s usually
convenient to take one axis either along or opposite the direction
of the body’s acceleration, which in this case is horizontal. Hence
we take the x-axis to be in the direction of the applied horizontal
force (that is, the direction in which the box accelerates) and the

y-axis to be upward (Fig. 4.18). In most force problems that
you’ll encounter (including this one), the force vectors all lie in a
plane, so the z-axis isn’t used.

The forces acting on the box are (i) the horizontal force 
exerted by the worker, of magnitude 20 N; (ii) the weight of the
box—that is, the downward gravitational force exerted by the
earth; and (iii) the upward supporting force exerted by the floor.
As in Section 4.2, we call a normal force because it is normal
(perpendicular) to the surface of contact. (We use an italic letter n
to avoid confusion with the abbreviation N for newton.) Friction is
negligible, so no friction force is present.

The box doesn’t move vertically, so the y-acceleration is zero:
Our target variable is the x-acceleration, We’ll find it

using Newton’s second law in component form, Eqs. (4.8).

EXECUTE: From Fig. 4.18 only the 20-N force exerted by the
worker has a nonzero x-component. Hence the first of Eqs. (4.8)
tells us that

Fx � F � 20 N � maxa

ax.ay = 0.

nS
nS

wS
F
S

+

+

The box has no vertical acceleration, so the vertical
components of the net force sum to zero. Nevertheless, for
completeness, we show the vertical forces acting on the box.

4.18 Our sketch for this problem. The tiles under the box are
freshly waxed, so we assume that friction is negligible.

The x-component of acceleration is therefore

EVALUATE: The acceleration is in the -direction, the same direc-
tion as the net force. The net force is constant, so the acceleration is
also constant. If we know the initial position and velocity of the
box, we can find its position and velocity at any later time from the
constant-acceleration equations of Chapter 2.

To determine we didn’t need the y-component of Newton’s
second law from Eqs. (4.8), Fy may. Can you use this equa-
tion to show that the magnitude n of the normal force in this situa-
tion is equal to the weight of the box?

=g
ax,

+x

=
20 N

40 kg
=

20 kg # m>s2

40 kg
= 0.50 m>s2ax = aFx

m

Example 4.5 Determining force from acceleration

A waitress shoves a ketchup bottle with mass 0.45 kg to her right
along a smooth, level lunch counter. The bottle leaves her hand
moving at then slows down as it slides because of a con-
stant horizontal friction force exerted on it by the countertop. It
slides for 1.0 m before coming to rest. What are the magnitude and
direction of the friction force acting on the bottle?

2.8 m>s,

SOLUTION

IDENTIFY and SET UP: This problem involves forces and acceler-
ation (the slowing of the ketchup bottle), so we’ll use Newton’s
second law to solve it. As in Example 4.4, we choose a coordinate
system and identify the forces acting on the bottle (Fig. 4.19). We
choose the -axis to be in the direction that the bottle slides, and+x



Some Notes on Units
A few words about units are in order. In the cgs metric system (not used in this
book), the unit of mass is the gram, equal to and the unit of distance is
the centimeter, equal to The cgs unit of force is called the dyne:

In the British system, the unit of force is the pound (or pound-force) and the unit
of mass is the slug (Fig. 4.20). The unit of acceleration is 1 foot per second
squared, so

The official definition of the pound is

It is handy to remember that a pound is about 4.4 N and a newton is about 
0.22 pound. Another useful fact: A body with a mass of 1 kg has a weight of about
2.2 lb at the earth’s surface.

Table 4.2 lists the units of force, mass, and acceleration in the three systems.

1 pound = 4.448221615260 newtons

1 pound = 1 slug # ft>s2

1 dyne = 1 g # cm>s2 = 10-5 N

10-2 m.
10-3 kg,
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take the origin to be where the bottle leaves the waitress’s hand.
The friction force slows the bottle down, so its direction must be
opposite the direction of the bottle’s velocity (see Fig. 4.13c).

Our target variable is the magnitude of the friction force.
We’ll find it using the x-component of Newton’s second law from
Eqs. (4.8). We aren’t told the x-component of the bottle’s accelera-
tion, , but we know that it’s constant because the friction force that
causes the acceleration is constant. Hence we can calculate using
a constant-acceleration formula from Section 2.4. We know the bot-
tle’s initial and final x-coordinates and and its
initial and final x-velocity and , so the easi-
est equation to use is Eq. (2.13), v 2

x = v 2
0x + 2ax1x - x02.

vx = 021v0x = 2.8 m>s
x = 1.0 m21x0 = 0

ax

ax

ƒ

ƒ
S

EXECUTE: We solve Eq. (2.13) for :

The negative sign means that the bottle’s acceleration is toward the
left in Fig. 4.19, opposite to its velocity; this is as it must be,
because the bottle is slowing down. The net force in the x-direction
is the x-component of the friction force, so

Fx � �ƒ � max �

The negative sign shows that the net force on the bottle is toward
the left. The magnitude of the friction force is 

EVALUATE: As a check on the result, try repeating the calcula-
tion with the �x-axis to the left in Fig. 4.19. You’ll find that Fx is
equal to �ƒ � �1.8 N (because the friction force is now in the
�x-direction), and again you’ll find ƒ � 1.8 N. The answers 
for the magnitudes of forces don’t depend on the choice of coor-
dinate axes!

g

ƒ = 1.8 N.

= -1.8 kg # m>s2 = -1.8 N

10.45 kg21-3.9 m>s22a
-ƒ

ax =
v 2

x - v 2
0x

21x - x02
=
10 m>s22 - 12.8 m>s22

211.0 m - 0 m2
= -3.9 m>s2

ax

We draw one diagram for the bottle’s motion and one showing the forces
on the bottle.

4.19 Our sketch for this problem.

4.20 Despite its name, the English unit
of mass has nothing to do with the type 
of slug shown here. A common garden
slug has a mass of about 15 grams, or
about slug.10-3

Table 4.2 Units of Force, Mass,
and Acceleration

System
of Units Force Mass Acceleration

SI newton kilogram
(N) (kg)

cgs dyne gram
(dyn) (g)

British pound slug
(lb)

ft>s2

cm>s2

m>s2

Test Your Understanding of Section 4.3 Rank the following situations
in order of the magnitude of the object’s acceleration, from lowest to highest. Are
there any cases that have the same magnitude of acceleration? (i) a 2.0-kg object
acted on by a 2.0-N net force; (ii) a 2.0-kg object acted on by an 8.0-N net force; 
(iii) an 8.0-kg object acted on by a 2.0-N net force; (iv) an 8.0-kg object acted on 
by a 8.0-N net force. ❙

4.4 Mass and Weight
One of the most familiar forces is the weight of a body, which is the gravitational
force that the earth exerts on the body. (If you are on another planet, your weight
is the gravitational force that planet exerts on you.) Unfortunately, the terms mass
and weight are often misused and interchanged in everyday conversation. It is
absolutely essential for you to understand clearly the distinctions between these
two physical quantities.
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Mass characterizes the inertial properties of a body. Mass is what keeps the
china on the table when you yank the tablecloth out from under it. The greater the
mass, the greater the force needed to cause a given acceleration; this is reflected
in Newton’s second law, 

Weight, on the other hand, is a force exerted on a body by the pull of the earth.
Mass and weight are related: Bodies having large mass also have large weight. A
large stone is hard to throw because of its large mass, and hard to lift off the
ground because of its large weight.

To understand the relationship between mass and weight, note that a freely
falling body has an acceleration of magnitude g. Newton’s second law tells us
that a force must act to produce this acceleration. If a 1-kg body falls with an
acceleration of the required force has magnitude

The force that makes the body accelerate downward is its weight. Any body
near the surface of the earth that has a mass of 1 kg must have a weight of 9.8 N
to give it the acceleration we observe when it is in free fall. More generally, a
body with mass m must have weight with magnitude w given by

(magnitude of the weight of a body of mass m) (4.9)

Hence the magnitude w of a body’s weight is directly proportional to its mass
m. The weight of a body is a force, a vector quantity, and we can write Eq. (4.9)
as a vector equation (Fig. 4.21):

(4.10)

Remember that g is the magnitude of the acceleration due to gravity, so g is
always a positive number, by definition. Thus w, given by Eq. (4.9), is the
magnitude of the weight and is also always positive.

CAUTION A body’s weight acts at all times It is important to understand that the weight
of a body acts on the body all the time, whether it is in free fall or not. If we suspend an
object from a rope, it is in equilibrium, and its acceleration is zero. But its weight, given
by Eq. (4.10), is still pulling down on it (Fig. 4.21). In this case the rope pulls up on the
object, applying an upward force. The vector sum of the forces is zero, but the weight
still acts. ❙
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� mgSwS

w = mg

F = ma = 11 kg219.8 m>s22 = 9.8 kg # m>s2 = 9.8 N
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4.21 The relationship of mass and
weight.

Weight
w 5 mg
S S SF5 w
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• The relationship of mass to weight: w 5 mg.
• This relationship is the same whether a body
is falling or stationary.
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Weight
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Conceptual Example 4.6 Net force and acceleration in free fall

In Example 2.6, a one-euro coin was dropped from rest from the
Leaning Tower of Pisa. If the coin falls freely, so that the effects
of the air are negligible, how does the net force on the coin vary
as it falls?

SOLUTION

In free fall, the acceleration of the coin is constant and equal to
Hence by Newton’s second law the net force is also

constant and equal to which is the coin’s weight (Fig. 4.22).
The coin’s velocity changes as it falls, but the net force acting on it
is constant. (If this surprises you, reread Conceptual Example 4.3.)

The net force on a freely falling coin is constant even if you ini-
tially toss it upward. The force that your hand exerts on the coin to
toss it is a contact force, and it disappears the instant the coin

wSmgS,
= maSgF

S
gS.

aS

leaves your hand. From then on, the only force acting on the coin
is its weight wS.

4.22 The acceleration of a freely falling object is constant, and
so is the net force acting on the object.

ActivPhysics 2.9: Pole-Vaulter Vaults



Variation of g with Location
We will use for problems set on the earth (or, if the other data in
the problem are given to only two significant figures, . In fact, the
value of g varies somewhat from point to point on the earth’s surface—from about
9.78 to —because the earth is not perfectly spherical and because of
effects due to its rotation and orbital motion. At a point where 
the weight of a standard kilogram is At a different point, where

the weight is but the mass is still 1 kg. The weight
of a body varies from one location to another; the mass does not.

If we take a standard kilogram to the surface of the moon, where the accelera-
tion of free fall (equal to the value of g at the moon’s surface) is 
its weight is 1.62 N, but its mass is still 1 kg (Fig. 4.23). An 80.0-kg astronaut 
has a weight on earth of but on the moon the
astronaut’s weight would be only In Chapter 13
we’ll see how to calculate the value of g at the surface of the moon or on other
worlds.

Measuring Mass and Weight
In Section 4.3 we described a way to compare masses by comparing their accel-
erations when they are subjected to the same net force. Usually, however, the eas-
iest way to measure the mass of a body is to measure its weight, often by
comparing with a standard. Equation (4.9) says that two bodies that have the
same weight at a particular location also have the same mass. We can compare
weights very precisely; the familiar equal-arm balance (Fig. 4.24) can determine
with great precision (up to 1 part in when the weights of two bodies are equal
and hence when their masses are equal.

The concept of mass plays two rather different roles in mechanics. The weight
of a body (the gravitational force acting on it) is proportional to its mass; we call
the property related to gravitational interactions gravitational mass. On the other
hand, we call the inertial property that appears in Newton’s second law the
inertial mass. If these two quantities were different, the acceleration due to grav-
ity might well be different for different bodies. However, extraordinarily precise
experiments have established that in fact the two are the same to a precision of
better than one part in 

CAUTION Don’t confuse mass and weight The SI units for mass and weight are often
misused in everyday life. Incorrect expressions such as “This box weighs 6 kg” are
nearly universal. What is meant is that the mass of the box, probably determined indi-
rectly by weighing, is 6 kg. Be careful to avoid this sloppy usage in your own work! 
In SI units, weight (a force) is measured in newtons, while mass is measured in 
kilograms. ❙

1012.

106)

180.0 kg211.62 m>s22 = 130 N.
180.0 kg219.80 m>s22 = 784 N,

1.62 m>s2,

w = 9.78 Ng = 9.78 m>s2,
w = 9.80 N.

g = 9.80 m>s2,
9.82 m>s2

g = 9.8 m>s2)
g = 9.80 m>s2
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4.23 The weight of a 1-kilogram mass
(a) on earth and (b) on the moon.

4.24 An equal-arm balance determines
the mass of a body (such as an apple) by
comparing its weight to a known weight.

(b)

(a)

0 2
4
6

8
1012

14
16
18

20

0
4
6

8
1012

14
16
18

20 2

On earth:
g 5 9.80 m/s2

w 5 mg 5 9.80 N

On the moon:
g 5 1.62 m/s2

w 5 mg 5 1.62 N

m 5 1.00 kg

m 5 1.00 kg

wunknown wknown

d d

Example 4.7 Mass and weight

A Rolls-Royce Phantom traveling in the -direction
makes an emergency stop; the x-component of the net force acting
on it is What is its acceleration?

SOLUTION

IDENTIFY and SET UP: Our target variable is the x-component of
the car’s acceleration, We use the x-component portion of New-
ton’s second law, Eqs. (4.8), to relate force and acceleration. To do
this, we need to know the car’s mass. The newton is a unit for

ax.

-1.83 * 104 N.

+x2.49 * 104 N force, however, so is the car’s weight, not its mass.
Hence we’ll first use Eq. (4.9) to determine the car’s mass from its
weight. The car has a positive x-velocity and is slowing down, so
its x-acceleration will be negative.

EXECUTE: The mass of the car is

Continued= 2540 kg

m =
w

g
=

2.49 * 104 N

9.80 m>s2
=

2.49 * 104 kg # m>s2

9.80 m>s2

2.49 * 104 N
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4.5 Newton’s Third Law
A force acting on a body is always the result of its interaction with another body,
so forces always come in pairs. You can’t pull on a doorknob without the door-
knob pulling back on you. When you kick a football, the forward force that your
foot exerts on the ball launches it into its trajectory, but you also feel the force the
ball exerts back on your foot. If you kick a boulder, the pain you feel is due to the
force that the boulder exerts on your foot.

In each of these cases, the force that you exert on the other body is in the opposite
direction to the force that body exerts on you. Experiments show that whenever two
bodies interact, the two forces that they exert on each other are always equal in mag-
nitude and opposite in direction. This fact is called Newton’s third law of motion:

Newton’s third law of motion: If body A exerts a force on body B (an
“action”), then body B exerts a force on body A (a “reaction”). These two forces
have the same magnitude but are opposite in direction. These two forces act on
different bodies.

For example, in Fig. 4.25 is the force applied by body A (first sub-
script) on body B (second subscript), and is the force applied by body B
(first subscript) on body A (second subscript). The mathematical statement of
Newton’s third law is

(Newton’s third law of motion) (4.11)

It doesn’t matter whether one body is inanimate (like the soccer ball in
Fig. 4.25) and the other is not (like the kicker): They necessarily exert forces
on each other that obey Eq. (4.11).

In the statement of Newton’s third law, “action” and “reaction” are the two
opposite forces (in Fig. 4.25, and ); we sometimes refer to them as
an action–reaction pair. This is not meant to imply any cause-and-effect rela-
tionship; we can consider either force as the “action” and the other as the “reac-
tion.” We often say simply that the forces are “equal and opposite,” meaning that
they have equal magnitudes and opposite directions.

B on AF
S

A on BF
S

B on AA on B � �F
S

F
S

B on AF
SA on BF

S

Test Your Understanding of Section 4.4 Suppose an astronaut landed
on a planet where Compared to earth, would it be easier, harder,
or just as easy for her to walk around? Would it be easier, harder, or just as easy
for her to catch a ball that is moving horizontally at (Assume that the astronaut’s
spacesuit is a lightweight model that doesn’t impede her movements in any way.) ❙

12 m>s?

g = 19.6 m>s2.

Then gives

EVALUATE: The negative sign means that the acceleration vector
points in the negative x-direction, as we expected. The magnitude

= -7.20 m>s2

=
-1.83 * 104 N

2540 kg
=

-1.83 * 104 kg # m>s2

2540 kg
ax = aFx

m

Fx = maxg of this acceleration is pretty high; passengers in this car will expe-
rience a lot of rearward force from their shoulder belts.

The acceleration is also equal to . The number
is also the ratio of (the x-component of

the net force) to (the weight). In fact, the acceler-
ation of a body, expressed as a multiple of g, is always equal to
the ratio of the net force on the body to its weight. Can you see
why?

2.49 * 104 N
-1.83 * 104 N-0.735

-0.735g

4.25 If body A exerts a force on
body B, then body B exerts a force 
on body A that is equal in magnitude and
opposite in direction: B on A.A on B � �F

S
F
S

B on AF
S

A on BF
S

FA on B
S

FB on A

A

B

S

CAUTION The two forces in an action–reaction pair act on different bodies We stress that
the two forces described in Newton’s third law act on different bodies. This is important in
problems involving Newton’s first or second law, which involve the forces that act on a single
body. For instance, the net force on the soccer ball in Fig. 4.25 is the vector sum of the weight
of the ball and the force exerted by the kicker. You wouldn’t include the force 
because this force acts on the kicker, not on the ball. ❙

B on AF
S

A on BF
S

?



In Fig. 4.25 the action and reaction forces are contact forces that are present only
when the two bodies are touching. But Newton’s third law also applies to long-
range forces that do not require physical contact, such as the force of gravitational
attraction. A table-tennis ball exerts an upward gravitational force on the earth that’s
equal in magnitude to the downward gravitational force the earth exerts on the ball.
When you drop the ball, both the ball and the earth accelerate toward each other. The
net force on each body has the same magnitude, but the earth’s acceleration is
microscopically small because its mass is so great. Nevertheless, it does move!
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Conceptual Example 4.8 Which force is greater?

After your sports car breaks down, you start to push it to the near-
est repair shop. While the car is starting to move, how does the
force you exert on the car compare to the force the car exerts on
you? How do these forces compare when you are pushing the car
along at a constant speed?

SOLUTION

Newton’s third law says that in both cases, the force you exert 
on the car is equal in magnitude and opposite in direction to the
force the car exerts on you. It’s true that you have to push harder to
get the car going than to keep it going. But no matter how hard you
push on the car, the car pushes just as hard back on you. Newton’s
third law gives the same result whether the two bodies are at rest,
moving with constant velocity, or accelerating.

You may wonder how the car “knows” to push back on you
with the same magnitude of force that you exert on it. It may help
to visualize the forces you and the car exert on each other as inter-
actions between the atoms at the surface of your hand and the
atoms at the surface of the car. These interactions are analogous to
miniature springs between adjacent atoms, and a compressed
spring exerts equally strong forces on both of its ends.

Fundamentally, though, the reason we know that objects of dif-
ferent masses exert equally strong forces on each other is that
experiment tells us so. Physics isn’t merely a collection of rules
and equations; rather, it’s a systematic description of the natural
world based on experiment and observation.

Table
removed

Ftable on apple
S

Fapple on earth
S

Ftable on apple
S Ftable on apple5 0

S

Fearth on apple
S

Fearth on apple
S

Fapple on table
S

Fearth on apple
S

Fapple on earth
S

Fapple on earth 5 2Fearth on apple
S S

Fapple on table 5 2Ftable on apple
S S

Action–reaction pairs always represent a
mutual interaction of two different objects.

The two forces on the apple CANNOT
be an action–reaction pair because
they act on the same object. We see
that if we eliminate one, the other
remains.

(a) The forces acting on the apple (b) The action–reaction pair for
the interaction between the
apple and the earth

(c) The action–reaction pair for
the interaction between the apple
and the table

(d) We eliminate one of the forces
acting on the apple

Conceptual Example 4.9 Applying Newton’s third law: Objects at rest

An apple sits at rest on a table, in equilibrium. What forces act on
the apple? What is the reaction force to each of the forces acting on
the apple? What are the action–reaction pairs?

SOLUTION

Figure 4.26a shows the forces acting on the apple. is
the weight of the apple—that is, the downward gravitational force
exerted by the earth on the apple. Similarly, is the
upward force exerted by the table on the apple.

table on appleF
S

earth on appleF
S

Figure 4.26b shows one of the action–reaction pairs involving
the apple. As the earth pulls down on the apple, with force

, the apple exerts an equally strong upward pull on the
earth . By Newton’s third law (Eq. 4.11) we have

Also, as the table pushes up on the apple with force 
the corresponding reaction is the downward force apple on tableF

Stable on apple,F
S

earth on apple� �F
S

apple on earthF
S

apple on earthF
Searth on appleF

S

4.26 The two forces in an action–reaction pair always act on different bodies.

Continued
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exerted by the apple on the table (Fig. 4.26c). For this action–
reaction pair we have

The two forces acting on the apple, and
are not an action–reaction pair, despite being equal

in magnitude and opposite in direction. They do not represent the
mutual interaction of two bodies; they are two different forces act-

earth on apple,F
S table on appleF

S

table on apple� �F
S

apple on tableF
S

ing on the same body. Figure 4.26d shows another way to see this. If
we suddenly yank the table out from under the apple, the forces

and suddenly become zero, but 
and are unchanged (the gravitational

interaction is still present). Because is now zero, it can’t
be the negative of the nonzero and these two forces
can’t be an action–reaction pair. The two forces in an action–reaction
pair never act on the same body.

earth on apple,F
S table on appleF

S
earth on appleF

S
apple on earthF

S table on appleF
S

apple on tableF
S

These forces cannot be
an action–reaction pair
because they act on the
same object (the rope).

These forces are equal only if
the rope is in equilibrium (or
can be treated as massless).

(a) The block, the rope, and the mason (c) Not an action–reaction pair

FB on R
S

FM on R
S

(d) Not necessarily equal

FM on R
S

FR on B
S

(b) The action–reaction pairs

FB on R
S

FR on B
S

FM on R
S

FR on M
S

Conceptual Example 4.10 Applying Newton’s third law: Objects in motion

A stonemason drags a marble block across a floor by pulling on a
rope attached to the block (Fig. 4.27a). The block is not necessarily
in equilibrium. How are the various forces related? What are the
action–reaction pairs?

SOLUTION

We’ll use the subscripts B for the block, R for the rope, and M for
the mason. In Fig. 4.27b the vector represents the force
exerted by the mason on the rope. The corresponding reaction is
the equal and opposite force exerted by the rope on the
mason. Similarly, represents the force exerted by the rope
on the block, and the corresponding reaction is the equal and oppo-
site force exerted by the block on the rope. For these two
action–reaction pairs, we have

Be sure you understand that the forces and 
(Fig. 4.27c) are not an action–reaction pair, because both of these
forces act on the same body (the rope); an action and its reaction
must always act on different bodies. Furthermore, the forces 

and are not necessarily equal in magnitude. Apply-
ing Newton’s second law to the rope, we get

If the block and rope are accelerating (speeding up or slowing
down), the rope is not in equilibrium, and must have aM on RF

S

rope� mropeaSB on R� F
S

M on R� F
SaF

S

B on RF
S

M on RF
S

B on RF
S

M on RF
S

R on B� �F
S

B on RF
S

M on R and � �F
S

R on MF
S

B on RF
S

R on BF
S R on MF

S

M on RF
S

different magnitude than By contrast, the action–reaction
forces and are always equal in magnitude, as are

and Newton’s third law holds whether or not the
bodies are accelerating.

In the special case in which the rope is in equilibrium, the forces 
and are equal in magnitude, and they are opposite in

direction. But this is an example of Newton’s first law, not his third;
these are two forces on the same body, not forces of two bodies on
each other. Another way to look at this is that in equilibrium, 

in the preceding equation. Then 

because of Newton’s first or second law.
Another special case is if the rope is accelerating but has negligibly

small mass compared to that of the block or the mason. In this case,
in the above equation, so again 

Since Newton’s third law says that always equals
(they are an action–reaction pair), in this “massless-rope” case 
also equals .

For both the “massless-rope” case and the case of the rope in
equilibrium, the force of the rope on the block is equal in magnitude
and direction to the force of the mason on the rope (Fig. 4.27d).
Hence we can think of the rope as “transmitting” to the block the
force the mason exerts on the rope. This is a useful point of view,
but remember that it is valid only when the rope has negligibly
small mass or is in equilibrium.

M on RF
S

R on BF
SR on B�F
S

B on RF
S

M on R.� �F
S

B on RF
S

m rope = 0

M on R� �F
S

B on RF
S

� 0ropeaS

B on RF
S

M on RF
S

B on R.F
S
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S R on MF

S
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S B on R.F
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4.27 Identifying the forces that act when a mason pulls on a rope attached to a block.
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FM on R FR on M

Block 1 rope Mason

Friction force
of floor on
mason

Friction force
of floor on
block

The mason remains at rest if
FR on M is balanced by the
friction force on the mason.

The block begins sliding if
FM on R overcomes the
friction force on the block.

These forces are an action–reaction
pair. They have the same magnitude
but act on different objects.

S S

SS

Conceptual Example 4.11 A Newton’s third law paradox?

We saw in Conceptual Example 4.10 that the stonemason pulls as
hard on the rope–block combination as that combination pulls
back on him. Why, then, does the block move while the stonema-
son remains stationary?

SOLUTION

To resolve this seeming paradox, keep in mind the difference
between Newton’s second and third laws. The only forces involved
in Newton’s second law are those that act on a given body. The
vector sum of these forces determines the body’s acceleration, if
any. By contrast, Newton’s third law relates the forces that two
different bodies exert on each other. The third law alone tells you
nothing about the motion of either body.

If the rope–block combination is initially at rest, it begins to
slide if the stonemason exerts a force that is greater in
magnitude than the friction force that the floor exerts on the block
(Fig. 4.28). (The block has a smooth underside, which helps to
minimize friction.) Then there is a net force to the right on the
rope–block combination, and it accelerates to the right. By con-
trast, the stonemason doesn’t move because the net force acting on
him is zero. His shoes have nonskid soles that don’t slip on the
floor, so the friction force that the floor exerts on him is strong
enough to balance the pull of the rope on him, (Both the
block and the stonemason also experience a downward force of
gravity and an upward normal force exerted by the floor. These
forces balance each other and cancel out, so we haven’t included
them in Fig. 4.28.)

Once the block is moving at the desired speed, the stonemason
doesn’t need to pull as hard; he must exert only enough force to
balance the friction force on the block. Then the net force on the

R on M.F
S

M on RF
S

moving block is zero, and the block continues to move toward the
mason at a constant velocity, in accordance with Newton’s first
law.

So the block accelerates but the stonemason doesn’t because
different amounts of friction act on them. If the floor were freshly
waxed, so that there was little friction between the floor and the
stonemason’s shoes, pulling on the rope might start the block slid-
ing to the right and start him sliding to the left.

The moral of this example is that when analyzing the motion of
a body, you must remember that only the forces acting on a body
determine its motion. From this perspective, Newton’s third law is
merely a tool that can help you determine what those forces are.

4.28 The horizontal forces acting on the block–rope combina-
tion (left) and the mason (right). (The vertical forces are not
shown.)

A body that has pulling forces applied at its ends, such as the rope in Fig. 4.27,
is said to be in tension. The tension at any point is the magnitude of force acting
at that point (see Fig. 4.2c). In Fig. 4.27b the tension at the right end of the rope is
the magnitude of (or of ), and the tension at the left end equals the
magnitude of (or of ). If the rope is in equilibrium and if no forces
act except at its ends, the tension is the same at both ends and throughout the
rope. Thus, if the magnitudes of and are 50 N each, the tension in
the rope is 50 N (not 100 N). The total force vector acting on
the rope in this case is zero!

We emphasize once more a fundamental truth: The two forces in an
action–reaction pair never act on the same body. Remembering this simple fact
can often help you avoid confusion about action–reaction pairs and Newton’s
third law.
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Test Your Understanding of Section 4.5 You are driving your car on a
country road when a mosquito splatters on the windshield. Which has the greater
magnitude: the force that the car exerted on the mosquito or the force that the
mosquito exerted on the car? Or are the magnitudes the same? If they are different, 
how can you reconcile this fact with Newton’s third law? If they are equal, why is the
mosquito splattered while the car is undamaged? ❙
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4.6 Free-Body Diagrams
Newton’s three laws of motion contain all the basic principles we need to solve a
wide variety of problems in mechanics. These laws are very simple in form, but
the process of applying them to specific situations can pose real challenges. In
this brief section we’ll point out three key ideas and techniques to use in any
problems involving Newton’s laws. You’ll learn others in Chapter 5, which also
extends the use of Newton’s laws to cover more complex situations.

1. Newton’s first and second laws apply to a specific body. Whenever you use
Newton’s first law, for an equilibrium situation or Newton’s second
law, , for a nonequilibrium situation, you must decide at the
beginning to which body you are referring. This decision may sound triv-
ial, but it isn’t.

2. Only forces acting on the body matter. The sum includes all the forces
that act on the body in question. Hence, once you’ve chosen the body to
analyze, you have to identify all the forces acting on it. Don’t get confused
between the forces acting on a body and the forces exerted by that body on
some other body. For example, to analyze a person walking, you would
include in the force that the ground exerts on the person as he walks,
but not the force that the person exerts on the ground (Fig. 4.29). These
forces form an action–reaction pair and are related by Newton’s third law,
but only the member of the pair that acts on the body you’re working with
goes into .

3. Free-body diagrams are essential to help identify the relevant forces. A
free-body diagram is a diagram showing the chosen body by itself,
“free” of its surroundings, with vectors drawn to show the magnitudes
and directions of all the forces applied to the body by the various other
bodies that interact with it. We have already shown some free-body dia-
grams in Figs. 4.18, 4.19, 4.21, and 4.26a. Be careful to include all the
forces acting on the body, but be equally careful not to include any forces
that the body exerts on any other body. In particular, the two forces in an
action–reaction pair must never appear in the same free-body diagram
because they never act on the same body. Furthermore, forces that a body
exerts on itself are never included, since these can’t affect the body’s
motion.

CAUTION Forces in free-body diagrams When you have a complete free-body diagram,
you must be able to answer this question for each force: What other body is applying this
force? If you can’t answer that question, you may be dealing with a nonexistent force. Be
especially on your guard to avoid nonexistent forces such as “the force of acceleration” or
“the force,” discussed in Section 4.3. ❙

When a problem involves more than one body, you have to take the problem
apart and draw a separate free-body diagram for each body. For example, Fig. 4.27c
shows a separate free-body diagram for the rope in the case in which the rope is
considered massless (so that no gravitational force acts on it). Figure 4.28 also
shows diagrams for the block and the mason, but these are not complete free-
body diagrams because they don’t show all the forces acting on each body. (We
left out the vertical forces—the weight force exerted by the earth and the upward
normal force exerted by the floor.)

Figure 4.30 presents three real-life situations and the corresponding complete
free-body diagrams. Note that in each situation a person exerts a force on some-
thing in his or her surroundings, but the force that shows up in the person’s free-
body diagram is the surroundings pushing back on the person.
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4.29 The simple act of walking depends
crucially on Newton’s third law. To start
moving forward, you push backward on
the ground with your foot. As a reaction,
the ground pushes forward on your foot
(and hence on your body as a whole) with
a force of the same magnitude. This
external force provided by the ground is
what accelerates your body forward.

ActivPhysics 2.1.1: Force Magnitudes
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Test Your Understanding of Section 4.6 The buoyancy force shown
in Fig. 4.30c is one half of an action–reaction pair. What force is the other half of
this pair? (i) the weight of the swimmer; (ii) the forward thrust force; (iii) the
backward drag force; (iv) the downward force that the swimmer exerts on the water; 
(v) the backward force that the swimmer exerts on the water by kicking. ❙

4.30 Examples of free-body diagrams. Each free-body diagram shows all of the external forces that act on the object in question.

Fdrag
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Fthrust
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Fbuoyancy
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Fblock on runner
S

Fx
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The force of the starting block on the
runner has a vertical component that
counteracts her weight and a large
horizontal component that accelerates her.

Kicking causes the water to
exert a forward reaction force,
or thrust, on the swimmer.

Thrust is countered by drag
forces exerted by the water
on the moving swimmer.

The water exerts a buoyancy force that
counters the swimmer’s weight.

This player is a
freely falling object.

To jump up, this
player will push
down against the
floor, increasing
the upward reaction
force n of the floor
on him.

(a) (b)

(c)

Sw

Sw

Sw

nS

S

wS
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CHAPTER 4 SUMMARY

Fx
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R
S

Fy
S

The net force on a body and Newton’s first law:
Newton’s first law states that when the vector sum
of all forces acting on a body (the net force) is
zero, the body is in equilibrium and has zero
acceleration. If the body is initially at rest, it
remains at rest; if it is initially in motion, it 
continues to move with constant velocity. This 
law is valid only in inertial frames of reference.
(See Examples 4.2 and 4.3.)

Mass, acceleration, and Newton’s second law: The
inertial properties of a body are characterized by its
mass. The acceleration of a body under the action
of a given set of forces is directly proportional to
the vector sum of the forces (the net force) and
inversely proportional to the mass of the body. This
relationship is Newton’s second law. Like Newton’s
first law, this law is valid only in inertial frames of
reference. The unit of force is defined in terms of
the units of mass and acceleration. In SI units, the
unit of force is the newton (N), equal to 
(See Examples 4.4 and 4.5.)

1 kg # m>s2.

Weight: The weight of a body is the gravitational
force exerted on it by the earth. Weight is a vector
quantity. The magnitude of the weight of a body 
at any specific location is equal to the product 
of its mass m and the magnitude of the acceleration
due to gravity g at that location. While the weight
of a body depends on its location, the mass is 
independent of location. (See Examples 4.6 
and 4.7.)
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Newton’s third law and action–reaction pairs:
Newton’s third law states that when two bodies
interact, they exert forces on each other that at each
instant are equal in magnitude and opposite in
direction. These forces are called action and reac-
tion forces. Each of these two forces acts on only
one of the two bodies; they never act on the same
body. (See Examples 4.8–4.11.)
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Force as a vector: Force is a quantitative measure
of the interaction between two bodies. It is a vector
quantity. When several forces act on a body, the
effect on its motion is the same as when a single
force, equal to the vector sum (resultant) of the
forces, acts on the body. (See Example 4.1.)
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A student suspends a chain consisting of three links, each of mass 
m � 0.250 kg, from a light rope. She pulls upward on the rope, so
that the rope applies an upward force of 9.00 N to the chain. (a) Draw
a free-body diagram for the entire chain, considered as a body, and
one for each of the three links. (b) Use the diagrams of part (a) and
Newton’s laws to find (i) the acceleration of the chain, (ii) the force
exerted by the top link on the middle link, and (iii) the force exerted
by the middle link on the bottom link. Treat the rope as massless.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. There are four objects of interest in this problem: the chain as a

whole and the three individual links. For each of these four
objects, make a list of the external forces that act on it. Besides
the force of gravity, your list should include only forces exerted
by other objects that touch the object in question.

2. Some of the forces in your lists form action–reaction pairs (one
pair is the force of the top link on the middle link and the force
of the middle link on the top link). Identify all such pairs.

3. Use your lists to help you draw a free-body diagram for each of
the four objects. Choose the coordinate axes.

4. Use your lists to decide how many unknowns there are in this
problem. Which of these are target variables?

EXECUTE
5. Write a Newton’s second law equation for each of the four

objects, and write a Newton’s third law equation for each
action–reaction pair. You should have at least as many equa-
tions as there are unknowns (see step 4). Do you?

6. Solve the equations for the target variables.

EVALUATE
7. You can check your results by substituting them back into the

equations from step 6. This is especially important to do if you
ended up with more equations in step 5 than you used in step 6.

8. Rank the force of the rope on the chain, the force of the top link
on the middle link, and the force of the middle link on the bot-
tom link in order from smallest to largest magnitude. Does this
ranking make sense? Explain.

9. Repeat the problem for the case where the upward force that
the rope exerts on the chain is only 7.35 N. Is the ranking in
step 8 the same? Does this make sense?

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q4.1 Can a body be in equilibrium when only one force acts on it?
Explain.
Q4.2 A ball thrown straight up has zero velocity at its highest
point. Is the ball in equilibrium at this point? Why or why not?
Q4.3 A helium balloon hovers in midair, neither ascending nor
descending. Is it in equilibrium? What forces act on it?
Q4.4 When you fly in an airplane at night in smooth air, there is no
sensation of motion, even though the plane may be moving at

Why is this?
Q4.5 If the two ends of a rope in equilibrium are pulled with forces
of equal magnitude and opposite direction, why is the total tension
in the rope not zero?
Q4.6 You tie a brick to the end of a rope and whirl the brick around
you in a horizontal circle. Describe the path of the brick after you
suddenly let go of the rope.
Q4.7 When a car stops suddenly, the passengers tend to move for-
ward relative to their seats. Why? When a car makes a sharp turn,
the passengers tend to slide to one side of the car. Why?
Q4.8 Some people say that the “force of inertia” (or “force of
momentum”) throws the passengers forward when a car brakes
sharply. What is wrong with this explanation?
Q4.9 A passenger in a moving bus with no windows notices that a
ball that has been at rest in the aisle suddenly starts to move toward

1500 mi>h2.800 km>h

the rear of the bus. Think of two different possible explanations,
and devise a way to decide which is correct.
Q4.10 Suppose you chose the fundamental SI units to be force,
length, and time instead of mass, length, and time. What would be
the units of mass in terms of those fundamental units?
Q4.11 Some of the ancient Greeks thought that the “natural state”
of an object was to be at rest, so objects would seek their natural
state by coming to rest if left alone. Explain why this incorrect
view can actually seem quite plausible in the everyday world.
Q4.12 Why is the earth only approximately an inertial reference
frame?
Q4.13 Does Newton’s second law hold true for an observer in a
van as it speeds up, slows down, or rounds a corner? Explain.
Q4.14 Some students refer to the quantity as “the force of
acceleration.” Is it correct to refer to this quantity as a force? If so,
what exerts this force? If not, what is a better description of this
quantity?
Q4.15 The acceleration of a falling body is measured in an eleva-
tor traveling upward at a constant speed of What result is
obtained?
Q4.16 You can play catch with a softball in a bus moving with
constant speed on a straight road, just as though the bus were at
rest. Is this still possible when the bus is making a turn at constant
speed on a level road? Why or why not?

9.8 m>s.

maS

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.
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4.3 . BIO Jaw Injury. Due
to a jaw injury, a patient must
wear a strap (Fig. E4.3) that
produces a net upward force of
5.00 N on his chin. The tension
is the same throughout the
strap. To what tension must 
the strap be adjusted to provide
the necessary upward force?

on the earth? Explain. (On the moon, assume that you are inside a
pressurized structure, so you are not wearing a spacesuit.)
Q4.35 A manual for student pilots contains the following passage:
“When an airplane flies at a steady altitude, neither climbing nor
descending, the upward lift force from the wings equals the air-
plane’s weight. When the airplane is climbing at a steady rate, the
upward lift is greater than the weight; when the airplane is
descending at a steady rate, the upward lift is less than the weight.”
Are these statements correct? Explain.
Q4.36 If your hands are wet and no towel is handy, you can
remove some of the excess water by shaking them. Why does this
get rid of the water?
Q4.37 If you are squatting down (such as when you are examining
the books on the bottom shelf in a library or bookstore) and suddenly
get up, you can temporarily feel light-headed. What do Newton’s
laws of motion have to say about why this happens?
Q4.38 When a car is hit from behind, the passengers can receive a
whiplash. Use Newton’s laws of motion to explain what causes
this to occur.
Q4.39 In a head-on auto collision, passengers not wearing seat
belts can be thrown through the windshield. Use Newton’s laws of
motion to explain why this happens.
Q4.40 In a head-on collision between a compact 1000-kg car and a
large 2500-kg car, which one experiences the greater force?
Explain. Which one experiences the greater acceleration? Explain
why. Now explain why passengers in the small car are more likely
to be injured than those in the large car, even if the bodies of both
cars are equally strong.
Q4.41 Suppose you are in a rocket with no windows, traveling in
deep space far from any other objects. Without looking outside the
rocket or making any contact with the outside world, explain how you
could determine if the rocket is (a) moving forward at a constant 80%
of the speed of light and (b) accelerating in the forward direction.

EXERCISES
Section 4.1 Force and Interactions
4.1 . Two forces have the same magnitude F. What is the angle
between the two vectors if
their sum has a magnitude of
(a) 2F? (b) ? (c) zero?
Sketch the three vectors in
each case.
4.2 . Workmen are trying to
free an SUV stuck in the mud.
To extricate the vehicle, they
use three horizontal ropes, pro-
ducing the force vectors shown
in Fig. E4.2. (a) Find the x- and
y-components of each of the
three pulls. (b) Use the compo-
nents to find the magnitude
and direction of the resultant
of the three pulls.

22 F

53°

31°

32° 985 N

788 N

411 N

y

x

Q4.17 Students sometimes say that the force of gravity on an
object is What is wrong with this view?
Q4.18 The head of a hammer begins to come loose from its
wooden handle. How should you strike the handle on a concrete
sidewalk to reset the head? Why does this work?
Q4.19 Why can it hurt your foot more to kick a big rock than a
small pebble? Must the big rock hurt more? Explain.
Q4.20 “It’s not the fall that hurts you; it’s the sudden stop at the
bottom.” Translate this saying into the language of Newton’s laws
of motion.
Q4.21 A person can dive into water from a height of 10 m without
injury, but a person who jumps off the roof of a 10-m-tall building
and lands on a concrete street is likely to be seriously injured. Why
is there a difference?
Q4.22 Why are cars designed to crumple up in front and back for
safety? Why not for side collisions and rollovers?
Q4.23 When a bullet is fired from a rifle, what is the origin of the
force that accelerates the bullet?
Q4.24 When a string barely strong enough lifts a heavy weight, it
can lift the weight by a steady pull; but if you jerk the string, it will
break. Explain in terms of Newton’s laws of motion.
Q4.25 A large crate is suspended from the end of a vertical rope. Is
the tension in the rope greater when the crate is at rest or when it is
moving upward at constant speed? If the crate is traveling upward,
is the tension in the rope greater when the crate is speeding up or
when it is slowing down? In each case explain in terms of Newton’s
laws of motion.
Q4.26 Which feels a greater pull due to the earth’s gravity, a 10-kg
stone or a 20-kg stone? If you drop them, why does the 20-kg
stone not fall with twice the acceleration of the 10-kg stone?
Explain your reasoning.
Q4.27 Why is it incorrect to say that 1.0 kg equals 2.2 lb?
Q4.28 A horse is hitched to a wagon. Since the wagon pulls back on
the horse just as hard as the horse pulls on the wagon, why doesn’t  the
wagon remain in equilibrium, no matter how hard the horse pulls?
Q4.29 True or false? You exert a push P on an object and it pushes
back on you with a force F. If the object is moving at constant
velocity, then F is equal to P, but if the object is being accelerated,
then P must be greater than F.
Q4.30 A large truck and a small compact car have a head-on collision.
During the collision, the truck exerts a force on the car, and
the car exerts a force on the truck. Which force has the larger
magnitude, or are they the same? Does your answer depend on how
fast each vehicle was moving before the collision? Why or why not?
Q4.31 When a car comes to a stop on a level highway, what force
causes it to slow down? When the car increases its speed on the
same highway, what force causes it to speed up? Explain.
Q4.32 A small compact car is pushing a large van that has broken
down, and they travel along the road with equal velocities and
accelerations. While the car is speeding up, is the force it exerts on
the van larger than, smaller than, or the same magnitude as the
force the van exerts on it? Which object, the car or the van, has the
larger net force on it, or are the net forces the same? Explain.
Q4.33 Consider a tug-of-war between two people who pull in
opposite directions on the ends of a rope. By Newton’s third law,
the force that A exerts on B is just as great as the force that B exerts
on A. So what determines who wins? (Hint: Draw a free-body dia-
gram showing all the forces that act on each person.)
Q4.34 On the moon, If a 2-kg brick drops on your
foot from a height of 2 m, will this hurt more, or less, or the same if it
happens on the moon instead of on the earth? Explain. If a 2-kg brick
is thrown and hits you when it is moving horizontally at will
this hurt more, less, or the same if it happens on the moon instead of

6 m>s,

g = 1.62 m>s2.
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4.8 .. You walk into an elevator, step onto a scale, and push the
“up” button. You also recall that your normal weight is 625 N.
Start answering each of the following questions by drawing a free-
body diagram. (a) If the elevator has an acceleration of magnitude

, what does the scale read? (b) If you start holding a
3.85-kg package by a light vertical string, what will be the tension
in this string once the elevator begins accelerating?
4.9 . A box rests on a frozen pond, which serves as a frictionless
horizontal surface. If a fisherman applies a horizontal force with
magnitude 48.0 N to the box and produces an acceleration of mag-
nitude what is the mass of the box?
4.10 .. A dockworker applies a constant horizontal force of 80.0 N
to a block of ice on a smooth horizontal floor. The frictional force is
negligible. The block starts from rest and moves 11.0 m in 5.00 s.
(a) What is the mass of the block of ice? (b) If the worker stops
pushing at the end of 5.00 s, how far does the block move in the
next 5.00 s?
4.11 . A hockey puck with mass 0.160 kg is at rest at the origin

on the horizontal, frictionless surface of the rink. At time
a player applies a force of 0.250 N to the puck, parallel to

the x-axis; he continues to apply this force until 
(a) What are the position and speed of the puck at 
(b) If the same force is again applied at what are the
position and speed of the puck at 
4.12 . A crate with mass 32.5 kg initially at rest on a warehouse
floor is acted on by a net horizontal force of 140 N. (a) What accel-
eration is produced? (b) How far does the crate travel in 10.0 s? 
(c) What is its speed at the
end of 10.0 s?
4.13 . A 4.50-kg toy cart
undergoes an acceleration in
a straight line (the x-axis).
The graph in Fig. E4.13
shows this acceleration as a
function of time. (a) Find the

t = 7.00 s?
t = 5.00 s,

t = 2.00 s?
t = 2.00 s.

t = 0
1x = 02

3.00 m>s2,

2.50 m>s2

4.4 . A man is dragging a
trunk up the loading ramp of a
mover’s truck. The ramp has 
a slope angle of and the
man pulls upward with a force

whose direction makes an
angle of with the ramp 
(Fig. E4.4). (a) How large a
force is necessary for the
component parallel to the
ramp to be 60.0 N? (b) How large will the component perpendi-
cular to the ramp then be?

Fy

Fx

F
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30.0°
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maximum net force on this cart. When does this maximum force
occur? (b) During what times is the net force on the cart a con-
stant? (c) When is the net force equal to zero?

4.5 .. Two dogs pull horizontally on ropes attached to a post; the
angle between the ropes is If dog A exerts a force of 270 N
and dog B exerts a force of 300 N, find the magnitude of the
resultant force and the angle it makes with dog A’s rope.
4.6 . Two forces, and act at a point. The magnitude of 
is 9.00 N, and its direction is above the x-axis in the second
quadrant. The magnitude of is 6.00 N, and its direction is 
below the x-axis in the third quadrant. (a) What are the x- and 
y-components of the resultant force? (b) What is the magnitude of
the resultant force?

Section 4.3 Newton’s Second Law
4.7 .. A 68.5-kg skater moving initially at on rough
horizontal ice comes to rest uniformly in 3.52 s due to friction
from the ice. What force does friction exert on the skater?

2.40 m>s
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4.14 . A 2.75-kg cat moves
in a straight line (the x-
axis). Figure E4.14 shows a
graph of the x-component of
this cat’s velocity as a func-
tion of time. (a) Find the max-
imum net force on this cat.
When does this force occur?
(b) When is the net force on
the cat equal to zero? (c) What is the net force at time 8.5 s?

Figure E4.4
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4.15 . A small 8.00-kg rocket burns fuel that exerts a time-varying
upward force on the rocket as the rocket moves upward from the
launch pad. This force obeys the equation Measure-
ments show that at the force is 100.0 N, and at the end of
the first 2.00 s, it is 150.0 N. (a) Find the constants A and B, includ-
ing their SI units. (b) Find the net force on this rocket and its accel-
eration (i) the instant after the fuel ignites and (ii) 3.00 s after fuel
ignition. (c) Suppose you were using this rocket in outer space, far
from all gravity. What would its acceleration be 3.00 s after fuel
ignition?
4.16 . An electron leaves one end of
a TV picture tube with zero initial speed and travels in a straight
line to the accelerating grid, which is 1.80 cm away. It reaches the
grid with a speed of If the accelerating force is
constant, compute (a) the acceleration; (b) the time to reach the
grid; (c) the net force, in newtons. (You can ignore the gravita-
tional force on the electron.)

Section 4.4 Mass and Weight
4.17 . Superman throws a 2400-N boulder at an adversary. What
horizontal force must Superman apply to the boulder to give it a
horizontal acceleration of 
4.18 . BIO (a) An ordinary flea has a mass of How many
newtons does it weigh? (b) The mass of a typical froghopper is
12.3 mg. How many newtons does it weigh? (c) A house cat typi-
cally weighs 45 N. How many pounds does it weigh, and what is
its mass in kilograms?
4.19 . At the surface of Jupiter’s moon Io, the acceleration due
to gravity is A watermelon weighs 44.0 N at the
surface of the earth. (a) What is the watermelon’s mass on the
earth’s surface? (b) What are its mass and weight on the surface
of Io?
4.20 . An astronaut’s pack weighs 17.5 N when she is on earth
but only 3.24 N when she is at the surface of an asteroid. (a) What
is the acceleration due to gravity on this asteroid? (b) What is the
mass of the pack on the asteroid?

Section 4.5 Newton’s Third Law
4.21 . BIO World-class sprinters can accelerate out of the starting
blocks with an acceleration that is nearly horizontal and has mag-
nitude How much horizontal force must a 55-kg sprinter
exert on the starting blocks during a start to produce this accelera-
tion? Which body exerts the force that propels the sprinter: the
blocks or the sprinter herself?
4.22 A small car (mass 380 kg) is pushing a large truck (mass 
900 kg) due east on a level road. The car exerts a horizontal force
of 1200 N on the truck. What is the magnitude of the force that the
truck exerts on the car?

15 m>s2.

g = 1.81 m>s2.

210 mg.
12.0 m>s2?

3.00 * 106 m>s.

1mass = 9.11 * 10-31 kg2

t = 0,
F = A + Bt 2.
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4.24 .. The upward normal force exerted by the floor is 620 N on
an elevator passenger who weighs 650 N. What are the reaction
forces to these two forces? Is the passenger accelerating? If so,
what are the magnitude and direction of the acceleration?
4.25 .. A student with mass 45 kg jumps off a high diving board.
Using for the mass of the earth, what is the acceler-
ation of the earth toward her as she accelerates toward the earth
with an acceleration of Assume that the net force on the
earth is the force of gravity she exerts on it.

Section 4.6 Free-Body Diagrams
4.26 . An athlete throws a ball of mass m directly upward, and it
feels no appreciable air resistance. Draw a free-body diagram of
this ball while it is free of the athlete’s hand and (a) moving
upward; (b) at its highest point; (c) moving downward. (d) Repeat
parts (a), (b), and (c) if the athlete throws the ball at a 60° angle
above the horizontal instead of directly upward.
4.27 .. Two crates, A and B, sit at rest side by side on a friction-
less horizontal surface. The crates have masses and A
horizontal force is applied to crate A and the two crates move off
to the right. (a) Draw clearly labeled free-body diagrams for crate
A and for crate B. Indicate which pairs of forces, if any, are third-
law action–reaction pairs. (b) If the magnitude of force is less
than the total weight of the two crates, will it cause the crates to
move? Explain.
4.28 .. A person pulls hori-
zontally on block B in Fig.
E4.28, causing both blocks to
move together as a unit. While
this system is moving, make a
carefully labeled free-body dia-
gram of block A if (a) the table
is frictionless and (b) there is friction between block B and the
table and the pull is equal to the friction force on block B due to
the table.

F
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9.8 m>s2?

6.0 * 1024 kg

4.23 Boxes A and B are in
contact on a horizontal, fric-
tionless surface, as shown in
Fig. E4.23. Box A has mass
20.0 kg and box B has mass
5.0 kg. A horizontal force of
100 N is exerted on box A.
What is the magnitude of the
force that box A exerts on box B?

B
A

100 N

4.32 .. A skier of mass 65.0 kg is pulled up a snow-covered slope
at constant speed by a tow rope that is parallel to the ground. The
ground slopes upward at a constant angle of above the hori-
zontal, and you can ignore friction. (a) Draw a clearly labeled free-
body diagram for the skier. (b) Calculate the tension in the tow rope.

PROBLEMS
4.33 CP A 4.80-kg bucket of water is accelerated upward by a
cord of negligible mass whose breaking strength is 75.0 N. If the
bucket starts from rest, what is the minimum time required to raise
the bucket a vertical distance of 12.0 m without breaking the cord?
4.34 ... A large box containing your new computer sits on the
bed of your pickup truck. You are stopped at a red light. The light
turns green and you stomp on the gas and the truck accelerates. To
your horror, the box starts to slide toward the back of the truck.
Draw clearly labeled free-body diagrams for the truck and for the
box. Indicate pairs of forces, if any, that are third-law action–
reaction pairs. (The bed of the truck is not frictionless.)
4.35 . Two horses pull horizontally on ropes attached to a
stump. The two forces and that they apply to the stump are
such that the net (resultant) force has a magnitude equal to that
of and makes an angle of with Let and

also. Find the magnitude of and its direction (rela-
tive to 
4.36 .. CP You have just landed on Planet X. You take out a 100-g
ball, release it from rest from a height of 10.0 m, and measure that
it takes 2.2 s to reach the ground. You can ignore any force on the
ball from the atmosphere of the planet. How much does the 100-g
ball weigh on the surface of Planet X?
4.37 .. Two adults and a child
want to push a wheeled cart in the
direction marked x in Fig. P4.37.
The two adults push with hori-
zontal forces and as shown
in the figure. (a) Find the magni-
tude and direction of the smallest
force that the child should exert.
You can ignore the effects of fric-
tion. (b) If the child exerts the
minimum force found in part (a),
the cart accelerates at 
in the -direction. What is the
weight of the cart?
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4.29 . A ball is hanging from a long string that is tied to the ceil-
ing of a train car traveling eastward on horizontal tracks. An
observer inside the train car sees the ball hang motionless. Draw a
clearly labeled free-body diagram for the ball if (a) the train has a
uniform velocity, and (b) the train is speeding up uniformly. Is the
net force on the ball zero in either case? Explain.
4.30 .. CP A .22 rifle bullet, traveling at strikes a large
tree, which it penetrates to a depth of 0.130 m. The mass of the
bullet is 1.80 g. Assume a constant retarding force. (a) How much
time is required for the bullet to stop? (b) What force, in newtons,
does the tree exert on the bullet?
4.31 .. A chair of mass 12.0 kg is sitting on the horizontal floor;
the floor is not frictionless. You push on the chair with a force

that is directed at an angle of below the horizon-
tal and the chair slides along the floor. (a) Draw a clearly labeled
free-body diagram for the chair. (b) Use your diagram and Newton’s
laws to calculate the normal force that the floor exerts on the chair.

37.0°F = 40.0 N

350 m>s,

4.38 . CP An oil tanker’s engines have broken down, and the
wind is blowing the tanker straight toward a reef at a constant
speed of (Fig. P4.38). When the tanker is 500 m from the
reef, the wind dies down just as the engineer gets the engines going
again. The rudder is stuck, so the only choice is to try to accelerate
straight backward away from the reef. The mass of the tanker and
cargo is and the engines produce a net horizontal
force of on the tanker. Will the ship hit the reef? If it
does, will the oil be safe? The hull can withstand an impact at a
speed of or less. You can ignore the retarding force of the
water on the tanker’s hull.

0.2 m>s

8.0 * 104 N
3.6 * 107 kg,

1.5 m>s

30°

60°

F2 5 140 N

x

F1 5 100 N

Figure P4.37
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v 5 1.5 m/s

Figure P4.38



Problems 131

4.39 .. CP BIO A Standing Vertical Jump. Basketball player
Darrell Griffith is on record as attaining a standing vertical jump of
1.2 m (4 ft). (This means that he moved upward by 1.2 m after his
feet left the floor.) Griffith weighed 890 N (200 lb). (a) What is his
speed as he leaves the floor? (b) If the time of the part of the jump
before his feet left the floor was 0.300 s, what was his average
acceleration (magnitude and direction) while he was pushing
against the floor? (c) Draw his free-body diagram (see Section 4.6).
In terms of the forces on the diagram, what is the net force on him?
Use Newton’s laws and the results of part (b) to calculate the aver-
age force he applied to the ground.
4.40 ... CP An advertisement claims that a particular automobile
can “stop on a dime.” What net force would actually be necessary
to stop a 850-kg automobile traveling initially at in a
distance equal to the diameter of a dime, which is 1.8 cm?
4.41 .. BIO Human Biomechanics. The fastest pitched baseball
was measured at Typically, a baseball has a mass of 145 g. If
the pitcher exerted his force (assumed to be horizontal and constant)
over a distance of 1.0 m, (a) what force did he produce on the ball
during this record-setting pitch? (b) Draw free-body diagrams of the
ball during the pitch and just after it left the pitcher’s hand.
4.42 .. BIO Human Biomechanics. The fastest served tennis
ball, served by “Big Bill” Tilden in 1931, was measured at

The mass of a tennis ball is 57 g, and the ball is typi-
cally in contact with the tennis racquet for 30.0 ms, with the ball
starting from rest. Assuming constant acceleration, (a) what force
did Big Bill’s tennis racquet exert on the tennis ball if he hit it
essentially horizontally? (b) Draw free-body diagrams of the tennis
ball during the serve and just after it moved free of the racquet.
4.43 . Two crates, one with mass 4.00 kg and the other with
mass 6.00 kg, sit on the frictionless surface of a frozen pond,
connected by a light rope (Fig. P4.43). A woman wearing golf
shoes (so she can get traction on the ice) pulls horizontally on the
6.00-kg crate with a force F that gives the crate an acceleration of

(a) What is the acceleration of the 4.00-kg crate? 
(b) Draw a free-body diagram for the 4.00-kg crate. Use that
diagram and Newton’s second law to find the tension T in the
rope that connects the two crates. (c) Draw a free-body diagram
for the 6.00-kg crate. What is the direction of the net force on
the 6.00-kg crate? Which is larger in magnitude, force T or force
F? (d) Use part (c) and Newton’s second law to calculate the
magnitude of the force F.

2.50 m>s2.

73.14 m>s.

46 m>s.

45.0 km>h

4.45 . CALC To study damage to aircraft that collide with large
birds, you design a test gun that will accelerate chicken-sized
objects so that their displacement along the gun barrel is given 
by The object
leaves the end of the barrel at (a) How long must the
gun barrel be? (b) What will be the speed of the objects as they
leave the end of the barrel? (c) What net force must be exerted on a
1.50-kg object at (i) and (ii) 
4.46 .. A spacecraft descends vertically near the surface of Planet X.
An upward thrust of 25.0 kN from its engines slows it down at a
rate of but it speeds up at a rate of with an
upward thrust of 10.0 kN. (a) In each case, what is the direction of the
acceleration of the spacecraft? (b) Draw a free-body diagram for 
the spacecraft. In each case, speeding up or slowing down, what is the
direction of the net force on the spacecraft? (c) Apply Newton’s sec-
ond law to each case, slowing down or speeding up, and use this to
find the spacecraft’s weight near the surface of Planet X.
4.47 .. CP A 6.50-kg instrument is hanging by a vertical wire
inside a space ship that is blasting off at the surface of the earth.
This ship starts from rest and reaches an altitude of 276 m in 15.0 s
with constant acceleration. (a) Draw a free-body diagram for the
instrument during this time. Indicate which force is greater. (b)
Find the force that the wire exerts on the instrument.
4.48 .. Suppose the rocket in Problem 4.47 is coming in for a
vertical landing instead of blasting off. The captain adjusts the
engine thrust so that the magnitude of the rocket’s acceleration is
the same as it was during blast-off. Repeat parts (a) and (b).
4.49 .. BIO Insect Dynamics. The froghopper (Philaenus spumar-
ius), the champion leaper of the insect world, has a mass of 12.3
mg and leaves the ground (in the most energetic jumps) at 
from a vertical start. The jump itself lasts a mere 1.0 ms before the
insect is clear of the ground. Assuming constant acceleration, (a)
draw a free-body diagram of this mighty leaper while the jump is
taking place; (b) find the force that the ground exerts on the
froghopper during its jump; and (c) express the force in part (b) in
terms of the froghopper’s weight.
4.50 . A loaded elevator with very worn cables has a total mass
of 2200 kg, and the cables can withstand a maximum tension of
28,000 N. (a) Draw the free-body force diagram for the elevator. In
terms of the forces on your diagram, what is the net force on the
elevator? Apply Newton’s second law to the elevator and find the
maximum upward acceleration for the elevator if the cables are not
to break. (b) What would be the answer to part (a) if the elevator
were on the moon, where 
4.51 .. CP Jumping to the Ground. A 75.0-kg man steps off a
platform 3.10 m above the ground. He keeps his legs straight as he
falls, but at the moment his feet touch the ground his knees begin to
bend, and, treated as a particle, he moves an additional 0.60 m
before coming to rest. (a) What is his speed at the instant his feet
touch the ground? (b) Treating him as a particle, what is his accel-
eration (magnitude and direction) as he slows down, if the acceler-
ation is assumed to be constant? (c) Draw his free-body diagram
(see Section 4.6). In terms of the forces on the diagram, what is the
net force on him? Use Newton’s laws and the results of part (b) to
calculate the average force his feet exert on the ground while he
slows down. Express this force in newtons and also as a multiple
of his weight.
4.52 ... CP A 4.9-N hammer head is stopped from an initial
downward velocity of in a distance of 0.45 cm by a nail in
a pine board. In addition to its weight, there is a 15-N downward
force on the hammer head applied by the person using the hammer.
Assume that the acceleration of the hammer head is constant while

3.2 m>s

g = 1.62 m>s2?

4.0 m>s

0.80 m>s21.20 m>s2,

t = 0.025 s?t = 0

t = 0.025 s.
x = 19.0 * 103 m>s22t 2 - 18.0 * 104 m>s32t 3.

4.44 . An astronaut is tethered by a strong cable to a spacecraft.
The astronaut and her spacesuit have a total mass of 105 kg, while
the mass of the cable is negligible. The mass of the spacecraft is

The spacecraft is far from any large astronomical
bodies, so we can ignore the gravitational forces on it and the
astronaut. We also assume that both the spacecraft and the astro-
naut are initially at rest in an inertial reference frame. The astro-
naut then pulls on the cable with a force of 80.0 N. (a) What force
does the cable exert on the astronaut? (b) Since , how
can a “massless” cable exert a force? (c) What is the
astronaut’s acceleration? (d) What force does the cable exert on the
spacecraft? (e) What is the acceleration of the spacecraft?

1m = 02
� maSgF

S

9.05 * 104 kg.

4.00 kg T

6.00 kg

F

Figure P4.43
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4.58 ... CALC The position of a 2.75 * 105-N

upward lift force on the balloon, the balloon is initially accelerat-
ing downward at a rate of (a) Draw a free-body diagram for
the descending balloon. (b) Find the upward lift force in terms of
the initial total weight Mg. (c) The passenger notices that he is
heading straight for a waterfall and decides he needs to go up.
What fraction of the total weight must he drop overboard so that
the balloon accelerates upward at a rate of Assume that the
upward lift force remains the same.
4.57 CP Two boxes, A and B, are connected to
each end of a light vertical rope, as shown in
Fig. P4.57. A constant upward force 

is applied to box A. Starting from rest,
box B descends 12.0 m in 4.00 s. The tension in
the rope connecting the two boxes is 36.0 N. 
(a) What is the mass of box B? (b) What is the
mass of box A?

80.0 N
F =

g>2?

g>3.

4.55 .. CP An athlete whose mass is
90.0 kg is performing weight-lifting exer-
cises. Starting from the rest position, he
lifts, with constant acceleration, a barbell
that weighs 490 N. He lifts the barbell a distance of 0.60 m in 1.6 s.
(a) Draw a clearly labeled free-body force diagram for the barbell
and for the athlete. (b) Use the diagrams in part (a) and Newton’s
laws to find the total force that his feet exert on the ground as he
lifts the barbell.
4.56 ... A hot-air balloon consists of a basket, one passenger, and
some cargo. Let the total mass be M. Even though there is an

it is in contact with the nail and moving downward. (a) Draw a
free-body diagram for the hammer head. Identify the reaction force
to each action force in the diagram. (b) Calculate the downward
force exerted by the hammer head on the nail while the hammer
head is in contact with the nail and moving downward. (c) Suppose
the nail is in hardwood and the distance the hammer head travels in
coming to rest is only 0.12 cm. The downward forces on the ham-
mer head are the same as in part (b). What then is the force 
exerted by the hammer head on the nail while the hammer head is
in contact with the nail and moving downward?
4.53 .. A uniform cable of weight w hangs vertically downward,
supported by an upward force of magnitude w at its top end. What
is the tension in the cable (a) at its top end; (b) at its bottom end;
(c) at its middle? Your answer to each part must include a free-
body diagram. (Hint: For each question choose the body to analyze
to be a section of the cable or a point along the cable.) (d) Graph
the tension in the rope versus the distance from its top end.
4.54 .. The two blocks in Fig. P4.54
are connected by a heavy uniform rope
with a mass of 4.00 kg. An upward force
of 200 N is applied as shown. (a) Draw
three free-body diagrams: one for the
6.00-kg block, one for the 4.00-kg rope,
and another one for the 5.00-kg block.
For each force, indicate what body
exerts that force. (b) What is the accel-
eration of the system? (c) What is the
tension at the top of the heavy rope? 
(d) What is the tension at the midpoint
of the rope?

F
S

F
S

Figure P4.54

F 5 200 N

6.00 kg

4.00 kg

5.00 kg

Chapter Opening Question ?
Newton’s third law tells us that the car pushes on the crew member
just as hard as the crew member pushes on the car, but in the oppo-
site direction. This is true whether the car’s engine is on and the
car is moving forward partly under its own power, or the engine is
off and being propelled by the crew member’s push alone. The
force magnitudes are different in the two situations, but in either
case the push of the car on the crew member is just as strong as the
push of the crew member on the car.

Test Your Understanding Questions
4.1 Answer: (iv) The gravitational force on the crate points
straight downward. In Fig. 4.6 the x-axis points up and to the right,
and the y-axis points up and to the left. Hence the gravitational force
has both an x-component and a y-component, and both are negative.

4.2 Answer: (i), (ii), and (iv) In (i), (ii), and (iv) the body is not
accelerating, so the net force on the body is zero. [In (iv), the box
remains stationary as seen in the inertial reference frame of the
ground as the truck accelerates forward, like the skater in Fig. 4.11a.]
In (iii), the hawk is moving in a circle; hence it is accelerating and
is not in equilibrium.
4.3 Answer: (iii), (i) and (iv) (tie), (ii) The acceleration is equal
to the net force divided by the mass. Hence the magnitude of the
acceleration in each situation is

(i)

(ii)

(iii)

(iv) a = 18.0 N2>18.0 kg2 = 1.0 m>s2.

a = 12.0 N2>18.0 kg2 = 0.25 m>s2;

a = 18.0 N2>12.0 N2 = 4.0 m>s2;

a = 12.0 N2>12.0 kg2 = 1.0 m>s2;

Answers

A

F

B

Figure P4.57

training helicopter under test is given by 

. Find the net force on the helicopter
at
4.59 . CALC An object with mass m moves along the x-axis. Its
position as a function of time is given by where
A and B are constants. Calculate the net force on the object as a
function of time.
4.60 . CALC An object with mass m initially at rest is acted on by
a force , where and are constants. Calculate
the velocity of the object as a function of time.

4.61 .. CP CALC A mysterious rocket-propelled object of mass
45.0 kg is initially at rest in the middle of the horizontal, frictionless
surface of an ice-covered lake. Then a force directed east and with
magnitude is applied. How far does the object
travel in the first 5.00 s after the force is applied?

CHALLENGE PROBLEMS
4.62 ... CALC An object of mass m is at rest in equilibrium at the
origin. At a new force is applied that has components

where and are constants. Calculate the position and
velocity vectors as functions of time.vS1t2

rS1t2k3k2,k1,

Fx1t2 = k1 + k2 y Fy1t2 = k3t

F
S
1t2t = 0

F1t2 = 116.8 N>s2t

vS1t2
k2k1� k2t3≥n� k1ınF

S

x1t2 = At - Bt 3,

t = 5.0 s.
� 10.060 m>s22t2kN12.2 m>s2t≥n

� 10.020 m>s32t3ın �rS
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4.4 It would take twice the effort for the astronaut to walk around
because her weight on the planet would be twice as much as on
the earth. But it would be just as easy to catch a ball moving hori-
zontally. The ball’s mass is the same as on earth, so the horizontal
force the astronaut would have to exert to bring it to a stop (i.e., to
give it the same acceleration) would also be the same as on earth.
4.5 By Newton’s third law, the two forces have equal magnitudes.
Because the car has much greater mass than the mosquito, it under-
goes only a tiny, imperceptible acceleration in response to the
force of the impact. By contrast, the mosquito, with its minuscule
mass, undergoes a catastrophically large acceleration.
4.6 Answer: (iv) The buoyancy force is an upward force that
the water exerts on the swimmer. By Newton’s third law, the

other half of the action–reaction pair is a downward force that
the swimmer exerts on the water and has the same magnitude as
the buoyancy force. It’s true that the weight of the swimmer is
also downward and has the same magnitude as the buoyancy
force; however, the weight acts on the same body (the swimmer)
as the buoyancy force, and so these forces aren’t an action–
reaction pair.

Bridging Problem
Answers: (a) See a Video Tutor solution on MasteringPhysics®

(b) (i) 2.20 m s2; (ii) 6.00 N; (iii) 3.00 N>
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? This skydiver is descending under a parachute at a steady rate. In this 
situation, which has a greater magnitude: the force of gravity or the upward
force of the air on the skydiver?

LEARNING GOALS

By studying this chapter, you will

learn:

• How to use Newton’s first law to

solve problems involving the forces

that act on a body in equilibrium.

• How to use Newton’s second law to

solve problems involving the forces

that act on an accelerating body.

• The nature of the different types of

friction forces—static friction, kinetic

friction, rolling friction, and fluid

resistance—and how to solve prob-

lems that involve these forces.

• How to solve problems involving the

forces that act on a body moving

along a circular path.

• The key properties of the four funda-

mental forces of nature.

5 APPLYING 
NEWTON’S LAWS

We saw in Chapter 4 that Newton’s three laws of motion, the founda-
tion of classical mechanics, can be stated very simply. But applying
these laws to situations such as an iceboat skating across a frozen

lake, a toboggan sliding down a hill, or an airplane making a steep turn requires
analytical skills and problem-solving technique. In this chapter we’ll help you
extend the problem-solving skills you began to develop in Chapter 4.

We’ll begin with equilibrium problems, in which we analyze the forces that
act on a body at rest or moving with constant velocity. We’ll then consider bodies
that are not in equilibrium, for which we’ll have to deal with the relationship
between forces and motion. We’ll learn how to describe and analyze the contact
force that acts on a body when it rests on or slides over a surface. We’ll also ana-
lyze the forces that act on a body that moves in a circle with constant speed. We
close the chapter with a brief look at the fundamental nature of force and the
classes of forces found in our physical universe.

5.1 Using Newton’s First Law: 
Particles in Equilibrium

We learned in Chapter 4 that a body is in equilibrium when it is at rest or mov-
ing with constant velocity in an inertial frame of reference. A hanging lamp, a
kitchen table, an airplane flying straight and level at a constant speed—all are
examples of equilibrium situations. In this section we consider only equilibrium
of a body that can be modeled as a particle. (In Chapter 11 we’ll see how to ana-
lyze a body in equilibrium that can’t be represented adequately as a particle,
such as a bridge that’s supported at various points along its span.) The essential
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physical principle is Newton’s first law: When a particle is in equilibrium, the
net force acting on it—that is, the vector sum of all the forces acting on it—must
be zero:

(particle in equilibrium, vector form) (5.1)

We most often use this equation in component form:

(particle in equilibrium, component form) (5.2)

This section is about using Newton’s first law to solve problems dealing with
bodies in equilibrium. Some of these problems may seem complicated, but the
important thing to remember is that all problems involving particles in equilib-
rium are done in the same way. Problem-Solving Strategy 5.1 details the steps
you need to follow for any and all such problems. Study this strategy carefully,
look at how it’s applied in the worked-out examples, and try to apply it yourself
when you solve assigned problems.

aFx = 0  aFy = 0

aF
S

� 0

Problem-Solving Strategy 5.1 Newton’s First Law: Equilibrium of a Particle

IDENTIFY the relevant concepts: You must use Newton’s first
law for any problem that involves forces acting on a body in
equilibrium—that is, either at rest or moving with constant veloc-
ity. For example, a car is in equilibrium when it’s parked, but also
when it’s traveling down a straight road at a steady speed.

If the problem involves more than one body and the bodies inter-
act with each other, you’ll also need to use Newton’s third law. This
law allows you to relate the force that one body exerts on a second
body to the force that the second body exerts on the first one.

Identify the target variable(s). Common target variables in
equilibrium problems include the magnitude and direction (angle)
of one of the forces, or the components of a force.

SET UP the problem using the following steps:
1. Draw a very simple sketch of the physical situation, showing

dimensions and angles. You don’t have to be an artist!
2. Draw a free-body diagram for each body that is in equilibrium.

For the present, we consider the body as a particle, so you can
represent it as a large dot. In your free-body diagram, do not
include the other bodies that interact with it, such as a surface it
may be resting on or a rope pulling on it.

3. Ask yourself what is interacting with the body by touching it or
in any other way. On your free-body diagram, draw a force vec-
tor for each interaction. Label each force with a symbol for the
magnitude of the force. If you know the angle at which a force is
directed, draw the angle accurately and label it. Include the
body’s weight, unless the body has negligible mass. If the mass
is given, use to find the weight. A surface in contact
with the body exerts a normal force perpendicular to the surface
and possibly a friction force parallel to the surface. A rope or
chain exerts a pull (never a push) in a direction along its length.

4. Do not show in the free-body diagram any forces exerted by the
body on any other body. The sums in Eqs. (5.1) and (5.2)

w = mg

include only forces that act on the body. For each force on the
body, ask yourself “What other body causes that force?” If you
can’t answer that question, you may be imagining a force that
isn’t there.

5. Choose a set of coordinate axes and include them in your
free-body diagram. (If there is more than one body in the
problem, choose axes for each body separately.) Label the
positive direction for each axis. If a body rests or slides on a
plane surface, it usually simplifies things to choose axes that
are parallel and perpendicular to this surface, even when the
plane is tilted.

EXECUTE the solution as follows:
1. Find the components of each force along each of the body’s

coordinate axes. Draw a wiggly line through each force vector
that has been replaced by its components, so you don’t count it
twice. The magnitude of a force is always positive, but its
components may be positive or negative.

2. Set the sum of all x-components of force equal to zero. In a sep-
arate equation, set the sum of all y-components equal to zero.
(Never add x- and y-components in a single equation.)

3. If there are two or more bodies, repeat all of the above steps for
each body. If the bodies interact with each other, use Newton’s
third law to relate the forces they exert on each other.

4. Make sure that you have as many independent equations as the
number of unknown quantities. Then solve these equations to
obtain the target variables.

EVALUATE your answer: Look at your results and ask whether they
make sense. When the result is a symbolic expression or formula,
check to see that your formula works for any special cases (partic-
ular values or extreme cases for the various quantities) for which
you can guess what the results ought to be.
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Example 5.1 One-dimensional equilibrium: Tension in a massless rope

A gymnast with mass suspends herself from the
lower end of a hanging rope of negligible mass. The upper end of
the rope is attached to the gymnasium ceiling. (a) What is the gym-
nast’s weight? (b) What force (magnitude and direction) does the
rope exert on her? (c) What is the tension at the top of the rope?

SOLUTION

IDENTIFY and SET UP: The gymnast and the rope are in equilib-
rium, so we can apply Newton’s first law to both bodies. We’ll use
Newton’s third law to relate the forces that they exert on each
other. The target variables are the gymnast’s weight, the force
that the bottom of the rope exerts on the gymnast 
and the force that the ceiling exerts on the top of the rope

Figure 5.1 shows our sketch of the situation and
free-body diagrams for the gymnast and for the rope. We take the
positive y-axis to be upward in each diagram. Each force acts in
the vertical direction and so has only a y-component.

The forces (the upward force of the rope on the gym-
nast, Fig. 5.1b) and (the downward force of the gymnast on
the rope, Fig. 5.1c) form an action–reaction pair. By Newton’s
third law, they must have the same magnitude.

TG on R

TR on G

1call it TC on R2.

1call it TR on G2;
wG;

mG = 50.0 kg Note that Fig. 5.1c includes only the forces that act on the rope.
In particular, it doesn’t include the force that the rope exerts on the
ceiling (compare the discussion of the apple in Conceptual Exam-
ple 4.9 in Section 4.5). Similarly, the force that the rope exerts on
the ceiling doesn’t appear in Fig. 5.1c.

EXECUTE: (a) The magnitude of the gymnast’s weight is the prod-
uct of her mass and the acceleration due to gravity, g:

(b) The gravitational force on the gymnast (her weight) points
in the negative y-direction, so its y-component is The
upward force of the rope on the gymnast has unknown magnitude

and positive y-component We find this using
Newton’s first law:

The rope pulls up on the gymnast with a force of magnitude
490 N. (By Newton’s third law, the gymnast pulls down on the
rope with a force of the same magnitude, 

(c) We have assumed that the rope is weightless, so the only
forces on it are those exerted by the ceiling (upward force of
unknown magnitude ) and by the gymnast (downward force
of magnitude From Newton’s first law, the net
vertical force on the rope in equilibrium must be zero:

EVALUATE: The tension at any point in the rope is the magnitude of
the force that acts at that point. For this weightless rope, the ten-
sion at the lower end has the same value as the tension

at the upper end. For such an ideal weightless rope, the ten-
sion has the same value at any point along the rope’s length. (See
the discussion in Conceptual Example 4.10 in Section 4.5.)

TC on R

TG on R

TC on R = TG on R = 490 N

 Rope:  aFy = TC on R + 1-TG on R2 = 0  so

TG on R = 490 N).
TC on R

TG on R = 490 N.)

TR on G

TR on G = wG = 490 N

 Gymnast:  aFy = TR on G + 1-wG2 = 0  so

+TR on G.TR on G

-wG.

wG = mGg = 150.0 kg219.80 m>s22 = 490 N

Action–
reaction
pair

(a) The situation (b) Free-body
diagram for gymnast

(c) Free-body
diagram for rope

5.1 Our sketches for this problem.

Example 5.2 One-dimensional equilibrium: Tension in a rope with mass

Find the tension at each end of the rope in Example 5.1 if the
weight of the rope is 120 N.

SOLUTION

IDENTIFY and SET UP: As in Example 5.1, the target variables are
the magnitudes and of the forces that act at the bot-
tom and top of the rope, respectively. Once again, we’ll apply
Newton’s first law to the gymnast and to the rope, and use New-
ton’s third law to relate the forces that the gymnast and rope exert
on each other. Again we draw separate free-body diagrams for the
gymnast (Fig. 5.2a) and the rope (Fig. 5.2b). There is now a third
force acting on the rope, however: the weight of the rope, of mag-
nitude

EXECUTE: The gymnast’s free-body diagram is the same as in
Example 5.1, so her equilibrium condition is also the same. From

wR = 120 N.

TC on RTG on R

Newton’s third law, and we again have

The equilibrium condition for the rope is now

Note that the y-component of is positive because it points in
the but the y-components of both and are
negative. We solve for and substitute the values

and

EVALUATE: When we include the weight of the rope, the tension
is different at the rope’s two ends: 610 N at the top and 490 N at

TC on R = TG on R + wR = 490 N + 120 N = 610 N

wR = 120 N:TG on R = TR on G = 490 N
TC on R

wRTG on R+y-direction,
TC on R

Rope:  aFy = TC on R + 1-TG on R2 + 1-wR2 = 0

gFy = 0

TR on G = TG on R = wG = 490 N

 Gymnast:  aFy = TR on G + 1-wG2 = 0  so

TR on G = TG on R,



the bottom. The force exerted by the ceiling has to
hold up both the 490-N weight of the gymnast and the 120-N
weight of the rope.

To see this more clearly, we draw a free-body diagram for a
composite body consisting of the gymnast and rope together
(Fig. 5.2c). Only two external forces act on this composite body:
the force exerted by the ceiling and the total weight

(The forces and
are internal to the composite body. Newton’s first law

applies only to external forces, so these internal forces play no
role.) Hence Newton’s first law applied to this composite body is

and so 
Treating the gymnast and rope as a composite body is simpler,

but we can’t find the tension at the bottom of the rope by
this method. Moral: Whenever you have more than one body in a
problem involving Newton’s laws, the safest approach is to treat
each body separately.

TG on R

TC on R = wG + wR = 610 N.

Composite body:  aFy = TC on R + 3-1wG + wR24 = 0

TR on G

TG on RwG + wR = 490 N + 120 N = 610 N.
TC on R

TC on R = 610 N
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Action–
reaction
pair

(a) Free-body
diagram for gymnast

(b) Free-body
diagram for rope

(c) Free-body diagram
for gymnast and rope
as a composite body

5.2 Our sketches for this problem, including the weight of the
rope.

Example 5.3 Two-dimensional equilibrium

In Fig. 5.3a, a car engine with weight w hangs from a chain that is
linked at ring O to two other chains, one fastened to the ceiling and
the other to the wall. Find expressions for the tension in each of the
three chains in terms of w. The weights of the ring and chains are
negligible compared with the weight of the engine.

SOLUTION

IDENTIFY and SET UP: The target variables are the tension magni-
tudes and in the three chains (Fig. 5.3a). All the bodies are
in equilibrium, so we’ll use Newton’s first law. We need three
independent equations, one for each target variable. However,
applying Newton’s first law to just one body gives us only two
equations, as in Eqs. (5.2). So we’ll have to consider more than
one body in equilibrium. We’ll look at the engine (which is acted
on by ) and the ring (which is acted on by all three chains and so
is acted on by all three tensions).

Figures 5.3b and 5.3c show our free-body diagrams and choice
of coordinate axes. There are two forces that act on the engine: its
weight w and the upward force exerted by the vertical chain.T1

T1

T3T2,T1,

Three forces act on the ring: the tensions from the vertical chain
the horizontal chain and the slanted chain 

Because the vertical chain has negligible weight, it exerts forces
of the same magnitude at both of its ends (see Example 5.1). (If
the weight of this chain were not negligible, these two forces
would have different magnitudes like the rope in Example 5.2.)
The weight of the ring is also negligible, which is why it isn’t
included in Fig. 5.3c.

EXECUTE: The forces acting on the engine are along the y-axis
only, so Newton’s first law says

The horizontal and slanted chains don’t exert forces on the
engine itself because they are not attached to it. These forces do
appear when we apply Newton’s first law to the ring, however. In
the free-body diagram for the ring (Fig. 5.3c), remember that 

and are the magnitudes of the forces. We resolve the force
with magnitude into its x- and y-components. The ring is in
equilibrium, so using Newton’s first law we can write (separate)

T3

T3T2,
T1,

Engine:  aFy = T1 + 1-w2 = 0  and  T1 = w

T1

1T32.1T22,1T12,

(a) Engine, chains, and ring

T1

T3
T2

O

60°

(b) Free-body
diagram for engine

(c) Free-body
diagram for ring O

5.3 (a) The situation. (b), (c) Our free-body diagrams.

Continued
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equations stating that the x- and y-components of the net force on
the ring are zero:

Because (from the engine equation), we can rewrite the
second ring equation as

We can now use this result in the first ring equation:

T2 = T3 cos 60° = w
cos 60°

sin 60°
= 0.58w

T3 =
T1

sin 60°
=

w

sin 60°
= 1.2w

T1 = w

 Ring:  aFy = T3 sin 60° + 1-T12 = 0

 Ring:  aFx = T3 cos 60° + 1-T22 = 0

EVALUATE: The chain attached to the ceiling exerts a force on the
ring with a vertical component equal to which in turn is equal
to w. But this force also has a horizontal component, so its magni-
tude is somewhat larger than w. This chain is under the greatest
tension and is the one most susceptible to breaking.

To get enough equations to solve this problem, we had to con-
sider not only the forces on the engine but also the forces acting on
a second body (the ring connecting the chains). Situations like this
are fairly common in equilibrium problems, so keep this technique
in mind.

T3

T1,

Example 5.4 An inclined plane

A car of weight w rests on a slanted ramp attached to a trailer
(Fig. 5.4a). Only a cable running from the trailer to the car pre-
vents the car from rolling off the ramp. (The car’s brakes are off
and its transmission is in neutral.) Find the tension in the cable
and the force that the ramp exerts on the car’s tires.

SOLUTION

IDENTIFY: The car is in equilibrium, so we use Newton’s first law.
The ramp exerts a separate force on each of the car’s tires, but for
simplicity we lump these forces into a single force. For a further
simplification, we’ll neglect any friction force the ramp exerts on
the tires (see Fig. 4.2b). Hence the ramp only exerts a force on the
car that is perpendicular to the ramp. As in Section 4.1, we call
this force the normal force (see Fig. 4.2a). The two target variables
are the magnitude n of the normal force and the magnitude T of the
tension in the cable.

SET UP: Figure 5.4 shows the situation and a free-body diagram
for the car. The three forces acting on the car are its weight (mag-
nitude w), the tension in the cable (magnitude T ), and the normal
force (magnitude n). Note that the angle between the ramp and
the horizontal is equal to the angle between the weight vector

and the downward normal to the plane of the ramp. Note also
that we choose the x- and y-axes to be parallel and perpendicular
to the ramp so that we only need to resolve one force (the weight)
into x- and y-components. If we chose axes that were horizontal
and vertical, we’d have to resolve both the normal force and the
tension into components.

wS
a

a

EXECUTE: To write down the x- and y-components of Newton’s first
law, we must first find the components of the weight. One complica-
tion is that the angle in Fig. 5.4b is not measured from the 
toward the Hence we cannot use Eqs. (1.6) directly to
find the components. (You may want to review Section 1.8 to make
sure that you understand this important point.)

One way to find the components of is to consider the 
right triangles in Fig. 5.4b. The sine of is the magnitude of the
x-component of (that is, the side of the triangle opposite )
divided by the magnitude w (the hypotenuse of the triangle).
Similarly, the cosine of is the magnitude of the y-component
(the side of the triangle adjacent to ) divided by w. Both com-
ponents are negative, so and 

Another approach is to recognize that one component of 
must involve while the other component involves To
decide which is which, draw the free-body diagram so that the
angle is noticeably smaller or larger than 45°. (You’ll have to
fight the natural tendency to draw such angles as being close to 45°.)
We’ve drawn Fig. 5.4b so that is smaller than 45°, so is less
than The figure shows that the x-component of is smaller
than the y-component, so the x-component must involve and
the y-component must involve We again find 
and

In Fig. 5.4b we draw a wiggly line through the original vector
representing the weight to remind us not to count it twice. New-
ton’s first law gives us

(Remember that T, w, and n are all magnitudes of vectors and are
therefore all positive.) Solving these equations for T and n, we find

EVALUATE: Our answers for T and n depend on the value of . To
check this dependence, let’s look at some special cases. If the ramp
is horizontal we get and As you might
expect, no cable tension T is needed to hold the car, and the normal
force n is equal in magnitude to the weight. If the ramp is vertical

we get and . The cable tension T supportsn = 0T = w1a = 90°2,

n = w.T = 0a = 02,1

a

n = w cos a

T = w sin a

aFy = n + 1-w cos a2 = 0
aFx = T + 1-w sin a2 = 0

wy = -w cos a.
wx = -w sin acos a.

sin a
wScos a.
sin aa

a

cos a.sin a
wS

wy = -w cos a.wx = -w sin a
a

a

awS
a

wS

+y-axis.
+x-axisa

w sin a

w cos a

w

T

x

aa

y

n

w

T

n

(b) Free-body diagram for car(a) Car on ramp

We replace the weight
by its components.

5.4 A cable holds a car at rest on a ramp.



all of the car’s weight, and there’s nothing pushing the car against
the ramp.

CAUTION Normal force and weight may not be equal It’s a com-
mon error to automatically assume that the magnitude n of the nor-
mal force is equal to the weight w: Our result shows that this is not
true in general. It’s always best to treat n as a variable and solve for
its value, as we have done here. ❙
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How would the answers for T and n be affected if the car
were being pulled up the ramp at a constant speed? This,
too, is an equilibrium situation, since the car’s velocity is con-
stant. So the calculation is the same, and T and n have the same
values as when the car is at rest. (It’s true that T must be greater
than to start the car moving up the ramp, but that’s not
what we asked.)

w sin a

Example 5.5 Equilibrium of bodies connected by cable and pulley

Blocks of granite are to be hauled up a 15° slope out of a quarry,
and dirt is to be dumped into the quarry to fill up old holes. To sim-
plify the process, you design a system in which a granite block on
a cart with steel wheels (weight including both block and cart)
is pulled uphill on steel rails by a dirt-filled bucket (weight 
including both dirt and bucket) that descends vertically into the
quarry (Fig. 5.5a). How must the weights and be related in
order for the system to move with constant speed? Ignore friction
in the pulley and wheels, and ignore the weight of the cable.

SOLUTION

IDENTIFY and SET UP: The cart and bucket each move with a con-
stant velocity (in a straight line at constant speed). Hence each
body is in equilibrium, and we can apply Newton’s first law to
each. Our target is an expression relating the weights and .

Figure 5.5b shows our idealized model for the system, and
Figs. 5.5c and 5.5d show our free-body diagrams. The two forces
on the bucket are its weight and an upward tension exerted by
the cable. As for the car on the ramp in Example 5.4, three forces
act on the cart: its weight a normal force of magnitude n
exerted by the rails, and a tension force from the cable. (We’re
ignoring friction, so we assume that the rails exert no force on the
cart parallel to the incline.) Note that we orient the axes differ-

w1,

w2

w2w1

w2w1

w2,
w1,

ently for each body; the choices shown are the most convenient
ones.

We’re assuming that the cable has negligible weight, so the ten-
sion forces that the cable exerts on the cart and on the bucket have
the same magnitude T. As we did for the car in Example 5.4, we
represent the weight of the cart in terms of its x- and y-components.

EXECUTE: Applying to the bucket in Fig. 5.5c, we find

Applying to the cart (and block) in Fig. 5.5d, we get

Equating the two expressions for T, we find

EVALUATE: Our analysis doesn’t depend at all on the direction in
which the cart and bucket move. Hence the system can move with
constant speed in either direction if the weight of the dirt and bucket
is 26% of the weight of the granite block and cart. What would
happen if were greater than If it were less than 0.26w1?0.26w1?w2

w2 = w1 sin 15° = 0.26w1

aFx = T + 1-w1 sin 15°2 = 0  so T = w1 sin 15°

gFx = 0

aFy = T + 1-w22 = 0  so T = w2

gFy = 0

15°

Cart

Bucket

(a) Dirt-filled bucket pulls cart with granite block

(b) Idealized model of the system

(c) Free-body
diagram for bucket

(d) Free-body
diagram for cart

5.5 (a) The situation. (b) Our idealized model. (c), (d) Our free-body diagrams.

Test Your Understanding of Section 5.1 A traffic light of weight w
hangs from two lightweight cables, one on each side of the light. Each cable hangs
at a 45° angle from the horizontal. What is the tension in each cable? (i) 
(ii) (iii) w; (iv) (v) 2w. ❙w12 ;w>12;

w>2;

?

Notice that we didn’t need the equation for the cart
and block. Can you use this to show that n = w1 cos 15°?

gFy = 0
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5.2 Using Newton’s Second Law: 
Dynamics of Particles

We are now ready to discuss dynamics problems. In these problems, we apply
Newton’s second law to bodies on which the net force is not zero. These bodies
are not in equilibrium and hence are accelerating. The net force on the body is
equal to the mass of the body times its acceleration:

(Newton’s second law, vector form) (5.3)

We most often use this relationship in component form:

(5.4)

The following problem-solving strategy is very similar to Problem-Solving
Strategy 5.1 for equilibrium problems in Section 5.1. Study it carefully, watch
how we apply it in our examples, and use it when you tackle the end-of-chapter
problems. You can solve any dynamics problem using this strategy.

CAUTION doesn’t belong in free-body diagrams Remember that the quantity is
the result of forces acting on a body, not a force itself; it’s not a push or a pull exerted by
anything in the body’s environment. When you draw the free-body diagram for an acceler-
ating body (like the fruit in Fig. 5.6a), make sure you never include the force”
because there is no such force (Fig. 5.6c). You should review Section 4.3 if you’re not
clear on this point. Sometimes we draw the acceleration vector alongside a free-body
diagram, as in Fig. 5.6b. But we never draw the acceleration vector with its tail touching
the body (a position reserved exclusively for the forces that act on the body). ❙

aS

“maS

maSmaS

(Newton’s second law,
component form)aFx = max  aFy = ma y

aF
S

� maS

You can safely draw
the acceleration
vector to one side
of the diagram.

This vector doesn’t
belong in a free-body
diagram because ma
is not a force.

w

ma

y

x

(b) Correct free-body diagram

w ay

y

x

Only the force of gravity
acts on this falling fruit.

(a)

S

(c) Incorrect free-body diagram

RIGHT!

WRONG

5.6 Correct and incorrect free-body dia-
grams for a falling body.

Problem-Solving Strategy 5.2 Newton’s Second Law: Dynamics of Particles

IDENTIFY the relevant concepts: You have to use Newton’s second
law for any problem that involves forces acting on an accelerating
body.

Identify the target variable—usually an acceleration or a force.
If the target variable is something else, you’ll need to select another
concept to use. For example, suppose the target variable is how
fast a sled is moving when it reaches the bottom of a hill. Newton’s
second law will let you find the sled’s acceleration; you’ll then use
the constant-acceleration relationships from Section 2.4 to find
velocity from acceleration.

SET UP the problem using the following steps:
1. Draw a simple sketch of the situation that shows each moving

body. For each body, draw a free-body diagram that shows all
the forces acting on the body. (The acceleration of a body is
determined by the forces that act on it, not by the forces that it
exerts on anything else.) Make sure you can answer the ques-
tion “What other body is applying this force?” for each force in
your diagram. Never include the quantity in your free-body
diagram; it’s not a force!

2. Label each force with an algebraic symbol for the force’s
magnitude. Usually, one of the forces will be the body’s weight;
it’s usually best to label this as 

3. Choose your x- and y-coordinate axes for each body, and show
them in its free-body diagram. Be sure to indicate the positive
direction for each axis. If you know the direction of the acceler-
ation, it usually simplifies things to take one positive axis along
that direction. If your problem involves two or more bodies that

w = mg.

maS

accelerate in different directions, you can use a different set of
axes for each body.

4. In addition to Newton’s second law, identify any
other equations you might need. For example, you might need
one or more of the equations for motion with constant accelera-
tion. If more than one body is involved, there may be relation-
ships among their motions; for example, they may be connected
by a rope. Express any such relationships as equations relating
the accelerations of the various bodies.

EXECUTE the solution as follows:
1. For each body, determine the components of the forces along

each of the body’s coordinate axes. When you represent a force
in terms of its components, draw a wiggly line through the orig-
inal force vector to remind you not to include it twice.

2. Make a list of all the known and unknown quantities. In your
list, identify the target variable or variables.

3. For each body, write a separate equation for each component of
Newton’s second law, as in Eqs. (5.4). In addition, write any
additional equations that you identified in step 4 of “Set Up.”
(You need as many equations as there are target variables.)

4. Do the easy part—the math! Solve the equations to find the tar-
get variable(s).

EVALUATE your answer: Does your answer have the correct units?
(When appropriate, use the conversion ) Does it
have the correct algebraic sign? When possible, consider particular
values or extreme cases of quantities and compare the results with
your intuitive expectations. Ask, “Does this result make sense?”

1 N = 1 kg # m>s2.

gF
S

� maS,
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Example 5.6 Straight-line motion with a constant force

An iceboat is at rest on a frictionless horizontal surface (Fig. 5.7a).
A wind is blowing along the direction of the runners so that 4.0 s
after the iceboat is released, it is moving at (about

or ). What constant horizontal force does the
wind exert on the iceboat? The combined mass of iceboat and rider
is 200 kg.

SOLUTION

IDENTIFY and SET UP: Our target variable is one of the forces 
acting on the accelerating iceboat, so we need to use Newton’s
second law. The forces acting on the iceboat and rider (considered
as a unit) are the weight w, the normal force n exerted by the sur-
face, and the horizontal force . Figure 5.7b shows the free-body
diagram. The net force and hence the acceleration are to the right,
so we chose the positive x-axis in this direction. The acceleration
isn’t given; we’ll need to find it. Since the wind is assumed to exert
a constant force, the resulting acceleration is constant and we can
use one of the constant-acceleration formulas from Section 2.4.

FW

1FW2

FW13 mi>h22 km>h,
6.0 m>s

The iceboat starts at rest its initial x-velocity is and it
attains an x-velocity after an elapsed time 
To relate the x-acceleration to these quantities we use Eq. (2.8),

There is no vertical acceleration, so we expect
that the normal force on the iceboat is equal in magnitude to the
iceboat’s weight.

EXECUTE: The known quantities are the mass the 
initial and final x-velocities and and the
elapsed time The three unknown quantities are the accel-
eration the normal force n, and the horizontal force . Hence
we need three equations.

The first two equations are the x- and y-equations for Newton’s
second law. The force is in the positive x-direction, while the
forces n and are in the positive and negative y-directions,
respectively. Hence we have

so

The third equation is the constant-acceleration relationship, 
Eq. (2.8):

To find we first solve this third equation for and then
substitute the result into the equation:

Since 1 the final answer is

EVALUATE: Our answers for and n have the correct units for a
force, and (as expected) the magnitude n of the normal force is
equal to mg. Does it seem reasonable that the force is substan-
tially less than mg?

FW

FW

FW = 300 N 1about 67 lb2

kg # m>s2 = 1N,

FW = max = 1200 kg211.5 m>s22 = 300 kg # m>s2

ax =
vx - v0x

t
=

6.0 m>s - 0 m>s

4.0 s
= 1.5 m>s2

gFx

axFW,

vx = v0x + axt

n = mgaFy = n + 1-mg2 = 0
aFx = FW = max

w = mg
FW

FWax,
t = 4.0 s.

vx = 6.0 m>s,v0x = 0
m = 200 kg,

vx = v0x + axt.
ax

t = 4.0 s.vx = 6.0 m>s
v0x = 021

B1

(a) Iceboat and rider on frictionless ice (b) Free-body diagram
for iceboat and rider

5.7 (a) The situation. (b) Our free-body diagram.

Example 5.7 Straight-line motion with friction

Suppose a constant horizontal friction force with magnitude 100 N
opposes the motion of the iceboat in Example 5.6. In this case,
what constant force must the wind exert on the iceboat to cause
the same constant x-acceleration

SOLUTION

IDENTIFY and SET UP: Again the target variable is We are
given the x-acceleration, so to find all we need is Newton’s
second law. Figure 5.8 shows our new free-body diagram. The
only difference from Fig. 5.7b is the addition of the friction force

which points opposite the motion. (Note that the magnitude
is a positive quantity, but the component in the 

x-direction is negative, equal to or ) Because the wind
must now overcome the friction force to yield the same accelera-
tion as in Example 5.6, we expect our answer for to be greater
than the 300 N we found there.

FW

-100 N.-ƒƒx

ƒ = 100 N
ƒ
S

,

FW

FW.

ax = 1.5 m>s2?
FW

5.8 Our free-body diagram for the iceboat and rider with a fric-
tion force opposing the motion.ƒ

S

Continued
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EXECUTE: Two forces now have x-components: the force of the
wind and the friction force. The x-component of Newton’s second
law gives

FW = max + ƒ = 1200 kg211.5 m>s22 + 1100 N2 = 400 N
aFx = FW + 1-ƒ2 = max

EVALUATE: The required value of is 100 N greater than in
Example 5.6 because the wind must now push against an addi-
tional 100-N friction force.

FW

Example 5.8 Tension in an elevator cable

An elevator and its load have a combined mass of 800 kg (Fig. 5.9a).
The elevator is initially moving downward at it slows to
a stop with constant acceleration in a distance of 25.0 m. What is
the tension T in the supporting cable while the elevator is being
brought to rest?

SOLUTION

IDENTIFY and SET UP: The target variable is the tension T, which
we’ll find using Newton’s second law. As in Example 5.6, we’ll
determine the acceleration using a constant-acceleration formula.
Our free-body diagram (Fig. 5.9b) shows two forces acting on the
elevator: its weight w and the tension force T of the cable. The ele-
vator is moving downward with decreasing speed, so its accelera-
tion is upward; we chose the positive y-axis to be upward.

The elevator is moving in the negative y-direction, so its initial
y-velocity and its y-displacement are both negative:

and The final y-velocity is
To find the y-acceleration from this information, we’ll

use Eq. (2.13) in the form Once we
have we’ll substitute it into the y-component of Newton’s sec-
ond law from Eqs. (5.4) and solve for T. The net force must be
upward to give an upward acceleration, so we expect T to be greater
than the weight 

EXECUTE: First let’s write out Newton’s second law. The tension
force acts upward and the weight acts downward, so

We solve for the target variable T:

T = w + may = mg + may = m1g + ay2

aFy = T + 1-w2 = may

7840 N.w = mg = 1800 kg219.80 m>s22 =

ay,
v 2

y = v 2
0y + 2ay1y - y02.

ayvy = 0.
y - y0 = -25.0 m.v0y = -10.0 m>s

y - y0v0y

10.0 m>s;

To determine we rewrite the constant-acceleration equation

The acceleration is upward (positive), just as it should be.
Now we can substitute the acceleration into the equation for the

tension:

EVALUATE: The tension is greater than the weight, as expected. Can
you see that we would get the same answers for and T if the
elevator were moving upward and gaining speed at a rate of
2.00 m>s2?

ay

= 9440 N

T = m1g + ay2 = 1800 kg219.80 m>s2 + 2.00 m>s22

ay =
v 2

y - v 2
0y

21y - y02
=
1022 - 1-10.0 m>s22

21-25.0 m2
= +2.00 m>s2

v 2
y = v 2

0y + 2ay1y - y02:
ay,

(b) Free-body diagram
for elevator

(a) Descending elevator

Moving down with
decreasing speed

5.9 (a) The situation. (b) Our free-body diagram.

Example 5.9 Apparent weight in an accelerating elevator

A 50.0-kg woman stands on a bathroom scale while riding in the
elevator in Example 5.8. What is the reading on the scale?

SOLUTION

IDENTIFY and SET UP: The scale (Fig. 5.10a) reads the magnitude
of the downward force exerted by the woman on the scale. By
Newton’s third law, this equals the magnitude of the upward nor-
mal force exerted by the scale on the woman. Hence our target
variable is the magnitude n of the normal force. We’ll find n by
applying Newton’s second law to the woman. We already know
her acceleration; it’s the same as the acceleration of the elevator,
which we calculated in Example 5.8.

Figure 5.10b shows our free-body diagram for the woman. 
The forces acting on her are the normal force n exerted by the
scale and her weight 490 N.w = mg = 150.0 kg219.80 m>s22 =

(b) Free-body diagram
for woman

(a) Woman in a
descending elevator

Moving down with
decreasing speed

5.10 (a) The situation. (b) Our free-body diagram.



(The tension force, which played a major role in Example 5.8,
doesn’t appear here because it doesn’t act on the woman.) From
Example 5.8, the y-acceleration of the elevator and of the woman
is As in Example 5.8, the upward force on the
body accelerating upward (in this case, the normal force on the
woman) will have to be greater than the body’s weight to produce
the upward acceleration.

EXECUTE: Newton’s second law gives

EVALUATE: Our answer for n means that while the elevator is stop-
ping, the scale pushes up on the woman with a force of 590 N. By
Newton’s third law, she pushes down on the scale with the same
force. So the scale reads 590 N, which is 100 N more than her actual

= 150.0 kg219.80 m>s2 + 2.00 m>s22 = 590 N

n = mg + may = m1g + ay2
aFy = n + 1-mg2 = may

ay = +2.00 m>s2.
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weight. The scale reading is called the passenger’s apparent weight.
The woman feels the floor pushing up harder on her feet than when
the elevator is stationary or moving with constant velocity.

What would the woman feel if the elevator were accelerating
downward, so that This would be the case if the
elevator were moving upward with decreasing speed or moving
downward with increasing speed. To find the answer for this situa-
tion, we just insert the new value of in our equation for n:

Now the woman feels as though she weighs only 390 N, or 100 N
less than her actual weight w.

You can feel these effects yourself; try taking a few steps in an
elevator that is coming to a stop after descending (when your
apparent weight is greater than w) or coming to a stop after ascend-
ing (when your apparent weight is less than w).

= 390 N

n = m1g + ay2 = 150.0 kg239.80 m>s2 + 1-2.00 m>s224

ay

ay = -2.00 m>s2?

Apparent Weight and Apparent Weightlessness
Let’s generalize the result of Example 5.9. When a passenger with mass m rides
in an elevator with y-acceleration a scale shows the passenger’s apparent
weight to be

When the elevator is accelerating upward, is positive and n is greater than the
passenger’s weight When the elevator is accelerating downward, is
negative and n is less than the weight. If the passenger doesn’t know the elevator
is accelerating, she may feel as though her weight is changing; indeed, this is just
what the scale shows.

The extreme case occurs when the elevator has a downward acceleration
—that is, when it is in free fall. In that case and the passenger

seems to be weightless. Similarly, an astronaut orbiting the earth with a space-
craft experiences apparent weightlessness (Fig. 5.11). In each case, the person
is not truly weightless because a gravitational force still acts. But the person’s
sensations in this free-fall condition are exactly the same as though the person
were in outer space with no gravitational force at all. In both cases the person
and the vehicle (elevator or spacecraft) fall together with the same accelera-
tion g, so nothing pushes the person against the floor or walls of the vehicle.

n = 0ay = -g

ayw = mg.
ay

n = m1g + ay2

ay,

5.11 Astronauts in orbit feel “weightless”
because they have the same acceleration as
their spacecraft—not because they are “out-
side the pull of the earth’s gravity.” (If no
gravity acted on them, the astronauts and
their spacecraft wouldn’t remain in orbit, but
would fly off into deep space.)

Example 5.10 Acceleration down a hill

A toboggan loaded with students (total weight w) slides down a
snow-covered slope. The hill slopes at a constant angle , and the
toboggan is so well waxed that there is virtually no friction. What
is its acceleration?

SOLUTION

IDENTIFY and SET UP: Our target variable is the acceleration,
which we’ll find using Newton’s second law. There is no friction,
so only two forces act on the toboggan: its weight w and the nor-
mal force n exerted by the hill.

Figure 5.12 shows our sketch and free-body diagram. As in
Example 5.4, the surface is inclined, so the normal force is not verti-
cal and is not equal in magnitude to the weight. Hence we must use
both components of in Eqs. (5.4). We take axes parallelgF

S
� maS

a
(a) The situation (b) Free-body diagram for toboggan

5.12 Our sketches for this problem.

Continued
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and perpendicular to the surface of the hill, so that the acceleration
(which is parallel to the hill) is along the positive x-direction.

EXECUTE: The normal force has only a y-component, but the
weight has both x- and y-components: and 

(In Example 5.4 we had . The difference
is that the positive x-axis was uphill in Example 5.4 but is downhill
in Fig. 5.12b.) The wiggly line in Fig. 5.12b reminds us that we
have resolved the weight into its components. The acceleration is
purely in the so Newton’s second law in
component form then tells us that

Since the x-component equation tells us that 
or

Note that we didn’t need the y-component equation to find the
acceleration. That’s part of the beauty of choosing the x-axis to lie
along the acceleration direction! The y-equation tells us the mag-

ax = g sin a

max,
mg sin a =w = mg,

aFy = n - w cos a = may = 0
aFx = w sin a = max

ay = 0.+x-direction,

wx = -w sin a-w cos a.
wy =wx = w sin a

nitude of the normal force exerted by the hill on the toboggan:

EVALUATE: Notice that the normal force n is not equal to the tobog-
gan’s weight (compare Example 5.4). Notice also that the mass m
does not appear in our result for the acceleration. That’s because
the downhill force on the toboggan (a component of the weight)
is proportional to m, so the mass cancels out when we use

to calculate . Hence any toboggan, regardless of its
mass, slides down a frictionless hill with acceleration 

If the plane is horizontal, and (the toboggan does
not accelerate); if the plane is vertical, and (the
toboggan is in free fall).

CAUTION Common free-body diagram errors Figure 5.13 shows
both the correct way (Fig. 5.13a) and a common incorrect way
(Fig. 5.13b) to draw the free-body diagram for the toboggan. The
diagram in Fig. 5.13b is wrong for two reasons: The normal force
must be drawn perpendicular to the surface, and there’s no such
thing as the “ force.” If you remember that “normal” means
“perpendicular” and that is not itself a force, you’ll be well on
your way to always drawing correct free-body diagrams. ❙

maS
maS

ax = ga = 90°
ax = 0a = 0

g sin a.
axgFx = max

n = w cos a = mg cos a

(a) Correct free-body diagram for the sled (b) Incorrect free-body diagram for the sled

The quantity ma is
not a force.

Normal force is not
vertical because the
surface (which is
along the x-axis)
is inclined.

It’s OK to draw the
acceleration vector
adjacent to (but not
touching) the body.

Normal force is
perpendicular
to the surface.

RIGHT!

WRONG

RIGHT! WRONG

5.13 Correct and incorrect free-body diagrams for a toboggan on a frictionless hill.

Example 5.11 Two bodies with the same acceleration

You push a 1.00-kg food tray through the cafeteria line with a con-
stant 9.0-N force. The tray pushes on a 0.50-kg carton of milk (Fig.
5.14a). The tray and carton slide on a horizontal surface so greasy
that friction can be neglected. Find the acceleration of the tray and
carton and the horizontal force that the tray exerts on the carton.

SOLUTION

IDENTIFY and SET UP: Our two target variables are the accelera-
tion of the tray–carton system and the force of the tray on the car-
ton. We’ll use Newton’s second law to get two equations, one for
each target variable. We set up and solve the problem in two ways.

Method 1: We treat the milk carton (mass ) and tray (mass
) as separate bodies, each with its own free-body diagram

(Figs. 5.14b and 5.14c). The force F that you exert on the tray
doesn’t appear in the free-body diagram for the carton, which is
accelerated by the force (of magnitude ) exerted on it by the
tray. By Newton’s third law, the carton exerts a force of equal mag-
nitude on the tray: We take the acceleration toFC on T = FT on C.

FT on C

mT

mC

be in the positive x-direction; both the tray and milk carton move
with the same x-acceleration

Method 2: We treat the tray and milk carton as a composite
body of mass (Fig. 5.14d). The only
horizontal force acting on this body is the force F that you exert.
The forces and don’t come into play because they’re
internal to this composite body, and Newton’s second law tells
us that only external forces affect a body’s acceleration (see
Section 4.3). To find the magnitude we’ll again apply
Newton’s second law to the carton, as in Method 1.

EXECUTE: Method 1: The x-component equations of Newton’s sec-
ond law are

These are two simultaneous equations for the two target variables
and (Two equations are all we need, which means thatFT on C.ax

 Carton:  aFx = FT on C = mCax

 Tray:  aFx = F - FC on T = F - FT on C = mTax

FT on C

FC on TFT on C

m = mT + mC = 1.50 kg

ax.



the y-components don’t play a role in this example.) An easy way
to solve the two equations for is to add them; this eliminates

giving

and

Substituting this value into the carton equation gives

Method 2: The x-component of Newton’s second law for the
composite body of mass m is

aFx = F = max

FT  on C = mC ax = 10.50 kg216.0 m>s22 = 3.0 N

ax =
F

mT + mC
=

9.0 N

1.00 kg + 0.50 kg
= 6.0 m>s2 = 0.61g

F = mTax + mCax = 1mT + mC2ax

FT on C,
ax
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The acceleration of this composite body is

Then, looking at the milk carton by itself, we see that to give it an
acceleration of requires that the tray exert a force

EVALUATE: The answers are the same with both methods. To check
the answers, note that there are different forces on the two sides
of the tray: on the right and on the left.
The net horizontal force on the tray is 
exactly enough to accelerate a 1.00-kg tray at .

Treating two bodies as a single, composite body works only if
the two bodies have the same magnitude and direction of accelera-
tion. If the accelerations are different we must treat the two bodies
separately, as in the next example.

6.0 m>s2
F - FC on T = 6.0 N,

FC on T = 3.0 NF = 9.0 N

FT on C = mCax = 10.50 kg216.0 m>s22 = 3.0 N

6.0 m>s2

ax =
F

m
=

9.0 N

1.50 kg
= 6.0 m>s2

(a) A milk carton and a food tray (b) Free-body diagram
for milk carton

(c) Free-body diagram
for food tray

(d) Free-body diagram for
carton and tray as a composite body

y

F

ax

x

w

n

F

FC on T 5
FT on C

y

x

wT

nT
ax

FT on C

ax
y

x
wC

nC

m T 5 1.00 kg

F 5 9.0 N

m C 5 0.50 kg

5.14 Pushing a food tray and milk carton in the cafeteria line.

Example 5.12 Two bodies with the same magnitude of acceleration

Figure 5.15a shows an air-track glider with mass moving on a
level, frictionless air track in the physics lab. The glider is con-
nected to a lab weight with mass by a light, flexible, non-
stretching string that passes over a stationary, frictionless pulley.
Find the acceleration of each body and the tension in the string.

SOLUTION

IDENTIFY and SET UP: The glider and weight are accelerating, so
again we must use Newton’s second law. Our three target vari-
ables are the tension T in the string and the accelerations of the
two bodies.

The two bodies move in different directions—one horizontal,
one vertical—so we can’t consider them together as we did 
the bodies in Example 5.11. Figures 5.15b and 5.15c show our
free-body diagrams and coordinate systems. It’s convenient to
have both bodies accelerate in the positive axis directions, 

m2

m1

(a) Apparatus (b) Free-body
diagram for glider

(c) Free-body
diagram for weight

m2

m1

5.15 (a) The situation. (b), (c) Our free-body diagrams.

Continued
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so we chose the positive y-direction for the lab weight to be 
downward.

We consider the string to be massless and to slide over the pul-
ley without friction, so the tension T in the string is the same
throughout and it applies a force of the same magnitude T to each
body. (You may want to review Conceptual Example 4.10, in
which we discussed the tension force exerted by a massless string.)
The weights are and 

While the directions of the two accelerations are different, their
magnitudes are the same. (That’s because the string doesn’t
stretch, so the two bodies must move equal distances in equal
times and their speeds at any instant must be equal. When the
speeds change, they change at the same rate, so the accelerations
of the two bodies must have the same magnitude a.) We can
express this relationship as , which means that we
have only two target variables: a and the tension T.

What results do we expect? If (or, approximately, for
much less than ) the lab weight will fall freely with acceler-

ation g, and the tension in the string will be zero. For (or,
approximately, for much less than ) we expect zero acceler-
ation and zero tension.

EXECUTE: Newton’s second law gives

(There are no forces on the lab weight in the x-direction.) In these
equations we’ve used (the glider doesn’t accelerate verti-
cally) and .a1x = a2y = a

a1y = 0

Lab weight: aFy = m2g + 1-T2 = m2a2y = m2a

Glider: aFy = n + 1-m1g2 = m1a1y = 0

Glider: aFx = T = m1a1x = m1a

m1m2

m2 = 0
m2m1

m1 = 0

a1x = a2y = a

m2g.m1g

The x-equation for the glider and the equation for the lab
weight give us two simultaneous equations for T and a:

We add the two equations to eliminate T, giving

and so the magnitude of each body’s acceleration is

Substituting this back into the glider equation , we get

EVALUATE: The acceleration is in general less than g, as you might
expect; the string tension keeps the lab weight from falling freely.
The tension T is not equal to the weight of the lab weight, but
is less by a factor of If T were equal to then
the lab weight would be in equilibrium, and it isn’t.

As predicted, the acceleration is equal to g for and
equal to zero for , and for either or .

CAUTION Tension and weight may not be equal It’s a common
mistake to assume that if an object is attached to a vertical string,
the string tension must be equal to the object’s weight. That was
the case in Example 5.5, where the acceleration was zero, but it’s
not the case in this example! The only safe approach is always to
treat the tension as a variable, as we did here. ❙

m2 = 0m1 = 0T = 0m2 = 0
m1 = 0

m2g,m1>1m1 + m22.
m2g

T =
m1m2

m1 + m2
g

T = m1a

a =
m2

m1 + m2
g

m2g = m1a + m2a = 1m1 + m22a

Lab weight:  m2g - T = m2a

Glider:    T = m1a

Test Your Understanding of Section 5.2 Suppose you hold the glider in
Example 5.12 so that it and the weight are initially at rest. You give the glider a push to
the left in Fig. 5.15a and then release it. The string remains taut as the glider moves to the
left, comes instantaneously to rest, then moves to the right. At the instant the glider has
zero velocity, what is the tension in the string? (i) greater than in Example 5.12; (ii) the
same as in Example 5.12; (iii) less than in Example 5.12, but greater than zero; (iv) zero. ❙

5.3 Frictional Forces
We’ve seen several problems where a body rests or slides on a surface that exerts
forces on the body. Whenever two bodies interact by direct contact (touching) of
their surfaces, we describe the interaction in terms of contact forces. The normal
force is one example of a contact force; in this section we’ll look in detail at
another contact force, the force of friction.

Friction is important in many aspects of everyday life. The oil in a car engine
minimizes friction between moving parts, but without friction between the tires
and the road we couldn’t drive or turn the car. Air drag—the frictional force
exerted by the air on a body moving through it—decreases automotive fuel econ-
omy but makes parachutes work. Without friction, nails would pull out, light bulbs
would unscrew effortlessly, and ice hockey would be hopeless (Fig. 5.16).

Kinetic and Static Friction
When you try to slide a heavy box of books across the floor, the box doesn’t
move at all unless you push with a certain minimum force. Then the box starts
moving, and you can usually keep it moving with less force than you needed to

5.16 The sport of ice hockey depends on
having the right amount of friction between
a player’s skates and the ice. If there were
too much friction, the players would move
too slowly; if there were too little friction,
they would fall over.

PhET: Lunar Lander
ActivPhysics 2.1.5: Car Race
ActivPhysics 2.2: Lifting a Crate
ActivPhysics 2.3: Lowering a Crate
ActivPhysics 2.4: Rocket Blasts Off
ActivPhysics 2.5: Modified Atwood Machine



get it started. If you take some of the books out, you need less force than before
to get it started or keep it moving. What general statements can we make about
this behavior?

First, when a body rests or slides on a surface, we can think of the surface as
exerting a single contact force on the body, with force components perpendicular
and parallel to the surface (Fig. 5.17). The perpendicular component vector is the
normal force, denoted by The component vector parallel to the surface (and
perpendicular to is the friction force, denoted by If the surface is friction-
less, then is zero but there is still a normal force. (Frictionless surfaces are an
unattainable idealization, like a massless rope. But we can approximate a surface
as frictionless if the effects of friction are negligibly small.) The direction of the
friction force is always such as to oppose relative motion of the two surfaces.

The kind of friction that acts when a body slides over a surface is called a
kinetic friction force The adjective “kinetic” and the subscript “k” remind us
that the two surfaces are moving relative to each other. The magnitude of the
kinetic friction force usually increases when the normal force increases. This is
why it takes more force to slide a box across the floor when it’s full of books than
when it’s empty. Automotive brakes use the same principle: The harder the brake
pads are squeezed against the rotating brake disks, the greater the braking effect.
In many cases the magnitude of the kinetic friction force is found experimen-
tally to be approximately proportional to the magnitude n of the normal force. In
such cases we represent the relationship by the equation

(magnitude of kinetic friction force) (5.5)

where (pronounced “mu-sub-k”) is a constant called the coefficient of kinetic
friction. The more slippery the surface, the smaller this coefficient. Because it is
a quotient of two force magnitudes, is a pure number without units.

CAUTION Friction and normal forces are always perpendicular Remember that Eq. (5.5)
is not a vector equation because and are always perpendicular. Rather, it is a scalar
relationship between the magnitudes of the two forces. ❙

Equation (5.5) is only an approximate representation of a complex phenome-
non. On a microscopic level, friction and normal forces result from the intermol-
ecular forces (fundamentally electrical in nature) between two rough surfaces at
points where they come into contact (Fig. 5.18). As a box slides over the floor,
bonds between the two surfaces form and break, and the total number of such
bonds varies; hence the kinetic friction force is not perfectly constant. Smoothing
the surfaces can actually increase friction, since more molecules are able to inter-
act and bond; bringing two smooth surfaces of the same metal together can cause
a “cold weld.” Lubricating oils work because an oil film between two surfaces
(such as the pistons and cylinder walls in a car engine) prevents them from com-
ing into actual contact.

Table 5.1 lists some representative values of Although these values are
given with two significant figures, they are only approximate, since friction
forces can also depend on the speed of the body relative to the surface. For now
we’ll ignore this effect and assume that and are independent of speed, in
order to concentrate on the simplest cases. Table 5.1 also lists coefficients of
static friction; we’ll define these shortly.

Friction forces may also act when there is no relative motion. If you try to
slide a box across the floor, the box may not move at all because the floor exerts
an equal and opposite friction force on the box. This is called a static friction
force In Fig. 5.19a, the box is at rest, in equilibrium, under the action of its
weight and the upward normal force The normal force is equal in magnitude
to the weight and is exerted on the box by the floor. Now we tie a rope1n = w2

nS.wS
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mk.

nSƒ
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mk

mk
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Contact force

Normal-force
component n

Push or pull

Weight

Friction-force
component f

The friction and normal forces are really
components of a single contact force.

5.17 When a block is pushed or pulled
over a surface, the surface exerts a contact
force on it.

Block

Floor

Magnified view

On a microscopic level, even smooth surfaces
are rough; they tend to catch and cling.

5.18 The normal and friction forces
arise from interactions between molecules
at high points on the surfaces of the block
and the floor.

Table 5.1 Approximate 
Coefficients of Friction

Coefficient Coefficient 
of Static of Kinetic 

Materials Friction, Friction, 

Steel on steel 0.74 0.57

Aluminum on steel 0.61 0.47

Copper on steel 0.53 0.36

Brass on steel 0.51 0.44

Zinc on cast iron 0.85 0.21

Copper on cast iron 1.05 0.29

Glass on glass 0.94 0.40

Copper on glass 0.68 0.53

Teflon on Teflon 0.04 0.04

Teflon on steel 0.04 0.04

Rubber on concrete 1.0 0.8
(dry)

Rubber on concrete 0.30 0.25
(wet)

MkMs
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to the box (Fig. 5.19b) and gradually increase the tension T in the rope. At first
the box remains at rest because the force of static friction also increases and
stays equal in magnitude to T.

At some point T becomes greater than the maximum static friction force the
surface can exert. Then the box “breaks loose” (the tension T is able to break the
bonds between molecules in the surfaces of the box and floor) and starts to slide.
Figure 5.19c shows the forces when T is at this critical value. If T exceeds this
value, the box is no longer in equilibrium. For a given pair of surfaces the maxi-
mum value of depends on the normal force. Experiment shows that in many
cases this maximum value, called is approximately proportional to n; we
call the proportionality factor the coefficient of static friction. Table 5.1 lists
some representative values of In a particular situation, the actual force of
static friction can have any magnitude between zero (when there is no other force
parallel to the surface) and a maximum value given by In symbols,

(magnitude of static friction force) (5.6)

Like Eq. (5.5), this is a relationship between magnitudes, not a vector relation-
ship. The equality sign holds only when the applied force T has reached the criti-
cal value at which motion is about to start (Fig. 5.19c). When T is less than this
value (Fig. 5.19b), the inequality sign holds. In that case we have to use the equi-
librium conditions to find If there is no applied force as
in Fig. 5.19a, then there is no static friction force either 

As soon as the box starts to slide (Fig. 5.19d), the friction force usually
decreases (Fig. 5.19e); it’s easier to keep the box moving than to start it moving.
Hence the coefficient of kinetic friction is usually less than the coefficient of
static friction for any given pair of surfaces, as Table 5.1 shows.

1ƒs = 02.
1T = 02ƒs.1gF

S
� 02

ƒs … msn

msn.

ms.
ms

1ƒs2max,
ƒs

ƒs

ƒs

Box moving; kinetic friction
is essentially constant.

Box at rest; static friction
equals applied force.

1 fs 2max

fs

fk

f

O
T

n

w

(e)

No applied force,
box at rest.
No friction:

fs 5 0

n

w

T

Weak applied force,
box remains at rest.

Static friction:
fs , msn

fs

n

w

T

Stronger applied force,
box just about to slide.

Static friction:
fs 5 msn

fk

n

w

T

Box sliding at
constant speed.
Kinetic friction:

fk 5 mkn

(a) (b) (c) (d)

5.19 (a), (b), (c) When there is no relative motion, the magnitude of the static friction force is less than or equal to 
(d) When there is relative motion, the magnitude of the kinetic friction force equals (e) A graph of the friction force 
magnitude as a function of the magnitude T of the applied force. The kinetic friction force varies somewhat as intermolecular 
bonds form and break.

ƒ
mkn.ƒk

msn.ƒs

Application Static Friction and 
Windshield Wipers
The squeak of windshield wipers on dry glass
is a stick-slip phenomenon. The moving wiper
blade sticks to the glass momentarily, then
slides when the force applied to the blade by
the wiper motor overcomes the maximum
force of static friction. When the glass is 
wet from rain or windshield cleaning solution,
friction is reduced and the wiper blade 
doesn’t stick.



In some situations the surfaces will alternately stick (static friction) and slip
(kinetic friction). This is what causes the horrible sound made by chalk held at
the wrong angle while writing on the blackboard and the shriek of tires sliding on
asphalt pavement. A more positive example is the motion of a violin bow against
the string.

When a body slides on a layer of gas, friction can be made very small. In the
linear air track used in physics laboratories, the gliders are supported on a layer
of air. The frictional force is velocity dependent, but at typical speeds the effec-
tive coefficient of friction is of the order of 0.001.
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Example 5.13 Friction in horizontal motion

You want to move a 500-N crate across a level floor. To start the
crate moving, you have to pull with a 230-N horizontal force.
Once the crate “breaks loose” and starts to move, you can keep it
moving at constant velocity with only 200 N. What are the coeffi-
cients of static and kinetic friction?

SOLUTION

IDENTIFY and SET UP: The crate is in equilibrium both when it is
at rest and when it is moving with constant velocity, so we use
Newton’s first law, as expressed by Eqs. (5.2). We use Eqs. (5.5)
and (5.6) to find the target variables and 

Figures 5.20a and 5.20b show our sketch and free-body 
diagram for the instant just before the crate starts to move, 
when the static friction force has its maximum possible value

mk.ms

Once the crate is moving, the friction force changes
to its kinetic form (Fig. 5.20c). In both situations, four forces act
on the crate: the downward weight (magnitude ), the
upward normal force (magnitude n) exerted by the floor, a ten-
sion force (magnitude T ) to the right exerted by the rope, and a
friction force to the left exerted by the ground. Because the rope in
Fig. 5.20a is in equilibrium, the tension is the same at both ends.
Hence the tension force that the rope exerts on the crate has the
same magnitude as the force you exert on the rope. Since it’s easier
to keep the crate moving than to start it moving, we expect that

.

EXECUTE: Just before the crate starts to move (Fig. 5.20b), we have
from Eqs. (5.2)

Now we solve Eq. (5.6), for the value of 

After the crate starts to move (Fig. 5.20c) we have

Using from Eq. (5.5), we find

EVALUATE: As expected, the coefficient of kinetic friction is less
than the coefficient of static friction.

mk =
ƒk

n
=

200 N

500 N
= 0.40

ƒk = mkn

aFy = n + 1-w2 = 0  so n = w = 500 N
aFx = T + 1-ƒk2 = 0  so  ƒk = T = 200 N

ms =
1ƒs2max

n
=

230 N

500 N
= 0.46

ms:1ƒs2max = msn,

aFy = n + 1-w2 = 0  so n = w = 500 N
aFx = T + 1-1ƒs2max2 = 0   so 1ƒs2max = T = 230 N

mk 6 ms

w = 500 N

1ƒs2max = msn.

(a) Pulling a crate (b) Free-body diagram
for crate just before it
starts to move

(c) Free-body diagram
for crate moving at
constant speed

5.20 Our sketches for this problem.

Example 5.14 Static friction can be less than the maximum

In Example 5.13, what is the friction force if the crate is at rest on
the surface and a horizontal force of 50 N is applied to it?

SOLUTION

IDENTIFY and SET UP: The applied force is less than the maximum
force of static friction, Hence the crate remains
at rest and the net force acting on it is zero. The target variable is
the magnitude of the friction force. The free-body diagram is thefs

1ƒs2max = 230 N.

same as in Fig. 5.20b, but with replaced by and
replaced by 

EXECUTE: From the equilibrium conditions, Eqs. (5.2), we have

EVALUATE: The friction force can prevent motion for any horizon-
tal applied force up to Below that value,

has the same magnitude as the applied force.fs

1 fs2max = msn = 230 N.

aFx = T + 1-ƒs2 = 0  so  ƒs = T = 50 N

T = 50 N.T = 230 N
ƒs1ƒs2max

PhET: Forces in 1 Dimension
PhET: Friction
PhET: The Ramp
ActivPhysics 2.5: Truck Pulls Crate
ActivPhysics 2.6: Pushing a Crate Up a Wall
ActivPhysics 2.7: Skier Goes Down a Slope
ActivPhysics 2.8: Skier and Rope Tow
ActivPhysics 2.10: Truck Pulls Two Crates
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Example 5.15 Minimizing kinetic friction

In Example 5.13, suppose you move the crate by pulling upward
on the rope at an angle of above the horizontal. How hard must
you pull to keep it moving with constant velocity? Assume that

SOLUTION

IDENTIFY and SET UP: The crate is in equilibrium because its
velocity is constant, so we again apply Newton’s first law. Since
the crate is in motion, the floor exerts a kinetic friction force. The
target variable is the magnitude T of the tension force.

Figure 5.21 shows our sketch and free-body diagram. The
kinetic friction force is still equal to but now the normalmkn,ƒk

mk = 0.40.

30°
force n is not equal in magnitude to the crate’s weight. The force
exerted by the rope has a vertical component that tends to lift the
crate off the floor; this reduces n and so reduces .

EXECUTE: From the equilibrium conditions and the equation
we have

These are two equations for the two unknown quantities T and n.
One way to find T is to substitute the expression for n in the second
equation into the first equation and then solve the resulting equa-
tion for T:

We can substitute this result into either of the original equations to
obtain n. If we use the second equation, we get

EVALUATE: As expected, the normal force is less than the 500-N
weight of the box. It turns out that the tension required to keep the
crate moving at constant speed is a little less than the 200-N force
needed when you pulled horizontally in Example 5.13. Can you
find an angle where the required pull is minimum? (See Challenge
Problem 5.121.)

n = w - T sin 30° = 1500 N2 - 1188 N2 sin 30° = 406 N

T =
mkw

cos 30° + mk sin 30°
= 188 N

T cos 30° = mk1w - T sin 30°2

aFy = T sin 30° + n + 1-w2 = 0 so n = w - T sin 30°
aFx = T cos 30° + 1-ƒk2 = 0 so T cos 30° = mkn

ƒk = mkn,

ƒk

(a) Pulling a crate at an angle

(b) Free-body diagram for moving crate

5.21 Our sketches for this problem.

Example 5.16 Toboggan ride with friction I

Let’s go back to the toboggan we studied in Example 5.10. The
wax has worn off, so there is now a nonzero coefficient of kinetic
friction The slope has just the right angle to make the toboggan
slide with constant velocity. Find this angle in terms of w and

SOLUTION

IDENTIFY and SET UP: Our target variable is the slope angle 
The toboggan is in equilibrium because its velocity is constant, so
we use Newton’s first law in the form of Eqs. (5.2).

Three forces act on the toboggan: its weight, the normal force,
and the kinetic friction force. The motion is downhill, so the friction
force (which opposes the motion) is directed uphill. Figure 5.22
shows our sketch and free-body diagram (compare Fig. 5.12b in
Example 5.10). The magnitude of the kinetic friction force is

. We expect that the greater the value of , the steeper
will be the required slope.

EXECUTE: The equilibrium conditions are

Rearranging these two equations, we get

As in Example 5.10, the normal force is not equal to the weight.
We eliminate n by dividing the first of these equations by the 

mkn = w sin a and n = w cos a

aFy = n + 1-w cos a2 = 0
aFx = w sin a + 1-ƒk2 = w sin a - mkn = 0

mkƒk = mkn

a.

mk.
mk.

second, with the result

EVALUATE: The weight w doesn’t appear in this expression. Any
toboggan, regardless of its weight, slides down an incline with
constant speed if the coefficient of kinetic friction equals the tan-
gent of the slope angle of the incline. The arctangent function
increases as its argument increases, so it’s indeed true that the
slope angle increases as increases.mka

mk =
sin a

cos a
= tan a so a = arctan mk

(a) The situation (b) Free-body diagram for toboggan

5.22 Our sketches for this problem.



Rolling Friction
It’s a lot easier to move a loaded filing cabinet across a horizontal floor using a
cart with wheels than to slide it. How much easier? We can define a coefficient of
rolling friction which is the horizontal force needed for constant speed on a
flat surface divided by the upward normal force exerted by the surface. Trans-
portation engineers call the tractive resistance. Typical values of are 0.002
to 0.003 for steel wheels on steel rails and 0.01 to 0.02 for rubber tires on con-
crete. These values show one reason railroad trains are generally much more fuel
efficient than highway trucks.

Fluid Resistance and Terminal Speed
Sticking your hand out the window of a fast-moving car will convince you of the
existence of fluid resistance, the force that a fluid (a gas or liquid) exerts on a
body moving through it. The moving body exerts a force on the fluid to push it
out of the way. By Newton’s third law, the fluid pushes back on the body with an
equal and opposite force.

The direction of the fluid resistance force acting on a body is always opposite
the direction of the body’s velocity relative to the fluid. The magnitude of the
fluid resistance force usually increases with the speed of the body through the fluid.

mrmr

mr,
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Example 5.17 Toboggan ride with friction II

The same toboggan with the same coefficient of friction as in
Example 5.16 accelerates down a steeper hill. Derive an expres-
sion for the acceleration in terms of g, and w.

SOLUTION

IDENTIFY and SET UP: The toboggan is accelerating, so we must
use Newton’s second law as given in Eqs. (5.4). Our target variable
is the downhill acceleration.

Our sketch and free-body diagram (Fig. 5.23) are almost the
same as for Example 5.16. The toboggan’s y-component of accel-
eration is still zero but the x-component is not, so we’ve
drawn the downhill component of weight as a longer vector than
the (uphill) friction force.

EXECUTE: It’s convenient to express the weight as Then
Newton’s second law in component form says

aFy = n + 1-mg cos a2 = 0
aFx = mg sin a + 1-ƒk2 = max

w = mg.

axay

mk,a,

From the second equation and Eq. (5.5) we get an expression for 

We substitute this into the x-component equation and solve for :

EVALUATE: As for the frictionless toboggan in Example 5.10, the
acceleration doesn’t depend on the mass m of the toboggan. That’s
because all of the forces that act on the toboggan (weight, normal
force, and kinetic friction force) are proportional to m.

Let’s check some special cases. If the hill is vertical ( )
so that and we have (the toboggan
falls freely). For a certain value of the acceleration is zero; this
happens if

This agrees with our result for the constant-velocity toboggan in
Example 5.16. If the angle is even smaller, is greater than

and is negative; if we give the toboggan an initial down-
hill push to start it moving, it will slow down and stop. Finally, if
the hill is frictionless so that , we retrieve the result of
Example 5.10: .

Notice that we started with a simple problem (Example 5.10)
and extended it to more and more general situations. The general
result we found in this example includes all the previous ones as
special cases. Don’t memorize this result, but do make sure you
understand how we obtained it and what it means.

Suppose instead we give the toboggan an initial push up the
hill. The direction of the kinetic friction force is now reversed, so
the acceleration is different from the downhill value. It turns out
that the expression for is the same as for downhill motion except
that the minus sign becomes plus. Can you show this?

ax

ax = g sin a
mk = 0

axsin a
mk cos a

sin a = mk cos a  and  mk = tan a

a

ax = gcos a = 0,sin a = 1
a = 90°

ax = g1sin a - mk cos a2

mg sin a + 1-mkmg cos a2 = max

ax

 ƒk = mkn = mkmg cos a

n = mg cos a

ƒk:

(a) The situation (b) Free-body diagram for toboggan

5.23 Our sketches for this problem.
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This is very different from the kinetic friction force between two surfaces in con-
tact, which we can usually regard as independent of speed. For small objects
moving at very low speeds, the magnitude of the fluid resistance force is
approximately proportional to the body’s speed 

(fluid resistance at low speed) (5.7)

where k is a proportionality constant that depends on the shape and size of the
body and the properties of the fluid. Equation (5.7) is appropriate for dust parti-
cles falling in air or a ball bearing falling in oil. For larger objects moving
through air at the speed of a tossed tennis ball or faster, the resisting force is
approximately proportional to rather than to It is then called air drag or
simply drag. Airplanes, falling raindrops, and bicyclists all experience air drag.
In this case we replace Eq. (5.7) by

(fluid resistance at high speed) (5.8)

Because of the dependence, air drag increases rapidly with increasing speed.
The air drag on a typical car is negligible at low speeds but comparable to or
greater than rolling resistance at highway speeds. The value of D depends on the
shape and size of the body and on the density of the air. You should verify that
the units of the constant k in Eq. (5.7) are or and that the units of
the constant D in Eq. (5.8) are or 

Because of the effects of fluid resistance, an object falling in a fluid does not
have a constant acceleration. To describe its motion, we can’t use the constant-
acceleration relationships from Chapter 2; instead, we have to start over using
Newton’s second law. As an example, suppose you drop a metal ball at the sur-
face of a bucket of oil and let it fall to the bottom (Fig. 5.24a). The fluid resist-
ance force in this situation is given by Eq. (5.7). What are the acceleration,
velocity, and position of the metal ball as functions of time?

Figure 5.24b shows the free-body diagram. We take the positive y-direction to
be downward and neglect any force associated with buoyancy in the oil. Since
the ball is moving downward, its speed is equal to its y-velocity and the fluid
resistance force is in the There are no x-components, so Newton’s
second law gives

When the ball first starts to move, the resisting force is zero, and the initial
acceleration is As the speed increases, the resisting force also increases,
until finally it is equal in magnitude to the weight. At this time the
acceleration becomes zero, and there is no further increase in speed. The final speed

called the terminal speed, is given by or

(terminal speed, fluid resistance (5.9)

Figure 5.25 shows how the acceleration, velocity, and position vary with time. As
time goes by, the acceleration approaches zero and the velocity approaches vt

ƒ = kv)vt =
mg

k

mg - kvt = 0,vt,

mg - kvy = 0,
ay = g.

vy = 0,

aFy = mg + 1-kvy2 = may

-y-direction.
vyv

kg>m.N # s2>m2
kg>s,N # s>m

v2

ƒ = Dv2

v.v2

ƒ = kv

v:
ƒ

y

x

w � mg

f

(a) Metal ball falling
through oil

(b) Free-body diagram
for ball in oil

5.24 A metal ball falling through a fluid
(oil).

Application Pollen and Fluid 
Resistance
These spiky spheres are pollen grains from the
ragweed flower (Ambrosia psilostachya) and a
common cause of hay fever. Because of their
small radius (about 10 μm = 0.01 mm), when
they are released into the air the fluid resist-
ance force on them is proportional to their
speed. The terminal speed given by Eq. (5.9)
is only about 1 cm s. Hence even a moderate
wind can keep pollen grains aloft and carry
them substantial distances from their source.

>

Acceleration versus time Velocity versus time Position versus time

ay

O
t

g

vy

O

vt

t

y

t
O

With fluid resistance:
acceleration decreases.

No fluid resistance:
constant acceleration.

With fluid resistance:
velocity has an upper limit.

No fluid resistance:
velocity keeps increasing.

With fluid resistance:
curve straightens out.

No fluid resistance:
parabolic curve.

5.25 Graphs of the motion of a body falling without fluid resistance and with fluid resistance proportional to the speed.



(remember that we chose the positive y-direction to be down). The slope of the
graph of y versus t becomes constant as the velocity becomes constant.

To see how the graphs in Fig. 5.25 are derived, we must find the relationship
between velocity and time during the interval before the terminal speed is
reached. We go back to Newton’s second law, which we rewrite using

After rearranging terms and replacing by we integrate both sides, noting
that when 

which integrates to

and finally

(5.10)

Note that becomes equal to the terminal speed only in the limit that 
the ball cannot attain terminal speed in any finite length of time.

The derivative of gives as a function of time, and the integral of gives
y as a function of time. We leave the derivations for you to complete; the results
are

(5.11)

(5.12)

Now look again at Fig. 5.25, which shows graphs of these three relationships.
In deriving the terminal speed in Eq. (5.9), we assumed that the fluid resist-

ance force is proportional to the speed. For an object falling through the air at
high speeds, so that the fluid resistance is equal to as in Eq. (5.8), the termi-
nal speed is reached when equals the weight mg (Fig. 5.26a). You can show
that the terminal speed is given by

(terminal speed, fluid resistance (5.13)

This expression for terminal speed explains why heavy objects in air tend to fall
faster than light objects. Two objects with the same physical size but different
mass (say, a table-tennis ball and a lead ball with the same radius) have the same
value of D but different values of m. The more massive object has a higher termi-
nal speed and falls faster. The same idea explains why a sheet of paper falls faster
if you first crumple it into a ball; the mass m is the same, but the smaller size
makes D smaller (less air drag for a given speed) and larger. Skydivers use the
same principle to control their descent (Fig. 5.26b).

Figure 5.27 shows the trajectories of a baseball with and without air drag,
assuming a coefficient (appropriate for a batted ball at
sea level). You can see that both the range of the baseball and the maximum
height reached are substantially less than the zero-drag calculation would lead
you to believe. Hence the baseball trajectory we calculated in Example 3.8 (Sec-
tion 3.3) by ignoring air drag is unrealistic. Air drag is an important part of the
game of baseball!

D = 1.3 * 10-3 kg>m

vt

ƒ = Dv2)vt =
A

mg

D

vt

Dv2
Dv2

y = vt c t -
m

k
11 - e-1k>m2t2 d

ay = ge-1k>m2t

vyayvy

tS q ;vtvy

vy = vt31 - e-1k>m2t4

ln
vt - vy

vt
= -

k

m
t  or  1 -

vy

vt
= e-1k>m2t

L
v

0

dvy

vy - vt
= -

k

m L
t

0
dt

t = 0:vy = 0
vt,mg>k

m
dvy

dt
= mg - kvy

ay = dvy>dt:
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(a) Free-body diagrams for falling with air drag

y

mg

ay

Dv2 , mg

Dv2 5 mg

mg

y

Before terminal
speed: Object
accelerating, drag
force less than 
weight.

At terminal speed vt:
Object in equilibrium,
drag force equals
weight.

(b) A skydiver falling at terminal speed

5.26 (a) Air drag and terminal speed. 
(b) By changing the positions of their arms
and legs while falling, skydivers can
change the value of the constant D in
Eq. (5.8) and hence adjust the terminal
speed of their fall [Eq. (5.13)].

x (m) 2500

y 
(m

)

50 No air drag: path is a parabola.

With air drag: range and
maximum height are less;
path is not parabolic.

5.27 Computer-generated trajectories of
a baseball launched at at above
the horizontal. Note that the scales are dif-
ferent on the horizontal and vertical axes.

35°50 m>s
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5.4 Dynamics of Circular Motion
We talked about uniform circular motion in Section 3.4. We showed that when a
particle moves in a circular path with constant speed, the particle’s acceleration is
always directed toward the center of the circle (perpendicular to the instanta-
neous velocity). The magnitude of the acceleration is constant and is given in
terms of the speed and the radius R of the circle by

(uniform circular motion) (5.14)

The subscript “rad” is a reminder that at each point the acceleration is radially
inward toward the center of the circle, perpendicular to the instantaneous veloc-
ity. We explained in Section 3.4 why this acceleration is often called centripetal
acceleration.

We can also express the centripetal acceleration in terms of the period T,
the time for one revolution:

(5.15)

In terms of the period, is

(uniform circular motion) (5.16)

Uniform circular motion, like all other motion of a particle, is governed by
Newton’s second law. To make the particle accelerate toward the center of the
circle, the net force on the particle must always be directed toward the center
(Fig. 5.28). The magnitude of the acceleration is constant, so the magnitude 
of the net force must also be constant. If the inward net force stops acting, the
particle flies off in a straight line tangent to the circle (Fig. 5.29).

Fnet

gF
S

arad =
4p2R

T2

arad

T =
2pR

v

arad

arad =
v2

R

v
arad

Example 5.18 Terminal speed of a skydiver

For a human body falling through air in a spread-eagle position
(Fig. 5.26b), the numerical value of the constant D in Eq. (5.8) is
about Find the terminal speed for a lightweight 50-kg
skydiver.

SOLUTION

IDENTIFY and SET UP: This example uses the relationship among
terminal speed, mass, and drag coefficient. We use Eq. (5.13) to
find the target variable 

EXECUTE: We find for 

= 44 m>s 1about 160 km>h, or 99 mi>h2

vt =
A

mg

D
=
B

150 kg219.8 m>s22

0.25 kg>m

m = 50 kg:

vt.

0.25 kg>m.

EVALUATE: The terminal speed is proportional to the square root of
the skydiver’s mass. A skydiver with the same drag coefficient D
but twice the mass would have a terminal speed times
greater, or (A more massive skydiver would also have
more frontal area and hence a larger drag coefficient, so his termi-
nal speed would be a bit less than ) Even the lightweight
skydiver’s terminal speed is quite high, so skydives don’t last very
long. A drop from 2800 m (9200 ft) to the surface at the terminal
speed takes only 

When the skydiver deploys the parachute, the value of D
increases greatly. Hence the terminal speed of the skydiver and
parachute decreases dramatically to a much lower value.

12800 m2>144 m>s2 = 64 s.

63 m>s.

63 m>s.
12 = 1.41

Test Your Understanding of Section 5.3 Consider a box that is placed
on different surfaces. (a) In which situation(s) is there no friction force acting on
the box? (b) In which situation(s) is there a static friction force acting on the box?
(c) In which situation(s) is there a kinetic friction force on the box? (i) The box is at rest
on a rough horizontal surface. (ii) The box is at rest on a rough tilted surface. (iii) The
box is on the rough-surfaced flat bed of a truck—the truck is moving at a constant veloc-
ity on a straight, level road, and the box remains in the same place in the middle of the
truck bed. (iv) The box is on the rough-surfaced flat bed of a truck—the truck is speeding
up on a straight, level road, and the box remains in the same place in the middle of the
truck bed. (v) The box is on the rough-surfaced flat bed of a truck—the truck is climbing
a hill, and the box is sliding toward the back of the truck. ❙

In uniform circular
motion, the acceleration
and net force are both
directed toward the
center of the circle.

vS

aS

vS
aS

vS
aS

S
ΣF

S
ΣF

S
ΣF

5.28 Net force, acceleration, and veloc-
ity in uniform circular motion.

Suddenly, the
string breaks.

SF
S

SF
S

No net force now acts on the ball, so it
obeys Newton’s first law—it moves in a
straight line at constant velocity.

A ball attached to a string whirls in a
circle on a frictionless surface.

vS

vS

vS

aS

aS

vS

5.29 What happens if the inward radial
force suddenly ceases to act on a body in
circular motion?



The magnitude of the radial acceleration is given by so the mag-
nitude of the net force on a particle with mass m in uniform circular motion
must be

(uniform circular motion) (5.17)

Uniform circular motion can result from any combination of forces, just so the net
force is always directed toward the center of the circle and has a constant mag-
nitude. Note that the body need not move around a complete circle: Equation (5.17)
is valid for any path that can be regarded as part of a circular arc.

CAUTION Avoid using “centrifugal force” Figure 5.30 shows both a correct free-body
diagram for uniform circular motion (Fig. 5.30a) and a common incorrect diagram
(Fig. 5.30b). Figure 5.30b is incorrect because it includes an extra outward force of magni-
tude to “keep the body out there” or to “keep it in equilibrium.” There are three
reasons not to include such an outward force, usually called centrifugal force (“centrifugal”
means “fleeing from the center”). First, the body does not “stay out there”: It is in constant
motion around its circular path. Because its velocity is constantly changing in direction,
the body accelerates and is not in equilibrium. Second, if there were an additional outward
force that balanced the inward force, the net force would be zero and the body would
move in a straight line, not a circle (Fig. 5.29). And third, the quantity is not a
force; it corresponds to the side of and does not appear in (Fig. 5.30a).
It’s true that when you ride in a car that goes around a circular path, you tend to slide to the
outside of the turn as though there was a “centrifugal force.” But we saw in Section 4.2
that what really happens is that you tend to keep moving in a straight line, and the outer
side of the car “runs into” you as the car turns (Fig. 4.11c). In an inertial frame of refer-
ence there is no such thing as “centrifugal force.” We won’t mention this term again, and
we strongly advise you to avoid using it as well. ❙

gF
SgF

S
� maSmaS

m1v2>R2

m1v2>R2

gF
S

Fnet = marad = m 

v2

R

Fnet

arad = v2>R,
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(a) Correct free-body diagram

(b) Incorrect free-body diagram

If you include the acceleration, draw it to one
side of the body to show that it’s not a force.

The quantity mv2/R is not a force—it
doesn’t belong in a free-body diagram.

aradF

F

mv2

R
WRONG

RIGHT!

5.30 (a) Correct and (b) incorrect free-
body diagrams for a body in uniform cir-
cular motion.

Example 5.19 Force in uniform circular motion

A sled with a mass of 25.0 kg rests on a horizontal sheet of essen-
tially frictionless ice. It is attached by a 5.00-m rope to a post set in
the ice. Once given a push, the sled revolves uniformly in a circle
around the post (Fig. 5.31a). If the sled makes five complete revo-
lutions every minute, find the force F exerted on it by the rope.

SOLUTION

IDENTIFY and SET UP: The sled is in uniform circular motion, so it
has a constant radial acceleration. We’ll apply Newton’s second
law to the sled to find the magnitude F of the force exerted by the
rope (our target variable).

Figure 5.31b shows our free-body diagram for the sled. The accel-
eration has only an x-component; this is toward the center of the cir-
cle, so we denote it as The acceleration isn’t given, so we’ll need
to determine its value using either Eq. (5.14) or Eq. (5.16).

EXECUTE: The force F appears in Newton’s second law for the 
x-direction:

We can find the centripetal acceleration using Eq. (5.16). The
sled moves in a circle of radius with a period

so

The magnitude F of the force exerted by the rope is then

EVALUATE: You can check our value for by first finding the
speed using Eq. (5.15), , and then using 
from Eq. (5.14). Do you get the same result?

A greater force would be needed if the sled moved around the
circle at a higher speed In fact, if were doubled while R
remained the same, F would be four times greater. Can you show
this? How would F change if remained the same but the radius R
were doubled?

v

vv.

arad = v2>Rv = 2pR>T
arad

 = 34.3 kg # m>s2 = 34.3 N

 F = marad = 125.0 kg211.37 m>s22

arad =
4p2R

T2
=

4p215.00 m2

112.0 s22
= 1.37 m>s2

T = 160.0 s2 >  15 rev2 = 12.0 s,
R = 5.00 m

arad

aFx = F = marad

arad.

We point the positive
x-direction toward the
center of the circle.

(a) A sled in uniform circular motion (b) Free-body diagram
for sled

R

5.31 (a) The situation. (b) Our free-body diagram.
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Example 5.20 A conical pendulum

An inventor designs a pendulum clock using a bob with mass m at
the end of a thin wire of length L. Instead of swinging back and
forth, the bob is to move in a horizontal circle with constant speed 
with the wire making a fixed angle with the vertical direction
(Fig. 5.32a). This is called a conical pendulum because the sus-
pending wire traces out a cone. Find the tension F in the wire and
the period T (the time for one revolution of the bob).

SOLUTION

IDENTIFY and SET UP: To find our target variables, the tension F
and period T, we need two equations. These will be the horizontal
and vertical components of Newton’s second law applied to the
bob. We’ll find the radial acceleration of the bob using one of the
circular motion equations.

Figure 5.32b shows our free-body diagram and coordinate sys-
tem for the bob at a particular instant. There are just two forces on
the bob: the weight mg and the tension F in the wire. Note that the

b

v,

center of the circular path is in the same horizontal plane as the
bob, not at the top end of the wire. The horizontal component of
tension is the force that produces the radial acceleration .

EXECUTE: The bob has zero vertical acceleration; the horizontal
acceleration is toward the center of the circle, which is why we use
the symbol . Newton’s second law says

These are two equations for the two unknowns F and The equa-
tion for gives that’s our target expression for
F in terms of . Substituting this result into the equation for 
and using we find

To relate to the period T, we use Eq. (5.16) for , solve for T,
and insert :

Figure 5.32a shows that . We substitute this and use
:

EVALUATE: For a given length L, as the angle increases, 
decreases, the period T becomes smaller, and the tension

increases. The angle can never be however;
this would require that and A conical
pendulum would not make a very good clock because the period
depends on the angle in such a direct way.b

v = q .F = q ,T = 0,
90°,F = mg>cos b

cos bb

T = 2p
B

L cos b

g

sin b> tan b = cos b
R = L sin b

T = 2p
A

R

g tan b

arad =
4p2R

T2
so T2 =

4p2R

arad

arad = g tan b
aradb

arad = g tan b

sin b>cos b = tan b,
gFxb

F = mg>cos b;g Fy

b.

aFy = F cos b + 1-mg2 = 0
aFx = F sin b = marad

arad

arad

We point the positive
x-direction toward the
center of the circle.

b

(a) The situation (b) Free-body diagram
for pendulum bob

R

v

L

5.32 (a) The situation. (b) Our free-body diagram.

Example 5.21 Rounding a flat curve

The sports car in Example 3.11 (Section 3.4) is rounding a flat,
unbanked curve with radius R (Fig. 5.33a). If the coefficient of
static friction between tires and road is what is the maximum
speed at which the driver can take the curve without sliding?

SOLUTION

IDENTIFY and SET UP: The car’s acceleration as it rounds the
curve has magnitude Hence the maximum speed 
(our target variable) corresponds to the maximum acceleration 
and to the maximum horizontal force on the car toward the center
of its circular path. The only horizontal force acting on the car is
the friction force exerted by the road. So to solve this problem
we’ll need Newton’s second law, the equations of uniform circular
motion, and our knowledge of the friction force from Section 5.3.

The free-body diagram in Fig. 5.33b includes the car’s weight
and the two forces exerted by the road: the normal force 

and the horizontal friction force The friction force must point
toward the center of the circular path in order to cause the radial
acceleration. The car doesn’t slide toward or away from the center

f.
nw = mg

arad

vmaxarad = v2>R.

vmax

ms,

of the circle, so the friction force is static friction, with a maximum
magnitude [see Eq. (5.6)].fmax = msn

(a) Car rounding flat curve (b) Free-body
diagram for car

R

5.33 (a) The situation. (b) Our free-body diagram.



EXECUTE: The acceleration toward the center of the circular path is
. There is no vertical acceleration. Thus we have

The second equation shows that The first equation shows
that the friction force needed to keep the car moving in its circular
path increases with the car’s speed. But the maximum friction
force available is and this determines the
car’s maximum speed. Substituting for and for in
the first equation, we find

msmg = m
v2

max

R
so vmax = 2msgR

vvmaxƒmsmg
ƒmax = msn = msmg,

n = mg.

aFy = n + 1-mg2 = 0

aFx = ƒ = marad = m
v2

R

arad = v2>R
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As an example, if and we have

or about This is the maximum speed for
this radius.

EVALUATE: If the car’s speed is slower than the
required friction force is less than the maximum value

, and the car can easily make the curve. If we try to
take the curve going faster than , we will skid. We could still
go in a circle without skidding at this higher speed, but the radius
would have to be larger.

The maximum centripetal acceleration (called the “lateral
acceleration” in Example 3.11) is equal to That’s why it’s best
to take curves at less than the posted speed limit if the road is wet
or icy, either of which can reduce the value of and hence .msgms

msg.

vmax

fmax = msmg

v max = 2msgR,

1100 mi>h2.170 km>h

vmax = 210.96219.8 m>s221230 m2 = 47 m>s

R = 230 m,ms = 0.96

Example 5.22 Rounding a banked curve

For a car traveling at a certain speed, it is possible to bank a curve at
just the right angle so that no friction at all is needed to maintain the
car’s turning radius. Then a car can safely round the curve even on
wet ice. (Bobsled racing depends on this same idea.) Your engineer-
ing firm plans to rebuild the curve in Example 5.21 so that a car mov-
ing at a chosen speed can safely make the turn even with no friction
(Fig. 5.34a). At what angle should the curve be banked?

SOLUTION

IDENTIFY and SET UP: With no friction, the only forces acting on
the car are its weight and the normal force. Because the road is
banked, the normal force (which acts perpendicular to the road sur-
face) has a horizontal component. This component causes the car’s
horizontal acceleration toward the center of the car’s circular path.
We’ll use Newton’s second law to find the target variable 

Our free-body diagram (Fig. 5.34b) is very similar to the dia-
gram for the conical pendulum in Example 5.20 (Fig. 5.32b). The
normal force acting on the car plays the role of the tension force
exerted by the wire on the pendulum bob.

EXECUTE: The normal force is perpendicular to the roadway
and is at an angle with the vertical (Fig. 5.34b). Thus it has a
vertical component and a horizontal component n sin b.n cos b

b

nS

b.

b

v

The acceleration in the x-direction is the centripetal acceleration
there is no acceleration in the y-direction. Thus the

equations of Newton’s second law are

From the equation, Substituting this into the
equation and using , we get an expression for the

bank angle:

EVALUATE: The bank angle depends on both the speed and the
radius. For a given radius, no one angle is correct for all speeds. In
the design of highways and railroads, curves are often banked for
the average speed of the traffic over them. If and

(equal to a highway speed of or ),
then

This is within the range of banking angles actually used in highways.

b = arctan
125 m>s22

19.8 m>s221230 m2
= 15°

55 mi>h88 km>h,v = 25 m>s
R = 230 m

tan b =
arad

g
=

v2

gR
  so  b = arctan

v2

gR

arad = v2>Rg Fx

n = mg>cos b.g Fy

aFy = n cos b + 1-mg2 = 0
aFx = n sin b = marad

arad = v2>R;

R

b

(a) Car rounding banked curve (b) Free-body
diagram for car

5.34 (a) The situation. (b) Our free-body diagram.
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Banked Curves and the Flight of Airplanes
The results of Example 5.22 also apply to an airplane when it makes a turn in
level flight (Fig. 5.35). When an airplane is flying in a straight line at a constant
speed and at a steady altitude, the airplane’s weight is exactly balanced by the lift
force exerted by the air. (The upward lift force that the air exerts on the wings
is a reaction to the downward push the wings exert on the air as they move
through it.) To make the airplane turn, the pilot banks the airplane to one side so
that the lift force has a horizontal component as Fig. 5.35 shows. (The pilot also
changes the angle at which the wings “bite” into the air so that the vertical com-
ponent of lift continues to balance the weight.) The bank angle is related to the
airplane’s speed and the radius R of the turn by the same expression as in
Example 5.22: For an airplane to make a tight turn (small R) at
high speed (large must be large and the required bank angle must
approach

We can also apply the results of Example 5.22 to the pilot of an airplane. The
free-body diagram for the pilot of the airplane is exactly as shown in Fig. 5.34b; the
normal force is exerted on the pilot by the seat. As in Example 5.9,
n is equal to the apparent weight of the pilot, which is greater than the pilot’s true
weight mg. In a tight turn with a large bank angle the pilot’s apparent weight
can be tremendous: at and at Pilots
black out in such tight turns because the apparent weight of their blood increases
by the same factor, and the human heart isn’t strong enough to pump such appar-
ently “heavy” blood to the brain.

Motion in a Vertical Circle
In Examples 5.19, 5.20, 5.21, and 5.22 the body moved in a horizontal circle.
Motion in a vertical circle is no different in principle, but the weight of the body
has to be treated carefully. The following example shows what we mean.

b = 84°.n = 9.6mgb = 80°n = 5.8mg
b,

n = mg>cosb

90°.
btanbv),

tanb = v2>gR.
v

L
S

w 5 mg

L cos b

b

L

L sin b

5.35 An airplane banks to one side in
order to turn in that direction. The vertical
component of the lift force balances the
force of gravity; the horizontal component
of causes the acceleration v2>R.L

S

L
S

(c) Free-body diagram
for passenger at bottom

(b) Free-body diagram
for passenger at top

(a) Sketch of two positions

5.36 Our sketches for this problem.

Example 5.23 Uniform circular motion in a vertical circle

A passenger on a carnival Ferris wheel moves in a vertical circle of
radius R with constant speed The seat remains upright during
the motion. Find expressions for the force the seat exerts on the
passenger at the top of the circle and at the bottom.

SOLUTION

IDENTIFY and SET UP: The target variables are , the upward
normal force the seat applies to the passenger at the top of the
circle, and , the normal force at the bottom. We’ll find these
using Newton’s second law and the uniform circular motion
equations.

Figure 5.36a shows the passenger’s velocity and acceleration at
the two positions. The acceleration always points toward the center
of the circle—downward at the top of the circle and upward at the
bottom of the circle. At each position the only forces acting are
vertical: the upward normal force and the downward force of grav-
ity. Hence we need only the vertical component of Newton’s sec-
ond law. Figures 5.36b and 5.36c show free-body diagrams for the
two positions. We take the positive y-direction as upward in both
cases (that is, opposite the direction of the acceleration at the top of
the circle).

EXECUTE: At the top the acceleration has magnitude but its
vertical component is negative because its direction is downward.

v2>R,

nB

nT

v.
Hence and Newton’s second law tells us that

Top: or

nT = mga1 -
v2

gR
b

aFy = nT + 1-mg2 = -m
v2

R

ay = -v2>R

ActivPhysics 4.2: Circular Motion Problem
Solving
ActivPhysics 4.3: Cart Goes over Circular
Path
ActivPhysics 4.4: Ball Swings on a String
ActivPhysics 4.5: Car Circles a Track



At the bottom the acceleration is upward, so and
Newton’s second law says

Bottom: or

EVALUATE: Our result for tells us that at the top of the Ferris
wheel, the upward force the seat applies to the passenger is smaller

nT

nB = mga1 +
v2

gR
b

aFy = nB + 1-mg2 = +m 
v2

R

ay = +v2
 >  R
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in magnitude than the passenger’s weight If the ride goes
fast enough that becomes zero, the seat applies no force,
and the passenger is about to become airborne. If becomes still
larger, becomes negative; this means that a downward force
(such as from a seat belt) is needed to keep the passenger in the
seat. By contrast, the normal force at the bottom is always
greater than the passenger’s weight. You feel the seat pushing up
on you more firmly than when you are at rest. You can see that 
and are the values of the passenger’s apparent weight at the top
and bottom of the circle (see Section 5.2).

nB

nT

nB

nT

v
g - v2>R

w = mg.

When we tie a string to an object and whirl it in a vertical circle, the analysis
in Example 5.23 isn’t directly applicable. The reason is that is not constant in
this case; except at the top and bottom of the circle, the net force (and hence the
acceleration) does not point toward the center of the circle (Fig. 5.37). So both

and have a component tangent to the circle, which means that the speed
changes. Hence this is a case of nonuniform circular motion (see Section 3.4).
Even worse, we can’t use the constant-acceleration formulas to relate the speeds
at various points because neither the magnitude nor the direction of the accelera-
tion is constant. The speed relationships we need are best obtained by using the
concept of energy. We’ll consider such problems in Chapter 7.

aSgF
S

v When a ball moves in a vertical circle ...

... the net force on the ball has
a component toward the center
of the circle ...

... but also a component
tangent to the circle...

... so the net acceleration
is not purely radial.

T

a

w 5 mg

5.37 A ball moving in a vertical circle.

Test Your Understanding of Section 5.4 Satellites are held in orbit by
the force of our planet’s gravitational attraction. A satellite in a small-radius orbit
moves at a higher speed than a satellite in an orbit of large radius. Based on this
information, what you can conclude about the earth’s gravitational attraction for the satel-
lite? (i) It increases with increasing distance from the earth. (ii) It is the same at all dis-
tances from the earth. (iii) It decreases with increasing distance from the earth. (iv) This
information by itself isn’t enough to answer the question. ❙

5.5 The Fundamental Forces of Nature
We have discussed several kinds of forces—including weight, tension, friction,
fluid resistance, and the normal force—and we will encounter others as we con-
tinue our study of physics. But just how many kinds of forces are there? Our cur-
rent understanding is that all forces are expressions of just four distinct classes of
fundamental forces, or interactions between particles (Fig. 5.38). Two are famil-
iar in everyday experience. The other two involve interactions between sub-
atomic particles that we cannot observe with the unaided senses.

Gravitational interactions include the familiar force of your weight, which
results from the earth’s gravitational attraction acting on you. The mutual gravita-
tional attraction of various parts of the earth for each other holds our planet
together (Fig. 5.38a). Newton recognized that the sun’s gravitational attraction for
the earth keeps the earth in its nearly circular orbit around the sun. In Chapter 13
we will study gravitational interactions in greater detail, and we will analyze their
vital role in the motions of planets and satellites.

The second familiar class of forces, electromagnetic interactions, includes
electric and magnetic forces. If you run a comb through your hair, the comb ends
up with an electric charge; you can use the electric force exerted by this charge to
pick up bits of paper. All atoms contain positive and negative electric charge, so
atoms and molecules can exert electric forces on one another (Fig. 5.38b). Con-
tact forces, including the normal force, friction, and fluid resistance, are the com-
bination of all such forces exerted on the atoms of a body by atoms in its
surroundings. Magnetic forces, such as those between magnets or between a
magnet and a piece of iron, are actually the result of electric charges in motion.
For example, an electromagnet causes magnetic interactions because electric
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charges move through its wires. We will study electromagnetic interactions in
detail in the second half of this book.

On the atomic or molecular scale, gravitational forces play no role because
electric forces are enormously stronger: The electrical repulsion between two
protons is stronger than their gravitational attraction by a factor of about 
But in bodies of astronomical size, positive and negative charges are usually
present in nearly equal amounts, and the resulting electrical interactions nearly
cancel out. Gravitational interactions are thus the dominant influence in the
motion of planets and in the internal structure of stars.

The other two classes of interactions are less familiar. One, the strong inter-
action, is responsible for holding the nucleus of an atom together. Nuclei contain
electrically neutral neutrons and positively charged protons. The electric force
between charged protons tries to push them apart; the strong attractive force
between nuclear particles counteracts this repulsion and makes the nucleus sta-
ble. In this context the strong interaction is also called the strong nuclear force. It
has much shorter range than electrical interactions, but within its range it is much
stronger. The strong interaction plays a key role in thermonuclear reactions that
take place at the sun’s core and generate the sun’s heat and light (Fig. 5.38c).

Finally, there is the weak interaction. Its range is so short that it plays a role
only on the scale of the nucleus or smaller. The weak interaction is responsible
for a common form of radioactivity called beta decay, in which a neutron in a
radioactive nucleus is transformed into a proton while ejecting an electron and a
nearly massless particle called an antineutrino. The weak interaction between the
antineutrino and ordinary matter is so feeble that an antineutrino could easily
penetrate a wall of lead a million kilometers thick! Yet when a giant star under-
goes a cataclysmic explosion called a supernova, most of the energy is released
by way of the weak interaction (Fig. 5.38d).

In the 1960s physicists developed a theory that described the electromagnetic
and weak interactions as aspects of a single electroweak interaction. This theory
has passed every experimental test to which it has been put. Encouraged by this
success, physicists have made similar attempts to describe the strong, electro-
magnetic, and weak interactions in terms of a single grand unified theory (GUT),
and have taken steps toward a possible unification of all interactions into a theory
of everything (TOE). Such theories are still speculative, and there are many unan-
swered questions in this very active field of current research.

1035.

Star

Supernova

(a) Gravitational forces hold planets together.

(b) Electromagnetic forces hold molecules 
together.

(c) Strong forces release energy to power the sun.

(d) Weak forces play a role in exploding stars.

5.38 Examples of the fundamental inter-
actions in nature. (a) The moon and the
earth are held together and held in orbit by
gravitational forces. (b) This molecule of
bacterial plasmid DNA is held together by
electromagnetic forces between its atoms.
(c) The sun shines because in its core,
strong forces between nuclear particles
cause the release of energy. (d) When a
massive star explodes into a supernova, a
flood of energy is released by weak interac-
tions between the star’s nuclear particles.
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CHAPTER 5 SUMMARY

(vector form) (5.1)

(component form) (5.2)
 aFy = 0

 aFx = 0

aF
S

� 0

Using Newton’s second law: If the vector sum of forces
on a body is not zero, the body accelerates. The acceler-
ation is related to the net force by Newton’s second law.

Just as for equilibrium problems, free-body diagrams
are essential for solving problems involving Newton’s
second law, and the normal force exerted on a body is
not always equal to its weight. (See Examples
5.6–5.12.)

Forces in circular motion: In uniform circular motion,
the acceleration vector is directed toward the center of
the circle. The motion is governed by Newton’s second
law, (See Examples 5.19–5.23.)gF

S
� maS.

Acceleration in uniform circular motion:

(5.14), (5.16)arad =
v2

R
=

4p2R

T2

Vector form:

(5.3)

Component form:

(5.4)aFx = max  aFy = may

aF
S

� maS

Friction and fluid resistance: The contact force between
two bodies can always be represented in terms of a nor-
mal force perpendicular to the surface of contact and a
friction force parallel to the surface.

When a body is sliding over the surface, the friction
force is called kinetic friction. Its magnitude is
approximately equal to the normal force magnitude n
multiplied by the coefficient of kinetic friction 
When a body is not moving relative to a surface, the
friction force is called static friction. The maximum pos-
sible static friction force is approximately equal to the
magnitude of the normal force multiplied by the coef-
ficient of static friction The actual static friction
force may be anything from zero to this maximum
value, depending on the situation. Usually is greater
than for a given pair of surfaces in contact. (See
Examples 5.13–5.17.)

Rolling friction is similar to kinetic friction, but the
force of fluid resistance depends on the speed of an
object through a fluid. (See Example 5.18.)

mk

ms

ms .
n

mk .

ƒk

ƒ
S

nS

Magnitude of kinetic friction force:

(5.5)

Magnitude of static friction force:

(5.6)ƒs … ms n

ƒk = mk n

Using Newton’s first law: When a body is in equilibrium
in an inertial frame of reference—that is, either at rest or
moving with constant velocity—the vector sum of
forces acting on it must be zero (Newton’s first law).
Free-body diagrams are essential in identifying the
forces that act on the body being considered.

Newton’s third law (action and reaction) is also fre-
quently needed in equilibrium problems. The two forces
in an action–reaction pair never act on the same body.
(See Examples 5.1–5.5.)

The normal force exerted on a body by a surface is not
always equal to the body’s weight. (See Example 5.3.)

y

x
a

n

T

a
w cos a

w sin a

w

n

T

w

a

n

w

y

xw cos a

w sin aT

w

a

m

T
ax

a n

Kinetic
friction

Static
friction

O

1 fs 2max

fk

f

T

arad

v

SF

S

S

arad
S

arad
S

S

SF
S

SF
S

vS

vS



162 CHAPTER 5 Applying Newton’s Laws

A small block with mass m is placed inside an inverted cone that is
rotating about a vertical axis such that the time for one revolution
of the cone is T (Fig. 5.39). The walls of the cone make an angle 
with the horizontal. The coefficient of static friction between the
block and the cone is If the block is to remain at a constant
height h above the apex of the cone, what are (a) the maximum
value of T and (b) the minimum value of T ? (That is, find expres-
sions for and in terms of and h.)

SOLUTION GUIDE

See MasteringPhysics® Study Area for a Video Tutor solution.

IDENTIFY and SET UP
1. Although we want the block to not slide up or down on the

inside of the cone, this is not an equilibrium problem. The block
rotates with the cone and is in uniform circular motion, so it has
an acceleration directed toward the center of its circular path.

2. Identify the forces on the block. What is the direction of the fric-
tion force when the cone is rotating as slowly as possible, so T
has its maximum value What is the direction of the fric-
tion force when the cone is rotating as rapidly as possible, so T
has its minimum value In these situations does the static
friction force have its maximum magnitude? Why or why not?

3. Draw a free-body diagram for the block when the cone is rotat-
ing with and a free-body diagram when the cone is
rotating with Choose coordinate axes, and remember
that it’s usually easiest to choose one of the axes to be in the
direction of the acceleration.

4. What is the radius of the circular path that the block follows?
Express this in terms of and h.

5. Make a list of the unknown quantities, and decide which of
these are the target variables.

b

T = Tmin.
T = Tmax

Tmin?

Tmax?

bTminTmax

ms.

b

EXECUTE
6. Write Newton’s second law in component form for the case in

which the cone is rotating with Write the accelera-
tion in terms of , and h, and write the static friction
force in terms of the normal force n.

7. Solve these equations for the target variable   
8. Repeat steps 6 and 7 for the case in which the cone is rotating

with and solve for the target variable Tmin.T = Tmin,

Tmax.

bTmax,
T = Tmax.

Time for 1 rotation 5 T

m

b

R

h

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q5.1 A man sits in a seat that is suspended from a rope. The rope
passes over a pulley suspended from the ceiling, and the man holds
the other end of the rope in his hands. What is the tension in the
rope, and what force does the seat exert on the man? Draw a free-
body force diagram for the man.
Q5.2 “In general, the normal force is not equal to the weight.”
Give an example where these two forces are equal in magnitude,
and at least two examples where they are not.
Q5.3 A clothesline hangs between two poles. No matter how tightly
the line is stretched, it always sags a little at the center. Explain why.
Q5.4 A car is driven up a steep hill at constant speed. Discuss all
the forces acting on the car. What pushes it up the hill?
Q5.5 For medical reasons it is important for astronauts in outer
space to determine their body mass at regular intervals. Devise a
scheme for measuring body mass in an apparently weightless
environment.

Q5.6 To push a box up a ramp, is the force required smaller if you
push horizontally or if you push parallel to the ramp? Why?
Q5.7 A woman in an elevator lets go of her briefcase but it does
not fall to the floor. How is the elevator moving?
Q5.8 You can classify scales for weighing objects as those that use
springs and those that use standard masses to balance unknown
masses. Which group would be more accurate when used in an
accelerating spaceship? When used on the moon?
Q5.9 When you tighten a nut on a bolt, how are you increasing the
frictional force? How does a lock washer work?
Q5.10 A block rests on an inclined plane with enough friction to
prevent it from sliding down. To start the block moving, is it easier
to push it up the plane or down the plane? Why?
Q5.11 A crate of books rests on a level floor. To move it along the
floor at a constant velocity, why do you exert a smaller force if you
pull it at an angle above the horizontal than if you push it at the
same angle below the horizontal?

u

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

BRIDGING PROBLEM In a Rotating Cone

5.39 A block inside a spinning cone.

EVALUATE
9. You’ll end up with some fairly complicated expressions for

and so check them over carefully. Do they have the
correct units? Is the minimum time less than the maxi-
mum time as it must be?

10. What do your expressions for and become if
? Check your results by comparing with Example

5.22 in Section 5.4.
ms = 0

TminTmax

Tmax,
Tmin

Tmin,Tmax

www.masteringphysics.com


Q5.12 In a world without friction, which of the following activities
could you do (or not do)? Explain your reasoning. (a) drive around
an unbanked highway curve; (b) jump into the air; (c) start walking
on a horizontal sidewalk; (d) climb a vertical ladder; (e) change
lanes on the freeway.
Q5.13 Walking on horizontal slippery ice can be much more tiring
than walking on ordinary pavement. Why?
Q5.14 When you stand with bare feet in a wet bathtub, the grip
feels fairly secure, and yet a catastrophic slip is quite possible.
Explain this in terms of the two coefficients of friction.
Q5.15 You are pushing a large crate from the back of a freight ele-
vator to the front as the elevator is moving to the next floor. In
which situation is the force you must apply to move the crate the
smallest and in which is it the largest: when the elevator is acceler-
ating upward, when it is accelerating downward, or when it is trav-
eling at constant speed? Explain.
Q5.16 The moon is accelerating toward the earth. Why isn’t it get-
ting closer to us?
Q5.17 An automotive magazine calls decreasing-radius curves
“the bane of the Sunday driver.” Explain.
Q5.18 You often hear people say that “friction always opposes
motion.” Give at least one example where (a) static friction causes
motion, and (b) kinetic friction causes motion.
Q5.19 If there is a net force on a particle in uniform circular
motion, why doesn’t the particle’s speed change?
Q5.20 A curve in a road has the banking angle calculated and
posted for However, the road is covered with ice so you
cautiously plan to drive slower than this limit. What may happen to
your car? Why?
Q5.21 You swing a ball on the end of a lightweight string in a hor-
izontal circle at constant speed. Can the string ever be truly hori-
zontal? If not, would it slope above the horizontal or below the
horizontal? Why?
Q5.22 The centrifugal force is not included in the free-body dia-
grams of Figs. 5.34b and 5.35. Explain why not.
Q5.23 A professor swings a rubber stopper in a horizontal circle
on the end of a string in front of his class. He tells Caroline, in the
first row, that he is going to let the string go when the stopper is
directly in front of her face. Should Caroline worry?
Q5.24 To keep the forces on the riders within allowable limits,
loop-the-loop roller coaster rides are often designed so that the
loop, rather than being a perfect circle, has a larger radius of curva-
ture at the bottom than at the top. Explain.
Q5.25 A tennis ball drops from rest at the top of a tall glass cylinder,
first with the air pumped out of the cylinder so there is no air resist-
ance, and then a second time after the air has been readmitted to the
cylinder. You examine multiflash photographs of the two drops.
From these photos how can you tell which one is which, or can you?
Q5.26 If you throw a baseball straight upward with speed how
does its speed, when it returns to the point from where you threw
it, compare to (a) in the absence of air resistance and (b) in the
presence of air resistance? Explain.
Q5.27 You throw a baseball straight upward. If air resistance is not
ignored, how does the time required for the ball to go from the
height at which it was thrown up to its maximum height compare to
the time required for it to fall from its maximum height back down
to the height from which it was thrown? Explain your answer.
Q5.28 You take two identical tennis balls and fill one with water.
You release both balls simultaneously from the top of a tall build-
ing. If air resistance is negligible, which ball strikes the ground
first? Explain. What is the answer if air resistance is not
negligible?

v0

v0,

80 km>h.

Q5.29 A ball is dropped from rest and feels air resistance as it falls.
Which of the graphs in Fig. Q5.29 best represents its acceleration
as a function of time?

Q5.30 A ball is dropped from rest and feels air resistance as it falls.
Which of the graphs in Fig. Q5.30 best represents its vertical
velocity component as a function of time?

Q5.31 When does a baseball in flight have an acceleration with a
positive upward component? Explain in terms of the forces on the
ball and also in terms of the velocity components compared to the
terminal speed. Do not ignore air resistance.
Q5.32 When a batted baseball moves with air drag, does it travel a
greater horizontal distance while climbing to its maximum height
or while descending from its maximum height back to the ground?
Or is the horizontal distance traveled the same for both? Explain in
terms of the forces acting on the ball.
Q5.33 “A ball is thrown from the edge of a high cliff. No matter
what the angle at which it is thrown, due to air resistance, the ball
will eventually end up moving vertically downward.” Justify this
statement.

EXERCISES
Section 5.1 Using Newton’s First Law: 
Particles in Equilibrium
5.1 . Two 25.0-N weights are suspended at opposite ends of a
rope that passes over a light, frictionless pulley. The pulley is
attached to a chain that goes to the ceiling. (a) What is the tension
in the rope? (b) What is the tension in the chain?
5.2 . In Fig. E5.2 each of the suspended blocks has weight w. The
pulleys are frictionless and the ropes have negligible weight. Cal-
culate, in each case, the tension T in the rope in terms of the weight
w. In each case, include the free-body diagram or diagrams you
used to determine the answer.
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5.3 . A 75.0-kg wrecking ball hangs from a uniform heavy-duty
chain having a mass of 26.0 kg. (a) Find the maximum and mini-
mum tension in the chain. (b) What is the tension at a point three-
fourths of the way up from the bottom of the chain?
5.4 .. BIO Injuries to the Spinal Column. In the treatment of
spine injuries, it is often necessary to provide some tension along
the spinal column to stretch the backbone. One device for doing
this is the Stryker frame, illustrated in Fig. E5.4a. A weight W is
attached to the patient (sometimes around a neck collar, as
shown in Fig. E5.4b), and friction between the person’s body and
the bed prevents sliding. (a) If the coefficient of static friction
between a 78.5-kg patient’s body and the bed is 0.75, what is the
maximum traction force along the spinal column that W can pro-
vide without causing the patient to slide? (b) Under the conditions
of maximum traction, what is the tension in each cable attached to
the neck collar?

5.5 .. A picture frame hung against a wall is suspended by two
wires attached to its upper corners. If the two wires make the same
angle with the vertical, what must this angle be if the tension in
each wire is equal to 0.75 of the weight of the frame? (Ignore any
friction between the wall and the picture frame.)
5.6 .. A large wrecking ball
is held in place by two light
steel cables (Fig. E5.6). If the
mass m of the wrecking ball is
4090 kg, what are (a) the ten-
sion in the cable that makes
an angle of with the verti-
cal and (b) the tension in the
horizontal cable?
5.7 .. Find the tension in
each cord in Fig. E5.7 if the
weight of the suspended object is w.

5.8 .. A 1130-kg car is held in place by a light cable on a very
smooth (frictionless) ramp, as shown in Fig. E5.8. The cable

TA

40°
TB

makes an angle of 31.0° above
the surface of the ramp, and
the ramp itself rises at 25.0°
above the horizontal. (a) Draw
a free-body diagram for the
car. (b) Find the tension in 
the cable. (c) How hard does the
surface of the ramp push on the
car?
5.9 .. A man pushes on a
piano with mass 180 kg so that
it slides at constant velocity down a ramp that is inclined at 
above the horizontal floor. Neglect any friction acting on the piano.
Calculate the magnitude of the force applied by the man if he
pushes (a) parallel to the incline and (b) parallel to the floor.
5.10 .. In Fig. E5.10 the weight w is 60.0 N. (a) What is the ten-
sion in the diagonal string? (b) Find the magnitudes of the horizon-
tal forces and that must be applied to hold the system in the
position shown.

Section 5.2 Using Newton’s Second Law: 
Dynamics of Particles
5.11 .. BIO Stay Awake! An astronaut is inside a 
rocket that is blasting off vertically from the launch pad. You want
this rocket to reach the speed of sound as quickly as
possible, but you also do not want the astronaut to black out. Medical
tests have shown that astronauts are in danger of blacking out at an
acceleration greater than 4g. (a) What is the maximum thrust the
engines of the rocket can have to just barely avoid blackout? Start
with a free-body diagram of the rocket. (b) What force, in terms of
her weight w, does the rocket exert on the astronaut? Start with a
free-body diagram of the astronaut. (c) What is the shortest time it
can take the rocket to reach the speed of sound?
5.12 .. A 125-kg (including all the contents) rocket has an engine
that produces a constant vertical force (the thrust) of 1720 N.
Inside this rocket, a 15.5-N electrical power supply rests on the
floor. (a) Find the acceleration of the rocket. (b) When it has
reached an altitude of 120 m, how hard does the floor push on the
power supply? (Hint: Start with a free-body diagram for the power
supply.)
5.13 .. CP Genesis Crash. On September 8, 2004, the Genesis
spacecraft crashed in the Utah desert because its parachute did not
open. The 210-kg capsule hit the ground at and pene-
trated the soil to a depth of 81.0 cm. (a) Assuming it to be constant,
what was its acceleration (in and in g’s) during the crash?
(b) What force did the ground exert on the capsule during the
crash? Express the force in newtons and as a multiple of the cap-
sule’s weight. (c) For how long did this force last?
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5.14 . Three sleds are being pulled horizontally on frictionless
horizontal ice using horizontal ropes (Fig. E5.14). The pull is of
magnitude 125 N. Find (a) the acceleration of the system and (b)
the tension in ropes A and B.

5.15 .. Atwood’s Machine. A
15.0-kg load of bricks hangs from
one end of a rope that passes over
a small, frictionless pulley. A 28.0-
kg counterweight is suspended
from the other end of the rope, as
shown in Fig. E5.15. The system
is released from rest. (a) Draw
two free-body diagrams, one for
the load of bricks and one for the
counterweight. (b) What is the
magnitude of the upward acceler-
ation of the load of bricks? (c)
What is the tension in the rope
while the load is moving? How
does the tension compare to the
weight of the load of bricks? To
the weight of the counterweight?
5.16 .. CP A 8.00-kg block of ice, released from rest at the top of
a 1.50-m-long frictionless ramp, slides downhill, reaching a speed
of at the bottom. (a) What is the angle between the ramp
and the horizontal? (b) What would be the speed of the ice at the
bottom if the motion were opposed by a constant friction force of
10.0 N parallel to the surface of the ramp?
5.17 .. A light rope is attached to a block with mass 4.00 kg that
rests on a frictionless, horizontal surface. The horizontal rope
passes over a frictionless, massless pulley, and a block with mass m
is suspended from the other end. When the blocks are released, the
tension in the rope is 10.0 N. (a) Draw two free-body diagrams,
one for the 4.00-kg block and one for the block with mass m.
(b) What is the acceleration of either block? (c) Find the mass m of
the hanging block. (d) How does the tension compare to the weight
of the hanging block?
5.18 .. CP Runway Design. A transport plane takes off from a
level landing field with two gliders in tow, one behind the other.
The mass of each glider is 700 kg, and the total resistance (air drag
plus friction with the runway) on each may be assumed constant
and equal to 2500 N. The tension in the towrope between the trans-
port plane and the first glider is not to exceed 12,000 N. (a) If a
speed of is required for takeoff, what minimum length of
runway is needed? (b) What is the tension in the towrope between
the two gliders while they are accelerating for the takeoff?
5.19 .. CP A 750.0-kg boulder is raised from a quarry 125 m
deep by a long uniform chain having a mass of 575 kg. This chain
is of uniform strength, but at any point it can support a maximum
tension no greater than 2.50 times its weight without breaking. (a)
What is the maximum acceleration the boulder can have and still
get out of the quarry, and (b) how long does it take to be lifted out
at maximum acceleration if it started from rest?
5.20 .. Apparent Weight. A 550-N physics student stands on a
bathroom scale in an 850-kg (including the student) elevator that is
supported by a cable. As the elevator starts moving, the scale reads

40 m>s

2.50 m>s

450 N. (a) Find the acceleration of the elevator (magnitude and
direction). (b) What is the acceleration if the scale reads 670 N?
(c) If the scale reads zero, should the student worry? Explain. 
(d) What is the tension in the cable in parts (a) and (c)?
5.21 .. CP BIO Force During a Jump. An average person can
reach a maximum height of about 60 cm when jumping straight up
from a crouched position. During the jump itself, the person’s
body from the knees up typically rises a distance of around 50 cm.
To keep the calculations simple and yet get a reasonable result,
assume that the entire body rises this much during the jump. 
(a) With what initial speed does the person leave the ground to
reach a height of 60 cm? (b) Draw a free-body diagram of the per-
son during the jump. (c) In terms of this jumper’s weight w, what
force does the ground exert on him or her during the jump?
5.22 .. CP CALC A 2540-kg test rocket is launched vertically from
the launch pad. Its fuel (of negligible mass) provides a thrust force so
that its vertical velocity as a function of time is given by

where A and B are constants and time is measured from the
instant the fuel is ignited. At the instant of ignition, the rocket has an
upward acceleration of and later an upward velocity
of (a) Determine A and B, including their SI units. (b) At
4.00 s after fuel ignition, what is the acceleration of the rocket, and (c)
what thrust force does the burning fuel exert on it, assuming no air
resistance? Express the thrust in newtons and as a multiple of the
rocket’s weight. (d) What was the initial thrust due to the fuel?
5.23 .. CP CALC A 2.00-kg box is moving to the right with speed

on a horizontal, frictionless surface. At a horizon-
tal force is applied to the box. The force is directed to the left and
has magnitude . (a) What distance does the
box move from its position at before its speed is reduced to
zero? (b) If the force continues to be applied, what is the speed of
the box at ?
5.24 .. CP CALC A 5.00-kg crate is suspended from the end of a
short vertical rope of negligible mass. An upward force is
applied to the end of the rope, and the height of the crate above its
initial position is given by .
What is the magnitude of the force F when ?

Section 5.3 Frictional Forces
5.25 . BIO The Trendelenburg Position. In emergencies with
major blood loss, the doctor will order the patient placed in the
Trendelenburg position, in which the foot of the bed is raised to get
maximum blood flow to the brain. If the coefficient of static fric-
tion between the typical patient and the bedsheets is 1.20, what is
the maximum angle at which the bed can be tilted with respect to
the floor before the patient begins to slide?
5.26 . In a laboratory experiment on friction, a 135-N block rest-
ing on a rough horizontal table is pulled by a horizontal wire. The
pull gradually increases until the block begins to move and contin-
ues to increase thereafter. Figure E5.26 shows a graph of the fric-
tion force on this block as a function of the pull. (a) Identify the
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regions of the graph where static and kinetic friction occur. 
(b) Find the coefficients of static and kinetic friction between the
block and the table. (c) Why does the graph slant upward in the
first part but then level out? (d) What would the graph look like if a
135-N brick were placed on the box, and what would the coeffi-
cients of friction be in that case?
5.27 .. CP A stockroom worker pushes a box with mass 11.2 kg
on a horizontal surface with a constant speed of The
coefficient of kinetic friction between the box and the surface is
0.20. (a) What horizontal force must the worker apply to maintain
the motion? (b) If the force calculated in part (a) is removed, how
far does the box slide before coming to rest?
5.28 .. A box of bananas weighing 40.0 N rests on a horizontal
surface. The coefficient of static friction between the box and the
surface is 0.40, and the coefficient of kinetic friction is 0.20. (a) If
no horizontal force is applied to the box and the box is at rest, how
large is the friction force exerted on the box? (b) What is the magni-
tude of the friction force if a monkey applies a horizontal force of
6.0 N to the box and the box is initially at rest? (c) What minimum
horizontal force must the monkey apply to start the box in motion?
(d) What minimum horizontal force must the monkey apply to keep
the box moving at constant velocity once it has been started? (e) If
the monkey applies a horizontal force of 18.0 N, what is the magni-
tude of the friction force and what is the box’s acceleration?
5.29 .. A 45.0-kg crate of tools rests on a horizontal floor. You
exert a gradually increasing horizontal push on it and observe that
the crate just begins to move when your force exceeds 313 N. After
that you must reduce your push to 208 N to keep it moving at a
steady (a) What are the coefficients of static and kinetic
friction between the crate and the floor? (b) What push must you
exert to give it an acceleration of (c) Suppose you were
performing the same experiment on this crate but were doing it on the
moon instead, where the acceleration due to gravity is 
(i) What magnitude push would cause it to move? (ii) What would its
acceleration be if you maintained the push in part (b)?
5.30 .. Some sliding rocks approach the base of a hill with a
speed of The hill rises at 36° above the horizontal and has
coefficients of kinetic and static friction of 0.45 and 0.65, respec-
tively, with these rocks. (a) Find the acceleration of the rocks as
they slide up the hill. (b) Once a rock reaches its highest point, will
it stay there or slide down the hill? If it stays there, show why. If it
slides down, find its acceleration on the way down.
5.31 .. You are lowering two boxes, one on top of the other,
down the ramp shown in Fig. E5.31 by pulling on a rope parallel to
the surface of the ramp. Both boxes move together at a constant
speed of The coefficient of kinetic friction between the
ramp and the lower box is 0.444, and the coefficient of static fric-
tion between the two boxes is 0.800. (a) What force do you need to
exert to accomplish this? (b) What are the magnitude and direction
of the friction force on the upper box?

15.0 cm>s.

12 m>s .

1.62 m>s2.

1.10 m>s2?

25.0 cm>s.

3.50 m>s.

5.32 .. A pickup truck is carrying a toolbox, but the rear gate of
the truck is missing, so the box will slide out if it is set moving.
The coefficients of kinetic and static friction between the box and
the bed of the truck are 0.355 and 0.650, respectively. Starting
from rest, what is the shortest time this truck could accelerate uni-
formly to without causing the box to slide? Include a
free-body diagram of the toolbox as part of your solution.
5.33 .. CP Stopping Distance. (a) If the coefficient of kinetic
friction between tires and dry pavement is 0.80, what is the short-
est distance in which you can stop an automobile by locking the
brakes when traveling at about ? (b) On wet
pavement the coefficient of kinetic friction may be only 0.25. How
fast should you drive on wet pavement in order to be able to stop in
the same distance as in part (a)? (Note: Locking the brakes is not
the safest way to stop.)
5.34 .. Consider the
system shown in Fig.
E5.34. Block A weighs
45.0 N and block B
weighs 25.0 N. Once
block B is set into
downward motion, it
descends at a constant
speed. (a) Calculate the coefficient of kinetic friction between
block A and the tabletop. (b) A cat, also of weight 45.0 N, falls
asleep on top of block A. If block B is now set into downward
motion, what is its acceleration (magnitude and direction)?
5.35 . Two crates connected by a rope lie on a horizontal surface
(Fig. E5.35). Crate A has mass and crate B has mass The
coefficient of kinetic friction between each crate and the surface
is The crates are pulled to the right at constant velocity by a
horizontal force In terms of and calculate (a) the
magnitude of the force and (b) the tension in the rope connecting
the blocks. Include the free-body diagram or diagrams you used to
determine each answer.

5.36 .. CP A 25.0-kg box of textbooks rests on a loading ramp
that makes an angle with the horizontal. The coefficient of
kinetic friction is 0.25, and the coefficient of static friction is 0.35.
(a) As the angle is increased, find the minimum angle at which
the box starts to slip. (b) At this angle, find the acceleration once
the box has begun to move. (c) At this angle, how fast will the box
be moving after it has slid 5.0 m along the loading ramp?
5.37 .. CP As shown in Fig. E5.34, block A (mass 2.25 kg) rests on a
tabletop. It is connected by a horizontal cord passing over a light, fric-
tionless pulley to a hanging block B (mass 1.30 kg). The coefficient of
kinetic friction between block A and the tabletop is 0.450. After the
blocks are released from rest, find (a) the speed of each block after
moving 3.00 cm and (b) the tension in the cord. Include the free-body
diagram or diagrams you used to determine the answers.
5.38 .. A box with mass m is dragged across a level floor having
a coefficient of kinetic friction by a rope that is pulled upward
at an angle above the horizontal with a force of magnitude F.
(a) In terms of m, and g, obtain an expression for the magni-
tude of the force required to move the box with constant speed. (b)
Knowing that you are studying physics, a CPR instructor asks you
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how much force it would take to slide a 90-kg patient across a floor
at constant speed by pulling on him at an angle of above the
horizontal. By dragging some weights wrapped in an old pair of
pants down the hall with a spring balance, you find that 
Use the result of part (a) to answer the instructor’s question.
5.39 .. A large crate with mass m rests on a horizontal floor. The
coefficients of friction between the crate and the floor are and 
A woman pushes downward at an angle below the horizontal on
the crate with a force (a) What magnitude of force is required
to keep the crate moving at constant velocity? (b) If is greater
than some critical value, the woman cannot start the crate moving no
matter how hard she pushes. Calculate this critical value of 
5.40 .. You throw a baseball straight up. The drag force is pro-
portional to In terms of g, what is the y-component of the ball’s
acceleration when its speed is half its terminal speed and (a) it is
moving up? (b) It is moving back down?
5.41 . (a) In Example 5.18 (Section 5.3), what value of D is
required to make for the skydiver? (b) If the sky-
diver’s daughter, whose mass is 45 kg, is falling through the air
and has the same D as her father, what is the daugh-
ter’s terminal speed?

Section 5.4 Dynamics of Circular Motion
5.42 .. A small car with mass
0.800 kg travels at constant
speed on the inside of a track
that is a vertical circle with
radius 5.00 m (Fig. E5.42). If
the normal force exerted by the
track on the car when it is at the
top of the track (point B) is 6.00
N, what is the normal force on
the car when it is at the bottom
of the track (point A)?
5.43 .. A machine part con-
sists of a thin 40.0-cm-long bar
with small 1.15-kg masses fas-
tened by screws to its ends. The
screws can support a maximum
force of 75.0 N without pulling out. This bar rotates about an axis
perpendicular to it at its center. (a) As the bar is turning at a constant
rate on a horizontal, frictionless surface, what is the maximum
speed the masses can have without pulling out the screws? (b)
Suppose the machine is redesigned so that the bar turns at a con-
stant rate in a vertical circle. Will one of the screws be more likely
to pull out when the mass is at the top of the circle or at the bot-
tom? Use a free-body diagram to see why. (c) Using the result of
part (b), what is the greatest speed the masses can have without
pulling a screw?
5.44 . A flat (unbanked) curve on a highway has a radius of
220.0 m. A car rounds the curve at a speed of (a) What
is the minimum coefficient of friction that will prevent sliding?
(b) Suppose the highway is icy and the coefficient of friction
between the tires and pavement is only one-third what you found
in part (a). What should be the maximum speed of the car so it can
round the curve safely?
5.45 .. A 1125-kg car and a 2250-kg pickup truck approach a
curve on the expressway that has a radius of 225 m. (a) At what
angle should the highway engineer bank this curve so that vehicles
traveling at can safely round it regardless of the condi-
tion of their tires? Should the heavy truck go slower than the
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lighter car? (b) As the car and truck round the curve at find the
normal force on each one due to the highway surface.
5.46 .. The “Giant Swing” at a county fair consists of a vertical
central shaft with a number of horizontal arms attached at its upper
end (Fig. E5.46). Each arm supports a seat suspended from a cable
5.00 m long, the upper end of the cable being fastened to the arm at
a point 3.00 m from the central shaft. (a) Find the time of one rev-
olution of the swing if the cable supporting a seat makes an angle
of with the vertical. (b) Does the angle depend on the weight
of the passenger for a given rate of revolution?

5.47 .. In another version of
the “Giant Swing” (see Exer-
cise 5.46), the seat is connected
to two cables as shown in Fig.
E5.47, one of which is horizon-
tal. The seat swings in a hori-
zontal circle at a rate of 32.0
rpm If the seat
weighs 255 N and an 825-N per-
son is sitting in it, find the ten-
sion in each cable.
5.48 .. A small button placed
on a horizontal rotating plat-
form with diameter 0.320 m
will revolve with the platform when it is brought up to a speed of

provided the button is no more than 0.150 m from
the axis. (a) What is the coefficient of static friction between the
button and the platform? (b) How far from the axis can the button
be placed, without slipping, if the platform rotates at 
5.49 .. Rotating Space Stations. One problem for humans
living in outer space is that they are apparently weightless. One way
around this problem is to design a space station that spins about its
center at a constant rate. This creates “artificial gravity” at the outside
rim of the station. (a) If the diameter of the space station is 800 m,
how many revolutions per minute are needed for the “artificial grav-
ity” acceleration to be (b) If the space station is a waiting
area for travelers going to Mars, it might be desirable to simulate the
acceleration due to gravity on the Martian surface How
many revolutions per minute are needed in this case?
5.50 . The Cosmoclock 21 Ferris wheel in Yokohama City,
Japan, has a diameter of 100 m. Its name comes from its 60 arms,
each of which can function as a second hand (so that it makes one
revolution every 60.0 s). (a) Find the speed of the passengers
when the Ferris wheel is rotating at this rate. (b) A passenger
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weighs 882 N at the weight-guessing booth on the ground. What
is his apparent weight at the highest and at the lowest point on the
Ferris wheel? (c) What would be the time for one revolution if the
passenger’s apparent weight at the highest point were zero? 
(d) What then would be the passenger’s apparent weight at the
lowest point?
5.51 .. An airplane flies in a loop (a circular path in a vertical
plane) of radius 150 m. The pilot’s head always points toward the
center of the loop. The speed of the airplane is not constant; the
airplane goes slowest at the top of the loop and fastest at the bot-
tom. (a) At the top of the loop, the pilot feels weightless. What is
the speed of the airplane at this point? (b) At the bottom of the
loop, the speed of the airplane is What is the apparent
weight of the pilot at this point? His true weight is 700 N.
5.52 .. A 50.0-kg stunt pilot who has been diving her airplane
vertically pulls out of the dive by changing her course to a circle
in a vertical plane. (a) If the plane’s speed at the lowest point of
the circle is what is the minimum radius of the circle for
the acceleration at this point not to exceed 4.00g? (b) What is the
apparent weight of the pilot at the lowest point of the pullout?
5.53 . Stay Dry! You tie a cord to a pail of water, and you
swing the pail in a vertical circle of radius 0.600 m. What mini-
mum speed must you give the pail at the highest point of the circle
if no water is to spill from it?
5.54 .. A bowling ball weighing 71.2 N is attached to
the ceiling by a 3.80-m rope. The ball is pulled to one side and
released; it then swings back and forth as a pendulum. As the rope
swings through the vertical, the speed of the bowling ball is

(a) What is the acceleration of the bowling ball, in mag-
nitude and direction, at this instant? (b) What is the tension in the
rope at this instant?
5.55 .. BIO Effect on Blood of Walking. While a person is
walking, his arms swing through approximately a 45° angle in s.
As a reasonable approximation, we can assume that the arm moves
with constant speed during each swing. A typical arm is 70.0 cm
long, measured from the shoulder joint. (a) What is the acceleration
of a 1.0-g drop of blood in the fingertips at the bottom of the swing?
(b) Draw a free-body diagram of the drop of blood in part (a). (c)
Find the force that the blood vessel must exert on the drop of blood
in part (a). Which way does this force point? (d) What force would
the blood vessel exert if the arm were not swinging?

PROBLEMS
5.56 .. An adventurous archaeologist crosses between two rock
cliffs by slowly going hand over hand along a rope stretched between
the cliffs. He stops to rest at the middle of the rope (Fig. P5.56).
The rope will break if the tension in it exceeds and
our hero’s mass is 90.0 kg. (a) If the angle is find the
tension in the rope. (b) What is the smallest value the angle can
have if the rope is not to break?

u

10.0°,u

2.50 * 104 N,

1
2

4.20 m>s.

116.0 lb2

95.0 m>s,

280 km>h.

5.57 ... Two ropes are connected
to a steel cable that supports a
hanging weight as shown in Fig.
P5.57. (a) Draw a free-body dia-
gram showing all of the forces act-
ing at the knot that connects the
two ropes to the steel cable. Based
on your force diagram, which of the
two ropes will have the greater ten-
sion? (b) If the maximum tension either rope can sustain without
breaking is 5000 N, determine the maximum value of the hanging
weight that these ropes can safely support. You can ignore the
weight of the ropes and the steel cable.
5.58 .. In Fig. P5.58 a worker
lifts a weight w by pulling
down on a rope with a force 
The upper pulley is attached to
the ceiling by a chain, and the
lower pulley is attached to the
weight by another chain. In
terms of w, find the tension in
each chain and the magnitude
of the force if the weight is
lifted at constant speed. Include
the free-body diagram or dia-
grams you used to determine
your answers. Assume that the
rope, pulleys, and chains all
have negligible weights.
5.59 ... A solid uniform 
45.0-kg ball of diameter 32.0 cm
is supported against a vertical,
frictionless wall using a thin
30.0-cm wire of negligible
mass, as shown in Fig. P5.59.
(a) Draw a free-body diagram
for the ball and use it to find
the tension in the wire. (b)
How hard does the ball push
against the wall?
5.60 ... A horizontal wire
holds a solid uniform ball of
mass m in place on a tilted
ramp that rises 35.0° above the
horizontal. The surface of this
ramp is perfectly smooth, and
the wire is directed away from
the center of the ball (Fig.
P5.60). (a) Draw a free-body
diagram for the ball. (b) How hard does the surface of the ramp push
on the ball? (c) What is the tension in the wire?
5.61 .. CP BIO Forces During Chin-ups. People who do chin-
ups raise their chin just over a bar (the chinning bar), supporting
themselves with only their arms. Typically, the body below the
arms is raised by about 30 cm in a time of 1.0 s, starting from rest.
Assume that the entire body of a 680-N person doing chin-ups is
raised this distance and that half the 1.0 s is spent accelerating
upward and the other half accelerating downward, uniformly in
both cases. Draw a free-body diagram of the person’s body, and
then apply it to find the force his arms must exert on him during
the accelerating part of the chin-up.
5.62 .. CP BIO Prevention of Hip Injuries. People (espe-
cially the elderly) who are prone to falling can wear hip pads to
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cushion the impact on their hip from a fall. Experiments have
shown that if the speed at impact can be reduced to or less,
the hip will usually not fracture. Let us investigate the worst-case
scenario in which a 55-kg person completely loses her footing
(such as on icy pavement) and falls a distance of 1.0 m, the dis-
tance from her hip to the ground. We shall assume that the person’s
entire body has the same acceleration, which, in reality, would not
quite be true. (a) With what speed does her hip reach the ground?
(b) A typical hip pad can reduce the person’s speed to 
over a distance of 2.0 cm. Find the acceleration (assumed to be
constant) of this person’s hip while she is slowing down and the
force the pad exerts on it. (c) The force in part (b) is very large. To
see whether it is likely to cause injury, calculate how long it lasts.
5.63 ... CALC A 3.00-kg box that is several hundred meters
above the surface of the earth is suspended from the end of a short
vertical rope of negligible mass. A time-dependent upward force is
applied to the upper end of the rope, and this results in a tension in
the rope of . The box is at rest at . The only
forces on the box are the tension in the rope and gravity. (a) What is
the velocity of the box at (i) and (ii) ? (b) What
is the maximum distance that the box descends below its initial posi-
tion? (c) At what value of t does the box return to its initial position?
5.64 .. CP A 5.00-kg box sits at rest at the bottom of a ramp that
is 8.00 m long and that is inclined at above the horizontal.
The coefficient of kinetic friction is , and the coefficient
of static friction is . What constant force F, applied par-
allel to the surface of the ramp, is required to push the box to the
top of the ramp in a time of 4.00 s?
5.65 .. Two boxes connected by a light horizontal rope are on a
horizontal surface, as shown in Fig. P5.35. The coefficient of
kinetic friction between each box and the surface is .
One box (box B) has mass 5.00 kg, and the other box (box A) has
mass m. A force F with magnitude 40.0 N and direction above
the horizontal is applied to the 5.00-kg box, and both boxes move to
the right with . (a) What is the tension T in the rope
that connects the boxes? (b) What is the mass m of the second box?
5.66 ... A 6.00-kg box sits on a ramp that is inclined at above
the horizontal. The coefficient of kinetic friction between the box and
the ramp is . What horizontal force is required to move the
box up the incline with a constant acceleration of ?
5.67 .. CP In Fig. P5.34 block A has mass m and block B has
mass 6.00 kg. The coefficient of kinetic friction between block A
and the tabletop is . The mass of the rope connecting the
blocks can be neglected. The pulley is light and frictionless. When
the system is released from rest, the hanging block descends 5.00 m
in 3.00 s. What is the mass m of block A?
5.68 .. CP In Fig. P5.68

and
. The coefficient of

kinetic friction between the
block and the incline is 

. What must be the mass
of the hanging block if it

is to descend 12.0 m in the
first 3.00 s after the system is
released from rest?
5.69 ... CP Rolling Friction. Two bicycle tires are set rolling
with the same initial speed of on a long, straight road,
and the distance each travels before its speed is reduced by half 
is measured. One tire is inflated to a pressure of 40 psi and goes
18.1 m; the other is at 105 psi and goes 92.9 m. What is the coeffi-
cient of rolling friction for each? Assume that the net horizontal
force is due to rolling friction only.
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5.70 .. A Rope with Mass. A block with mass M is attached to
the lower end of a vertical, uniform rope with mass m and length L.
A constant upward force is applied to the top of the rope, caus-
ing the rope and block to accelerate upward. Find the tension in the
rope at a distance x from the top end of the rope, where x can have
any value from 0 to L.
5.71 .. A block with mass is placed on an inclined plane with
slope angle and is connected to a second hanging block with mass

by a cord passing over a small, frictionless pulley (Fig. P5.68).
The coefficient of static friction is and the coefficient of kinetic
friction is (a) Find the mass for which block moves up
the plane at constant speed once it is set in motion. (b) Find the
mass for which block moves down the plane at constant
speed once it is set in motion. (c) For what range of values of 
will the blocks remain at rest if they are released from rest?
5.72 .. Block A in Fig. P5.72 weighs 60.0 N. The coefficient of
static friction between the block and the surface on which it rests is
0.25. The weight w is 12.0 N and the system is in equilibrium. 
(a) Find the friction force exerted on block A. (b) Find the maxi-
mum weight w for which the system will remain in equilibrium.

5.73 .. Block A in Fig. P5.73 weighs 2.40 N and block B weighs
3.60 N. The coefficient of kinetic friction between all surfaces is
0.300. Find the magnitude of the horizontal force necessary to
drag block B to the left at constant speed (a) if A rests on B and
moves with it (Fig. P5.73a). (b) If A is held at rest (Fig. P5.73b).

5.74 ... A window washer pushes
his scrub brush up a vertical win-
dow at constant speed by applying
a force as shown in Fig. P5.74.
The brush weighs 15.0 N and the
coefficient of kinetic friction is

Calculate (a) the
magnitude of the force and 
(b) the normal force exerted by the
window on the brush.
5.75 .. BIO The Flying Leap
of a Flea. High-speed motion
pictures of
a jumping flea yielded
the data to plot the flea’s acceler-
ation as a function of time as

210-mg
13500 frames>second2
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shown in Fig. P5.75. (See “The Flying Leap of the Flea,” by M.
Rothschild et al. in the November 1973 Scientific American.) This
flea was about 2 mm long and jumped at a nearly vertical takeoff
angle. Use the measurements shown on the graph to answer the
questions. (a) Find the initial net external force on the flea. How
does it compare to the flea’s weight? (b) Find the maximum net
external force on this jumping flea. When does this maximum
force occur? (c) Use the graph to find the flea’s maximum speed.

5.76 .. CP A 25,000-kg rocket blasts off vertically from the
earth’s surface with a constant acceleration. During the motion
considered in the problem, assume that g remains constant (see
Chapter 13). Inside the rocket, a 15.0-N instrument hangs from a
wire that can support a maximum tension of 45.0 N. (a) Find the
minimum time for this rocket to reach the sound barrier 
without breaking the inside wire and the maximum vertical thrust
of the rocket engines under these conditions. (b) How far is the
rocket above the earth’s surface when it breaks the sound barrier?
5.77 ... CP CALC You are standing on a bathroom scale in an ele-
vator in a tall building. Your mass is 64 kg. The elevator starts from
rest and travels upward with a speed that varies with time according
to When what is
the reading of the bathroom scale?
5.78 ... CP Elevator Design. You are designing an elevator for
a hospital. The force exerted on a passenger by the floor of the ele-
vator is not to exceed 1.60 times the passenger’s weight. The eleva-
tor accelerates upward with constant acceleration for a distance
of 3.0 m and then starts to slow down. What is the maximum speed
of the elevator?
5.79 .. CP You are working for a shipping company. Your job is to
stand at the bottom of a 8.0-m-long ramp that is inclined at 
above the horizontal. You grab packages off a conveyor belt and pro-
pel them up the ramp. The coefficient of kinetic friction between the
packages and the ramp is (a) What speed do you need to
give a package at the bottom of the ramp so that it has zero speed at
the top of the ramp? (b) Your coworker is supposed to grab the pack-
ages as they arrive at the top of the ramp, but she misses one and it
slides back down. What is its speed when it returns to you?
5.80 .. A hammer is hanging by a light rope from the ceiling of a
bus. The ceiling of the bus is parallel to the roadway. The bus is
traveling in a straight line on a horizontal street. You observe that
the hammer hangs at rest with respect to the bus when the angle
between the rope and the ceiling of the bus is What is the
acceleration of the bus?
5.81 ... A steel washer is suspended inside an empty shipping crate
from a light string attached to the top of the crate. The crate slides
down a long ramp that is inclined at an angle of above the hori-
zontal. The crate has mass 180 kg. You are sitting inside the crate

37°

67°.

mk = 0.30.

37°

t = 4.0 s,v(t2 = 13.0 m>s22t + 10.20 m>s32t 2.

1330 m>s2

(with a flashlight); your mass is 55 kg. As the crate is sliding down
the ramp, you find the washer is at rest with respect to the crate when
the string makes an angle of with the top of the crate. What is the
coefficient of kinetic friction between the ramp and the crate?
5.82 . CP Lunch Time! You are riding your motorcycle one
day down a wet street that slopes downward at an angle of 
below the horizontal. As you start to ride down the hill, you notice
a construction crew has dug a deep hole in the street at the bottom
of the hill. A Siberian tiger, escaped from the City Zoo, has taken
up residence in the hole. You apply the brakes and lock your
wheels at the top of the hill, where you are moving with a speed of

The inclined street in front of you is 40 m long. (a) Will
you plunge into the hole and become the tiger’s lunch, or do you
skid to a stop before you reach the hole? (The coefficients of fric-
tion between your motorcycle tires and the wet pavement are

and ) (b) What must your initial speed be if
you are to stop just before reaching the hole?
5.83 ... In the system shown in Fig. P5.34, block A has mass 
block B has mass and the rope connecting them has a nonzero
mass The rope has a total length L, and the pulley has a very
small radius. You can ignore any sag in the horizontal part of the
rope. (a) If there is no friction between block A and the tabletop, find
the acceleration of the blocks at an instant when a length d of rope
hangs vertically between the pulley and block B. As block B falls,
will the magnitude of the acceleration of the system increase,
decrease, or remain constant? Explain. (b) Let 

and If there is
friction between block A and the tabletop, with and

find the minimum value of the distance d such that the
blocks will start to move if they are initially at rest. (c) Repeat part
(b) for the case Will the blocks move in this case?
5.84 ... If the coefficient of static friction between a table and a
uniform massive rope is what fraction of the rope can hang
over the edge of the table without the rope sliding?
5.85 .. A 40.0-kg packing case is initially at rest on the floor of a
1500-kg pickup truck. The coefficient of static friction between the
case and the truck floor is 0.30, and the coefficient of kinetic fric-
tion is 0.20. Before each acceleration given below, the truck is
traveling due north at constant speed. Find the magnitude and
direction of the friction force acting on the case (a) when the truck
accelerates at northward and (b) when it accelerates at

southward.
5.86 . CP Traffic Court. You are called as an expert witness in
the trial of a traffic violation. The facts are these: A driver slammed
on his brakes and came to a stop with constant acceleration. Mea-
surements of his tires and the skid marks on the pavement indicate
that he locked his car’s wheels, the car
traveled 192 ft before stopping, and the
coefficient of kinetic friction between the
road and his tires was 0.750. The charge is
that he was speeding in a zone.
He pleads innocent. What is your conclu-
sion, guilty or innocent? How fast was he
going when he hit his brakes?
5.87 ... Two identical 15.0-kg balls, each
25.0 cm in diameter, are suspended by two
35.0-cm wires as shown in Fig. P5.87. The
entire apparatus is supported by a single
18.0-cm wire, and the surfaces of the balls
are perfectly smooth. (a) Find the tension
in each of the three wires. (b) How hard
does each ball push on the other one?
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5.88 .. CP Losing Cargo. A 12.0-kg box rests on the flat floor
of a truck. The coefficients of friction between the box and floor
are and The truck stops at a stop sign and
then starts to move with an acceleration of If the box is
1.80 m from the rear of the truck when the truck starts, how much
time elapses before the box falls off the truck? How far does the
truck travel in this time?
5.89 ... Block A in Fig.
P5.89 weighs 1.90 N, and
block B weighs 4.20 N. The
coefficient of kinetic friction
between all surfaces is 0.30.
Find the magnitude of the
horizontal force necessary
to drag block B to the left at
constant speed if A and B
are connected by a light,
flexible cord passing around a fixed, frictionless pulley.
5.90 ... CP You are part of a design team for future exploration
of the planet Mars, where An explorer is to step out
of a survey vehicle traveling horizontally at when it is
1200 m above the surface and then fall freely for 20 s. At that time,
a portable advanced propulsion system (PAPS) is to exert a con-
stant force that will decrease the explorer’s speed to zero at the
instant she touches the surface. The total mass (explorer, suit,
equipment, and PAPS) is 150 kg. Assume the change in mass of
the PAPS to be negligible. Find the horizontal and vertical compo-
nents of the force the PAPS must exert, and for what interval of
time the PAPS must exert it. You can ignore air resistance.
5.91 .. Block A in Fig. P5.91 has a mass of 4.00 kg, and block B
has mass 12.0 kg. The coefficient of kinetic friction between block B
and the horizontal surface is 0.25. (a) What is the mass of block C
if block B is moving to the right and speeding up with an accelera-
tion of (b) What is the tension in each cord when block
B has this acceleration?

5.92 .. Two blocks connected by a cord passing over a small,
frictionless pulley rest on frictionless planes (Fig. P5.92). (a) Which
way will the system move when the blocks are released from rest?
(b) What is the acceleration of the blocks? (c) What is the tension
in the cord?
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5.93 .. In terms of 
and g, find the accel-

eration of each block in
Fig. P5.93. There is no
friction anywhere in the
system.
5.94 ... Block B, with
mass 5.00 kg, rests on
block A, with mass 
8.00 kg, which in turn is
on a horizontal tabletop
(Fig. P5.94). There is no
friction between block A and the tabletop, but the coefficient of
static friction between block A and block B is 0.750. A light string
attached to block A passes over a frictionless, massless pulley, and
block C is suspended from the other end of the string. What is the
largest mass that block C can have so that blocks A and B still slide
together when the system is released from rest?

5.95 ... Two objects with masses 5.00 kg and 2.00 kg hang
0.600 m above the floor from the ends of a cord 6.00 m long pass-
ing over a frictionless pulley. Both objects start from rest. Find the
maximum height reached by the 2.00-kg object.
5.96 .. Friction in an Elevator. You are riding in an elevator
on the way to the 18th floor of your dormitory. The elevator is
accelerating upward with Beside you is the box
containing your new computer; the box and its contents have a
total mass of 28.0 kg. While the elevator is accelerating upward,
you push horizontally on the box to slide it at constant speed
toward the elevator door. If the coefficient of kinetic friction
between the box and the elevator floor is what magni-
tude of force must you apply?
5.97 . A block is placed
against the vertical front
of a cart as shown in
Fig. P5.97. What accel-
eration must the cart
have so that block A
does not fall? The coef-
ficient of static friction
between the block and
the cart is How
would an observer on
the cart describe the
behavior of the block?
5.98 ... Two blocks
with masses 4.00 kg and
8.00 kg are connected
by a string and slide
down a inclined
plane (Fig. P5.98). The
coefficient of kinetic
friction between the
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4.00-kg block and the plane is 0.25; that between the 8.00-kg
block and the plane is 0.35. (a) Calculate the acceleration of each
block. (b) Calculate the tension in the string. (c) What happens if the
positions of the blocks are reversed, so the 4.00-kg block is above
the 8.00-kg block?
5.99 ... Block A, with weight
3w, slides down an inclined
plane S of slope angle at a
constant speed while plank B,
with weight w, rests on top of
A. The plank is attached by a
cord to the wall (Fig. P5.99). (a)
Draw a diagram of all the forces
acting on block A. (b) If the
coefficient of kinetic friction is
the same between A and B and
between S and A, determine its
value.
5.100 .. Accelerometer. The system shown in Fig. P5.100 can
be used to measure the acceleration of the system. An observer rid-
ing on the platform measures the angle that the thread supporting
the light ball makes with the vertical. There is no friction any-
where. (a) How is related to the acceleration of the system? (b) If

and what is (c) If you can vary
and what is the largest angle you could achieve? Explain

how you need to adjust and to do this.

5.101 ... Banked Curve I. A curve with a 120-m radius on a
level road is banked at the correct angle for a speed of If
an automobile rounds this curve at what is the minimum
coefficient of static friction needed between tires and road to pre-
vent skidding?
5.102 .. Banked Curve II. Consider a wet roadway banked as
in Example 5.22 (Section 5.4), where there is a coefficient of static
friction of 0.30 and a coefficient of kinetic friction of 0.25 between
the tires and the roadway. The radius of the curve is 
(a) If the banking angle is what is the maximum speed
the automobile can have before sliding up the banking? (b) What is
the minimum speed the automobile can have before sliding down the
banking?
5.103 ... Blocks A, B, and C are placed as in Fig. P5.103 and
connected by ropes of negligible mass. Both A and B weigh 25.0 N
each, and the coefficient of kinetic friction between each block
and the surface is 0.35. Block C descends with constant velocity. 
(a) Draw two separate free-body diagrams showing the forces
acting on A and on B. (b) Find the tension in the rope connecting
blocks A and B. (c) What is the weight of block C? (d) If the rope
connecting A and B were cut, what would be the acceleration 
of C?
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5.104 .. You are riding in a school bus. As the bus rounds a flat
curve at constant speed, a lunch box with mass 0.500 kg, sus-
pended from the ceiling of the bus by a string 1.80 m long, is found
to hang at rest relative to the bus when the string makes an angle of

with the vertical. In this position the lunch box is 50.0 m
from the center of curvature of the curve. What is the speed of
the bus?
5.105 . The Monkey and Bananas
Problem. A 20-kg monkey has a
firm hold on a light rope that passes
over a frictionless pulley and is
attached to a 20-kg bunch of bananas
(Fig. P5.105). The monkey looks up,
sees the bananas, and starts to climb
the rope to get them. (a) As the monkey
climbs, do the bananas move up, down,
or remain at rest? (b) As the monkey
climbs, does the distance between the
monkey and the bananas decrease,
increase, or remain constant? (c) The
monkey releases her hold on the rope.
What happens to the distance between
the monkey and the bananas while she
is falling? (d) Before reaching the
ground, the monkey grabs the rope to stop her fall. What do the
bananas do?
5.106 .. CALC You throw a rock downward into water with a
speed of where k is the coefficient in Eq. (5.7). Assume that
the relationship between fluid resistance and speed is as given in
Eq. (5.7), and calculate the speed of the rock as a function of time.
5.107 .. A rock with mass falls from rest in a vis-
cous medium. The rock is acted on by a net constant downward
force of 18.0 N (a combination of gravity and the buoyant force
exerted by the medium) and by a fluid resistance force 
where is the speed in and (see Section 5.3).
(a) Find the initial acceleration (b) Find the acceleration when
the speed is (c) Find the speed when the acceleration
equals (d) Find the terminal speed (e) Find the coordi-
nate, speed, and acceleration 2.00 s after the start of the motion. (f )
Find the time required to reach a speed of 
5.108 .. CALC A rock with mass m slides with initial velocity 
on a horizontal surface. A retarding force that the surface exerts
on the rock is proportional to the square root of the instantaneous
velocity of the rock (a) Find expressions for the
velocity and position of the rock as a function of time. (b) In terms
of m, k, and at what time will the rock come to rest? (c) In
terms of m, k, and what is the distance of the rock from its start-
ing point when it comes to rest?
5.109 ... You observe a 1350-kg sports car rolling along flat
pavement in a straight line. The only horizontal forces acting on it
are a constant rolling friction and air resistance (proportional to the
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square of its speed). You take the following data during a time
interval of 25 s: When its speed is the car slows down at a
rate of and when its speed is decreased to it
slows down at (a) Find the coefficient of rolling fric-
tion and the air drag constant D. (b) At what constant speed will
this car move down an incline that makes a angle with the
horizontal? (c) How is the constant speed for an incline of angle 
related to the terminal speed of this sports car if the car drops off a
high cliff? Assume that in both cases the air resistance force is pro-
portional to the square of the speed, and the air drag constant is the
same.
5.110 ... The 4.00-kg block in
Fig. P5.110 is attached to a verti-
cal rod by means of two strings.
When the system rotates about
the axis of the rod, the strings are
extended as shown in the dia-
gram and the tension in the
upper string is 80.0 N. (a) What
is the tension in the lower cord? 
(b) How many revolutions per
minute does the system make?
(c) Find the number of revolu-
tions per minute at which the
lower cord just goes slack. 
(d) Explain what happens if the
number of revolutions per minute is less than in part (c).
5.111 ... CALC Equation (5.10) applies to the case where the ini-
tial velocity is zero. (a) Derive the corresponding equation for

when the falling object has an initial downward velocity with
magnitude (b) For the case where sketch a graph of 
as a function of t and label on your graph. (c) Repeat part (b) for
the case where (d) Discuss what your result says about

when
5.112 ... CALC A small rock moves in water, and the force
exerted on it by the water is given by Eq. (5.7). The terminal speed
of the rock is measured and found to be The rock is pro-
jected upward at an initial speed of You can ignore the
buoyancy force on the rock. (a) In the absence of fluid resistance,
how high will the rock rise and how long will it take to reach this
maximum height? (b) When the effects of fluid resistance are
included, what are the answers to the questions in part (a)?
5.113 .. Merry-Go-Round. One December identical twins
Jena and Jackie are playing on a large merry-go-round (a disk
mounted parallel to the ground, on a vertical axle through its cen-
ter) in their school playground in northern Minnesota. Each twin
has mass 30.0 kg. The icy coating on the merry-go-round surface
makes it frictionless. The merry-go-round revolves at a constant
rate as the twins ride on it. Jena, sitting 1.80 m from the center of
the merry-go-round, must hold on to one of the metal posts
attached to the merry-go-round with a horizontal force of 60.0 N to
keep from sliding off. Jackie is sitting at the edge, 3.60 m from the
center. (a) With what horizontal force must Jackie hold on to keep
from falling off? (b) If Jackie falls off, what will be her horizontal
velocity when she becomes airborne?
5.114 .. A 70-kg person rides in a 30-kg cart moving at at
the top of a hill that is in the shape of an arc of a circle with a
radius of 40 m. (a) What is the apparent weight of the person as the
cart passes over the top of the hill? (b) Determine the maximum
speed that the cart may travel at the top of the hill without losing
contact with the surface. Does your answer depend on the mass of
the cart or the mass of the person? Explain.
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5.115 .. On the ride “Spindletop” at the amusement park Six
Flags Over Texas, people stood against the inner wall of a hollow
vertical cylinder with radius 2.5 m. The cylinder started to rotate,
and when it reached a constant rotation rate of the
floor on which people were standing dropped about 0.5 m. The
people remained pinned against the wall. (a) Draw a force dia-
gram for a person on this ride, after the floor has dropped. 
(b) What minimum coefficient of static friction is required if the
person on the ride is not to slide downward to the new position of
the floor? (c) Does your answer in part (b) depend on the mass of
the passenger? (Note: When the ride is over, the cylinder is
slowly brought to rest. As it slows down, people slide down the
walls to the floor.)
5.116 .. A passenger with mass 85 kg rides in a Ferris wheel like
that in Example 5.23 (Section 5.4). The seats travel in a circle of
radius 35 m. The Ferris wheel rotates at constant speed and makes
one complete revolution every 25 s. Calculate the magnitude and
direction of the net force exerted on the passenger by the seat when
she is (a) one-quarter revolution past her lowest point and (b) one-
quarter revolution past her highest point.
5.117 . Ulterior Motives. You are driving a classic 1954 Nash
Ambassador with a friend who is sitting to your right on the pas-
senger side of the front seat. The Ambassador has flat bench seats.
You would like to be closer to your friend and decide to use
physics to achieve your romantic goal by making a quick turn. 
(a) Which way (to the left or to the right) should you turn the car to
get your friend to slide closer to you? (b) If the coefficient of static
friction between your friend and the car seat is 0.35, and you keep
driving at a constant speed of what is the maximum radius
you could make your turn and still have your friend slide your
way?
5.118 .. A physics major is working to pay his college tuition by
performing in a traveling carnival. He rides a motorcycle inside a
hollow, transparent plastic sphere. After gaining sufficient speed,
he travels in a vertical circle with a radius of 13.0 m. The physics
major has mass 70.0 kg, and his motorcycle has mass 40.0 kg. 
(a) What minimum speed must he have at the top of the circle if
the tires of the motorcycle are not to lose contact with the sphere?
(b) At the bottom of the circle, his speed is twice the value calcu-
lated in part (a). What is the magnitude of the normal force exerted
on the motorcycle by the sphere at this point?
5.119 .. A small bead can
slide without friction on a cir-
cular hoop that is in a vertical
plane and has a radius of
0.100 m. The hoop rotates at
a constant rate of 
about a vertical diameter (Fig.
P5.119). (a) Find the angle at
which the bead is in vertical
equilibrium. (Of course, it has
a radial acceleration toward
the axis.) (b) Is it possible for
the bead to “ride” at the same
elevation as the center of the
hoop? (c) What will happen if
the hoop rotates at 
5.120 .. A small remote-
controlled car with mass 1.60 kg moves at a constant speed of

in a vertical circle inside a hollow metal cylinder
that has a radius of 5.00 m (Fig. P5.120). What is the magnitude of
the normal force exerted on the car by the walls of the cylinder at 

v = 12.0 m>s

1.00 rev>s?

b

4.00 rev>s

20 m>s,

0.60 rev>s,
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2.00 m 4.00 kg

1.25 m

1.25 m

Figure P5.110

0.100 m

b

Figure P5.119
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CHALLENGE PROBLEMS
5.121 ... CALC Angle for Minimum Force. A box with weight
w is pulled at constant speed along a level floor by a force that is
at an angle above the horizontal. The coefficient of kinetic fric-
tion between the floor and box is (a) In terms of and w,
calculate F. (b) For and calculate F for
ranging from to in increments of Graph F versus
(c) From the general expression in part (a), calculate the value of 
for which the value of F, required to maintain constant speed, is a
minimum. (Hint: At a point where a function is minimum, what
are the first and second derivatives of the function? Here F is a
function of ) For the special case of and 
evaluate this optimal and compare your result to the graph you
constructed in part (b).
5.122 ... Moving Wedge. A wedge with mass M rests on a fric-
tionless, horizontal tabletop. A block with mass m is placed on the
wedge (Fig. P5.122a). There is no friction between the block and
the wedge. The system is released from rest. (a) Calculate the accel-
eration of the wedge and the horizontal and vertical components of
the acceleration of the block. (b) Do your answers to part (a) reduce
to the correct results when M is very large? (c) As seen by a station-
ary observer, what is the shape of the trajectory of the block?

5.123 ... A wedge with mass M rests on a frictionless horizontal
tabletop. A block with mass m is placed on the wedge and a hori-
zontal force is applied to the wedge (Fig. P5.122b). What must
the magnitude of be if the block is to remain at a constant height
above the tabletop?
5.124 ... CALC Falling Baseball. You drop a baseball from the
roof of a tall building. As the ball falls, the air exerts a drag force
proportional to the square of the ball’s speed (a) In a
diagram, show the direction of motion and indicate, with the aid of
vectors, all the forces acting on the ball. (b) Apply Newton’s sec-
ond law and infer from the resulting equation the general proper-
ties of the motion. (c) Show that the ball acquires a terminal speed

1ƒ = Dv22.

F
S

F
S

u

mk = 0.25,w = 400 Nu.

u

u.10°.90°0°
umk = 0.25,w = 400 N

mk,u,mk.
u

F
S

that is as given in Eq. (5.13). (d) Derive the equation for the speed
at any time. (Note:

where

defines the hyperbolic tangent.)
5.125 ... Double Atwood’s
Machine. In Fig. P5.125
masses and are con-
nected by a light string A over
a light, frictionless pulley B.
The axle of pulley B is con-
nected by a second light string
C over a second light, fric-
tionless pulley D to a mass

Pulley D is suspended
from the ceiling by an attach-
ment to its axle. The system is
released from rest. In terms of

and g, what are
(a) the acceleration of block

(b) the acceleration of pul-
ley B; (c) the acceleration of
block (d) the acceleration of block (e) the tension in string
A; (f) the tension in string C? (g) What do your expressions give for
the special case of and Is this sensible?
5.126 ... The masses of
blocks A and B in Fig. P5.126
are 20.0 kg and 10.0 kg,
respectively. The blocks are
initially at rest on the floor and
are connected by a massless
string passing over a massless
and frictionless pulley. An
upward force is applied to
the pulley. Find the accelera-
tions of block A and of
block B when F is (a) 124 N;
(b) 294 N; (c) 424 N.
5.127 ... A ball is held at
rest at position A in Fig. P5.127
by two light strings. The hori-
zontal string is cut and the ball starts swinging as a pendulum.
Point B is the farthest to the right the ball goes as it swings back
and forth. What is the ratio of the tension in the supporting string at
position B to its value at A before the horizontal string was cut?

aSBaSA

F
S

m3 = m1 + m2?m1 = m2

m2;m1;

m3;

m3,m2,m1,

m3 .

m2m1

tanh1x2 =
ex - e-x

ex + e-x =
e2x - 1

e2x + 1

L
dx

a2 - x2
=

1
a

 arctanh ¢ x

a
≤

v 5 12.0 m/s

v 5 12.0 m/s

A

5.00 m

B

Figure P5.120
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m(b)
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F
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Figure P5.122

m3

A

C

m2

m1

B

D

Figure P5.125

20.0 kg 10.0 kg

A
B

F
S

Figure P5.126

A B

bb

Figure P5.127

(a) point A (at the bottom of the vertical circle) and (b) point
B (at the top of the vertical circle)?
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Chapter Opening Question ?
Neither; the upward force of the air has the same magnitude as the
force of gravity. Although the skydiver and parachute are descending,
their vertical velocity is constant and so their vertical acceleration is
zero. Hence the net vertical force on the skydiver and parachute must
also be zero, and the individual vertical forces must balance.

Test Your Understanding Questions
5.1 Answer: (ii) The two cables are arranged symmetrically, so
the tension in either cable has the same magnitude T. The vertical
component of the tension from each cable is (or, equiva-
lently, so Newton’s first law applied to the vertical forces
tells us that Hence 

Each cable supports half of the weight of the traf-
fic light, but the tension is greater than because only the verti-
cal component of the tension counteracts the weight.
5.2 Answer: (ii) No matter what the instantaneous velocity of
the glider, its acceleration is constant and has the value found in
Example 5.12. In the same way, the acceleration of a body in free
fall is the same whether it is ascending, descending, or at the high
point of its motion (see Section 2.5).

w>2
w>12 = 0.71w.

T = w>12sin45°2 =2T sin45° - w = 0.
Tcos45°),

T sin45°

5.3 Answers to (a): (i), (iii); answers to (b): (ii), (iv); answer to
(c): (v) In situations (i) and (iii) the box is not accelerating (so
the net force on it must be zero) and there is no other force acting
parallel to the horizontal surface; hence no friction force is needed
to prevent sliding. In situations (ii) and (iv) the box would start to
slide over the surface if no friction were present, so a static friction
force must act to prevent this. In situation (v) the box is sliding
over a rough surface, so a kinetic friction force acts on it.
5.4 Answer: (iii) A satellite of mass m orbiting the earth at
speed in an orbit of radius r has an acceleration of magnitude

so the net force acting on it from the earth’s gravity has mag-
nitude The farther the satellite is from earth, the
greater the value of r, the smaller the value of and hence the
smaller the values of and of F. In other words, the earth’s
gravitational force decreases with increasing distance.

Bridging Problem

Answers: (a)

(b) Tmin = 2p
B

h1cos b - ms sin b2

g tan b1sin b + ms cos b2

Tmax = 2p
B

h1cos b + ms sin b2

g tan b1sin b - ms cos b2

v2>r
v,

F = mv2>r.
v2>r,

v

Answers
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6 WORK AND 
KINETIC ENERGY

LEARNING GOALS

By studying this chapter, you will

learn:

• What it means for a force to do work

on a body, and how to calculate the

amount of work done.

• The definition of the kinetic energy

(energy of motion) of a body, and

what it means physically.

• How the total work done on a body

changes the body’s kinetic energy,

and how to use this principle to

solve problems in mechanics.

• How to use the relationship between

total work and change in kinetic

energy when the forces are not

constant, the body follows a 

curved path, or both.

• How to solve problems involving

power (the rate of doing work).

Suppose you try to find the speed of an arrow that has been shot from a bow.
You apply Newton’s laws and all the problem-solving techniques that
we’ve learned, but you run across a major stumbling block: After the

archer releases the arrow, the bow string exerts a varying force that depends on
the arrow’s position. As a result, the simple methods that we’ve learned aren’t
enough to calculate the speed. Never fear; we aren’t by any means finished with
mechanics, and there are other methods for dealing with such problems.

The new method that we’re about to introduce uses the ideas of work and
energy. The importance of the energy idea stems from the principle of conserva-
tion of energy: Energy is a quantity that can be converted from one form to
another but cannot be created or destroyed. In an automobile engine, chemical
energy stored in the fuel is converted partially to the energy of the automobile’s
motion and partially to thermal energy. In a microwave oven, electromagnetic
energy obtained from your power company is converted to thermal energy of the
food being cooked. In these and all other processes, the total energy—the sum of
all energy present in all different forms—remains the same. No exception has
ever been found.

We’ll use the energy idea throughout the rest of this book to study a tremen-
dous range of physical phenomena. This idea will help you understand why a
sweater keeps you warm, how a camera’s flash unit can produce a short burst of
light, and the meaning of Einstein’s famous equation 

In this chapter, though, our concentration will be on mechanics. We’ll learn
about one important form of energy called kinetic energy, or energy of motion,
and how it relates to the concept of work. We’ll also consider power, which is the
time rate of doing work. In Chapter 7 we’ll expand the ideas of work and kinetic
energy into a deeper understanding of the concepts of energy and the conserva-
tion of energy.

E = mc2.

? After finding a piece of breakfast cereal on the floor, this ant picked it up and
carried it away. As the ant was lifting the piece of cereal, did the cereal do
work on the ant?



6.1 Work
You’d probably agree that it’s hard work to pull a heavy sofa across the room, to
lift a stack of encyclopedias from the floor to a high shelf, or to push a stalled car
off the road. Indeed, all of these examples agree with the everyday meaning of
work—any activity that requires muscular or mental effort.

In physics, work has a much more precise definition. By making use of this
definition we’ll find that in any motion, no matter how complicated, the total
work done on a particle by all forces that act on it equals the change in its kinetic
energy—a quantity that’s related to the particle’s speed. This relationship holds
even when the forces acting on the particle aren’t constant, a situation that can be
difficult or impossible to handle with the techniques you learned in Chapters 4
and 5. The ideas of work and kinetic energy enable us to solve problems in
mechanics that we could not have attempted before.

In this section we’ll see how work is defined and how to calculate work in a
variety of situations involving constant forces. Even though we already know
how to solve problems in which the forces are constant, the idea of work is still
useful in such problems. Later in this chapter we’ll relate work and kinetic
energy, and then apply these ideas to problems in which the forces are not
constant.

The three examples of work described above—pulling a sofa, lifting encyclo-
pedias, and pushing a car—have something in common. In each case you do
work by exerting a force on a body while that body moves from one place to
another—that is, undergoes a displacement (Fig. 6.1). You do more work if the
force is greater (you push harder on the car) or if the displacement is greater (you
push the car farther down the road).

The physicist’s definition of work is based on these observations. Consider a
body that undergoes a displacement of magnitude s along a straight line. (For
now, we’ll assume that any body we discuss can be treated as a particle so that
we can ignore any rotation or changes in shape of the body.) While the body
moves, a constant force acts on it in the same direction as the displacement 
(Fig. 6.2). We define the work W done by this constant force under these
circumstances as the product of the force magnitude F and the displacement
magnitude s:

(constant force in direction of straight-line displacement) (6.1)

The work done on the body is greater if either the force F or the displacement s is
greater, in agreement with our observations above.

CAUTION Work , weight Don’t confuse uppercase W (work) with lowercase w
(weight). Though the symbols are similar, work and weight are different quantities. ❙

The SI unit of work is the joule (abbreviated J, pronounced “jool,” and named
in honor of the 19th-century English physicist James Prescott Joule). From Eq. (6.1)
we see that in any system of units, the unit of work is the unit of force multiplied
by the unit of distance. In SI units the unit of force is the newton and the unit of
distance is the meter, so 1 joule is equivalent to 1 newton-meter

In the British system the unit of force is the pound (lb), the unit of distance is the
foot (ft), and the unit of work is the foot-pound The following conver-
sions are useful:

As an illustration of Eq. (6.1), think of a person pushing a stalled car. If he
pushes the car through a displacement with a constant force in the directionF

S
sS

1 J = 0.7376 ft # lb  1 ft # lb = 1.356 J

1ft # lb2.

1 joule = 11 newton211 meter2 or 1 J = 1 N # m

1N # m2:

� w� W

W = Fs

sSF
S
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6.1 These people are doing work as they
push on the stalled car because they exert a
force on the car as it moves.

F

x

s

If a body moves through a
displacement s while a
constant force F acts on it 
in the same direction ...

... the work done by
the force on the
body is W 5 Fs.

S

S

S

S

6.2 The work done by a constant force
acting in the same direction as the
displacement.

Application Work and Muscle Fibers
Our ability to do work with our bodies comes
from our skeletal muscles. The fiberlike cells 
of skeletal muscle, shown in this micrograph,
have the ability to shorten, causing the muscle
as a whole to contract and to exert force on
the tendons to which it attaches. Muscle can
exert a force of about 0.3 N per square mil-
limeter of cross-sectional area: The greater
the cross-sectional area, the more fibers the
muscle has and the more force it can exert
when it contracts.
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of motion, the amount of work he does on the car is given by Eq. (6.1): 
But what if the person pushes at an angle to the car’s displacement (Fig. 6.3)?f

W = Fs.

W 5 Fis 5 (F cosf)s
5 Fs cosf

Only Fi does work on car:

F' does no work on car. F
S

F
S

f

s
S

Car moves through
displacement s while a
constant force F acts
on it at an angle f to
the displacement.

S

S
F' 5 Fsinf

Fi 5 Fcosf

6.3 The work done by a constant force acting at an angle to the displacement.

Example 6.1 Work done by a constant force

(a) Steve exerts a steady force of magnitude 210 N (about 47 lb) on
the stalled car in Fig. 6.3 as he pushes it a distance of 18 m. The car
also has a flat tire, so to make the car track straight Steve must
push at an angle of 30° to the direction of motion. How much work
does Steve do? (b) In a helpful mood, Steve pushes a second
stalled car with a steady force The
displacement of the car is How much
work does Steve do in this case?

SOLUTION

IDENTIFY and SET UP: In both parts (a) and (b), the target variable
is the work W done by Steve. In each case the force is constant and
the displacement is along a straight line, so we can use Eq. (6.2) or
(6.3). The angle between and is given in part (a), so we can
apply Eq. (6.2) directly. In part (b) both and are given in termssSF

S
sSF

S

sS � 114 m2ın � 111 m2≥n .
F
S

� 1160 N2ın � 140 N2≥n .

of components, so it’s best to calculate the scalar product using 
Eq. (1.21): 

EXECUTE: (a) From Eq. (6.2),

(b) The components of are and Fy = -40 N,Fx = 160 NF
S

W = Fs cos f = 1210 N2118 m2cos 30° = 3.3 * 103 J

AyBy + AzBz .A
S # B

S
= AxBx +

Then has a component in the direction of the displacement and a
component that acts perpendicular to the displacement. (Other
forces must act on the car so that it moves along not in the direction of 
We’re interested only in the work that the person does, however, so we’ll
consider only the force he exerts.) In this case only the parallel component 

is effective in moving the car, so we define the work as the product of this
force component and the magnitude of the displacement. Hence 

or

(6.2)

We are assuming that F and f are constant during the displacement. If , f = 0

W = Fs cosf  (constant force, straight-line displacement)

1Fcosf2s,
W = FŒs =

FŒ

F
S

.sS,
F� = F sinf

= F cos fFŒF
S

and the components of are and (There are
no z-components for either vector.) Hence, using Eqs. (1.21) 
and (6.3), we have

EVALUATE: In each case the work that Steve does is more than
1000 J. This shows that 1 joule is a rather small amount of work.

= 1.8 * 103 J

= 1160 N2114 m2 + 1-40 N2111 m2

W = F
S # sS = Fxx + Fyy

y = 11 m.x = 14 msS

so that and are in the same direction, then cos and we are back to
Eq. (6.1).

Equation (6.2) has the form of the scalar product of two vectors, which we
introduced in Section 1.10: You may want to review that defi-
nition. Hence we can write Eq. (6.2) more compactly as

(6.3)

CAUTION Work is a scalar Here’s an essential point: Work is a scalar quantity, even
though it’s calculated by using two vector quantities (force and displacement). A 5-N force
toward the east acting on a body that moves 6 m to the east does exactly the same amount
of work as a 5-N force toward the north acting on a body that moves 6 m to the north. ❙

W = F
S # sS  (constant force, straight-line displacement)

A
S # B

S
= AB cosf.

f = 1sSF
S

ActivPhysics 5.1: Work Calculations



Work: Positive, Negative, or Zero
In Example 6.1 the work done in pushing the cars was positive. But it’s important
to understand that work can also be negative or zero. This is the essential way in
which work as defined in physics differs from the “everyday” definition of work.
When the force has a component in the same direction as the displacement 

between zero and in Eq. (6.2) is positive and the work W is positive
(Fig. 6.4a). When the force has a component opposite to the displacement

is negative and the work is negative (Fig. 6.4b).
When the force is perpendicular to the displacement, and the work done
by the force is zero (Fig. 6.4c). The cases of zero work and negative work bear
closer examination, so let’s look at some examples.

There are many situations in which forces act but do zero work. You might think
it’s “hard work” to hold a barbell motionless in the air for 5 minutes (Fig. 6.5). But
in fact, you aren’t doing any work at all on the barbell because there is no dis-
placement. You get tired because the components of muscle fibers in your arm do
work as they continually contract and relax. This is work done by one part of the
arm exerting force on another part, however, not on the barbell. (We’ll say more
in Section 6.2 about work done by one part of a body on another part.) Even
when you walk with constant velocity on a level floor while carrying a book, you
still do no work on it. The book has a displacement, but the (vertical) supporting
force that you exert on the book has no component in the direction of the (hori-
zontal) motion. Then in Eq. (6.2), and When a body slides
along a surface, the work done on the body by the normal force is zero; and when
a ball on a string moves in uniform circular motion, the work done on the ball by
the tension in the string is also zero. In both cases the work is zero because the
force has no component in the direction of motion.

What does it really mean to do negative work? The answer comes from
Newton’s third law of motion. When a weightlifter lowers a barbell as in
Fig. 6.6a, his hands and the barbell move together with the same displacement 
The barbell exerts a force on his hands in the same direction as the
hands’ displacement, so the work done by the barbell on his hands is positive 
(Fig. 6.6b). But by Newton’s third law the weightlifter’s hands exert an equal and
opposite force on the barbell (Fig. 6.6c). This
force, which keeps the barbell from crashing to the floor, acts opposite to the bar-
bell’s displacement. Thus the work done by his hands on the barbell is negative.

F
S

hands on barbell � �F
S

barbell on hands

F
S

barbell on hands

sS.

cosf = 0.f = 90°

f = 90°
cosf(f between 90° and 180°),

cosf90°),(f
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Direction of Force (or Force Component) Situation Force Diagram

F
S

F
S

F
S

F
F

F

F

s

(b)

s

(a)

F

s

(c)

f
f

f
f

f 5 90°

F'

F'

Fi 5 Fcosf

Fi 5 Fcosf

Force F has a component in direction of displacement:
W 5 Fis 5 1Fcosf2 s
Work is positive.

S
S

S

S

S

F
S

S

Force F (or force component F') is perpendicular to direction
of displacement: The force (or force component) does no work
on the object.

S

Force F has a component opposite to direction of displacement:
W 5 Fis 5 1Fcosf2 s
Work is negative (because F cos f is negative for 90° , f , 180°).

S

S

S

S

6.4 A constant force can do positive, negative, or zero work depending on the angle between and the displacement sS.F
S

F
S

F
S

... but because the
barbell is stationary (its
displacement is zero),
he does no work on it.

The weightlifter exerts
an upward force on the
barbell ...

6.5 A weightlifter does no work on a
barbell as long as he holds it stationary.

?
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Because the weightlifter’s hands and the barbell have the same displacement, the
work that his hands do on the barbell is just the negative of the work that the bar-
bell does on his hands. In general, when one body does negative work on a second
body, the second body does an equal amount of positive work on the first body.

CAUTION Keep track of who’s doing the work We always speak of work done on a partic-
ular body by a specific force. Always be sure to specify exactly what force is doing the work
you are talking about. When you lift a book, you exert an upward force on the book and the
book’s displacement is upward, so the work done by the lifting force on the book is positive.
But the work done by the gravitational force (weight) on a book being lifted is negative
because the downward gravitational force is opposite to the upward displacement. ❙

Total Work
How do we calculate work when several forces act on a body? One way is to use
Eq. (6.2) or (6.3) to compute the work done by each separate force. Then,
because work is a scalar quantity, the total work done on the body by all the
forces is the algebraic sum of the quantities of work done by the individual
forces. An alternative way to find the total work is to compute the vector sum
of the forces (that is, the net force) and then use this vector sum as in Eq. (6.2)
or (6.3). The following example illustrates both of these techniques.

F
S

Wtot

Wtot

(a) A weightlifter lowers a barbell to the floor. (b) The barbell does positive work on the
weightlifter’s hands.

The force of the barbell on the
weightlifter’s hands is in the same
direction as the hands’ displacement.

Fbarbell on hands
S

sS

sS

(c) The weightlifter’s hands do negative work
on the barbell.

The force of the weightlifter’s hands
on the barbell is opposite to the
barbell’s displacement.

Fhands on barbell
S

sS

6.6 This weightlifter’s hands do negative work on a barbell as the barbell does positive work on his hands.

Example 6.2 Work done by several forces

A farmer hitches her tractor to a sled loaded with firewood and
pulls it a distance of 20 m along level ground (Fig. 6.7a). The total
weight of sled and load is 14,700 N. The tractor exerts a constant
5000-N force at an angle of above the horizontal. A 3500-N
friction force opposes the sled’s motion. Find the work done by
each force acting on the sled and the total work done by all the
forces.

SOLUTION

IDENTIFY AND SET UP: Each force is constant and the sled’s dis-
placement is along a straight line, so we can calculate the work
using the ideas of this section. We’ll find the total work in two
ways: (1) by adding the work done on the sled by each force and
(2) by finding the work done by the net force on the sled. We first
draw a free-body diagram showing all of the forces acting on the
sled, and we choose a coordinate system (Fig. 6.7b). For each
force—weight, normal force, force of the tractor, and friction force—
we know the angle between the displacement (in the positive 
x-direction) and the force. Hence we can use Eq. (6.2) to calculate
the work each force does.

36.9°

As in Chapter 5, we’ll find the net force by adding the compo-
nents of the four forces. Newton’s second law tells us that because
the sled’s motion is purely horizontal, the net force can have only a
horizontal component.

EXECUTE: (1) The work done by the weight is zero because its
direction is perpendicular to the displacement (compare Fig. 6.4c).
For the same reason, the work done by the normal force is also
zero. (Note that we don’t need to calculate the magnitude n to con-
clude this.) So 

That leaves the work done by the force exerted by the
tractor and the work done by the friction force From Eq. (6.2),

The friction force is opposite to the displacement, so for this
force and Again from Eq. (6.2),

= -70 kJ

Wƒ = ƒscos180° = 13500 N2120 m21-12 = -70,000 N # m

cos f = -1 .f = 180°
ƒ
S

= 80 kJ

WT = FTscosf = 15000 N2120 m210.8002 = 80,000 N # m

ƒ.Wƒ

FTWT

Ww = Wn = 0.

Wn

Ww



6.2 Kinetic Energy and the 
Work–Energy Theorem

The total work done on a body by external forces is related to the body’s
displacement––that is, to changes in its position. But the total work is also related
to changes in the speed of the body. To see this, consider Fig. 6.8, which shows
three examples of a block sliding on a frictionless table. The forces acting on the
block are its weight the normal force and the force exerted on it by the
hand.

In Fig. 6.8a the net force on the block is in the direction of its motion. From
Newton’s second law, this means that the block speeds up; from Eq. (6.1), this
also means that the total work done on the block is positive. The total work is
negative in Fig. 6.8b because the net force opposes the displacement; in this case
the block slows down. The net force is zero in Fig. 6.8c, so the speed of the block
stays the same and the total work done on the block is zero. We can conclude that
when a particle undergoes a displacement, it speeds up if slows down if

and maintains the same speed if
Let’s make these observations more quantitative. Consider a particle with

mass m moving along the x-axis under the action of a constant net force with
magnitude F directed along the positive x-axis (Fig. 6.9). The particle’s accelera-
tion is constant and given by Newton’s second law, Suppose the speed
changes from to while the particle undergoes a displacement s = x2 - x1v2v1

F = max .

Wtot = 0.Wtot 6 0,
Wtot 7 0,

Wtot

F
S

nS,wS,
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(2) In the second approach, we first find the vector sum of all
the forces (the net force) and then use it to compute the total
work. The vector sum is best found by using components. From
Fig. 6.7b,

We don’t need the second equation; we know that the y-component
of force is perpendicular to the displacement, so it does no work.
Besides, there is no y-component of acceleration, so must be
zero anyway. The total work is therefore the work done by the total
x-component:

EVALUATE: We get the same result for with either method, as
we should. Note also that the net force in the x-direction is not
zero, and so the sled must accelerate as it moves. In Section 6.2
we’ll return to this example and see how to use the concept of
work to explore the sled’s changes of speed.

Wtot

= 10 kJ

Wtot = 1aF
S
2 # sS = 1aFx2s = 1500 N2120 m2 = 10,000 J

gFy

= 15000 N2 sin36.9° + n - 14,700 N

aFy = FT sinf + n + 1-w2

= 500 N
aFx = FT cosf + 1-ƒ2 = 15000 N2 cos36.9° - 3500 N

(a) (b) Free-body diagram for sled

f

6.7 Calculating the work done on a sled of firewood being
pulled by a tractor.

Test Your Understanding of Section 6.1 An electron moves in a
straight line toward the east with a constant speed of It has electric,
magnetic, and gravitational forces acting on it. During a 1-m displacement, the
total work done on the electron is (i) positive; (ii) negative; (iii) zero; (iv) not enough
information given to decide. ❙

8 * 107 m>s.

The total work done on the sled by all forces is the algebraic
sum of the work done by the individual forces:

= 10 kJ

Wtot = Ww + Wn + WT + Wƒ = 0 + 0 + 80 kJ + 1-70 kJ2

Wtot

PhET: The Ramp
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from point to Using a constant-acceleration equation, Eq. (2.13), and
replacing by by and by s, we have

When we multiply this equation by m and equate to the net force F, we find

and

(6.4)

The product Fs is the work done by the net force F and thus is equal to the total
work done by all the forces acting on the particle. The quantity is
called the kinetic energy K of the particle:

(definition of kinetic energy) (6.5)

Like work, the kinetic energy of a particle is a scalar quantity; it depends on only
the particle’s mass and speed, not its direction of motion (Fig. 6.10). A car
(viewed as a particle) has the same kinetic energy when going north at 10 m s as
when going east at 10 m s. Kinetic energy can never be negative, and it is zero
only when the particle is at rest.

We can now interpret Eq. (6.4) in terms of work and kinetic energy. The first
term on the right side of Eq. (6.4) is , the final kinetic energy of the
particle (that is, after the displacement). The second term is the initial kinetic
energy, , and the difference between these terms is the change in
kinetic energy. So Eq. (6.4) says:

The work done by the net force on a particle equals the change in the particle’s
kinetic energy:

(work–energy theorem) (6.6)

This result is the work–energy theorem.

Wtot = K2 - K1 = ¢K

K1 = 1
2 mv1

2

K2 = 1
2 mv2

2

>
>

K = 1
2 mv2

1
2 mv2Wtot

 Fs = 1
2 mv2

2 - 1
2 mv1

2

 F = max = m 

v2
2 - v1

2

2s

max

 ax =
v2

2 - v1
2

2s

 v2
2 = v1

2 + 2axs

1x - x02v2,v1, vxv0x

x2 .x1

If you push to the right
on the moving block,
the net force on the
block is to the right.

A block slides to the right on a frictionless surface.

• The total work done on the block during
  a displacement s is positive: Wtot � 0.
• The block speeds up.

• The total work done on the block during
  a displacement s is negative: Wtot , 0.
• The block slows down.

• The total work done on the block during
  a displacement s is zero: Wtot 5 0.
• The block’s speed stays the same.

If you push to the left
on the moving block,
the net force on the
block is to the left.

If you push straight
down on the moving
block, the net force
on the block is zero.

F

s
n

w

v

n

F

w

n

F
w

vv

S
s
S

s
S

SSS

(a) (b) (c)

6.8 The relationship between the total work done on a body and how the body’s speed changes.

Net force F
S

S

Speed v1

x1 x2

Speed v2

m m

s

x

6.9 A constant net force does work on
a moving body.

F
S

m

m
vS

vS

Same mass, same speed, different directions
of motion: same kinetic energy

m 2m
vS vS

Twice the mass, same speed:
twice the kinetic energy

m m
vS 2vS

Same mass, twice the speed:
four times the kinetic energy

6.10 Comparing the kinetic energy
of different bodies.K = 1

2 mv2



The work–energy theorem agrees with our observations about the block in
Fig. 6.8. When is positive, the kinetic energy increases (the final kinetic
energy is greater than the initial kinetic energy ) and the particle is going
faster at the end of the displacement than at the beginning. When is
negative, the kinetic energy decreases is less than and the speed is less
after the displacement. When the kinetic energy stays the same

and the speed is unchanged. Note that the work–energy theorem by
itself tells us only about changes in speed, not velocity, since the kinetic energy
doesn’t depend on the direction of motion.

From Eq. (6.4) or Eq. (6.6), kinetic energy and work must have the same units.
Hence the joule is the SI unit of both work and kinetic energy (and, as we will see
later, of all kinds of energy). To verify this, note that in SI units the quantity

has units or we recall that so

In the British system the unit of kinetic energy and of work is

Because we used Newton’s laws in deriving the work–energy theorem, we can
use this theorem only in an inertial frame of reference. Note also that the
work–energy theorem is valid in any inertial frame, but the values of and

may differ from one inertial frame to another (because the displacement
and speed of a body may be different in different frames).

We’ve derived the work–energy theorem for the special case of straight-
line motion with constant forces, and in the following examples we’ll apply it
to this special case only. We’ll find in the next section that the theorem is valid
in general, even when the forces are not constant and the particle’s trajectory
is curved.

K2 - K1

Wtot

1 ft # lb = 1 ft # slug # ft>s2 = 1 slug # ft2>s2

1 J = 1 N # m = 1 1kg # m>s22 # m = 1 kg # m2>s2

1 N = 1 kg # m>s2,kg # m2>s2;kg # 1m>s22K = 1
2 mv2

1K1 = K22
Wtot = 0,

K121K2

Wtot

K1K2

Wtot
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Problem-Solving Strategy 6.1 Work and Kinetic Energy

IDENTIFY the relevant concepts: The work–energy theorem,
is extremely useful when you want to relate a

body’s speed at one point in its motion to its speed at a
different point. (It’s less useful for problems that involve the time
it takes a body to go from point 1 to point 2 because the
work–energy theorem doesn’t involve time at all. For such prob-
lems it’s usually best to use the relationships among time, position,
velocity, and acceleration described in Chapters 2 and 3.)

SET UP the problem using the following steps:
1. Identify the initial and final positions of the body, and draw a

free-body diagram showing all the forces that act on the body.
2. Choose a coordinate system. (If the motion is along a straight

line, it’s usually easiest to have both the initial and final posi-
tions lie along one of the axes.)

3. List the unknown and known quantities, and decide which
unknowns are your target variables. The target variable may be
the body’s initial or final speed, the magnitude of one of the
forces acting on the body, or the body’s displacement.

EXECUTE the solution: Calculate the work W done by each force. If
the force is constant and the displacement is a straight line, you can
use Eq. (6.2) or Eq. (6.3). (Later in this chapter we’ll see how to
handle varying forces and curved trajectories.) Be sure to check
signs; W must be positive if the force has a component in the

v2v1

Wtot = K2 - K1,
direction of the displacement, negative if the force has a compo-
nent opposite to the displacement, and zero if the force and dis-
placement are perpendicular.

Add the amounts of work done by each force to find the total
work Sometimes it’s easier to calculate the vector sum of the
forces (the net force) and then find the work done by the net force;
this value is also equal to 

Write expressions for the initial and final kinetic energies, 
and Note that kinetic energy involves mass, not weight; if you
are given the body’s weight, use to find the mass.

Finally, use Eq. (6.6), , and Eq. (6.5),Wtot = K2 - K1

w = mg
K2 .

K1

Wtot .

Wtot .

to solve for the target variable. Remember that the
right-hand side of Eq. (6.6) represents the change of the body’s
kinetic energy between points 1 and 2; that is, it is the final kinetic
energy minus the initial kinetic energy, never the other way
around. (If you can predict the sign of , you can predict
whether the body speeds up or slows down.)

EVALUATE your answer: Check whether your answer makes
sense. Remember that kinetic energy can never be neg-
ative. If you come up with a negative value of K, perhaps you inter-
changed the initial and final kinetic energies in or
made a sign error in one of the work calculations.

Wtot = K2 - K1

K = 1
2 mv2

Wtot

K = 1
2 
mv2,
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Example 6.3 Using work and energy to calculate speed

Let’s look again at the sled in Fig. 6.7 and our results from
Example 6.2. Suppose the sled’s initial speed is 2.0 m/s. What is
the speed of the sled after it moves 20 m?

SOLUTION

IDENTIFY and SET UP: We’ll use the work–energy theorem, 
Eq. (6.6), since we are given the initial speed

and want to find the final speed . Figure 6.11
shows our sketch of the situation. The motion is in the positive
x-direction. In Example 6.2 we calculated the total work done by
all the forces: Hence the kinetic energy of the sled
and its load must increase by 10 kJ, and the speed of the sled must
also increase.

EXECUTE: To write expressions for the initial and final kinetic
energies, we need the mass of the sled and load. The combined
weight is 14,700 N, so the mass is

Then the initial kinetic energy is

= 3000 J

K1 = 1
2 mv 2

1 = 1
211500 kg212.0 m>s22 = 3000 kg # m2>s2

K1

m =
w

g
=

14,700 N

9.8 m>s2
= 1500 kg

Wtot = 10 kJ.

v2v1 = 2.0 m>s
K2 - K1,Wtot =

v1

The final kinetic energy is

The work–energy theorem, Eq. (6.6), gives

Setting these two expressions for equal, substituting 
and solving for the final speed we find

EVALUATE: The total work is positive, so the kinetic energy
increases and the speed increases 

This problem can also be solved without the work–energy theo-
rem. We can find the acceleration from and then use the
equations of motion for constant acceleration to find Since the
acceleration is along the x-axis,

Then, using Eq. (2.13),

This is the same result we obtained with the work–energy
approach, but there we avoided the intermediate step of finding the
acceleration. You will find several other examples in this chapter
and the next that can be done without using energy considerations
but that are easier when energy methods are used. When a problem
can be done by two methods, doing it by both methods (as we did
here) is a good way to check your work.

v2 = 4.2 m>s

= 17.3 m2>s2

v 2
2 = v 2

1 + 2as = 12.0 m>s22 + 210.333 m>s22120 m2

a = ax = aFx

m
=

500 N

1500 kg
= 0.333 m>s2

v2 .
gF

S
� maS

1v2 7 v12 .1K2 7 K12

v2 = 4.2 m>s

v2,1 kg # m2>s2,
1 J =K2

K2 = K1 + Wtot = 3000 J + 10,000 J = 13,000 J

K2 = 1
2 mv 2

2 = 1
2 11500 kg2v 2

2

K2

6.11 Our sketch for this problem.

Example 6.4 Forces on a hammerhead

The 200-kg steel hammerhead of a pile driver is lifted 3.00 m
above the top of a vertical I-beam being driven into the ground
(Fig. 6.12a). The hammerhead is then dropped, driving the 
I-beam 7.4 cm deeper into the ground. The vertical guide rails
exert a constant 60-N friction force on the hammerhead. Use the
work–energy theorem to find (a) the speed of the hammerhead
just as it hits the I-beam and (b) the average force the hammer-
head exerts on the I-beam. Ignore the effects of the air.

SOLUTION

IDENTIFY: We’ll use the work–energy theorem to relate the ham-
merhead’s speed at different locations and the forces acting on it.
There are three locations of interest: point 1, where the hammer-
head starts from rest; point 2, where it first contacts the I-beam;
and point 3, where the hammerhead and I-beam come to a halt
(Fig. 6.12a). The two target variables are the hammerhead’s speed
at point 2 and the average force the hammerhead exerts between
points 2 and 3. Hence we’ll apply the work–energy theorem

twice: once for the motion from 1 to 2, and once for the motion
from 2 to 3.

SET UP: Figure 6.12b shows the vertical forces on the hammerhead
as it falls from point 1 to point 2. (We can ignore any horizontal
forces that may be present because they do no work as the ham-
merhead moves vertically.) For this part of the motion, our target
variable is the hammerhead’s final speed 

Figure 6.12c shows the vertical forces on the hammerhead dur-
ing the motion from point 2 to point 3. In addition to the forces
shown in Fig. 6.12b, the I-beam exerts an upward normal force of
magnitude n on the hammerhead. This force actually varies as the
hammerhead comes to a halt, but for simplicity we’ll treat n as a
constant. Hence n represents the average value of this upward
force during the motion. Our target variable for this part of the
motion is the force that the hammerhead exerts on the I-beam; it is
the reaction force to the normal force exerted by the I-beam, so by
Newton’s third law its magnitude is also n.

v2 .



The Meaning of Kinetic Energy
Example 6.4 gives insight into the physical meaning of kinetic energy. The ham-
merhead is dropped from rest, and its kinetic energy when it hits the I-beam
equals the total work done on it up to that point by the net force. This result is
true in general: To accelerate a particle of mass m from rest (zero kinetic energy)
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EXECUTE: (a) From point 1 to point 2, the vertical forces are 
the downward weight 
and the upward friction force Thus the net downward
force is The displacement of the hammerhead
from point 1 to point 2 is downward and equal to
The total work done on the hammerhead between point 1 and point 2
is then

At point 1 the hammerhead is at rest, so its initial kinetic energy 
is zero. Hence the kinetic energy at point 2 equals the total
work done on the hammerhead between points 1 and 2:

This is the hammerhead’s speed at point 2, just as it hits the 
I-beam.

(b) As the hammerhead moves downward from point 2 to point
3, its displacement is � 7.4 cm � 0.074 m and the net down-
ward force acting on it is (Fig. 6.12c). The total work
done on the hammerhead during this displacement is

Wtot = 1w - f - n2s23

w - ƒ - n
s23

v2 =
B

2Wtot

m
=
C

215700 J2

200 kg
= 7.55 m>s

Wtot = K2 - K1 = K2 - 0 = 1
2 mv 2

2 - 0

K2

K1

Wtot = 1w - ƒ2s12 = 11900 N213.00 m2 = 5700 J

s12 = 3.00 m.
w - ƒ = 1900 N.

ƒ = 60 N.
w = mg = 1200 kg219.8 m>s22 = 1960 N

The initial kinetic energy for this part of the motion is which
from part (a) equals 5700 J. The final kinetic energy is (the
hammerhead ends at rest). From the work–energy theorem,

The downward force that the hammerhead exerts on the I-beam
has this same magnitude, 79,000 N (about 9 tons)—more than 40
times the weight of the hammerhead.

EVALUATE: The net change in the hammerhead’s kinetic energy
from point 1 to point 3 is zero; a relatively small net force does
positive work over a large distance, and then a much larger net
force does negative work over a much smaller distance. The
same thing happens if you speed up your car gradually and then
drive it into a brick wall. The very large force needed to reduce
the kinetic energy to zero over a short distance is what does the
damage to your car—and possibly to you.

= 1960 N - 60 N -
0 J - 5700 J

0.074 m
= 79,000 N

n = w - ƒ -
K3 - K2

s23

Wtot = 1w - ƒ - n2s23 = K3 - K2

K3 = 0
K2,

6.12 (a) A pile driver pounds an I-beam into the ground. (b), (c) Free-body diagrams. Vector lengths are not to scale.

(a)

3.00 m

Point 1

Point 2

Point 3
7.4 cm

(b) Free-body diagram
for falling hammerhead

(c) Free-body diagram for hammerhead
when pushing I-beam

y

x

v

f 5 60 N

w 5 mg

y

x

w 5 mg

n

f 5 60 N
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up to a speed , the total work done on it must equal the change in kinetic energy
from zero to 

So the kinetic energy of a particle is equal to the total work that was done to
accelerate it from rest to its present speed (Fig. 6.13). The definition 
Eq. (6.5), wasn’t chosen at random; it’s the only definition that agrees with this
interpretation of kinetic energy.

In the second part of Example 6.4 the kinetic energy of the hammerhead did
work on the I-beam and drove it into the ground. This gives us another inter-
pretation of kinetic energy: The kinetic energy of a particle is equal to the
total work that particle can do in the process of being brought to rest. This is
why you pull your hand and arm backward when you catch a ball. As the ball
comes to rest, it does an amount of work (force times distance) on your hand
equal to the ball’s initial kinetic energy. By pulling your hand back, you maxi-
mize the distance over which the force acts and so minimize the force on your
hand.

K = 1
2 mv2,

Wtot = K - 0 = K

K = 1
2 mv2:

6.13 When a billiards player hits a cue
ball at rest, the ball’s kinetic energy after
being hit is equal to the work that was
done on it by the cue. The greater the force
exerted by the cue and the greater the
distance the ball moves while in contact
with it, the greater the ball’s kinetic energy.

Conceptual Example 6.5 Comparing kinetic energies

Two iceboats like the one in Example 5.6 (Section 5.2) hold a race
on a frictionless horizontal lake (Fig. 6.14). The two iceboats have
masses m and 2m. The iceboats have identical sails, so the wind
exerts the same constant force on each iceboat. They start from
rest and cross the finish line a distance s away. Which iceboat
crosses the finish line with greater kinetic energy?

SOLUTION

If you use the definition of kinetic energy, Eq. (6.5),
the answer to this problem isn’t obvious. The iceboat of mass 2m
has greater mass, so you might guess that it has greater kinetic
energy at the finish line. But the lighter iceboat, of mass m, has
greater acceleration and crosses the finish line with a greater speed,
so you might guess that this iceboat has the greater kinetic energy.
How can we decide?

The key is to remember that the kinetic energy of a particle is
equal to the total work done to accelerate it from rest. Both ice-
boats travel the same distance s from rest, and only the horizontal
force F in the direction of motion does work on either iceboat.
Hence the total work done between the starting line and the finish
line is the same for each iceboat, At the finish line, each
iceboat has a kinetic energy equal to the work done on it,
because each iceboat started from rest. So both iceboats have the
same kinetic energy at the finish line!

Wtot

Wtot = Fs .

K = 1
2 mv2,

F
S

You might think this is a “trick” question, but it isn’t. If you
really understand the meanings of quantities such as kinetic energy,
you can solve problems more easily and with better insight.

Notice that we didn’t need to know anything about how much
time each iceboat took to reach the finish line. This is because the
work–energy theorem makes no direct reference to time, only to
displacement. In fact the iceboat of mass m has greater accelera-
tion and so takes less time to reach the finish line than does the ice-
boat of mass 2m.

2m

m

F

sStart Finish

F

6.14 A race between iceboats.

Work and Kinetic Energy in Composite Systems
In this section we’ve been careful to apply the work–energy theorem only to
bodies that we can represent as particles—that is, as moving point masses. New
subtleties appear for more complex systems that have to be represented as many
particles with different motions. We can’t go into these subtleties in detail in this
chapter, but here’s an example.



Suppose a boy stands on frictionless roller skates on a level surface, facing a
rigid wall (Fig. 6.15). He pushes against the wall, which makes him move to the
right. The forces acting on him are his weight the upward normal forces 
and exerted by the ground on his skates, and the horizontal force exerted
on him by the wall. There is no vertical displacement, so and do no
work. Force accelerates him to the right, but the parts of his body where that
force is applied (the boy’s hands) do not move while the force acts. Thus the
force also does no work. Where, then, does the boy’s kinetic energy come
from?

The explanation is that it’s not adequate to represent the boy as a single point
mass. Different parts of the boy’s body have different motions; his hands remain
stationary against the wall while his torso is moving away from the wall. The var-
ious parts of his body interact with each other, and one part can exert forces and
do work on another part. Therefore the total kinetic energy of this composite sys-
tem of body parts can change, even though no work is done by forces applied by
bodies (such as the wall) that are outside the system. In Chapter 8 we’ll consider
further the motion of a collection of particles that interact with each other. We’ll
discover that just as for the boy in this example, the total kinetic energy of such a
system can change even when no work is done on any part of the system by any-
thing outside it.

F
S

F
S

nS2wS, nS1,
F
S

nS2

nS1wS,
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6.15 The external forces acting on a
skater pushing off a wall. The work done
by these forces is zero, but the skater’s
kinetic energy changes nonetheless.

Test Your Understanding of Section 6.2 Rank the following bodies
in order of their kinetic energy, from least to greatest. (i) a 2.0-kg body moving at
5.0 m s; (ii) a 1.0-kg body that initially was at rest and then had 30 J of work
done on it; (iii) a 1.0-kg body that initially was moving at 4.0 m s and then had 20 J of
work done on it; (iv) a 2.0-kg body that initially was moving at 10 m s and then did 80 J
of work on another body. ❙

>
>

>

6.3 Work and Energy with Varying Forces
So far in this chapter we’ve considered work done by constant forces only. But
what happens when you stretch a spring? The more you stretch it, the harder you
have to pull, so the force you exert is not constant as the spring is stretched.
We’ve also restricted our discussion to straight-line motion. There are many situ-
ations in which a body moves along a curved path and is acted on by a force that
varies in magnitude, direction, or both. We need to be able to compute the work
done by the force in these more general cases. Fortunately, we’ll find that the
work–energy theorem holds true even when varying forces are considered and
when the body’s path is not straight.

Work Done by a Varying Force, Straight-Line Motion
To add only one complication at a time, let’s consider straight-line motion along
the x-axis with a force whose x-component may change as the body moves.
(A real-life example is driving a car along a straight road with stop signs, so the
driver has to alternately step on the gas and apply the brakes.) Suppose a particle
moves along the x-axis from point to (Fig. 6.16a). Figure 6.16b is a graph
of the x-component of force as a function of the particle’s coordinate x. To find
the work done by this force, we divide the total displacement into small segments

and so on (Fig. 6.16c). We approximate the work done by the force
during segment as the average x-component of force in that segment
multiplied by the x-displacement We do this for each segment and then add
the results for all the segments. The work done by the force in the total displace-
ment from to is approximately

W = Fax ¢xa + Fbx ¢xb + Á

x2x1

¢xa .
Fax¢xa

¢xa, ¢xb,

x2x1

Fx

x1 x2

F1x F2x

x

(b)

(c)

x

Fx

(a) Particle moving from x1 to x2 in response
to a changing force in the x-direction

Graph of force
as a function
of position

x

Fx

x1 x2
x2 2 x1

F1x

F2x

Fax

Fbx

Fcx

Fdx

Fex

Ffx
The height of each strip 
represents the average 
force for that 
interval.

x1 x2Δxa Δxc ΔxeΔxb Δxd Δxf

O

O

6.16 Calculating the work done by a
varying force in the x-direction as a
particle moves from to x2 .x1

Fx
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In the limit that the number of segments becomes very large and the width of
each becomes very small, this sum becomes the integral of from to 

(6.7)

Note that represents the area of the first vertical strip in Fig. 6.16c and
that the integral in Eq. (6.7) represents the area under the curve of Fig. 6.16b
between and On a graph of force as a function of position, the total work
done by the force is represented by the area under the curve between the initial
and final positions. An alternative interpretation of Eq. (6.7) is that the work W
equals the average force that acts over the entire displacement, multiplied by the
displacement.

In the special case that the x-component of the force, is constant, it may be
taken outside the integral in Eq. (6.7):

(constant force)

But the total displacement of the particle. So in the case of a con-
stant force F, Eq. (6.7) says that in agreement with Eq. (6.1). The inter-
pretation of work as the area under the curve of as a function of x also holds
for a constant force; is the area of a rectangle of height F and width s
(Fig. 6.17).

Now let’s apply these ideas to the stretched spring. To keep a spring
stretched beyond its unstretched length by an amount x, we have to apply a
force of equal magnitude at each end (Fig. 6.18). If the elongation x is not too
great, the force we apply to the right-hand end has an x-component directly
proportional to x:

(force required to stretch a spring) (6.8)

where k is a constant called the force constant (or spring constant) of the spring.
The units of k are force divided by distance: N m in SI units and lb ft in British
units. A floppy toy spring such as a Slinky™ has a force constant of about 1 N m;
for the much stiffer springs in an automobile’s suspension, k is about 
The observation that force is directly proportional to elongation for elongations
that are not too great was made by Robert Hooke in 1678 and is known as
Hooke’s law. It really shouldn’t be called a “law,” since it’s a statement about a
specific device and not a fundamental law of nature. Real springs don’t always
obey Eq. (6.8) precisely, but it’s still a useful idealized model. We’ll discuss
Hooke’s law more fully in Chapter 11.

To stretch a spring, we must do work. We apply equal and opposite forces to
the ends of the spring and gradually increase the forces. We hold the left end sta-
tionary, so the force we apply at this end does no work. The force at the moving
end does do work. Figure 6.19 is a graph of as a function of x, the elongation
of the spring. The work done by this force when the elongation goes from zero to
a maximum value X is

(6.9)

We can also obtain this result graphically. The area of the shaded triangle in Fig.
6.19, representing the total work done by the force, is equal to half the product of
the base and altitude, or

W = 1
21X21kX2 = 1

2 kX2

W = L
X

0
Fx dx = L

X

0
kx dx = 1

2 kX2

Fx

105 N>m.
>

>>

Fx = kx

W = Fs
Fx

W = Fs,
x2 - x1 = s,

W = L
x2

x1

Fx dx = FxL
x2

x1

dx = Fx1x2 - x12

Fx,

x2 .x1

Fax ¢xa

(varying x-component of force,
straight-line displacement)

W = L
x2

x1

Fx dx

x2:x1Fx

Fx

O
x

x1

s 5 x2 � x1

F

x2

The rectangular area under the
graph represents the work done by
the constant force of magnitude F
during displacement s:

W 5 Fs

6.17 The work done by a constant force
F in the x-direction as a particle moves
from to x2 .x1

x

2Fx

Fx 5 kx

6.18 The force needed to stretch an ideal
spring is proportional to the spring’s elon-
gation: Fx = kx.

The area under the graph represents the work
done on the spring as the spring is stretched
from x 5 0 to a maximum value X:

W 5 kX 21
2

Fx

O
x

kX

X

Fx 5 kx

6.19 Calculating the work done to
stretch a spring by a length X.

PhET: Molecular Motors
PhET: Stretching DNA



This equation also says that the work is the average force multiplied by the
total displacement X. We see that the total work is proportional to the square of
the final elongation X. To stretch an ideal spring by 2 cm, you must do four times
as much work as is needed to stretch it by 1 cm.

Equation (6.9) assumes that the spring was originally unstretched. If initially
the spring is already stretched a distance the work we must do to stretch it to a
greater elongation (Fig. 6.20a) is

(6.10)

You should use your knowledge of geometry to convince yourself that the trape-
zoidal area under the graph in Fig. 6.20b is given by the expression in Eq. (6.10).

If the spring has spaces between the coils when it is unstretched, then it can
also be compressed, and Hooke’s law holds for compression as well as stretch-
ing. In this case the force and displacement are in the opposite directions from
those shown in Fig. 6.18, and so and x in Eq. (6.8) are both negative. Since
both and x are reversed, the force again is in the same direction as the dis-
placement, and the work done by is again positive. So the total work is still
given by Eq. (6.9) or (6.10), even when X is negative or either or both of and

are negative.

CAUTION Work done on a spring vs. work done by a spring Note that Eq. (6.10)
gives the work that you must do on a spring to change its length. For example, if you
stretch a spring that’s originally relaxed, then and The force you
apply to one end of the spring is in the same direction as the displacement, and the work
you do is positive. By contrast, the work that the spring does on whatever it’s attached to
is given by the negative of Eq. (6.10). Thus, as you pull on the spring, the spring does
negative work on you. Paying careful attention to the sign of work will eliminate confusion
later on! ❙

W 7 0:x1 = 0, x2 7 0,

x2

x1

Fx

Fx

Fx

W = L
x2

x1

Fx dx = L
x2

x1

kx dx = 1
2 kx2

2 - 1
2 kx1

2

x2

x1,

kX>2
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Example 6.6 Work done on a spring scale

A woman weighing 600 N steps on a bathroom scale that contains
a stiff spring (Fig. 6.21). In equilibrium, the spring is compressed
1.0 cm under her weight. Find the force constant of the spring and
the total work done on it during the compression.

SOLUTION

IDENTIFY and SET UP: In equilibrium the upward force exerted by
the spring balances the downward force of the woman’s weight.
We’ll use this principle and Eq. (6.8) to determine the force con-
stant k, and we’ll use Eq. (6.10) to calculate the work W that the

woman does on the spring to compress it. We take positive values
of x to correspond to elongation (upward in Fig. 6.21), so that the
displacement of the end of the spring (x) and the x-component of
the force that the woman exerts on it are both negative. The
applied force and the displacement are in the same direction, so the
work done on the spring will be positive.

EXECUTE: The top of the spring is displaced by 
and the woman exerts a force on the

spring. From Eq. (6.8) the force constant is then

Then, using and in Eq. (6.10), we have

EVALUATE: The work done is positive, as expected. Our arbitrary
choice of the positive direction has no effect on the answer for W.
You can test this by taking the positive x-direction to be down-
ward, corresponding to compression. Do you get the same values
for k and W as we found here?

= 1
2 16.0 * 104 N>m21-0.010 m22 - 0 = 3.0 J

W = 1
2 kx 2

2 - 1
2 kx 2

1

x2 = -0.010 mx1 = 0

k =
Fx

x
=

-600 N

-0.010 m
= 6.0 * 104 N>m

Fx = -600 N-0.010 m,
x = -1.0 cm =

1Fx2

Because of our choice of axis, both the
force component and displacement are
negative. The work on the spring is positive.

21.0 cm

1x

Fx , 0

6.21 Compressing a spring in a bathroom scale.

6.20 Calculating the work done to
stretch a spring from one extension to a
greater one.

The trapezoidal area under the graph represents
the work done on the spring to stretch it from
x 5 x1 to x 5 x2: W 5 kx2

2 2 kx1
21

2
1
2

x

x

x 5 0 x 5 x1 x 5 x2

x 5 0 x 5 x1 x 5 x2

kx1

kx2

(a) Stretching a spring from elongation x1
to elongation x2

(b) Force-versus-distance graph

Fx
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Work–Energy Theorem for Straight-Line Motion, 
Varying Forces
In Section 6.2 we derived the work–energy theorem, for the spe-
cial case of straight-line motion with a constant net force. We can now prove that
this theorem is true even when the force varies with position. As in Section 6.2,
let’s consider a particle that undergoes a displacement x while being acted on by a
net force with x-component which we now allow to vary. Just as in Fig. 6.16,
we divide the total displacement x into a large number of small segments We
can apply the work–energy theorem, Eq. (6.6), to each segment because the value
of in each small segment is approximately constant. The change in kinetic
energy in segment is equal to the work and so on. The total change
of kinetic energy is the sum of the changes in the individual segments, and thus is
equal to the total work done on the particle during the entire displacement. So

holds for varying forces as well as for constant ones.
Here’s an alternative derivation of the work–energy theorem for a force that

may vary with position. It involves making a change of variable from x to in
the work integral. As a preliminary, we note that the acceleration a of the particle
can be expressed in various ways, using and the chain
rule for derivatives:

(6.11)

From this result, Eq. (6.7) tells us that the total work done by the net force is

(6.12)

Now is the change in velocity during the displacement dx, so in
Eq. (6.12) we can substitute for This changes the integration
variable from x to so we change the limits from and to the correspon-
ding x-velocities and at these points. This gives us

The integral of is just Substituting the upper and lower limits, we
finally find

(6.13)

This is the same as Eq. (6.6), so the work–energy theorem is valid even without
the assumption that the net force is constant.

Wtot = 1
2 mv2

2 - 1
2 mv1

2

vx
2>2.vx dvx

Wtot = L
v2

v1

mvx dvx

v2v1

x2x1vx,
1dvx>dx2dx.dvx

dvx1dvx>dx2dx

Wtot = L
x2

x1

Fx dx = L
x2

x1

max dx = L
x2

x1

mvx
dvx

dx
dx

Fx

ax =
dvx

dt
=

dvx

dx

dx

dt
= vx

dvx

dx

ax = dvx>dt, vx = dx>dt,

vx

Wtot = ¢K

Fax¢xa,¢xa

Fx

¢x.
Fx,

Wtot = K2 - K1,

Example 6.7 Motion with a varying force

An air-track glider of mass 0.100 kg is attached to the end of a 
horizontal air track by a spring with force constant 20.0 N m 
(Fig. 6.22a). Initially the spring is unstretched and the glider is
moving at 1.50 m s to the right. Find the maximum distance d that
the glider moves to the right (a) if the air track is turned on, so that
there is no friction, and (b) if the air is turned off, so that there is
kinetic friction with coefficient 

SOLUTION

IDENTIFY and SET UP: The force exerted by the spring is not
constant, so we cannot use the constant-acceleration formulas 
of Chapter 2 to solve this problem. Instead, we’ll use the

mk = 0.47.

>

>
work–energy theorem, since the total work done involves the dis-
tance moved (our target variable). In Figs. 6.22b and 6.22c we
choose the positive x-direction to be to the right (in the direction
of the glider’s motion). We take at the glider’s initial posi-
tion (where the spring is unstretched) and (the target vari-
able) at the position where the glider stops. The motion is purely
horizontal, so only the horizontal forces do work. Note that 
Eq. (6.10) gives the work done by the glider on the spring as it
stretches; to use the work–energy theorem we need the work done
by the spring on the glider, which is the negative of Eq. (6.10).
We expect the glider to move farther without friction than with
friction.

x = d
x = 0

Application Tendons Are Nonideal
Springs
Muscles exert forces via the tendons that
attach them to bones. A tendon consists of
long, stiff, elastic collagen fibers. The graph
shows how the tendon from the hind leg of 
a wallaby (a small kangaroo) stretches in
response to an applied force. The tendon does
not exhibit the simple, straight-line behavior of
an ideal spring, so the work it does has to be
found by integration [Eq. (6.7)]. Note that the
tendon exerts less force while relaxing than
while stretching. As a result, the relaxing ten-
don does only about 93% of the work that was
done to stretch it.

Tendon being stretched

Tendon relaxing

1000

500

O 1 2 3
Extension (mm)

Force exerted
by tendon (N)

Maximum tendon extension



Work–Energy Theorem for Motion Along a Curve
We can generalize our definition of work further to include a force that varies
in direction as well as magnitude, and a displacement that lies along a curved
path. Figure 6.23a shows a particle moving from P1 to P2 along a curve. We
divide the curve between these points into many infinitesimal vector displace-
ments, and we call a typical one of these Each is tangent to the path at
its position. Let be the force at a typical point along the path, and let be
the angle between and at this point. Then the small element of work dW
done on the particle during the displacement may be written as

where is the component of in the direction parallel to 
(Fig. 6.23b). The total work done by on the particle as it moves from to is
then

(6.14)
(work done on
a curved path)W = L

P2

P1

F cosf dl = L
P2

P1

FŒ dl = L
P2

P1

F
S # d l

S

P2P1F
S

d l
S

F
S

FŒ = Fcosf

dW = Fcosf dl = FŒ dl = F
S # d l

S

d l
S

d l
S

F
S

fF
S

d l
S

d l
S

.
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EXECUTE: (a) Equation (6.10) says that as the glider moves from
to it does an amount of work W =x2 = d,x1 = 0

no other vertical forces. Hence the kinetic friction force has con-
stant magnitude The friction force is directed
opposite to the displacement, so the work done by friction is

The total work is the sum of and the work done by the spring,
The work–energy theorem then says that

or

This is a quadratic equation for d. The solutions are

We have

so

The quantity d is a positive displacement, so only the positive
value of d makes sense. Thus with friction the glider moves a dis-
tance .

EVALUATE: Note that if we set , our algebraic solution for d
in part (b) reduces to , the zero-friction result from
part (a). With friction, the glider goes a shorter distance. Again the
glider stops instantaneously, and again the spring force pulls it
toward the left; whether it moves or not depends on how great the
static friction force is. How large would the coefficient of static
friction have to be to keep the glider from springing back to the
left?

ms

d = v11m>k
mk = 0

d = 0.086 m = 8.6 cm

= 0.086 m or -0.132 m

d = - 10.02303 m2 � 210.02303 m22 + 0.01125 m2

mv 2
1

k
=
10.100 kg211.50 m>s22

20.0 N>m
= 0.01125 m2

mkmg

k
=
10.47210.100 kg219.80 m>s22

20.0 N>m
= 0.02303 m

d = -
mkmg

k
�
C
a
mkmg

k
b

2

+
mv 2

1

k

1
2 kd2 + mkmgd - 1

2 mv 2
1 = 0

-mkmgd - 1
2 kd2 = 0 - 1

2 mv 2
1

-1
2 kd2 .

Wfric

Wfric = ƒkdcos180° = -ƒkd = -mkmgd

ƒk = mkn = mkmg .

on the spring. The amount of work that

the spring does on the glider is the negative of this, The
spring stretches until the glider comes instantaneously to rest, so
the final kinetic energy is zero. The initial kinetic energy isK2

- 1
2 kd2 .

1
2 kd2 - 1

2 k1022 = 1
2 kd2

where is the glider’s initial speed. From the
work–energy theorem,

We solve for the distance d the glider moves:

The stretched spring subsequently pulls the glider back to the left,
so the glider is at rest only instantaneously.

(b) If the air is turned off, we must include the work done by the
kinetic friction force. The normal force n is equal in magnitude to
the weight of the glider, since the track is horizontal and there are

= 0.106 m = 10.6 cm

d = v1A

m

k
= 11.50 m>s2

C

0.100 kg

20.0 N>m

- 1
2 kd2 = 0 - 1

2 mv1
2

v1 = 1.50 m>s1
2 mv 2

1 ,

(a)

k
m

v1

(b) No friction (c) With friction

6.22 (a) A glider attached to an air track by a spring. (b), (c)
Our free-body diagrams.
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We can now show that the work–energy theorem, Eq. (6.6), holds true even
with varying forces and a displacement along a curved path. The force is
essentially constant over any given infinitesimal segment of the path, so we
can apply the work–energy theorem for straight-line motion to that segment.
Thus the change in the particle’s kinetic energy K over that segment equals the
work done on the particle. Adding up these infinitesimal
quantities of work from all the segments along the whole path gives the total
work done, Eq. (6.14), which equals the total change in kinetic energy over the
whole path. So is true in general, no matter what the
path and no matter what the character of the forces. This can be proved more
rigorously by using steps like those in Eqs. (6.11) through (6.13).

Note that only the component of the net force parallel to the path, does
work on the particle, so only this component can change the speed and kinetic
energy of the particle. The component perpendicular to the path, 
has no effect on the particle’s speed; it acts only to change the particle’s direction.

The integral in Eq. (6.14) is called a line integral. To evaluate this integral in a
specific problem, we need some sort of detailed description of the path and of the
way in which varies along the path. We usually express the line integral in
terms of some scalar variable, as in the following example.

F
S

F� = F sinf,

FŒ,

Wtot = ¢K = K2 - K1

dW = FŒ dl = F
S # d l

S

d l
S

F
S

F

During an infinitesimal displacement dl,
the force F does work dW on the particle:

P1

P2

(a)

f

F
S

S

S

Only the component of F parallel to the
displacement, F 5 F cos f, contributes
to the work done by F.

S

S

dW 5 F # dl 5 F cos f dl
S S

dl
S

F 5 F cos f

(b)

P1

P2

f

F
S

dl
S

6.23 A particle moves along a curved
path from point to acted on by aP2,P1

Example 6.8 Motion on a curved path

At a family picnic you are appointed to push your obnoxious
cousin Throckmorton in a swing (Fig. 6.24a). His weight is w, the
length of the chains is R, and you push Throcky until the chains
make an angle with the vertical. To do this, you exert a varying
horizontal force that starts at zero and gradually increases just
enough that Throcky and the swing move very slowly and remain
very nearly in equilibrium throughout the process. What is the total
work done on Throcky by all forces? What is the work done by the
tension T in the chains? What is the work you do by exerting the
force (Neglect the weight of the chains and seat.)

SOLUTION

IDENTIFY and SET UP: The motion is along a curve, so we’ll use
Eq. (6.14) to calculate the work done by the net force, by the ten-
sion force, and by the force Figure 6.24b shows our free-body
diagram and coordinate system for some arbitrary point in
Throcky’s motion. We have replaced the sum of the tensions in the
two chains with a single tension T.

EXECUTE: There are two ways to find the total work done during
the motion: (1) by calculating the work done by each force and
then adding those quantities, and (2) by calculating the work done
by the net force. The second approach is far easier here because
Throcky is in equilibrium at every point. Hence the net force on
him is zero, the integral of the net force in Eq. (6.14) is zero, and
the total work done on him is zero.

It’s also easy to find the work done by the chain tension T
because this force is perpendicular to the direction of motion at all
points along the path. Hence at all points the angle between the
chain tension and the displacement vector is and the scalar
product in Eq. (6.14) is zero. Thus the chain tension does zero work.

90°d l
S

F
S

.

F
S

?

F
S

u0

To compute the work done by we need to know how this
force varies with the angle The net force on Throcky is zero, sou .

F
S

,

s

(a)

R

(b) Free-body diagram for
Throckmorton (neglecting the
weight of the chains and seat)

u

uF
S dl

S

6.24 (a) Pushing cousin Throckmorton in a swing. (b) Our
free-body diagram.

force that varies in magnitude and
direction.

F
S

and From Fig. 6.24b,

By eliminating T from these two equations, we obtain the magni-
tude .

The point where is applied moves through the arc s
(Fig. 6.24a). The arc length s equals the radius R of the circular
path multiplied by the length (in radians), so There-
fore the displacement corresponding to a small change ofd l

S
s = Ru .u

F
S

F = w tanu

aFy = Tcosu + 1-w2 = 0
aFx = F + 1-T sinu2 = 0

gFy = 0.gFx = 0



6.4 Power
The definition of work makes no reference to the passage of time. If you lift a
barbell weighing 100 N through a vertical distance of 1.0 m at constant velocity,
you do of work whether it takes you 1 second, 1 hour,
or 1 year to do it. But often we need to know how quickly work is done. We
describe this in terms of power. In ordinary conversation the word “power” is
often synonymous with “energy” or “force.” In physics we use a much more pre-
cise definition: Power is the time rate at which work is done. Like work and
energy, power is a scalar quantity.

When a quantity of work is done during a time interval the average
work done per unit time or average power is defined to be

(average power) (6.15)

The rate at which work is done might not be constant. We can define
instantaneous power P as the quotient in Eq. (6.15) as approaches zero:

(instantaneous power) (6.16)

The SI unit of power is the watt (W), named for the English inventor James
Watt. One watt equals 1 joule per second: (Fig. 6.25). The kilowatt1 W = 1 J>s

P = lim
¢tS0

¢W

¢t
=

dW

dt

¢t

Pav =
¢W

¢t

Pav

¢t,¢W

1100 N211.0 m2 = 100 J
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angle has a magnitude The work done by 
is then

Now we express F and ds in terms of the angle whose value
increases from 0 to 

EVALUATE: If there is no displacement; then 
and as we should expect. If then 
and In that case the work you do is the same as if you
had lifted Throcky straight up a distance R with a force equal to
his weight w. In fact (as you may wish to confirm), the quantity

is the increase in his height above the ground
during the displacement, so for any value of the work done byu0

R11 - cos u02

W = wR .
cos u0 = 0u0 = 90°,W = 0,
cos u0 = 1u0 = 0,

= wR11 - cosu02

W = L
u0

0
1w tan u2 cosu 1R du2 = wRL

u0

0
sinudu

u0:
u,

W = LF
S # d l

S
= LFcosu ds

F
S

dl = ds = R du .du Similarly, we can write the three 
forces as

We use Eq. (1.21) to calculate the scalar product of each of these
forces with :

Since the integral of this quantity is zero and the work
done by the chain tension is zero, just as we found above. Using

, we find the work done by the force of gravity is

Gravity does negative work because this force pulls down while
Throcky moves upward. Finally, the work done by the force is the
same integral that we calculated above.
The method of components is often the most convenient way to cal-
culate scalar products, so use it when it makes your life easier!

1F
S # d l

S
= 1Fcosuds

F
S

= -wR11 - cosu02
LwS # d l

S
= L1-w sinu2Rdu = -wRL

u0

0
sinudu

ds = R du

T
S # d l

S
= 0,

F
S # d l

S
= F1dscosu2 = Fcosuds

wS # d l
S

= 1-w21ds sinu2 = -w sinuds

T
S # d l

S
= 1-T sinu21ds cosu2 + 1Tcosu21ds sinu2 = 0

d l
S

F
S

� ınF

wS � ≥n1-w2

T
S

� ın1-T sinu2 � ≥nTcosu

ın dscosu � ≥n ds sinu .

Test Your Understanding of Section 6.3 In Example 5.20 (Section 5.4)
we examined a conical pendulum. The speed of the pendulum bob remains con-
stant as it travels around the circle shown in Fig. 5.32a. (a) Over one complete cir-
cle, how much work does the tension force F do on the bob? (i) a positive amount; 
(ii) a negative amount; (iii) zero. (b) Over one complete circle, how much work does the
weight do on the bob? (i) a positive amount; (ii) a negative amount; (iii) zero. ❙

t 5 5 s

t 5 0

t 5 0

Work you do on the box
to lift it in 5 s:

W 5 100 J

20 W

Your power output:

P 5 5 5
W
t

100 J
5 s

t 5 1 s

Work you do on the same
box to lift it the same
distance in 1 s:

W 5 100 J

100 W

Your power output:

P 5 5 5
W
t

100 J
1 s

6.25 The same amount of work is done
in both of these situations, but the power
(the rate at which work is done) is different.

the force is the change in height multiplied by the weight. This
is an example of a more general result that we’ll prove in
Section 7.1.

We can check our results by writing the forces and the infinites-
imal displacement in terms of their x- and y-components.
Figure 6.24a shows that has a magnitude of ds, an x-component
of and a y-component of Hence d l

S
�ds sin u .ds cos u,

d l
S

d l
S

F
S
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and the megawatt are also commonly used.
In the British system, work is expressed in foot-pounds, and the unit of power is
the foot-pound per second. A larger unit called the horsepower (hp) is also used
(Fig. 6.26):

That is, a 1-hp motor running at full load does of work every
minute. A useful conversion factor is

The watt is a familiar unit of electrical power; a 100-W light bulb converts
100 J of electrical energy into light and heat each second. But there’s nothing
inherently electrical about a watt. A light bulb could be rated in horsepower, and
an engine can be rated in kilowatts.

The kilowatt-hour is the usual commercial unit of electrical energy.
One kilowatt-hour is the total work done in 1 hour (3600 s) when the power is 
1 kilowatt so

The kilowatt-hour is a unit of work or energy, not power.
In mechanics we can also express power in terms of force and velocity. Sup-

pose that a force acts on a body while it undergoes a vector displacement 
If is the component of tangent to the path (parallel to ), then the work
done by the force is The average power is

(6.17)

Instantaneous power P is the limit of this expression as 

(6.18)

where is the magnitude of the instantaneous velocity. We can also express 
Eq. (6.18) in terms of the scalar product:

(instantaneous rate at which 
force does work on a particle) (6.19)F

SP = F
S # vS

v

P = FŒv

¢t S 0:

Pav =
FŒ¢s

¢t
= FŒ

¢s

¢t
= FŒvav

¢W = FŒ¢s.
¢ sSF

S
FŒ

¢ sS.F
S

1 kW # h = 1103 J>s213600 s2 = 3.6 * 106 J = 3.6 MJ

1103 J/s2,

1kW # h2

1 hp = 746 W = 0.746 kW

33,000 ft # lb

1 hp = 550 ft # lb>s = 33,000 ft # lb>min

11 MW = 106 W211 kW = 103 W26.26 The value of the horsepower
derives from experiments by James Watt,
who measured that a horse could do
33,000 foot-pounds of work per minute in
lifting coal from a coal pit.

Example 6.9 Force and power

Each of the four jet engines on an Airbus A380 airliner develops a
thrust (a forward force on the airliner) of 322,000 N 72,000 lb .
When the airplane is flying at 250 m s 900 km h, or roughly 
560 mi/h , what horsepower does each engine develop?

SOLUTION

IDENTIFY, SET UP and EXECUTE: Our target variable is the instan-
taneous power P, which is the rate at which the thrust does work.
We use Eq. (6.18). The thrust is in the direction of motion, so is
just equal to the thrust. At the power developed by
each engine is

EVALUATE: The speed of modern airliners is directly related to the
power of their engines (Fig. 6.27). The largest propeller-driven
airliners of the 1950s had engines that developed about 3400 hp

= 18.05 * 107 W2
1 hp

746 W
= 108,000 hp

P = FŒv = 13.22 * 105 N21250 m>s2 = 8.05 * 107 W

v = 250 m>s,
FŒ

2
>1>

21

giving them maximum speeds of about 600 km h
370 mi h . Each engine on an Airbus A380 develops more than

30 times more power, enabling it to fly at about 900 km h (560
mi h) and to carry a much heavier load.

If the engines are at maximum thrust while the airliner is at rest
on the ground so that the engines develop zero power.
Force and power are not the same thing!

v = 0,

>
>

2>1
>12.5 * 106 W2,

(a) (b)

6.27 (a) Propeller-driven and (b) jet airliners.
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Example 6.10 A “power climb”

A 50.0-kg marathon runner runs up the stairs to the top of
Chicago’s 443-m-tall Willis Tower, the tallest building in the
United States (Fig. 6.28). To lift herself to the top in 15.0 minutes,
what must be her average power output? Express your answer in
watts, in kilowatts, and in horsepower.

SOLUTION

IDENTIFY and SET UP: We’ll treat the runner as a particle of mass m.
Her average power output must be enough to lift her at constant
speed against gravity.

We can find in two ways: (1) by determining how much
work she must do and dividing that quantity by the elapsed time, as
in Eq. (6.15), or (2) by calculating the average upward force she
must exert (in the direction of the climb) and multiplying that
quantity by her upward velocity, as in Eq. (6.17).

EXECUTE: (1) As in Example 6.8, lifting a mass m against gravity
requires an amount of work equal to the weight mg multiplied by
the height h it is lifted. Hence the work the runner must do is

She does this work in a time so from Eq. (6.15)
the average power is

(2) The force exerted is vertical and the average vertical com-
ponent of velocity is so from 
Eq. (6.17) the average power is

1443 m2>1900 s2 = 0.492 m>s,

Pav =
2.17 * 105J

900 s
= 241 W = 0.241 kW = 0.323 hp

15.0 min = 900 s,

= 2.17 * 105 J

W = mgh = 150.0 kg219.80 m>s221443 m2

Pav

Pav

which is the same result as before.

EVALUATE: The runner’s total power output will be several times
greater than 241 W. The reason is that the runner isn’t really a par-
ticle but a collection of parts that exert forces on each other and do
work, such as the work done to inhale and exhale and to make her
arms and legs swing. What we’ve calculated is only the part of her
power output that lifts her to the top of the building.

= 150.0 kg219.80 m>s2210.492 m>s2 = 241 W

Pav = FŒvav = (mg)vav

6.28 How much power is required to run up the stairs of
Chicago’s Willis Tower in 15 minutes?

Test Your Understanding of Section 6.4 The air surrounding an air-
plane in flight exerts a drag force that acts opposite to the airplane’s motion. When
the Airbus A380 in Example 6.9 is flying in a straight line at a constant altitude at
a constant 250 m s, what is the rate at which the drag force does work on it? (i) 432,000
hp; (ii) 108,000 hp; (iii) 0; (iv) (v) ❙-432,000 hp.-108,000 hp;

>
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CHAPTER 6 SUMMARY

Kinetic energy: The kinetic energy K of a particle equals
the amount of work required to accelerate the particle
from rest to speed It is also equal to the amount of
work the particle can do in the process of being brought
to rest. Kinetic energy is a scalar that has no direction in
space; it is always positive or zero. Its units are the same
as the units of work: 1 J = 1 N # m = 1 kg # m2>s2.

v.

The work–energy theorem: When forces act on a parti-
cle while it undergoes a displacement, the particle’s
kinetic energy changes by an amount equal to the total
work done on the particle by all the forces. This rela-
tionship, called the work–energy theorem, is valid
whether the forces are constant or varying and whether
the particle moves along a straight or curved path. It is
applicable only to bodies that can be treated as particles.
(See Examples 6.3–6.5.)

(6.5)K = 1
2 mv2

(6.6)Wtot = K2 - K1 = ¢K

(6.7)

(6.14)

= L
P2

P1

F
S # d l

S

W = L
P2

P1

F cos f dl = L
P2

P1

FŒ dl

W = L
x2

x1

Fx dx

Work done by a force: When a constant force acts on
a particle that undergoes a straight-line displacement 
the work done by the force on the particle is defined to
be the scalar product of and The unit of work in 
SI units is 
Work is a scalar quantity; it can be positive or negative,
but it has no direction in space. (See Examples 6.1 
and 6.2.)

1 joule = 1 newton-meter 11 J = 1 N # m2.
sS.F

S

sS,
F
S

(6.2), (6.3)

f = angle between F
S

 and sS
W = F

S # sS = Fs cos f W 5 Fis
    5 (F cosf)s

F

f

F'

Fi 5 F cosf

S

m 2m
vS vS

Doubling m doubles K.

m m
vS 2vS

Doubling v quadruples K.

Work done by a varying force or on a curved path: When
a force varies during a straight-line displacement, the
work done by the force is given by an integral, Eq. (6.7).
(See Examples 6.6 and 6.7.) When a particle follows a
curved path, the work done on it by a force is given
by an integral that involves the angle between the
force and the displacement. This expression is valid
even if the force magnitude and the angle vary during
the displacement. (See Example 6.8.)

f

f

F
S

Wtot 5 Total work done on
particle along path

K2 5    mv2
2 5 K1 1 Wtot

1
2

K1 5    mv1
2

v2

v1

m

m

1
2

Area 5 Work done by
force during dis-
placement

x1

x
x2

Fx

O

t 5 5 s

t 5 0

Work you do on the
box to lift it in 5 s:

W 5 100 J
Your power output:

5 20 W

P 5  5 
W
t

100 J
5 s

Power: Power is the time rate of doing work. The aver-
age power is the amount of work done in time

divided by that time. The instantaneous power is the
limit of the average power as goes to zero. When a
force acts on a particle moving with velocity the
instantaneous power (the rate at which the force does
work) is the scalar product of and Like work and
kinetic energy, power is a scalar quantity. The SI unit of
power is (See
Examples 6.9 and 6.10.)

1 watt = 1 joule>second 11 W = 1 J>s2.

vS.F
S

vS,F
S

¢t
¢t

¢WPav

(6.16)

(6.19)P = F
S # vS

P = lim
¢tS0

¢W

¢t
=

dW

dt

(6.15)Pav =
¢W

¢t
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Consider a hanging spring of negligible mass that does not obey
Hooke’s law. When the spring is extended by a distance x, the
force exerted by the spring has magnitude , where is a pos-
itive constant. The spring is not extended when a block of mass
m is attached to it. The block is then released, stretching the
spring as it falls (Fig. 6.29). (a) How fast is the block moving
when it has fallen a distance x1? (b) At what rate does the spring
do work on the block at this point? (c) Find the maximum dis-
tance x2 that the spring stretches. (d) Will the block remain at the
point found in part (c)?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The spring force in this problem isn’t constant, so you have

to use the work–energy theorem. You’ll also need to use 
Eq. (6.7) to find the work done by the spring over a given
displacement.

2. Draw a free-body diagram for the block, including your choice
of coordinate axes. Note that x represents how far the spring is
stretched, so choose the positive x-axis accordingly. On your
coordinate axis, label the points x � x1 and x � x2.

3. Make a list of the unknown quantities, and decide which of
these are the target variables.

EXECUTE
4. Calculate the work done on the block by the spring as the block

falls an arbitrary distance x. (The integral isn’t a difficult one.
Use Appendix B if you need a reminder.) Is the work done by
the spring positive, negative, or zero?

aax2

6.29 The block is attached to a spring that does not obey
Hooke’s law.

BRIDGING PROBLEM A Spring That Disobeys Hooke’s Law

5. Calculate the work done on the block by any other forces as the
block falls an arbitrary distance x. Is this work positive, negative,
or zero?

6. Use the work–energy theorem to find the target variables.
(You’ll also need to use an equation for power.) Hint: When
the spring is at its maximum stretch, what is the speed of the
block?

7. To answer part (d), consider the net force that acts on the block
when it is at the point found in part (c).

EVALUATE
8. We learned in Chapter 2 that after an object dropped from rest

has fallen freely a distance x1, its speed is . Use this to
decide whether your answer in part (a) makes sense. In addi-
tion, ask yourself whether the algebraic sign of your answer in
part (b) makes sense.

9. Find the value of x where the net force on the block would be
zero. How does this compare to your result for x2? Is this con-
sistent with your answer in part (d)?

12gx1

m x

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q6.1 The sign of many physical quantities depends on the choice
of coordinates. For example, for free-fall motion can be nega-
tive or positive, depending on whether we choose upward or
downward as positive. Is the same thing true of work? In other
words, can we make positive work negative by a different choice
of coordinates? Explain.
Q6.2 An elevator is hoisted by its cables at constant speed. Is the
total work done on the elevator positive, negative, or zero? Explain.
Q6.3 A rope tied to a body is pulled, causing the body to acceler-
ate. But according to Newton’s third law, the body pulls back on
the rope with an equal and opposite force. Is the total work done
then zero? If so, how can the body’s kinetic energy change?
Explain.

ay

Q6.4 If it takes total work W to give an object a speed and
kinetic energy K, starting from rest, what will be the object’s speed
(in terms of ) and kinetic energy (in terms of K ) if we do twice as
much work on it, again starting from rest?
Q6.5 If there is a net nonzero force on a moving object, is it possi-
ble for the total work done on the object to be zero? Explain, with
an example that illustrates your answer.
Q6.6 In Example 5.5 (Section 5.1), how does the work done on the
bucket by the tension in the cable compare to the work done on the
cart by the tension in the cable?
Q6.7 In the conical pendulum in Example 5.20 (Section 5.4),
which of the forces do work on the bob while it is swinging?

v

v

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems. 

Q6.8 For the cases shown in Fig. Q6.8, the object is released
from rest at the top and feels no friction or air resistance. In

www.masteringphysics.com
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which (if any) cases will the mass have (i) the greatest speed at
the bottom and (ii) the most work done on it by the time it
reaches the bottom?
Q6.9 A force is in the x-direction and has a magnitude that
depends on x. Sketch a possible graph of F versus x such that the
force does zero work on an object that moves from to even
though the force magnitude is not zero at all x in this range.
Q6.10 Does the kinetic energy of a car change more when it
speeds up from 10 to or from 15 to Explain.
Q6.11 A falling brick has a mass of 1.5 kg and is moving straight
downward with a speed of A 1.5-kg physics book is slid-
ing across the floor with a speed of A 1.5-kg melon is
traveling with a horizontal velocity component to the right
and a vertical component upward. Do these objects all
have the same velocity? Do these objects all have the same kinetic
energy? For each question, give the reasoning behind your answer.
Q6.12 Can the total work done on an object during a displacement
be negative? Explain. If the total work is negative, can its magni-
tude be larger than the initial kinetic energy of the object? Explain.
Q6.13 A net force acts on an object and accelerates it from rest to a
speed In doing so, the force does an amount of work By
what factor must the work done on the object be increased to pro-
duce three times the final speed, with the object again starting from
rest?
Q6.14 A truck speeding down the highway has a lot of kinetic
energy relative to a stopped state trooper, but no kinetic energy rel-
ative to the truck driver. In these two frames of reference, is the
same amount of work required to stop the truck? Explain.
Q6.15 You are holding a briefcase by the handle, with your arm
straight down by your side. Does the force your hand exerts do
work on the briefcase when (a) you walk at a constant speed
down a horizontal hallway and (b) you ride an escalator from the
first to second floor of a building? In each case justify your
answer.
Q6.16 When a book slides along a tabletop, the force of friction
does negative work on it. Can friction ever do positive work?
Explain. (Hint: Think of a box in the back of an accelerating truck.)
Q6.17 Time yourself while running up a flight of steps, and com-
pute the average rate at which you do work against the force of
gravity. Express your answer in watts and in horsepower.
Q6.18 Fractured Physics. Many terms from physics are badly mis-
used in everyday language. In each case, explain the errors involved.
(a) A strong person is called powerful. What is wrong with this use
of power? (b) When a worker carries a bag of concrete along a level
construction site, people say he did a lot of work. Did he?
Q6.19 An advertisement for a portable electrical generating unit
claims that the unit’s diesel engine produces 28,000 hp to drive an
electrical generator that produces 30 MW of electrical power. Is
this possible? Explain.
Q6.20 A car speeds up while the engine delivers constant power. Is
the acceleration greater at the beginning of this process or at the
end? Explain.
Q6.21 Consider a graph of instantaneous power versus time, with the
vertical P-axis starting at What is the physical significance of
the area under the P-versus-t curve between vertical lines at andt1

P = 0.

W1.v1.

4.0 m>s
3.0 m>s

5.0 m>s.
5.0 m>s.

20 m>s?15 m>s

x2,x1

F
S

How could you find the average power from the graph? Draw a
P-versus-t curve that consists of two straight-line sections and for
which the peak power is equal to twice the average power.
Q6.22 A nonzero net force acts on an object. Is it possible for any
of the following quantities to be constant: (a) the particle’s speed;
(b) the particle’s velocity; (c) the particle’s kinetic energy?
Q6.23 When a certain force is applied to an ideal spring, the
spring stretches a distance x from its unstretched length and does
work W. If instead twice the force is applied, what distance (in
terms of x) does the spring stretch from its unstretched length,
and how much work (in terms of W ) is required to stretch it this
distance?
Q6.24 If work W is required to stretch a spring a distance x from
its unstretched length, what work (in terms of W ) is required to
stretch the spring an additional distance x?

EXERCISES
Section 6.1 Work
6.1 . You push your physics book 1.50 m along a horizontal table-
top with a horizontal push of 2.40 N while the opposing force of
friction is 0.600 N. How much work does each of the following
forces do on the book: (a) your 2.40-N push, (b) the friction force,
(c) the normal force from the tabletop, and (d) gravity? (e) What is
the net work done on the book?
6.2 . A tow truck pulls a car 5.00 km along a horizontal roadway
using a cable having a tension of 850 N. (a) How much work does
the cable do on the car if it pulls horizontally? If it pulls at 
above the horizontal? (b) How much work does the cable do on the
tow truck in both cases of part (a)? (c) How much work does grav-
ity do on the car in part (a)?
6.3 . A factory worker pushes a 30.0-kg crate a distance of 4.5 m
along a level floor at constant velocity by pushing horizontally on
it. The coefficient of kinetic friction between the crate and the floor
is 0.25. (a) What magnitude of force must the worker apply? 
(b) How much work is done on the crate by this force? (c) How
much work is done on the crate by friction? (d) How much work is
done on the crate by the normal force? By gravity? (e) What is the
total work done on the crate?
6.4 .. Suppose the worker in Exercise 6.3 pushes downward at an
angle of below the horizontal. (a) What magnitude of force
must the worker apply to move the crate at constant velocity? 
(b) How much work is done on the crate by this force when the
crate is pushed a distance of 4.5 m? (c) How much work is done on
the crate by friction during this displacement? (d) How much work
is done on the crate by the normal force? By gravity? (e) What is
the total work done on the crate?
6.5 .. A 75.0-kg painter climbs a ladder that is 2.75 m long lean-
ing against a vertical wall. The ladder makes a angle with the
wall. (a) How much work does gravity do on the painter? (b) Does
the answer to part (a) depend on whether the painter climbs at con-
stant speed or accelerates up the ladder?
6.6 .. Two tugboats pull a disabled supertanker. Each tug exerts a
constant force of one west of north and the
other east of north, as they pull the tanker 0.75 km toward the
north. What is the total work they do on the supertanker?
6.7 . Two blocks are connected by a very light string passing over
a massless and frictionless pulley (Fig. E6.7). Traveling at constant
speed, the 20.0-N block moves 75.0 cm to the right and the 12.0-N
block moves 75.0 cm downward. During this process, how much
work is done (a) on the 12.0-N block by (i) gravity and (ii) the
tension in the string? (b) On the 20.0-N block by (i) gravity, 

14°
14°1.80 * 106 N,

30.0°

30°

35.0°

t2?

m

h

(b) 2m

h

(c)m

h

(a)

Figure Q6.8



6.8 .. A loaded grocery cart is rolling across a parking lot in a strong
wind. You apply a constant force to the
cart as it undergoes a displacement 
How much work does the force you apply do on the grocery cart?

13.0 m2≥n.1-9.0 m2ın �sS �
F
S

� 130 N2ın � 140 N2≥n

(b) If you drop a 1.0-kg weight (about 2 lb) from a height of 1.0 m,
how many joules of kinetic energy will it have when it reaches the
ground? (c) Is it reasonable that a 30-kg child could run fast
enough to have 100 J of kinetic energy?
6.17 .. In Fig. E6.7 assume that there is no friction force on the
20.0-N block that sits on the tabletop. The pulley is light and fric-
tionless. (a) Calculate the tension T in the light string that connects
the blocks. (b) For a displacement in which the 12.0-N block
descends 1.20 m, calculate the total work done on (i) the 20.0-N
block and (ii) the 12.0-N block. (c) For the displacement in part
(b), calculate the total work done on the system of the two blocks.
How does your answer compare to the work done on the 12.0-N
block by gravity? (d) If the system is released from rest, what is the
speed of the 12.0-N block when it has descended 1.20 m?
6.18 . A 4.80-kg watermelon is dropped from rest from the roof
of a 25.0-m-tall building and feels no appreciable air resistance. 
(a) Calculate the work done by gravity on the watermelon during
its displacement from the roof to the ground. (b) Just before it
strikes the ground, what is the watermelon’s (i) kinetic energy and
(ii) speed? (c) Which of the answers in parts (a) and (b) would be
different if there were appreciable air resistance?
6.19 .. Use the work–energy theorem to solve each of these prob-
lems. You can use Newton’s laws to check your answers. Neglect
air resistance in all cases. (a) A branch falls from the top of a 
95.0-m-tall redwood tree, starting from rest. How fast is it moving
when it reaches the ground? (b) A volcano ejects a boulder directly
upward 525 m into the air. How fast was the boulder moving just
as it left the volcano? (c) A skier moving at encounters a
long, rough horizontal patch of snow having coefficient of kinetic
friction 0.220 with her skis. How far does she travel on this patch
before stopping? (d) Suppose the rough patch in part (c) was only
2.90 m long? How fast would the skier be moving when she
reached the end of the patch? (e) At the base of a frictionless icy
hill that rises at above the horizontal, a toboggan has a speed
of toward the hill. How high vertically above the base
will it go before stopping?
6.20 .. You throw a 20-N rock vertically into the air from ground
level. You observe that when it is 15.0 m above the ground, it is trav-
eling at upward. Use the work–energy theorem to find (a)
the rock’s speed just as it left the ground and (b) its maximum height.
6.21 .. You are a member of an Alpine Rescue Team. You must
project a box of supplies up an incline of constant slope angle so
that it reaches a stranded skier who is a vertical distance h above
the bottom of the incline. The incline is slippery, but there is some
friction present, with kinetic friction coefficient Use the
work–energy theorem to calculate the minimum speed you must
give the box at the bottom of the incline so that it will reach the
skier. Express your answer in terms of g, h, and 
6.22 .. A mass m slides down a smooth inclined plane from an ini-
tial vertical height h, making an angle with the horizontal. 
(a) The work done by a force is the sum of the work done by the
components of the force. Consider the components of gravity paral-
lel and perpendicular to the surface of the plane. Calculate the work
done on the mass by each of the components, and use these results
to show that the work done by gravity is exactly the same as if the
mass had fallen straight down through the air from a height h. (b)
Use the work–energy theorem to prove that the speed of the mass at
the bottom of the incline is the same as if it had been dropped from
height h, independent of the angle of the incline. Explain how this
speed can be independent of the slope angle. (c) Use the results of
part (b) to find the speed of a rock that slides down an icy friction-
less hill, starting from rest 15.0 m above the bottom.

a

a

a.mk,

mk.

a

25.0 m>s

12.0 m>s
25.0°

5.00 m>s
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20.0
N

12.0
N

Figure E6.7

6.9 . A 0.800-kg ball is tied to the end of a string 1.60 m long and
swung in a vertical circle. (a) During one complete circle, starting
anywhere, calculate the total work done on the ball by (i) the tension
in the string and (ii) gravity. (b) Repeat part (a) for motion along the
semicircle from the lowest to the highest point on the path.
6.10 .. An 8.00-kg package in a mail-sorting room slides 2.00 m
down a chute that is inclined at 53.0° below the horizontal. The
coefficient of kinetic friction between the package and the chute’s
surface is 0.40. Calculate the work done on the package by (a) fric-
tion, (b) gravity, and (c) the normal force. (d) What is the net work
done on the package?
6.11 .. A boxed 10.0-kg computer monitor is dragged by friction
5.50 m up along the moving surface of a conveyor belt inclined at
an angle of 36.9° above the horizontal. If the monitor’s speed is a
constant 2.10 cm s, how much work is done on the monitor by 
(a) friction, (b) gravity, and (c) the normal force of the conveyor belt?
6.12 .. You apply a constant force 
to a 380-kg car as the car travels 48.0 m in a direction that is 
counterclockwise from the �x-axis. How much work does the
force you apply do on the car?

Section 6.2 Kinetic Energy 
and the Work–Energy Theorem
6.13 .. Animal Energy. BIO Adult cheetahs, the fastest of the
great cats, have a mass of about 70 kg and have been clocked run-
ning at up to 72 mph . (a) How many joules of kinetic
energy does such a swift cheetah have? (b) By what factor would
its kinetic energy change if its speed were doubled?
6.14 .. A 1.50-kg book is sliding along a rough horizontal sur-
face. At point A it is moving at 3.21 m s, and at point B it has
slowed to 1.25 m s. (a) How much work was done on the book
between A and B? (b) If of work is done on the book
from B to C, how fast is it moving at point C? (c) How fast would
it be moving at C if of work were done on it from B to C?
6.15 . Meteor Crater. About 50,000 years ago, a meteor crashed
into the earth near present-day Flagstaff, Arizona. Measurements
from 2005 estimate that this meteor had a mass of about 
kg (around 150,000 tons) and hit the ground at a speed of 
(a) How much kinetic energy did this meteor deliver to the
ground? (b) How does this energy compare to the energy released
by a 1.0-megaton nuclear bomb? (A megaton bomb releases the
same amount of energy as a million tons of TNT, and 1.0 ton of
TNT releases J of energy.)
6.16 . Some Typical Kinetic Energies. (a) In the Bohr model of
the atom, the ground-state electron in hydrogen has an orbital speed
of What is its kinetic energy? (Consult Appendix F.)2190 km>s.

4.184 * 109

12 km>s.
1.4 * 108

+0.750 J

-0.750 J
>

>

132 m>s2

240.0°
F
S

� 1-68.0 N2ın � 136.0 N2≥n

>

(ii) the tension in the string, (iii) friction, and (iv) the normal
force? (c) Find the total work done on each block.
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6.32 .. To stretch a spring 3.00 cm from its unstretched length,
12.0 J of work must be done. (a) What is the force constant of
this spring? (b) What magnitude force is needed to stretch the
spring 3.00 cm from its unstretched length? (c) How much work
must be done to compress this spring 4.00 cm from its
unstretched length, and what force is needed to compress it this
distance?
6.33 . Three identical 6.40-kg masses are hung
by three identical springs, as shown in Fig. E6.33.
Each spring has a force constant of 
and was 12.0 cm long before any masses were
attached to it. (a) Draw a free-body diagram of
each mass. (b) How long is each spring when
hanging as shown? (Hint: First isolate only the
bottom mass. Then treat the bottom two masses
as a system. Finally, treat all three masses as a
system.)

7.80 kN>m

6.23 . A sled with mass 8.00 kg moves in a straight line on a fric-
tionless horizontal surface. At one point in its path, its speed is

after it has traveled 2.50 m beyond this point, its speed
is Use the work–energy theorem to find the force acting
on the sled, assuming that this force is constant and that it acts in
the direction of the sled’s motion.
6.24 .. A soccer ball with mass 0.420 kg is initially moving with
speed A soccer player kicks the ball, exerting a constant
force of magnitude 40.0 N in the same direction as the ball’s
motion. Over what distance must the player’s foot be in contact
with the ball to increase the ball’s speed to 
6.25 . A 12-pack of Omni-Cola (mass 4.30 kg) is initially at rest on
a horizontal floor. It is then pushed in a straight line for 1.20 m by a
trained dog that exerts a horizontal force with magnitude 36.0 N.
Use the work–energy theorem to find the final speed of the 
12-pack if (a) there is no friction between the 12-pack and the
floor, and (b) the coefficient of kinetic friction between the 12-pack
and the floor is 0.30.
6.26 . A batter hits a baseball with mass 0.145 kg straight upward
with an initial speed of (a) How much work has gravity
done on the baseball when it reaches a height of 20.0 m above the
bat? (b) Use the work–energy theorem to calculate the speed of the
baseball at a height of 20.0 m above the bat. You can ignore air resist-
ance. (c) Does the answer to part (b) depend on whether the baseball
is moving upward or downward at a height of 20.0 m? Explain.
6.27 . A little red wagon with mass 7.00 kg moves in a straight
line on a frictionless horizontal surface. It has an initial speed of

and then is pushed 3.0 m in the direction of the initial
velocity by a force with a magnitude of 10.0 N. (a) Use the
work–energy theorem to calculate the wagon’s final speed. (b) Cal-
culate the acceleration produced by the force. Use this acceleration
in the kinematic relationships of Chapter 2 to calculate the wagon’s
final speed. Compare this result to that calculated in part (a).
6.28 .. A block of ice with mass 2.00 kg slides 0.750 m down an
inclined plane that slopes downward at an angle of below the
horizontal. If the block of ice starts from rest, what is its final
speed? You can ignore friction.
6.29 . Stopping Distance. A car is traveling on a level road with
speed at the instant when the brakes lock, so that the tires slide
rather than roll. (a) Use the work–energy theorem to calculate the
minimum stopping distance of the car in terms of g, and the
coefficient of kinetic friction between the tires and the road. 
(b) By what factor would the minimum stopping distance change if
(i) the coefficient of kinetic friction were doubled, or (ii) the initial
speed were doubled, or (iii) both the coefficient of kinetic friction
and the initial speed were doubled?
6.30 .. A 30.0-kg crate is initially moving with a velocity that has
magnitude 3.90 m s in a direction west of north. How much
work must be done on the crate to change its velocity to 5.62 m s in
a direction south of east?

Section 6.3 Work and Energy with Varying Forces
6.31 . BIO Heart Repair. A surgeon is using material from a
donated heart to repair a patient’s damaged aorta and needs to
know the elastic characteristics of this aortal material. Tests per-
formed on a 16.0-cm strip of the donated aorta reveal that it
stretches 3.75 cm when a 1.50-N pull is exerted on it. (a) What is
the force constant of this strip of aortal material? (b) If the maxi-
mum distance it will be able to stretch when it replaces the aorta in
the damaged heart is 1.14 cm, what is the greatest force it will be
able to exert there?

63.0o
>

37.0o>

mk

v0,

v0

36.9°

4.00 m>s

25.0 m>s.

6.00 m>s?

2.00 m>s.

6.00 m>s.
4.00 m>s;

6.34 . A child applies a force
parallel to the x-axis to a

10.0-kg sled moving on the
frozen surface of a small pond.
As the child controls the speed
of the sled, the x-component of
the force she applies varies with
the x-coordinate of the sled as
shown in Fig. E6.34. Calculate
the work done by the force 
when the sled moves (a) from

to (b) from
to (c) from to 12.0 m.x = 0x = 12.0 m;x = 8.0 m

x = 8.0 m;x = 0

F
S

F
S

Figure E6.33

6.35 .. Suppose the sled in Exercise 6.34 is initially at rest at
Use the work–energy theorem to find the speed of the sled

at (a) and (b) You can ignore friction
between the sled and the surface of the pond.
6.36 . A 2.0-kg box and a 3.0-kg box on a perfectly smooth hori-
zontal floor have a spring of force constant compressed
between them. If the initial compression of the spring is 6.0 cm,
find the acceleration of each box the instant after they are released.
Be sure to include free-body diagrams of each box as part of your
solution.
6.37 .. A 6.0-kg box moving at on a horizontal, friction-
less surface runs into a light spring of force constant 
Use the work–energy theorem to find the maximum compression
of the spring.
6.38 .. Leg Presses. As part of your daily workout, you lie on
your back and push with your feet against a platform attached to
two stiff springs arranged side by side so that they are parallel to
each other. When you push the platform, you compress the springs.
You do 80.0 J of work when you compress the springs 0.200 m
from their uncompressed length. (a) What magnitude of force must
you apply to hold the platform in this position? (b) How much
additional work must you do to move the platform 0.200 m
farther, and what maximum force must you apply?
6.39 .. (a) In Example 6.7 (Section 6.3) it was calculated that
with the air track turned off, the glider travels 8.6 cm before it
stops instantaneously. How large would the coefficient of static
friction have to be to keep the glider from springing back to the
left? (b) If the coefficient of static friction between the glider and
the track is what is the maximum initial speed that
the glider can be given and still remain at rest after it stops

v1ms = 0.60,

ms

75 N>cm.
3.0 m>s

250 N>m

x = 12.0 m.x = 8.0 m
x = 0.

Fx (N)

x (m)

10

5

0 4 8 12

Figure E6.34



instantaneously? With the air track turned off, the coefficient of
kinetic friction is 
6.40 . A 4.00-kg block of ice is placed against a horizontal spring
that has force constant and is compressed 0.025 m.
The spring is released and accelerates the block along a horizontal
surface. You can ignore friction and the mass of the spring. (a) Cal-
culate the work done on the block by the spring during the motion
of the block from its initial position to where the spring has
returned to its uncompressed length. (b) What is the speed of the
block after it leaves the spring?
6.41 . A force is applied to a 2.0-kg radio-controlled model car
parallel to the x-axis as it moves along a straight track. The 
x-component of the force varies with the x-coordinate of the car as
shown in Fig. E6.41. Calculate the work done by the force when
the car moves from (a) to (b) to

(c) to (d) to 
(e) to x = 2.0 m.x = 7.0 m

x = 7.0 m;x = 0x = 7.0 m;x = 4.0 mx = 4.0 m;
x = 3.0 mx = 3.0 m;x = 0

F
S

F
S

k = 200 N>m

mk = 0.47.
brick on a vertical compressed spring with force constant

and negligible mass. When the spring is released,
the brick is propelled upward. If the brick has mass 1.80 kg and
is to reach a maximum height of 3.6 m above its initial position
on the compressed spring, what distance must the bricklayer
compress the spring initially? (The brick loses contact with the
spring when the spring returns to its uncompressed length.
Why?)
6.47 .. CALC A force in the �x-direction with magnitude

is applied to a 6.00-kg box that
is sitting on the horizontal, frictionless surface of a frozen lake.

is the only horizontal force on the box. If the box is initially
at rest at , what is its speed after it has traveled 14.0 m?

Section 6.4 Power
6.48 .. A crate on a motorized cart starts from rest and moves
with a constant eastward acceleration of . A worker
assists the cart by pushing on the crate with a force that is eastward
and has magnitude that depends on time according to 

. What is the instantaneous power supplied by this
force at ?
6.49 . How many joules of energy does a 100-watt light bulb use
per hour? How fast would a 70-kg person have to run to have that
amount of kinetic energy?
6.50 .. BIO Should You Walk or Run? It is 5.0 km from your
home to the physics lab. As part of your physical fitness program,
you could run that distance at 10 km h (which uses up energy at
the rate of 700 W), or you could walk it leisurely at 3.0 km h
(which uses energy at 290 W). Which choice would burn up more
energy, and how much energy (in joules) would it burn? Why is it
that the more intense exercise actually burns up less energy than
the less intense exercise?
6.51 .. Magnetar. On December 27, 2004, astronomers observed
the greatest flash of light ever recorded from outside the solar sys-
tem. It came from the highly magnetic neutron star SGR 1806-20
(a magnetar). During 0.20 s, this star released as much energy as
our sun does in 250,000 years. If P is the average power output of
our sun, what was the average power output (in terms of P) of this
magnetar?
6.52 .. A 20.0-kg rock is sliding on a rough, horizontal surface at

and eventually stops due to friction. The coefficient of
kinetic friction between the rock and the surface is 0.200. What
average power is produced by friction as the rock stops?
6.53 . A tandem (two-person) bicycle team must overcome a
force of 165 N to maintain a speed of Find the power
required per rider, assuming that each contributes equally. Express
your answer in watts and in horsepower.
6.54 .. When its 75-kW (100-hp) engine is generating full power,
a small single-engine airplane with mass 700 kg gains altitude at a
rate of What fraction of
the engine power is being used to make the airplane climb? (The
remainder is used to overcome the effects of air resistance and of
inefficiencies in the propeller and engine.)
6.55 .. Working Like a Horse. Your job is to lift 30-kg crates a
vertical distance of 0.90 m from the ground onto the bed of a truck.
(a) How many crates would you have to load onto the truck in 
1 minute for the average power output you use to lift the crates to
equal 0.50 hp? (b) How many crates for an average power output
of 100 W?
6.56 .. An elevator has mass 600 kg, not including passengers.
The elevator is designed to ascend, at constant speed, a vertical

2.5 m>s 1150 m>min, or 500 ft>min2.

9.00 m>s.

8.00 m>s

>
>

t = 5.00 s
15.40 N>s2t

F1t2 =

a = 2.80 m>s2

x = 0
F1x2

F1x2 = 18.0 N - 10.530 N>m2x

k = 450 N>m
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6.42 . Suppose the 2.0-kg model car in Exercise 6.41 is initially at
rest at and is the net force acting on it. Use the
work–energy theorem to find the speed of the car at (a) 
(b) (c) 
6.43 .. At a waterpark, sleds with riders are sent along a slippery,
horizontal surface by the release of a large compressed spring. The
spring with force constant and negligible mass
rests on the frictionless horizontal surface. One end is in contact
with a stationary wall. A sled and rider with total mass 70.0 kg are
pushed against the other end, compressing the spring 0.375 m. The
sled is then released with zero initial velocity. What is the sled’s
speed when the spring (a) returns to its uncompressed length and
(b) is still compressed 0.200 m?
6.44 . Half of a Spring. (a) Suppose you cut a massless ideal
spring in half. If the full spring had a force constant k, what is the
force constant of each half, in terms of k? (Hint: Think of the orig-
inal spring as two equal halves, each producing the same force as
the entire spring. Do you see why the forces must be equal?) (b) If
you cut the spring into three equal segments instead, what is the
force constant of each one, in terms of k?
6.45 .. A small glider is placed against a compressed spring at the
bottom of an air track that slopes upward at an angle of 
above the horizontal. The glider has mass 0.0900 kg. The spring
has and negligible mass. When the spring is
released, the glider travels a maximum distance of 1.80 m along
the air track before sliding back down. Before reaching this maxi-
mum distance, the glider loses contact with the spring. (a) What
distance was the spring originally compressed? (b) When the
glider has traveled along the air track 0.80 m from its initial posi-
tion against the compressed spring, is it still in contact with the
spring? What is the kinetic energy of the glider at this point?
6.46 .. An ingenious bricklayer builds a device for shooting
bricks up to the top of the wall where he is working. He places a

k = 640 N>m

40.0°

k = 40.0 N>cm

x = 7.0 m.x = 4.0 m;
x = 3.0 m;
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distance of 20.0 m (five floors) in 16.0 s, and it is driven by a
motor that can provide up to 40 hp to the elevator. What is the
maximum number of passengers that can ride in the elevator?
Assume that an average passenger has mass 65.0 kg.
6.57 .. A ski tow operates on a slope of length 300 m. The
rope moves at and provides power for 50 riders at one
time, with an average mass per rider of 70.0 kg. Estimate the
power required to operate the tow.
6.58 .. The aircraft carrier John F. Kennedy has mass
When its engines are developing their full power of 280,000 hp, the
John F. Kennedy travels at its top speed of 35 knots If
70% of the power output of the engines is applied to pushing the
ship through the water, what is the magnitude of the force of water
resistance that opposes the carrier’s motion at this speed?
6.59 . BIO A typical flying insect applies an average force equal
to twice its weight during each downward stroke while hovering.
Take the mass of the insect to be 10 g, and assume the wings move
an average downward distance of 1.0 cm during each stroke.
Assuming 100 downward strokes per second, estimate the average
power output of the insect.

PROBLEMS
6.60 ... CALC A balky cow is leaving the barn as you try harder
and harder to push her back in. In coordinates with the origin at the
barn door, the cow walks from to as you apply a
force with x-component How
much work does the force you apply do on the cow during this dis-
placement?
6.61 .. CALC Rotating Bar. A thin, uniform 12.0-kg bar that is
2.00 m long rotates uniformly about a pivot at one end, making
5.00 complete revolutions every 3.00 seconds. What is the kinetic
energy of this bar? (Hint: Different points in the bar have different
speeds. Break the bar up into infinitesimal segments of mass dm
and integrate to add up the kinetic energies of all these segments.)
6.62 .. A Near-Earth Asteroid. On April 13, 2029 (Friday the
13th!), the asteroid 99942 Apophis will pass within 18,600 mi of
the earth—about the distance to the moon! It has a density of

can be modeled as a sphere 320 m in diameter, and
will be traveling at (a) If, due to a small disturbance in
its orbit, the asteroid were to hit the earth, how much kinetic
energy would it deliver? (b) The largest nuclear bomb ever tested by
the United States was the “Castle/Bravo” bomb, having a yield of 15
megatons of TNT. (A megaton of TNT releases of
energy.) How many Castle/Bravo bombs would be equivalent to
the energy of Apophis?
6.63 . A luggage handler pulls a 20.0-kg suitcase up a ramp
inclined at above the horizontal by a force of magnitude
140 N that acts parallel to the ramp. The coefficient of kinetic fric-
tion between the ramp and the incline is If the suit-
case travels 3.80 m along the ramp, calculate (a) the work done on
the suitcase by the force (b) the work done on the suitcase by
the gravitational force; (c) the work done on the suitcase by the
normal force; (d) the work done on the suitcase by the friction
force; (e) the total work done on the suitcase. (f ) If the speed of the
suitcase is zero at the bottom of the ramp, what is its speed after it
has traveled 3.80 m along the ramp?
6.64 . BIO Chin-Ups. While doing a chin-up, a man lifts his
body 0.40 m. (a) How much work must the man do per kilogram of
body mass? (b) The muscles involved in doing a chin-up can gener-
ate about 70 J of work per kilogram of muscle mass. If the man can
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4.184 * 1015 J

12.6 km>s.
2600 kg>m3,

1
13

Fx = -320.0 N + 13.0 N>m2x4.
x = 6.9 mx = 0

165 km>h2.

7.4 * 107 kg.

12.0 km>h
15.0°

just barely do a 0.40-m chin-up, what percentage of his body’s mass
do these muscles constitute? (For comparison, the total percentage
of muscle in a typical 70-kg man with 14% body fat is about 43%.)
(c) Repeat part (b) for the man’s young son, who has arms half as
long as his father’s but whose muscles can also generate 70 J of
work per kilogram of muscle mass. (d) Adults and children have
about the same percentage of muscle in their bodies. Explain why
children can commonly do chin-ups more easily than their fathers.
6.65 ... CP A 20.0-kg crate sits at rest at the bottom of a 
15.0-m-long ramp that is inclined at above the horizontal. A
constant horizontal force of 290 N is applied to the crate to push it
up the ramp. While the crate is moving, the ramp exerts a constant
frictional force on it that has magnitude 65.0 N. (a) What is the
total work done on the crate during its motion from the bottom to
the top of the ramp? (b) How much time does it take the crate to
travel to the top of the ramp?
6.66 ... Consider the blocks in Exercise 6.7 as they move 
75.0 cm. Find the total work done on each one (a) if there is no fric-
tion between the table and the 20.0-N block, and (b) if 
and between the table and the 20.0-N block.
6.67 . The space shuttle, with mass 86,400 kg, is in a circular
orbit of radius around the earth. It takes 90.1 min
for the shuttle to complete each orbit. On a repair mission, the
shuttle is cautiously moving 1.00 m closer to a disabled satellite
every 3.00 s. Calculate the shuttle’s kinetic energy (a) relative to
the earth and (b) relative to the satellite.
6.68 .. A 5.00-kg package slides 1.50 m down a long ramp that is
inclined at below the horizontal. The coefficient of kinetic
friction between the package and the ramp is Calcu-
late (a) the work done on the package by friction; (b) the work
done on the package by gravity; (c) the work done on the package
by the normal force; (d) the total work done on the package. (e) If
the package has a speed of at the top of the ramp, what is
its speed after sliding 1.50 m down the ramp?
6.69 .. CP BIO Whiplash Injuries. When a car is hit from
behind, its passengers undergo sudden forward acceleration, which
can cause a severe neck injury known as whiplash. During normal
acceleration, the neck muscles play a large role in accelerating the
head so that the bones are not injured. But during a very sudden
acceleration, the muscles do not react immediately because they
are flexible, so most of the accelerating force is provided by the
neck bones. Experimental tests have shown that these bones will
fracture if they absorb more than 8.0 J of energy. (a) If a car wait-
ing at a stoplight is rear-ended in a collision that lasts for 10.0 ms,
what is the greatest speed this car and its driver can reach without
breaking neck bones if the driver’s head has a mass of 5.0 kg
(which is about right for a 70-kg person)? Express your answer in
m s and in mph. (b) What is the acceleration of the passengers dur-
ing the collision in part (a), and how large a force is acting to
accelerate their heads? Express the acceleration in m s2 and in g’s.
6.70 .. CALC A net force along the x-axis that has x-component

is applied to a 5.00-kg object
that is initially at the origin and moving in the with a
speed of 6.00 m s. What is the speed of the object when it reaches
the point ?
6.71 . CALC An object is attracted toward the origin with a force
given by (Gravitational and electrical forces have
this distance dependence.) (a) Calculate the work done by the force

when the object moves in the x-direction from to If
is the work done by positive or negative? (b) The only

other force acting on the object is a force that you exert with your
Fxx2 7 x1,

x2.x1Fx

Fx = -k>x2.

x = 5.00 m
>

-x-direction
Fx = -12.0 N + 10.300 N>m22x2
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2.20 m>s

mk = 0.310.
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6.76 .. CALC Proton Bombardment. A proton with mass
is propelled at an initial speed of

directly toward a uranium nucleus 5.00 m away.
The proton is repelled by the uranium nucleus with a force of
magnitude where x is the separation between the two
objects and Assume that the uranium
nucleus remains at rest. (a) What is the speed of the proton when it
is from the uranium nucleus? (b) As the proton
approaches the uranium nucleus, the repulsive force slows down

8.00 * 10-10 m

10-26 N # m2.a = 2.12 *
F = a>x2,

3.00 * 105 m>s
1.67 * 10-27 kg

hand to move the object slowly from to How much work do
you do? If is the work you do positive or negative? 
(c) Explain the similarities and differences between your answers
to parts (a) and (b).
6.72 ... CALC The gravitational pull of the earth on an object is
inversely proportional to the square of the distance of the object
from the center of the earth. At the earth’s surface this force is
equal to the object’s normal weight mg, where and
at large distances, the force is zero. If a 20,000-kg asteroid falls to
earth from a very great distance away, what will be its minimum
speed as it strikes the earth’s surface, and how much kinetic energy
will it impart to our planet? You can ignore the effects of the
earth’s atmosphere.
6.73 . CALC Varying Coefficient of Friction. A box is sliding
with a speed of on a horizontal surface when, at point P,
it encounters a rough section. On the rough section, the coefficient
of friction is not constant, but starts at 0.100 at P and increases lin-
early with distance past P, reaching a value of 0.600 at 12.5 m past
point P. (a) Use the work–energy theorem to find how far this box
slides before stopping. (b) What is the coefficient of friction at the
stopping point? (c) How far would the box have slid if the friction
coefficient didn’t increase but instead had the constant value of
0.100?
6.74 .. CALC Consider a spring that does not obey Hooke’s law
very faithfully. One end of the spring is fixed. To keep the spring
stretched or compressed an amount x, a force along the x-axis with
x-component must be applied to the free
end. Here and 
Note that when the spring is stretched and when it is
compressed. (a) How much work must be done to stretch this
spring by 0.050 m from its unstretched length? (b) How much
work must be done to compress this spring by 0.050 m from its
unstretched length? (c) Is it easier to stretch or compress this
spring? Explain why in terms of the dependence of on x. (Many
real springs behave qualitatively in the same way.)
6.75 .. CP A small block with a
mass of 0.0900 kg is attached to a
cord passing through a hole in a
frictionless, horizontal surface
(Fig. P6.75). The block is origi-
nally revolving at a distance of
0.40 m from the hole with a speed
of The cord is then
pulled from below, shortening the
radius of the circle in which the
block revolves to 0.10 m. At this
new distance, the speed of the
block is observed to be (a) What is the tension in the
cord in the original situation when the block has speed

(b) What is the tension in the cord in the final situ-
ation when the block has speed (c) How much
work was done by the person who pulled on the cord?

v = 2.80 m>s?
v = 0.70 m>s?

2.80 m>s.

0.70 m>s.

Fx

x 6 0x 7 0
c = 12,000 N>m3.b = 700 N>m2,k = 100 N>m,

Fx = kx - bx2 + cx3

4.50 m>s

g = 9.8 m>s2,

x2 7 x1,
x2.x1 the proton until it comes momentarily to rest, after which the 

proton moves away from the uranium nucleus. How close to the
uranium nucleus does the proton get? (c) What is the speed 
of the proton when it is again 5.00 m away from the uranium
nucleus?
6.77 .. CP CALC A block of ice with mass 4.00 kg is initially at
rest on a frictionless, horizontal surface. A worker then applies a
horizontal force to it. As a result, the block moves along the 
x-axis such that its position as a function of time is given by

where and 
(a) Calculate the velocity of the object when (b) Calcu-
late the magnitude of when (c) Calculate the work
done by the force during the first 4.00 s of the motion.
6.78 .. You and your bicycle have combined mass 80.0 kg. When
you reach the base of a bridge, you are traveling along the road at

(Fig. P6.78). At the top of the bridge, you have climbed a
vertical distance of 5.20 m and have slowed to You can
ignore work done by friction and any inefficiency in the bike or
your legs. (a) What is the total work done on you and your bicycle
when you go from the base to the top of the bridge? (b) How much
work have you done with the force you apply to the pedals?

1.50 m>s.
5.00 m>s
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Figure P6.75

m 5 80.0 kg

5.20 m

Figure P6.78

6.79 .. You are asked to design spring bumpers for the walls of a
parking garage. A freely rolling 1200-kg car moving at is
to compress the spring no more than 0.090 m before stopping.
What should be the force constant of the spring? Assume that the
spring has negligible mass.
6.80 .. The spring of a spring gun has force constant

and negligible mass. The spring is compressed 
6.00 cm, and a ball with mass 0.0300 kg is placed in the horizontal
barrel against the compressed spring. The spring is then released,
and the ball is propelled out the barrel of the gun. The barrel is
6.00 cm long, so the ball leaves the barrel at the same point that it
loses contact with the spring. The gun is held so the barrel is hori-
zontal. (a) Calculate the speed with which the ball leaves the barrel
if you can ignore friction. (b) Calculate the speed of the ball as it
leaves the barrel if a constant resisting force of 6.00 N acts on the
ball as it moves along the barrel. (c) For the situation in part (b), at
what position along the barrel does the ball have the greatest
speed, and what is that speed? (In this case, the maximum speed
does not occur at the end of the barrel.)
6.81 ... A 2.50-kg textbook is forced against a horizontal spring
of negligible mass and force constant compressing 
the spring a distance of 0.250 m. When released, the textbook
slides on a horizontal tabletop with coefficient of kinetic friction

250 N>m,

k = 400 N>m

0.65 m>s
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Use the work–energy theorem to find how far the text-
book moves from its initial position before coming to rest.
6.82 ... Pushing a Cat. Your cat “Ms.” (mass 7.00 kg) is try-
ing to make it to the top of a frictionless ramp 2.00 m long and
inclined upward at above the horizontal. Since the poor cat
can’t get any traction on the ramp, you push her up the entire
length of the ramp by exerting a constant 100-N force parallel to
the ramp. If Ms. takes a running start so that she is moving at

at the bottom of the ramp, what is her speed when she
reaches the top of the incline? Use the work–energy theorem.
6.83 .. Crash Barrier. A student proposes a design for an auto-
mobile crash barrier in which a 1700-kg sport utility vehicle mov-
ing at crashes into a spring of negligible mass that slows
it to a stop. So that the passengers are not injured, the acceleration
of the vehicle as it slows can be no greater than 5.00g. (a) Find the
required spring constant k, and find the distance the spring will
compress in slowing the vehicle to a stop. In your calculation, dis-
regard any deformation or crumpling of the vehicle and the friction
between the vehicle and the ground. (b) What disadvantages are
there to this design?
6.84 ... A physics professor is pushed up a ramp inclined
upward at above the horizontal as he sits in his desk chair
that slides on frictionless rollers. The combined mass of the profes-
sor and chair is 85.0 kg. He is pushed 2.50 m along the incline by a
group of students who together exert a constant horizontal force 
of 600 N. The professor’s speed at the bottom of the ramp is

Use the work–energy theorem to find his speed at the
top of the ramp.
6.85 . A 5.00-kg block is mov-
ing at along a
frictionless, horizontal surface
toward a spring with force con-
stant that is
attached to a wall (Fig. P6.85).
The spring has negligible mass.
(a) Find the maximum distance the spring will be compressed. 
(b) If the spring is to compress by no more than 0.150 m, what
should be the maximum value of v0?

k = 500 N>m

v0 = 6.00 m>s

2.00 m>s.

30.0°

20.0 m>s

2.40 m>s

30.0°

0.30.mk = draw length). Assume that the same force is exerted on the arrow
as it moves forward after being released. Full draw for this bow
is at a draw length of 75.0 cm. If the bow shoots a 0.0250-kg
arrow from full draw, what is the speed of the arrow as it leaves
the bow?

v0 5 6.00 m/s
k 5 500 N/m

5.00
kg

Figure P6.85
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Figure P6.88

6.89 .. On an essentially frictionless, horizontal ice rink, a skater
moving at encounters a rough patch that reduces her
speed to 1.65 m s due to a friction force that is 25% of her weight.
Use the work–energy theorem to find the length of this rough
patch.
6.90 . Rescue. Your friend (mass 65.0 kg) is standing on the
ice in the middle of a frozen pond. There is very little friction
between her feet and the ice, so she is unable to walk. Fortu-
nately, a light rope is tied around her waist and you stand on the
bank holding the other end. You pull on the rope for 3.00 s and
accelerate your friend from rest to a speed of while
you remain at rest. What is the average power supplied by the
force you applied?
6.91 .. A pump is required to lift 800 kg of water (about 210 gal-
lons) per minute from a well 14.0 m deep and eject it with a speed
of (a) How much work is done per minute in lifting the
water? (b) How much work is done in giving the water the kinetic
energy it has when ejected? (c) What must be the power output of
the pump?
6.92 .. BIO All birds, independent of their size, must maintain a
power output of 10–25 watts per kilogram of body mass in order to
fly by flapping their wings. (a) The Andean giant hummingbird
(Patagona gigas) has mass 70 g and flaps its wings 10 times per
second while hovering. Estimate the amount of work done by such
a hummingbird in each wingbeat. (b) A 70-kg athlete can maintain
a power output of 1.4 kW for no more than a few seconds; the
steady power output of a typical athlete is only 500 W or so. Is it
possible for a human-powered aircraft to fly for extended periods
by flapping its wings? Explain.
6.93 ... A physics student spends part of her day walking
between classes or for recreation, during which time she expends
energy at an average rate of 280 W. The remainder of the day she
is sitting in class, studying, or resting; during these activities, she
expends energy at an average rate of 100 W. If she expends a total
of of energy in a 24-hour day, how much of the day
did she spend walking?
6.94 ... The Grand Coulee Dam is 1270 m long and 170 m high.
The electrical power output from generators at its base is approxi-
mately 2000 MW. How many cubic meters of water must flow
from the top of the dam per second to produce this amount of
power if 92% of the work done on the water by gravity is converted
to electrical energy? (Each cubic meter of water has a mass of
1000 kg.)

1.1 * 107 J

18.0 m>s.

6.00 m>s

>
3.0 m>s

6.86 .. Consider the system
shown in Fig. P6.86. The rope
and pulley have negligible mass,
and the pulley is frictionless.
The coefficient of kinetic fric-
tion between the 8.00-kg block
and the tabletop is 
The blocks are released from
rest. Use energy methods to cal-
culate the speed of the 6.00-kg
block after it has descended 
1.50 m.

mk = 0.250.

8.00 kg

6.00 kg

Figure P6.86

6.87 .. Consider the system shown in Fig. P6.86. The rope and
pulley have negligible mass, and the pulley is frictionless. Initially
the 6.00-kg block is moving downward and the 8.00-kg block is
moving to the right, both with a speed of The blocks
come to rest after moving 2.00 m. Use the work–energy theorem
to calculate the coefficient of kinetic friction between the 8.00-kg
block and the tabletop.
6.88 ... CALC Bow and Arrow. Figure P6.88 shows how the
force exerted by the string of a compound bow on an arrow
varies as a function of how far back the arrow is pulled (the

0.900 m>s.



6.95 . BIO Power of the Human Heart. The human heart is a
powerful and extremely reliable pump. Each day it takes in and
discharges about 7500 L of blood. Assume that the work done by
the heart is equal to the work required to lift this amount of blood a
height equal to that of the average American woman (1.63 m). The
density (mass per unit volume) of blood is 
(a) How much work does the heart do in a day? (b) What is the
heart’s power output in watts?
6.96 ... Six diesel units in series can provide 13.4 MW of
power to the lead car of a freight train. The diesel units have total
mass The average car in the train has mass

and requires a horizontal pull of 2.8 kN to move at a
constant on level tracks. (a) How many cars can be in the
train under these conditions? (b) This would leave no power for
accelerating or climbing hills. Show that the extra force needed to
accelerate the train is about the same for a acceleration
or a 1.0% slope (slope angle ). (c) With the 1.0%
slope, show that an extra 2.9 MW of power is needed to maintain
the speed of the diesel units. (d) With 2.9 MW less power
available, how many cars can the six diesel units pull up a 1.0%
slope at a constant 
6.97 . It takes a force of 53 kN on the lead car of a 16-car passen-
ger train with mass to pull it at a constant 

on level tracks. (a) What power must the locomotive
provide to the lead car? (b) How much more power to the lead car
than calculated in part (a) would be needed to give the train an
acceleration of at the instant that the train has a speed of

on level tracks? (c) How much more power to the lead car
than that calculated in part (a) would be needed to move the train
up a 1.5% grade (slope angle ) at a constant

6.98 . CALC An object has several forces acting on it. One of
these forces is a force in the x-direction whose magni-
tude depends on the position of the object, with 
Calculate the work done on the object by this force for the following
displacements of the object: (a) The object starts at the point 

and moves parallel to the x-axis to the point
(b) The object starts at the point

and moves in the y-direction to the 
point (c) The object starts at the origin
and moves on the line to the point 

6.99 .. Cycling. For a touring bicyclist the drag coefficient
is 1.00, the frontal area A is and the

coefficient of rolling friction is 0.0045. The rider has mass 50.0 kg,
and her bike has mass 12.0 kg. (a) To maintain a speed of

on a level road, what must the rider’s
power output to the rear wheel be? (b) For racing, the same rider
uses a different bike with coefficient of rolling friction 0.0030 and
mass 9.00 kg. She also crouches down, reducing her drag coeffi-
cient to 0.88 and reducing her frontal area to What must
her power output to the rear wheel be then to maintain a speed of

(c) For the situation in part (b), what power output is
required to maintain a speed of Note the great drop in
power requirement when the speed is only halved. (For more on
aerodynamic speed limitations for a wide variety of human-powered
vehicles, see “The Aerodynamics of Human-Powered Land
Vehicles,” Scientific American, December 1983.)
6.100 .. Automotive Power I. A truck engine transmits 
28.0 kW (37.5 hp) to the driving wheels when the truck is traveling at
a constant velocity of magnitude on a level60.0 km>h 137.3 mi>h2

6.0 m>s?
12.0 m>s?

0.366 m2.

12.0 m>s 1about 27 mi>h2

0.463 m2,C1ƒair = 1
2 CArv22

y = 3.00 m.
x = 2.00 m,y = 1.5x

y = 3.00 m.x = 2.00 m,
y = 0x = 2.00 m,
y = 3.00 m.x = 2.00 m,

y = 3.00 m
x = 0,

a = 2.50 N>m2.
F
S

� axyın,

45 m>s?
a = arctan 0.015

45 m>s
1.5 m>s2,

1101 mi>h2
45 m>s9.1 * 105 kg

27 m>s?

27-m>s

a = arctan 0.010
0.10-m>s2

27 m>s
8.2 * 104 kg

1.10 * 106 kg.

1.05 * 103 kg>m3.

road. (a) What is the resisting force acting on the truck? (b)
Assume that 65% of the resisting force is due to rolling friction
and the remainder is due to air resistance. If the force of rolling
friction is independent of speed, and the force of air resistance is
proportional to the square of the speed, what power will drive the
truck at At Give your answers in kilo-
watts and in horsepower.
6.101 .. Automotive Power II. (a) If 8.00 hp are required to
drive a 1800-kg automobile at on a level road, what is
the total retarding force due to friction, air resistance, and so on?
(b) What power is necessary to drive the car at up a
10.0% grade (a hill rising 10.0 m vertically in 100.0 m horizon-
tally)? (c) What power is necessary to drive the car at 
down a 1.00% grade? (d) Down what percent grade would the car
coast at 

CHALLENGE PROBLEMS
6.102 ... CALC On a winter day in Maine, a warehouse worker
is shoving boxes up a rough plank inclined at an angle above
the horizontal. The plank is partially covered with ice, with
more ice near the bottom of the plank than near the top, so that
the coefficient of friction increases with the distance x along the
plank: where A is a positive constant and the bottom of
the plank is at (For this plank the coefficients of kinetic
and static friction are equal: The worker shoves
a box up the plank so that it leaves the bottom of the plank mov-
ing at speed Show that when the box first comes to rest, it
will remain at rest if

6.103 ... CALC A Spring with Mass. We usually ignore the
kinetic energy of the moving coils of a spring, but let’s try to get
a reasonable approximation to this. Consider a spring of mass
M, equilibrium length and spring constant k. The work done
to stretch or compress the spring by a distance L is where

Consider a spring, as described above, that has one
end fixed and the other end moving with speed Assume that
the speed of points along the length of the spring varies linearly
with distance l from the fixed end. Assume also that the mass M
of the spring is distributed uniformly along the length of the
spring. (a) Calculate the kinetic energy of the spring in terms of
M and (Hint: Divide the spring into pieces of length dl; find
the speed of each piece in terms of l, and L; find the mass of
each piece in terms of dl, M, and L; and integrate from 0 to L.
The result is not since not all of the spring moves with the
same speed.) In a spring gun, a spring of mass 0.243 kg and force
constant is compressed 2.50 cm from its unstretched
length. When the trigger is pulled, the spring pushes horizon-
tally on a 0.053-kg ball. The work done by friction is negligible.
Calculate the ball’s speed when the spring reaches its uncom-
pressed length (b) ignoring the mass of the spring and (c) includ-
ing, using the results of part (a), the mass of the spring. (d) In
part (c), what is the final kinetic energy of the ball and of the
spring?
6.104 ... CALC An airplane in flight is subject to an air resist-
ance force proportional to the square of its speed But there is an
additional resistive force because the airplane has wings. Air flow-
ing over the wings is pushed down and slightly forward, so from
Newton’s third law the air exerts a force on the wings and airplane

v.

3200 N>m

1
2 Mv2,

v,
v.

v.
X = L - L0.

1
2 kX2,

L0,

v 2
0 Ú

3g sin2a

A cosa

v0.

mk = ms = m.2
x = 0.

m = Ax,

a

60.0 km>h?

60.0 km>h

60.0 km>h

60.0 km>h

120.0 km>h?30.0 km>h?
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that is up and slightly backward (Fig. P6.104). The upward force is
the lift force that keeps the airplane aloft, and the backward force
is called induced drag. At flying speeds, induced drag is inversely
proportional to so that the total air resistance force can be
expressed by where and are positive
constants that depend on the shape and size of the airplane and the
density of the air. For a Cessna 150, a small single-engine airplane,

and In steady
flight, the engine must provide a forward force that exactly bal-
ances the air resistance force. (a) Calculate the speed at
which this airplane will have the maximum range (that is, travel
the greatest distance) for a given quantity of fuel. (b) Calculate the
speed (in ) for which the airplane will have the maximum
endurance (that is, remain in the air the longest time).

km>h

1in km>h2

b = 3.5 * 105 N # m2>s2.0.30 N # s2>m2a =

baFair = av2 + b>v2,
v2,

Induced drag

Lift Force of air
on wings

Figure P6.104

Chapter Opening Question ?
The answer is yes. As the ant was exerting an upward force on the
piece of cereal, the cereal was exerting a downward force of the
same magnitude on the ant (due to Newton’s third law). However,
because the ant’s body had an upward displacement, the work that
the cereal did on the ant was negative (see Section 6.1).

Test Your Understanding Questions
6.1 Answer: (iii) The electron has constant velocity, so its acceler-
ation is zero and (by Newton’s second law) the net force on the
electron is also zero. Therefore the total work done by all the
forces (equal to the work done by the net force) must be zero as
well. The individual forces may do nonzero work, but that’s not
what the question asks.
6.2 Answer: (iv), (i), (iii), (ii) Body (i) has kinetic energy

Body (ii) had zero
kinetic energy initially and then had 30 J of work done it, so its final
kinetic energy is Body (iii) had
initial kinetic energy 8.0 J1

211.0 kg214.0 m>s22 =K1 = 1
2 mv1

2 =
K2 = K1 + W = 0 + 30 J = 30 J.

K = 1
2 mv2 = 1

212.0 kg215.0 m>s22 = 25 J.

6.3 Answers: (a) (iii), (b) (iii) At any point during the pendulum
bob’s motion, the tension force and the weight both act perpendicu-
lar to the motion—that is, perpendicular to an infinitesimal dis-
placement of the bob. (In Fig. 5.32b, the displacement would
be directed outward from the plane of the free-body diagram.)
Hence for either force the scalar product inside the integral in 
Eq. (6.14) is and the work done along any part of the
circular path (including a complete circle) is 
6.4 Answer: (v) The airliner has a constant horizontal velocity, so
the net horizontal force on it must be zero. Hence the backward
drag force must have the same magnitude as the forward force due
to the combined thrust of the four engines. This means that the
drag force must do negative work on the airplane at the same rate
that the combined thrust force does positive work. The combined
thrust does work at a rate of so the
drag force must do work at a rate of 

Bridging Problem

Answers: (a)

(b)

(c) (d) Nox2 =
A

3mg
a

P = -Fspring-1v1 = -ax 2
1 C

2gx1 -
2ax 3

1

3m

v1 =
A

2
m
1mgx1 - 1

3ax 3
1 2 =

C
2gx1 -

2ax 3
1

3m

-432,000 hp.
41108,000 hp2 = 432,000 hp,

W = 1F
S # d l

S
= 0.

F
S # d l

S
= 0,

d l
S

d l
S

Answers

and then had 20 J of work done on it, so its final kinetic energy 
is Body (iv) had initial
kinetic energy when1

212.0 kg2110 m>s22 = 100 J;K1 = 1
2 mv1

2 =
20 J = 28 J.W = 8.0 J +K2 = K1 +

it did of work on another body, the other body did of
work on body (iv), so the final kinetic energy of body (iv) is 

1-80 J2 = 20 J.K1 + W = 100 J +
K2 =

-80 J80 J
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7POTENTIAL ENERGY 
AND ENERGY
CONSERVATION

When a diver jumps off a high board into a swimming pool, he hits the
water moving pretty fast, with a lot of kinetic energy. Where does that
energy come from? The answer we learned in Chapter 6 was that the

gravitational force (his weight) does work on the diver as he falls. The diver’s
kinetic energy—energy associated with his motion—increases by an amount
equal to the work done.

However, there is a very useful alternative way to think about work and kinetic
energy. This new approach is based on the concept of potential energy, which is
energy associated with the position of a system rather than its motion. In this
approach, there is gravitational potential energy even while the diver is standing on
the high board. Energy is not added to the earth–diver system as the diver falls, but
rather a storehouse of energy is transformed from one form (potential energy) to
another (kinetic energy) as he falls. In this chapter we’ll see how the work–energy
theorem explains this transformation.

If the diver bounces on the end of the board before he jumps, the bent board
stores a second kind of potential energy called elastic potential energy. We’ll dis-
cuss elastic potential energy of simple systems such as a stretched or compressed
spring. (An important third kind of potential energy is associated with the posi-
tions of electrically charged particles relative to each other. We’ll encounter this
potential energy in Chapter 23.)

We will prove that in some cases the sum of a system’s kinetic and potential
energy, called the total mechanical energy of the system, is constant during the
motion of the system. This will lead us to the general statement of the law of con-
servation of energy, one of the most fundamental and far-reaching principles in
all of science.

? As this mallard glides in to a landing, it descends along a straight-line path at a
constant speed. Does the mallard’s mechanical energy increase, decrease, or
stay the same during the glide? If it increases, where does the added energy
come from? If it decreases, where does the lost energy go?

LEARNING GOALS

By studying this chapter, you will

learn:

• How to use the concept of gravita-

tional potential energy in problems

that involve vertical motion.

• How to use the concept of elastic

potential energy in problems that

involve a moving body attached to a

stretched or compressed spring.

• The distinction between conserva-

tive and nonconservative forces, and

how to solve problems in which both

kinds of forces act on a moving

body.

• How to calculate the properties of a

conservative force if you know the

corresponding potential-energy

function.

• How to use energy diagrams to

understand the motion of an object

moving in a straight line under the

influence of a conservative force.
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7.1 Gravitational Potential Energy
We learned in Chapter 6 that a particle gains or loses kinetic energy because it
interacts with other objects that exert forces on it. During any interaction, the
change in a particle’s kinetic energy is equal to the total work done on the particle
by the forces that act on it.

In many situations it seems as though energy has been stored in a system, to
be recovered later. For example, you must do work to lift a heavy stone over your
head. It seems reasonable that in hoisting the stone into the air you are storing
energy in the system, energy that is later converted into kinetic energy when you
let the stone fall.

This example points to the idea of an energy associated with the position of
bodies in a system. This kind of energy is a measure of the potential or possibility
for work to be done; when a stone is raised into the air, there is a potential for
work to be done on it by the gravitational force, but only if the stone is allowed to
fall to the ground. For this reason, energy associated with position is called
potential energy. Our discussion suggests that there is potential energy associated
with a body’s weight and its height above the ground. We call this gravitational
potential energy (Fig. 7.1).

We now have two ways to describe what happens when a body falls without 
air resistance. One way is to say that gravitational potential energy decreases and 
the falling body’s kinetic energy increases. The other way, which we learned in 
Chapter 6, is that a falling body’s kinetic energy increases because the force of the
earth’s gravity (the body’s weight) does work on the body. Later in this section we’ll
use the work–energy theorem to show that these two descriptions are equivalent.

To begin with, however, let’s derive the expression for gravitational potential
energy. Suppose a body with mass m moves along the (vertical) y-axis, as in Fig. 7.2.
The forces acting on it are its weight, with magnitude and possibly some
other forces; we call the vector sum (resultant) of all the other forces We’ll
assume that the body stays close enough to the earth’s surface that the weight is con-
stant. (We’ll find in Chapter 13 that weight decreases with altitude.) We want to find
the work done by the weight when the body moves downward from a height 
above the origin to a lower height (Fig. 7.2a). The weight and displacement are in
the same direction, so the work done on the body by its weight is positive;

(7.1)

This expression also gives the correct work when the body moves upward and
is greater than (Fig. 7.2b). In that case the quantity is negative, and

is negative because the weight and displacement are opposite in direction.
Equation (7.1) shows that we can express in terms of the values of the

quantity mgy at the beginning and end of the displacement. This quantity, the
product of the weight mg and the height y above the origin of coordinates, is
called the gravitational potential energy,

(gravitational potential energy) (7.2)

Its initial value is and its final value is The change
in is the final value minus the initial value, or We
can express the work done by the gravitational force during the displace-
ment from to as

(7.3)

The negative sign in front of is essential. When the body moves up, y
increases, the work done by the gravitational force is negative, and the gravitational

¢Ugrav

Wgrav = Ugrav,1 - Ugrav,2 = -1Ugrav,2 - Ugrav,12 = -¢Ugrav

y2y1

Wgrav

Ugrav,1.¢Ugrav = Ugrav,2 -Ugrav

Ugrav,2 = mgy2.Ugrav,1 = mgy1

Ugrav = mgy

Ugrav:

Wgrav

Wgrav

1y1 - y22y1

y2

Wgrav = Fs = w1y1 - y22 = mgy1 - mgy2

Wgrav

y2

y1

F
S

other.
w = mg,

7.1 As a basketball descends, gravita-
tional potential energy is converted to
kinetic energy and the basketball’s speed
increases.

y1

y2 2 y1 , 0,
so w does
positive work and
gravitational
potential energy
decreases:

(a) A body moves downward

y2 2 y1

y2

O

y2

y2 2 y1

y1

Fother
S

w 5 mgS S

S

S

(b) A body moves upward

O

Fother
S

w 5 mg
S S

Motion

Motion

DUgrav , 0.

y2 2 y1 . 0,
so w does
negative work
and gravitational
potential energy
increases:
DUgrav . 0.

7.2 When a body moves vertically from
an initial height to a final height the
gravitational force does work and the
gravitational potential energy changes.

wS
y2,y1
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Application Which Egg Has More
Mechanical Energy?
The mechanical energy of each of these identi-
cal eggs has the same value. The mechanical
energy for an egg at rest atop the stone is
purely gravitational potential energy. For the
falling egg, the gravitational potential energy
decreases as the egg descends and the egg’s
kinetic energy increases. If there is negligible
air resistance, the mechanical energy of the
falling egg remains constant.

potential energy increases When the body moves down, y decreases,
the gravitational force does positive work, and the gravitational potential energy
decreases It’s like drawing money out of the bank (decreasing )
and spending it (doing positive work). The unit of potential energy is the joule (J),
the same unit as is used for work.

CAUTION To what body does gravitational potential energy “belong”? It is not correct to
call the “gravitational potential energy of the body.” The reason is that grav-
itational potential energy is a shared property of the body and the earth. The value of

increases if the earth stays fixed and the body moves upward, away from the earth; it
also increases if the body stays fixed and the earth is moved away from it. Notice that the
formula involves characteristics of both the body (its mass m) and the earth
(the value of g). ❙

Ugrav = mgy

Ugrav

Ugrav

Ugrav = mgy

Ugrav(¢Ugrav 6 0).

(¢Ugrav 7 0).

Conservation of Mechanical Energy 
(Gravitational Forces Only)
To see what gravitational potential energy is good for, suppose the body’s weight is
the only force acting on it, so The body is then falling freely with no air
resistance and can be moving either up or down. Let its speed at point be 
and let its speed at be The work–energy theorem, Eq. (6.6), says that the 
total work done on the body equals the change in the body’s kinetic energy:

If gravity is the only force that acts, then from Eq. (7.3),
Putting these together, we get

which we can rewrite as

(if only gravity does work) (7.4)

or

(if only gravity does work) (7.5)

The sum of kinetic and potential energy is called E, the total mechan-
ical energy of the system. By “system” we mean the body of mass m and the
earth considered together, because gravitational potential energy U is a shared
property of both bodies. Then is the total mechanical energy
at and is the total mechanical energy at Equation (7.4)
says that when the body’s weight is the only force doing work on it, 
That is, E is constant; it has the same value at and But since the positions
and are arbitrary points in the motion of the body, the total mechanical energy E
has the same value at all points during the motion:

(if only gravity does work)

A quantity that always has the same value is called a conserved quantity. When
only the force of gravity does work, the total mechanical energy is constant—that
is, it is conserved (Fig. 7.3). This is our first example of the conservation of
mechanical energy.

When we throw a ball into the air, its speed decreases on the way up as kinetic
energy is converted to potential energy; and On the way
back down, potential energy is converted back to kinetic energy and the ball’s
speed increases; and But the total mechanical energy
(kinetic plus potential) is the same at every point in the motion, provided that no
force other than gravity does work on the ball (that is, air resistance must be neg-
ligible). It’s still true that the gravitational force does work on the body as it

¢Ugrav 6 0.¢K 7 0

¢Ugrav 7 0.¢K 6 0

E = K + Ugrav = constant

y2

y1y2.y1

E1 = E2.
y2.E2 = K2 + Ugrav, 2y1

E1 = K1 + Ugrav, 1

K + Ugrav

1
2 mv1

2 + mgy1 = 1
2 mv2

2 + mgy2

K1 + Ugrav, 1 = K2 + Ugrav, 2

¢K = -¢Ugrav  or  K2 - K1 = Ugrav, 1 - Ugrav, 2

Wtot = Wgrav = -¢Ugrav = Ugrav,1 - Ugrav,2.
Wtot = ¢K = K2 - K1.

v2.y2

v1y1

F
S

other � 0.
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Example 7.1 Height of a baseball from energy conservation

You throw a 0.145-kg baseball straight up, giving it an initial
velocity of magnitude Find how high it goes, ignoring
air resistance.

SOLUTION

IDENTIFY and SET UP: After the ball leaves your hand, only grav-
ity does work on it. Hence mechanical energy is conserved, and we
can use Eqs. (7.4) and (7.5). We take point 1 to be where the ball
leaves your hand and point 2 to be where it reaches its maximum
height. As in Fig. 7.2, we take the positive y-direction to be
upward. The ball’s speed at point 1 is at its maxi-
mum height it is instantaneously at rest, so We take the
origin at point 1, so (Fig. 7.4). Our target variable, the dis-
tance the ball moves vertically between the two points, is the dis-
placement

EXECUTE: We have , and 
Then Eq. (7.4), becomes 

As the energy bar graphs in Fig. 7.4 show, this equation says that
the kinetic energy of the ball at point 1 is completely converted to
gravitational potential energy at point 2. We substitute 
and and solve for :

y2 =
v 2

1

2g
=
120.0 m>s22

219.80 m>s22
= 20.4 m

1
2 mv 2

1 = mgy2

y2Ugrav,2 = mgy2

K1 = 1
2 mv 2

1

K1 = Ugrav,2

K1 + Ugrav,1 = K2 + Ugrav,2,1
2mv 2

2 = 0.
K2 =Ugrav,1 = mgy1 = 0y1 = 0,

y2 - y1 = y2 - 0 = y2.

y1 = 0
v2 = 0.

v1 = 20.0 m>s;

20.0 m>s.

y1 5 0

y2

v1 5 20.0 m/s
Energy at y1

Energy at y2

m 5 0.145 kg

v2 5 0
E UgravK5 1

E UgravK5 1

zero

zero

After the ball leaves your 
hand, the only force
acting on it is gravity ...

... so the mechanical energy
E 5 K 1 U stays constant.

7.4 After a baseball leaves your hand, mechanical energy
is conserved.E = K + U

EVALUATE: As a check on our work, use the given value of and our
result for to calculate the kinetic energy at point 1 and the gravita-
tional potential energy at point 2. You should find that these are equal:

and .  Note also that

we could have found the result using Eq. (2.13).
What if we put the origin somewhere else? For example, 

what if we put it 5.0 m below point 1, so that Then
the total mechanical energy at point 1 is part kinetic and part
potential; at point 2 it’s still purely potential because 
You’ll find that this choice of origin yields but again

. In problems like this, you are free to choose
the height at which . The physics doesn’t depend on your
choice, so don’t agonize over it.

Ugrav = 0
y2 - y1 = 20.4 m

y2 = 25.4 m,
v2 = 0.

y1 = 5.0 m?

y2 = v 2
1>2g

Ugrav,2 = mgy2 = 29.0 JK1 = 1
2 mv 2

1 = 29.0 J

y2

v1

moves up or down, but we no longer have to calculate work directly; keeping
track of changes in the value of takes care of this completely.

CAUTION Choose “zero height” to be wherever you like When working with gravita-
tional potential energy, we may choose any height to be If we shift the origin for y,
the values of and change, as do the values of and But this shift has no
effect on the difference in height or on the difference in gravitational potential
energy As the following example shows, the physically
significant quantity is not the value of at a particular point, but only the difference in

between two points. So we can define to be zero at whatever point we choose
without affecting the physics. ❙

UgravUgrav

Ugrav

Ugrav,2 - Ugrav,1 = mg1y2 - y12.
y2 - y1

Ugrav,2.Ugrav,1y2y1

y = 0.

Ugrav

w 5 mgr r

Moving down:
• K increases.
• Ugrav decreases.
• E 5 K 1 Ugrav
  stays the same.

Moving up:
• K decreases.
• Ugrav increases.
• E 5 K 1 Ugrav
  stays the same.

7.3 While this athlete is in midair, only gravity does work on him (if we neglect the
minor effects of air resistance). Mechanical energy E—the sum of kinetic and gravita-
tional potential energy—is conserved.ActivPhysics 5.2: Upward-Moving Elevator

Stops
ActivPhysics 5.3: Stopping a Downward-
Moving Elevator
ActivPhysics 5.6: Skier Speed



7.1 Gravitational Potential Energy 211

Problem-Solving Strategy 7.1 Problems Using Mechanical Energy I

IDENTIFY the relevant concepts: Decide whether the problem
should be solved by energy methods, by using directly,
or by a combination of these. The energy approach is best when
the problem involves varying forces or motion along a curved path
(discussed later in this section). If the problem involves elapsed
time, the energy approach is usually not the best choice because it
doesn’t involve time directly.

SET UP the problem using the following steps:
1. When using the energy approach, first identify the initial and

final states (the positions and velocities) of the bodies in ques-
tion. Use the subscript 1 for the initial state and the subscript 2
for the final state. Draw sketches showing these states.

2. Define a coordinate system, and choose the level at which
Choose the positive y-direction to be upward, as is

assumed in Eq. (7.1) and in the equations that follow from it.
3. Identify any forces that do work on each body and that cannot

be described in terms of potential energy. (So far, this means

y = 0.

gF �
S

maS
any forces other than gravity. In Section 7.2 we’ll see that the
work done by an ideal spring can also be expressed as a change
in potential energy.) Sketch a free-body diagram for each body.

4. List the unknown and known quantities, including the coordi-
nates and velocities at each point. Identify the target variables.

EXECUTE the solution: Write expressions for the initial and final
kinetic and potential energies and If no
other forces do work, use Eq. (7.4). If there are other forces that do
work, use Eq. (7.7). Draw bar graphs showing the initial and final
values of K, and Then solve to find your
target variables.

EVALUATE your answer: Check whether your answer makes
physical sense. Remember that the gravitational work is included
in so do not include it in Wother.¢Ugrav,

E = K + Ugrav.Ugrav, 1,

Ugrav, 2.Ugrav, 1,K2,K1,

When Forces Other Than Gravity Do Work
If other forces act on the body in addition to its weight, then in Fig. 7.2 is
not zero. For the pile driver described in Example 6.4 (Section 6.2), the force
applied by the hoisting cable and the friction with the vertical guide rails are
examples of forces that might be included in The gravitational work 
is still given by Eq. (7.3), but the total work is then the sum of and the 
work done by We will call this additional work so the total work
done by all forces is Equating this to the change in kinetic
energy, we have

(7.6)

Also, from Eq. (7.3), so

which we can rearrange in the form

(if forces other than 
gravity do work) (7.7)

Finally, using the appropriate expressions for the various energy terms, we obtain

(7.8)

The meaning of Eqs. (7.7) and (7.8) is this: The work done by all forces
other than the gravitational force equals the change in the total mechanical
energy of the system, where is the gravitational potential
energy. When is positive, E increases and is greater than

When is negative, E decreases (Fig. 7.5). In the special case
in which no forces other than the body’s weight do work, The total
mechanical energy is then constant, and we are back to Eq. (7.4) or (7.5).

Wother = 0.
WotherK1 + Ugrav,  1 .

K2 + Ugrav,  2Wother

UgravE = K + Ugrav

1
2 mv1

2 + mgy1 + Wother = 1
2 mv2

2 + mgy2

K1 + Ugrav, 1 + Wother = K2 + Ugrav, 2

Wother + Ugrav, 1 - Ugrav, 2 = K2 - K1

Wgrav = Ugrav, 1 - Ugrav, 2 ,

Wother + Wgrav = K2 - K1

Wtot = Wgrav + Wother .
Wother ,F

S
other .

WgravWtot

WgravF
S

other .

F
S

other

7.5 As this skydiver moves downward,
the upward force of air resistance does
negative work on him. Hence the
total mechanical energy 
decreases: The skydiver’s speed and
kinetic energy stay the same, while the
gravitational potential energy decreases.U

K

E = K + U
Wother

(if forces other than
gravity do work)
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Example 7.2 Work and energy in throwing a baseball

In Example 7.1 suppose your hand moves upward by 0.50 m while
you are throwing the ball. The ball leaves your hand with an
upward velocity of (a) Find the magnitude of the force
(assumed constant) that your hand exerts on the ball. (b) Find the
speed of the ball at a point 15.0 m above the point where it leaves
your hand. Ignore air resistance.

SOLUTION

IDENTIFY and SET UP: In Example 7.1 only gravity did work.
Here we must include the nongravitational, “other” work done by
your hand. Figure 7.6 shows a diagram of the situation, including a
free-body diagram for the ball while it is being thrown. We let
point 1 be where your hand begins to move, point 2 be where the
ball leaves your hand, and point 3 be where the ball is 15.0 m
above point 2. The nongravitational force of your hand acts only
between points 1 and 2. Using the same coordinate system as in
Example 7.1, we have and 
The ball starts at rest at point 1, so and the ball’s speed as
it leaves your hand is Our target variables are 
(a) the magnitude F of the force of your hand and (b) the ball’s
velocity at point 3.

EXECUTE: (a) To determine F, we’ll first use Eq. (7.7) to calculate
the work done by this force. We have

Ugrav,1 = mgy1 = 10.145 kg219.80 m>s2 21-0.50 m2 = -0.71 J

K1 = 0

Wother

v3y

v2 = 20.0 m>s.
v1 = 0,

y3 = 15.0 m.y2 = 0,y1 = -0.50 m,

F
S

20.0 m>s.

(Don’t worry that is less than zero; all that matters is the
difference in potential energy from one point to another.) From 
Eq. (7.7),

Ugrav,1

Ugrav,2 = mgy2 = 10.145 kg219.80 m>s22102 = 0

K2 = 1
2 mv 2

2 = 1
2 10.145 kg2120.0 m>s22 = 29.0 J

(a)

E UgravK5 1

E UgravK5

5

1

1

zero

After the ball leaves your 
hand, the only force
acting on it is gravity ...

As you throw the ball,
you do positive work
Wother on it ...

... so the total
mechanical energy
E increases.

... so the total mechan-
ical energy E 5 K 1 U
stays constant.

zero

E UgravK

(b)

w

F

x

y

0.50 m

y2 � 0

y1 5 20.50 m

v1 5 0

y3 5 15.0 m
v3

v2 5 20.0 m/s

7.6 (a) Applying energy ideas to a ball thrown vertically
upward. (b) Free-body diagram for the ball as you throw it.

= 129.0 J + 0 J2 - 21.3 J = 7.7 J

K3 = 1K2 + Ugrav,22 - Ugrav,3

Ugrav,3 = mgy3 = 10.145 kg219.80 m>s22115.0 m2 = 21.3 J

K2 + Ugrav,2 = K3 + Ugrav,3

Since we find

The plus-or-minus sign reminds us that the ball passes point 3 
on the way up and again on the way down. The total mechanical
energy E is constant and equal to while 
the ball is in free fall, and the potential energy at point 3 is

whether the ball is moving up or down.
So at point 3, the ball’s kinetic energy (and therefore its speed)
don’t depend on the direction the ball is moving. The velocity 
is positive when the ball is moving up and negative

when it is moving down; the speed is in
either case.

EVALUATE: In Example 7.1 we found that the ball reaches a maxi-
mum height At that point all of the kinetic energy it
had when it left your hand at has been converted to gravita-
tional potential energy. At the ball is about three-
fourths of the way to its maximum height, so about three-fourths of
its mechanical energy should be in the form of potential energy.
(The energy bar graphs in Fig. 7.6a show this.) Can you show that
this is true from our results for and Ugrav,3?K3

y = 15.0 m,
y = 0

y = 20.4 m.

10 m>sv31-10 m>s2
1+10 m>s2

v3y

K3

Ugrav,3 = mgy3 = 21.3 J

K2 + Ugrav,2 = 29.0 J

v3y = �
B

2K3

m
= �
B

217.7 J2

0.145 kg
= �10 m>s

K3 = 1
2 mv 2

3y ,

Gravitational Potential Energy for Motion Along a Curved Path
In our first two examples the body moved along a straight vertical line. What
happens when the path is slanted or curved (Fig. 7.7a)? The body is acted on by
the gravitational force and possibly by other forces whose resultant wewS � mgS

= 129.0 J - 02 + 30 - 1-0.71 J24 = 29.7 J

Wother = 1K2 - K12 + 1Ugrav,2 - Ugrav,12

K1 + Ugrav,1 + Wother = K2 + Ugrav,2

But since is constant and upward, the work done by equals the
force magnitude times the displacement: . So

This is more than 40 times the weight of the ball (1.42 N).
(b) To find , note that between points 2 and 3 only gravity

acts on the ball. So between these points mechanical energy is
conserved and From Eq. (7.4), we can solve for 
and from that solve for :v3y

K3Wother = 0.

v3y

F =
Wother

y2 - y1
=

29.7 J

0.50 m
= 59 N

Wother = F1y2 - y12
F
S

F
S
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Conceptual Example 7.3 Energy in projectile motion

A batter hits two identical baseballs with the same initial speed and
from the same initial height but at different initial angles. Prove
that both balls have the same speed at any height h if air resistance
can be neglected.

SOLUTION

The only force acting on each ball after it is hit is its weight. Hence
the total mechanical energy for each ball is constant. Figure 7.8
shows the trajectories of two balls batted at the same height with
the same initial speed, and thus the same total mechanical energy,
but with different initial angles. At all points at the same height the
potential energy is the same. Thus the kinetic energy at this height
must be the same for both balls, and the speeds are the same.

At y 5 h

At y 5 0

y

h

x
O

zero

E K5 1

E Ugrav

Ugrav

K5 1

7.8 For the same initial speed and initial height, the speed of a
projectile at a given elevation h is always the same, neglecting air
resistance.

Example 7.4 Speed at the bottom of a vertical circle

Your cousin Throckmorton skateboards from rest down a curved,
frictionless ramp. If we treat Throcky and his skateboard as a parti-
cle, he moves through a quarter-circle with radius 
(Fig. 7.9). Throcky and his skateboard have a total mass of 
25.0 kg. (a) Find his speed at the bottom of the ramp. (b) Find the
normal force that acts on him at the bottom of the curve.

SOLUTION

IDENTIFY: We can’t use the constant-acceleration equations of
Chapter 2 because Throcky’s acceleration isn’t constant; the slope
decreases as he descends. Instead, we’ll use the energy approach.
Throcky moves along a circular arc, so we’ll also use what we
learned about circular motion in Section 5.4.

R = 3.00 m

SET UP: The only forces on Throcky are his weight and the 
normal force exerted by the ramp (Fig. 7.9b). Although acts all 
along the path, it does zero work because is perpendicular to
Throcky’s displacement at every point. Hence and
mechanical energy is conserved. We take point 1 at the starting point
and point 2 at the bottom of the ramp, and we let be at the bot-
tom of the ramp (Fig. 7.9a). We take the positive y-direction upward;
then and Throcky starts at rest at the top, so 
In part (a) our target variable is his speed at the bottom; in part (b)
the target variable is the magnitude n of the normal force at point 2.
To find n, we’ll use Newton’s second law and the relation .

Continued

a = v2>R

v2

v1 = 0.y2 = 0.y1 = R

y = 0

Wother = 0
nS

nSnS

call To find the work done by the gravitational force during this displace-
ment, we divide the path into small segments Fig. 7.7b shows a typical seg-
ment. The work done by the gravitational force over this segment is the scalar
product of the force and the displacement. In terms of unit vectors, the force is

and the displacement is so the work done
by the gravitational force is

The work done by gravity is the same as though the body had been displaced ver-
tically a distance with no horizontal displacement. This is true for every seg-
ment, so the total work done by the gravitational force is multiplied by the
total vertical displacement 

This is the same as Eq. (7.1) or (7.3), in which we assumed a purely vertical path.
So even if the path a body follows between two points is curved, the total work
done by the gravitational force depends only on the difference in height between
the two points of the path. This work is unaffected by any horizontal motion that
may occur. So we can use the same expression for gravitational potential energy
whether the body’s path is curved or straight.

Wgrav = -mg1y2 - y12 = mgy1 - mgy2 = Ugrav,1 - Ugrav,2

1y2 - y12:
-mg

¢y,

wS # ¢ sS � -mg≥N # 1¢xıN � ¢y≥N2 = -mg¢y

¢ sS � ¢xıN � ¢y≥N,wS � mgS � -mg≥N

¢ sS;
F
S

other.

The work done by the gravitational
 force depends only on the vertical
   component of displacement Dy.

In this case
Dy is negative.

y1

y2
O

(a)

Fother
S

w 5 mg
S S

(b)

Dx

Dy

w 5 mgS S

DsS

7.7 Calculating the change in gravita-
tional potential energy for a displacement
along a curved path.



214 CHAPTER 7 Potential Energy and Energy Conservation

EXECUTE: (a) The various energy quantities are

From conservation of mechanical energy, Eq. (7.4),

This answer doesn’t depend on the ramp being circular; Throcky
will have the same speed at the bottom of any ramp of
height R, no matter what its shape.

(b) To find n at point 2 using Newton’s second law, we need the
free-body diagram at that point (Fig. 7.9b). At point 2, Throcky is 
moving at speed in a circle of radius R; his acceleration
is toward the center of the circle and has magnitude

arad =
v 2

2

R
=

2gR

R
= 2g

v2 = 12gR

v2 = 12gR

= 2219.80 m>s2213.00 m2 = 7.67 m>s

v2 = 22gR

 0 + mgR = 1
2mv 2

2 + 0

K1 + Ugrav,1 = K2 + Ugrav,2

Ugrav,2 = 0K2 = 1
2mv 2

2

Ugrav,1 = mgRK1 = 0

The y-component of Newton’s second law is

At point 2 the normal force is three times Throcky’s weight. This
result doesn’t depend on the radius R of the ramp. We saw in
Examples 5.9 and 5.23 that the magnitude of n is the apparent
weight, so at the bottom of the curved part of the ramp Throcky
feels as though he weighs three times his true weight mg. But when
he reaches the horizontal part of the ramp, immediately to the right
of point 2, the normal force decreases to and thereafter
Throcky feels his true weight again. Can you see why?

EVALUATE: This example shows a general rule about the role of
forces in problems in which we use energy techniques: What mat-
ters is not simply whether a force acts, but whether that force does
work. If the force does no work, like the normal force here, then
it does not appear in Eqs. (7.4) and (7.7).

nS

w = mg

= 3125.0 kg219.80 m>s22 = 735 N

n = w + 2mg = 3mg
aFy = n + 1-w2 = marad = 2mg

At each point, the normal force
acts perpendicular to the direction
of Throcky’s displacement, so only
the force of gravity (w) does the work
on him.

R 5 3.00 m

Ov1 5 0

v2

(a)

Reference level

Point 1

Point 2

zero

zero

E K5 1

E Ugrav

Ugrav

K5 1

w

w

w

w
w

R

n 5 0

n

n
n n

(b)

Point 1

Point 2

At point   2

At point 1

7.9 (a) Throcky skateboarding down a frictionless circular ramp. The total mechanical energy is constant. (b) Free-body diagrams for
Throcky and his skateboard at various points on the ramp.

Example 7.5 A vertical circle with friction

Suppose that the ramp of Example 7.4 is not frictionless, and that
Throcky’s speed at the bottom is only not the 
we found there. What work was done on him by the friction force?

SOLUTION

IDENTIFY and SET UP: Figure 7.10 shows that again the normal
force does no work, but now there is a friction force that does do
work . Hence the nongravitational work done on Throcky
between points 1 and 2 is equal to and is not zero. We use the
same coordinate system and the same initial and final points as in
Example 7.4. Our target variable is , which we’ll find
using Eq. (7.7).

EXECUTE: The energy quantities are

Ugrav,2 = 0

K2 = 1
2 mv 2

2 = 1
2125.0 kg216.00 m>s22 = 450 J

Ugrav,1 = mgR = 125.0 kg219.80 m>s2213.00 m2 = 735 J

K1 = 0

Wƒ = Wother

Wƒ

WotherWƒ

ƒ
S

7.67 m>s6.00 m>s,

Point 1

Point 2f

f

f

f

w

w

w

w
w

R 5 3.00 m

f 5 0

n 5 0

n

n
n n

zero

zero

E K5 1E Ugrav UgravK5 1

The friction force
( f ) does negative work on
Throcky as he descends,
so the total mechanical
energy decreases.

At point   2At point 1

7.10 Energy bar graphs and free-body diagrams for Throcky
skateboarding down a ramp with friction.
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Example 7.6 An inclined plane with friction

We want to slide a 12-kg crate up a 2.5-m-long ramp inclined at .
A worker, ignoring friction, calculates that he can do this by giving it
an initial speed of at the bottom and letting it go. But friction
is not negligible; the crate slides only 1.6 m up the ramp, stops, and
slides back down (Fig. 7.11a). (a) Find the magnitude of the friction
force acting on the crate, assuming that it is constant. (b) How fast is
the crate moving when it reaches the bottom of the ramp?

SOLUTION

IDENTIFY and SET UP: The friction force does work on the crate as
it slides. The first part of the motion is from point 1, at the bottom
of the ramp, to point 2, where the crate stops instantaneously

. In the second part of the motion, the crate returns to 
the bottom of the ramp, which we’ll also call point 3 (Fig. 7.11a).
We take the positive y-direction upward. We take (and
hence ) to be at ground level (point 1), so that 

and We are given 
In part (a) our target variable is the magnitude of the

friction force as the crate slides up; as in Example 7.2, we’ll find
this using the energy approach. In part (b) our target variable is 
the crate’s speed at the bottom of the ramp. We’ll calculate the
work done by friction as the crate slides back down, then use the
energy approach to find .v3

v3,

ƒ,5.0 m>s.
v1 =y3 = 0.y2 = 11.6 m2sin 30° = 0.80 m,

y1 = 0,Ugrav = 0
y = 0

1v2 = 02

5.0 m>s

30° EXECUTE: (a) The energy quantities are

Here Using Eq. (7.7), we finds = 1.6 m.

Wother = -ƒs

Ugrav,2 = 112 kg219.8 m>s2210.80 m2 = 94 J

K2 = 0

Ugrav,1 = 0

K1 = 1
2112 kg215.0 m>s22 = 150 J

The force of friction does negative work on
the crate as it moves, so the total mechanical
energy E 5 K 1 Ugrav decreases.

The crate is moving
at speed v3 when it
returns to point 3.

The crate slides up from point
1 to point 2, then back down
to its starting position
(point 3).

(a)

(b)

2.5 m

1.6 m

v1 5 5.0 m/s

v2 5 0

0.80 m
30°

Point 1  , 3

Point
2

zero

zero

E K5 1E Ugrav Ugrav

zero

E K5 1UgravK5 1

At point   2 At point 3At point 1

7.11 (a) A crate slides partway up the ramp, stops, and slides
back down. (b) Energy bar graphs for points 1, 2, and 3.

 ƒ =
Wother

s
=

56 J

1.6 m
= 35 N

= 10 + 94 J2 - 1150 J + 02 = -56 J = -ƒs

Wother = -ƒs = 1K2 + Ugrav,22 - 1K1 + Ugrav,12

K1 + Ugrav,1 + Wother = K2 + Ugrav,2

The friction force of 35 N, acting over 1.6 m, causes the mechani-
cal energy of the crate to decrease from 150 J to 94 J (Fig. 7.11b).

(b) As the crate moves from point 2 to point 3, the work done
by friction has the same negative value as from point 1 to point 2.
(The friction force and the displacement both reverse direction but
have the same magnitudes.) The total work done by friction
between points 1 and 3 is therefore

From part (a), and Equation (7.7) then
gives

Ugrav,1 = 0.K1 = 150 J

Wother = Wfric = -2ƒs = -2156 J2 = -112 J

= 150 J + 0 - 0 + 1-112 J2 = 38 J

K3 = K1 + Ugrav,1 - Ugrav,3 + Wother

K1 + Ugrav,1 + Wother = K3 + Ugrav,3

The crate returns to the bottom of the ramp with only 38 J of the
original 150 J of mechanical energy (Fig. 7.11b). Since 

EVALUATE: Energy was lost due to friction, so the crate’s speed
when it returns to the bottom of the ramp is less than

the speed at which it left that point. In part (b) we
applied Eq. (7.7) to points 1 and 3, considering the round trip as a
whole. Alternatively, we could have considered the second part of
the motion by itself and applied Eq. (7.7) to points 2 and 3. Try it;
do you get the same result for v3?

v1 = 5.0 m>s
v3 = 2.5 m>s

v3 =
B

2K3

m
=
B

2138 J2

12 kg
= 2.5 m>s

K3 = 1
2 mv 2

3,

From Eq. (7.7),

The work done by the friction force is and the total
mechanical energy decreases by 285 J.

EVALUATE: Our result for is negative. Can you see from the
free-body diagrams in Fig. 7.10 why this must be so?

Wƒ

-285 J,

= 450 J + 0 - 0 - 735 J = -285 J

Wƒ = Wother = K2 + Ugrav,2 - K1 - Ugrav,1

It would be very difficult to apply Newton’s second law,
directly to this problem because the normal and friction

forces and the acceleration are continuously changing in both mag-
nitude and direction as Throcky descends. The energy approach, by
contrast, relates the motions at the top and bottom of the ramp with-
out involving the details of the motion in between.

gF �
S

maS,
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7.2 Elastic Potential Energy
There are many situations in which we encounter potential energy that is not
gravitational in nature. One example is a rubber-band slingshot. Work is done
on the rubber band by the force that stretches it, and that work is stored in the
rubber band until you let it go. Then the rubber band gives kinetic energy to the
projectile.

This is the same pattern we saw with the pile driver in Section 7.1: Do work
on the system to store energy, which can later be converted to kinetic energy.
We’ll describe the process of storing energy in a deformable body such as a
spring or rubber band in terms of elastic potential energy (Fig. 7.12). A body is
called elastic if it returns to its original shape and size after being deformed.

To be specific, we’ll consider storing energy in an ideal spring, like the ones we
discussed in Section 6.3. To keep such an ideal spring stretched by a distance x, we
must exert a force where k is the force constant of the spring. The ideal
spring is a useful idealization because many elastic bodies show this same direct
proportionality between force and displacement x, provided that x is sufficiently
small.

Let’s proceed just as we did for gravitational potential energy. We begin with
the work done by the elastic (spring) force and then combine this with the
work–energy theorem. The difference is that gravitational potential energy is a
shared property of a body and the earth, but elastic potential energy is stored just
in the spring (or other deformable body).

Figure 7.13 shows the ideal spring from Fig. 6.18, with its left end held sta-
tionary and its right end attached to a block with mass m that can move along the
x-axis. In Fig. 7.13a the body is at when the spring is neither stretched nor
compressed. We move the block to one side, thereby stretching or compressing
the spring, and then let it go. As the block moves from one position to another
position how much work does the elastic (spring) force do on the block?

We found in Section 6.3 that the work we must do on the spring to move one
end from an elongation to a different elongation is

(work done on a spring)

where k is the force constant of the spring. If we stretch the spring farther, we do
positive work on the spring; if we let the spring relax while holding one end, we
do negative work on it. We also saw that this expression for work is still correct if
the spring is compressed, not stretched, so that or or both are negative. Now
we need to find the work done by the spring. From Newton’s third law the two
quantities of work are just negatives of each other. Changing the signs in this
equation, we find that in a displacement from to the spring does an amount
of work given by

(work done by a spring)Wel = 1
2 kx1

2 - 1
2 kx2

2

Wel

x2x1

x2x1

W = 1
2 kx2

2 - 1
2 kx1

2

x2x1

x2,
x1

x = 0

F
S

F = kx,

Test Your Understanding of Section 7.1 The figure shows two differ-
ent frictionless ramps. The heights and are the same for both ramps. If a
block of mass m is released from rest at the left-hand end of each ramp, which block
arrives at the right-hand end with the greater speed? (i) block I; (ii) block II; (iii) the
speed is the same for both blocks.

y2y1

Block I Block II m
m

y1 y1

y2 y2
❙

7.12 The Achilles tendon, which runs
along the back of the ankle to the heel
bone, acts like a natural spring. When it
stretches and then relaxes, this tendon
stores and then releases elastic potential
energy. This spring action reduces the
amount of work your leg muscles must do
as you run.

ActivPhysics 5.4: Inverse Bungee Jumper
ActivPhysics 5.5: Spring-Launched Bowler
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The subscript “el” stands for elastic. When and are both positive and
(Fig. 7.13b), the spring does negative work on the block, which moves

in the while the spring pulls on it in the The spring
stretches farther, and the block slows down. When and are both positive
and (Fig. 7.13c), the spring does positive work as it relaxes and the
block speeds up. If the spring can be compressed as well as stretched, or or
both may be negative, but the expression for is still valid. In Fig. 7.13d, both

and are negative, but is less negative than the compressed spring
does positive work as it relaxes, speeding the block up.

Just as for gravitational work, we can express the work done by the spring in
terms of a given quantity at the beginning and end of the displacement. This
quantity is and we define it to be the elastic potential energy:

(elastic potential energy) (7.9)

Figure 7.14 is a graph of Eq. (7.9). The unit of is the joule (J), the unit used
for all energy and work quantities; to see this from Eq. (7.9), recall that the units
of k are and that 

We can use Eq. (7.9) to express the work done on the block by the elastic
force in terms of the change in elastic potential energy:

(7.10)

When a stretched spring is stretched farther, as in Fig. 7.13b, is negative
and increases; a greater amount of elastic potential energy is stored in the
spring. When a stretched spring relaxes, as in Fig. 7.13c, x decreases, is
positive, and decreases; the spring loses elastic potential energy. Negative
values of x refer to a compressed spring. But, as Fig. 7.14 shows, is positive
for both positive and negative x, and Eqs. (7.9) and (7.10) are valid for both
cases. The more a spring is compressed or stretched, the greater its elastic
potential energy.

CAUTION Gravitational potential energy vs. elastic potential energy An important differ-
ence between gravitational potential energy and elastic potential energy 

is that we do not have the freedom to choose to be wherever we wish.
To be consistent with Eq. (7.9), must be the position at which the spring is neither
stretched nor compressed. At that position, its elastic potential energy and the force that it
exerts are both zero. ❙

The work–energy theorem says that no matter what kind of
forces are acting on a body. If the elastic force is the only force that does work on
the body, then

The work–energy theorem, , then gives us

(if only the elastic force does work) (7.11)

Here is given by Eq. (7.9), so

(7.12)

In this case the total mechanical energy —the sum of kinetic and
elastic potential energy—is conserved. An example of this is the motion of the

E = K + Uel

1
2 mv1

2 + 1
2 kx1

2 = 1
2 mv2

2 + 1
2 kx2

2

Uel

K1 + Uel, 1 = K2 + Uel, 2

Wtot = K2 - K1

Wtot = Wel = Uel, 1 - Uel, 2

Wtot = K2 - K1,

x = 0
x = 0Uel = 1

2 kx2
Ugrav = mgy

Uel

Uel

Wel

Uel

Wel

Wel = 1
2 kx1

2 - 1
2 kx2

2 = Uel, 1 - Uel, 2 = -¢Uel

Wel

1 N # m = 1 J.N>m

Uel

Uel = 1
2 kx2

1
2 kx2,

x1;x2x2x1

Wel

x2x1

x2 6 x1

x2x1

-x-direction.+x-direction
x2 7 x1

x2x1

Here the spring is
neither stretched
nor compressed.

As the spring stretches, it does negative
work on the block.

As the spring relaxes, it does positive
work on the block.

A compressed spring
also does positive
work on the block as
it relaxes.

(a)

(b)

(c)

(d)

x 5 0

x
O

m

x
O

x1

x2

Fspring
r

sS

m

x1

x
O

x2

Fspring
r

sS

m

x1

x
O

x2

Fspring
S

sS

m

7.13 Calculating the work done by a
spring attached to a block on a horizontal
surface. The quantity x is the extension or
compression of the spring.

Uel

Spring is
compressed:
x , 0.

x

O Spring is
stretched:
x . 0.

7.14 The graph of elastic potential
energy for an ideal spring is a parabola: 

where x is the extension or
compression of the spring. Elastic poten-
tial energy is never negative.Uel

Uel = 1
2 kx2,

(if only the elastic 
force does work)
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block in Fig. 7.13, provided the horizontal surface is frictionless so that no force
does work other than that exerted by the spring.

For Eq. (7.12) to be strictly correct, the ideal spring that we’ve been dis-
cussing must also be massless. If the spring has a mass, it also has kinetic energy
as the coils of the spring move back and forth. We can neglect the kinetic energy
of the spring if its mass is much less than the mass m of the body attached to the
spring. For instance, a typical automobile has a mass of 1200 kg or more. The
springs in its suspension have masses of only a few kilograms, so their mass can
be neglected if we want to study how a car bounces on its suspension.

Situations with Both Gravitational 
and Elastic Potential Energy
Equations (7.11) and (7.12) are valid when the only potential energy in the system
is elastic potential energy. What happens when we have both gravitational and elas-
tic forces, such as a block attached to the lower end of a vertically hanging spring?
And what if work is also done by other forces that cannot be described in terms of
potential energy, such as the force of air resistance on a moving block? Then the
total work is the sum of the work done by the gravitational force the work 
done by the elastic force and the work done by other forces 

Then the work–energy theorem gives

The work done by the gravitational force is and the
work done by the spring is Hence we can rewrite the
work–energy theorem for this most general case as

(valid in 
general)

(7.13)

or, equivalently,

(valid in general) (7.14)

where is the sum of gravitational potential
energy and elastic potential energy. For short, we call U simply “the potential
energy.”

Equation (7.14) is the most general statement of the relationship among
kinetic energy, potential energy, and work done by other forces. It says:

The work done by all forces other than the gravitational force or elastic force
equals the change in the total mechanical energy of the system,
where is the sum of the gravitational potential energy and the
elastic potential energy.

U � Ugrav � Uel

E � K � U

U = Ugrav + Uel = mgy + 1
2 kx2

K1 + U1 + Wother = K2 + U2

K1 + Ugrav, 1 + Uel, 1 + Wother = K2 + Ugrav, 2 + Uel, 2

Wel = Uel, 1 - Uel, 2 .
Wgrav = Ugrav, 1 - Ugrav, 2

Wgrav + Wel + Wother = K2 - K1

Wtot = Wgrav + Wel + Wother .
1Wother2:1Wel2,

1Wgrav2,

The “system” is made up of the body of mass m, the earth with which it interacts
through the gravitational force, and the spring of force constant k.

If is positive, increases; if is negative, E decreases.
If the gravitational and elastic forces are the only forces that do work on the body,
then and the total mechanical energy (including both gravitational 
and elastic potential energy) is conserved. (You should compare Eq. (7.14) to 
Eqs. (7.7) and (7.8), which describe situations in which there is gravitational
potential energy but no elastic potential energy.)

Trampoline jumping (Fig. 7.15) involves transformations among kinetic energy,
elastic potential energy, and gravitational potential energy. As the jumper descends
through the air from the high point of the bounce, gravitational potential energy

decreases and kinetic energy K increases. Once the jumper touches the tram-
poline, some of the mechanical energy goes into elastic potential energy storedUel

Ugrav

Wother = 0

WotherE = K + UWother

Difference in nose-to-tail length

Application Elastic Potential Energy
of a Cheetah
When a cheetah gallops, its back flexes and
extends by an exceptional amount. Flexion of
the back stretches elastic tendons and mus-
cles along the top of the spine and also com-
presses the spine, storing mechanical energy.
When the cheetah launches into its next
bound, this energy helps to extend the spine,
enabling the cheetah to run more efficiently.

7.15 Trampoline jumping involves an
interplay among kinetic energy, gravita-
tional potential energy, and elastic poten-
tial energy. Due to air resistance and
frictional forces within the trampoline,
mechanical energy is not conserved. That’s
why the bouncing eventually stops unless
the jumper does work with his or her legs
to compensate for the lost energy.



7.2 Elastic Potential Energy 219

in the trampoline’s springs. Beyond a certain point the jumper’s speed and kinetic
energy K decrease while continues to decrease and continues to increase.
At the low point the jumper comes to a momentary halt at the lowest
point of the trajectory and the springs are maximally stretched

. The springs then convert their energy back into K and ,
propelling the jumper upward.

Ugrav1Uel is maximum2
1Ugrav is minimum2

1K = 02
UelUgrav

Example 7.7 Motion with elastic potential energy

A glider with mass sits on a frictionless horizontal
air track, connected to a spring with force constant 
You pull on the glider, stretching the spring 0.100 m, and release it
from rest. The glider moves back toward its equilibrium position

What is its x-velocity when 

SOLUTION

IDENTIFY and SET UP: As the glider starts to move, elastic poten-
tial energy is converted to kinetic energy. The glider remains at the
same height throughout the motion, so gravitational potential
energy is not a factor and Figure 7.16 shows our
sketches. Only the spring force does work on the glider, so

and we may use Eq. (7.11). We designate the pointWother = 0

U = Uel = 1
2kx2.

x = 0.080 m?1x = 02.

k = 5.00 N>m.
m = 0.200 kg where the glider is released as point 1 and

as point 2. We are given our target variable
is 

EXECUTE: The energy quantities are

We use Eq. (7.11) to solve for and then find :

We choose the negative root because the glider is moving in the
. Our answer is 

EVALUATE: Eventually the spring will reverse the glider’s motion,
pushing it back in the �x-direction (see Fig. 7.13d). The solution

tells us that when the glider passes through
on this return trip, its speed will be , just as

when it passed through this point while moving to the left.
0.30 m>sx = 0.080 m

v2x = +0.30 m>s

v2x = -0.30 m>s.-x-direction

 v2x = �
B

2K2

m
= �
B

210.0090 J2

0.200 kg
= �0.30 m>s

 K2 = K1 + U1 - U2 = 0 + 0.0250 J - 0.0160 J = 0.0090 J

v2xK2

 U2 = 1
2 kx  2

2 = 1
215.00 N>m210.080 m22 = 0.0160 J

 K2 = 1
2 mv2

2
x

 U1 = 1
2 kx  2

1 = 1
215.00 N>m210.100 m22 = 0.0250 J

 K1 = 1
2 mv 2

1x = 1
210.200 kg21022 = 0

v2x.
v1x = 0;x2 = 0.080 m
1that is, x1 = 0.100 m2

Problem-Solving Strategy 7.2 Problems Using Mechanical Energy II

Problem-Solving Strategy 7.1 (Section 7.1) is equally useful in
solving problems that involve elastic forces as well as gravitational
forces. The only new wrinkle is that the potential energy U now
includes the elastic potential energy where x is the dis-Uel = 1

2 kx2,

placement of the spring from its unstretched length. The work done
by the gravitational and elastic forces is accounted for by their
potential energies; the work done by other forces, must still
be included separately.

Wother,

7.16 Our sketches and energy bar graphs for this problem.

Example 7.8 Motion with elastic potential energy and work done by other forces

Suppose the glider in Example 7.7 is initially at rest at with
the spring unstretched. You then push on the glider with a constant
force in the �x-direction. What is the
glider’s velocity when it has moved to x = 0.100 m?

1magnitude 0.610 N2F
S

x = 0, SOLUTION

IDENTIFY and SET UP: Although the force you apply is con-
stant, the spring force isn’t, so the acceleration of the glider won’t
be constant. Total mechanical energy is not conserved because of

Continued

F
S
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the work done by the force so we must use the generalized
energy relationship given by Eq. (7.13). As in Example 7.7, we
ignore gravitational potential energy because the glider’s height
doesn’t change. Hence we again have This time,
we let point 1 be at where the velocity is and let
point 2 be at The glider’s displacement is then

. Our target variable is the velocity
at point 2.

EXECUTE: The force is constant and in the same direction as the
displacement, so the work done by this force is FΔx. Then the
energy quantities are

The initial total mechanical energy is zero; the work done by 
increases the total mechanical energy to 0.0610 J, of which

is elastic potential energy. The remainder is kinetic
energy. From Eq. (7.13),

K2 = K1 + U1 + Wother - U2

K1 + U1 + Wother = K2 + U2

U2 = 0.0250 J

F
S

Wother = F¢x = 10.610 N210.100 m2 = 0.0610 J

U2 = 1
2 kx 2

2 = 1
2 15.00 N>m210.100 m22 = 0.0250 J

K2 = 1
2mv2

2
x

U1 = 1
2 kx 2

1 = 0

K1 = 0

F
S

v2x,¢x = x2 - x1 = 0.100 m
x = 0.100 m.

v1x = 0,x1 = 0,
U = Uel = 1

2kx2.

F
S

,

We choose the positive square root because the glider is moving in
the �x-direction.

EVALUATE: To test our answer, think what would be different if we
disconnected the glider from the spring. Then only would do
work, there would be zero elastic potential energy at all times, and
Eq. (7.13) would give us

Our answer is less than because the spring
does negative work on the glider as it stretches (see Fig. 7.13b).

If you stop pushing on the glider when it reaches 
only the spring force does work on it thereafter. Hence for

the total mechanical energy 
is constant. As the spring continues to stretch, the glider slows down
and the kinetic energy K decreases as the potential energy increases.
The glider comes to rest at some point at which the kinetic
energy is zero and the potential energy equals the
total mechanical energy 0.0610 J. Can you show that 
(It moves an additional 0.056 m after you stop pushing.) If there is no
friction, will the glider remain at rest?

x3 = 0.156 m?
U = Uel = 1

2kx 2
3

x = x3,

E = K + U = 0.0610 Jx 7 0.100 m,

x = 0.100 m,

0.78 m>sv2x = 0.60 m>s

v2x =
B

2K2

m
=
B

210.0610 J2

0.200 kg
= 0.78 m>s

K2 = K1 + Wother = 0 + 0.0610 J

F
S

v2x =
B

2K2

m
=
B

210.0360 J2

0.200 kg
= 0.60 m>s

= 0 + 0 + 0.0610 J - 0.0250 J = 0.0360 J

Example 7.9 Motion with gravitational, elastic, and friction forces

A 2000-kg elevator with broken cables in a test rig is
falling at when it contacts a cushioning spring at the bot-
tom of the shaft. The spring is intended to stop the elevator, com-
pressing 2.00 m as it does so (Fig. 7.17). During the motion a
safety clamp applies a constant 17,000-N frictional force to the
elevator. What is the necessary force constant k for the spring?

4.00 m>s
119,600-N2 SOLUTION

IDENTIFY and SET UP: We’ll use the energy approach to determine k,
which appears in the expression for elastic potential energy. This prob-
lem involves both gravitational and elastic potential energy. Total
mechanical energy is not conserved because the friction force does
negative work on the elevator. We’ll therefore use the most gen-
eral form of the energy relationship, Eq. (7.13). We take point 1 as the
position of the bottom of the elevator when it contacts the spring, and
point 2 as its position when it stops. We choose the origin to be at point
1, so and With this choice the coordinate of
the upper end of the spring after contact is the same as the coordinate 
of the elevator, so the elastic potential energy at any point between
points 1 and 2 is The gravitational potential energy is

as usual. We know the initial and final speeds of the ele-
vator and the magnitude of the friction force, so the only unknown is
the force constant k (our target variable).

EXECUTE: The elevator’s initial speed is so its ini-
tial kinetic energy is

The elevator stops at point 2, so At point 1 the potential
energy is zero; is zero because and

because the spring is uncompressed. At point 2 there is
both gravitational and elastic potential energy, so

U2 = mgy2 + 1
2ky 2

2

Uel = 0
y1 = 0,UgravU1 = Ugrav + Uel

K2 = 0.

K1 = 1
2 mv 2

1 = 1
2 12000 kg214.00 m>s22 = 16,000 J

v1 = 4.00 m>s,

Ugrav = mgy
Uel = 1

2ky2.

y2 = -2.00 m.y1 = 0

Wother

2.00 m

w5mg

v1 5
4.00 m/s

m 5
2000 kg

f 5 17,000 N

v2 5 0

Point 1

Point 2

7.17 The fall of an elevator is stopped by a spring and by a con-
stant friction force.
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7.3 Conservative and Nonconservative Forces
In our discussions of potential energy we have talked about “storing” kinetic
energy by converting it to potential energy. We always have in mind that later we
may retrieve it again as kinetic energy. For example, when you throw a ball up in
the air, it slows down as kinetic energy is converted to gravitational potential
energy. But on the way down, the conversion is reversed, and the ball speeds up
as potential energy is converted back to kinetic energy. If there is no air resist-
ance, the ball is moving just as fast when you catch it as when you threw it.

Another example is a glider moving on a frictionless horizontal air track that
runs into a spring bumper at the end of the track. The glider stops as it com-
presses the spring and then bounces back. If there is no friction, the glider ends
up with the same speed and kinetic energy it had before the collision. Again,
there is a two-way conversion from kinetic to potential energy and back. In both
cases we can define a potential-energy function so that the total mechanical
energy, kinetic plus potential, is constant or conserved during the motion.

Conservative Forces
A force that offers this opportunity of two-way conversion between kinetic and
potential energies is called a conservative force. We have seen two examples of 

Test Your Understanding of Section 7.2 Consider the situation in
Example 7.9 at the instant when the elevator is still moving downward and the
spring is compressed by 1.00 m. Which of the energy bar graphs in the figure
most accurately shows the kinetic energy K, gravitational potential energy 
and elastic potential energy at this instant?Uel

Ugrav,

❙

( i) ( ii) (iii) (iv)

Ugrav Uel UelK

UgravK

Uel

Ugrav
K

Uel
UgravK

The gravitational potential energy at point 2 is

The “other” force is the constant 17,000-N friction force. It acts
opposite to the 2.00-m displacement, so

We put these terms into Eq. (7.14), :K1 + U1 + Wother = K2 + U2

Wother = -117,000 N212.00 m2 = -34,000 J

mgy2 = 12000 kg219.80 m>s221-2.00 m2 = -39,200 J

This is more than the total mechanical energy at point 1:

But the friction force decreased the mechanical energy of the 
system by 34,000 J between points 1 and 2. Did energy appear
from nowhere? No. At point 2, which is below the origin, there is
also negative gravitational potential energy 
The total mechanical energy at point 2 is therefore not 21,200 J but
rather

This is just the initial mechanical energy of 16,000 J minus 34,000 J
lost to friction.

Will the elevator stay at the bottom of the shaft? At 
point 2 the compressed spring exerts an upward force of 
magnitude
while the downward force of gravity is only 

. If there were no friction, there
would be a net upward force of ,
and the elevator would rebound. But the safety clamp can exert a
kinetic friction force of 17,000 N, and it can presumably exert a
maximum static friction force greater than that. Hence the clamp
will keep the elevator from rebounding.

21,200 N - 19,600 N = 1600 N
12000 kg219.80 m>s22 = 19,600 N

w = mg =
Fspring = 11.06 * 104 N>m212.00 m2 = 21,200 N,

= 0 + 21,200 J + 1-39,200 J2 = -18,000 J

E2 = K2 + U2 = 0 + 1
2 ky 2

2 + mgy2

mgy2 = -39,200 J .

E1 = K1 + U1 = 16,000 J + 0 = 16,000 J

= 1.06 * 104 N>m

=
2316,000 J + 1-34,000 J2 - 1-39,200 J24

1-2.00 m22

k =
21K1 + Wother - mgy22

y 2
2

K1 + 0 + Wother = 0 + 1mgy2 + 1
2 ky 2

2 2

This is about one-tenth the force constant of a spring in an automo-
bile suspension.

EVALUATE: There might seem to be a paradox here. The elastic
potential energy at point 2 is

1
2 ky 2

2 = 1
2 11.06 * 104 N>m21-2.00 m22 = 21,200 J
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conservative forces: the gravitational force and the spring force. (Later in this
book we will study another conservative force, the electric force between charged
objects.) An essential feature of conservative forces is that their work is always
reversible. Anything that we deposit in the energy “bank” can later be withdrawn
without loss. Another important aspect of conservative forces is that a body may
move from point 1 to point 2 by various paths, but the work done by a conserva-
tive force is the same for all of these paths (Fig. 7.18). Thus, if a body stays close
to the surface of the earth, the gravitational force is independent of height, and
the work done by this force depends only on the change in height. If the body
moves around a closed path, ending at the same point where it started, the total
work done by the gravitational force is always zero.

The work done by a conservative force always has four properties:

1. It can be expressed as the difference between the initial and final values of
a potential-energy function.

2. It is reversible.
3. It is independent of the path of the body and depends only on the starting

and ending points.
4. When the starting and ending points are the same, the total work is zero.

When the only forces that do work are conservative forces, the total mechanical
energy is constant.

Nonconservative Forces
Not all forces are conservative. Consider the friction force acting on the crate
sliding on a ramp in Example 7.6 (Section 7.1). When the body slides up and then
back down to the starting point, the total work done on it by the friction force is
not zero. When the direction of motion reverses, so does the friction force, and
friction does negative work in both directions. When a car with its brakes locked
skids across the pavement with decreasing speed (and decreasing kinetic energy),
the lost kinetic energy cannot be recovered by reversing the motion or in any
other way, and mechanical energy is not conserved. There is no potential-energy
function for the friction force.

In the same way, the force of fluid resistance (see Section 5.3) is not conserva-
tive. If you throw a ball up in the air, air resistance does negative work on the ball
while it’s rising and while it’s descending. The ball returns to your hand with less
speed and less kinetic energy than when it left, and there is no way to get back the
lost mechanical energy.

A force that is not conservative is called a nonconservative force. The work
done by a nonconservative force cannot be represented by a potential-energy func-
tion. Some nonconservative forces, like kinetic friction or fluid resistance, cause
mechanical energy to be lost or dissipated; a force of this kind is called a dissipative
force. There are also nonconservative forces that increase mechanical energy. The
fragments of an exploding firecracker fly off with very large kinetic energy, thanks
to a chemical reaction of gunpowder with oxygen. The forces unleashed by this
reaction are nonconservative because the process is not reversible. (The fragments
never spontaneously reassemble themselves into a complete firecracker!)

E = K + U

mgSFinal
position

Initial
position

Because the gravitational force is conservative,
the work it does is the same for all three paths.

7.18 The work done by a conservative
force such as gravity depends only on the
end points of a path, not on the specific
path taken between those points.

Example 7.10 Frictional work depends on the path

You are rearranging your furniture and wish to move a 40.0-kg
futon 2.50 m across the room. A heavy coffee table, which you
don’t want to move, blocks this straight-line path. Instead, you
slide the futon along a dogleg path; the doglegs are 2.00 m and
1.50 m long. How much more work must you do to push the futon
along the dogleg path than along the straight-line path? The coeffi-
cient of kinetic friction is .mk = 0.200

SOLUTION

IDENTIFY and SET UP: Here both you and friction do work on the
futon, so we must use the energy relationship that includes “other”
forces. We’ll use this relationship to find a connection between the
work that you do and the work that friction does. Figure 7.19 shows
our sketch. The futon is at rest at both point 1 and point 2, so

PhET: The Ramp
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7.19 Our sketch for this problem.

Example 7.11 Conservative or nonconservative?

In a region of space the force on an electron is where C
is a positive constant. The electron moves around a square loop in
the xy-plane (Fig. 7.20). Calculate the work done on the electron
by the force during a counterclockwise trip around the square. Is
this force conservative or nonconservative?

SOLUTION

IDENTIFY and SET UP: The force is not constant, and in general
it is not in the same direction as the displacement. To calculate 
the work done by we’ll use the general expression for work, 
Eq. (6.14):

where is an infinitesimal displacement. We’ll calculate the
work done on each leg of the square separately, and add the results
to find the work done on the round trip. If this round-trip work is
zero, force is conservative and can be represented by a potential-
energy function.
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7.20 An electron moving around a square loop while being
acted on by the force .F

S
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There is no elastic potential energy (there are no
springs), and the gravitational potential energy does not change
because the futon moves only horizontally, so From 
Eq. (7.14) it follows that That “other” work done on the
futon is the sum of the positive work you do, and the negative
work done by friction, . Since the sum of these is zero, we have

Wyou = -Wfric

Wfric

Wyou,
Wother = 0.

U1 = U2.

K1 = K2 = 0.

Thus we’ll calculate the work done by friction to determine .

EXECUTE: The floor is horizontal, so the normal force on the futon
equals its weight mg and the magnitude of the friction force is

The work you do over each path is then

(straight-line path)

(dogleg path)

The extra work you must do is 

EVALUATE: Friction does different amounts of work on the futon,
and , on these different paths between points 1 and 2.

Hence friction is a nonconservative force.
-274 J-196 J

274 J - 196 J = 78 J.

= 274 J

= 10.2002140.0 kg219.80 m>s2212.00 m + 1.50 m2

Wyou = -Wfric = +mkmgs

= 196 J

= 10.2002140.0 kg219.80 m>s2212.50 m2

Wyou = -Wfric = -1-ƒks2 = +mkmgs

ƒk = mkn = mkmg.

Wyou

EXECUTE: On the first leg, from to the force is every-
where perpendicular to the displacement. So and the
work done on the first leg is The force has the same value

everywhere on the second leg, from to The

displacement on this leg is in the so and

The work done on the second leg is then

On the third leg, from to is again perpendicular to
the displacement and so The force is zero on the final leg,
from to so The work done by on the
round trip is therefore

The starting and ending points are the same, but the total work
done by is not zero. This is a nonconservative force; it cannot be
represented by a potential-energy function.

EVALUATE: Because W is positive, the mechanical energy increases
as the electron goes around the loop. This is not a mathematical
curiosity; it’s a much-simplified description of what happens in an
electrical generating plant. There, a loop of wire is moved through
a magnetic field, which gives rise to a nonconservative force simi-
lar to the one here. Electrons in the wire gain energy as they move
around the loop, and this energy is carried via transmission lines to
the consumer. (We’ll discuss how this works in Chapter 29.)

If the electron went clockwise around the loop, would be unaf-
fected but the direction of each infinitesimal displacement would
be reversed. Thus the sign of work would also reverse, and the work
for a clockwise round trip would be This is a different
behavior than the nonconservative friction force. The work done by
friction on a body that slides in any direction over a stationary sur-
face is always negative (see Example 7.6 in Section 7.1).
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The Law of Conservation of Energy
Nonconservative forces cannot be represented in terms of potential energy. But
we can describe the effects of these forces in terms of kinds of energy other than
kinetic and potential energy. When a car with locked brakes skids to a stop, the
tires and the road surface both become hotter. The energy associated with this
change in the state of the materials is called internal energy. Raising the temper-
ature of a body increases its internal energy; lowering the body’s temperature
decreases its internal energy.

To see the significance of internal energy, let’s consider a block sliding on a
rough surface. Friction does negative work on the block as it slides, and the
change in internal energy of the block and surface (both of which get hotter) is
positive. Careful experiments show that the increase in the internal energy is
exactly equal to the absolute value of the work done by friction. In other words,

where is the change in internal energy. If we substitute this into Eq. (7.7) or
(7.14), we find

Writing and we can finally express this as

(law of conservation of energy) (7.15)

This remarkable statement is the general form of the law of conservation of
energy. In a given process, the kinetic energy, potential energy, and internal
energy of a system may all change. But the sum of those changes is always zero.
If there is a decrease in one form of energy, it is made up for by an increase in the
other forms (Fig. 7.21). When we expand our definition of energy to include
internal energy, Eq. (7.15) says: Energy is never created or destroyed; it only
changes form. No exception to this rule has ever been found.

The concept of work has been banished from Eq. (7.15); instead, it sug-
gests that we think purely in terms of the conversion of energy from one form
to another. For example, when you throw a baseball straight up, you convert a por-
tion of the internal energy of your molecules to kinetic energy of the baseball. This
is converted to gravitational potential energy as the ball climbs and back to kinetic
energy as the ball falls. If there is air resistance, part of the energy is used to heat
up the air and the ball and increase their internal energy. Energy is converted back
to the kinetic form as the ball falls. If you catch the ball in your hand, whatever
energy was not lost to the air once again becomes internal energy; the ball and
your hand are now warmer than they were at the beginning.

In Chapters 19 and 20, we will study the relationship of internal energy to
temperature changes, heat, and work. This is the heart of the area of physics
called thermodynamics.

¢K + ¢U + ¢Uint = 0

¢U = U2 - U1,¢K = K2 - K1

K1 + U1 - ¢Uint = K2 + U2

¢Uint

¢Uint = -Wother

7.21 When 1 liter of gasoline is burned
in an automotive engine, it releases

of internal energy. Hence
where the minus

sign means that the amount of energy
stored in the gasoline has decreased. This
energy can be converted to kinetic energy
(making the car go faster) or to potential
energy (enabling the car to climb uphill).

¢Uint = -3.3 * 107 J,
3.3 * 107 J

?

Conceptual Example 7.12 Work done by friction

Let’s return to Example 7.5 (Section 7.1), in which Throcky skate-
boards down a curved ramp. He starts with zero kinetic energy and
735 J of potential energy, and at the bottom he has 450 J of kinetic
energy and zero potential energy; hence and

The work done by the friction
forces is so the change in internal energy is

The skateboard wheels and bearings¢Uint = -Wother = +285 J.
-285 J,

Wother = Wfric¢U = -735 J.
¢K = +450 J

and the ramp all get a little warmer. In accordance with Eq. (7.15),
the sum of the energy changes equals zero:

The total energy of the system (including internal, nonmechanical
forms of energy) is conserved.

¢K + ¢U + ¢Uint = +450 J + 1-735 J2 + 285 J = 0
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Test Your Understanding of Section 7.3 In a hydroelectric generating
station, falling water is used to drive turbines (“water wheels”), which in turn run
electric generators. Compared to the amount of gravitational potential energy
released by the falling water, how much electrical energy is produced? (i) the same; 
(ii) more; (iii) less. ❙

7.4 Force and Potential Energy
For the two kinds of conservative forces (gravitational and elastic) we have stud-
ied, we started with a description of the behavior of the force and derived from
that an expression for the potential energy. For example, for a body with mass m
in a uniform gravitational field, the gravitational force is We found 
that the corresponding potential energy is To stretch an ideal spring
by a distance x, we exert a force equal to By Newton’s third law the force
that an ideal spring exerts on a body is opposite this, or The corre-
sponding potential energy function is 

In studying physics, however, you’ll encounter situations in which you are given
an expression for the potential energy as a function of position and have to find the
corresponding force. We’ll see several examples of this kind when we study elec-
tric forces later in this book: It’s often far easier to calculate the electric potential
energy first and then determine the corresponding electric force afterward.

Here’s how we find the force that corresponds to a given potential-energy
expression. First let’s consider motion along a straight line, with coordinate x. We
denote the x-component of force, a function of x, by and the potential
energy as This notation reminds us that both and U are functions of x.
Now we recall that in any displacement, the work W done by a conservative force
equals the negative of the change in potential energy:

Let’s apply this to a small displacement The work done by the force 
during this displacement is approximately equal to We have to say
“approximately” because may vary a little over the interval But it is at
least approximately true that

You can probably see what’s coming. We take the limit as in this limit,
the variation of becomes negligible, and we have the exact relationship

(force from potential energy, one dimension) (7.16)

This result makes sense; in regions where changes most rapidly with x (that is,
where is large), the greatest amount of work is done during a given dis-
placement, and this corresponds to a large force magnitude. Also, when is in
the positive x-direction, decreases with increasing x. So and 
should indeed have opposite signs. The physical meaning of Eq. (7.16) is that a con-
servative force always acts to push the system toward lower potential energy.

As a check, let’s consider the function for elastic potential energy, 
Substituting this into Eq. (7.16) yields

which is the correct expression for the force exerted by an ideal spring (Fig. 7.22a).
Similarly, for gravitational potential energy we have taking care to
change x to y for the choice of axis, we get 

which is the correct expression for gravitational force (Fig. 7.22b).-mg,
Fy = -dU>dy = -d1mgy2>dy =

U1y2 = mgy;

Fx1x2 = -
d

dx
A12 kx2 B = -kx

1
2 kx2.

U1x2 =

dU1x2>dxFx1x2U1x2
Fx1x2

dU1x2>dx
U1x2

Fx1x2 = -
dU1x2

dx

Fx

¢xS 0;

Fx1x2 ¢x = -¢U  and  Fx1x2 = -
¢U

¢x

¢x.Fx1x2
Fx1x2 ¢x.

Fx1x2¢x.

W = -¢U

¢U

FxU1x2.
Fx1x2,

U1x2 = 1
2 kx2.

Fx = -kx.
+kx.

U1y2 = mgy.
Fy = -mg.
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U 5 kx21
2 dU

dx

U

x
O

Fx

Fx 5 2 5 2kx

x
O

(a) Spring potential energy and force as functions of x

U

y

U 5 mgy

O

dU
dy

Fy 5 2 5 2mg

(b) Gravitational potential energy and force as functions of y

Fy

y
O

Potential energy is
a minimum at x 5 0.

Potential energy
decreases as y
decreases.

For x . 0, Fx , 0;
force pushes body
toward x 5 0.

For all y, Fy , 0; force pushes
body toward decreasing y.

For x , 0, Fx . 0;
force pushes body
toward x 5 0.

7.22 A conservative force is the negative derivative of the corresponding potential energy.

Example 7.13 An electric force and its potential energy

An electrically charged particle is held at rest at the point 
a second particle with equal charge is free to move along the posi-
tive x-axis. The potential energy of the system is ,
where C is a positive constant that depends on the magnitude of
the charges. Derive an expression for the x-component of force
acting on the movable particle as a function of its position.

SOLUTION

IDENTIFY and SET UP: We are given the potential-energy function
. We’ll find the corresponding force function using Eq. (7.16),

Fx1x2 = -dU1x2>dx.
U1x2

U1x2 = C>x

x = 0; EXECUTE: The derivative of with respect to x is So for
the force on the movable charged particle is

EVALUATE: The x-component of force is positive, corresponding to
a repulsion between like electric charges. Both the potential energy
and the force are very large when the particles are close together
(small x), and both get smaller as the particles move farther apart
(large x); the force pushes the movable particle toward large posi-
tive values of x, where the potential energy is lower. (We’ll study
electric forces in detail in Chapter 21.)

Fx1x2 = -
dU1x2

dx
= -Ca -

1

x2
b =

C

x2

x 7 0x 7 0
-1>x2.1>x

Force and Potential Energy in Three Dimensions
We can extend this analysis to three dimensions, where the particle may move in
the x-, y-, or z-direction, or all at once, under the action of a conservative force that
has components and Each component of force may be a function of the
coordinates x, y, and z. The potential-energy function U is also a function of all
three space coordinates. We can now use Eq. (7.16) to find each component of
force. The potential-energy change when the particle moves a small distance

in the x-direction is again given by it doesn’t depend on and 
which represent force components that are perpendicular to the displacement and
do no work. So we again have the approximate relationship

The y- and z-components of force are determined in exactly the same way:

To make these relationships exact, we take the limits and
so that these ratios become derivatives. Because U may be a function

of all three coordinates, we need to remember that when we calculate each of
these derivatives, only one coordinate changes at a time. We compute the deriv-
ative of U with respect to x by assuming that y and z are constant and only x
varies, and so on. Such a derivative is called a partial derivative. The usual

¢zS 0
¢yS 0,¢xS 0,

Fy = -
¢U

¢y
  Fz = -

¢U

¢z

Fx = -
¢U

¢x

Fz,Fy-Fx ¢x;¢x
¢U

Fz.Fy,Fx,
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Application Topography and 
Potential Energy Gradient
The greater the elevation of a hiker in
Canada’s Banff National Park, the greater is
the gravitational potential energy . Think of
an x-axis that runs horizontally from west to
east and a y-axis that runs horizontally from
south to north. Then the function 
tells us the elevation as a function of position
in the park. Where the mountains have steep
slopes, has a large magnitude 
and there’s a strong force pushing you along
the mountain’s surface toward a region of
lower elevation (and hence lower ).
There’s zero force along the surface of the
lake, which is all at the same elevation. Hence 

is constant at all points on the lake 
surface, and F

S
� �§

S
Ugrav � 0.

Ugrav

Ugrav

F
S

� �§
S

Ugrav

Ugrav1x, y2

Ugrav

notation for a partial derivative is and so on; the symbol is a modified
d. So we write

(force from 
potential energy) (7.17)

We can use unit vectors to write a single compact vector expression for the force 

(force from potential energy) (7.18)

The expression inside the parentheses represents a particular operation on the
function U, in which we take the partial derivative of U with respect to each coor-
dinate, multiply by the corresponding unit vector, and then take the vector sum.
This operation is called the gradient of U and is often abbreviated as . Thus
the force is the negative of the gradient of the potential-energy function:

(7.19)

As a check, let’s substitute into Eq. (7.19) the function for gravitational
potential energy:

This is just the familiar expression for the gravitational force.
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Example 7.14 Force and potential energy in two dimensions

A puck with coordinates x and y slides on a level, frictionless air-
hockey table. It is acted on by a conservative force described by
the potential-energy function

Find a vector expression for the force acting on the puck, and find
an expression for the magnitude of the force.

SOLUTION

IDENTIFY and SET UP: Starting with the function we need
to find the vector components and magnitude of the corresponding
force . We’ll find the components using Eq. (7.18). The function
U doesn’t depend on z, so the partial derivative of U with respect
to z is and the force has no z-component. We’ll deter-
mine the magnitude F of the force using 

EXECUTE: The x- and y-components of are

From Eq. (7.18), the vector expression for the force is

F
S

� 1-kx2ın � 1-ky2≥n � -k1xın � y≥n2

Fx = -
0U

0x
= -kx    Fy = -

0U

0y
= -ky

F
S

F = 2F 2
x + F 2

y .
0U>0z = 0

F
S

U1x, y2,

U1x, y2 = 1
2 k1x2 + y22

The magnitude of the force is

EVALUATE: Because is just the position vector of the
particle, we can rewrite our result as This represents a
force that is opposite in direction to the particle’s position vector—
that is, a force directed toward the origin, . This is the force
that would be exerted on the puck if it were attached to one end 
of a spring that obeys Hooke’s law and has a negligibly small
unstretched length compared to the other distances in the problem.
(The other end is attached to the air-hockey table at .)

To check our result, note that , where 
We can find the force from this expression using Eq. (7.16) with 
x replaced by r:

As we found above, the force has magnitude the minus sign
indicates that the force is toward the origin .1at r = 02

kr;

Fr = -
dU

dr
= -

d

dr
A12 kr2 B = -kr

r 2 = x2 + y2.U = 1
2kr 2

r = 0

r = 0

F
S

� -krS.
rSxın � y≥n

F = 21-kx22 + 1-ky22 = k2x2 + y2 = kr
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7.5 Energy Diagrams
When a particle moves along a straight line under the action of a conservative
force, we can get a lot of insight into its possible motions by looking at the graph
of the potential-energy function Figure 7.23a shows a glider with mass m
that moves along the x-axis on an air track. The spring exerts on the glider a force
with x-component Figure 7.23b is a graph of the corresponding
potential-energy function If the elastic force of the spring is the
only horizontal force acting on the glider, the total mechanical energy

is constant, independent of x. A graph of E as a function of x is thus
a straight horizontal line. We use the term energy diagram for a graph like this,
which shows both the potential-energy function and the energy of the parti-
cle subjected to the force that corresponds to .

The vertical distance between the U and E graphs at each point represents
the difference equal to the kinetic energy K at that point. We see that 
K is greatest at It is zero at the values of x where the two graphs cross,
labeled A and in the diagram. Thus the speed is greatest at and it is
zero at the points of maximum possible displacement from for 
a given value of the total energy E. The potential energy U can never be greater
than the total energy E; if it were, K would be negative, and that’s impossible.
The motion is a back-and-forth oscillation between the points and

At each point, the force on the glider is equal to the negative of the slope
of the curve: (see Fig. 7.22a). When the particle is at 
the slope and the force are zero, so this is an equilibrium position. When x is
positive, the slope of the curve is positive and the force is negative,
directed toward the origin. When x is negative, the slope is negative and is
positive, again directed toward the origin. Such a force is called a restoring
force; when the glider is displaced to either side of the force tends to
“restore” it back to An analogous situation is a marble rolling around in
a round-bottomed bowl. We say that is a point of stable equilibrium.
More generally, any minimum in a potential-energy curve is a stable equilibrium
position.

Figure 7.24a shows a hypothetical but more general potential-energy function
Figure 7.24b shows the corresponding force Points and

are stable equilibrium points. At each of these points, is zero because the
slope of the curve is zero. When the particle is displaced to either side, the
force pushes back toward the equilibrium point. The slope of the curve is
also zero at points and and these are also equilibrium points. But when the
particle is displaced a little to the right of either point, the slope of the curve
becomes negative, corresponding to a positive that tends to push the particle
still farther from the point. When the particle is displaced a little to the left, is
negative, again pushing away from equilibrium. This is analogous to a marble
rolling on the top of a bowling ball. Points and are called unstable equi-
librium points; any maximum in a potential-energy curve is an unstable
equilibrium position.
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Test Your Understanding of Section 7.4 A particle moving along 
the x-axis is acted on by a conservative force At a certain point, the force is
zero. (a) Which of the following statements about the value of the potential-energy
function at that point is correct? (i) (ii) (iii) 
(iv) not enough information is given to decide. (b) Which of the following statements
about the value of the derivative of at that point is correct? (i) 
(ii) (iii) (iv) not enough information is given to 
decide. ❙

dU1x2>dx 6 0;dU1x2>dx 7 0;
dU1x2>dx = 0;U(x)

U1x2 6 0;U1x2 7 0;U(x) = 0;U(x)

Fx.

(a)

2A O A

x

U

K

U

2A O A
x

E 5 K 1 U

U 5   kx21
2

On the graph, the limits of motion are the points
where the U curve intersects the horizontal line
representing total mechanical energy E.

(b)

The limits of the glider’s motion
are at x 5 A and x 5 2A.

7.23 (a) A glider on an air track. The
spring exerts a force (b) The
potential-energy function.

Fx = -kx.

Application Acrobats in Equilibrium
Each of these acrobats is in unstable equi-
librium. The gravitational potential energy is
lower no matter which way an acrobat tips, 
so if she begins to fall she will keep on falling.
Staying balanced requires the acrobats’ 
constant attention.
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xc xa x1 xdx2 x3 x4xb
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(a) A hypothetical potential-energy function U(x)

Stable equilibrium points are minima
in the potential-energy curve.

Minimum possible energy is E0; the particle is at rest at x1.

If E = E1, the particle is trapped between xa and xb.

If E = E2, the particle is trapped between xc and xd.

If the total energy E . E3, the particle can “escape” to x . x4.

Unstable equilibrium points are maxima
in the potential-energy curve.

dU/dx . 0
Fx � 0

(b) The corresponding x-component of force Fx(x) 5 2dU(x)/dx

Fx

O x1 x2 x3 x4
x

dU/dx . 0
Fx , 0

dU/dx , 0
Fx . 0

dU/dx , 0
Fx . 0

dU/dx , 0
Fx . 0

7.24 The maxima and minima of a potential-energy function correspond to points where Fx = 0.U1x2

CAUTION Potential energy and the direction of a conservative force The direction of the
force on a body is not determined by the sign of the potential energy U. Rather, it’s the
sign of that matters. As we discussed in Section 7.1, the physically signifi-
cant quantity is the difference in the values of U between two points, which is just what the
derivative measures. This means that you can always add a constant to the
potential-energy function without changing the physics of the situation. ❙

If the total energy is and the particle is initially near it can move only in
the region between and determined by the intersection of the and U
graphs (Fig. 7.24a). Again, U cannot be greater than because K can’t be nega-
tive. We speak of the particle as moving in a potential well, and and are the
turning points of the particle’s motion (since at these points, the particle stops
and reverses direction). If we increase the total energy to the level the particle
can move over a wider range, from to If the total energy is greater than 
the particle can “escape” and move to indefinitely large values of x. At the other
extreme, represents the least possible total energy the system can have.E0

E3,xd.xc

E2,

xbxa

E1

E1xbxa

x1,E1

Fx = -dU>dx

Fx = -dU>dx

Test Your Understanding of Section 7.5 The curve in Fig. 7.24b has a
maximum at a point between and Which statement correctly describes what
happens to the particle when it is at this point? (i) The particle’s acceleration is
zero. (ii) The particle accelerates in the positive x-direction; the magnitude of the acceler-
ation is less than at any other point between and (iii) The particle accelerates in the
positive x-direction; the magnitude of the acceleration is greater than at any other point
between and (iv) The particle accelerates in the negative x-direction; the magnitude
of the acceleration is less than at any other point between and (v) The particle
accelerates in the negative x-direction; the magnitude of the acceleration is greater than 
at any other point between and ❙x3.x2

x3.x2

x3.x2

x3.x2

x3.x2

PhET: Energy Skate Park



CHAPTER 7 SUMMARY

When total mechanical energy is conserved:
The total potential energy U is the sum of the
gravitational and elastic potential energy:

If no forces other than the 
gravitational and elastic forces do work on a 
particle, the sum of kinetic and potential energy 
is conserved. This sum is called the
total mechanical energy. (See Examples 7.1, 7.3,
7.4, and 7.7.)

E = K + U

U = Ugrav + Uel .

When total mechanical energy is not conserved:
When forces other than the gravitational and elastic
forces do work on a particle, the work done
by these other forces equals the change in total
mechanical energy (kinetic energy plus total 
potential energy). (See Examples 7.2, 7.5, 7.6, 
7.8, and 7.9.)

Wother

(7.4), (7.11)K1 + U1 = K2 + U2

(7.14)K1 + U1 + Wother = K2 + U2

Conservative forces, nonconservative forces, and the
law of conservation of energy: All forces are either
conservative or nonconservative. A conservative
force is one for which the work–kinetic energy
relationship is completely reversible. The work of a
conservative force can always be represented by a
potential-energy function, but the work of a non-
conservative force cannot. The work done by non-
conservative forces manifests itself as changes in
the internal energy of bodies. The sum of kinetic,
potential, and internal energy is always conserved.
(See Examples 7.10–7.12.)

(7.15)¢K + ¢U + ¢Uint = 0

Gravitational potential energy and elastic potential
energy: The work done on a particle by a constant
gravitational force can be represented as a change
in the gravitational potential energy 
This energy is a shared property of the particle and
the earth. A potential energy is also associated with
the elastic force exerted by an ideal
spring, where x is the amount of stretch or com-
pression. The work done by this force can be rep-
resented as a change in the elastic potential energy
of the spring, Uel = 1

2 kx2.

Fx = -kx

Ugrav = mgy.
(7.1), (7.3)

(7.10)
 =   Uel, 1 - Uel, 2 = -¢Uel

 Wel = 1
2 kx1

2 - 1
2 kx2

2

 =   -¢Ugrav

 = Ugrav,1 - Ugrav,2

 Wgrav = mgy1 - mgy2

Determining force from potential energy: For motion
along a straight line, a conservative force is
the negative derivative of its associated potential-
energy function U. In three dimensions, the compo-
nents of a conservative force are negative partial
derivatives of U. (See Examples 7.13 and 7.14.)

Fx 1x2 (7.16)

(7.17)

(7.18)F
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0U
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0U
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 ≥n �

0U

0z
 kn b

Fz = -  

0U

0z

Fx = -  

0U

0x
  Fy = -  

0U
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 Fx 1x2 = -  

dU1x2
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Ugrav,2 5 mgy2

Uel 5   kx2

x 5 0 x
x

O
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Ugrav,1 5 mgy1 1
2

At y 5 h
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zeroAt point  2
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E 5K 1 Ugrav

E5K 1 Ugrav
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As friction slows block,
mechanical energy is converted
to internal energy of block and ramp.

zero

zero

zero
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A 2.00-kg package is
released on a incline,
4.00 m from a long spring
with force constant

that is
attached at the bottom of
the incline (Fig. 7.25). 
The coefficients of friction
between the package and
incline are and

. The mass of
the spring is negligible. 
(a) What is the maximum compression of the spring? (b) The pack-
age rebounds up the incline. How close does it get to its original
position? (c) What is the change in the internal energy of the pack-
age and incline from when the package is released to when it
rebounds to its maximum height?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. This problem involves the gravitational force, a spring force,

and the friction force, as well as the normal force that acts on
the package. Since the spring force isn’t constant, you’ll have
to use energy methods. Is mechanical energy conserved during
any part of the motion? Why or why not?

2. Draw free-body diagrams for the package as it is sliding down
the incline and sliding back up the incline. Include your choice
of coordinate axis. (Hint: If you choose to be at the end
of the uncompressed spring, you’ll be able to use 
for the elastic potential energy of the spring.)

3. Label the three critical points in the package’s motion: its start-
ing position, its position when it comes to rest with the spring
maximally compressed, and its position when it’s rebounded as
far as possible up the incline. (Hint: You can assume that the 

Uel = 1
2kx2

x = 0

mk = 0.200
ms = 0.400

1.20 * 102 N>m

53.1°
package is no longer in contact with the spring at the last of
these positions. If this turns out to be incorrect, you’ll calcu-
late a value of x that tells you the spring is still partially com-
pressed at this point.)

4. Make a list of the unknown quantities and decide which of
these are the target variables.

EXECUTE
5. Find the magnitude of the friction force that acts on the pack-

age. Does the magnitude of this force depend on whether 
the package is moving up or down the incline, or on whether
or not the package is in contact with the spring? Does the
direction of the normal force depend on any of these?

6. Write the general energy equation for the motion of the pack-
age between the first two points you labeled in step 3. Use this
equation to solve for the distance that the spring is compressed
when the package is at its lowest point. (Hint: You’ll have to
solve a quadratic equation. To decide which of the two solu-
tions of this equation is the correct one, remember that the dis-
tance the spring is compressed is positive.)

7. Write the general energy equation for the motion of the pack-
age between the second and third points you labeled in step 3.
Use this equation to solve for how far the package rebounds.

8. Calculate the change in internal energy for the package’s trip
down and back up the incline. Remember that the amount the
internal energy increases is equal to the amount the total
mechanical energy decreases.

EVALUATE
9. Was it correct to assume in part (b) that the package is no

longer in contact with the spring when it reaches it maximum
rebound height?

10. Check your result for part (c) by finding the total work done
by the force of friction over the entire trip. Is this in accor-
dance with your result from step 8?

BRIDGING PROBLEM A Spring and Friction on an Incline

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q7.1 A baseball is thrown straight up with initial speed If air
resistance cannot be ignored, when the ball returns to its initial
height its speed is less than Explain why, using energy concepts.
Q7.2 A projectile has the same initial kinetic energy no matter
what the angle of projection. Why doesn’t it rise to the same maxi-
mum height in each case?
Q7.3 An object is released from rest at the top of a ramp. If the
ramp is frictionless, does the object’s speed at the bottom of the
ramp depend on the shape of the ramp or just on its height?
Explain. What if the ramp is not frictionless?

v0.

v0.
Q7.4 An egg is released from rest from the roof of a building and
falls to the ground. Its fall is observed by a student on the roof of the
building, who uses coordinates with origin at the roof, and by a stu-
dent on the ground, who uses coordinates with origin at the ground.
Do the two students assign the same or different values to the initial
gravitational potential energy, the final gravitational potential energy,
the change in gravitational potential energy, and the kinetic energy of
the egg just before it strikes the ground? Explain.
Q7.5 A physics teacher had a bowling ball suspended from a very
long rope attached to the high ceiling of a large lecture hall. To
illustrate his faith in conservation of energy, he would back up to

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

m 5 2.00 kg

u 5 53.1°

D 5 4.00 m

7.25 The initial situation.

www.masteringphysics.com
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one side of the stage, pull the ball far to one side until the taut rope
brought it just to the end of his nose, and then release it. The mas-
sive ball would swing in a mighty arc across the stage and then
return to stop momentarily just in front of the nose of the station-
ary, unflinching teacher. However, one day after the demonstration
he looked up just in time to see a student at the other side of the
stage push the ball away from his nose as he tried to duplicate the
demonstration. Tell the rest of the story and explain the reason for
the potentially tragic outcome.
Q7.6 Lost Energy? The principle of the conservation of energy
tells us that energy is never lost, but only changes from one form to
another. Yet in many ordinary situations, energy may appear to be
lost. In each case, explain what happens to the “lost” energy. (a) A
box sliding on the floor comes to a halt due to friction. How did
friction take away its kinetic energy, and what happened to that
energy? (b) A car stops when you apply the brakes. What happened
to its kinetic energy? (c) Air resistance uses up some of the original
gravitational potential energy of a falling object. What type of
energy did the “lost” potential energy become? (d) When a return-
ing space shuttle touches down on the runway, it has lost almost all
its kinetic energy and gravitational potential energy. Where did all
that energy go?
Q7.7 Is it possible for a frictional force to increase the mechanical
energy of a system? If so, give examples.
Q7.8 A woman bounces on a trampoline, going a little higher with
each bounce. Explain how she increases the total mechanical
energy.
Q7.9 Fractured Physics. People often call their electric bill a
power bill, yet the quantity on which the bill is based is expressed
in kilowatt-hours. What are people really being billed for?
Q7.10 A rock of mass m and a rock of mass 2m are both released
from rest at the same height and feel no air resistance as they fall.
Which statements about these rocks are true? (There may be more
than one correct choice.) (a) Both have the same initial gravita-
tional potential energy. (b) Both have the same kinetic energy
when they reach the ground. (c) Both reach the ground with the
same speed. (d) When it reaches the ground, the heavier rock has
twice the kinetic energy of the lighter one. (e) When it reaches the
ground, the heavier rock has four times the kinetic energy of the
lighter one.
Q7.11 On a friction-free ice pond, a hockey puck is pressed
against (but not attached to) a fixed ideal spring, compressing the
spring by a distance The maximum energy stored in the spring
is the maximum speed the puck gains after being released is 
and its maximum kinetic energy is Now the puck is pressed 
so it compresses the spring twice as far as before. In this case, 
(a) what is the maximum potential energy stored in the spring (in
terms of ), and (b) what are the puck’s maximum kinetic energy
and speed (in terms of and )?
Q7.12 When people are cold, they often rub their hands together to
warm them up. How does doing this produce heat? Where did the
heat come from?
Q7.13 You often hear it said that most of our energy ultimately
comes from the sun. Trace each of the following energies back to
the sun: (a) the kinetic energy of a jet plane; (b) the potential
energy gained by a mountain climber; (c) the electrical energy
used to run a computer; (d) the electrical energy from a hydroelec-
tric plant.
Q7.14 A box slides down a ramp and work is done on the box by
the forces of gravity and friction. Can the work of each of these
forces be expressed in terms of the change in a potential-energy
function? For each force explain why or why not.

x0K0

U0

K0.
v0,U0,

x0.

Q7.15 In physical terms, explain why friction is a nonconservative
force. Does it store energy for future use?
Q7.16 A compressed spring is clamped in its compressed position
and then is dissolved in acid. What becomes of its potential
energy?
Q7.17 Since only changes in potential energy are important in any
problem, a student decides to let the elastic potential energy of a
spring be zero when the spring is stretched a distance The stu-
dent decides, therefore, to let Is this correct?
Explain.
Q7.18 Figure 7.22a shows the potential-energy function for the
force Sketch the potential-energy function for the force

For this force, is a point of equilibrium? Is this
equilibrium stable or unstable? Explain.
Q7.19 Figure 7.22b shows the potential-energy function associ-
ated with the gravitational force between an object and the earth.
Use this graph to explain why objects always fall toward the earth
when they are released.
Q7.20 For a system of two particles we often let the potential
energy for the force between the particles approach zero as the sep-
aration of the particles approaches infinity. If this choice is made,
explain why the potential energy at noninfinite separation is posi-
tive if the particles repel one another and negative if they attract.
Q7.21 Explain why the points and in Fig. 7.23b
are called turning points. How are the values of E and U related at
a turning point?
Q7.22 A particle is in neutral equilibrium if the net force on it is
zero and remains zero if the particle is displaced slightly in any
direction. Sketch the potential-energy function near a point of neu-
tral equilibrium for the case of one-dimensional motion. Give an
example of an object in neutral equilibrium.
Q7.23 The net force on a particle of mass m has the potential-
energy function graphed in Fig. 7.24a. If the total energy is 
graph the speed of the particle versus its position x. At what
value of x is the speed greatest? Sketch versus x if the total
energy is 

Q7.24 The potential-energy function for a force is 

where is a positive constant. What is the direction of ?

EXERCISES
Section 7.1 Gravitational Potential Energy
7.1 . In one day, a 75-kg mountain climber ascends from the
1500-m level on a vertical cliff to the top at 2400 m. The next day,
she descends from the top to the base of the cliff, which is at an
elevation of 1350 m. What is her change in gravitational potential
energy (a) on the first day and (b) on the second day?
7.2 . BIO How High Can We Jump? The maximum height a
typical human can jump from a crouched start is about 60 cm. 
By how much does the gravitational potential energy increase for
a 72-kg person in such a jump? Where does this energy come
from?
7.3 .. CP A 120-kg mail bag hangs by a vertical rope 3.5 m long.
A postal worker then displaces the bag to a position 2.0 m side-
ways from its original position, always keeping the rope taut. 
(a) What horizontal force is necessary to hold the bag in the new
position? (b) As the bag is moved to this position, how much work
is done (i) by the rope and (ii) by the worker?
7.4 .. BIO Food Calories. The food calorie, equal to 4186 J, 
is a measure of how much energy is released when food is metabo-
lized by the body. A certain brand of fruit-and-cereal bar contains

F
S

a

U = ax3,F
S

E2.
v

v
E1,

x = -Ax = A

x = 0Fx = +kx.
Fx = -kx.

U = 1
2 k1x - x12
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x1.
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140 food calories per bar. (a) If a 65-kg hiker eats one of these bars,
how high a mountain must he climb to “work off” the calories,
assuming that all the food energy goes only into increasing gravi-
tational potential energy? (b) If, as is typical, only 20% of the food
calories go into mechanical energy, what would be the answer to
part (a)? (Note: In this and all other problems, we are assuming
that 100% of the food calories that are eaten are absorbed and used
by the body. This is actually not true. A person’s “metabolic effi-
ciency” is the percentage of calories eaten that are actually used;
the rest are eliminated by the body. Metabolic efficiency varies
considerably from person to person.)
7.5 . A baseball is thrown from the roof of a 22.0-m-tall building
with an initial velocity of magnitude and directed at an
angle of above the horizontal. (a) What is the speed of the
ball just before it strikes the ground? Use energy methods and
ignore air resistance. (b) What is the answer for part (a) if the ini-
tial velocity is at an angle of below the horizontal? (c) If the
effects of air resistance are included, will part (a) or (b) give the
higher speed?
7.6 .. A crate of mass M starts from rest at the top of a frictionless
ramp inclined at an angle above the horizontal. Find its speed at
the bottom of the ramp, a distance d from where it started. Do this
in two ways: (a) Take the level at which the potential energy is
zero to be at the bottom of the ramp with y positive upward. 
(b) Take the zero level for potential energy to be at the top of the
ramp with y positive upward. (c) Why did the normal force not
enter into your solution?
7.7 .. BIO Human Energy vs. Insect Energy. For its size, the
common flea is one of the most accomplished jumpers in the animal
world. A 2.0-mm-long, 0.50-mg critter can reach a height of 20 cm
in a single leap. (a) Neglecting air drag, what is the takeoff speed of
such a flea? (b) Calculate the kinetic energy of this flea at takeoff
and its kinetic energy per kilogram of mass. (c) If a 65-kg, 2.0-m-
tall human could jump to the same height compared with his length
as the flea jumps compared with its length, how high could the
human jump, and what takeoff speed would he need? (d) In fact,
most humans can jump no more than 60 cm from a crouched start.
What is the kinetic energy per kilogram of mass at takeoff for such
a 65-kg person? (e) Where does the flea store the energy that allows
it to make such a sudden leap?
7.8 .. An empty crate is given an initial push down a ramp, start-
ing with speed and reaches the bottom with speed and kinetic
energy K. Some books are now placed in the crate, so that the total
mass is quadrupled. The coefficient of kinetic friction is constant
and air resistance is negligible. Starting again with at the top of
the ramp, what are the speed and kinetic energy at the bottom?
Explain the reasoning behind your answers.
7.9 .. CP A small rock with
mass 0.20 kg is released from rest
at point A, which is at the top
edge of a large, hemispherical 
bowl with radius 
(Fig. E7.9). Assume that the size
of the rock is small compared to
R, so that the rock can be treated
as a particle, and assume that the rock slides rather than rolls. The
work done by friction on the rock when it moves from point A to
point B at the bottom of the bowl has magnitude 0.22 J. 
(a) Between points A and B, how much work is done on the rock by
(i) the normal force and (ii) gravity? (b) What is the speed of the
rock as it reaches point B? (c) Of the three forces acting on the rock
as it slides down the bowl, which (if any) are constant and which

R = 0.50 m

v0

vv0,

a

53.1°

53.1°
12.0 m>s

are not? Explain. (d) Just as the rock reaches point B, what is the
normal force on it due to the bottom of the bowl?
7.10 .. BIO Bone Fractures. The maximum energy that a bone
can absorb without breaking depends on its characteristics, such as
its cross-sectional area and its elasticity. For healthy human leg
bones of approximately 6.0 cm2 cross-sectional area, this energy
has been experimentally measured to be about 200 J. (a) From
approximately what maximum height could a 60-kg person jump
and land rigidly upright on both feet without breaking his legs? 
(b) You are probably surprised at how small the answer to part 
(a) is. People obviously jump from much greater heights without
breaking their legs. How can that be? What else absorbs the energy
when they jump from greater heights? (Hint: How did the person
in part (a) land? How do people normally land when they jump
from greater heights?) (c) In light of your answers to parts (a) and
(b), what might be some of the reasons that older people are much
more prone than younger ones to bone fractures from simple falls
(such as a fall in the shower)?
7.11 .. You are testing a new amusement park roller coaster with
an empty car of mass 120 kg. One part of the track is a vertical
loop with radius 12.0 m. At the bottom of the loop (point A) the car
has speed and at the top of the loop (point B) it has speed

As the car rolls from point A to point B, how much work
is done by friction?
7.12 . Tarzan and Jane. Tarzan, in one tree, sights Jane in
another tree. He grabs the end of a vine with length 20 m that makes
an angle of with the vertical, steps off his tree limb, and swings
down and then up to Jane’s open arms. When he arrives, his vine
makes an angle of with the vertical. Determine whether he
gives her a tender embrace or knocks her off her limb by calculat-
ing Tarzan’s speed just before he reaches Jane. You can ignore air
resistance and the mass of the vine.
7.13 .. CP A 10.0-kg microwave oven is pushed 8.00 m up the
sloping surface of a loading ramp inclined at an angle of 
above the horizontal, by a constant force with a magnitude 110 N
and acting parallel to the ramp. The coefficient of kinetic friction
between the oven and the ramp is 0.250. (a) What is the work done
on the oven by the force ? (b) What is the work done on the oven
by the friction force? (c) Compute the increase in potential energy
for the oven. (d) Use your answers to parts (a), (b), and (c) to calcu-
late the increase in the oven’s kinetic energy. (e) Use to
calculate the acceleration of the oven. Assuming that the oven is ini-
tially at rest, use the acceleration to calculate the oven’s speed after
traveling 8.00 m. From this, compute the increase in the oven’s
kinetic energy, and compare it to the answer you got in part (d).

Section 7.2 Elastic Potential Energy
7.14 .. An ideal spring of negligible mass is 12.00 cm long when
nothing is attached to it. When you hang a 3.15-kg weight from it,
you measure its length to be 13.40 cm. If you wanted to store 10.0 J
of potential energy in this spring, what would be its total length?
Assume that it continues to obey Hooke’s law.
7.15 .. A force of 800 N stretches a certain spring a distance of
0.200 m. (a) What is the potential energy of the spring when it is
stretched 0.200 m? (b) What is its potential energy when it is com-
pressed 5.00 cm?
7.16 . BIO Tendons. Tendons are strong elastic fibers that
attach muscles to bones. To a reasonable approximation, they obey
Hooke’s law. In laboratory tests on a particular tendon, it was
found that, when a 250-g object was hung from it, the tendon
stretched 1.23 cm. (a) Find the force constant of this tendon in

. (b) Because of its thickness, the maximum tension this N>m
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tendon can support without rupturing is 138 N. By how much can
the tendon stretch without rupturing, and how much energy is
stored in it at that point?
7.17 . A spring stores potential energy when it is compressed a
distance from its uncompressed length. (a) In terms of how
much energy does it store when it is compressed (i) twice as much
and (ii) half as much? (b) In terms of how much must it be com-
pressed from its uncompressed length to store (i) twice as much
energy and (ii) half as much energy?
7.18 . A slingshot will shoot a 10-g pebble 22.0 m straight up. (a)
How much potential energy is stored in the slingshot’s rubber
band? (b) With the same potential energy stored in the rubber
band, how high can the slingshot shoot a 25-g pebble? (c) What
physical effects did you ignore in solving this problem?
7.19 .. A spring of negligible mass has force constant 

(a) How far must the spring be compressed for 
of potential energy to be stored in it? (b) You place the spring ver-
tically with one end on the floor. You then drop a 1.20-kg book
onto it from a height of 0.80 m above the top of the spring. Find
the maximum distance the spring will be compressed.
7.20 . A 1.20-kg piece of cheese is placed on a vertical spring of
negligible mass and force constant that is com-
pressed 15.0 cm. When the spring is released, how high does the
cheese rise from this initial position? (The cheese and the spring
are not attached.)
7.21 .. Consider the glider of Example 7.7 (Section 7.2) and 
Fig. 7.16. As in the example, the glider is released from rest with
the spring stretched 0.100 m. What is the displacement x of the
glider from its equilibrium position when its speed is 
(You should get more than one answer. Explain why.)
7.22 .. Consider the glider of Example 7.7 (Section 7.2) and 
Fig. 7.16. (a) As in the example, the glider is released from rest
with the spring stretched 0.100 m. What is the speed of the glider
when it returns to (b) What must the initial displacement of
the glider be if its maximum speed in the subsequent motion is to
be
7.23 .. A 2.50-kg mass is pushed against a horizontal spring of
force constant on a frictionless air table. The spring is
attached to the tabletop, and the mass is not attached to the spring
in any way. When the spring has been compressed enough to store
11.5 J of potential energy in it, the mass is suddenly released from
rest. (a) Find the greatest speed the mass reaches. When does this
occur? (b) What is the greatest acceleration of the mass, and when
does it occur?
7.24 .. (a) For the elevator of Example 7.9 (Section 7.2), what is
the speed of the elevator after it has moved downward 1.00 m from
point 1 in Fig. 7.17? (b) When the elevator is 1.00 m below point 1
in Fig. 7.17, what is its acceleration?
7.25 .. You are asked to design a spring that will give a 1160-kg
satellite a speed of relative to an orbiting space shuttle.
Your spring is to give the satellite a maximum acceleration of
5.00g. The spring’s mass, the recoil kinetic energy of the shuttle,
and changes in gravitational potential energy will all be negligible.
(a) What must the force constant of the spring be? (b) What dis-
tance must the spring be compressed?
7.26 .. A 2.50-kg block on a horizontal floor is attached to a hor-
izontal spring that is initially compressed 0.0300 m. The spring 
has force constant . The coefficient of kinetic friction
between the floor and the block is . The block and
spring are released from rest and the block slides along the floor.
What is the speed of the block when it has moved a distance of

mk = 0.40
840 N>m

2.50 m>s

25.0 N>cm

2.50 m>s?

x = 0?

0.20 m>s?

k = 1800 N>m

3.20 J1600 N>m.
k =

x0,

U0,x0

U0

0.0200 m from its initial position? (At this point the spring is com-
pressed 0.0100 m.)

Section 7.3 Conservative and Nonconservative Forces
7.27 . A 10.0-kg box is pulled by a horizontal wire in a circle on a
rough horizontal surface for which the coefficient of kinetic fric-
tion is 0.250. Calculate the work done by friction during one com-
plete circular trip if the radius is (a) 2.00 m and (b) 4.00 m. (c) On
the basis of the results you just obtained, would you say that fric-
tion is a conservative or nonconservative force? Explain.
7.28 . A 75-kg roofer climbs a vertical 7.0-m ladder to the flat
roof of a house. He then walks 12 m on the roof, climbs down
another vertical 7.0-m ladder, and finally walks on the ground back
to his starting point. How much work is done on him by gravity 
(a) as he climbs up; (b) as he climbs down; (c) as he walks on the
roof and on the ground? (d) What is the total work done on him by
gravity during this round trip? (e) On the basis of your answer to
part (d), would you say that gravity is a conservative or nonconser-
vative force? Explain.
7.29 . A 0.60-kg book slides on a horizontal table. The kinetic fric-
tion force on the book has magnitude 1.2 N. (a) How much work is
done on the book by friction during a displacement of 3.0 m to the
left? (b) The book now slides 3.0 m to the right, returning to its
starting point. During this second 3.0-m displacement, how much
work is done on the book by friction? (c) What is the total work
done on the book by friction during the complete round trip? (d) On
the basis of your answer to part (c), would you say that the friction
force is conservative or nonconservative? Explain.
7.30 .. CALC In an experiment, one of the forces exerted on a 
proton is where (a) How much work
does do when the proton moves along the straight-line path from
the point to the point (b) Along the
straight-line path from the point to the point

(c) Along the straight-line path from the point
to the point (d) Is the force conserva-

tive? Explain. If is conservative, what is the potential-energy func-
tion for it? Let when 
7.31 . You and three friends stand
at the corners of a square whose
sides are 8.0 m long in the middle
of the gym floor, as shown in
Fig. E7.31. You take your physics
book and push it from one person
to the other. The book has a mass of
1.5 kg, and the coefficient of kinetic
friction between the book and the
floor is (a) The book
slides from you to Beth and then from Beth to Carlos, along the lines
connecting these people. What is the work done by friction during
this displacement? (b) You slide the book from you to Carlos along
the diagonal of the square. What is the work done by friction during
this displacement? (c) You slide the book to Kim, who then slides it
back to you. What is the total work done by friction during this
motion of the book? (d) Is the friction force on the book conservative
or nonconservative? Explain.
7.32 . While a roofer is working on a roof that slants at 36° above
the horizontal, he accidentally nudges his 85.0-N toolbox, causing
it to start sliding downward, starting from rest. If it starts 4.25 m
from the lower edge of the roof, how fast will the toolbox be mov-
ing just as it reaches the edge of the roof if the kinetic friction force
on it is 22.0 N?

mk = 0.25.

x = 0.U = 0
F
S

F
S

10.10 m, 02?10.30 m, 02
10.30 m, 02?

10.10 m, 02
10.10 m, 0.40 m2?10.10 m, 02

F
S

a = 12 N>m2.F
S

� -ax2ın,

8.0 mBeth Carlos

8.0 m

You Kim

Figure E7.31



7.43 . A block with mass 0.50 kg is forced against a horizontal
spring of negligible mass, compressing the spring a distance of
0.20 m (Fig. P7.43). When released, the block moves on a horizon-
tal tabletop for 1.00 m before coming to rest. The spring constant k
is What is the coefficient of kinetic friction between
the block and the tabletop?

7.44 . On a horizontal surface, a crate with mass 50.0 kg is placed
against a spring that stores 360 J of energy. The spring is released,
and the crate slides 5.60 m before coming to rest. What is the
speed of the crate when it is 2.00 m from its initial position?

mk100 N>m.

7.37 .. CALC A small block with mass 0.0400 kg is moving in the
xy-plane. The net force on the block is described by the potential-
energy function . What
are the magnitude and direction of the acceleration of the block
when it is at the point , ?

Section 7.5 Energy Diagrams
7.38 . A marble moves along the
x-axis. The potential-energy func-
tion is shown in Fig. E7.38. (a) At
which of the labeled x-coordinates
is the force on the marble zero? 
(b) Which of the labeled x-coordi-
nates is a position of stable equi-
librium? (c) Which of the labeled
x-coordinates is a position of
unstable equilibrium?
7.39 . CALC The potential energy of two atoms in a diatomic mole-
cule is approximated by where r is the spac-
ing between atoms and a and b are positive constants. (a) Find the
force on one atom as a function of r. Draw two graphs: one of

versus r and one of versus r. (b) Find the equilibrium dis-
tance between the two atoms. Is this equilibrium stable? (c) Suppose
the distance between the two atoms is equal to the equilibrium dis-
tance found in part (b). What minimum energy must be added to the
molecule to dissociate it—that is, to separate the two atoms to an
infinite distance apart? This is called the dissociation energy of the
molecule. (d) For the molecule CO, the equilibrium distance between
the carbon and oxygen atoms is and the dissocia-
tion energy is per molecule. Find the values of the
constants a and b.

PROBLEMS
7.40 .. Two blocks with different masses are attached to either
end of a light rope that passes over a light, frictionless pulley sus-
pended from the ceiling. The masses are released from rest, and
the more massive one starts to descend. After this block has
descended 1.20 m, its speed is If the total mass of the
two blocks is 15.0 kg, what is the mass of each block?

3.00 m>s.

1.54 * 10-18 J
1.13 * 10-10 m

F1r2U1r2
F1r2

U1r2 = a>r 12 - b>r 6,

y = 0.600 mx = 0.300 m

U1x, y2 = 15.80 J>m22x2 - 13.60 J>m32y3
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7.33 .. A 62.0-kg skier is moving at on a frictionless,
horizontal, snow-covered plateau when she encounters a rough
patch 3.50 m long. The coefficient of kinetic friction between this
patch and her skis is 0.300. After crossing the rough patch and
returning to friction-free snow, she skis down an icy, frictionless
hill 2.50 m high. (a) How fast is the skier moving when she gets to
the bottom of the hill? (b) How much internal energy was gener-
ated in crossing the rough patch?

Section 7.4 Force and Potential Energy
7.34 .. CALC The potential energy of a pair of hydrogen atoms
separated by a large distance x is given by where

is a positive constant. What is the force that one atom exerts on
the other? Is this force attractive or repulsive?
7.35 .. CALC A force parallel to the x-axis acts on a particle mov-
ing along the x-axis. This force produces potential energy 
given by where What is the force
(magnitude and direction) when the particle is at 
7.36 .. CALC An object moving in the xy-plane is acted on by a
conservative force described by the potential-energy function 

where is a positive constant. Derive
an expression for the force expressed in terms of the unit vectors 
and .≥n

ın
aU1x, y2 = a11>x2 + 1>y22,

x = -0.800 m?
a = 1.20 J>m4.U1x2 = ax4,

U1x2

C6

U1x2 = -C6>x
6,

6.50 m>s 7.41 ... At a construction site, a 65.0-kg bucket of concrete hangs
from a light (but strong) cable that passes over a light, friction-free
pulley and is connected to an 80.0-kg box on a horizontal roof
(Fig. P7.41). The cable pulls horizontally on the box, and a 
50.0-kg bag of gravel rests on top of the box. The coefficients of
friction between the box and roof are shown. (a) Find the friction
force on the bag of gravel and on the box. (b) Suddenly a worker
picks up the bag of gravel. Use energy conservation to find 
the speed of the bucket after it has descended 2.00 m from rest.
(You can check your answer by solving this problem using 
Newton’s laws.)

O
x

a b c d

U

Figure E7.38

ms 5 0.700

Box

Gravel

Concrete

mk 5 0.400

Figure P7.41

7.42 . A 2.00-kg block is pushed against a spring with negligible
mass and force constant compressing it 0.220 m.
When the block is released, it moves along a frictionless, hori-
zontal surface and then up a frictionless incline with slope 
(Fig. P7.42). (a) What is the speed of the block as it slides along
the horizontal surface after having left the spring? (b) How far
does the block travel up the incline before starting to slide back
down?

37.0°

k = 400 N>m,

m 5 2.00 kgk 5 400 N/m

37.0°

0.220 m

Figure P7.42

k 5 100 N/m m 5 0.50 kg

1.00 m

0.20 m

Figure P7.43



region, the stone travels 100 m and then runs into a very long, light
spring with force constant The coefficients of kinetic
and static friction between the stone and the horizontal ground are
0.20 and 0.80, respectively. (a) What is the speed of the stone when
it reaches point B? (b) How far will the stone compress the spring?
(c) Will the stone move again after it has been stopped by the
spring?
7.50 .. CP A 2.8-kg block
slides over the smooth, icy hill
shown in Fig. P7.50. The top of
the hill is horizontal and 70 m
higher than its base. What mini-
mum speed must the block have
at the base of the hill in order
for it to pass over the pit at the
far side of the hill?
7.51 ... Bungee Jump. A bungee cord is 30.0 m long and,
when stretched a distance x, it exerts a restoring force of magnitude
kx. Your father-in-law (mass 95.0 kg) stands on a platform 45.0 m
above the ground, and one end of the cord is tied securely to his
ankle and the other end to the platform. You have promised him that
when he steps off the platform he will fall a maximum distance of
only 41.0 m before the cord stops him. You had several bungee
cords to select from, and you tested them by stretching them out,
tying one end to a tree, and pulling on the other end with a force of
380.0 N. When you do this, what distance will the bungee cord that
you should select have stretched?
7.52 .. Ski Jump Ramp. You are designing a ski jump ramp for
the next Winter Olympics. You need to calculate the vertical height h
from the starting gate to the bottom of the ramp. The skiers push off
hard with their ski poles at the start, just above the starting gate, so
they typically have a speed of as they reach the gate. For
safety, the skiers should have a speed no higher than when
they reach the bottom of the ramp. You determine that for a 85.0-kg
skier with good form, friction and air resistance will do total work of
magnitude 4000 J on him during his run down the ramp. What is the
maximum height h for which the maximum safe speed will not be
exceeded?
7.53 ... The Great Sandini is a 60-kg circus performer who is
shot from a cannon (actually a spring gun). You don’t find many
men of his caliber, so you help him design a new gun. This new
gun has a very large spring with a very small mass and a force con-
stant of that he will compress with a force of 4400 N.
The inside of the gun barrel is coated with Teflon, so the average
friction force will be only 40 N during the 4.0 m he moves in 
the barrel. At what speed will he emerge from the end of the barrel,
2.5 m above his initial rest position?
7.54 ... You are designing a delivery ramp for crates containing
exercise equipment. The 1470-N crates will move at at the
top of a ramp that slopes downward at The ramp exerts a
550-N kinetic friction force on each crate, and the maximum static
friction force also has this value. Each crate will compress a spring
at the bottom of the ramp and will come to rest after traveling a
total distance of 8.0 m along the ramp. Once stopped, a crate must
not rebound back up the ramp. Calculate the force constant of the
spring that will be needed in order to meet the design criteria.
7.55 .. A system of two paint buckets connected by a lightweight
rope is released from rest with the 12.0-kg bucket 2.00 m above
the floor (Fig. P7.55). Use the principle of conservation of energy
to find the speed with which this bucket strikes the floor. You can
ignore friction and the mass of the pulley.

22.0°.
1.8 m>s

1100 N>m

30.0 m>s
2.0 m>s

2.00 N>m.
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7.45 .. A 350-kg roller coaster starts from rest at point A and
slides down the frictionless loop-the-loop shown in Fig. P7.45. 
(a) How fast is this roller coaster moving at point B? (b) How hard
does it press against the track at point B?

7.46 .. CP Riding a Loop-the-
Loop. A car in an amusement
park ride rolls without friction
around the track shown in Fig.
P7.46. It starts from rest at point
A at a height h above the bottom
of the loop. Treat the car as a par-
ticle. (a) What is the minimum
value of h (in terms of R) such that the car moves around the loop
without falling off at the top (point B)? (b) If and

compute the speed, radial acceleration, and tangential
acceleration of the passengers when the car is at point C, which is
at the end of a horizontal diameter. Show these acceleration com-
ponents in a diagram, approximately to scale.
7.47 .. A 2.0-kg piece of wood
slides on the surface shown in 
Fig. P7.47. The curved sides are
perfectly smooth, but the rough
horizontal bottom is 30 m long
and has a kinetic friction coeffi-
cient of 0.20 with the wood. The piece of wood starts from rest 
4.0 m above the rough bottom. (a) Where will this wood eventu-
ally come to rest? (b) For the motion from the initial release until
the piece of wood comes to rest, what is the total amount of work
done by friction?
7.48 .. Up and Down the Hill. A 28-kg rock approaches the
foot of a hill with a speed of This hill slopes upward at a
constant angle of above the horizontal. The coefficients of
static and kinetic friction between the hill and the rock are 0.75 and
0.20, respectively. (a) Use energy conservation to find the maxi-
mum height above the foot of the hill reached by the rock. (b) Will
the rock remain at rest at its highest point, or will it slide back
down the hill? (c) If the rock does slide back down, find its speed
when it returns to the bottom of the hill.
7.49 .. A 15.0-kg stone slides
down a snow-covered hill 
(Fig. P7.49), leaving point A with
a speed of There is no
friction on the hill between points
A and B, but there is friction on the
level ground at the bottom of 
the hill, between B and the wall.
After entering the rough horizontal

10.0 m>s.

40.0°
15 m>s.

R = 20.0 m,
h = 3.50R

25.0 m

A

B

3.00 m

12.0 m

4.00 m

Figure P7.45

A

C
B

R
h

Figure P7.46

Rough bottom

Wood

Figure P7.47

Rough
15 m

20 m

B

A

Figure P7.49

120 m

70 m

40 m

50 m

Figure P7.50



t x y

0 0 0
3.05 s 70.2 m 53.6 m 0
6.59 s 124.4 m 0

(a) How much work was done by the air on the baseball as it
moved from its initial position to its maximum height? (b) How
much work was done by the air on the baseball as it moved from
its maximum height back to the starting elevation? (c) Explain
why the magnitude of the answer in part (b) is smaller than the
magnitude of the answer in part (a).
7.61 .. Down the Pole. A fireman of mass m slides a distance d
down a pole. He starts from rest. He moves as fast at the bottom as if
he had stepped off a platform a distance above the ground and
descended with negligible air resistance. (a) What average friction
force did the fireman exert on the pole? Does your answer make sense
in the special cases of and (b) Find a numerical value
for the average friction force a 75-kg fireman exerts, for 
and (c) In terms of g, h, and d, what is the speed of the
fireman when he is a distance y above the bottom of the pole?
7.62 .. A 60.0-kg skier starts from rest at the top of a ski slope
65.0 m high. (a) If frictional forces do of work on her as
she descends, how fast is she going at the bottom of the slope? 
(b) Now moving horizontally, the skier crosses a patch of soft
snow, where If the patch is 82.0 m wide and the aver-
age force of air resistance on the skier is 160 N, how fast is she
going after crossing the patch? (c) The skier hits a snowdrift and
penetrates 2.5 m into it before coming to a stop. What is the aver-
age force exerted on her by the snowdrift as it stops her?
7.63 . CP A skier starts at
the top of a very large, fric-
tionless snowball, with a
very small initial speed, and
skis straight down the side
(Fig. P7.63). At what point
does she lose contact with
the snowball and fly off at a
tangent? That is, at the
instant she loses contact with
the snowball, what angle 
does a radial line from the
center of the snowball to the
skier make with the vertical?
7.64 .. A ball is thrown upward with an initial velocity of 
at an angle of 60.0° above the horizontal. Use energy conservation
to find the ball’s greatest height above the ground.
7.65 .. In a truck-loading station at a post office, a small 0.200-kg
package is released from rest at point A on a track that is one-
quarter of a circle with radius 1.60 m (Fig. P7.65). The size of the
package is much less than 1.60 m, so the package can be treated as
a particle. It slides down the track and reaches point B with a speed
of From point B, it slides on a level surface a distance of4.80 m>s.

15 m>s

a

mk = 0.20.

-10.5 kJ

h = 1.0 m.
d = 2.5 m

h = 0?h = d

h … d

-28.7 m>s11.9 m>s
18.6 m>s

40.0 m>s30.0 m>s

vyvx
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12.0 kg

4.0 kg

2.00 m

Figure P7.55

7.56 .. A 1500-kg rocket is
to be launched with an initial
upward speed of 
In order to assist its engines,
the engineers will start it
from rest on a ramp that
rises 53° above the horizon-
tal (Fig. P7.56). At the bot-
tom, the ramp turns upward
and launches the rocket ver-
tically. The engines provide
a constant forward thrust of
2000 N, and friction with
the ramp surface is a constant 500 N. How far from the base of the
ramp should the rocket start, as measured along the surface of the
ramp?
7.57 . Legal Physics. In an auto accident, a car hit a pedestrian
and the driver then slammed on the brakes to stop the car. During
the subsequent trial, the driver’s lawyer claimed that he was obey-
ing the posted speed limit, but that the legal speed was too
high to allow him to see and react to the pedestrian in time. You
have been called in as the state’s expert witness. Your investigation
of the accident found that the skid marks made while the brakes
were applied were 280 ft long, and the tread on the tires produced a
coefficient of kinetic friction of 0.30 with the road. (a) In your 
testimony in court, will you say that the driver was obeying the
posted speed? You must be able to back up your conclusion with
clear reasoning because one of the lawyers will surely cross-
examine you. (b) If the driver’s speeding ticket were $10 for each
mile per hour he was driving above the posted speed limit, would
he have to pay a fine? If so, how much would it be?
7.58 ... A wooden rod of negligible mass and length 80.0 cm is
pivoted about a horizontal axis through its center. A white rat with
mass 0.500 kg clings to one end of the stick, and a mouse with
mass 0.200 kg clings to the other end. The system is released from
rest with the rod horizontal. If the animals can manage to hold on,
what are their speeds as the rod swings through a vertical position?
7.59 .. CP A 0.300-kg potato is tied to a string with length 2.50 m,
and the other end of the string is tied to a rigid support. The potato
is held straight out horizontally from the point of support, with the
string pulled taut, and is then released. (a) What is the speed of the
potato at the lowest point of its motion? (b) What is the tension in
the string at this point?
7.60 .. These data are from a computer simulation for a batted
baseball with mass 0.145 kg, including air resistance:

35-mph

50.0 m>s.

Rocket is
launched
upward.

Rocket starts
       here.

53°

Figure P7.56

a

Figure P7.63

m 5 0.200 kg

B C

A

3.00 m

R 5 1.60 m

Figure P7.65



7.69 .. A 0.150-kg block of ice is placed against a horizontal,
compressed spring mounted on a horizontal tabletop that is 1.20 m
above the floor. The spring has force constant and is
initially compressed 0.045 m. The mass of the spring is negligible.
The spring is released, and the block slides along the table, goes
off the edge, and travels to the floor. If there is negligible friction
between the block of ice and the tabletop, what is the speed of the
block of ice when it reaches the floor?
7.70 .. A 3.00-kg block is con-
nected to two ideal horizon-
tal springs having force constants

and
(Fig. P7.70). The

system is initially in equilibrium on a horizontal, frictionless
surface. The block is now pushed 15.0 cm to the right and released

20.0 N>cm
k2 =k1 = 25.0 N>cm

1900 N>m
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3.00 m to point C, where it comes to rest. (a) What is the coeffi-
cient of kinetic friction on the horizontal surface? (b) How much
work is done on the package by friction as it slides down the circu-
lar arc from A to B?
7.66 ... A truck with mass m has a brake failure while going
down an icy mountain road of constant downward slope angle 
(Fig. P7.66). Initially the truck is moving downhill at speed 
After careening downhill a distance L with negligible friction, the
truck driver steers the runaway vehicle onto a runaway truck ramp
of constant upward slope angle The truck ramp has a soft sand
surface for which the coefficient of rolling friction is What is
the distance that the truck moves up the ramp before coming to a
halt? Solve using energy methods.

mr.
b.

v0.
a

from rest. (a) What is the maximum speed of the block? Where in
the motion does the maximum speed occur? (b) What is the maxi-
mum compression of spring 1?
7.71 .. An experimental apparatus with mass m is placed on a
vertical spring of negligible mass and pushed down until the spring
is compressed a distance x. The apparatus is then released and
reaches its maximum height at a distance h above the point where
it is released. The apparatus is not attached to the spring, and at its
maximum height it is no longer in contact with the spring. The
maximum magnitude of acceleration the apparatus can have with-
out being damaged is a, where (a) What should the force
constant of the spring be? (b) What distance x must the spring be
compressed initially?
7.72 .. If a fish is attached to a vertical spring and slowly lowered 
to its equilibrium position, it is found to stretch the spring by an
amount d. If the same fish is attached to the end of the unstretched
spring and then allowed to fall from rest, through what maximum dis-
tance does it stretch the spring? (Hint: Calculate the force constant of
the spring in terms of the distance d and the mass m of the fish.)
7.73 ... CALC A 3.00-kg fish is attached to the lower end of a ver-
tical spring that has negligible mass and force constant .
The spring initially is neither stretched nor compressed. The fish is
released from rest. (a) What is its speed after it has descended
0.0500 m from its initial position? (b) What is the maximum speed
of the fish as it descends?
7.74 .. A basket of negligible weight hangs from a vertical spring
scale of force constant . (a) If you suddenly put a 3.0-kg
adobe brick in the basket, find the maximum distance that the
spring will stretch. (b) If, instead, you release the brick from 1.0 m
above the basket, by how much will the spring stretch at its maxi-
mum elongation?
7.75 . A 0.500-kg block, attached to a spring with length 0.60 m
and force constant is at rest with the back of the block
at point A on a frictionless, horizontal air table (Fig. P7.75). The
mass of the spring is negligible. You move the block to the right
along the surface by pulling with a constant 20.0-N horizontal
force. (a) What is the block’s speed when the back of the block
reaches point B, which is 0.25 m to the right of point A? (b) When
the back of the block reaches point B, you let go of the block. In
the subsequent motion, how close does the block get to the wall
where the left end of the spring is attached?

40.0 N>m,

1500 N>m

900 N>m

a 7 g.

7.67 .. CALC A certain spring is found not to obey Hooke’s law; it
exerts a restoring force if it is stretched or
compressed, where and The mass
of the spring is negligible. (a) Calculate the potential-energy func-
tion for this spring. Let when (b) An object with
mass 0.900 kg on a frictionless, horizontal surface is attached to this
spring, pulled a distance 1.00 m to the right (the ) to
stretch the spring, and released. What is the speed of the object when
it is 0.50 m to the right of the equilibrium position?
7.68 .. CP A sled with rider having a combined mass of 125 kg
travels over the perfectly smooth icy hill shown in Fig. 7.68. How
far does the sled land from the foot of the cliff?

x = 0

+x-direction

x = 0.U = 0U1x2

b = 18.0 N>m2.a = 60.0 N>m
Fx1x2 = -ax - bx2

Distance 5 ?LIcy road

Ski’sVan Lines

Truck ramp

v0

ba

Figure P7.66

11.0 m Cliff

22.5 m/s

Figure P7.68

k1 k2

Figure P7.70

k 5 40.0 N/m m 5 0.500 kg

F 5 20.0 N

0.60 m 0.25 m

A B

Figure P7.75

7.76 .. Fraternity Physics. The brothers of Iota Eta Pi frater-
nity build a platform, supported at all four corners by vertical
springs, in the basement of their frat house. A brave fraternity
brother wearing a football helmet stands in the middle of the plat-
form; his weight compresses the springs by 0.18 m. Then four of
his fraternity brothers, pushing down at the corners of the plat-
form, compress the springs another 0.53 m until the top of the
brave brother’s helmet is 0.90 m below the basement ceiling. They
then simultaneously release the platform. You can ignore the
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masses of the springs and platform. (a) When the dust clears, the
fraternity asks you to calculate their fraternity brother’s speed just
before his helmet hit the flimsy ceiling. (b) Without the ceiling,
how high would he have gone? (c) In discussing their probation,
the dean of students suggests that the next time they try this, they
do it outdoors on another planet. Would the answer to part (b) be
the same if this stunt were performed on a planet with a different
value of g? Assume that the fraternity brothers push the platform
down 0.53 m as before. Explain your reasoning.
7.77 ... CP A small block with mass 0.0500 kg slides in a verti-
cal circle of radius on the inside of a circular track.
There is no friction between the track and the block. At the bot-
tom of the block’s path, the normal force the track exerts on the
block has magnitude 3.40 N. What is the magnitude of the nor-
mal force that the track exerts on the block when it is at the top of
its path?
7.78 ... CP A small block with mass 0.0400 kg slides in a ver-
tical circle of radius on the inside of a circular
track. During one of the revolutions of the block, when the block
is at the bottom of its path, point A, the magnitude of the normal
force exerted on the block by the track has magnitude 3.95 N. In
this same revolution, when the block reaches the top of its 
path, point B, the magnitude of the normal force exerted on the
block has magnitude 0.680 N. How much work was done on the
block by friction during the motion of the block from point A to
point B?
7.79 .. A hydroelectric dam holds back a lake of surface area

that has vertical sides below the water level. The
water level in the lake is 150 m above the base of the dam. When the
water passes through turbines at the base of the dam, its mechanical
energy is converted to electrical energy with 90% efficiency. (a) If
gravitational potential energy is taken to be zero at the base of the
dam, how much energy is stored in the top meter of the water in the
lake? The density of water is (b) What volume of water
must pass through the dam to produce 1000 kilowatt-hours of
electrical energy? What distance does the level of water in the lake
fall when this much water passes through the dam?
7.80 .. CALC How much total energy is stored in the lake in 
Problem 7.79? As in that problem, take the gravitational potential
energy to be zero at the base of the dam. Express your answer in
joules and in kilowatt-hours. (Hint: Break the lake up into infini-
tesimal horizontal layers of thickness dy, and integrate to find the
total potential energy.)
7.81 ... A wooden block with mass 1.50 kg is placed against a com-
pressed spring at the bottom of an incline of slope (point A).
When the spring is released, it projects the block up the incline. At
point B, a distance of 6.00 m up the incline from A, the block is
moving up the incline at and is no longer in contact with
the spring. The coefficient of kinetic friction between the block
and the incline is The mass of the spring is negligible.
Calculate the amount of potential energy that was initially stored
in the spring.
7.82 .. CP Pendulum. A small rock with mass 0.12 kg is fas-
tened to a massless string with length 0.80 m to form a pendulum.
The pendulum is swinging so as to make a maximum angle of 
with the vertical. Air resistance is negligible. (a) What is the speed
of the rock when the string passes through the vertical position?
(b) What is the tension in the string when it makes an angle of 
with the vertical? (c) What is the tension in the string as it passes
through the vertical?
7.83 ... CALC A cutting tool under microprocessor control has
several forces acting on it. One force is a force inF

S
� -axy2≥n,

45°

45°

mk = 0.50.

7.00 m>s

30.0°

1000 kg>m3.

3.0 * 106 m2

R = 0.500 m

R = 0.800 m

the negative y-direction whose magnitude depends on the posi-
tion of the tool. The constant is Consider the
displacement of the tool from the origin to the point 

(a) Calculate the work done on the tool by if this
displacement is along the straight line that connects these
two points. (b) Calculate the work done on the tool by if the
tool is first moved out along the x-axis to the point

and then moved parallel to the y-axis to the
point (c) Compare the work done by 
along these two paths. Is conservative or nonconservative?
Explain.
7.84 . CALC (a) Is the force where C is a negative 
constant with units of conservative or nonconservative?
Justify your answer. (b) Is the force where C is a nega-
tive constant with units of conservative or nonconservative?
Justify your answer.
7.85 .. CALC An object has several forces acting on it. One force
is a force in the x-direction whose magnitude depends
on the position of the object. (See Problem 6.98.) The constant is

The object moves along the following path: (1) It
starts at the origin and moves along the y-axis to the point 

(2) it moves parallel to the x-axis to the point
(3) it moves parallel to the y-axis to the

point (4) it moves parallel to the x-axis back to
the origin. (a) Sketch this path in the xy-plane. (b) Calculate the work
done on the object by for each leg of the path and for the complete
round trip. (c) Is conservative or nonconservative? Explain.
7.86 . A particle moves along
the x-axis while acted on by a
single conservative force paral-
lel to the x-axis. The force corre-
sponds to the potential-energy
function graphed in Fig. P7.86.
The particle is released from rest
at point A. (a) What is the direc-
tion of the force on the particle
when it is at point A? (b) At point B? (c) At what value of x is the
kinetic energy of the particle a maximum? (d) What is the force on
the particle when it is at point C? (e) What is the largest value of x
reached by the particle during its motion? (f) What value or values
of x correspond to points of stable equilibrium? (g) Of unstable
equilibrium?

CHALLENGE PROBLEM
7.87 ... CALC A proton with mass m moves in one dimension.
The potential-energy function is where 
and are positive constants. The proton is released from rest at

(a) Show that can be written as 

Graph . Calculate and thereby locate the point on
the graph. (b) Calculate the speed of the proton as a function
of position. Graph and give a qualitative description of the
motion. (c) For what value of x is the speed of the proton a maxi-
mum? What is the value of that maximum speed? (d) What is 
the force on the proton at the point in part (c)? (e) Let the proton be
released instead at Locate the point on the graph of

Calculate and give a qualitative description of the
motion. (f) For each release point what are
the maximum and minimum values of x reached during the motion?
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Chapter Opening Question ?
The mallard’s kinetic energy K remains constant because the speed
remains the same, but the gravitational potential energy 
decreases as the mallard descends. Hence the total mechanical
energy decreases. The lost mechanical energy 
goes into warming the mallard’s skin (that is, an increase in the
mallard’s internal energy) and stirring up the air through which the
mallard passes (an increase in the internal energy of the air). See
the discussion in Section 7.3.

Test Your Understanding Questions
7.1 Answer: (iii) The initial kinetic energy the initial
potential energy and the final potential energy

are the same for both blocks. Mechanical energy is
conserved in both cases, so the final kinetic energy is
also the same for both blocks. Hence the speed at the right-hand
end is the same in both cases!
7.2 Answer: (iii) The elevator is still moving downward, so the
kinetic energy K is positive (remember that K can never be nega-

K2 = 1
2 mv2

2
U2 = mgy2

U1 = mgy1,
K1 = 0,

E = K + Ugrav

Ugrav

tive); the elevator is below point 1, so and and
the spring is compressed, so 
7.3 Answer: (iii) Because of friction in the turbines and between
the water and turbines, some of the potential energy goes into rais-
ing the temperatures of the water and the mechanism.
7.4 Answers: (a) (iv), (b) (i) If at a point, then the deriv-
ative of must be zero at that point because 
However, this tells us absolutely nothing about the value of
at that point.
7.5 Answers: (iii) Figure 7.24b shows the x-component of force,

Where this is maximum (most positive), the x-component of
force and the x-acceleration have more positive values than at
adjacent values of x.

Bridging Problem
Answers: (a) 1.06 m 

(b) 1.32 m 
(c) 20.7 J

Fx.

U1x2
Fx = -dU1x2>dx.U1x2

Fx = 0

Uel 7 0.
Ugrav 6 0;y 6 0

Answers
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8
LEARNING GOALS

By studying this chapter, you will

learn:

• The meaning of the momentum of a

particle, and how the impulse of the

net force acting on a particle causes

its momentum to change.

• The conditions under which the total

momentum of a system of particles

is constant (conserved).

• How to solve problems in which two

bodies collide with each other.

• The important distinction among

elastic, inelastic, and completely

inelastic collisions.

• The definition of the center of mass

of a system, and what determines

how the center of mass moves.

• How to analyze situations such as

rocket propulsion in which the mass

of a body changes as it moves.

MOMENTUM, IMPULSE,
AND COLLISIONS

There are many questions involving forces that cannot be answered by
directly applying Newton’s second law, For example, when a
moving van collides head-on with a compact car, what determines which

way the wreckage moves after the collision? In playing pool, how do you decide
how to aim the cue ball in order to knock the eight ball into the pocket? And
when a meteorite collides with the earth, how much of the meteorite’s kinetic
energy is released in the impact?

A common theme of all these questions is that they involve forces about which
we know very little: the forces between the car and the moving van, between the
two pool balls, or between the meteorite and the earth. Remarkably, we will find
in this chapter that we don’t have to know anything about these forces to answer
questions of this kind!

Our approach uses two new concepts, momentum and impulse, and a new con-
servation law, conservation of momentum. This conservation law is every bit as
important as the law of conservation of energy. The law of conservation of
momentum is valid even in situations in which Newton’s laws are inadequate,
such as bodies moving at very high speeds (near the speed of light) or objects on a
very small scale (such as the constituents of atoms). Within the domain of Newtonian
mechanics, conservation of momentum enables us to analyze many situations
that would be very difficult if we tried to use Newton’s laws directly. Among
these are collision problems, in which two bodies collide and can exert very large
forces on each other for a short time.

8.1 Momentum and Impulse
In Chapter 6 we re-expressed Newton’s second law for a particle, in
terms of the work–energy theorem. This theorem helped us tackle a great number
of physics problems and led us to the law of conservation of energy. Let’s now
return to and see yet another useful way to restate this fundamental law.gF

S
� maS

gF
S

� maS,

gF
S

� maS.

? Which could potentially do greater damage to this carrot: a .22-caliber bullet
moving at 220 m s as shown here, or a lightweight bullet of the same length
and diameter but half the mass moving at twice the speed?

>



Newton’s Second Law in Terms of Momentum
Consider a particle of constant mass m. (Later in this chapter we’ll see how to
deal with situations in which the mass of a body changes.) Because 
we can write Newton’s second law for this particle as

(8.1)

We can move the mass m inside the derivative because it is constant. Thus New-
ton’s second law says that the net force acting on a particle equals the time
rate of change of the combination the product of the particle’s mass and
velocity. We’ll call this combination the momentum, or linear momentum, of
the particle. Using the symbol for momentum, we have

(definition of momentum) (8.2)

The greater the mass m and speed of a particle, the greater is its magnitude of
momentum Keep in mind, however, that momentum is a vector quantity with
the same direction as the particle’s velocity (Fig. 8.1). Hence a car driving north
at and an identical car driving east at have the same magnitude of
momentum but different momentum vectors because their directions
are different.

We often express the momentum of a particle in terms of its components. 
If the particle has velocity components and then its momentum compo-
nents and (which we also call the x-momentum, y-momentum, and
z-momentum) are given by

(8.3)

These three component equations are equivalent to Eq. (8.2).
The units of the magnitude of momentum are units of mass times speed; the SI

units of momentum are The plural of momentum is “momenta.”
If we now substitute the definition of momentum, Eq. (8.2), into Eq. (8.1), 

we get

(Newton’s second law in terms of momentum) (8.4)

The net force (vector sum of all forces) acting on a particle equals the time
rate of change of momentum of the particle. This, not is the
form in which Newton originally stated his second law (although he called
momentum the “quantity of motion”). This law is valid only in inertial frames
of reference.

According to Eq. (8.4), a rapid change in momentum requires a large 
net force, while a gradual change in momentum requires less net force. This
principle is used in the design of automobile safety devices such as air bags
(Fig. 8.2).

The Impulse–Momentum Theorem
A particle’s momentum and its kinetic energy both depend
on the mass and velocity of the particle. What is the fundamental difference
between these two quantities? A purely mathematical answer is that momentum
is a vector whose magnitude is proportional to speed, while kinetic energy is a
scalar proportional to the speed squared. But to see the physical difference
between momentum and kinetic energy, we must first define a quantity closely
related to momentum called impulse.

K = 1
2 mv2vSpS � m

gF
S

� maS,

gF
S

�
d pS

dt

kg # m>s.

px = mvx  py = mvy  pz = mvz

pzpy,px,
vz,vy,vx,

1mvS21mv2
20 m>s20 m>s

mv.
v

pS � mvS

pS

mvS,
gF

S

gF
S

� m
dvS

dt
�

d

dt
1mvS2

aS � dvS>dt,

242 CHAPTER 8 Momentum, Impulse, and Collisions

8.1 The velocity and momentum vectors
of a particle.

8.2 If a fast-moving automobile stops
suddenly in a collision, the driver’s
momentum (mass times velocity) changes
from a large value to zero in a short time.
An air bag causes the driver to lose
momentum more gradually than would an
abrupt collision with the steering wheel,
reducing the force exerted on the driver as
well as the possibility of injury.

Momentum p is a vector quantity;
a particle’s momentum has the same
direction as its velocity v.

S

S

y

m

x
O

vS

p 5 mvSS
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Let’s first consider a particle acted on by a constant net force during a
time interval from to (We’ll look at the case of varying forces shortly.)
The impulse of the net force, denoted by is defined to be the product of the net
force and the time interval:

(assuming constant net force) (8.5)

Impulse is a vector quantity; its direction is the same as the net force Its
magnitude is the product of the magnitude of the net force and the length of time
that the net force acts. The SI unit of impulse is the newton-second 
Because an alternative set of units for impulse is the
same as the units of momentum.

To see what impulse is good for, let’s go back to Newton’s second law as
restated in terms of momentum, Eq. (8.4). If the net force is constant, then

is also constant. In that case, is equal to the total change in momen-
tum during the time interval divided by the interval:

Multiplying this equation by we have

Comparing with Eq. (8.5), we end up with a result called the impulse–momentum
theorem:

(impulse–momentum theorem) (8.6)

The change in momentum of a particle during a time interval equals the impulse
of the net force that acts on the particle during that interval.

The impulse–momentum theorem also holds when forces are not constant. To
see this, we integrate both sides of Newton’s second law over time
between the limits and 

The integral on the left is defined to be the impulse of the net force during
this interval:

(general definition of impulse) (8.7)

With this definition, the impulse–momentum theorem Eq. (8.6), is
valid even when the net force varies with time.

We can define an average net force such that even when is not con-
stant, the impulse is given by

(8.8)

When is constant, and Eq. (8.8) reduces to Eq. (8.5).
Figure 8.3a shows the x-component of net force as a function of time

during a collision. This might represent the force on a soccer ball that is in con-
tact with a player’s foot from time to The x-component of impulse during
this interval is represented by the red area under the curve between and Thist2.t1

t2.t1

gFx

gF
S

� F
S

avgF
S

J
S

� F
S

av1t2 - t12

J
S

gF
S

F
S

av

gF
S

J
S

� pS2 � pS1,

J
S

� L
t2

t1

gF
S

dt

gF
S

J
S

L
t2

t1

gF
S

dt � L
t2

t1

d pS

dt
dt � L

p2

p1

S

S
d pS � pS2 � pS1

t2:t1

gF
S

� d pS>dt

J
S

� pS2 � pS1

gF
S
1t2 - t12 � pS2 � pS1

1t2 - t12,

gF
S

�
pS2 � pS1

t2 - t1

t2 - t1,pS2 � pS1

d pS>dtd pS>dt
gF

S

kg # m>s,1 N = 1 kg # m>s2,
1N # s2.
gF

S
.

J
S

� gF
S
1t2 - t12 � gF

S
¢t

J
S

,
t2.t1¢t

gF
S Application Woodpecker Impulse

The pileated woodpecker (Dryocopus pileatus)
has been known to strike its beak against a
tree up to 20 times a second and up to
12,000 times a day. The impact force can be
as much as 1200 times the weight of the
bird’s head. Because the impact lasts such a
short time, the impulse—the product of the
net force during the impact multiplied by the
duration of the impact—is relatively small. (The
woodpecker has a thick skull of spongy bone
as well as shock-absorbing cartilage at the
base of the lower jaw, and so avoids injury.)

8.3 The meaning of the area under a
graph of versus t.gFx

Area 5 Jx 5 1oFxdt
t2

t1

Area 5 Jx
       5 (Fav)x(t2 2 t1)

The area under the curve of net force versus
time equals the impulse of the net force:

We can also calculate the
impulse by replacing the
varying net force with an
average net force:

(a)

(b)

t

ΣFx

(Fa v)x

t
t1

Large force that acts
for a short time

Smaller force that
acts for a longer time

The area under both curves
is the same, so both forces
deliver the same impulse.

t2
t2 � t1

ΣFx



area is equal to the green rectangular area bounded by and so
is equal to the impulse of the actual time-varying force during the

same interval. Note that a large force acting for a short time can have the same
impulse as a smaller force acting for a longer time if the areas under the force–time
curves are the same (Fig. 8.3b). In this language, an automobile airbag (see Fig. 8.2)
provides the same impulse to the driver as would the steering wheel or the dash-
board by applying a weaker and less injurious force for a longer time.

Impulse and momentum are both vector quantities, and Eqs. (8.5)–(8.8) are all
vector equations. In specific problems, it is often easiest to use them in compo-
nent form:

(8.9)

and similarly for the z-component.

Momentum and Kinetic Energy Compared
We can now see the fundamental difference between momentum and kinetic
energy. The impulse–momentum theorem says that changes in a
particle’s momentum are due to impulse, which depends on the time over which
the net force acts. By contrast, the work–energy theorem tells us
that kinetic energy changes when work is done on a particle; the total work
depends on the distance over which the net force acts. Consider a particle that
starts from rest at so that . Its initial momentum is and
its initial kinetic energy is Now let a constant net force equal to

act on that particle from time until time During this interval, the particle
moves a distance s in the direction of the force. From Eq. (8.6), the particle’s
momentum at time is

where is the impulse that acts on the particle. So the momentum
of a particle equals the impulse that accelerated it from rest to its present speed;
impulse is the product of the net force that accelerated the particle and the time
required for the acceleration. By comparison, the kinetic energy of the particle at

is the total work done on the particle to accelerate it from
rest. The total work is the product of the net force and the distance required to
accelerate the particle (Fig. 8.4).

Here’s an application of the distinction between momentum and kinetic
energy. Suppose you have a choice between catching a 0.50-kg ball moving at

or a 0.10-kg ball moving at Which will be easier to catch? Both
balls have the same magnitude of momentum, 

However, the two balls have different values10.10 kg2120 m>s2 = 2.0 kg # m>s.
p = mv = 10.50 kg214.0 m>s2 =

20 m>s.4.0 m>s
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?

8.4 The kinetic energy of a pitched base-
ball is equal to the work the pitcher does
on it (force multiplied by the distance 
the ball moves during the throw). The
momentum of the ball is equal to the
impulse the pitcher imparts to it (force
multiplied by the time it took to bring 
the ball up to speed).

Kinetic energy gained
by ball 5 ΣF · s

S S

Momentum gained by ball 5 ΣF Dt
S

Net force ΣF
S

Displacement s in time Dt
S

of kinetic energy the large, slow-moving ball has while
the small, fast-moving ball has Since the momentum is the same for
both balls, both require the same impulse to be brought to rest. But stopping the
0.10-kg ball with your hand requires five times more work than stopping the 0.50-kg
ball because the smaller ball has five times more kinetic energy. For a given force
that you exert with your hand, it takes the same amount of time (the duration of
the catch) to stop either ball, but your hand and arm will be pushed back five times
farther if you choose to catch the small, fast-moving ball. To minimize arm strain,
you should choose to catch the 0.50-kg ball with its lower kinetic energy.

Both the impulse–momentum and work–energy theorems are relationships
between force and motion, and both rest on the foundation of Newton’s laws.
They are integral principles, relating the motion at two different times separated

K = 20 J.
K = 4.0 J,K = 1

2 mv2;

ActivPhysics 6.1: Momentum and Energy
Change
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by a finite interval. By contrast, Newton’s second law itself (in either of the forms
or ) is a differential principle, relating the forces to the

rate of change of velocity or momentum at each instant.
gF

S
� d pS>dtgF

S
� maS

Conceptual Example 8.1 Momentum versus kinetic energy

Consider again the race described in Conceptual Example 6.5
(Section 6.2) between two iceboats on a frictionless frozen lake.
The boats have masses m and 2m, and the wind exerts the same
constant horizontal force on each boat (see Fig. 6.14). The boats
start from rest and cross the finish line a distance s away. Which
boat crosses the finish line with greater momentum?

SOLUTION

In Conceptual Example 6.5 we asked how the kinetic energies of
the boats compare when they cross the finish line. We answered
this by remembering that a body’s kinetic energy equals the total
work done to accelerate it from rest. Both boats started from rest,
and the total work done was the same for both boats (because the
net force and the displacement were the same for both). Hence
both boats had the same kinetic energy at the finish line.

Similarly, to compare the momenta of the boats we use the idea
that the momentum of each boat equals the impulse that accelerated

F
S

it from rest. As in Conceptual Example 6.5, the net force on each
boat equals the constant horizontal wind force Let be the
time a boat takes to reach the finish line, so that the impulse on the
boat during that time is Since the boat starts from rest,
this equals the boat’s momentum at the finish line:

Both boats are subjected to the same force but they take dif-
ferent times to reach the finish line. The boat of mass 2m accel-
erates more slowly and takes a longer time to travel the distance s;
thus there is a greater impulse on this boat between the starting and
finish lines. So the boat of mass 2m crosses the finish line with a
greater magnitude of momentum than the boat of mass m (but with
the same kinetic energy). Can you show that the boat of mass 2m
has times as much momentum at the finish line as the boat of
mass m?
12

¢t
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Example 8.2 A ball hits a wall

You throw a ball with a mass of 0.40 kg against a brick wall. It
hits the wall moving horizontally to the left at and
rebounds horizontally to the right at (a) Find the
impulse of the net force on the ball during its collision with the
wall. (b) If the ball is in contact with the wall for 0.010 s, find
the average horizontal force that the wall exerts on the ball dur-
ing the impact.

SOLUTION

IDENTIFY and SET UP: We’re given enough information to deter-
mine the initial and final values of the ball’s momentum, so we can
use the impulse–momentum theorem to find the impulse. We’ll
then use the definition of impulse to determine the average force.
Figure 8.5 shows our sketch. We need only a single axis because
the motion is purely horizontal. We’ll take the positive x-direction
to be to the right. In part (a) our target variable is the 
x-component of impulse, which we’ll find from the x-components
of momentum before and after the impact, using Eqs. (8.9). In part (b),
our target variable is the average x-component of force once
we know we can also find this force by using Eqs. (8.9).Jx,

1Fav2x;

Jx,

20 m>s.
30 m>s

Continued

EXECUTE: (a) With our choice of x-axis, the initial and final 
x-components of momentum of the ball are

From the x-equation in Eqs. (8.9), the x-component of impulse
equals the change in the x-momentum:

(b) The collision time is From the 
x-equation in Eqs. (8.9), so

EVALUATE: The x-component of impulse is positive—that is, to
the right in Fig. 8.5. This is as it should be: The impulse represents
the “kick” that the wall imparts to the ball, and this “kick” is cer-
tainly to the right.

CAUTION Momentum is a vector Because momentum is a 
vector, we had to include the negative sign in writing 

Had we carelessly omitted it, we would have calcu-
lated the impulse to be 

This would say that the wall had somehow given the ball a
kick to the left! Make sure that you account for the direction of
momentum in your calculations. ❙

The force that the wall exerts on the ball must have such a large
magnitude (2000 N, equal to the weight of a 200-kg object) to

m>s.
-4 kg #8.0 kg # m>s - 112 kg # m>s2 =

-12 kg # m>s.
p1x =

Jx

1Fav2x =
Jx

¢t
=

20 N # s
0.010 s

= 2000 N

Jx = 1Fav2x1t2 - t12 = 1Fav2x ¢t,
t2 - t1 = ¢t = 0.010 s.

= 8.0 kg # m>s - 1-12 kg # m>s2 = 20 kg # m>s = 20 N # s
Jx = p2x - p1x

p2x = mv2x = 10.40 kg21+20 m>s2 = +8.0 kg # m>s
p1x = mv1x = 10.40 kg21-30 m>s2 = -12 kg # m>s

8.5 Our sketch for this problem.
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change the ball’s momentum in such a short time. Other forces that
act on the ball during the collision are comparatively weak; for
instance, the gravitational force is only 3.9 N. Thus, during the
short time that the collision lasts, we can ignore all other forces on
the ball. Figure 8.6 shows the impact of a tennis ball and racket.

Note that the 2000-N value we calculated is the average horizon-
tal force that the wall exerts on the ball during the impact. It corre-
sponds to the horizontal line in Fig. 8.3a. The horizontal force
is zero before impact, rises to a maximum, and then decreases to
zero when the ball loses contact with the wall. If the ball is relatively
rigid, like a baseball or golf ball, the collision lasts a short time and
the maximum force is large, as in the blue curve in Fig. 8.3b. If the
ball is softer, like a tennis ball, the collision time is longer and the
maximum force is less, as in the orange curve in Fig. 8.3b.

(Fav)x

8.6 Typically, a tennis ball is in contact with the racket for
approximately 0.01 s. The ball flattens noticeably due to the
tremendous force exerted by the racket.

Example 8.3 Kicking a soccer ball

A soccer ball has a mass of 0.40 kg. Initially it is moving to the left
at but then it is kicked. After the kick it is moving at 45°
upward and to the right with speed (Fig. 8.7a). Find the
impulse of the net force and the average net force, assuming a col-
lision time 

SOLUTION

IDENTIFY and SET UP: The ball moves in two dimensions, so we
must treat momentum and impulse as vector quantities. We take
the x-axis to be horizontally to the right and the y-axis to be verti-
cally upward. Our target variables are the components of the net

¢t = 0.010 s.

30 m>s
20 m>s,

impulse on the ball, and and the components of the average
net force on the ball, and We’ll find them using the
impulse–momentum theorem in its component form, Eqs. (8.9).

EXECUTE: Using cos 45° � sin 45° � 0.707, we find the ball’s
velocity components before and after the kick:

From Eqs. (8.9), the impulse components are

From Eq. (8.8), the average net force components are

The magnitude and direction of the average net force are

The ball was not initially at rest, so its final velocity does not have
the same direction as the average force that acted on it.

EVALUATE: includes the force of gravity, which is very small;
the weight of the ball is only 3.9 N. As in Example 8.2, the aver-
age force acting during the collision is exerted almost entirely by
the object that the ball hit (in this case, the soccer player’s foot).

F
S

av

u = arctan
850 N

1650 N
= 27°

Fav = 211650 N22 + 1850 N22 = 1.9 * 103 N

F
S

av

1Fav2x =
Jx

¢t
= 1650 N    1Fav2y =

Jy

¢t
= 850 N

= 10.40 kg2121.2 m>s - 02 = 8.5 kg # m>s
Jy = p2y - p1y = m1v2y - v1y2

= 10.40 kg2321.2 m>s - 1-20 m>s24 = 16.5 kg # m>s
Jx = p2x - p1x = m1v2x - v1x2

v2x = v2y = 130 m>s210.7072 = 21.2 m>s

v1x = -20 m>s    v1y = 0

1Fav2y.1Fav2x

Jy,Jx

8.7 (a) Kicking a soccer ball. (b) Finding the average force on
the ball from its components.

u

(a) Before-and-after diagram

(b) Average force on the ball

45°

BEFORE

AFTER

v1 5 20 m/s

m 5 0.40 kg

v2 5 30 m/s
y

O
x

Fav
S

(Fav)x

(Fav)y

Test Your Understanding of Section 8.1 Rank the following situations
according to the magnitude of the impulse of the net force, from largest value to small-
est value. In each situation a 1000-kg automobile is moving along a straight east–west
road. (i) The automobile is initially moving east at and comes to a stop in 10 s. 
(ii) The automobile is initially moving east at and comes to a stop in 5 s. (iii) The
automobile is initially at rest, and a 2000-N net force toward the east is applied to it for 10 s. 
(iv) The automobile is initially moving east at and a 2000-N net force toward the
west is applied to it for 10 s. (v) The automobile is initially moving east at Over a 
30-s period, the automobile reverses direction and ends up moving west at ❙25 m>s.

25 m>s.
25 m>s,

25 m>s
25 m>s
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8.2 Conservation of Momentum
The concept of momentum is particularly important in situations in which we
have two or more bodies that interact. To see why, let’s consider first an idealized
system of two bodies that interact with each other but not with anything else—for
example, two astronauts who touch each other as they float freely in the zero-
gravity environment of outer space (Fig. 8.8). Think of the astronauts as particles.
Each particle exerts a force on the other; according to Newton’s third law, the two
forces are always equal in magnitude and opposite in direction. Hence, the
impulses that act on the two particles are equal and opposite, and the changes in
momentum of the two particles are equal and opposite.

Let’s go over that again with some new terminology. For any system, the forces
that the particles of the system exert on each other are called internal forces. Forces
exerted on any part of the system by some object outside it are called external forces.
For the system shown in Fig. 8.8, the internal forces are exerted by
particle B on particle A, and exerted by particle A on particle B. There are no
external forces; when this is the case, we have an isolated system.

The net force on particle A is and the net force on particle B is
so from Eq. (8.4) the rates of change of the momenta of the two particles are

(8.10)

The momentum of each particle changes, but these changes are related to each
other by Newton’s third law: The two forces and are always equal
in magnitude and opposite in direction. That is, so 

Adding together the two equations in Eq. (8.10), we have

(8.11)

The rates of change of the two momenta are equal and opposite, so the rate of
change of the vector sum is zero. We now define the total momentum

of the system of two particles as the vector sum of the momenta of the individual
particles; that is,

(8.12)

Then Eq. (8.11) becomes, finally,

(8.13)

The time rate of change of the total momentum is zero. Hence the total
momentum of the system is constant, even though the individual momenta of the
particles that make up the system can change.

If external forces are also present, they must be included on the left side of 
Eq. (8.13) along with the internal forces. Then the total momentum is, in general,
not constant. But if the vector sum of the external forces is zero, as in Fig. 8.9,
these forces have no effect on the left side of Eq. (8.13), and is again zero.
Thus we have the following general result:

If the vector sum of the external forces on a system is zero, the total momentum
of the system is constant.

This is the simplest form of the principle of conservation of momentum. This
principle is a direct consequence of Newton’s third law. What makes this principle
useful is that it doesn’t depend on the detailed nature of the internal forces that

dP
S
>dt

P
S

F
S

B on A � F
S

A on B �
dP
S

dt
� 0

P
S

� pSA � pSB

P
S

pSA � pSB

F
S

B on A � F
S

A on B �
d pSA

dt
�

d pSB

dt
�

d1pSA � pSB2

dt
� 0

F
S

A on B � 0.
F
S

B on A �F
S

B on A � �F
S

A on B,
F
S

A on BF
S

B on A

F
S

B on A �
d pSA

dt
  F

S
A on B �

d pSB

dt

F
S

A on B,F
S

B on A

F
S

A on B,
F
S

B on A,

8.8 Two astronauts push each other as
they float freely in the zero-gravity 
environment of space.

8.9 Two ice skaters push each other as
they skate on a frictionless, horizontal 
surface. (Compare to Fig. 8.8.)

A B

No external forces act on the two-astronaut
system, so its total momentum is conserved.

The forces the astronauts exert on each
other form an action–reaction pair.

y

x
FB on A

y

x
FA on B

S S

x

y

FB on A
S

nA
S

wA
S

x

y

FA on B
S

nB
S

wB
S

The forces the skaters exert on each
other form an action–reaction pair.

Although the normal and gravitational
forces are external, their vector sum is zero,
so the total momentum is conserved.



act between members of the system. This means that we can apply conservation
of momentum even if (as is often the case) we know very little about the internal
forces. We have used Newton’s second law to derive this principle, so we have to
be careful to use it only in inertial frames of reference.

We can generalize this principle for a system that contains any number of par-
ticles A, B, C, . . . interacting only with one another. The total momentum of such
a system is

(8.14)P
S

� pSA � pSB � Á � mAvSA � mBvSB � Á
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(total momentum of 
a system of particles)

We make the same argument as before: The total rate of change of momentum
of the system due to each action–reaction pair of internal forces is zero. Thus the
total rate of change of momentum of the entire system is zero whenever the vector
sum of the external forces acting on it is zero. The internal forces can change the
momenta of individual particles in the system but not the total momentum of the
system.

CAUTION Conservation of momentum means conservation of its components When you
apply the conservation of momentum to a system, remember that momentum is a vector
quantity. Hence you must use vector addition to compute the total momentum of a system
(Fig. 8.10). Using components is usually the simplest method. If and are the
components of momentum of particle A, and similarly for the other particles, then 
Eq. (8.14) is equivalent to the component equations

(8.15)

If the vector sum of the external forces on the system is zero, then and are all
constant. ❙

In some ways the principle of conservation of momentum is more general than
the principle of conservation of mechanical energy. For example, mechanical
energy is conserved only when the internal forces are conservative—that is, when
the forces allow two-way conversion between kinetic and potential energy—but
conservation of momentum is valid even when the internal forces are not conser-
vative. In this chapter we will analyze situations in which both momentum and
mechanical energy are conserved, and others in which only momentum is con-
served. These two principles play a fundamental role in all areas of physics, and
we will encounter them throughout our study of physics.

PzPy ,Px ,

 Pz = pAz + pBz + Á
 Py = pAy + pBy + Á
 Px = pAx + pBx + Á

pAzpAy ,pAx ,

Problem-Solving Strategy 8.1 Conservation of Momentum

IDENTIFY the relevant concepts: Confirm that the vector sum of
the external forces acting on the system of particles is zero. If it
isn’t zero, you can’t use conservation of momentum.

SET UP the problem using the following steps:
1. Treat each body as a particle. Draw “before” and “after”

sketches, including velocity vectors. Assign algebraic symbols
to each magnitude, angle, and component. Use letters to label
each particle and subscripts 1 and 2 for “before” and “after”
quantities. Include any given values such as magnitudes,
angles, or components.

2. Define a coordinate system and show it in your sketches; define
the positive direction for each axis.

3. Identify the target variables.

EXECUTE the solution:
1. Write an equation in symbols equating the total initial and final

x-components of momentum, using for each particle.
Write a corresponding equation for the y-components. Velocity
components can be positive or negative, so be careful with
signs!

2. In some problems, energy considerations (discussed in Sec-
tion 8.4) give additional equations relating the velocities.

3. Solve your equations to find the target variables.

EVALUATE your answer: Does your answer make physical sense?
If your target variable is a certain body’s momentum, check that
the direction of the momentum is reasonable.

px = mvx

8.10 When applying conservation of
momentum, remember that momentum is
a vector quantity!

pB
S

pA
S B

A
pA 5 18 kg · m/s
pB 5 24 kg · m/s

A system of two
particles with
momenta in
different directions

P 5 pA 1 pB � 42 kg · m/s

P 5 0 pA 1 pB 0 
    5 30 kg · m/s at u 5 37°

pA
S

pB
S

P � pA 1 pB
S S S

u

You CANNOT find the magnitude of the total
momentum by adding the magnitudes of the
individual momenta!

Instead, use vector addition:

S S

ActivPhysics 6.3: Momentum Conservation
and Collisions
ActivPhysics 6.7: Explosion Problems
ActivPhysics 6.10: Pendulum Person-
Projectile Bowling
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Example 8.4 Recoil of a rifle

A marksman holds a rifle of mass loosely, so it can
recoil freely. He fires a bullet of mass horizontally
with a velocity relative to the ground of What is
the recoil velocity of the rifle? What are the final momentum
and kinetic energy of the bullet and rifle?

SOLUTION

IDENTIFY and SET UP: If the marksman exerts negligible hori-
zontal forces on the rifle, then there is no net horizontal force on
the system (the bullet and rifle) during the firing, and the total
horizontal momentum of the system is conserved. Figure 8.11
shows our sketch. We take the positive x-axis in the direction of
aim. The rifle and the bullet are initially at rest, so the initial 
x-component of total momentum is zero. After the shot is fired, the
bullet’s x-momentum is and the rifle’s x-momentumpBx = mBvBx

vRx

vBx = 300 m>s.
mB = 5.00 g

mR = 3.00 kg is Our target variables are and the
final kinetic energies and .

EXECUTE: Conservation of the x-component of total momentum
gives

The negative sign means that the recoil is in the direction opposite
to that of the bullet.

The final momenta and kinetic energies are

EVALUATE: The bullet and rifle have equal and opposite final
momenta thanks to Newton’s third law: They experience equal and
opposite interaction forces that act for the same time, so the
impulses are equal and opposite. But the bullet travels a much
greater distance than the rifle during the interaction. Hence the
force on the bullet does more work than the force on the rifle, giving
the bullet much greater kinetic energy than the rifle. The 600:1 ratio
of the two kinetic energies is the inverse of the ratio of the masses;
in fact, you can show that this always happens in recoil situations
(see Exercise 8.26).

KR = 1
2 mRvRx

2 = 1
213.00 kg21-0.500 m>s22 = 0.375 J

pRx = mRvRx = 13.00 kg21-0.500 m>s2 = -1.50 kg # m>s
KB = 1

2 mBvBx
2 = 1

2 10.00500 kg21300 m>s22 = 225 J

pBx = mBvBx = 10.00500 kg21300 m>s2 = 1.50 kg # m>s

vRx = -
mB

mR
vBx = - ¢0.00500 kg

3.00 kg
≤1300 m>s2 = -0.500 m>s

Px = 0 = mBvBx + mRvRx

KR = 1
2 mRvRx

2KB = 1
2 mBvBx

2
pRx,pBx,vRx,pRx = mRvRx.

8.11 Our sketch for this problem.

Example 8.5 Collision along a straight line

Two gliders with different masses move toward each other on a
frictionless air track (Fig. 8.12a). After they collide (Fig. 8.12b),
glider B has a final velocity of (Fig. 8.12c). What is the
final velocity of glider A? How do the changes in momentum and
in velocity compare?

+2.0 m>s

8.12 Two gliders colliding on an air track.

mA 5 0.50 kg

vA1x 5 2.0 m/s vB1x 5 22.0 m/s

vA2x vB2x 5 2.0 m/s

mB 5 0.30 kg

x

x

x

(a) Before collision

(b) Collision

(c) After collision

BA

BA

BA

SOLUTION

IDENTIFY and SET UP: As for the skaters in Fig. 8.9, the total ver-
tical force on each glider is zero, and the net force on each individ-
ual glider is the horizontal force exerted on it by the other glider.
The net external force on the system of two gliders is zero, so their
total momentum is conserved. We take the positive x-axis to be to
the right. We are given the masses and initial velocities of both
gliders and the final velocity of glider B. Our target variables are

the final x-component of velocity of glider A, and the changes
in momentum and in velocity of the two gliders (the value after the
collision minus the value before the collision).

EXECUTE: The x-component of total momentum before the collision is

= 0.40 kg # m>s
= 10.50 kg212.0 m>s2 + 10.30 kg21-2.0 m>s2

Px = mAvA1x + mBvB1x

vA2x,

This is positive (to the right in Fig. 8.12) because A has a greater
magnitude of momentum than B. The x-component of total momen-
tum has the same value after the collision, so

Continued

Px = mAvA2x + mBvB2x



We solve for 

The changes in the x-momenta are

- 10.30 kg21-2.0 m>s2 = +1.2 kg # m>s
mBvB2x - mBvB1x = 10.30 kg212.0 m>s2

- 10.50 kg212.0 m>s2 = -1.2 kg # m>s
mAvA2x - mAvA1x = 10.50 kg21-0.40 m>s2

= -0.40 m>s

vA2x =
Px - mBvB2x

mA
=

0.40 kg # m>s - 10.30 kg212.0 m>s2

0.50 kg

vA2x:
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The changes in x-velocities are

EVALUATE: The gliders were subjected to equal and opposite
interaction forces for the same time during their collision. By
the impulse–momentum theorem, they experienced equal and
opposite impulses and therefore equal and opposite changes in
momentum. But by Newton’s second law, the less massive glider

had a greater magnitude of acceleration and hence a greater
velocity change.
1B2

vB2x - vB1x = 2.0 m>s - 1-2.0 m>s) = +4.0 m>s

vA2x - vA1x = 1-0.40 m>s2 - 2.0 m>s = -2.4 m>s

Example 8.6 Collision in a horizontal plane

Figure 8.13a shows two battling robots on a frictionless surface.
Robot A, with mass 20 kg, initially moves at parallel to the
x-axis. It collides with robot B, which has mass 12 kg and is ini-
tially at rest. After the collision, robot A moves at in a
direction that makes an angle with its initial direction
(Fig. 8.13b). What is the final velocity of robot B?

SOLUTION

IDENTIFY and SET UP: There are no horizontal external forces, so
the x- and y-components of the total momentum of the system are
both conserved. Momentum conservation requires that the sum of
the x-components of momentum before the collision (subscript 1)
must equal the sum after the collision (subscript 2), and similarly
for the sums of the y-components. Our target variable is the
final velocity of robot B.

vSB2,

a = 30°
1.0 m>s

2.0 m>s
EXECUTE: The momentum-conservation equations and their solu-
tions for and are

Figure 8.13b shows the motion of robot B after the collision. The
magnitude of is

and the angle of its direction from the positive x-axis is

EVALUATE: We can check our answer by confirming that the
components of total momentum before and after the collision are
equal. Initially robot A has x-momentum

and zero y-momentum; robot B has
zero momentum. After the collision, the momentum compo-
nents are
and the total x-
momentum is the same as before the collision. The
final y-components are

and
the total y-component of momentum is zero, the same as before the
collision.

mBvB2y = 112 kg21-0.83 m>s2 = -10 kg # m>s;10 kg # m>s
mAvA2y = 120 kg211.0 m>s21sin 30°2 =

40 kg # m>s,
112 kg211.89 m>s2 = 23 kg # m>s;mBvB2x =

120 kg211.0 m>s21cos 30°2 = 17 kg # m>smAvA2x =

12.0 m>s2 = 40 kg # m>s
mAvA1x = 120 kg2

b = arctan
-0.83 m>s

1.89 m>s
= -24°

vB2 = 211.89 m>s22 + 1-0.83 m>s22 = 2.1 m>s

vSB2

= -0.83 m>s

=
B120 kg2102 + 112 kg2102

- 120 kg211.0 m>s21sin30°2
R

12 kg

vB2y =
mAvA1y + mBvB1y - mAvA2y

mB

mAvA1y + mBvB1y = mAvA2y + mBvB2y

= 1.89 m>s

=
B120 kg212.0 m>s2 + 112 kg2102

- 120 kg211.0 m>s21cos30°2
R

12 kg

vB2x =
mAvA1x + mBvB1x - mAvA2x

mB

mAvA1x + mBvB1x = mAvA2x + mBvB2x

vB2yvB2x

8.13 Views from above of the velocities (a) before and 
(b) after the collision.

(a) Before collision

vA2

y

O
x

A

B

y

O

vA1
B

x

A

(b) After collision

a

a

b

b

S

S

vA2y

vA2x

vB2x

vB2
S

vB2y
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8.3 Momentum Conservation and Collisions
To most people the term collision is likely to mean some sort of automotive dis-
aster. We’ll use it in that sense, but we’ll also broaden the meaning to include any
strong interaction between bodies that lasts a relatively short time. So we include
not only car accidents but also balls colliding on a billiard table, neutrons hitting
atomic nuclei in a nuclear reactor, the impact of a meteor on the Arizona desert,
and a close encounter of a spacecraft with the planet Saturn.

If the forces between the bodies are much larger than any external forces, as is
the case in most collisions, we can neglect the external forces entirely and treat the
bodies as an isolated system. Then momentum is conserved and the total momen-
tum of the system has the same value before and after the collision. Two cars col-
liding at an icy intersection provide a good example. Even two cars colliding on
dry pavement can be treated as an isolated system during the collision if the forces
between the cars are much larger than the friction forces of pavement against tires.

Elastic and Inelastic Collisions
If the forces between the bodies are also conservative, so that no mechanical
energy is lost or gained in the collision, the total kinetic energy of the system is the
same after the collision as before. Such a collision is called an elastic collision. A
collision between two marbles or two billiard balls is almost completely elastic.
Figure 8.14 shows a model for an elastic collision. When the gliders collide, their
springs are momentarily compressed and some of the original kinetic energy is
momentarily converted to elastic potential energy. Then the gliders bounce apart,
the springs expand, and this potential energy is converted back to kinetic energy.

A collision in which the total kinetic energy after the collision is less than before
the collision is called an inelastic collision. A meatball landing on a plate of
spaghetti and a bullet embedding itself in a block of wood are examples of inelastic
collisions. An inelastic collision in which the colliding bodies stick together and
move as one body after the collision is often called a completely inelastic collision.
Figure 8.15 shows an example; we have replaced the spring bumpers in Fig. 8.14
with Velcro®, which sticks the two bodies together.

CAUTION An inelastic collision doesn’t have to be completely inelastic It’s a common
misconception that the only inelastic collisions are those in which the colliding bodies
stick together. In fact, inelastic collisions include many situations in which the bodies do
not stick. If two cars bounce off each other in a “fender bender,” the work done to deform
the fenders cannot be recovered as kinetic energy of the cars, so the collision is inelastic
(Fig. 8.16). ❙

Remember this rule: In any collision in which external forces can be neglected,
momentum is conserved and the total momentum before equals the total momentum
after; in elastic collisions only, the total kinetic energy before equals the total kinetic
energy after.

Completely Inelastic Collisions
Let’s look at what happens to momentum and kinetic energy in a completely
inelastic collision of two bodies (A and B), as in Fig. 8.15. Because the two bod-
ies stick together after the collision, they have the same final velocity :

vSA2 � vSB2 � vS2

vS2

Test Your Understanding of Section 8.2 A spring-loaded toy sits at
rest on a horizontal, frictionless surface. When the spring releases, the toy breaks
into three equal-mass pieces, A, B, and C, which slide along the surface. Piece A
moves off in the negative x-direction, while piece B moves off in the negative y-direction.
(a) What are the signs of the velocity components of piece C? (b) Which of the three
pieces is moving the fastest? ❙

8.14 Two gliders undergoing an elastic
collision on a frictionless surface. Each
glider has a steel spring bumper that exerts
a conservative force on the other glider.

8.15 Two gliders undergoing a com-
pletely inelastic collision. The spring
bumpers on the gliders are replaced by
Velcro®, so the gliders stick together after
collision.

Kinetic energy is stored as potential
energy in compressed springs.

The system of the two gliders has the same
kinetic energy after the collision as before it.

vA1 vB1

Springs

(a) Before collision

(b) Elastic collision

(c) After collision

BA

BA

S S

vA2 vB2
S S

BA

The gliders stick together.

The system of the two gliders has less kinetic
energy after the collision than before it.

BA

BA

BA

vA1 vB1

Velcro®

(a) Before collision

(b) Completely inelastic collision

(c) After collision

S S

v2
S



Conservation of momentum gives the relationship

(completely inelastic collision) (8.16)

If we know the masses and initial velocities, we can compute the common final
velocity

Suppose, for example, that a body with mass and initial x-component of
velocity collides inelastically with a body with mass that is initially at
rest From Eq. (8.16) the common x-component of velocity of
both bodies after the collision is

(8.17)v2x =
mA

mA + mB
vA1x

v2x1vB1x = 02.
mBvA1x

mA

vS2.

mAvSA1 � mBvSB1 � 1mA + mB2v
S

2
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Example 8.7 A completely inelastic collision

We repeat the collision described in Example 8.5 (Section 8.2), but
this time equip the gliders so that they stick together when they
collide. Find the common final x-velocity, and compare the initial
and final kinetic energies of the system.

SOLUTION

IDENTIFY and SET UP: There are no external forces in the x-direction,
so the x-component of momentum is conserved. Figure 8.17 shows
our sketch. Our target variables are the final x-velocity and the
initial and final kinetic energies and .K2K1

v2x

EXECUTE: From conservation of momentum,

Because is positive, the gliders move together to the right after
the collision. Before the collision, the kinetic energies are

The total kinetic energy before the collision is 
The kinetic energy after the collision is

= 0.10 J

K2 = 1
21mA + mB2v2x

2 = 1
210.50 kg + 0.30 kg210.50 m>s22

1.6 J.
KB =K1 = KA +

KB = 1
2 mBvB1x

2 = 1
210.30 kg21-2.0 m>s22 = 0.60 J

KA = 1
2 mAvA1x

2 = 1
210.50 kg212.0 m>s22 = 1.0 J

v2x

= 0.50 m>s

=
10.50 kg212.0 m>s2 + 10.30 kg21-2.0 m>s2

0.50 kg + 0.30 kg

v2x =
mAvA1x + mBvB1x

mA + mB

mAvA1x + mBvB1x = 1mA + mB2v2x

8.17 Our sketch for this problem.

8.16 Automobile collisions are intended
to be inelastic, so that the structure of the
car absorbs as much of the energy of the
collision as possible. This absorbed energy
cannot be recovered, since it goes into a
permanent deformation of the car.

(completely inelastic collision,
B initially at rest)

Let’s verify that the total kinetic energy after this completely inelastic colli-
sion is less than before the collision. The motion is purely along the x-axis, so the
kinetic energies and before and after the collision, respectively, are

The ratio of final to initial kinetic energy is

(8.18)
K2

K1
=

mA

mA + mB

K2 = 1
21mA + mB2v2x

2 = 1
21mA + mB2a

mA

mA + mB
b

2

vA1x
2

K1 = 1
2 mAvA1x

2

K2K1

(completely inelastic collision,
B initially at rest)

The right side is always less than unity because the denominator is always
greater than the numerator. Even when the initial velocity of is not zero, it is
not hard to verify that the kinetic energy after a completely inelastic collision is
always less than before.

Please note: We don’t recommend memorizing Eq. (8.17) or (8.18). We
derived them only to prove that kinetic energy is always lost in a completely
inelastic collision.

mB
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EVALUATE: The final kinetic energy is only of the original; is
converted from mechanical energy to other forms. If there is a wad of
chewing gum between the gliders, it squashes and becomes warmer.
If there is a spring between the gliders that is compressed as they lock

15
16

1
16 together, the energy is stored as potential energy of the spring. In both

cases the total energy of the system is conserved, although kinetic
energy is not. In an isolated system, however, momentum is always
conserved whether the collision is elastic or not.

Example 8.8 The ballistic pendulum

Figure 8.18 shows a ballistic pendulum, a simple system for meas-
uring the speed of a bullet. A bullet of mass makes a com-
pletely inelastic collision with a block of wood of mass which
is suspended like a pendulum. After the impact, the block swings
up to a maximum height y. In terms of y, and what is the
initial speed of the bullet?

SOLUTION

IDENTIFY: We’ll analyze this event in two stages: (1) the embed-
ding of the bullet in the block and (2) the pendulum swing of the
block. During the first stage, the bullet embeds itself in the
block so quickly that the block does not move appreciably. The
supporting strings remain nearly vertical, so negligible external
horizontal force acts on the bullet–block system, and the hori-
zontal component of momentum is conserved. Mechanical
energy is not conserved during this stage, however, because a
nonconservative force does work (the force of friction between
bullet and block).

In the second stage, the block and bullet move together. The
only forces acting on this system are gravity (a conservative
force) and the string tensions (which do no work). Thus, as the
block swings, mechanical energy is conserved. Momentum is not

v1

mW,mB,

mW,
mB

conserved during this stage, however, because there is a net exter-
nal force (the forces of gravity and string tension don’t cancel
when the strings are inclined).

SET UP: We take the positive x-axis to the right and the positive 
y-axis upward. Our target variable is Another unknown quan-
tity is the speed of the system just after the collision. We’ll
use momentum conservation in the first stage to relate to 
and we’ll use energy conservation in the second stage to relate

to y.

EXECUTE: In the first stage, all velocities are in the �x-direction.
Momentum conservation gives

At the beginning of the second stage, the system has kinetic energy
The system swings up and comes to rest for

an instant at a height y, where its kinetic energy is zero and the
potential energy is it then swings back down.
Energy conservation gives

We substitute this expression for into the momentum equation:

EVALUATE: Let’s plug in the realistic numbers 
and We

then have

The speed of the block just after impact is

The speeds and seem realistic. The kinetic energy of the 
bullet before impact is Just

after impact the kinetic energy of the system is 
Nearly all the kinetic energy disap-

pears as the wood splinters and the bullet and block become
warmer.

0.590 J.10.767 m>s22 =

1
212.005 kg2

1
210.00500 kg21307 m>s22 = 236 J.

v2v1

= 0.767 m>s

v2 = 22gy = 2219.80 m>s2210.0300 m2

v2

= 307 m>s

v1 =
0.00500 kg + 2.00 kg

0.00500 kg
2219.80 m>s2210.0300 m2

y = 3.00 cm = 0.0300 m.mW = 2.00 kg,0.00500 kg,
mB = 5.00 g =

v1 =
mB + mW

mB
22gy

v2

v2 = 22gy

1
21mB + mW2v

2
2 = 1mB + mW2gy

1mB + mW2gy;

K = 1
21mB + mW2v

2
2 .

v1 =
mB + mW

mB
v2

mBv1 = 1mB + mW2v2

v2

v2,v1

v2

v1.

8.18 A ballistic pendulum.

Before collision

Immediately
after collision

Top of swing

y

v2

mB 1 mW

mB
mW

v1
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Example 8.9 An automobile collision

A 1000-kg car traveling north at collides with a 2000-kg
truck traveling east at The occupants, wearing seat belts,
are uninjured, but the two vehicles move away from the impact
point as one. The insurance adjustor asks you to find the velocity
of the wreckage just after impact. What is your answer?

SOLUTION

IDENTIFY and SET UP: We’ll treat the cars as an isolated system,
so that the momentum of the system is conserved. We can do so
because (as we show below) the magnitudes of the horizontal
forces that the cars exert on each other during the collision are
much larger than any external forces such as friction. Figure 8.19
shows our sketch and the coordinate axes. We can find the total
momentum before the collision using Eqs. (8.15). The momen-
tum has the same value just after the collision; hence we can find
the velocity just after the collision (our target variable) using

where is the mass of the
wreckage.

EXECUTE: From Eqs. (8.15), the components of are

The magnitude of is

and its direction is given by the angle shown in Fig. 8.19:

tan u =
Py

Px
=

1.5 * 104 kg # m>s
2.0 * 104 kg # m>s = 0.75   u = 37°

u

= 2.5 * 104 kg # m>s
P = 212.0 * 104 kg # m>s22 + 11.5 * 104 kg # m>s22

P
S

= 1.5 * 104 kg # m>s
= 11000 kg2115 m>s2 + 12000 kg2102

Py = pCy + pTy = mCvCy + mTvTy

= 2.0 * 104 kg # m>s
= 11000 kg2102 + 12000 kg2110 m>s2

Px = pCx + pTx = mCvCx + mTvTx

P
S

M = mC + mT = 3000 kgP
S

� MV
S

,
V
S

P
S

10 m>s.
15 m>s

From the direction of the velocity just after the collision
is also . The velocity magnitude is

EVALUATE: This is an inelastic collision, so we expect the total
kinetic energy to be less after the collision than before. As you can
show, the initial kinetic energy is and the final value is

We can now justify our neglect of the external forces on the vehi-
cles during the collision. The car’s weight is about 10,000 N; if the
coefficient of kinetic friction is 0.5, the friction force on the car
during the impact is about 5000 N. The car’s initial kinetic energy is

so of work
must be done to stop it. If the car crumples by 0.20 m 
in stopping, a force of magnitude 11.1 * 105 J2>10.20 m2 =

-1.1 * 105 J1
211000 kg2115 m>s22 = 1.1 * 105 J,

1.0 * 105 J.
2.1 * 105 J

V =
P

M
=

2.5 * 104 kg # m>s
3000 kg

= 8.3 m>s

u = 37°
V
S

P
S

� MV
S

,

8.19 Our sketch for this problem.

Classifying Collisions
It’s important to remember that we can classify collisions according to energy
considerations (Fig. 8.20). A collision in which kinetic energy is conserved is
called elastic. (We’ll explore these in more depth in the next section.) A collision
in which the total kinetic energy decreases is called inelastic. When the two bodies
have a common final velocity, we say that the collision is completely inelastic.
There are also cases in which the final kinetic energy is greater than the initial
value. Rifle recoil, discussed in Example 8.4 (Section 8.2), is an example.

Elastic:
Kinetic energy
conserved.

Inelastic:
Some kinetic
energy lost.

Completely inelastic:
Bodies have same
final velocity.

B

A B

A

A B
vA1
S vB1

S

vB2
SvA2

S
A B

A B
vA1
S vB1

S

vB2
SvA2

S

BA

A B
vA1
S

v2
S

vB1
S

BA

BA

8.20 Collisions are classified according to energy considerations.

would be needed; that’s 110 times the friction force.
So it’s reasonable to treat the external force of friction as negligible
compared with the internal forces the vehicles exert on each other.

5.5 * 105 N
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Finally, we emphasize again that we can sometimes use momentum conserva-
tion even when there are external forces acting on the system, if the net external
force acting on the colliding bodies is small in comparison with the internal
forces during the collision (as in Example 8.9)

Test Your Understanding of Section 8.3 For each situation, state
whether the collision is elastic or inelastic. If it is inelastic, state whether it is com-
pletely inelastic. (a) You drop a ball from your hand. It collides with the floor and
bounces back up so that it just reaches your hand. (b) You drop a different ball from your
hand and let it collide with the ground. This ball bounces back up to half the height from
which it was dropped. (c) You drop a ball of clay from your hand. When it collides with
the ground, it stops. ❙

8.4 Elastic Collisions
We saw in Section 8.3 that an elastic collision in an isolated system is one in
which kinetic energy (as well as momentum) is conserved. Elastic collisions
occur when the forces between the colliding bodies are conservative. When two
billiard balls collide, they squash a little near the surface of contact, but then they
spring back. Some of the kinetic energy is stored temporarily as elastic potential
energy, but at the end it is reconverted to kinetic energy (Fig. 8.21).

Let’s look at an elastic collision between two bodies A and B. We start with a
one-dimensional collision, in which all the velocities lie along the same line;
we choose this line to be the x-axis. Each momentum and velocity then has
only an x-component. We call the x-velocities before the collision and

and those after the collision and From conservation of kinetic
energy we have

and conservation of momentum gives

If the masses and and the initial velocities and are known, we
can solve these two equations to find the two final velocities and 

Elastic Collisions, One Body Initially at Rest
The general solution to the above equations is a little complicated, so we will
concentrate on the particular case in which body B is at rest before the collision 
so . Think of body B as a target for body A to hit. Then the kinetic

energy and momentum conservation equations are, respectively,

(8.19)

(8.20)

We can solve for and in terms of the masses and the initial velocity
This involves some fairly strenuous algebra, but it’s worth it. No pain, no

gain! The simplest approach is somewhat indirect, but along the way it uncovers
an additional interesting feature of elastic collisions.

First we rearrange Eqs. (8.19) and (8.20) as follows:

(8.21)

(8.22)

Now we divide Eq. (8.21) by Eq. (8.22) to obtain

(8.23)vB2x = vA1x + vA2x

mBvB2x = mA1vA1x - vA2x2

mBvB2x
2 = mA1vA1x

2 - vA2x
22 = mA1vA1x - vA2x21vA1x + vA2x2

vA1x.
vB2xvA2x

mAvA1x = mAvA2x + mBvB2x

1
2 mAvA1x

2 = 1
2 mAvA2x

2 + 1
2 mBvB2x

2

2vB1x = 01

vB2x.vA2x

vB1xvA1xmBmA

mAvA1x + mBvB1x = mAvA2x + mBvB2x

1
2 mAvA1x

2 + 1
2 mBvB1x

2 = 1
2 mAvA2x

2 + 1
2 mBvB2x

2

vB2x.vA2xvB1x,
vA1x

8.21 Billiard balls deform very little
when they collide, and they quickly 
spring back from any deformation they 
do undergo. Hence the force of interaction
between the balls is almost perfectly 
conservative, and the collision is almost
perfectly elastic.

ActivPhysics 6.2: Collisions and Elasticity
ActivPhysics 6.5: Car Collisions: Two 
Dimensions
ActivPhysics 6.9: Pendulum Bashes Box



We substitute this expression back into Eq. (8.22) to eliminate and then
solve for 

(8.24)

Finally, we substitute this result back into Eq. (8.23) to obtain

(8.25)

Now we can interpret the results. Suppose body A is a Ping-Pong ball and body
B is a bowling ball. Then we expect A to bounce off after the collision with a
velocity nearly equal to its original value but in the opposite direction (Fig. 8.22a),
and we expect B’s velocity to be much less. That’s just what the equations pre-
dict. When is much smaller than the fraction in Eq. (8.24) is approxi-
mately equal to so is approximately equal to The fraction in
Eq. (8.25) is much smaller than unity, so is much less than Figure 8.22b
shows the opposite case, in which A is the bowling ball and B the Ping-Pong ball
and is much larger than What do you expect to happen then? Check your
predictions against Eqs. (8.24) and (8.25).

Another interesting case occurs when the masses are equal (Fig. 8.23). If
then Eqs. (8.24) and (8.25) give and That is,

the body that was moving stops dead; it gives all its momentum and kinetic
energy to the body that was at rest. This behavior is familiar to all pool players.

Elastic Collisions and Relative Velocity
Let’s return to the more general case in which A and B have different masses.
Equation (8.23) can be rewritten as

(8.26)

Here is the velocity of B relative to A after the collision; from 
Eq. (8.26), this equals which is the negative of the velocity of B relative to A
before the collision. (We discussed relative velocity in Section 3.5.) The relative
velocity has the same magnitude, but opposite sign, before and after the collision.
The sign changes because A and B are approaching each other before the collision
but moving apart after the collision. If we view this collision from a second coordi-
nate system moving with constant velocity relative to the first, the velocities of the
bodies are different but the relative velocities are the same. Hence our statement
about relative velocities holds for any straight-line elastic collision, even when nei-
ther body is at rest initially. In a straight-line elastic collision of two bodies, the rel-
ative velocities before and after the collision have the same magnitude but opposite
sign. This means that if B is moving before the collision, Eq. (8.26) becomes

(8.27)

It turns out that a vector relationship similar to Eq. (8.27) is a general property
of all elastic collisions, even when both bodies are moving initially and the veloc-
ities do not all lie along the same line. This result provides an alternative and
equivalent definition of an elastic collision: In an elastic collision, the relative
velocity of the two bodies has the same magnitude before and after the collision.
Whenever this condition is satisfied, the total kinetic energy is also conserved.

When an elastic two-body collision isn’t head-on, the velocities don’t all lie
along a single line. If they all lie in a plane, then each final velocity has two
unknown components, and there are four unknowns in all. Conservation of energy
and conservation of the x- and y-components of momentum give only three equa-
tions. To determine the final velocities uniquely, we need additional information,
such as the direction or magnitude of one of the final velocities.

vB2x - vA2x = -1vB1x - vA1x2

vA1x,
vB2x - vA2x

vA1x = vB2x - vA2x

vB2x = vA1x.vA2x = 0mA = mB,

mB.mA

vA1x.vB2x

-vA1x.vA2x1-12,
mB,mA

vB2x =
2mA

mA + mB
vA1x

vA2x =
mA - mB

mA + mB
vA1x

mB1vA1x + vA2x2 = mA1vA1x - vA2x2

vA2x:
vB2x
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8.22 Collisions between (a) a moving
Ping-Pong ball and an initially stationary
bowling ball, and (b) a moving bowling ball
and an initially stationary Ping-Pong ball.

x

A

(a) Ping-Pong ball strikes bowling ball.

(b) Bowling ball strikes Ping-Pong ball.

x
B

A

B
x

A

x

B

B

BEFORE

AFTER

BEFORE

AFTER

A

vA1x

vA1x

vB2x

vB2x
vA2x < 2vA1x

vA2x

8.23 A one-dimensional elastic collision
between bodies of equal mass.

vA1x

vA2x 5 0 vB2x 5 vA1x

When a moving object A has a 1-D
elastic collision with an equal-mass,
motionless object B …

… all of A’s momentum and kinetic
energy are transferred to B.

A B

A B

x

x
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Example 8.10 An elastic straight-line collision

We repeat the air-track collision of Example 8.5 (Section 8.2), but
now we add ideal spring bumpers to the gliders so that the colli-
sion is elastic. What are the final velocities of the gliders?

SOLUTION

IDENTIFY and SET UP: The net external force on the system is
zero, so the momentum of the system is conserved. Figure 8.24
shows our sketch. We’ll find our target variables, and 
using Eq. (8.27), the relative-velocity relationship for an elastic
collision, and the momentum-conservation equation.

EXECUTE: From Eq. (8.27),

From conservation of momentum,

(To get the last equation we divided both sides of the equation
just above it by the quantity 1 kg. This makes the units the same
as in the first equation.) Solving these equations simultaneously,
we find

vA2x = -1.0 m>s    vB2x = 3.0 m>s

0.50vA2x + 0.30vB2x = 0.40 m>s

= 10.50 kg2vA2x + 10.30 kg2vB2x

10.50 kg212.0 m>s2 + 10.30 kg21-2.0 m>s2

mAvA1x + mBvB1x = mAvA2x + mBvB2x

= -1-2.0 m>s - 2.0 m>s2 = 4.0 m>s

vB2x - vA2x = -1vB1x - vA1x2

vB2x,vA2x

EVALUATE: Both bodies reverse their directions of motion; A
moves to the left at and B moves to the right at 
This is unlike the result of Example 8.5 because that collision was
not elastic. The more massive glider A slows down in the collision
and so loses kinetic energy. The less massive glider B speeds up
and gains kinetic energy. The total kinetic energy before the colli-
sion (which we calculated in Example 8.7) is 1.6 J. The total
kinetic energy after the collision is

As expected, the kinetic energies before and after this elastic colli-
sion are equal. Kinetic energy is transferred from A to B, but none
of it is lost.

CAUTION Be careful with the elastic collision equations You could
not have solved this problem using Eqs. (8.24) and (8.25), which
apply only if body B is initially at rest. Always be sure that you
solve the problem at hand using equations that are applicable! ❙

1
210.50 kg21-1.0 m>s22 + 1

210.30 kg213.0 m>s22 = 1.6 J

3.0 m>s.1.0 m>s

8.24 Our sketch for this problem.

Example 8.11 Moderating fission neutrons in a nuclear reactor

The fission of uranium nuclei in a nuclear reactor produces high-
speed neutrons. Before such neutrons can efficiently cause addi-
tional fissions, they must be slowed down by collisions with nuclei
in the moderator of the reactor. The first nuclear reactor (built 
in 1942 at the University of Chicago) used carbon (graphite) as 
the moderator. Suppose a neutron (mass 1.0 u) traveling at 

undergoes a head-on elastic collision with a carbon nucleus
(mass 12 u) initially at rest. Neglecting external forces during the
collision, find the velocities after the collision. (1 u is the atomic
mass unit, equal to )

SOLUTION

IDENTIFY and SET UP: We neglect external forces, so momentum
is conserved in the collision. The collision is elastic, so kinetic

1.66 * 10-27 kg.

107 m>s
2.6 *

energy is also conserved. Figure 8.25 shows our sketch. We take
the x-axis to be in the direction in which the neutron is moving ini-
tially. The collision is head-on, so both particles move along this
same axis after the collision. The carbon nucleus is initially at rest,
so we can use Eqs. (8.24) and (8.25); we replace A by n (for the
neutron) and B by C (for the carbon nucleus). We have

and . The target
variables are the final velocities and .

EXECUTE: You can do the arithmetic. (Hint: There’s no reason to
convert atomic mass units to kilograms.) The results are

EVALUATE: The neutron ends up with 
of its initial speed, and the speed of the recoiling carbon nucleus

is of the neutron’s initial speed. Kinetic
energy is proportional to speed squared, so the neutron’s final
kinetic energy is of its original value. After a second
head-on collision, its kinetic energy is or about half its
original value, and so on. After a few dozen collisions (few of
which are head-on), the neutron speed will be low enough that it
can efficiently cause a fission reaction in a uranium nucleus.

10.7222,
111

132
2 L 0.72

ƒ2mn>1mn + mC2 ƒ = 2
13

11
13

ƒ 1mn - mC2>1mn +mC2 ƒ =

vn2x = -2.2 * 107 m>s    vC2x = 0.4 * 107 m>s

vC2xvn2x

vn1x = 2.6 * 107 m>smC = 12 u,mn = 1.0 u,

8.25 Our sketch for this problem.



8.5 Center of Mass
We can restate the principle of conservation of momentum in a useful way by
using the concept of center of mass. Suppose we have several particles with
masses and so on. Let the coordinates of be those of be

and so on. We define the center of mass of the system as the point that
has coordinates given by

(center of mass) (8.28)

ycm =
m1y1 + m2y2 + m3y3 + Á

m1 + m2 + m3 + Á =
a

i
miyi

a
i

mi

xcm =
m1x1 + m2x2 + m3x3 + Á

m1 + m2 + m3 + Á =
a

i
mix i

a
i

mi

1xcm, ycm2
1x2, y22,

m21x1, y12,m1m2,m1,
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Example 8.12 A two-dimensional elastic collision

Figure 8.26 shows an elastic collision of two pucks (masses
and ) on a frictionless air-hockey

table. Puck A has an initial velocity of in the positive x-
direction and a final velocity of in an unknown direction

. Puck B is initially at rest. Find the final speed of puck B and
the angles and .

SOLUTION

IDENTIFY and SET UP: We’ll use the equations for conservation
of energy and conservation of x- and y-momentum. These three
equations should be enough to solve for the three target variables
given in the problem statement.

EXECUTE: The collision is elastic, so the initial and final kinetic
energies of the system are equal:

Conservation of the x- and y-components of total momentum gives

- 10.300 kg214.47 m>s21sin b2

0 = 10.500 kg212.00 m>s21sin a2

0 = mAvA2y + mBvB2y

+ 10.300 kg214.47 m>s21cos b2

10.500 kg214.00 m>s2 = 10.500 kg212.00 m>s21cos a2

mAvA1x = mAvA2x + mBvB2x

vB2 = 4.47 m>s

=
10.500 kg214.00 m>s22 - 10.500 kg212.00 m>s22

0.300 kg

vB2
2 =

mAvA1
2 - mAvA2

2

mB

1
2 mAvA1

2 = 1
2 mAvA2

2 + 1
2 mBvB2

2

ba

vB2a

2.00 m>s
4.00 m>s

mB = 0.300 kgmA = 0.500 kg

a

b

BEFORE

AFTER

vA1 5 4.00 m/s
x

y

O

A
B

B (at rest)

mA 5 0.500 kg mB 5 0.300 kg

vA2 5 2.00 m/s

x

y

O
A

vB2

B

These are two simultaneous equations for and We’ll leave it to
you to supply the details of the solution. (Hint: Solve the first equa-
tion for and the second for square each equation and
add. Since this eliminates and leaves an
equation that you can solve for and hence for Substitute
this value into either of the two equations and solve for ) The
results are

EVALUATE: To check the answers we confirm that the y-momentum,
which was zero before the collision, is in fact zero after the colli-
sion. The y-momenta are

and their sum is indeed zero.

pB2y = -10.300 kg214.47 m>s21sin 26.6°2 = -0.600 kg # m>s
pA2y = 10.500 kg212.00 m>s21sin 36.9°2 = +0.600 kg # m>s

a = 36.9°    b = 26.6°

b.
a.cos a

bsin2b + cos2b = 1,
sin b;cos b

b.a

8.26 An elastic collision that isn’t head-on.

Test Your Understanding of Section 8.4 Most present-day nuclear reactors
use water as a moderator (see Example 8.11). Are water molecules (mass ) a
better or worse moderator than carbon atoms? (One advantage of water is that it also acts
as a coolant for the reactor’s radioactive core.) ❙

mw = 18.0 u
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The position vector of the center of mass can be expressed in terms of the
position vectors . . . of the particles as

(center of mass) (8.29)

In statistical language, the center of mass is a mass-weighted average position of
the particles.

rScm �
m1 rS1 � m2 rS2 � m3 rS3 � Á

m1 + m2 + m3 + Á �
a

i
mi r

S
i

a
i

mi

rS2,rS1,
rScm

Example 8.13 Center of mass of a water molecule

Figure 8.27 shows a simple model of a water molecule. The oxygen-
hydrogen separation is Each hydrogen atom
has mass 1.0 u, and the oxygen atom has mass 16.0 u. Find the
position of the center of mass.

SOLUTION

IDENTIFY and SET UP: Nearly all the mass of each atom is con-
centrated in its nucleus, whose radius is only about times the
overall radius of the atom. Hence we can safely represent each atom
as a point particle. Figure 8.27 shows our coordinate system, with

10-5

d = 9.57 * 10-11 m.

y

x

Hydrogen

Hydrogen

O

d

d

Oxygen

105°cm

the x-axis chosen to lie along the molecule’s symmetry axis. We’ll
use Eqs. (8.28) to find and 

EXECUTE: The oxygen atom is at The x-coordinate
of each hydrogen atom is the y-coordinates are

From Eqs. (8.28),

Substituting we find

EVALUATE: The center of mass is much closer to the oxygen atom
(located at the origin) than to either hydrogen atom because the
oxygen atom is much more massive. The center of mass lies along
the molecule’s axis of symmetry. If the molecule is rotated 180°
around this axis, it looks exactly the same as before. The position
of the center of mass can’t be affected by this rotation, so it must
lie on the axis of symmetry.

xcm = 10.068219.57 * 10-11 m2 = 6.5 * 10-12 m

d = 9.57 * 10-11 m,

ycm =
B 11.0 u21d sin52.5°2 + 11.0 u2

* 1-d sin52.5°2 + 116.0 u2102
R

1.0 u + 1.0 u + 16.0 u
= 0

xcm =
B11.0 u21d cos52.5°2 + 11.0 u2

* 1dcos52.5°2 + 116.0 u2102
R

1.0 u + 1.0 u + 16.0 u
= 0.068d

�d sin1105°>22.
dcos1105°>22;

y = 0.x = 0,

ycm.xcm

8.27 Where is the center of mass of a water molecule?

8.28 Locating the center of mass of a
symmetrical object.

Cube Sphere Cylinder

Center of mass

If a homogeneous object has a geometric center,
that is where the center of mass is located.

Axis of symmetry

Disk Donut

If an object has an axis of symmetry, the center
of mass lies along it. As in the case of the donut,
the center of mass may not be within the object.

For solid bodies, in which we have (at least on a macroscopic level) a contin-
uous distribution of matter, the sums in Eqs. (8.28) have to be replaced by inte-
grals. The calculations can get quite involved, but we can say three general
things about such problems (Fig. 8.28). First, whenever a homogeneous body
has a geometric center, such as a billiard ball, a sugar cube, or a can of frozen
orange juice, the center of mass is at the geometric center. Second, whenever a
body has an axis of symmetry, such as a wheel or a pulley, the center of mass
always lies on that axis. Third, there is no law that says the center of mass has to
be within the body. For example, the center of mass of a donut is right in the
middle of the hole.

We’ll talk a little more about locating the center of mass in Chapter 11 in con-
nection with the related concept of center of gravity.

Motion of the Center of Mass
To see the significance of the center of mass of a collection of particles, we must
ask what happens to the center of mass when the particles move. The x- and 
y-components of velocity of the center of mass, and are the time de-
rivatives of and Also, is the x-component of velocity of particle 1,dx1>dtycm.xcm

vcm-y,vcm-x



and so on, so and so on. Taking time derivatives of Eqs. (8.28), 
we get

(8.30)

These equations are equivalent to the single vector equation obtained by taking
the time derivative of Eq. (8.29):

(8.31)

We denote the total mass by M. We can then rewrite Eq. (8.31) as

(8.32)

The right side is simply the total momentum of the system. Thus we have
proved that the total momentum is equal to the total mass times the velocity of the
center of mass. When you catch a baseball, you are really catching a collection of
a very large number of molecules of masses The impulse you
feel is due to the total momentum of this entire collection. But this impulse is 
the same as if you were catching a single particle of mass 

moving with velocity the velocity of the collection’s center
of mass. So Eq. (8.32) helps to justify representing an extended body as a particle.

For a system of particles on which the net external force is zero, so that the
total momentum is constant, the velocity of the center of mass is
also constant. Suppose we mark the center of mass of a wrench and then slide the
wrench with a spinning motion across a smooth, horizontal tabletop (Fig. 8.29).
The overall motion appears complicated, but the center of mass follows a straight
line, as though all the mass were concentrated at that point.

vScm � P
S
>MP

S

vScm,m2 + m3 + Á
M = m1 +

m3, . Ám2,m1,

P
S

MvScm � m1vS1 � m2vS2 � m3vS3 � Á � P
S

m1 + m2 + Á

vScm �
m1vS1 � m2vS2 � m3vS3 � Á

m1 + m2 + m3 + Á

vcm-y =
m1v1y + m2v2y + m3v3y + Á

m1 + m2 + m3 + Á

vcm-x =
m1v1x + m2v2x + m3v3x + Á

m1 + m2 + m3 + Á

dx1>dt = v1x,
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8.29 The center of mass of this wrench
is marked with a white dot. The net 
external force acting on the wrench is
almost zero. As the wrench spins on a
smooth horizontal surface, the center of
mass moves in a straight line with nearly
constant velocity.

Example 8.14 A tug-of-war on the ice

James (mass 90.0 kg) and Ramon (mass 60.0 kg) are 20.0 m apart
on a frozen pond. Midway between them is a mug of their favorite
beverage. They pull on the ends of a light rope stretched between
them. When James has moved 6.0 m toward the mug, how far and
in what direction has Ramon moved?

SOLUTION

IDENTIFY and SET UP: The surface is horizontal and (we assume)
frictionless, so the net external force on the system of James,
Ramon, and the rope is zero; their total momentum is conserved.
Initially there is no motion, so the total momentum is zero. The
velocity of the center of mass is therefore zero, and it remains at
rest. Let’s take the origin at the position of the mug and let the 
�x-axis extend from the mug toward Ramon. Figure 8.30 shows

8.30 Our sketch for this problem.

our sketch. We use Eq. (8.28) to calculate the position of the center
of mass; we neglect the mass of the light rope.

EXECUTE: The initial x-coordinates of James and Ramon are
and respectively, so the x-coordinate of the

center of mass is

When James moves 6.0 m toward the mug, his new x-coordinate is
we’ll call Ramon’s new x-coordinate The center of

mass doesn’t move, so

James has moved 6.0 m and is still 4.0 m from the mug, but
Ramon has moved 9.0 m and is only 1.0 m from it.

EVALUATE: The ratio of the distances moved, 
is the inverse ratio of the masses. Can you see why? Because the

surface is frictionless, the two men will keep moving and collide at
the center of mass; Ramon will reach the mug first. This is inde-
pendent of how hard either person pulls; pulling harder just makes
them move faster.

2
3,

19.0 m2 =16.0 m2>

x2 = 1.0 m

xcm =
190.0 kg21-4.0 m2 + 160.0 kg2x2

90.0 kg + 60.0 kg
= -2.0 m

x2.-4.0 m;

x cm =
190.0 kg21-10.0 m2 + 160.0 kg2110.0 m2

90.0 kg + 60.0 kg
= -2.0 m

+10.0 m,-10.0 m
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External Forces and Center-of-Mass Motion
If the net external force on a system of particles is not zero, then total momentum
is not conserved and the velocity of the center of mass changes. Let’s look at the
relationship between the motion of the center of mass and the forces acting on the
system.

Equations (8.31) and (8.32) give the velocity of the center of mass in terms of
the velocities of the individual particles. We take the time derivatives of these
equations to show that the accelerations are related in the same way. Let

be the acceleration of the center of mass; then we find

(8.33)

Now is equal to the vector sum of forces on the first particle, and so on,
so the right side of Eq. (8.33) is equal to the vector sum of all the forces on
all the particles. Just as we did in Section 8.2, we can classify each force as
external or internal. The sum of all forces on all the particles is then

Because of Newton’s third law, the internal forces all cancel in pairs, and
What survives on the left side is the sum of only the external forces:

(body or collection of particles) (8.34)

When a body or a collection of particles is acted on by external forces, the center
of mass moves just as though all the mass were concentrated at that point and it
were acted on by a net force equal to the sum of the external forces on the system.

This result may not sound very impressive, but in fact it is central to the whole
subject of mechanics. In fact, we’ve been using this result all along; without it,
we would not be able to represent an extended body as a point particle when we
apply Newton’s laws. It explains why only external forces can affect the motion
of an extended body. If you pull upward on your belt, your belt exerts an equal
downward force on your hands; these are internal forces that cancel and have no
effect on the overall motion of your body.

Suppose a cannon shell traveling in a parabolic trajectory (neglecting air
resistance) explodes in flight, splitting into two fragments with equal mass (Fig.
8.31a). The fragments follow new parabolic paths, but the center of mass contin-
ues on the original parabolic trajectory, just as though all the mass were still con-
centrated at that point. A skyrocket exploding in air (Fig. 8.31b) is a spectacular
example of this effect.

gF
S

ext � M aScm

gF
S

int � 0.

gF
S

� gF
S

ext � gF
S

int � M aScm

gF
S

m1aS1

M aScm � m1aS1 � m2aS2 � m3aS3 � Á
aScm � dvScm>dt

8.31 (a) A shell explodes into two fragments in flight. If air resistance is ignored, the center of mass continues on the same trajectory
as the shell’s path before exploding. (b) The same effect occurs with exploding fireworks.

Shell explodes
After the shell explodes, the two fragments

follow individual trajectories,
but the center of mass

continues to follow the
shell’s original

trajectory.

(a) (b)

cm

cm

cm



This property of the center of mass is important when we analyze the motion
of rigid bodies. We describe the motion of an extended body as a combination of
translational motion of the center of mass and rotational motion about an axis
through the center of mass. We will return to this topic in Chapter 10. This prop-
erty also plays an important role in the motion of astronomical objects. It’s not
correct to say that the moon orbits the earth; rather, the earth and moon both
move in orbits around their center of mass.

There’s one more useful way to describe the motion of a system of particles.
Using we can rewrite Eq. (8.33) as

(8.35)

The total system mass M is constant, so we’re allowed to move it inside the
derivative. Substituting Eq. (8.35) into Eq. (8.34), we find

(extended body or system of particles) (8.36)

This equation looks like Eq. (8.4). The difference is that Eq. (8.36) describes a
system of particles, such as an extended body, while Eq. (8.4) describes a single
particle. The interactions between the particles that make up the system can
change the individual momenta of the particles, but the total momentum of the
system can be changed only by external forces acting from outside the system.

Finally, we note that if the net external force is zero, Eq. (8.34) shows that the
acceleration of the center of mass is zero. So the center-of-mass velocity 
is constant, as for the wrench in Fig. 8.29. From Eq. (8.36) the total momentum 

is also constant. This reaffirms our statement in Section 8.3 of the principle of
conservation of momentum.
P
S

vScmaScm

P
S

gF
S

ext �
dP

S

dt

M aScm � M
dvScm

dt
�

d1MvScm2

dt
�
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S

dt

aScm � dvScm>dt,

262 CHAPTER 8 Momentum, Impulse, and Collisions

Test Your Understanding of Section 8.5 Will the center of mass in Fig. 8.31a
continue on the same parabolic trajectory even after one of the fragments hits the ground?
Why or why not? ❙

8.6 Rocket Propulsion
Momentum considerations are particularly useful for analyzing a system in which
the masses of parts of the system change with time. In such cases we can’t use
Newton’s second law directly because m changes. Rocket propulsion
offers a typical and interesting example of this kind of analysis. A rocket is pro-
pelled forward by rearward ejection of burned fuel that initially was in the rocket
(which is why rocket fuel is also called propellant). The forward force on the
rocket is the reaction to the backward force on the ejected material. The total
mass of the system is constant, but the mass of the rocket itself decreases as
material is ejected.

As a simple example, consider a rocket fired in outer space, where there is no
gravitational force and no air resistance. Let m denote the mass of the rocket,
which will change as it expends fuel. We choose our x-axis to be along the
rocket’s direction of motion. Figure 8.32a shows the rocket at a time t, when its
mass is m and its x-velocity relative to our coordinate system is (For simplicity,
we will drop the subscript x in this discussion.) The x-component of total
momentum at this instant is In a short time interval dt, the mass of the
rocket changes by an amount dm. This is an inherently negative quantity because
the rocket’s mass m decreases with time. During dt, a positive mass of
burned fuel is ejected from the rocket. Let be the exhaust speed of this material
relative to the rocket; the burned fuel is ejected opposite the direction of motion,

vex

-dm

P1 = mv.

v.

gF
S

� m aS

Application Jet Propulsion in Squids
Both a jet engine and a squid use variations in
their mass to provide propulsion: They
increase their mass by taking in fluid at low
speed (air for a jet engine, water for a squid),
then decrease their mass by ejecting that fluid
at high speed. The net result is a propulsive
force.

ActivPhysics 6.6: Saving an Astronaut
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so its x-component of velocity relative to the rocket is The x-velocity
of the burned fuel relative to our coordinate system is then

and the x-component of momentum of the ejected mass is

Figure 8.32b shows that at the end of the time interval dt, the x-velocity of the
rocket and unburned fuel has increased to and its mass has decreased to

(remember that dm is negative). The rocket’s momentum at this time is

Thus the total x-component of momentum of the rocket plus ejected fuel at
time is

According to our initial assumption, the rocket and fuel are an isolated sys-
tem. Thus momentum is conserved, and the total x-component of momentum of
the system must be the same at time t and at time Hence

This can be simplified to

We can neglect the term because it is a product of two small quantities
and thus is much smaller than the other terms. Dropping this term, dividing by dt,
and rearranging, we find

(8.37)

Now is the acceleration of the rocket, so the left side of this equation
(mass times acceleration) equals the net force F, or thrust, on the rocket:

(8.38)

The thrust is proportional both to the relative speed of the ejected fuel and to
the mass of fuel ejected per unit time, (Remember that is nega-
tive because it is the rate of change of the rocket’s mass, so F is positive.)

The x-component of acceleration of the rocket is

(8.39)a =
dv
dt

= -
vex

m

dm

dt

dm>dt-dm>dt.
vex

F = -vex
dm

dt

dv>dt

m
dv
dt

= -vex
dm

dt

1-dm dv2

m dv = -dm vex - dm dv

mv = 1m + dm21v + dv2 + 1-dm21v - vex2

P1 = P2.t + dt:

P2 = 1m + dm21v + dv2 + 1-dm21v - vex2

t + dt
P2

1m + dm21v + dv2

m + dm
v + dv,

1-dm2vfuel = 1-dm21v - vex2

1-dm2

vfuel = v + 1-vex2 = v - vex

vfuel-vex.

8.32 A rocket moving in gravity-free outer space at (a) time t and (b) time t + dt.

At time t 1 dt , the rocket has mass m 1 dm (where
dm is inherently negative) and x-component of velocity
v 1 dv. The burned fuel has x-component of velocity
vfuel 5 v 2 vex and mass 2dm. (The minus sign is
needed to make 2dm positive because dm is negative.)

At time t, the rocket has mass m
and x-component of velocity v.

1x-direction
Rocket
v 1 dv

m 1 dm2dm

Burned fuel
vfuel 5 v 2 vex

Rocket
v

m

(a) (b)



This is positive because is positive (remember, it’s the exhaust speed ) and
is negative. The rocket’s mass m decreases continuously while the fuel is

being consumed. If and are constant, the acceleration increases until all
the fuel is gone.

Equation (8.38) tells us that an effective rocket burns fuel at a rapid rate
(large ) and ejects the burned fuel at a high relative speed (large ),
as in Fig. 8.33. In the early days of rocket propulsion, people who didn’t
understand conservation of momentum thought that a rocket couldn’t function
in outer space because “it doesn’t have anything to push against.” On the 
contrary, rockets work best in outer space, where there is no air resistance!
The launch vehicle in Fig. 8.33 is not “pushing against the ground” to get into
the air.

If the exhaust speed is constant, we can integrate Eq. (8.39) to find a
relationship between the velocity at any time and the remaining mass m.
At time let the mass be and the velocity Then we rewrite 
Eq. (8.39) as

We change the integration variables to and so we can use and m as the
upper limits (the final speed and mass). Then we integrate both sides, using limits

to and to m, and take the constant outside the integral:

(8.40)

The ratio is the original mass divided by the mass after the fuel has been
exhausted. In practical spacecraft this ratio is made as large as possible to maxi-
mize the speed gain, which means that the initial mass of the rocket is almost all
fuel. The final velocity of the rocket will be greater in magnitude (and is often
much greater) than the relative speed if —that is, if

We’ve assumed throughout this analysis that the rocket is in gravity-free outer
space. However, gravity must be taken into account when a rocket is launched
from the surface of a planet, as in Fig. 8.33 (see Problem 8.112).

m0>m 7 e = 2.71828. Á
ln1m0>m2 7 1vex

m0>m

v - v0 = -vex ln
m
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m
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dm¿
m¿

= -vexL
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vexm0vv0
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m
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8.33 To provide enough thrust to lift its
payload into space, this Atlas V launch
vehicle ejects more than 1000 kg of
burned fuel per second at speeds of nearly
4000 m>s.

Example 8.15 Acceleration of a rocket

The engine of a rocket in outer space, far from any planet, is turned
on. The rocket ejects burned fuel at a constant rate; in the first sec-
ond of firing, it ejects of its initial mass at a relative speed of

What is the rocket’s initial acceleration?

SOLUTION

IDENTIFY and SET UP: We are given the rocket’s exhaust speed 
and the fraction of the initial mass lost during the first second of
firing, from which we can find . We’ll use Eq. (8.39) to find
the acceleration of the rocket.

EXECUTE: The initial rate of change of mass is

dm

dt
= -

m0>120

1 s
= -

m0

120 s

dm>dt

vex

2400 m>s.
m0

1
120

From Eq. (8.39),

EVALUATE: The answer doesn’t depend on If is the same,
the initial acceleration is the same for a 120,000-kg spacecraft that
ejects as for a 60-kg astronaut equipped with a small
rocket that ejects 0.5 kg>s.

1000 kg>s

vexm0.

a = -
vex

m0

dm

dt
= -

2400 m>s

m0
a -

m0

120 s
b = 20 m>s2
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Example 8.16 Speed of a rocket

Suppose that of the initial mass of the rocket in Example 8.15 is
fuel, so that the fuel is completely consumed at a constant rate in 90 s.
The final mass of the rocket is If the rocket starts from
rest in our coordinate system, find its speed at the end of this time.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We are given the initial velocity
the exhaust speed and the final mass m

as a fraction of the initial mass We’ll use Eq. (8.40) to find the
final speed :

v = v0 + vexln
m0

m
= 0 + 12400 m>s21ln 42 = 3327 m>s

v
m0.

vex = 2400 m>s,v0 = 0,

m = m0>4.

3
4 EVALUATE: Let’s examine what happens as the rocket gains speed.

(To illustrate our point, we use more figures than are significant.)
At the start of the flight, when the velocity of the rocket is zero, the
ejected fuel is moving backward at relative to our frame
of reference. As the rocket moves forward and speeds up, the fuel’s
speed relative to our system decreases; when the rocket speed
reaches , this relative speed is zero. [Knowing the rate of
fuel consumption, you can solve Eq. (8.40) to show that this occurs
at about t � 75.6 s.] After this time the ejected burned fuel moves
forward, not backward, in our system. Relative to our frame of
reference, the last bit of ejected fuel has a forward velocity of
3327 m>s - 2400 m>s = 927 m>s.

2400 m>s

2400 m>s

Test Your Understanding of Section 8.6 (a) If a rocket in gravity-free
outer space has the same thrust at all times, is its acceleration constant, increasing,
or decreasing? (b) If the rocket has the same acceleration at all times, is the thrust
constant, increasing, or decreasing? ❙
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p 5 mv
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v
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Impulse and momentum: If a constant net force acts
on a particle for a time interval from to the

impulse of the net force is the product of the net force
and the time interval. If varies with time, is the
integral of the net force over the time interval. In any
case, the change in a particle’s momentum during a time
interval equals the impulse of the net force that acted on
the particle during that interval. The momentum of a par-
ticle equals the impulse that accelerated it from rest to its
present speed. (See Examples 8.1–8.3.)
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S

t2 ,t1¢t
gF
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Conservation of momentum: An internal force is a force
exerted by one part of a system on another. An external
force is a force exerted on any part of a system by some-
thing outside the system. If the net external force on a
system is zero, the total momentum of the system (the
vector sum of the momenta of the individual particles
that make up the system) is constant, or conserved. Each
component of total momentum is separately conserved.
(See Examples 8.4–8.6.)

P
S

Collisions: In collisions of all kinds, the initial and final total momenta are equal. In an elastic colli-
sion between two bodies, the initial and final total kinetic energies are also equal, and the initial and
final relative velocities have the same magnitude. In an inelastic two-body collision, the total
kinetic energy is less after the collision than before. If the two bodies have the same final velocity,
the collision is completely inelastic. (See Examples 8.7–8.12.)

(8.5)

(8.7)

(8.6)J
S

� pS2 � pS1

J
S

� L
t2

t1

 gF
S

 dt

J
S

� gF
S
1t2 - t12 � gF

S
 ¢t

(8.14)

If then P
S

� constant.gF
S

� 0,

� mA vSA � mB vSB � Á
P
S

� pSA � pSB � Á
 

Jx 5 (Fav)x(t2 2 t1)
Fx

(Fav)x

O
t

t1 t2

A B

y

x
FB on A

y

x
FA on B

S S

P 5 pA 1 pB 5 constantSSS

Center of mass: The position vector of the center of
mass of a system of particles, is a weighted aver-
age of the positions of the individual parti-
cles. The total momentum of a system equals its total
mass M multiplied by the velocity of its center of mass,

The center of mass moves as though all the mass
M were concentrated at that point. If the net external
force on the system is zero, the center-of-mass velocity

is constant. If the net external force is not zero, the
center of mass accelerates as though it were a particle
of mass M being acted on by the same net external
force. (See Examples 8.13 and 8.14.)
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Rocket propulsion: In rocket propulsion, the mass of a rocket changes as the fuel is used up 
and ejected from the rocket. Analysis of the motion of the rocket must include the momentum
carried away by the spent fuel as well as the momentum of the rocket itself. (See Examples 8.15
and 8.16.)

1x-direction

v 1 dv

m 1 dm2dm

vfuel 5 v 2 vex

Momentum of a particle: The momentum of a particle
is a vector quantity equal to the product of the particle’s
mass m and velocity Newton’s second law says that
the net force on a particle is equal to the rate of change
of the particle’s momentum.
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Sphere A of mass 0.600 kg is initially moving to the right at
Sphere B, of mass 1.80 kg, is initially to the right of

sphere A and moving to the right at After the two
spheres collide, sphere B is moving at in the same direc-
tion as before. (a) What is the velocity (magnitude and direction)
of sphere A after this collision? (b) Is this collision elastic or inelas-
tic? (c) Sphere B then has an off-center collision with sphere C,
which has mass 1.20 kg and is initially at rest. After this collision,
sphere B is moving at 19.0° to its initial direction at 
What is the velocity (magnitude and direction) of sphere C after
this collision? (d) What is the impulse (magnitude and direction)
imparted to sphere B by sphere C when they collide? (e) Is this
second collision elastic or inelastic? (f) What is the velocity (mag-
nitude and direction) of the center of mass of the system of three
spheres (A, B, and C) after the second collision? No external forces
act on any of the spheres in this problem.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY AND SET UP
1. Momentum is conserved in these collisions. Can you explain

why?
2. Choose the x- and y-axes, and assign subscripts to values

before the first collision, after the first collision but before the
second collision, and after the second collision.

3. Make a list of the target variables, and choose the equations
that you’ll use to solve for these.

2.00 m>s.

3.00 m>s
2.00 m>s.

4.00 m>s.
EXECUTE
4. Solve for the velocity of sphere A after the first collision. Does

A slow down or speed up in the collision? Does this make
sense?

5. Now that you know the velocities of both A and B after the
first collision, decide whether or not this collision is elastic.
(How will you do this?)

6. The second collision is two-dimensional, so you’ll have to
demand that both components of momentum are conserved.
Use this to find the speed and direction of sphere C after the
second collision. (Hint: After the first collision, sphere B
maintains the same velocity until it hits sphere C.)

7. Use the definition of impulse to find the impulse imparted to
sphere B by sphere C. Remember that impulse is a vector.

8. Use the same technique that you employed in step 5 to decide
whether or not the second collision is elastic.

9. Find the velocity of the center of mass after the second 
collision.

EVALUATE
10. Compare the directions of the vectors you found in steps 6 and

7. Is this a coincidence? Why or why not?
11. Find the velocity of the center of mass before and after the first

collision. Compare to your result from step 9. Again, is this a
coincidence? Why or why not?

BRIDGING PROBLEM One Collision After Another

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q8.1 In splitting logs with a hammer and wedge, is a heavy ham-
mer more effective than a lighter hammer? Why?
Q8.2 Suppose you catch a baseball and then someone invites you
to catch a bowling ball with either the same momentum or the
same kinetic energy as the baseball. Which would you choose?
Explain.
Q8.3 When rain falls from the sky, what happens to its momentum
as it hits the ground? Is your answer also valid for Newton’s
famous apple?
Q8.4 A car has the same kinetic energy when it is traveling south
at as when it is traveling northwest at Is the
momentum of the car the same in both cases? Explain.
Q8.5 A truck is accelerating as it speeds down the highway. One
inertial frame of reference is attached to the ground with its origin
at a fence post. A second frame of reference is attached to a police
car that is traveling down the highway at constant velocity. Is the
momentum of the truck the same in these two reference frames?
Explain. Is the rate of change of the truck’s momentum the same in
these two frames? Explain.

30 m>s.30 m>s

Q8.6 (a) When a large car collides with a small car, which one under-
goes the greater change in momentum: the large one or the small
one? Or is it the same for both? (b) In light of your answer to part (a),
why are the occupants of the small car more likely to be hurt than
those of the large car, assuming that both cars are equally sturdy?
Q8.7 A woman holding a large rock stands on a frictionless, hori-
zontal sheet of ice. She throws the rock with speed at an angle 
above the horizontal. Consider the system consisting of the woman
plus the rock. Is the momentum of the system conserved? Why or
why not? Is any component of the momentum of the system con-
served? Again, why or why not?
Q8.8 In Example 8.7 (Section 8.3), where the two gliders in Fig. 8.15
stick together after the collision, the collision is inelastic because

In Example 8.5 (Section 8.2), is the collision inelastic?
Explain.
Q8.9 In a completely inelastic collision between two objects,
where the objects stick together after the collision, is it possible for
the final kinetic energy of the system to be zero? If so, give an
example in which this would occur. If the final kinetic energy is
zero, what must the initial momentum of the system be? Is the ini-
tial kinetic energy of the system zero? Explain.

K2 6 K1.

av0

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

www.masteringphysics.com
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Q8.10 Since for a particle the kinetic energy is given by 
and the momentum by it is easy to show that

How, then, is it possible to have an event during
which the total momentum of the system is constant but the total
kinetic energy changes?
Q8.11 In each of Examples 8.10, 8.11, and 8.12 (Section 8.4), ver-
ify that the relative velocity vector of the two bodies has the same
magnitude before and after the collision. In each case what hap-
pens to the direction of the relative velocity vector?
Q8.12 A glass dropped on the floor is more likely to break if the
floor is concrete than if it is wood. Why? (Refer to Fig. 8.3b.)
Q8.13 In Fig. 8.22b, the kinetic energy of the Ping-Pong ball is
larger after its interaction with the bowling ball than before. From
where does the extra energy come? Describe the event in terms of
conservation of energy.
Q8.14 A machine gun is fired at a steel plate. Is the average force
on the plate from the bullet impact greater if the bullets bounce off
or if they are squashed and stick to the plate? Explain.
Q8.15 A net force of 4 N acts on an object initially at rest for 0.25 s
and gives it a final speed of How could a net force of 2 N
produce the same final speed?
Q8.16 A net force with x-component acts on an object from
time to time The x-component of the momentum of the object
is the same at as it is at but is not zero at all times between

and What can you say about the graph of versus t?
Q8.17 A tennis player hits a tennis ball with a racket. Consider the
system made up of the ball and the racket. Is the total momentum
of the system the same just before and just after the hit? Is the total
momentum just after the hit the same as 2 s later, when the ball is
in midair at the high point of its trajectory? Explain any differ-
ences between the two cases.
Q8.18 In Example 8.4 (Section 8.2), consider the system consist-
ing of the rifle plus the bullet. What is the speed of the system’s
center of mass after the rifle is fired? Explain.
Q8.19 An egg is released from rest from the roof of a building and
falls to the ground. As the egg falls, what happens to the momen-
tum of the system of the egg plus the earth?
Q8.20 A woman stands in the middle of a perfectly smooth, fric-
tionless, frozen lake. She can set herself in motion by throwing
things, but suppose she has nothing to throw. Can she propel her-
self to shore without throwing anything?
Q8.21 In a zero-gravity environment, can a rocket-propelled space-
ship ever attain a speed greater than the relative speed with which
the burnt fuel is exhausted?
Q8.22 When an object breaks into two pieces (explosion, radioac-
tive decay, recoil, etc.), the lighter fragment gets more kinetic energy
than the heavier one. This is a consequence of momentum conserva-
tion, but can you also explain it using Newton’s laws of motion?
Q8.23 An apple falls from a tree and feels no air resistance. As it is
falling, which of these statements about it are true? (a) Only its
momentum is conserved; (b) only its mechanical energy is con-
served, (c) both its momentum and its mechanical energy are con-
served, (d) its kinetic energy is conserved.
Q8.24 Two pieces of clay collide and stick together. During the
collision, which of these statements are true? (a) Only the momen-
tum of the clay is conserved, (b) only the mechanical energy of the
clay is conserved, (c) both the momentum and the mechanical
energy of the clay are conserved, (d) the kinetic energy of the clay
is conserved.
Q8.25 Two marbles are pressed together with a light ideal spring
between them, but they are not attached to the spring in any way.

gFxt2.t1

gFxt2,t1

t2.t1

gFx

5 m>s.

K = p2>2m.
pS � mvS,

K = 1
2 mv2 They are then released on a frictionless horizontal table and soon

move free of the spring. As the marbles are moving away from each
other, which of these statements about them are true? (a) Only the
momentum of the marbles is conserved, (b) only the mechanical
energy of the marbles is conserved, (c) both the momentum and
the mechanical energy of the marbles are conserved, (d) the kinetic
energy of the marbles is conserved.
Q8.26 A very heavy SUV collides head-on with a very light com-
pact car. Which of these statements about the collision are correct?
(a) The amount of kinetic energy lost by the SUV is equal to the
amount of kinetic energy gained by the compact, (b) the amount of
momentum lost by the SUV is equal to the amount of momentum
gained by the compact, (c) the compact feels a considerably
greater force during the collision than the SUV does, (d) both cars
lose the same amount of kinetic energy.

EXERCISES
Section 8.1 Momentum and Impulse
8.1 . (a) What is the magnitude of the momentum of a 10,000-kg
truck whose speed is (b) What speed would a 2000-kg
SUV have to attain in order to have (i) the same momentum? 
(ii) the same kinetic energy?
8.2 . In a certain men’s track and field event, the shotput has 
a mass of 7.30 kg and is released with a speed of at 
40.0° above the horizontal over a man’s straight left leg. What are
the initial horizontal and vertical components of the momentum of
this shotput?
8.3 .. (a) Show that the kinetic energy K and the momentum
magnitude p of a particle with mass m are related by 
(b) A 0.040-kg cardinal (Richmondena cardinalis) and a 0.145-kg
baseball have the same kinetic energy. Which has the greater mag-
nitude of momentum? What is the ratio of the cardinal’s magnitude
of momentum to the baseball’s? (c) A 700-N man and a 450-N
woman have the same momentum. Who has the greater kinetic
energy? What is the ratio of the man’s kinetic energy to that of the
woman?
8.4 . Two vehicles are approaching an intersection. One is a 2500-kg
pickup traveling at from east to west (the �x-direction),
and the other is a 1500-kg sedan going from south to north (the

(a) Find the x- and y-components of the
net momentum of this system. (b) What are the magnitude and
direction of the net momentum?
8.5 . One 110-kg football lineman is running to the right at

while another 125-kg lineman is running directly toward
him at What are (a) the magnitude and direction of the net
momentum of these two athletes, and (b) their total kinetic energy?
8.6 .. BIO Biomechanics. The mass of a regulation tennis ball
is 57 g (although it can vary slightly), and tests have shown that
the ball is in contact with the tennis racket for 30 ms. (This number
can also vary, depending on the racket and swing.) We shall assume
a 30.0-ms contact time for this exercise. The fastest-known served
tennis ball was served by “Big Bill” Tilden in 1931, and its speed
was measured to be (a) What impulse and what force
did Big Bill exert on the tennis ball in his record serve? (b) If Big
Bill’s opponent returned his serve with a speed of what
force and what impulse did he exert on the ball, assuming only
horizontal motion?
8.7 . Force of a Golf Swing. A 0.0450-kg golf ball initially at
rest is given a speed of when a club strikes. If the club
and ball are in contact for 2.00 ms, what average force acts on the

25.0 m>s

55 m>s,

73.14 m>s .

2.60 m>s.
2.75 m>s

+y-direction) at 23.0 m>s.

14.0 m>s

K = p2>2m.

15.0 m>s

12.0 m>s?
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ball? Is the effect of the ball’s weight during the time of contact
significant? Why or why not?
8.8 . Force of a Baseball Swing. A baseball has mass 0.145 kg.
(a) If the velocity of a pitched ball has a magnitude of 
and the batted ball’s velocity is in the opposite direction,
find the magnitude of the change in momentum of the ball and of
the impulse applied to it by the bat. (b) If the ball remains in con-
tact with the bat for 2.00 ms, find the magnitude of the average
force applied by the bat.
8.9 . A 0.160-kg hockey puck is moving on an icy, frictionless,
horizontal surface. At the puck is moving to the right at

(a) Calculate the velocity of the puck (magnitude and
direction) after a force of 25.0 N directed to the right has been
applied for 0.050 s. (b) If, instead, a force of 12.0 N directed to the
left is applied from to what is the final velocity
of the puck?
8.10 . An engine of the orbital maneuvering system (OMS) on a
space shuttle exerts a force of for 3.90 s, exhausting
a negligible mass of fuel relative to the 95,000-kg mass of the
shuttle. (a) What is the impulse of the force for this 3.90 s? (b)
What is the shuttle’s change in momentum from this impulse? 
(c) What is the shuttle’s change in velocity from this impulse? 
(d) Why can’t we find the resulting change in the kinetic energy of
the shuttle?
8.11 . CALC At time a 2150-kg rocket in outer space fires
an engine that exerts an increasing force on it in the 
This force obeys the equation where t is time, and has a
magnitude of 781.25 N when (a) Find the SI value of
the constant A, including its units. (b) What impulse does the
engine exert on the rocket during the 1.50-s interval starting 2.00 s
after the engine is fired? (c) By how much does the rocket’s veloc-
ity change during this interval?
8.12 .. A bat strikes a 0.145-kg baseball. Just before impact, the
ball is traveling horizontally to the right at and it leaves
the bat traveling to the left at an angle of above horizontal with
a speed of If the ball and bat are in contact for 1.75 ms,
find the horizontal and vertical components of the average force on
the ball.
8.13 . A 2.00-kg stone is sliding
to the right on a frictionless hori-
zontal surface at when
it is suddenly struck by an object
that exerts a large horizontal
force on it for a short period of
time. The graph in Fig. E8.13
shows the magnitude of this force
as a function of time. (a) What
impulse does this force exert on
the stone? (b) Just after the force stops acting, find the magnitude
and direction of the stone’s velocity if the force acts (i) to the right
or (ii) to the left.
8.14 .. BIO Bone Fracture. Experimental tests have shown
that bone will rupture if it is subjected to a force density of

. Suppose a 70.0-kg person carelessly roller-
skates into an overhead metal beam that hits his forehead and com-
pletely stops his forward motion. If the area of contact with the
person’s forehead is what is the greatest speed with which
he can hit the wall without breaking any bone if his head is in con-
tact with the beam for 10.0 ms?
8.15 .. To warm up for a match, a tennis player hits the 57.0-g
ball vertically with her racket. If the ball is stationary just

1.5 cm2,

1.03 * 108 N>m2
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65.0 m>s.
30°
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t = 0,
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45.0 m>s

before it is hit and goes 5.50 m high, what impulse did she
impart to it?
8.16 .. CALC Starting at , a horizontal net force 

is applied to a box that
has an initial momentum 

. What is the momentum of the box at ?

Section 8.2 Conservation of Momentum
8.17 .. The expanding gases that leave the muzzle of a rifle also
contribute to the recoil. A .30-caliber bullet has mass 0.00720 kg
and a speed of relative to the muzzle when fired from a
rifle that has mass 2.80 kg. The loosely held rifle recoils at a speed
of relative to the earth. Find the momentum of the pro-
pellant gases in a coordinate system attached to the earth as they
leave the muzzle of the rifle.
8.18 . A 68.5-kg astronaut is doing a repair in space on the orbit-
ing space station. She throws a 2.25-kg tool away from her at

relative to the space station. With what speed and in
what direction will she begin to move?
8.19 . BIO Animal Propulsion. Squids and octopuses propel
themselves by expelling water. They do this by keeping water in a
cavity and then suddenly contracting the cavity to force out the
water through an opening. A 6.50-kg squid (including the water in
the cavity) at rest suddenly sees a dangerous predator. (a) If the
squid has 1.75 kg of water in its cavity, at what speed must it
expel this water to suddenly achieve a speed of to
escape the predator? Neglect any drag effects of the surrounding
water. (b) How much kinetic energy does the squid create by this
maneuver?
8.20 .. You are standing on a sheet of ice that covers the football
stadium parking lot in Buffalo; there is negligible friction between
your feet and the ice. A friend throws you a 0.400-kg ball that is
traveling horizontally at Your mass is 70.0 kg. (a) If you
catch the ball, with what speed do you and the ball move after-
ward? (b) If the ball hits you and bounces off your chest, so after-
ward it is moving horizontally at in the opposite direction,
what is your speed after the collision?
8.21 .. On a frictionless, horizontal air table, puck A (with mass
0.250 kg) is moving toward puck B (with mass 0.350 kg), which is
initially at rest. After the collision, puck A has a velocity of

to the left, and puck B has a velocity of to
the right. (a) What was the speed of puck A before the collision?
(b) Calculate the change in the total kinetic energy of the system
that occurs during the collision.
8.22 .. When cars are equipped with flexible bumpers, they will
bounce off each other during low-speed collisions, thus causing
less damage. In one such accident, a 1750-kg car traveling to the
right at collides with a 1450-kg car going to the left at

Measurements show that the heavier car’s speed just
after the collision was in its original direction. You can
ignore any road friction during the collision. (a) What was the
speed of the lighter car just after the collision? (b) Calculate the
change in the combined kinetic energy of the two-car system dur-
ing this collision.
8.23 .. Two identical 1.50-kg masses are pressed against oppo-
site ends of a light spring of force constant compress-
ing the spring by 20.0 cm from its normal length. Find the speed of
each mass when it has moved free of the spring on a frictionless
horizontal table.
8.24 . Block A in Fig. E8.24 has mass 1.00 kg, and block B has
mass 3.00 kg. The blocks are forced together, compressing a spring
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S between them; then the system is released from rest on a level,
frictionless surface. The spring, which has negligible mass, is not
fastened to either block and drops to the surface after it has
expanded. Block B acquires a speed of (a) What is the
final speed of block A? (b) How much potential energy was stored
in the compressed spring?

1.20 m>s.

which was initially at rest, trav-
els at 45.0° to the original direc-
tion of A (Fig. E8.31). (a) Find
the speed of each asteroid after
the collision. (b) What fraction
of the original kinetic energy of
asteroid A dissipates during this
collision?

Section 8.3 Momentum Conservation and Collisions
8.32 . Two skaters collide and grab on to each other on friction-
less ice. One of them, of mass 70.0 kg, is moving to the right at

while the other, of mass 65.0 kg, is moving to the left at
What are the magnitude and direction of the velocity of

these skaters just after they collide?
8.33 .. A 15.0-kg fish swimming at suddenly gobbles
up a 4.50-kg fish that is initially stationary. Neglect any drag
effects of the water. (a) Find the speed of the large fish just after it
eats the small one. (b) How much mechanical energy was dissi-
pated during this meal?
8.34 . Two fun-loving otters are sliding toward each other on a
muddy (and hence frictionless) horizontal surface. One of them, of
mass 7.50 kg, is sliding to the left at while the other, of
mass 5.75 kg, is slipping to the right at They hold fast to
each other after they collide. (a) Find the magnitude and direction
of the velocity of these free-spirited otters right after they collide.
(b) How much mechanical energy dissipates during this play?
8.35 . Deep Impact Mission. In July 2005, NASA’s “Deep
Impact” mission crashed a 372-kg probe directly onto the surface
of the comet Tempel 1, hitting the surface at The
original speed of the comet at that time was about 
and its mass was estimated to be in the range 

Use the smallest value of the estimated mass. (a) What
change in the comet’s velocity did this collision produce? Would
this change be noticeable? (b) Suppose this comet were to hit the
earth and fuse with it. By how much would it change our planet’s
velocity? Would this change be noticeable? (The mass of the earth
is )
8.36 . A 1050-kg sports car is moving westbound at on
a level road when it collides with a 6320-kg truck driving east on the
same road at The two vehicles remain locked together
after the collision. (a) What is the velocity (magnitude and direction)
of the two vehicles just after the collision? (b) At what speed should
the truck have been moving so that it and the car are both stopped in
the collision? (c) Find the change in kinetic energy of the system of
two vehicles for the situations of part (a) and part (b). For which sit-
uation is the change in kinetic energy greater in magnitude?
8.37 .. On a very muddy football field, a 110-kg linebacker tack-
les an 85-kg halfback. Immediately before the collision, the line-
backer is slipping with a velocity of north and the halfback
is sliding with a velocity of east. What is the velocity
(magnitude and direction) at which the two players move together
immediately after the collision?
8.38 .. Accident Analysis. Two cars collide at an intersection.
Car A, with a mass of 2000 kg, is going from west to east, while
car B, of mass 1500 kg, is going from north to south at As
a result of this collision, the two cars become enmeshed and move
as one afterward. In your role as an expert witness, you inspect the
scene and determine that, after the collision, the enmeshed cars
moved at an angle of 65° south of east from the point of impact. 
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8.25 .. A hunter on a frozen, essentially frictionless pond uses a
rifle that shoots 4.20-g bullets at The mass of the hunter
(including his gun) is 72.5 kg, and the hunter holds tight to the gun
after firing it. Find the recoil velocity of the hunter if he fires the
rifle (a) horizontally and (b) at 56.0° above the horizontal.
8.26 . An atomic nucleus suddenly bursts apart (fissions) into
two pieces. Piece A, of mass travels off to the left with speed

Piece B, of mass travels off to the right with speed 
(a) Use conservation of momentum to solve for in terms of 

and (b) Use the results of part (a) to show that
where and are the kinetic energies of the

two pieces.
8.27 .. Two ice skaters, Daniel (mass 65.0 kg) and Rebecca
(mass 45.0 kg), are practicing. Daniel stops to tie his shoelace and,
while at rest, is struck by Rebecca, who is moving at 
before she collides with him. After the collision, Rebecca has a
velocity of magnitude at an angle of from her
initial direction. Both skaters move on the frictionless, horizon-
tal surface of the rink. (a) What are the magnitude and direction
of Daniel’s velocity after the collision? (b) What is the change 
in total kinetic energy of the two skaters as a result of the 
collision?
8.28 .. You are standing on a large sheet of frictionless ice and
holding a large rock. In order to get off the ice, you throw the rock
so it has velocity relative to the earth at an angle of 
above the horizontal. If your mass is 70.0 kg and the rock’s mass is
15.0 kg, what is your speed after you throw the rock? (See Discus-
sion Question Q8.7.)
8.29 . Changing Mass. An open-topped freight car with mass
24,000 kg is coasting without friction along a level track. It is rain-
ing very hard, and the rain is falling vertically downward. Origi-
nally, the car is empty and moving with a speed of (a)
What is the speed of the car after it has collected 3000 kg of rain-
water? (b) Since the rain is falling downward, how is it able to
affect the horizontal motion of the car?
8.30 . An astronaut in space cannot use a conventional means,
such as a scale or balance, to determine the mass of an object. But
she does have devices to measure distance and time accurately.
She knows her own mass is 78.4 kg, but she is unsure of the mass
of a large gas canister in the airless rocket. When this canister is
approaching her at she pushes against it, which slows it
down to (but does not reverse it) and gives her a speed of

What is the mass of this canister?
8.31 .. Asteroid Collision. Two asteroids of equal mass in the
asteroid belt between Mars and Jupiter collide with a glancing
blow. Asteroid A, which was initially traveling at is
deflected 30.0° from its original direction, while asteroid B,
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(a) How fast were the enmeshed cars moving just after the colli-
sion? (b) How fast was car A going just before the collision?
8.39 . Two cars, one a compact with mass 1200 kg and the other
a large gas-guzzler with mass 3000 kg, collide head-on at typical
freeway speeds. (a) Which car has a greater magnitude of momen-
tum change? Which car has a greater velocity change? (b) If the
larger car changes its velocity by calculate the change in the
velocity of the small car in terms of (c) Which car’s occupants
would you expect to sustain greater injuries? Explain.
8.40 .. BIO Bird Defense. To protect their young in the nest,
peregrine falcons will fly into birds of prey (such as ravens) at high
speed. In one such episode, a 600-g falcon flying at hit a
1.50-kg raven flying at The falcon hit the raven at right
angles to its original path and bounced back at (These fig-
ures were estimated by the author as he watched this attack occur
in northern New Mexico.) (a) By what angle did the falcon change
the raven’s direction of motion? (b) What was the raven’s speed
right after the collision?
8.41 . At the intersection of
Texas Avenue and University
Drive, a yellow subcompact car
with mass 950 kg traveling east
on University collides with a red
pickup truck with mass 1900 kg
that is traveling north on Texas
and has run a red light (Fig.
E8.41). The two vehicles stick
together as a result of the colli-
sion, and the wreckage slides at

in the direction 
east of north. Calculate the
speed of each vehicle before the collision. The collision occurs
during a heavy rainstorm; you can ignore friction forces between
the vehicles and the wet road.
8.42 .. A 5.00-g bullet is fired horizontally into a 1.20-kg
wooden block resting on a horizontal surface. The coefficient of
kinetic friction between block and surface is 0.20. The bullet
remains embedded in the block, which is observed to slide 0.230 m
along the surface before stopping. What was the initial speed of the
bullet?
8.43 .. A Ballistic Pendulum. A 12.0-g rifle bullet is fired with
a speed of into a ballistic pendulum with mass 6.00 kg,
suspended from a cord 70.0 cm long (see Example 8.8 in Section
8.3). Compute (a) the vertical height through which the pendulum
rises, (b) the initial kinetic energy of the bullet, and (c) the kinetic
energy of the bullet and pendulum immediately after the bullet
becomes embedded in the pendulum.
8.44 .. Combining Conservation Laws. A 15.0-kg block is
attached to a very light horizontal spring of force constant

and is resting on a frictionless horizontal table. 
(Fig. E8.44). Suddenly it is struck by a 3.00-kg stone traveling hor-
izontally at to the right, whereupon the stone rebounds at

horizontally to the left. Find the maximum distance that
the block will compress the spring after the collision.
2.00 m>s

8.00 m>s

500.0 N>m

380 m>s

24.0°16.0 m>s

5.0 m>s.
9.0 m>s.

20.0 m>s

¢v.
¢v,

8.45 .. CP A 5.00-kg ornament is hanging by a 1.50-m wire
when it is suddenly hit by a 3.00-kg missile traveling horizontally
at The missile embeds itself in the ornament during the
collision. What is the tension in the wire immediately after the
collision?

Section 8.4 Elastic Collisions
8.46 .. A 0.150-kg glider is moving to the right on a frictionless,
horizontal air track with a speed of It has a head-on col-
lision with a 0.300-kg glider that is moving to the left with a speed
of Find the final velocity (magnitude and direction) of
each glider if the collision is elastic.
8.47 .. Blocks A (mass 2.00 kg) and B (mass 10.00 kg) move on
a frictionless, horizontal surface. Initially, block B is at rest and
block A is moving toward it at The blocks are equipped
with ideal spring bumpers, as in Example 8.10 (Section 8.4). The
collision is head-on, so all motion before and after the collision is
along a straight line. (a) Find the maximum energy stored in the
spring bumpers and the velocity of each block at that time. (b) Find
the velocity of each block after they have moved apart.
8.48 . A 10.0-g marble slides
to the left with a velocity of
magnitude on the
frictionless, horizontal sur-
face of an icy New York side-
walk and has a head-on,
elastic collision with a larger
30.0-g marble sliding to the
right with a velocity of mag-
nitude (Fig. E8.48). (a) Find the velocity of each mar-
ble (magnitude and direction) after the collision. (Since the
collision is head-on, all the motion is along a line.) (b) Calculate
the change in momentum (that is, the momentum after the collision
minus the momentum before the collision) for each marble. Com-
pare the values you get for each marble. (c) Calculate the change
in kinetic energy (that is, the kinetic energy after the collision
minus the kinetic energy before the collision) for each marble.
Compare the values you get for each marble.
8.49 .. Moderators. Canadian nuclear reactors use heavy water
moderators in which elastic collisions occur between the neutrons
and deuterons of mass 2.0 u (see Example 8.11 in Section 8.4). 
(a) What is the speed of a neutron, expressed as a fraction of its origi-
nal speed, after a head-on, elastic collision with a deuteron that is ini-
tially at rest? (b) What is its kinetic energy, expressed as a fraction of
its original kinetic energy? (c) How many such successive collisions
will reduce the speed of a neutron to of its original value?
8.50 .. You are at the controls of a particle accelerator, sending a
beam of protons (mass m) at a gas target of an
unknown element. Your detector tells you that some protons
bounce straight back after a collision with one of the nuclei of the
unknown element. All such protons rebound with a speed of

Assume that the initial speed of the target
nucleus is negligible and the collision is elastic. (a) Find the mass
of one nucleus of the unknown element. Express your answer in
terms of the proton mass m. (b) What is the speed of the unknown
nucleus immediately after such a collision?

Section 8.5 Center of Mass
8.51 . Three odd-shaped blocks of chocolate have the following
masses and center-of-mass coordinates: (1) 0.300 kg, 10.200 m,

1.20 * 107 m>s.

1.50 * 107 m>s

1>59,000

0.200 m>s

0.400 m>s

2.00 m>s.

2.20 m>s.

0.80 m>s.

12.0 m>s .

24.0°

16.0 m/s

y (north)

x (east)

3.00 kg
15.0 kg

8.00 m/s

0.400 m/s
0.200 m/s

30.0 g

10.0 g

Figure E8.44

Figure E8.48

Figure E8.41
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(2) 0.400 kg, (3) 0.200 kg,
Find the coordinates of the center of mass

of the system of three chocolate blocks.
8.52 . Find the position of the center of mass of the system of the
sun and Jupiter. (Since Jupiter is more massive than the rest of the
planets combined, this is essentially the position of the center of
mass of the solar system.) Does the center of mass lie inside or out-
side the sun? Use the data in Appendix F.
8.53 .. Pluto and Charon. Pluto’s diameter is approximately
2370 km, and the diameter of its satellite Charon is 1250 km.
Although the distance varies, they are often about 19,700 km apart,
center to center. Assuming that both Pluto and Charon have the same
composition and hence the same average density, find the location of
the center of mass of this system relative to the center of Pluto.
8.54 . A 1200-kg station wagon is moving along a straight highway
at Another car, with mass 1800 kg and speed 
has its center of mass 40.0 m ahead of the center of mass of the sta-
tion wagon (Fig. E8.54). (a) Find the position of the center of mass of
the system consisting of the two automobiles. (b) Find the magnitude
of the total momentum of the system from the given data. (c) Find the
speed of the center of mass of the system. (d) Find the total momen-
tum of the system, using the speed of the center of mass. Compare
your result with that of part (b).

20.0 m>s,12.0 m>s.

1-0.300 m, 0.600 m2.
10.100 m, -0.400 m2;0.300 m2; 8.59 . CALC A radio-controlled model airplane has a momentum

given by 
. What are the x-, y-, and z-components of the net force on

the airplane?
8.60 .. BIO Changing Your Center of Mass. To keep the cal-
culations fairly simple, but still reasonable, we shall model a human
leg that is 92.0 cm long (measured from the hip joint) by assuming
that the upper leg and the lower leg (which includes the foot) have
equal lengths and that each of them is uniform. For a 70.0-kg per-
son, the mass of the upper leg would be 8.60 kg, while that of the
lower leg (including the foot) would be 5.25 kg. Find the location
of the center of mass of this leg, relative to the hip joint, if it is 
(a) stretched out horizontally and (b) bent at the knee to form a
right angle with the upper leg remaining horizontal.

Section 8.6 Rocket Propulsion
8.61 .. A 70-kg astronaut floating in space in a 110-kg MMU
(manned maneuvering unit) experiences an acceleration of

when he fires one of the MMU’s thrusters. (a) If the
speed of the escaping gas relative to the astronaut is 
how much gas is used by the thruster in 5.0 s? (b) What is the
thrust of the thruster?
8.62 . A small rocket burns 0.0500 kg of fuel per second, ejecting
it as a gas with a velocity relative to the rocket of magnitude

(a) What is the thrust of the rocket? (b) Would the
rocket operate in outer space where there is no atmosphere? If so,
how would you steer it? Could you brake it?
8.63 . A C6-5 model rocket engine has an impulse of 
while burning 0.0125 kg of propellant in 1.70 s. It has a maximum
thrust of 13.3 N. The initial mass of the engine plus propellant is
0.0258 kg. (a) What fraction of the maximum thrust is the average
thrust? (b) Calculate the relative speed of the exhaust gases,
assuming it is constant. (c) Assuming that the relative speed of the
exhaust gases is constant, find the final speed of the engine if it
was attached to a very light frame and fired from rest in gravity-
free outer space.
8.64 .. Obviously, we can make rockets to go very fast, but what
is a reasonable top speed? Assume that a rocket is fired from rest at
a space station in deep space, where gravity is negligible. (a) If the
rocket ejects gas at a relative speed of and you want the
rocket’s speed eventually to be where c is the speed
of light, what fraction of the initial mass of the rocket and fuel is
not fuel? (b) What is this fraction if the final speed is to be

8.65 .. A single-stage rocket is fired from rest from a deep-space
platform, where gravity is negligible. If the rocket burns its fuel in
50.0 s and the relative speed of the exhaust gas is 
what must the mass ratio be for a final speed of 
(about equal to the orbital speed of an earth satellite)?

PROBLEMS
8.66 .. CP CALC A young girl with mass 40.0 kg is sliding on a
horizontal, frictionless surface with an initial momentum that is
due east and that has magnitude . Starting at , a
net force with magnitude and direction due west
is applied to the girl. (a) At what value of t does the girl have a
westward momentum of magnitude ? (b) How much
work has been done on the girl by the force in the time interval
from to the time calculated in part (a)? (c) What is the
magnitude of the acceleration of the girl at the time calculated in
part (a)?

t = 0

60.0 kg # m>s
F = 18.20 N>s2t

t = 090.0 kg # m>s

8.00 km>svm0>m
vex = 2100 m>s,

3000 m>s?

1.00 * 10-3c,
2000 m>s

10.0 N # s

1600 m>s.

490 m>s,N2

0.029 m>s2

≥nm>s22t
� 10.25 kg #ın31-0.75 kg # m>s32t 2 + 13.0 kg # m>s24

1200 kg 1800 kg

20.0 m/s12.0 m/s

40.0 m

8.55 . A machine part consists
of a thin, uniform 4.00-kg bar
that is 1.50 m long, hinged per-
pendicular to a similar vertical
bar of mass 3.00 kg and length
1.80 m. The longer bar has a
small but dense 2.00-kg ball at
one end (Fig. E8.55). By what
distance will the center of mass
of this part move horizontally
and vertically if the vertical bar
is pivoted counterclockwise
through 90° to make the entire part horizontal?
8.56 . At one instant, the center of mass of a system of two parti-
cles is located on the x-axis at and has a velocity of

. One of the particles is at the origin. The other particle
has a mass of 0.10 kg and is at rest on the x-axis at 
(a) What is the mass of the particle at the origin? (b) Calculate the
total momentum of this system. (c) What is the velocity of the par-
ticle at the origin?
8.57 .. In Example 8.14 (Section 8.5), Ramon pulls on the rope
to give himself a speed of What is James’s speed?
8.58 . CALC A system consists of two particles. At one par-
ticle is at the origin; the other, which has a mass of 0.50 kg, is on
the y-axis at At the center of mass of the system
is on the y-axis at The velocity of the center of mass is
given by . (a) Find the total mass of the system. 
(b) Find the acceleration of the center of mass at any time t.
(c) Find the net external force acting on the system at t = 3.0 s.

ın10.75 m>s32t 2
y = 2.4 m.

t = 0y = 6.0 m.

t = 0
0.70 m>s.

x = 8.0 m.
ın15.0 m>s2

x = 2.0 m

1.50 m

4.00 kg

3.00 kg

2.00 kg

1.80 m

Hinge

Figure E8.55

Figure E8.54
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8.67 .. A steel ball with mass 40.0 g is dropped from a height of
2.00 m onto a horizontal steel slab. The ball rebounds to a height
of 1.60 m. (a) Calculate the impulse delivered to the ball during
impact. (b) If the ball is in contact with the slab for 2.00 ms, find
the average force on the ball during impact.
8.68 . In a volcanic eruption, a 2400-kg boulder is thrown verti-
cally upward into the air. At its highest point, it suddenly explodes
(due to trapped gases) into two fragments, one being three times the
mass of the other. The lighter fragment starts out with only horizon-
tal velocity and lands 318 m directly north of the point of the explo-
sion. Where will the other fragment land? Neglect any air resistance.
8.69 .. Just before it is struck by a racket, a tennis ball weighing
0.560 N has a velocity of . During the
3.00 ms that the racket and ball are in contact, the net force on the
ball is constant and equal to . (a) What are
the x- and y-components of the impulse of the net force applied to
the ball? (b) What are the x- and y-components of the final velocity
of the ball?
8.70 . Three identical pucks on a horizontal air table have
repelling magnets. They are held together and then released simul-
taneously. Each has the same speed at any instant. One puck moves
due west. What is the direction of the velocity of each of the other
two pucks?
8.71 .. A 1500-kg blue convertible is traveling south, and a 2000-kg
red SUV is traveling west. If the total momentum of the system
consisting of the two cars is directed at west
of south, what is the speed of each vehicle?
8.72 .. A railroad handcar is moving along straight, frictionless
tracks with negligible air resistance. In the following cases, the car
initially has a total mass (car and contents) of 200 kg and is travel-
ing east with a velocity of magnitude Find the final
velocity of the car in each case, assuming that the handcar does not
leave the tracks. (a) A 25.0-kg mass is thrown sideways out of the
car with a velocity of magnitude relative to the car’s ini-
tial velocity. (b) A 25.0-kg mass is thrown backward out of the car
with a velocity of relative to the initial motion of the car.
(c) A 25.0-kg mass is thrown into the car with a velocity of

relative to the ground and opposite in direction to the ini-
tial velocity of the car.
8.73 . Spheres A B and C

are approaching the origin as they slide on a fric-
tionless air table (Fig. P8.73). The initial velocities of A and B are
given in the figure. All three spheres arrive at the origin at the same
time and stick together. (a) What must the x- and y-components of
the initial velocity of C be if all three objects are to end up moving
at in the after the collision? (b) If C has the
velocity found in part (a), what is the change in the kinetic energy
of the system of three spheres as a result of the collision?

+x-direction0.50 m>s

(mass 0.050 kg)
(mass 0.030 kg),(mass 0.020 kg),

6.00 m>s

5.00 m>s

2.00 m>s

5.00 m>s.

60.0°7200 kg # m>s

≥n� 1110 N2ın-1380 N2

≥n� 14.0 m>s2ın120.0 m>s2

8.74 ... You and your friends are doing physics experiments on a
frozen pond that serves as a frictionless, horizontal surface. Sam,
with mass 80.0 kg, is given a push and slides eastward. Abigail,
with mass 50.0 kg, is sent sliding northward. They collide, and
after the collision Sam is moving at north of east with a
speed of and Abigail is moving at south of east
with a speed of (a) What was the speed of each person
before the collision? (b) By how much did the total kinetic energy
of the two people decrease during the collision?
8.75 ... The nucleus of decays radioactively by emitting an
alpha particle (mass kg) with kinetic energy 

as measured in the laboratory reference frame. Assuming
that the Po was initially at rest in this frame, find the recoil velocity
of the nucleus that remains after the decay.
8.76 . CP At a classic auto show, a 840-kg 1955 Nash Metropoli-
tan motors by at followed by a 1620-kg 1957 Packard
Clipper purring past at (a) Which car has the greater
kinetic energy? What is the ratio of the kinetic energy of the Nash
to that of the Packard? (b) Which car has the greater magnitude of
momentum? What is the ratio of the magnitude of momentum of
the Nash to that of the Packard? (c) Let be the net force
required to stop the Nash in time t, and let be the net force
required to stop the Packard in the same time. Which is larger: 
or What is the ratio of these two forces? (d) Now let 
be the net force required to stop the Nash in a distance d, and let 
be the net force required to stop the Packard in the same distance.
Which is larger: or What is the ratio 
8.77 .. CP An 8.00-kg block of wood sits at the edge of a fric-
tionless table, 2.20 m above the floor. A 0.500-kg blob of clay
slides along the length of the table with a speed of ,
strikes the block of wood, and sticks to it. The combined object
leaves the edge of the table and travels to the floor. What hori-
zontal distance has the combined object traveled when it reaches
the floor?
8.78 ... CP A small wooden block with mass 0.800 kg is sus-
pended from the lower end of a light cord that is 1.60 m long. The
block is initially at rest. A bullet with mass 12.0 g is fired at the
block with a horizontal velocity . The bullet strikes the block
and becomes embedded in it. After the collision the combined
object swings on the end of the cord. When the block has risen a
vertical height of 0.800 m, the tension in the cord is 4.80 N. What
was the initial speed of the bullet?
8.79 .. Combining Conservation Laws. A 5.00-kg chunk of
ice is sliding at on the floor of an ice-covered valley
when it collides with and sticks to another 5.00-kg chunk of ice
that is initially at rest. (Fig. P8.79). Since the valley is icy, there is
no friction. After the collision, how high above the valley floor will
the combined chunks go?

12.0 m>s

v0

v0

24.0 m>s

FN>FP?FP?FN

FP

FNFN>FPFP?
FN

FP

FN

5.0 m>s.
9.0 m>s,

10-12 J,
1.23 *6.65 * 10-27

214Po

9.00 m>s.
23.0°6.00 m>s

37.0°

60°
O

y

x

B

vB 5 0.50 m/s

vA 5 1.50 m/s

vC

C

A

5.00 kg 5.00 kg12.0 m/s

Figure P8.79Figure P8.73

8.80 .. Automobile Accident Analysis. You are called as an
expert witness to analyze the following auto accident: Car B, of
mass 1900 kg, was stopped at a red light when it was hit from
behind by car A, of mass 1500 kg. The cars locked bumpers during
the collision and slid to a stop with brakes locked on all wheels.
Measurements of the skid marks left by the tires showed them to
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be 7.15 m long. The coefficient of kinetic friction between the tires
and the road was 0.65. (a) What was the speed of car A just before
the collision? (b) If the speed limit was 35 mph, was car A speed-
ing, and if so, by how many miles per hour was it exceeding the
speed limit?
8.81 .. Accident Analysis. A 1500-kg sedan goes through a
wide intersection traveling from north to south when it is hit by a
2200-kg SUV traveling from east to west. The two cars become
enmeshed due to the impact and slide as one thereafter. On-the-
scene measurements show that the coefficient of kinetic friction
between the tires of these cars and the pavement is 0.75, and the
cars slide to a halt at a point 5.39 m west and 6.43 m south of 
the impact point. How fast was each car traveling just before the
collision?
8.82 ... CP A 0.150-kg frame,
when suspended from a coil spring,
stretches the spring 0.070 m. A
0.200-kg lump of putty is dropped
from rest onto the frame from a
height of 30.0 cm (Fig. P8.82). Find
the maximum distance the frame
moves downward from its initial
position.
8.83 . A rifle bullet with mass 8.00 g
strikes and embeds itself in a block
with mass 0.992 kg that rests on a
frictionless, horizontal surface and is
attached to a coil spring (Fig. P8.83).
The impact compresses the spring 15.0 cm. Calibration of the
spring shows that a force of 0.750 N is required to compress the
spring 0.250 cm. (a) Find the magnitude of the block’s velocity
just after impact. (b) What was the initial speed of the bullet?

reaches the villain.) (a) With what speed do the entwined foes start
to slide across the floor? (b) If the coefficient of kinetic friction of
their bodies with the floor is how far do they slide?
8.86 .. CP Two identical masses
are released from rest in a smooth
hemispherical bowl of radius R
from the positions shown in 
Fig. P8.86. You can ignore friction
between the masses and the sur-
face of the bowl. If they stick
together when they collide, how
high above the bottom of the bowl
will the masses go after colliding?
8.87 .. A ball with mass M, moving horizontally at col-
lides elastically with a block with mass that is initially hanging
at rest from the ceiling on the end of a 50.0-cm wire. Find the
maximum angle through which the block swings after it is hit.
8.88 ... CP A 20.00-kg lead sphere is hanging from a hook by a
thin wire 3.50 m long and is free to swing in a complete circle.
Suddenly it is struck horizontally by a 5.00-kg steel dart that
embeds itself in the lead sphere. What must be the minimum initial
speed of the dart so that the combination makes a complete circu-
lar loop after the collision?
8.89 ... CP An 8.00-kg ball, hanging from the ceiling by a light
wire 135 cm long, is struck in an elastic collision by a 2.00-kg ball
moving horizontally at just before the collision. Find the
tension in the wire just after the collision.
8.90 .. A 7.0-kg shell at rest explodes into two fragments, one
with a mass of 2.0 kg and the other with a mass of 5.0 kg. If the
heavier fragment gains 100 J of kinetic energy from the explosion,
how much kinetic energy does the lighter one gain?
8.91 .. A 4.00-g bullet, traveling horizontally with a velocity of
magnitude is fired into a wooden block with mass
0.800 kg, initially at rest on a level surface. The bullet passes
through the block and emerges with its speed reduced to 
The block slides a distance of 45.0 cm along the surface from its
initial position. (a) What is the coefficient of kinetic friction
between block and surface? (b) What is the decrease in kinetic
energy of the bullet? (c) What is the kinetic energy of the block at
the instant after the bullet passes through it?
8.92 .. A 5.00-g bullet is shot through a 1.00-kg wood block sus-
pended on a string 2.00 m long. The center of mass of the block
rises a distance of 0.38 cm. Find the speed of the bullet as it
emerges from the block if its initial speed is 
8.93 .. A neutron with mass m makes a head-on, elastic collision
with a nucleus of mass M, which is initially at rest. (a) Show that if
the neutron’s initial kinetic energy is the kinetic energy that it
loses during the collision is (b) For what
value of M does the incident neutron lose the most energy? (c)
When M has the value calculated in part (b), what is the speed of
the neutron after the collision?
8.94 .. Energy Sharing in Elastic Collisions. A stationary
object with mass is struck head-on by an object with mass 
that is moving initially at speed (a) If the collision is elastic,
what percentage of the original energy does each object have after
the collision? (b) What does your answer in part (a) give for the
special cases (i) and (ii) (c) For what val-
ues, if any, of the mass ratio is the original kinetic energy
shared equally by the two objects after the collision?
8.95 .. CP In a shipping company distribution center, an open
cart of mass 50.0 kg is rolling to the left at a speed of 5.00 m>s

mA>mB

mA = 5mB?mA = mB

v0.
mAmB

4mMK0>1M + m22.
K0,

450 m>s.

190 m>s.

400 m>s,

5.00 m>s

3M
4.00 m>s,

mk = 0.250,

v

15.0 cm

30.0 cm

8.84 .. A Ricocheting Bullet. 0.100-kg stone rests on a fric-
tionless, horizontal surface. A bullet of mass 6.00 g, traveling hori-
zontally at strikes the stone and rebounds horizontally at
right angles to its original direction with a speed of (a)
Compute the magnitude and direction of the velocity of the stone
after it is struck. (b) Is the collision perfectly elastic?
8.85 .. A movie stuntman
(mass 80.0 kg) stands on a win-
dow ledge 5.0 m above the floor
(Fig. P8.85). Grabbing a rope
attached to a chandelier, he
swings down to grapple with
the movie’s villain (mass 70.0
kg), who is standing directly
under the chandelier. (Assume
that the stuntman’s center of
mass moves downward 5.0 m.
He releases the rope just as he

250 m>s.
350 m>s,

R

m 5 80.0 kg

m 5 70.0 kg

5.0 m

Figure P8.86

Figure P8.85

Figure P8.82

Figure P8.83
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and appears as kinetic energy of the proton and electron. The
mass of a proton is 1836 times the mass of an electron. What
fraction of the total energy released goes into the kinetic energy
of the proton?
8.102 .. A (thorium) nucleus at rest decays to a 
(radium) nucleus with the emission of an alpha particle. The total
kinetic energy of the decay fragments is An alpha
particle has 1.76% of the mass of a nucleus. Calculate the
kinetic energy of (a) the recoiling nucleus and (b) the alpha
particle.
8.103 . Antineutrino. In beta decay, a nucleus emits an elec-
tron. A (bismuth) nucleus at rest undergoes beta decay 
to (polonium). Suppose the emitted electron moves to the
right with a momentum of The nu-
cleus, with mass recoils to the left at a speed of

Momentum conservation requires that a second
particle, called an antineutrino, must also be emitted. Calculate the
magnitude and direction of the momentum of the antineutrino 
that is emitted in this decay.
8.104 .. Jonathan and Jane are sitting in a sleigh that is at rest on
frictionless ice. Jonathan’s weight is 800 N, Jane’s weight is 600 N,
and that of the sleigh is 1000 N. They see a poisonous spider on the
floor of the sleigh and immediately jump off. Jonathan jumps to the
left with a velocity of at above the horizontal (rela-
tive to the ice), and Jane jumps to the right at at 
above the horizontal (relative to the ice). Calculate the sleigh’s hor-
izontal velocity (magnitude and direction) after they jump out.
8.105 .. Two friends, Burt and Ernie, are standing at opposite
ends of a uniform log that is floating in a lake. The log is 3.0 m
long and has mass 20.0 kg. Burt has mass 30.0 kg and Ernie has
mass 40.0 kg. Initially the log and the two friends are at rest rela-
tive to the shore. Burt then offers Ernie a cookie, and Ernie walks
to Burt’s end of the log to get it. Relative to the shore, what dis-
tance has the log moved by the time Ernie reaches Burt? Neglect
any horizontal force that the water exerts on the log and assume
that neither Burt nor Ernie falls off the log.
8.106 .. A 45.0-kg woman stands up in a 60.0-kg canoe 5.00 m
long. She walks from a point 1.00 m from one end to a point 1.00 m
from the other end (Fig. P8.106). If you ignore resistance to
motion of the canoe in the water, how far does the canoe move
during this process?

36.9°7.00 m>s
30.0°5.00 m>s

103 m>s.1.14 *
3.50 * 10-25 kg,

210Po5.60 * 10-22 kg # m>s.

210Po

210Bi

228Ra

228Ra
6.54 * 10-13 J.

228Ra232Th

(Fig. P8.95). You can ignore
friction between the cart and the
floor. A 15.0-kg package slides
down a chute that is inclined at

from the horizontal and
leaves the end of the chute with
a speed of The pack-
age lands in the cart and they
roll off together. If the lower end
of the chute is a vertical distance
of 4.00 m above the bottom of
the cart, what are (a) the speed of the package just before it lands in
the cart and (b) the final speed of the cart?
8.96 . A blue puck with mass 0.0400 kg, sliding with a velocity
of magnitude on a frictionless, horizontal air table,
makes a perfectly elastic, head-on collision with a red puck with
mass m, initially at rest. After the collision, the velocity of the blue
puck is in the same direction as its initial velocity. Find
(a) the velocity (magnitude and direction) of the red puck after the
collision and (b) the mass m of the red puck.
8.97 ... Jack and Jill are standing on a crate at rest on the friction-
less, horizontal surface of a frozen pond. Jack has mass 75.0 kg, Jill
has mass 45.0 kg, and the crate has mass 15.0 kg. They remember
that they must fetch a pail of water, so each jumps horizontally
from the top of the crate. Just after each jumps, that person is mov-
ing away from the crate with a speed of relative to the
crate. (a) What is the final speed of the crate if both Jack and Jill
jump simultaneously and in the same direction? (Hint: Use an iner-
tial coordinate system attached to the ground.) (b) What is the final
speed of the crate if Jack jumps first and then a few seconds later
Jill jumps in the same direction? (c) What is the final speed of the
crate if Jill jumps first and then Jack, again in the same direction?
8.98 . Suppose you hold a small ball in contact with, and
directly over, the center of a large ball. If you then drop the small
ball a short time after dropping the large ball, the small ball
rebounds with surprising speed. To show the extreme case, ignore
air resistance and suppose the large ball makes an elastic colli-
sion with the floor and then rebounds to make an elastic collision
with the still-descending small ball. Just before the collision
between the two balls, the large ball is moving upward with
velocity and the small ball has velocity (Do you see why?)
Assume the large ball has a much greater mass than the small ball.
(a) What is the velocity of the small ball immediately after its col-
lision with the large ball? (b) From the answer to part (a), what is
the ratio of the small ball’s rebound distance to the distance it fell
before the collision?
8.99 ... Hockey puck B rests on a smooth ice surface and is
struck by a second puck A, which has the same mass. Puck A is ini-
tially traveling at and is deflected from its initial
direction. Assume that the collision is perfectly elastic. Find the
final speed of each puck and the direction of B’s velocity after the
collision.
8.100 ... Energy Sharing. An object with mass m, initially at
rest, explodes into two fragments, one with mass and the other
with mass where (a) If energy Q is released
in the explosion, how much kinetic energy does each fragment
have immediately after the explosion? (b) What percentage of the
total energy released does each fragment get when one fragment
has four times the mass of the other?
8.101 ... Neutron Decay. A neutron at rest decays (breaks
up) to a proton and an electron. Energy is released in the decay

mA + mB = m.mB,
mA

25.0°15.0 m>s

-vS.vS

4.00 m>s

0.050 m>s

0.200 m>s

3.00 m>s.

37°

4.00 m

37°

1.00 m

Start Finish

3.00 m1.00 m

8.107 .. You are standing on a concrete slab that in turn is resting
on a frozen lake. Assume there is no friction between the slab and
the ice. The slab has a weight five times your weight. If you begin
walking forward at relative to the ice, with what speed,
relative to the ice, does the slab move?
8.108 .. CP A 20.0-kg projectile is fired at an angle of 
above the horizontal with a speed of At the highest point80.0 m>s.

60.0°

2.00 m>s

Figure P8.106

Figure P8.95
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of its trajectory, the projectile explodes into two fragments with
equal mass, one of which falls vertically with zero initial speed.
You can ignore air resistance. (a) How far from the point of firing
does the other fragment strike if the terrain is level? (b) How much
energy is released during the explosion?
8.109 ... CP A fireworks rocket is fired vertically upward. At its
maximum height of 80.0 m, it explodes and breaks into two pieces:
one with mass 1.40 kg and the other with mass 0.28 kg. In the
explosion, 860 J of chemical energy is converted to kinetic energy
of the two fragments. (a) What is the speed of each fragment just
after the explosion? (b) It is observed that the two fragments hit the
ground at the same time. What is the distance between the points
on the ground where they land? Assume that the ground is level
and air resistance can be ignored.
8.110 ... A 12.0-kg shell is launched at an angle of above
the horizontal with an initial speed of When it is at its
highest point, the shell explodes into two fragments, one three
times heavier than the other. The two fragments reach the ground
at the same time. Assume that air resistance can be ignored. If the
heavier fragment lands back at the same point from which the shell
was launched, where will the lighter fragment land, and how much
energy was released in the explosion?
8.111 . CP A wagon with two boxes of gold, having total mass
300 kg, is cut loose from the horses by an outlaw when the wagon
is at rest 50 m up a slope (Fig. P8.111). The outlaw plans to
have the wagon roll down the slope and across the level ground,
and then fall into a canyon where his confederates wait. But in a
tree 40 m from the canyon edge wait the Lone Ranger (mass 75.0 kg)
and Tonto (mass 60.0 kg). They drop vertically into the wagon as it
passes beneath them. (a) If they require 5.0 s to grab the gold and
jump out, will they make it before the wagon goes over the edge?
The wagon rolls with negligible friction. (b) When the two heroes
drop into the wagon, is the kinetic energy of the system of the
heroes plus the wagon conserved? If not, does it increase or
decrease, and by how much?

6.0°

150 m>s.
55.0°

You can ignore air resistance. How does your answer compare
with the rocket speed calculated in Example 8.16?
8.113 .. A Multistage Rocket. Suppose the first stage of a two-
stage rocket has total mass 12,000 kg, of which 9000 kg is fuel.
The total mass of the second stage is 1000 kg, of which 700 kg is
fuel. Assume that the relative speed of ejected material is con-
stant, and ignore any effect of gravity. (The effect of gravity is
small during the firing period if the rate of fuel consumption is
large.) (a) Suppose the entire fuel supply carried by the two-stage
rocket is utilized in a single-stage rocket with the same total mass
of 13,000 kg. In terms of what is the speed of the rocket, start-
ing from rest, when its fuel is exhausted? (b) For the two-stage
rocket, what is the speed when the fuel of the first stage is
exhausted if the first stage carries the second stage with it to this
point? This speed then becomes the initial speed of the second
stage. At this point, the second stage separates from the first stage.
(c) What is the final speed of the second stage? (d) What value of

is required to give the second stage of the rocket a speed of

CHALLENGE PROBLEMS
8.114 . CALC A Variable-Mass Raindrop. In a rocket-propul-
sion problem the mass is variable. Another such problem is a rain-
drop falling through a cloud of small water droplets. Some of these
small droplets adhere to the raindrop, thereby increasing its mass
as it falls. The force on the raindrop is 

Suppose the mass of the raindrop depends on the distance x that it
has fallen. Then where k is a constant, and 
This gives, since 

Or, dividing by k,

This is a differential equation that has a solution of the form
where a is the acceleration and is constant. Take the initial

velocity of the raindrop to be zero. (a) Using the proposed solution
for find the acceleration a. (b) Find the distance the raindrop has
fallen in (c) Given that find the mass of
the raindrop at (For many more intriguing aspects of
this problem, see K. S. Krane, American Journal of Physics, Vol. 49
(1981), pp. 113–117.)
8.115 .. CALC In Section 8.5 we calculated the center of mass by
considering objects composed of a finite number of point masses
or objects that, by symmetry, could be represented by a finite num-
ber of point masses. For a solid object whose mass distribution
does not allow for a simple determination of the center of mass by
symmetry, the sums of Eqs. (8.28) must be generalized to integrals

where x and y are the coordinates of the small piece of the object
that has mass dm. The integration is over the whole of the object.

xcm =
1

MLxdm    ycm =
1

MLydm

t = 3.00 s.
k = 2.00 g>m,t = 3.00 s.

v,

v = at,

xg = x
dv
dt

+ v2

mg = m
dv
dt

+ v1kv2

Fext = mg,
dm>dt = kv.m = kx,

Fext =
dp

dt
= m

dv
dt

+ v
dm

dt

7.00 km>s?
vex

vex,

vex

f

300 kg

6.0°
50 m

40 m to clif

8.112 .. CALC In Section 8.6, we considered a rocket fired in
outer space where there is no air resistance and where gravity is
negligible. Suppose instead that the rocket is accelerating verti-
cally upward from rest on the earth’s surface. Continue to ignore
air resistance and consider only that part of the motion where the
altitude of the rocket is small so that g may be assumed to be con-
stant. (a) How is Eq. (8.37) modified by the presence of the gravity
force? (b) Derive an expression for the acceleration a of the rocket,
analogous to Eq. (8.39). (c) What is the acceleration of the rocket
in Example 8.15 (Section 8.6) if it is near the earth’s surface rather
than in outer space? You can ignore air resistance. (d) Find the
speed of the rocket in Example 8.16 (Section 8.6) after 90 s if the
rocket is fired from the earth’s surface rather than in outer space.

Figure P8.111
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Chapter Opening Question ?
The two bullets have the same magnitude of momentum 
(the product of mass and speed), but the faster, lightweight bullet
has twice as much kinetic energy Hence, the light-
weight bullet can do twice as much work on the carrot (and twice as
much damage) in the process of coming to a halt (see Section 8.1).

Test Your Understanding Questions
8.1 Answer: (v), (i) and (ii) (tied for second place), (iii) and 
(iv) (tied for third place) We use two interpretations of the
impulse of the net force: (1) the net force multiplied by the time that
the net force acts, and (2) the change in momentum of the particle
on which the net force acts. Which interpretation we use depends
on what information we are given. We take the positive x-direction
to be to the east. (i) The force is not given, so we use interpretation
2:

so the magnitude of the impulse is
(ii) For the same reason as in (i),

we use interpretation 2: 
and the magnitude of

the impulse is again (iii) The final
velocity is not given, so we use interpretation 1:

so the
magnitude of the impulse is (iv) For the same reason
as in (iii), we use interpretation 1: 

so the magnitude of the
impulse is (v) The force is not given, so we use 
interpretation 2: 

so the magnitude of the
impulse is 
8.2 Answers: (a) (b) piece C There are no
external horizontal forces, so the x- and y-components of the total
momentum of the system are both conserved. Both components of
the total momentum are zero before the spring releases, so they
must be zero after the spring releases. Hence,

We are given that 
and You can solve the above equations tovB2y 6 0.vB2x = 0,

vA2y = 0,vA2x 6 0,mA = mB = mC,

Py = 0 = mAvA2y + mBvB2y + mCvC2y

Px = 0 = mAvA2x + mBvB2x + mCvC2x

vC2x 7 0, vC2y 7 0,
50,000 kg # m>s = 50,000 N # s.

-50,000 kg # m>s,11000 kg2125 m>s2 =
1-25 m>s2 -Jx = mv2x - mv1x = 11000 kg2

20,000 N # s.
1-2000 N2110 s2 = -20,000 N # s,

1gFx2av1t2 - t12 =Jx =
20,000 N # s.

20,000 N # s,Jx = 1gFx2av1t2 - t12 = 12000 N2110 s2 =

25,000 N # s.25,000 kg # m>s =
11000 kg2125 m>s2 = -25,000 kg # m>s,

11000 kg2102 -Jx = mv2x - mv1x=
25,000 kg # m>s = 25,000 N # s.
-25,000 kg # m>s,

= 11000 kg2102 - 11000 kg2125 m>s2 =Jx = mv2x - mv1x

K = 1
2 mv2.

p = mv

show that and so the
velocity components of piece C are both positive. Piece C has
speed which is greater than
the speed of either piece A or piece B.
8.3 Answers: (a) elastic, (b) inelastic, (c) completely inelastic
In each case gravitational potential energy is converted to kinetic
energy as the ball falls, and the collision is between the ball and the
ground. In (a) all of the initial energy is converted back to gravita-
tional potential energy, so no kinetic energy is lost in the bounce
and the collision is elastic. In (b) there is less gravitational poten-
tial energy at the end than at the beginning, so some kinetic energy
was lost in the bounce. Hence the collision is inelastic. In (c) the
ball loses all the kinetic energy it has to give, the ball and the
ground stick together, and the collision is completely inelastic.
8.4 Answer: worse After a collision with a water molecule 
initially at rest, the speed of the neutron is 

of its ini-

tial speed, and its kinetic energy is of the initial
value. Hence a water molecule is a worse moderator than a 
carbon atom, for which the corresponding numbers are and

8.5 Answer: no If gravity is the only force acting on the system
of two fragments, the center of mass will follow the parabolic tra-
jectory of a freely falling object. Once a fragment lands, however,
the ground exerts a normal force on that fragment. Hence the net
force on the system has changed, and the trajectory of the center of
mass changes in response.
8.6 Answers: (a) increasing, (b) decreasing From Eqs. (8.37)
and (8.38), the thrust F is equal to where m is the
rocket’s mass and is its acceleration. Because m decreases
with time, if the thrust F is constant, then the acceleration must
increase with time (the same force acts on a smaller mass); if
the acceleration is constant, then the thrust must decrease
with time (a smaller force is all that’s needed to accelerate a
smaller mass).

Bridging Problem
Answers: (a) to the right (b) Elastic

(c) at °
(d) (e) Inelastic
(f) 1.67 m/s in the positive x-direction

2.31 kg # m>s at 149.6°
-30.41.93 m>s

1.00 m>s

dv>dt

dv>dt
m1dv>dt2,

A11
13 B

2 = 0.72.

11
13

A17
19 B

2 = 0.80

11.0 u + 18 u2 ƒ = 17
19ƒ11.0 u - 18 u2>1mn + mw2 ƒ =
ƒ1mn - mw2>

2vC2x
2 + vC2y

2 = 2vA2x
2 + vB2y

2 ,

vC2y = -vB2y 7 0,vC2x = -vA2x 7 0

Answers

t

y

a x

Figure P8.116Consider a thin rod of length L, mass M, and cross-sectional area A.
Let the origin of the coordinates be at the left end of the rod and
the positive x-axis lie along the rod. (a) If the density of
the object is uniform, perform the integration described above to
show that the x-coordinate of the center of mass of the rod is at its
geometrical center. (b) If the density of the object varies linearly
with x—that is, where is a positive constant—calculate
the x-coordinate of the rod’s center of mass.
8.116 .. CALC Use the methods of Challenge Problem 8.115 to
calculate the x- and y-coordinates of the center of mass of a semi-
circular metal plate with uniform density and thickness t. Let the
radius of the plate be a. The mass of the plate is thus 
Use the coordinate system indicated in Fig. P8.116.

M = 1
2rpa2t.

r

ar = ax,

r = M>V
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9 ROTATION OF 
RIGID BODIES

What do the motions of a compact disc, a Ferris wheel, a circular saw
blade, and a ceiling fan have in common? None of these can be repre-
sented adequately as a moving point; each involves a body that

rotates about an axis that is stationary in some inertial frame of reference.
Rotation occurs at all scales, from the motions of electrons in atoms to the

motions of entire galaxies. We need to develop some general methods for analyz-
ing the motion of a rotating body. In this chapter and the next we consider bodies
that have definite size and definite shape, and that in general can have rotational
as well as translational motion.

Real-world bodies can be very complicated; the forces that act on them can
deform them—stretching, twisting, and squeezing them. We’ll neglect these
deformations for now and assume that the body has a perfectly definite and
unchanging shape and size. We call this idealized model a rigid body. This chap-
ter and the next are mostly about rotational motion of a rigid body.

We begin with kinematic language for describing rotational motion. Next we
look at the kinetic energy of rotation, the key to using energy methods for rota-
tional motion. Then in Chapter 10 we’ll develop dynamic principles that relate
the forces on a body to its rotational motion.

9.1 Angular Velocity and Acceleration
In analyzing rotational motion, let’s think first about a rigid body that rotates
about a fixed axis—an axis that is at rest in some inertial frame of reference and
does not change direction relative to that frame. The rotating rigid body might be
a motor shaft, a chunk of beef on a barbecue skewer, or a merry-go-round.

Figure 9.1 shows a rigid body (in this case, the indicator needle of a
speedometer) rotating about a fixed axis. The axis passes through point O and is

? All segments of a rotating wind turbine blade have the same angular velocity.
Compared to a given blade segment, how many times greater is the linear
speed of a second segment twice as far from the axis of rotation? How many
times greater is the radial acceleration?

The angle u from the
1x-axis specifies the
needle’s rotational
position.

Axis of rotation passes through
origin and points out of page.

u

x

PDirection
of needle’s
rotation

y

O

9.1 A speedometer needle (an example
of a rigid body) rotating counterclockwise
about a fixed axis.

LEARNING GOALS

By studying this chapter, you will

learn:

• How to describe the rotation of a

rigid body in terms of angular coor-

dinate, angular velocity, and angular

acceleration.

• How to analyze rigid-body rotation

when the angular acceleration is

constant.

• How to relate the rotation of a rigid

body to the linear velocity and linear

acceleration of a point on the body.

• The meaning of a body’s moment of

inertia about a rotation axis, and

how it relates to rotational kinetic

energy.

• How to calculate the moment of

inertia of various bodies.



perpendicular to the plane of the diagram, which we choose to call the xy-plane.
One way to describe the rotation of this body would be to choose a particular
point P on the body and to keep track of the x- and y-coordinates of this point.
This isn’t a terribly convenient method, since it takes two numbers (the two coor-
dinates x and y) to specify the rotational position of the body. Instead, we notice
that the line OP is fixed in the body and rotates with it. The angle that this line
makes with the describes the rotational position of the body; we will use
this single quantity as a coordinate for rotation.

The angular coordinate of a rigid body rotating around a fixed axis can be
positive or negative. If we choose positive angles to be measured counterclock-
wise from the positive x-axis, then the angle in Fig. 9.1 is positive. If we instead
choose the positive rotation direction to be clockwise, then in Fig. 9.1 is nega-
tive. When we considered the motion of a particle along a straight line, it was
essential to specify the direction of positive displacement along that line; when
we discuss rotation around a fixed axis, it’s just as essential to specify the direc-
tion of positive rotation.

To describe rotational motion, the most natural way to measure the angle is
not in degrees, but in radians. As shown in Fig. 9.2a, one radian (1 rad) is the
angle subtended at the center of a circle by an arc with a length equal to the
radius of the circle. In Fig. 9.2b an angle is subtended by an arc of length s on a
circle of radius r. The value of (in radians) is equal to s divided by r:

(9.1)

An angle in radians is the ratio of two lengths, so it is a pure number, without
dimensions. If and then but we will often write
this as 1.5 rad to distinguish it from an angle measured in degrees or revolutions.

The circumference of a circle (that is, the arc length all the way around the cir-
cle) is times the radius, so there are (about 6.283) radians in one complete
revolution Therefore

Similarly, and so on. If we had insisted on meas-
uring the angle in degrees, we would have needed to include an extra factor of

on the right-hand side of in Eq. (9.1). By measuring angles in
radians, we keep the relationship between angle and distance along an arc as sim-
ple as possible.

Angular Velocity
The coordinate shown in Fig. 9.1 specifies the rotational position of a rigid
body at a given instant. We can describe the rotational motion of such a rigid
body in terms of the rate of change of We’ll do this in an analogous way to
our description of straight-line motion in Chapter 2. In Fig. 9.3a, a reference
line OP in a rotating body makes an angle with the at time At a
later time the angle has changed to We define the average angular velocity

(the Greek letter omega) of the body in the time interval as
the ratio of the angular displacement to

(9.2)vav-z =
u2 - u1
t2 - t1

=
¢u
¢t

¢t:¢u = u2 - u1
¢t = t2 - t1vav-z

u2.t2

t1.+x-axisu1

u.

u

s = ru12p>3602
u

90° = p>2 rad,180° = p rad,

1 rad =
360°

2p
= 57.3°

1360°2.
2p2p

u = 1.5,r = 2.0 m,s = 3.0 m 

u =
s

r
  or  s = ru

u

u

u

u

u

u

u

+x-axis 
u
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One radian is the angle
at which the arc s has
the same length as the
radius r.

An angle u in radians
is the ratio of the arc
length s to the radius r.

u 5
s
r

s 5 ru

r

1 rad

s 5 r

r

(a)

(b)

9.2 Measuring angles in radians.
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The subscript z indicates that the body in Fig. 9.3a is rotating about the z-axis,
which is perpendicular to the plane of the diagram. The instantaneous angular
velocity is the limit of as approaches zero—that is, the derivative of 
with respect to t:

(definition of angular velocity) (9.3)

When we refer simply to “angular velocity,” we mean the instantaneous angular
velocity, not the average angular velocity.

The angular velocity can be positive or negative, depending on the
direction in which the rigid body is rotating (Fig. 9.4). The angular speed
which we will use extensively in Sections 9.3 and 9.4, is the magnitude of
angular velocity. Like ordinary (linear) speed the angular speed is never
negative.

CAUTION Angular velocity vs. linear velocity Keep in mind the distinction between
angular velocity and ordinary velocity, or linear velocity, (see Section 2.2). If an
object has a velocity the object as a whole is moving along the x-axis. By contrast, if an
object has an angular velocity then it is rotating around the z-axis. We do not mean that
the object is moving along the z-axis. ❙

Different points on a rotating rigid body move different distances in a given
time interval, depending on how far each point lies from the rotation axis. But
because the body is rigid, all points rotate through the same angle in the same
time (Fig. 9.3b). Hence at any instant, every part of a rotating rigid body has the
same angular velocity. The angular velocity is positive if the body is rotating in
the direction of increasing and negative if it is rotating in the direction of
decreasing

If the angle is in radians, the unit of angular velocity is the radian per second
Other units, such as the revolution per minute or rpm), are

often used. Since two useful conversions are

That is, is about 10 rpm.1 rad>s

1 rev>s = 2p rad>s  and  1 rev>min = 1 rpm =
2p

60
 rad>s 

1 rev = 2p rad,
1rev>min1rad>s2.

u

u.
u

vz,
vx ,

vxvz

v,

v,
vz

vz = lim 
¢tS0

¢u
¢t

=
du

dt

u¢tvav-zvz

Angular displacement
Du of the rotating needle
over a time interval Dt:

Du 5 u2 2 u1

(a) (b)

x
O

u1
u2

P at t1
Direction
of rotation

Du

P at t2

y

9.3 (a) Angular displacement of a
rotating body. (b) Every part of a rotating
rigid body has the same average angular
velocity ¢u>¢t.

¢u

Counterclockwise
rotation positive:
Du . 0, so
vav-z 5 Du/Dt . 0

Clockwise
rotation negative:
Du , 0, so
vav-z 5 Du/Dt , 0

Axis of rotation (z-axis) passes through
origin and points out of page.

Du Du

O
x

y

O
x

y

9.4 A rigid body’s average angular veloc-
ity (shown here) and instantaneous angular
velocity can be positive or negative.



Angular Velocity As a Vector
As we have seen, our notation for the angular velocity about the z-axis is reminis-
cent of the notation for the ordinary velocity along the x-axis (see Section 2.2).
Just as is the x-component of the velocity vector is the z-component of an
angular velocity vector directed along the axis of rotation. As Fig. 9.5a shows,
the direction of is given by the right-hand rule that we used to define the vectorV

S
V
S

vzvS,vx

vx

vz

9.1 Angular Velocity and Acceleration 281

Example 9.1 Calculating angular velocity

The angular position of a 0.36-m-diameter flywheel is given by

(a) Find in radians and in degrees, at and 
(b) Find the distance that a particle on the flywheel rim moves over
the time interval from to (c) Find the aver-
age angular velocity, in and in , over that interval.
(d) Find the instantaneous angular velocities at and

SOLUTION

IDENTIFY and SET UP: We can find the target variables (the
angular position at time ), (the angular position at time ), and
the angular displacement from the given expres-
sion. Knowing we’ll find the distance traveled and the average
angular velocity between and using Eqs. (9.1) and (9.2),
respectively. To find the instantaneous angular velocities (at
time ) and (at time ), we’ll take the derivative of the given
equation for with respect to time, as in Eq. (9.3).

EXECUTE: (a) We substitute the values of t into the equation for :

(b) During the interval from to the flywheel’s angular
displacement is ¢u = u2 - u1 = 250 rad - 16 rad = 234 rad.

t2t1

= 1250 rad2
360°

2p rad
= 14,000°

u2 = 12.0 rad>s3215.0 s23 = 250 rad

= 116 rad2
360°

2p rad
= 920°

u1 = 12.0 rad>s3212.0 s23 = 16 rad

u

u

t2v2zt1

v1z

t2t1

¢u,
¢u = u2 - u1

t2u2t1

u1

t2 = 5.0 s.
t1 = 2.0 s

rev>minrad>s
t2 = 5.0 s.t1 = 2.0 s

t2 = 5.0 s.t1 = 2.0 su,

u = 12.0 rad>s32t 3

u The radius r is half the diameter, or 0.18 m. To use Eq. (9.1), the
angles must be expressed in radians:

We can drop “radians” from the unit for s because is a pure,
dimensionless number; the distance s is measured in meters, the
same as r.

(c) From Eq. (9.2),

(d) From Eq. (9.3),

At times and we have

EVALUATE: The angular velocity increases with
time. Our results are consistent with this; the instantaneous angular
velocity at the end of the interval is greater
than at the beginning , and the average angular
velocity rad s over the interval is intermediate between
these two values.

>= 78vav-z

1v1z = 24 rad>s2
1v2z = 150 rad>s2

vz = 16.0 rad>s32t 2

v2z = 16.0 rad>s3215.0 s22 = 150 rad>s

v1z = 16.0 rad>s3212.0 s22 = 24 rad>s

t2 = 5.0 st1 = 2.0 s

= 16.0 rad>s32t 2

vz =
du

dt
=

d

dt
312.0 rad>s32t 34 = 12.0 rad>s3213t 22

= a78
rad

s
b a

1 rev

2p rad
b a

60 s

1 min
b = 740 rev>min

vav-z =
u2 - u1
t2 - t1

=
250 rad - 16 rad

5.0 s - 2.0 s
= 78 rad>s

u

s = r u2 - r u1 = r¢u = 10.18 m21234 rad2 = 42 m

(a) (b)

... your right thumb
points in the 

direction of v.S

v
S

v
S

v
S

v points in the
positive z-direction:

vz . 0

S v points in the
negative z-direction:

vz , 0

S

v
S

If you curl the
fingers of your
right hand in the 
direction of 
rotation ...

z

x

y

x

y

z

9.5 (a) The right-hand rule for the direc-
tion of the angular velocity vector 
Reversing the direction of rotation reverses
the direction of (b) The sign of for
rotation along the z-axis.

vzV
S .

V
S .
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product in Section 1.10. If the rotation is about the z-axis, then has only a 
z-component; this component is positive if is along the positive z-axis and neg-
ative if is along the negative z-axis (Fig. 9.5b).

The vector formulation is especially useful in situations in which the direc-
tion of the rotation axis changes. We’ll examine such situations briefly at the
end of Chapter 10. In this chapter, however, we’ll consider only situations in
which the rotation axis is fixed. Hence throughout this chapter we’ll use
“angular velocity” to refer to the component of the angular velocity vector

along the axis.

Angular Acceleration
When the angular velocity of a rigid body changes, it has an angular accelera-
tion. When you pedal your bicycle harder to make the wheels turn faster or apply
the brakes to bring the wheels to a stop, you’re giving the wheels an angular
acceleration. You also impart an angular acceleration whenever you change the
rotation speed of a piece of spinning machinery such as an automobile engine’s
crankshaft.

If and are the instantaneous angular velocities at times and we
define the average angular acceleration over the interval as
the change in angular velocity divided by (Fig. 9.6):

(9.4)

The instantaneous angular acceleration is the limit of as 

(definition of angular acceleration) (9.5)

The usual unit of angular acceleration is the radian per second per second, or
From now on we will use the term “angular acceleration” to mean the

instantaneous angular acceleration rather than the average angular acceleration.
Because we can also express angular acceleration as the second

derivative of the angular coordinate:

(9.6)

You have probably noticed that we are using Greek letters for angular kine-
matic quantities: for angular position, for angular velocity, and for angu-
lar acceleration. These are analogous to x for position, for velocity, and for
acceleration, respectively, in straight-line motion. In each case, velocity is the
rate of change of position with respect to time and acceleration is the rate of
change of velocity with respect to time. We will sometimes use the terms “linear
velocity” and “linear acceleration” for the familiar quantities we defined in
Chapters 2 and 3 to distinguish clearly between these and the angular quantities
introduced in this chapter.

In rotational motion, if the angular acceleration is positive, then the
angular velocity is increasing; if is negative, then is decreasing. The
rotation is speeding up if and have the same sign and slowing down if 
and have opposite signs. (These are exactly the same relationships as those
between linear acceleration and linear velocity for straight-line motion;
see Section 2.3.)

vxax

vz

azvzaz

vzazvz

az

axvx

azvzu

az =
d

dt

du

dt
=

d2u

dt 2

vz = du>dt,

rad>s2.

az = lim 
¢tS0

¢vz

¢t
=

dvz

dt

¢tS 0:aav-zaz

aav-z =
v2z - v1z

t2 - t1
=

¢vz

¢t

¢t
¢t = t2 - t1aav-z

t2,t1v2zv1z

V
S

vz,

V
S

V
S

V
S

At t1 At t2

v1z v2z

The average angular acceleration is the change
in angular velocity divided by the time interval:

aav-z 5  5
v2z 2 v1z

t2 2 t1

Dvz

Dt

9.6 Calculating the average angular
acceleration of a rotating rigid body.



Angular Acceleration As a Vector
Just as we did for angular velocity, it’s useful to define an angular acceleration
vector Mathematically, is the time derivative of the angular velocity vector

If the object rotates around the fixed z-axis, then has only a z-component;
the quantity is just that component. In this case, is in the same direction as 
if the rotation is speeding up and opposite to if the rotation is slowing down
(Fig. 9.7).

The angular acceleration vector will be particularly useful in Chapter 10 when
we discuss what happens when the rotation axis can change direction. In this
chapter, however, the rotation axis will always be fixed and we need use only the
z-component az.

V
S

V
S

A
S

az

A
S

V
S .

A
S

A
S.
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v
S

a
S

a and v in the same
direction: Rotation
speeding up.

SS
a and v in the opposite
directions: Rotation
slowing down.

SS

v
S

a
S

9.7 When the rotation axis is fixed, the
angular acceleration and angular velocity
vectors both lie along that axis.

9.2 Rotation with Constant Angular Acceleration
In Chapter 2 we found that straight-line motion is particularly simple when the
acceleration is constant. This is also true of rotational motion about a fixed axis.
When the angular acceleration is constant, we can derive equations for angular
velocity and angular position using exactly the same procedure that we used for
straight-line motion in Section 2.4. In fact, the equations we are about to derive
are identical to Eqs. (2.8), (2.12), (2.13), and (2.14) if we replace x with with

and with We suggest that you review Section 2.4 before continuing.
Let be the angular velocity of a rigid body at time and let be its

angular velocity at any later time t. The angular acceleration is constant and
equal to the average value for any interval. Using Eq. (9.4) with the interval from
0 to t, we find

(constant angular acceleration only) (9.7)vz = v0z + azt

az =
vz - v0z

t - 0
  or 

az

vzt = 0,v0z

az.axvz ,
vxu,

Test Your Understanding of Section 9.1
The figure shows a graph of and versus time 
for a particular rotating body. (a) During which time
intervals is the rotation speeding up? (i) 
(ii) (iii) (b) During
which time intervals is the rotation slowing down? 
(i) (ii) (iii) ❙4 s 6 t 6 6 s.2 s 6 t 6 4 s;0 6 t 6 2 s;

4 s 6 t 6 6 s.2 s 6 t 6 4 s;
0 6 t 6 2 s;

azvz

1 2 3 4 5 6
t (s)

O

az vz

Flagella

Application Rotational Motion 
in Bacteria
Escherichia coli bacteria (about 2 μm by 
0.5 μm) are found in the lower intestines of
humans and other warm-blooded animals. 
The bacteria swim by rotating their long,
corkscrew-shaped flagella, which act like the
blades of a propeller. Each flagellum is powered
by a remarkable protein motor at its base. 
The motor can rotate the flagellum at angular
speeds from 200 to 1000 rev min (about 20
to 100 rad s) and can vary its speed to give
the flagellum an angular acceleration.

>

>

Example 9.2 Calculating angular acceleration

For the flywheel of Example 9.1, (a) find the average angular
acceleration between and (b) Find the
instantaneous angular accelerations at and 

SOLUTION

IDENTIFY and SET UP: We use Eq. (9.4) for the average angular
acceleration and Eq. (9.5) for the instantaneous angular accel-
eration

EXECUTE: (a) From Example 9.1, the values of at the two times are

From Eq. (9.4), the average angular acceleration is

aav-z =
150 rad>s - 24 rad>s

5.0 s - 2.0 s
= 42 rad>s2

v2z = 150 rad>sv1z = 24 rad>s

vz

az.
aav-z

t2 = 5.0 s.t1 = 2.0 s
t2 = 5.0 s.t1 = 2.0 s

(b) From Eq. (9.5), the value of at any time t is

Hence

EVALUATE: Note that the angular acceleration is not constant in
this situation. The angular velocity is always increasing
because is always positive. Furthermore, the rate at which the
angular velocity increases is itself increasing, since increases
with time.

az

az

vz

a2z = 112 rad>s3215.0 s2 = 60 rad>s2

a1z = 112 rad>s3212.0 s2 = 24 rad>s2

= 112 rad>s32t

az =
dvz

dt
=

d

dt
316.0 rad>s321t 224 = 16.0 rad>s3212t2

az
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The product is the total change in between and the later time t; the
angular velocity at time t is the sum of the initial value and this total change.

With constant angular acceleration, the angular velocity changes at a uniform
rate, so its average value between 0 and t is the average of the initial and final values:

(9.8)

We also know that is the total angular displacement divided by the
time interval 

(9.9)

When we equate Eqs. (9.8) and (9.9) and multiply the result by t, we get

(constant angular acceleration only) (9.10)

To obtain a relationship between and t that doesn’t contain we substitute
Eq. (9.7) into Eq. (9.10):

or

(constant angular acceleration only) (9.11)

That is, if at the initial time the body is at angular position and has angu-
lar velocity then its angular position at any later time t is the sum of three
terms: its initial angular position plus the rotation it would have if the
angular velocity were constant, plus an additional rotation caused by the
changing angular velocity.

Following the same procedure as for straight-line motion in Section 2.4, we
can combine Eqs. (9.7) and (9.11) to obtain a relationship between and that
does not contain t. We invite you to work out the details, following the same pro-
cedure we used to get Eq. (2.13). (See Exercise 9.12.) In fact, because of the per-
fect analogy between straight-line and rotational quantities, we can simply take
Eq. (2.13) and replace each straight-line quantity by its rotational analog. We get

(constant angular acceleration only) (9.12)

CAUTION Constant angular acceleration Keep in mind that all of these results are valid
only when the angular acceleration is constant; be careful not to try to apply them to
problems in which is not constant. Table 9.1 shows the analogy between Eqs. (9.7),
(9.10), (9.11), and (9.12) for fixed-axis rotation with constant angular acceleration and the
corresponding equations for straight-line motion with constant linear acceleration. ❙

az

az

vz
2 = v0z

2 + 2az1u - u02

vzu

1
2azt

2
v0ztu0 ,

uv0z ,
u0t = 0

u = u0 + v0zt + 1
2azt

2

u - u0 = 1
2 3v0z + 1v0z + azt24t

vz ,u

u - u0 = 1
2 1v0z + vz2t

vav-z =
u - u0
t - 0

1t - 02:
1u - u02vav-z

vav-z =
v0z + vz

2

v0zvz

t = 0vzazt

Table 9.1 Comparison of Linear and Angular Motion with 
Constant Acceleration

Straight-Line Motion with Fixed-Axis Rotation with 
Constant Linear Acceleration Constant Angular Acceleration

(2.8) (9.7)vz = v0z + azt

az = constant 

vx = v0x + axt

ax = constant 

(2.12) (9.11)u = u0 + v0zt + 1
2azt

2x = x0 + v0xt + 1
2 axt 2

(2.13) (9.12)vz
2 = v0z

2 + 2az1u - u02vx
2 = v0x

2 + 2ax1x - x02

(2.14) (9.10)u - u0 = 1
2 1v0z + vz2tx - x0 = 1

2 1v0x + vx2t



9.3 Relating Linear and Angular Kinematics
How do we find the linear speed and acceleration of a particular point in a rotating
rigid body? We need to answer this question to proceed with our study of rotation.
For example, to find the kinetic energy of a rotating body, we have to start from

for a particle, and this requires knowing the speed for each particle in
the body. So it’s worthwhile to develop general relationships between the angular
speed and acceleration of a rigid body rotating about a fixed axis and the linear
speed and acceleration of a specific point or particle in the body.

Linear Speed in Rigid-Body Rotation
When a rigid body rotates about a fixed axis, every particle in the body moves in
a circular path. The circle lies in a plane perpendicular to the axis and is centered
on the axis. The speed of a particle is directly proportional to the body’s angular

vK = 1
2 mv2
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Example 9.3 Rotation with constant angular acceleration

You have finished watching a movie on Blu-ray and the disc is
slowing to a stop. The disc’s angular velocity at is 
and its angular acceleration is a constant A line PQ
on the disc’s surface lies along the at (Fig. 9.8). 
(a) What is the disc’s angular velocity at (b) What
angle does the line PQ make with the at this time?

SOLUTION

IDENTIFY and SET UP: The angular acceleration of the disc is con-
stant, so we can use any of the equations derived in this section
(Table 9.1). Our target variables are the angular velocity and the
angular displacement at Given 

, and it’s easiest to use Eqs. (9.7) and
(9.11) to find the target variables.

az = -10.0 rad>s2,u0 = 0
v0z = 27.5 rad>s,t = 0.300 s.u

vz

+x-axis
t = 0.300 s?

t = 0+x-axis
-10.0 rad>s2.

27.5 rad>s,t = 0
EXECUTE: (a) From Eq. (9.7), at t � 0.300 s we have

(b) From Eq. (9.11),

The disc has turned through one complete revolution plus an
additional 0.24 revolution—that is, through 360° plus 

Hence the line PQ makes an angle of with
the

EVALUATE: Our answer to part (a) tells us that the disc’s angular
velocity has decreased, as it should since . We can use our
result for from part (a) with Eq. (9.12) to check our result for θ
from part (b). To do so, we solve Eq. (9.12) for :

This agrees with our previous result from part (b).

= 0 +
124.5 rad>s22 - 127.5 rad>s22

21-10.0 rad>s22
= 7.80 rad

u = u0 + a
v 2

z - v 2
0z

2az
b

v 2
z = v 2

0z + 2az1u - u02

u

vz

az 6 0

+x-axis.
87°1360°>rev2 = 87°.
10.24 rev2

= 7.80 rad = 7.80 rad a
1 rev

2p rad
b = 1.24 rev

= 0 + 127.5 rad>s210.300 s2 + 1
2 1-10.0 rad>s2210.300 s22

u = u0 + v0zt + 1
2azt

2

= 24.5 rad>s

vz = v0z + azt = 27.5 rad>s + 1-10.0 rad>s2210.300 s2

Direction
of rotation

y

x
QP

9.8 A line PQ on a rotating Blu-ray disc at t = 0.

Test Your Understanding of Section 9.2 Suppose the disc in 
Example 9.3 was initially spinning at twice the rate rather than

and slowed down at twice the rate rather than1-20.0 rad>s227.5 rad>s2
155.0 rad>s

(a) Compared to the situation in Example 9.3, how long would it take the
disc to come to a stop? (i) the same amount of time; (ii) twice as much time; (iii) 4 times
as much time; (iv) as much time; (v) as much time. (b) Compared to the situation in
Example 9.3, through how many revolutions would the disc rotate before coming to a
stop? (i) the same number of revolutions; (ii) twice as many revolutions; (iii) 4 times as
many revolutions; (iv) as many revolutions; (v) as many revolutions. ❙

1
4

1
2

1
4

1
2

-10.0 rad>s22.
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velocity; the faster the body rotates, the greater the speed of each particle. In
Fig. 9.9, point P is a constant distance r from the axis of rotation, so it moves in a
circle of radius r. At any time, the angle (in radians) and the arc length s are
related by

We take the time derivative of this, noting that r is constant for any specific parti-
cle, and take the absolute value of both sides:

Now is the absolute value of the rate of change of arc length, which is
equal to the instantaneous linear speed of the particle. Analogously, the
absolute value of the rate of change of the angle, is the instantaneous angular
speed —that is, the magnitude of the instantaneous angular velocity in 
Thus

(relationship between linear and angular speeds) (9.13)

The farther a point is from the axis, the greater its linear speed. The direction of
the linear velocity vector is tangent to its circular path at each point (Fig. 9.9).

CAUTION Speed vs. velocity Keep in mind the distinction between the linear and angu-
lar speeds and which appear in Eq. (9.13), and the linear and angular velocities and

The quantities without subscripts, and are never negative; they are the magnitudes
of the vectors and respectively, and their values tell you only how fast a particle is
moving or how fast a body is rotating The corresponding quantities with sub-
scripts, and can be either positive or negative; their signs tell you the direction of
the motion. ❙

Linear Acceleration in Rigid-Body Rotation
We can represent the acceleration of a particle moving in a circle in terms of its
centripetal and tangential components, and (Fig. 9.10), as we did in Sec-
tion 3.4. It would be a good idea to review that section now. We found that the
tangential component of acceleration the component parallel to the instan-
taneous velocity, acts to change the magnitude of the particle’s velocity (i.e., the
speed) and is equal to the rate of change of speed. Taking the derivative of 
Eq. (9.13), we find

(9.14)

This component of a particle’s acceleration is always tangent to the circular path
of the particle.

The quantity in Eq. (9.14) is the rate of change of the angular
speed. It is not quite the same as which is the rate of change of the
angular velocity. For example, consider a body rotating so that its angular veloc-
ity vector points in the (see Fig. 9.5b). If the body is gaining angu-
lar speed at a rate of per second, then But is negative
and becoming more negative as the rotation gains speed, so 
The rule for rotation about a fixed axis is that is equal to if is positive but
equal to if is negative.

The component of the particle’s acceleration directed toward the rotation
axis, the centripetal component of acceleration is associated with thearad,

vz-az

vzaza

az = -10 rad>s2.
vza = 10 rad>s2.10 rad>s

-z-direction 

az = dvz>dt,
a = dv>dt

(tangential acceleration of
a point on a rotating body)atan =

dv
dt

= r
dv

dt
= ra

atan,

atanarad

vz,vx

1v2.1v2
V
S ,vS

v,vvz.
vxv,v

v = rv

rad>s.v

ƒdu>dt ƒ ,v
ƒds>dt ƒ

`
ds

dt
` = r `

du

dt
`

s = r u

u

Linear speed of point P
(angular speed v is in rad/s)

Distance through which point P on
the body moves (angle u is in radians)

Circle followed
by point P

s 5 ru

v 5 rv

r

P

u

v

v

y

O
x

9.9 A rigid body rotating about a fixed
axis through point O.

Radial and tangential acceleration components:
• arad 5 v2r is point P’s centripetal acceleration.
• atan 5 ra means that P’s rotation is speeding up
  (the body has angular acceleration).

atan 5 ra

arad 5 v2r

aS

Linear
acceleration
of point P

s

v 5 rv

r

P

u

v

v

y

O
x

9.10 A rigid body whose rotation is
speeding up. The acceleration of point P
has a component toward the rotation
axis perpendicular to and a component

along the circle that point P follows
parallel to vS2.1

atan

vS21
arad

?

PhET: Ladybug Revolution



change of direction of the particle’s velocity. In Section 3.4 we worked out the
relationship We can express this in terms of by using Eq. (9.13):

(9.15)

This is true at each instant, even when and are not constant. The centripetal
component always points toward the axis of rotation.

The vector sum of the centripetal and tangential components of acceleration of
a particle in a rotating body is the linear acceleration (Fig. 9.10).

CAUTION Use angles in radians in all equations It’s important to remember that 
Eq. (9.1), is valid only when is measured in radians. The same is true of any
equation derived from this, including Eqs. (9.13), (9.14), and (9.15). When you use these
equations, you must express the angular quantities in radians, not revolutions or degrees
(Fig. 9.11). ❙

Equations (9.1), (9.13), and (9.14) also apply to any particle that has the same
tangential velocity as a point in a rotating rigid body. For example, when a rope
wound around a circular cylinder unwraps without stretching or slipping, its speed
and acceleration at any instant are equal to the speed and tangential acceleration of
the point at which it is tangent to the cylinder. The same principle holds for situa-
tions such as bicycle chains and sprockets, belts and pulleys that turn without slip-
ping, and so on. We will have several opportunities to use these relationships later
in this chapter and in Chapter 10. Note that Eq. (9.15) for the centripetal compo-
nent is applicable to the rope or chain only at points that are in contact with
the cylinder or sprocket. Other points do not have the same acceleration toward
the center of the circle that points on the cylinder or sprocket have.

arad

us = ru,

aS

vv

(centripetal acceleration of
a point on a rotating body)arad =

v2

r
= v2r

varad = v2>r.
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In any equation that relates linear quantities
to angular quantities, the angles MUST be
expressed in radians ...

... never in degrees or revolutions.

s 5 60r

s 5 (p/3)rRIGHT!

WRONG

y

x
u 5 60° 5 p/3 rad

s 5 ru
r

O

9.11 Always use radians when relating
linear and angular quantities.

Example 9.4 Throwing a discus

An athlete whirls a discus in a circle of radius 80.0 cm. At a certain
instant, the athlete is rotating at and the angular speed
is increasing at At this instant, find the tangential and
centripetal components of the acceleration of the discus and the
magnitude of the acceleration.

SOLUTION

IDENTIFY and SET UP: We treat the discus as a particle traveling in
a circular path (Fig. 9.12a), so we can use the ideas developed in
this section. We are given and

(Fig. 9.12b). We’ll use Eqs. (9.14) and (9.15),
respectively, to find the acceleration components and 
we’ll then find the magnitude using the Pythagorean theorem.a

arad;atan

a = 50.0 rad>s2
v = 10.0 rad>s,r = 0.800 m,

50.0 rad>s2.
10.0 rad>s

EXECUTE: From Eqs. (9.14) and (9.15),

Then

EVALUATE: Note that we dropped the unit “radian” from our results
for and a. We can do this because “radian” is a dimen-
sionless quantity. Can you show that if the angular speed doubles
to while remains the same, the acceleration magni-
tude a increases to ?322 m>s2

a20.0 rad>s

arad,atan,

a = 2a 2
tan + a 2

rad = 89.4 m>s2

arad = v2r = 110.0 rad>s2210.800 m2 = 80.0 m>s2

atan = ra = 10.800 m2150.0 rad>s22 = 40.0 m>s2

(a) (b)

r

a
arad

atan

9.12 (a) Whirling a discus in a circle. (b) Our sketch showing the acceleration components for the discus.
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Example 9.5 Designing a propeller

You are designing an airplane propeller that is to turn at 2400 rpm
(Fig. 9.13a). The forward airspeed of the plane is to be ,
and the speed of the tips of the propeller blades through the air
must not exceed . (This is about 80% of the speed of
sound in air. If the speed of the propeller tips were greater than
this, they would produce a lot of noise.) (a) What is the maximum
possible propeller radius? (b) With this radius, what is the acceler-
ation of the propeller tip?

SOLUTION

IDENTIFY and SET UP: We consider a particle at the tip of the pro-
peller; our target variables are the particle’s distance from the axis
and its acceleration. The speed of this particle through the air,
which cannot exceed 270 m s, is due to both the propeller’s rota-
tion and the forward motion of the airplane. Figure 9.13b shows
that the particle’s velocity is the vector sum of its tangential
velocity due to the propeller’s rotation of magnitude 
given by Eq. (9.13), and the forward velocity of the airplane of
magnitude � 75.0 m s. The propeller rotates in a plane per->vplane

vtan = vr,
vStip

>

270 m>s

75.0 m>s
EXECUTE: We first convert to (see Fig. 9.11):

(a) From Fig. 9.13b and Eq. (9.13),

If the maximum propeller radius is

(b) The centripetal acceleration of the particle is

The tangential acceleration is zero because the angular speed
is constant.

EVALUATE: From the propeller must exert a force of
on each kilogram of material at its tip! This is why

propellers are made out of tough material, usually aluminum
alloy.

6.5 * 104 N
gF

S
� maS,

arad

= 6.5 * 104 m>s2 = 6600g

arad = v2r = 1251 rad>s2211.03 m2

r =
21270 m>s22 - 175.0 m>s22

251 rad>s
= 1.03 m

vtip = 270 m>s,

r 2 =
v 2

tip - v 2
plane

v2
  and  r =

2v 2
tip - v 2

plane

v

v 2
tip = v 2

plane + v 2
tan = v 2

plane + r 2v2 so

= 251 rad>s

v = 2400 rpm = a2400
rev

min
b a

2p rad

1 rev
b a

1 min

60 s
b

rad>sv

r
vplane 5 75.0 m/s

2400 rev/minvtan 5 rv

(a) (b)

9.13 (a) A propeller-driven airplane in flight. (b) Our sketch showing the velocity components for the propeller tip.

9.4 Energy in Rotational Motion
A rotating rigid body consists of mass in motion, so it has kinetic energy. As we
will see, we can express this kinetic energy in terms of the body’s angular speed
and a new quantity, called moment of inertia, that depends on the body’s mass
and how the mass is distributed.

Test Your Understanding of Section 9.3 Information is stored on a
disc (see Fig. 9.8) in a coded pattern of tiny pits. The pits are arranged in a track
that spirals outward toward the rim of the disc. As the disc spins inside a player,
the track is scanned at a constant linear speed. How must the rotation speed of the disc
change as the player’s scanning head moves over the track? (i) The rotation speed must
increase. (ii) The rotation speed must decrease. (iii) The rotation speed must stay the
same. ❙

pendicular to the direction of flight, so and are perpendi-
cular to each other, and we can use the Pythagorean theorem to
obtain an expression for from and . We will then set

and solve for the radius r. The angular speed of
the propeller is constant, so the acceleration of the propeller tip has
only a radial component; we’ll find it using Eq. (9.15).

vtip = 270 m>s
vplanevtanvtip

vSplanevStan



To begin, we think of a body as being made up of a large number of particles,
with masses at distances from the axis of rotation. We label
the particles with the index i: The mass of the ith particle is and its distance
from the axis of rotation is The particles don’t necessarily all lie in the same
plane, so we specify that is the perpendicular distance from the axis to the ith
particle.

When a rigid body rotates about a fixed axis, the speed of the ith particle is
given by Eq. (9.13), where is the body’s angular speed. Different
particles have different values of r, but is the same for all (otherwise, the body
wouldn’t be rigid). The kinetic energy of the ith particle can be expressed as

The total kinetic energy of the body is the sum of the kinetic energies of all its
particles:

Taking the common factor out of this expression, we get

The quantity in parentheses, obtained by multiplying the mass of each particle by
the square of its distance from the axis of rotation and adding these products, is
denoted by I and is called the moment of inertia of the body for this rotation
axis:

(9.16)

The word “moment” means that I depends on how the body’s mass is distributed
in space; it has nothing to do with a “moment” of time. For a body with a given
rotation axis and a given total mass, the greater the distance from the axis to the
particles that make up the body, the greater the moment of inertia. In a rigid body,
the distances are all constant and I is independent of how the body rotates
around the given axis. The SI unit of moment of inertia is the 

In terms of moment of inertia I, the rotational kinetic energy K of a rigid
body is

(rotational kinetic energy of a rigid body) (9.17)

The kinetic energy given by Eq. (9.17) is not a new form of energy; it’s simply
the sum of the kinetic energies of the individual particles that make up the rotat-
ing rigid body. To use Eq. (9.17), must be measured in radians per second, not
revolutions or degrees per second, to give K in joules. That’s because we used

in our derivation.
Equation (9.17) gives a simple physical interpretation of moment of inertia:

The greater the moment of inertia, the greater the kinetic energy of a rigid body
rotating with a given angular speed We learned in Chapter 6 that the kinetic
energy of a body equals the amount of work done to accelerate that body from
rest. So the greater a body’s moment of inertia, the harder it is to start the body
rotating if it’s at rest and the harder it is to stop its rotation if it’s already rotating
(Fig. 9.14). For this reason, I is also called the rotational inertia.

The next example shows how changing the rotation axis can affect the value
of I.

v.

vi = riv

v

K = 1
2 Iv2

1kg # m22.
kilogram-meter2

ri

(definition of
moment of inertia)

I = m1r 1
2 + m2r 2

2 + Á = a
i

mir i
2

K = 1
2 1m1r 1

2 + m2r 2
2 + Á 2v2 = 1

2 1a
i

mir i
22v2

v2>2

K = 1
2 m1r 1

2v2 + 1
2 m2r 2

2v2 + Á = a
i

1
2 mir i

2v2

1
2 mivi

2 = 1
2 mir i

2v2

v

vvi = riv,
vi

ri

ri.
mi

r2, Ár1,m1, m2, Á
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Rotation axis

Rotation axis

• Mass farther from axis
• Greater moment of inertia
• Harder to start apparatus rotating

• Mass close to axis
• Small moment of inertia
• Easy to start apparatus rotating

9.14 An apparatus free to rotate around
a vertical axis. To vary the moment of iner-
tia, the two equal-mass cylinders can be
locked into different positions on the hori-
zontal shaft.

ActivPhysics 7.7: Rotational Inertia
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CAUTION Moment of inertia depends on the choice of axis The results of parts (a) and (b)
of Example 9.6 show that the moment of inertia of a body depends on the location and ori-
entation of the axis. It’s not enough to just say, “The moment of inertia of this body is

We have to be specific and say, “The moment of inertia of this body about
the axis through B and C is ” ❙

In Example 9.6 we represented the body as several point masses, and we eval-
uated the sum in Eq. (9.16) directly. When the body is a continuous distribution
of matter, such as a solid cylinder or plate, the sum becomes an integral, and we
need to use calculus to calculate the moment of inertia. We will give several
examples of such calculations in Section 9.6; meanwhile, Table 9.2 gives
moments of inertia for several familiar shapes in terms of their masses and
dimensions. Each body shown in Table 9.2 is uniform; that is, the density has the
same value at all points within the solid parts of the body.

CAUTION Computing the moment of inertia You may be tempted to try to compute the
moment of inertia of a body by assuming that all the mass is concentrated at the center of
mass and multiplying the total mass by the square of the distance from the center of mass
to the axis. Resist that temptation; it doesn’t work! For example, when a uniform thin rod
of length L and mass M is pivoted about an axis through one end, perpendicular to the rod,
the moment of inertia is [case (b) in Table 9.2]. If we took the mass as concen-
trated at the center, a distance from the axis, we would obtain the incorrect result

❙

Now that we know how to calculate the kinetic energy of a rotating rigid body,
we can apply the energy principles of Chapter 7 to rotational motion. Here are
some points of strategy and some examples.

I = M1L>222 = ML2>4.
L>2

I = ML2>3

0.048 kg # m2.
0.048 kg # m2.”

Example 9.6 Moments of inertia for different rotation axes

A machine part (Fig. 9.15) consists of three disks linked by light-
weight struts. (a) What is this body’s moment of inertia about an
axis through the center of disk A, perpendicular to the plane of the
diagram? (b) What is its moment of inertia about an axis through
the centers of disks B and C? (c) What is the body’s kinetic energy
if it rotates about the axis through A with angular speed 

SOLUTION

IDENTIFY and SET UP: We’ll consider the disks as massive parti-
cles located at the centers of the disks, and consider the struts as

4.0 rad>s?
v =

massless. In parts (a) and (b), we’ll use Eq. (9.16) to find the
moments of inertia. Given the moment of inertia about axis A,
we’ll use Eq. (9.17) in part (c) to find the rotational kinetic energy.

EXECUTE: (a) The particle at point A lies on the axis through A, so
its distance r from the axis is zero and it contributes nothing to the
moment of inertia. Hence only B and C contribute, and Eq. (9.16)
gives

(b) The particles at B and C both lie on axis BC, so neither parti-
cle contributes to the moment of inertia. Hence only A contributes:

(c) From Eq. (9.17),

EVALUATE: The moment of inertia about axis A is greater than that
about axis BC. Hence of the two axes it’s easier to make the
machine part rotate about axis BC.

KA = 1
2IAv

2 = 1
2 10.057 kg # m2214.0 rad>s22 = 0.46 J

IBC = amir
2

i = 10.30 kg210.40 m22 = 0.048 kg # m2

= 0.057 kg # m2

IA = amir
2

i = 10.10 kg210.50 m22 + 10.20 kg210.40 m22

Axis through disk A
(perpendicular to plane
of figure)

0.50 m

mB 5 0.10 kg

mC 5 0.20 kg

mA 5 0.30 kg

0.30 m

0.40 m
A

B

C

Axis through 
disks B and C

9.15 An oddly shaped machine part.

Application Moment of Inertia of a
Bird’s Wing
When a bird flaps its wings, it rotates the
wings up and down around the shoulder. A
hummingbird has small wings with a small
moment of inertia, so the bird can make its
wings move rapidly (up to 70 beats per sec-
ond). By contrast, the Andean condor (Vultur
gryphus) has immense wings that are hard to
move due to their large moment of inertia.
Condors flap their wings at about one beat per
second on takeoff, but at most times prefer to
soar while holding their wings steady.
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L

(a) Slender rod,
     axis through center

(b) Slender rod,
      axis through one end

(c) Rectangular plate,
     axis through center

(d) Thin rectangular plate,
      axis along edge

I 5      ML2

L
b

a

b

a

R1

R2
R R R R

I 5 MR2

(e) Hollow cylinder (f) Solid cylinder (g) Thin-walled hollow
      cylinder

(i) Thin-walled hollow
     sphere

(h) Solid sphere

1
12

I 5      M 1a2 � b2 2
1
12

I 5     M 1R1
2
 1 R2

2 2
1
2

I 5     MR21
2

I 5     MR22
5

I 5     MR22
3

I 5     ML21
3

I 5     Ma21
3

Table 9.2 Moments of Inertia of Various Bodies

Problem-Solving Strategy 9.1 Rotational Energy

IDENTIFY the relevant concepts: You can use work–energy rela-
tionships and conservation of energy to find relationships involv-
ing the position and motion of a rigid body rotating around a fixed
axis. The energy method is usually not helpful for problems that
involve elapsed time. In Chapter 10 we’ll see how to approach
rotational problems of this kind.

SET UP the problem using Problem-Solving Strategy 7.1 (Section 7.1),
with the following additions:
5. You can use Eqs. (9.13) and (9.14) in problems involving a

rope (or the like) wrapped around a rotating rigid body, if the
rope doesn’t slip. These equations relate the linear speed and
tangential acceleration of a point on the body to the body’s
angular velocity and angular acceleration. (See Examples 9.7
and 9.8.)

6. Use Table 9.2 to find moments of inertia. Use the parallel-axis
theorem, Eq. (9.19) (to be derived in Section 9.5), to find

moments of inertia for rotation about axes parallel to those shown
in the table.

EXECUTE the solution: Write expressions for the initial and 
final kinetic and potential energies and and for the
nonconservative work (if any), where must now
include any rotational kinetic energy . Substitute these
expressions into Eq. (7.14), (if non-
conservative work is done), or Eq. (7.11), (if
only conservative work is done), and solve for the target variables.
It’s helpful to draw bar graphs showing the initial and final values
of K, U, and 

EVALUATE your answer: Check whether your answer makes phys-
ical sense.

E = K + U.

K2 + U2K1 + U1 =
K1 + U1 + Wother = K2 + U2

K = 1
2Iv2
K1 and K2Wother

U2U1,K2,K1,

Example 9.7 An unwinding cable I

We wrap a light, nonstretching cable around a solid cylinder of
mass 50 kg and diameter 0.120 m, which rotates in frictionless
bearings about a stationary horizontal axis (Fig. 9.16). We pull the
free end of the cable with a constant 9.0-N force for a distance of
2.0 m; it turns the cylinder as it unwinds without slipping. The
cylinder is initially at rest. Find its final angular speed and the final
speed of the cable.

SOLUTION

IDENTIFY: We’ll solve this problem using energy methods. We’ll
assume that the cable is massless, so only the cylinder has kinetic
energy. There are no changes in gravitational potential energy.
There is friction between the cable and the cylinder, but because
the cable doesn’t slip, there is no motion of the cable relative to the

Continued
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cylinder and no mechanical energy is lost in frictional work.
Because the cable is massless, the force that the cable exerts on the
cylinder rim is equal to the applied force F.

SET UP: Point 1 is when the cable begins to move. The cylinder
starts at rest, so . Point 2 is when the cable has moved a dis-
tance m and the cylinder has kinetic energy .
One of our target variables is the other is the speed of the cable
at point 2, which is equal to the tangential speed of the cylinder at
that point. We’ll use Eq. (9.13) to find from .vv

v
v;

K2 = 1
2Iv2s = 2.0

K1 = 0

EXECUTE: The work done on the cylinder is 
From Table 9.2 the moment of

inertia is

(The radius R is half the diameter.) From Eq. (7.14), 
, so

From Eq. (9.13), the final tangential speed of the cylinder, and
hence the final speed of the cable, is

EVALUATE: If the cable mass is not negligible, some of the 18 J of
work would go into the kinetic energy of the cable. Then the cylin-
der would have less kinetic energy and a lower angular speed than
we calculated here.

v = Rv = 10.060 m2120 rad>s2 = 1.2 m>s

v =
B

2Wother

I
=
B

2118 J2

0.090 kg # m2
= 20 rad>s

0 + 0 + Wother = 1
2 Iv2 + 0

Wother = K2 + U2

K1 + U1 +

I = 1
2 mR2 = 1

2 150 kg210.060 m22 = 0.090 kg # m2

Fs = 19.0 N212.0 m2 = 18 J.
Wother =

0.120 m50 kg

9.0 N
2.0 m

9.16 A cable unwinds from a cylinder (side view).

Example 9.8 An unwinding cable II

We wrap a light, nonstretching cable around a solid cylinder with
mass M and radius R. The cylinder rotates with negligible friction
about a stationary horizontal axis. We tie the free end of the cable
to a block of mass m and release the block from rest at a distance h
above the floor. As the block falls, the cable unwinds without
stretching or slipping. Find expressions for the speed of the falling
block and the angular speed of the cylinder as the block strikes the
floor.

SOLUTION

IDENTIFY: As in Example 9.7, the cable doesn’t slip and so friction
does no work. We assume that the cable is massless, so that the

forces it exerts on the cylinder and the block have equal magni-
tudes. At its upper end the force and displacement are in the same
direction, and at its lower end they are in opposite directions, so
the cable does no net work and � 0. Only gravity does
work, and mechanical energy is conserved.

SET UP: Figure 9.17a shows the situation before the block begins
to fall (point 1). The initial kinetic energy is We take the
gravitational potential energy to be zero when the block is at floor
level (point 2), so and (We ignore the gravita-
tional potential energy for the rotating cylinder, since its height
doesn’t change.) Just before the block hits the floor (Fig. 9.17b),
both the block and the cylinder have kinetic energy, so

The moment of inertia of the cylinder is . Also, 
since the speed of the falling block must be equal to the tangential
speed at the outer surface of the cylinder.

EXECUTE: We use our expressions for and and 
the relationship in Eq. (7.4), and
solve for 

The final angular speed of the cylinder is 

EVALUATE: When M is much larger than m, is very small; when
M is much smaller than m, is nearly equal to the speed of
a body that falls freely from height h. Both of these results are as
we would expect.

12gh,v
v

v = v>R.

v =
C

2gh

1 + M>2m

0 + mgh = 1
2 mv2 + 1

2 A
1
2MR2 B a

v
R
b

2

+ 0 = 1
2 Am + 1

2M Bv2

v:
K1 + U1 = K2 + U2,v = v>R

U2K2,U1,K1,

v = RvI = 1
2MR2

K2 = 1
2 mv2 + 1

2 Iv2

U2 = 0.U1 = mgh

K1 = 0.

Wother

(a) (b)

9.17 Our sketches for this problem.



Gravitational Potential Energy for an Extended Body
In Example 9.8 the cable was of negligible mass, so we could ignore its kinetic
energy as well as the gravitational potential energy associated with it. If the mass
is not negligible, we need to know how to calculate the gravitational potential
energy associated with such an extended body. If the acceleration of gravity g is
the same at all points on the body, the gravitational potential energy is the same
as though all the mass were concentrated at the center of mass of the body. Sup-
pose we take the y-axis vertically upward. Then for a body with total mass M, the
gravitational potential energy U is simply

(gravitational potential energy for an extended body) (9.18)

where is the y-coordinate of the center of mass. This expression applies to
any extended body, whether it is rigid or not (Fig. 9.18).

To prove Eq. (9.18), we again represent the body as a collection of mass ele-
ments The potential energy for element is so the total potential
energy is

But from Eq. (8.28), which defines the coordinates of the center of mass,

where is the total mass. Combining this with the above
expression for U, we find in agreement with Eq. (9.18).

We leave the application of Eq. (9.18) to the problems. We’ll make use of this
relationship in Chapter 10 in the analysis of rigid-body problems in which the
axis of rotation moves.

U = Mgycm

M = m1 + m2 + Á
m1y1 + m2y2 + Á = 1m1 + m2 + Á2ycm = Mycm 

U = m1gy1 + m2gy2 + Á = 1m1y1 + m2y2 + Á2g

migyi,mimi.

ycm

U = Mgycm 
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cm

9.18 In a technique called the “Fosbury
flop” after its innovator, this athlete arches
her body as she passes over the bar in the
high jump. As a result, her center of mass
actually passes under the bar. This tech-
nique requires a smaller increase in gravi-
tational potential energy [Eq. (9.18)] than
the older method of straddling the bar.

Test Your Understanding of Section 9.4 Suppose the cylinder and
block in Example 9.8 have the same mass, so Just before the block strikes
the floor, which statement is correct about the relationship between the kinetic
energy of the falling block and the rotational kinetic energy of the cylinder? (i) The block
has more kinetic energy than the cylinder. (ii) The block has less kinetic energy than the
cylinder. (iii) The block and the cylinder have equal amounts of kinetic energy. ❙

m = M.

9.5 Parallel-Axis Theorem
We pointed out in Section 9.4 that a body doesn’t have just one moment of iner-
tia. In fact, it has infinitely many, because there are infinitely many axes about
which it might rotate. But there is a simple relationship between the moment of
inertia of a body of mass M about an axis through its center of mass and the
moment of inertia about any other axis parallel to the original one but dis-
placed from it by a distance d. This relationship, called the parallel-axis theorem,
states that

(parallel-axis theorem) (9.19)

To prove this theorem, we consider two axes, both parallel to the z-axis: one
through the center of mass and the other through a point P (Fig. 9.19). First we take
a very thin slice of the body, parallel to the xy-plane and perpendicular to the z-axis.
We take the origin of our coordinate system to be at the center of mass of the body;
the coordinates of the center of mass are then The axis
through the center of mass passes through this thin slice at point O, and the parallel
axis passes through point P, whose x- and y-coordinates are The distance of
this axis from the axis through the center of mass is d, where d2 = a2 + b2.

1a, b2.

z cm = 0.xcm = ycm =

IP = Icm + Md2

IP

Icm
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We can write an expression for the moment of inertia about the axis through
point P. Let be a mass element in our slice, with coordinates Then the
moment of inertia of the slice about the axis through the center of mass (at O) is

The moment of inertia of the slice about the axis through P is

These expressions don’t involve the coordinates measured perpendicular to the
slices, so we can extend the sums to include all particles in all slices. Then 
becomes the moment of inertia of the entire body for an axis through P. We then
expand the squared terms and regroup, and obtain

The first sum is From Eq. (8.28), the definition of the center of mass, the sec-
ond and third sums are proportional to and these are zero because we
have taken our origin to be the center of mass. The final term is multiplied by
the total mass, or This completes our proof that 

As Eq. (9.19) shows, a rigid body has a lower moment of inertia about an axis
through its center of mass than about any other parallel axis. Thus it’s easier to
start a body rotating if the rotation axis passes through the center of mass. This
suggests that it’s somehow most natural for a rotating body to rotate about an axis
through its center of mass; we’ll make this idea more quantitative in Chapter 10.

IP = Icm + Md2.Md2.
d2

ycm;xcm

Icm.

IP = a
i

mi1x i
2 + yi

2 2 - 2aa
i

mix i - 2ba
i

mi yi + 1a2 + b22a
i

mi

IP

z i

IP = a
i

mi31x i - a22 + 1yi - b224

Icm = a
i

mi1x i
2 + yi

2 2

Icm

z i2 .yi,1x i,mi

IP

Mass element mi

Axis of rotation passing through cm and
perpendicular to the plane of the figure

Second axis of rotation
parallel to the one 
through the cm

y

yi � b

xi
x

mi
yi

xi � a

b

a

d
P

cmO

Slice of a body of mass M

9.19 The mass element has coordi-
nates with respect to an axis of rota-
tion through the center of mass (cm) and
coordinates with respect
to the parallel axis through point P.

yi - b21x i - a,

1x i, yi2
mi

Example 9.9 Using the parallel-axis theorem

A part of a mechanical linkage (Fig. 9.20) has a mass of 3.6 kg. Its
moment of inertia about an axis 0.15 m from its center of mass
is What is the moment of inertia about a
parallel axis through the center of mass?

IcmIP = 0.132 kg # m2.
IP

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We’ll determine the target vari-
able using the parallel-axis theorem, Eq. (9.19). Rearranging
the equation, we obtain

EVALUATE: As we expect, is less than the moment of inertia
for an axis through the center of mass is lower than for any other
parallel axis.

IP;Icm

= 0.051 kg # m2

Icm = IP - Md2 = 0.132 kg # m2 - 13.6 kg210.15 m22

Icm

Axis through
center of mass

Axis through P

cm

0.15 m

P

9.20 Calculating from a measurement of IP.Icm

9.6 Moment-of-Inertia Calculations
If a rigid body is a continuous distribution of mass—like a solid cylinder or a
solid sphere—it cannot be represented by a few point masses. In this case the
sum of masses and distances that defines the moment of inertia [Eq. (9.16)]

Test Your Understanding of Section 9.5 A pool cue is a wooden rod with a
uniform composition and tapered with a larger diameter at one end than at the other end.
Use the parallel-axis theorem to decide whether a pool cue has a larger moment of inertia
(i) for an axis through the thicker end of the rod and perpendicular to the length of the
rod, or (ii) for an axis through the thinner end of the rod and perpendicular to the length
of the rod. ❙



becomes an integral. Imagine dividing the body into elements of mass dm that
are very small, so that all points in a particular element are at essentially the same
perpendicular distance from the axis of rotation. We call this distance r, as before.
Then the moment of inertia is

(9.20)

To evaluate the integral, we have to represent r and dm in terms of the same inte-
gration variable. When the object is effectively one-dimensional, such as the slen-
der rods (a) and (b) in Table 9.2, we can use a coordinate x along the length and
relate dm to an increment dx. For a three-dimensional object it is usually easiest to
express dm in terms of an element of volume dV and the density of the body.
Density is mass per unit volume, so we may also write Eq. (9.20) as

This expression tells us that a body’s moment of inertia depends on how its den-
sity varies within its volume (Fig. 9.21). If the body is uniform in density, then
we may take outside the integral:

(9.21)

To use this equation, we have to express the volume element dV in terms of the
differentials of the integration variables, such as The element dV
must always be chosen so that all points within it are at very nearly the same dis-
tance from the axis of rotation. The limits on the integral are determined by the
shape and dimensions of the body. For regularly shaped bodies, this integration is
often easy to do.

dV = dx dy dz.

I = rLr 2 dV

r

I = Lr 2r dV

r = dm>dV,
r

I = Lr 2 dm

9.6 Moment-of-Inertia Calculations 295

9.21 By measuring small variations in
the orbits of satellites, geophysicists can
measure the earth’s moment of inertia.
This tells us how our planet’s mass is dis-
tributed within its interior. The data show
that the earth is far denser at the core than
in its outer layers.

Example 9.10 Hollow or solid cylinder, rotating about axis of symmetry

Figure 9.22 shows a hollow cylinder of uniform mass density 
with length L, inner radius and outer radius (It might be a
steel cylinder in a printing press.) Using integration, find its
moment of inertia about its axis of symmetry.

SOLUTION

IDENTIFY and SET UP: We choose as a volume element a thin
cylindrical shell of radius r, thickness dr, and length L. All parts of
this shell are at very nearly the same distance r from the axis. The
volume of the shell is very nearly that of a flat sheet with thickness
dr, length L, and width (the circumference of the shell). The
mass of the shell is

We’ll use this expression in Eq. (9.20), integrating from to

EXECUTE: From Eq. (9.20), the moment of inertia is

=
prL

2
1R 2

2 - R 2
1 21R

2
2 + R 2

1 2

=
2prL

4
1R 4

2 - R 4
1 2

= 2prLL
R2

R1

r 3 dr

I = Lr 2 dm = L
R2

R1

r 2r12prL dr2

r = R2.
r = R1

dm = r dV = r12prL dr2

2pr

R2.R1,
r

(In the last step we used the identity .)
Let’s express this result in terms of the total mass M of the body,
which is its density ρ multiplied by the total volume V. The cylin-
der’s volume is

so its total mass M is

Continued

M = rV = pLr1R 2
2 - R 2

1 2

V = pL1R 2
2 - R 2

1 2

1a - b21a + b2a2 - b2 =

Mass element:
cylindrical shell
with radius r and
thickness dr

Axis

dr
r

L

R1

R2

9.22 Finding the moment of inertia of a hollow cylinder about
its symmetry axis.
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Example 9.11 Uniform sphere with radius R, axis through center

Find the moment of inertia of a solid sphere of uniform mass den-
sity (like a billiard ball) about an axis through its center.

SOLUTION

IDENTIFY and SET UP: We divide the sphere into thin, solid disks
of thickness dx (Fig. 9.23), whose moment of inertia we know
from Table 9.2, case (f). We’ll integrate over these to find the total
moment of inertia.

EXECUTE: The radius and hence the volume and mass of a disk
depend on its distance x from the center of the sphere. The radius r
of the disk shown in Fig. 9.23 is

Its volume is

dV = pr 2 dx = p1R2 - x22 dx

r = 2R2 - x2

r

and so its mass is

From Table 9.2, case (f ), the moment of inertia of a disk of radius
r and mass dm is

Integrating this expression from to gives the moment
of inertia of the right hemisphere. The total I for the entire sphere,
including both hemispheres, is just twice this:

Carrying out the integration, we find

The volume of the sphere is , so in terms of its mass
M its density is

Hence our expression for I becomes

EVALUATE: This is just as in Table 9.2, case (h). Note that the
moment of inertia of a solid sphere of mass M and
radius R is less than the moment of inertia of a solid
cylinder of the same mass and radius, because more of the sphere’s
mass is located close to the axis.

I = 1
2MR2

I = 2
5MR2

I = a
8pR5

15
b a

3M

4pR3
b = 2

5 MR2

r =
M

V
=

3M

4pR3

V = 4pR3>3

I =
8prR5

15

I = 122
pr

2 L
R

0
1R2 - x222 dx

x = Rx = 0

=
pr

2
1R2 - x222 dx

dI = 1
2 r 2 dm = 1

2 1R
2 - x223pr1R2 - x22 dx4

dm = r dV = pr1R2 - x22 dx

Mass element: disk of
radius r and thickness dx
located a distance x from
the center of the sphere

Axis

r
R

x

dx

9.23 Finding the moment of inertia of a sphere about an axis
through its center.

Test Your Understanding of Section 9.6 Two hollow cylinders have the same
inner and outer radii and the same mass, but they have different lengths. One is made of
low-density wood and the other of high-density lead. Which cylinder has the greater
moment of inertia around its axis of symmetry? (i) the wood cylinder; (ii) the lead cylin-
der; (iii) the two moments of inertia are equal. ❙

Comparing with the above expression for I, we see that

EVALUATE: Our result agrees with Table 9.2, case (e). If the cylin-
der is solid, with outer radius and inner radius , its
moment of inertia is

I = 1
2 MR2

R1 = 0R2 = R

I = 1
2 M1R 2

1 + R 2
2 2

in agreement with case (f ). If the cylinder wall is very thin, we
have and the moment of inertia is

in agreement with case (g). We could have predicted this last
result without calculation; in a thin-walled cylinder, all the mass
is at the same distance from the axis, so 
R21dm = MR2.

I = 1r 2 dm =r = R

I = MR2

R1 L R2 = R
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CHAPTER 9 SUMMARY

Relating linear and angular kinematics: The angular
speed of a rigid body is the magnitude of its angular
velocity. The rate of change of is For a
particle in the body a distance r from the rotation axis,
the speed and the components of the acceleration 
are related to and (See Examples 9.4 and 9.5.)a.v

aSv

a = dv>dt.v

v

Moment of inertia and rotational kinetic energy: The
moment of inertia I of a body about a given axis is a
measure of its rotational inertia: The greater the value 
of I, the more difficult it is to change the state of the
body’s rotation. The moment of inertia can be expressed
as a sum over the particles that make up the body,
each of which is at its own perpendicular distance 
from the axis. The rotational kinetic energy of a rigid
body rotating about a fixed axis depends on the angular
speed and the moment of inertia I for that rotation
axis. (See Examples 9.6–9.8.)

v

ri

mi

Calculating the moment of inertia: The parallel-axis
theorem relates the moments of inertia of a rigid body
of mass M about two parallel axes: an axis through the
center of mass (moment of inertia ) and a parallel
axis a distance d from the first axis (moment of inertia

(See Example 9.9.) If the body has a continuous
mass distribution, the moment of inertia can be calcu-
lated by integration. (See Examples 9.10 and 9.11.)

IP).

Icm

(9.13)

(9.14)

(9.15)arad =
v2

r
= v2r

atan =
dv
dt

= r  

dv

dt
= ra

v = rv

(9.16)

(9.17)K = 1
2 Iv2

 =a
i

mi r i
2

I = m1 r 1
2 + m2 r 2

2 + Á

(9.19)IP = Icm + Md2

Rotational kinematics: When a rigid body rotates about 
a stationary axis (usually called the z-axis), its position
is described by an angular coordinate The angular
velocity is the time derivative of and the angular
acceleration is the time derivative of or the second
derivative of (See Examples 9.1 and 9.2.) If the angu-
lar acceleration is constant, then and are related
by simple kinematic equations analogous to those for
straight-line motion with constant linear acceleration.
(See Example 9.3.)

azvz ,u,
u.

vzaz

u,vz

u.

(9.3)

(9.5), (9.6)

(9.11)

(constant only)

(9.10)

(constant only)

(9.7)
(constant only)

(9.12)
(constant only)az

vz
2 = v0z

2   + 2az 1u - u02

az

vz = v0z + az t

az

u - u0 = 1
2 1v0z + vz2t

az

u = u0 + v0z t + 1
2 az t 2

az = lim 
¢t S 0

 
¢vz

¢t
=

dvz

dt
=

d2u

dt 2

vz = lim 
¢t S  0

 
¢u
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=
du

dt
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u2
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O

x
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du
dt az 5

dvz
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aSLinear
acceleration
of point P s
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r
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u
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v
atan 5 ra

arad 5 v2r
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rotation
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1
2K 5 Iv2
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Figure 9.24 shows a slender uniform rod with mass M and length
L. It might be a baton held by a twirler in a marching band (less the
rubber end caps). (a) Use integration to compute its moment of
inertia about an axis through O, at an arbitrary distance h from one
end. (b) Initially the rod is at rest. It is given a constant angular
acceleration of magnitude α around the axis through O. Find how
much work is done on the rod in a time t. (c) At time t, what is the
linear acceleration of the point on the rod farthest from the axis?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. Make a list of the target variables for this problem.
2. To calculate the moment of inertia of the rod, you’ll have to

divide the rod into infinitesimal elements of mass. If an element
has length dx, what is the mass of the element? What are the
limits of integration?

3. What is the angular speed of the rod at time t? How does the
work required to accelerate the rod from rest to this angular
speed compare to the rod’s kinetic energy at time t?

4. At time t, does the point on the rod farthest from the axis have 
a centripetal acceleration? A tangential acceleration? Why or
why not?

BRIDGING PROBLEM A Rotating, Uniform Thin Rod

EXECUTE
5. Do the integration required to find the moment of inertia.
6. Use your result from step 5 to calculate the work done in time t

to accelerate the rod from rest.
7. Find the linear acceleration components for the point in question

at time t. Use these to find the magnitude of the acceleration.

EVALUATE
8. Check your results for the special cases h � 0 (the axis passes

through one end of the rod) and (the axis passes
through the middle of the rod). Are these limits consistent with
Table 9.2? With the parallel-axis theorem?

9. Is the acceleration magnitude from step 7 constant? Would you
expect it to be?

h = L>2

9.24 A thin rod with an axis through O.

Mass element: rod
segment of length dx

xx
M

O

h
L � h
L

Axis

dx

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q9.1 Which of the following formulas is valid if the angular accel-
eration of an object is not constant? Explain your reasoning in each
case. (a) (b) (c) (d) 
(e)
Q9.2 A diatomic molecule can be modeled as two point masses,

and slightly separated (Fig. Q9.2). If the molecule is ori-
ented along the y-axis, it has kinetic energy K when it spins
about the x-axis. What will its kinetic energy (in terms of K) be
if it spins at the same angular speed about (a) the z-axis and 
(b) the y-axis?

m2,m1

K = 1
2Iv2.

atan = rv2;v = v0 + at;atan = ra;v = rv;

Q9.3 What is the difference between tangential and radial acceler-
ation for a point on a rotating body?
Q9.4 In Fig. Q9.4, all points on the chain have the same linear
speed. Is the magnitude of the linear acceleration also the same for
all points on the chain? How are the angular accelerations of the
two sprockets related? Explain.

Q9.5 In Fig. Q9.4, how are the radial accelerations of points at the
teeth of the two sprockets related? Explain the reasoning behind
your answer.

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems. 

m1

m2

z

x

y

O

Figure Q9.2

Rear
sprocket

Front sprocket

v

v

vrear

vfront

rrear

rfront

Figure Q9.4

www.masteringphysics.com


Q9.18 An elaborate pulley consists
of four identical balls at the ends of
spokes extending out from a rotating
drum (Fig. Q9.18). A box is con-
nected to a light thin rope wound
around the rim of the drum. When it
is released from rest, the box acquires
a speed V after having fallen a
distance d. Now the four balls are
moved inward closer to the drum,
and the box is again released from
rest. After it has fallen a distance d,
will its speed be equal to V, greater
than V, or less than V? Show or
explain why.
Q9.19 You can use any angular measure—radians, degrees, or rev-
olutions—in some of the equations in Chapter 9, but you can use
only radian measure in others. Identify those for which using radi-
ans is necessary and those for which it is not, and in each case give
the reasoning behind your answer.
Q9.20 When calculating the moment of inertia of an object, can
we treat all its mass as if it were concentrated at the center of mass
of the object? Justify your answer.
Q9.21 A wheel is rotating about an axis perpendicular to the plane
of the wheel and passing through the center of the wheel. The
angular speed of the wheel is increasing at a constant rate. Point A
is on the rim of the wheel and point B is midway between the rim and
center of the wheel. For each of the following quantities, is its magni-
tude larger at point A or at point B, or is it the same at both points?
(a) angular speed; (b) tangential speed; (c) angular acceleration;
(d) tangential acceleration; (e) radial acceleration. Justify each of
your answers.
Q9.22 Estimate your own moment of inertia about a vertical axis
through the center of the top of your head when you are standing
up straight with your arms outstretched. Make reasonable approxi-
mations and measure or estimate necessary quantities.

EXERCISES
Section 9.1 Angular Velocity and Acceleration
9.1 . (a) What angle in radians is subtended by an arc 1.50 m long
on the circumference of a circle of radius 2.50 m? What is this
angle in degrees? (b) An arc 14.0 cm long on the circumference of
a circle subtends an angle of What is the radius of the circle?
(c) The angle between two radii of a circle with radius 1.50 m is
0.700 rad. What length of arc is intercepted on the circumference
of the circle by the two radii?
9.2 . An airplane propeller is rotating at 1900 rpm 
(a) Compute the propeller’s angular velocity in (b) How
many seconds does it take for the propeller to turn through 
9.3 . CP CALC The angular velocity of a flywheel obeys the equa-
tion where t is in seconds and A and B are con-
stants having numerical values 2.75 (for A) and 1.50 (for B). (a) What
are the units of A and B if is in (b) What is the angular
acceleration of the wheel at (i) and (ii) 
(c) Through what angle does the flywheel turn during the first 2.00 s?
(Hint: See Section 2.6.)
9.4 .. CALC A fan blade rotates with angular velocity given by

where and 
(a) Calculate the angular acceleration as a function of time. 
(b) Calculate the instantaneous angular acceleration at t = 3.00 saz

b = 0.800 rad>s3.g = 5.00 rad>svz1t2 = g - bt 2,

t = 5.00 s?t = 0.00
rad>s?vz

vz1t2 = A + Bt 2,

35°?
rad>s.
1rev>min2.

128°.
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Q9.6 A flywheel rotates with constant angular velocity. Does a
point on its rim have a tangential acceleration? A radial accelera-
tion? Are these accelerations constant in magnitude? In direction?
In each case give the reasoning behind your answer.
Q9.7 What is the purpose of the spin cycle of a washing machine?
Explain in terms of acceleration components.
Q9.8 Although angular velocity and angular acceleration can be
treated as vectors, the angular displacement despite having a
magnitude and a direction, cannot. This is because does not fol-
low the commutative law of vector addition (Eq. 1.3). Prove this to
yourself in the following way: Lay your physics textbook flat on the
desk in front of you with the cover side up so you can read the writ-
ing on it. Rotate it through 90° about a horizontal axis so that the far-
thest edge comes toward you. Call this angular displacement 
Then rotate it by about a vertical axis so that the left edge
comes toward you. Call this angular displacement The spine of
the book should now face you, with the writing on it oriented so
that you can read it. Now start over again but carry out the two
rotations in the reverse order. Do you get a different result? That is,
does equal Now repeat this experiment but this
time with an angle of rather than Do you think that the
infinitesimal displacement obeys the commutative law of addi-
tion and hence qualifies as a vector? If so, how is the direction of

related to the direction of ?
Q9.9 Can you think of a body that has the same moment of iner-
tia for all possible axes? If so, give an example, and if not,
explain why this is not possible. Can you think of a body that has
the same moment of inertia for all axes passing through a certain
point? If so, give an example and indicate where the point is
located.
Q9.10 To maximize the moment of inertia of a flywheel while
minimizing its weight, what shape and distribution of mass should
it have? Explain.
Q9.11 How might you determine experimentally the moment of
inertia of an irregularly shaped body about a given axis?
Q9.12 A cylindrical body has mass M and radius R. Can the mass
be distributed within the body in such a way that its moment of
inertia about its axis of symmetry is greater than Explain.
Q9.13 Describe how you could use part (b) of Table 9.2 to derive
the result in part (d).
Q9.14 A hollow spherical shell of radius R that is rotating about an
axis through its center has rotational kinetic energy K. If you want
to modify this sphere so that it has three times as much kinetic
energy at the same angular speed while keeping the same mass,
what should be its radius in terms of R?
Q9.15 For the equations for I given in parts (a) and (b) of Table 9.2
to be valid, must the rod have a circular cross section? Is there any
restriction on the size of the cross section for these equations to
apply? Explain.
Q9.16 In part (d) of Table 9.2, the thickness of the plate must be
much less than a for the expression given for I to apply. But in part
(c), the expression given for I applies no matter how thick the plate
is. Explain.
Q9.17 Two identical balls, A and B, are each attached to very
light string, and each string is wrapped around the rim of a fric-
tionless pulley of mass M. The only difference is that the pulley
for ball A is a solid disk, while the one for ball B is a hollow
disk, like part (e) in Table 9.2. If both balls are released from
rest and fall the same distance, which one will have more kinetic
energy, or will they have the same kinetic energy? Explain your
reasoning.
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and the average angular acceleration for the time interval
to How do these two quantities compare? If they

are different, why are they different?
9.5 .. CALC A child is pushing a merry-go-round. The angle
through which the merry-go-round has turned varies with time
according to where and 

(a) Calculate the angular velocity of the merry-go-
round as a function of time. (b) What is the initial value of the
angular velocity? (c) Calculate the instantaneous value of the
angular velocity at and the average angular velocity

for the time interval to Show that is
not equal to the average of the instantaneous angular velocities at

and and explain why it is not.
9.6 . CALC At the current to a dc electric motor is reversed,
resulting in an angular displacement of the motor shaft given by

(a) At
what time is the angular velocity of the motor shaft zero? 
(b) Calculate the angular acceleration at the instant that the motor
shaft has zero angular velocity. (c) How many revolutions does the
motor shaft turn through between the time when the current is
reversed and the instant when the angular velocity is zero? (d) How
fast was the motor shaft rotating at when the current was
reversed? (e) Calculate the average angular velocity for the time
period from to the time calculated in part (a).
9.7 . CALC The angle through which a disk drive turns is given
by where a, b, and c are constants, t is in
seconds, and is in radians. When and the
angular velocity is and when the angular
acceleration is (a) Find a, b, and c, including their units.
(b) What is the angular acceleration when (c) What
are and the angular velocity when the angular acceleration is

9.8 . A wheel is rotating about an axis that is in the z-direction.
The angular velocity is at increases lin-
early with time, and is at We have taken
counterclockwise rotation to be positive. (a) Is the angular
acceleration during this time interval positive or negative? 
(b) During what time interval is the speed of the wheel increasing?
Decreasing? (c) What is the angular displacement of the wheel at

Section 9.2 Rotation with Constant 
Angular Acceleration
9.9 . A bicycle wheel has an initial angular velocity of 
(a) If its angular acceleration is constant and equal to 
what is its angular velocity at (b) Through what angle
has the wheel turned between and 
9.10 .. An electric fan is turned off, and its angular velocity
decreases uniformly from to in 4.00 s.
(a) Find the angular acceleration in and the number of revo-
lutions made by the motor in the 4.00-s interval. (b) How many
more seconds are required for the fan to come to rest if the angular
acceleration remains constant at the value calculated in part (a)?
9.11 .. The rotating blade of a blender turns with constant angular
acceleration (a) How much time does it take to reach
an angular velocity of starting from rest? (b) Through
how many revolutions does the blade turn in this time interval?
9.12 . (a) Derive Eq. (9.12) by combining Eqs. (9.7) and (9.11) to
eliminate t. (b) The angular velocity of an airplane propeller increases
from to while turning through 7.00 rad.
What is the angular acceleration in rad>s2?

16.0 rad>s12.0 rad>s

36.0 rad>s,
1.50 rad>s2.

rev>s2
200 rev>min500 rev>min

t = 2.50 s?t = 0
t = 2.50 s?

0.300 rad>s2,
1.50 rad>s.

t = 7.00 s?

t = 7.00 s.+8.00 rad>s
t = 0,-6.00 rad>svz

3.50 rad>s2?
u

u = p>4 rad?
1.25 rad>s2.

t = 1.50 s,2.00 rad>s,
u = p>4 radt = 0,u

u1t2 = a + bt - ct 3,
u

t = 0

t = 0,

u1t2 = 1250 rad>s2t - 120.0 rad>s22t 2 - 11.50 rad>s32t 3.

t = 0
t = 5.00 s,t = 0

vav-zt = 5.00 s.t = 0vav-z

t = 5.00 svz

0.0120 rad>s3.
b =g = 0.400 rad>su1t2 = gt + bt 3,

t = 3.00 s.t = 0
aav-z 9.13 .. A turntable rotates with a constant angular

acceleration. After 4.00 s it has rotated through an angle of 60.0 rad.
What was the angular velocity of the wheel at the beginning of the
4.00-s interval?
9.14 . A circular saw blade 0.200 m in diameter starts from rest.
In 6.00 s it accelerates with constant angular acceleration to an
angular velocity of Find the angular acceleration and
the angle through which the blade has turned.
9.15 .. A high-speed flywheel in a motor is spinning at 500 rpm
when a power failure suddenly occurs. The flywheel has mass 40.0 kg
and diameter 75.0 cm. The power is off for 30.0 s, and during this
time the flywheel slows due to friction in its axle bearings. During
the time the power is off, the flywheel makes 200 complete revolu-
tions. (a) At what rate is the flywheel spinning when the power
comes back on? (b) How long after the beginning of the power
failure would it have taken the flywheel to stop if the power had
not come back on, and how many revolutions would the wheel
have made during this time?
9.16 .. At a grinding wheel has an angular velocity of

It has a constant angular acceleration of 
until a circuit breaker trips at From then on, it turns
through 432 rad as it coasts to a stop at constant angular accelera-
tion. (a) Through what total angle did the wheel turn between 
and the time it stopped? (b) At what time did it stop? (c) What was
its acceleration as it slowed down?
9.17 .. A safety device brings the blade of a power mower from
an initial angular speed of to rest in 1.00 revolution. At the
same constant acceleration, how many revolutions would it take
the blade to come to rest from an initial angular speed that was
three times as great, 

Section 9.3 Relating Linear and Angular Kinematics
9.18 . In a charming 19th-
century hotel, an old-style
elevator is connected to a coun-
terweight by a cable that passes
over a rotating disk 2.50 m in
diameter (Fig. E9.18). The ele-
vator is raised and lowered by
turning the disk, and the cable
does not slip on the rim of the
disk but turns with it. (a) At how
many rpm must the disk turn to
raise the elevator at 
(b) To start the elevator moving,
it must be accelerated at 
What must be the angular accel-
eration of the disk, in 
(c) Through what angle (in radians and degrees) has the disk
turned when it has raised the elevator 3.25 m between floors?
9.19 . Using astronomical data from Appendix F, along with the fact
that the earth spins on its axis once per day, calculate (a) the earth’s
orbital angular speed (in due to its motion around the sun,
(b) its angular speed (in due to its axial spin, (c) the tangen-
tial speed of the earth around the sun (assuming a circular orbit),
(d) the tangential speed of a point on the earth’s equator due to the
planet’s axial spin, and (e) the radial and tangential acceleration
components of the point in part (d).
9.20 . Compact Disc. A compact disc (CD) stores music in a
coded pattern of tiny pits deep. The pits are arranged in a
track that spirals outward toward the rim of the disc; the inner and

10-7 m

rad>s)
rad>s)

rad>s2?

1
8g.

25.0 cm>s?

v3 = 3v1?
v3

v1

t = 0

t = 2.00 s.
30.0 rad>s224.0 rad>s.

t = 0

140 rad>s.

2.25 rad>s2

Disk

Elevator
Counterweight

Figure E9.18



9.29 . The spin cycles of a washing machine have two angular
speeds, and The internal diameter of
the drum is 0.470 m. (a) What is the ratio of the maximum radial
force on the laundry for the higher angular speed to that for the
lower speed? (b) What is the ratio of the maximum tangential
speed of the laundry for the higher angular speed to that for the
lower speed? (c) Find the laundry’s maximum tangential speed and
the maximum radial acceleration, in terms of g.

Section 9.4 Energy in Rotational Motion
9.30 . Four small spheres, each
of which you can regard as a
point of mass 0.200 kg, are
arranged in a square 0.400 m on a
side and connected by extremely
light rods (Fig. E9.30). Find the
moment of inertia of the system
about an axis (a) through the cen-
ter of the square, perpendicular to
its plane (an axis through point O in the figure); (b) bisecting two
opposite sides of the square (an axis along the line AB in the figure);
(c) that passes through the centers of the upper left and lower right
spheres and through point O.
9.31 . Calculate the moment of inertia of each of the following
uniform objects about the axes indicated. Consult Table 9.2 as
needed. (a) A thin 2.50-kg rod of length 75.0 cm, about an axis per-
pendicular to it and passing through (i) one end and (ii) its center,
and (iii) about an axis parallel to the rod and passing through it. 
(b) A 3.00-kg sphere 38.0 cm in diameter, about an axis through its
center, if the sphere is (i) solid and (ii) a thin-walled hollow shell.
(c) An 8.00-kg cylinder, of length 19.5 cm and diameter 12.0 cm,
about the central axis of the cylinder, if the cylinder is (i) thin-walled
and hollow, and (ii) solid.
9.32 .. Small blocks, each with mass m, are clamped at the ends
and at the center of a rod of length L and negligible mass. Compute
the moment of inertia of the system about an axis perpendicular to
the rod and passing through (a) the center of the rod and (b) a point
one-fourth of the length from one end.
9.33 . A uniform bar has two small balls glued to its ends. The
bar is 2.00 m long and has mass 4.00 kg, while the balls each have
mass 0.500 kg and can be treated as point masses. Find the
moment of inertia of this combination about each of the following
axes: (a) an axis perpendicular to the bar through its center; (b) an
axis perpendicular to the bar through one of the balls; (c) an axis
parallel to the bar through both balls; (d) an axis parallel to the bar
and 0.500 m from it.
9.34 . A uniform disk of radius
R is cut in half so that the
remaining half has mass M (Fig.
E9.34a). (a) What is the moment
of inertia of this half about an
axis perpendicular to its plane
through point A? (b) Why did
your answer in part (a) come out
the same as if this were a com-
plete disk of mass M? (c) What
would be the moment of inertia
of a quarter disk of mass M and
radius R about an axis perpen-
dicular to its plane passing
through point B (Fig. E9.34b)?

640 rev>min.423 rev>min
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outer radii of this spiral are 25.0 mm and 58.0 mm, respectively.
As the disc spins inside a CD player, the track is scanned at a con-
stant linear speed of (a) What is the angular speed of
the CD when the innermost part of the track is scanned? The out-
ermost part of the track? (b) The maximum playing time of a CD
is 74.0 min. What would be the length of the track on such a
maximum-duration CD if it were stretched out in a straight line?
(c) What is the average angular acceleration of a maximum-
duration CD during its 74.0-min playing time? Take the direction
of rotation of the disc to be positive.
9.21 .. A wheel of diameter 40.0 cm starts from rest and rotates
with a constant angular acceleration of At the
instant the wheel has computed its second revolution, compute
the radial acceleration of a point on the rim in two ways: (a)
using the relationship and (b) from the relationship

9.22 .. You are to design a rotating cylindrical axle to lift 800-N
buckets of cement from the ground to a rooftop 78.0 m above
the ground. The buckets will be attached to a hook on the free end
of a cable that wraps around the rim of the axle; as the axle turns,
the buckets will rise. (a) What should the diameter of the axle be in
order to raise the buckets at a steady when it is turning
at 7.5 rpm? (b) If instead the axle must give the buckets an upward
acceleration of what should the angular acceleration
of the axle be?
9.23 . A flywheel with a radius of 0.300 m starts from rest and
accelerates with a constant angular acceleration of 
Compute the magnitude of the tangential acceleration, the radial
acceleration, and the resultant acceleration of a point on its rim 
(a) at the start; (b) after it has turned through (c) after it has
turned through 
9.24 .. An electric turntable 0.750 m in diameter is rotating about
a fixed axis with an initial angular velocity of and a
constant angular acceleration of (a) Compute the
angular velocity of the turntable after 0.200 s. (b) Through how
many revolutions has the turntable spun in this time interval? 
(c) What is the tangential speed of a point on the rim of the
turntable at (d) What is the magnitude of the resultant
acceleration of a point on the rim at 
9.25 .. Centrifuge. An advertisement claims that a centrifuge
takes up only 0.127 m of bench space but can produce a radial accel-
eration of 3000g at Calculate the required radius of
the centrifuge. Is the claim realistic?
9.26 . (a) Derive an equation for the radial acceleration that
includes and but not r. (b) You are designing a merry-go-round
for which a point on the rim will have a radial acceleration of

when the tangential velocity of that point has magnitude
What angular velocity is required to achieve these values?

9.27 . Electric Drill. According to the shop manual, when
drilling a 12.7-mm-diameter hole in wood, plastic, or aluminum, 
a drill should have a speed of For a 12.7-mm-
diameter drill bit turning at a constant find (a) the
maximum linear speed of any part of the bit and (b) the maximum
radial acceleration of any part of the bit.
9.28 . At a point on the rim of a 0.200-m-radius wheel
has a tangential speed of as the wheel slows down with 
a tangential acceleration of constant magnitude 
(a) Calculate the wheel’s constant angular acceleration. (b) Calcu-
late the angular velocities at and (c) Through
what angle did the wheel turn between and 
(d) At what time will the radial acceleration equal g?

t = 3.00 s?t = 0
t = 0.t = 3.00 s

10.0 m>s2.
50.0 m>s

t = 3.00 s

1250 rev>min,
1250 rev>min.

2.00 m>s.
0.500 m>s2

v,v

5000 rev>min.

t = 0.200 s?
t = 0.200 s?

0.900 rev>s2.
0.250 rev>s

120.0°.
60.0°;

0.600 rad>s2.

0.400 m>s2,

2.00 cm>s

arad = v2>r.
arad = v2r

3.00 rad>s2.

1.25 m>s.

0.400 m

B
O

0.200 kg

A

Figure E9.30
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B

R

M

R

M
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(b)
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9.35 .. A wagon wheel is con-
structed as shown in Fig. E9.35. The
radius of the wheel is 0.300 m, and
the rim has mass 1.40 kg. Each of the
eight spokes that lie along a diame-
ter and are 0.300 m long has mass
0.280 kg. What is the moment of
inertia of the wheel about an axis
through its center and perpendicular
to the plane of the wheel? (Use the
formulas given in Table 9.2.)
9.36 .. An airplane propeller is
2.08 m in length (from tip to tip) with mass 117 kg and is rotating 
at 2400 rpm about an axis through its center. You can
model the propeller as a slender rod. (a) What is its rotational kinetic
energy? (b) Suppose that, due to weight constraints, you had to
reduce the propeller’s mass to 75.0% of its original mass, but you
still needed to keep the same size and kinetic energy. What would
its angular speed have to be, in rpm?
9.37 .. A compound disk of outside diameter 140.0 cm is made
up of a uniform solid disk of radius 50.0 cm and area density

surrounded by a concentric ring of inner radius 50.0 cm,
outer radius 70.0 cm, and area density Find the
moment of inertia of this object about an axis perpendicular to the
plane of the object and passing through its center.
9.38 . A wheel is turning about an axis through its center with
constant angular acceleration. Starting from rest, at , the
wheel turns through 8.20 revolutions in 12.0 s. At the
kinetic energy of the wheel is 36.0 J. For an axis through its center,
what is the moment of inertia of the wheel?
9.39 . A uniform sphere with mass 28.0 kg and radius 0.380 m is
rotating at constant angular velocity about a stationary axis that
lies along a diameter of the sphere. If the kinetic energy of the
sphere is 176 J, what is the tangential velocity of a point on the rim
of the sphere?
9.40 .. A hollow spherical shell has mass 8.20 kg and radius
0.220 m. It is initially at rest and then rotates about a stationary
axis that lies along a diameter with a constant acceleration of

. What is the kinetic energy of the shell after it has
turned through 6.00 rev?
9.41 . Energy from the Moon? Suppose that some time in the
future we decide to tap the moon’s rotational energy for use on
earth. In additional to the astronomical data in Appendix F, you may
need to know that the moon spins on its axis once every 27.3 days.
Assume that the moon is uniform throughout. (a) How much total
energy could we get from the moon’s rotation? (b) The world
presently uses about of energy per year. If in the
future the world uses five times as much energy yearly, for how
many years would the moon’s rotation provide us energy? In light
of your answer, does this seem like a cost-effective energy source
in which to invest?
9.42 .. You need to design an industrial turntable that is 60.0 cm
in diameter and has a kinetic energy of 0.250 J when turning at
45.0 rpm (a) What must be the moment of inertia of the
turntable about the rotation axis? (b) If your workshop makes this
turntable in the shape of a uniform solid disk, what must be its
mass?
9.43 .. The flywheel of a gasoline engine is required to give up
500 J of kinetic energy while its angular velocity decreases from

to What moment of inertia is required?
9.44 . A light, flexible rope is wrapped several times around a
hollow cylinder, with a weight of 40.0 N and a radius of 0.25 m,

520 rev>min.650 rev>min

1rev>min2.

4.0 * 1020 J

0.890 rad>s2

t = 12.0 s
t = 0

2.00 g>cm2.
3.00 g>cm2

1rev>min2

that rotates without friction about a fixed horizontal axis. The
cylinder is attached to the axle by spokes of a negligible moment
of inertia. The cylinder is initially at rest. The free end of the rope
is pulled with a constant force P for a distance of 5.00 m, at which
point the end of the rope is moving at If the rope does
not slip on the cylinder, what is the value of P?
9.45 .. Energy is to be stored in a 70.0-kg flywheel in the shape
of a uniform solid disk with radius To prevent struc-
tural failure of the flywheel, the maximum allowed radial accelera-
tion of a point on its rim is What is the maximum
kinetic energy that can be stored in the flywheel?
9.46 .. Suppose the solid cylinder in the apparatus described in
Example 9.8 (Section 9.4) is replaced by a thin-walled, hollow
cylinder with the same mass M and radius R. The cylinder is
attached to the axle by spokes of a negligible moment of inertia.
(a) Find the speed of the hanging mass m just as it strikes the floor.
(b) Use energy concepts to explain why the answer to part (a) is
different from the speed found in Example 9.8.
9.47 .. A frictionless pulley
has the shape of a uniform solid
disk of mass 2.50 kg and radius
20.0 cm. A 1.50-kg stone is
attached to a very light wire that
is wrapped around the rim of the
pulley (Fig. E9.47), and the sys-
tem is released from rest. (a) How
far must the stone fall so that the
pulley has 4.50 J of kinetic
energy? (b) What percent of the
total kinetic energy does the pul-
ley have?
9.48 .. A bucket of mass m is
tied to a massless cable that is wrapped around the outer rim of a
frictionless uniform pulley of radius R, similar to the system
shown in Fig. E9.47. In terms of the stated variables, what must be
the moment of inertia of the pulley so that it always has half as
much kinetic energy as the bucket?
9.49 .. CP A thin, light wire
is wrapped around the rim of a
wheel, as shown in Fig. E9.49.
The wheel rotates without fric-
tion about a stationary horizon-
tal axis that passes through the
center of the wheel. The wheel
is a uniform disk with radius

. An object of
mass is sus-
pended from the free end of
the wire. The system is released from rest and the suspended
object descends with constant acceleration. If the suspended
object moves downward a distance of 3.00 m in 2.00 s, what is
the mass of the wheel?
9.50 .. A uniform 2.00-m ladder of mass 9.00 kg is leaning
against a vertical wall while making an angle of 53.0° with the
floor. A worker pushes the ladder up against the wall until it is ver-
tical. What is the increase in the gravitational potential energy of
the ladder?
9.51 .. How I Scales. If we multiply all the design dimen-
sions of an object by a scaling factor its volume and mass will
be multiplied by (a) By what factor will its moment of inertia
be multiplied? (b) If a model has a rotational kinetic
energy of 2.5 J, what will be the kinetic energy for the full-scale

1
48-scale

ƒ3.
ƒ,

m = 4.20 kg
R = 0.280 m

3500 m>s2.

R = 1.20 m.

6.00 m>s.

2.50-kg
pulley

1.50-kg
stone

Figure E9.47

Figure E9.49

0.600 m

Figure E9.35
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9.63 .. CP A circular saw blade with radius 0.120 m starts from
rest and turns in a vertical plane with a constant angular accelera-
tion of . After the blade has turned through 155 rev, a
small piece of the blade breaks loose from the top of the blade.
After the piece breaks loose, it travels with a velocity that is ini-
tially horizontal and equal to the tangential velocity of the rim of
the blade. The piece travels a vertical distance of 0.820 m to the
floor. How far does the piece travel horizontally, from where it
broke off the blade until it strikes the floor?
9.64 . CALC A roller in a printing press turns through an angle

given by where and
(a) Calculate the angular velocity of the roller

as a function of time. (b) Calculate the angular acceleration of the
roller as a function of time. (c) What is the maximum positive
angular velocity, and at what value of t does it occur?
9.65 .. CP CALC A disk of radius 25.0 cm is free to turn about an
axle perpendicular to it through its center. It has very thin but
strong string wrapped around its rim, and the string is attached to
a ball that is pulled tangentially away from the rim of the disk
(Fig. P9.65). The pull increases in magnitude and produces an
acceleration of the ball that obeys the equation where t
is in seconds and A is a constant. The cylinder starts from rest, and
at the end of the third second, the ball’s acceleration is 
(a) Find A. (b) Express the angular acceleration of the disk as a
function of time. (c) How much time after the disk has begun to
turn does it reach an angular speed of (d) Through
what angle has the disk turned just as it reaches (Hint:
See Section 2.6.)

9.66 .. When a toy car is rapidly scooted across the floor, it stores
energy in a flywheel. The car has mass 0.180 kg, and its flywheel
has moment of inertia The car is 15.0 cm
long. An advertisement claims that the car can travel at a scale
speed of up to . The scale speed is the speed
of the toy car multiplied by the ratio of the length of an actual car
to the length of the toy. Assume a length of 3.0 m for a real car. 
(a) For a scale speed of what is the actual translational
speed of the car? (b) If all the kinetic energy that is initially in the
flywheel is converted to the translational kinetic energy of the toy,
how much energy is originally stored in the flywheel? (c) What ini-
tial angular velocity of the flywheel was needed to store the
amount of energy calculated in part (b)?
9.67 . A classic 1957 Chevrolet Corvette of mass 1240 kg starts
from rest and speeds up with a constant tangential acceleration of

on a circular test track of radius 60.0 m. Treat the car as
a particle. (a) What is its angular acceleration? (b) What is its
angular speed 6.00 s after it starts? (c) What is its radial accelera-
tion at this time? (d) Sketch a view from above showing the circular
track, the car, the velocity vector, and the acceleration component
vectors 6.00 s after the car starts. (e) What are the magnitudes of
the total acceleration and net force for the car at this time? (f) What

2.00 m>s2

700 km>h,

1440 mi>h2700 km>h

4.00 * 10-5 kg # m2.

15.0 rad>s?
15.0 rad>s?

1.80 m>s2.

a1t2 = At,

b = 0.500 rad>s3.
g = 3.20 rad>s2u1t2 = gt 2 - bt 3,u1t2

3.00 rev>s2

object of the same material rotating at the same angular
velocity?
9.52 .. A uniform 3.00-kg rope 24.0 m long lies on the ground at
the top of a vertical cliff. A mountain climber at the top lets down
half of it to help his partner climb up the cliff. What was the
change in potential energy of the rope during this maneuver?

Section 9.5 Parallel-Axis Theorem
9.53 .. About what axis will a uniform, balsa-wood sphere have
the same moment of inertia as does a thin-walled, hollow, lead
sphere of the same mass and radius, with the axis along a diameter?
9.54 .. Find the moment of inertia of a hoop (a thin-walled, hol-
low ring) with mass M and radius R about an axis perpendicular to
the hoop’s plane at an edge.
9.55 .. A thin, rectangular sheet of metal has mass M and sides 
of length a and b. Use the parallel-axis theorem to calculate the
moment of inertia of the sheet for an axis that is perpendicular to the
plane of the sheet and that passes through one corner of the sheet.
9.56 . (a) For the thin rectangular plate shown in part (d) of Table
9.2, find the moment of inertia about an axis that lies in the plane
of the plate, passes through the center of the plate, and is parallel to
the axis shown in the figure. (b) Find the moment of inertia of the
plate for an axis that lies in the plane of the plate, passes through
the center of the plate, and is perpendicular to the axis in part (a).
9.57 .. A thin uniform rod of mass M and length L is bent at its
center so that the two segments are now perpendicular to each
other. Find its moment of inertia about an axis perpendicular to its
plane and passing through (a) the point where the two segments
meet and (b) the midpoint of the line connecting its two ends.

Section 9.6 Moment-of-Inertia Calculations
9.58 . CALC Use Eq. (9.20) to calculate the moment of inertia of
a slender, uniform rod with mass M and length L about an axis at
one end, perpendicular to the rod.
9.59 .. CALC Use Eq. (9.20) to calculate the moment of inertia of
a uniform, solid disk with mass M and radius R for an axis perpen-
dicular to the plane of the disk and passing through its center.
9.60 .. CALC A slender rod with length L has a mass per unit
length that varies with distance from the left end, where 
according to where has units of (a) Calcu-
late the total mass of the rod in terms of and L. (b) Use Eq. (9.20)
to calculate the moment of inertia of the rod for an axis at the left
end, perpendicular to the rod. Use the expression you derived in
part (a) to express I in terms of M and L. How does your result
compare to that for a uniform rod? Explain this comparison. 
(c) Repeat part (b) for an axis at the right end of the rod. How do
the results for parts (b) and (c) compare? Explain this result.

PROBLEMS
9.61 . CP CALC A flywheel has angular acceleration 

, where counterclockwise rotation is
positive. (a) If the flywheel is at rest at , what is its angular
velocity at 5.00 s? (b) Through what angle (in radians) does the
flywheel turn in the time interval from to ?
9.62 .. CALC A uniform disk with radius and mass
30.0 kg rotates in a horizontal plane on a frictionless vertical 
axle that passes through the center of the disk. The angle through
which the disk has turned varies with time according to 

. What is the resultant linear
acceleration of a point on the rim of the disk at the instant when the
disk has turned through 0.100 rev?

11.10 rad>s2t + 18.60 rad>s22t 2
u1t2 =

R = 0.400 m
t = 5.00 st = 0

t = 0
8.60 rad>s2 - 12.30 rad>s32t

az1t2 =

g

kg>m2.gdm>dx = gx,
x = 0,

Ball

Disk

Pull

Figure P9.65
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angle do the total acceleration and net force make with the car’s
velocity at this time?
9.68 .. Engineers are designing a
system by which a falling mass m
imparts kinetic energy to a rotat-
ing uniform drum to which it is
attached by thin, very light wire
wrapped around the rim of the
drum (Fig. P9.68). There is no
appreciable friction in the axle of
the drum, and everything starts
from rest. This system is being
tested on earth, but it is to be used
on Mars, where the acceleration
due to gravity is In the
earth tests, when m is set to 15.0 kg
and allowed to fall through 5.00 m, it gives 250.0 J of kinetic
energy to the drum. (a) If the system is operated on Mars, through
what distance would the 15.0-kg mass have to fall to give the same
amount of kinetic energy to the drum? (b) How fast would the
15.0-kg mass be moving on Mars just as the drum gained 250.0 J
of kinetic energy?
9.69 . A vacuum cleaner belt is looped over a shaft of radius 
0.45 cm and a wheel of radius 1.80 cm. The arrangement of the
belt, shaft, and wheel is similar to that of the chain and sprockets in
Fig. Q9.4. The motor turns the shaft at and the moving
belt turns the wheel, which in turn is connected by another shaft to
the roller that beats the dirt out of the rug being vacuumed. Assume
that the belt doesn’t slip on either the shaft or the wheel. (a) What
is the speed of a point on the belt? (b) What is the angular velocity
of the wheel, in 
9.70 .. The motor of a table saw is rotating at A
pulley attached to the motor shaft drives a second pulley of half the
diameter by means of a V-belt. A circular saw blade of diameter
0.208 m is mounted on the same rotating shaft as the second pulley.
(a) The operator is careless and the blade catches and throws back a
small piece of wood. This piece of wood moves with linear speed
equal to the tangential speed of the rim of the blade. What is this
speed? (b) Calculate the radial acceleration of points on the outer
edge of the blade to see why sawdust doesn’t stick to its teeth.
9.71 ... While riding a multispeed bicycle, the rider can select the
radius of the rear sprocket that is fixed to the rear axle. The front
sprocket of a bicycle has radius 12.0 cm. If the angular speed of
the front sprocket is what is the radius of the rear
sprocket for which the tangential speed of a point on the rim of the
rear wheel will be The rear wheel has radius 0.330 m.
9.72 ... A computer disk drive is turned on starting from rest and
has constant angular acceleration. If it took 0.750 s for the drive to
make its second complete revolution, (a) how long did it take to
make the first complete revolution, and (b) what is its angular
acceleration, in 
9.73 . A wheel changes its angular velocity with a constant angu-
lar acceleration while rotating about a fixed axis through its center.
(a) Show that the change in the magnitude of the radial accelera-
tion during any time interval of a point on the wheel is twice the
product of the angular acceleration, the angular displacement, and
the perpendicular distance of the point from the axis. (b) The radial
acceleration of a point on the wheel that is 0.250 m from the axis
changes from to as the wheel rotates through
20.0 rad. Calculate the tangential acceleration of this point. (c) Show
that the change in the wheel’s kinetic energy during any time inter-
val is the product of the moment of inertia about the axis, the angular

85.0 m>s225.0 m>s2

rad>s2?

5.00 m>s?

0.600 rev>s,

3450 rev>min.
rad>s?

60.0 rev>s

3.71 m>s2.

acceleration, and the angular displacement. (d) During the 20.0-rad
angular displacement of part (b), the kinetic energy of the wheel
increases from 20.0 J to 45.0 J. What is the moment of inertia of
the wheel about the rotation axis?
9.74 .. A sphere consists of a solid wooden ball of uniform den-
sity and radius 0.30 m and is covered with a thin coat-
ing of lead foil with area density Calculate the moment
of inertia of this sphere about an axis passing through its center.
9.75 ... It has been argued that power plants should make use of
off-peak hours (such as late at night) to generate mechanical
energy and store it until it is needed during peak load times, such
as the middle of the day. One suggestion has been to store the
energy in large flywheels spinning on nearly frictionless ball bear-
ings. Consider a flywheel made of iron (density in
the shape of a 10.0-cm-thick uniform disk. (a) What would the
diameter of such a disk need to be if it is to store 10.0 megajoules
of kinetic energy when spinning at 90.0 rpm about an axis perpen-
dicular to the disk at its center? (b) What would be the centripetal
acceleration of a point on its rim when spinning at this rate?
9.76 .. While redesigning a rocket engine, you want to reduce its
weight by replacing a solid spherical part with a hollow spherical
shell of the same size. The parts rotate about an axis through their
center. You need to make sure that the new part always has the
same rotational kinetic energy as the original part had at any given
rate of rotation. If the original part had mass M, what must be the
mass of the new part?
9.77 . The earth, which is not a uniform sphere, has a moment of
inertia of about an axis through its north and south
poles. It takes the earth 86,164 s to spin once about this axis. Use
Appendix F to calculate (a) the earth’s kinetic energy due to its
rotation about this axis and (b) the earth’s kinetic energy due to its
orbital motion around the sun. (c) Explain how the value of the
earth’s moment of inertia tells us that the mass of the earth is con-
centrated toward the planet’s center.
9.78 ... A uniform, solid disk with mass m and radius R is pivoted
about a horizontal axis through its center. A small object of the
same mass m is glued to the rim of the disk. If the disk is released
from rest with the small object at the end of a horizontal radius, find
the angular speed when the small object is directly below the axis.
9.79 .. CALC A metal sign for a car dealership is a thin, uniform
right triangle with base length b and height h. The sign has 
mass M. (a) What is the moment of inertia of the sign for rotation
about the side of length h? (b) If and

what is the kinetic energy of the sign when it is rotat-
ing about an axis along the 1.20-m side at 
9.80 .. Measuring I. As an intern with an engineering firm,
you are asked to measure the moment of inertia of a large wheel,
for rotation about an axis through its center. Since you were a good
physics student, you know what to do. You measure the diameter
of the wheel to be 0.740 m and find that it weighs 280 N. You
mount the wheel, using frictionless bearings, on a horizontal axis
through the wheel’s center. You wrap a light rope around the wheel
and hang an 8.00-kg mass from the free end of the rope, as shown
in Fig. 9.17. You release the mass from rest; the mass descends and
the wheel turns as the rope unwinds. You find that the mass has
speed after it has descended 2.00 m. (a) What is the
moment of inertia of the wheel for an axis perpendicular to the
wheel at its center? (b) Your boss tells you that a larger I is needed.
He asks you to design a wheel of the same mass and radius that has

How do you reply?
9.81 .. CP A meter stick with a mass of 0.180 kg is pivoted about
one end so it can rotate without friction about a horizontal axis.

I = 19.0 kg # m2.

5.00 m>s

2.00 rev>s?
h = 1.20 m,

b = 1.60 m,M = 5.40 kg,

0.3308MR2

7800 kg>m3)

20 kg>m2.
800 kg>m3

m

Drum

Figure P9.68



The meter stick is held in a horizontal position and released. As it
swings through the vertical, calculate (a) the change in gravita-
tional potential energy that has occurred; (b) the angular speed of
the stick; (c) the linear speed of the end of the stick opposite the
axis. (d) Compare the answer in part (c) to the speed of a particle
that has fallen 1.00 m, starting from rest.
9.82 .. Exactly one turn of a flexible rope with mass m is wrapped
around a uniform cylinder with mass M and radius R. The cylinder
rotates without friction about a horizontal axle along the cylinder
axis. One end of the rope is attached to the cylinder. The 
cylinder starts with angular speed After one revolution of the
cylinder the rope has unwrapped and, at this instant, hangs vertically
down, tangent to the cylinder. Find the angular speed of the cylin-
der and the linear speed of the lower end of the rope at this time.
You can ignore the thickness of the rope. [Hint: Use Eq. (9.18).]
9.83 . The pulley in Fig. P9.83 has radius R and a moment of
inertia I. The rope does not slip over the pulley, and the pulley
spins on a frictionless axle. The coefficient of kinetic friction
between block A and the tabletop is The system is released
from rest, and block B descends. Block A has mass and block
B has mass Use energy methods to calculate the speed of
block B as a function of the distance d that it has descended.

9.84 .. The pulley in Fig. P9.84
has radius 0.160 m and moment
of inertia The rope
does not slip on the pulley rim.
Use energy methods to calculate
the speed of the 4.00-kg block
just before it strikes the floor.
9.85 .. You hang a thin hoop
with radius R over a nail at the
rim of the hoop. You displace it
to the side (within the plane of
the hoop) through an angle 
from its equilibrium position and
let it go. What is its angular speed when it returns to its equilib-
rium position? [Hint: Use Eq. (9.18).]
9.86 .. A passenger bus in Zurich, Switzerland, derived its
motive power from the energy stored in a large flywheel. The
wheel was brought up to speed periodically, when the bus stopped
at a station, by an electric motor, which could then be attached to
the electric power lines. The flywheel was a solid cylinder with
mass 1000 kg and diameter 1.80 m; its top angular speed was

(a) At this angular speed, what is the kinetic
energy of the flywheel? (b) If the average power required to
operate the bus is how long could it operate
between stops?
9.87 .. Two metal disks, one with radius and mass

and the other with radius and mass
are welded together and mounted on a frictionless

axis through their common center (Fig. P9.87). (a) What is the
M2 = 1.60 kg,

R2 = 5.00 cmM1 = 0.80 kg
R1 = 2.50 cm

1.86 * 104 W,

3000 rev>min.

b

0.560 kg # m2.

mB.
mA

mk.

v0.
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total moment of inertia of the two disks?
(b) A light string is wrapped around the
edge of the smaller disk, and a 1.50-kg
block is suspended from the free end of
the string. If the block is released from
rest at a distance of 2.00 m above the
floor, what is its speed just before it
strikes the floor? (c) Repeat the calcula-
tion of part (b), this time with the string
wrapped around the edge of the larger
disk. In which case is the final speed of
the block greater? Explain why this is so.
9.88 .. A thin, light wire is wrapped
around the rim of a wheel, as shown in
Fig. E9.49. The wheel rotates about a sta-
tionary horizontal axle that passes through
the center of the wheel. The wheel has radius 0.180 m and moment
of inertia for rotation about the axle of . A small
block with mass 0.340 kg is suspended from the free end of the
wire. When the system is released from rest, the block descends
with constant acceleration. The bearings in the wheel at the axle are
rusty, so friction there does of work as the block descends
3.00 m. What is the magnitude of the angular velocity of the wheel
after the block has descended 3.00 m?
9.89 ... In the system shown in Fig. 9.17, a 12.0-kg mass is
released from rest and falls, causing the uniform 10.0-kg cylinder
of diameter 30.0 cm to turn about a frictionless axle through its
center. How far will the mass have to descend to give the cylinder
480 J of kinetic energy?
9.90 . In Fig. P9.90, the cylinder
and pulley turn without friction
about stationary horizontal axles
that pass through their centers. A
light rope is wrapped around the
cylinder, passes over the pulley,
and has a 3.00-kg box suspended
from its free end. There is no slip-
ping between the rope and the pulley surface. The uniform cylinder
has mass 5.00 kg and radius 40.0 cm. The pulley is a uniform disk
with mass 2.00 kg and radius 20.0 cm. The box is released from rest
and descends as the rope unwraps from the cylinder. Find the speed
of the box when it has fallen 2.50 m.
9.91 .. A thin, flat, uniform disk has mass M and radius R. A cir-
cular hole of radius centered at a point from the disk’s
center, is then punched in the disk. (a) Find the moment of inertia
of the disk with the hole about an axis through the original center
of the disk, perpendicular to the plane of the disk. (Hint: Find the
moment of inertia of the piece
punched from the disk.) (b) Find
the moment of inertia of the disk
with the hole about an axis through
the center of the hole, perpendicular
to the plane of the disk.
9.92 .. BIO Human Rotational
Energy. A dancer is spinning at
72 rpm about an axis through her
center with her arms outstretched,
as shown in Fig. P9.92. From bio-
medical measurements, the typical
distribution of mass in a human
body is as follows:

R>2R>4,

-6.00 J

I = 0.480 kg # m2
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I

A
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5.00 m
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Head: 7.0%
Arms: 13% (for both)
Trunk and legs: 80.0%

Suppose you are this dancer. Using this information plus length
measurements on your own body, calculate (a) your moment of
inertia about your spin axis and (b) your rotational kinetic energy.
Use the figures in Table 9.2 to model reasonable approximations
for the pertinent parts of your body.
9.93 .. BIO The Kinetic Energy of Walking. If a person of mass
M simply moved forward with speed V, his kinetic energy would be

However, in addition to possessing a forward motion, vari-
ous parts of his body (such as the arms and legs) undergo rotation.
Therefore, his total kinetic energy is the sum of the energy from his
forward motion plus the rotational kinetic energy of his arms and
legs. The purpose of this problem is to see how much this rotational
motion contributes to the person’s kinetic energy. Biomedical meas-
urements show that the arms and hands together typically make up
13% of a person’s mass, while the legs and feet together account for
37%. For a rough (but reasonable) calculation, we can model the
arms and legs as thin uniform bars pivoting about the shoulder and
hip, respectively. In a brisk walk, the arms and legs each move
through an angle of about (a total of ) from the vertical in
approximately 1 second. We shall assume that they are held straight,
rather than being bent, which is not quite true. Let us consider a 
75-kg person walking at 5.0 km h, having arms 70 cm long and legs
90 cm long. (a) What is the average angular velocity of his arms and
legs? (b) Using the average angular velocity from part (a), calculate
the amount of rotational kinetic energy in this person’s arms and legs
as he walks. (c) What is the total kinetic energy due to both his for-
ward motion and his rotation? (d) What percentage of his kinetic
energy is due to the rotation of his legs and arms?
9.94 .. BIO The Kinetic Energy of Running. Using Problem
9.93 as a guide, apply it to a person running at 12 km h, with his
arms and legs each swinging through in As before,
assume that the arms and legs are kept straight.
9.95 .. Perpendicular-Axis Theorem. Consider a rigid body
that is a thin, plane sheet of arbitrary shape. Take the body to lie in
the xy-plane and let the origin O of coordinates be located at any
point within or outside the body. Let and be the moments of
inertia about the x- and y-axes, and let be the moment of inertia
about an axis through O perpendicular to the plane. (a) By consider-
ing mass elements with coordinates show that

This is called the perpendicular-axis theorem. Note
that point O does not have to be the center of mass. (b) For a thin
washer with mass M and with inner and outer radii and use
the perpendicular-axis theorem to find the moment of inertia about
an axis that is in the plane of the washer and that passes through its
center. You may use the information in Table 9.2. (c) Use the
perpendicular-axis theorem to show that for a thin, square sheet
with mass M and side L, the moment of inertia about any axis in
the plane of the sheet that passes through the center of the sheet is

You may use the information in Table 9.2.
9.96 ... A thin, uniform rod is bent into a square of side length a.
If the total mass is M, find the moment of inertia about an axis
through the center and perpendicular to the plane of the square.
(Hint: Use the parallel-axis theorem.)
9.97 . CALC A cylinder with radius R and mass M has density that
increases linearly with distance r from the cylinder axis, 
where is a positive constant. (a) Calculate the moment of inertia of
the cylinder about a longitudinal axis through its center in terms 
of M and R. (b) Is your answer greater or smaller than the moment

a

r = ar,

1
12ML2.

R2,R1

Ix + Iy = IO.
1x i, yi2,mi

IO

IyIx

1
2 s.�30°
>

>

60°�30°

1
2 MV2.

of inertia of a cylinder of the same mass and radius but of uniform
density? Explain why this result makes qualitative sense.
9.98 .. CALC Neutron Stars and
Supernova Remnants. The Crab
Nebula is a cloud of glowing gas
about 10 light-years across, located
about 6500 light-years from the
earth (Fig. P9.98). It is the rem-
nant of a star that underwent a
supernova explosion, seen on
earth in 1054 A.D. Energy is
released by the Crab Nebula at a
rate of about about

times the rate at which the sun
radiates energy. The Crab Nebula
obtains its energy from the rota-
tional kinetic energy of a rapidly
spinning neutron star at its center.
This object rotates once every 0.0331 s, and this period is increas-
ing by for each second of time that elapses. (a) If
the rate at which energy is lost by the neutron star is equal to the
rate at which energy is released by the nebula, find the moment of
inertia of the neutron star. (b) Theories of supernovae predict that
the neutron star in the Crab Nebula has a mass about 1.4 times that
of the sun. Modeling the neutron star as a solid uniform sphere,
calculate its radius in kilometers. (c) What is the linear speed of a
point on the equator of the neutron star? Compare to the speed of
light. (d) Assume that the neutron star is uniform and calculate its
density. Compare to the density of ordinary rock 
and to the density of an atomic nucleus (about ). Jus-
tify the statement that a neutron star is essentially a large atomic
nucleus.
9.99 .. CALC A sphere with radius has density that
decreases with distance r from the center of the sphere according
to . (a) Calculate
the total mass of the sphere. (b) Calculate the moment of inertia of
the sphere for an axis along a diameter.

CHALLENGE PROBLEMS
9.100 ... CALC Calculate the mo-
ment of inertia of a uniform solid
cone about an axis through its center 
(Fig. P9.100). The cone has mass M
and altitude h. The radius of its circu-
lar base is R.
9.101 ... CALC On a compact disc
(CD), music is coded in a pattern of
tiny pits arranged in a track that spi-
rals outward toward the rim of the
disc. As the disc spins inside a CD
player, the track is scanned at a con-
stant linear speed of 
Because the radius of the track varies as it spirals outward, the
angular speed of the disc must change as the CD is played. (See
Exercise 9.20.) Let’s see what angular acceleration is required to
keep constant. The equation of a spiral is 
where is the radius of the spiral at and is a constant. On
a CD, is the inner radius of the spiral track. If we take the rota-
tion direction of the CD to be positive, must be positive so that r
increases as the disc turns and increases. (a) When the discu

b

r0

bu = 0r0

r1u2 = r0 + bu,v

v = 1.25 m>s.

r = 3.00 * 103 kg>m3 - 19.00 * 103 kg>m42r

rR = 0.200 m

1017 kg>m3
13000 kg>m32

4.22 * 10-13 s

105
5 * 1031 W,

Figure P9.98

h

R

Axis

Figure P9.100
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Chapter Opening Question ?
Both segments of the rigid blade have the same angular speed 
From Eqs. (9.13) and (9.15), doubling the distance r for the same

doubles the linear speed and doubles the radial accelera-
tion

Test Your Understanding Questions
9.1 Answers: (a) (i) and (iii), (b) (ii) The rotation is speeding up
when the angular velocity and angular acceleration have the same
sign, and slowing down when they have opposite signs. Hence it is
speeding up for and are both positive and for

and are both negative), but is slowing down
for is positive and is negative . Note that the
body is rotating in one direction for is positive and in
the opposite direction for is negative .
9.2 Answers: (a) (i), (b) (ii) When the disc comes to rest,

From Eq. (9.7), the time when this occurs is
(this is a positive time because 

is negative). If we double the initial angular velocity and also
double the angular acceleration their ratio is unchanged and the
rotation stops in the same amount of time. The angle through
which the disc rotates is given by Eq. (9.10): 

since the final angular velocity is 
The initial angular velocity has been doubled but the time t is
the same, so the angular displacement (and hence the num-
ber of revolutions) has doubled. You can also come to the same
conclusion using Eq. (9.12).

u - u0
v0z

vz = 02.11
2 1v0z + vz2 t = 1

2v0zt
u - u0 =

az,
v0z

az-v0z>azt = 1vz - v0z2>az =
vz = 0.

21vzt 7 4 s
21vzt 6 4 s

2az1vz2 s 6 t 6 4 s
az1vz4 s 6 t 6 6 s

2az1vz0 6 t 6 2 s

arad = v2r.
v = rvv

v.

9.3 Answer: (ii) From Eq. (9.13), To maintain a constant
linear speed the angular speed must decrease as the scanning
head moves outward (greater r).
9.4 Answer: (i) The kinetic energy in the falling block is 1

2 mv2,

vv,
v = rv.

Answers

and the kinetic energy in the rotating cylinder is 1
2 Iv2 =

Hence the total kinetic energy of the1
2 A

1
2 mR2 B A vR B

2 = 1
4 mv2.

system is of which two-thirds is in the block and one-third is
in the cylinder.
9.5 Answer: (ii) More of the mass of the pool cue is concen-
trated at the thicker end, so the center of mass is closer to that end.
The moment of inertia through a point P at either end is 

the thinner end is farther from the center of mass, 
so the distance d and the moment of inertia are greater for the
thinner end.
9.6 Answer: (iii) Our result from Example 9.10 does not depend
on the cylinder length L. The moment of inertia depends only on
the radial distribution of mass, not on its distribution along the
axis.

Bridging Problem

Answers: (a)

(b)

(c) a = 1L - h2a21 + a2t 4

W = 1
6 M1L2 - 3Lh + 3h22a2t 2

I = c
M

L
a

x3

3
b d

L-h

-h
= 1

3 M1L2 - 3Lh + 3h22

IP

Icm + Md2 ;
IP =

3
4 mv2,

rotates through a small angle the distance scanned along the
track is Using the above expression for integrate
ds to find the total distance s scanned along the track as a function
of the total angle through which the disc has rotated. (b) Since
the track is scanned at a constant linear speed the distance s
found in part (a) is equal to Use this to find as a function of
time. There will be two solutions for choose the positive one,
and explain why this is the solution to choose. (c) Use your expres-

u ;
uvt.
v,

u

r1u2,ds = rdu.
du, sion for to find the angular velocity and the angular accel-

eration as functions of time. Is constant? (d) On a CD, the
inner radius of the track is 25.0 mm, the track radius increases by

per revolution, and the playing time is 74.0 min. Find the
values of and and find the total number of revolutions made
during the playing time. (e) Using your results from parts (c) and
(d), make graphs of (in versus t and in versus
t between and t = 74.0 min.t = 0

rad>s221azrad>s)vz

b,r0

1.55 mm

azaz

vzu1t2
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10
LEARNING GOALS

By studying this chapter, you will

learn:

• What is meant by the torque 

produced by a force.

• How the net torque on a body

affects the rotational motion of the

body.

• How to analyze the motion of a

body that both rotates and moves

as a whole through space.

• How to solve problems that involve

work and power for rotating bodies.

• What is meant by the angular

momentum of a particle or of a rigid

body.

• How the angular momentum of a

system changes with time.

• Why a spinning gyroscope goes

through the curious motion called

precession.

DYNAMICS OF
ROTATIONAL MOTION

We learned in Chapters 4 and 5 that a net force applied to a body gives
that body an acceleration. But what does it take to give a body an
angular acceleration? That is, what does it take to start a stationary

body rotating or to bring a spinning body to a halt? A force is required, but it
must be applied in a way that gives a twisting or turning action.

In this chapter we will define a new physical quantity, torque, that describes
the twisting or turning effort of a force. We’ll find that the net torque acting on a
rigid body determines its angular acceleration, in the same way that the net force
on a body determines its linear acceleration. We’ll also look at work and power in
rotational motion so as to understand such problems as how energy is transmitted
by the rotating drive shaft in a car. Finally, we will develop a new conservation
principle, conservation of angular momentum, that is tremendously useful for
understanding the rotational motion of both rigid and nonrigid bodies. We’ll fin-
ish this chapter by studying gyroscopes, rotating devices that seemingly defy
common sense and don’t fall over when you might think they should—but that
actually behave in perfect accordance with the dynamics of rotational motion.

10.1 Torque
We know that forces acting on a body can affect its translational motion—that
is, the motion of the body as a whole through space. Now we want to learn which
aspects of a force determine how effective it is in causing or changing rotational
motion. The magnitude and direction of the force are important, but so is the
point on the body where the force is applied. In Fig. 10.1 a wrench is being 
used to loosen a tight bolt. Force applied near the end of the handle, is more 
effective than an equal force applied near the bolt. Force doesn’t do any
good at all; it’s applied at the same point and has the same magnitude as but F

S
b ,

F
S

cF
S

a

F
S

b,

? If you stand at the north pole, the north star, Polaris, is almost directly over-
head, and the other stars appear to trace circles around it. But 5000 years
ago a different star, Thuban, was directly above the north pole and was the
north star. What caused this change?

Force close to axis of
rotation: not very
effective

Force farther from
axis of rotation:
more effective

Force directed
toward axis of
rotation: no effect

Fa
S

Fc
S

Fb
S

O
Axis of rotation

10.1 Which of these three 
equal-magnitude forces is most likely 
to loosen the tight bolt?
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it’s directed along the length of the handle. The quantitative measure of the ten-
dency of a force to cause or change a body’s rotational motion is called torque;
we say that applies a torque about point O to the wrench in Fig. 10.1, 
applies a greater torque about O, and applies zero torque about O.

Figure 10.2 shows three examples of how to calculate torque. The body in the
figure can rotate about an axis that is perpendicular to the plane of the figure and
passes through point O. Three forces, and act on the body in the plane
of the figure. The tendency of the first of these forces, to cause a rotation
about O depends on its magnitude It also depends on the perpendicular dis-
tance between point O and the line of action of the force (that is, the line along
which the force vector lies). We call the distance the lever arm (or moment
arm) of force about O. The twisting effort is directly proportional to both 
and so we define the torque (or moment) of the force with respect to O as
the product We use the Greek letter (tau) for torque. In general, for a force
of magnitude F whose line of action is a perpendicular distance l from O, the
torque is

(10.1)

Physicists usually use the term “torque,” while engineers usually use
“moment” (unless they are talking about a rotating shaft). Both groups use the
term “lever arm” or “moment arm” for the distance l.

The lever arm of in Fig. 10.2 is the perpendicular distance and the lever
arm of is the perpendicular distance The line of action of passes through
point O, so the lever arm for is zero and its torque with respect to O is zero. In
the same way, force in Fig. 10.1 has zero torque with respect to point O;
has a greater torque than because its lever arm is greater.

CAUTION Torque is always measured about a point Note that torque is always defined
with reference to a specific point. If we shift the position of this point, the torque of each
force may also change. For example, the torque of force in Fig. 10.2 is zero with 
respect to point O, but the torque of is not zero about point A. It’s not enough to refer to 
“the torque of ”; you must say “the torque of with respect to point X” or “the torque of

about point X.” ❙

Force in Fig. 10.2 tends to cause counterclockwise rotation about O,
while tends to cause clockwise rotation. To distinguish between these two
possibilities, we need to choose a positive sense of rotation. With the choice
that counterclockwise torques are positive and clockwise torques are negative,
the torques of and about O are

Figure 10.2 shows this choice for the sign of torque. We will often use the symbol
to indicate our choice of the positive sense of rotation.

The SI unit of torque is the newton-meter. In our discussion of work and
energy we called this combination the joule. But torque is not work or energy,
and torque should be expressed in newton-meters, not joules.

Figure 10.3 shows a force applied at a point P described by a position vector
with respect to the chosen point O. There are three ways to calculate the torque

of this force:

1. Find the lever arm l and use 
2. Determine the angle between the vectors and the lever arm is

so
3. Represent in terms of a radial component along the direction of and

a tangential component at right angles, perpendicular to (We call this
a tangential component because if the body rotates, the point where the force
acts moves in a circle, and this component is tangent to that circle.) Then

rS.Ftan
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      of F1
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A

F1 tends to cause counterclockwise rotation
about point O, so its torque is positive:
t1 = 1F1l1

S

F2 tends to cause clockwise rotation about point
O, so its torque is negative: t2 = 2F2l2

S

The line of action of F3
passes through point O,
so the lever arm and
hence the torque are zero.
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arms of F1
and F2
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10.2 The torque of a force about a point
is the product of the force magnitude and
the lever arm of the force.
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Three ways to calculate torque:
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10.3 Three ways to calculate the torque
of the force about the point O. In this
figure, and are in the plane of the page
and the torque vector points out of the
page toward you.
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and The component produces
no torque with respect to O because its lever arm with respect to that point is
zero (compare to forces in Fig. 10.1 and in Fig. 10.2).

Summarizing these three expressions for torque, we have

(10.2)

Torque as a Vector
We saw in Section 9.1 that angular velocity and angular acceleration can be rep-
resented as vectors; the same is true for torque. To see how to do this, note that
the quantity in Eq. (10.2) is the magnitude of the vector product
that we defined in Section 1.10. (You should go back and review that definition.)
We now generalize the definition of torque as follows: When a force acts at a
point having a position vector with respect to an origin O, as in Fig. 10.3, the
torque of the force with respect to O is the vector quantity

(definition of torque vector) (10.3)

The torque as defined in Eq. (10.2) is just the magnitude of the torque vector
The direction of is perpendicular to both and In particular, if

both and lie in a plane perpendicular to the axis of rotation, as in Fig. 10.3,
then the torque vector is directed along the axis of rotation, with a
sense given by the right-hand rule (Fig. 1.29). Figure 10.4 shows the direction
relationships.

In diagrams that involve and it’s common to have one of the vectors
oriented perpendicular to the page. (Indeed, by the very nature of the cross prod-
uct, must be perpendicular to the plane of the vectors and ) We
use a dot ( ) to represent a vector that points out of the page (see Fig. 10.3) and a
cross ( ) to represent a vector that points into the page.

In the following sections we will usually be concerned with rotation of a body
about an axis oriented in a specified constant direction. In that case, only the
component of torque along that axis is of interest, and we often call that compo-
nent the torque with respect to the specified axis.
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If you point the fingers of your right hand in
the direction of r and then curl them in the
direction of F, your outstretched thumb points
in the direction of t.
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10.4 The torque vector is
directed along the axis of the bolt, perpen-
dicular to both and The fingers of the
right hand curl in the direction of the rota-
tion that the torque tends to cause.
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Example 10.1 Applying a torque

To loosen a pipe fitting, a weekend plumber slips a piece of scrap
pipe (a “cheater”) over his wrench handle. He stands on the end of
the cheater, applying his full 900-N weight at a point 0.80 m from
the center of the fitting (Fig. 10.5a). The wrench handle and

cheater make an angle of with the horizontal. Find the magni-
tude and direction of the torque he applies about the center of the
fitting.

19°

Point where axis of
rotation intersects
plane of diagram

Lever arm (perpendicular distance from
axis of rotation to line of action of force)

Position vector from point O to the
point at which the force acts

Line of action of forcePoint at which force acts

Angle f between line
of action of force and
radial directionF 5 900 N

0.80 m

19°

(a) Diagram of situation (b) Free-body diagram

10.5 (a) A weekend plumber tries to loosen a pipe fitting by standing on a “cheater.” (b) Our vector diagram to find the torque about O.



10.2 Torque and Angular Acceleration 
for a Rigid Body

We are now ready to develop the fundamental relationship for the rotational
dynamics of a rigid body. We will show that the angular acceleration of a rotating
rigid body is directly proportional to the sum of the torque components along the
axis of rotation. The proportionality factor is the moment of inertia.

To develop this relationship, we again imagine the body as being made up of a
large number of particles. We choose the axis of rotation to be the z-axis; the first
particle has mass and distance from this axis (Fig. 10.6). The net force
acting on this particle has a component along the radial direction, a compo-
nent that is tangent to the circle of radius in which the particle moves as
the body rotates, and a component along the axis of rotation. Newton’s sec-
ond law for the tangential component is

(10.4)

We can express the tangential acceleration of the first particle in terms of the
angular acceleration of the body using Eq. (9.14): Using this
relationship and multiplying both sides of Eq. (10.4) by we obtain

(10.5)

From Eq. (10.2), is just the torque of the net force with respect to the
rotation axis, equal to the component of the torque vector along the rotation
axis. The subscript z is a reminder that the torque affects rotation around the 
z-axis, in the same way that the subscript on is a reminder that this force
affects the motion of particle 1 along the z-axis.

F1z

t1z

F1, tanr1

F1, tanr1 = m1r1
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r1,
a1, tan = r1az.az

F1, tan = m1a1, tan
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SOLUTION

IDENTIFY and SET UP: Figure 10.5b shows the vectors and 
and the angle between them ( ). Equation (10.1) or (10.2)
will tell us the magnitude of the torque. The right-hand rule with
Eq. (10.3), will tell us the direction of the torque.

EXECUTE: To use Eq. (10.1), we first calculate the lever arm l. As
Fig. 10.5b shows,

Then Eq. (10.1) tells us that the magnitude of the torque is

We get the same result from Eq. (10.2):

t = rFsinf = 10.80 m21900 N21sin 109°2 = 680 N # m

t = Fl = 1900 N210.76 m2 = 680 N # m

l = r sinf = 10.80 m2 sin109° = 10.80 m2 sin71° = 0.76 m
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,

f = 109°
F
S

rS
Alternatively, we can find , the tangential component of that
acts perpendicular to . Figure 10.5b shows that this component is
at an angle of from , so 

Then, from Eq. 10.2,

Curl the fingers of your right hand from the direction of (in the
plane of Fig. 10.5b, to the left and up) into the direction of 
(straight down). Then your right thumb points out of the plane of
the figure: This is the direction of .

EVALUATE: To check the direction of , note that the force in 
Fig. 10.5 tends to produce a counterclockwise rotation about O. If
you curl the fingers of your right hand in a counterclockwise direc-
tion, the thumb points out of the plane of Fig. 10.5, which is indeed
the direction of the torque.
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t = Ftanr = 1851 N210.80 m2 = 680 N # m
1900 N21cos19°2 = 851 N.F1cos19°2 =
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109° - 90° = 19°
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Test Your Understanding of Section 10.1 The figure shows a force P
being applied to one end of a lever of length L. What is the magnitude of the
torque of this force about point A? (i) (ii) (iii) 

❙

PL tanu.PL cosu;PL sinu;
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m1

zAxis of
rotation

Path of
particle as
body
rotates

Rotating
rigid
body

r
S

Force component
along axis of rotation

Only the tangential
force component
produces a z-com-
ponent of torque.

Radial force
component

10.6 As a rigid body rotates around the
z-axis, a net force acts on one particle
of the body. Only the force component

can affect the rotation, because only
exerts a torque about O with a 

z-component (along the rotation axis).
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F1, tan
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Neither of the components or contributes to the torque about the 
z-axis, since neither tends to change the particle’s rotation about that axis. So

is the total torque acting on the particle with respect to the rotation 
axis. Also, is the moment of inertia of the particle about the rotation
axis. Hence we can rewrite Eq. (10.5) as

We write an equation like this for every particle in the body and then add all these
equations:

or

(10.6)

The left side of Eq. (10.6) is the sum of all the torques about the rotation
axis that act on all the particles. The right side is the total moment
of inertia about the rotation axis, multiplied by the angular acceleration 
Note that is the same for every particle because this is a rigid body. Thus for
the rigid body as a whole, Eq. (10.6) is the rotational analog of Newton’s sec-
ond law:

(rotational analog of Newton’s second law for a rigid body)
(10.7)

Just as Newton’s second law says that the net force on a particle equals the particle’s
mass times its acceleration, Eq. (10.7) says that the net torque on a rigid body equals
the body’s moment of inertia about the rotation axis times its angular acceleration
(Fig. 10.7).

Note that because our derivation assumed that the angular acceleration is
the same for all particles in the body, Eq. (10.7) is valid only for rigid bodies.
Hence this equation doesn’t apply to a rotating tank of water or a swirling tor-
nado of air, different parts of which have different angular accelerations. Also
note that since our derivation used Eq. (9.14), must be measured in

The torque on each particle is due to the net force on that particle, which is
the vector sum of external and internal forces (see Section 8.2). According to
Newton’s third law, the internal forces that any pair of particles in the rigid body
exert on each other are equal and opposite (Fig. 10.8). If these forces act along
the line joining the two particles, their lever arms with respect to any axis are
also equal. So the torques for each such pair are equal and opposite, and add to
zero. Hence all the internal torques add to zero, so the sum in Eq. (10.7)
includes only the torques of the external forces.

Often, an important external force acting on a body is its weight. This force
is not concentrated at a single point; it acts on every particle in the entire body.
Nevertheless, it turns out that if has the same value at all points, we always
get the correct torque (about any specified axis) if we assume that all the
weight is concentrated at the center of mass of the body. We will prove this
statement in Chapter 11, but meanwhile we will use it for some of the problems
in this chapter.

gS

gtz

rad>s2.
azatan = raz,

az

a tz = Iaz

az

az.
I = gmiri
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a tiz = Aamir i
2Baz
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2az
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2
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10.7 Loosening or tightening a screw
requires giving it an angular acceleration
and hence applying a torque. This is made
easier by using a screwdriver with a large-
radius handle, which provides a large lever
arm for the force you apply with your hand.

Action–reaction force pair
whose torques cancel:
t1 on 2 = 1Fl
t2 on 1 = 2Fl

Lever arm l
of both forces

Line of action
of both forces

Particle 1

Particle 2

O

l
F2 on 1

S

F1 on 2

S

S
t1 on 2

S
t2 on 1

10.8 Two particles in a rigid body exert
equal and opposite forces on each other. If
the forces act along the line joining the
particles, the lever arms of the forces with
respect to an axis through O are the same
and the torques due to the two forces are
equal and opposite. Only external torques
affect the body’s rotation.

ActivPhysics 7.8: Rotoride—Dynamics
Approach
ActivPhysics 7.9: Falling Ladder
ActivPhysics 7.10: Woman and Flywheel 
Elevator—Dynamics Approach
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Problem-Solving Strategy 10.1 Rotational Dynamics for Rigid Bodies

Our strategy for solving problems in rotational dynamics is very
similar to Problem-Solving Strategy 5.2 for solving problems
involving Newton’s second law.

IDENTIFY the relevant concepts: Equation (10.7), is
useful whenever torques act on a rigid body. Sometimes you can use
an energy approach instead, as we did in Section 9.4. However, if the
target variable is a force, a torque, an acceleration, an angular acceler-
ation, or an elapsed time, using is almost always best.

SET UP the problem using the following steps:
1. Sketch the situation and identify the body or bodies to be

analyzed. Indicate the rotation axis.
2. For each body, draw a free-body diagram that shows the shape of

each body, including all dimensions and angles that you will
need for torque calculations. Label pertinent quantities with alge-
braic symbols.

3. Choose coordinate axes for each body and indicate a positive
sense of rotation (clockwise or counterclockwise) for each
rotating body. If you know the sense of , pick that as the pos-
itive sense of rotation.

az

gtz = Iaz

gtz = Iaz,

EXECUTE the solution:
1. For each body, decide whether it undergoes translational

motion, rotational motion, or both. Then apply (as
in Section 5.2), or both to the body.

2. Express in algebraic form any geometrical relationships
between the motions of two or more bodies. An example is a
string that unwinds, without slipping, from a pulley or a wheel
that rolls without slipping (discussed in Section 10.3). These
relationships usually appear as relationships between linear
and/or angular accelerations.

3. Ensure that you have as many independent equations as there
are unknowns. Solve the equations to find the target variables.

EVALUATE your answer: Check that the algebraic signs of your
results make sense. As an example, if you are unrolling thread
from a spool, your answers should not tell you that the spool is
turning in the direction that rolls the thread back on to the spool!
Check that any algebraic results are correct for special cases or for
extreme values of quantities.

gtz = Iaz,
gF

S
� maS

Example 10.2 An unwinding cable I

Figure 10.9a shows the situation analyzed in Example 9.7 using
energy methods. What is the cable’s acceleration?

SOLUTION

IDENTIFY and SET UP: We can’t use the energy method of 
Section 9.4, which doesn’t involve acceleration. Instead we’ll
apply rotational dynamics to find the angular acceleration of the
cylinder (Fig. 10.9b). We’ll then find a relationship between the
motion of the cable and the motion of the cylinder rim, and use this
to find the acceleration of the cable. The cylinder rotates counter-
clockwise when the cable is pulled, so we take counterclockwise
rotation to be positive. The net force on the cylinder must be zero
because its center of mass remains at rest. The force F exerted by
the cable produces a torque about the rotation axis. The weight
(magnitude Mg) and the normal force (magnitude n) exerted by the
cylinder’s bearings produce no torque about the rotation axis
because they both act along lines through that axis.

EXECUTE: The lever arm of F is equal to the radius 
of the cylinder, so the torque is (This torque is positive,
as it tends to cause a counterclockwise rotation.) From Table 9.2,
case (f), the moment of inertia of the cylinder about the rotation
axis is Then Eq. (10.7) tells us that

(We can add “rad” to our result because radians are dimensionless.)
To get the linear acceleration of the cable, recall from Section 9.3

that the acceleration of a cable unwinding from a cylinder is the
same as the tangential acceleration of a point on the surface of the
cylinder where the cable is tangent to it. This tangential acceleration
is given by Eq. (9.14):

EVALUATE: Can you use this result, together with an equation from
Chapter 2, to determine the speed of the cable after it has been
pulled 2.0 m? Does your result agree with that of Example 9.7?

atan = Raz = 10.060 m216.0 rad>s22 = 0.36 m>s2

az =
tz

I
=

FR

MR2>2
=

2F

MR
=

219.0 N2

150 kg210.060 m2
= 6.0 rad>s2

I = 1
2 MR2.

tz = FR.
R = 0.060 m

F acts tangent to the cylinder’s
surface, so its lever arm
is the radius R.

The weight and
normal force both
act on a line through
the axis of rotation,
so they exert no
torque.

Counterclockwise
torques are positive.

(a) (b)

0.120 m50 kg

9.0 N

10.9 (a) Cylinder and cable. (b) Our free-body diagram for the cylinder.
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10.3 Rigid-Body Rotation About 
a Moving Axis

We can extend our analysis of the dynamics of rotational motion to some cases in
which the axis of rotation moves. When that happens, the motion of the body is
combined translation and rotation. The key to understanding such situations is

Test Your Understanding of Section 10.2 The figure shows a glider
of mass that can slide without friction on a horizontal air track. It is attached
to an object of mass by a massless string. The pulley has radius R and moment
of inertia I about its axis of rotation. When released, the hanging object accelerates down-
ward, the glider accelerates to the right, and the string turns the pulley without slipping or
stretching. Rank the magnitudes of the following forces that act during the motion, in
order from largest to smallest magnitude. (i) the tension force (magnitude ) in the hori-
zontal part of the string; (ii) the tension force (magnitude ) in the vertical part of the
string; (iii) the weight of the hanging object. ❙m2g

T2

T1

m2

m1

m2

m1

R

I

T2

T1

Example 10.3 An unwinding cable II

In Example 9.8 (Section 9.4), what are the acceleration of the
falling block and the tension in the cable?

SOLUTION

IDENTIFY and SET UP: We’ll apply translational dynamics to the
block and rotational dynamics to the cylinder. As in Example 10.2,
we’ll relate the linear acceleration of the block (our target variable)
to the angular acceleration of the cylinder. Figure 10.10 shows our
sketch of the situation and a free-body diagram for each body. We
take the positive sense of rotation for the cylinder to be counter-
clockwise and the positive direction of the y-coordinate for the
block to be downward.

EXECUTE: For the block, Newton’s second law gives

For the cylinder, the only torque about its axis is that due to the
cable tension T. Hence Eq. (10.7) gives

As in Example 10.2, the acceleration of the cable is the same as 
the tangential acceleration of a point on the cylinder rim. From 
Eq. (9.14), this acceleration is We use this to
replace with in the cylinder equation above, and then divide
by R. The result is . Now we substitute this expression
for T into Newton’s second law for the block and solve for the
acceleration

To find the cable tension T, we substitute our expression for into
the block equation:

EVALUATE: The acceleration is positive (in the downward direc-
tion) and less than g, as it should be, since the cable is holding
back the block. The cable tension is not equal to the block’s weight
mg; if it were, the block could not accelerate.

Let’s check some particular cases. When M is much larger than
m, the tension is nearly equal to mg and the acceleration is corre-
spondingly much less than g. When M is zero, and 
the object falls freely. If the object starts from rest a
height h above the floor, its y-velocity when it strikes the ground is
given by so

We found this same result from energy considerations in Exam-
ple 9.8.

vy = 22ayh =
B

2gh

1 + M>2m

vy
2 = v0y

2 + 2ayh = 2ayh,

1v0y = 02
ay = g;T = 0

T = mg - may = mg - ma
g

1 + M>2m
b =

mg

1 + 2m>M

ay

ay =
g

1 + M>2m

mg - 1
2 May = may

ay:

T = 1
2 May

ayRaz

ay = atan = Raz.

a tz = RT = Iaz = 1
2 MR2az

aFy = mg + 1-T2 = may

(a) (b)

10.10 (a) Our diagram of the situation. (b) Our free-body dia-
grams for the cylinder and the block. We assume the cable has
negligible mass.



this: Every possible motion of a rigid body can be represented as a combination
of translational motion of the center of mass and rotation about an axis through
the center of mass. This is true even when the center of mass accelerates, so that
it is not at rest in any inertial frame. Figure 10.11 illustrates this for the motion of
a tossed baton: The center of mass of the baton follows a parabolic curve, as
though the baton were a particle located at the center of mass. Other examples of
combined translational and rotational motions include a ball rolling down a hill
and a yo-yo unwinding at the end of a string.

Combined Translation and Rotation: 
Energy Relationships
It’s beyond the scope of this book to prove that the motion of a rigid body can
always be divided into translation of the center of mass and rotation about the
center of mass. But we can show that this is true for the kinetic energy of a rigid
body that has both translational and rotational motions. In this case, the body’s
kinetic energy is the sum of a part associated with motion of the center of 
mass and a part associated with rotation about an axis through the center
of mass:

(rigid body with both translation and rotation)
(10.8)

To prove this relationship, we again imagine the rigid body to be made up of
particles. Consider a typical particle with mass as shown in Fig. 10.12. The
velocity of this particle relative to an inertial frame is the vector sum of the
velocity of the center of mass and the velocity of the particle relative to
the center of mass:

(10.9)

The kinetic energy of this particle in the inertial frame is which we can 
also express as Substituting Eq. (10.9) into this, we get

The total kinetic energy is the sum for all the particles making up the body.
Expressing the three terms in this equation as separate sums, we get

The first and second terms have common factors that can be taken outside the
sum:

(10.10)

Now comes the reward for our effort. In the first term, is the total mass M.
The second term is zero because is M times the velocity of the center of
mass relative to the center of mass, and this is zero by definition. The last term is
the sum of the kinetic energies of the particles computed by using their speeds
with respect to the center of mass; this is just the kinetic energy of rotation
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... rotation about
the center of mass ...

... plus translation
of the center of mass.

1

This baton toss can be represented as
a combination of ...

10.11 The motion of a rigid body is a
combination of translational motion of the
center of mass and rotation around the 
center of mass.

cm

mi

Axis of rotation

ri

vi
S

vi�
S

vcm
S

vcm
S

v

Velocity vi of particle in rotating, translating
rigid body 5 (velocity vcm of center of mass) 1
(particle’s velocity vi� relative to center of mass)

S

S

S

10.12 A rigid body with both transla-
tion and rotation.
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around the center of mass. Using the same steps that led to Eq. (9.17) for the rota-
tional kinetic energy of a rigid body, we can write this last term as where

is the moment of inertia with respect to the axis through the center of mass
and is the angular speed. So Eq. (10.10) becomes Eq. (10.8):

Rolling Without Slipping
An important case of combined translation and rotation is rolling without slip-
ping, such as the motion of the wheel shown in Fig. 10.13. The wheel is symmet-
rical, so its center of mass is at its geometric center. We view the motion in an
inertial frame of reference in which the surface on which the wheel rolls is at rest.
In this frame, the point on the wheel that contacts the surface must be instanta-
neously at rest so that it does not slip. Hence the velocity of the point of con-
tact relative to the center of mass must have the same magnitude but opposite
direction as the center-of-mass velocity If the radius of the wheel is R and its
angular speed about the center of mass is then the magnitude of is 
hence we must have

(condition for rolling without slipping) (10.11)

As Fig. 10.13 shows, the velocity of a point on the wheel is the vector sum of
the velocity of the center of mass and the velocity of the point relative to the cen-
ter of mass. Thus while point 1, the point of contact, is instantaneously at rest,
point 3 at the top of the wheel is moving forward twice as fast as the center of
mass, and points 2 and 4 at the sides have velocities at to the horizontal.

At any instant we can think of the wheel as rotating about an “instantaneous
axis” of rotation that passes through the point of contact with the ground. The
angular velocity is the same for this axis as for an axis through the center of
mass; an observer at the center of mass sees the rim make the same number of
revolutions per second as does an observer at the rim watching the center of mass
spin around him. If we think of the motion of the rolling wheel in Fig. 10.13 in
this way, the kinetic energy of the wheel is where is the moment of
inertia of the wheel about an axis through point 1. But by the parallel-axis theo-
rem, Eq. (9.19), where M is the total mass of the wheel and 
is the moment of inertia with respect to an axis through the center of mass. Using
Eq. (10.11), the kinetic energy of the wheel is

which is the same as Eq. (10.8).
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10.13 The motion of a rolling wheel is
the sum of the translational motion of the
center of mass plus the rotational motion
of the wheel around the center of mass.

Maple seed

Maple seed falling

Application Combined Translation
and Rotation
A maple seed consists of a pod attached to a
much lighter, flattened wing. Airflow around
the wing slows the fall to about and
causes the seed to rotate about its center of
mass. The seed’s slow fall means that a
breeze can carry the seed some distance from
the parent tree. In the absence of wind, the
seed’s center of mass falls straight down.

1 m>s

ActivPhysics 7.11: Race Between a Block and
a Disk



CAUTION Rolling without slipping Note that the relationship holds only if
there is rolling without slipping. When a drag racer first starts to move, the rear tires are
spinning very fast even though the racer is hardly moving, so is greater than 
(Fig. 10.14). If a driver applies the brakes too heavily so that the car skids, the tires will
spin hardly at all and is less than ❙

If a rigid body changes height as it moves, we must also consider gravitational
potential energy. As we discussed in Section 9.4, the gravitational potential
energy associated with any extended body of mass M, rigid or not, is the same as
if we replace the body by a particle of mass M located at the body’s center of
mass. That is,

U = Mgycm

vcm.Rv

vcmRv

vcm = Rv
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10.14 The smoke rising from this drag
racer’s rear tires shows that the tires are
slipping on the road, so is not equal
to Rv.

vcm

Example 10.4 Speed of a primitive yo-yo

You make a primitive yo-yo by wrapping a massless string around
a solid cylinder with mass M and radius R (Fig. 10.15). You hold
the free end of the string stationary and release the cylinder from
rest. The string unwinds but does not slip or stretch as the cylinder
descends and rotates. Using energy considerations, find the speed

of the center of mass of the cylinder after it has descended a
distance h.

SOLUTION

IDENTIFY and SET UP: The upper end of the string is held fixed, not
pulled upward, so your hand does no work on the string–cylinder
system. There is friction between the string and the cylinder, but the
string doesn’t slip so no mechanical energy is lost. Hence we can use
conservation of mechanical energy. The initial kinetic energy of 
the cylinder is and its final kinetic energy is given byK2K1 = 0,

vcm

Eq. (10.8); the massless string has no kinetic energy. The moment
of inertia is and by Eq. (9.13) because the
string doesn’t slip. The potential energies are and

EXECUTE: From Eq. (10.8), the kinetic energy at point 2 is

The kinetic energy is times what it would be if the yo-yo were
falling at speed without rotating. Two-thirds of the total kinetic 
energy is translational and one-third is rota-
tional. Using conservation of energy,

EVALUATE: No mechanical energy was lost or gained, so from the
energy standpoint the string is merely a way to convert some of the
gravitational potential energy (which is released as the cylinder
falls) into rotational kinetic energy rather than translational kinetic
energy. Because not all of the released energy goes into translation,

is less than the speed of an object dropped from height h
with no strings attached.
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10.15 Calculating the speed of a primitive yo-yo.

Example 10.5 Race of the rolling bodies

In a physics demonstration, an instructor “races” various bodies
that roll without slipping from rest down an inclined plane (Fig.
10.16). What shape should a body have to reach the bottom of the
incline first?

SOLUTION

IDENTIFY and SET UP: Kinetic friction does no work if the bodies
roll without slipping. We can also ignore the effects of rolling fric-
tion, introduced in Section 5.3, if the bodies and the surface of the

Continued
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Combined Translation and Rotation: Dynamics
We can also analyze the combined translational and rotational motions of a rigid
body from the standpoint of dynamics. We showed in Section 8.5 that for a body
with total mass M, the acceleration of the center of mass is the same as that
of a point mass M acted on by all the external forces on the actual body:

(10.12)

The rotational motion about the center of mass is described by the rotational ana-
log of Newton’s second law, Eq. (10.7):

(10.13)

where is the moment of inertia with respect to an axis through the center of
mass and the sum includes all external torques with respect to this axis. It’s
not immediately obvious that Eq. (10.13) should apply to the motion of a trans-
lating rigid body; after all, our derivation of in Section 10.2 assumed
that the axis of rotation was stationary. But in fact, Eq. (10.13) is valid even when
the axis of rotation moves, provided the following two conditions are met:

1. The axis through the center of mass must be an axis of symmetry.
2. The axis must not change direction.

These conditions are satisfied for many types of rotation (Fig. 10.17). Note that in
general this moving axis of rotation is not at rest in an inertial frame of reference.

We can now solve dynamics problems involving a rigid body that undergoes
translational and rotational motions at the same time, provided that the rotation
axis satisfies the two conditions just mentioned. Problem-Solving Strategy 10.1
(Section 10.2) is equally useful here, and you should review it now. Keep in mind
that when a body undergoes translational and rotational motions at the same time,
we need two separate equations of motion for the same body. One of these, 
Eq. (10.12), describes the translational motion of the center of mass. The other
equation of motion, Eq. (10.13), describes the rotational motion about the axis
through the center of mass.

gtz = Iaz

gtz

Icm

a tz = Icmaz

aF
S

ext � M aScm

aScm

10.17 The axle of a bicycle wheel
passes through the wheel’s center of 
mass and is an axis of symmetry. Hence
the rotation of the wheel is described by 
Eq. (10.13), provided the bicycle doesn’t
turn or tilt to one side (which would
change the orientation of the axle).

incline are rigid. (Later in this section we’ll explain why this is so.)
We can therefore use conservation of energy. Each body starts from
rest at the top of an incline with height h, so and

Equation (10.8) gives the kinetic energy at the bottom of the
incline; since the bodies roll without slipping, We can
express the moments of inertia of the four round bodies in Table 9.2,
cases (f)–(i), as where c is a number less than or equal
to 1 that depends on the shape of the body. Our goal is to find the
value of c that gives the body the greatest speed after its center of
mass has descended a vertical distance h.

vcm

Icm = cMR2,

v = vcm>R.
U2 = 0.

U1 = Mgh,K1 = 0,

EXECUTE: From conservation of energy,

EVALUATE: For a given value of c, the speed after descending a
distance h is independent of the body’s mass M and radius R.
Hence all uniform solid cylinders have the same speed at
the bottom, regardless of their mass and radii. The values of c tell
us that the order of finish for uniform bodies will be 
as follows: (1) any solid sphere , (2) any solid cylinder

, (3) any thin-walled, hollow sphere , and 
(4) any thin-walled, hollow cylinder . Small-c bodies
always beat large-c bodies because less of their kinetic energy is
tied up in rotation and so more is available for translation.
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10.16 Which body rolls down the incline fastest, and why?
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Example 10.6 Acceleration of a primitive yo-yo

For the primitive yo-yo in Example 10.4 (Fig. 10.18a), find the
downward acceleration of the cylinder and the tension in the
string.

SOLUTION

IDENTIFY and SET UP: Figure 10.18b shows our free-body diagram
for the yo-yo, including our choice of positive coordinate directions.
Our target variables are and T. We’ll use Eq. (10.12) for theacm-y

translational motion of the center of mass and Eq. (10.13) for rota-
tional motion around the center of mass. We’ll also use Eq. (10.11),
which says that the string unwinds without slipping. As in Example
10.4, the moment of inertia of the yo-yo for an axis through its 
center of mass is .

EXECUTE: From Eq. (10.12),

(10.14)

From Eq. (10.13),

(10.15)

From Eq. (10.11), the derivative of this expression
with respect to time gives us

(10.16)

We now use Eq. (10.16) to eliminate from Eq. (10.15) and then
solve Eqs. (10.14) and (10.15) simultaneously for T and . The
results are

EVALUATE: The string slows the fall of the yo-yo, but not enough
to stop it completely. Hence is less than the free-fall value g
and T is less than the yo-yo weight Mg.
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10.18 Dynamics of a primitive yo-yo (see Fig. 10.15).

Example 10.7 Acceleration of a rolling sphere

A bowling ball rolls without slipping down a ramp, which is
inclined at an angle to the horizontal (Fig. 10.19a). What are the
ball’s acceleration and the magnitude of the friction force on the
ball? Treat the ball as a uniform solid sphere, ignoring the finger
holes.

SOLUTION

IDENTIFY and SET UP: The free-body diagram (Fig. 10.19b)
shows that only the friction force exerts a torque about the center
of mass. Our target variables are the acceleration of the ball’s
center of mass and the magnitude of the friction force. (Becauseƒ

acm-x

b

the ball does not slip at the instantaneous point of contact with the
ramp, this is a static friction force; it prevents slipping and gives
the ball its angular acceleration.) We use Eqs. (10.12) and (10.13)
as in Example 10.6.

EXECUTE: The ball’s moment of inertia is The equa-
tions of motion are

(10.17)

(10.18)

The ball rolls without slipping, so as in Example 10.6 we use
to eliminate from Eq. (10.18):

This equation and Eq. (10.17) are two equations for the unknowns
and We solve Eq. (10.17) for substitute that expression

into the above equation to eliminate and solve for :

Finally, we substitute this acceleration into Eq. (10.17) and solve
for

ƒ = 2
7 Mg sinb

ƒ:

acm-x = 5
7 g sinb

acm-xf,
ƒ,ƒ.acm-x

ƒR = 2
5 MRacm-x

azacm-x = Raz

a tz = ƒR = Icmaz = A25 MR2 Baz

aFx = Mg sinb + 1-ƒ2 = Macm-x

Icm = 2
5 MR2.

+

acm-x 5 Raz

M

(a)

b

(b)

x

y

Mg

R

Mg cos b

Mg sin b

fs

n

b

10.19 A bowling ball rolling down a ramp.

Continued
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Rolling Friction
In Example 10.5 we said that we can ignore rolling friction if both the rolling
body and the surface over which it rolls are perfectly rigid. In Fig. 10.20a a per-
fectly rigid sphere is rolling down a perfectly rigid incline. The line of action of
the normal force passes through the center of the sphere, so its torque is zero;
there is no sliding at the point of contact, so the friction force does no work. Fig-
ure 10.20b shows a more realistic situation, in which the surface “piles up” in
front of the sphere and the sphere rides in a shallow trench. Because of these
deformations, the contact forces on the sphere no longer act along a single point,
but over an area; the forces are concentrated on the front of the sphere as shown.
As a result, the normal force now exerts a torque that opposes the rotation. In
addition, there is some sliding of the sphere over the surface due to the deforma-
tion, causing mechanical energy to be lost. The combination of these two effects
is the phenomenon of rolling friction. Rolling friction also occurs if the rolling
body is deformable, such as an automobile tire. Often the rolling body and the
surface are rigid enough that rolling friction can be ignored, as we have assumed
in all the examples in this section.

Test Your Understanding of Section 10.3 Suppose the solid cylinder
used as a yo-yo in Example 10.6 is replaced by a hollow cylinder of the same
mass and radius. (a) Will the acceleration of the yo-yo (i) increase, (ii) decrease,
or (iii) remain the same? (b) Will the string tension (i) increase, (ii) decrease, or 
(iii) remain the same? ❙

10.4 Work and Power in Rotational Motion
When you pedal a bicycle, you apply forces to a rotating body and do work on it.
Similar things happen in many other real-life situations, such as a rotating motor
shaft driving a power tool or a car engine propelling the vehicle. We can express
this work in terms of torque and angular displacement.

Suppose a tangential force acts at the rim of a pivoted disk—for example,
a child running while pushing on a playground merry-go-round (Fig. 10.21a).
The disk rotates through an infinitesimal angle about a fixed axis during andu

F
S

tan

EVALUATE: The ball’s acceleration is just as large as that of an
object sliding down the slope without friction. If the ball descends
a vertical distance h as it rolls down the ramp, its displacement
along the ramp is You can show that the speed of the ballh>sinb.

5
7 at the bottom of the ramp is the same as our result

from Example 10.5 with .
If the ball were rolling uphill without slipping, the force of friction

would still be directed uphill as in Fig. 10.19b. Can you see why?

c = 2
5

vcm = 2
10
7 gh,

Normal force produces
no torque about the center
of the sphere.

Normal force
produces a torque about
the center of the sphere that
opposes rotation.

f

(a) Perfectly rigid sphere rolling on a perfectly
rigid surface

x

y

Mg

n

f

v

(b) Rigid sphere rolling on a deformable
surface

x

yω

Mg
n

10.20 Rolling down (a) a perfectly rigid
surface and (b) a deformable surface.
The deformation in part (b) is greatly
exaggerated.



infinitesimal time interval dt (Fig. 10.21b). The work dW done by the force 
while a point on the rim moves a distance ds is If is measured
in radians, then and

Now is the torque due to the force so

(10.19)

The total work W done by the torque during an angular displacement from 
to is

(work done by a torque) (10.20)

If the torque remains constant while the angle changes by a finite amount
then

(work done by a constant torque) (10.21)

The work done by a constant torque is the product of torque and the angular dis-
placement. If torque is expressed in newton-meters and angular displace-
ment in radians, the work is in joules. Equation (10.21) is the rotational analog of
Eq. (6.1), and Eq. (10.20) is the analog of Eq. (6.7), for
the work done by a force in a straight-line displacement.

If the force in Fig. 10.21 had an axial component (parallel to the rotation axis)
or a radial component (directed toward or away from the axis), that component
would do no work because the displacement of the point of application has only a
tangential component. An axial or radial component of force would also make no
contribution to the torque about the axis of rotation. So Eqs. (10.20) and (10.21)
are correct for any force, no matter what its components.

When a torque does work on a rotating rigid body, the kinetic energy changes
by an amount equal to the work done. We can prove this by using exactly the
same procedure that we used in Eqs. (6.11) through (6.13) for the translational
kinetic energy of a particle. Let represent the net torque on the body so that

from Eq. (10.7), and assume that the body is rigid so that the moment of
inertia I is constant. We then transform the integrand in Eq. (10.20) into an inte-
grand with respect to as follows:

Since is the net torque, the integral in Eq. (10.20) is the total work done on the
rotating rigid body. This equation then becomes

(10.22)

The change in the rotational kinetic energy of a rigid body equals the work done
by forces exerted from outside the body (Fig. 10.22). This equation is analogous
to Eq. (6.13), the work–energy theorem for a particle.

What about the power associated with work done by a torque acting on a rotat-
ing body? When we divide both sides of Eq. (10.19) by the time interval dt dur-
ing which the angular displacement occurs, we find

dW

dt
= tz

du

dt

Wtot = L
v2

v1

Ivz dvz = 1
2 Iv2

2 - 1
2 Iv1

2

tz

tz du = 1Iaz2 du = I
dvz

dt
du = I

du

dt
dvz = Ivz dvz

vz

tz = Iaz

tz

W = 1Fx dx,W = Fs,

1N # m2

W = tz1u2 - u12 = tz¢u

¢u = u2 - u1,

W = L
u2

u1

tz du  

u2

u1

dW = tz du

F
S

tan,tzFtanR

dW = FtanR du

ds = R du
dudW = Ftan ds.

F
S

tan

10.4 Work and Power in Rotational Motion 321

(a)

Child applies
tangential force.

Ftan

S

(b) Overhead view of merry-go-round

R
du

ds

R

O

Ftan

S

10.21 A tangential force applied to a
rotating body does work.

10.22 The rotational kinetic energy of
an airplane propeller is equal to the total
work done to set it spinning. When it is
spinning at a constant rate, positive work is
done on the propeller by the engine and
negative work is done on it by air resist-
ance. Hence the net work being done is
zero and the kinetic energy remains
constant.
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Test Your Understanding of Section 10.4 You apply equal torques to
two different cylinders, one of which has a moment of inertia twice as large as the
other cylinder. Each cylinder is initially at rest. After one complete rotation, which
cylinder has the greater kinetic energy? (i) the cylinder with the larger moment of inertia;
(ii) the cylinder with the smaller moment of inertia; (iii) both cylinders have the same
kinetic energy. ❙

10.5 Angular Momentum
Every rotational quantity that we have encountered in Chapters 9 and 10 is the
analog of some quantity in the translational motion of a particle. The analog of
momentum of a particle is angular momentum, a vector quantity denoted as 
Its relationship to momentum (which we will often call linear momentum for
clarity) is exactly the same as the relationship of torque to force, For
a particle with constant mass m, velocity momentum and position
vector relative to the origin O of an inertial frame, we define angular momen-
tum as

(angular momentum of a particle) (10.24)L
S

� rS : pS � rS : mvS

L
S

rS
pS � mvS,vS,

T
S

� rS : F
S

.
pS

L
S

.

Example 10.8 Calculating power from torque

An electric motor exerts a constant torque on a grind-
stone, which has a moment of inertia of about its shaft.
The system starts from rest. Find the work W done by the motor in
8.0 s and the grindstone kinetic energy K at this time. What aver-
age power is delivered by the motor?

SOLUTION

IDENTIFY and SET UP: The only torque acting is that due to the
motor. Since this torque is constant, the grindstone’s angular accel-
eration is constant. We’ll use Eq. (10.7) to find , and then use
this in the kinematics equations from Section 9.2 to calculate the
angle through which the grindstone rotates in 8.0 s and its final
angular velocity . From these we’ll calculate W, K, and 

EXECUTE: We have and so
yields From Eq. (9.11),

W = tz¢u = 110 N # m21160 rad2 = 1600 J

¢u = 1
2azt

2 = 1
2 15.0 rad>s2218.0 s22 = 160 rad

az = 5.0 rad>s2.gtz = Iaz

I = 2.0 kg # m2,gtz = 10 N # m
Pav.vz

¢u

azaz

Pav

2.0 kg # m2
10-N # m From Eqs. (9.7) and (9.17),

The average power is the work done divided by the time interval:

EVALUATE: The initial kinetic energy was zero, so the work done W
must equal the final kinetic energy K [Eq. (10.22)]. This is just as
we calculated. We can check our result by consider-
ing the instantaneous power Because increases con-
tinuously, P increases continuously as well; its value increases from
zero at to at 
Both and P increase uniformly with time, so the average power
is just half this maximum value, or 200 W.

vz

t = 8.0 s.110 N # m2140 rad>s2 = 400 Wt = 0

vzP = tzvz.
Pav = 200 W

Pav =
1600 J

8.0 s
= 200 J>s = 200 W

K = 1
2 Ivz

2 = 1
2 12.0 kg # m22140 rad>s22 = 1600 J

vz = azt = 15.0 rad>s2218.0 s2 = 40 rad>s

But is the rate of doing work, or power P, and is angular velocity 
so

(10.23)

When a torque (with respect to the axis of rotation) acts on a body that rotates
with angular velocity its power (rate of doing work) is the product of and

This is the analog of the relationship that we developed in Section
6.4 for particle motion.

P = F
S # vSvz.

tzvz,
tz

P = tzvz

vz,
du/dtdW>dt



The value of depends on the choice of origin O, since it involves the particle’s
position vector relative to O. The units of angular momentum are 

In Fig. 10.23 a particle moves in the xy-plane; its position vector and
momentum are shown. The angular momentum vector is perpendicu-
lar to the xy-plane. The right-hand rule for vector products shows that its direc-
tion is along the and its magnitude is

(10.25)

where l is the perpendicular distance from the line of to O. This distance plays
the role of “lever arm” for the momentum vector.

When a net force acts on a particle, its velocity and momentum change, so
its angular momentum may also change. We can show that the rate of change of
angular momentum is equal to the torque of the net force. We take the time deriv-
ative of Eq. (10.24), using the rule for the derivative of a product:

The first term is zero because it contains the vector product of the vector
with itself. In the second term we replace with the net force 

obtaining

(10.26)

The rate of change of angular momentum of a particle equals the torque of
the net force acting on it. Compare this result to Eq. (8.4), which states that the
rate of change of the linear momentum of a particle equals the net force
that acts on it.

Angular Momentum of a Rigid Body
We can use Eq. (10.25) to find the total angular momentum of a rigid body rotat-
ing about the z-axis with angular speed First consider a thin slice of the body
lying in the xy-plane (Fig. 10.24). Each particle in the slice moves in a circle cen-
tered at the origin, and at each instant its velocity is perpendicular to its posi-
tion vector as shown. Hence in Eq. (10.25), for every particle. A
particle with mass at a distance from O has a speed equal to From Eq.
(10.25) the magnitude of its angular momentum is

(10.27)

The direction of each particle’s angular momentum, as given by the right-hand
rule for the vector product, is along the 

The total angular momentum of the slice of the body lying in the xy-plane is the
sum of the angular momenta of the particles. Summing Eq. (10.27), we have

where I is the moment of inertia of the slice about the z-axis.
We can do this same calculation for the other slices of the body, all parallel to

the xy-plane. For points that do not lie in the xy-plane, a complication arises
because the vectors have components in the z-direction as well as the x- and
y-directions; this gives the angular momentum of each particle a component per-
pendicular to the z-axis. But if the z-axis is an axis of symmetry, the perpendicular
components for particles on opposite sides of this axis add up to zero (Fig. 10.25).
So when a body rotates about an axis of symmetry, its angular momentum vector

lies along the symmetry axis, and its magnitude is L = Iv.L
S

rS

L = aLi = 1amir i
22v = Iv

LigLi

+z-axis.

Li = mi1riv2 ri = mir i
2v

Li

riv.virimi

f = 90°rSi,
vSi

v.

d pS>dt

dL
S

dt
� rS : F

S
� T

S  (for a particle acted on by net force F
S

)

F
S

,maSvS � d rS>dt

dL
S

dt
� a

d rS
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: mvSb � a rS : m

dvS
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b � 1vS : mvS2 � 1rS : maS2
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5 angular momentum of particle

y

x

mv sin f

m

l 5 r sin f

z

L

O

rS

f

f

p 5 mvS S

S

L is perpendicular to the plane of
motion (if the origin O is in that plane)
and has magnitude L 5 mvl.

S

10.23 Calculating the angular momen-
tum of a particle
with mass m moving in the xy-plane.
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O
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S

angular momentum of ith
particle of rigid body

S
Li is perpendicular to the plane of motion
(if the origin O is in that plane) and has
magnitude Li 5 miviri 5 miri

2v.

v
Slice of
rigid body
rotating
about z-axis

10.24 Calculating the angular momen-
tum of a particle of mass in a rigid
body rotating at angular speed 
(Compare Fig. 10.23.)
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the rotation axis.
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This particle
of the body is
moving away
from you.

This particle
of the body
is moving
toward you.

Another slice of a 
rigid body rotating
about the z-axis
(viewed edge-on)

10.25 Two particles of the same mass
located symmetrically on either side of the
rotation axis of a rigid body. The angular
momentum vectors and of the two
particles do not lie along the rotation axis,
but their vector sum does.L

S
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Example 10.9 Angular momentum and torque

A turbine fan in a jet engine has a moment of inertia of 
about its axis of rotation. As the turbine starts up, its angular veloc-
ity is given by . (a) Find the fan’s angular
momentum as a function of time, and find its value at 
(b) Find the net torque on the fan as a function of time, and find its
value at 

SOLUTION

IDENTIFY and SET UP: The fan rotates about its axis of symmetry
(the z-axis). Hence the angular momentum vector has only a 

t = 3.0 s.

t = 3.0 s.
vz = 140 rad>s32t 2

2.5 kg # m2 z-component which we can determine from the angular veloc-
ity Since the direction of angular momentum is constant, the
net torque likewise has only a component along the rotation
axis. We’ll use Eq. (10.28) to find from and then use Eq.
(10.29) to find .

EXECUTE: (a) From Eq. (10.28),

(We dropped the dimensionless quantity “rad” from the final
expression.) At .Lz = 900 kg # m2>st = 3.0 s,

Lz = Ivz = 12.5 kg # m22140 rad>s32t 2 = 1100 kg # m2>s32t 2

tz

vzLz

tz

vz.
Lz,

The angular velocity vector also lies along the rotation axis, as we dis-
cussed at the end of Section 9.1. Hence for a rigid body rotating around an axis of
symmetry, and are in the same direction (Fig. 10.26). So we have the vector
relationship

(for a rigid body rotating around a symmetry axis) (10.28)

From Eq. (10.26) the rate of change of angular momentum of a particle equals
the torque of the net force acting on the particle. For any system of particles
(including both rigid and nonrigid bodies), the rate of change of the total angular
momentum equals the sum of the torques of all forces acting on all the particles.
The torques of the internal forces add to zero if these forces act along the line
from one particle to another, as in Fig. 10.8, and so the sum of the torques includes
only the torques of the external forces. (A similar cancellation occurred in our dis-
cussion of center-of-mass motion in Section 8.5.) If the total angular momentum
of the system of particles is and the sum of the external torques is then

(for any system of particles) (10.29)

Finally, if the system of particles is a rigid body rotating about a symmetry
axis (the z-axis), then and I is constant. If this axis has a fixed direction 
in space, then the vectors and change only in magnitude, not in direction. In
that case, or

which is again our basic relationship for the dynamics of rigid-body rotation. If the
body is not rigid, I may change, and in that case, L changes even when is con-
stant. For a nonrigid body, Eq. (10.29) is still valid, even though Eq. (10.7) is not.

When the axis of rotation is not a symmetry axis, the angular momentum is in
general not parallel to the axis (Fig. 10.27). As the body turns, the angular
momentum vector traces out a cone around the rotation axis. Because 
changes, there must be a net external torque acting on the body even though the
angular velocity magnitude may be constant. If the body is an unbalanced
wheel on a car, this torque is provided by friction in the bearings, which causes
the bearings to wear out. “Balancing” a wheel means distributing the mass so that
the rotation axis is an axis of symmetry; then points along the rotation axis, and
no net torque is required to keep the wheel turning.

In fixed-axis rotation we often use the term “angular momentum of the body”
to refer to only the component of along the rotation axis of the body (the z-axis
in Fig. 10.27), with a positive or negative sign to indicate the sense of rotation
just as with angular velocity.
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10.26 For rotation about an axis of
symmetry, and are parallel and along
the axis. The directions of both vectors are
given by the right-hand rule (compare 
Fig. 9.5).
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10.27 If the rotation axis of a rigid body
is not a symmetry axis, does not in gen-
eral lie along the rotation axis. Even if is
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net torque is required to maintain rotation.
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10.6 Conservation of Angular Momentum
We have just seen that angular momentum can be used for an alternative state-
ment of the basic dynamic principle for rotational motion. It also forms the basis
for the principle of conservation of angular momentum. Like conservation of
energy and of linear momentum, this principle is a universal conservation law,
valid at all scales from atomic and nuclear systems to the motions of galaxies.
This principle follows directly from Eq. (10.29): If , then

, and is constant.

When the net external torque acting on a system is zero, the total angular
momentum of the system is constant (conserved).

A circus acrobat, a diver, and an ice skater pirouetting on the toe of one skate all
take advantage of this principle. Suppose an acrobat has just left a swing with arms
and legs extended and rotating counterclockwise about her center of mass. When
she pulls her arms and legs in, her moment of inertia with respect to her center of
mass changes from a large value to a much smaller value The only external
force acting on her is her weight, which has no torque with respect to an axis through
her center of mass. So her angular momentum remains constant, and
her angular velocity increases as decreases. That is,

(zero net external torque) (10.30)

When a skater or ballerina spins with arms outstretched and then pulls her arms
in, her angular velocity increases as her moment of inertia decreases. In each case
there is conservation of angular momentum in a system in which the net external
torque is zero.

When a system has several parts, the internal forces that the parts exert on one
another cause changes in the angular momenta of the parts, but the total angular
momentum doesn’t change. Here’s an example. Consider two bodies A and B that
interact with each other but not with anything else, such as the astronauts we dis-
cussed in Section 8.2 (see Fig. 8.8). Suppose body A exerts a force on
body B; the corresponding torque (with respect to whatever point we choose) is

According to Eq. (10.29), this torque is equal to the rate of change of
angular momentum of B:

At the same time, body B exerts a force on body A, with a corresponding
torque and

T
S

B on A �
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A

dt
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F
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I1v1z = I2v2z  
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Lz = Icmvz

I2.I1

Icm

L
S

dL
S
>dt � 0

gTS � 0gTS � dL
S
>dt.

10.6 Conservation of Angular Momentum 325

(b) From Eq. (10.29),

At

tz = 1200 kg # m2>s3213.0 s2 = 600 kg # m2>s2 = 600 N # m
t = 3.0 s,

tz =
dLz

dt
= 1100 kg # m2>s3212t2 = 1200 kg # m2>s32t

EVALUATE: As a check on our expression for , note that the angular
acceleration of the turbine is 

Hence from Eq. (10.7), the torque on the fan is 
, just as

we calculated.
180 rad>s32t = 1200 kg # m2>s32ttz = Iaz = 12.5 kg # m22

180 rad>s32t.
az = dvz>dt = 140 rad>s3212t2 =

tz

Test Your Understanding of Section 10.5 A ball is attached to one end of a
piece of string. You hold the other end of the string and whirl the ball in a circle around
your hand. (a) If the ball moves at a constant speed, is its linear momentum constant?
Why or why not? (b) Is its angular momentum constant? Why or why not? ❙L

S
pS

10.28 A falling cat twists different parts
of its body in different directions so that it
lands feet first. At all times during this
process the angular momentum of the cat
as a whole remains zero.
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From Newton’s third law, Furthermore, if the forces act
along the same line, as in Fig. 10.8, their lever arms with respect to the chosen
axis are equal. Thus the torques of these two forces are equal and opposite, and

So if we add the two preceding equations, we find

or, because is the total angular momentum of the system,

(zero net external torque) (10.31)

That is, the total angular momentum of the system is constant. The torques of the
internal forces can transfer angular momentum from one body to the other, but
they can’t change the total angular momentum of the system (Fig. 10.28).
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Example 10.10 Anyone can be a ballerina

A physics professor stands at the center of a frictionless turntable
with arms outstretched and a 5.0-kg dumbbell in each hand 
(Fig. 10.29). He is set rotating about the vertical axis, making one
revolution in 2.0 s. Find his final angular velocity if he pulls the
dumbbells in to his stomach. His moment of inertia (without the
dumbbells) is with arms outstretched and 
with his hands at his stomach. The dumbbells are 1.0 m from the
axis initially and 0.20 m at the end.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: No external torques act about
the z-axis, so is constant. We’ll use Eq. (10.30) to find the finalLz

2.2 kg # m23.0 kg # m2

angular velocity The moment of inertia of the system is
We treat each dumbbell as a particle of mass 

m that contributes to , where r is the perpendicular
distance from the axis to the dumbbell. Initially we have

The final moment of inertia is

From Eq. (10.30), the final angular velocity is

Can you see why we didn’t have to change “revolutions” to “radi-
ans” in this calculation?

EVALUATE: The angular momentum remained constant, but the angu-
lar velocity increased by a factor of 5, from 

to
The initial and final kinetic energies are then

The fivefold increase in kinetic energy came from the work that
the professor did in pulling his arms and the dumbbells inward.

K2 = 1
2 I2v2z

2 = 1
212.6 kg # m22115.7 rad>s22 = 320 J

K1 = 1
2I1v1z

2 = 1
2113 kg # m2213.14 rad>s22 = 64 J

15.7 rad>s.
v2z = 12.5 rev>s212p rad>rev2 =12p rad>rev2 = 3.14 rad>s

v1z = 10.50 rev>s2

v2z =
I1

I2
v1z =

13 kg # m2

2.6 kg # m2
10.50 rev>s2 = 2.5 rev>s = 5v1z

I2 = 2.2 kg # m2 + 215.0 kg210.20 m22 = 2.6 kg # m2

v1z =
1 rev

2.0 s
= 0.50 rev>s

I1 = 3.0 kg # m2 + 215.0 kg211.0 m22 = 13 kg # m2

Idumbbellsmr 2
Idumbbells.I = Iprof +

v2z.

AFTERBEFORE

Dumbbell

v1
v2

Dumbbell

Professor
(not a
dumbbell)

10.29 Fun with conservation of angular momentum.

Example 10.11 A rotational “collision”

Figure 10.30 shows two disks: an engine flywheel (A) and a clutch
plate (B) attached to a transmission shaft. Their moments of inertia
are and initially, they are rotating with constant angular
speeds and , respectively. We push the disks together with
forces acting along the axis, so as not to apply any torque on either
disk. The disks rub against each other and eventually reach a com-
mon angular speed Derive an expression for v.v.

vBvA

IB;IA

SOLUTION

IDENTIFY, SET UP, and EXECUTE: There are no external torques, so
the only torque acting on either disk is the torque applied by the
other disk. Hence the total angular momentum of the system of
two disks is conserved. At the end they rotate together as one body
with total moment of inertia and angular speed v.I = IA + IB

PhET: Torque
ActivPhysics 7.14: Ball Hits Bat
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Figure 10.30 shows that all angular velocities are in the same
direction, so we can regard and as components of angu-
lar velocity along the rotation axis. Conservation of angular
momentum gives

EVALUATE: This “collision” is analogous to a completely inelastic
collision (see Section 8.3). When two objects in translational
motion along the same axis collide and stick, the linear momentum
of the system is conserved. Here two objects in rotational motion
around the same axis “collide” and stick, and the angular momen-
tum of the system is conserved.

The kinetic energy of a system decreases in a completely inelas-
tic collision. Here kinetic energy is lost because nonconservative
(frictional) internal forces act while the two disks rub together. Sup-
pose flywheel A has a mass of 2.0 kg, a radius of 0.20 m, and an ini-
tial angular speed of (about 500 rpm), and clutch plate B
has a mass of 4.0 kg, a radius of 0.10 m, and an initial angular speed
of . Can you show that the final kinetic energy is only
two-thirds of the initial kinetic energy?

200 rad>s

50 rad>s

v =
IAvA + IBvB

IA + IB

IAvA + IBvB = 1IA + IB2v

vvB,vA,

BEFORE

AFTER

IA

IB

vA
vB

F
S

2F
S

IA 1 IB

v

F
S

2F
S

Forces F and 2F are along the axis of rotation,
and thus exert no torque about this axis on
either disk.

S S

10.30 When the net external torque is zero, angular momentum
is conserved.

Example 10.12 Angular momentum in a crime bust

A door 1.00 m wide, of mass 15 kg, can rotate freely about a verti-
cal axis through its hinges. A bullet with a mass of 10 g and a
speed of strikes the center of the door, in a direction per-
pendicular to the plane of the door, and embeds itself there. Find
the door’s angular speed. Is kinetic energy conserved?

SOLUTION

IDENTIFY and SET UP: We consider the door and bullet as a sys-
tem. There is no external torque about the hinge axis, so angular
momentum about this axis is conserved. Figure 10.31 shows our
sketch. The initial angular momentum is that of the bullet, as given
by Eq. (10.25). The final angular momentum is that of a rigid body

400 m>s

composed of the door and the embedded bullet. We’ll equate these
quantities and solve for the resulting angular speed of the door
and bullet.

EXECUTE: From Eq. (10.25), the initial angular momentum of the
bullet is

The final angular momentum is , where From
Table 9.2, case (d), for a door of width 

The moment of inertia of the bullet (with respect to the axis along
the hinges) is

Conservation of angular momentum requires that or

The initial and final kinetic energies are

EVALUATE: The final kinetic energy is only of the initial value!
We did not expect kinetic energy to be conserved: The collision is
inelastic because nonconservative friction forces act during the
impact. The door’s final angular speed is quite slow: At 
it takes 3.9 s to swing through 90° 1p>2 radians2.

0.40 rad>s,

1
2000

K2 = 1
2 Iv2 = 1

2 15.0025 kg # m2210.40 rad>s22 = 0.40 J

K1 = 1
2 mv2 = 1

2 10.010 kg21400 m>s22 = 800 J

v =
mvl

I
=

2.0 kg # m2>s

5.0 kg # m2 + 0.0025 kg # m2
= 0.40 rad>s

mvl = Iv,

Ibullet = ml 2 = 10.010 kg210.50 m22 = 0.0025 kg # m2

Idoor =
Md2

3
=
115 kg211.00 m22

3
= 5.0 kg # m2

d = 1.00 m,
I = Idoor + Ibullet.Iv

L = mvl = 10.010 kg21400 m>s210.50 m2 = 2.0 kg # m2>s

v

10.31 Our sketch for this problem.
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10.7 Gyroscopes and Precession
In all the situations we’ve looked at so far in this chapter, the axis of rotation
either has stayed fixed or has moved and kept the same direction (such as rolling
without slipping). But a variety of new physical phenomena, some quite unex-
pected, can occur when the axis of rotation can change direction. For example,
consider a toy gyroscope that’s supported at one end (Fig. 10.32). If we hold it
with the flywheel axis horizontal and let go, the free end of the axis simply drops
owing to gravity—if the flywheel isn’t spinning. But if the flywheel is spinning,
what happens is quite different. One possible motion is a steady circular motion
of the axis in a horizontal plane, combined with the spin motion of the flywheel
about the axis. This surprising, nonintuitive motion of the axis is called
precession. Precession is found in nature as well as in rotating machines such as
gyroscopes. As you read these words, the earth itself is precessing; its spin axis
(through the north and south poles) slowly changes direction, going through a
complete cycle of precession every 26,000 years.

To study this strange phenomenon of precession, we must remember that angu-
lar velocity, angular momentum, and torque are all vector quantities. In particular,
we need the general relationship between the net torque that acts on a body and
the rate of change of the body’s angular momentum given by Eq. (10.29),

Let’s first apply this equation to the case in which the flywheel is not
spinning (Fig. 10.33a). We take the origin O at the pivot and assume that the fly-
wheel is symmetrical, with mass M and moment of inertia I about the flywheel axis.
The flywheel axis is initially along the x-axis. The only external forces on the gyro-
scope are the normal force acting at the pivot (assumed to be frictionless) and the
weight of the flywheel that acts at its center of mass, a distance r from the pivot.
The normal force has zero torque with respect to the pivot, and the weight has a
torque in the y-direction, as shown in Fig. 10.33a. Initially, there is no rotation,
and the initial angular momentum is zero. From Eq. (10.29) the change in
angular momentum in a short time interval dt following this is

(10.32)

This change is in the y-direction because is. As each additional time interval dt
elapses, the angular momentum changes by additional increments in the 
y-direction because the direction of the torque is constant (Fig. 10.33b). The
steadily increasing horizontal angular momentum means that the gyroscope
rotates downward faster and faster around the y-axis until it hits either the stand
or the table on which it sits.

Now let’s see what happens if the flywheel is spinning initially, so the initial
angular momentum is not zero (Fig. 10.34a). Since the flywheel rotates 
around its symmetry axis, lies along the axis. But each change in angular 
momentum is perpendicular to the axis because the torque is per-
pendicular to the axis (Fig. 10.34b). This causes the direction of to change, but
not its magnitude. The changes are always in the horizontal xy-plane, so the
angular momentum vector and the flywheel axis with which it moves are always
horizontal. In other words, the axis doesn’t fall—it just precesses.

If this still seems mystifying to you, think about a ball attached to a string. If
the ball is initially at rest and you pull the string toward you, the ball moves
toward you also. But if the ball is initially moving and you continuously pull the
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Test Your Understanding of Section 10.6 If the polar ice caps were to com-
pletely melt due to global warming, the melted ice would redistribute itself over the earth.
This change would cause the length of the day (the time needed for the earth to rotate
once on its axis) to (i) increase; (ii) decrease; (iii) remain the same. (Hint: Use angular
momentum ideas. Assume that the sun, moon, and planets exert negligibly small torques
on the earth.) ❙

V

Rotation of
flywheel

Path followed
by free end of
axis

Flywheel
axis

Flywheel

Circular motion
of flywheel axis
(precession)

Pivot

v

When the flywheel and its axis are stationary,
they will fall to the table surface. When the
flywheel spins, it and its axis “float” in the air
while moving in a circle about the pivot.

10.32 A gyroscope supported at one
end. The horizontal circular motion of the
flywheel and axis is called precession. The
angular speed of precession is Æ.

When the flywheel is not rotating, its weight
creates a torque around the pivot, causing it
to fall along a circular path until its axis rests
on the table surface.

(b) View from above as flywheel falls

L f

y

x

5
S

Flywheel

Pivot

Pivot

t 5 r 3 w

Axis

Path of free end

(a) Nonrotating flywheel falls
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x

wS

rS

nS
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1L i 5 02
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O
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In falling, the flywheel rotates about the
pivot and thus acquires an angular momentum
L. The direction of L stays constant.
S S
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S
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S
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S
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S

10.33 (a) If the flywheel in Fig. 10.32
is initially not spinning, its initial angular
momentum is zero (b) In each successive
time interval dt, the torque produces a
change in the angular momen-
tum. The flywheel acquires an angular
momentum in the same direction as 
and the flywheel axis falls.

T
S,L

S

dL
S
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Sdt



string in a direction perpendicular to the ball’s motion, the ball moves in a circle
around your hand; it does not approach your hand at all. In the first case the ball
has zero linear momentum to start with; when you apply a force toward you
for a time dt, the ball acquires a momentum which is also toward
you. But if the ball already has linear momentum a change in momentum 
that’s perpendicular to changes the direction of motion, not the speed. Replace 

with and with in this argument, and you’ll see that precession is simply
the rotational analog of uniform circular motion.

At the instant shown in Fig. 10.34a, the gyroscope has angular momentum 
A short time interval dt later, the angular momentum is the infinitesimal 
change in angular momentum is which is perpendicular to As the vec-
tor diagram in Fig. 10.35 shows, this means that the flywheel axis of the gyroscope
has turned through a small angle given by The rate at which
the axis moves, is called the precession angular speed; denoting this
quantity by we find

(10.33)

Thus the precession angular speed is inversely proportional to the angular speed of
spin about the axis. A rapidly spinning gyroscope precesses slowly; if friction in its
bearings causes the flywheel to slow down, the precession angular speed increases!
The precession angular speed of the earth is very slow 
because its spin angular momentum is large and the torque due to the
gravitational influences of the moon and sun, is relatively small.

As a gyroscope precesses, its center of mass moves in a circle with radius r in
a horizontal plane. Its vertical component of acceleration is zero, so the upward
normal force exerted by the pivot must be just equal in magnitude to the
weight. The circular motion of the center of mass with angular speed requires
a force directed toward the center of the circle, with magnitude 
This force must also be supplied by the pivot.

One key assumption that we made in our analysis of the gyroscope was that
the angular momentum vector is associated only with the spin of the flywheel
and is purely horizontal. But there will also be a vertical component of angular
momentum associated with the precessional motion of the gyroscope. By
ignoring this, we’ve tacitly assumed that the precession is slow—that is, that
the precession angular speed is very much less than the spin angular speed

As Eq. (10.33) shows, a large value of automatically gives a small value
of so this approximation is reasonable. When the precession is not slow,
additional effects show up, including an up-and-down wobble or nutation of
the flywheel axis that’s superimposed on the precessional motion. You can see
nutation occurring in a gyroscope as its spin slows down, so that increases
and the vertical component of can no longer be ignored.L
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S
Now the effect of the torque is to cause
the angular momentum to precess around
the pivot. The gyroscope circles around
its pivot without falling.

When the flywheel is rotating, the system
starts with an angular momentum Li parallel
to the flywheel’s axis of rotation.

(a) Rotating flywheel

y

z

x
Li
S

v

(b) View from above
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x
O
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S

dL
S

dL
S

dL
S

dL
S

Lf
S

Li
S

Rotation of flywheel

Initial angular
momentum due to
rotation of flywheel

t Torque due to weight
force (as in Fig. 10.33)

S

10.34 (a) The flywheel is spinning
initially with angular momentum The
forces (not shown) are the same as those 
in Fig. 10.33a. (b) Because the initial
angular momentum is not zero, each
change in angular momentum 
is perpendicular to As a result, the mag-
nitude of remains the same but its direc-
tion changes continuously.
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In a time dt, the angular momentum
vector and the flywheel axis (to which
it is parallel) precess together through
an angle df.
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x
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S S

10.35 Detailed view of part of 
Fig. 10.34b.
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Example 10.13 A precessing gyroscope

Figure 10.36a shows a top view of a spinning, cylindrical gyro-
scope wheel. The pivot is at O, and the mass of the axle is negligi-
ble. (a) As seen from above, is the precession clockwise or
counterclockwise? (b) If the gyroscope takes 4.0 s for one revolu-
tion of precession, what is the angular speed of the wheel?

SOLUTION

IDENTIFY and SET UP: We’ll determine the direction of precession
using the right-hand rule as in Fig. 10.34, which shows the same
kind of gyroscope as Fig. 10.36. We’ll use the relationship
between precession angular speed and spin angular speed 
Eq. (10.33), to find 

EXECUTE: (a) The right-hand rule shows that and are to the
left in Fig. 10.36b. The weight points into the page in this top
view and acts at the center of mass (denoted by in the figure).
The torque is toward the top of the page, so isdL

S
>dtT

S
� rS : wS

wS
L
S

V
S

v.
v,Æ

also toward the top of the page. Adding a small to the initial
vector changes the direction of as shown, so the precession is
clockwise as seen from above.

(b) Be careful not to confuse and ! The precession angular
speed is .
The weight is mg, and if the wheel is a solid, uniform cylinder, 
its moment of inertia about its symmetry axis is From
Eq. (10.33),

EVALUATE: The precession angular speed is only about 0.6% of
the spin angular speed so this is an example of slow precession.v,

Æ

=
219.8 m>s2212.0 * 10-2 m2

13.0 * 10-2 m2211.57 rad>s2
= 280 rad>s = 2600 rev>min

v =
wr

IÆ
=

mgr

1mR2>22Æ
=

2gr

R2Æ

I = 1
2mR2.

Æ = 11 rev2>14.0 s2 = 12p rad2>14.0 s2 = 1.57 rad>s
Æv
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(a) Top view

(b) Vector
diagram
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Weight force
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page.

10.36 In which direction and at what speed does this gyroscope precess? 

Test Your Understanding of Section 10.7 Suppose the mass of the
flywheel in Fig. 10.34 were doubled but all other dimensions and the spin angular
speed remained the same. What effect would this change have on the precession angular
speed (i) would increase by a factor of 4; (ii) would double; (iii) would be
unaffected; (iv) would be one-half as much; (v) would be one-quarter as much. ❙ÆÆ

ÆÆÆÆ?



331

CHAPTER10 SUMMARY

t 5 r 3 F

Ftan 5 F sin f
r

O

l 5 r sin f
 5 lever arm

Frad 5 F cos f

f f
F
S

S

SS S

Torque: When a force acts on a body, the torque of
that force with respect to a point O has a magnitude
given by the product of the force magnitude F and the
lever arm l. More generally, torque is a vector equal to
the vector product of (the position vector of the point
at which the force acts) and (See Example 10.1.)F

S
 .

rS
T
S

F
S (10.2)

(10.3)T
S

� rS : F
S

t = Fl

Rotational dynamics: The rotational analog of 
Newton’s second law says that the net torque acting 
on a body equals the product of the body’s moment of
inertia and its angular acceleration. (See Examples 10.2
and 10.3.)

(10.7)a tz = Iaz

Combined translation and rotation: If a rigid body is
both moving through space and rotating, its motion can
be regarded as translational motion of the center of mass
plus rotational motion about an axis through the center
of mass. Thus the kinetic energy is a sum of translational
and rotational kinetic energies. For dynamics, Newton’s
second law describes the motion of the center of mass,
and the rotational equivalent of Newton’s second law
describes rotation about the center of mass. In the case of
rolling without slipping, there is a special relationship
between the motion of the center of mass and the rota-
tional motion. (See Examples 10.4–10.7.)

(10.8)

(10.12)

(10.13)

(rolling without slipping)
(10.11)vcm = Rv

a tz = Icm az

aF
S

ext � M aScm

K = 1
2 Mvcm

2 + 1
2 Icm v2

n
y

Mg

R
x

F

R

F

M

Work done by a torque: A torque that acts on a rigid
body as it rotates does work on that body. The work can
be expressed as an integral of the torque. The work–
energy theorem says that the total rotational work done
on a rigid body is equal to the change in rotational
kinetic energy. The power, or rate at which the torque
does work, is the product of the torque and the angular
velocity (See Example 10.8.)

vcm

vcm 5 0
v 5 0

h

1

2

R

M

v

(10.20)

(constant torque only)
(10.21)

(10.22)

(10.23)P = tz vz

Wtot = 1
2 Iv2

2 - 1
2 Iv1

2

W = tz1u2 - u12 = tz ¢u

W = L
u2

u1

tz du

Angular momentum: The angular momentum of a par-
ticle with respect to point O is the vector product of the
particle’s position vector relative to O and its momen-
tum When a symmetrical body rotates about a
stationary axis of symmetry, its angular momentum is
the product of its moment of inertia and its angular
velocity vector . If the body is not symmetrical or the
rotation axis is not an axis of symmetry, the compo-
nent of angular momentum along the rotation axis is

(See Example 10.9.)Ivz .

1z2
V
S

pS � mvS.
rS

(10.24)
(particle)

(rigid body rotating 
about axis of symmetry)
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Rotational dynamics and angular momentum: The net
external torque on a system is equal to the rate of
change of its angular momentum. If the net external
torque on a system is zero, the total angular momentum
of the system is constant (conserved). (See Examples
10.10–10.13.)
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S

dt



332 CHAPTER 10 Dynamics of Rotational Motion

A cue ball (a uniform solid sphere of mass m and radius R) is at
rest on a level pool table. Using a pool cue, you give the ball a
sharp, horizontal hit of magnitude F at a height h above the center
of the ball (Fig. 10.37). The force of the hit is much greater 
than the friction force ƒ that the table surface exerts on the ball.
The hit lasts for a short time . (a) For what value of 
h will the ball roll without slipping? (b) If you hit the ball dead
center , the ball will slide across the table for a while, but
eventually it will roll without slipping. What will the speed of its
center of mass be then?

1h = 02

¢t

BRIDGING PROBLEM Billiard Physics

3. Draw two free-body diagrams for the ball in part (b): one show-
ing the forces during the hit and the other showing the forces
after the hit but before the ball is rolling without slipping.

4. What is the angular speed of the ball in part (b) just after the
hit? While the ball is sliding, does increase or decrease?
Does increase or decrease? What is the relationship between

and when the ball is finally rolling without slipping?

EXECUTE
5. In part (a), use the impulse–momentum theorem to find the

speed of the ball’s center of mass immediately after the hit.
Then use the rotational version of the impulse–momentum the-
orem to find the angular speed immediately after the hit. (Hint:
To write down the rotational version of the impulse–momentum
theorem, remember that the relationship between torque and
angular momentum is the same as that between force and linear
momentum.)

6. Use your results from step 5 to find the value of h that will
cause the ball to roll without slipping immediately after the hit.

7. In part (b), again find the ball’s center-of-mass speed and
angular speed immediately after the hit. Then write Newton’s
second law for the translational motion and rotational motion
of the ball as it is sliding. Use these equations to write
expressions for and as functions of the elapsed time 
t since the hit.

8. Using your results from step 7, find the time t when and 
have the correct relationship for rolling without slipping. Then
find the value of at this time.

EVALUATE
9. If you have access to a pool table, test out the results of parts

(a) and (b) for yourself!
10. Can you show that if you used a hollow cylinder rather than a

solid ball, you would have to hit the top of the cylinder to
cause rolling without slipping as in part (a)?

vcm

vvcm

vvcm

vvcm

v

vcm

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q10.1 When cylinder-head bolts in an automobile engine are tight-
ened, the critical quantity is the torque applied to the bolts. Why is
the torque more important than the actual force applied to the
wrench handle?
Q10.2 Can a single force applied to a body change both its transla-
tional and rotational motion? Explain.
Q10.3 Suppose you could use wheels of any type in the design of a
soapbox-derby racer (an unpowered, four-wheel vehicle that
coasts from rest down a hill). To conform to the rules on the total
weight of the vehicle and rider, should you design with large mas-
sive wheels or small light wheels? Should you use solid wheels or
wheels with most of the mass at the rim? Explain.

Q10.4 A four-wheel-drive car is accelerating forward from rest.
Show the direction the car’s wheels turn and how this causes a
friction force due to the pavement that accelerates the car for-
ward.
Q10.5 Serious bicyclists say that if you reduce the weight of a
bike, it is more effective if you do so in the wheels rather than in
the frame. Why would reducing weight in the wheels make it
easier on the bicyclist than reducing the same amount in the
frame?
Q10.6 The harder you hit the brakes while driving forward, the
more the front end of your car will move down (and the rear end
move up). Why? What happens when cars accelerate forward?
Why do drag racers not use front-wheel drive only?

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems. 

mass mh

R

10.37

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution. 

IDENTIFY and SET UP
1. Draw a free-body diagram for the ball for the situation in part (a),

including your choice of coordinate axes. Note that the cue
exerts both an impulsive force on the ball and an impulsive
torque around the center of mass.

2. The cue force applied for a time gives the ball’s center of
mass a speed , and the cue torque applied for that same
time gives the ball an angular speed . What must be the
relationship between and for the ball to roll without
slipping?

vvcm

v

vcm

¢t

www.masteringphysics.com
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Q10.7 When an acrobat walks on a tightrope, she extends her arms
straight out from her sides. She does this to make it easier for her
to catch herself if she should tip to one side or the other. Explain
how this works. [Hint: Think about Eq. (10.7).]
Q10.8 When you turn on an electric motor, it takes longer to come
up to final speed if a grinding wheel is attached to the shaft. Why?
Q10.9 Experienced cooks can tell whether an egg is raw or hard-
boiled by rolling it down a slope (taking care to catch it at the bot-
tom). How is this possible? What are they looking for?
Q10.10 The work done by a force is the product of force and dis-
tance. The torque due to a force is the product of force and dis-
tance. Does this mean that torque and work are equivalent?
Explain.
Q10.11 A valued client brings a treasured ball to your engineering
firm, wanting to know whether the ball is solid or hollow. He has
tried tapping on it, but that has given insufficient information.
Design a simple, inexpensive experiment that you could perform
quickly, without injuring the precious ball, to find out whether it is
solid or hollow.
Q10.12 You make two versions of the same object out of the same
material having uniform density. For one version, all the dimen-
sions are exactly twice as great as for the other one. If the same
torque acts on both versions, giving the smaller version angular
acceleration , what will be the angular acceleration of the larger
version in terms of 
Q10.13 Two identical masses are attached to frictionless pulleys
by very light strings wrapped around the rim of the pulley and are
released from rest. Both pulleys have the same mass and same
diameter, but one is solid and the other is a hoop. As the masses
fall, in which case is the tension in the string greater, or is it the
same in both cases? Justify your answer.
Q10.14 The force of gravity acts on the baton in Fig. 10.11, and
forces produce torques that cause a body’s angular velocity to
change. Why, then, is the angular velocity of the baton in the figure
constant?
Q10.15 A certain solid uniform ball reaches a maximum height 
when it rolls up a hill without slipping. What maximum height (in
terms of ) will it reach if you (a) double its diameter, (b) double
its mass, (c) double both its diameter and mass, (d) double its
angular speed at the bottom of the hill?
Q10.16 A wheel is rolling without slipping on a horizontal surface.
In an inertial frame of reference in which the surface is at rest, is
there any point on the wheel that has a velocity that is purely verti-
cal? Is there any point that has a horizontal velocity component
opposite to the velocity of the center of mass? Explain. Do your
answers change if the wheel is slipping as it rolls? Why or why not?
Q10.17 Part of the kinetic energy of a moving automobile is in the
rotational motion of its wheels. When the brakes are applied hard
on an icy street, the wheels “lock” and the car starts to slide. What
becomes of the rotational kinetic energy?
Q10.18 A hoop, a uniform solid cylinder, a spherical shell, and a
uniform solid sphere are released from rest at the top of an incline.
What is the order in which they arrive at the bottom of the incline?
Does it matter whether or not the masses and radii of the objects
are all the same? Explain.
Q10.19 A ball is rolling along at speed without slipping on a hor-
izontal surface when it comes to a hill that rises at a constant angle
above the horizontal. In which case will it go higher up the hill: if
the hill has enough friction to prevent slipping or if the hill is per-
fectly smooth? Justify your answers in both cases in terms of
energy conservation and in terms of Newton’s second law.
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Q10.20 You are standing at the center of a large horizontal turntable
in a carnival funhouse. The turntable is set rotating on frictionless
bearings, and it rotates freely (that is, there is no motor driving the
turntable). As you walk toward the edge of the turntable, what hap-
pens to the combined angular momentum of you and the turntable?
What happens to the rotation speed of the turntable? Explain your
answer.
Q10.21 A certain uniform turntable of diameter has an angu-
lar momentum If you want to redesign it so it retains the same
mass but has twice as much angular momentum at the same
angular velocity as before, what should be its diameter in terms
of
Q10.22 A point particle travels in a straight line at constant speed,
and the closest distance it comes to the origin of coordinates is a
distance l. With respect to this origin, does the particle have
nonzero angular momentum? As the particle moves along its
straight-line path, does its angular momentum with respect to the
origin change?
Q10.23 In Example 10.10 (Section 10.6) the angular speed 
changes, and this must mean that there is nonzero angular acceler-
ation. But there is no torque about the rotation axis if the forces the
professor applies to the weights are directly, radially inward. Then,
by Eq. (10.7), must be zero. Explain what is wrong with this
reasoning that leads to this apparent contradiction.
Q10.24 In Example 10.10 (Section 10.6) the rotational kinetic
energy of the professor and dumbbells increases. But since there
are no external torques, no work is being done to change the rota-
tional kinetic energy. Then, by Eq. (10.22), the kinetic energy must
remain the same! Explain what is wrong with this reasoning that
leads to this apparent contradiction. Where does the extra kinetic
energy come from?
Q10.25 As discussed in Section 10.6, the angular momentum of a
circus acrobat is conserved as she tumbles through the air. Is her
linear momentum conserved? Why or why not?
Q10.26 If you stop a spinning raw egg for the shortest possible
instant and then release it, the egg will start spinning again. If you
do the same to a hard-boiled egg, it will remain stopped. Try it.
Explain it.
Q10.27 A helicopter has a large main rotor that rotates in a hori-
zontal plane and provides lift. There is also a small rotor on the tail
that rotates in a vertical plane. What is the purpose of the tail rotor?
(Hint: If there were no tail rotor, what would happen when the
pilot changed the angular speed of the main rotor?) Some helicop-
ters have no tail rotor, but instead have two large main rotors that
rotate in a horizontal plane. Why is it important that the two main
rotors rotate in opposite directions?
Q10.28 In a common design for a gyroscope, the flywheel and fly-
wheel axis are enclosed in a light, spherical frame with the fly-
wheel at the center of the frame. The gyroscope is then balanced
on top of a pivot so that the flywheel is directly above the pivot.
Does the gyroscope precess if it is released while the flywheel is
spinning? Explain.
Q10.29 A gyroscope takes 3.8 s to precess 1.0 revolution about a
vertical axis. Two minutes later, it takes only 1.9 s to precess 1.0
revolution. No one has touched the gyroscope. Explain.
Q10.30 A gyroscope is precessing as in Fig. 10.32. What happens
if you gently add some weight to the end of the flywheel axis far-
thest from the pivot?
Q10.31 A bullet spins on its axis as it emerges from a rifle. Explain
how this prevents the bullet from tumbling and keeps the stream-
lined end pointed forward.
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EXERCISES
Section 10.1 Torque
10.1 . Calculate the torque (magnitude and direction) about point 
O due to the force in each of the cases sketched in Fig. E10.1. In
each case, the force and the rod both lie in the plane of the 
page, the rod has length 4.00 m, and the force has magnitude
F = 10.0 N.
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S

(c)

(e)(d) (f)

(a) (b)

O

120.0°
F

O

60.0°

2.00 m

F

O
F

O
30.0°

F

O
60.0°

F

O

90.0° F

Figure E10.1

10.2 . Calculate the net torque about point O for the two forces
applied as in Fig. E10.2. The rod and both forces are in the plane of
the page.

F1 5 8.00 NF2 5 12.0 N

O
30.0°

2.00 m 3.00 m

Figure E10.2

10.3 .. A square metal plate 0.180 m on each side is pivoted
about an axis through point O at its center and perpendicular to the
plate (Fig. E10.3). Calculate the net torque about this axis due to
the three forces shown in the figure if the magnitudes of the forces
are and The plate and
all forces are in the plane of the page.

F3 = 14.0 N.F2 = 26.0 N,F1 = 18.0 N,

F2 F1

F3

45°

0.180 m

0.
18

0 
m

O

Figure E10.3

10.5 . One force acting on a machine part is 
The vector from the origin to the point where the force 

is applied is (a) In a sketch,
show and the origin. (b) Use the right-hand rule to determine
the direction of the torque. (c) Calculate the vector torque for an axis
at the origin produced by this force. Verify that the direction of the
torque is the same as you obtained in part (b).
10.6 . A metal bar is in the xy-plane with one end of the bar at the
origin. A force is applied to the bar
at the point . (a) In terms of unit vectors 
and , what is the position vector for the point where the force is
applied? (b) What are the magnitude and direction of the torque
with respect to the origin produced by ?
10.7 . In Fig. E10.7, forces 

and each have magnitude
50 N and act at the same point on
the object. (a) What torque (mag-
nitude and direction) does each of
these forces exert on the object
about point P? (b) What is the
total torque about point P?
10.8 . A machinist is using a
wrench to loosen a nut. The
wrench is 25.0 cm long, and he
exerts a 17.0-N force at the end of
the handle at 37° with the handle
(Fig. E10.8). (a) What torque 
does the machinist exert about 
the center of the nut? (b) What is
the maximum torque he could
exert with this force, and how
should the force be oriented?

Section 10.2 Torque and Angular Acceleration 
for a Rigid Body
10.9 .. The flywheel of an engine has moment of inertia

about its rotation axis. What constant torque is required
to bring it up to an angular speed of in 8.00 s, starting
from rest?
10.10 .. A uniform disk with mass 40.0 kg and radius 0.200 m 
is pivoted at its center about a horizontal, frictionless axle that is
stationary. The disk is initially at rest, and then a constant force

is applied tangent to the rim of the disk. (a) What is
the magnitude of the tangential velocity of a point on the rim of
the disk after the disk has turned through 0.200 revolution? (b) What
is the magnitude a of the resultant acceleration of a point on the
rim of the disk after the disk has turned through 0.200 revolution?
10.11 .. A machine part has the shape of a solid uniform sphere
of mass 225 g and diameter 3.00 cm. It is spinning about a friction-
less axle through its center, but at one point on its equator it is
scraping against metal, resulting in a friction force of 0.0200 N at
that point. (a) Find its angular acceleration. (b) How long will it
take to decrease its rotational speed by 
10.12 . A cord is wrapped around the rim of a solid uniform
wheel 0.250 m in radius and of mass 9.20 kg. A steady horizontal
pull of 40.0 N to the right is exerted on the cord, pulling it off tan-
gentially from the wheel. The wheel is mounted on frictionless
bearings on a horizontal axle through its center. (a) Compute the
angular acceleration of the wheel and the acceleration of the part
of the cord that has already been pulled off the wheel. (b) Find the
magnitude and direction of the force that the axle exerts on the

22.5 rad>s?
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17.0 N

37°
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Figure E10.8

10.4 . Three forces are applied to a wheel of radius 0.350 m, as
shown in Fig. E10.4. One force is perpendicular to the rim, one is
tangent to it, and the other one makes a 40.0° angle with the
radius. What is the net torque on the wheel due to these three
forces for an axis perpendicular to the wheel and passing through
its center?
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wheel. (c) Which of the answers in parts (a) and (b) would change
if the pull were upward instead of horizontal?
10.13 .. CP A 2.00-kg textbook rests on a frictionless, horizontal
surface. A cord attached to the book passes over a pulley whose
diameter is 0.150 m, to a hanging book with mass 3.00 kg. The sys-
tem is released from rest, and the books are observed to move 1.20 m
in 0.800 s. (a) What is the tension in each part of the cord? (b) What
is the moment of inertia of the pulley about its rotation axis?
10.14 .. CP A stone is suspended from the free end of a wire that
is wrapped around the outer rim of a pulley, similar to what is
shown in Fig. 10.10. The pulley is a uniform disk with mass 10.0 kg
and radius 50.0 cm and turns on frictionless bearings. You measure
that the stone travels 12.6 m in the first 3.00 s starting from rest.
Find (a) the mass of the stone and (b) the tension in the wire.
10.15 . A wheel rotates without friction about a stationary hori-
zontal axis at the center of the wheel. A constant tangential force
equal to 80.0 N is applied to the rim of the wheel. The wheel has
radius 0.120 m. Starting from rest, the wheel has an angular speed
of after 2.00 s. What is the moment of inertia of the
wheel?
10.16 .. CP A 15.0-kg bucket of water is suspended by a very light
rope wrapped around a solid uniform cylinder 0.300 m in diameter
with mass 12.0 kg. The cylinder pivots on a frictionless axle through
its center. The bucket is released from rest at the top of a well and
falls 10.0 m to the water. (a) What is the tension in the rope while the
bucket is falling? (b) With what speed does the bucket strike the
water? (c) What is the time of fall? (d) While the bucket is falling,
what is the force exerted on the cylinder by the axle?
10.17 .. A 12.0-kg box resting on a horizontal, frictionless surface
is attached to a 5.00-kg weight by a thin, light wire that passes over a
frictionless pulley (Fig. E10.17). The pulley has the shape of a uni-
form solid disk of mass 2.00 kg and diameter 0.500 m. After the sys-
tem is released, find (a) the tension in the wire on both sides of the
pulley, (b) the acceleration of the box, and (c) the horizontal and ver-
tical components of the force that the axle exerts on the pulley.

Section 10.3 Rigid-Body Rotation About a Moving Axis
10.18 . BIO Gymnastics. We can roughly model a gymnastic
tumbler as a uniform solid cylinder of mass 75 kg and diameter 1.0 m.
If this tumbler rolls forward at (a) how much total kinetic
energy does he have, and (b) what percent of his total kinetic energy is
rotational?
10.19 . A 2.20-kg hoop 1.20 m in diameter is rolling to the right
without slipping on a horizontal floor at a steady 
(a) How fast is its center moving? (b) What is the total kinetic
energy of the hoop? (c) Find the velocity vector of each of the fol-
lowing points, as viewed by a person at rest on the ground: (i) the
highest point on the hoop; (ii) the lowest point on the hoop; (iii) a
point on the right side of the hoop, midway between the top and
the bottom. (d) Find the velocity vector for each of the points in
part (c), but this time as viewed by someone moving along with
the same velocity as the hoop.

3.00 rad>s.

0.50 rev>s,

12.0 rev>s

10.20 .. A string is wrapped
several times around the rim of a
small hoop with radius 8.00 cm
and mass 0.180 kg. The free end
of the string is held in place and
the hoop is released from rest
(Fig. E10.20). After the hoop has
descended 75.0 cm, calculate (a)
the angular speed of the rotating
hoop and (b) the speed of its 
center.
10.21 . What fraction of the total kinetic energy is rotational for
the following objects rolling without slipping on a horizontal sur-
face? (a) a uniform solid cylinder; (b) a uniform sphere; (c) a thin-
walled, hollow sphere; (d) a hollow cylinder with outer radius R
and inner radius 
10.22 .. A hollow, spherical shell with mass 2.00 kg rolls without
slipping down a slope. (a) Find the acceleration, the friction
force, and the minimum coefficient of friction needed to prevent
slipping. (b) How would your answers to part (a) change if the
mass were doubled to 4.00 kg?
10.23 .. A solid ball is released from rest and slides down a hill-
side that slopes downward at from the horizontal. (a) What
minimum value must the coefficient of static friction between the
hill and ball surfaces have for no slipping to occur? (b) Would the
coefficient of friction calculated in part (a) be sufficient to prevent
a hollow ball (such as a soccer ball) from slipping? Justify your
answer. (c) In part (a), why did we use the coefficient of static fric-
tion and not the coefficient of kinetic friction?
10.24 .. A uniform marble rolls down a symmetrical bowl, start-
ing from rest at the top of the left side. The top of each side is a dis-
tance h above the bottom of the bowl. The left half of the bowl is
rough enough to cause the marble to roll without slipping, but the
right half has no friction because it is coated with oil. (a) How far
up the smooth side will the marble go, measured vertically from the
bottom? (b) How high would the marble go if both sides were as
rough as the left side? (c) How do you account for the fact that the
marble goes higher with friction on the right side than without
friction?
10.25 .. A 392-N wheel comes off a moving truck and rolls with-
out slipping along a highway. At the bottom of a hill it is rotating at

The radius of the wheel is 0.600 m, and its moment of
inertia about its rotation axis is Friction does work on
the wheel as it rolls up the hill to a stop, a height h above the bot-
tom of the hill; this work has absolute value 3500 J. Calculate h.
10.26 .. A Ball Rolling Uphill. A bowling ball rolls without
slipping up a ramp that slopes upward at an angle to the horizontal
(see Example 10.7 in Section 10.3). Treat the ball as a uniform solid
sphere, ignoring the finger holes.
(a) Draw the free-body diagram for
the ball. Explain why the friction
force must be directed uphill. (b)
What is the acceleration of the cen-
ter of mass of the ball? (c) What
minimum coefficient of static fric-
tion is needed to prevent slipping?
10.27 .. A thin, light string is
wrapped around the outer rim of a
uniform hollow cylinder of mass
4.75 kg having inner and outer
radii as shown in Fig. E10.27. The
cylinder is then released from rest.

b

0.800MR2.
25.0 rad>s.

65.0°

38.0°

R>2.

0.0800 m

Figure E10.20

5.00 kg

12.0 kg

Figure E10.17

35.0 cm

20.0 cm

Figure E10.27



Section 10.5 Angular Momentum
10.36 .. A woman with mass 50 kg is standing on the rim of a
large disk that is rotating at about an axis through its
center. The disk has mass 110 kg and radius 4.0 m. Calculate the
magnitude of the total angular momentum of the woman–disk
system. (Assume that you can treat the woman as a point.)
10.37 . A 2.00-kg rock has a
horizontal velocity of magni-
tude when it is at
point P in Fig. E10.37. (a) At
this instant, what are the magni-
tude and direction of its angular
momentum relative to point O?
(b) If the only force acting on
the rock is its weight, what is
the rate of change (magnitude
and direction) of its angular momentum at this instant?
10.38 .. (a) Calculate the magnitude of the angular momentum of
the earth in a circular orbit around the sun. Is it reasonable to
model it as a particle? (b) Calculate the magnitude of the angular
momentum of the earth due to its rotation around an axis through
the north and south poles, modeling it as a uniform sphere. Consult
Appendix E and the astronomical data in Appendix F.
10.39 .. Find the magnitude of the angular momentum of the 
second hand on a clock about an axis through the center of the
clock face. The clock hand has a length of 15.0 cm and a mass of
6.00 g. Take the second hand to be a slender rod rotating with con-
stant angular velocity about one end.
10.40 .. CALC A hollow, thin-walled sphere of mass 12.0 kg and
diameter 48.0 cm is rotating about an axle through its center. The
angle (in radians) through which it turns as a function of time (in
seconds) is given by where A has numerical
value 1.50 and B has numerical value 1.10. (a) What are the units
of the constants A and B? (b) At the time 3.00 s, find (i) the angular
momentum of the sphere and (ii) the net torque on the sphere.

Section 10.6 Conservation of Angular Momentum
10.41 .. Under some circumstances, a star can collapse into an
extremely dense object made mostly of neutrons and called a
neutron star. The density of a neutron star is roughly times as
great as that of ordinary solid matter. Suppose we represent the star
as a uniform, solid, rigid sphere, both before and after the collapse.
The star’s initial radius was (comparable to our
sun); its final radius is 16 km. If the original star rotated once in 30
days, find the angular speed of the neutron star.
10.42 . CP A small block on a
frictionless, horizontal surface
has a mass of 0.0250 kg. It is
attached to a massless cord pass-
ing through a hole in the surface
(Fig. E10.42). The block is origi-
nally revolving at a distance of
0.300 m from the hole with an
angular speed of The
cord is then pulled from below,
shortening the radius of the cir-
cle in which the block revolves
to 0.150 m. Model the block as a particle. (a) Is the angular momen-
tum of the block conserved? Why or why not? (b) What is the new
angular speed? (c) Find the change in kinetic energy of the block.
(d) How much work was done in pulling the cord?

1.75 rad>s.

7.0 * 105 km

1014

u1t2 = At 2 + Bt 4,

12.0 m>s

0.50 rev>s
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Figure E10.42

(a) How far must the cylinder fall before its center is moving at
(b) If you just dropped this cylinder without any string,

how fast would its center be moving when it had fallen the distance
in part (a)? (c) Why do you get two different answers when the cylin-
der falls the same distance in both cases?
10.28 .. A bicycle racer is going downhill at when, to his
horror, one of his 2.25-kg wheels comes off as he is 75.0 m above the
foot of the hill. We can model the wheel as a thin-walled cylinder
85.0 cm in diameter and neglect the small mass of the spokes. 
(a) How fast is the wheel moving when it reaches the foot of the
hill if it rolled without slipping all the way down? (b) How much
total kinetic energy does the wheel have when it reaches the bottom
of the hill?
10.29 .. A size-5 soccer ball of diameter 22.6 cm and mass 426 g
rolls up a hill without slipping, reaching a maximum height of 
5.00 m above the base of the hill. We can model this ball as a
thin-walled hollow sphere. (a) At what rate was it rotating at the
base of the hill? (b) How much rotational kinetic energy did it
have then?

Section 10.4 Work and Power in Rotational Motion
10.30 . An engine delivers 175 hp to an aircraft propeller at

(a) How much torque does the aircraft engine pro-
vide? (b) How much work does the engine do in one revolution of
the propeller?
10.31 . A playground merry-go-round has radius 2.40 m and
moment of inertia about a vertical axle through its center,
and it turns with negligible friction. (a) A child applies an 18.0-N force
tangentially to the edge of the merry-go-round for 15.0 s. If the merry-
go-round is initially at rest, what is its angular speed after this 15.0-s
interval? (b) How much work did the child do on the merry-go-round?
(c) What is the average power supplied by the child?
10.32 .. An electric motor consumes 9.00 kJ of electrical energy in
1.00 min. If one-third of this energy goes into heat and other forms of
internal energy of the motor, with the rest going to the motor output,
how much torque will this engine develop if you run it at 2500 rpm?
10.33 . A 1.50-kg grinding wheel is in the form of a solid cylinder
of radius 0.100 m. (a) What constant torque will bring it from rest
to an angular speed of in 2.5 s? (b) Through what
angle has it turned during that time? (c) Use Eq. (10.21) to calcu-
late the work done by the torque. (d) What is the grinding wheel’s
kinetic energy when it is rotating at Compare your
answer to the result in part (c).
10.34 .. An airplane propeller is 2.08 m in length (from tip to tip)
and has a mass of 117 kg. When the airplane’s engine is first
started, it applies a constant torque of to the propeller,
which starts from rest. (a) What is the angular acceleration of the
propeller? Model the propeller as a slender rod and see Table 9.2.
(b) What is the propeller’s angular speed after making 5.00 revolu-
tions? (c) How much work is done by the engine during the first
5.00 revolutions? (d) What is the average power output of the
engine during the first 5.00 revolutions? (e) What is the instanta-
neous power output of the motor at the instant that the propeller
has turned through 5.00 revolutions?
10.35 . (a) Compute the torque developed by an industrial motor
whose output is 150 kW at an angular speed of 
(b) A drum with negligible mass, 0.400 m in diameter, is attached
to the motor shaft, and the power output of the motor is used to
raise a weight hanging from a rope wrapped around the drum. How
heavy a weight can the motor lift at constant speed? (c) At what
constant speed will the weight rise?

4000 rev>min.

1950 N # m

1200 rev>min?

1200 rev>min

2100 kg # m2

2400 rev>min.

11.0 m>s

6.66 m>s?

36.9°

v 5 12.0 m/s

8.00 m

P

O

Figure E10.37
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10.43 .. The Spinning Figure
Skater. The outstretched hands
and arms of a figure skater
preparing for a spin can be con-
sidered a slender rod pivoting
about an axis through its center
(Fig. E10.43). When the skater’s
hands and arms are brought in
and wrapped around his body to
execute the spin, the hands and
arms can be considered a thin-
walled, hollow cylinder. His hands and arms have a combined mass of
8.0 kg. When outstretched, they span 1.8 m; when wrapped, they form
a cylinder of radius 25 cm. The moment of inertia about the rotation
axis of the remainder of his body is constant and equal to 
If his original angular speed is what is his final angular
speed?
10.44 .. A diver comes off a board with arms straight up and legs
straight down, giving her a moment of inertia about her rotation
axis of She then tucks into a small ball, decreasing this
moment of inertia to While tucked, she makes two
complete revolutions in 1.0 s. If she hadn’t tucked at all, how many
revolutions would she have made in the 1.5 s from board to water?
10.45 .. A large wooden turntable in the shape of a flat uniform
disk has a radius of 2.00 m and a total mass of 120 kg. The
turntable is initially rotating at about a vertical axis
through its center. Suddenly, a 70.0-kg parachutist makes a soft
landing on the turntable at a point near the outer edge. (a) Find the
angular speed of the turntable after the parachutist lands. (Assume
that you can treat the parachutist as a particle.) (b) Compute the
kinetic energy of the system before and after the parachutist lands.
Why are these kinetic energies not equal?
10.46 .. A solid wood door 1.00 m wide and 2.00 m high is
hinged along one side and has a total mass of 40.0 kg. Initially open
and at rest, the door is struck at its center by a handful of sticky mud
with mass 0.500 kg, traveling perpendicular to the door at 
just before impact. Find the final angular speed of the door. Does
the mud make a significant contribution to the moment of inertia?
10.47 .. A small 10.0-g bug stands at one end of a thin uniform
bar that is initially at rest on a smooth horizontal table. The other
end of the bar pivots about a nail driven into the table and can rotate
freely, without friction. The bar has mass 50.0 g and is 100 cm in
length. The bug jumps off in the horizontal direction, perpendicular
to the bar, with a speed of relative to the table. (a) What
is the angular speed of the bar just after the frisky insect leaps? (b)
What is the total kinetic energy of the system just after the bug
leaps? (c) Where does this energy come from?
10.48 .. Asteroid Collision! Suppose that an asteroid traveling
straight toward the center of the earth were to collide with our planet
at the equator and bury itself just below the surface. What would
have to be the mass of this asteroid, in terms of the earth’s mass M,
for the day to become 25.0% longer than it presently is as a result of
the collision? Assume that the asteroid is very small compared to the
earth and that the earth is uniform throughout.
10.49 .. A thin, uniform metal bar, 2.00 m long and weighing
90.0 N, is hanging vertically from the ceiling by a frictionless
pivot. Suddenly it is struck 1.50 m below the ceiling by a small
3.00-kg ball, initially traveling horizontally at The ball
rebounds in the opposite direction with a speed of 
(a) Find the angular speed of the bar just after the collision. 
(b) During the collision, why is the angular momentum conserved
but not the linear momentum?

6.00 m>s.
10.0 m>s.

20.0 cm>s

12.0 m>s

3.00 rad>s

3.6 kg # m2.
18 kg # m2.

0.40 rev>s,
0.40 kg # m2.

10.50 .. A thin uniform rod has a length of 0.500 m and is rotating
in a circle on a frictionless table. The axis of rotation is perpendicular
to the length of the rod at one end and is stationary. The rod has an
angular velocity of and a moment of inertia about the
axis of . A bug initially standing on the rod at
the axis of rotation decides to crawl out to the other end of the rod.
When the bug has reached the end of the rod and sits there, its tan-
gential speed is . The bug can be treated as a point mass.
(a) What is the mass of the rod? (b) What is the mass of the bug?
10.51 .. A uniform, 4.5-kg, square, solid wooden gate 1.5 m on
each side hangs vertically from a frictionless pivot at the center of
its upper edge. A 1.1-kg raven flying horizontally at flies
into this door at its center and bounces back at in the oppo-
site direction. (a) What is the angular speed of the gate just after it
is struck by the unfortunate raven? (b) During the collision, why is
the angular momentum conserved, but not the linear momentum?
10.52 .. Sedna. In November 2003, the now-most-distant-known
object in the solar system was discovered by observation with a tele-
scope on Mt. Palomar. This object, known as Sedna, is approximately
1700 km in diameter, takes about 10,500 years to orbit our sun, and
reaches a maximum speed of . Calculations of its complete
path, based on several measurements of its position, indicate that its
orbit is highly elliptical, varying from 76 AU to 942 AU in its distance
from the sun, where AU is the astronomical unit, which is the average
distance of the earth from the sun (a) What is
Sedna’s minimum speed? (b) At what points in its orbit do its maxi-
mum and minimum speeds occur? (c) What is the ratio of Sedna’s
maximum kinetic energy to its minimum kinetic energy?

Section 10.7 Gyroscopes and Precession
10.53 .. The rotor (flywheel) of a toy gyroscope has mass 0.140
kg. Its moment of inertia about its axis is The
mass of the frame is 0.0250 kg. The gyroscope is supported on a
single pivot (Fig. E10.53) with its center of mass a horizontal dis-
tance of 4.00 cm from the pivot. The gyroscope is precessing in a
horizontal plane at the rate of one revolution in 2.20 s. (a) Find the
upward force exerted by the pivot. (b) Find the angular speed with
which the rotor is spinning about its axis, expressed in 
(c) Copy the diagram and draw vectors to show the angular
momentum of the rotor and the torque acting on it.

10.54 . A Gyroscope on the Moon. A certain gyroscope pre-
cesses at a rate of when used on earth. If it were taken
to a lunar base, where the acceleration due to gravity is 0.165g,
what would be its precession rate?
10.55 . A gyroscope is precessing about a vertical axis. Describe
what happens to the precession angular speed if the following
changes in the variables are made, with all other variables remaining
the same: (a) the angular speed of the spinning flywheel is doubled;
(b) the total weight is doubled; (c) the moment of inertia about the
axis of the spinning flywheel is doubled; (d) the distance from the

0.50 rad>s

rev>min.

1.20 * 10-4 kg # m2.

(1.50 * 108 km).

4.64 km>s

2.0 m>s
5.0 m>s

0.160 m>s

3.00 * 10-3 kg # m2
0.400 rad>s

Figure E10.43

4.00 cm

Rotor

Figure E10.53



pivot to the center of gravity is doubled. (e) What happens if all four
of the variables in parts (a) through (d) are doubled?
10.56 . Stabilization of the Hubble Space Telescope. The
Hubble Space Telescope is stabilized to within an angle of about 
2-millionths of a degree by means of a series of gyroscopes that
spin at 19,200 rpm. Although the structure of these gyroscopes is
actually quite complex, we can model each of the gyroscopes as a
thin-walled cylinder of mass 2.0 kg and diameter 5.0 cm, spinning
about its central axis. How large a torque would it take to cause
these gyroscopes to precess through an angle of degree
during a 5.0-hour exposure of a galaxy?

PROBLEMS
10.57 .. A 50.0-kg grindstone is a solid disk 0.520 m in diameter.
You press an ax down on the rim with a normal force of 160 N 
(Fig. P10.57). The coefficient of kinetic friction between the blade
and the stone is 0.60, and there is a constant friction torque of

between the axle of the stone and its bearings. (a) How
much force must be applied tangentially at the end of a crank handle
0.500 m long to bring the stone from rest to in 9.00 s?
(b) After the grindstone attains an angular speed of 
what tangential force at the end of the handle is needed to maintain a
constant angular speed of (c) How much time does it
take the grindstone to come from to rest if it is acted
on by the axle friction alone?

10.58 .. An experimental bicycle wheel is placed on a test stand
so that it is free to turn on its axle. If a constant net torque of

is applied to the tire for 2.00 s, the angular speed of the
tire increases from 0 to The external torque is then
removed, and the wheel is brought to rest by friction in its bearings
in 125 s. Compute (a) the moment of inertia of the wheel about the
rotation axis; (b) the friction torque; (c) the total number of revolu-
tions made by the wheel in the 125-s time interval.
10.59 ... A grindstone in the shape of a solid disk with diameter
0.520 m and a mass of 50.0 kg is rotating 
at You press an ax against 
the rim with a normal force of 160 N 
(Fig. P10.57), and the grindstone comes to
rest in 7.50 s. Find the coefficient of fric-
tion between the ax and the grindstone.
You can ignore friction in the bearings.
10.60 ... A uniform, 8.40-kg, spherical
shell 50.0 cm in diameter has four small
2.00-kg masses attached to its outer sur-
face and equally spaced around it. This

850 rev>min.

100 rev>min.
7.00 N # m

120 rev>min
120 rev>min?

120 rev>min,
120 rev>min

6.50 N # m

1.0 * 10-6
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m 5 50.0 kg

F 5 160 N

v

Figure P10.57

combination is spinning about an axis running through the center
of the sphere and two of the small masses (Fig. P10.60). What fric-
tion torque is needed to reduce its angular speed from 75.0 rpm to
50.0 rpm in 30.0 s?
10.61 ... A solid uniform cylinder with mass 8.25 kg and diame-
ter 15.0 cm is spinning at 220 rpm on a thin, frictionless axle that
passes along the cylinder axis. You design a simple friction brake
to stop the cylinder by pressing the brake against the outer rim
with a normal force. The coefficient of kinetic friction between the
brake and rim is 0.333. What must the applied normal force be to
bring the cylinder to rest after it has turned through 5.25 revolu-
tions?
10.62 ... A uniform hollow
disk has two pieces of thin, light
wire wrapped around its outer
rim and is supported from the
ceiling (Fig. P10.62). Suddenly
one of the wires breaks, and the
remaining wire does not slip as
the disk rolls down. Use energy
conservation to find the speed
of the center of this disk after it
has fallen a distance of 2.20 m.
10.63 ... A thin, uniform,
3.80-kg bar, 80.0 cm long, has
very small 2.50-kg balls glued
on at either end (Fig. P10.63).
It is supported horizontally by
a thin, horizontal, frictionless
axle passing through its center
and perpendicular to the bar.
Suddenly the right-hand ball becomes detached and falls off, but
the other ball remains glued to the bar. (a) Find the angular acceler-
ation of the bar just after the ball falls off. (b) Will the angular
acceleration remain constant as the bar continues to swing? If not,
will it increase or decrease? (c) Find the angular velocity of the bar
just as it swings through its vertical position.
10.64 ... While exploring a castle, Exena the Exterminator is spot-
ted by a dragon that chases her down a hallway. Exena runs into a
room and attempts to swing the heavy door shut before the dragon
gets her. The door is initially perpendicular to the wall, so it must be
turned through to close. The door is 3.00 m tall and 1.25 m wide,
and it weighs 750 N. You can ignore the friction at the hinges. If
Exena applies a force of 220 N at the edge of the door and perpendi-
cular to it, how much time does it take her to close the door?
10.65 .. CALC You connect a light string to a point on the edge of
a uniform vertical disk with radius R and mass M. The disk is free
to rotate without friction about a stationary horizontal axis through
its center. Initially, the disk is at rest with the string connection at
the highest point on the disk. You pull the string with a constant
horizontal force until the wheel has made exactly one-quarter
revolution about a horizontal axis through its center, and then you
let go. (a) Use Eq. (10.20) to find the work done by the string. (b)
Use Eq. (6.14) to find the work done by the string. Do you obtain
the same result as in part (a)? (c) Find the final angular speed of the
disk. (d) Find the maximum tangential acceleration of a point on
the disk. (e) Find the maximum radial (centripetal) acceleration of
a point on the disk.
10.66 ... Balancing Act. Attached to one end of a long, thin,
uniform rod of length L and mass M is a small blob of clay of the
same mass M. (a) Locate the position of the center of mass of the
system of rod and clay. Note this position on a drawing of the rod.

F
S

90°

Spin axis

Figure P10.60

50.0 cm

30.0
cm

Figure P10.62

Axle (seen end-on)

2.50 kg

Bar

2.50 kg

Figure P10.63
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(b) You carefully balance the rod on a frictionless tabletop so that it
is standing vertically, with the end without the clay touching the
table. If the rod is now tipped so that it is a small angle away
from the vertical, determine its angular acceleration at this instant.
Assume that the end without the clay remains in contact with the
tabletop. (Hint: See Table 9.2.) (c) You again balance the rod on
the frictionless tabletop so that it is standing vertically, but now the
end of the rod with the clay is touching the table. If the rod is again
tipped so that it is a small angle away from the vertical, deter-
mine its angular acceleration at this instant. Assume that the end
with the clay remains in contact with the tabletop. How does this
compare to the angular acceleration in part (b)? (d) A pool cue is a
tapered wooden rod that is thick at one end and thin at the other.
You can easily balance a pool cue vertically on one finger if the
thin end is in contact with your finger; this is quite a bit harder to
do if the thick end is in contact with your finger. Explain why there
is a difference.
10.67 .. Atwood’s Machine. Figure
P10.67 illustrates an Atwood’s machine.
Find the linear accelerations of blocks A
and B, the angular acceleration of the
wheel C, and the tension in each side of
the cord if there is no slipping between the
cord and the surface of the wheel. Let the
masses of blocks A and B be 4.00 kg 
and 2.00 kg, respectively, the moment of
inertia of the wheel about its axis be

and the radius of the wheel
be 0.120 m.
10.68 ... The mechanism shown in Fig.
P10.68 is used to raise a crate of supplies
from a ship’s hold. The crate has total mass

. A rope is wrapped around a wooden
cylinder that turns on a metal
axle. The cylinder has radius

and moment of inertia
about the axle.

The crate is suspended from the
free end of the rope. One end of
the axle pivots on frictionless
bearings; a crank handle is
attached to the other end. When
the crank is turned, the end of
the handle rotates about the axle
in a vertical circle of radius , the cylinder turns, and the crate
is raised. What magnitude of the force applied tangentially to the
rotating crank is required to raise the crate with an acceleration of

(You can ignore the
mass of the rope as well as the
moments of inertia of the axle
and the crank.)
10.69 .. A large 16.0-kg roll of
paper with radius 
rests against the wall and is held
in place by a bracket attached to
a rod through the center of the
roll (Fig. P10.69). The rod turns
without friction in the bracket,
and the moment of inertia of the
paper and rod about the axis is

The other end 
of the bracket is attached by a
0.260 kg # m2.

R = 18.0 cm

1.40 m>s2?

F
S

0.12 m

I = 2.9 kg # m2
0.25 m

50 kg

0.300 kg # m2,

u

u

frictionless hinge to the wall such that the bracket makes an angle
of with the wall. The weight of the bracket is negligible. The
coefficient of kinetic friction between the paper and the wall is

A constant vertical force is applied to the
paper, and the paper unrolls. (a) What is the magnitude of the force
that the rod exerts on the paper as it unrolls? (b) What is the mag-
nitude of the angular acceleration of the roll?
10.70 .. A block with mass

slides down a 
surface inclined to the
horizontal (Fig. P10.70). The
coefficient of kinetic friction is
0.25. A string attached to the
block is wrapped around a fly-
wheel on a fixed axis at O. The
flywheel has mass 25.0 kg and
moment of inertia 
with respect to the axis of rota-
tion. The string pulls without slipping at a perpendicular distance
of 0.200 m from that axis. (a) What is the acceleration of the block
down the plane? (b) What is the tension in the string?
10.71 ... Two metal disks, one with radius and
mass and the other with radius and
mass are welded together and mounted on a fric-
tionless axis through their common center, as in Problem 9.87. 
(a) A light string is wrapped around the edge of the smaller disk,
and a 1.50-kg block is suspended from the free end of the string.
What is the magnitude of the downward acceleration of the block
after it is released? (b) Repeat the calculation of part (a), this time
with the string wrapped around the edge of the larger disk. In
which case is the acceleration of the block greater? Does your
answer make sense?
10.72 .. A lawn roller in the form of a thin-walled, hollow cylin-
der with mass M is pulled horizontally with a constant horizontal
force F applied by a handle attached to the axle. If it rolls without
slipping, find the acceleration and the friction force.
10.73 . Two weights are con-
nected by a very light, flexible
cord that passes over an 80.0-N
frictionless pulley of radius
0.300 m. The pulley is a solid
uniform disk and is supported by
a hook connected to the ceiling
(Fig. P10.73). What force does
the ceiling exert on the hook?
10.74 .. A solid disk is rolling
without slipping on a level sur-
face at a constant speed of

(a) If the disk rolls up
a ramp, how far along the
ramp will it move before it stops? (b) Explain why your answer in
part (a) does not depend on either the mass or the radius of the
disk.
10.75 . The Yo-yo. A yo-yo is made from two uniform disks,
each with mass m and radius R, connected by a light axle of radius
b. A light, thin string is wound several times around the axle and
then held stationary while the yo-yo is released from rest, dropping
as the string unwinds. Find the linear acceleration and angular
acceleration of the yo-yo and the tension in the string.
10.76 .. CP A thin-walled, hollow spherical shell of mass m and
radius r starts from rest and rolls without slipping down the track
shown in Fig. P10.76. Points A and B are on a circular part of the

30.0°
3.60 m>s.

M2 = 1.60 kg,
R2 = 5.00 cmM1 = 0.80 kg
R1 = 2.50 cm

0.500 kg # m2

36.9°
m = 5.00 kg

F = 60.0 Nmk = 0.25.

30.0°

0.12 m

F

Figure P10.68

A

B

C

Figure P10.67

30.0°

60.0 N

R

Figure P10.69

5.00 kg

36.9°

O

Figure P10.70

125 N

75.0 N

Figure P10.73
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track having radius R. The diameter of the shell is very small com-
pared to and R, and the work done by rolling friction is negligi-
ble. (a) What is the minimum height h0 for which this shell will
make a complete loop-the-loop on the circular part of the track?
(b) How hard does the track push on the shell at point B, which is
at the same level as the center of the circle? (c) Suppose that the
track had no friction and the shell was released from the same
height you found in part (a). Would it make a complete loop-
the-loop? How do you know? (d) In part (c), how hard does the
track push on the shell at point A, the top of the circle? How hard
did it push on the shell in part (a)?

10.77 . Starting from rest, a constant force is applied
to the free end of a 50-m cable wrapped around the outer rim of a
uniform solid cylinder, similar to the situation shown in Fig.
10.9(a). The cylinder has mass 4.00 kg and diameter 30.0 cm and
is free to turn about a fixed, frictionless axle through its center. 
(a) How long does it take to unwrap all the cable, and how fast is
the cable moving just as the last bit comes off? (b) Now suppose
that the cylinder is replaced by a uniform hoop, with all other
quantities remaining unchanged. In this case, would the answers in
part (a) be larger or smaller? Explain.
10.78 .. As shown in Fig. E10.20, a string is wrapped several
times around the rim of a small hoop with radius 0.0800 m and
mass 0.180 kg. The free end of the string is pulled upward in just
the right way so that the hoop does not move vertically as the
string unwinds. (a) Find the tension in the string as the string
unwinds. (b) Find the angular acceleration of the hoop as the string
unwinds. (c) Find the upward acceleration of the hand that pulls on
the free end of the string. (d) How would your answers be different
if the hoop were replaced by a solid disk of the same mass and
radius?
10.79 .. A basketball (which can be closely modeled as a hollow
spherical shell) rolls down a mountainside into a valley and then
up the opposite side, starting from rest at a height above the
bottom. In Fig. P10.79, the rough part of the terrain prevents slip-
ping while the smooth part has no friction. (a) How high, in terms
of will the ball go up the other side? (b) Why doesn’t the ball
return to height Has it lost any of its original potential energy?

10.80 . CP A uniform marble rolls without slipping down the
path shown in Fig. P10.80, starting from rest. (a) Find the mini-
mum height h required for the marble not to fall into the pit. 

H0?
H0,

H0

F = 100 N

h0

h0

A

B

Shell

R

h0

Figure P10.76

(b) The moment of inertia of the
marble depends on its radius.
Explain why the answer to part
(a) does not depend on the
radius of the marble. (c) Solve
part (a) for a block that slides
without friction instead of the
rolling marble. How does the
minimum h in this case compare
to the answer in part (a)?
10.81 .. Rolling Stones. A
solid, uniform, spherical boulder
starts from rest and rolls down a
50.0-m-high hill, as shown in 
Fig. P10.81. The top half of the
hill is rough enough to cause the
boulder to roll without slipping,
but the lower half is covered
with ice and there is no friction.
What is the translational speed
of the boulder when it reaches
the bottom of the hill?
10.82 .. CP A solid uniform
ball rolls without slipping up a
hill, as shown in Fig. P10.82. At
the top of the hill, it is moving
horizontally, and then it goes over
the vertical cliff. (a) How far from
the foot of the cliff does the ball
land, and how fast is it moving
just before it lands? (b) Notice that when the balls lands, it has a
greater translational speed than when it was at the bottom of the hill.
Does this mean that the ball somehow gained energy? Explain!
10.83 .. A 42.0-cm-diameter wheel, consisting of a rim and six
spokes, is constructed from a thin, rigid plastic material having a
linear mass density of This wheel is released from rest
at the top of a hill 58.0 m high. (a) How fast is it rolling when it
reaches the bottom of the hill? (b) How would your answer change
if the linear mass density and the diameter of the wheel were each
doubled?
10.84 .. A child rolls a 0.600-kg basketball up a long ramp. The
basketball can be considered a thin-walled, hollow sphere. When
the child releases the basketball at the bottom of the ramp, it has a
speed of When the ball returns to her after rolling up the
ramp and then rolling back down, it has a speed of 
Assume the work done by friction on the basketball is the same
when the ball moves up or down the ramp and that the basketball
rolls without slipping. Find the maximum vertical height increase
of the ball as it rolls up the ramp.
10.85 .. CP In a lab experiment you let a uniform ball roll down
a curved track. The ball starts from rest and rolls without slipping.
While on the track, the ball descends a vertical distance h. The
lower end of the track is horizontal and extends over the edge of
the lab table; the ball leaves the track traveling horizontally. While
free-falling after leaving the track, the ball moves a horizontal dis-
tance x and a vertical distance y. (a) Calculate x in terms of h and y,
ignoring the work done by friction. (b) Would the answer to part
(a) be any different on the moon? (c) Although you do the experi-
ment very carefully, your measured value of x is consistently a bit
smaller than the value calculated in part (a). Why? (d) What would
x be for the same h and y as in part (a) if you let a silver dollar roll
down the track? You can ignore the work done by friction.

4.0 m>s.
8.0 m>s.

25.0 g>cm.

SmoothRough
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10.86 .. A uniform drawbridge 8.00 m long is attached to the
roadway by a frictionless hinge at one end, and it can be raised by
a cable attached to the other end. The bridge is at rest, suspended 
at above the horizontal, when the cable suddenly breaks. 
(a) Find the angular acceleration of the drawbridge just after the
cable breaks. (Gravity behaves as though it all acts at the center of
mass.) (b) Could you use the equation to calculate
the angular speed of the drawbridge at a later time? Explain why.
(c) What is the angular speed of the drawbridge as it becomes 
horizontal?
10.87 . A uniform solid cylinder with mass M and radius 2R rests
on a horizontal tabletop. A string is attached by a yoke to a friction-
less axle through the center of the cylinder so that the cylinder can
rotate about the axle. The string runs over a disk-shaped pulley with
mass M and radius R that is mounted on a frictionless axle through its
center. A block of mass M is suspended from the free end of the string
(Fig. P10.87). The string doesn’t slip over the pulley surface, and the
cylinder rolls without slipping on the tabletop. Find the magnitude of
the acceleration of the block after the system is released from rest.

10.88 ... A uniform, 0.0300-kg rod of length 0.400 m rotates in a
horizontal plane about a fixed axis through its center and perpendi-
cular to the rod. Two small rings, each with mass 0.0200 kg, are
mounted so that they can slide along the rod. They are initially
held by catches at positions 0.0500 m on each side of the center of
the rod, and the system is rotating at With no other
changes in the system, the catches are released, and the rings slide
outward along the rod and fly off at the ends. (a) What is the angu-
lar speed of the system at the instant when the rings reach the ends
of the rod? (b) What is the angular speed of the rod after the rings
leave it?
10.89 ... A 5.00-kg ball is dropped from a height of 12.0 m above
one end of a uniform bar that pivots at its center. The bar has mass
8.00 kg and is 4.00 m in length. At the other end of the bar sits
another 5.00-kg ball, unattached to the bar. The dropped ball sticks
to the bar after the collision. How high will the other ball go after
the collision?
10.90 .. Tarzan and Jane in the 21st Century. Tarzan has
foolishly gotten himself into another scrape with the animals and
must be rescued once again by Jane. The 60.0-kg Jane starts from
rest at a height of 5.00 m in the trees and swings down to the ground
using a thin, but very rigid, 30.0-kg vine 8.00 m long. She arrives
just in time to snatch the 72.0-kg Tarzan from the jaws of an angry
hippopotamus. What is Jane’s (and the vine’s) angular speed
(a) just before she grabs Tarzan and (b) just after she grabs him?
(c) How high will Tarzan and Jane go on their first swing after this
daring rescue?
10.91 .. A uniform rod of length L rests on a frictionless horizon-
tal surface. The rod pivots about a fixed frictionless axis at one end.
The rod is initially at rest. A bullet traveling parallel to the horizon-
tal surface and perpendicular to the rod with speed strikes the rod
at its center and becomes embedded in it. The mass of the bullet is

v

30.0 rev>min.

v = v0 + at

60.0°

M

M
R

M

2R

Figure P10.87

one-fourth the mass of the rod. (a) What is the final angular speed
of the rod? (b) What is the ratio of the kinetic energy of the system
after the collision to the kinetic energy of the bullet before the 
collision?
10.92 .. The solid wood door of a gymnasium is 1.00 m wide
and 2.00 m high, has total mass 35.0 kg, and is hinged along 
one side. The door is open and at rest when a stray basketball
hits the center of the door head-on, applying an average force of
1500 N to the door for 8.00 ms. Find the angular speed of the
door after the impact. [Hint: Integrating Eq. (10.29) yields

The quantity is
called the angular impulse.]
10.93 ... A target in a shooting gallery consists of a vertical square
wooden board, 0.250 m on a side and with mass 0.750 kg, that piv-
ots on a horizontal axis along its top edge. The board is struck face-
on at its center by a bullet with mass 1.90 g that is traveling at

and that remains embedded in the board. (a) What is the
angular speed of the board just after the bullet’s impact? (b) What
maximum height above the equilibrium position does the center of
the board reach before starting to swing down again? (c) What mini-
mum bullet speed would be required for the board to swing all the
way over after impact?
10.94 .. Neutron Star Glitches. Occasionally, a rotating neu-
tron star (see Exercise 10.41) undergoes a sudden and unexpected
speedup called a glitch. One explanation is that a glitch occurs
when the crust of the neutron star settles slightly, decreasing the
moment of inertia about the rotation axis. A neutron star with
angular speed underwent such a glitch in October
1975 that increased its angular speed to where

If the radius of the neutron star before the
glitch was 11 km, by how much did its radius decrease in the star-
quake? Assume that the neutron star is a uniform sphere.
10.95 ... A 500.0-g bird is fly-
ing horizontally at 
not paying much attention,
when it suddenly flies into a sta-
tionary vertical bar, hitting it
25.0 cm below the top (Fig.
P10.95). The bar is uniform,
0.750 m long, has a mass of
1.50 kg, and is hinged at its
base. The collision stuns the
bird so that it just drops to the
ground afterward (but soon
recovers to fly happily away). What is the angular velocity of the
bar (a) just after it is hit by the bird and (b) just as it reaches the
ground?
10.96 ... CP A small block with mass 0.250 kg is attached to a
string passing through a hole in a frictionless, horizontal surface (see
Fig. E10.42). The block is originally revolving in a circle with a
radius of 0.800 m about the hole with a tangential speed of 
The string is then pulled slowly from below, shortening the radius of
the circle in which the block revolves. The breaking strength of the
string is 30.0 N. What is the radius of the circle when the string
breaks?
10.97 . A horizontal plywood disk with mass 7.00 kg and diame-
ter 1.00 m pivots on frictionless bearings about a vertical axis
through its center. You attach a circular model-railroad track of neg-
ligible mass and average diameter 0.95 m to the disk. A 1.20-kg,
battery-driven model train rests on the tracks. To demonstrate con-
servation of angular momentum, you switch on the train’s engine.
The train moves counterclockwise, soon attaining a constant speed

4.00 m>s.

2.25 m>s,

¢v>v0 = 2.01 * 10-6.
v = v0 + ¢v,

v0 = 70.4 rad>s
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1 t2
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of relative to the tracks. Find the magnitude and direc-
tion of the angular velocity of the disk relative to the earth.
10.98 . A 55-kg runner runs around the edge of a horizontal
turntable mounted on a vertical, frictionless axis through its center.
The runner’s velocity relative to the earth has magnitude 
The turntable is rotating in the opposite direction with an angular
velocity of magnitude relative to the earth. The radius
of the turntable is 3.0 m, and its moment of inertia about the axis of
rotation is Find the final angular velocity of the system
if the runner comes to rest relative to the turntable. (You can model
the runner as a particle.)
10.99 .. Center of Percussion. A baseball bat rests on a fric-
tionless, horizontal surface. The bat has a length of 0.900 m, a
mass of 0.800 kg, and its center of mass is 0.600 m from the han-
dle end of the bat (Fig. P10.99). The moment of inertia of the bat
about its center of mass is The bat is struck by a
baseball traveling perpendicular to the bat. The impact applies an
impulse at a point a distance x from the handle end of
the bat. What must x be so that the handle end of the bat remains at
rest as the bat begins to move? [Hint: Consider the motion of the
center of mass and the rotation about the center of mass. Find x so
that these two motions combine to give for the end of the
bat just after the collision. Also, note that integration of Eq. (10.29)
gives (see Problem 10.92).] The point on the
bat you have located is called the center of percussion. Hitting a
pitched ball at the center of percussion of the bat minimizes the
“sting” the batter experiences on the hands.

CHALLENGE PROBLEMS
10.100 ... A uniform ball of radius R rolls without slipping
between two rails such that the horizontal distance is d between the
two contact points of the rails to the ball. (a) In a sketch, show that
at any instant Discuss this expression in
the limits and (b) For a uniform ball starting from
rest and descending a vertical distance h while rolling without slip-
ping down a ramp, Replacing the ramp with the
two rails, show that 

vcm =
B

10gh

5 + 2>11 - d2>4R22

vcm = 110gh>7.

d = 2R.d = 0
vcm = v2R2 - d2>4.

¢L = 1 t2
t1 1gt2dt

v = 0

J = 1 t2
t1 Fdt

0.0530 kg # m2.

80 kg # m2.

0.20 rad>s

2.8 m>s.

0.600 m>s In each case, the work done by friction has been ignored. (c) Which
speed in part (b) is smaller? Why? Answer in terms of how the loss
of potential energy is shared between the gain in translational and
rotational kinetic energies. (d) For which value of the ratio do
the two expressions for the speed in part (b) differ by 5.0%? By
0.50%?
10.101 ... When an object is rolling without slipping, the
rolling friction force is much less than the friction force when the
object is sliding; a silver dollar will roll on its edge much farther
than it will slide on its flat side (see Section 5.3). When an object
is rolling without slipping on a horizontal surface, we can
approximate the friction force to be zero, so that ax and are
approximately zero and and are approximately constant.
Rolling without slipping means and If an
object is set in motion on a surface without these equalities, slid-
ing (kinetic) friction will act on the object as it slips until rolling
without slipping is established. A solid cylinder with mass M and
radius R, rotating with angular speed about an axis through its
center, is set on a horizontal surface for which the kinetic friction
coefficient is (a) Draw a free-body diagram for the cylinder
on the surface. Think carefully about the direction of the kinetic
friction force on the cylinder. Calculate the accelerations of
the center of mass and of rotation about the center of mass. (b)
The cylinder is initially slipping completely, so initially 
but Rolling without slipping sets in when Cal-
culate the distance the cylinder rolls before slipping stops. (c)
Calculate the work done by the friction force on the cylinder as it
moves from where it was set down to where it begins to roll
without slipping.
10.102 ... A demonstration gyroscope wheel is constructed by
removing the tire from a bicycle wheel 0.650 m in diameter, wrap-
ping lead wire around the rim, and taping it in place. The shaft proj-
ects 0.200 m at each side of the wheel, and a woman holds the ends
of the shaft in her hands. The mass of the system is 8.00 kg; its
entire mass may be assumed to be located at its rim. The shaft is
horizontal, and the wheel is spinning about the shaft at 
Find the magnitude and direction of the force each hand exerts on
the shaft (a) when the shaft is at rest; (b) when the shaft is rotating
in a horizontal plane about its center at (c) when the
shaft is rotating in a horizontal plane about its center at 
(d) At what rate must the shaft rotate in order that it may be sup-
ported at one end only?
10.103 ... CP CALC A block with mass m is revolving with linear
speed in a circle of radius on a frictionless horizontal surface
(see Fig. E10.42). The string is slowly pulled from below until the
radius of the circle in which the block is revolving is reduced to 
(a) Calculate the tension T in the string as a function of r, the 
distance of the block from the hole. Your answer will be in terms of
the initial velocity and the radius (b) Use 
to calculate the work done by when r changes from to .
(c) Compare the results of part (b) to the change in the kinetic
energy of the block.
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Chapter Opening Question ?
The earth precesses like a top due to torques exerted on it by the
sun and moon. As a result, its rotation axis (which passes through
the earth’s north and south poles) slowly changes its orientation
relative to the distant stars, taking 26,000 years for a complete
cycle of precession. Today the rotation axis points toward Polaris,
but 5000 years ago it pointed toward Thuban, and 12,000 years
from now it will point toward the bright star Vega.

Test Your Understanding Questions
10.1 Answer: (ii) The force P acts along a vertical line, so the
lever arm is the horizontal distance from A to the line of action.
This is the horizontal component of the distance L, which is

Hence the magnitude of the torque is the product of the
force magnitude P and the lever arm or 
10.2 Answer: (iii), (ii), (i) In order for the hanging object of mass

to accelerate downward, the net force on it must be downward.
Hence the magnitude of the downward weight force must be
greater than the magnitude of the upward tension force. In order
for the pulley to have a clockwise angular acceleration, the net
torque on the pulley must be clockwise. The tension tends to
rotate the pulley clockwise, while the tension tends to rotate the
pulley counterclockwise. Both tension forces have the same lever
arm R, so there is a clockwise torque and a counterclockwise
torque In order for the net torque to be clockwise, must be
greater than Hence 
10.3 Answers: (a) (ii), (b) (i) If you redo the calculation of Exam-
ple 10.6 with a hollow cylinder (moment of inertia )
instead of a solid cylinder (moment of inertia ), you 
will find and (instead of and 

for a solid cylinder). Hence the acceleration is less but
the tension is greater. You can come to the same conclusion with-
out doing the calculation. The greater moment of inertia means
that the hollow cylinder will rotate more slowly and hence will roll
downward more slowly. In order to slow the downward motion, a
greater upward tension force is needed to oppose the downward
force of gravity.

T = 1
3 Mg

acm-y = 2
3 gT = 1

2 Mgacm-y = 1
2 g

Icm = 1
2 MR2
Icm = MR2

m2g 7 T2 7 T1.T1.
T2T1R.

T2R

T1

T2

T2

m2g
m2

t = PL cosu.Lcosu,
Lcosu.

10.4 Answer: (iii) You apply the same torque over the same
angular displacement to both cylinders. Hence, by Eq. (10.21), you
do the same amount of work to both cylinders and impart the same
kinetic energy to both. (The one with the smaller moment of inertia
ends up with a greater angular speed, but that isn’t what we are
asked. Compare Conceptual Example 6.5 in Section 6.2.)
10.5 Answers: (a) no, (b) yes As the ball goes around the circle,
the magnitude of remains the same (the speed is constant)
but its direction changes, so the linear momentum vector isn’t con-
stant. But is constant: It has a constant magnitude (the
speed and the perpendicular distance from your hand to the ball are
both constant) and a constant direction (along the rotation axis, per-
pendicular to the plane of the ball’s motion). The linear momentum
changes because there is a net force on the ball (toward the center
of the circle). The angular momentum remains constant because
there is no net torque; the vector points from your hand to the ball
and the force on the ball is directed toward your hand, so the vec-
tor product is zero.
10.6 Answer: (i) In the absence of any external torques, the
earth’s angular momentum would remain constant. The
melted ice would move from the poles toward the equator—that
is, away from our planet’s rotation axis—and the earth’s
moment of inertia I would increase slightly. Hence the angular
velocity would decrease slightly and the day would be
slightly longer.
10.7 Answer: (iii) Doubling the flywheel mass would double
both its moment of inertia I and its weight w, so the ratio 
would be unchanged. Equation (10.33) shows that the precession
angular speed depends on this ratio, so there would be no effect on
the value of 

Bridging Problem

Answers: (a)

(b) of the speed it had just after the hit5
7

h =
2R

5

Æ .

I>w

vz

Lz = Ivz

T
S

� rS : F
S

F
S

rS
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11
LEARNING GOALS

By studying this chapter, you will

learn:

• The conditions that must be 

satisfied for a body or structure 

to be in equilibrium.

• What is meant by the center of 

gravity of a body, and how it relates

to the body’s stability.

• How to solve problems that involve

rigid bodies in equilibrium.

• How to analyze situations in which 

a body is deformed by tension,

compression, pressure, or shear.

• What happens when a body is

stretched so much that it deforms 

or breaks.

EQUILIBRIUM
AND ELASTICITY

We’ve devoted a good deal of effort to understanding why and how bod-
ies accelerate in response to the forces that act on them. But very often
we’re interested in making sure that bodies don’t accelerate. Any

building, from a multistory skyscraper to the humblest shed, must be designed so
that it won’t topple over. Similar concerns arise with a suspension bridge, a ladder
leaning against a wall, or a crane hoisting a bucket full of concrete.

A body that can be modeled as a particle is in equilibrium whenever the vector
sum of the forces acting on it is zero. But for the situations we’ve just described,
that condition isn’t enough. If forces act at different points on an extended body,
an additional requirement must be satisfied to ensure that the body has no ten-
dency to rotate: The sum of the torques about any point must be zero. This
requirement is based on the principles of rotational dynamics developed in Chap-
ter 10. We can compute the torque due to the weight of a body using the concept
of center of gravity, which we introduce in this chapter.

Rigid bodies don’t bend, stretch, or squash when forces act on them. But the
rigid body is an idealization; all real materials are elastic and do deform to some
extent. Elastic properties of materials are tremendously important. You want the
wings of an airplane to be able to bend a little, but you’d rather not have them
break off. The steel frame of an earthquake-resistant building has to be able to
flex, but not too much. Many of the necessities of everyday life, from rubber
bands to suspension bridges, depend on the elastic properties of materials. In this
chapter we’ll introduce the concepts of stress, strain, and elastic modulus and a
simple principle called Hooke’s law that helps us predict what deformations will
occur when forces are applied to a real (not perfectly rigid) body.

? This Roman aqueduct uses the principle of the arch to sustain the weight of
the structure and the water it carries. Are the blocks that make up the arch
being compressed, stretched, or a combination?
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11.1 Conditions for Equilibrium
We learned in Sections 4.2 and 5.1 that a particle is in equilibrium—that is, the
particle does not accelerate—in an inertial frame of reference if the vector sum of
all the forces acting on the particle is zero, For an extended body, the
equivalent statement is that the center of mass of the body has zero acceleration if
the vector sum of all external forces acting on the body is zero, as discussed in
Section 8.5. This is often called the first condition for equilibrium. In vector
and component forms,

(first condition 
for equilibrium)

(11.1)

A second condition for an extended body to be in equilibrium is that the body
must have no tendency to rotate. This condition is based on the dynamics of rota-
tional motion in exactly the same way that the first condition is based on New-
ton’s first law. A rigid body that, in an inertial frame, is not rotating about a
certain point has zero angular momentum about that point. If it is not to start
rotating about that point, the rate of change of angular momentum must also be
zero. From the discussion in Section 10.5, particularly Eq. (10.29), this means
that the sum of torques due to all the external forces acting on the body must be
zero. A rigid body in equilibrium can’t have any tendency to start rotating about
any point, so the sum of external torques must be zero about any point. This is the
second condition for equilibrium:

(11.2)

The sum of the torques due to all external forces acting on the body, with respect
to any specified point, must be zero.

In this chapter we will apply the first and second conditions for equilibrium to
situations in which a rigid body is at rest (no translation or rotation). Such a body
is said to be in static equilibrium (Fig. 11.1). But the same conditions apply to a
rigid body in uniform translational motion (without rotation), such as an airplane
in flight with constant speed, direction, and altitude. Such a body is in equilib-
rium but is not static.

aTS � 0 about any point  (second condition for equilibrium)

aFx = 0  aFy = 0  aFz = 0

aF
S

� 0

gF
S

� 0.

Test Your Understanding of Section 11.1 Which situation satisfies
both the first and second conditions for equilibrium? (i) a seagull gliding at a
constant angle below the horizontal and at a constant speed; (ii) an automobile
crankshaft turning at an increasing angular speed in the engine of a parked car; 
(iii) a thrown baseball that does not rotate as it sails through the air. ❙

11.2 Center of Gravity
In most equilibrium problems, one of the forces acting on the body is its weight.
We need to be able to calculate the torque of this force. The weight doesn’t act at a
single point; it is distributed over the entire body. But we can always calculate the
torque due to the body’s weight by assuming that the entire force of gravity
(weight) is concentrated at a point called the center of gravity (abbreviated “cg”).
The acceleration due to gravity decreases with altitude; but if we can ignore this
variation over the vertical dimension of the body, then the body’s center of gravity
is identical to its center of mass (abbreviated “cm”), which we defined in Sec-
tion 8.5. We stated this result without proof in Section 10.2, and now we’ll prove it.

Equilibrium conditions:

First condition satisfied:
Net force = 0, so body at rest
has no tendency to start
moving as a whole.

First condition satisfied:
Net force = 0, so body at rest
has no tendency to start
moving as a whole.

First condition NOT
satisfied: There is a net
upward force, so body at rest
will start moving upward.

Axis of rotation (perpendicular to figure)

F

F

F

2F

l l

2F

l

F

F

l l

l

Second condition satisfied:
Net torque about the axis = 0,
so body at rest has no
tendency to start rotating.

Second condition NOT
satisfied: There is a net
clockwise torque about the
axis, so body at rest will start
rotating clockwise.

Second condition satisfied:
Net torque about the axis = 0,
so body at rest has no
tendency to start rotating.

1
2

(a) This body is in static equilibrium.

(b) This body has no tendency to accelerate as
a whole, but it has a tendency to start rotating.

(c) This body has a tendency to accelerate as a
whole but no tendency to start rotating.

11.1 To be in static equilibrium, a body
at rest must satisfy both conditions for
equilibrium: It can have no tendency to
accelerate as a whole or to start rotating.
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First let’s review the definition of the center of mass. For a collection of parti-
cles with masses and coordinates the
coordinates and of the center of mass are given by

(center of mass) (11.3)

Also, and are the components of the position vector of the cen-
ter of mass, so Eqs. (11.3) are equivalent to the vector equation

(11.4)

Now consider the gravitational torque on a body of arbitrary shape (Fig. 11.2).
We assume that the acceleration due to gravity is the same at every point in the
body. Every particle in the body experiences a gravitational force, and the total
weight of the body is the vector sum of a large number of parallel forces. A typi-
cal particle has mass and weight If is the position vector of this
particle with respect to an arbitrary origin O, then the torque vector of the
weight with respect to O is, from Eq. (10.3),

The total torque due to the gravitational forces on all the particles is

When we multiply and divide this by the total mass of the body,

we get

The fraction in this equation is just the position vector of the center of mass,
with components and as given by Eq. (11.4), and is equal to
the total weight of the body. Thus

(11.5)T
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The net gravitational torque about O on the
entire body can be found by assuming that all
the weight acts at the cg: t 5 rcm 3 w.

S S S

The gravitational torque about O
on a particle of mass mi within
the body is: ti 5 ri 3 wi.

S S S

If g has the same value at all
points on the body, the cg is
identical to the cm.

S

S

S S

S S

11.2 The center of gravity (cg) and cen-
ter of mass (cm) of an extended body.
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The total gravitational torque, given by Eq. (11.5), is the same as though the
total weight were acting on the position of the center of mass, which we
also call the center of gravity. If has the same value at all points on a body,
its center of gravity is identical to its center of mass. Note, however, that the
center of mass is defined independently of any gravitational effect.

While the value of does vary somewhat with elevation, the variation is
extremely slight (Fig. 11.3). Hence we will assume throughout this chapter that
the center of gravity and center of mass are identical unless explicitly stated
otherwise.

Finding and Using the Center of Gravity
We can often use symmetry considerations to locate the center of gravity of a
body, just as we did for the center of mass. The center of gravity of a homoge-
neous sphere, cube, circular sheet, or rectangular plate is at its geometric cen-
ter. The center of gravity of a right circular cylinder or cone is on its axis of
symmetry.

For a body with a more complex shape, we can sometimes locate the center of
gravity by thinking of the body as being made of symmetrical pieces. For exam-
ple, we could approximate the human body as a collection of solid cylinders,
with a sphere for the head. Then we can locate the center of gravity of the combi-
nation with Eqs. (11.3), letting be the masses of the individual pieces
and be the coordinates of their centers of gravity.

When a body acted on by gravity is supported or suspended at a single point,
the center of gravity is always at or directly above or below the point of suspen-
sion. If it were anywhere else, the weight would have a torque with respect to the
point of suspension, and the body could not be in rotational equilibrium. Figure
11.4 shows how to use this fact to determine experimentally the location of the
center of gravity of an irregular body.

Using the same reasoning, we can see that a body supported at several points
must have its center of gravity somewhere within the area bounded by the sup-
ports. This explains why a car can drive on a straight but slanted road if the slant
angle is relatively small (Fig. 11.5a) but will tip over if the angle is too steep (Fig.
11.5b). The truck in Fig. 11.5c has a higher center of gravity than the car and will
tip over on a shallower incline. When a truck overturns on a highway and blocks
traffic for hours, it’s the high center of gravity that’s to blame.

The lower the center of gravity and the larger the area of support, the more
difficult it is to overturn a body. Four-legged animals such as deer and horses
have a large area of support bounded by their legs; hence they are naturally stable
and need only small feet or hooves. Animals that walk erect on two legs, such as
humans and birds, need relatively large feet to give them a reasonable area of

z22, Áy2,1x2,z12,y1,1x1,
m2, Ám1,

gS

gS
rScmwS

Center of gravity is over
the area of support: car
is in equilibrium.

Center of gravity is outside the area of support: vehicle tips over.

The higher the center
of gravity, the smaller
the incline needed to
tip the vehicle over.

(a)

wS

(b)

wS
Area of support

(c)

w
S

cg cg

cg

11.5 In (a) the center of gravity is within the area bounded by the supports, and the car
is in equilibrium. The car in (b) and the truck in (c) will tip over because their centers of
gravity lie outside the area of support.

11.3 The acceleration due to gravity at
the bottom of the 452-m-tall Petronas
Towers in Malaysia is only 0.014% greater
than at the top. The center of gravity of the
towers is only about 2 cm below the center
of mass.

      Suspend the mug
from any point. A
vertical line extending
down from the point of
suspension passes
through the center of
gravity.

Center of gravity

What is the center of gravity of this mug?

1

2      Now suspend the
mug from a different
point. A vertical line
extending down from this
point intersects the first
line at the center of
gravity (which is inside
the mug).

11.4 Finding the center of gravity of an
irregularly shaped body—in this case, a
coffee mug.
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support. If a two-legged animal holds its body approximately horizontal, like a
chicken or the dinosaur Tyrannosaurus rex, it must perform a delicate balancing
act as it walks to keep its center of gravity over the foot that is on the ground. A
chicken does this by moving its head; T. rex probably did it by moving its mas-
sive tail.

Example 11.1 Walking the plank

A uniform plank of length m and mass rests
on sawhorses separated by and equidistant from the
center of the plank. Cousin Throckmorton wants to stand on the
right-hand end of the plank. If the plank is to remain at rest, how
massive can Throckmorton be?

SOLUTION

IDENTIFY and SET UP: To just balance, Throckmorton’s mass m
must be such that the center of gravity of the plank–Throcky sys-
tem is directly over the right-hand sawhorse (Fig. 11.6). We take
the origin at C, the geometric center and center of gravity of the
plank, and take the positive x-axis horizontally to the right. Then
the centers of gravity of the plank and Throcky are at and

, respectively, and the right-hand sawhorse is atxT = L>2 = 3.0 m
xP = 0

D = 1.5 m
M = 90 kgL = 6.0 . We’ll use Eqs. (11.3) to locate the center of gravity 

of the plank–Throcky system.

EXECUTE: From the first of Eqs. (11.3),

We set and solve for m:

EVALUATE: As a check, let’s repeat the calculation with the origin 
at the right-hand sawhorse. Now , and 

and we require 

The result doesn’t depend on our choice of origin.
A 60-kg adult could stand only halfway between the right-hand

sawhorse and the end of the plank. Can you see why?

m =
MD>2

1L>22 - 1D>22
= M

D

L - D
= 30 kg

xcg =
M1-D>22 + m31L>22 - 1D>224

M + m
= 0

xcg = xS = 0:1L>22 - 1D>22,
xT =xP = -D>2xS = 0,

m = M
D

L - D
= 190 kg2

1.5 m

6.0 m - 1.5 m
= 30 kg

mL = 1M + m2D

m

M + m

L

2
=

D

2

x cg = xS

xcg =
M102 + m1L>22

M + m
=

m

M + m

L

2

xcgxS = D>2

11.6 Our sketch for this problem.

Test Your Understanding of Section 11.2 A rock is attached to the
left end of a uniform meter stick that has the same mass as the rock. In order for
the combination of rock and meter stick to balance atop the triangular object in
Fig. 11.7, how far from the left end of the stick should the triangular object be placed? 
(i) less than 0.25 m; (ii) 0.25 m; (iii) between 0.25 m and 0.50 m; (iv) 0.50 m; (v) more
than 0.50 m. ❙

Rock, mass m Meter stick, mass m

11.7 At what point will the meter stick
with rock attached be in balance?

11.3 Solving Rigid-Body Equilibrium Problems
There are just two key conditions for rigid-body equilibrium: The vector sum of
the forces on the body must be zero, and the sum of the torques about any point
must be zero. To keep things simple, we’ll restrict our attention to situations in
which we can treat all forces as acting in a single plane, which we’ll call the xy-
plane. Then we can ignore the condition in Eqs. (11.1), and in Eq. (11.2)
we need consider only the z-components of torque (perpendicular to the plane).
The first and second conditions for equilibrium are then

(first condition for equilibrium, 
forces in xy-plane)

(second condition for equilibrium, 
forces in xy-plane)

(11.6)

a tz = 0

aFx = 0  and  aFy = 0

gFz = 0

ActivPhysics 7.4: Two Painters on a Beam
ActivPhysics 7.5: Lecturing from a Beam
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CAUTION Choosing the reference point for calculating torques In equilibrium problems,
the choice of reference point for calculating torques in is completely arbitrary. But
once you make your choice, you must use the same point to calculate all the torques on a
body. Choose the point so as to simplify the calculations as much as possible. ❙

The challenge is to apply these simple conditions to specific problems. Problem-
Solving Strategy 11.1 is very similar to the suggestions given in Section 5.2 for
the equilibrium of a particle. You should compare it with Problem-Solving Strat-
egy 10.1 (Section 10.2) for rotational dynamics problems.

gtz

Problem-Solving Strategy 11.1 Equilibrium of a Rigid Body

IDENTIFY the relevant concepts: The first and second conditions
for equilibrium and are applicable
to any rigid body that is not accelerating in space and not rotating.

SET UP the problem using the following steps:
1. Sketch the physical situation and identify the body in equilib-

rium to be analyzed. Sketch the body accurately; do not repre-
sent it as a point. Include dimensions.

2. Draw a free-body diagram showing all forces acting on the
body. Show the point on the body at which each force acts.

3. Choose coordinate axes and specify their direction. Specify a
positive direction of rotation for torques. Represent forces in
terms of their components with respect to the chosen axes.

4. Choose a reference point about which to compute torques.
Choose wisely; you can eliminate from your torque equation
any force whose line of action goes through the point you

2gtz = 0gFy = 0,gFx = 0,1
choose. The body doesn’t actually have to be pivoted about an
axis through the reference point.

EXECUTE the solution as follows:
1. Write equations expressing the equilibrium conditions. Remem-

ber that and are separate equa-
tions. You can compute the torque of a force by finding the
torque of each of its components separately, each with its
appropriate lever arm and sign, and adding the results.

2. To obtain as many equations as you have unknowns, you may
need to compute torques with respect to two or more reference
points; choose them wisely, too.

EVALUATE your answer: Check your results by writing
with respect to a different reference point. You should get the same
answers.

gtz = 0

gtz = 0gFx = 0, gFy = 0,

Example 11.2 Weight distribution for a car

An auto magazine reports that a certain sports car has 53% of its
weight on the front wheels and 47% on its rear wheels. (That is,
the total normal forces on the front and rear wheels are 0.53w and
0.47w, respectively, where w is the car’s weight.) The distance
between the axles is 2.46 m. How far in front of the rear axle is the
car’s center of gravity?

SOLUTION

IDENTIFY and SET UP: We can use the two conditions for equilib-
rium, Eqs. (11.6), for a car at rest (or traveling in a straight line at
constant speed), since the net force and net torque on the car are
zero. Figure 11.8 shows our sketch and a free-body diagram,
including x- and y-axes and our convention that counterclockwise
torques are positive. The weight w acts at the center of gravity. Our
target variable is the distance , the lever arm of the weight with
respect to the rear axle R, so it is wise to take torques with respect
to R. The torque due to the weight is negative because it tends to
cause a clockwise rotation about R. The torque due to the upward
normal force at the front axle F is positive because it tends to cause
a counterclockwise rotation about R.

EXECUTE: The first condition for equilibrium is satisfied (see Fig.
11.8b): because there are no x-components of force and

because We write the
torque equation and solve for 

Lcg = 1.30 m
a tR = 0.47w102 - wLcg + 0.53w12.46 m2 = 0

Lcg:
0.47w + 0.53w + 1-w2 = 0.gFy = 0

gFx = 0

Lcg

EVALUATE: The center of gravity is between the two supports, as 
it must be (see Section 11.2). You can check our result by writing
the torque equation about the front axle F. You’ll find that the
center of gravity is 1.16 m behind the front axle, or 

in front of the rear axle.11.16 m2 = 1.30 m
12.46 m2 -

(a)

(b)

11.8 Our sketches for this problem.
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Example 11.3 Will the ladder slip?

Sir Lancelot, who weighs 800 N, is assaulting a castle by climbing
a uniform ladder that is 5.0 m long and weighs 180 N (Fig. 11.9a).
The bottom of the ladder rests on a ledge and leans across the moat
in equilibrium against a frictionless, vertical castle wall. The ladder
makes an angle of with the horizontal. Lancelot pauses one-
third of the way up the ladder. (a) Find the normal and friction forces
on the base of the ladder. (b) Find the minimum coefficient of static
friction needed to prevent slipping at the base. (c) Find the magni-
tude and direction of the contact force on the base of the ladder.

SOLUTION

IDENTIFY and SET UP: The ladder–Lancelot system is stationary,
so we can use the two conditions for equilibrium to solve part (a).
In part (b), we need the relationship among the static friction force,
the coefficient of static friction, and the normal force (see Section
5.3). In part (c), the contact force is the vector sum of the normal
and friction forces acting at the base of the ladder, found in part (a).
Figure 11.9b shows the free-body diagram, with x- and y-directions
as shown and with counterclockwise torques taken to be positive.
The ladder’s center of gravity is at its geometric center. Lancelot’s
800-N weight acts at a point one-third of the way up the ladder.

The wall exerts only a normal force on the top of the ladder.
The forces on the base are an upward normal force and a static
friction force which must point to the right to prevent slipping.
The magnitudes and are the target variables in part (a). From
Eq. (5.6), these magnitudes are related by the coeffi-
cient of static friction is the target variable in part (b).

EXECUTE: (a) From Eqs. (11.6), the first condition for equilibrium
gives

These are two equations for the three unknowns and 
The second equation gives . To obtain a third equa-
tion, we use the second condition for equilibrium. We take torques
about point B, about which and have no torque. The 53.1°
angle creates a 3-4-5 right triangle, so from Fig. 11.9b the lever
arm for the ladder’s weight is 1.5 m, the lever arm for Lancelot’s
weight is 1.0 m, and the lever arm for is 4.0 m. The torque
equation for point B is then

n1

ƒsn2

n2 = 980 N
ƒs.n2,n1,

aFy = n2 + 1-800 N2 + 1-180 N2 = 0
aFx = ƒs + 1-n12 = 0

ms

ƒs … msn2;
ƒsn2

ƒs,
n2

n1

53.1°
Solving for we get We substitute this into the

equation and get 
(b) The static friction force cannot exceed so the

minimum coefficient of static friction to prevent slipping is

(c) The components of the contact force at the base are the
static friction force and the normal force so

The magnitude and direction of (Fig. 11.9c) are

EVALUATE: As Fig. 11.9c shows, the contact force is not
directed along the length of the ladder. Can you show that if 
were directed along the ladder, there would be a net counterclock-
wise torque with respect to the top of the ladder, and equilibrium
would be impossible?

As Lancelot climbs higher on the ladder, the lever arm and
torque of his weight about B increase. This increases the values of

and the required friction coefficient , so the ladder is
more and more likely to slip as he climbs (see Problem 11.10). A
simple way to make slipping less likely is to use a larger ladder
angle (say, 75° rather than 53.1°). This decreases the lever arms
with respect to B of the weights of the ladder and Lancelot and
increases the lever arm of all of which decrease the required
friction force.

If we had assumed friction on the wall as well as on the floor,
the problem would be impossible to solve by using the equilibrium
conditions alone. (Try it!) The difficulty is that it’s no longer ade-
quate to treat the body as being perfectly rigid. Another problem of
this kind is a four-legged table; there’s no way to use the equilib-
rium conditions alone to find the force on each separate leg.

n1,

1ms2minƒs,n1,

F
S

B

F
S

B

u = arctan
980 N

268 N
= 75°

FB = 21268 N22 + 1980 N22 = 1020 N

F
S

B

F
S

B � ƒsın � n2 ≥n � 1268 N2ın � 1980 N2 ≥n

n2,ƒs

F
S

B

1ms2min =
ƒs

n2
=

268 N

980 N
= 0.27

msn2,ƒs

ƒs = 268 N.gFx = 0
n1 = 268 N.n1,

- 1800 N211.0 m2 + n2102 + ƒs102 = 0

a tB = n114.0 m2 - 1180 N211.5 m2

53.1°

Frictionless
wall

(a) (b)

53.1°

w 5 180 N

w 5 800 N

B

y

x

1.5 m

1.0 m

4.0 m

n1

n2

fs

(c)

u 5 75°

800 N

180 N

B

268 N
y

x

FB 5 1020 N

+ +

11.9 (a) Sir Lancelot pauses a third of the way up the ladder, fearing it will slip. (b) Free-body diagram for the system of Sir Lancelot
and the ladder. (c) The contact force at B is the superposition of the normal force and the static friction force.
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Example 11.4 Equilibrium and pumping iron

Figure 11.10a shows a horizontal human arm lifting a dumbbell.
The forearm is in equilibrium under the action of the weight of
the dumbbell, the tension in the tendon connected to the biceps
muscle, and the force exerted on the forearm by the upper arm at
the elbow joint. We neglect the weight of the forearm itself. (For
clarity, the point A where the tendon is attached is drawn farther
from the elbow than its actual position.) Given the weight w and
the angle between the tension force and the horizontal, find T and
the two components of (three unknown scalar quantities in all).

SOLUTION

IDENTIFY and SET UP: The system is at rest, so we use the condi-
tions for equilibrium. We represent and in terms of their com-
ponents (Fig. 11.10b). We guess that the directions of and are
as shown; the signs of and as given by our solution will tell
us the actual directions. Our target variables are T, and 

EXECUTE: To find T, we take torques about the elbow joint so that
the torque equation does not contain , , or 

From this we find

To find and we use the first conditions for equilibrium:

=
Lw

D
cot u =

Lw

D

D

h
=

Lw

h

Ex = Tx = Tcos u =
Lw

D sin u
cos u

aFx = Tx + 1-Ex2 = 0

Ey,Ex

Ty =
Lw

D
  and  T =

Lw

D sinu

a telbow = Lw - DTy = 0

Tx:EyEx

Ey.Ex,
EyEx

EyEx

E
S

T
S

E
S

u

E
S

T
S

wS

The negative sign for tells us that it should actually point down
in Fig. 11.10b.

EVALUATE: We can check our results for and by taking torques
about points A and B, about both of which T has zero torque:

As a realistic example, take 
and so that 
Using our results for T, , and , we find

The magnitude of the force at the elbow is

The large values of T and E suggest that it was reasonable to
neglect the weight of the forearm itself, which may be 20 N 
or so.

E = 2E 2
x + E 2

y = 1020 N

Ex =
Lw

h
=
10.30 m21200 N2

0.28 m
= 210 N

= -1000 N

Ey = -
1L - D2w

D
= -

10.30 m - 0.050 m21200 N2

0.050 m

T =
Lw

D sinu
=
10.30 m21200 N2

10.050 m210.982
= 1220 N

EyEx0.28 m.
15.672 =tan u = 10.050 m2h = Du = 80°,0.30 m,

L =D = 0.050 m,w = 200 N,

a tB = Lw - hEx = 0  so  Ex =
Lw

h

a tA = 1L - D2w + DEy = 0  so  Ey = -
1L - D2w

D

EyEx

Ey

Ey = w -
Lw

D
= -

1L - D2w

D

aFy = Ty + Ey + 1-w2 = 0

(a) (b)

w E

T

A

BTendon actually
inserts close to
elbow—moved
here for clarity

u

We don’t know the sign of this component;
we draw it positive for convenience.

Body in equilibrium
(dumbbell plus
forearm)

Elbow

+

11.10 (a) The situation. (b) Our free-body diagram for the forearm. The weight of the forearm is neglected, and the distance D is
greatly exaggerated for clarity.
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11.4 Stress, Strain, and Elastic Moduli
The rigid body is a useful idealized model, but the stretching, squeezing, and
twisting of real bodies when forces are applied are often too important to ignore.
Figure 11.12 shows three examples. We want to study the relationship between
the forces and deformations for each case.

For each kind of deformation we will introduce a quantity called stress that
characterizes the strength of the forces causing the deformation, on a “force per
unit area” basis. Another quantity, strain, describes the resulting deformation.
When the stress and strain are small enough, we often find that the two are
directly proportional, and we call the proportionality constant an elastic modu-
lus. The harder you pull on something, the more it stretches; the more you
squeeze it, the more it compresses. In equation form, this says

(11.7)

The proportionality of stress and strain (under certain conditions) is called
Hooke’s law, after Robert Hooke (1635–1703), a contemporary of Newton. We
used one form of Hooke’s law in Sections 6.3 and 7.2: The elongation of an ideal
spring is proportional to the stretching force. Remember that Hooke’s “law” is
not really a general law; it is valid over only a limited range. The last section of
this chapter discusses what this limited range is.

Tensile and Compressive Stress and Strain
The simplest elastic behavior to understand is the stretching of a bar, rod, or wire
when its ends are pulled (Fig. 11.12a). Figure 11.13 shows an object that initially
has uniform cross-sectional area A and length We then apply forces of equall0.

Stress

Strain
= Elastic modulus  (Hooke’s law)

Test Your Understanding of Section 11.3 A metal advertising sign
(weight w) for a specialty shop is suspended from the end of a horizontal rod of
length L and negligible mass (Fig. 11.11). The rod is supported by a cable at an
angle from the horizontal and by a hinge at point P. Rank the following force magni-
tudes in order from greatest to smallest: (i) the weight w of the sign; (ii) the tension in the
cable; (iii) the vertical component of force exerted on the rod by the hinge at P.

❙

u

L

h

w

Caroline’s
Dino-Store

u
P

11.11 What are the tension in the diago-
nal cable and the force exerted by the
hinge at P?

11.12 Three types of stress. (a) Bridge cables under tensile stress, being stretched by forces acting at their ends. (b) A diver under
bulk stress, being squeezed from all sides by forces due to water pressure. (c) A ribbon under shear stress, being deformed and 
eventually cut by forces exerted by the scissors.
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magnitude but opposite directions at the ends (this ensures that the object has no
tendency to move left or right). We say that the object is in tension. We’ve already
talked a lot about tension in ropes and strings; it’s the same concept here. The sub-
script is a reminder that the forces act perpendicular to the cross section.

We define the tensile stress at the cross section as the ratio of the force to
the cross-sectional area A:

(11.8)

This is a scalar quantity because is the magnitude of the force. The SI unit of
stress is the pascal (abbreviated Pa and named for the 17th-century French scien-
tist and philosopher Blaise Pascal). Equation (11.8) shows that 1 pascal equals 1
newton per square meter 

In the British system the logical unit of stress would be the pound per square foot,
but the pound per square inch or psi) is more commonly used. The con-
version factors are

The units of stress are the same as those of pressure, which we will encounter
often in later chapters. Air pressure in automobile tires is typically around

and steel cables are commonly required to withstand
tensile stresses of the order of 

The object shown in Fig. 11.13 stretches to a length when under
tension. The elongation does not occur only at the ends; every part of the bar
stretches in the same proportion. The tensile strain of the object is equal to the
fractional change in length, which is the ratio of the elongation to the original
length

(11.9)

Tensile strain is stretch per unit length. It is a ratio of two lengths, always meas-
ured in the same units, and so is a pure (dimensionless) number with no units.

Experiment shows that for a sufficiently small tensile stress, stress and strain
are proportional, as in Eq. (11.7). The corresponding elastic modulus is called
Young’s modulus, denoted by Y:

(11.10)

Since strain is a pure number, the units of Young’s modulus are the same as
those of stress: force per unit area. Some typical values are listed in Table 11.1.

Y =
Tensile stress

Tensile strain
=

F�>A

¢l>l0
=

F�

A

l0

¢l
  (Young’s modulus)

Tensile strain =
l - l0

l0
=

¢l

l0

l0:
¢l

¢l
l = l0 + ¢l

108 Pa.
3 * 105 Pa = 300 kPa,

1 psi = 6895 Pa  and  1 Pa = 1.450 * 10-4 psi

(lb>in.2

1 pascal = 1 Pa = 1 N>m2

1N>m22:

F�

Tensile stress =
F�

A

F�

�

F�

Table 11.1 Approximate Elastic Moduli

Material Young’s Modulus, Y (Pa) Bulk Modulus, B (Pa) Shear Modulus, S (Pa)

Aluminum

Brass

Copper

Crown glass

Iron

Lead

Nickel

Steel 7.5 * 101016 * 101020 * 1010

7.8 * 101017 * 101021 * 1010

0.6 * 10104.1 * 10101.6 * 1010

7.7 * 101016 * 101021 * 1010

2.5 * 10105.0 * 10106.0 * 1010

4.4 * 101014 * 101011 * 1010

3.5 * 10106.0 * 10109.0 * 1010

2.5 * 10107.5 * 10107.0 * 1010

l0

Dl

l

Area A

F' F'

Tensile stress 5
F'
A

Tensile strain 5 Dl
l0

Initial state
of the object

Object under
tensile stress

A

11.13 An object in tension. The net
force on the object is zero, but the object
deforms. The tensile stress (the ratio of the
force to the cross-sectional area) produces
a tensile strain (the elongation divided by
the initial length). The elongation is
exaggerated for clarity.

¢l

Anterior tibial tendon

Application Young’s Modulus of a
Tendon
The anterior tibial tendon connects your foot
to the large muscle that runs along the side 
of your shinbone. (You can feel this tendon at
the front of your ankle.) Measurements show
that this tendon has a Young’s modulus of 
1.2 � 109 Pa, much less than for the solid
materials listed in Table 11.1. Hence this ten-
don stretches substantially (up to 2.5% of its
length) in response to the stresses experi-
enced in walking and running.
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(This table also gives values of two other elastic moduli that we will discuss later
in this chapter.) A material with a large value of Y is relatively unstretchable; a
large stress is required for a given strain. For example, the value of Y for cast
steel is much larger than that for rubber 

When the forces on the ends of a bar are pushes rather than pulls 
(Fig. 11.14), the bar is in compression and the stress is a compressive
stress. The compressive strain of an object in compression is defined in the
same way as the tensile strain, but has the opposite direction. Hooke’s law and
Eq. (11.10) are valid for compression as well as tension if the compressive stress
is not too great. For many materials, Young’s modulus has the same value for
both tensile and compressive stresses. Composite materials such as concrete and
stone are an exception; they can withstand compressive stresses but fail under
comparable tensile stresses. Stone was the primary building material used by
ancient civilizations such as the Babylonians, Assyrians, and Romans, so their
structures had to be designed to avoid tensile stresses. Hence they used arches in
doorways and bridges, where the weight of the overlying material compresses the
stones of the arch together and does not place them under tension.

In many situations, bodies can experience both tensile and compressive stresses
at the same time. As an example, a horizontal beam supported at each end sags
under its own weight. As a result, the top of the beam is under compression, while
the bottom of the beam is under tension (Fig. 11.15a). To minimize the stress and
hence the bending strain, the top and bottom of the beam are given a large cross-
sectional area. There is neither compression nor tension along the centerline of the
beam, so this part can have a small cross section; this helps to keep the weight of
the bar to a minimum and further helps to reduce the stress. The result is an I-beam
of the familiar shape used in building construction (Fig. 11.15b).

¢l

15 * 108 Pa2.12 * 1011 Pa2

l0

Dl

A

Area A

F' F'

5
Compressive
stress

F'
A

Compressive
strain

5
Dl
l0

l

Initial state
of the object

Object under
compressive
stress

11.14 An object in compression. The
compressive stress and compressive strain
are defined in the same way as tensile
stress and strain (see Fig. 11.13), except
that now denotes the distance that the
object contracts.

¢l

(a) (b)

Top of beam is
under compression.

The top and bottom of an I-beam are broad
to minimize the compressive and tensile
stresses.

The beam can be
narrow near its
centerline, which
is under neither
compression nor
tension.

Beam’s centerline is
under neither tension
nor compression.

Bottom of beam is under tension.

11.15 (a) A beam supported at both
ends is under both compression and 
tension. (b) The cross-sectional shape of
an I-beam minimizes both stress and
weight.

Example 11.5 Tensile stress and strain

A steel rod 2.0 m long has a cross-sectional area of . It is
hung by one end from a support, and a 550-kg milling machine is
hung from its other end. Determine the stress on the rod and the
resulting strain and elongation.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: The rod is under tension, so we can
use Eq. (11.8) to find the tensile stress; Eq. (11.9), with the value of
Young’s modulus Y for steel from Table 11.1, to find the corre-
sponding strain; and Eq. (11.10) to find the elongation :¢l

0.30 cm2

EVALUATE: This small elongation, resulting from a load of over
half a ton, is a testament to the stiffness of steel.

= 19.0 * 10-4212.0 m2 = 0.0018 m = 1.8 mm

 Elongation = ¢l = 1Strain2 * l0

 Strain =
¢l

l0
=

Stress

Y
=

1.8 * 108 Pa

20 * 1010 Pa
= 9.0 * 10-4

 Tensile stress =
F�

A
=
1550 kg219.8 m>s22

3.0 * 10-5 m2
= 1.8 * 108 Pa

Bulk Stress and Strain
When a scuba diver plunges deep into the ocean, the water exerts nearly uniform
pressure everywhere on his surface and squeezes him to a slightly smaller volume
(see Fig. 11.12b). This is a different situation from the tensile and compressive

?
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stresses and strains we have discussed. The stress is now a uniform pressure on
all sides, and the resulting deformation is a volume change. We use the terms
bulk stress (or volume stress) and bulk strain (or volume strain) to describe
these quantities.

If an object is immersed in a fluid (liquid or gas) at rest, the fluid exerts a
force on any part of the object’s surface; this force is perpendicular to the sur-
face. (If we tried to make the fluid exert a force parallel to the surface, the fluid
would slip sideways to counteract the effort.) The force per unit area that
the fluid exerts on the surface of an immersed object is called the pressure p in
the fluid:

(11.11)

The pressure in a fluid increases with depth. For example, the pressure of the
air is about 21% greater at sea level than in Denver (at an elevation of 1.6 km, or
1.0 mi). If an immersed object is relatively small, however, we can ignore pres-
sure differences due to depth for the purpose of calculating bulk stress. Hence we
will treat the pressure as having the same value at all points on an immersed
object’s surface.

Pressure has the same units as stress; commonly used units include 1 Pa
and (1 psi). Also in common use is the atmosphere, abbre-

viated atm. One atmosphere is the approximate average pressure of the earth’s
atmosphere at sea level:

CAUTION Pressure vs. force Unlike force, pressure has no intrinsic direction: The
pressure on the surface of an immersed object is the same no matter how the surface is ori-
ented. Hence pressure is a scalar quantity, not a vector quantity. ❙

Pressure plays the role of stress in a volume deformation. The corresponding
strain is the fractional change in volume (Fig. 11.16)—that is, the ratio of the vol-
ume change to the original volume 

(11.12)

Volume strain is the change in volume per unit volume. Like tensile or compres-
sive strain, it is a pure number, without units.

When Hooke’s law is obeyed, an increase in pressure (bulk stress) produces a
proportional bulk strain (fractional change in volume). The corresponding elastic
modulus (ratio of stress to strain) is called the bulk modulus, denoted by B.
When the pressure on a body changes by a small amount from to

and the resulting bulk strain is Hooke’s law takes the form

(11.13)

We include a minus sign in this equation because an increase of pressure always
causes a decrease in volume. In other words, if is positive, is negative.
The bulk modulus B itself is a positive quantity.

For small pressure changes in a solid or a liquid, we consider B to be constant.
The bulk modulus of a gas, however, depends on the initial pressure Table 11.1
includes values of the bulk modulus for several solid materials. Its units, force
per unit area, are the same as those of pressure (and of tensile or compressive
stress).

p0.

¢V¢p

B =
Bulk stress

Bulk strain
= -

¢p

¢V>V0
  (bulk modulus)

¢V>V0,p0 + ¢p,
p0¢p,

Bulk (volume) strain =
¢V

V0

V0:¢V

1 atmosphere = 1 atm = 1.013 * 105 Pa = 14.7 lb>in.2

1 lb>in.21=1 N>m22

p =
F�

A
  (pressure in a fluid)

F�

Initial state
of the object

Object under
bulk stress

F' F'

F'

F'

F'

F'

Bulk stress 5 Dp Bulk strain 5 DV
V0

Pressure 5 p0

Pressure 5 p 5 p0 1 Dp

Volume
V0

Volume
V

V 5 V0 1 DV
(DV , 0)

11.16 An object under bulk stress.
Without the stress, the cube has volume 
when the stress is applied, the cube has a
smaller volume V. The volume change 
is exaggerated for clarity.

¢V

V0;

Application Bulk Stress on an
Anglerfish
The anglerfish (Melanocetus johnsoni) is found
in oceans throughout the world at depths as
great as 1000 m, where the pressure (that
is, the bulk stress) is about 100 atmospheres.
Anglerfish are able to withstand such stress
because they have no internal air spaces,
unlike fish found in the upper ocean where
pressures are lower. The largest anglerfish
are about 12 cm (5 in.) long.
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The reciprocal of the bulk modulus is called the compressibility and is
denoted by k. From Eq. (11.13),

(11.14)

Compressibility is the fractional decrease in volume, per unit increase
in pressure. The units of compressibility are those of reciprocal pressure,
or

Table 11.2 lists the values of compressibility k for several liquids. For exam-
ple, the compressibility of water is which means that the vol-
ume of water decreases by 46.4 parts per million for each 1-atmosphere increase
in pressure. Materials with small bulk modulus and large compressibility are eas-
ier to compress.

46.4 * 10-6 atm-1,

atm-1.Pa-1
¢p

-¢V>V0,

k =
1

B
= -

¢V>V0

¢p
= -

1

V0

¢V

¢p
  (compressibility)

Table 11.2 Compressibilities 
of Liquids

Compressibility, k

Liquid

Carbon
disulfide

Ethyl
alcohol

Glycerine

Mercury

Water 46.4 * 10-645.8 * 10-11

3.8 * 10-63.7 * 10-11

21 * 10-621 * 10-11

111 * 10-6110 * 10-11

94 * 10-693 * 10-11

atm�1Pa�1

Example 11.6 Bulk stress and strain

A hydraulic press contains 250 L of oil. Find the decrease
in the volume of the oil when it is subjected to a pressure increase

(about 160 atm or 2300 psi). The bulk modu-
lus of the oil is (about ) and its
compressibility is 

SOLUTION

IDENTIFY, SET UP, and EXECUTE: This example uses the ideas of
bulk stress and strain. We are given both the bulk modulus and the
compressibility, and our target variable is Solving Eq. (11.13)
for we find

= -8.0 * 10-4 m3 = -0.80 L

¢V = -
V0¢p

B
= -

10.25 m3211.6 * 107 Pa2

5.0 * 109 Pa

¢V,
¢V.

k = 1>B = 20 * 10-6 atm-1.
5.0 * 104 atmB = 5.0 * 109 Pa

¢p = 1.6 * 107 Pa

210.25 m3 Alternatively, we can use Eq. (11.14) with the approximate unit
conversions given above:

EVALUATE: The negative value of means that the volume
decreases when the pressure increases. Even though the 160-atm
pressure increase is large, the fractional change in volume is very
small:

¢V

V0
=

-8.0 * 10-4 m3

0.25 m3
= -0.0032  or  -0.32%

¢V

= -8.0 * 10-4 m3

¢V = -kV0¢p = -120 * 10-6 atm-1210.25 m321160 atm2

Shear Stress and Strain
The third kind of stress-strain situation is called shear. The ribbon in Fig. 11.12c is
under shear stress: One part of the ribbon is being pushed up while an adjacent
part is being pushed down, producing a deformation of the ribbon. Figure 11.17
shows a body being deformed by a shear stress. In the figure, forces of equal
magnitude but opposite direction act tangent to the surfaces of opposite ends of
the object. We define the shear stress as the force acting tangent to the surface
divided by the area A on which it acts:

(11.15)

Shear stress, like the other two types of stress, is a force per unit area.
Figure 11.17 shows that one face of the object under shear stress is displaced

by a distance x relative to the opposite face. We define shear strain as the ratio of
the displacement x to the transverse dimension h:

(11.16)

In real-life situations, x is nearly always much smaller than h. Like all strains,
shear strain is a dimensionless number; it is a ratio of two lengths.

Shear strain =
x

h

Shear stress =
FŒ
A

FŒ

Shear stress 5
F||
A

Shear strain 5 x
h

h

x
A

Area A

F||

F||

Initial state
of the object

Object under
shear stress

11.17 An object under shear stress.
Forces are applied tangent to opposite sur-
faces of the object (in contrast to the situa-
tion in Fig. 11.13, in which the forces act
perpendicular to the surfaces). The defor-
mation x is exaggerated for clarity.
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If the forces are small enough that Hooke’s law is obeyed, the shear strain is
proportional to the shear stress. The corresponding elastic modulus (ratio of
shear stress to shear strain) is called the shear modulus, denoted by S:

(11.17)

with x and h defined as in Fig. 11.17.
Table 11.1 gives several values of shear modulus. For a given material, S is

usually one-third to one-half as large as Young’s modulus Y for tensile stress.
Keep in mind that the concepts of shear stress, shear strain, and shear modulus
apply to solid materials only. The reason is that shear refers to deforming an
object that has a definite shape (see Fig. 11.17). This concept doesn’t apply to
gases and liquids, which do not have definite shapes.

S =
Shear stress

Shear strain
=

FŒ>A

x>h
=

FŒ
A

h

x
  (shear modulus)

11.5 Elasticity and Plasticity
Hooke’s law—the proportionality of stress and strain in elastic deformations—
has a limited range of validity. In the preceding section we used phrases such as
“provided that the forces are small enough that Hooke’s law is obeyed.” Just
what are the limitations of Hooke’s law? We know that if you pull, squeeze, or
twist anything hard enough, it will bend or break. Can we be more precise than
that?

Let’s look at tensile stress and strain again. Suppose we plot a graph of stress
as a function of strain. If Hooke’s law is obeyed, the graph is a straight line with a

Test Your Understanding of Section 11.4 A copper rod of cross-
sectional area and length 1.00 m is elongated by and
a steel rod of the same cross-sectional area but 0.100 m in length is elongated by

(a) Which rod has greater tensile strain? (i) the copper rod; (ii) the
steel rod; (iii) the strain is the same for both. (b) Which rod is under greater tensile stress?
(i) the copper rod; (ii) the steel rod; (iii) the stress is the same for both. ❙

2.00 * 10-3 mm.

2.00 * 10-2 mm,0.500 cm2

Example 11.7 Shear stress and strain

Suppose the object in Fig. 11.17 is the brass base plate of an out-
door sculpture that experiences shear forces in an earthquake. The
plate is 0.80 m square and 0.50 cm thick. What is the force exerted
on each of its edges if the resulting displacement x is 0.16 mm?

SOLUTION

IDENTIFY and SET UP: This example uses the relationship among
shear stress, shear strain, and shear modulus. Our target variable is
the force exerted parallel to each edge, as shown in Fig. 11.17.
We’ll find the shear strain using Eq. (11.16), the shear stress using
Eq. (11.17), and using Eq. (11.15). Table 11.1 gives the shear
modulus of brass. In Fig. 11.17, h represents the 0.80-m length of
each side of the plate. The area A in Eq. (11.15) is the product of
the 0.80-m length and the 0.50-cm thickness.

EXECUTE: From Eq. (11.16),

Shear strain =
x

h
=

1.6 * 10-4 m

0.80 m
= 2.0 * 10-4

FŒ

FŒ

From Eq. (11.17),

Finally, from Eq. (11.15),

EVALUATE: The shear force supplied by the earthquake is more
than 3 tons! The large shear modulus of brass makes it hard to
deform. Further, the plate is relatively thick (0.50 cm), so the area
A is relatively large and a substantial force is needed to provide
the necessary stress FŒ>A.

FŒ

= 17.0 * 106 Pa210.80 m210.0050 m2 = 2.8 * 104 N

FŒ = 1Shear stress2 * A

= 12.0 * 10-4213.5 * 1010 Pa2 = 7.0 * 106 Pa

 Shear stress = 1Shear strain2 * S
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slope equal to Young’s modulus. Figure 11.18 shows a typical stress-strain graph
for a metal such as copper or soft iron. The strain is shown as the percent elonga-
tion; the horizontal scale is not uniform beyond the first portion of the curve, up
to a strain of less than 1%. The first portion is a straight line, indicating Hooke’s
law behavior with stress directly proportional to strain. This straight-line portion
ends at point a; the stress at this point is called the proportional limit.

From a to b, stress and strain are no longer proportional, and Hooke’s law is
not obeyed. If the load is gradually removed, starting at any point between O and
b, the curve is retraced until the material returns to its original length. The defor-
mation is reversible, and the forces are conservative; the energy put into the
material to cause the deformation is recovered when the stress is removed. In
region Ob we say that the material shows elastic behavior. Point b, the end of this
region, is called the yield point; the stress at the yield point is called the elastic
limit.

When we increase the stress beyond point b, the strain continues to increase.
But now when we remove the load at some point beyond b, say c, the material does
not come back to its original length. Instead, it follows the red line in Fig. 11.18.
The length at zero stress is now greater than the original length; the material has
undergone an irreversible deformation and has acquired what we call a
permanent set. Further increase of load beyond c produces a large increase in
strain for a relatively small increase in stress, until a point d is reached at which
fracture takes place. The behavior of the material from b to d is called plastic
flow or plastic deformation. A plastic deformation is irreversible; when the stress
is removed, the material does not return to its original state.

For some materials, such as the one whose properties are graphed in Fig. 11.18,
a large amount of plastic deformation takes place between the elastic limit and the
fracture point. Such a material is said to be ductile. But if fracture occurs soon
after the elastic limit is passed, the material is said to be brittle. A soft iron wire
that can have considerable permanent stretch without breaking is ductile, while a
steel piano string that breaks soon after its elastic limit is reached is brittle.

Something very curious can happen when an object is stretched and then
allowed to relax. An example is shown in Fig. 11.19, which is a stress-strain
curve for vulcanized rubber that has been stretched by more than seven times its
original length. The stress is not proportional to the strain, but the behavior is
elastic because when the load is removed, the material returns to its original
length. However, the material follows different curves for increasing and decreas-
ing stress. This is called elastic hysteresis. The work done by the material when it
returns to its original shape is less than the work required to deform it; there are
nonconservative forces associated with internal friction. Rubber with large elas-
tic hysteresis is very useful for absorbing vibrations, such as in engine mounts
and shock-absorber bushings for cars.

The stress required to cause actual fracture of a material is called the breaking
stress, the ultimate strength, or (for tensile stress) the tensile strength. Two materi-
als, such as two types of steel, may have very similar elastic constants but vastly
different breaking stresses. Table 11.3 gives typical values of breaking stress for
several materials in tension. The conversion factor 
may help put these numbers in perspective. For example, if the breaking stress of
a particular steel is then a bar with a cross section has a
breaking strength of 100,000 lb.

1-in.26.9 * 108 Pa,

6.9 * 108 Pa = 100,000 psi

Proportional
limit

Elastic
behavior

Plastic
behavior

Permanent
set

Plastic
deformation

Fracture
pointa

b c d

Elastic limit or yield point
St

re
ss

O Strain,1% 30%

11.18 Typical stress-strain diagram for
a ductile metal under tension.

O 700%Strain

St
re

ss

Stress-strain curve
for increasing stress
(stretching the object)

Stress-strain curve
for decreasing stress
(letting the object
spring back)

11.19 Typical stress-strain diagram for
vulcanized rubber. The curves are different
for increasing and decreasing stress, a phe-
nomenon called elastic hysteresis.

Table 11.3 Approximate 
Breaking Stresses

Breaking Stress 
Material

Aluminum

Brass

Glass

Iron

Phosphor bronze

Steel 5-20 * 108

5.6 * 108

3.0 * 108

10 * 108

4.7 * 108

2.2 * 108

(Pa or N/m2)

Test Your Understanding of Section 11.5 While parking your car on a
crowded street, you accidentally back into a steel post. You pull forward until the car no
longer touches the post and then get out to inspect the damage. What does your rear
bumper look like if the strain in the impact was (a) less than at the proportional limit; 
(b) greater than at the proportional limit, but less than at the yield point; (c) greater than
at the yield point, but less than at the fracture point; and (d) greater than at the fracture
point? ❙
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CHAPTER 11 SUMMARY

Stress, strain, and Hooke’s law: Hooke’s law states that
in elastic deformations, stress (force per unit area) is
proportional to strain (fractional deformation). The pro-
portionality constant is called the elastic modulus.

Tensile and compressive stress: Tensile stress is tensile
force per unit area, Tensile strain is fractional
change in length, The elastic modulus is called
Young’s modulus Y. Compressive stress and strain are
defined in the same way. (See Example 11.5.)

¢l>l0.
F�>A.

The limits of Hooke’s law: The proportional limit is the maximum stress for which stress and strain
are proportional. Beyond the proportional limit, Hooke’s law is not valid. The elastic limit is the
stress beyond which irreversible deformation occurs. The breaking stress, or ultimate strength, is
the stress at which the material breaks.

Bulk stress: Pressure in a fluid is force per unit area.
Bulk stress is pressure change, and bulk strain is
fractional volume change, The elastic modulus
is called the bulk modulus, B. Compressibility, k, is 
the reciprocal of bulk modulus: (See 
Example 11.6.)

k = 1>B.

¢V>V0.
¢p, (11.11)

(11.13)B =
Bulk stress

Bulk strain
= -

¢p

¢V>V0

p =
F�

A

Shear stress: Shear stress is force per unit area, 
for a force applied tangent to a surface. Shear strain is
the displacement x of one side divided by the transverse
dimension h. The elastic modulus is called the shear
modulus, S. (See Example 11.7.)

FŒ>A,

(11.17)

S =
Shear stress

Shear strain
=

FŒ>A

x>h
=

FŒ

A

h

x

Conditions for equilibrium: For a rigid body to be in
equilibrium, two conditions must be satisfied. First, the
vector sum of forces must be zero. Second, the sum of
torques about any point must be zero. The torque due to
the weight of a body can be found by assuming the
entire weight is concentrated at the center of gravity,
which is at the same point as the center of mass if has
the same value at all points. (See Examples 11.1–11.4.)

gS

(11.1)

(11.2)

(11.4)

rScm �
m1 rS1 � m2 rS2 � m3 rS3 � Á

m1 + m2 + m3 + Á

aTS � 0 about any point

aFx = 0  aFy = 0  aFz = 0

(11.7)
Stress

Strain
= Elastic modulus

(11.10)

l0

¢l
Y =

Tensile stress

Tensile strain
=

F�>A

¢l>l0
=

F�

A

w

w

E

T

x

y
T

Ty

Ey

Ex

Tx

l0
Dl

A

l

A

Initial
state

F' F'

F' F'

F'

F'

F'

F'

Pressure 5 p0

Pressure 5 p
5 p0 1 Dp

Volume
V0

Volume
V

h

x

A

A
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A horizontal, uniform, solid copper rod has an original length l0,
cross-sectional area A, Young’s modulus Y, bulk modulus B, shear
modulus S, and mass m. It is supported by a frictionless pivot at its
right end and by a cable a distance from its left end (Fig. 11.20).
Both pivot and cable are attached so that they exert their forces
uniformly over the rod’s cross section. The cable makes an angle 
with the rod and compresses it. (a) Find the tension in the cable.
(b) Find the magnitude and direction of the force exerted by the
pivot on the right end of the rod. How does this magnitude com-
pare to the cable tension? How does this angle compare to ? (c)
Find the change in length of the rod due to the stresses exerted by
the cable and pivot on the rod. (d) By what factor would your
answer in part (c) increase if the solid copper rod were twice as
long but had the same cross-sectional area?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. Draw a free-body diagram for the rod. Be careful to place each

force in the correct location.
2. Make a list of the unknown quantities, and decide which are the

target variables.
3. What are the conditions that must be met so that the rod

remains at rest? What kind of stress (and resulting strain) is
involved? Use your answers to select the appropriate equations.

u

u

l0>4

EXECUTE
4. Use your equations to solve for the target variables. (Hint: You

can make the solution easier by carefully choosing the point
around which you calculate torques.)

5. Use your knowledge of trigonometry to decide whether the
pivot force or the cable tension has the greater magnitude, as
well as to decide whether the angle of the pivot force is greater
than, less than, or equal to .

EVALUATE
6. Check whether your answers are reasonable. Which force, the

cable tension or the pivot force, holds up more of the weight of
the rod? Does this make sense?

u

Cable

Pivot

Rod, mass m

u

l0

l0

4

11.20 What are the forces on the rod? What are the stress and
strain?

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q11.1 Does a rigid object in uniform rotation about a fixed axis
satisfy the first and second conditions for equilibrium? Why? Does
it then follow that every particle in this object is in equilibrium?
Explain.
Q11.2 (a) Is it possible for an object to be in translational equilib-
rium (the first condition) but not in rotational equilibrium (the sec-
ond condition)? Illustrate your answer with a simple example. 
(b) Can an object be in rotational equilibrium yet not in transla-
tional equilibrium? Justify your answer with a simple example.
Q11.3 Car tires are sometimes “balanced” on a machine that piv-
ots the tire and wheel about the center. Weights are placed around
the wheel rim until it does not tip from the horizontal plane. Dis-
cuss this procedure in terms of the center of gravity.
Q11.4 Does the center of gravity of a solid body always lie within
the material of the body? If not, give a counterexample.
Q11.5 In Section 11.2 we always assumed that the value of g was
the same at all points on the body. This is not a good approxima-
tion if the dimensions of the body are great enough, because the
value of g decreases with altitude. If this is taken into account, will
the center of gravity of a long, vertical rod be above, below, or at
its center of mass? Explain how this can be used to keep the long

axis of an orbiting spacecraft pointed toward the earth. (This
would be useful for a weather satellite that must always keep its
camera lens trained on the earth.) The moon is not exactly spheri-
cal but is somewhat elongated. Explain why this same effect is
responsible for keeping the same face of the moon pointed toward
the earth at all times.
Q11.6 You are balancing a wrench by suspending it at a single
point. Is the equilibrium stable, unstable, or neutral if the point is
above, at, or below the wrench’s center of gravity? In each case
give the reasoning behind your answer. (For rotation, a rigid body
is in stable equilibrium if a small rotation of the body produces a
torque that tends to return the body to equilibrium; it is in unstable
equilibrium if a small rotation produces a torque that tends to take
the body farther from equilibrium; and it is in neutral equilibrium
if a small rotation produces no torque.)
Q11.7 You can probably stand flatfooted on the floor and then rise
up and balance on your tiptoes. Why are you unable do it if your
toes are touching the wall of your room? (Try it!)
Q11.8 You freely pivot a horseshoe from a horizontal nail through
one of its nail holes. You then hang a long string with a weight at
its bottom from the same nail, so that the string hangs vertically in
front of the horseshoe without touching it. How do you know that

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

BRIDGING PROBLEM In Equilibrium and Under Stress
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the horseshoe’s center of gravity is along the line behind the
string? How can you locate the center of gravity by repeating the
process at another nail hole? Will the center of gravity be within
the solid material of the horseshoe?
Q11.9 An object consists of a ball of weight W glued to the end of
a uniform bar also of weight W. If you release it from rest, with the
bar horizontal, what will its behavior be as it falls if air resistance
is negligible? Will it (a) remain horizontal; (b) rotate about its cen-
ter of gravity; (c) rotate about the ball; or (d) rotate so that the ball
swings downward? Explain your reasoning.
Q11.10 Suppose that the object in Question 11.9 is released from
rest with the bar tilted at 60° above the horizontal with the ball at
the upper end. As it is falling, will it (a) rotate about its center of
gravity until it is horizontal; (b) rotate about its center of gravity
until it is vertical with the ball at the bottom; (c) rotate about the
ball until it is vertical with the ball at the bottom; or (d) remain at
60° above the horizontal?
Q11.11 Why must a water skier moving with constant velocity lean
backward? What determines how far back she must lean? Draw a
free-body diagram for the water skier to justify your answers.
Q11.12 In pioneer days, when a Conestoga wagon was stuck in the
mud, people would grasp the wheel spokes and try to turn the
wheels, rather than simply pushing the wagon. Why?
Q11.13 The mighty Zimbo claims to have leg muscles so strong
that he can stand flat on his feet and lean forward to pick up an
apple on the floor with his teeth. Should you pay to see him per-
form, or do you have any suspicions about his claim? Why?
Q11.14 Why is it easier to hold a 10-kg dumbbell in your hand
at your side than it is to hold it with your arm extended 
horizontally?
Q11.15 Certain features of a person, such as height and mass, are
fixed (at least over relatively long periods of time). Are the follow-
ing features also fixed? (a) location of the center of gravity of the
body; (b) moment of inertia of the body about an axis through the
person’s center of mass. Explain your reasoning.
Q11.16 During pregnancy, women often develop back pains from
leaning backward while walking. Why do they have to walk this
way?
Q11.17 Why is a tapered water glass with a narrow base easier to
tip over than a glass with straight sides? Does it matter whether the
glass is full or empty?
Q11.18 When a tall, heavy refrigerator is pushed across a rough
floor, what factors determine whether it slides or tips?
Q11.19 If a metal wire has its length doubled and its diameter
tripled, by what factor does its Young’s modulus change?
Q11.20 Why is concrete with steel reinforcing rods embedded in it
stronger than plain concrete?
Q11.21 A metal wire of diameter D stretches by 0.100 mm when
supporting a weight W. If the same-length wire is used to support a
weight three times as heavy, what would its diameter have to be (in
terms of D) so it still stretches only 0.100 mm?
Q11.22 Compare the mechanical properties of a steel cable, made
by twisting many thin wires together, with the properties of a
solid steel rod of the same diameter. What advantages does each
have?
Q11.23 The material in human bones and elephant bones is essen-
tially the same, but an elephant has much thicker legs. Explain
why, in terms of breaking stress.
Q11.24 There is a small but appreciable amount of elastic hystere-
sis in the large tendon at the back of a horse’s leg. Explain how this
can cause damage to the tendon if a horse runs too hard for too
long a time.

Q11.25 When rubber mounting blocks are used to absorb machine
vibrations through elastic hysteresis, as mentioned in Section 11.5,
what becomes of the energy associated with the vibrations?

EXERCISES
Section 11.2 Center of Gravity
11.1 .. A 0.120-kg, 50.0-cm-long uniform bar has a small 0.055-kg
mass glued to its left end and a small 0.110-kg mass glued to the
other end. The two small masses can each be treated as point
masses. You want to balance this system horizontally on a fulcrum
placed just under its center of gravity. How far from the left end
should the fulcrum be placed?
11.2 .. The center of gravity
of a 5.00-kg irregular object is
shown in Fig. E11.2. You need
to move the center of gravity
2.20 cm to the left by gluing on
a 1.50-kg mass, which will
then be considered as part of
the object. Where should the
center of gravity of this addi-
tional mass be located?
11.3 . A uniform rod is 2.00 m long and has mass 1.80 kg. A
2.40-kg clamp is attached to the rod. How far should the center of
gravity of the clamp be from the left-hand end of the rod in order
for the center of gravity of the composite object to be 1.20 m from
the left-hand end of the rod?

Section 11.3 Solving Rigid-Body Equilibrium Problems
11.4 . A uniform 300-N trapdoor in a floor is hinged at one side.
Find the net upward force needed to begin to open it and the total
force exerted on the door by the hinges (a) if the upward force is
applied at the center and (b) if the upward force is applied at the
center of the edge opposite the hinges.
11.5 .. Raising a Ladder. A ladder carried by a fire truck is
20.0 m long. The ladder weighs 2800 N and its center of gravity is
at its center. The ladder is pivoted at one end (A) about a pin
(Fig. E11.5); you can ignore the friction torque at the pin. The lad-
der is raised into position by a force applied by a hydraulic piston
at C. Point C is 8.0 m from A, and the force exerted by the piston
makes an angle of with the ladder. What magnitude must 
have to just lift the ladder off the support bracket at B? Start with a
free-body diagram of the ladder.

11.6 .. Two people are carrying a uniform wooden board that is
3.00 m long and weighs 160 N. If one person applies an upward
force equal to 60 N at one end, at what point does the other person
lift? Begin with a free-body diagram of the board.
11.7 .. Two people carry a heavy electric motor by placing it on a
light board 2.00 m long. One person lifts at one end with a force of
400 N, and the other lifts the opposite end with a force of 600 N.

F
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40°
F
S

x

Center of
gravity

Figure E11.2

40°CB A

12.0 m 8.0 m
F
S

Figure E11.5
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(a) What is the weight of the motor, and where along the board is
its center of gravity located? (b) Suppose the board is not light but
weighs 200 N, with its center of gravity at its center, and the two
people each exert the same forces as before. What is the weight of
the motor in this case, and where is its center of gravity located?
11.8 .. A 60.0-cm, uniform,
50.0-N shelf is supported
horizontally by two vertical
wires attached to the sloping
ceiling (Fig. E11.8). A very
small 25.0-N tool is placed on
the shelf midway between the
points where the wires are
attached to it. Find the ten-
sion in each wire. Begin by making a free-body diagram of the shelf.
11.9 .. A 350-N, uniform, 1.50-m bar is suspended horizontally
by two vertical cables at each end. Cable A can support a maxi-
mum tension of 500.0 N without breaking, and cable B can support
up to 400.0 N. You want to place a small weight on this bar. 
(a) What is the heaviest weight you can put on without breaking
either cable, and (b) where should you put this weight?
11.10 .. A uniform ladder 5.0 m long rests against a frictionless,
vertical wall with its lower end 3.0 m from the wall. The ladder
weighs 160 N. The coefficient of static friction between the foot of
the ladder and the ground is 0.40. A man weighing 740 N climbs
slowly up the ladder. Start by drawing a free-body diagram of the
ladder. (a) What is the maximum frictional force that the ground can
exert on the ladder at its lower end? (b) What is the actual frictional
force when the man has climbed 1.0 m along the ladder? (c) How far
along the ladder can the man climb before the ladder starts to slip?
11.11 . A diving board 3.00 m long is supported at a point 1.00 m
from the end, and a diver weighing 500 N stands at the free end
(Fig. E11.11). The diving board is of uniform cross section and
weighs 280 N. Find (a) the force at the support point and (b) the
force at the left-hand end.

11.12 . A uniform aluminum beam 9.00 m long, weighing 300 N,
rests symmetrically on two supports 5.00 m apart (Fig. E11.12). A
boy weighing 600 N starts at point A and walks toward the right. 
(a) In the same diagram construct two graphs showing the upward
forces and exerted on the beam at points A and B, as functions
of the coordinate x of the boy. Let vertically, and

horizontally. (b) From your diagram, how far
beyond point B can the boy walk before the beam tips? (c) How far
1 cm = 1.00 m

1 cm = 100 N
FBFA

from the right end of the beam should support B be placed so that the
boy can walk just to the end of the beam without causing it to tip?
11.13 . Find the tension T in each cable and the magnitude and
direction of the force exerted on the strut by the pivot in each of
the arrangements in Fig. E11.13. In each case let w be the weight
of the suspended crate full of priceless art objects. The strut is uni-
form and also has weight w. Start each case with a free-body dia-
gram of the strut.

11.14 . The horizontal beam in
Fig. E11.14 weighs 150 N, and
its center of gravity is at its cen-
ter. Find (a) the tension in the
cable and (b) the horizontal and
vertical components of the force
exerted on the beam at the wall.
11.15 . . BIO Push-ups. To
strengthen his arm and chest
muscles, an 82-kg athlete who is
2.0 m tall is doing push-ups as
shown in Fig. E11.15. His center
of mass is 1.15 m from the bot-
tom of his feet, and the centers of

his palms are 30.0 cm from the
top of his head. Find the force
that the floor exerts on each of
his feet and on each hand,
assuming that both feet exert the
same force and both palms do
likewise. Begin with a free-body
diagram of the athlete.
11.16 .. Suppose that you can
lift no more than 650 N (around
150 lb) unaided. (a) How much
can you lift using a 1.4-m-long
wheelbarrow that weighs 80.0 N
and whose center of gravity is
0.50 m from the center of the
wheel (Fig. E11.16)? The center
of gravity of the load carried in
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the wheelbarrow is also 0.50 m from the center of the wheel. 
(b) Where does the force come from to enable you to lift more than
650 N using the wheelbarrow?
11.17 .. You take your dog Clea to the vet, and the doctor
decides he must locate the little beast’s center of gravity. It would
be awkward to hang the pooch from the ceiling, so the vet must
devise another method. He places Clea’s front feet on one scale
and her hind feet on another. The front scale reads 157 N, while the
rear scale reads 89 N. The vet next measures Clea and finds that
her rear feet are 0.95 m behind her front feet. How much does Clea
weigh, and where is her center of gravity?
11.18 .. A 15,000-N crane
pivots around a friction-free
axle at its base and is supported
by a cable making a 25° angle
with the crane (Fig. E11.18).
The crane is 16 m long and is
not uniform, its center of grav-
ity being 7.0 m from the axle as
measured along the crane. The
cable is attached 3.0 m from
the upper end of the crane.
When the crane is raised to 55°
above the horizontal holding an
11,000-N pallet of bricks by a 2.2-m, very light cord, find (a) the
tension in the cable and (b) the horizontal and vertical components
of the force that the axle exerts on the crane. Start with a free-body
diagram of the crane.
11.19 .. A 3.00-m-long, 240-N, uniform rod at the zoo is held in
a horizontal position by two ropes at its ends (Fig. E11.19). The
left rope makes an angle of with the rod and the right rope
makes an angle with the horizontal. A 90-N howler monkey
(Alouatta seniculus) hangs motionless 0.50 m from the right end
of the rod as he carefully studies you. Calculate the tensions in
the two ropes and the angle First make a free-body diagram of
the rod.

11.20 .. A nonuniform beam 4.50 m long and weighing 1.00 kN
makes an angle of below the horizontal. It is held in position
by a frictionless pivot at its upper right end and by a cable 3.00 m
farther down the beam and perpendicular to it (Fig. E11.20). The
center of gravity of the beam is 2.00 m down the beam from the
pivot. Lighting equipment exerts a 5.00-kN downward force on
the lower left end of the beam. Find the tension T in the cable and
the horizontal and vertical components of the force exerted on the
beam by the pivot. Start by sketching a free-body diagram of the
beam.

25.0°

u.

u

150°

11.21 . A Couple. Two forces equal in magnitude and opposite
in direction, acting on an object at two different points, form what
is called a couple. Two antiparallel forces with equal magnitudes

are applied to a rod as shown in Fig. E11.21.
(a) What should the distance l between the forces be if they are to
provide a net torque of about the left end of the rod? 
(b) Is the sense of this torque clockwise or counterclockwise? 
(c) Repeat parts (a) and (b) for a pivot at the point on the rod where

is applied.

11.22 .. BIO A Good Work-
out. You are doing exer-
cises on a Nautilus machine in
a gym to strengthen your del-
toid (shoulder) muscles. Your
arms are raised vertically and
can pivot around the shoulder
joint, and you grasp the cable
of the machine in your hand
64.0 cm from your shoulder
joint. The deltoid muscle is
attached to the humerus 15.0
cm from the shoulder joint
and makes a 12.0° angle with
that bone (Fig. E11.22). If you
have set the tension in the
cable of the machine to 36.0 N
on each arm, what is the ten-
sion in each deltoid muscle if
you simply hold your outstretched arms in place? (Hint: Start by
making a clear free-body diagram of your arm.)
11.23 .. BIO Neck Muscles. A student bends her head at 40.0°
from the vertical while intently reading her physics book, pivoting
the head around the upper vertebra (point P in Fig. E11.23). Her
head has a mass of 4.50 kg (which is typical), and its center of
mass is 11.0 cm from the pivot point P. Her neck muscles are 
1.50 cm from point P, as measured perpendicular to these muscles.
The neck itself and the vertebrae are held vertical. (a) Draw a free-
body diagram of the student’s head. (b) Find the tension in her
neck muscles.
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Section 11.4 Stress, Strain, and Elastic Moduli
11.24 . BIO Biceps Muscle. A relaxed biceps muscle requires a
force of 25.0 N for an elongation of 3.0 cm; the same muscle under
maximum tension requires a force of 500 N for the same elonga-
tion. Find Young’s modulus for the muscle tissue under each of
these conditions if the muscle is assumed to be a uniform cylinder
with length 0.200 m and cross-sectional area 
11.25 .. A circular steel wire 2.00 m long must stretch no more
than 0.25 cm when a tensile force of 400 N is applied to each end
of the wire. What minimum diameter is required for the wire?
11.26 .. Two circular rods, one steel and the other copper, are
joined end to end. Each rod is 0.750 m long and 1.50 cm in diame-
ter. The combination is subjected to a tensile force with magnitude
4000 N. For each rod, what are (a) the strain and (b) the elongation?
11.27 .. A metal rod that is 4.00 m long and in cross-
sectional area is found to stretch 0.20 cm under a tension of 5000 N.
What is Young’s modulus for this metal?
11.28 .. Stress on a Mountaineer’s Rope. A nylon rope used
by mountaineers elongates 1.10 m under the weight of a 65.0-kg
climber. If the rope is 45.0 m in length and 7.0 mm in diameter,
what is Young’s modulus for nylon?
11.29 .. In constructing a large mobile, an artist hangs an alu-
minum sphere of mass 6.0 kg from a vertical steel wire 0.50 m
long and in cross-sectional area. On the bottom of
the sphere he attaches a similar steel wire, from which he hangs a
brass cube of mass 10.0 kg. For each wire, compute (a) the tensile
strain and (b) the elongation.
11.30 .. A vertical, solid steel post 25 cm in diameter and 2.50 m
long is required to support a load of 8000 kg. You can ignore the
weight of the post. What are (a) the stress in the post; (b) the strain
in the post; and (c) the change in the post’s length when the load is
applied?
11.31 .. BIO Compression of Human Bone. The bulk modu-
lus for bone is 15 GPa. (a) If a diver-in-training is put into a pres-
surized suit, by how much would the pressure have to be raised (in
atmospheres) above atmospheric pressure to compress her bones
by 0.10% of their original volume? (b) Given that the pressure in
the ocean increases by for every meter of depth
below the surface, how deep would this diver have to go for her
bones to compress by 0.10%? Does it seem that bone compression
is a problem she needs to be concerned with when diving?
11.32 . A solid gold bar is pulled up from the hold of the sunken
RMS Titanic. (a) What happens to its volume as it goes from the
pressure at the ship to the lower pressure at the ocean’s surface?
(b) The pressure difference is proportional to the depth. How many
times greater would the volume change have been had the ship
been twice as deep? (c) The bulk modulus of lead is one-fourth
that of gold. Find the ratio of the volume change of a solid lead bar
to that of a gold bar of equal volume for the same pressure change.

1.0 * 104 Pa

2.5 * 10-3 cm2

0.50 cm2

50.0 cm2.

11.33 . BIO Downhill Hiking. During
vigorous downhill hiking, the force on the
knee cartilage (the medial and lateral
meniscus) can be up to eight times body
weight. Depending on the angle of descent,
this force can cause a large shear force on
the cartilage and deform it. The cartilage
has an area of about 10 cm2 and a shear
modulus of 12 MPa. If the hiker plus his
pack have a combined mass of 110 kg (not
unreasonable), and if the maximum force at impact is 8 times his
body weight (which, of course, includes the weight of his pack) at
an angle of 12° with the cartilage (Fig. E11.33), through what
angle (in degrees) will his knee cartilage be deformed? (Recall that
the bone below the cartilage pushes upward with the same force as
the downward force.)
11.34 .. In the Challenger Deep of the Marianas Trench, the depth
of seawater is 10.9 km and the pressure is (about

). (a) If a cubic meter of water is taken from the sur-
face to this depth, what is the change in its volume? (Normal atmos-
pheric pressure is about Assume that k for seawater is
the same as the freshwater value given in Table 11.2.) (b) What is the
density of seawater at this depth? (At the surface, seawater has a
density of )
11.35 . A specimen of oil having an initial volume of is
subjected to a pressure increase of and the volume
is found to decrease by What is the bulk modulus of the
material? The compressibility?
11.36 .. A square steel plate is 10.0 cm on a side and 0.500 cm
thick. (a) Find the shear strain that results if a force of magnitude

is applied to each of the four sides, parallel to the
side. (b) Find the displacement x in centimeters.
11.37 .. A copper cube measures 6.00 cm on each side. The bot-
tom face is held in place by very strong glue to a flat horizontal
surface, while a horizontal force F is applied to the upper face par-
allel to one of the edges. (Consult Table 11.1.) (a) Show that the
glue exerts a force F on the bottom face that is equal but opposite
to the force on the top face. (b) How large must F be to cause the
cube to deform by 0.250 mm? (c) If the same experiment were per-
formed on a lead cube of the same size as the copper one, by what
distance would it deform for the
same force as in part (b)?
11.38 . In lab tests on a 9.25-
cm cube of a certain material, a
force of 1375 N directed at
8.50° to the cube (Fig. E11.38)
causes the cube to deform
through an angle of 1.24°. What
is the shear modulus of the
material?

Section 11.5 Elasticity and Plasticity
11.39 .. In a materials testing laboratory, a metal wire made from
a new alloy is found to break when a tensile force of 90.8 N is
applied perpendicular to each end. If the diameter of the wire is
1.84 mm, what is the breaking stress of the alloy?
11.40 . A 4.0-m-long steel wire has a cross-sectional area of

Its proportional limit has a value of 0.0016 times its
Young’s modulus (see Table 11.1). Its breaking stress has a value
of 0.0065 times its Young’s modulus. The wire is fastened at its
upper end and hangs vertically. (a) How great a weight can be
hung from the wire without exceeding the proportional limit? 

0.050 cm2.

9.0 * 105 N

0.45 cm3.
3.6 * 106 Pa,

600 cm3
1.03 * 103 kg>m3.

1.0 * 105 Pa.

1.15 * 103 atm
1.16 * 108 Pa
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(b) How much will the wire stretch under this load? (c) What is the
maximum weight that the wire can support?
11.41 .. CP A steel cable with cross-sectional area has
an elastic limit of Find the maximum upward
acceleration that can be given a 1200-kg elevator supported by the
cable if the stress is not to exceed one-third of the elastic limit.
11.42 .. A brass wire is to withstand a tensile force of 350 N
without breaking. What minimum diameter must the wire have?

PROBLEMS
11.43 ... A box of negligible mass rests at the left end of a
2.00-m, 25.0-kg plank (Fig. P11.43). The width of the box is
75.0 cm, and sand is to be distributed uniformly throughout it.
The center of gravity of the nonuniform plank is 50.0 cm from
the right end. What mass of sand should be put into the box so
that the plank balances horizontally on a fulcrum placed just
below its midpoint?

11.44 ... A door 1.00 m wide and 2.00 m high weighs 280 N and
is supported by two hinges, one 0.50 m from the top and the other
0.50 m from the bottom. Each hinge supports half the total weight
of the door. Assuming that the door’s center of gravity is at its cen-
ter, find the horizontal components of force exerted on the door by
each hinge.
11.45 ... Mountain Climbing. Moun-
taineers often use a rope to lower them-
selves down the face of a cliff (this is
called rappelling). They do this with
their body nearly horizontal and their
feet pushing against the cliff (Fig.
P11.45). Suppose that an 82.0-kg
climber, who is 1.90 m tall and has a
center of gravity 1.1 m from his feet, rap-
pels down a vertical cliff with his body
raised 35.0° above the horizontal. He
holds the rope 1.40 m from his feet, and
it makes a 25.0° angle with the cliff
face. (a) What tension does his rope
need to support? (b) Find the horizontal
and vertical components of the force
that the cliff face exerts on the climber’s
feet. (c) What minimum coefficient of static friction is needed to
prevent the climber’s feet from slipping on the cliff face if he has
one foot at a time against the cliff?
11.46 . Sir Lancelot rides slowly out of the castle at Camelot
and onto the 12.0-m-long drawbridge that passes over the moat
(Fig. P11.46). Unbeknownst to him, his enemies have partially
severed the vertical cable holding up the front end of the bridge
so that it will break under a tension of The bridge
has mass 200 kg and its center of gravity is at its center. Lancelot,
his lance, his armor, and his horse together have a combined
mass of 600 kg. Will the cable break before Lancelot reaches the
end of the drawbridge? If so, how far from the castle end of the

5.80 * 103 N.

2.40 * 108 Pa.
3.00 cm2

bridge will the center of gravity of the horse plus rider be when
the cable breaks?

11.47 . Three vertical forces act on an airplane when it is flying
at a constant altitude and with a constant velocity. These are the
weight of the airplane, an aerodynamic force on the wing of the
airplane, and an aerodynamic force on the airplane’s horizontal
tail. (The aerodynamic forces are exerted by the surrounding air
and are reactions to the forces that the wing and tail exert on the air
as the airplane flies through it.) For a particular light airplane with
a weight of 6700 N, the center of gravity is 0.30 m in front of the
point where the wing’s vertical aerodynamic force acts and 3.66 m
in front of the point where the tail’s vertical aerodynamic force
acts. Determine the magnitude and direction (upward or down-
ward) of each of the two vertical aerodynamic forces.
11.48 .. A pickup truck has a wheelbase of 3.00 m. Ordinarily,
10,780 N rests on the front wheels and 8820 N on the rear wheels
when the truck is parked on a level road. (a) A box weighing 3600 N
is now placed on the tailgate, 1.00 m behind the rear axle. How
much total weight now rests on the front wheels? On the rear
wheels? (b) How much weight would need to be placed on the tail-
gate to make the front wheels come off the ground?
11.49 .. A uniform, 255-N rod that is 2.00 m long carries a 225-N
weight at its right end and an unknown weight W toward the left
end (Fig. P11.49). When W is placed 50.0 cm from the left end of
the rod, the system just balances horizontally when the fulcrum is
located 75.0 cm from the right end. (a) Find W. (b) If W is now
moved 25.0 cm to the right, how far and in what direction must the
fulcrum be moved to restore balance?

11.50 .. A uniform, 8.0-m,
1500-kg beam is hinged to a
wall and supported by a thin
cable attached 2.0 m from the
free end of the beam, (Fig.
P11.50). The beam is supported
at an angle of 30.0° above the
horizontal. (a) Draw a free-
body diagram of the beam. 
(b) Find the tension in the cable.
(c) How hard does the beam
push inward on the wall?
11.51 .. You open a restaurant and hope to entice customers by
hanging out a sign (Fig. P11.51). The uniform horizontal beam
supporting the sign is 1.50 m long, has a mass of 12.0 kg, and is
hinged to the wall. The sign itself is uniform with a mass of 28.0 kg
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and overall length of 1.20 m. The two wires supporting the sign are
each 32.0 cm long, are 90.0 cm apart, and are equally spaced from
the middle of the sign. The cable supporting the beam is 2.00 m
long. (a) What minimum tension must your cable be able to sup-
port without having your sign come crashing down? (b) What min-
imum vertical force must the hinge be able to support without
pulling out of the wall?

11.52 ... A claw hammer is
used to pull a nail out of a board
(Fig. P11.52). The nail is at an
angle of to the board, and a
force of magnitude 400 N
applied to the nail is required to
pull it from the board. The ham-
mer head contacts the board at
point A, which is 0.080 m from
where the nail enters the board.
A horizontal force is applied
to the hammer handle at a dis-
tance of 0.300 m above the
board. What magnitude of force

is required to apply the
required 400-N force to
the nail? (You can ignore the
weight of the hammer.)
11.53 . End A of the bar AB
in Fig. P11.53 rests on a fric-
tionless horizontal surface, and
end B is hinged. A horizontal
force of magnitude 160 N is
exerted on end A. You can
ignore the weight of the bar.
What are the horizontal and
vertical components of the
force exerted by the bar on the
hinge at B?
11.54 . A museum of mod-
ern art is displaying an irregu-
lar 426-N sculpture by hanging
it from two thin vertical wires,
A and B, that are 1.25 m apart
(Fig. P11.54). The center of
gravity of this piece of art is
located 48.0 cm from its
extreme right tip. Find the
tension in each wire.
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11.55 .. BIO Supporting a
Broken Leg. A therapist
tells a 74-kg patient with a
broken leg that he must have
his leg in a cast suspended
horizontally. For minimum
discomfort, the leg should be
supported by a vertical strap
attached at the center of mass
of the leg–cast system. (Fig. P11.55). In order to comply with these
instructions, the patient consults a table of typical mass distributions
and finds that both upper legs (thighs) together typically account for
21.5% of body weight and the center of mass of each thigh is 18.0
cm from the hip joint. The patient also reads that the two lower legs
(including the feet) are 14.0% of body weight, with a center of mass
69.0 cm from the hip joint. The cast has a mass of 5.50 kg, and its
center of mass is 78.0 cm from the hip joint. How far from the hip
joint should the supporting strap be attached to the cast?
11.56 . A Truck on a Drawbridge. A loaded cement mixer
drives onto an old drawbridge, where it stalls with its center of
gravity three-quarters of the way across the span. The truck driver
radios for help, sets the handbrake, and waits. Meanwhile, a boat
approaches, so the drawbridge is raised by means of a cable
attached to the end opposite the hinge (Fig. P11.56). The draw-
bridge is 40.0 m long and has a mass of 18,000 kg; its center of
gravity is at its midpoint. The cement mixer, with driver, has mass
30,000 kg. When the drawbridge has been raised to an angle of

above the horizontal, the cable makes an angle of with the
surface of the bridge. (a) What is the tension T in the cable when
the drawbridge is held in this position? (b) What are the hori-
zontal and vertical components of the force the hinge exerts on
the span?

11.57 .. BIO Leg Raises.
In a simplified version of the
musculature action in leg
raises, the abdominal mus-
cles pull on the femur (thigh
bone) to raise the leg by piv-
oting it about one end (Fig.
P11.57). When you are lying
horizontally, these muscles
make an angle of approxi-
mately 5° with the femur,
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and if you raise your legs, the muscles remain approximately
horizontal, so the angle increases. We shall assume for sim-
plicity that these muscles attach to the femur in only one place,
10 cm from the hip joint (although, in reality, the situation is more
complicated). For a certain 80-kg person having a leg 90 cm
long, the mass of the leg is 15 kg and its center of mass is 44 cm
from his hip joint as measured along the leg. If the person raises
his leg to 60° above the horizontal, the angle between the
abdominal muscles and his femur would also be about 60°. 
(a) With his leg raised to 60°, find the tension in the abdominal
muscle on each leg. As usual, begin your solution with a free-body
diagram. (b) When is the tension in this muscle greater: when the
leg is raised to 60° or when the person just starts to raise it off the
ground? Why? (Try this yourself to check your answer.) (c) If the
abdominal muscles attached to the femur were perfectly horizontal
when a person was lying down, could the person raise his leg?
Why or why not?
11.58 . A nonuniform fire escape ladder is 6.0 m long when
extended to the icy alley below. It is held at the top by a frictionless
pivot, and there is negligible frictional force from the icy surface at
the bottom. The ladder weighs 250 N, and its center of gravity is
2.0 m along the ladder from its bottom. A mother and child of total
weight 750 N are on the ladder 1.5 m from the pivot. The ladder
makes an angle with the horizontal. Find the magnitude and
direction of (a) the force exerted by the icy alley on the ladder
and (b) the force exerted by the ladder on the pivot. (c) Do your
answers in parts (a) and (b) depend on the angle 
11.59 .. A uniform strut of mass m makes an angle with the
horizontal. It is supported by a frictionless pivot located at one-
third its length from its lower left end and a horizontal rope at its
upper right end. A cable and package of total weight w hang from
its upper right end. (a) Find the vertical and horizontal components
V and H of the pivot’s force on the strut as well as the tension T in
the rope. (b) If the maximum safe tension in the rope is 700 N and
the mass of the strut is 30.0 kg, find the maximum safe weight of the
cable and package when the strut makes an angle of with the
horizontal. (c) For what angle can no weight be safely suspended
from the right end of the strut?
11.60 . You are asked to design the decorative mobile shown 
in Fig. P11.60. The strings and rods have negligible weight, and
the rods are to hang horizontally. (a) Draw a free-body diagram
for each rod. (b) Find the weights of the balls A, B, and C. Find
the tensions in the strings and (c) What can you say
about the horizontal location of the mobile’s center of gravity?
Explain.

11.61 .. A uniform, 7.5-m-long beam weighing 5860 N is hinged
to a wall and supported by a thin cable attached 1.5 m from the free
end of the beam. The cable runs between the beam and the wall

S3.S2,S1,

u

55.0°

u

u?

u

u

and makes a angle with the beam. What is the tension in the
cable when the beam is at an angle of above the horizontal?
11.62 .. CP A uniform drawbridge must be held at a angle
above the horizontal to allow ships to pass underneath. The
drawbridge weighs 45,000 N and is 14.0 m long. A cable is con-
nected 3.5 m from the hinge where the bridge pivots (measured
along the bridge) and pulls horizontally on the bridge to hold it
in place. (a) What is the tension in the cable? (b) Find the mag-
nitude and direction of the force the hinge exerts on the bridge.
(c) If the cable suddenly breaks, what is the magnitude of the
angular acceleration of the drawbridge just after the cable
breaks? (d) What is the angular speed of the drawbridge as it
becomes horizontal?
11.63 .. BIO Tendon-Stretch-
ing Exercises. As part of an
exercise program, a 75-kg per-
son does toe raises in which he
raises his entire body weight on
the ball of one foot (Fig.
P11.63). The Achilles tendon
pulls straight upward on the
heel bone of his foot. This ten-
don is 25 cm long and has a
cross-sectional area of 78 mm2

and a Young’s modulus of 1470
MPa. (a) Make a free-body dia-
gram of the person’s foot
(everything below the ankle
joint). You can neglect the
weight of the foot. (b) What
force does the Achilles tendon
exert on the heel during this exercise? Express your answer in
newtons and in multiples of his weight. (c) By how many mil-
limeters does the exercise stretch his Achilles tendon?
11.64 .. (a) In Fig. P11.64 a
6.00-m-long, uniform beam is
hanging from a point 1.00 m
to the right of its center. The
beam weighs 140 N and
makes an angle of with
the vertical. At the right-hand
end of the beam a 100.0-N
weight is hung; an unknown
weight w hangs at the left end.
If the system is in equilib-
rium, what is w? You can
ignore the thickness of the
beam. (b) If the beam makes,
instead, an angle of 
with the vertical, what is w?
11.65 ... A uniform, hori-
zontal flagpole 5.00 m long with a weight of 200 N is hinged to a
vertical wall at one end. A 600-N stuntwoman hangs from its other
end. The flagpole is supported by a guy wire running from its outer
end to a point on the wall directly above the pole. (a) If the tension
in this wire is not to exceed 1000 N, what is the minimum height
above the pole at which it may be fastened to the wall? (b) If the
flagpole remains horizontal, by how many newtons would the ten-
sion be increased if the wire were fastened 0.50 m below this
point?
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11.66 . A holiday decora-
tion consists of two shiny
glass spheres with masses
0.0240 kg and 0.0360 kg
suspended from a uniform
rod with mass 0.120 kg and
length 1.00 m (Fig. P11.66).
The rod is suspended from
the ceiling by a vertical
cord at each end, so that it
is horizontal. Calculate the
tension in each of the cords
A through F.
11.67 .. BIO Downward-
Facing Dog. One yoga exercise, known as the “Downward-Facing
Dog,” requires stretching your hands straight out above your
head and bending down to lean against the floor. This exercise is
performed by a 750-N person, as shown in Fig. P11.67. When he
bends his body at the hip to a 90° angle between his legs and trunk,
his legs, trunk, head, and arms have the dimensions indicated. Fur-
thermore, his legs and feet weigh a total of 277 N, and their center
of mass is 41 cm from his hip, measured along his legs. The per-
son’s trunk, head, and arms weigh 473 N, and their center of grav-
ity is 65 cm from his hip, measured along the upper body. (a) Find
the normal force that the floor exerts on each foot and on each
hand, assuming that the person does not favor either hand or either
foot. (b) Find the friction force on each foot and on each hand,
assuming that it is the same on both feet and on both hands (but not
necessarily the same on the feet as on the hands). [Hint: First treat
his entire body as a system; then isolate his legs (or his upper
body).]

11.68 . When you stretch a wire, rope, or rubber band, it gets
thinner as well as longer. When Hooke’s law holds, the frac-
tional decrease in width is proportional to the tensile strain. If

is the original width and is the change in width, then
where the minus sign reminds us that width

decreases when length increases. The dimensionless constant 
different for different materials, is called Poisson’s ratio. (a) If the
steel rod of Example 11.5 (Section 11.4) has a circular cross sec-
tion and a Poisson’s ratio of 0.23, what is its change in diameter
when the milling machine is hung from it? (b) A cylinder made of
nickel has radius 2.0 cm. What tensile
force must be applied perpendicular to each end of the cylinder
to cause its radius to decrease by 0.10 mm? Assume that the break-
ing stress and proportional limit for the metal are extremely large
and are not exceeded.
11.69 . A worker wants to turn over a uniform, 1250-N, rectangu-
lar crate by pulling at 53.0° on one of its vertical sides (Fig. P11.69).

F�

1Poisson’s ratio = 0.422

s,
¢w>w0 = -s¢l> l0,

¢ww0

The floor is rough enough
to prevent the crate from
slipping. (a) What pull is
needed to just start the
crate to tip? (b) How hard
does the floor push upward
on the crate? (c) Find the
friction force on the crate.
(d) What is the minimum coefficient of static friction needed to
prevent the crate from slipping on the floor?
11.70 ... One end of a uniform
meter stick is placed against a
vertical wall (Fig. P11.70). The
other end is held by a light-
weight cord that makes an
angle with the stick. The
coefficient of static friction
between the end of the meter
stick and the wall is 0.40. 
(a) What is the maximum value
the angle can have if the stick
is to remain in equilibrium? (b) Let the angle be A block of
the same weight as the meter stick is suspended from the stick, as
shown, at a distance x from the wall. What is the minimum value
of x for which the stick will remain in equilibrium? (c) When

how large must the coefficient of static friction be so that
the block can be attached 10 cm from the left end of the stick with-
out causing it to slip?
11.71 .. Two friends are car-
rying a 200-kg crate up a flight
of stairs. The crate is 1.25 m
long and 0.500 m high, and its
center of gravity is at its center.
The stairs make a angle
with respect to the floor. The
crate also is carried at a 
angle, so that its bottom side is
parallel to the slope of the stairs
(Fig. P11.71). If the force each
person applies is vertical, what
is the magnitude of each of
these forces? Is it better to be
the person above or below on
the stairs?
11.72 .. BIO Forearm. In the human arm, the forearm and
hand pivot about the elbow joint. Consider a simplified model in
which the biceps muscle is attached to the forearm 3.80 cm from
the elbow joint. Assume that the person’s hand and forearm
together weigh 15.0 N and that their center of gravity is 15.0 cm
from the elbow (not quite halfway to the hand). The forearm is
held horizontally at a right angle to the upper arm, with the biceps
muscle exerting its force perpendicular to the forearm. (a) Draw a
free-body diagram for the forearm, and find the force exerted by
the biceps when the hand is empty. (b) Now the person holds a
80.0-N weight in his hand, with the forearm still horizontal.
Assume that the center of gravity of this weight is 33.0 cm from
the elbow. Construct a free-body diagram for the forearm, and find
the force now exerted by the biceps. Explain why the biceps muscle
needs to be very strong. (c) Under the conditions of part (b), find
the magnitude and direction of the force that the elbow joint exerts
on the forearm. (d) While holding the 80.0-N weight, the person
raises his forearm until it is at an angle of above the53.0°
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horizontal. If the biceps muscle continues to exert its force perpen-
dicular to the forearm, what is this force when the forearm is in this
position? Has the force increased or decreased from its value in part
(b)? Explain why this is so, and test your answer by actually doing
this with your own arm.
11.73 .. BIO CALC Refer to the discussion of holding a dumbbell
in Example 11.4 (Section 11.3). The maximum weight that can be
held in this way is limited by the maximum allowable tendon ten-
sion T (determined by the strength of the tendons) and by the dis-
tance D from the elbow to where the tendon attaches to the
forearm. (a) Let represent the maximum value of the tendon
tension. Use the results of Example 11.4 to express (the max-
imum weight that can be held) in terms of L, D, and h. Your
expression should not include the angle (b) The tendons of dif-
ferent primates are attached to the forearm at different values of D.
Calculate the derivative of with respect to D, and determine
whether the derivative is positive or negative. (c) A chimpanzee
tendon is attached to the forearm at a point farther from the elbow
than for humans. Use this to explain why chimpanzees have
stronger arms than humans. (The disadvantage is that chimpanzees
have less flexible arms than do humans.)
11.74 .. A uniform, 90.0-N table is 3.6 m long, 1.0 m high, and
1.2 m wide. A 1500-N weight is placed 0.50 m from one end of the
table, a distance of 0.60 m from each side of the table. Draw a free-
body diagram for the table and find the force that each of the four
legs exerts on the floor.
11.75 ... Flying Buttress. (a) A symmetric building has a roof
sloping upward at above the horizontal on each side. If each
side of the uniform roof weighs 10,000 N, find the horizontal force
that this roof exerts at the top of the wall, which tends to push out
the walls. Which type of building would be more in danger of col-
lapsing: one with tall walls or one with short walls? Explain. (b) As
you saw in part (a), tall walls are in danger of collapsing from the
weight of the roof. This problem plagued the ancient builders of
large structures. A solution used in the great Gothic cathedrals dur-
ing the 1200s was the flying buttress, a stone support running
between the walls and the ground that helped to hold in the walls.
A Gothic church has a uniform roof weighing a total of 20,000 N
and rising at above the horizontal at each wall. The walls are
40 m tall, and a flying buttress meets each wall 10 m below the
base of the roof. What horizontal force must this flying buttress
apply to the wall?
11.76 .. You are trying to
raise a bicycle wheel of mass m
and radius R up over a curb of
height h. To do this, you apply a
horizontal force (Fig. P11.76).
What is the smallest magnitude
of the force that will succeed
in raising the wheel onto the
curb when the force is applied
(a) at the center of the wheel
and (b) at the top of the wheel?
(c) In which case is less force
required?
11.77 . The Farmyard Gate.
A gate 4.00 m wide and 2.00 m
high weighs 500 N. Its center
of gravity is at its center, and it
is hinged at A and B. To relieve
the strain on the top hinge, a

F
S

F
S

40°

35.0°

wmax

u.
Tmax,

wmax

Tmax

wire CD is connected as shown in Fig. P11.77. The tension in CD
is increased until the horizontal force at hinge A is zero. (a) What is
the tension in the wire CD? (b) What is the magnitude of the hori-
zontal component of the force at hinge B? (c) What is the com-
bined vertical force exerted by hinges A and B?
11.78 . If you put a uniform block at the edge of a table, the cen-
ter of the block must be over the table for the block not to fall off.
(a) If you stack two identical blocks at the table edge, the center of
the top block must be over the bottom block, and the center of
gravity of the two blocks together must be over the table. In terms
of the length L of each block, what is the maximum overhang pos-
sible (Fig. P11.78)? (b) Repeat part (a) for three identical blocks
and for four identical blocks. (c) Is it possible to make a stack of
blocks such that the uppermost block is not directly over the table
at all? How many blocks would it take to do this? (Try this with
your friends using copies of this book.)

11.79 ... Two uniform, 75.0-g
marbles 2.00 cm in diameter
are stacked as shown in Fig.
P11.79 in a container that is
3.00 cm wide. (a) Find the
force that the container exerts
on the marbles at the points of
contact A, B, and C. (b) What
force does each marble exert on
the other?
11.80 .. Two identical, uni-
form beams weighing 260 N
each are connected at one end
by a frictionless hinge. A light
horizontal crossbar attached at
the midpoints of the beams
maintains an angle of 53.0°
between the beams. The beams
are suspended from the ceiling
by vertical wires such that they
form a “V,” as shown in Fig.
P11.80. (a) What force does the
crossbar exert on each beam?
(b) Is the crossbar under tension or compression? (c) What force
(magnitude and direction) does the hinge at point A exert on each
beam?
11.81 . An engineer is
designing a conveyor system
for loading hay bales into a
wagon (Fig. P11.81). Each
bale is 0.25 m wide, 0.50 m
high, and 0.80 m long (the
dimension perpendicular to
the plane of the figure), with
mass 30.0 kg. The center of
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gravity of each bale is at its geometrical center. The coefficient of
static friction between a bale and the conveyor belt is 0.60, and the
belt moves with constant speed. (a) The angle of the conveyor is
slowly increased. At some critical angle a bale will tip (if it doesn’t
slip first), and at some different critical angle it will slip (if it doesn’t
tip first). Find the two critical angles and determine which happens at
the smaller angle. (b) Would the outcome of part (a) be different if the
coefficient of friction were 0.40?
11.82 . A weight W is sup-
ported by attaching it to a verti-
cal uniform metal pole by a thin
cord passing over a pulley hav-
ing negligible mass and friction.
The cord is attached to the pole
40.0 cm below the top and pulls
horizontally on it (Fig. P11.82).
The pole is pivoted about a
hinge at its base, is 1.75 m tall,
and weighs 55.0 N. A thin wire
connects the top of the pole to a
vertical wall. The nail that
holds this wire to the wall will
pull out if an outward force greater than 22.0 N acts on it. (a) What
is the greatest weight W that can be supported this way without
pulling out the nail? (b) What is the magnitude of the force that the
hinge exerts on the pole?
11.83 .. A garage door is
mounted on an overhead rail
(Fig. P11.83). The wheels at A
and B have rusted so that they
do not roll, but rather slide
along the track. The coefficient
of kinetic friction is 0.52. The
distance between the wheels is
2.00 m, and each is 0.50 m
from the vertical sides of the
door. The door is uniform and
weighs 950 N. It is pushed to the left at constant speed by a hori-
zontal force (a) If the distance h is 1.60 m, what is the vertical
component of the force exerted on each wheel by the track? 
(b) Find the maximum value h can have without causing one wheel
to leave the track.
11.84 .. A horizontal boom is supported at its left end by a fric-
tionless pivot. It is held in place by a cable attached to the right-
hand end of the boom. A chain and crate of total weight w hang
from somewhere along the boom. The boom’s weight cannot be
ignored and the boom may or may not be uniform. (a) Show that
the tension in the cable is the same whether the cable makes an
angle or an angle with the horizontal, and that the hor-
izontal force component exerted on the boom by the pivot has
equal magnitude but opposite direction for the two angles. (b) Show
that the cable cannot be horizontal. (c) Show that the tension in the
cable is a minimum when the cable is vertical, pulling upward on
the right end of the boom. (d) Show that when the cable is vertical,
the force exerted by the pivot on the boom is vertical.
11.85 .. Prior to being placed in its hole, a 5700-N, 9.0-m-long,
uniform utility pole makes some nonzero angle with the vertical.
A vertical cable attached 2.0 m below its upper end holds it in
place while its lower end rests on the ground. (a) Find the tension
in the cable and the magnitude and direction of the force exerted
by the ground on the pole. (b) Why don’t we need to know the
angle the pole makes with the vertical, as long as it is not zero?
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11.86 ... Pyramid Builders.
Ancient pyramid builders are
balancing a uniform rectangu-
lar slab of stone tipped at an
angle above the horizontal
using a rope (Fig. P11.86). The
rope is held by five workers
who share the force equally.
(a) If what force
does each worker exert on the
rope? (b) As increases, does
each worker have to exert
more or less force than in part (a), assuming they do not change the
angle of the rope? Why? (c) At what angle do the workers need to
exert no force to balance the slab? What happens if exceeds this
value?
11.87 . You hang a floodlamp from the end of a vertical steel
wire. The floodlamp stretches the wire 0.18 mm and the stress is
proportional to the strain. How much would it have stretched (a) if
the wire were twice as long? (b) if the wire had the same length but
twice the diameter? (c) for a copper wire of the original length and
diameter?
11.88 .. Hooke’s Law for a Wire. A wire of length and
cross-sectional area A supports a hanging weight W. (a) Show that
if the wire obeys Eq. (11.7), it behaves like a spring of force con-
stant where Y is Young’s modulus for the material of which
the wire is made. (b) What would the force constant be for a 75.0-cm
length of 16-gauge copper wire? See
Table 11.1. (c) What would W have to be to stretch the wire in part
(b) by 1.25 mm?
11.89 ... CP A 12.0-kg mass, fastened to the end of an aluminum
wire with an unstretched length of 0.50 m, is whirled in a vertical
circle with a constant angular speed of The cross-
sectional area of the wire is Calculate the elongation of
the wire when the mass is (a) at the lowest point of the path and
(b) at the highest point of its path.
11.90 . A metal wire 3.50 m long and 0.70 mm in diameter was
given the following test. A load weighing 20 N was originally hung
from the wire to keep it taut. The position of the lower end of the
wire was read on a scale as load was added.

Added Load (N) Scale Reading (cm)

0 3.02
10 3.07
20 3.12
30 3.17
40 3.22
50 3.27
60 3.32
70 4.27

(a) Graph these values, plotting the increase in length horizontally
and the added load vertically. (b) Calculate the value of Young’s
modulus. (c) The proportional
limit occurred at a scale read-
ing of 3.34 cm. What was the
stress at this point?
11.91 ... A 1.05-m-long rod
of negligible weight is sup-
ported at its ends by wires A and
B of equal length (Fig. P11.91).
The cross-sectional area of A is

0.014 cm2.
120 rev>min.

(diameter = 1.291 mm)
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and that of B is Young’s modulus for wire A is
that for B is At what point along

the rod should a weight w be suspended to produce (a) equal
stresses in A and B and (b) equal strains in A and B?
11.92 ... CP An amusement
park ride consists of airplane-
shaped cars attached to steel
rods (Fig. P11.92). Each rod has
a length of 15.0 m and a cross-
sectional area of (a)
How much is the rod stretched
when the ride is at rest? (Assume
that each car plus two people
seated in it has a total weight of
1900 N.) (b) When operating,
the ride has a maximum angular
speed of How
much is the rod stretched then?
11.93 . A brass rod with a length of 1.40 m and a cross-sectional
area of is fastened end to end to a nickel rod with length
L and cross-sectional area The compound rod is sub-
jected to equal and opposite pulls of magnitude at
its ends. (a) Find the length L of the nickel rod if the elongations of
the two rods are equal. (b) What is the stress in each rod? (c) What
is the strain in each rod?
11.94 ... CP BIO Stress on the Shin Bone. The compressive
strength of our bones is important in everyday life. Young’s modu-
lus for bone is about Bone can take only about a
1.0% change in its length before fracturing. (a) What is the maxi-
mum force that can be applied to a bone whose minimum cross-
sectional area is (This is approximately the cross-
sectional area of a tibia, or shin bone, at its narrowest point.) 
(b) Estimate the maximum height from which a 70-kg man could
jump and not fracture the tibia. Take the time between when he
first touches the floor and when he has stopped to be 0.030 s, and
assume that the stress is distributed equally between his legs.
11.95 ... A moonshiner produces pure ethanol (ethyl alcohol)
late at night and stores it in a stainless steel tank in the form of a
cylinder 0.300 m in diameter with a tight-fitting piston at the top.
The total volume of the tank is 250 L In an attempt to
squeeze a little more into the tank, the moonshiner piles 1420 kg of
lead bricks on top of the piston. What additional volume of ethanol
can the moonshiner squeeze into the tank? (Assume that the wall
of the tank is perfectly rigid.)

CHALLENGE PROBLEMS
11.96 ... Two ladders, 4.00 m and 3.00 m long, are hinged at
point A and tied together by a horizontal rope 0.90 m above the
floor (Fig. P11.96). The ladders weigh 480 N and 360 N, respec-
tively, and the center of gravity of each is at its center. Assume that

10.250 m32.

3.0 cm2?

1.4 * 1010 Pa.

4.00 * 104 N
1.00 cm2.

2.00 cm2

8.0 rev>min.

8.00 cm2.

1.20 * 1011 Pa.1.80 * 1011 Pa;
4.00 mm2.2.00 mm2 the floor is freshly waxed and frictionless. (a) Find the upward

force at the bottom of each ladder. (b) Find the tension in the rope.
(c) Find the magnitude of the force one ladder exerts on the other
at point A. (d) If an 800-N painter stands at point A, find the ten-
sion in the horizontal rope.
11.97 ... A bookcase weigh-
ing 1500 N rests on a horizon-
tal surface for which the
coefficient of static friction is

The bookcase is
1.80 m tall and 2.00 m wide; its
center of gravity is at its geo-
metrical center. The bookcase
rests on four short legs that are
each 0.10 m from the edge of
the bookcase. A person pulls on a rope attached to an upper corner
of the bookcase with a force that makes an angle with the
bookcase (Fig. P11.97). (a) If so is horizontal, show
that as F is increased from zero, the bookcase will start to slide
before it tips, and calculate the magnitude of that will start the
bookcase sliding. (b) If so is vertical, show that the
bookcase will tip over rather than slide, and calculate the magni-
tude of that will cause the bookcase to start to tip. (c) Calculate
as a function of the magnitude of that will cause the bookcase
to start to slide and the magnitude that will cause it to start to tip.
What is the smallest value that can have so that the bookcase will
still start to slide before it starts to tip?
11.98 ... Knocking Over a
Post. One end of a post
weighing 400 N and with height
h rests on a rough horizontal
surface with The
upper end is held by a rope fas-
tened to the surface and making
an angle of with the post
(Fig. P11.98). A horizontal force

is exerted on the post as
shown. (a) If the force is applied at the midpoint of the post, what
is the largest value it can have without causing the post to slip? (b)
How large can the force be without causing the post to slip if its
point of application is of the way from the ground to the top of
the post? (c) Show that if the point of application of the force is too
high, the post cannot be made to slip, no matter how great the
force. Find the critical height for the point of application.
11.99 ... CALC Minimizing the Tension. A heavy horizontal
girder of length L has several objects suspended from it. It is sup-
ported by a frictionless pivot at its left end and a cable of negligi-
ble weight that is attached to an I-beam at a point a distance h
directly above the girder’s center. Where should the other end of
the cable be attached to the girder so that the cable’s tension is a
minimum? (Hint: In evaluating and presenting your answer, don’t
forget that the maximum distance of the point of attachment from
the pivot is the length L of the beam.)
11.100 ... Bulk Modulus of an Ideal Gas. The equation of
state (the equation relating pressure, volume, and temperature) for
an ideal gas is where n and R are constants. (a) Show
that if the gas is compressed while the temperature T is held con-
stant, the bulk modulus is equal to the pressure. (b) When an ideal
gas is compressed without the transfer of any heat into or out of it,
the pressure and volume are related by where is
a constant having different values for different gases. Show that, in
this case, the bulk modulus is given by B = gp.

gpVg = constant,

pV = nRT,
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11.101 ... CP An angler hangs a 4.50-kg fish from a vertical
steel wire 1.50 m long and in cross-sectional
area. The upper end of the wire is securely fastened to a support.
(a) Calculate the amount the wire is stretched by the hanging fish.
The angler now applies a force to the fish, pulling it very slowly
downward by 0.500 mm from its equilibrium position. For this

F
S

5.00 * 10-3 cm2
downward motion, calculate (b) the work done by gravity; (c) the
work done by the force (d) the work done by the force the wire
exerts on the fish; and (e) the change in the elastic potential energy
(the potential energy associated with the tensile stress in the wire).
Compare the answers in parts (d) and (e).
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Chapter Opening Question ?
Each stone in the arch is under compression, not tension. This is
because the forces on the stones tend to push them inward toward
the center of the arch and thus squeeze them together. Compared to
a solid supporting wall, a wall with arches is just as strong yet
much more economical to build.

Test Your Understanding Questions
11.1 Answer: (i) Situation (i) satisfies both equilibrium conditions
because the seagull has zero acceleration so and no
tendency to start rotating so Situation (ii) satisfies the
first condition because the crankshaft as a whole does not acceler-
ate through space, but it does not satisfy the second condition; the
crankshaft has an angular acceleration, so is not zero. Situa-
tion (iii) satisfies the second condition (there is no tendency to
rotate) but not the first one; the baseball accelerates in its flight
(due to gravity), so is not zero.
11.2 Answer: (ii) In equilibrium, the center of gravity must be at
the point of support. Since the rock and meter stick have the same
mass and hence the same weight, the center of gravity of the sys-
tem is midway between their respective centers. The center of
gravity of the meter stick alone is 0.50 m from the left end (that is,
at the middle of the meter stick), so the center of gravity of the
combination of rock and meter stick is 0.25 m from the left end.
11.3 Answer: (ii), (i), (iii) This is the same situation described in
Example 11.4, with the rod replacing the forearm, the hinge replac-
ing the elbow, and the cable replacing the tendon. The only differ-
ence is that the cable attachment point is at the end of the rod, so the
distances D and L are identical. From Example 11.4, the tension is

T =
Lw

L sinu
=

w

sinu

gF
S

gTS

gTS � 02.1
gF

S
� 021

Since is less than 1, the tension T is greater than the weight w.
The vertical component of the force exerted by the hinge is

In this situation, the hinge exerts no vertical force. You can see this
easily if you calculate torques around the right end of the horizon-
tal rod: The only force that exerts a torque around this point is the
vertical component of the hinge force, so this force component
must be zero.
11.4 Answers: (a) (iii), (b) (ii) In (a), the copper rod has 10 times
the elongation of the steel rod, but it also has 10 times the orig-
inal length Hence the tensile strain is the same for both
rods. In (b), the stress is equal to Young’s modulus Y multiplied by
the strain. From Table 11.1, steel has a larger value of Y, so a
greater stress is required to produce the same strain.
11.5 In (a) and (b), the bumper will have sprung back to its origi-
nal shape (although the paint may be scratched). In (c), the bumper
will have a permanent dent or deformation. In (d), the bumper will
be torn or broken.

Bridging Problem

Answers:

(a)

(b)

(c) (d) 4¢l =
2mgl0

3AY tanu

F =
2mg

3 sinu
3 cos 2u + 1

4 sin 2u, f = arctan A12 tanu B

T =
2mg

3 sinu

¢l>l0l0.
¢l

Ey = -
1L - L2w

L
= 0

sinu

Answers
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12
LEARNING GOALS

By studying this chapter, you will

learn:

• The meaning of the density of a

material and the average density of

a body.

• What is meant by the pressure in a

fluid, and how it is measured.

• How to calculate the buoyant force

that a fluid exerts on a body

immersed in it.

• The significance of laminar versus

turbulent fluid flow, and how the

speed of flow in a tube depends on

the tube size.

• How to use Bernoulli’s equation to

relate pressure and flow speed at

different points in certain types of

flow.

FLUID MECHANICS

F luids play a vital role in many aspects of everyday life. We drink them,
breathe them, swim in them. They circulate through our bodies and control
our weather. Airplanes fly through them; ships float in them. A fluid is any

substance that can flow; we use the term for both liquids and gases. We usually
think of a gas as easily compressed and a liquid as nearly incompressible, although
there are exceptional cases.

We begin our study with fluid statics, the study of fluids at rest in equilibrium
situations. Like other equilibrium situations, it is based on Newton’s first and
third laws. We will explore the key concepts of density, pressure, and buoyancy.
Fluid dynamics, the study of fluids in motion, is much more complex; indeed, it
is one of the most complex branches of mechanics. Fortunately, we can analyze
many important situations using simple idealized models and familiar principles
such as Newton’s laws and conservation of energy. Even so, we will barely
scratch the surface of this broad and interesting topic.

12.1 Density
An important property of any material is its density, defined as its mass per unit
volume. A homogeneous material such as ice or iron has the same density
throughout. We use (the Greek letter rho) for density. If a mass m of homoge-
neous material has volume V, the density is

(definition of density) (12.1)

Two objects made of the same material have the same density even though they
may have different masses and different volumes. That’s because the ratio of
mass to volume is the same for both objects (Fig. 12.1).

r =
m

V

r

r

? This shark must swim constantly to keep from sinking to the bottom of the
ocean, yet the orange tropical fish can remain at the same level in the water
with little effort. Why is there a difference?

Steel wrench Steel nail

Different mass, same density:
Because the wrench and nail
are both made of steel, they
have the same density (mass
   per unit volume).

12.1 Two objects with different masses
and different volumes but the same density.



The SI unit of density is the kilogram per cubic meter The cgs
unit, the gram per cubic centimeter is also widely used:

The densities of some common substances at ordinary temperatures are given in
Table 12.1. Note the wide range of magnitudes. The densest material found on
earth is the metal osmium but its density pales by compar-
ison to the densities of exotic astronomical objects such as white dwarf stars and
neutron stars.

The specific gravity of a material is the ratio of its density to the density of
water at it is a pure number without units. For example, the
specific gravity of aluminum is 2.7. “Specific gravity” is a poor term, since it has
nothing to do with gravity; “relative density” would have been better.

The density of some materials varies from point to point within the material.
One example is the material of the human body, which includes low-density fat 
about and high-density bone (from Two oth-

ers are the earth’s atmosphere (which is less dense at high altitudes) and oceans
(which are denser at greater depths). For these materials, Eq. (12.1) describes the
average density. In general, the density of a material depends on environmental
factors such as temperature and pressure.

Measuring density is an important analytical technique. For example, we can
determine the charge condition of a storage battery by measuring the density of
its electrolyte, a sulfuric acid solution. As the battery discharges, the sulfuric acid

combines with lead in the battery plates to form insoluble lead sulfate
decreasing the concentration of the solution. The density decreases

from about for a fully charged battery to 
for a discharged battery.

Another automotive example is permanent-type antifreeze, which is usually a
solution of ethylene glycol and water. The freezing
point of the solution depends on the glycol concentration, which can be deter-
mined by measuring the specific gravity. Such measurements can be performed
by using a device called a hydrometer, which we’ll discuss in Section 12.3.

1r = 1.12 * 103 kg>m32

1.15 * 103 kg>m31.30 * 103 kg>m3
1PbSO42,
1H2SO42

1700 to 2500 kg>m32.940 kg>m321

1000 kg>m3;4.0°C,

1r = 22,500 kg>m32,

1 g>cm3 = 1000 kg>m3

11 g>cm32,
11 kg>m32.

374 CHAPTER 12 Fluid Mechanics

Table 12.1 Densities of Some Common Substances

Material Density * Material Density *

Air 1.20 Iron, steel

Ethanol Brass

Benzene Copper

Ice Silver

Water Lead

Seawater Mercury

Blood Gold

Glycerine Platinum

Concrete White dwarf star

Aluminum Neutron star

*To obtain the densities in grams per cubic centimeter, simply divide by 103.

10182.7 * 103

10102 * 103

21.4 * 1031.26 * 103

19.3 * 1031.06 * 103

13.6 * 1031.03 * 103

11.3 * 1031.00 * 103

10.5 * 1030.92 * 103

8.9 * 1030.90 * 103

8.6 * 1030.81 * 103

7.8 * 10311 atm, 20°C2

(kg/m3)(kg/m3)

Example 12.1 The weight of a roomful of air

Find the mass and weight of the air at 20°C in a living room with a
floor and a ceiling 3.0 m high, and the mass and

weight of an equal volume of water.
4.0 m * 5.0 m

SOLUTION

IDENTIFY and SET UP: We assume that the air density is the same
throughout the room. (Air is less dense at high elevations than near
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12.2 Pressure in a Fluid
When a fluid (either liquid or gas) is at rest, it exerts a force perpendicular to any
surface in contact with it, such as a container wall or a body immersed in the
fluid. This is the force that you feel pressing on your legs when you dangle them
in a swimming pool. While the fluid as a whole is at rest, the molecules that make
up the fluid are in motion; the force exerted by the fluid is due to molecules col-
liding with their surroundings.

If we think of an imaginary surface within the fluid, the fluid on the two
sides of the surface exerts equal and opposite forces on the surface. (Otherwise,
the surface would accelerate and the fluid would not remain at rest.) Consider
a small surface of area dA centered on a point in the fluid; the normal force
exerted by the fluid on each side is (Fig. 12.2). We define the pressure p
at that point as the normal force per unit area—that is, the ratio of to dA
(Fig. 12.3):

(definition of pressure) (12.2)

If the pressure is the same at all points of a finite plane surface with area A, then

(12.3)

where is the net normal force on one side of the surface. The SI unit of pressure
is the pascal, where

We introduced the pascal in Chapter 11. Two related units, used principally in
meteorology, are the bar, equal to and the millibar, equal to 100 Pa.

Atmospheric pressure is the pressure of the earth’s atmosphere, the pres-
sure at the bottom of this sea of air in which we live. This pressure varies with
weather changes and with elevation. Normal atmospheric pressure at sea level
(an average value) is 1 atmosphere (atm), defined to be exactly 101,325 Pa. To
four significant figures,

= 1.013 bar = 1013 millibar = 14.70 lb>in.2
1pa2av = 1 atm = 1.013 * 105 Pa

pa

105 Pa,

1 pascal = 1 Pa = 1 N>m2

F�

p =
F�

A

p =
dF�

dA

dF�

dF�

sea level, but the density varies negligibly over the room’s 3.0-m
height; see Section 12.2.) We use Eq. (12.1) to relate the mass 
to the room’s volume V (which we’ll calculate) and the air density

(given in Table 12.1).

EXECUTE: We have so
from Eq. (12.1),

wair = mairg = 172 kg219.8 m>s22 = 700 N = 160 lb

mair = rairV = 11.20 kg>m32160 m32 = 72 kg

V = 14.0 m215.0 m213.0 m2 = 60 m3,

rair

m air

The mass and weight of an equal volume of water are

EVALUATE: A roomful of air weighs about the same as an average
adult. Water is nearly a thousand times denser than air, so its mass
and weight are larger by the same factor. The weight of a roomful
of water would collapse the floor of an ordinary house.

= 5.9 * 105 N = 1.3 * 105 lb = 66 tons

wwater = mwaterg = 16.0 * 104 kg219.8 m>s22

mwater = rwaterV = 11000 kg>m32160 m32 = 6.0 * 104 kg

Test Your Understanding of Section 12.1 Rank the following objects
in order from highest to lowest average density: (i) mass 4.00 kg, volume

(ii) mass 8.00 kg, volume (iii) mass 8.00 kg,
volume (iv) mass 2560 kg, volume (v) mass 2560 kg, 
volume ❙1.28 m3.

0.640 m3;3.20 * 10-3 m3;
1.60 * 10-3 m3;1.60 * 10-3 m3;

The surface does not accelerate, so the
surrounding fluid exerts equal normal forces
on both sides of it. (The fluid cannot exert any
force parallel to the surface, since that would
cause the surface to accelerate.)

dA
dF�

dF�

A small surface of area
dA within a fluid at rest

12.2 Forces acting on a small surface
within a fluid at rest.

... but the pressure on
them (force magnitude
divided by area) is the
same (and is a scalar).

These surfaces differ
in area and orientation ...

dA
2dAdF�dF�

2dF�

2dF�

12.3 The pressure on either side of a
surface is force divided by area. Pressure is
a scalar with units of newtons per square
meter. By contrast, force is a vector with
units of newtons.



CAUTION Don’t confuse pressure and force In everyday language the words “pressure”
and “force” mean pretty much the same thing. In fluid mechanics, however, these words
describe distinct quantities with different characteristics. Fluid pressure acts perpendicular
to any surface in the fluid, no matter how that surface is oriented (Fig. 12.3). Hence pres-
sure has no intrinsic direction of its own; it’s a scalar. By contrast, force is a vector with a
definite direction. Remember, too, that pressure is force per unit area. As Fig. 12.3 shows,
a surface with twice the area has twice as much force exerted on it by the fluid, so the pres-
sure is the same. ❙

376 CHAPTER 12 Fluid Mechanics

Example 12.2 The force of air

In the room described in Example 12.1, what is the total downward
force on the floor due to an air pressure of 1.00 atm?

SOLUTION

IDENTIFY and SET UP: This example uses the relationship among
the pressure p of a fluid (air), the area A subjected to that pressure,
and the resulting normal force the fluid exerts. The pressure is
uniform, so we use Eq. (12.3), to determine . The
floor is horizontal, so is vertical (downward).F�

F�F� = pA,
F�

EXECUTE: We have so from 
Eq. (12.3),

EVALUATE: Unlike the water in Example 12.1, will not collapse
the floor here, because there is an upward force of equal magnitude
on the floor’s underside. If the house has a basement, this upward
force is exerted by the air underneath the floor. In this case, if we neg-
lect the thickness of the floor, the net force due to air pressure is zero.

F�

= 2.0 * 106 N = 4.6 * 105 lb = 230 tons

F� = pA = 11.013 * 105 N>m22120 m22

A = 14.0 m215.0 m2 = 20 m2,

Pressure, Depth, and Pascal’s Law
If the weight of the fluid can be neglected, the pressure in a fluid is the same
throughout its volume. We used that approximation in our discussion of bulk
stress and strain in Section 11.4. But often the fluid’s weight is not negligible.
Atmospheric pressure is less at high altitude than at sea level, which is why an
airplane cabin has to be pressurized when flying at 35,000 feet. When you dive
into deep water, your ears tell you that the pressure increases rapidly with
increasing depth below the surface.

We can derive a general relationship between the pressure p at any point in a
fluid at rest and the elevation y of the point. We’ll assume that the density has
the same value throughout the fluid (that is, the density is uniform), as does the
acceleration due to gravity g. If the fluid is in equilibrium, every volume element
is in equilibrium. Consider a thin element of fluid with thickness dy (Fig. 12.4a).
The bottom and top surfaces each have area A, and they are at elevations y and

above some reference level where The volume of the fluid ele-
ment is its mass is and its weight is 

What are the other forces on this fluid element (Fig 12.4b)? Let’s call the pres-
sure at the bottom surface p; then the total y-component of upward force on this
surface is pA. The pressure at the top surface is and the total y-component
of (downward) force on the top surface is The fluid element is in
equilibrium, so the total y-component of force, including the weight and the
forces at the bottom and top surfaces, must be zero:

When we divide out the area A and rearrange, we get

(12.4)

This equation shows that when y increases, p decreases; that is, as we move
upward in the fluid, pressure decreases, as we expect. If and are the pressures
at elevations and respectively, and if and g are constant, thenry2,y1

p2p1

dp

dy
= -rg

aFy = 0  so  pA - 1p + dp2A - rgA dy = 0

-1p + dp2A.
p + dp,

dm g = rgA dy.
dw =dm = r dV = rA dy,dV = A dy,

y = 0.y + dy

r

(a)

Force due to pressure
p � dp on top surface:

The forces on
the four sides
of the element
cancel.

Because the fluid is in equilibrium, the vector
sum of the vertical forces on the fluid element
must be zero: pA 2 (p � dp)A 2 dw 5 0.

Force due to pressure p
on bottom surface

Weight of the
fluid element

y

dy

0

An element of a fluid at rest
with area A and thickness dy

(b)

dy

dw
pA

(p � dp)A

A

12.4 The forces on an element of fluid in
equilibrium.
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(pressure in a fluid of uniform density) (12.5)

It’s often convenient to express Eq. (12.5) in terms of the depth below the sur-
face of a fluid (Fig. 12.5). Take point 1 at any level in the fluid and let p represent
the pressure at this point. Take point 2 at the surface of the fluid, where the pres-
sure is (subscript zero for zero depth). The depth of point 1 below the surface
is and Eq. (12.5) becomes

(pressure in a fluid of uniform density) (12.6)

The pressure p at a depth h is greater than the pressure at the surface by an
amount Note that the pressure is the same at any two points at the same level
in the fluid. The shape of the container does not matter (Fig. 12.6).

Equation (12.6) shows that if we increase the pressure at the top surface,
possibly by using a piston that fits tightly inside the container to push down on
the fluid surface, the pressure p at any depth increases by exactly the same
amount. This fact was recognized in 1653 by the French scientist Blaise Pascal
(1623–1662) and is called Pascal’s law.

Pascal’s law: Pressure applied to an enclosed fluid is transmitted undiminished
to every portion of the fluid and the walls of the containing vessel.

The hydraulic lift shown schematically in Fig. 12.7 illustrates Pascal’s law. A
piston with small cross-sectional area exerts a force on the surface of a liq-
uid such as oil. The applied pressure is transmitted through the con-
necting pipe to a larger piston of area The applied pressure is the same in both
cylinders, so

(12.7)

The hydraulic lift is a force-multiplying device with a multiplication factor equal
to the ratio of the areas of the two pistons. Dentist’s chairs, car lifts and jacks,
many elevators, and hydraulic brakes all use this principle.

For gases the assumption that the density is uniform is realistic only over
short vertical distances. In a room with a ceiling height of 3.0 m filled with air of
uniform density the difference in pressure between floor and ceiling,
given by Eq. (12.6), is

or about 0.00035 atm, a very small difference. But between sea level and the
summit of Mount Everest (8882 m) the density of air changes by nearly a factor
of 3, and in this case we cannot use Eq. (12.6). Liquids, by contrast, are nearly
incompressible, and it is usually a very good approximation to regard their den-
sity as independent of pressure. A pressure of several hundred atmospheres will
cause only a few percent increase in the density of most liquids.

Absolute Pressure and Gauge Pressure
If the pressure inside a car tire is equal to atmospheric pressure, the tire is flat.
The pressure has to be greater than atmospheric to support the car, so the signif-
icant quantity is the difference between the inside and outside pressures. When
we say that the pressure in a car tire is “32 pounds” (actually equal to
220 kPa or we mean that it is greater than atmospheric pressure2.2 * 105 Pa),

32 lb>in.2,

rgh = 11.2 kg>m3219.8 m>s2213.0 m2 = 35 Pa

1.2 kg>m3,

r

p =
F1

A1
=

F2

A2
  and  F2 =

A2

A1
F1

A2.
p = F1>A1

F1A1

p0

rgh.
p0

p = p0 + rgh

p0 - p = -rg1y2 - y12 = -rgh   or

h = y2 - y1,
p0

p2 - p1 = -rg1y2 - y12

Pressure difference between levels 1 and 2:

The pressure is greater at the lower level.

p2 2 p1 5 2rg(y2 2 y1)

At a depth h, the
pressure p equals
the surface pressure
p0 plus the pressure
rgh due to the
overlying fluid:
p 5 p0 1 rgh.

p2 5 p0

p1 5 p

y1

y2

y2 2 y1 5 h

2

1

Fluid, density r

12.5 How pressure varies with depth in
a fluid with uniform density.

The pressure at the bottom of each liquid
column has the same value p.

The pressure at the top of each liquid
column is atmospheric pressure, p0.

The difference between p and p0 is rgh, where
h is the distance from the top to the bottom of
the liquid column. Hence all columns have the
same height.

12.6 Each fluid column has the same
height, no matter what its shape.

F2

pA2

F1

pA1

A small force is applied to a small piston.

Because the pressure p is the
same at all points
at a given
height in
the fluid ...

... a piston of larger area at the same
height experiences a larger force.

12.7 The hydraulic lift is an application
of Pascal’s law. The size of the fluid-filled
container is exaggerated for clarity.



or by this amount. The total pressure in the tire is
then or 320 kPa. The excess pressure above atmospheric pressure is usu-
ally called gauge pressure, and the total pressure is called absolute pressure.
Engineers use the abbreviations psig and psia for “pounds per square inch gauge”
and “pounds per square inch absolute,” respectively. If the pressure is less than
atmospheric, as in a partial vacuum, the gauge pressure is negative.

47 lb>in.2
1.01 * 105 Pa2114.7 lb>in.2
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Example 12.3 Finding absolute and gauge pressures

Water stands 12.0 m deep in a storage tank whose top is open to
the atmosphere. What are the absolute and gauge pressures at the
bottom of the tank?

SOLUTION

IDENTIFY and SET UP: Table 11.2 indicates that water is nearly
incompressible, so we can treat it as having uniform density. The
level of the top of the tank corresponds to point 2 in Fig. 12.5, and
the level of the bottom of the tank corresponds to point 1. Our tar-
get variable is p in Eq. (12.6). We have and �

1.01 * 105 Pa.1 atm =
p0h = 12.0 m

EXECUTE: From Eq. (12.6), the pressures are

EVALUATE: A pressure gauge at the bottom of such a tank would proba-
bly be calibrated to read gauge pressure rather than absolute pressure.

= 1.18 * 105 Pa = 1.16 atm = 17.1 lb>in.2
gauge: p - p0 = 12.19 - 1.012 * 105 Pa

= 2.19 * 105 Pa = 2.16 atm = 31.8 lb>in.2
= 11.01 * 105 Pa2 + 11000 kg>m3219.80 m>s22112.0 m2

p = p0 + rgh

absolute:

Pressure Gauges
The simplest pressure gauge is the open-tube manometer (Fig. 12.8a). The 
U-shaped tube contains a liquid of density often mercury or water. The left end
of the tube is connected to the container where the pressure p is to be measured,
and the right end is open to the atmosphere at pressure The pressure at
the bottom of the tube due to the fluid in the left column is and the
pressure at the bottom due to the fluid in the right column is These
pressures are measured at the same level, so they must be equal:

(12.8)

In Eq. (12.8), p is the absolute pressure, and the difference between
absolute and atmospheric pressure is the gauge pressure. Thus the gauge pressure
is proportional to the difference in height of the liquid columns.h = y2 - y1

p - patm

p - patm = rg1y2 - y12 = rgh

p + rgy1 = patm + rgy2

patm + rgy2.
p + rgy1,

p0 = patm.

r,

y

The pressure is the same at
the bottoms of the two tubes.

There is a near-vacuum
at the top of the tube.

The height to
which the
mercury rises
depends on the
atmospheric
pressure exerted
on the mercury
in the dish.

Pressure p

p0 5 patm

h 5 y2 � y1

y2

y1

(a) Open-tube manometer

p 1 rgy1 patm 1 rgy2 y1

p0 � 0

2

p 5 patm

(b) Mercury barometer

h 5 y2 2 y1

12.8 Two types of pressure gauge.



12.2 Pressure in a Fluid 379

Another common pressure gauge is the mercury barometer. It consists of a
long glass tube, closed at one end, that has been filled with mercury and then
inverted in a dish of mercury (Fig. 12.8b). The space above the mercury column
contains only mercury vapor; its pressure is negligibly small, so the pressure at
the top of the mercury column is practically zero. From Eq. (12.6),

(12.9)

Thus the mercury barometer reads the atmospheric pressure directly from
the height of the mercury column.

Pressures are often described in terms of the height of the corresponding mer-
cury column, as so many “inches of mercury” or “millimeters of mercury”
(abbreviated mm Hg). A pressure of 1 mm Hg is called 1 torr, after Evangelista
Torricelli, inventor of the mercury barometer. But these units depend on the den-
sity of mercury, which varies with temperature, and on the value of g, which
varies with location, so the pascal is the preferred unit of pressure.

Many types of pressure gauges use a flexible sealed tube (Fig. 12.9). A change
in the pressure either inside or outside the tube causes a change in its dimensions.
This change is detected optically, electrically, or mechanically.

patm

patm = p = 0 + rg1y2 - y12 = rgh

p0

Pressure p
being measured

(b)(a)

Flexible pressure
tube

Inlet

Changes in the inlet pressure cause the tube
to coil or uncoil, which moves the pointer.

12.9 (a) A Bourdon pressure gauge.
When the pressure inside the flexible tube
increases, the tube straightens out a little,
deflecting the attached pointer. (b) This
Bourdon-type pressure gauge is connected
to a high-pressure gas line. The gauge
pressure shown is just over 5 bars 
(1 bar � 105 Pa).

Example 12.4 A tale of two fluids

A manometer tube is partially filled with water. Oil (which does
not mix with water) is poured into the left arm of the tube until the
oil–water interface is at the midpoint of the tube as shown. Both
arms of the tube are open to the air. Find a relationship between the
heights and 

SOLUTION

IDENTIFY and SET UP: Figure 12.10 shows our sketch. The rela-
tionship between pressure and depth given by Eq. (12.6) applies
only to fluids of uniform density; we have two fluids of different
densities, so we must write a separate pressure–depth relationship
for each. Both fluid columns have pressure p at the bottom (where
they are in contact and in equilibrium) and are both at atmospheric
pressure at the top (where both are in contact with and in equi-
librium with the air).

EXECUTE: Writing Eq. (12.6) for each fluid gives

p = p0 + roilghoil

p = p0 + rwaterghwater

p0

hwater.hoil

Since the pressure p at the bottom of the tube is the same for both
fluids, we set these two expressions equal to each other and solve
for in terms of . You can show that the result is

EVALUATE: Water is denser than oil
, so is greater than as Fig. 12.10

shows. It takes a greater height of low-density oil to produce the
same pressure p at the bottom of the tube.

hwaterhoil850 kg>m321roil L
1rwater = 1000 kg>m32

hoil =
rwater

roil
hwater

hwaterhoil

Application Gauge Pressure 
of Blood
Blood-pressure readings, such as 130/80,
give the maximum and minimum gauge pres-
sures in the arteries, measured in mm Hg or
torr. Blood pressure varies with vertical posi-
tion within the body; the standard reference
point is the upper arm, level with the heart.

12.10 Our sketch for this problem.



12.3 Buoyancy
Buoyancy is a familiar phenomenon: A body immersed in water seems to
weigh less than when it is in air. When the body is less dense than the fluid, it
floats. The human body usually floats in water, and a helium-filled balloon
floats in air.

Archimedes’s principle: When a body is completely or partially immersed in a
fluid, the fluid exerts an upward force on the body equal to the weight of the fluid
displaced by the body.

To prove this principle, we consider an arbitrary element of fluid at rest. In 
Fig. 12.11a the irregular outline is the surface boundary of this element of fluid.
The arrows represent the forces exerted on the boundary surface by the surround-
ing fluid.

The entire fluid is in equilibrium, so the sum of all the y-components of force
on this element of fluid is zero. Hence the sum of the y-components of the surface
forces must be an upward force equal in magnitude to the weight mg of the fluid
inside the surface. Also, the sum of the torques on the element of fluid must be
zero, so the line of action of the resultant y-component of surface force must pass
through the center of gravity of this element of fluid.

Now we remove the fluid inside the surface and replace it with a solid body
having exactly the same shape (Fig. 12.11b). The pressure at every point is
exactly the same as before. So the total upward force exerted on the body by the
fluid is also the same, again equal in magnitude to the weight mg of the fluid dis-
placed to make way for the body. We call this upward force the buoyant force on
the solid body. The line of action of the buoyant force again passes through the
center of gravity of the displaced fluid (which doesn’t necessarily coincide with
the center of gravity of the body).

When a balloon floats in equilibrium in air, its weight (including the 
gas inside it) must be the same as the weight of the air displaced by the
balloon. A fish’s flesh is denser than water, yet a fish can float while
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Test Your Understanding of Section 12.2 Mercury is less dense at
high temperatures than at low temperatures. Suppose you move a mercury barom-
eter from the cold interior of a tightly sealed refrigerator to outdoors on a hot sum-
mer day. You find that the column of mercury remains at the same height in the tube.
Compared to the air pressure inside the refrigerator, is the air pressure outdoors (i) higher,
(ii) lower, or (iii) the same? (Ignore the very small change in the dimensions of the glass
tube due to the temperature change.) ❙

(a)

cg

Arbitrary element of fluid in equilibrium

The forces on the
fluid element due
to pressure must
sum to a buoyant
force equal in
magnitude to the
element’s weight.

dF'
dF'

dF' B

dF'

dF'

dF'

wfluid

dF'

dF'

(b) Fluid element replaced with solid body
of the same size and shape

cg

The forces due to
pressure are the
same, so the body
must be acted upon
by the same buoyant
force as the fluid
element, regardless
of the body’s weight.

B

dF'
dF'

dF'

dF'

dF'

dF'

dF'

wbody

dF'

12.11 Archimedes’s principle.

?

PhET: Balloons & Buoyancy
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submerged because it has a gas-filled cavity within its body. This makes the
fish’s average density the same as water’s, so its net weight is the same as the
weight of the water it displaces. A body whose average density is less than that
of a liquid can float partially submerged at the free upper surface of the liquid.
The greater the density of the liquid, the less of the body is submerged. When
you swim in seawater density your body floats higher than in
fresh water 

A practical example of buoyancy is the hydrometer, used to measure the
density of liquids (Fig. 12.12a). The calibrated float sinks into the fluid until
the weight of the fluid it displaces is exactly equal to its own weight. The
hydrometer floats higher in denser liquids than in less dense liquids, and a
scale in the top stem permits direct density readings. Figure 12.12b shows a
type of hydrometer that is commonly used to measure the density of battery
acid or antifreeze. The bottom of the large tube is immersed in the liquid; the
bulb is squeezed to expel air and is then released, like a giant medicine drop-
per. The liquid rises into the outer tube, and the hydrometer floats in this sam-
ple of the liquid.

11000 kg>m32.
1030 kg>m32,1

The depth to which the
weighted scale sinks tells
you the density of the fluid.

The weight at the bottom makes the
scale float upright.

(a) A simple
hydrometer

(b) Using a hydrometer to
measure the density of
battery acid or antifreeze

12.12 Measuring the density of a fluid.

Example 12.5 Buoyancy

(a) Immersed statue in equilibrium
y

T

B
x

mg � 147 N

(b) Free-body diagram of statue

12.13 What is the tension in the cable hoisting the statue?

of the tension in seawater and in air . We are given the
mass , and we can calculate the buoyant force in seawater

and in air using Archimedes’s principle.1Bair21Bsw2
m statue

1Tair21Tsw2

A 15.0-kg solid gold statue is raised from the sea bottom 
(Fig. 12.13a). What is the tension in the hoisting cable (assumed
massless) when the statue is (a) at rest and completely underwater
and (b) at rest and completely out of the water?

SOLUTION

IDENTIFY and SET UP: In both cases the statue is in equilibrium and
experiences three forces: its weight, the cable tension, and a buoyant
force equal in magnitude to the weight of the fluid displaced by the
statue (seawater in part (a), air in part (b)). Figure 12.13b shows the
free-body diagram for the statue. Our target variables are the values

EXECUTE: (a) To find , we first find the statue’s volume V using
the density of gold from Table 12.1:

Bsw

The statue is at rest, so the net external force acting on it is
zero. From Fig. 12.13b,

= 147 N - 7.84 N = 139 N

Tsw = m statueg - Bsw = 115.0 kg219.80 m>s22 - 7.84 N

aFy = Bsw + Tsw + 1-m statueg2 = 0

= 7.84 N

= 11.03 * 103 kg>m3217.77 * 10-4 m3219.80 m>s22

Bsw = wsw = m swg = rswVg

V =
m statue

rgold
=

15.0 kg

19.3 * 103 kg>m3
= 7.77 * 10-4 m3

The buoyant force equals the weight of this same volume of
seawater. Using Table 12.1 again:

Bsw

A spring scale attached to the upper end of the cable will indicate
a tension 7.84 N less than the statue’s actual weight 

.
(b) The density of air is about so the buoyant force

of air on the statue is

This is negligible compared to the statue’s actual weight �
147 N. So within the precision of our data, the tension in the cable
with the statue in air is .

EVALUATE: Note that the buoyant force is proportional to the den-
sity of the fluid in which the statue is immersed, not the density of 

Continued

Tair = m statueg = 147 N

m statueg

= 9.1 * 10-3 N

Bair = rairVg = 11.2 kg>m3217.77 * 10-4 m3219.80 m>s22

1.2 kg>m3,
147 N

m statueg =



Surface Tension
An object less dense than water, such as an air-filled beach ball, floats with part
of its volume below the surface. Conversely, a paper clip can rest atop a water
surface even though its density is several times that of water. This is an example
of surface tension: The surface of the liquid behaves like a membrane under ten-
sion (Fig. 12.14). Surface tension arises because the molecules of the liquid exert
attractive forces on each other. There is zero net force on a molecule inside the
volume of the liquid, but a surface molecule is drawn into the volume 
(Fig. 12.15). Thus the liquid tends to minimize its surface area, just as a stretched
membrane does.

Surface tension explains why freely falling raindrops are spherical (not teardrop-
shaped): A sphere has a smaller surface area for its volume than any other shape.
It also explains why hot, soapy water is used for washing. To wash clothing thor-
oughly, water must be forced through the tiny spaces between the fibers 
(Fig. 12.16). To do so requires increasing the surface area of the water, which is
difficult to achieve because of surface tension. The job is made easier by increas-
ing the temperature of the water and adding soap, both of which decrease the sur-
face tension.

Surface tension is important for a millimeter-sized water drop, which has a
relatively large surface area for its volume. (A sphere of radius r has surface
area and volume The ratio of surface area to volume is 
which increases with decreasing radius.) For large quantities of liquid, how-
ever, the ratio of surface area to volume is relatively small, and surface tension
is negligible compared to pressure forces. For the remainder of this chapter,
we will consider only fluids in bulk and hence will ignore the effects of sur-
face tension.

3>r,14p>32r 3.4pr 2
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the statue. The denser the fluid, the greater the buoyant force and
the smaller the cable tension. If the fluid had the same density as the
statue, the buoyant force would be equal to the statue’s weight and
the tension would be zero (the cable would go slack). If the fluid

were denser than the statue, the tension would be negative: The
buoyant force would be greater than the statue’s weight, and a
downward force would be required to keep the statue from rising
upward.

12.14 The surface of the water acts like
a membrane under tension, allowing this
water strider to literally “walk on water.”

Water molecules

Molecules in the
interior are equally
attracted in all
directions.

Molecules in a liquid are attracted by
neighboring molecules.

At the surface, the unbal-
anced attractions cause
the surface to resist
being stretched.

12.15 A molecule at the surface of a liq-
uid is attracted into the bulk liquid, which
tends to reduce the liquid’s surface area.

Fibers
Air pressure p0

Water pressure p

12.16 Surface tension makes it difficult
to force water through small crevices. The
required water pressure p can be reduced
by using hot, soapy water, which has less
surface tension.

Test Your Understanding of Section 12.3 You place a container of
seawater on a scale and note the reading on the scale. You now suspend the statue
of Example 12.5 in the water (Fig. 12.17). How does the scale reading change? 
(i) It increases by 7.84 N; (ii) it decreases by 7.84 N; (iii) it remains the same; (iv) none 
of these. ❙

12.4 Fluid Flow
We are now ready to consider motion of a fluid. Fluid flow can be extremely
complex, as shown by the currents in river rapids or the swirling flames of a
campfire. But some situations can be represented by relatively simple idealized
models. An ideal fluid is a fluid that is incompressible (that is, its density cannot
change) and has no internal friction (called viscosity). Liquids are approximately
incompressible in most situations, and we may also treat a gas as incompressible
if the pressure differences from one region to another are not too great. Internal
friction in a fluid causes shear stresses when two adjacent layers of fluid move
relative to each other, as when fluid flows inside a tube or around an obstacle. In
some cases we can neglect these shear forces in comparison with forces arising
from gravitation and pressure differences.

The path of an individual particle in a moving fluid is called a flow line. If the
overall flow pattern does not change with time, the flow is called steady flow. In
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steady flow, every element passing through a given point follows the same flow
line. In this case the “map” of the fluid velocities at various points in space
remains constant, although the velocity of a particular particle may change in
both magnitude and direction during its motion. A streamline is a curve whose
tangent at any point is in the direction of the fluid velocity at that point. When
the flow pattern changes with time, the streamlines do not coincide with the flow
lines. We will consider only steady-flow situations, for which flow lines and
streamlines are identical.

The flow lines passing through the edge of an imaginary element of area, such
as the area A in Fig. 12.18, form a tube called a flow tube. From the definition of
a flow line, in steady flow no fluid can cross the side walls of a flow tube; the fluids
in different flow tubes cannot mix.

Figure 12.19 shows patterns of fluid flow from left to right around three differ-
ent obstacles. The photographs were made by injecting dye into water flowing
between two closely spaced glass plates. These patterns are typical of laminar
flow, in which adjacent layers of fluid slide smoothly past each other and the flow is
steady. (A lamina is a thin sheet.) At sufficiently high flow rates, or when boundary
surfaces cause abrupt changes in velocity, the flow can become irregular and
chaotic. This is called turbulent flow (Fig. 12.20). In turbulent flow there is no
steady-state pattern; the flow pattern changes continuously.

The Continuity Equation
The mass of a moving fluid doesn’t change as it flows. This leads to an important
quantitative relationship called the continuity equation. Consider a portion of a
flow tube between two stationary cross sections with areas and (Fig. 12.21).
The fluid speeds at these sections are and respectively. No fluid flows in or
out across the sides of the tube because the fluid velocity is tangent to the wall at
every point on the wall. During a small time interval dt, the fluid at moves a
distance so a cylinder of fluid with height and volume 
flows into the tube across During this same interval, a cylinder of volume

flows out of the tube across 
Let’s first consider the case of an incompressible fluid so that the density has

the same value at all points. The mass flowing into the tube across in time
dt is Similarly, the mass that flows out across in the
same time is In steady flow the total mass in the tube is con-
stant, so and

(continuity equation, incompressible fluid) (12.10)A1v1 = A2v2

rA1v1 dt = rA2v2 dt  or

dm1 = dm2

dm2 = rA2v2 dt.
A2dm2dm1 = rA1v1 dt.

A1dm1

r

A2.dV2 = A2v2 dt
A1.

dV1 = A1v1 dtv1 dtv1 dt,
A1

v2,v1

A2A1

12.17 How does the scale reading change
when the statue is immersed in water?

12.19 Laminar flow around obstacles of
different shapes.

12.20 The flow of smoke rising from
these incense sticks is laminar up to a 
certain point, and then becomes turbulent.

Flow lines

Flow tube

Area A

12.18 A flow tube bounded by flow
lines. In steady flow, fluid cannot cross the
walls of a flow tube.



The product is the volume flow rate the rate at which volume crosses a
section of the tube:

(volume flow rate) (12.11)

The mass flow rate is the mass flow per unit time through a cross section. This is
equal to the density times the volume flow rate 

Equation (12.10) shows that the volume flow rate has the same value at all
points along any flow tube. When the cross section of a flow tube decreases, the
speed increases, and vice versa. A broad, deep part of a river has larger cross sec-
tion and slower current than a narrow, shallow part, but the volume flow rates are
the same in both. This is the essence of the familiar maxim, “Still waters run
deep.” The stream of water from a faucet narrows as it gains speed during its fall,
but is the same everywhere along the stream. If a water pipe with 2-cm
diameter is connected to a pipe with 1-cm diameter, the flow speed is four times
as great in the 1-cm part as in the 2-cm part.

We can generalize Eq. (12.10) for the case in which the fluid is not incom-
pressible. If and are the densities at sections 1 and 2, then

(continuity equation, compressible fluid) (12.12)

If the fluid is denser at point 2 than at point 1 the volume flow rate at
point 2 will be less than at point 1 We leave the details to you. If
the fluid is incompressible so that and are always equal, Eq. (12.12) reduces
to Eq. (12.10).

r2r1

1A2v2 6 A1v12.
1r2 7 r12,

r1A1v1 = r2A2v2

r2r1

dV>dt

dV>dt.r

dV

dt
= Av

dV>dt,Av
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Example 12.6 Flow of an incompressible fluid

Incompressible oil of density is pumped through a
cylindrical pipe at a rate of 9.5 liters per second. (a) The first sec-
tion of the pipe has a diameter of 8.0 cm. What is the flow speed of
the oil? What is the mass flow rate? (b) The second section of the
pipe has a diameter of 4.0 cm. What are the flow speed and mass
flow rate in that section?

SOLUTION

IDENTIFY and SET UP: Since the oil is incompressible, the volume
flow rate has the same value in both sections of pipe. The
mass flow rate (the density times the volume flow rate) also has the
same value in both sections. (This is just the statement that no fluid
is lost or added anywhere along the pipe.) We use the volume flow
rate equation, Eq. (12.11), to determine the speed in the 8.0-cm-
diameter section and the continuity equation for incompressible
flow, Eq. (12.10), to find the speed in the 4.0-cm-diameter section.

EXECUTE: (a) From Eq. (12.11) the volume flow rate in the first
section is , where is the cross-sectional area ofA1dV>dt = A1v1

v2

v1

19.5 L>s2

850 kg>m3 the pipe of diameter 8.0 cm and radius 4.0 cm. Hence

The mass flow rate is 

(b) From the continuity equation, Eq. (12.10),

The volume and mass flow rates are the same as in part (a).

EVALUATE: The second section of pipe has one-half the diameter
and one-fourth the cross-sectional area of the first section. Hence
the speed must be four times greater in the second section, which is
just what our result shows.

v2 =
A1

A2
v1 =

p14.0 * 10-2 m22

p12.0 * 10-2 m22
11.9 m>s2 = 7.6 m>s = 4v1

8.1 kg>s.
m3>s2 =19.5 * 10-3r dV>dt = 1850 kg>m32

v1 =
dV>dt

A1
=
19.5 L>s2110-3 m3>L2

p14.0 * 10-2 m22
= 1.9 m>s

The product Av is
constant for an
incompressible
fluid.

v1

v2

v1 dt

v2 dt

A1

A2

12.21 A flow tube with changing cross-
sectional area. If the fluid is incompress-
ible, the product has the same value at
all points along the tube.

Av

Test Your Understanding of Section 12.4 A maintenance crew is
working on a section of a three-lane highway, leaving only one lane open to traffic.
The result is much slower traffic flow (a traffic jam). Do cars on a highway behave
like (i) the molecules of an incompressible fluid or (ii) the molecules of a compressible
fluid? ❙
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12.5 Bernoulli’s Equation
According to the continuity equation, the speed of fluid flow can vary along the
paths of the fluid. The pressure can also vary; it depends on height as in the static
situation (see Section 12.2), and it also depends on the speed of flow. We can
derive an important relationship called Bernoulli’s equation that relates the pres-
sure, flow speed, and height for flow of an ideal, incompressible fluid. Bernoulli’s
equation is an essential tool in analyzing plumbing systems, hydroelectric gener-
ating stations, and the flight of airplanes.

The dependence of pressure on speed follows from the continuity equation,
Eq. (12.10). When an incompressible fluid flows along a flow tube with varying
cross section, its speed must change, and so an element of fluid must have an
acceleration. If the tube is horizontal, the force that causes this acceleration has to
be applied by the surrounding fluid. This means that the pressure must be differ-
ent in regions of different cross section; if it were the same everywhere, the net
force on every fluid element would be zero. When a horizontal flow tube narrows
and a fluid element speeds up, it must be moving toward a region of lower pres-
sure in order to have a net forward force to accelerate it. If the elevation also
changes, this causes an additional pressure difference.

Deriving Bernoulli’s Equation
To derive Bernoulli’s equation, we apply the work–energy theorem to the fluid in
a section of a flow tube. In Fig. 12.22 we consider the element of fluid that at
some initial time lies between the two cross sections a and c. The speeds at the
lower and upper ends are and In a small time interval dt, the fluid that is
initially at a moves to b, a distance and the fluid that is initially at c
moves to d, a distance The cross-sectional areas at the two ends are

and as shown. The fluid is incompressible; hence by the continuity equa-
tion, Eq. (12.10), the volume of fluid dV passing any cross section during time dt
is the same. That is, 

Let’s compute the work done on this fluid element during dt. We assume
that there is negligible internal friction in the fluid (i.e., no viscosity), so the
only nongravitational forces that do work on the fluid element are due to the
pressure of the surrounding fluid. The pressures at the two ends are and 
the force on the cross section at a is and the force at c is The net
work dW done on the element by the surrounding fluid during this displace-
ment is therefore

(12.13)

The second term has a negative sign because the force at c opposes the displace-
ment of the fluid.

The work dW is due to forces other than the conservative force of gravity, so it
equals the change in the total mechanical energy (kinetic energy plus gravita-
tional potential energy) associated with the fluid element. The mechanical energy
for the fluid between sections b and c does not change. At the beginning of dt
the fluid between a and b has volume mass and kinetic 
energy . At the end of dt the fluid between c and d has kinetic energy

. The net change in kinetic energy dK during time dt is

(12.14)

What about the change in gravitational potential energy? At the beginning of
dt, the potential energy for the mass between a and b is Atdm gy1 = r dV gy1.

dK = 1
2r dV1v2

2 - v1
22

1
2r1A2 ds22v2

2

1
2r1A1 ds12v1

2
rA1 ds1,A1 ds1,

dW = p1A1 ds1 - p2A2 ds2 = 1p1 - p22dV

p2A2.p1A1,
p2;p1

dV = A1 ds1 = A2 ds2.

A2,A1

ds2 = v2 dt.
ds1 = v1 dt,

v2.v1

p2A2

ds2

ds1

a
b

c
d

dV

dV

v1

v2

Flow

y1

y2

A1

A2

p1A1

12.22 Deriving Bernoulli’s equation.
The net work done on a fluid element by
the pressure of the surrounding fluid
equals the change in the kinetic energy
plus the change in the gravitational potential
energy.



the end of dt, the potential energy for the mass between c and d is
The net change in potential energy dU during dt is

(12.15)

Combining Eqs. (12.13), (12.14), and (12.15) in the energy equation 
we obtain

(12.16)

This is Bernoulli’s equation. It states that the work done on a unit volume of
fluid by the surrounding fluid is equal to the sum of the changes in kinetic and
potential energies per unit volume that occur during the flow. We may also inter-
pret Eq. (12.16) in terms of pressures. The first term on the right is the pressure
difference associated with the change of speed of the fluid. The second term on
the right is the additional pressure difference caused by the weight of the fluid
and the difference in elevation of the two ends.

We can also express Eq. (12.16) in a more convenient form as

(Bernoulli’s equation) (12.17)

The subscripts 1 and 2 refer to any two points along the flow tube, so we can also
write

(12.18)

Note that when the fluid is not moving so Eq. (12.17) reduces to
the pressure relationship we derived for a fluid at rest, Eq. (12.5).

CAUTION Bernoulli’s principle applies only in certain situations We stress again that
Bernoulli’s equation is valid for only incompressible, steady flow of a fluid with no inter-
nal friction (no viscosity). It’s a simple equation that’s easy to use; don’t let this tempt you
to use it in situations in which it doesn’t apply! ❙

v1 = v2 = 02,1

p + rgy + 1
2rv

2 = constant

p1 + rgy1 + 1
2rv1

2 = p2 + rgy2 + 1
2rv2

2

p1 - p2 = 1
2r1v2

2 - v1
22 + rg1y2 - y12

1p1 - p22dV = 1
2r dV1v2

2 - v1
22 + r dV g1y2 - y12

dK + dU,
dW =

dU = r dV g1y2 - y12

r dV gy2.
dm gy2 =
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Problem-Solving Strategy 12.1 Bernoulli’s Equation

Bernoulli’s equation is derived from the work–energy theorem, so
much of Problem-Solving Strategy 7.1 (Section 7.1) is applicable
here.

IDENTIFY the relevant concepts: Bernoulli’s equation is applicable
to steady flow of an incompressible fluid that has no internal fric-
tion (see Section 12.6). It is generally applicable to flows through
large pipes and to flows within bulk fluids (e.g., air flowing around
an airplane or water flowing around a fish).

SET UP the problem using the following steps:
1. Identify the points 1 and 2 referred to in Bernoulli’s equation,

Eq. (12.17).
2. Define your coordinate system, particularly the level at which

Take the positive y-direction to be upward.y = 0.

3. Make lists of the unknown and known quantities in Eq. (12.17).
Decide which unknowns are the target variables.

EXECUTE the solution as follows: Write Bernoulli’s equation and
solve for the unknowns. You may need the continuity equation, 
Eq. (12.10), to get a relationship between the two speeds in terms
of cross-sectional areas of pipes or containers. You may also need
Eq. (12.11) to find the volume flow rate.

EVALUATE your answer: Verify that the results make physical
sense. Check that you have used consistent units: In SI units, pres-
sure is in pascals, density in kilograms per cubic meter, and speed
in meters per second. Also note that the pressures must be either all
absolute pressures or all gauge pressures.
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Example 12.7 Water pressure in the home

Water enters a house (Fig. 12.23) through a pipe with an inside
diameter of 2.0 cm at an absolute pressure of (about
4 atm). A 1.0-cm-diameter pipe leads to the second-floor bathroom
5.0 m above. When the flow speed at the inlet pipe is find
the flow speed, pressure, and volume flow rate in the bathroom.

SOLUTION

IDENTIFY and SET UP: We assume that the water flows at a steady
rate. Water is effectively incompressible, so we can use the continu-
ity equation. It’s reasonable to ignore internal friction because the
pipe has a relatively large diameter, so we can also use Bernoulli’s
equation. Let points 1 and 2 be at the inlet pipe and at the bathroom,
respectively. We are given the pipe diameters at points 1 and 2,
from which we calculate the areas and , as well as the speed

and pressure at the inlet pipe.
We take and . We find the speed using the
continuity equation and the pressure using Bernoulli’s equation.
Knowing we calculate the volume flow rate .

EXECUTE: From the continuity equation, Eq. (12.10),

From Bernoulli’s equation, Eq. (12.16),

= 3.3 * 105 Pa = 3.3 atm = 48 lb>in.2
= 4.0 * 105 Pa - 0.17 * 105 Pa - 0.49 * 105 Pa

- 11.0 * 103 kg>m3219.8 m>s2215.0 m2

- 1
211.0 * 103 kg>m32136 m2>s2 - 2.25 m2>s22

= 4.0 * 105 Pa

p2 = p1 - 1
2r1v

2
2 - v 2

1 2 - rg1y2 - y12

v2 =
A1

A2
v1 =

p11.0 cm22

p10.50 cm22
11.5 m>s2 = 6.0 m>s

v2A2v2,
p2

v2y2 = 5.0 my1 = 0
= 4.0 * 105 Pap1= 1.5 m>sv1

A2A1

1.5 m>s,

4.0 * 105 Pa

The volume flow rate is

EVALUATE: This is a reasonable flow rate for a bathroom faucet or
shower. Note that if the water is turned off, and are both zero,
the term in Bernoulli’s equation vanishes, and 
rises from to 3.5 * 105 Pa.3.3 * 105 Pa

p2
1
2r1v

2
2 - v 2

1 2
v2v1

= 4.7 * 10-4 m3>s = 0.47 L>s

dV

dt
= A2v2 = p10.50 * 10-2 m2216.0 m>s2

Hot-water
tank

Water
meter

From water
supply
(2-cm pipe)

1

To second
floor
(1-cm pipe)

5.0 m

2

12.23 What is the water pressure in the second-story bathroom
of this house?

Example 12.8 Speed of efflux

Figure 12.24 shows a gasoline storage tank with cross-sectional
area filled to a depth h. The space above the gasoline contains
air at pressure and the gasoline flows out the bottom of the tank
through a short pipe with cross-sectional area Derive expres-
sions for the flow speed in the pipe and the volume flow rate.

A2.
p0,

A1,
SOLUTION

IDENTIFY and SET UP: We consider the entire volume of moving
liquid as a single flow tube of an incompressible fluid with negli-
gible internal friction. Hence, we can use Bernoulli’s equation.
Points 1 and 2 are at the surface of the gasoline and at the exit
pipe, respectively. At point 1 the pressure is , which we
assume to be fixed; at point 2 it is atmospheric pressure We
take at the exit pipe, so and Because is
very much larger than the upper surface of the gasoline will
drop very slowly and we can regard as essentially equal to zero.
We find from Eq. (12.17) and the volume flow rate from 
Eq. (12.11).

EXECUTE: We apply Bernoulli’s equation to points 1 and 2:

Continued

v 2
2 = v 2

1 + 2a
p0 - patm

r
b + 2gh

p0 + 1
2rv

2
1 + rgh = patm + 1

2rv
2

2 + rg102

v2

v1

A2,
A1y2 = 0.y1 = hy = 0

patm.
p0

h

2

1
p0

patm

A1

A2

12.24 Calculating the speed of efflux for gasoline flowing out
the bottom of a storage tank.
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Using we find

From Eq. (12.11), the volume flow rate is 

EVALUATE: The speed sometimes called the speed of efflux,
depends on both the pressure difference and the
height h of the liquid level in the tank. If the top of the tank is
vented to the atmosphere, and . Then 

v2 = 12gh

p0 - patm = 0p0 = patm

1p0 - patm2
v2,

dV>dt = v2A2.

v2 =
B

2a
p0 - patm

r
b + 2gh

v1 = 0, That is, the speed of efflux from an opening at a distance h
below the top surface of the liquid is the same as the speed a
body would acquire in falling freely through a height h. This
result is called Torricelli’s theorem. It is valid not only for an
opening in the bottom of a container, but also for a hole in a side
wall at a depth h below the surface. In this case the volume flow
rate is 

dV

dt
= A212gh

Example 12.9 The Venturi meter

Figure 12.25 shows a Venturi meter, used to measure flow speed in
a pipe. Derive an expression for the flow speed in terms of the
cross-sectional areas and and the difference in height h of
the liquid levels in the two vertical tubes.

SOLUTION

IDENTIFY and SET UP: The flow is steady, and we assume the
fluid is incompressible and has negligible internal friction.
Hence we can use Bernoulli’s equation. We apply that equation
to the wide part (point 1) and narrow part (point 2, the throat) of
the pipe. Equation (12.6) relates h to the pressure difference

EXECUTE: Points 1 and 2 have the same vertical coordinate
so Eq. (12.17) says

From the continuity equation, Substituting this
and rearranging, we get

p1 - p2 = 1
2rv

2
1 c a

A1

A2
b

2

- 1 d

v2 = 1A1>A22v1.

p1 + 1
2rv

2
1 = p2 + 1

2rv
2

2

y1 = y2,

p1 - p2.

A2A1

v1

From Eq. (12.6), the pressure difference is also equal
to Substituting this and solving for we get

EVALUATE: Because is greater than is greater than and
the pressure in the throat is less than Those pressure differences
produce a net force to the right that makes the fluid speed up as it
enters the throat, and a net force to the left that slows it as it leaves.

p1.p2

v1A2, v2A1

v1 =
B

2gh

1A1>A22
2 - 1

v1,rgh.
p1 - p2

Difference in height results from
reduced pressure in throat (point 2).

h

p2

A2A1

2

v2

1

v1

p1

12.25 The Venturi meter.

Conceptual Example 12.10 Lift on an airplane wing

Figure 12.26a shows flow lines around a cross section of an air-
plane wing. The flow lines crowd together above the wing, corre-
sponding to increased flow speed and reduced pressure, just as in
the Venturi throat in Example 12.9. Hence the downward force of
the air on the top side of the wing is less than the upward force of
the air on the underside of the wing, and there is a net upward force
or lift. Lift is not simply due to the impulse of air striking the
underside of the wing; in fact, the reduced pressure on the upper
wing surface makes the greatest contribution to the lift. (This sim-
plified discussion ignores the formation of vortices.)

We can also understand the lift force on the basis of momentum
changes. The vector diagram in Fig. 12.26a shows that there is a
net downward change in the vertical component of momentum of
the air flowing past the wing, corresponding to the downward force
the wing exerts on the air. The reaction force on the wing is upward,
as we concluded above.

Similar flow patterns and lift forces are found in the vicinity of
any humped object in a wind. A moderate wind makes an umbrella

“float”; a strong wind can turn it inside out. At high speed, lift can
reduce traction on a car’s tires; a “spoiler” at the car’s tail, shaped
like an upside-down wing, provides a compensating downward
force.

CAUTION A misconception about wings Some discussions of
lift claim that air travels faster over the top of a wing because
“it has farther to travel.” This claim assumes that air molecules
that part company at the front of the wing, one traveling over the
wing and one under it, must meet again at the wing’s trailing
edge. Not so! Figure 12.26b shows a computer simulation of
parcels of air flowing around an airplane wing. Parcels that are
adjacent at the front of the wing do not meet at the trailing edge;
the flow over the top of the wing is much faster than if the
parcels had to meet. In accordance with Bernoulli’s equation,
this faster speed means that there is even lower pressure above
the wing (and hence greater lift) than the “farther-to-travel”
claim would suggest. ❙
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12.6 Viscosity and Turbulence
In our discussion of fluid flow we assumed that the fluid had no internal friction
and that the flow was laminar. While these assumptions are often quite valid, in
many important physical situations the effects of viscosity (internal friction) and
turbulence (nonlaminar flow) are extremely important. Let’s take a brief look at
some of these situations.

Viscosity
Viscosity is internal friction in a fluid. Viscous forces oppose the motion of one
portion of a fluid relative to another. Viscosity is the reason it takes effort to pad-
dle a canoe through calm water, but it is also the reason the paddle works. Vis-
cous effects are important in the flow of fluids in pipes, the flow of blood, the
lubrication of engine parts, and many other situations.

Fluids that flow readily, such as water or gasoline, have smaller viscosities
than do “thick” liquids such as honey or motor oil. Viscosities of all fluids are
strongly temperature dependent, increasing for gases and decreasing for liquids
as the temperature increases (Fig. 12.27). Oils for engine lubrication must flow
equally well in cold and warm conditions, and so are designed to have as little
temperature variation of viscosity as possible.

A viscous fluid always tends to cling to a solid surface in contact with it. There
is always a thin boundary layer of fluid near the surface, in which the fluid is
nearly at rest with respect to the surface. That’s why dust particles can cling to a
fan blade even when it is rotating rapidly, and why you can’t get all the dirt off
your car by just squirting a hose at it.

Viscosity has important effects on the flow of liquids through pipes, including
the flow of blood in the circulatory system. First think about a fluid with zero vis-
cosity so that we can apply Bernoulli’s equation, Eq. (12.17). If the two ends of a
long cylindrical pipe are at the same height and the flow speed is the
same at both ends so Bernoulli’s equation tells us that the pressure is the
same at both ends of the pipe. But this result simply isn’t true if we take viscosity
into account. To see why, consider Fig. 12.28, which shows the flow-speed pro-
file for laminar flow of a viscous fluid in a long cylindrical pipe. Due to viscosity,
the speed is zero at the pipe walls (to which the fluid clings) and is greatest at the
center of the pipe. The motion is like a lot of concentric tubes sliding relative to

v1 = v22,1
1y1 = y22

(a) Flow lines around an airplane wing

S
S

S

S
S

Flow lines are crowded together above the wing, so
flow speed is higher there and pressure is lower.

Equivalent explanation: Wing imparts a
net downward momentum to the air, so
reaction force on airplane is upward.

Dp (air)

pi
pf

pf

pi

(b) Computer simulation of air parcels flowing around a wing, showing
that air moves much faster over the top than over the bottom.

Wing

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

Notice that air
particles that are
together at the leading
edge of the wing do
not meet up at the
trailing edge!

12.26 Flow around an airplane wing.

Test Your Understanding of Section 12.5 Which is the most accurate
statement of Bernoulli’s principle? (i) Fast-moving air causes lower pressure; 
(ii) lower pressure causes fast-moving air; (iii) both (i) and (ii) are equally 
accurate. ❙

12.27 Lava is an example of a viscous
fluid. The viscosity decreases with increas-
ing temperature: The hotter the lava, the
more easily it can flow.

Cross section of a
cylindrical pipe

The velocity profile for
viscous fluid flowing in
the pipe has a parabolic shape.

v vs. rR
r

12.28 Velocity profile for a viscous
fluid in a cylindrical pipe.



one another, with the central tube moving fastest and the outermost tube at rest.
Viscous forces between the tubes oppose this sliding, so to keep the flow going
we must apply a greater pressure at the back of the flow than at the front. That’s
why you have to keep squeezing a tube of toothpaste or a packet of ketchup (both
viscous fluids) to keep the fluid coming out of its container. Your fingers provide
a pressure at the back of the flow that is far greater than the atmospheric pressure
at the front of the flow.

The pressure difference required to sustain a given volume flow rate through a
cylindrical pipe of length L and radius R turns out to be proportional to If
we decrease R by one-half, the required pressure increases by decreas-
ing R by a factor of 0.90 (a 10% reduction) increases the required pressure differ-
ence by a factor of (a 52% increase). This simple relationship
explains the connection between a high-cholesterol diet (which tends to narrow
the arteries) and high blood pressure. Due to the dependence, even a small
narrowing of the arteries can result in substantially elevated blood pressure and
added strain on the heart muscle.

Turbulence
When the speed of a flowing fluid exceeds a certain critical value, the flow is no
longer laminar. Instead, the flow pattern becomes extremely irregular and com-
plex, and it changes continuously with time; there is no steady-state pattern. This
irregular, chaotic flow is called turbulence. Figure 12.20 shows the contrast
between laminar and turbulent flow for smoke rising in air. Bernoulli’s equation
is not applicable to regions where there is turbulence because the flow is not
steady.

Whether a flow is laminar or turbulent depends in part on the fluid’s viscosity.
The greater the viscosity, the greater the tendency for the fluid to flow in sheets
or lamina and the more likely the flow is to be laminar. (When we discussed
Bernoulli’s equation in Section 12.5, we assumed that the flow was laminar and
that the fluid had zero viscosity. In fact, a little viscosity is needed to ensure that
the flow is laminar.)

For a fluid of a given viscosity, flow speed is a determining factor for the
onset of turbulence. A flow pattern that is stable at low speeds suddenly becomes
unstable when a critical speed is reached. Irregularities in the flow pattern can
be caused by roughness in the pipe wall, variations in the density of the fluid,
and many other factors. At low flow speeds, these disturbances damp out; the
flow pattern is stable and tends to maintain its laminar nature (Fig. 12.29a).
When the critical speed is reached, however, the flow pattern becomes unstable.
The disturbances no longer damp out but grow until they destroy the entire
laminar-flow pattern (Fig. 12.29b).

R4

11>0.9024 = 1.52

24 = 16;
L>R4.
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Application Listening for Turbulent
Flow
Normal blood flow in the human aorta is lami-
nar, but a small disturbance such as a heart
pathology can cause the flow to become turbu-
lent. Turbulence makes noise, which is why
listening to blood flow with a stethoscope is a
useful diagnostic technique.

(a) (b)12.29 The flow of water from a faucet
is (a) laminar at low speeds but (b) turbu-
lent at sufficiently high speeds.
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Conceptual Example 12.11 The curve ball

Does a curve ball really curve? Yes, it certainly does, and the rea-
son is turbulence. Figure 12.30a shows a nonspinning ball moving
through the air from left to right. The flow lines show that to an
observer moving with the ball, the air stream appears to move from
right to left. Because of the high speeds that are ordinarily
involved (near 35 m s, or 75 mi h), there is a region of turbulent
flow behind the ball.

Figure 12.30b shows a spinning ball with “top spin.” Layers of
air near the ball’s surface are pulled around in the direction of the
spin by friction between the ball and air and by the air’s internal
friction (viscosity). Hence air moves relative to the ball’s surface
more slowly at the top of the ball than at the bottom, and turbu-
lence occurs farther forward on the top side than on the bottom.
This asymmetry causes a pressure difference; the average pressure
at the top of the ball is now greater than that at the bottom. As Fig.
12.30c shows, the resulting net force deflects the ball downward.
“Top spin” is used in tennis to keep a fast serve in the court (Fig.
12.30d).

>>

In baseball, a curve ball spins about a nearly vertical axis and
the resulting deflection is sideways. In that case, Fig. 12.30c is a
top view of the situation. A curve ball thrown by a left-handed
pitcher spins as shown in Fig. 12.30e and will curve toward a
right-handed batter, making it harder to hit.

A similar effect occurs with golf balls, which acquire “back
spin” from impact with the grooved, slanted club face. Figure
12.30f shows the backspin of a golf ball just after impact. The
resulting pressure difference between the top and bottom of the
ball causes a lift force that keeps the ball in the air longer than
would be possible without spin. A well-hit drive appears, from the
tee, to “float” or even curve upward during the initial portion of its
flight. This is a real effect, not an illusion. The dimples on the golf
ball play an essential role; the viscosity of air gives a dimpled ball
a much longer trajectory than an undimpled one with the same ini-
tial velocity and spin.

This side of the ball moves
opposite to the airflow.

A moving ball drags the adjacent air with
it. So, when air moves past a spinning ball:

The resultant force points in the direction
of the low-pressure side.

On one side, the ball slows the air,
creating a region of high pressure.

On the other side, the ball speeds the
air, creating a region of low pressure.

This side moves in the
direction of the airflow.

(a) Motion of air relative
to a nonspinning ball

(b) Motion of a spinning ball

(d) Spin pushing a tennis ball downward (e) Spin causing a curve ball to
be deflected sideways

(f) Backspin of a golf ball

(c) Force generated when a spinning ball moves through air

vball

12.30 (a)–(e) Analyzing the motion of a spinning ball through the air. (f) Stroboscopic photograph of a golf ball being struck by a
club. The picture was taken at 1000 flashes per second. The ball rotates about once in eight pictures, corresponding to an angular speed
of or 7500 rpm.125 rev>s,

Test Your Understanding of Section 12.6 How much more thumb
pressure must a nurse use to administer an injection with a hypodermic needle of
inside diameter 0.30 mm compared to one with inside diameter 0.60 mm? Assume
that the two needles have the same length and that the volume flow rate is the same in
both cases. (i) twice as much; (ii) 4 times as much; (iii) 8 times as much; (iv) 16 times as
much; (v) 32 times as much. ❙
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CHAPTER 12 SUMMARY

Pressures in a fluid at rest: The pressure difference
between points 1 and 2 in a static fluid of uniform den-
sity (an incompressible fluid) is proportional to the
difference between the elevations and If the pres-
sure at the surface of an incompressible liquid at rest is

then the pressure at a depth h is greater by an
amount (See Examples 12.3 and 12.4.)rgh.
p0,

y2.y1

r

Buoyancy: Archimedes’s principle states that when a
body is immersed in a fluid, the fluid exerts an upward
buoyant force on the body equal to the weight of the
fluid that the body displaces. (See Example 12.5.)

Fluid flow: An ideal fluid is incompressible and has no
viscosity (no internal friction). A flow line is the path of
a fluid particle; a streamline is a curve tangent at each
point to the velocity vector at that point. A flow tube is a
tube bounded at its sides by flow lines. In laminar flow,
layers of fluid slide smoothly past each other. In turbu-
lent flow, there is great disorder and a constantly chang-
ing flow pattern.

Conservation of mass in an incompressible fluid is
expressed by the continuity equation, which relates the
flow speeds and for two cross sections and 
in a flow tube. The product equals the volume flow
rate, the rate at which volume crosses a section
of the tube. (See Example 12.6.)

Bernoulli’s equation relates the pressure p, flow speed
and elevation y for any two points, assuming steady

flow in an ideal fluid. (See Examples 12.7–12.10.)
v,

dV>dt,
Av

A2A1v2v1

(pressure in a fluid (12.5)
of uniform density)

(pressure in a fluid (12.6)
of uniform density)

p = p0 + rgh

p2 - p1 = -rg1y2 - y12

(continuity equation, (12.10)
incompressible fluid)

(volume flow rate) (12.11)

(Bernoulli’s equation) (12.17)

p1 + rgy1 + 1
2rv1

2 = p2 + rgy2 + 1
2rv2

2

dV

dt
= Av

A1v1 = A2v2

Density and pressure: Density is mass per unit volume.
If a mass m of homogeneous material has volume V, its
density is the ratio Specific gravity is the ratio of
the density of a material to the density of water. (See
Example 12.1.)

Pressure is normal force per unit area. Pascal’s law
states that pressure applied to an enclosed fluid is trans-
mitted undiminished to every portion of the fluid.
Absolute pressure is the total pressure in a fluid; gauge
pressure is the difference between absolute pressure and
atmospheric pressure. The SI unit of pressure is the pas-
cal (Pa): (See Example 12.2.)1 Pa = 1 N>m2.

m>V.r

(12.1)

(12.2)p =
dF�

dA

r =
m

V

Equal normal forces exerted on
both sides by surrounding fluid

dA
dF�

dF�

Small area dA within fluid at rest

p2 5 p0

p1 5 p

y1

y2

y2 2 y1 5 h
2

1

Fluid, density r

cg

Fluid element
replaced with
solid body of
the same size
and shape

B
dF'

wbody

p2A2

ds2

ds1

a
b

c
d

dV

dV

v2

Flow

y1

y2

A1

A2

p1A1
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A large cylindrical tank with diameter D is open to the air at the
top. The tank contains water to a height H. A small circular hole
with diameter d, where d is very much less than D, is then opened
at the bottom of the tank. Ignore any effects of viscosity. (a) Find y,
the height of water in the tank a time t after the hole is opened, as a
function of t. (b) How long does it take to drain the tank com-
pletely? (c) If you double the initial height of water in the tank, by
what factor does the time to drain the tank increase?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. Draw a sketch of the situation that shows all of the relevant

dimensions.
2. Make a list of the unknown quantities, and decide which of

these are the target variables.

BRIDGING PROBLEM How Long to Drain?

3. What is the speed at which water flows out of the bottom of the
tank? How is this related to the volume flow rate of water out of
the tank? How is the volume flow rate related to the rate of
change of y?

EXECUTE
4. Use your results from step 3 to write an equation for dy dt.
5. Your result from step 4 is a relatively simple differential equa-

tion. With your knowledge of calculus, you can integrate it to
find y as a function of t. (Hint: Once you’ve done the integration,
you’ll still have to do a little algebra.)

6. Use your result from step 5 to find the time when the tank is
empty. How does your result depend on the initial height H?

EVALUATE
7. Check whether your answers are reasonable. A good check is to

draw a graph of y versus t. According to your graph, what is the
algebraic sign of dy dt at different times? Does this make sense?>

>

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q12.1 A cube of oak wood with very smooth faces normally
floats in water. Suppose you submerge it completely and press
one face flat against the bottom of a tank so that no water is
under that face. Will the block float to the surface? Is there a
buoyant force on it? Explain.
Q12.2 A rubber hose is attached to a funnel, and the free end is
bent around to point upward. When water is poured into the fun-
nel, it rises in the hose to the same level as in the funnel, even
though the funnel has a lot more water in it than the hose does.
Why? What supports the extra weight of the water in the funnel?
Q12.3 Comparing Example 12.1 (Section 12.1) and Example 12.2
(Section 12.2), it seems that 700 N of air is exerting a downward
force of on the floor. How is this possible?
Q12.4 Equation (12.7) shows that an area ratio of 100 to 1 can give
100 times more output force than input force. Doesn’t this violate
conservation of energy? Explain.
Q12.5 You have probably noticed that the lower the tire pressure,
the larger the contact area between the tire and the road. Why?
Q12.6 In hot-air ballooning, a large balloon is filled with air heated
by a gas burner at the bottom. Why must the air be heated? How
does the balloonist control ascent and descent?
Q12.7 In describing the size of a large ship, one uses such expres-
sions as “it displaces 20,000 tons.” What does this mean? Can the
weight of the ship be obtained from this information?
Q12.8 You drop a solid sphere of aluminum in a bucket of water
that sits on the ground. The buoyant force equals the weight of
water displaced; this is less than the weight of the sphere, so the
sphere sinks to the bottom. If you take the bucket with you on an
elevator that accelerates upward, the apparent weight of the water
increases and the buoyant force on the sphere increases. Could the

2.0 * 106 N

acceleration of the elevator be great enough to make the sphere
pop up out of the water? Explain.
Q12.9 A rigid, lighter-than-air dirigible filled with helium cannot
continue to rise indefinitely. Why? What determines the maximum
height it can attain?
Q12.10 Air pressure decreases with increasing altitude. So why is
air near the surface not continuously drawn upward toward the
lower-pressure regions above?
Q12.11 The purity of gold can be tested by weighing it in air and
in water. How? Do you think you could get away with making a
fake gold brick by gold-plating some cheaper material?
Q12.12 During the Great Mississippi Flood of 1993, the levees in
St. Louis tended to rupture first at the bottom. Why?
Q12.13 A cargo ship travels from the Atlantic Ocean (salt water) to
Lake Ontario (freshwater) via the St. Lawrence River. The ship
rides several centimeters lower in the water in Lake Ontario than it
did in the ocean. Explain why.
Q12.14 You push a piece of wood under the surface of a swim-
ming pool. After it is completely submerged, you keep pushing it
deeper and deeper. As you do this, what will happen to the buoyant
force on it? Will the force keep increasing, stay the same, or
decrease? Why?
Q12.15 An old question is “Which weighs more, a pound of feath-
ers or a pound of lead?” If the weight in pounds is the gravitational
force, will a pound of feathers balance a pound of lead on opposite
pans of an equal-arm balance? Explain, taking into account buoy-
ant forces.
Q12.16 Suppose the door of a room makes an airtight but friction-
less fit in its frame. Do you think you could open the door if the air
pressure on one side were standard atmospheric pressure and the air
pressure on the other side differed from standard by 1%? Explain.

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems. 

www.masteringphysics.com
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Q12.17 At a certain depth in an incompressible liquid, the
absolute pressure is p. At twice this depth, will the absolute
pressure be equal to 2p, greater than 2p, or less than 2p? Justify
your answer.
Q12.18 A piece of iron is glued to the top of a block of wood.
When the block is placed in a bucket of water with the iron on top,
the block floats. The block is now turned over so that the iron is
submerged beneath the wood. Does the block float or sink? Does
the water level in the bucket rise, drop, or stay the same? Explain
your answers.
Q12.19 You take an empty glass jar and push it into a tank of water
with the open mouth of the jar downward, so that the air inside the
jar is trapped and cannot get out. If you push the jar deeper into the
water, does the buoyant force on the jar stay the same? If not, does
it increase or decrease? Explain your answer.
Q12.20 You are floating in a canoe in the middle of a swimming
pool. Your friend is at the edge of the pool, carefully noting the
level of the water on the side of the pool. You have a bowling ball
with you in the canoe. If you carefully drop the bowling ball over
the side of the canoe and it sinks to the bottom of the pool, does the
water level in the pool rise or fall?
Q12.21 You are floating in a canoe in the middle of a swimming
pool. A large bird flies up and lights on your shoulder. Does the
water level in the pool rise or fall?
Q12.22 At a certain depth in the incompressible ocean the gauge
pressure is At three times this depth, will the gauge pressure be
greater than equal to or less than Justify your answer.
Q12.23 An ice cube floats in a glass of water. When the ice melts,
will the water level in the glass rise, fall, or remain unchanged?
Explain.
Q12.24 You are told, “Bernoulli’s equation tells us that where there
is higher fluid speed, there is lower fluid pressure, and vice versa.”
Is this statement always true, even for an idealized fluid? Explain.
Q12.25 If the velocity at each point in space in steady-state fluid
flow is constant, how can a fluid particle accelerate?
Q12.26 In a store-window vacuum cleaner display, a table-tennis
ball is suspended in midair in a jet of air blown from the outlet
hose of a tank-type vacuum cleaner. The ball bounces around a
little but always moves back toward the center of the jet, even if
the jet is tilted from the vertical. How does this behavior illustrate
Bernoulli’s equation?
Q12.27 A tornado consists of a rapidly whirling air vortex. Why is
the pressure always much lower in the center than at the outside?
How does this condition account for the destructive power of a
tornado?
Q12.28 Airports at high elevations have longer runways for take-
offs and landings than do airports at sea level. One reason is that
aircraft engines develop less power in the thin air well above sea
level. What is another reason?
Q12.29 When a smooth-flow-
ing stream of water comes out
of a faucet, it narrows as it falls.
Explain why this happens.
Q12.30 Identical-size lead and
aluminum cubes are suspended
at different depths by two
wires in a large vat of water
(Fig. Q12.30). (a) Which cube
experiences a greater buoyant
force? (b) For which cube is
the tension in the wire greater?
(c) Which cube experiences a

3pg?3pg,3pg,
pg.

greater force on its lower face? (d) For which cube is the difference
in pressure between the upper and lower faces greater?

EXERCISES
Section 12.1 Density
12.1 .. On a part-time job, you are asked to bring a cylindrical
iron rod of length 85.8 cm and diameter 2.85 cm from a storage
room to a machinist. Will you need a cart? (To answer, calculate
the weight of the rod.)
12.2 .. A cube 5.0 cm on each side is made of a metal alloy. After
you drill a cylindrical hole 2.0 cm in diameter all the way through
and perpendicular to one face, you find that the cube weighs 7.50 N.
(a) What is the density of this metal? (b) What did the cube weigh
before you drilled the hole in it?
12.3 . You purchase a rectangular piece of metal that has dimen-
sions and mass 0.0158 kg. The seller tells
you that the metal is gold. To check this, you compute the average
density of the piece. What value do you get? Were you cheated?
12.4 .. Gold Brick. You win the lottery and decide to impress
your friends by exhibiting a million-dollar cube of gold. At the time,
gold is selling for $426.60 per troy ounce, and 1.0000 troy ounce
equals 31.1035 g. How tall would your million-dollar cube be?
12.5 .. A uniform lead sphere and a uniform aluminum sphere
have the same mass. What is the ratio of the radius of the alu-
minum sphere to the radius of the lead sphere?
12.6 . (a) What is the average density of the sun? (b) What is the
average density of a neutron star that has the same mass as the sun
but a radius of only 20.0 km?
12.7 .. A hollow cylindrical copper pipe is 1.50 m long and has
an outside diameter of 3.50 cm and an inside diameter of 2.50 cm.
How much does it weigh?

Section 12.2 Pressure in a Fluid
12.8 .. Black Smokers. Black smokers are hot volcanic vents
that emit smoke deep in the ocean floor. Many of them teem
with exotic creatures, and some biologists think that life on earth
may have begun around such vents. The vents range in depth
from about 1500 m to 3200 m below the surface. What is the
gauge pressure at a 3200-m deep vent, assuming that the density
of water does not vary? Express your answer in pascals and
atmospheres.
12.9 .. Oceans on Mars. Scientists have found evidence that
Mars may once have had an ocean 0.500 km deep. The accelera-
tion due to gravity on Mars is (a) What would be the
gauge pressure at the bottom of such an ocean, assuming it was
freshwater? (b) To what depth would you need to go in the earth’s
ocean to experience the same gauge pressure?
12.10 .. BIO (a) Calculate the difference in blood pressure
between the feet and top of the head for a person who is 1.65 m
tall. (b) Consider a cylindrical segment of a blood vessel 2.00 cm
long and 1.50 mm in diameter. What additional outward force
would such a vessel need to withstand in the person’s feet com-
pared to a similar vessel in her head?
12.11 . BIO In intravenous feeding, a needle is inserted in a vein
in the patient’s arm and a tube leads from the needle to a reser-
voir of fluid located at height h above the
arm. The top of the reservoir is open to the air. If the gauge pres-
sure inside the vein is 5980 Pa, what is the minimum value of h
that allows fluid to enter the vein? Assume the needle diameter is
large enough that you can ignore the viscosity (see Section 12.6)
of the fluid.

1density 1050 kg>m32

3.71 m>s2.

5.0 * 15.0 * 30.0 mm

Alumi-
num

Lead

Figure Q12.30
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12.12 . A barrel contains a 0.120-m layer of oil floating on water
that is 0.250 m deep. The density of the oil is (a) What
is the gauge pressure at the oil–water interface? (b) What is the
gauge pressure at the bottom of the barrel?
12.13 . BIO Standing on Your Head. (a) What is the difference
between the pressure of the blood in your brain when you stand on
your head and the pressure when you stand on your feet? Assume
that you are 1.85 m tall. The density of blood is (b)
What effect does the increased pressure have on the blood vessels
in your brain?
12.14 .. You are designing a diving bell to withstand the pressure
of seawater at a depth of 250 m. (a) What is the gauge pressure at
this depth? (You can ignore changes in the density of the water
with depth.) (b) At this depth, what is the net force due to the water
outside and the air inside the bell on a circular glass window 30.0 cm
in diameter if the pressure inside the diving bell equals the pres-
sure at the surface of the water? (You can ignore the small varia-
tion of pressure over the surface of the window.)
12.15 .. BIO Ear Damage from Diving. If the force on the
tympanic membrane (eardrum) increases by about 1.5 N above the
force from atmospheric pressure, the membrane can be damaged.
When you go scuba diving in the ocean, below what depth could
damage to your eardrum start to occur? The eardrum is typically
8.2 mm in diameter. (Consult Table 12.1.)
12.16 .. The liquid in the open-tube manometer in Fig. 12.8a is
mercury, and Atmospheric pressure
is 980 millibars. (a) What is the absolute pressure at the bottom of
the U-shaped tube? (b) What is the absolute pressure in the open
tube at a depth of 4.00 cm below the free surface? (c) What is the
absolute pressure of the gas in the container? (d) What is the gauge
pressure of the gas in pascals?
12.17 . BIO There is a maximum depth at
which a diver can breathe through a
snorkel tube (Fig. E12.17) because as the
depth increases, so does the pressure dif-
ference, which tends to collapse the
diver’s lungs. Since the snorkel connects
the air in the lungs to the atmosphere at the
surface, the pressure inside the lungs is
atmospheric pressure. What is the exter-
nal–internal pressure difference when the
diver’s lungs are at a depth of 6.1 m (about
20 ft)? Assume that the diver is in freshwa-
ter. (A scuba diver breathing from com-
pressed air tanks can operate at greater
depths than can a snorkeler, since the pres-
sure of the air inside the scuba diver’s
lungs increases to match the external pressure of the water.)
12.18 .. A tall cylinder with a cross-sectional area is
partially filled with mercury; the surface of the mercury is 5.00 cm
above the bottom of the cylinder. Water is slowly poured in on top
of the mercury, and the two fluids don’t mix. What volume of
water must be added to double the gauge pressure at the bottom of
the cylinder?
12.19 .. An electrical short cuts off all power to a submersible
diving vehicle when it is 30 m below the surface of the ocean. The
crew must push out a hatch of area and weight 300 N on
the bottom to escape. If the pressure inside is 1.0 atm, what down-
ward force must the crew exert on the hatch to open it?
12.20 .. A closed container is partially filled with water. Initially,
the air above the water is at atmospheric pressure 11.01 * 105 Pa2

0.75 m2

12.0 cm2

y2 = 7.00 cm.y1 = 3.00 cm,

1060 kg>m3.

600 kg>m3.

and the gauge pressure at the bottom of the water is 2500 Pa. Then
additional air is pumped in, increasing the pressure of the air above
the water by 1500 Pa. (a) What is the gauge pressure at the bottom
of the water? (b) By how much must the water level in the con-
tainer be reduced, by drawing some water out through a valve at the
bottom of the container, to return the gauge pressure at the bottom
of the water to its original value of 2500 Pa? The pressure of the
air above the water is maintained at 1500 Pa above atmospheric
pressure.
12.21 .. A cylindrical disk of
wood weighing 45.0 N and hav-
ing a diameter of 30.0 cm floats
on a cylinder of oil of density

(Fig. E12.21). The
cylinder of oil is 75.0 cm deep
and has a diameter the same as
that of the wood. (a) What is the
gauge pressure at the top of the
oil column? (b) Suppose now
that someone puts a weight of
83.0 N on top of the wood, but
no oil seeps around the edge of
the wood. What is the change in
pressure at (i) the bottom of the
oil and (ii) halfway down in 
the oil?
12.22 .. Exploring Venus.
The surface pressure on Venus is 92 atm, and the acceleration due
to gravity there is 0.894g. In a future exploratory mission, an
upright cylindrical tank of benzene is sealed at the top but still
pressurized at 92 atm just above the benzene. The tank has a diam-
eter of 1.72 m, and the benzene column is 11.50 m tall. Ignore any
effects due to the very high temperature on Venus. (a) What total
force is exerted on the inside surface of the bottom of the tank? 
(b) What force does the Venusian atmosphere exert on the outside
surface of the bottom of the tank? (c) What total inward force does
the atmosphere exert on the vertical walls of the tank?
12.23 .. Hydraulic Lift I. For the hydraulic lift shown in 
Fig. 12.7, what must be the ratio of the diameter of the vessel at the
car to the diameter of the vessel where the force is applied so
that a 1520-kg car can be lifted with a force of just 125 N?
12.24 . Hydraulic Lift II. The piston of a hydraulic automo-
bile lift is 0.30 m in diameter. What gauge pressure, in pascals, is
required to lift a car with a mass of 1200 kg? Also express this
pressure in atmospheres.

Section 12.3 Buoyancy
12.25 . A 950-kg cylindrical can buoy floats vertically in salt
water. The diameter of the buoy is 0.900 m. Calculate the additional
distance the buoy will sink when a 70.0-kg man stands on top of it.
12.26 .. A slab of ice floats on a freshwater lake. What minimum
volume must the slab have for a 45.0-kg woman to be able to stand
on it without getting her feet wet?
12.27 .. An ore sample weighs 17.50 N in air. When the sample
is suspended by a light cord and totally immersed in water, the ten-
sion in the cord is 11.20 N. Find the total volume and the density of
the sample.
12.28 .. You are preparing some apparatus for a visit to a
newly discovered planet Caasi having oceans of glycerine and a
surface acceleration due to gravity of If your appara-
tus floats in the oceans on earth with 25.0% of its volume

4.15 m>s2.

F1

F1

0.850 g>cm3

6.1 m

pa

Figure E12.17

Wooden
disk

75.0
cm

Oil

30.0 cm

Figure E12.21
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submerged, what percentage will be submerged in the glycerine
oceans of Caasi?
12.29 .. An object of average density floats at the surface of a
fluid of density (a) How must the two densities be related?
(b) In view of the answer to part (a), how can steel ships float in
water? (c) In terms of and what fraction of the object is
submerged and what fraction is above the fluid? Check that your
answers give the correct limiting behavior as and as

(d) While on board your yacht, your cousin Throckmorton
cuts a rectangular piece out of
a life preserver and throws it into the ocean. The piece has a mass
of 42 g. As it floats in the ocean, what percentage of its volume is
above the surface?
12.30 . A hollow plastic sphere is held below the surface of a fresh-
water lake by a cord anchored to the bottom of the lake. The sphere
has a volume of and the tension in the cord is 900 N.
(a) Calculate the buoyant force exerted by the water on the sphere.
(b) What is the mass of the sphere? (c) The cord breaks and the
sphere rises to the surface. When the sphere comes to rest, what
fraction of its volume will be submerged?
12.31 .. A cubical block of wood,
10.0 cm on a side, floats at the inter-
face between oil and water with its
lower surface 1.50 cm below the
interface (Fig. E12.31). The density
of the oil is (a) What is
the gauge pressure at the upper face
of the block? (b) What is the gauge
pressure at the lower face of the
block? (c) What are the mass and
density of the block?
12.32 . A solid aluminum ingot weighs 89 N in air. (a) What is its
volume? (b) The ingot is suspended from a rope and totally
immersed in water. What is the tension in the rope (the apparent
weight of the ingot in water)?
12.33 .. A rock is suspended by a light string. When the rock is
in air, the tension in the string is 39.2 N. When the rock is totally
immersed in water, the tension is 28.4 N. When the rock is totally
immersed in an unknown liquid, the tension is 18.6 N. What is the
density of the unknown liquid?

Section 12.4 Fluid Flow
12.34 .. Water runs into a fountain, filling all the pipes, at a
steady rate of (a) How fast will it shoot out of a hole
4.50 cm in diameter? (b) At what speed will it shoot out if the
diameter of the hole is three times as large?
12.35 .. A shower head has 20 circular openings, each with
radius 1.0 mm. The shower head is connected to a pipe with radius
0.80 cm. If the speed of water in the pipe is what is its
speed as it exits the shower-head openings?
12.36 . Water is flowing in a pipe with a varying cross-sectional
area, and at all points the water completely fills the pipe. At point 1
the cross-sectional area of the pipe is and the magnitude
of the fluid velocity is (a) What is the fluid speed at
points in the pipe where the cross-sectional area is (a) 
and (b) (c) Calculate the volume of water discharged
from the open end of the pipe in 1.00 hour.
12.37 . Water is flowing in a pipe with a circular cross section but
with varying cross-sectional area, and at all points the water com-
pletely fills the pipe. (a) At one point in the pipe the radius is 0.150 m.
What is the speed of the water at this point if water is flowing into
this pipe at a steady rate of (b) At a second point in the1.20 m3>s?

0.047 m2?
0.105 m2

3.50 m>s.
0.070 m2,

3.0 m>s,

0.750 m3>s.

790 kg>m3.

0.650 m3

(dimensions 5.0 * 4.0 * 3.0 cm)
rS 0.

rS rfluid

rfluid,r

rfluid.
r

pipe the water speed is What is the radius of the pipe at
this point?
12.38 . Home Repair. You need to extend a 2.50-inch-diameter
pipe, but you have only a 1.00-inch-diameter pipe on hand. You
make a fitting to connect these pipes end to end. If the water is
flowing at 6.00 cm s in the wide pipe, how fast will it be flowing
through the narrow one?
12.39 . At a point where an irrigation canal having a rectangular
cross section is 18.5 m wide and 3.75 m deep, the water flows at
2.50 cm s. At a point downstream, but on the same level, the canal
is 16.5 m wide, but the water flows at 11.0 cm/s. How deep is the
canal at this point?
12.40 .. BIO Artery Blockage. A medical technician is trying
to determine what percentage of a patient’s artery is blocked by
plaque. To do this, she measures the blood pressure just before the
region of blockage and finds that it is while in the
region of blockage it is Furthermore, she knows
that blood flowing through the normal artery just before the point
of blockage is traveling at 30.0 cm/s, and the specific gravity of
this patient’s blood is 1.06. What percentage of the cross-sectional
area of the patient’s artery is blocked by the plaque?

Section 12.5 Bernoulli’s Equation
12.41 .. A sealed tank containing seawater to a height of 11.0 m
also contains air above the water at a gauge pressure of 3.00 atm.
Water flows out from the bottom through a small hole. How fast is
this water moving?
12.42 . A small circular hole 6.00 mm in diameter is cut in the
side of a large water tank, 14.0 m below the water level in the tank.
The top of the tank is open to the air. Find (a) the speed of efflux of
the water and (b) the volume discharged per second.
12.43 . What gauge pressure is required in the city water mains
for a stream from a fire hose connected to the mains to reach a ver-
tical height of 15.0 m? (Assume that the mains have a much larger
diameter than the fire hose.)
12.44 .. At one point in a pipeline the water’s speed is 
and the gauge pressure is Find the gauge pressure
at a second point in the line, 11.0 m lower than the first, if the pipe
diameter at the second point is twice that at the first.
12.45 . At a certain point in a horizontal pipeline, the water’s
speed is and the gauge pressure is Find
the gauge pressure at a second point in the line if the cross-
sectional area at the second point is twice that at the first.
12.46 . A soft drink (mostly water) flows in a pipe at a beverage
plant with a mass flow rate that would fill 220 0.355-L cans per
minute. At point 2 in the pipe, the gauge pressure is 152 kPa and
the cross-sectional area is At point 1, 1.35 m above point
2, the cross-sectional area is Find the (a) mass flow rate;
(b) volume flow rate; (c) flow speeds at points 1 and 2; (d) gauge
pressure at point 1.
12.47 .. A golf course sprinkler system discharges water from a
horizontal pipe at the rate of At one point in the pipe,
where the radius is 4.00 cm, the water’s absolute pressure is

At a second point in the pipe, the water passes
through a constriction where the radius is 2.00 cm. What is the
water’s absolute pressure as it flows through this constriction?

Section 12.6 Viscosity and Turbulence
12.48 . A pressure difference of is required to
maintain a volume flow rate of for a viscous fluid flow-
ing through a section of cylindrical pipe that has radius 0.210 m.

0.800 m3>s
6.00 * 104 Pa

2.40 * 105 Pa.

7200 cm3>s.

2.00 cm2.
8.00 cm2.

1.80 * 104 Pa.2.50 m>s

5.00 * 104 Pa.
3.00 m>s

1.15 * 104 Pa.
1.20 * 104 Pa,

>

>

3.80 m>s.

10.0
cm

Oil

10.0
cm

Water

Wood

Figure E12.31



Problems 397

What pressure difference is required to maintain the same volume
flow rate if the radius of the pipe is decreased to 0.0700 m?
12.49 .. BIO Clogged Artery. Viscous blood is flowing
through an artery partially clogged by cholesterol. A surgeon wants
to remove enough of the cholesterol to double the flow rate of
blood through this artery. If the original diameter of the artery is D,
what should be the new diameter (in terms of D) to accomplish this
for the same pressure gradient?

PROBLEMS
12.50 .. CP The deepest point known in any of the earth’s oceans
is in the Marianas Trench, 10.92 km deep. (a) Assuming water is
incompressible, what is the pressure at this depth? Use the density
of seawater. (b) The actual pressure is your calcu-
lated value will be less because the density actually varies with
depth. Using the compressibility of water and the actual pressure,
find the density of the water at the bottom of the Marianas Trench.
What is the percent change in the density of the water?
12.51 ... In a lecture demonstration, a professor pulls apart two
hemispherical steel shells (diameter D) with ease using their
attached handles. She then places them together, pumps out the air
to an absolute pressure of p, and hands them to a bodybuilder in
the back row to pull apart. (a) If atmospheric pressure is how
much force must the bodybuilder exert on each shell? (b) Evaluate
your answer for the case 
12.52 .. BIO Fish Navigation. (a) As you can tell by watching
them in an aquarium, fish are able to remain at any depth in water
with no effort. What does this ability tell you about their density?
(b) Fish are able to inflate themselves using a sac (called the swim
bladder) located under their spinal column. These sacs can be
filled with an oxygen–nitrogen mixture that comes from the blood.
If a 2.75-kg fish in freshwater inflates itself and increases its vol-
ume by 10%, find the net force that the water exerts on it. (c) What
is the net external force on it? Does the fish go up or down when it
inflates itself?
12.53 ... CALC A swimming pool is 5.0 m long, 4.0 m wide, and
3.0 m deep. Compute the force exerted by the water against (a) the
bottom and (b) either end. (Hint: Calculate the force on a thin, hor-
izontal strip at a depth h, and integrate this over the end of the
pool.) Do not include the force due to air pressure.
12.54 ... CP CALC The upper
edge of a gate in a dam runs
along the water surface. The
gate is 2.00 m high and 4.00 m
wide and is hinged along a hor-
izontal line through its center
(Fig. P12.54). Calculate the
torque about the hinge arising
from the force due to the water.
(Hint: Use a procedure similar to that used in Problem 12.53;
calculate the torque on a thin, horizontal strip at a depth h and
integrate this over the gate.)
12.55 ... CP CALC Force and Torque on a Dam. A dam has the
shape of a rectangular solid. The side facing the lake has area A
and height H. The surface of the freshwater lake behind the dam is
at the top of the dam. (a) Show that the net horizontal force exerted
by the water on the dam equals —that is, the average gauge
pressure across the face of the dam times the area (see Problem
12.53). (b) Show that the torque exerted by the water about an axis
along the bottom of the dam is (c) How do the force and
torque depend on the size of the lake?

rgH2A>6.

1
2rgHA

D = 10.0 cm.p = 0.025 atm,

p0,

1.16 * 108 Pa;

12.56 .. Ballooning on Mars. It has been proposed that we could
explore Mars using inflated balloons to hover just above the surface.
The buoyancy of the atmosphere would keep the balloon aloft. The
density of the Martian atmosphere is (although this
varies with temperature). Suppose we construct these balloons of a
thin but tough plastic having a density such that each square meter
has a mass of 5.00 g. We inflate them with a very light gas whose
mass we can neglect. (a) What should be the radius and mass of these
balloons so they just hover above the surface of Mars? (b) If we
released one of the balloons from part (a) on earth, where the atmos-
pheric density is what would be its initial acceleration
assuming it was the same size as on Mars? Would it go up or down?
(c) If on Mars these balloons have five times the radius found in part
(a), how heavy an instrument package could they carry?
12.57 .. A 0.180-kg cube of ice (frozen water) is floating in glyc-
erine. The gylcerine is in a tall cylinder that has inside radius 3.50
cm. The level of the glycerine is well below the top of the cylinder.
If the ice completely melts, by what distance does the height of liq-
uid in the cylinder change? Does the level of liquid rise or fall?
That is, is the surface of the water above or below the original level
of the gylcerine before the ice melted?
12.58 .. A narrow, U-shaped glass
tube with open ends is filled with
25.0 cm of oil (of specific gravity
0.80) and 25.0 cm of water on oppo-
site sides, with a barrier separating
the liquids (Fig. P12.58). (a) Assume
that the two liquids do not mix, and
find the final heights of the columns 
of liquid in each side of the tube 
after the barrier is removed. (b) For
the following cases, arrive at your
answer by simple physical reasoning,
not by calculations: (i) What would be the height on each side if the
oil and water had equal densities? (ii) What would the heights be if
the oil’s density were much less than that of water?
12.59 . A U-shaped tube open
to the air at both ends contains
some mercury. A quantity of
water is carefully poured into
the left arm of the U-shaped
tube until the vertical height of
the water column is 15.0 cm
(Fig. P12.59). (a) What is the
gauge pressure at the water–
mercury interface? (b) Calculate
the vertical distance h from the
top of the mercury in the right-
hand arm of the tube to the top of the water in the left-hand arm.
12.60 .. CALC The Great Molasses Flood. On the afternoon
of January 15, 1919, an unusually warm day in Boston, a 17.7-m-
high, 27.4-m-diameter cylindrical metal tank used for storing
molasses ruptured. Molasses flooded into the streets in a 5-m-
deep stream, killing pedestrians and horses and knocking down
buildings. The molasses had a density of If the tank
was full before the accident, what was the total outward force the
molasses exerted on its sides? (Hint: Consider the outward force
on a circular ring of the tank wall of width dy and at a depth y
below the surface. Integrate to find the total outward force.
Assume that before the tank ruptured, the pressure at the surface
of the molasses was equal to the air pressure outside the tank.)

1600 kg>m3.

1.20 kg>m3,

0.0154 kg>m3

4.00 m

2.00 m
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12.61 . An open barge has the
dimensions shown in Fig. P12.61.
If the barge is made out of 4.0-
cm-thick steel plate on each of
its four sides and its bottom,
what mass of coal can the barge
carry in freshwater without sink-
ing? Is there enough room in the barge to hold this amount of coal?

12.62 ... A hot-air balloon has a volume of The bal-
loon fabric (the envelope) weighs 900 N. The basket with gear and
full propane tanks weighs 1700 N. If the balloon can barely lift an
additional 3200 N of passengers, breakfast, and champagne when
the outside air density is what is the average density
of the heated gases in the envelope?
12.63 .. Advertisements for a certain small car claim that it floats
in water. (a) If the car’s mass is 900 kg and its interior volume is

what fraction of the car is immersed when it floats? You
can ignore the volume of steel and other materials. (b) Water grad-
ually leaks in and displaces the air in the car. What fraction of the
interior volume is filled with water when the car sinks?
12.64 . A single ice cube with mass 9.70 g floats in a glass com-
pletely full of of water. You can ignore the water’s sur-
face tension and its variation in density with temperature (as long
as it remains a liquid). (a) What volume of water does the ice cube
displace? (b) When the ice cube has completely melted, has any
water overflowed? If so, how much? If not, explain why this is so.
(c) Suppose the water in the glass had been very salty water of
density What volume of salt water would the 9.70-g
ice cube displace? (d) Redo part (b) for the freshwater ice cube in
the salty water.
12.65 ... A piece of wood is 0.600 m long, 0.250 m wide, and
0.080 m thick. Its density is What volume of lead must
be fastened underneath it to sink the wood in calm water so that its
top is just even with the water level? What is the mass of this vol-
ume of lead?
12.66 .. A hydrometer consists of a spherical bulb and a cylindri-
cal stem with a cross-sectional area of (see Fig. 12.12a).
The total volume of bulb and stem is When immersed in
water, the hydrometer floats with 8.00 cm of the stem above the
water surface. When the hydrometer is immersed in an organic
fluid, 3.20 cm of the stem is above the surface. Find the density of
the organic fluid. (Note: This illustrates the precision of such a
hydrometer. Relatively small density differences give rise to rela-
tively large differences in hydrometer readings.)
12.67 .. The densities of air, helium, and hydrogen at

and are and
respectively. (a) What is the volume in cubic

meters displaced by a hydrogen-filled airship that has a total “lift”
of 90.0 kN? (The “lift” is the amount by which the buoyant force
exceeds the weight of the gas that fills the airship.) (b) What would
be the “lift’’ if helium were used instead of hydrogen? In view of
your answer, why is helium used in modern airships like advertis-
ing blimps?
12.68 .. When an open-faced boat has a mass of 5750 kg,
including its cargo and passengers, it floats with the water just
up to the top of its gunwales (sides) on a freshwater lake. (a)
What is the volume of this boat? (b) The captain decides that it
is too dangerous to float with his boat on the verge of sinking, so
he decides to throw some cargo overboard so that 20% of the
boat’s volume will be above water. How much mass should he
throw out?

0.0899 kg>m3,
0.166 kg>m3,1.20 kg>m3,T = 20°C2p = 1.0 atm

1

13.2 cm3.
0.400 cm2

700 kg>m3.

1050 kg>m3.

420 cm3

3.0 m3,

1.23 kg>m3,

2200 m3.

1500 kg>m3.21The density of coal is about

12.69 .. CP An open cylindrical tank of acid rests at the edge of a
table 1.4 m above the floor of the chemistry lab. If this tank springs
a small hole in the side at its base, how far from the foot of the
table will the acid hit the floor if the acid in the tank is 75 cm deep?
12.70 .. CP A firehose must be able to shoot water to the top of a
building 28.0 m tall when aimed straight up. Water enters this hose
at a steady rate of and shoots out of a round nozzle. 
(a) What is the maximum diameter this nozzle can have? (b) If the
only nozzle available has a diameter twice as great, what is the
highest point the water can reach?
12.71 .. CP You drill a small hole in the side of a vertical cylin-
drical water tank that is standing on the ground with its top open to
the air. (a) If the water level has a height H, at what height above
the base should you drill the hole for the water to reach its greatest
distance from the base of the cylinder when it hits the ground? (b)
What is the greatest distance the water will reach?
12.72 ... CALC A closed and elevated vertical cylindrical tank
with diameter 2.00 m contains water to a depth of 0.800 m. A
worker accidently pokes a circular hole with diameter 0.0200 m in
the bottom of the tank. As the water drains from the tank, com-
pressed air above the water in the tank maintains a gauge pressure
of at the surface of the water. Ignore any effects of
viscosity. (a) Just after the hole is made, what is the speed of the
water as it emerges from the hole? What is the ratio of this speed to
the efflux speed if the top of the tank is open to the air? (b) How
much time does it take for all the water to drain from the tank?
What is the ratio of this time to the time it takes for the tank to
drain if the top of the tank is open to the air?
12.73 .. A block of balsa wood placed in one scale pan of an equal-
arm balance is exactly balanced by a 0.115-kg brass mass in the
other scale pan. Find the true mass of the balsa wood if its density is

Explain why it is accurate to ignore the buoyancy in air
of the brass but not the buoyancy in air of the balsa wood.
12.74 .. Block A in Fig. P12.74
hangs by a cord from spring bal-
ance D and is submerged in a liquid
C contained in beaker B. The mass
of the beaker is 1.00 kg; the mass
of the liquid is 1.80 kg. Balance D
reads 3.50 kg, and balance E reads
7.50 kg. The volume of block A is

(a) What is the
density of the liquid? (b) What will
each balance read if block A is
pulled up out of the liquid?
12.75 .. A hunk of aluminum is
completely covered with a gold
shell to form an ingot of weight
45.0 N. When you suspend the ingot from a spring balance and
submerge the ingot in water, the balance reads 39.0 N. What is the
weight of the gold in the shell?
12.76 .. A plastic ball has radius 12.0 cm and floats in water with
24.0% of its volume submerged. (a) What force must you apply to
the ball to hold it at rest totally below the surface of the water? 
(b) If you let go of the ball, what is its acceleration the instant you
release it?
12.77 .. The weight of a king’s solid crown is w. When the crown
is suspended by a light rope and completely immersed in water, the
tension in the rope (the crown’s apparent weight) is (a) Prove
that the crown’s relative density (specific gravity) is 
Discuss the meaning of the limits as approaches 0 and 1. (b) If the
crown is solid gold and weighs 12.9 N in air, what is its apparent

ƒ
1>11 - ƒ2.

ƒw.

3.80 * 10-3 m3.

150 kg>m3.

5.00 * 103 Pa
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weight when completely immersed in water? (c) Repeat part (b) if
the crown is solid lead with a very thin gold plating, but still has a
weight in air of 12.9 N.
12.78 .. A piece of steel has a weight w, an apparent weight (see
Problem 12.77) when completely immersed in water, and
an apparent weight when completely immersed in an
unknown fluid. (a) Prove that the fluid’s density relative to water
(specific gravity) is (b) Is this result
reasonable for the three cases of greater than, equal to, or
less than (c) The apparent weight of the piece of steel in
water of density is 87.2% of its weight. What
percentage of its weight will its apparent weight be in formic acid

12.79 ... You cast some metal of density in a mold, but you
are worried that there might be cavities within the casting. You
measure the weight of the casting to be w, and the buoyant force
when it is completely surrounded by water to be B. (a) Show that

is the total volume of any enclosed
cavities. (b) If your metal is copper, the casting’s weight is 156 N,
and the buoyant force is 20 N, what is the total volume of any
enclosed cavities in your casting? What fraction is this of the total
volume of the casting?
12.80 . A cubical block of wood 0.100 m on a side and with a
density of floats in a jar of water. Oil with a density of

is poured on the water until the top of the oil layer is
0.035 m below the top of the block. (a) How deep is the oil layer?
(b) What is the gauge pressure at the block’s lower face?
12.81 .. Dropping Anchor. An iron anchor with mass 35.0 kg
and density lies on the deck of a small barge that has
vertical sides and floats in a freshwater river. The area of the bot-
tom of the barge is The anchor is thrown overboard but is
suspended above the bottom of the river by a rope; the mass and
volume of the rope are small enough to ignore. After the anchor is
overboard and the barge has finally stopped bobbing up and down,
has the barge risen or sunk down in the water? By what vertical
distance?
12.82 .. Assume that crude oil from a supertanker has density

The tanker runs aground on a sandbar. To refloat the
tanker, its oil cargo is pumped out into steel barrels, each of which
has a mass of 15.0 kg when empty and holds of oil. You
can ignore the volume occupied by the steel from which the barrel
is made. (a) If a salvage worker accidentally drops a filled, sealed
barrel overboard, will it float or sink in the seawater? (b) If the bar-
rel floats, what fraction of its volume will be above the water sur-
face? If it sinks, what minimum tension would have to be exerted
by a rope to haul the barrel up from the ocean floor? (c) Repeat
parts (a) and (b) if the density of the oil is and the mass
of each empty barrel is 32.0 kg.
12.83 ... A cubical block of density and with sides of length L
floats in a liquid of greater density (a) What fraction of the
block’s volume is above the surface of the liquid? (b) The liquid is
denser than water and does not mix with it. If water
is poured on the surface of the liquid, how deep must the water
layer be so that the water surface just rises to the top of the block?
Express your answer in terms of L, and (c) Find the
depth of the water layer in part (b) if the liquid is mercury, the
block is made of iron, and the side length is 10.0 cm.
12.84 .. A barge is in a rectangular lock on a freshwater river. The
lock is 60.0 m long and 20.0 m wide, and the steel doors on each
end are closed. With the barge floating in the lock, a 
load of scrap metal is put onto the barge. The metal has density

(a) When the load of scrap metal, initially on the9000 kg>m3.

2.50 * 106 N

rW.rL,rB,

1density rW2

rL.
rB

910 kg>m3

0.120 m3

750 kg>m3.

8.00 m2.

7860 kg>m3

750 kg>m3
550 kg>m3

V0 = B>1rwaterg2 - w>1rmg2

rm

1density 1220 kg>m32?

1000 kg>m3
wwater?

wfluid

1w - wfluid2>1w - wwater2.

wfluid

wwater

bank, is placed onto the barge, what vertical distance does the water
in the lock rise? (b) The scrap metal is now pushed overboard into
the water. Does the water level in the lock rise, fall, or remain the
same? If it rises or falls, by what vertical distance does it change?
12.85 . CP CALC A U-shaped
tube with a horizontal portion of
length l (Fig. P12.85) contains 
a liquid. What is the difference
in height between the liquid
columns in the vertical arms (a)
if the tube has an acceleration a
toward the right and (b) if the
tube is mounted on a horizontal
turntable rotating with an angular speed with one of the vertical
arms on the axis of rotation? (c) Explain why the difference in
height does not depend on the density of the liquid or on the cross-
sectional area of the tube. Would it be the same if the vertical tubes
did not have equal cross-sectional areas? Would it be the same if the
horizontal portion were tapered from one end to the other? Explain.
12.86 . CP CALC A cylindrical con-
tainer of an incompressible liquid
with density rotates with constant
angular speed about its axis of
symmetry, which we take to be the
y-axis (Fig. P12.86). (a) Show that
the pressure at a given height within
the fluid increases in the radial direc-
tion (outward from the axis of rota-
tion) according to 
(b) Integrate this partial differential
equation to find the pressure as a
function of distance from the axis of rotation along a horizontal
line at (c) Combine the result of part (b) with Eq. (12.5) to
show that the surface of the rotating liquid has a parabolic shape;
that is, the height of the liquid is given by (This
technique is used for making parabolic telescope mirrors; liquid
glass is rotated and allowed to solidify while rotating.)
12.87 .. CP CALC An incompressible fluid with density is in a
horizontal test tube of inner cross-sectional area A. The test tube
spins in a horizontal circle in an ultracentrifuge at an angular speed

Gravitational forces are negligible. Consider a volume element
of the fluid of area A and thickness a distance from the rota-
tion axis. The pressure on its inner surface is p and on its outer sur-
face is (a) Apply Newton’s second law to the volume
element to show that (b) If the surface of the fluid
is at a radius where the pressure is show that the pressure p at
a distance is (c) An object of
volume V and density has its center of mass at a distance 
from the axis. Show that the net horizontal force on the object is

where is the distance from the axis to the center of
mass of the displaced fluid. (d) Explain why the object will move
inward if and outward if 
(e) For small objects of uniform density, What hap-
pens to a mixture of small objects of this kind with different densi-
ties in an ultracentrifuge?
12.88 ... CALC Untethered helium balloons, floating in a car that
has all the windows rolled up and outside air vents closed, move in
the direction of the car’s acceleration, but loose balloons filled
with air move in the opposite direction. To show why, consider
only the horizontal forces acting on the balloons. Let a be the
magnitude of the car’s forward acceleration. Consider a horizon-
tal tube of air with a cross-sectional area A that extends from the

Rcm = Rcmob.
rRcm 6 robRcmob.rRcm 7 robRcmob

RcmrVv2Rcm,

Rcmobrob

p = p0 + rv21r 2 - r 2
0 2>2.r Ú r0

p0,r0

dp = rv2r¿dr¿.
p + dp.

r¿dr¿
v.

r

h1r2 = v2r 2>2g.

y = 0.

0p>0r = rv2r.

v

r

v
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Figure P12.85
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windshield, where and back along the x-axis.
Now consider a volume element of thickness dx in this tube. The
pressure on its front surface is p and the pressure on its rear sur-
face is Assume the air has a constant density (a) Apply
Newton’s second law to the volume element to show that

(b) Integrate the result of part (a) to find the pressure
at the front surface in terms of a and x. (c) To show that considering

constant is reasonable, calculate the pressure difference in atm for a
distance as long as 2.5 m and a large acceleration of 
(d) Show that the net horizontal force on a balloon of volume V is

(e) For negligible friction forces, show that the acceleration of
the balloon is so that the accelera-
tion relative to the car is (f) Use the expres-
sion for in part (e) to explain the movement of the balloons.
12.89 . CP Water stands at a depth H in a large, open tank whose
side walls are vertical (Fig. P12.89). A hole is made in one of the
walls at a depth h below the water surface. (a) At what distance R
from the foot of the wall does the emerging stream strike the floor?
(b) How far above the bottom of the tank could a second hole be
cut so that the stream emerging from it could have the same range
as for the first hole?

arel

arel = 31r>rbal2 - 14a.
1r>rbal2a,(average density rbal)

rVa.

5.0 m>s2.
r

dp = ra dx.

r.p + dp.

p = p0,x = 0 momentum remained roughly constant. (a) Estimate the wind
speed at the rim of the hurricane. (b) Estimate the pressure differ-
ence at the earth’s surface between the eye and the rim. (Hint: See
Table 12.1.) Where is the pressure greater? (c) If the kinetic energy
of the swirling air in the eye could be converted completely to
gravitational potential energy, how high would the air go? (d) In
fact, the air in the eye is lifted to heights of several kilometers.
How can you reconcile this with your answer to part (c)?
12.93 .. Two very large open tanks A and F (Fig. P12.93) contain
the same liquid. A horizontal pipe BCD, having a constriction at C
and open to the air at D, leads out of the bottom of tank A, and a
vertical pipe E opens into the constriction at C and dips into the
liquid in tank F. Assume streamline flow and no viscosity. If the
cross-sectional area at C is one-half the area at D and if D is a dis-
tance below the level of the liquid in A, to what height will
liquid rise in pipe E? Express your answer in terms of h1.

h2h1

h

R

H

Figure P12.89

12.90 ... A cylindrical bucket, open at the top, is 25.0 cm high
and 10.0 cm in diameter. A circular hole with a cross-sectional
area is cut in the center of the bottom of the bucket.
Water flows into the bucket from a tube above it at the rate of

How high will the water in the bucket rise?
12.91 . Water flows steadily from an open tank as in 
Fig. P12.91. The elevation of point 1 is 10.0 m, and the elevation
of points 2 and 3 is 2.00 m. The cross-sectional area at point 2 is

at point 3 it is The area of the tank is very
large compared with the cross-sectional area of the pipe. Assum-
ing that Bernoulli’s equation applies, compute (a) the discharge
rate in cubic meters per second and (b) the gauge pressure at
point 2.

0.0160 m2.0.0480 m2;

2.40 * 10-4 m3>s.

1.50 cm2

2

10.0 m

2.00 m

3

1

Figure P12.91

h1

h2

A
B C D

E

F

Figure P12.93

12.94 .. The horizontal pipe
shown in Fig. P12.94 has 
a cross-sectional area of

at the wider portions
and at the constric-
tion. Water is flowing in the
pipe, and the discharge from
the pipe is 

Find (a) the flow
speeds at the wide and the nar-
row portions; (b) the pressure difference between these portions;
(c) the difference in height between the mercury columns in the 
U-shaped tube.
12.95 . A liquid flowing from a vertical pipe has a definite shape
as it flows from the pipe. To get the equation for this shape, assume
that the liquid is in free fall once it leaves the pipe. Just as it leaves
the pipe, the liquid has speed and the radius of the stream of liq-
uid is (a) Find an equation for the speed of the liquid as a func-
tion of the distance y it has fallen. Combining this with the
equation of continuity, find an expression for the radius of the
stream as a function of y. (b) If water flows out of a vertical pipe at
a speed of how far below the outlet will the radius be
one-half the original radius of the stream?

Challenge Problems
12.96 ... A rock with mass is suspended from the
roof of an elevator by a light cord. The rock is totally immersed in
a bucket of water that sits on the floor of the elevator, but the rock
doesn’t touch the bottom or sides of the bucket. (a) When the ele-
vator is at rest, the tension in the cord is 21.0 N. Calculate the vol-
ume of the rock. (b) Derive an expression for the tension in the
cord when the elevator is accelerating upward with an acceleration
of magnitude a. Calculate the tension when a = 2.50 m>s2

m = 3.00 kg

1.20 m>s,

r0.
v0

16.00 L>s2.
6.00 * 10-3 m3>s

10.0 cm2
40.0 cm2

h

10.0 cm240.0 cm2

Figure P12.94

12.92 .. CP In 1993 the radius of Hurricane Emily was about 
350 km. The wind speed near the center (“eye”) of the hurricane,
whose radius was about 30 km, reached about As air
swirled in from the rim of the hurricane toward the eye, its angular

200 km>h.
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upward. (c) Derive an expression for the tension in the cord when
the elevator is accelerating downward with an acceleration of mag-
nitude a. Calculate the tension when downward.
(d) What is the tension when the elevator is in free fall with a
downward acceleration equal to g?
12.97 ... CALC Suppose a piece of styrofoam, is
held completely submerged in water (Fig. P12.97). (a) What is the
tension in the cord? Find this using Archimedes’s principle. 
(b) Use to calculate directly the force exerted by
the water on the two sloped sides and the bottom of the styro-
foam; then show that the vector sum of these forces is the buoy-
ant force.

p = p0 + rgh

r = 180 kg>m3,

a = 2.50 m>s2

12.98 ... A siphon, as shown in Fig. P12.98, is a convenient
device for removing liquids from containers. To establish the flow,
the tube must be initially filled with fluid. Let the fluid have den-
sity and let the atmospheric pressure be Assume that the
cross-sectional area of the tube is the same at all points along it. (a)
If the lower end of the siphon is at a distance h below the surface
of the liquid in the container, what is the speed of the fluid as it
flows out the lower end of the siphon? (Assume that the container
has a very large diameter, and ignore any effects of viscosity.) (b)
A curious feature of a siphon is that the fluid initially flows
“uphill.” What is the greatest height H that the high point of the
tube can have if flow is still to occur?

patm.r,

Cord

0.5
0 m

0.20 m
0.20 m

Figure P12.97

H

h

Figure P12.98

Chapter Opening Question ?
The flesh of both the shark and the tropical fish is denser than sea-
water, so left to themselves they would sink. However, a tropical fish
has a gas-filled body cavity called a swimbladder, so that the average
density of the fish’s body is the same as that of seawater and the fish
neither sinks nor rises. Sharks have no such cavity. Hence they must
swim constantly to keep from sinking, using their pectoral fins to pro-
vide lift much like the wings of an airplane (see Section 12.5).

Test Your Understanding Questions
12.1 Answer: (ii), (iv), (i) and (iii) (tie), (v) In each case the aver-
age density equals the mass divided by the volume. Hence we have
(i)
(ii)
(iii)
(iv)
(v) Note that
compared to object (i), object (ii) has double the mass but the same
volume and so has double the average density. Object (iii) has dou-
ble the mass and double the volume of object (i), so (i) and (iii)
have the same average density. Finally, object (v) has the same
mass as object (iv) but double the volume, so (v) has half the aver-
age density of (iv).
12.2 Answer: (ii) From Eq. (12.9), the pressure outside the
barometer is equal to the product When the barometer is
taken out of the refrigerator, the density decreases while the
height h of the mercury column remains the same. Hence the air
pressure must be lower outdoors than inside the refrigerator.
12.3 Answer: (i) Consider the water, the statue, and the con-
tainer together as a system; the total weight of the system does not
depend on whether the statue is immersed. The total supporting
force, including the tension T and the upward force F of the scale

r

rgh.

12560 kg2>11.28 m32 = 2.00 * 103 kg>m3.r =
r = 12560 kg2>10.640 m32 = 4.00 * 103 kg>m3;
r = 18.00 kg2>13.20 * 10-3 m32 = 2.50 * 103 kg>m3;
r = 18.00 kg2>11.60 * 10-3 m32 = 5.00 * 103 kg>m3;
r = 14.00 kg2>11.60 * 10-3 m32 = 2.50 * 103 kg>m3;

on the container (equal to the scale reading), is the same in both
cases. But we saw in Example 12.5 that T decreases by 7.84 N
when the statue is immersed, so the scale reading F must increase
by 7.84 N. An alternative viewpoint is that the water exerts an
upward buoyant force of 7.84 N on the statue, so the statue must
exert an equal downward force on the water, making the scale
reading 7.84 N greater than the weight of water and container.
12.4 Answer: (ii) A highway that narrows from three lanes to
one is like a pipe whose cross-sectional area narrows to one-third
of its value. If cars behaved like the molecules of an incompress-
ible fluid, then as the cars encountered the one-lane section, the
spacing between cars (the “density”) would stay the same but the
cars would triple their speed. This would keep the “volume flow
rate” (number of cars per second passing a point on the highway)
the same. In real life cars behave like the molecules of a
compressible fluid: They end up packed closer (the “density”
increases) and fewer cars per second pass a point on the highway
(the “volume flow rate” decreases).
12.5 Answer: (ii) Newton’s second law tells us that a body accel-
erates (its velocity changes) in response to a net force. In fluid flow,
a pressure difference between two points means that fluid particles
moving between those two points experience a force, and this force
causes the fluid particles to accelerate and change speed.
12.6 Answer: (iv) The required pressure is proportional to 
where R is the inside radius of the needle (half the inside diame-
ter). With the smaller-diameter needle, the pressure is greater by a
factor of 

Bridging Problem

Answers: (a)

(b) (c) 12T =
B

2H

g
a

D

d
b

2

y = H - a
d

D
b

2

12gH t + a
d

D
b

4gt 2

2

310.60 mm2>10.30 mm244 = 24 = 16.

1>R4,
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13
LEARNING GOALS

By studying this chapter, you will

learn:

• How to calculate the gravitational

forces that any two bodies exert on

each other.

• How to relate the weight of an

object to the general expression for

gravitational force.

• How to use and interpret the gener-

alized expression for gravitational

potential energy.

• How to relate the speed, orbital

period, and mechanical energy of a

satellite in a circular orbit.

• The laws that describe the motions

of planets, and how to work with

these laws.

• What black holes are, how to calcu-

late their properties, and how they

are discovered.

GRAVITATION

Some of the earliest investigations in physical science started with questions
that people asked about the night sky. Why doesn’t the moon fall to earth?
Why do the planets move across the sky? Why doesn’t the earth fly off into

space rather than remaining in orbit around the sun? The study of gravitation pro-
vides the answers to these and many related questions.

As we remarked in Chapter 5, gravitation is one of the four classes of interac-
tions found in nature, and it was the earliest of the four to be studied extensively.
Newton discovered in the 17th century that the same interaction that makes an
apple fall out of a tree also keeps the planets in their orbits around the sun. This
was the beginning of celestial mechanics, the study of the dynamics of objects in
space. Today, our knowledge of celestial mechanics allows us to determine how
to put a satellite into any desired orbit around the earth or to choose just the right
trajectory to send a spacecraft to another planet.

In this chapter you will learn the basic law that governs gravitational interac-
tions. This law is universal: Gravity acts in the same fundamental way between
the earth and your body, between the sun and a planet, and between a planet and
one of its moons. We’ll apply the law of gravitation to phenomena such as the
variation of weight with altitude, the orbits of satellites around the earth, and the
orbits of planets around the sun.

13.1 Newton’s Law of Gravitation
The example of gravitational attraction that’s probably most familiar to you is
your weight, the force that attracts you toward the earth. During his study of the
motions of the planets and of the moon, Newton discovered the fundamental
character of the gravitational attraction between any two bodies. Along with his

? The rings of Saturn are made of countless individual orbiting particles. 
Do all the ring particles orbit at the same speed, or do the inner particles 
orbit faster or slower than the outer ones?
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three laws of motion, Newton published the law of gravitation in 1687. It may
be stated as follows:

Every particle of matter in the universe attracts every other particle with a force
that is directly proportional to the product of the masses of the particles and
inversely proportional to the square of the distance between them.

Translating this into an equation, we have

(13.1)

where is the magnitude of the gravitational force on either particle, and 
are their masses, r is the distance between them (Fig. 13.1), and G is a fundamen-
tal physical constant called the gravitational constant. The numerical value of G
depends on the system of units used.

Equation (13.1) tells us that the gravitational force between two particles
decreases with increasing distance r: If the distance is doubled, the force is only
one-fourth as great, and so on. Although many of the stars in the night sky are far
more massive than the sun, they are so far away that their gravitational force on
the earth is negligibly small.

CAUTION Don’t confuse g and G Because the symbols g and G are so similar, it’s
common to confuse the two very different gravitational quantities that these symbols
represent. Lowercase g is the acceleration due to gravity, which relates the weight w of a
body to its mass The value of g is different at different locations on the earth’s
surface and on the surfaces of different planets. By contrast, capital G relates the gravita-
tional force between any two bodies to their masses and the distance between them. We
call G a universal constant because it has the same value for any two bodies, no matter
where in space they are located. In the next section we’ll see how the values of g and G are
related. ❙

Gravitational forces always act along the line joining the two particles, and
they form an action–reaction pair. Even when the masses of the particles are dif-
ferent, the two interaction forces have equal magnitude (Fig. 13.1). The attractive
force that your body exerts on the earth has the same magnitude as the force that
the earth exerts on you. When you fall from a diving board into a swimming
pool, the entire earth rises up to meet you! (You don’t notice this because the
earth’s mass is greater than yours by a factor of about Hence the earth’s
acceleration is only as great as yours.)

Gravitation and Spherically Symmetric Bodies
We have stated the law of gravitation in terms of the interaction between two
particles. It turns out that the gravitational interaction of any two bodies having
spherically symmetric mass distributions (such as solid spheres or spherical
shells) is the same as though we concentrated all the mass of each at its center, as
in Fig. 13.2. Thus, if we model the earth as a spherically symmetric body with
mass the force it exerts on a particle or a spherically symmetric body with
mass m, at a distance r between centers, is

(13.2)

provided that the body lies outside the earth. A force of the same magnitude is
exerted on the earth by the body. (We will prove these statements in Section 13.6.)

At points inside the earth the situation is different. If we could drill a hole to
the center of the earth and measure the gravitational force on a body at various
depths, we would find that toward the center of the earth the force decreases,

Fg =
GmEm

r 2

mE,

10-23
1023.

m: w = mg.

m2m1Fg

Fg =
Gm1m2

r 2   (law of gravitation)

Any two particles attract
each other through
gravitational forces.

Even if the particles
have very different masses,
the gravitational forces they exert
on each other are equal in strength:

Fg (1 on 2) 5 Fg (2 on 1)

r

m1

m2

Fg (1 on 2)
r

Fg (2 on 1)
r

13.1 The gravitational forces between
two particles of masses and m2.m1

Fg

R1

R2

m2

r

Fg

r

m2

m1

Fg

Fg

(a) The gravitational
force between two
spherically symmetric
masses m1 and m2 ...

(b) ... is the same as if
we concentrated all the
mass of each sphere at
the sphere’s center.

m1

13.2 The gravitational effect outside any
spherically symmetric mass distribution is
the same as though all of the mass were
concentrated at its center.



rather than increasing as As the body enters the interior of the earth 
(or other spherical body), some of the earth’s mass is on the side of the body
opposite from the center and pulls in the opposite direction. Exactly at the center,
the earth’s gravitational force on the body is zero.

Spherically symmetric bodies are an important case because moons, planets,
and stars all tend to be spherical. Since all particles in a body gravitationally
attract each other, the particles tend to move to minimize the distance between
them. As a result, the body naturally tends to assume a spherical shape, just as a
lump of clay forms into a sphere if you squeeze it with equal forces on all sides.
This effect is greatly reduced in celestial bodies of low mass, since the gravita-
tional attraction is less, and these bodies tend not to be spherical (Fig. 13.3).

Determining the Value of G
To determine the value of the gravitational constant G, we have to measure the
gravitational force between two bodies of known masses and at a known
distance r. The force is extremely small for bodies that are small enough to be
brought into the laboratory, but it can be measured with an instrument called a
torsion balance, which Sir Henry Cavendish used in 1798 to determine G.

Figure 13.4 shows a modern version of the Cavendish torsion balance. A light,
rigid rod shaped like an inverted T is supported by a very thin, vertical quartz
fiber. Two small spheres, each of mass are mounted at the ends of the hori-
zontal arms of the T. When we bring two large spheres, each of mass to the
positions shown, the attractive gravitational forces twist the T through a small
angle. To measure this angle, we shine a beam of light on a mirror fastened to the
T. The reflected beam strikes a scale, and as the T twists, the reflected beam
moves along the scale.

After calibrating the Cavendish balance, we can measure gravitational forces
and thus determine G. The presently accepted value is

To three significant figures, Because 
the units of G can also be expressed as 

Gravitational forces combine vectorially. If each of two masses exerts a force
on a third, the total force on the third mass is the vector sum of the individual
forces of the first two. Example 13.3 makes use of this property, which is often
called superposition of forces.

m3>1kg # s22.1 kg # m>s2,
1 N =G = 6.67 * 10-11 N # m2>kg2.

G = 6.674281672 * 10-11 N # m2>kg2

m2,
m1,

m2m1

1>r 2.
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Gravitation pulls the small masses toward the large
masses, causing the vertical quartz fiber to twist.

The small balls reach a new equilibrium position
when the elastic force exerted by the twisted
quartz fiber balances the gravitational force
between the masses.

Large mass 1m2 2

Small mass 1m1 2

Mirror
Laser beam

Quartz
fiber

m1 Fg

m2

Scale

Laser

Fg

1

The deflection of the laser beam indicates how far
the fiber has twisted. Once the instrument is
calibrated, this result gives a value for G.

2

13.4 The principle of the Cavendish balance, used for determining the value of G. The angle of deflection has been exaggerated here
for clarity.

100 km
100,000 km

Amalthea, one of Jupiter’s small moons, has a
relatively tiny mass (7.17 3 1018 kg, only about
3.8 3 1029 the mass of Jupiter) and weak mutual
gravitation, so it has an irregular shape.

Jupiter’s mass is very large (1.90 3 1027 kg), so
the mutual gravitational attraction of its parts has
pulled it into a nearly spherical shape.

13.3 Spherical and nonspherical bodies:
the planet Jupiter and one of Jupiter’s
small moons, Amalthea.
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Example 13.1 Calculating gravitational force

The mass of one of the small spheres of a Cavendish balance is
0.0100 kg, the mass of the nearest large sphere is 0.500 kg, and
the center-to-center distance between them is 0.0500 m. Find the
gravitational force on each sphere due to the other.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Because the spheres are spheri-
cally symmetric, we can calculate by treating them as particles
separated by 0.0500 m, as in Fig. 13.2. Each sphere experiences
the same magnitude of force from the other sphere. We use Newton’s

Fg

Fg

m2

m1 law of gravitation, Eq. (13.1), to determine 

EVALUATE: It’s remarkable that such a small force could be
measured—or even detected—more than 200 years ago. Only a
very massive object such as the earth exerts a gravitational force
we can feel.

= 1.33 * 10-10 N

Fg =
16.67 * 10-11 N # m2>kg2210.0100 kg210.500 kg2

10.0500 m22

Fg:

Example 13.2 Acceleration due to gravitational attraction

Suppose the two spheres in Example 13.1 are placed with their
centers 0.0500 m apart at a point in space far removed from all
other bodies. What is the magnitude of the acceleration of each,
relative to an inertial system?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Each sphere exerts on the other a
gravitational force of the same magnitude which we found in
Example 13.1. We can neglect any other forces. The acceleration
magnitudes and are different because the masses are different.a2a1

Fg,

To determine these we’ll use Newton’s second law:

EVALUATE: The larger sphere has 50 times the mass of the smaller
one and hence has the acceleration. These accelerations are not
constant; the gravitational forces increase as the spheres move
toward each other.

1
50

a2 =
Fg

m2
=

1.33 * 10-10 N

0.500 kg
= 2.66 * 10-10 m>s2

a1 =
Fg

m1
=

1.33 * 10-10 N

0.0100 kg
= 1.33 * 10-8 m>s2

Example 13.3 Superposition of gravitational forces

Many stars belong to systems of two or more stars held together by
their mutual gravitational attraction. Figure 13.5 shows a three-star
system at an instant when the stars are at the vertices of a right
triangle. Find the total gravitational force exerted on the small star
by the two large ones.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We use the principle of super-
position: The total force on the small star is the vector sum of
the forces and due to each large star, as Fig. 13.5 shows.
We assume that the stars are spheres as in Fig. 13.2. We first calculate
the magnitudes and using Eq. (13.1) and then compute the
vector sum using components:

= 1.33 * 1026 N

F2 =
c

16.67 * 10-11 N # m2>kg22

* 18.00 * 1030 kg211.00 * 1030 kg2
d

12.00 * 1012 m22

= 6.67 * 1025 N

F1 =
c

16.67 * 10-11 N # m2>kg22

* 18.00 * 1030 kg211.00 * 1030 kg2
d

12.00 * 1012 m22 + 12.00 * 1012 m22

F2F1

F
S

2F
S

1

F
S

45°

The x- and y-components of these forces are

Continued

F2y = 0

F2x = 1.33 * 1026 N

F1y = 16.67 * 1025 N21sin 45°2 = 4.72 * 1025 N

F1x = 16.67 * 1025 N21cos 45°2 = 4.72 * 1025 N

8.00 3 1030 kg

8.00 3 1030 kg

2.00 3 1012 m

x
1.00 3 1030 kg

F
F1

F2

2.00 3 1012 m

u

O

y

13.5 The total gravitational force on the small star (at O) is the
vector sum of the forces exerted on it by the two larger stars. 
(For comparison, the mass of the sun—a rather ordinary star—is

and the earth–sun distance is 1.50 * 1011 m.)1.99 * 1030 kg



Why Gravitational Forces Are Important
Comparing Examples 13.1 and 13.3 shows that gravitational forces are negligible
between ordinary household-sized objects, but very substantial between objects that
are the size of stars. Indeed, gravitation is the most important force on the scale of
planets, stars, and galaxies (Fig. 13.6). It is responsible for holding our earth
together and for keeping the planets in orbit about the sun. The mutual gravitational
attraction between different parts of the sun compresses material at the sun’s core to
very high densities and temperatures, making it possible for nuclear reactions to
take place there. These reactions generate the sun’s energy output, which makes it
possible for life to exist on earth and for you to read these words.

The gravitational force is so important on the cosmic scale because it acts at a
distance, without any direct contact between bodies. Electric and magnetic forces
have this same remarkable property, but they are less important on astronomical
scales because large accumulations of matter are electrically neutral; that is, they
contain equal amounts of positive and negative charge. As a result, the electric
and magnetic forces between stars or planets are very small or zero. The strong
and weak interactions that we discussed in Section 5.5 also act at a distance, but
their influence is negligible at distances much greater than the diameter of an
atomic nucleus about 

A useful way to describe forces that act at a distance is in terms of a field. One
body sets up a disturbance or field at all points in space, and the force that acts on a
second body at a particular point is its response to the first body’s field at that point.
There is a field associated with each force that acts at a distance, and so we refer to
gravitational fields, electric fields, magnetic fields, and so on. We won’t need the
field concept for our study of gravitation in this chapter, so we won’t discuss it fur-
ther here. But in later chapters we’ll find that the field concept is an extraordinarily
powerful tool for describing electric and magnetic interactions.

10-14 m2.1
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The components of the total force on the small star are

The magnitude of and its angle (see Fig. 13.5) are

u = arctan
Fy

Fx
= arctan

4.72 * 1025 N

1.81 * 1026 N
= 14.6°

= 1.87 * 1026 N

F = 2F 2
x + F 2

y = 211.81 * 1026 N22 + 14.72 * 1025 N22

uF
S

Fy = F1y + F2y = 4.72 * 1025 N

Fx = F1x + F2x = 1.81 * 1026 N

F
S

EVALUATE: While the force magnitude F is tremendous, the
magnitude of the resulting acceleration is not: 

Fur-
thermore, the force is not directed toward the center of mass of
the two large stars.

F
S
11.00 * 1030 kg2 = 1.87 * 10-4 m>s2.11.87 * 1026 N2>

a = F>m =

Test Your Understanding of Section 13.1 The planet Saturn has about
100 times the mass of the earth and is about 10 times farther from the sun than the
earth is. Compared to the acceleration of the earth caused by the sun’s gravitational pull,
how great is the acceleration of Saturn due to the sun’s gravitation? (i) 100 times greater;
(ii) 10 times greater; (iii) the same; (iv) as great; (v) as great. ❙

1
100

1
10

13.6 Our solar system is part of a spiral
galaxy like this one, which contains
roughly stars as well as gas, dust, and
other matter. The entire assemblage is held
together by the mutual gravitational attrac-
tion of all the matter in the galaxy.

1011

13.2 Weight
We defined the weight of a body in Section 4.4 as the attractive gravitational
force exerted on it by the earth. We can now broaden our definition:

The weight of a body is the total gravitational force exerted on the body by all
other bodies in the universe.

PhET: Lunar Lander
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When the body is near the surface of the earth, we can neglect all other gravita-
tional forces and consider the weight as just the earth’s gravitational attraction. At
the surface of the moon we consider a body’s weight to be the gravitational
attraction of the moon, and so on.

If we again model the earth as a spherically symmetric body with radius 
and mass the weight w of a small body of mass m at the earth’s surface 
(a distance from its center) is

(13.3)

But we also know from Section 4.4 that the weight w of a body is the force that
causes the acceleration g of free fall, so by Newton’s second law, 
Equating this with Eq. (13.3) and dividing by m, we find

(13.4)

The acceleration due to gravity g is independent of the mass m of the body
because m doesn’t appear in this equation. We already knew that, but we can now
see how it follows from the law of gravitation.

We can measure all the quantities in Eq. (13.4) except for so this relation-
ship allows us to compute the mass of the earth. Solving Eq. (13.4) for and
using and we find

This is very close to the currently accepted value of Once
Cavendish had measured G, he computed the mass of the earth in just this way.

At a point above the earth’s surface a distance r from the center of the earth 
(a distance above the surface), the weight of a body is given by Eq. (13.3)
with replaced by r:

(13.5)

The weight of a body decreases inversely with the square of its distance from the
earth’s center (Fig. 13.7). Figure 13.8 shows how the weight varies with height
above the earth for an astronaut who weighs 700 N at the earth’s surface.

The apparent weight of a body on earth differs slightly from the earth’s gravi-
tational force because the earth rotates and is therefore not precisely an inertial
frame of reference. We have ignored this effect in our earlier discussion and have
assumed that the earth is an inertial system. We will return to the effect of the
earth’s rotation in Section 13.7.

While the earth is an approximately spherically symmetric distribution of
mass, it is not uniform throughout its volume. To demonstrate this, let’s first cal-
culate the average density, or mass per unit volume, of the earth. If we assume a
spherical earth, the volume is

VE = 4
3pRE

3= 4
3p16.38 * 106 m23 = 1.09 * 1021 m3

w = Fg =
GmEm

r 2

RE

r - RE

5.974 * 1024 kg.

mE =
gRE

2

G
= 5.98 * 1024 kg

g = 9.80 m>s2,RE = 6380 km = 6.38 * 106 m
mE

mE,

g =
GmE

RE
2   (acceleration due to gravity at the earth’s surface)

w = mg.

w = Fg =
GmEm

RE
2   (weight of a body of mass m

at the earth’s surface)

RE

mE,
RE

Application Walking and Running on
the Moon
You automatically transition from a walk to a
run when the vertical force you exert on the
ground—which, by Newton’s third law, equals
the vertical force the ground exerts on you—
exceeds your weight. This transition from walk-
ing to running happens at much lower speeds
on the moon, where objects weigh only 17%
as much as on earth. Hence, the Apollo astro-
nauts found themselves running even when
moving relatively slowly during their moon
“walks.”

13.7 In an airliner at high altitude, you
are farther from the center of the earth than
when on the ground and hence weigh
slightly less. Can you show that at an alti-
tude of 10 km above the surface, you
weigh 0.3% less than you do on the
ground?



The average density (the Greek letter rho) of the earth is the total mass divided
by the total volume:

(For comparison, the density of water is If the earth
were uniform, we would expect rocks near the earth’s surface to have this same
density. In fact, the density of surface rocks is substantially lower, ranging from
about for sedimentary rocks to about for basalt. So the
earth cannot be uniform, and the interior of the earth must be much more dense
than the surface in order that the average density be According to
geophysical models of the earth’s interior, the maximum density at the center is
about Figure 13.9 is a graph of density as a function of distance
from the center.

13,000 kg>m3.

5500 kg>m3.

3300 kg>m32000 kg>m3

1000 kg>m3 = 1.00 g>cm3.2

= 5500 kg>m3 = 5.5 g>cm3

r =
mE

VE
=

5.97 * 1024 kg

1.09 * 1021 m3

r
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5 astronaut’s weight 5 GmEm/r2w
5 astronaut’s distance from the center of the earthr
5 astronaut’s distance from the surface of the earthr 2 RE

Earth’s radius RE 5 6.38 3 106 m

Astronaut, mass m

Earth, mass mE

r � RE (3 106 m)

r (3 106 m)
5 10 15 20 25 300

5 10 15 20 250

100

200

300

400

500

600

700

w (N)

13.8 An astronaut who weighs 700 N at the earth’s surface experiences less gravita-
tional attraction when above the surface. The relevant distance r is from the astronaut to
the center of the earth (not from the astronaut to the earth’s surface).

r 13 106 m2

4

8

12

16

r
1 3

10
00

 k
g /m

3
2

1 2 3 4 5 6 RE0

Solid
inner
core Molten

outer
core

Mostly
solid

mantle

13.9 The density of the earth decreases
with increasing distance from its center.

Example 13.4 Gravity on Mars

A robotic lander with an earth weight of 3430 N is sent to Mars,
which has radius and mass 

(see Appendix F). Find the weight of the lander 
on the Martian surface and the acceleration there due to 
gravity, .

SOLUTION

IDENTIFY and SET UP: To find we use Eq. (13.3), replacing 
and with and . We determine the lander mass m from the
lander’s earth weight w and then find gM from .Fg = mgM

RMmMRE

mEFg

gM

Fg1023 kg
mM = 6.42 *RM = 3.40 * 106 m

EXECUTE: The lander’s earth weight is w � mg, so

The mass is the same no matter where the lander is. From Eq. (13.3),
the lander’s weight on Mars is

= 1.30 * 103 N

=
16.67 * 10-11 N # m2>kg2216.42 * 1023 kg21350 kg2

13.40 * 106 m22

Fg =
GmMm

RM
2

m =
w

g
=

3430 N

9.80 m>s2
= 350 kg
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13.3 Gravitational Potential Energy
When we first introduced gravitational potential energy in Section 7.1, we
assumed that the gravitational force on a body is constant in magnitude and
direction. This led to the expression But the earth’s gravitational force
on a body of mass m at any point outside the earth is given more generally by 
Eq. (13.2), where is the mass of the earth and r is the distance
of the body from the earth’s center. For problems in which r changes enough that
the gravitational force can’t be considered constant, we need a more general
expression for gravitational potential energy.

To find this expression, we follow the same steps as in Section 7.1. We con-
sider a body of mass m outside the earth, and first compute the work done
by the gravitational force when the body moves directly away from or toward the
center of the earth from to as in Fig. 13.10. This work is given by

(13.6)

where is the radial component of the gravitational force —that is, the compo-
nent in the direction outward from the center of the earth. Because points
directly inward toward the center of the earth, is negative. It differs from 
Eq. (13.2), the magnitude of the gravitational force, by a minus sign:

(13.7)

Substituting Eq. (13.7) into Eq. (13.6), we see that is given by

(13.8)

The path doesn’t have to be a straight line; it could also be a curve like the one in
Fig. 13.10. By an argument similar to that in Section 7.1, this work depends only
on the initial and final values of r, not on the path taken. This also proves that the
gravitational force is always conservative.

We now define the corresponding potential energy U so that 
as in Eq. (7.3). Comparing this with Eq. (13.8), we see that the appropriate defini-
tion for gravitational potential energy is

(13.9)U = -
GmEm

r
  (gravitational potential energy)

Wgrav = U1 - U2,

Wgrav = -GmEmL
r2

r1

dr

r 2 =
GmEm

r2
-

GmEm

r1

Wgrav

Fr = -
GmEm

r 2

Fr

F
S

F
S

Fr

Wgrav = L
r2

r1

Fr dr

r = r2,r = r1

Wgrav

mEFg = GmEm>r 2,

U = mgy.

The acceleration due to gravity on Mars is

EVALUATE: Even though Mars has just 11% of the earth’s mass 
6.42 � 1023 kg versus 5.98 � 1024 kg , the acceleration due to21

gM =
Fg

m
=

1.30 * 103 N

350 kg
= 3.7 m>s2

gravity gM (and hence an object’s weight ) is roughly 40% as
large as on earth. That’s because gM is also inversely proportional
to the square of the planet’s radius, and Mars has only 53% the
radius of earth 3.40 � 106 m versus 6.38 � 106 m .

You can check our result for gM by using Eq. (13.4), with
appropriate replacements. Do you get the same answer?

21

Fg

Test Your Understanding of Section 13.2 Rank the following
hypothetical planets in order from highest to lowest value of g at the surface: 
(i) mass times the mass of the earth, radius times the radius of the earth;
(ii) mass times the mass of the earth, radius times the radius of the earth; 
(iii) mass times the mass of the earth, radius times the radius of the earth; 
(iv) mass times the mass of the earth, radius times the radius of the earth. ❙= 4= 2

= 2= 4
= 4= 4

= 22=

S

The gravitational force
is conservative: The
work done by Fg does 
not depend on the path
taken from r1 to r2.

Curved
path

Straight
path

m

r2

r1
mE

Fg
S

13.10 Calculating the work done on a
body by the gravitational force as the body
moves from radial coordinate to r2.r1



Figure 13.11 shows how the gravitational potential energy depends on the dis-
tance r between the body of mass m and the center of the earth. When the body
moves away from the earth, r increases, the gravitational force does negative
work, and U increases (i.e., becomes less negative). When the body “falls”
toward earth, r decreases, the gravitational work is positive, and the potential
energy decreases (i.e., becomes more negative).

You may be troubled by Eq. (13.9) because it states that gravitational potential
energy is always negative. But in fact you’ve seen negative values of U before. In
using the formula in Section 7.1, we found that U was negative when-
ever the body of mass m was at a value of y below the arbitrary height we chose
to be —that is, whenever the body and the earth were closer together than
some certain arbitrary distance. (See, for instance, Example 7.2 in Section 7.1.)
In defining U by Eq. (13.9), we have chosen U to be zero when the body of mass
m is infinitely far from the earth As the body moves toward the earth,
gravitational potential energy decreases and so becomes negative.

If we wanted, we could make at the surface of the earth, where
by simply adding the quantity to Eq. (13.9). This would

make U positive when We won’t do this for two reasons: One, it would
make the expression for U more complicated; and two, the added term would not
affect the difference in potential energy between any two points, which is the
only physically significant quantity.

CAUTION Gravitational force vs. gravitational potential energy Be careful not to confuse
the expressions for gravitational force, Eq. (13.7), and gravitational potential energy,
Eq. (13.9). The force is proportional to while potential energy U is proportional
to ❙

Armed with Eq. (13.9), we can now use general energy relationships for prob-
lems in which the behavior of the earth’s gravitational force has to be
included. If the gravitational force on the body is the only force that does work,
the total mechanical energy of the system is constant, or conserved. In the follow-
ing example we’ll use this principle to calculate escape speed, the speed required
for a body to escape completely from a planet.

1>r 2

1>r.
1>r 2,Fr

r 7 RE.
GmEm>REr = RE,

U = 0

1r = q2.

y = 0

U = mgy
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RE

r

U

O

GmEm

RE
2

          U is always negative,
     but it becomes less
 negative with increasing
radial distance r.

Earth, mass mE

Astronaut, mass m

Gravitational potential

energy U 5 2
for the system of the
earth and the astronaut.

GmEm
r

13.11 A graph of the gravitational
potential energy U for the system of the
earth (mass and an astronaut (mass m)
versus the astronaut’s distance r from the
center of the earth.

mE)

Example 13.5 “From the earth to the moon”

In Jules Verne’s 1865 story with this title, three men went to the
moon in a shell fired from a giant cannon sunk in the earth in
Florida. (a) Find the minimum muzzle speed needed to shoot a
shell straight up to a height above the earth equal to the earth’s
radius . (b) Find the minimum muzzle speed that would allow a
shell to escape from the earth completely (the escape speed).
Neglect air resistance, the earth’s rotation, and the gravitational
pull of the moon. The earth’s radius and mass are 

and .

SOLUTION

IDENTIFY and SET UP: Once the shell leaves the cannon muzzle,
only the (conservative) gravitational force does work. Hence we
can use conservation of mechanical energy to find the speed at
which the shell must leave the muzzle so as to come to a halt
(a) at two earth radii from the earth’s center and (b) at an infinite
distance from earth. The energy-conservation equation is

with U given by Eq. (13.9).
Figure 13.12 shows our sketches. Point 1 is at , where

the shell leaves the cannon with speed (the target variable).
Point 2 is where the shell reaches its maximum height; in part 

v1

r1 = RE

K1 + U1 = K2 + U2,

mE = 5.97 * 1024 kg6.38 * 106 m
RE =

RE

(a) (Fig. 13.12a), and in part (b) (Fig 13.12b).
In both cases and Let m be the mass of the shell
(with passengers).

K2 = 0.v2 = 0
r2 = qr2 = 2RE

(a) (b)

13.12 Our sketches for this problem.
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More on Gravitational Potential Energy
As a final note, let’s show that when we are close to the earth’s surface, Eq. (13.9)
reduces to the familiar from Chapter 7. We first rewrite Eq. (13.8) as

If the body stays close to the earth, then in the denominator we may replace 
and by the earth’s radius, so

According to Eq. (13.4), so

If we replace the r’s by y’s, this is just Eq. (7.1) for the work done by a constant
gravitational force. In Section 7.1 we used this equation to derive Eq. (7.2),

so we may consider Eq. (7.2) for gravitational potential energy to be a
special case of the more general Eq. (13.9).
U = mgy,

Wgrav = mg1r1 - r22

g = GmE>RE
2,

Wgrav = GmEm
r1 - r2

RE
2

RE,r2

r1

Wgrav = GmEm
r1 - r2

r1r2

U = mgy

EXECUTE: (a) We solve the energy-conservation equation for 

(b) Now so (see Fig. 13.11). Since ,
the total mechanical energy is zero in this case. Again we
solve the energy-conservation equation for :

v1 =
B

2GmE

RE

1
2 mv1

2 + a -
GmE m

RE
b = 0 + 0

v1

K2 + U2

K2 = 0U2 = 0r2 = q

= 7900 m>s 1=  28,400 km>h = 17,700 mi>h2

=
B

16.67 * 10-11 N # m2>kg2215.97 * 1024 kg2

6.38 * 106 m
v1 =

B

GmE

RE

1
2 mv 2

1 + a -
GmEm

RE
b = 0 + a -

GmEm

2RE
b

K1 + U1 = K2 + U2

v1:

EVALUATE: Our result in part (b) doesn’t depend on the mass of the
shell or the direction of launch. A modern spacecraft launched
from Florida must attain essentially the speed found in part (b) to
escape the earth; however, before launch it’s already moving at

to the east because of the earth’s rotation. Launching to
the east takes advantage of this “free” contribution toward escape
speed.

To generalize, the initial speed needed for a body to
escape from the surface of a spherical body of mass M and
radius R (ignoring air resistance) is (escape
speed). This equation yields escape speeds of 
for Mars, for Jupiter, and for
the sun.

6.18 * 105 m>s5.95 * 104 m>s
5.02 * 103 m>s

v1 = 22GM>R

v1

410 m>s

= 1.12 * 104 m>s 1=  40,200 km>h = 25,000 mi>h2

=
B

216.67 * 10-11 N # m2>kg2215.97 * 1024 kg2

6.38 * 106 m

Test Your Understanding of Section 13.3 Is it possible for a planet to have
the same surface gravity as the earth (that is, the same value of g at the surface) and yet
have a greater escape speed? ❙

13.4 The Motion of Satellites
Artificial satellites orbiting the earth are a familiar part of modern technology
(Fig. 13.13). But how do they stay in orbit, and what determines the properties of
their orbits? We can use Newton’s laws and the law of gravitation to provide the
answers. We’ll see in the next section that the motion of planets can be analyzed
in the same way.

To begin, think back to the discussion of projectile motion in Section 3.3. In
Example 3.6 a motorcycle rider rides horizontally off the edge of a cliff, launch-
ing himself into a parabolic path that ends on the flat ground at the base of the
cliff. If he survives and repeats the experiment with increased launch speed, he
will land farther from the starting point. We can imagine him launching himself
with great enough speed that the earth’s curvature becomes significant. As he
falls, the earth curves away beneath him. If he is going fast enough, and if his

13.13 With a length of 13.2 m and a
mass of 11,000 kg, the Hubble Space 
Telescope is among the largest satellites
placed in orbit.



launch point is high enough that he clears the mountaintops, he may be able to go
right on around the earth without ever landing.

Figure 13.14 shows a variation on this theme. We launch a projectile from
point A in the direction AB, tangent to the earth’s surface. Trajectories 1 through 7
show the effect of increasing the initial speed. In trajectories 3 through 5 the pro-
jectile misses the earth and becomes a satellite. If there is no retarding force, the
projectile’s speed when it returns to point A is the same as its initial speed and it
repeats its motion indefinitely.

Trajectories 1 through 5 close on themselves and are called closed orbits. All
closed orbits are ellipses or segments of ellipses; trajectory 4 is a circle, a special
case of an ellipse. (We’ll discuss the properties of an ellipse in Section 13.5.) Tra-
jectories 6 and 7 are open orbits. For these paths the projectile never returns to
its starting point but travels ever farther away from the earth.

Satellites: Circular Orbits
A circular orbit, like trajectory 4 in Fig. 13.14, is the simplest case. It is also an
important case, since many artificial satellites have nearly circular orbits and the
orbits of the planets around the sun are also fairly circular. The only force acting on
a satellite in circular orbit around the earth is the earth’s gravitational attraction,
which is directed toward the center of the earth and hence toward the center of the
orbit (Fig. 13.15). As we discussed in Section 5.4, this means that the satellite is in
uniform circular motion and its speed is constant. The satellite isn’t falling toward
the earth; rather, it’s constantly falling around the earth. In a circular orbit the speed
is just right to keep the distance from the satellite to the center of the earth constant.

Let’s see how to find the constant speed of a satellite in a circular orbit.
The radius of the orbit is r, measured from the center of the earth; the acceler-
ation of the satellite has magnitude and is always directed toward the
center of the circle. By the law of gravitation, the net force (gravitational force) on
the satellite of mass m has magnitude and is in the same direction
as the acceleration. Newton’s second law then tells us that

Solving this for we find

(13.10)

This relationship shows that we can’t choose the orbit radius r and the speed 
independently; for a given radius r, the speed for a circular orbit is determined.v

v

v =
B

GmE

r
  (circular orbit)

v,

GmEm

r 2 =
mv2

r

1gF
S

� maS2
Fg = GmEm>r 2

arad = v2>r

v
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1
32

4

6

7

A projectile is launched
from A toward B.
Trajectories       through
      show the effect of
increasing initial speed.

1
7

5

B
A

C
RE

r

13.14 Trajectories of a projectile
launched from a great height (ignoring air
resistance). Orbits 1 and 2 would be com-
pleted as shown if the earth were a point
mass at C. (This illustration is based on
one in Isaac Newton’s Principia.)

Fg
S

aS

vS

The satellite is in a circular orbit: Its
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its velocity v, so its speed v is constant.
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13.15 The force due to the earth’s
gravitational attraction provides the cen-
tripetal acceleration that keeps a satellite in
orbit. Compare to Fig. 5.28.
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The satellite’s mass m doesn’t appear in Eq. (13.10), which shows that the motion
of a satellite does not depend on its mass. If we could cut a satellite in half without
changing its speed, each half would continue on with the original motion. An astro-
naut on board a space shuttle is herself a satellite of the earth, held by the earth’s
gravitational attraction in the same orbit as the shuttle. The astronaut has the same
velocity and acceleration as the shuttle, so nothing is pushing her against the floor or
walls of the shuttle. She is in a state of apparent weightlessness, as in a freely falling
elevator; see the discussion following Example 5.9 in Section 5.2. (True weightless-
ness would occur only if the astronaut were infinitely far from any other masses, so
that the gravitational force on her would be zero.) Indeed, every part of her body is
apparently weightless; she feels nothing pushing her stomach against her intestines
or her head against her shoulders (Fig. 13.16).

Apparent weightlessness is not just a feature of circular orbits; it occurs when-
ever gravity is the only force acting on a spacecraft. Hence it occurs for orbits of
any shape, including open orbits such as trajectories 6 and 7 in Fig. 13.14.

We can derive a relationship between the radius r of a circular orbit and the
period T, the time for one revolution. The speed is the distance traveled in
one revolution, divided by the period:

(13.11)

To get an expression for T, we solve Eq. (13.11) for T and substitute from 
Eq. (13.10):

(13.12)

Equations (13.10) and (13.12) show that larger orbits correspond to slower
speeds and longer periods. As an example, the International Space Station orbits
6800 km from the center of the earth (400 km above the earth’s surface) with an
orbital speed of 7.7 km s and an orbital period of 93 minutes. The moon orbits
the earth in a much larger orbit of radius 384,000 km, and so has a much slower
orbital speed (1.0 km s) and a much longer orbital period (27.3 days).

It’s interesting to compare Eq. (13.10) to the calculation of escape speed in
Example 13.5. We see that the escape speed from a spherical body with radius R
is times greater than the speed of a satellite in a circular orbit at that radius. If
our spacecraft is in circular orbit around any planet, we have to multiply our
speed by a factor of to escape to infinity, regardless of the planet’s mass.

Since the speed in a circular orbit is determined by Eq. (13.10) for a given
orbit radius r, the total mechanical energy is determined as well.
Using Eqs. (13.9) and (13.10), we have

(13.13)

The total mechanical energy in a circular orbit is negative and equal to one-half the
potential energy. Increasing the orbit radius r means increasing the mechanical
energy (that is, making E less negative). If the satellite is in a relatively low orbit that
encounters the outer fringes of earth’s atmosphere, mechanical energy decreases due
to negative work done by the force of air resistance; as a result, the orbit radius
decreases until the satellite hits the ground or burns up in the atmosphere.

We have talked mostly about earth satellites, but we can apply the same analy-
sis to the circular motion of any body under its gravitational attraction to a sta-
tionary body. Other examples include the earth’s moon and the moons of other
worlds (Fig. 13.17).
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13.16 These space shuttle astronauts are
in a state of apparent weightlessness.
Which are right side up and which are
upside down?

Pluto Charon: large inner
satellite of Pluto

Two small outer
satellites of Pluto

13.17 The two small satellites of the
minor planet Pluto were discovered in
2005. In accordance with Eqs. (13.10) and
(13.12), the satellite in the larger orbit has
a slower orbital speed and a longer orbital
period than the satellite in the smaller
orbit.



13.5 Kepler’s Laws and the Motion of Planets
The name planet comes from a Greek word meaning “wanderer,” and indeed the
planets continuously change their positions in the sky relative to the background
of stars. One of the great intellectual accomplishments of the 16th and 17th cen-
turies was the threefold realization that the earth is also a planet, that all planets
orbit the sun, and that the apparent motions of the planets as seen from the earth
can be used to precisely determine their orbits.

The first and second of these ideas were published by Nicolaus Copernicus
in Poland in 1543. The nature of planetary orbits was deduced between 1601
and 1619 by the German astronomer and mathematician Johannes Kepler,
using a voluminous set of precise data on apparent planetary motions compiled
by his mentor, the Danish astronomer Tycho Brahe. By trial and error, Kepler
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Example 13.6 A satellite orbit

You wish to put a 1000-kg satellite into a circular orbit 300 km
above the earth’s surface. (a) What speed, period, and radial accel-
eration will it have? (b) How much work must be done to the satel-
lite to put it in orbit? (c) How much additional work would have to
be done to make the satellite escape the earth? The earth’s radius
and mass are given in Example 13.5 (Section 13.3).

SOLUTION

IDENTIFY and SET UP: The satellite is in a circular orbit, so we can
use the equations derived in this section. In part (a), we first find
the radius r of the satellite’s orbit from its altitude. We then calcu-
late the speed and period T using Eqs. (13.10) and (13.12) and
the acceleration from In parts (b) and (c), the work
required is the difference between the initial and final mechanical
energy, which for a circular orbit is given by Eq. (13.13).

EXECUTE: (a) The radius of the satellite’s orbit is 
. From Eq. (13.10), the orbital

speed is

We find the orbital period from Eq. (13.12):

Finally, the radial acceleration is

This is the value of g at a height of 300 km above the earth’s sur-
face; it is about 10% less than the value of g at the surface.

arad =
v2

r
=
17720 m>s22

6.68 * 106 m
= 8.92 m>s2

T =
2pr

v
=

2p16.68 * 106 m2

7720 m>s
= 5440 s = 90.6 min

= 7720 m>s

v =
B

GmE

r
=
B

16.67 * 10-11 N # m2>kg2215.97 * 1024 kg2

6.68 * 106 m

300 km = 6680 km = 6.68 * 106 m
r = 6380 km +

arad = v2>r.
v

(b) The work required is the difference between the total
mechanical energy when the satellite is in orbit, and the total
mechanical energy when the satellite was at rest on the launch pad.
From Eq. (13.13), the energy in orbit is

The satellite’s kinetic energy is zero on the launch pad , so

Hence the work required is

(c) We saw in part (b) of Example 13.5 that the minimum total
mechanical energy for a satellite to escape to infinity is zero. Here,
the total mechanical energy in the circular orbit is 

to increase this to zero, an amount of work equal to
would have to be done on the satellite, presumably

by rocket engines attached to it.

EVALUATE: In part (b) we ignored the satellite’s initial kinetic
energy (while it was still on the launch pad) due to the rotation of
the earth. How much difference does this make? (See Example 13.5
for useful data.)

2.98 * 1010 J
1010 J;

E2 = -2.98 *

= 3.26 * 1010 J

- 1-6.24 * 1010 J2Wrequired = E2 - E1 = 1-2.98 * 1010 J2

= -6.24 * 1010 J

= -
16.67 * 10-11 N # m2>kg2215.97 * 1024 kg211000 kg2

6.38 * 106 m

E1 = K1 + U1 = 0 + a -
GmEm

RE
b

1r = RE2

= -2.98 * 1010 J

= -
16.67 * 10-11 N # m2>kg2215.97 * 1024 kg211000 kg2

216.68 * 106 m2

E2 = -
GmEm

2r

E1,
E2,

Test Your Understanding of Section 13.4 Your personal spacecraft is
in a low-altitude circular orbit around the earth. Air resistance from the outer
regions of the atmosphere does negative work on the spacecraft, causing the
orbital radius to decrease slightly. Does the speed of the spacecraft (i) remain the same,
(ii) increase, or (iii) decrease? ❙
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There is nothing at
the other focus.

The sun S is at one
focus of the ellipse.

A planet P follows an elliptical orbit.

AphelionPerihelion

O
x

P

ea ea

a a

S�S

13.18 Geometry of an ellipse. The sum
of the distances SP and is the same for
every point on the curve. The sizes of the
sun (S) and planet (P) are exaggerated for
clarity.

S¿P
discovered three empirical laws that accurately described the motions of the
planets:

1. Each planet moves in an elliptical orbit, with the sun at one focus of the
ellipse.

2. A line from the sun to a given planet sweeps out equal areas in equal times.
3. The periods of the planets are proportional to the powers of the major axis

lengths of their orbits.

Kepler did not know why the planets moved in this way. Three generations later,
when Newton turned his attention to the motion of the planets, he discovered that
each of Kepler’s laws can be derived; they are consequences of Newton’s laws of
motion and the law of gravitation. Let’s see how each of Kepler’s laws arises.

Kepler’s First Law
First consider the elliptical orbits described in Kepler’s first law. Figure 13.18 shows
the geometry of an ellipse. The longest dimension is the major axis, with half-
length a; this half-length is called the semi-major axis. The sum of the distances
from S to P and from to P is the same for all points on the curve. S and are
the foci (plural of focus). The sun is at S, and the planet is at P; we think of them
both as points because the size of each is very small in comparison to the distance
between them. There is nothing at the other focus 

The distance of each focus from the center of the ellipse is ea, where e is a
dimensionless number between 0 and 1 called the eccentricity. If the
ellipse is a circle. The actual orbits of the planets are fairly circular; their eccen-
tricities range from 0.007 for Venus to 0.206 for Mercury. The earth’s orbit has

The point in the planet’s orbit closest to the sun is the perihelion,
and the point most distant from the sun is the aphelion.

Newton was able to show that for a body acted on by an attractive force pro-
portional to the only possible closed orbits are a circle or an ellipse; he also
showed that open orbits (trajectories 6 and 7 in Fig. 13.14) must be parabolas or
hyperbolas. These results can be derived by a straightforward application of
Newton’s laws and the law of gravitation, together with a lot more differential
equations than we’re ready for.

Kepler’s Second Law
Figure 13.19 shows Kepler’s second law. In a small time interval dt, the line
from the sun S to the planet P turns through an angle The area swept out is
the colored triangle with height r, base length and area 
in Fig. 13.19b. The rate at which area is swept out, is called the sector
velocity:

(13.14)

The essence of Kepler’s second law is that the sector velocity has the same value
at all points in the orbit. When the planet is close to the sun, r is small and 
is large; when the planet is far from the sun, r is large and is small.

To see how Kepler’s second law follows from Newton’s laws, we express
in terms of the velocity vector of the planet P. The component of per-

pendicular to the radial line is From Fig. 13.19b the displacement
along the direction of during time dt is so we also have 
Using this relationship in Eq. (13.14), we find

(13.15)
dA

dt
= 1

2 rv sinf  (sector velocity)

v� = r du>dt.r du,v�

v� = v sinf.
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2 r 2 dur du,
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13.19 (a) The planet (P) moves about
the sun (S) in an elliptical orbit. (b) In a
time dt the line SP sweeps out an area

(c) The planet’s
speed varies so that the line SP sweeps out
the same area A in a given time t regard-
less of the planet’s position in its orbit.

dA = 1
21r du2r = 1

2 r 2 du.



Now is the magnitude of the vector product which in turn is 
times the angular momentum of the planet with respect to the

sun. So we have

(13.16)

Thus Kepler’s second law—that sector velocity is constant—means that angular
momentum is constant!

It is easy to see why the angular momentum of the planet must be constant.
According to Eq. (10.26), the rate of change of equals the torque of the gravita-
tional force acting on the planet:

In our situation, is the vector from the sun to the planet, and the force is
directed from the planet to the sun. So these vectors always lie along the same
line, and their vector product is zero. Hence This conclusion
does not depend on the behavior of the force; angular momentum is con-
served for any force that acts always along the line joining the particle to a fixed
point. Such a force is called a central force. (Kepler’s first and third laws are
valid only for a force.)

Conservation of angular momentum also explains why the orbit lies in a
plane. The vector is always perpendicular to the plane of the vec-
tors and since is constant in magnitude and direction, and always lie in
the same plane, which is just the plane of the planet’s orbit.

Kepler’s Third Law
We have already derived Kepler’s third law for the particular case of circular
orbits. Equation (13.12) shows that the period of a satellite or planet in a circular
orbit is proportional to the power of the orbit radius. Newton was able to show
that this same relationship holds for an elliptical orbit, with the orbit radius r
replaced by the semi-major axis a:

(13.17)

Since the planet orbits the sun, not the earth, we have replaced the earth’s mass
in Eq. (13.12) with the sun’s mass Note that the period does not depend

on the eccentricity e. An asteroid in an elongated elliptical orbit with semi-major
axis a will have the same orbital period as a planet in a circular orbit of radius a.
The key difference is that the asteroid moves at different speeds at different
points in its elliptical orbit (Fig. 13.19c), while the planet’s speed is constant
around its circular orbit.
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Application Biological Hazards of
Interplanetary Travel
A spacecraft sent from earth to another
planet spends most of its journey coasting
along an elliptical orbit with the sun at one
focus. Rockets are used only at the start and
end of the journey, and even the trip to a
nearby planet like Mars takes several months.
During its journey, the spacecraft is exposed
to cosmic rays—radiation that emanates from
elsewhere in our galaxy. (On earth we’re
shielded from this radiation by our planet’s 
magnetic field, as we’ll describe in Chapter 27.)
This poses no problem for a robotic space-
craft, but would be a severe medical hazard
for astronauts undertaking such a voyage.

Conceptual Example 13.7 Orbital speeds

At what point in an elliptical orbit (see Fig. 13.19) does a planet
move the fastest? The slowest?

SOLUTION

Mechanical energy is conserved as a planet moves in its orbit. The
planet’s kinetic energy is maximum when the potential
energy is minimum (that is, most negative; seeU = -GmSm>r

K = 1
2 mv2

Fig. 13.11), which occurs when the sun–planet distance r is a min-
imum. Hence the speed is greatest at perihelion. Similarly, K is
minimum when r is maximum, so the speed is slowest at aphelion.

Your intuition about falling bodies is helpful here. As the planet
falls inward toward the sun, it picks up speed, and its speed is max-
imum when closest to the sun. The planet slows down as it moves
away from the sun, and its speed is minimum at aphelion.

v
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Example 13.8 Kepler’s third law

The asteroid Pallas has an orbital period of 4.62 years and an
orbital eccentricity of 0.233. Find the semi-major axis of its orbit.

SOLUTION

IDENTIFY and SET UP: This example uses Kepler’s third law,
which relates the period T and the semi-major axis a for an orbit-
ing object (such as an asteroid). We use Eq. (13.17) to determine a;
from Appendix F we have and a conver-
sion factor from Appendix E gives 

. Note that we don’t need the value of
the eccentricity.
107 s>yr2 = 1.46 * 108 s

T = 14.62 yr213.156 *
mS = 1.99 * 1030 kg,

EXECUTE: From Eq. (13.17), . To solve

for a, we raise both sides of this expression to the power and then
substitute the values of G, , and T:

(Plug in the numbers yourself to check.)

EVALUATE: Our result is intermediate between the semi-major axes
of Mars and Jupiter (see Appendix F). Most known asteroids orbit
in an “asteroid belt” between the orbits of these two planets.

a = a
GmST2

4p2
b

1>3

= 4.15 * 1011 m

mS

2
3

a3>2 = 31GmS2
1>2T4>2p

Example 13.9 Comet Halley

Comet Halley moves in an elongated elliptical orbit around the sun
(Fig. 13.20). Its distances from the sun at perihelion and aphelion
are and , respectively. Find the
orbital semi-major axis, eccentricity, and period.

SOLUTION

IDENTIFY and SET UP: We are to find the semi-major axis a,
eccentricity e, and orbital period T. We can use Fig. 13.18 to find a
and e from the given perihelion and aphelion distances. Knowing
a, we can find T from Kepler’s third law, Eq. (13.17).

EXECUTE: From Fig. 13.18, the length 2a of the major axis equals
the sum of the comet–sun distance at perihelion and the comet–sun
distance at aphelion. Hence

a =
18.75 * 107 km2 + 15.26 * 109 km2

2
= 2.67 * 109 km

5.26 * 109 km8.75 * 107 km

Figure 13.19 also shows that the comet–sun distance at perihelion
is This distance is so

From Eq. (13.17), the period is

EVALUATE: The eccentricity is close to 1, so the orbit is very elon-
gated (see Fig. 13.20a). Comet Halley was at perihelion in early
1986 (Fig. 13.20b); it will next reach perihelion one period later, 
in 2061.

= 2.38 * 109 s = 75.5 years

T =
2pa3>2

2GmS

=
2p12.67 * 1012 m23>2

216.67 * 10-11 N # m2>kg2211.99 * 1030 kg2

e = 1 -
8.75 * 107 km

a
= 1 -

8.75 * 107 km

2.67 * 109 km
= 0.967

8.75 * 107 km,a - ea = a11 - e2.

(b)(a)
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Earth

Planetary orbits:

Orbit of Comet Halley

13.20 (a) The orbit of Comet Halley. (b) Comet Halley as it appeared in 1986. At the heart of the comet is an icy body, called the
nucleus, that is about 10 km across. When the comet’s orbit carries it close to the sun, the heat of sunlight causes the nucleus to partially
evaporate. The evaporated material forms the tail, which can be tens of millions of kilometers long.

Planetary Motions and the Center of Mass
We have assumed that as a planet or comet orbits the sun, the sun remains
absolutely stationary. Of course, this can’t be correct; because the sun exerts a



gravitational force on the planet, the planet exerts a gravitational force on the sun
of the same magnitude but opposite direction. In fact, both the sun and the planet
orbit around their common center of mass (Fig. 13.21). We’ve made only a small
error by ignoring this effect, however; the sun’s mass is about 750 times the total
mass of all the planets combined, so the center of mass of the solar system is not
far from the center of the sun. Remarkably, astronomers have used this effect to
detect the presence of planets orbiting other stars. Sensitive telescopes are able to
detect the apparent “wobble” of a star as it orbits the common center of mass of
the star and an unseen companion planet. (The planets are too faint to observe
directly.) By analyzing these “wobbles,” astronomers have discovered planets in
orbit around hundreds of other stars.

Newton’s analysis of planetary motions is used on a daily basis by modern-
day astronomers. But the most remarkable result of Newton’s work is that the
motions of bodies in the heavens obey the same laws of motion as do bodies
on the earth. This Newtonian synthesis, as it has come to be called, is one of
the great unifying principles of science. It has had profound effects on the way
that humanity looks at the universe—not as a realm of impenetrable mystery,
but as a direct extension of our everyday world, subject to scientific study and
calculation.
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Center of mass of the
system of star and
planet

The star is more massive than
the planet and so orbits closer
to the center of mass.

The planet and star are always on
opposite sides of the center of mass.

vP

vS

Planet’s orbit around the center of mass

Star’s orbit

StarPlanet cm

13.21 A star and its planet both orbit
about their common center of mass.

Test Your Understanding of Section 13.5 The orbit of Comet X has a
semi-major axis that is four times longer than the semi-major axis of Comet Y.
What is the ratio of the orbital period of X to the orbital period of Y? (i) 2; (ii) 4;
(iii) 8; (iv) 16; (v) 32; (vi) 64. ❙

13.6 Spherical Mass Distributions
We have stated without proof that the gravitational interaction between two
spherically symmetric mass distributions is the same as though all the mass of
each were concentrated at its center. Now we’re ready to prove this statement.
Newton searched for a proof for several years, and he delayed publication of the
law of gravitation until he found one.

Here’s our program. Rather than starting with two spherically symmetric
masses, we’ll tackle the simpler problem of a point mass m interacting with a
thin spherical shell with total mass M. We will show that when m is outside
the sphere, the potential energy associated with this gravitational interaction is
the same as though M were all concentrated at the center of the sphere. We
learned in Section 7.4 that the force is the negative derivative of the potential
energy, so the force on m is also the same as for a point mass M. Any spheri-
cally symmetric mass distribution can be thought of as being made up of many
concentric spherical shells, so our result will also hold for any spherically
symmetric M.

A Point Mass Outside a Spherical Shell
We start by considering a ring on the surface of the shell (Fig. 13.22a), cen-
tered on the line from the center of the shell to m. We do this because all of the
particles that make up the ring are the same distance s from the point mass m.
From Eq. (13.9) the potential energy of interaction between the earth (mass

and a point mass m, separated by a distance r, is By
changing notation in this expression, we see that the potential energy of inter-
action between the point mass m and a particle of mass within the ring is
given by

Ui = -
Gmmi

s

mi

U = -GmEm>r.mE)

(a) Geometry of the situation

(b) The distance s is the hypotenuse of a right
triangle with sides (r 2 R cos f) and R sin f.

m
P
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R
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M

dM 5     dAM
A

dA 5 (2pR sin f)(R df)

r

O

R

s

m
P

R sin f

r 2 R cos f

R cos f
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f

13.22 Calculating the gravitational
potential energy of interaction between a
point mass m outside a spherical shell and
a ring on the surface of the shell.
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To find the potential energy of interaction between m and the entire ring of mass
we sum this expression for over all particles in the ring. Calling

this potential energy dU, we find

(13.18)

To proceed, we need to know the mass dM of the ring. We can find this with the
aid of a little geometry. The radius of the shell is R, so in terms of the angle 
shown in the figure, the radius of the ring is and its circumference is

The width of the ring is and its area dA is approximately equal
to its width times its circumference:

The ratio of the ring mass dM to the total mass M of the shell is equal to the ratio
of the area dA of the ring to the total area of the shell:

(13.19)

Now we solve Eq. (13.19) for dM and substitute the result into Eq. (13.18) to find
the potential energy of interaction between the point mass m and the ring:

(13.20)

The total potential energy of interaction between the point mass and the shell
is the integral of Eq. (13.20) over the whole sphere as varies from 0 to (not

and s varies from to To carry out the integration, we have to
express the integrand in terms of a single variable; we choose s. To express and

in terms of s, we have to do a little more geometry. Figure 13.22b shows that
s is the hypotenuse of a right triangle with sides and so the
Pythagorean theorem gives

(13.21)

We take differentials of both sides:

Next we divide this by 2rR and substitute the result into Eq. (13.20):

(13.22)

We can now integrate Eq. (13.22), recalling that s varies from to 

(13.23)

Finally, we have

(13.24)

This is equal to the potential energy of two point masses m and M at a distance r.
So we have proved that the gravitational potential energy of the spherical shell
M and the point mass m at any distance r is the same as though they were point
masses. Because the force is given by the force is also the
same.
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The Gravitational Force Between Spherical 
Mass Distributions
Any spherically symmetric mass distribution can be thought of as a combination
of concentric spherical shells. Because of the principle of superposition of forces,
what is true of one shell is also true of the combination. So we have proved half
of what we set out to prove: that the gravitational interaction between any spheri-
cally symmetric mass distribution and a point mass is the same as though all the
mass of the spherically symmetric distribution were concentrated at its center.

The other half is to prove that two spherically symmetric mass distributions
interact as though they were both points. That’s easier. In Fig. 13.22a the forces
the two bodies exert on each other are an action–reaction pair, and they obey
Newton’s third law. So we have also proved that the force that m exerts on the
sphere M is the same as though M were a point. But now if we replace m with a
spherically symmetric mass distribution centered at m’s location, the resulting
gravitational force on any part of M is the same as before, and so is the total
force. This completes our proof.

A Point Mass Inside a Spherical Shell
We assumed at the beginning that the point mass m was outside the spherical
shell, so our proof is valid only when m is outside a spherically symmetric mass
distribution. When m is inside a spherical shell, the geometry is as shown in 
Fig. 13.23. The entire analysis goes just as before; Eqs. (13.18) through (13.22)
are still valid. But when we get to Eq. (13.23), the limits of integration have to be
changed to and We then have

(13.25)

and the final result is

(13.26)

Compare this result to Eq. (13.24): Instead of having r, the distance between m
and the center of M, in the denominator, we have R, the radius of the shell. This
means that U in Eq. (13.26) doesn’t depend on r and thus has the same value
everywhere inside the shell. When m moves around inside the shell, no work is
done on it, so the force on m at any point inside the shell must be zero.

More generally, at any point in the interior of any spherically symmetric mass
distribution (not necessarily a shell), at a distance r from its center, the gravita-
tional force on a point mass m is the same as though we removed all the mass at
points farther than r from the center and concentrated all the remaining mass at
the center.

U = -
GMm

R
  (point mass m inside spherical shell M)

U = -
GMm

2rR L
R+r

R-r
ds = -

GMm

2rR
31R + r2 - 1R - r24

R + r.R - r
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Example 13.10 “Journey to the center of the earth”

Imagine that we drill a hole through the earth along a diameter and
drop a mail pouch down the hole. Derive an expression for the
gravitational force on the pouch as a function of its distance
from the earth’s center. Assume that the earth’s density is uniform
(not a very realistic model; see Fig. 13.9).

SOLUTION

IDENTIFY and SET UP: From the discussion immediately above,
the value of at a distance r from the earth’s center is determined
only by the mass M within a spherical region of radius r

Fg

Fg

(Fig. 13.24). Hence is the same as if all the mass within radius r
were concentrated at the center of the earth. The mass of a uniform
sphere is proportional to the volume of the sphere, which is
for a sphere of arbitrary radius r and for the entire earth.

EXECUTE: The ratio of the mass M of the sphere of radius r to the
mass of the earth is

M

mE
=

4
3pr 3

4
3pR 3

E

=
r 3

R 3
E

  so  M = mE
r 3

R 3
E

mE

4
3pR 3

E

4
3pr 3

Fg

O

R

s

r

m
P

R sin f

df

R df

M

f

13.23 When a point mass m is inside a
uniform spherical shell of mass M, the
potential energy is the same no matter
where inside the shell the point mass is
located. The force from the masses’ mutual
gravitational interaction is zero.
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13.7 Apparent Weight and the Earth’s Rotation
Because the earth rotates on its axis, it is not precisely an inertial frame of refer-
ence. For this reason the apparent weight of a body on earth is not precisely equal
to the earth’s gravitational attraction, which we will call the true weight of
the body. Figure 13.25 is a cutaway view of the earth, showing three observers.
Each one holds a spring scale with a body of mass m hanging from it. Each scale
applies a tension force to the body hanging from it, and the reading on each
scale is the magnitude F of this force. If the observers are unaware of the earth’s

F
S

wS0

Cross section
through earth

Spherical region
of radius rm

RE

mE

M

O

Fg r

13.24 A hole through the center of the earth (assumed to be
uniform). When an object is a distance r from the center, only the
mass inside a sphere of radius r exerts a net gravitational force 
on it.

The magnitude of the gravitational force on m is then

EVALUATE: Inside this uniform-density sphere, is directly pro-
portional to the distance r from the center, rather than to as it
is outside the sphere. At the surface we have Fg =r = RE,

1>r 2
Fg

Fg =
GMm

r 2
=

Gm

r 2
amE

r 3

R 3
E

b =
GmEm

R 3
E

r

Test Your Understanding of Section 13.6 In the classic 1913 science-fiction
novel At the Earth’s Core by Edgar Rice Burroughs, explorers discover that the earth is a
hollow sphere and that an entire civilization lives on the inside of the sphere. Would it be
possible to stand and walk on the inner surface of a hollow, nonrotating planet? ❙
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S S
At the north or south 
pole: apparent weight
is the same as true 
weight.

w0 � true weight of object of mass m

F � force exerted by spring scale on object of mass m

w � apparent weight � opposite of F

F � w0 � net force on object of mass m;
 due to earth’s rotation, this is not zero
 (except at the poles)

O

O�

N

m

m

m
u

arad

arad

w0

w0

w0

Rotation of the earth

u

bb

�arad

�arad

g � w/m
g0 � w0/m

g0

Away from the poles:
due to the earth’s
rotation, apparent
weight is not equal
to true weight.

Equator

13.25 Except at the poles, the reading
for an object being weighed on a scale (the
apparent weight) is less than the gravita-
tional force of attraction on the object (the
true weight). The reason is that a net force
is needed to provide a centripetal accelera-
tion as the object rotates with the earth.
For clarity, the illustration greatly exagger-
ates the angle between the true and
apparent weight vectors.

b

as we should. In the next chapter we’ll learn how to
compute the time it would take for the mail pouch to emerge on the
other side of the earth.

GmE m>R 2
E ,



rotation, each one thinks that the scale reading equals the weight of the body
because he thinks the body on his spring scale is in equilibrium. So each observer
thinks that the tension must be opposed by an equal and opposite force 
which we call the apparent weight. But if the bodies are rotating with the earth,
they are not precisely in equilibrium. Our problem is to find the relationship
between the apparent weight and the true weight 

If we assume that the earth is spherically symmetric, then the true weight 
has magnitude where and are the mass and radius of the earth.
This value is the same for all points on the earth’s surface. If the center of the
earth can be taken as the origin of an inertial coordinate system, then the body at
the north pole really is in equilibrium in an inertial system, and the reading on
that observer’s spring scale is equal to But the body at the equator is moving
in a circle of radius with speed and there must be a net inward force equal
to the mass times the centripetal acceleration:

So the magnitude of the apparent weight (equal to the magnitude of F) is

(13.27)

If the earth were not rotating, the body when released would have a free-fall
acceleration Since the earth is rotating, the falling body’s actual
acceleration relative to the observer at the equator is Dividing 
Eq. (13.27) by m and using these relationships, we find

To evaluate we note that in 86,164 s a point on the equator moves a
distance equal to the earth’s circumference, (The
solar day, 86,400 s, is longer than this because in one day the earth also com-
pletes of its orbit around the sun.) Thus we find

So for a spherically symmetric earth the acceleration due to gravity should be
about less at the equator than at the poles.

At locations intermediate between the equator and the poles, the true weight
and the centripetal acceleration are not along the same line, and we need to

write a vector equation corresponding to Eq. (13.27). From Fig. 13.25 we see that
the appropriate equation is

(13.28)

The difference in the magnitudes of g and lies between zero and 
As shown in Fig. 13.25, the direction of the apparent weight differs from the
direction toward the center of the earth by a small angle which is or less.

Table 13.1 gives the values of g at several locations, showing variations with
latitude. There are also small additional variations due to the lack of perfect
spherical symmetry of the earth, local variations in density, and differences in
elevation.

0.1°b,

0.0339 m>s2.g0

wS � wS0 � maSrad � mgS0 � maSrad

wS0

0.03 m>s2

v2

RE
=
1465 m>s22

6.38 * 106 m
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v =
2p16.38 * 106 m2
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1
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Table 13.1 Variations of g with
Latitude and Elevation

North Elevation 
Station Latitude (m)

Canal Zone 0 9.78243

Jamaica 0 9.78591

Bermuda 0 9.79806

Denver, CO 1638 9.79609

Pittsburgh, 235 9.80118
PA

Cambridge, 0 9.80398
MA

Greenland 0 9.8253470°

42°

40.5°

40°

32°

18°

09°

g1m>s22
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13.8 Black Holes
The concept of a black hole is one of the most interesting and startling products
of modern gravitational theory, yet the basic idea can be understood on the basis
of Newtonian principles.

The Escape Speed from a Star
Think first about the properties of our own sun. Its mass and
radius are much larger than those of any planet, but compared
to other stars, our sun is not exceptionally massive. You can find the sun’s average
density in the same way we found the average density of the earth in Section 13.2:

The sun’s temperatures range from 5800 K (about or at the
surface up to (about in the interior, so it surely con-
tains no solids or liquids. Yet gravitational attraction pulls the sun’s gas atoms
together until the sun is, on average, 41% denser than water and about 1200 times
as dense as the air we breathe.

Now think about the escape speed for a body at the surface of the sun. In
Example 13.5 (Section 13.3) we found that the escape speed from the surface of a
spherical mass M with radius R is We can relate this to the average
density. Substituting into the expression for escape speed
gives

(13.29)

Using either form of this equation, you can show that the escape speed for a body
at the surface of our sun is (about 2.2 million or 
1.4 million This value, roughly the speed of light, is independent of the
mass of the escaping body; it depends on only the mass and radius (or average
density and radius) of the sun.

Now consider various stars with the same average density and different radii R.
Equation (13.29) shows that for a given value of density the escape speed is
directly proportional to R. In 1783 the Rev. John Mitchell, an amateur
astronomer, noted that if a body with the same average density as the sun had
about 500 times the radius of the sun, its escape speed would be greater than the
speed of light c. With his statement that “all light emitted from such a body
would be made to return toward it,” Mitchell became the first person to suggest
the existence of what we now call a black hole—an object that exerts a gravita-
tional force on other bodies but cannot emit any light of its own.

Black Holes, the Schwarzschild Radius, 
and the Event Horizon
The first expression for escape speed in Eq. (13.29) suggests that a body of mass
M will act as a black hole if its radius R is less than or equal to a certain critical
radius. How can we determine this critical radius? You might think that you can
find the answer by simply setting in Eq. (13.29). As a matter of fact, this
does give the correct result, but only because of two compensating errors. 

v = c

vr,
r

1
500mi>h).

km>h,v = 6.18 * 105 m>s

v =
A

2GM

R
=
A

8pGr

3
R

M = rV = r143pR32
v = 22GM>R .

2.7 * 107°F)1.5 * 107 K
10,000°F)5500°C

= 1410 kg>m3r =
M

V
=

M
4
3pR3

=
1.99 * 1030 kg

4
3p16.96 * 108 m23

r

R = 6.96 * 108 m
M = 1.99 * 1030 kg

Test Your Understanding of Section 13.7 Imagine a planet that has
the same mass and radius as the earth, but that makes 10 rotations during the time
the earth makes one rotation. What would be the difference between the accelera-
tion due to gravity at the planet’s equator and the acceleration due to gravity at its poles?
(i) (ii) (iii) (iv) ❙3.39 m>s2.0.339 m>s2;0.0339 m>s2;0.00339 m>s2;



The kinetic energy of light is not and the gravitational potential energy
near a black hole is not given by Eq. (13.9). In 1916, Karl Schwarzschild used
Einstein’s general theory of relativity (in part a generalization and extension of
Newtonian gravitation theory) to derive an expression for the critical radius 
now called the Schwarzschild radius. The result turns out to be the same as
though we had set in Eq. (13.29), so

Solving for the Schwarzschild radius we find

(13.30)

If a spherical, nonrotating body with mass M has a radius less than then
nothing (not even light) can escape from the surface of the body, and the body is
a black hole (Fig. 13.26). In this case, any other body within a distance of the
center of the black hole is trapped by the gravitational attraction of the black hole
and cannot escape from it.

The surface of the sphere with radius surrounding a black hole is called the
event horizon: Since light can’t escape from within that sphere, we can’t see
events occurring inside. All that an observer outside the event horizon can know
about a black hole is its mass (from its gravitational effects on other bodies), its
electric charge (from the electric forces it exerts on other charged bodies), and its
angular momentum (because a rotating black hole tends to drag space—and
everything in that space—around with it). All other information about the body is
irretrievably lost when it collapses inside its event horizon.

RS

RS

RS,

RS =
2GM

c2   (Schwarzschild radius)

RS,

c =
A

2GM

RS

v = c

RS,

mc2>2,
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R
RS

(a) When the radius R of a body is greater than
the Schwarzschild radius RS, light can escape
from the surface of the body.

Gravity acting on the escaping light “red shifts”
it to longer wavelengths.

RS

(b) If all the mass of the body lies inside radius
RS, the body is a black hole: No light can escape
from it. 

13.26 (a) A body with a radius R greater
than the Schwarzschild radius (b) If
the body collapses to a radius smaller than

it is a black hole with an escape speed
greater than the speed of light. The surface
of the sphere of radius is called the
event horizon of the black hole.

RS

RS,

RS.

Example 13.11 Black hole calculations

Astrophysical theory suggests that a burned-out star whose mass is
at least three solar masses will collapse under its own gravity to
form a black hole. If it does, what is the radius of its event horizon?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: The radius in question 
is the Schwarzschild radius. We use Eq. (13.30) with a value of M

equal to three solar masses, or 

= 8.9 * 103 m = 8.9 km = 5.5 mi

RS =
2GM

c2
=

216.67 * 10-11 N # m2>kg2216.0 * 1030 kg2

13.00 * 108 m>s22

1030 kg:
1030 kg2 = 6.0 *M = 311.99 *
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A Visit to a Black Hole
At points far from a black hole, its gravitational effects are the same as those of
any normal body with the same mass. If the sun collapsed to form a black hole,
the orbits of the planets would be unaffected. But things get dramatically differ-
ent close to the black hole. If you decided to become a martyr for science and
jump into a black hole, the friends you left behind would notice several odd
effects as you moved toward the event horizon, most of them associated with
effects of general relativity.

If you carried a radio transmitter to send back your comments on what was
happening, your friends would have to retune their receiver continuously to
lower and lower frequencies, an effect called the gravitational red shift. Con-
sistent with this shift, they would observe that your clocks (electronic or bio-
logical) would appear to run more and more slowly, an effect called time
dilation. In fact, during their lifetimes they would never see you make it to the
event horizon.

In your frame of reference, you would make it to the event horizon in a rather
short time but in a rather disquieting way. As you fell feet first into the black hole,
the gravitational pull on your feet would be greater than that on your head, which
would be slightly farther away from the black hole. The differences in gravita-
tional force on different parts of your body would be great enough to stretch you
along the direction toward the black hole and compress you perpendicular to it.
These effects (called tidal forces) would rip you to atoms, and then rip your
atoms apart, before you reached the event horizon.

Detecting Black Holes
If light cannot escape from a black hole and if black holes are as small as
Example 13.11 suggests, how can we know that such things exist? The answer is
that any gas or dust near the black hole tends to be pulled into an accretion disk
that swirls around and into the black hole, rather like a whirlpool (Fig. 13.27).
Friction within the accretion disk’s material causes it to lose mechanical energy

EVALUATE: The average density of such an object is

This is about times as great as the density of familiar matter
on earth and is comparable to the densities of atomic nuclei. 

1015

r =
M

4
3pR3

=
6.0 * 1030 kg

4
3p18.9 * 103 m23

= 2.0 * 1018 kg>m3

In fact, once the body collapses to a radius of nothing can pre-
vent it from collapsing further. All of the mass ends up being
crushed down to a single point called a singularity at the center of
the event horizon. This point has zero volume and so has infinite
density.

RS,

Black hole

Ordinary star

1      Matter is pulled from
the ordinary star to form
an accretion disk around
the black hole.

3      Gas in the accretion disk that
does not fall into the black hole is
ejected in two fast-moving jets.

2      The gas in the accretion disk
is compressed and heated to
high temperatures, becoming
an intense source of x rays.

13.27 A binary star system in which an
ordinary star and a black hole orbit each
other. The black hole itself cannot be seen,
but the x rays from its accretion disk can
be detected.
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1014 m

13.28 This false-color image shows the
motions of stars at the center of our galaxy
over a 13-year period. Analyzing these
orbits using Kepler’s third law indicates
that the stars are moving about an unseen
object that is some times the
mass of the sun. The scale bar indicates a
length of (670 times the distance
from the earth to the sun) at the distance of
the galactic center.

1014 m

4.1 * 106

Test Your Understanding of Section 13.8 If the sun somehow col-
lapsed to form a black hole, what effect would this event have on the orbit of the
earth? (i) The orbit would shrink; (ii) the orbit would expand; (iii) the orbit would
remain the same size. ❙

and spiral into the black hole; as it moves inward, it is compressed together. This
causes heating of the material, just as air compressed in a bicycle pump gets hot-
ter. Temperatures in excess of can occur in the accretion disk, so hot that
the disk emits not just visible light (as do bodies that are “red-hot” or “white-
hot”) but x rays. Astronomers look for these x rays (emitted by the material
before it crosses the event horizon) to signal the presence of a black hole. Several
promising candidates have been found, and astronomers now express consider-
able confidence in the existence of black holes.

Black holes in binary star systems like the one depicted in Fig. 13.27 have
masses a few times greater than the sun’s mass. There is also mounting evidence
for the existence of much larger supermassive black holes. One example is
thought to lie at the center of our Milky Way galaxy, some 26,000 light-years
from earth in the direction of the constellation Sagittarius. High-resolution
images of the galactic center reveal stars moving at speeds greater than 
about an unseen object that lies at the position of a source of radio waves called
Sgr A* (Fig. 13.28). By analyzing these motions, astronomers can infer the period
T and semi-major axis a of each star’s orbit. The mass of the unseen object
can then be calculated using Kepler’s third law in the form given in Eq. (13.17),
with the mass of the sun replaced by 

The conclusion is that the mysterious dark object at the galactic center has a mass
of or 4.1 million times the mass of the sun. Yet observations with
radio telescopes show that it has a radius no more than about one-
third of the distance from the earth to the sun. These observations suggest that
this massive, compact object is a black hole with a Schwarzschild radius of

Astronomers hope to improve the resolution of their observations
so that they can actually see the event horizon of this black hole.

Other lines of research suggest that even larger black holes, in excess of 
times the mass of the sun, lie at the centers of other galaxies. Observational and
theoretical studies of black holes of all sizes continue to be an exciting area of
research in both physics and astronomy.

109

1.1 * 1010 m.

4.4 * 1010 m,
8.2 * 1036 kg,

T =
2pa3>2

1GmX
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1500 km>s
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CHAPTER 13 SUMMARY

Gravitational force, weight, and gravitational potential
energy: The weight w of a body is the total gravitational
force exerted on it by all other bodies in the universe.
Near the surface of the earth mass and radius 
the weight is essentially equal to the gravitational force
of the earth alone. The gravitational potential energy U
of two masses m and separated by a distance r is
inversely proportional to r. The potential energy is 
never positive; it is zero only when the two bodies 
are infinitely far apart. (See Examples 13.4 and 13.5.)

mE

RE2,mE1

Orbits: When a satellite moves in a circular orbit, the
centripetal acceleration is provided by the gravitational
attraction of the earth. Kepler’s three laws describe the
more general case: an elliptical orbit of a planet around
the sun or a satellite around a planet. (See Examples
13.6–13.9.)

Black holes: If a nonrotating spherical mass distri-
bution with total mass M has a radius less than its
Schwarzschild radius it is called a black hole. 
The gravitational interaction prevents anything,
including light, from escaping from within a sphere
with radius (See Example 13.11.)RS.

RS,

(13.3)

(weight at earth’s surface)

(13.4)

(acceleration due to 
gravity at earth’s surface)

(13.9)U = -
GmEm

r

g =
GmE

RE
2

w = Fg =
GmEm

RE
2

(speed in circular orbit) (13.10)

(period in circular orbit) (13.12)

T =
2pr

v
= 2pr

A

r

GmE
=

2pr 3>2

1GmE

v =
B

GmE

r

(Schwarzschild radius) (13.30)

RS =
2GM

c2

Newton’s law of gravitation: Any two bodies with
masses and a distance r apart, attract each other
with forces inversely proportional to These forces
form an action–reaction pair and obey Newton’s third
law. When two or more bodies exert gravitational forces
on a particular body, the total gravitational force on that
individual body is the vector sum of the forces exerted
by the other bodies. The gravitational interaction
between spherical mass distributions, such as planets or
stars, is the same as if all the mass of each distribution
were concentrated at the center. (See Examples
13.1–13.3 and 13.10.)

r 2.
m2,m1

(13.1)Fg =
Gm1m2
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If all of the body is inside its
Schwarzschild radius RS = 2GM/c2,
the body is a black hole.
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A comet orbits the sun (mass ) in an elliptical orbit of semi-
major axis a and eccentricity e. (a) Find expressions for the speeds
of the comet at perihelion and aphelion. (b) Evaluate these expres-
sions for Comet Halley (see Example 13.9).

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. Sketch the situation; show all relevant dimensions. Label the

perihelion and aphelion.
2. List the unknown quantities, and identify the target variables.
3. Just as for a satellite orbiting the earth, the mechanical energy

is conserved for a comet orbiting the sun. (Why?) What other
quantity is conserved as the comet moves in its orbit? (Hint:
See Section 13.5.)

mS

BRIDGING PROBLEM Speeds in an Elliptical Orbit

EXECUTE
4. You’ll need at least two equations that involve the two unknown

speeds, and you’ll need expressions for the sun–comet distances
at perihelion and aphelion. (Hint: See Fig. 13.18.)

5. Solve the equations for your target variables. Compare your
expressions: Which speed is lower? Does this make sense?

6. Use your expressions from step 5 to find the perihelion and
aphelion speeds for Comet Halley. (Hint: See Appendix F.)

EVALUATE
7. Check whether your results make sense for the special case of a

circular orbit (e � 0).

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q13.1 A student wrote: “The only reason an apple falls downward
to meet the earth instead of the earth rising upward to meet the
apple is that the earth is much more massive and so exerts a much
greater pull.” Please comment.
Q13.2 A planet makes a circular orbit with period T around a star.
If it were to orbit, at the same distance, a star with three times the
mass of the original star, would the new period (in terms of T ) be
(a) 3T, (b) (c) T, (d) or (e) 
Q13.3 If all planets had the same average density, how would the
acceleration due to gravity at the surface of a planet depend on its
radius?
Q13.4 Is a pound of butter on the earth the same amount as a
pound of butter on Mars? What about a kilogram of butter?
Explain.
Q13.5 Example 13.2 (Section 13.1) shows that the acceleration of
each sphere caused by the gravitational force is inversely propor-
tional to the mass of that sphere. So why does the force of gravity
give all masses the same acceleration when they are dropped near
the surface of the earth?
Q13.6 When will you attract the sun more: today at noon, or
tonight at midnight? Explain.
Q13.7 Since the moon is constantly attracted toward the earth by
the gravitational interaction, why doesn’t it crash into the earth?
Q13.8 A planet makes a circular orbit with period T around a star. If
the planet were to orbit at the same distance around this star, but
had three times as much mass, what would the new period (in terms
of T ) be: (a) 3T, (b) (c) T, (d) or (e) 
Q13.9 The sun pulls on the moon with a force that is more than
twice the magnitude of the force with which the earth attracts the
moon. Why, then, doesn’t the sun take the moon away from the
earth?

T>3?T>13,T13,

T>3?T>13,T13,

Q13.10 As defined in Chapter 7, gravitational potential energy is
and is positive for a body of mass m above the earth’s

surface (which is at ). But in this chapter, gravitational
potential energy is which is negative for a body
of mass m above the earth’s surface (which is at ). How can
you reconcile these seemingly incompatible descriptions of gravi-
tational potential energy?
Q13.11 A planet is moving at constant speed in a circular orbit
around a star. In one complete orbit, what is the net amount of
work done on the planet by the star’s gravitational force: positive,
negative, or zero? What if the planet’s orbit is an ellipse, so that the
speed is not constant? Explain your answers.
Q13.12 Does the escape speed for an object at the earth’s surface
depend on the direction in which it is launched? Explain. Does
your answer depend on whether or not you include the effects of
air resistance?
Q13.13 If a projectile is fired straight up from the earth’s surface,
what would happen if the total mechanical energy (kinetic plus
potential) is (a) less than zero, and (b) greater than zero? In each
case, ignore air resistance and the gravitational effects of the sun,
the moon, and the other planets.
Q13.14 Discuss whether this statement is correct: “In the absence
of air resistance, the trajectory of a projectile thrown near the
earth’s surface is an ellipse, not a parabola.”
Q13.15 The earth is closer to the sun in November than in May. In
which of these months does it move faster in its orbit? Explain
why.
Q13.16 A communications firm wants to place a satellite in orbit
so that it is always directly above the earth’s 45th parallel (latitude

north). This means that the plane of the orbit will not pass
through the center of the earth. Is such an orbit possible? Why or
why not?

45°

r = RE

U = -GmE m>r,
y = 0

U = mgy

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.
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Q13.17 At what point in an elliptical orbit is the acceleration max-
imum? At what point is it minimum? Justify your answers.
Q13.18 Which takes more fuel: a voyage from the earth to the
moon or from the moon to the earth? Explain.
Q13.19 What would Kepler’s third law be for circular orbits if an
amendment to Newton’s law of gravitation made the gravitational
force inversely proportional to Would this change affect
Kepler’s other two laws? Explain.
Q13.20 In the elliptical orbit of Comet Halley shown in 
Fig. 13.20a, the sun’s gravity is responsible for making the comet
fall inward from aphelion to perihelion. But what is responsible 
for making the comet move from perihelion back outward to
aphelion?
Q13.21 Many people believe that orbiting astronauts feel weight-
less because they are “beyond the pull of the earth’s gravity.” How
far from the earth would a spacecraft have to travel to be truly
beyond the earth’s gravitational influence? If a spacecraft were
really unaffected by the earth’s gravity, would it remain in orbit?
Explain. What is the real reason astronauts in orbit feel weightless?
Q13.22 As part of their training before going into orbit, astronauts
ride in an airliner that is flown along the same parabolic trajectory
as a freely falling projectile. Explain why this gives the same expe-
rience of apparent weightlessness as being in orbit.

EXERCISES
Section 13.1 Newton’s Law of Gravitation
13.1 . What is the ratio of the gravitational pull of the sun on
the moon to that of the earth on the moon? (Assume the distance
of the moon from the sun can be approximated by the distance of
the earth from the sun.) Use the data in Appendix F. Is it more
accurate to say that the moon orbits the earth, or that the moon
orbits the sun?
13.2 .. CP Cavendish Experiment. In the Cavendish balance
apparatus shown in Fig. 13.4, suppose that 

and the rod connecting the pairs is 30.0 cm long. If, in
each pair, and are 12.0 cm apart center to center, find 
(a) the net force and (b) the net torque (about the rotation axis) on
the rotating part of the apparatus. (c) Does it seem that the torque
in part (b) would be enough to easily rotate the rod? Suggest some
ways to improve the sensitivity of this experiment.
13.3 . Rendezvous in Space! A couple of astronauts agree to
rendezvous in space after hours. Their plan is to let gravity bring
them together. One of them has a mass of 65 kg and the other a
mass of 72 kg, and they start from rest 20.0 m apart. (a) Make a
free-body diagram of each astronaut, and use it to find his or her
initial acceleration. As a rough approximation, we can model the
astronauts as uniform spheres. (b) If the astronauts’ acceleration
remained constant, how many days would they have to wait before
reaching each other? (Careful! They both have acceleration toward
each other.) (c) Would their acceleration, in fact, remain constant?
If not, would it increase or decrease? Why?
13.4 .. Two uniform spheres, each with mass M and radius R,
touch each other. What is the magnitude of their gravitational force
of attraction?
13.5 . Two uniform spheres,
each of mass 0.260 kg, are fixed
at points A and B (Fig. E13.5).
Find the magnitude and direc-
tion of the initial acceleration of
a uniform sphere with mass
0.010 kg if released from rest at

m2m1

m125.0 kg,
m1 = 1.10 kg, m2 =

r 3?

point P and acted on only by forces of gravitational attraction of
the spheres at A and B.
13.6 .. Find the magnitude and direction of the net gravitational
force on mass A due to masses B and C in Fig. E13.6. Each mass is
2.00 kg.

Figure E13.5

0.010 kg

0.260 kg

8.0 cm8.0 cm

10.0 cm
0.260 kg

10.0 cmP

BA

6.0 cm

40 cm10 cm

40 cm10 cm

A C B

(a)

C A B

(b)

13.7 . A typical adult human has a mass of about 70 kg. (a) What
force does a full moon exert on such a human when it is directly
overhead with its center 378,000 km away? (b) Compare this force
with the force exerted on the human by the earth.
13.8 .. An 8.00-kg point mass and a 15.0-kg point mass are held
in place 50.0 cm apart. A particle of mass m is released from a
point between the two masses 20.0 cm from the 8.00-kg mass
along the line connecting the two fixed masses. Find the magnitude
and direction of the acceleration of the particle.
13.9 .. A particle of mass 3m is located 1.00 m from a particle of
mass m. (a) Where should you put a third mass M so that the net
gravitational force on M due to the two masses is exactly zero? 
(b) Is the equilibrium of M at this point stable or unstable (i) for
points along the line connecting m and 3m, and (ii) for points along
the line passing through M and perpendicular to the line connecting
m and 3m?
13.10 .. The point masses m and 2m lie along the x-axis, with m
at the origin and 2m at A third point mass M is moved along
the x-axis. (a) At what point is the net gravitational force on M due
to the other two masses equal to zero? (b) Sketch the x-component
of the net force on M due to m and 2m, taking quantities to the
right as positive. Include the regions and

Be especially careful to show the behavior of the graph on
either side of and 

Section 13.2 Weight
13.11 .. At what distance above the surface of the earth is the
acceleration due to the earth’s gravity if the accelera-
tion due to gravity at the surface has magnitude 
13.12 . The mass of Venus is 81.5% that of the earth, and its
radius is 94.9% that of the earth. (a) Compute the acceleration due
to gravity on the surface of Venus from these data. (b) If a rock
weighs 75.0 N on earth, what would it weigh at the surface of
Venus?
13.13 . Titania, the largest moon of the planet Uranus, has the
radius of the earth and the mass of the earth. (a) What is the
acceleration due to gravity at the surface of Titania? (b) What is
the average density of Titania? (This is less than the density of
rock, which is one piece of evidence that Titania is made primarily
of ice.)
13.14 . Rhea, one of Saturn’s moons, has a radius of 765 km and
an acceleration due to gravity of at its surface. Calcu-
late its mass and average density.
13.15 .. Calculate the earth’s gravity force on a 75-kg astronaut
who is repairing the Hubble Space Telescope 600 km above the
earth’s surface, and then compare this value with his weight at the

0.278 m>s2

1
1700

1
8

9.80 m>s2?
0.980 m>s2

x = L.x = 0
x 7 L.

0 6 x 6 L,x 6 0,

x = L.

Figure E13.6
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earth’s surface. In view of your result, explain why we say astro-
nauts are weightless when they orbit the earth in a satellite such as
a space shuttle. Is it because the gravitational pull of the earth is
negligibly small?

Section 13.3 Gravitational Potential Energy
13.16 .. Volcanoes on Io. Jupiter’s moon Io has active volca-
noes (in fact, it is the most volcanically active body in the solar
system) that eject material as high as 500 km (or even higher)
above the surface. Io has a mass of and a radius of
1815 km. Ignore any variation in gravity over the 500-km range of
the debris. How high would this material go on earth if it were
ejected with the same speed as on Io?
13.17 . Use the results of Example 13.5 (Section 13.3) to calcu-
late the escape speed for a spacecraft (a) from the surface of Mars
and (b) from the surface of Jupiter. Use the data in Appendix F. 
(c) Why is the escape speed for a spacecraft independent of the
spacecraft’s mass?
13.18 .. Ten days after it was launched toward Mars in Decem-
ber 1998, the Mars Climate Orbiter spacecraft (mass 629 kg) was

from the earth and traveling at 
relative to the earth. At this time, what were (a) the spacecraft’s
kinetic energy relative to the earth and (b) the potential energy of
the earth–spacecraft system?

Section 13.4 The Motion of Satellites
13.19 . For a satellite to be in a circular orbit 780 km above the sur-
face of the earth, (a) what orbital speed must it be given, and (b) what
is the period of the orbit (in hours)?
13.20 .. Aura Mission. On July 15, 2004, NASA launched the
Aura spacecraft to study the earth’s climate and atmosphere. This
satellite was injected into an orbit 705 km above the earth’s sur-
face. Assume a circular orbit. (a) How many hours does it take this
satellite to make one orbit? (b) How fast (in ) is the Aura
spacecraft moving?
13.21 .. Two satellites are in circular orbits around a planet that
has radius . One satellite has mass 68.0 kg, orbital
radius , and orbital speed 4800 m s. The second
satellite has mass 84.0 kg and orbital radius . What
is the orbital speed of this second satellite?
13.22 .. International Space Station. The International Space
Station makes 15.65 revolutions per day in its orbit around the
earth. Assuming a circular orbit, how high is this satellite above
the surface of the earth?
13.23 . Deimos, a moon of Mars, is about 12 km in diameter with
mass Suppose you are stranded alone on Deimos
and want to play a one-person game of baseball. You would be the
pitcher, and you would be the batter! (a) With what speed would
you have to throw a baseball so that it would go into a circular
orbit just above the surface and return to you so you could hit it?
Do you think you could actually throw it at this speed? (b) How
long (in hours) after throwing the ball should you be ready to hit
it? Would this be an action-packed baseball game?

Section 13.5 Kepler’s Laws and the Motion of Planets
13.24 .. Planet Vulcan. Suppose that a planet were discovered
between the sun and Mercury, with a circular orbit of radius equal
to of the average orbit radius of Mercury. What would be the orbital
period of such a planet? (Such a planet was once postulated, in part to
explain the precession of Mercury’s orbit. It was even given the name
Vulcan, although we now have no evidence that it actually exists.
Mercury’s precession has been explained by general relativity.)

2
3

2.0 * 1015 kg.

3.00 * 107 m
>5.00 * 107 m

9.00 * 106 m

km>s

1.20 * 104 km>h2.87 * 106 km

8.94 * 1022 kg

13.25 .. The star Cancri is 57 light-years from the earth and
has a mass 0.85 times that of our sun. A planet has been detected in
a circular orbit around Cancri with an orbital radius equal to
0.11 times the radius of the earth’s orbit around the sun. What are
(a) the orbital speed and (b) the orbital period of the planet of 
Cancri?
13.26 .. In March 2006, two small satellites were discovered
orbiting Pluto, one at a distance of 48,000 km and the other at
64,000 km. Pluto already was known to have a large satellite
Charon, orbiting at 19,600 km with an orbital period of 6.39 days.
Assuming that the satellites do not affect each other, find the
orbital periods of the two small satellites without using the mass of
Pluto.
13.27 . (a) Use Fig. 13.18 to show that the sun–planet distance at
perihelion is the sun–planet distance at aphelion is

and therefore the sum of these two distances is 2a.
(b) When the dwarf planet Pluto was at perihelion in 1989, it was
almost 100 million km closer to the sun than Neptune. The semi-
major axes of the orbits of Pluto and Neptune are 
and respectively, and the eccentricities are 0.248
and 0.010. Find Pluto’s closest distance and Neptune’s farthest dis-
tance from the sun. (c) How many years after being at perihelion in
1989 will Pluto again be at perihelion?
13.28 .. Hot Jupiters. In 2004 astronomers reported the dis-
covery of a large Jupiter-sized planet orbiting very close to the 
star HD 179949 (hence the term “hot Jupiter”). The orbit was just 
the distance of Mercury from our sun, and it takes the planet only
3.09 days to make one orbit (assumed to be circular). (a) What is
the mass of the star? Express your answer in kilograms and as a
multiple of our sun’s mass. (b) How fast (in ) is this planet
moving?
13.29 .. Planets Beyond the Solar System. On October 15,
2001, a planet was discovered orbiting around the star HD 68988.
Its orbital distance was measured to be 10.5 million kilometers
from the center of the star, and its orbital period was estimated at
6.3 days. What is the mass of HD 68988? Express your answer in
kilograms and in terms of our sun’s mass. (Consult Appendix F.)

Section 13.6 Spherical Mass Distributions
13.30 . A uniform, spherical, 1000.0-kg shell has a radius of 
5.00 m. (a) Find the gravitational force this shell exerts on a 2.00-kg
point mass placed at the following distances from the center of the
shell: (i) 5.01 m, (ii) 4.99 m, (iii) 2.72 m. (b) Sketch a qualitative
graph of the magnitude of the gravitational force this sphere exerts
on a point mass m as a function of the distance r of m from the cen-
ter of the sphere. Include the region from to 
13.31 .. A uniform, solid, 1000.0-kg sphere has a radius of 5.00 m.
(a) Find the gravitational force this sphere exerts on a 2.00-kg
point mass placed at the following distances from the center of the
sphere: (i) 5.01 m, (ii) 2.50 m. (b) Sketch a qualitative graph of the
magnitude of the gravitational force this sphere exerts on a point
mass m as a function of the distance r of m from the center of the
sphere. Include the region from to 
13.32 . CALC A thin, uniform rod has length L and mass M. A
small uniform sphere of mass m is placed a distance x from one end
of the rod, along the axis of the rod (Fig. E13.32). (a) Calculate

rS q .r = 0

rS q .r = 0

km>s

1
9

4.50 * 1012 m,
5.92 * 1012 m

11 + e2a,
11 - e2a,

Rho1

Rho1

Rho1

M

L
x

m

Figure E13.32
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the gravitational potential energy of the rod–sphere system. Take
the potential energy to be zero when the rod and sphere are infi-
nitely far apart. Show that your answer reduces to the expected
result when x is much larger than L. (Hint: Use the power series
expansion for given in Appendix B.) (b) Use

to find the magnitude and direction of the gravita-
tional force exerted on the sphere by the rod (see Section 7.4).
Show that your answer reduces to the expected result when x is
much larger than L.
13.33 . CALC Consider the ring-shaped body of Fig. E13.33. A
particle with mass m is placed a distance x from the center of the
ring, along the line through the center of the ring and perpendicular
to its plane. (a) Calculate the gravitational potential energy U of
this system. Take the potential energy to be zero when the two
objects are far apart. (b) Show that your answer to part (a) reduces
to the expected result when x is much larger than the radius a of
the ring. (c) Use to find the magnitude and direction
of the force on the particle (see Section 7.4). (d) Show that your
answer to part (c) reduces to the expected result when x is much
larger than a. (e) What are the values of U and when 
Explain why these results make sense.

x = 0?Fx

Fx = -dU>dx

Fx = -dU>dx
ln(1 + x)

is impossible for a single star to have a mass of more than about 
50 solar masses. Can this massive object be a single, ordinary star?
(c) Many astronomers believe that the massive object at the center
of the Milky Way galaxy is a black hole. If so, what must the
Schwarzschild radius of this black hole be? Would a black hole of
this size fit inside the earth’s orbit around the sun?
13.38 . (a) Show that a black hole attracts an object of mass m
with a force of where r is the distance between the
object and the center of the black hole. (b) Calculate the magnitude
of the gravitational force exerted by a black hole of Schwarzschild
radius 14.0 mm on a 5.00-kg mass 3000 km from it. (c) What is the
mass of this black hole?
13.39 . In 2005 astronomers announced the discovery of a large
black hole in the galaxy Markarian 766 having clumps of matter
orbiting around once every 27 hours and moving at 
(a) How far are these clumps from the center of the black hole? 
(b) What is the mass of this black hole, assuming circular orbits?
Express your answer in kilograms and as a multiple of our sun’s
mass. (c) What is the radius of its event horizon?

PROBLEMS
13.40 ... Four identical masses of 800 kg each are placed at the
corners of a square whose side length is 10.0 cm. What is the net
gravitational force (magnitude and direction) on one of the masses,
due to the other three?
13.41 ... Neutron stars, such as the one at the center of the Crab
Nebula, have about the same mass as our sun but have a much
smaller diameter. If you weigh 675 N on the earth, what would you
weigh at the surface of a neutron star that has the same mass as our
sun and a diameter of 20 km?
13.42 ... CP Exploring Europa. There is strong evidence that
Europa, a satellite of Jupiter, has a liquid ocean beneath its icy
surface. Many scientists think we should land a vehicle there to
search for life. Before launching it, we would want to test such a lan-
der under the gravity conditions at the surface of Europa. One way
to do this is to put the lander at the end of a rotating arm in an orbit-
ing earth satellite. If the arm is 4.25 m long and pivots about one
end, at what angular speed (in rpm) should it spin so that the acceler-
ation of the lander is the same as the acceleration due to gravity at
the surface of Europa? The mass of Europa is and its
diameter is 3138 km.
13.43 . Three uniform spheres
are fixed at the positions shown
in Fig. P13.43. (a) What are the
magnitude and direction of the
force on a 0.0150-kg particle
placed at P? (b) If the spheres
are in deep outer space and a
0.0150-kg particle is released
from rest 300 m from the origin
along a line below the

what will the particle’s speed be when it reaches the
origin?
13.44 .. A uniform sphere with mass 60.0 kg is held with its center
at the origin, and a second uniform sphere with mass 80.0 kg is held
with its center at the point (a) What are the
magnitude and direction of the net gravitational force due to these
objects on a third uniform sphere with mass 0.500 kg placed at the
point (b) Where, other than infinitely far away,
could the third sphere be placed such that the net gravitational force
acting on it from the other two spheres is equal to zero?

y = 0?x = 4.00 m,

y = 3.00 m.x = 0,

-x-axis,
45°

4.8 * 1022 kg
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Figure E13.33

Section 13.7 Apparent Weight and the Earth’s Rotation
13.34 .. A Visit to Santa. You decide to visit Santa Claus at
the north pole to put in a good word about your splendid behavior
throughout the year. While there, you notice that the elf Sneezy,
when hanging from a rope, produces a tension of 475.0 N in the
rope. If Sneezy hangs from a similar rope while delivering pres-
ents at the earth’s equator, what will the tension in it be? (Recall
that the earth is rotating about an axis through its north and south
poles.) Consult Appendix F and start with a free-body diagram of
Sneezy at the equator.
13.35 . The acceleration due to gravity at the north pole of Nep-
tune is approximately Neptune has mass 
and radius and rotates once around its axis in about
16 h. (a) What is the gravitational force on a 5.0-kg object at the
north pole of Neptune? (b) What is the apparent weight of this
same object at Neptune’s equator? (Note that Neptune’s “surface”
is gaseous, not solid, so it is impossible to stand on it.)

Section 13.8 Black Holes
13.36 .. Mini Black Holes. Cosmologists have speculated that
black holes the size of a proton could have formed during the early
days of the Big Bang when the universe began. If we take the
diameter of a proton to be what would be the mass
of a mini black hole?
13.37 .. At the Galaxy’s Core. Astronomers have observed a
small, massive object at the center of our Milky Way galaxy (see
Section 13.8). A ring of material orbits this massive object; the ring
has a diameter of about 15 light-years and an orbital speed of about

(a) Determine the mass of the object at the center of the
Milky Way galaxy. Give your answer both in kilograms and in solar
masses (one solar mass is the mass of the sun). (b) Observations
of stars, as well as theories of the structure of stars, suggest that it

200 km>s.

1.0 * 10-15 m,

2.5 * 104 km
1.0 * 1026 kg10.7 m>s2.

y

x
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1.0 kg 2.0 kg

1.0 kg
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13.45 .. CP BIO Hip Wear on the Moon. (a) Use data from
Appendix F to calculate the acceleration due to gravity on the
moon. (b) Calculate the friction force on a walking 65-kg astronaut
carrying a 43-kg instrument pack on the moon if the coefficient of
kinetic friction at her hip joint is 0.0050. (c) What would be the
friction force on earth for this astronaut?
13.46 .. Mission to Titan. On December 25, 2004, the
Huygens probe separated from the Cassini spacecraft orbiting 
Saturn and began a 22-day journey to Saturn’s giant moon Titan,
on whose surface it landed. Besides the data in Appendix F, it is
useful to know that Titan is from the center of Sat-
urn and has a mass of and a diameter of 5150 km.
At what distance from Titan should the gravitational pull of Titan
just balance the gravitational pull of Saturn?
13.47 .. The asteroid Toro has a radius of about 5.0 km. Consult
Appendix F as necessary. (a) Assuming that the density of Toro is
the same as that of the earth find its total mass and
find the acceleration due to gravity at its surface. (b) Suppose an
object is to be placed in a circular orbit around Toro, with a radius
just slightly larger than the asteroid’s radius. What is the speed of
the object? Could you launch yourself into orbit around Toro by
running?
13.48 ... At a certain instant, the earth, the moon, and a station-
ary 1250-kg spacecraft lie at the vertices of an equilateral triangle
whose sides are in length. (a) Find the magnitude
and direction of the net gravitational force exerted on the space-
craft by the earth and moon. State the direction as an angle meas-
ured from a line connecting the earth and the spacecraft. In a
sketch, show the earth, the moon, the spacecraft, and the force
vector. (b) What is the minimum amount of work that you would
have to do to move the spacecraft to a point far from the earth and
moon? You can ignore any gravitational effects due to the other
planets or the sun.
13.49 ... CP An experiment is performed in deep space with two
uniform spheres, one with mass 50.0 kg and the other with mass
100.0 kg. They have equal radii, The spheres are
released from rest with their centers 40.0 m apart. They accelerate
toward each other because of their mutual gravitational attraction.
You can ignore all gravitational forces other than that between the
two spheres. (a) Explain why linear momentum is conserved. 
(b) When their centers are 20.0 m apart, find (i) the speed of each
sphere and (ii) the magnitude of the relative velocity with which
one sphere is approaching the other. (c) How far from the initial
position of the center of the 50.0-kg sphere do the surfaces of the
two spheres collide?
13.50 .. CP Submarines on Europa. Some scientists are eager
to send a remote-controlled submarine to Jupiter’s moon Europa to
search for life in its oceans below an icy crust. Europa’s mass has
been measured to be its diameter is 3138 km, and it
has no appreciable atmosphere. Assume that the layer of ice at 
the surface is not thick enough to exert substantial force on the
water. If the windows of the submarine you are designing are 
25.0 cm square and can stand a maximum inward force of 9750 N per
window, what is the greatest depth to which this submarine can
safely dive?
13.51 . Geosynchronous Satellites. Many satellites are mov-
ing in a circle in the earth’s equatorial plane. They are at such a
height above the earth’s surface that they always remain above the
same point. (a) Find the altitude of these satellites above the earth’s
surface. (Such an orbit is said to be geosynchronous.) (b) Explain,
with a sketch, why the radio signals from these satellites cannot
directly reach receivers on earth that are north of latitude.81.3° N

4.8 * 1022 kg,
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3.84 * 105 km
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13.52 ... A landing craft with mass 12,500 kg is in a circular
orbit above the surface of a planet. The period of
the orbit is 5800 s. The astronauts in the lander measure the diame-
ter of the planet to be The lander sets down at the
north pole of the planet. What is the weight of an 85.6-kg astronaut
as he steps out onto the planet’s surface?
13.53 ... What is the escape speed from a 300-km-diameter
asteroid with a density of 
13.54 .. (a) Asteroids have average densities of about 
and radii from 470 km down to less than a kilometer. Assuming
that the asteroid has a spherically symmetric mass distribution,
estimate the radius of the largest asteroid from which you could
escape simply by jumping off. (Hint: You can estimate your jump
speed by relating it to the maximum height that you can jump on
earth.) (b) Europa, one of Jupiter’s four large moons, has a radius
of 1570 km. The acceleration due to gravity at its surface is

Calculate its average density.
13.55 ... (a) Suppose you are at the earth’s equator and observe a
satellite passing directly overhead and moving from west to east in
the sky. Exactly 12.0 hours later, you again observe this satellite to
be directly overhead. How far above the earth’s surface is the
satellite’s orbit? (b) You observe another satellite directly overhead
and traveling east to west. This satellite is again overhead in 
12.0 hours. How far is this satellite’s orbit above the surface of the
earth?
13.56 .. Planet X rotates in the same manner as the earth, around
an axis through its north and south poles, and is perfectly spheri-
cal. An astronaut who weighs 943.0 N on the earth weighs 915.0 N
at the north pole of Planet X and only 850.0 N at its equator. The
distance from the north pole to the equator is 18,850 km, measured
along the surface of Planet X. (a) How long is the day on Planet X?
(b) If a 45,000-kg satellite is placed in a circular orbit 2000 km
above the surface of Planet X, what will be its orbital period?
13.57 .. There are two equations from which a change in the
gravitational potential energy U of the system of a mass m and
the earth can be calculated. One is (Eq. 7.2). The other
is (Eq. 13.9). As shown in Section 13.3, the first
equation is correct only if the gravitational force is a constant
over the change in height The second is always correct.
Actually, the gravitational force is never exactly constant over
any change in height, but if the variation is small, we can ignore
it. Consider the difference in U between a mass at the earth’s sur-
face and a distance h above it using both equations, and find the
value of h for which Eq. (7.2) is in error by 1%. Express this
value of h as a fraction of the earth’s radius, and also obtain a
numerical value for it.
13.58 ... CP Your starship, the Aimless Wanderer, lands on the
mysterious planet Mongo. As chief scientist-engineer, you make
the following measurements: A 2.50-kg stone thrown upward from
the ground at returns to the ground in 6.00 s; the circum-
ference of Mongo at the equator is and there is
no appreciable atmosphere on Mongo. The starship commander,
Captain Confusion, asks for the following information: (a) What is
the mass of Mongo? (b) If the Aimless Wanderer goes into a circu-
lar orbit 30,000 km above the surface of Mongo, how many hours
will it take the ship to complete one orbit?
13.59 .. CP An astronaut, whose mission is to go where no one
has gone before, lands on a spherical planet in a distant galaxy. As
she stands on the surface of the planet, she releases a small rock
from rest and finds that it takes the rock 0.480 s to fall 1.90 m. If
the radius of the planet is , what is the mass of the
planet?

8.60 * 107 m

2.00 * 105 km;
12.0 m>s

¢y.

U = -GmEm>r
U = mgy

1.33 m>s2.

2500 kg>m3
2500 kg>m3?

9.60 * 106 m.

5.75 * 105 m
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13.60 .. In Example 13.5 (Section 13.3) we ignored the gravita-
tional effects of the moon on a spacecraft en route from the earth to
the moon. In fact, we must include the gravitational potential
energy due to the moon as well. For this problem, you can ignore
the motion of the earth and moon. (a) If the moon has radius 
and the distance between the centers of the earth and the moon is

find the total gravitational potential energy of the particle–
earth and particle–moon systems when a particle with mass m is
between the earth and the moon, and a distance r from the center of
the earth. Take the gravitational potential energy to be zero when
the objects are far from each other. (b) There is a point along a line
between the earth and the moon where the net gravitational force is
zero. Use the expression derived in part (a) and numerical values
from Appendix F to find the distance of this point from the center
of the earth. With what speed must a spacecraft be launched from
the surface of the earth just barely to reach this point? (c) If a
spacecraft were launched from the earth’s surface toward the moon
with an initial speed of with what speed would it impact
the moon?
13.61 .. Calculate the percent difference between your weight in
Sacramento, near sea level, and at the top of Mount Everest, which
is 8800 m above sea level.
13.62 .. The 0.100-kg sphere in Fig. P13.62 is released from rest
at the position shown in the sketch, with its center 0.400 m from
the center of the 5.00-kg mass. Assume that the only forces on the
0.100-kg sphere are the gravitational forces exerted by the other
two spheres and that the 5.00-kg and 10.0-kg spheres are held in
place at their initial positions. What is the speed of the 0.100-kg
sphere when it has moved 0.400 m to the right from its initial
position?

11.2 km>s,

REM,

RM

13.66 . (a) Calculate how much work is required to launch a
spacecraft of mass m from the surface of the earth (mass 
radius ) and place it in a circular low earth orbit—that is, an
orbit whose altitude above the earth’s surface is much less than 
(As an example, the International Space Station is in low earth orbit
at an altitude of about 400 km, much less than )
You can ignore the kinetic energy that the spacecraft has on the
ground due to the earth’s rotation. (b) Calculate the minimum
amount of additional work required to move the spacecraft from low
earth orbit to a very great distance from the earth. You can ignore the
gravitational effects of the sun, the moon, and the other planets. 
(c) Justify the statement: “In terms of energy, low earth orbit is
halfway to the edge of the universe.”
13.67 . A spacecraft is to be
launched from the surface of the
earth so that it will escape from
the solar system altogether. 
(a) Find the speed relative to the
center of the earth with which
the spacecraft must be launched.
Take into consideration the grav-
itational effects of both the earth
and the sun, and include the
effects of the earth’s orbital speed, but ignore air resistance. (b) The
rotation of the earth can help this spacecraft achieve escape speed.
Find the speed that the spacecraft must have relative to the earth’s
surface if the spacecraft is launched from Florida at the point
shown in Fig. P13.67. The rotation and orbital motions of the earth
are in the same direction. The launch facilities in Florida are 
north of the equator. (c) The European Space Agency (ESA) uses
launch facilities in French Guiana (immediately north of Brazil),

north of the equator. What speed relative to the earth’s sur-
face would a spacecraft need to escape the solar system if launched
from French Guiana?
13.68 . Gravity Inside the Earth. Find the gravitational force
that the earth exerts on a 10.0-kg mass if it is placed at the follow-
ing locations. Consult Fig. 13.9, and assume a constant density
through each of the interior regions (mantle, outer core, inner
core), but not the same density in each of these regions. Use the
graph to estimate the average density for each region: (a) at the
surface of the earth; (b) at the outer surface of the molten outer
core; (c) at the surface of the solid inner core; (d) at the center of
the earth.
13.69 . Kirkwood Gaps. Hundreds of thousands of asteroids
orbit the sun within the asteroid belt, which extends from about

to about from the sun. (a) Find the
orbital period (in years) of (i) an asteroid at the inside of the belt
and (ii) an asteroid at the outside of the belt. Assume circular
orbits. (b) In 1867 the American astronomer Daniel Kirkwood
pointed out that several gaps exist in the asteroid belt where rela-
tively few asteroids are found. It is now understood that these
Kirkwood gaps are caused by the gravitational attraction of Jupiter,
the largest planet, which orbits the sun once every 11.86 years. As
an example, if an asteroid has an orbital period half that of Jupiter,
or 5.93 years, on every other orbit this asteroid would be at its
closest to Jupiter and feel a strong attraction toward the planet.
This attraction, acting over and over on successive orbits, could
sweep asteroids out of the Kirkwood gap. Use this hypothesis to
determine the orbital radius for this Kirkwood gap. (c) One of sev-
eral other Kirkwood gaps appears at a distance from the sun where
the orbital period is 0.400 that of Jupiter. Explain why this hap-
pens, and find the orbital radius for this Kirkwood gap.

5 * 108 km3 * 108 km

5.15°

28.5°

RE = 6380 km.

RE.
RE

mE,

5.00 kg
0.100 kg

10.0 kg

0.400 m 0.600 m

Figure P13.62

13.63 ... An unmanned spacecraft is in a circular orbit around
the moon, observing the lunar surface from an altitude of 50.0 km
(see Appendix F). To the dismay of scientists on earth, an electrical
fault causes an on-board thruster to fire, decreasing the speed of
the spacecraft by If nothing is done to correct its orbit,
with what speed (in ) will the spacecraft crash into the lunar
surface?
13.64 ... Mass of a Comet. On July 4, 2005, the NASA space-
craft Deep Impact fired a projectile onto the surface of Comet
Tempel 1. This comet is about 9.0 km across. Observations of sur-
face debris released by the impact showed that dust with a speed
as low as was able to escape the comet. (a) Assuming a
spherical shape, what is the mass of this comet? (Hint: See Exam-
ple 13.5 in Section 13.3.) (b) How far from the comet’s center will
this debris be when it has lost (i) 90.0% of its initial kinetic energy
at the surface and (ii) all of its kinetic energy at the surface?
13.65 . Falling Hammer. A hammer with mass m is dropped
from rest from a height h above the earth’s surface. This height is
not necessarily small compared with the radius of the earth. If
you ignore air resistance, derive an expression for the speed of
the hammer when it reaches the surface of the earth. Your expres-
sion should involve h, and the mass of the earth.mE,RE,

v
RE

1.0 m>s

km>h
20.0 m>s.

Figure P13.67

Sun

Florida

Earth
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13.70 ... If a satellite is in a sufficiently low orbit, it will encounter
air drag from the earth’s atmosphere. Since air drag does negative
work (the force of air drag is directed opposite the motion), the
mechanical energy will decrease. According to Eq. (13.13), if E
decreases (becomes more negative), the radius r of the orbit will
decrease. If air drag is relatively small, the satellite can be consid-
ered to be in a circular orbit of continually decreasing radius. 
(a) According to Eq. (13.10), if the radius of a satellite’s circular orbit
decreases, the satellite’s orbital speed increases. How can you rec-
oncile this with the statement that the mechanical energy decreases?
(Hint: Is air drag the only force that does work on the satellite as the
orbital radius decreases?) (b) Due to air drag, the radius of a satellite’s
circular orbit decreases from r to where the positive quantity

is much less than r. The mass of the satellite is m. Show that 
the increase in orbital speed is that the
change in kinetic energy is that the
change in gravitational potential energy is 

and that the amount of work done by the force of
air drag is Interpret these results in light of
your comments in part (a). (c) A satellite with mass 3000 kg is initially
in a circular orbit 300 km above the earth’s surface. Due to air drag,
the satellite’s altitude decreases to 250 km. Calculate the initial orbital
speed; the increase in orbital speed; the initial mechanical energy; the
change in kinetic energy; the change in gravitational potential energy;
the change in mechanical energy; and the work done by the force of
air drag. (d) Eventually a satellite will descend to a low enough alti-
tude in the atmosphere that the satellite burns up and the debris falls to
the earth. What becomes of the initial mechanical energy?
13.71 . Binary Star—Equal Masses. Two identical stars with
mass M orbit around their center of mass. Each orbit is circular and
has radius R, so that the two stars are always on opposite sides of
the circle. (a) Find the gravitational force of one star on the other. 
(b) Find the orbital speed of each star and the period of the orbit.
(c) How much energy would be required to separate the two stars
to infinity?
13.72 .. CP Binary Star—Different Masses. Two stars, with
masses and are in circular orbits around their center of
mass. The star with mass has an orbit of radius the star with
mass has an orbit of radius (a) Show that the ratio of the
orbital radii of the two stars equals the reciprocal of the ratio of
their masses—that is, (b) Explain why the two
stars have the same orbital period, and show that the period T
is given by (c) The two
stars in a certain binary star system move in circular orbits. The
first star, Alpha, has an orbital speed of The second star,
Beta, has an orbital speed of The orbital period is 137 d.
What are the masses of each of the two stars? (d) One of the best
candidates for a black hole is found in the binary system called
A0620-0090. The two objects in the binary system are an orange
star, V616 Monocerotis, and a compact object believed to be a black
hole (see Fig. 13.27). The orbital period of A0620-0090 is 7.75
hours, the mass of V616 Monocerotis is estimated to be 0.67 times
the mass of the sun, and the mass of the black hole is estimated to
be 3.8 times the mass of the sun. Assuming that the orbits are cir-
cular, find the radius of each object’s orbit and the orbital speed of
each object. Compare these answers to the orbital radius and
orbital speed of the earth in its orbit around the sun.
13.73 ... Comets travel around the sun in elliptical orbits with
large eccentricities. If a comet has speed when at a
distance of from the center of the sun, what is its
speed when at a distance of 5.0 * 1010 m?

2.5 * 1011 m
2.0 * 104 m>s

12.0 km>s.
36.0 km>s.

T = 2p1R1 + R22
3>2>2G1M1 + M22.

R1>R2 = M2>M1.

R2.M2

R1;M1

M2,M1

W = -1GmE m>2r 22 ¢r.
-1GmE m>r 22 ¢r;

¢U = -2 ¢K =
¢K = +1GmE m>2r 22 ¢r;
¢v = +1¢r>22 2GmE>r

3;
¢r

r - ¢r,

v

13.74 .. CP An astronaut is standing at the north pole of a newly
discovered, spherically symmetric planet of radius R. In his hands
he holds a container full of a liquid with mass m and volume V. At
the surface of the liquid, the pressure is at a depth d below the
surface, the pressure has a greater value p. From this information,
determine the mass of the planet.
13.75 .. CALC The earth does not have a uniform density; it is most
dense at its center and least dense at its surface. An approximation 
of its density is where and

Use for the radius
of the earth approximated as a sphere. (a) Geological evidence indi-
cates that the densities are and at the
earth’s center and surface, respectively. What values does the linear
approximation model give for the densities at these two locations?
(b) Imagine dividing the earth into concentric, spherical shells.
Each shell has radius r, thickness dr, volume and
mass By integrating from to show
that the mass of the earth in this model is 
(c) Show that the given values of A and B give the correct mass of
the earth to within 0.4%. (d) We saw in Section 13.6 that a uniform
spherical shell gives no contribution to g inside it. Show that

inside the earth in this model. (e) Verify
that the expression of part (d) gives at the center of the earth
and at the surface. (f) Show that in this model g
does not decrease uniformly with depth but rather has a maximum
of at 
13.76 .. CP CALC In Example 13.10 (Section 13.6) we saw that
inside a planet of uniform density (not a realistic assumption for the
earth) the acceleration due to gravity increases uniformly with dis-
tance from the center of the planet. That is, where 
is the acceleration due to gravity at the surface, r is the distance
from the center of the planet, and R is the radius of the planet. The
interior of the planet can be treated approximately as an incom-
pressible fluid of density (a) Replace the height y in Eq. (12.4)
with the radial coordinate r and integrate to find the pressure inside
a uniform planet as a function of r. Let the pressure at the surface be
zero. (This means ignoring the pressure of the planet’s atmosphere.) 
(b) Using this model, calculate the pressure at the center of the earth.
(Use a value of equal to the average density of the earth, calcu-
lated from the mass and radius given in Appendix F.) (c) Geologists
estimate the pressure at the center of the earth to be approximately

Does this agree with your calculation for the pressure
at What might account for any differences?
13.77 ... CP Consider a spacecraft in an elliptical orbit around
the earth. At the low point, or perigee, of its orbit, it is 400 km
above the earth’s surface; at the high point, or apogee, it is 4000 km
above the earth’s surface. (a) What is the period of the spacecraft’s
orbit? (b) Using conservation of angular momentum, find the ratio
of the spacecraft’s speed at perigee to its speed at apogee. 
(c) Using conservation of energy, find the speed at perigee and the
speed at apogee. (d) It is necessary to have the spacecraft escape
from the earth completely. If the spacecraft’s rockets are fired at
perigee, by how much would the speed have to be increased to
achieve this? What if the rockets were fired at apogee? Which
point in the orbit is more efficient to use?
13.78 . The planet Uranus has a radius of 25,560 km and a surface
acceleration due to gravity of at its poles. Its moon
Miranda (discovered by Kuiper in 1948) is in a circular orbit about
Uranus at an altitude of 104,000 km above the planet’s surface.
Miranda has a mass of and a radius of 235 km. 
(a) Calculate the mass of Uranus from the given data. (b) Calculate

6.6 * 1019 kg

11.1 m>s2

r = 0?
4 * 1011 Pa.

r

r.

gsg1r2 = gsr>R,

r = 2A>3B = 5640 km.4pGA2>9B = 10.01 m>s2

g = 9.85 m>s2
g = 0

g1r2 = 4
3pGr1A - 3

4Br2

M = 4
3pR31A - 3

4BR2.
r = R,r = 0dm = r1r2dV.

dV = 4pr 2 dr,

2400 kg>m313,100 kg>m3

R = 6.37 * 106 mB = 1.50 * 10-3 kg>m4.
A = 12,700 kg>m3r1r2 = A - Br,

p0;
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the magnitude of Miranda’s acceleration due to its orbital motion
about Uranus. (c) Calculate the acceleration due to Miranda’s grav-
ity at the surface of Miranda. (d) Do the answers to parts (b) and 
(c) mean that an object released 1 m above Miranda’s surface on the
side toward Uranus will fall up relative to Miranda? Explain.
13.79 ... A 5000-kg spacecraft is in a circular orbit 2000 km
above the surface of Mars. How much work must the spacecraft
engines perform to move the spacecraft to a circular orbit that is
4000 km above the surface?
13.80 .. One of the brightest comets of the 20th century was
Comet Hyakutake, which passed close to the sun in early 1996.
The orbital period of this comet is estimated to be about 30,000 years.
Find the semi-major axis of this comet’s orbit. Compare it to the
average sun–Pluto distance and to the distance to Alpha Centauri,
the nearest star to the sun, which is 4.3 light-years distant.
13.81 ... CALC Planets are not uniform inside. Normally, they are
densest at the center and have decreasing density outward toward
the surface. Model a spherically symmetric planet, with the same
radius as the earth, as having a density that decreases linearly with
distance from the center. Let the density be at
the center and at the surface. What is the accel-
eration due to gravity at the surface of this planet?
13.82 .. CALC A uniform wire with mass M and length L is bent
into a semicircle. Find the magnitude and direction of the gravita-
tional force this wire exerts on a point with mass m placed at the
center of curvature of the semicircle.
13.83 ... CALC An object in the shape of a thin ring has radius a
and mass M. A uniform sphere with mass m and radius R is placed
with its center at a distance x to the right of the center of the ring,
along a line through the center of the ring, and perpendicular to its
plane (see Fig. E13.33). What is the gravitational force that the
sphere exerts on the ring-shaped object? Show that your result
reduces to the expected result when x is much larger than a.
13.84 ... CALC A thin, uniform rod has length L and mass M. Cal-
culate the magnitude of the gravitational force the rod exerts on a
particle with mass m that is at a point along the axis of the rod a dis-
tance x from one end (see Fig. E13.32). Show that your result
reduces to the expected result when x is much larger than L.
13.85 . CALC A shaft is drilled from the surface to the center of
the earth (see Fig. 13.24). As in Example 13.10 (Section 13.6),
make the unrealistic assumption that the density of the earth is uni-
form. With this approximation, the gravitational force on an object
with mass m, that is inside the earth at a distance r from the center,
has magnitude (as shown in Example 13.10)
and points toward the center of the earth. (a) Derive an expression
for the gravitational potential energy of the object–earth system
as a function of the object’s distance from the center of the earth.
Take the potential energy to be zero when the object is at the center
of the earth. (b) If an object is released in the shaft at the earth’s sur-
face, what speed will it have when it reaches the center of the earth?

CHALLENGE PROBLEMS
13.86 ... (a) When an object is in a circular orbit of radius r
around the earth (mass ), the period of the orbit is T, given by
Eq. (13.12), and the orbital speed is given by Eq. (13.10). Show
that when the object is moved into a circular orbit of slightly larger
radius where its new period is and its
new orbital speed is where and are all posi-
tive quantities and 

¢T =
3p¢r

v
  and  ¢v =

p ¢r

T

¢v¢T,¢r,v - ¢v,
T + ¢T¢r V r,r + ¢r,

v,
mE

U(r)

Fg = GmE mr>R 3
E

2.0 * 103 kg>m3
15.0 * 103 kg>m3

[Hint: Use the expression valid for ]
(b) The International Space Station (ISS) is in a nearly circular
orbit at an altitude of 398.00 km above the surface of the earth. A
maintenance crew is about to arrive on the space shuttle that is also
in a circular orbit in the same orbital plane as the ISS, but with an
altitude of 398.10 km. The crew has come to remove a faulty 125-m
electrical cable, one end of which is attached to the ISS and the
other end of which is floating free in space. The plan is for the shut-
tle to snag the free end just at the moment that the shuttle, the ISS,
and the center of the earth all lie along the same line. The cable
will then break free from the ISS when it becomes taut. How long
after the free end is caught by the space shuttle will it detach from
the ISS? Give your answer in minutes. (c) If the shuttle misses
catching the cable, show that the crew must wait a time

before they have a second chance. Find the numerical
value of t and explain whether it would be worth the wait.
13.87 ... Interplanetary Navigation. The most efficient way
to send a spacecraft from the earth to another planet is by using a
Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure
and destination planets are circular, the Hohmann transfer orbit is an
elliptical orbit whose perihelion and aphelion are tangent to the
orbits of the two planets. The rockets are fired briefly at the depar-
ture planet to put the spacecraft into the transfer orbit; the spacecraft
then coasts until it reaches the destination planet. The rockets are
then fired again to put the spacecraft into the same orbit about the
sun as the destination planet. (a) For a flight from earth to Mars, in
what direction must the rockets be fired at the earth and at Mars: in
the direction of motion, or opposite the direction of motion? What
about for a flight from Mars to the earth? (b) How long does a one-
way trip from the the earth to Mars take, between the firings of the
rockets? (c) To reach Mars from the earth, the launch must be timed
so that Mars will be at the right spot when the spacecraft reaches
Mars’s orbit around the sun. At launch, what must the angle between
a sun–Mars line and a sun–earth line be? Use data from Appendix F.

t L T2>¢T

ƒ x ƒ V 1.(1 + x)n L 1 + nx,

Sun

Orbit of earth

Hohmann
transfer orbit

Orbit of Mars

Figure P13.87

13.88 ... CP Tidal Forces near a Black Hole. An astronaut
inside a spacecraft, which protects her from harmful radiation, is
orbiting a black hole at a distance of 120 km from its center. The
black hole is 5.00 times the mass of the sun and has a Schwarzschild
radius of 15.0 km. The astronaut is positioned inside the spaceship
such that one of her 0.030-kg ears is 6.0 cm farther from the black
hole than the center of mass of the spacecraft and the other ear is 6.0
cm closer. (a) What is the tension between her ears? Would the astro-
naut find it difficult to keep from being torn apart by the gravita-
tional forces? (Since her whole body orbits with the same angular
velocity, one ear is moving too slowly for the radius of its orbit and
the other is moving too fast. Hence her head must exert forces on her
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ears to keep them in their orbits.) (b) Is the center of gravity of her
head at the same point as the center of mass? Explain.
13.89 ... CALC Mass M is dis-
tributed uniformly over a disk
of radius a. Find the gravita-
tional force (magnitude and
direction) between this disk-
shaped mass and a particle with
mass m located a distance x
above the center of the disk
(Fig. P13.89). Does your result
reduce to the correct expression
as x becomes very large? (Hint:
Divide the disk into infinitesi-
mally thin concentric rings, use

the expression derived in Exercise 13.33 for the gravitational force
due to each ring, and integrate to find the total force.)
13.90 ... CALC Mass M is dis-
tributed uniformly along a line
of length 2L. A particle with
mass m is at a point that is a dis-
tance a above the center of the
line on its perpendicular bisec-
tor (point P in Fig. P13.90). For
the gravitational force that the
line exerts on the particle, cal-
culate the components perpendicular and parallel to the line. Does
your result reduce to the correct expression as a becomes very
large?

a

x

m

M

Figure P13.89

P

a

L L

M

Figure P13.90

Chapter Opening Question ?
The smaller the orbital radius r of a satellite, the faster its orbital
speed [see Eq. (13.10)]. Hence a particle near the inner edge of
Saturn’s rings has a faster speed than a particle near the outer edge
of the rings.

Test Your Understanding Questions
13.1 Answer: (v) From Eq. (13.1), the gravitational force of the
sun mass on a planet mass a distance r away has mag-
nitude Compared to the earth, Saturn has a
value of that is times greater and a value of that
is also 100 times greater. Hence the force that the sun exerts on
Saturn has the same magnitude as the force that the sun exerts on
earth. The acceleration of a planet equals the net force divided by
the planet’s mass: Since Saturn has 100 times more mass than the
earth, its acceleration is as great as that of the earth.
13.2 Answer: (iii), (i), (ii), (iv) From Eq. (13.4), the acceleration
due to gravity at the surface of a planet of mass and radius 
is That is, is directly proportional to the planet’s
mass and inversely proportional to the square of its radius. It fol-
lows that compared to the value of g at the earth’s surface, the value
of on each planet is (i) as great; (ii) as great;
(iii) time as great—that is, the same as on earth; and 
(iv) as great.
13.3 Answer: yes This is possible because surface gravity and
escape speed depend in different ways on the planet’s mass 
and radius The value of g at the surface is while the
escape speed is For the planet Saturn, for example,

is about 100 times the earth’s mass and is about 10 times the
earth’s radius. The value of g is different than on earth by a factor
of (i.e., it is the same as on earth), while the
escape speed is greater by a factor of It may help
to remember that the surface gravity tells you about conditions
right next to the planet’s surface, while the escape speed (which
tells you how fast you must travel to escape to infinity) depends on
conditions at all points between the planet’s surface and infinity. 
13.4 Answer: (ii) Equation (13.10) shows that in a smaller-
radius orbit, the spacecraft has a faster speed. The negative work

2100>10 = 3.2.
11002>11022 = 1

RPmP

22GmP>RP .
GmP>RP

2,RP:
mP

2>42 = 1
8

4>22 = 1
4>42 = 1

42>22 = 1
2gP

gPgP = GmP>RP
2.

RPmP

1
100

m2102 = 100r 2
Fg = Gm1m2>r

2.
m221m121

v

done by air resistance decreases the total mechanical energy
the kinetic energy K increases (becomes more posi-

tive), but the gravitational potential energy U decreases (becomes
more negative) by a greater amount.
13.5 Answer: (iii) Equation (13.17) shows that the orbital
period T is proportional to the power of the semi-major axis a.
Hence the orbital period of Comet X is longer than that of 
Comet Y by a factor of 
13.6 Answer: no Our analysis shows that there is zero gravita-
tional force inside a hollow spherical shell. Hence visitors to the
interior of a hollow planet would find themselves weightless, and
they could not stand or walk on the planet’s inner surface.
13.7 Answer: (iv) The discussion following Eq. (13.27) shows
that the difference between the acceleration due to gravity at the
equator and at the poles is Since this planet has the same
radius and hence the same circumference as the earth, the speed 
at its equator must be 10 times the speed of the earth’s equator.
Hence is times greater than for the earth, or

The acceleration due to gravity
at the poles is while at the equator it is dramatically
less, You can show that if
this planet were to rotate 17.0 times faster than the earth, the accel-
eration due to gravity at the equator would be zero and loose
objects would fly off the equator’s surface!
13.8 Answer: (iii) If the sun collapsed into a black hole (which,
according to our understanding of stars, it cannot do), the sun
would have the same mass but a much smaller radius. Because the
gravitational attraction of the sun on the earth does not depend on
the sun’s radius, the earth’s orbit would be unaffected.

Bridging Problem

Answers: (a) Perihelion:

aphelion:

(b) vP = 54.4 km>s, vA = 0.913 km>s

vA =
B

GmS

a

(1 - e)

11 + e2

vP =
B

GmS

a

(1 + e)

11 - e2

9.80 m>s2 - 3.39 m>s2 = 6.41 m>s2.
9.80 m>s2,

10010.0339 m>s22 = 3.39 m>s2.
102 = 100v2>RE

v
v2>RE.

43>2 = 8.

3
2

E = K + U;

Answers
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14
LEARNING GOALS

By studying this chapter, you will

learn:

• How to describe oscillations in

terms of amplitude, period, fre-

quency, and angular frequency.

• How to do calculations with simple

harmonic motion, an important type

of oscillation.

• How to use energy concepts to ana-

lyze simple harmonic motion.

• How to apply the ideas of simple

harmonic motion to different physi-

cal situations.

• How to analyze the motions of a

simple pendulum.

• What a physical pendulum is, and

how to calculate the properties of 

its motion.

• What determines how rapidly an

oscillation dies out.

• How a driving force applied to an

oscillator at the right frequency can

cause a very large response, or 

resonance.

PERIODIC MOTION

Many kinds of motion repeat themselves over and over: the vibration of a
quartz crystal in a watch, the swinging pendulum of a grandfather
clock, the sound vibrations produced by a clarinet or an organ pipe, and

the back-and-forth motion of the pistons in a car engine. This kind of motion,
called periodic motion or oscillation, is the subject of this chapter. Understand-
ing periodic motion will be essential for our later study of waves, sound, alternat-
ing electric currents, and light.

A body that undergoes periodic motion always has a stable equilibrium posi-
tion. When it is moved away from this position and released, a force or torque
comes into play to pull it back toward equilibrium. But by the time it gets there, it
has picked up some kinetic energy, so it overshoots, stopping somewhere on the
other side, and is again pulled back toward equilibrium. Picture a ball rolling
back and forth in a round bowl or a pendulum that swings back and forth past its
straight-down position.

In this chapter we will concentrate on two simple examples of systems that
can undergo periodic motions: spring-mass systems and pendulums. We will also
study why oscillations often tend to die out with time and why some oscillations
can build up to greater and greater displacements from equilibrium when period-
ically varying forces act.

14.1 Describing Oscillation
Figure 14.1 shows one of the simplest systems that can have periodic motion.
A body with mass m rests on a frictionless horizontal guide system, such as a lin-
ear air track, so it can move only along the x-axis. The body is attached to a
spring of negligible mass that can be either stretched or compressed. The left end
of the spring is held fixed and the right end is attached to the body. The spring
force is the only horizontal force acting on the body; the vertical normal and
gravitational forces always add to zero.

? Dogs walk with much quicker strides than do humans. Is this primarily
because dogs’ legs are shorter than human legs, less massive than human
legs, or both?

Spring

Equilibrium position
(spring relaxed)

m

O x

y

14.1 A system that can have periodic
motion.



It’s simplest to define our coordinate system so that the origin O is at the equilib-
rium position, where the spring is neither stretched nor compressed. Then x is the
x-component of the displacement of the body from equilibrium and is also the
change in the length of the spring. The x-component of the force that the spring
exerts on the body is and the x-component of acceleration is given by

Figure 14.2 shows the body for three different displacements of the spring.
Whenever the body is displaced from its equilibrium position, the spring force
tends to restore it to the equilibrium position. We call a force with this character a
restoring force. Oscillation can occur only when there is a restoring force tend-
ing to return the system to equilibrium.

Let’s analyze how oscillation occurs in this system. If we displace the body to the
right to and then let go, the net force and the acceleration are to the left 
(Fig. 14.2a). The speed increases as the body approaches the equilibrium position O.
When the body is at O, the net force acting on it is zero (Fig. 14.2b), but because of
its motion it overshoots the equilibrium position. On the other side of the equilib-
rium position the body is still moving to the left, but the net force and the accelera-
tion are to the right (Fig. 14.2c); hence the speed decreases until the body comes to a
stop. We will show later that with an ideal spring, the stopping point is at 
The body then accelerates to the right, overshoots equilibrium again, and stops at
the starting point ready to repeat the whole process. The body is oscillating!
If there is no friction or other force to remove mechanical energy from the system,
this motion repeats forever; the restoring force perpetually draws the body back
toward the equilibrium position, only to have the body overshoot time after time.

In different situations the force may depend on the displacement x from equi-
librium in different ways. But oscillation always occurs if the force is a restoring
force that tends to return the system to equilibrium.

Amplitude, Period, Frequency, and Angular Frequency
Here are some terms that we’ll use in discussing periodic motions of all kinds:

The amplitude of the motion, denoted by A, is the maximum magnitude of
displacement from equilibrium—that is, the maximum value of It is always
positive. If the spring in Fig. 14.2 is an ideal one, the total overall range of the
motion is 2A. The SI unit of A is the meter. A complete vibration, or cycle, is one
complete round trip—say, from A to and back to A, or from O to A, back
through O to and back to O. Note that motion from one side to the other 
(say, to A) is a half-cycle, not a whole cycle.

The period, T, is the time for one cycle. It is always positive. The SI unit is the
second, but it is sometimes expressed as “seconds per cycle.”

The frequency, is the number of cycles in a unit of time. It is always posi-
tive. The SI unit of frequency is the hertz:

This unit is named in honor of the German physicist Heinrich Hertz
(1857–1894), a pioneer in investigating electromagnetic waves.

The angular frequency, is times the frequency:

We’ll learn shortly why is a useful quantity. It represents the rate of change of
an angular quantity (not necessarily related to a rotational motion) that is always
measured in radians, so its units are Since is in we may regard
the number as having units 

From the definitions of period T and frequency we see that each is the recip-
rocal of the other:

(14.1)f =
1

T
  T =

1

ƒ
  (relationships between frequency and period)

ƒ
rad>cycle.2p

cycle>s,ƒrad>s.

v

v = 2pƒ

2pv,

1 hertz = 1 Hz = 1 cycle>s = 1 s-1

ƒ,

-A
-A,

-A

ƒx ƒ .

x = A,

x = -A.

x = A

ax = Fx>m.
axFx,
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x , 0: glider displaced
to the left from the
equilibrium position.

Fx . 0, so ax . 0:
compressed spring
pushes glider toward
equilibrium position.

Fx

ax

Fx

x 5 0: The relaxed spring exerts no force on the
glider, so the glider has zero acceleration.

(b)

O x

y

x
n

mg

y

(a)

x
x

y

x

n

mg

y

x . 0: glider displaced
to the right from the
equilibrium position.

Fx , 0, so ax , 0:
stretched spring
pulls glider toward
equilibrium position.

Fx

ax

Fx

(c)

x
x

y

x

n

mg

y

14.2 Model for periodic motion. When
the body is displaced from its equilibrium
position at the spring exerts a
restoring force back toward the equilib-
rium position.

x = 0,

Application Wing Frequencies
The ruby-throated hummingbird (Archilochus
colubris) normally flaps its wings at about 
50 Hz, producing the characteristic sound that
gives hummingbirds their name. Insects can
flap their wings at even faster rates, from 
330 Hz for a house fly and 600 Hz for a mos-
quito to an amazing 1040 Hz for the tiny biting
midge.
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Also, from the definition of 

(14.2)v = 2pƒ =
2p

T
  (angular frequency)

v,

Example 14.1 Period, frequency, and angular frequency

An ultrasonic transducer used for medical diagnosis oscillates at
How long does each oscillation take,

and what is the angular frequency?

SOLUTION

IDENTIFY and SET UP: The target variables are the period T and
the angular frequency . We can find these using the given fre-
quency ƒ in Eqs. (14.1) and (14.2).

v

6.7 MHz = 6.7 * 106 Hz.
EXECUTE: From Eqs. (14.1) and (14.2),

EVALUATE: This is a very rapid vibration, with large and and
small T. A slow vibration has small and and large T.vƒ

vƒ

= 4.2 * 107 rad>s

= 12p rad>cycle216.7 * 106 cycle>s2

v = 2pf = 2p16.7 * 106 Hz2

T =
1

ƒ
=

1

6.7 * 106 Hz
= 1.5 * 10-7 s = 0.15 ms

Test Your Understanding of Section 14.1 A body like that shown in
Fig. 14.2 oscillates back and forth. For each of the following values of the body’s
x-velocity and x-acceleration state whether its displacement x is positive,
negative, or zero. (a) and (b) and (c) and 
(d) and (e) and (f) and ❙ax = 0.vx 7 0ax 6 0;vx = 0ax 6 0;vx 6 0

ax 7 0;vx 6 0ax 6 0;vx 7 0ax 7 0;vx 7 0
ax,vx

14.2 Simple Harmonic Motion
The simplest kind of oscillation occurs when the restoring force is directly
proportional to the displacement from equilibrium x. This happens if the spring
in Figs. 14.1 and 14.2 is an ideal one that obeys Hooke’s law. The constant of
proportionality between and x is the force constant k. (You may want to
review Hooke’s law and the definition of the force constant in Section 6.3.) On
either side of the equilibrium position, and x always have opposite signs. In
Section 6.3 we represented the force acting on a stretched ideal spring as

The x-component of force the spring exerts on the body is the negative
of this, so the x-component of force on the body is

(14.3)

This equation gives the correct magnitude and sign of the force, whether x is pos-
itive, negative, or zero (Fig. 14.3). The force constant k is always positive and has
units of (a useful alternative set of units is We are assuming that
there is no friction, so Eq. (14.3) gives the net force on the body.

When the restoring force is directly proportional to the displacement from
equilibrium, as given by Eq. (14.3), the oscillation is called simple harmonic
motion, abbreviated SHM. The acceleration of a body in
SHM is given by

(14.4)

The minus sign means the acceleration and displacement always have opposite
signs. This acceleration is not constant, so don’t even think of using the constant-
acceleration equations from Chapter 2. We’ll see shortly how to solve this equa-
tion to find the displacement x as a function of time. A body that undergoes
simple harmonic motion is called a harmonic oscillator.

ax =
d2x

dt 2 = -
k

m
x  (simple harmonic motion)

ax = d2x>dt 2 = Fx>m

kg>s2).N>m

Fx = -kx  (restoring force exerted by an ideal spring)

Fx

Fx = kx.

Fx

Fx

Fx

The restoring force exerted by an idealized
spring is directly proportional to the
displacement (Hooke’s law, Fx 5 2kx):
the graph of Fx versus x is a straight line.

O

Displacement x

Restoring force Fx

x , 0
Fx . 0

x . 0
Fx , 0

14.3 An idealized spring exerts a
restoring force that obeys Hooke’s law,

Oscillation with such a restoring
force is called simple harmonic motion.
Fx = -kx.



Why is simple harmonic motion important? Keep in mind that not all periodic
motions are simple harmonic; in periodic motion in general, the restoring force
depends on displacement in a more complicated way than in Eq. (14.3). But in
many systems the restoring force is approximately proportional to displacement
if the displacement is sufficiently small (Fig. 14.4). That is, if the amplitude is
small enough, the oscillations of such systems are approximately simple har-
monic and therefore approximately described by Eq. (14.4). Thus we can use
SHM as an approximate model for many different periodic motions, such as the
vibration of the quartz crystal in a watch, the motion of a tuning fork, the electric
current in an alternating-current circuit, and the oscillations of atoms in mole-
cules and solids.

Circular Motion and the Equations of SHM
To explore the properties of simple harmonic motion, we must express the dis-
placement x of the oscillating body as a function of time, The second deriv-
ative of this function, must be equal to times the function itself,
as required by Eq. (14.4). As we mentioned, the formulas for constant accelera-
tion from Section 2.4 are no help because the acceleration changes constantly as
the displacement x changes. Instead, we’ll find by noticing a striking similar-
ity between SHM and another form of motion that we’ve already studied.

Figure 14.5a shows a top view of a horizontal disk of radius A with a ball
attached to its rim at point Q. The disk rotates with constant angular speed 
(measured in so the ball moves in uniform circular motion. A horizontal
light beam shines on the rotating disk and casts a shadow of the ball on a screen.
The shadow at point P oscillates back and forth as the ball moves in a circle. We
then arrange a body attached to an ideal spring, like the combination shown in
Figs. 14.1 and 14.2, so that the body oscillates parallel to the shadow. We will
prove that the motion of the body and the motion of the ball’s shadow are
identical if the amplitude of the body’s oscillation is equal to the disk radius A,
and if the angular frequency of the oscillating body is equal to the angular
speed of the rotating disk. That is, simple harmonic motion is the projection of
uniform circular motion onto a diameter.

We can verify this remarkable statement by finding the acceleration of the
shadow at P and comparing it to the acceleration of a body undergoing SHM,
given by Eq. (14.4). The circle in which the ball moves so that its projection
matches the motion of the oscillating body is called the reference circle; we
will call the point Q the reference point. We take the reference circle to lie in the

v

2pƒ

rad>s),
v

x1t2

1-k>m2d2x>dt 2,
x1t2.
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... but Fx 5 2kx can be a
good approximation to the force
if the displacement x is sufficiently small.

Ideal case: The restoring force obeys Hooke’s
law (Fx 5 2kx), so the graph of Fx versus x is a
straight line.

Typical real case: The
restoring force deviates
from Hooke’s law ...

O Displacement x

Restoring force Fx

14.4 In most real oscillations Hooke’s
law applies provided the body doesn’t
move too far from equilibrium. In such a
case small-amplitude oscillations are
approximately simple harmonic.

u

Shadow of ball
on screen

Ball’s shadow

Ball on rotating
turntable

While the ball Q
on the turntable
moves in uniform
circular motion,
its shadow P moves
back and forth on
the screen in simple
harmonic motion.

Illuminated
vertical screen

Illumination

Table

Light beam

A

A

2A O P

Q

Ball moves in uniform
circular motion.

Shadow moves
back and forth on
x-axis in SHM.

(a) Apparatus for creating the reference circle (b) An abstract representation of the motion in (a)

O

P

A

y

x

Q

x �A cos uv

14.5 (a) Relating uniform circular motion and simple harmonic motion. (b) The ball’s shadow moves exactly like a body oscillating
on an ideal spring.
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xy-plane, with the origin O at the center of the circle (Fig. 14.5b). At time t the
vector OQ from the origin to the reference point Q makes an angle with the
positive x-axis. As the point Q moves around the reference circle with constant
angular speed the vector OQ rotates with the same angular speed. Such a
rotating vector is called a phasor. (This term was in use long before the inven-
tion of the Star Trek stun gun with a similar name. The phasor method for ana-
lyzing oscillations is useful in many areas of physics. We’ll use phasors when we
study alternating-current circuits in Chapter 31 and the interference of light in
Chapters 35 and 36.)

The x-component of the phasor at time t is just the x-coordinate of the point Q:

(14.5)

This is also the x-coordinate of the shadow P, which is the projection of Q onto
the x-axis. Hence the x-velocity of the shadow P along the x-axis is equal to the
x-component of the velocity vector of point Q (Fig. 14.6a), and the x-acceleration
of P is equal to the x-component of the acceleration vector of Q (Fig. 14.6b). Since
point Q is in uniform circular motion, its acceleration vector is always directed
toward O. Furthermore, the magnitude of is constant and given by the angular
speed squared times the radius of the circle (see Section 9.3):

(14.6)

Figure 14.6b shows that the x-component of is Combining
this with Eqs. (14.5) and (14.6), we get that the acceleration of point P is

or (14.7)

(14.8)

The acceleration of point P is directly proportional to the displacement x and
always has the opposite sign. These are precisely the hallmarks of simple har-
monic motion.

Equation (14.8) is exactly the same as Eq. (14.4) for the acceleration of a har-
monic oscillator, provided that the angular speed of the reference point Q is
related to the force constant k and mass m of the oscillating body by

(14.9)

We have been using the same symbol for the angular speed of the reference
point Q and the angular frequency of the oscillating point P. The reason is that
these quantities are equal! If point Q makes one complete revolution in time T,
then point P goes through one complete cycle of oscillation in the same time; hence
T is the period of the oscillation. During time T the point Q moves through 

radians, so its angular speed is But this is just the same as Eq. (14.2)
for the angular frequency of the point P, which verifies our statement about the
two interpretations of This is why we introduced angular frequency in Section
14.1; this quantity makes the connection between oscillation and circular motion.
So we reinterpret Eq. (14.9) as an expression for the angular frequency of simple
harmonic motion for a body of mass m, acted on by a restoring force with force
constant k:

(14.10)

When you start a body oscillating in SHM, the value of is not yours to choose;
it is predetermined by the values of k and m. The units of k are or so

is in When we take the square root in Eq. (14.10), we get
or more properly because this is an angular frequency (recall that a

radian is not a true unit).
rad>ss-1,

1kg>s22>kg = s-2.k>m
kg>s2,N>m

v

v =
A

k

m
  (simple harmonic motion)

v.

v = 2p>T.2p

v

v2 =
k

m
  or  v =

A

k

m

v

ax = -v2x

ax = -aQ cosu = -v2Acosu

ax = -aQ cosu.aSQ

aQ = v2A

aSQ

aSQ

x = Acosu

v,

u

u

u

u

u

O

P

y

x

Q

vQ

5 2vQ sin u

(a) Using the reference circle to
determine the x-velocity of point P

vx

O

P

y

x

Q

5 2aQ cos u

(b) Using the reference circle to
determine the x-acceleration of point P

aQ

ax

14.6 The (a) x-velocity and 
(b) x-acceleration of the ball’s shadow P
(see Fig. 14.5) are the x-components
of the velocity and acceleration vectors,
respectively, of the ball Q.



According to Eqs. (14.1) and (14.2), the frequency and period T are

(14.11)

(14.12)

We see from Eq. (14.12) that a larger mass m, with its greater inertia, will have
less acceleration, move more slowly, and take a longer time for a complete cycle
(Fig. 14.7). In contrast, a stiffer spring (one with a larger force constant k) exerts
a greater force at a given deformation x, causing greater acceleration, higher
speeds, and a shorter time T per cycle.

CAUTION Don’t confuse frequency and angular frequency You can run into trouble if
you don’t make the distinction between frequency ƒ and angular frequency 
Frequency tells you how many cycles of oscillation occur per second, while angular
frequency tells you how many radians per second this corresponds to on the reference cir-
cle. In solving problems, pay careful attention to whether the goal is to find or ❙

Period and Amplitude in SHM
Equations (14.11) and (14.12) show that the period and frequency of simple har-
monic motion are completely determined by the mass m and the force constant k.
In simple harmonic motion the period and frequency do not depend on the ampli-
tude A. For given values of m and k, the time of one complete oscillation is the
same whether the amplitude is large or small. Equation (14.3) shows why we
should expect this. Larger A means that the body reaches larger values of and
is subjected to larger restoring forces. This increases the average speed of the
body over a complete cycle; this exactly compensates for having to travel a larger
distance, so the same total time is involved.

The oscillations of a tuning fork are essentially simple harmonic motion, which
means that it always vibrates with the same frequency, independent of amplitude.
This is why a tuning fork can be used as a standard for musical pitch. If it were not
for this characteristic of simple harmonic motion, it would be impossible to make
familiar types of mechanical and electronic clocks run accurately or to play most
musical instruments in tune. If you encounter an oscillating body with a period
that does depend on the amplitude, the oscillation is not simple harmonic motion.

ƒx ƒ

v.ƒ

v = 2pƒ.

T =
1

ƒ
=

2p
v

= 2p
A

m

k
  (simple harmonic motion)

ƒ =
v

2p
=

1

2p A

k

m
  (simple harmonic motion)

f
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Example 14.2 Angular frequency, frequency, and period in SHM

A spring is mounted horizontally, with its left end fixed. A spring
balance attached to the free end and pulled toward the right 
(Fig. 14.8a) indicates that the stretching force is proportional to the
displacement, and a force of 6.0 N causes a displacement of 0.030 m.
We replace the spring balance with a 0.50-kg glider, pull it 0.020 m
to the right along a frictionless air track, and release it from rest
(Fig. 14.8b). (a) Find the force constant k of the spring. (b) Find
the angular frequency frequency ƒ, and period T of the resulting
oscillation.

SOLUTION

IDENTIFY and SET UP: Because the spring force (equal in magni-
tude to the stretching force) is proportional to the displacement,
the motion is simple harmonic. We find k using Hooke’s law, 
Eq. (14.3), and and T using Eqs. (14.10), (14.11), and (14.12),
respectively.

ƒ,v,

v,

Tines with large mass m:
low frequency f 5 128 Hz

Tines with small mass m:
high frequency f 5 4096 Hz

14.7 The greater the mass m in a 
tuning fork’s tines, the lower the frequency
of oscillation and the
lower the pitch of the sound that the tuning
fork produces.

ƒ = 11>2p22k>m

m

F 5 6.0 N(a)

(b)

x 5 0 x 5 0.020 m

m 5 0.50 kg
x

x 5 0 x 5 0.030 m

x

14.8 (a) The force exerted on the spring (shown by the vector F )
has x-component The force exerted by the spring
has x-component (b) A glider is attached to the
same spring and allowed to oscillate.

Fx = -6.0 N.
Fx = +6.0 N.
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Displacement, Velocity, and Acceleration in SHM
We still need to find the displacement x as a function of time for a harmonic oscil-
lator. Equation (14.4) for a body in simple harmonic motion along the x-axis
is identical to Eq. (14.8) for the x-coordinate of the reference point in uniform
circular motion with constant angular speed Hence Eq. (14.5),

describes the x-coordinate for both of these situations. If at 
the phasor OQ makes an angle (the Greek letter phi) with the positive x-axis,
then at any later time t this angle is We substitute this into Eq. (14.5)
to obtain

(14.13)

where Figure 14.9 shows a graph of Eq. (14.13) for the particular
case The displacement x is a periodic function of time, as expected for
SHM. We could also have written Eq. (14.13) in terms of a sine function rather
than a cosine by using the identity In simple harmonic
motion the position is a periodic, sinusoidal function of time. There are many
other periodic functions, but none so simple as a sine or cosine function.

The value of the cosine function is always between and 1, so in Eq. (14.13),
x is always between and A. This confirms that A is the amplitude of the motion.

The period T is the time for one complete cycle of oscillation, as Fig. 14.9
shows. The cosine function repeats itself whenever the quantity in parentheses in
Eq. (14.13) increases by radians. Thus, if we start at time the time T to
complete one cycle is given by

which is just Eq. (14.12). Changing either m or k changes the period of oscilla-
tion, as shown in Figs. 14.10a and 14.10b. The period does not depend on the
amplitude A (Fig. 14.10c).

vT =
A

k

m
T = 2p  or  T = 2p

A

m

k

t = 0,2p

-A
-1

cos a = sin1a + p>22.

f = 0.
v = 2k>m .

x = Acos1vt + f2  (displacement in SHM)

u = vt + f.
f

t = 0x = A cos u,
v = 2k>m .

EXECUTE: (a) When the force the spring exerts on
the spring balance is From Eq. (14.3),

(b) From Eq. (14.10), with ,

T =
1

ƒ
=

1

3.2 cycle>s
= 0.31 s

ƒ =
v

2p
=

20 rad>s

2p rad>cycle
= 3.2 cycle>s = 3.2 Hz

v =
A

k

m
=
B

200 kg>s2

0.50 kg
= 20 rad>s

m = 0.50 kg

k = -
Fx

x
= -

-6.0 N

0.030 m
= 200 N>m = 200 kg>s2

Fx = -6.0 N.
x = 0.030 m, EVALUATE: The amplitude of the oscillation is 0.020 m, the dis-

tance that we pulled the glider before releasing it. In SHM the
angular frequency, frequency, and period are all independent of the
amplitude. Note that a period is usually stated in “seconds” rather
than “seconds per cycle.”

1
2

x

2T
tO

xmax 5 A

T

T
1
2 T

2xmax 5 2A

14.9 Graph of x versus t [see Eq. (14.13)]
for simple harmonic motion. The case
shown has f = 0.

(a) Increasing m; same A and k

O t

x

1 2 3

Mass m increases from curve
1 to 2 to 3. Increasing m alone
increases the period.

14.10 Variations of simple harmonic motion. All cases shown have [see Eq. (14.13)].f = 0

(b) Increasing k; same A and m

tO

x

3 2 1

Force constant k increases from
curve 1 to 2 to 3. Increasing k alone
decreases the period.

(c) Increasing A; same k and m

O t

x

3
2

1

Amplitude A increases from curve
1 to 2 to 3. Changing A alone has
no effect on the period.

PhET: Motion in 2D
ActivPhysics 9.1: Position Graphs and
Equations
ActivPhysics 9.2: Describing Vibrational
Motion
ActivPhysics 9.5: Age Drops Tarzan



The constant in Eq. (14.13) is called the phase angle. It tells us at what
point in the cycle the motion was at (equivalent to where around the circle
the point Q was at We denote the position at by Putting 
and in Eq. (14.13), we get

(14.14)

If then and the body starts at its maximum positive
displacement. If then and the particle starts at its
maximum negative displacement. If then and
the particle is initially at the origin. Figure 14.11 shows the displacement x versus
time for three different phase angles.

We find the velocity and acceleration as functions of time for a harmonic
oscillator by taking derivatives of Eq. (14.13) with respect to time:

(14.15)

(14.16)

The velocity oscillates between and and the
acceleration oscillates between and (Fig. 14.12).
Comparing Eq. (14.16) with Eq. (14.13) and recalling that from 
Eq. (14.9), we see that

which is just Eq. (14.4) for simple harmonic motion. This confirms that 
Eq. (14.13) for x as a function of time is correct.

We actually derived Eq. (14.16) earlier in a geometrical way by taking the
x-component of the acceleration vector of the reference point Q. This was
done in Fig. 14.6b and Eq. (14.7) (recall that In the same way,
we could have derived Eq. (14.15) by taking the x-component of the velocity
vector of Q, as shown in Fig. 14.6b. We’ll leave the details for you to work out.

Note that the sinusoidal graph of displacement versus time (Fig. 14.12a) is
shifted by one-quarter period from the graph of velocity versus time (Fig. 14.12b)
and by one-half period from the graph of acceleration versus time (Fig. 14.12c).
Figure 14.13 shows why this is so. When the body is passing through the equilib-
rium position so that the displacement is zero, the velocity equals either or

(depending on which way the body is moving) and the acceleration is
zero. When the body is at either its maximum positive displacement, or
its maximum negative displacement, the velocity is zero and the body is
instantaneously at rest. At these points, the restoring force and the
acceleration of the body have their maximum magnitudes. At the accel-
eration is negative and equal to At the acceleration is positive:

If we are given the initial position and initial velocity for the oscillating
body, we can determine the amplitude A and the phase angle Here’s how to do
it. The initial velocity is the velocity at time putting and

in Eq. (14.15), we find

(14.17)v0x = -vA sinf

t = 0
vx = v0xt = 0;v0x

f.
v0xx0

ax = +amax.
x = -A-amax.

x = +A
Fx = -kx

x = -A,
x = +A,

-vmax

vmax

u = vt + f).

ax = -v2x = -
k

m
x

v2 = k>m
-amax = -v2Aamax = +v2Aax

-vmax = -vA,vmax = +vAvx

ax =
dvx

dt
=

d2x

dt 2 = -v2Acos1vt + f2  (acceleration in SHM)

vx =
dx

dt
= -vA sin1vt + f2  (velocity in SHM)

axvx

x0 = Acos1p>22 = 0,f = p>2,
x0 = Acosp = -A,f = p,

x0 = Acos0 = A,f = 0,

x0 = Acosf

x = x0

t = 0x0.t = 0t = 0).
t = 0

f

444 CHAPTER 14 Periodic Motion

These three curves show SHM with
the same period T and amplitude A
but with different phase angles f.

O t

x

T

A

2A

f 5 0 f 5
p
4

f 5
p
2

T
4

3T
4

T
2

14.11 Variations of SHM: displacement
versus time for the same harmonic oscilla-
tor with different phase angles f.

t

(a) Displacement x as a function of time t

x

2T
T

xmax 5 A
x 5 A cos (vt 1 f)

vx 5 2vA sin (vt 1 f)

ax 5 2v2A cos (vt 1 f)

O
xmax 5 2A T

t

(b) Velocity vx as a function of time t

vx

T 2T
2vmax 5 2vA

vmax 5 vA
O

(c) Acceleration ax as a function of time t

t

ax

T 2T

2amax 5 2v2A

amax 5 v2A
O

The ax-t graph is shifted by     cycle from the
vx-t graph and by     cycle from the x-t graph.

1
41

2

The vx-t graph is shifted by
   cycle from the x-t graph.1
4

14.12 Graphs of (a) x versus t,
(b) versus t, and (c) versus t
for a body in SHM. For the motion
depicted in these graphs, f = p>3.

axvx
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To find we divide Eq. (14.17) by Eq. (14.14). This eliminates A and gives an
equation that we can solve for 

(14.18)

It is also easy to find the amplitude A if we are given and We’ll sketch
the derivation, and you can fill in the details. Square Eq. (14.14); then divide
Eq. (14.17) by square it, and add to the square of Eq. (14.14). The right side
will be which is equal to The final result is

(14.19)

Note that when the body has both an initial displacement and a nonzero initial
velocity the amplitude A is not equal to the initial displacement. That’s rea-
sonable; if you start the body at a positive but give it a positive velocity it
will go farther than before it turns and comes back.x0

v0x,x0

v0x,
x0

A =
B

x0
2 +

v0x
2

v2   (amplitude in SHM)

A2.A21sin2 f + cos2 f2,
v,

v0x.x0

f = arctana -
v0x

vx0
b  (phase angle in SHM)

v0x

x0
=

-vA sinf

Acosf
= -v tanf

f:
f,

x

x

x

x

x

x

x

x

x

ax � 2amax

ax 5 2amax

ax 5 amax

x 5 2A x 5Ax 5 0

vx 5 0

vx 5 0

vx 5 0

ax
vx

ax
vx

ax
vx

ax
vx

2A 2A/2 A/2 A0

ax 5 0

ax 5 0

x

vx 5 2vmax

vx 5 vmax

14.13 How x-velocity and 
x-acceleration vary during one cycle 
of SHM.

ax

vx

Problem-Solving Strategy 14.1 Simple Harmonic Motion I: Describing Motion

IDENTIFY the relevant concepts: An oscillating system undergoes
simple harmonic motion (SHM) only if the restoring force is
directly proportional to the displacement.

SET UP the problem using the following steps:
1. Identify the known and unknown quantities, and determine

which are the target variables.
2. Distinguish between two kinds of quantities. Properties of the

system include the mass m, the force constant k, and quantities
derived from m and k, such as the period T, frequency and
angular frequency These are independent of properties of the
motion, which describe how the system behaves when it is set
into motion in a particular way; they include the amplitude A,
maximum velocity and phase angle , and values of x,
and at particular times.

3. If necessary, define an x-axis as in Fig. 14.13, with the equilib-
rium position at x = 0.

ax

vx,fvmax,

v.
ƒ,

EXECUTE the solution as follows:
1. Use the equations given in Sections 14.1 and 14.2 to solve for

the target variables.
2. To find the values of x, and at particular times, use Eqs.

(14.13), (14.15), and (14.16), respectively. If the initial position
and initial velocity are both given, determine and A

from Eqs. (14.18) and (14.19). If the body has an initial posi-
tive displacement but zero initial velocity then
the amplitude is and the phase angle is If it has
an initial positive velocity but no initial displacement

the amplitude is and the phase angle is
Express all phase angles in radians.

EVALUATE your answer: Make sure that your results are consistent.
For example, suppose you used and to find general expres-
sions for x and at time t. If you substitute into these expres-
sions, you should get back the given values of and v0x.x0

t = 0vx

v0xx0

f = -p>2.
A = v0x>v1x0 = 02,

v0x

f = 0.A = x0

1v0x = 02,x0

fv0xx0

axvx,

Example 14.3 Describing SHM

We give the glider of Example 14.2 an initial displacement x0 = SOLUTION

IDENTIFY and SET UP: As in Example 14.2, the oscillations are
SHM. We use equations from this section and the given values k �
200 N m, m � 0.50 kg, and to calculate the target variables A
and and to obtain expressions for x, and .

Continued

axvx,f

v0xx0,>

and an initial velocity � (a) Find the
period, amplitude, and phase angle of the resulting motion. (b) Write
equations for the displacement, velocity, and acceleration as func-
tions of time.

+0.40 m>s.v0x+0.015 m



14.3 Energy in Simple Harmonic Motion
We can learn even more about simple harmonic motion by using energy consider-
ations. Take another look at the body oscillating on the end of a spring in Figs. 14.2
and 14.13. We’ve already noted that the spring force is the only horizontal force
on the body. The force exerted by an ideal spring is a conservative force, and the
vertical forces do no work, so the total mechanical energy of the system is
conserved. We also assume that the mass of the spring itself is negligible.

The kinetic energy of the body is and the potential energy of the
spring is just as in Section 7.2. (You’ll find it helpful to review that
section.) There are no nonconservative forces that do work, so the total mechani-
cal energy is conserved:

(14.20)

(Since the motion is one-dimensional, 
The total mechanical energy E is also directly related to the amplitude A of the

motion. When the body reaches the point its maximum displacement
from equilibrium, it momentarily stops as it turns back toward the equilibrium
position. That is, when (or At this point the energy is entirely
potential, and Because E is constant, it is equal to at any other
point. Combining this expression with Eq. (14.20), we get

(14.21)

We can verify this equation by substituting x and from Eqs. (14.13) and
(14.15) and using from Eq. (14.9):

= 1
2 kA2

= 1
2 kA2 sin21vt + f2 + 1

2 kA2 cos21vt + f2

E = 1
2 mvx

2 + 1
2 kx2 = 1

2 m3-vA sin1vt + f242 + 1
2 k3Acos1vt + f242

v2 = k>m
vx

(total mechanical
energy in SHM)E = 1

2 mvx
2 + 1

2 kx2 = 1
2 kA2 = constant

1
2 kA2E = 1

2 kA2.
vx = 0.-A),x = A

x = A,

v2 = vx
2 .)

E = 1
2 mvx

2 + 1
2 kx2 = constant

E = K + U

U = 1
2 kx2,

K = 1
2 mv2
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EXECUTE: (a) In SHM the period and angular frequency are
properties of the system that depend only on k and m, not on the
amplitude, and so are the same as in Example 14.2 
and . From Eq. (14.19), the amplitude is

We use Eq. (14.18) to find the phase angle:

= arctana -
0.40 m>s

120 rad>s210.015 m2
b = -53° = -0.93 rad

f = arctana -
v0x

vx0
b

A =
B

x 2
0 +

v 2
0x

v2
=
B
10.015 m22 +

10.40 m>s22

120 rad>s22
= 0.025 m

v = 20 rad>s2
1T = 0.31 s

(b) The displacement, velocity, and acceleration at any time are
given by Eqs. (14.13), (14.15), and (14.16), respectively. We sub-
stitute the values of A, , and into these equations:

EVALUATE: You can check the expressions for x and by confirmingvx

ax = -110 m>s22cos 3120 rad>s2t - 0.93 rad4

vx = -10.50 m>s2 sin 3120 rad>s2t - 0.93 rad4

x = 10.025 m2cos 3120 rad>s2t - 0.93 rad4

fv

Test Your Understanding of Section 14.2 A glider is attached to a
spring as shown in Fig. 14.13. If the glider is moved to and released
from rest at time it will oscillate with amplitude and phase
angle (a) Suppose instead that at the glider is at and is moving
to the right in Fig. 14.13. In this situation is the amplitude greater than, less than, or equal
to 0.10 m? Is the phase angle greater than, less than, or equal to zero? (b) Suppose instead
that at the glider is at and is moving to the left in Fig. 14.13. In this sit-
uation is the amplitude greater than, less than, or equal to 0.10 m? Is the phase angle
greater than, less than, or equal to zero? ❙

x = 0.10 mt = 0

x = 0.10 mt = 0f = 0.
A = 0.10 mt = 0,
x = 0.10 m

that if you substitute t � 0, they yield and
vx = v0x = 0.40 m>s.

0.015 mx = x0 =

PhET: Masses & Springs
ActivPhysics 9.3: Vibrational Energy
ActivPhysics 9.4: Two Ways to Weigh Young
Tarzan
ActivPhysics 9.6: Releasing a Vibrating 
Skier I
ActivPhysics 9.7: Releasing a Vibrating 
Skier II
ActivPhysics 9.8: One- and Two-Spring
Vibrating Systems
ActivPhysics 9.9: Vibro-Ride
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(Recall that Hence our expressions for displacement and
velocity in SHM are consistent with energy conservation, as they must be.

We can use Eq. (14.21) to solve for the velocity of the body at a given dis-
placement x:

(14.22)

The sign means that at a given value of x the body can be moving in either
direction. For example, when 

Equation (14.22) also shows that the maximum speed occurs at 
Using Eq. (14.10), we find that

(14.23)

This agrees with Eq. (14.15): oscillates between and 

Interpreting E, K, and U in SHM
Figure 14.14 shows the energy quantities E, K, and U at and

Figure 14.15 is a graphical display of Eq. (14.21); energy (kinetic,
potential, and total) is plotted vertically and the coordinate x is plotted horizontally.
x = � A.

x = � A>2,x = 0,

+vA.-vAvx

vmax =
A

k

m
A = vA

v = 2k>m ,
x = 0.vmax

vx = �
A

k

m B
A2 - a�

A

2
b

2

= �
A

3

4 A

k

m
A

x = � A>2,
�

vx = �
A

k

m
2A2 - x2

vx

sin2a + cos2a = 1.)

E is all potential
energy.

2A 2 A

E is all potential
energy.

E is partly potential,
partly kinetic

energy.

E is partly potential,
partly kinetic

energy.

E is all kinetic
energy.

ax 5 amax ax 5 2amax

vx 5 6vmax

ax 5 amax ax 5 0

vmaxvx 5 0 vx 5 0vx 5 6

1
2

Å

x

3
4 vmaxvx 5 6

Å
3
4

1
2 ax 5 2 amax

1
2

O AA1
2

zero

zero

zero

E 5 K 1 U E 5 K 1 U E 5 K 1 U E 5 K 1 U E 5 K 1 U

14.14 Graphs of E, K, and U versus displacement in SHM. The velocity of the body is not constant, so these images of the body at
equally spaced positions are not equally spaced in time.

The total mechanical energy E is constant.

(a) The potential energy U and total mechanical
energy E for a body in SHM as a function of
displacement x

Energy

x

U 5 kx21
2

E

K

U

O A2A x

At x 5 6A the energy is all potential; the kinetic
energy is zero.

At x 5 0 the energy is all kinetic;
the potential energy is zero.

At these points the energy is half
kinetic and half potential.

(b) The same graph as in (a), showing
kinetic energy K as well

Energy

x

E 5 K 1 U

O A2A

U
K

14.15 Kinetic energy K, potential
energy U, and total mechanical energy E
as functions of position for SHM. At each
value of x the sum of the values of K and
U equals the constant value of E. Can you
show that the energy is half kinetic and 
half potential at x = �21

2 A?



The parabolic curve in Fig. 14.15a represents the potential energy The
horizontal line represents the total mechanical energy E, which is constant and
does not vary with x. At any value of x between and A, the vertical distance
from the x-axis to the parabola is U; since the remaining vertical
distance up to the horizontal line is K. Figure 14.15b shows both K and U as
functions of x. The horizontal line for E intersects the potential-energy curve at

and so at these points the energy is entirely potential, the kinetic
energy is zero, and the body comes momentarily to rest before reversing direc-
tion. As the body oscillates between and A, the energy is continuously trans-
formed from potential to kinetic and back again.

Figure 14.15a shows the connection between the amplitude A and the corre-
sponding total mechanical energy If we tried to make x greater than A
(or less than U would be greater than E, and K would have to be negative.
But K can never be negative, so x can’t be greater than A or less than -A.

-A),
E = 1

2 kA2.

-A

x = A,x = -A

E = K + U,
-A

U = 1
2 kx2.
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Problem-Solving Strategy 14.2 Simple Harmonic Motion II: Energy

The SHM energy equation, Eq. (14.21), is a useful relationship
among velocity, position, and total mechanical energy. If the prob-
lem requires you to relate position, velocity, and acceleration with-
out reference to time, consider using Eq. (14.4) (from Newton’s
second law) or Eq. (14.21) (from energy conservation). Because

Eq. (14.21) involves and you must infer the signs of x
and from the situation. For instance, if the body is moving
from the equilibrium position toward the point of greatest posi-
tive displacement, then x is positive and is positive.vx

vx

v 2
x ,x2

Example 14.4 Velocity, acceleration, and energy in SHM

(a) Find the maximum and minimum velocities attained by the
oscillating glider of Example 14.2. (b) Find the maximum and
minimum accelerations. (c) Find the velocity and acceleration

when the glider is halfway from its initial position to the equi-
librium position . (d) Find the total energy, potential energy,
and kinetic energy at this position.

SOLUTION

IDENTIFY and SET UP: The problem concerns properties of the
motion at specified positions, not at specified times, so we can use
the energy relationships of this section. Figure 14.13 shows our
choice of x-axis. The maximum displacement from equilibrium is

We use Eqs. (14.22) and (14.4) to find and for
a given x. We then use Eq. (14.21) for given x and to find the
total, potential, and kinetic energies E, U, and K.

EXECUTE: (a) From Eq. (14.22), the velocity at any displace-
ment x is

The glider’s maximum speed occurs when it is moving through

Its maximum and minimum (most negative) velocities are
�0.40 m s and which occur when it is moving
through to the right and left, respectively.x = 0

-0.40 m>s,>

vmax =
A

k

m
A =

B

200 N>m

0.50 kg
10.020 m2 = 0.40 m>s

x = 0:

vx = �
A

k

m
2A2 - x2

vx

vx

axvxA = 0.020 m.

x = 0
ax

vx

(b) From Eq. (14.4), . The glider’s maximum
(most positive) acceleration occurs at the most negative value of x,

The minimum (most negative) acceleration is ,
which occurs at .

(c) The point halfway from x � � A to x � 0 is 
From Eq. (14.22), at this point

We choose the negative square root because the glider is moving
from toward From Eq. (14.4),

Figure 14.14 shows the conditions at and .
(d) The energies are

EVALUATE: At the total energy is one-fourth potential
energy and three-fourths kinetic energy. You can confirm this by
inspecting Fig. 14.15b.

x = A>2,

K = 1
2 mv 2

x = 1
2 10.50 kg21-0.35 m>s22 = 0.030 J

U = 1
2 kx2 = 1

2 1200 N>m210.010 m22 = 0.010 J

E = 1
2 kA2 = 1

2 1200 N>m210.020 m22 = 0.040 J

� A�A>2,x = 0,

ax = -
200 N>m

0.50 kg
10.010 m2 = -4.0 m>s2

x = 0.x = A

vx = -
B

200 N>m

0.50 kg
210.020 m22 - 10.010 m22 = -0.35 m>s

0.010 m.
x = A>2 =x0

x = +A = +0.020 m
amin = -8.0 m>s2

amax = -
k

m
1-A2 = -

200 N>m

0.50 kg
1-0.020 m2 = 8.0 m>s2

x = -A:

ax = -1k>m2x
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Example 14.5 Energy and momentum in SHM

A block of mass M attached to a horizontal spring with force con-
stant k is moving in SHM with amplitude As the block passes
through its equilibrium position, a lump of putty of mass m is
dropped from a small height and sticks to it. (a) Find the new
amplitude and period of the motion. (b) Repeat part (a) if the putty
is dropped onto the block when it is at one end of its path.

SOLUTION

IDENTIFY and SET UP: The problem involves the motion at a
given position, not a given time, so we can use energy methods.
Figure 14.16 shows our sketches. Before the putty falls, the
mechanical energy of the block–spring system is constant. In part
(a), the putty–block collision is completely inelastic: The horizontal
component of momentum is conserved, kinetic energy decreases,
and the amount of mass that’s oscillating increases. After the colli-
sion, the mechanical energy remains constant at its new value. In
part (b) the oscillating mass also increases, but the block isn’t
moving when the putty is added; there is effectively no collision at
all, and no mechanical energy is lost. We find the amplitude after
each collision from the final energy of the system using Eq. (14.21)
and conservation of momentum. The period after the collision is
a property of the system, so it is the same in both parts (a) and (b);
we find it using Eq. (14.12).

EXECUTE: (a) Before the collision the total mechanical energy of
the block and spring is . The block is at x � 0, so

and the energy is purely kinetic (Fig. 14.16a). If we let be
the speed of the block at this point, then and

During the collision the x-component of momentum of the
block–putty system is conserved. (Why?) Just before the collision
this component is the sum of (for the block) and zero (for the
putty). Just after the collision the block and putty move together
with speed so their combined x-component of momentum is

From conservation of momentum,

We assume that the collision lasts a very short time, so that the
block and putty are still at the equilibrium position just after the
collision. The energy is still purely kinetic but is less than before
the collision:

=
M

M + m
A12 Mv 2

1 B = a
M

M + m
bE1

E2 = 1
2 1M + m2v 2

2 = 1
2

M2

M + m
v 2

1

Mv1 + 0 = 1M + m2v2  so  v2 =
M

M + m
v1

1M + m2v2.
v2,

Mv1

v1 =
A

k

M
A1

E1 = 1
2 kA 2

1 = 1
2 Mv 2

1

v1U = 0
E1 = 1

2 kA 2
1

T2

A2

A1.

Since � where is the amplitude after the collision, we
have

From Eq. (14.12), the period of oscillation after the collision is

(b) When the putty falls, the block is instantaneously at rest
(Fig. 14.16b). The x-component of momentum is zero both before
and after the collision. The block and putty have zero kinetic
energy just before and just after the collision. The energy is 
all potential energy stored in the spring, so adding the putty has 
no effect on the mechanical energy. That is,
and the amplitude is unchanged: The period is againA2 = A1.

E2 = E1 = 1
2 kA 2

1 ,

T2 = 2p
A

M + m

k

A2 = A1A

M

M + m

1
2 kA 2

2 = a
M

M + m
b 1

2 kA 2
1

A2
1
2 kA 2

2 ,E2

(a)

(b)

14.16 Our sketches for this problem.

Test Your Understanding of Section 14.3 (a) To double the total
energy for a mass-spring system oscillating in SHM, by what factor must the
amplitude increase? (i) 4; (ii) 2; (iii) (iv) (b) By what
factor will the frequency change due to this amplitude increase? (i) 4; (ii) 2; 
(iii) (iv) (v) it does not change. ❙24 2 = 1.189;12 = 1.414;

24 2 = 1.189.12 = 1.414;

EVALUATE: Energy is lost in part (a) because the putty slides
against the moving block during the collision, and energy is dissi-
pated by kinetic friction. No energy is lost in part (b), because
there is no sliding during the collision.

T2 = 2p21M + m2>k.



14.4 Applications of Simple Harmonic Motion
So far, we’ve looked at a grand total of one situation in which simple harmonic
motion (SHM) occurs: a body attached to an ideal horizontal spring. But SHM
can occur in any system in which there is a restoring force that is directly propor-
tional to the displacement from equilibrium, as given by Eq. (14.3), 
The restoring force will originate in different ways in different situations, so the
force constant k has to be found for each case by examining the net force on the
system. Once this is done, it’s straightforward to find the angular frequency 
frequency and period T; we just substitute the value of k into Eqs. (14.10),
(14.11), and (14.12), respectively. Let’s use these ideas to examine several exam-
ples of simple harmonic motion.

Vertical SHM
Suppose we hang a spring with force constant k (Fig. 14.17a) and suspend from it
a body with mass m. Oscillations will now be vertical; will they still be SHM? In
Fig. 14.17b the body hangs at rest, in equilibrium. In this position the spring is
stretched an amount just great enough that the spring’s upward vertical force

on the body balances its weight mg:

Take to be this equilibrium position and take the positive x-direction to
be upward. When the body is a distance x above its equilibrium position 
(Fig. 14.17c), the extension of the spring is The upward force it exerts on
the body is then and the net x-component of force on the body is

that is, a net downward force of magnitude kx. Similarly, when the body is below
the equilibrium position, there is a net upward force with magnitude kx. In either
case there is a restoring force with magnitude kx. If the body is set in vertical
motion, it oscillates in SHM with the same angular frequency as though it were
horizontal, So vertical SHM doesn’t differ in any essential way
from horizontal SHM. The only real change is that the equilibrium position

no longer corresponds to the point at which the spring is unstretched. The
same ideas hold if a body with weight mg is placed atop a compressible spring
(Fig. 14.18) and compresses it a distance ¢l.

x = 0

v = 2k>m .

Fnet = k1¢l - x2 + 1-mg2 = -kx

k1¢l - x2,
¢l - x.

x = 0

k ¢l = mg

k ¢l
¢l

ƒ,
v,

Fx = -kx.
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l

(a)

l

Dl

x 5 0

mg

F 5 k Dl

mg

F 5 k (Dl 2 x)

l

x

Dl 2 xA hanging spring
that obeys
Hooke’s law

(b) A body is suspended from the
spring. It is in equilibrium when the
upward force exerted by the stretched
spring equals the body’s weight.

(c) If the body is displaced from
equilibrium, the net force on the body
is proportional to its displacement.
The oscillations are SHM.

14.17 A body attached to a hanging
spring.
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Angular SHM
A mechanical watch keeps time based on the oscillations of a balance wheel
(Fig. 14.19). The wheel has a moment of inertia I about its axis. A coil spring
exerts a restoring torque that is proportional to the angular displacement 
from the equilibrium position. We write where (the Greek letter
kappa) is a constant called the torsion constant. Using the rotational analog of
Newton’s second law for a rigid body, we can find the
equation of motion:

The form of this equation is exactly the same as Eq. (14.4) for the acceleration in
simple harmonic motion, with x replaced by and replaced by So we
are dealing with a form of angular simple harmonic motion. The angular fre-
quency and frequency are given by Eqs. (14.10) and (14.11), respectively,
with the same replacement:

(14.24)

The motion is described by the function

where (the Greek letter theta) plays the role of an angular amplitude.
It’s a good thing that the motion of a balance wheel is simple harmonic. If it

weren’t, the frequency might depend on the amplitude, and the watch would run
too fast or too slow as the spring ran down.

Vibrations of Molecules
The following discussion of the vibrations of molecules uses the binomial theo-
rem. If you aren’t familiar with this theorem, you should read about it in the
appropriate section of a math textbook.

When two atoms are separated from each other by a few atomic diameters,
they can exert attractive forces on each other. But if the atoms are so close to each
other that their electron shells overlap, the forces between the atoms are repul-
sive. Between these limits, there can be an equilibrium separation distance at
which two atoms form a molecule. If these atoms are displaced slightly from
equilibrium, they will oscillate.

™

u = ™ cos1vt + f2

v =
A

k

I
  and  ƒ =

1

2p A

k

I
  (angular SHM)

ƒv

k>I.k>mu

-ku = Ia  or  d2u

dt 2 = -
k

I
u

©tz = Iaz = I d2u>dt 2,

ktz = -ku,
utz

F 5 kDl

mg

DlA spring
that obeys
Hooke’s
law

A body is placed atop the spring. It is in
equilibrium when the upward force exerted by
the compressed spring equals the body’s weight.

14.18 If the weight mg compresses the
spring a distance the force constant is

and the angular frequency for
vertical SHM is —the same as
if the body were suspended from the spring
(see Fig. 14.17).

v = 2k>m

k = mg>¢l
¢l,

Example 14.6 Vertical SHM in an old car

The shock absorbers in an old car with mass 1000 kg are com-
pletely worn out. When a 980-N person climbs slowly into the car
at its center of gravity, the car sinks 2.8 cm. The car (with the per-
son aboard) hits a bump, and the car starts oscillating up and down
in SHM. Model the car and person as a single body on a single
spring, and find the period and frequency of the oscillation.

SOLUTION

IDENTIFY and SET UP: The situation is like that shown in Fig.
14.18. The compression of the spring when the person’s weight is
added tells us the force constant, which we can use to find the
period and frequency (the target variables).

EXECUTE: When the force increases by 980 N, the spring com-
presses an additional 0.028 m, and the x-coordinate of the car

changes by Hence the effective force constant (includ-
ing the effect of the entire suspension) is

The person’s mass is The
total oscillating mass is The
period T is

The frequency is .

EVALUATE: A persistent oscillation with a period of about 1 second
makes for a very unpleasant ride. The purpose of shock absorbers
is to make such oscillations die out (see Section 14.7).

ƒ = 1>T = 1>11.11 s2 = 0.90 Hz

T = 2p
A

m

k
= 2p

B

1100 kg

3.5 * 104 kg>s2
= 1.11 s

m = 1000 kg + 100 kg = 1100 kg.
w>g = 1980 N2>19.8 m>s22 = 100 kg.

k = -
Fx

x
= -

980 N

-0.028 m
= 3.5 * 104 kg>s2

-0.028 m.

utz

SpringBalance wheel

The spring torque tz opposes
the angular displacement u.

14.19 The balance wheel of a mechani-
cal watch. The spring exerts a restoring
torque that is proportional to the angular
displacement so the motion is angular
SHM.

u,



As an example, we’ll consider one type of interaction between atoms called
the van der Waals interaction. Our immediate task here is to study oscillations, so
we won’t go into the details of how this interaction arises. Let the center of one
atom be at the origin and let the center of the other atom be a distance r away
(Fig. 14.20a); the equilibrium distance between centers is Experiment
shows that the van der Waals interaction can be described by the potential-energy
function

(14.25)

where is a positive constant with units of joules. When the two atoms are very
far apart, when they are separated by the equilibrium distance 

The force on the second atom is the negative derivative of Eq. (14.25):

(14.26)

Figures 14.20b and 14.20c plot the potential energy and force, respectively. 
The force is positive for and negative for so it is a restoring
force.

Let’s examine the restoring force in Eq. (14.26). We let x represent the dis-
placement from equilibrium:

In terms of x, the force in Eq. (14.26) becomes

(14.27)

This looks nothing like Hooke’s law, so we might be tempted 
to conclude that molecular oscillations cannot be SHM. But let us restrict
ourselves to small-amplitude oscillations so that the absolute value of the dis-
placement x is small in comparison to and the absolute value of the 
ratio is much less than 1. We can then simplify Eq. (14.27) by using the
binomial theorem:

(14.28)11 + u2n = 1 + nu +
n1n - 12

2!
u2 +

n1n - 121n - 22

3!
u3 + Á

x>R0

R0

Fx = -kx,

= 12
U0

R0
c

1

11 + x>R02
13 -

1

11 + x>R02
7 d

Fr = 12
U0

R0
c a

R0

R0 + x
b

13

- a
R0

R0 + x
b

7

d

Fr

x = r - R0  so  r = R0 + x

Fr

r 7 R0,r 6 R0

Fr = -
dU

dr
= U0 c

12R0
12

r 13 - 2
6R0

6

r 7 d = 12
U0

R0
c a

R0

r
b

13

- a
R0

r
b

7

d

U = -U0.
r = R0,U = 0;

U0

U = U0 c a
R0

r
b

12

- 2a
R0

r
b

6

d

r = R0.
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10U0/R0

210U0/R0

5U0/R0

25U0/R0

(c) The force Fr as a function of r

R0
rO

1.5R0
2R0

FrU
2U0

U(r )
Fr(r )Parabola

U0

R0
r

2U0

22U0

O

1.5R0

2R0

(b) Potential energy U of the two-atom system as a
function of r

r

(a) Two-atom system

Atoms

Fr 5 the force exerted
by the left-hand atom
on the right-hand atom

Distance between
atom centers

The equilibrium point is at r 5 R0
(where Fr is zero).

The equilibrium point is at r 5 R0
(where U is minimum).

Near equilibrium, U can
be approximated by a
parabola.

Near equilibrium, Fr can be
approximated by a straight line.

14.20 (a) Two atoms with centers separated by r. (b) Potential energy U in the van der Waals interaction as a function of r. (c) Force
on the right-hand atom as a function of r.

Fr
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If is much less than 1, each successive term in Eq. (14.28) is much smaller
than the one it follows, and we can safely approximate by just the first
two terms. In Eq. (14.27), u is replaced by and n equals or so

(14.29)

This is just Hooke’s law, with force constant (Note that k has the
correct units, or So oscillations of molecules bound by the van der
Waals interaction can be simple harmonic motion, provided that the amplitude is
small in comparison to so that the approximation used in the der-
ivation of Eq. (14.29) is valid.

You can also use the binomial theorem to show that the potential energy U in
Eq. (14.25) can be written as where and k is again
equal to Adding a constant to the potential energy has no effect on the
physics, so the system of two atoms is fundamentally no different from a mass
attached to a horizontal spring for which U = 1

2 kx2.

72U0>R0
2.

C = -U0U L 1
2 kx2 + C,

ƒx>R0 ƒ V 1R0

N>m.)J>m2
k = 72U0>R0

2.

Fr L 12
U0

R0
c a1 + 1-132

x

R0
b - a1 + 1-72

x

R0
b d = - a

72U0

R0
2 bx

1

11 + x>R02
7 = 11 + x>R02

-7 L 1 + 1-72
x

R0

1

11 + x>R02
13 = 11 + x>R02

-13 L 1 + 1-132
x

R0

-7,-13x>R0

11 + u2n
ƒu ƒ

Example 14.7 Molecular vibration

Two argon atoms form the molecule as a result of a van der
Waals interaction with and 

Find the frequency of small oscillations of one Ar atom
about its equilibrium position.

SOLUTION

IDENTIFY and SET UP This is just the situation shown in Fig. 14.20.
Because the oscillations are small, we can use Eq. (14.29) to find the
force constant k and Eq. (14.11) to find the frequency ƒ of SHM.

EXECUTE: From Eq. (14.29),

(This force constant is comparable to that of a loose toy spring like
a Slinky™.) From Appendix D, the average atomic mass of argon
is .10-27 kg>1 u2 = 6.63 * 10-26 kg139.948 u211.66 *

k =
72U0

R 2
0

=
7211.68 * 10-21 J2

13.82 * 10-10 m22
= 0.829 J>m2 = 0.829 N>m

10-10 m.
R0 = 3.82 *U0 = 1.68 * 10-21 J

Ar2 From Eq. (14.11), if one atom is fixed and the other oscillates,

EVALUATE: Our answer for ƒ isn’t quite right. If no net external
force acts on the molecule, its center of mass (halfway between the
atoms) doesn’t accelerate, so both atoms must oscillate with the
same amplitude in opposite directions. It turns out that we can
account for this by replacing m with in our expression for .
This makes larger by a factor of so the correct frequency is
ƒ . What’s more, on
the atomic scale we must use quantum mechanics rather than New-
tonian mechanics to describe motion; happily, quantum mechanics
also yields ƒ � 7.96 * 1011 Hz.

1215.63 * 1011 Hz2 = 7.96 * 1011 Hz=
12,ƒ

ƒm>2

ƒ =
1

2pA

k

m
=

1

2pB

0.829 N>m

6.63 * 10-26 kg
= 5.63 * 1011 Hz

Test Your Understanding of Section 14.4 A block attached to a hang-
ing ideal spring oscillates up and down with a period of 10 s on earth. If you take
the block and spring to Mars, where the acceleration due to gravity is only about
40% as large as on earth, what will be the new period of oscillation? (i) 10 s; 
(ii) more than 10 s; (iii) less than 10 s. ❙

14.5 The Simple Pendulum
A simple pendulum is an idealized model consisting of a point mass suspended
by a massless, unstretchable string. When the point mass is pulled to one side of
its straight-down equilibrium position and released, it oscillates about the equi-
librium position. Familiar situations such as a wrecking ball on a crane’s cable or
a person on a swing (Fig. 14.21a) can be modeled as simple pendulums.

PhET: Pendulum Lab
ActivPhysics 9.10: Pendulum Frequency
ActivPhysics 9.11: Risky Pendulum Walk
ActivPhysics 9.12: Physical Pendulum



The path of the point mass (sometimes called a pendulum bob) is not a straight
line but the arc of a circle with radius L equal to the length of the string 
(Fig. 14.21b). We use as our coordinate the distance x measured along the arc. If
the motion is simple harmonic, the restoring force must be directly proportional
to x or (because to Is it?

In Fig. 14.21b we represent the forces on the mass in terms of tangential and
radial components. The restoring force is the tangential component of the net
force:

(14.30)

The restoring force is provided by gravity; the tension T merely acts to make the
point mass move in an arc. The restoring force is proportional not to but to

so the motion is not simple harmonic. However, if the angle is small,
is very nearly equal to in radians (Fig. 14.22). For example, when rad
(about a difference of only 0.2%. With this approximation,
Eq. (14.30) becomes

or

(14.31)

The restoring force is then proportional to the coordinate for small displace-
ments, and the force constant is From Eq. (14.10) the angular fre-
quency of a simple pendulum with small amplitude is

(14.32)

The corresponding frequency and period relationships are

(14.33)

(14.34)

Note that these expressions do not involve the mass of the particle. This is
because the restoring force, a component of the particle’s weight, is proportional
to m. Thus the mass appears on both sides of and cancels out. (This is the
same physics that explains why bodies of different masses fall with the same
acceleration in a vacuum.) For small oscillations, the period of a pendulum for a
given value of g is determined entirely by its length.

The dependence on L and g in Eqs. (14.32) through (14.34) is just what we
should expect. A long pendulum has a longer period than a shorter one. Increas-
ing g increases the restoring force, causing the frequency to increase and the
period to decrease.

We emphasize again that the motion of a pendulum is only approximately sim-
ple harmonic. When the amplitude is not small, the departures from simple har-
monic motion can be substantial. But how small is “small”? The period can be
expressed by an infinite series; when the maximum angular displacement is 
the period T is given by

(14.35)

We can compute the period to any desired degree of precision by taking enough
terms in the series. We invite you to check that when (on either side of™ = 15°
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The restoring force on the
bob is proportional to sin u,
not to u. However, for small
u, sin u ^ u, so the motion is
approximately simple harmonic.

Bob is modeled
as a point mass.

(a) A real pendulum

(b) An idealized simple pendulum

L

T

x

mg sin u

mg

mg cos u

m

u

u

String is
assumed to be
massless and
unstretchable.

14.21 The dynamics of a simple 
pendulum.

2p/2 2p/4 p/4 p/2 u (rad)

Fu
Fu 5 2mg sin u
(actual)

Fu 5 2mgu
(approximate)

22mg

2mg

mg

2mg

O

14.22 For small angular displacements
the restoring force on a

simple pendulum is approximately equal
to that is, it is approximately pro-
portional to the displacement Hence for
small angles the oscillations are simple
harmonic.

u.
-mgu;

Fu = -mg sinuu,
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the central position), the true period is longer than that given by the approximate
Eq. (14.34) by less than 0.5%.

The usefulness of the pendulum as a timekeeper depends on the period being
very nearly independent of amplitude, provided that the amplitude is small. Thus,
as a pendulum clock runs down and the amplitude of the swings decreases a little,
the clock still keeps very nearly correct time.

Example 14.8 A simple pendulum

Find the period and frequency of a simple pendulum 1.000 m long
at a location where g

SOLUTION

IDENTIFY and SET UP: This is a simple pendulum, so we can use
the ideas of this section. We use Eq. (14.34) to determine the pen-
dulum’s period T from its length, and Eq. (14.1) to find the fre-
quency ƒ from T.

m>s2.= 9.800
EXECUTE: From Eqs. (14.34) and (14.1),

EVALUATE: The period is almost exactly 2 s. When the metric sys-
tem was established, the second was defined as half the period of a
1-m simple pendulum. This was a poor standard, however, because
the value of g varies from place to place. We discussed more mod-
ern time standards in Section 1.3.

ƒ =
1

T
=

1

2.007 s
= 0.4983 Hz

T = 2p
A

L

g
= 2p

A

1.000 m

9.800 m>s2
= 2.007 s

14.6 The Physical Pendulum
A physical pendulum is any real pendulum that uses an extended body, as con-
trasted to the idealized model of the simple pendulum with all the mass concen-
trated at a single point. For small oscillations, analyzing the motion of a real,
physical pendulum is almost as easy as for a simple pendulum. Figure 14.23
shows a body of irregular shape pivoted so that it can turn without friction about
an axis through point O. In the equilibrium position the center of gravity is
directly below the pivot; in the position shown in the figure, the body is displaced
from equilibrium by an angle which we use as a coordinate for the system. The
distance from O to the center of gravity is d, the moment of inertia of the body
about the axis of rotation through O is I, and the total mass is m. When the body
is displaced as shown, the weight mg causes a restoring torque

(14.36)

The negative sign shows that the restoring torque is clockwise when the displace-
ment is counterclockwise, and vice versa.

When the body is released, it oscillates about its equilibrium position. The
motion is not simple harmonic because the torque is proportional to 
rather than to itself. However, if is small, we can approximate by in
radians, just as we did in analyzing the simple pendulum. Then the motion is
approximately simple harmonic. With this approximation,

The equation of motion is so

(14.37)
d2u

dt 2 = -
mgd

I
u

-1mgd2u = Iaz = I
d2u

dt 2

gtz = Iaz,

tz = -1mgd2u

usinuuu

sinutz

tz = -1mg21d sinu2

u,

Test Your Understanding of Section 14.5 When a body oscillating on a
horizontal spring passes through its equilibrium position, its acceleration is zero (see 
Fig. 14.2b). When the bob of an oscillating simple pendulum passes through its equilib-
rium position, is its acceleration zero? ❙

The body is free to rotate
around the z-axis.

The restoring
torque on the body
is proportional to
sinu, not to u. However, for small u, sin u , u,
so the motion is approximately simple harmonic.

,

The gravitational force
    acts on the body at
        its center of
           gravity (cg).

d

z

mg sin u

mg

mg cos u

cg

Irregularly
shaped
body

Pivot

 O

d sin u

u

14.23 Dynamics of a physical pendulum.



Comparing this with Eq. (14.4), we see that the role of for the spring-mass
system is played here by the quantity Thus the angular frequency is

(14.38)

The frequency is times this, and the period T is

(14.39)

Equation (14.39) is the basis of a common method for experimentally determin-
ing the moment of inertia of a body with a complicated shape. First locate the cen-
ter of gravity of the body by balancing. Then suspend the body so that it is free to
oscillate about an axis, and measure the period T of small-amplitude oscillations.
Finally, use Eq. (14.39) to calculate the moment of inertia I of the body about this
axis from T, the body’s mass m, and the distance d from the axis to the center of
gravity (see Exercise 14.53). Biomechanics researchers use this method to find the
moments of inertia of an animal’s limbs. This information is important for analyz-
ing how an animal walks, as we’ll see in the second of the two following examples.

T = 2p
A

I

mgd
  (physical pendulum, small amplitude)

1>2pƒ

v =
A

mgd

I
  (physical pendulum, small amplitude)

1mgd>I2.
1k>m2
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Example 14.9 Physical pendulum versus simple pendulum

If the body in Fig. 14.23 is a uniform rod with length L, pivoted at
one end, what is the period of its motion as a pendulum?

SOLUTION

IDENTIFY and SET UP: Our target variable is the oscillation period T
of a rod that acts as a physical pendulum. We find the rod’s moment
of inertia in Table 9.2, and then determine T using Eq. (14.39).

EXECUTE: The moment of inertia of a uniform rod about an axis
through one end is The distance from the pivot to
the rod’s center of gravity is Then from Eq. (14.39),

T = 2p
A

I

mgd
= 2p

B

1
3 ML2

MgL>2
= 2p

A

2L

3g

d = L>2.
I = 1

3 ML2.

EVALUATE: If the rod is a meter stick and
then

The period is smaller by a factor of than that of a
simple pendulum of the same length (see Example 14.8). The rod’s
moment of inertia around one end, is one-third that of
the simple pendulum, and the rod’s cg is half as far from the pivot
as that of the simple pendulum. You can show that, taken together
in Eq. (14.39), these two differences account for the factor by
which the periods differ.

22
3

I = 1
3 ML2,

22
3 = 0.816

T = 2p
B

211.00 m2

319.80 m>s22
= 1.64 s

g = 9.80 m>s2,
1L = 1.00 m2

Example 14.10 Tyrannosaurus rex and the physical pendulum

All walking animals, including humans, have a natural walking
pace—a number of steps per minute that is more comfortable than
a faster or slower pace. Suppose that this pace corresponds to the
oscillation of the leg as a physical pendulum. (a) How does this pace
depend on the length L of the leg from hip to foot? Treat the leg as a
uniform rod pivoted at the hip joint. (b) Fossil evidence shows that
T. rex, a two-legged dinosaur that lived about 65 million years ago,
had a leg length and a stride length (the
distance from one footprint to the next print of the same foot; see
Fig. 14.24). Estimate the walking speed of T. rex.

SOLUTION

IDENTIFY and SET UP: Our target variables are (a) the relationship
between walking pace and leg length L and (b) the walking speed
of T. rex. We treat the leg as a physical pendulum, with a period of

S = 4.0 mL = 3.1 m

Stride length S
Leg

length
L

14.24 The walking speed of Tyrannosaurus rex can be estimated
from leg length L and stride length S.

?
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14.7 Damped Oscillations
The idealized oscillating systems we have discussed so far are frictionless. There
are no nonconservative forces, the total mechanical energy is constant, and a sys-
tem set into motion continues oscillating forever with no decrease in amplitude.

Real-world systems always have some dissipative forces, however, and oscil-
lations die out with time unless we replace the dissipated mechanical energy
(Fig. 14.25). A mechanical pendulum clock continues to run because potential
energy stored in the spring or a hanging weight system replaces the mechanical
energy lost due to friction in the pivot and the gears. But eventually the spring
runs down or the weights reach the bottom of their travel. Then no more energy is
available, and the pendulum swings decrease in amplitude and stop.

The decrease in amplitude caused by dissipative forces is called damping, and
the corresponding motion is called damped oscillation. The simplest case to ana-
lyze in detail is a simple harmonic oscillator with a frictional damping force that is
directly proportional to the velocity of the oscillating body. This behavior occurs in
friction involving viscous fluid flow, such as in shock absorbers or sliding between
oil-lubricated surfaces. We then have an additional force on the body due to fric-
tion, where is the velocity and b is a constant that
describes the strength of the damping force. The negative sign shows that the force
is always opposite in direction to the velocity. The net force on the body is then

(14.40)

and Newton’s second law for the system is

(14.41)

Equation (14.41) is a differential equation for x; it would be the same as 
Eq. (14.4), the equation for the acceleration in SHM, except for the added term

Solving this equation is a straightforward problem in differential
equations, but we won’t go into the details here. If the damping force is relatively
small, the motion is described by

(14.42)x = Ae-1b>2m2t cos1v¿t + f2 (oscillator with little damping)

-bdx>dt.

-kx - bvx = max  or  -kx - b
dx

dt
= m

d2x

dt 2

aFx = -kx - bvx

vx = dx>dtFx = -bvx,

oscillation as found in Example 14.9. We can find the walking
speed from the period and the stride length.

EXECUTE: (a) From Example 14.9 the period of oscillation of the
leg is which is proportional to Each step
takes one-half a period, so the walking pace (in steps per sec-
ond) is twice the oscillation frequency which is pro-
portional to The greater the leg length L, the slower the
walking pace.

(b) According to our model, T. rex traveled one stride length S
in a time

T = 2p
A

2L

3g
= 2p

B

213.1 m2

319.8 m>s22
= 2.9 s

1>1L.
ƒ = 1>T,

1L.T = 2p22L>3g,

so its walking speed was

This is roughly the walking speed of an adult human.

EVALUATE: A uniform rod isn’t a very good model for a leg. The
legs of many animals, including both T. rex and humans, are
tapered; there is more mass between hip and knee than between
knee and foot. The center of mass is therefore less than from the
hip; a reasonable guess would be about The moment of inertia
is therefore considerably less than —say, Use the
analysis of Example 14.9 with these corrections; you’ll get a shorter
oscillation period and an even greater walking speed for T. rex.

ML2>15.ML2>3
L>4.

L>2

v =
S

T
=

4.0 m

2.9 s
= 1.4 m>s = 5.0 km>h = 3.1 mi>h

Test Your Understanding of Section 14.6 The center of gravity of a
simple pendulum of mass m and length L is located at the position of the pendu-
lum bob, a distance L from the pivot point. The center of gravity of a uniform rod
of the same mass m and length 2L pivoted at one end is also a distance L from the pivot
point. How does the period of this uniform rod compare to the period of the simple pen-
dulum? (i) The rod has a longer period; (ii) the rod has a shorter period; (iii) the rod has
the same period. ❙

14.25 A swinging bell left to itself will
eventually stop oscillating due to damping
forces (air resistance and friction at the
point of suspension).



The angular frequency of oscillation is given by

(14.43)

You can verify that Eq. (14.42) is a solution of Eq. (14.41) by calculating the first
and second derivatives of x, substituting them into Eq. (14.41), and checking
whether the left and right sides are equal. This is a straightforward but slightly
tedious procedure.

The motion described by Eq. (14.42) differs from the undamped case in two
ways. First, the amplitude is not constant but decreases with time
because of the decreasing exponential factor Figure 14.26 is a graph of
Eq. (14.42) for the case it shows that the larger the value of b, the more
quickly the amplitude decreases.

Second, the angular frequency given by Eq. (14.43), is no longer equal to
but is somewhat smaller. It becomes zero when b becomes so large that

(14.44)

When Eq. (14.44) is satisfied, the condition is called critical damping. The sys-
tem no longer oscillates but returns to its equilibrium position without oscillation
when it is displaced and released.

If b is greater than the condition is called overdamping. Again there
is no oscillation, but the system returns to equilibrium more slowly than with crit-
ical damping. For the overdamped case the solutions of Eq. (14.41) have the form

where and are constants that depend on the initial conditions and and 
are constants determined by m, k, and b.

When b is less than the critical value, as in Eq. (14.42), the condition is called
underdamping. The system oscillates with steadily decreasing amplitude.

In a vibrating tuning fork or guitar string, it is usually desirable to have as little
damping as possible. By contrast, damping plays a beneficial role in the oscillations
of an automobile’s suspension system. The shock absorbers provide a velocity-
dependent damping force so that when the car goes over a bump, it doesn’t continue
bouncing forever (Fig. 14.27). For optimal passenger comfort, the system should be
critically damped or slightly underdamped. Too much damping would be counter-
productive; if the suspension is overdamped and the car hits a second bump just
after the first one, the springs in the suspension will still be compressed somewhat
from the first bump and will not be able to fully absorb the impact.

Energy in Damped Oscillations
In damped oscillations the damping force is nonconservative; the mechanical
energy of the system is not constant but decreases continuously, approaching
zero after a long time. To derive an expression for the rate of change of energy,
we first write an expression for the total mechanical energy E at any instant:

To find the rate of change of this quantity, we take its time derivative:

But and so

dE

dt
= vx1max + kx2

dx>dt = vx,dvx>dt = ax

dE

dt
= mvx

dvx

dt
+ kx

dx

dt

E = 1
2 mvx

2 + 1
2 kx2

a2a1C2C1

x = C1e-a1t + C2e-a2t

21km ,

k

m
-

b2

4m2 = 0  or  b = 21km

v = 2k>m
v¿,

f = 0;
e-1b>2m2t.

Ae-1b>2m2t

v¿ =
B

k

m
-

b2

4m2  (oscillator with little damping)

v¿
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T0 2T0 3T0 4T0 5T0

Ae2(b/2m)t

x

b � 0.1�km (weak damping force)
b � 0.4�km (stronger damping force)

With stronger damping (larger b):
• The amplitude (shown by the dashed
   curves) decreases more rapidly.
• The period T increases
 (T0 � period with zero damping).

t

14.26 Graph of displacement versus
time for an oscillator with little damping
[see Eq. (14.42)] and with phase angle

The curves are for two values of
the damping constant b.
f = 0.

Piston

Viscous
fluid

Lower cylinder
attached to
axle; moves up
and down.

Pushed up

Pushed down

Upper cylinder
attached to car’s
frame; moves little.

14.27 An automobile shock absorber.
The viscous fluid causes a damping force
that depends on the relative velocity of the
two ends of the unit.
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From Eq. (14.41), so

(14.45)

The right side of Eq. (14.45) is negative whenever the oscillating body is in
motion, whether the x-velocity is positive or negative. This shows that as the
body moves, the energy decreases, though not at a uniform rate. The term

(force times velocity) is the rate at which the damping force
does (negative) work on the system (that is, the damping power). This equals the
rate of change of the total mechanical energy of the system.

Similar behavior occurs in electric circuits containing inductance, capaci-
tance, and resistance. There is a natural frequency of oscillation, and the resist-
ance plays the role of the damping constant b. We will study these circuits in
detail in Chapters 30 and 31.

-bvx
2 = 1-bvx2vx

vx

dE

dt
= vx1-bvx2 = -bvx

2  (damped oscillations)

max + kx = -bdx>dt = -bvx,

Test Your Understanding of Section 14.7 An airplane is flying in a
straight line at a constant altitude. If a wind gust strikes and raises the nose of the
airplane, the nose will bob up and down until the airplane eventually returns to its
original attitude. Are these oscillations (i) undamped, (ii) underdamped, (iii) critically
damped, or (iv) overdamped? ❙

14.8 Forced Oscillations and Resonance
A damped oscillator left to itself will eventually stop moving altogether. But we
can maintain a constant-amplitude oscillation by applying a force that varies with
time in a periodic or cyclic way, with a definite period and frequency. As an
example, consider your cousin Throckmorton on a playground swing. You can
keep him swinging with constant amplitude by giving him a little push once each
cycle. We call this additional force a driving force.

Damped Oscillation with a Periodic Driving Force
If we apply a periodically varying driving force with angular frequency to a
damped harmonic oscillator, the motion that results is called a forced oscillation
or a driven oscillation. It is different from the motion that occurs when the sys-
tem is simply displaced from equilibrium and then left alone, in which case the
system oscillates with a natural angular frequency determined by m, k, and
b, as in Eq. (14.43). In a forced oscillation, however, the angular frequency with
which the mass oscillates is equal to the driving angular frequency This does
not have to be equal to the angular frequency with which the system would
oscillate without a driving force. If you grab the ropes of Throckmorton’s swing,
you can force the swing to oscillate with any frequency you like.

Suppose we force the oscillator to vibrate with an angular frequency that is
nearly equal to the angular frequency it would have with no driving force.
What happens? The oscillator is naturally disposed to oscillate at so we
expect the amplitude of the resulting oscillation to be larger than when the two
frequencies are very different. Detailed analysis and experiment show that this is
just what happens. The easiest case to analyze is a sinusoidally varying force—
say, If we vary the frequency of the driving force, 
the amplitude of the resulting forced oscillation varies in an interesting way 
(Fig. 14.28). When there is very little damping (small b), the amplitude goes through
a sharp peak as the driving angular frequency nears the natural oscillation angu-
lar frequency When the damping is increased (larger b), the peak becomes
broader and smaller in height and shifts toward lower frequencies.

We could work out an expression that shows how the amplitude A of the
forced oscillation depends on the frequency of a sinusoidal driving force, with

v¿.
vd

vdF1t) = Fmax cos vdt.

v = v¿,
v¿

vd

v¿
vd.

v¿

vd



maximum value That would involve more differential equations than we’re
ready for, but here is the result:

(14.46)

When the first term under the radical is zero, so A has a maximum
near The height of the curve at this point is proportional to 
the less damping, the higher the peak. At the low-frequency extreme, when

we get This corresponds to a constant force and a
constant displacement from equilibrium, as we might expect.

Resonance and Its Consequences
The fact that there is an amplitude peak at driving frequencies close to the natural
frequency of the system is called resonance. Physics is full of examples of reso-
nance; building up the oscillations of a child on a swing by pushing with a fre-
quency equal to the swing’s natural frequency is one. A vibrating rattle in a car
that occurs only at a certain engine speed or wheel-rotation speed is an all-too-
familiar example. Inexpensive loudspeakers often have an annoying boom or
buzz when a musical note happens to coincide with the resonant frequency of the
speaker cone or the speaker housing. In Chapter 16 we will study other examples
of resonance that involve sound. Resonance also occurs in electric circuits, as we
will see in Chapter 31; a tuned circuit in a radio or television receiver responds
strongly to waves having frequencies near its resonant frequency, and this fact is
used to select a particular station and reject the others.

Resonance in mechanical systems can be destructive. A company of soldiers
once destroyed a bridge by marching across it in step; the frequency of their steps
was close to a natural vibration frequency of the bridge, and the resulting oscilla-
tion had large enough amplitude to tear the bridge apart. Ever since, marching
soldiers have been ordered to break step before crossing a bridge. Some years
ago, vibrations of the engines of a particular airplane had just the right frequency
to resonate with the natural frequencies of its wings. Large oscillations built up,
and occasionally the wings fell off.

A = Fmax>k
FmaxA = Fmax>k.vd = 0,

1>b;vd = 2k>m .
k - mvd

2 = 0,

A =
Fmax

21k - mvd
222 + b2vd

2
   (amplitude of a driven oscillator)

Fmax.
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Each curve shows the amplitude A for an oscillator subjected to a driving force
at various angular frequencies vd. Successive curves from blue to gold represent
successively greater damping.

A lightly damped oscillator exhibits a sharp
resonance peak when vd is close to v (the
natural angular frequency of an undamped
oscillator).

Driving frequency vd equals natural angular frequency v of an undamped oscillator.

Stronger damping reduces and broadens the
peak and shifts it to lower frequencies.

If b $ �2km, the peak disappears completely.Fmax/k

2Fmax/k

3Fmax/k

4Fmax/k

5Fmax/k

0.5 1.0 1.5 2.0

A

b 5 0.2�km

0
vd /v

b 5 0.4�km

b 5 0.7�km

b 5 1.0�km

b 5 2.0�km

14.28 Graph of the amplitude A of
forced oscillation as a function of the
angular frequency of the driving force.
The horizontal axis shows the ratio of 
to the angular frequency 
of an undamped oscillator. Each curve has
a different value of the damping constant b.

v = 2k>m
vd

vd

Application Canine Resonance
Unlike humans, dogs have no sweat glands
and so must pant in order to cool down. The
frequency at which a dog pants is very close to
the resonant frequency of its respiratory sys-
tem. This causes the maximum amount of air
to move in and out of the dog and so mini-
mizes the effort that the dog must exert to
cool itself.

Test Your Understanding of Section 14.8 When driven at a frequency
near its natural frequency, an oscillator with very little damping has a much greater
response than the same oscillator with more damping. When driven at a frequency
that is much higher or lower than the natural frequency, which oscillator will have the
greater response: (i) the one with very little damping or (ii) the one with more damping? ❙
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Simple harmonic motion: If the restoring force in
periodic motion is directly proportional to the displace-
ment x, the motion is called simple harmonic motion
(SHM). In many cases this condition is satisfied if the
displacement from equilibrium is small. The angular
frequency, frequency, and period in SHM do not depend
on the amplitude, but only on the mass m and force con-
stant k. The displacement, velocity, and acceleration in
SHM are sinusoidal functions of time; the amplitude A
and phase angle of the oscillation are determined by
the initial position and velocity of the body. (See Exam-
ples 14.2, 14.3, 14.6, and 14.7.)

f

Fx

Energy in simple harmonic motion: Energy is conserved
in SHM. The total energy can be expressed in terms of
the force constant k and amplitude A. (See Examples
14.4 and 14.5.)

Angular simple harmonic motion: In angular SHM, the
frequency and angular frequency are related to the
moment of inertia I and the torsion constant .k

(14.3)

(14.4)

(14.10)

(14.11)

(14.12)

(14.13)x = Acos1vt + f2

T =
1

ƒ
= 2p

A

m

k

ƒ =
v

2p
=

1

2p A

k

m

v =
A

k

m

ax =
Fx

m
= -

k

m
x

Fx = -kx

(14.21)

E = 1
2 mvx

2 + 1
2 kx2 = 1

2 kA2 = constant

(14.24)

v =
A

k

I
  and  ƒ =

1

2p A

k

I

Simple pendulum: A simple pendulum consists of a point
mass m at the end of a massless string of length L. Its
motion is approximately simple harmonic for suffi-
ciently small amplitude; the angular frequency, fre-
quency, and period then depend only on g and L, not on
the mass or amplitude. (See Example 14.8.)

(14.32)

(14.33)

(14.34)T =
2p

v
=

1

ƒ
= 2p

A

L

g

ƒ =
v

2p
=

1

2p A

g

L

v =
A

g

L

Periodic motion: Periodic motion is motion that repeats
itself in a definite cycle. It occurs whenever a body has a
stable equilibrium position and a restoring force that
acts when it is displaced from equilibrium. Period T is
the time for one cycle. Frequency is the number of
cycles per unit time. Angular frequency is times
the frequency. (See Example 14.1.)

2pv

ƒ

(14.1)

(14.2)v = 2pƒ =
2p

T

ƒ =
1

T
  T =

1

ƒ

Fx

ax

xx
n

mg

y

n

mg

y

Fx

ax

x

n

mg

y

x = 2A x = 0
x , 0 x . 0

x = A

x

2T
O

A

T
t

x

2A

Energy

x

E 5 K 1 U

O A2A

U

K

utz

SpringBalance wheel

Spring torque tz opposes
angular displacement u.

L

T

mg sin u
mg

mg cos u

u

Physical pendulum: A physical pendulum is any body
suspended from an axis of rotation. The angular fre-
quency and period for small-amplitude oscillations are
independent of amplitude, but depend on the mass m,
distance d from the axis of rotation to the center of grav-
ity, and moment of inertia I about the axis. (See Exam-
ples 14.9 and 14.10.)

(14.38)

(14.39)T = 2p
A

I

mgd

v =
B

mgd

I
d

z

mg sinu

mg
mg cosu

cg

 O

d sin u
u



Driven oscillations and resonance: When a sinusoidally
varying driving force is added to a damped harmonic
oscillator, the resulting motion is called a forced oscilla-
tion. The amplitude is a function of the driving fre-
quency and reaches a peak at a driving frequency
close to the natural frequency of the system. This behav-
ior is called resonance.

vd

(14.46)A =
Fmax

21k - mvd
222 + b2vd

2

Damped oscillations: When a force propor-
tional to velocity is added to a simple harmonic oscilla-
tor, the motion is called a damped oscillation. If

(called underdamping), the system oscil-
lates with a decaying amplitude and an angular fre-
quency that is lower than it would be without
damping. If (called critical damping) or

(called overdamping), when the system 
is displaced it returns to equilibrium without 
oscillating.

b 7 21km
b = 21km

v¿

b 6 22km

Fx = -bvx (14.42)

(14.43)v¿ =
B

k

m
-

b2

4m2

x = Ae-1b>2m2t cos1v¿t + f2
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Two uniform, solid cylinders of radius R and total mass M are con-
nected along their common axis by a short, light rod and rest on a
horizontal tabletop (Fig. 14.29). A frictionless ring at the center of
the rod is attached to a spring with force constant k; the other end
of the spring is fixed. The cylinders are pulled to the left a distance
x, stretching the spring, and then released from rest. Due to friction
between the tabletop and the cylinders, the cylinders roll without
slipping as they oscillate. Show that the motion of the center of
mass of the cylinders is simple harmonic, and find its period.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. What condition must be satisfied for the motion of the center of

mass of the cylinders to be simple harmonic? (Hint: See Sec-
tion 14.2.)

2. Which equations should you use to describe the translational
and rotational motions of the cylinders? Which equation should
you use to describe the condition that the cylinders roll without
slipping? (Hint: See Section 10.3.)

3. Sketch the situation and choose a coordinate system. Make a
list of the unknown quantities and decide which is the target
variable.

BRIDGING PROBLEM Oscillating and Rolling

EXECUTE
4. Draw a free-body diagram for the cylinders when they are

displaced a distance x from equilibrium.
5. Solve the equations to find an expression for the acceleration of

the center of mass of the cylinders. What does this expression
tell you?

6. Use your result from step 5 to find the period of oscillation of
the center of mass of the cylinders.

EVALUATE
7. What would be the period of oscillation if there were no fric-

tion and the cylinders didn’t roll? Is this period larger or
smaller than your result from step 6? Is this reasonable?

M

x
kR

14.29
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Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q14.1 An object is moving with SHM of amplitude A on the end
of a spring. If the amplitude is doubled, what happens to the total
distance the object travels in one period? What happens to the
period? What happens to the maximum speed of the object? Dis-
cuss how these answers are related.
Q14.2 Think of several examples in everyday life of motions that
are, at least approximately, simple harmonic. In what respects does
each differ from SHM?
Q14.3 Does a tuning fork or similar tuning instrument undergo
SHM? Why is this a crucial question for musicians?
Q14.4 A box containing a pebble is attached to an ideal horizontal
spring and is oscillating on a friction-free air table. When the box
has reached its maximum distance from the equilibrium point, the
pebble is suddenly lifted out vertically without disturbing the box.
Will the following characteristics of the motion increase, decrease,
or remain the same in the subsequent motion of the box? Justify
each answer. (a) frequency; (b) period; (c) amplitude; (d) the maxi-
mum kinetic energy of the box; (e) the maximum speed of the box.
Q14.5 If a uniform spring is cut in half, what is the force constant
of each half? Justify your answer. How would the frequency of
SHM using a half-spring differ from the frequency using the same
mass and the entire spring?
Q14.6 The analysis of SHM in this chapter ignored the mass of the
spring. How does the spring’s mass change the characteristics of
the motion?
Q14.7 Two identical gliders on an air track are connected by an
ideal spring. Could such a system undergo SHM? Explain. How
would the period compare with that of a single glider attached to a
spring whose other end is rigidly attached to a stationary object?
Explain.
Q14.8 You are captured by Martians, taken into their ship, and put
to sleep. You awake some time later and find yourself locked in a
small room with no windows. All the Martians have left you with
is your digital watch, your school ring, and your long silver-chain
necklace. Explain how you can determine whether you are still on
earth or have been transported to Mars.
Q14.9 The system shown in Fig. 14.17 is mounted in an elevator.
What happens to the period of the motion (does it increase,
decrease, or remain the same) if the elevator (a) accelerates
upward at (b) moves upward at a steady 
(c) accelerates downward at Justify your answers.
Q14.10 If a pendulum has a period of 2.5 s on earth, what would
be its period in a space station orbiting the earth? If a mass hung
from a vertical spring has a period of 5.0 s on earth, what would its
period be in the space station? Justify each of your answers.
Q14.11 A simple pendulum is mounted in an elevator. What hap-
pens to the period of the pendulum (does it increase, decrease, or
remain the same) if the elevator (a) accelerates upward at

(b) moves upward at a steady (c) accelerates
downward at (d) accelerates downward at 
Justify your answers.
Q14.12 What should you do to the length of the string of a simple
pendulum to (a) double its frequency; (b) double its period; 
(c) double its angular frequency?

9.8 m>s2?5.0 m>s2;
5.0 m>s ;5.0 m>s2;

5.0 m>s2?
5.0 m>s;5.0 m>s2;

Q14.13 If a pendulum clock is taken to a mountaintop, does it gain
or lose time, assuming it is correct at a lower elevation? Explain
your answer.
Q14.14 When the amplitude of a simple pendulum increases,
should its period increase or decrease? Give a qualitative argu-
ment; do not rely on Eq. (14.35). Is your argument also valid for a
physical pendulum?
Q14.15 Why do short dogs (like Chihuahuas) walk with quicker
strides than do tall dogs (like Great Danes)?
Q14.16 At what point in the motion of a simple pendulum is the
string tension greatest? Least? In each case give the reasoning
behind your answer.
Q14.17 Could a standard of time be based on the period of a cer-
tain standard pendulum? What advantages and disadvantages
would such a standard have compared to the actual present-day
standard discussed in Section 1.3?
Q14.18 For a simple pendulum, clearly distinguish between (the
angular velocity) and (the angular frequency). Which is constant
and which is variable?
Q14.19 A glider is attached to a fixed ideal spring and oscillates
on a horizontal, friction-free air track. A coin is atop the glider
and oscillating with it. At what points in the motion is the friction
force on the coin greatest? At what points is it least? Justify your
answers.
Q14.20 In designing structures in an earthquake-prone region,
how should the natural frequencies of oscillation of a structure
relate to typical earthquake frequencies? Why? Should the struc-
ture have a large or small amount of damping?

EXERCISES
Section 14.1 Describing Oscillation
14.1 . BIO (a) Music. When a person sings, his or her vocal cords
vibrate in a repetitive pattern that has the same frequency as the
note that is sung. If someone sings the note B flat, which has a fre-
quency of 466 Hz, how much time does it take the person’s vocal
cords to vibrate through one complete cycle, and what is the angu-
lar frequency of the cords? (b) Hearing. When sound waves strike
the eardrum, this membrane vibrates with the same frequency as
the sound. The highest pitch that typical humans can hear has a
period of What are the frequency and angular frequency of
the vibrating eardrum for this sound? (c) Vision. When light having
vibrations with angular frequency ranging from 
to strikes the retina of the eye, it stimulates the
receptor cells there and is perceived as visible light. What are the
limits of the period and frequency of this light? (d) Ultrasound.
High-frequency sound waves (ultrasound) are used to probe the
interior of the body, much as x rays do. To detect small objects
such as tumors, a frequency of around 5.0 MHz is used. What are
the period and angular frequency of the molecular vibrations
caused by this pulse of sound?
14.2 . If an object on a horizontal, frictionless surface is attached
to a spring, displaced, and then released, it will oscillate. If it is
displaced 0.120 m from its equilibrium position and released with
zero initial speed, then after 0.800 s its displacement is found to be

4.7 * 1015 rad>s
2.7 * 1015 rad>s

50.0 ms .

v

v

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems. 

www.masteringphysics.com
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14.5 .. A machine part is undergoing SHM with a frequency of
5.00 Hz and amplitude 1.80 cm. How long does it take the part to
go from to 

Section 14.2 Simple Harmonic Motion
14.6 .. In a physics lab, you attach a 0.200-kg air-track glider to
the end of an ideal spring of negligible mass and start it oscillating.
The elapsed time from when the glider first moves through the
equilibrium point to the second time it moves through that point is
2.60 s. Find the spring’s force constant.
14.7 . When a body of unknown mass is attached to an ideal
spring with force constant it is found to vibrate with a
frequency of 6.00 Hz. Find (a) the period of the motion; (b) the
angular frequency; (c) the mass of the body.
14.8 . When a 0.750-kg mass oscillates on an ideal spring, the fre-
quency is 1.33 Hz. What will the frequency be if 0.220 kg are 
(a) added to the original mass and (b) subtracted from the original
mass? Try to solve this problem without finding the force constant of
the spring.
14.9 .. An object is undergoing SHM with period 0.900 s and
amplitude 0.320 m. At the object is at and is
instantaneously at rest. Calculate the time it takes the object to go
(a) from to and (b) from 
to .
14.10 . A small block is attached to an ideal spring and is moving
in SHM on a horizontal, frictionless surface. When the block is at

, the acceleration of the block is . What is
the frequency of the motion?
14.11 . A 2.00-kg, frictionless block is attached to an ideal spring
with force constant At the spring is neither
stretched nor compressed and the block is moving in the negative
direction at Find (a) the amplitude and (b) the phase
angle. (c) Write an equation for the position as a function of time.
14.12 .. Repeat Exercise 14.11, but assume that at the block
has velocity and displacement 
14.13 . The point of the needle of a sewing machine moves in
SHM along the x-axis with a frequency of 2.5 Hz. At its
position and velocity components are cm and 
respectively. (a) Find the acceleration component of the needle at

(b) Write equations giving the position, velocity, and accel-
eration components of the point as a function of time.
14.14 .. A small block is attached to an ideal spring and is mov-
ing in SHM on a horizontal, frictionless surface. When the ampli-

t = 0.

-15 cm>s,+1.1
t = 0

+0.200 m.-4.00 m>s
t = 0

12.0 m>s.

t = 0300 N>m.

-5.30 m>s2x = 0.280 m

x = 0
x = 0.160 mx = 0.160 mx = 0.320 m

x = 0.320 mt = 0

120 N>m,

x = -1.80 cm?x = 0

14.18 . A 0.500-kg mass on a spring has velocity as a function of
time given by 
What are (a) the period; (b) the amplitude; (c) the maximum accel-
eration of the mass; (d) the force constant of the spring?
14.19 . A 1.50-kg mass on a spring has displacement as a func-
tion of time given by the equation 

Find (a) the time for one complete vibration; (b) the force con-
stant of the spring; (c) the maximum speed of the mass; (d) the
maximum force on the mass; (e) the position, speed, and accelera-
tion of the mass at (f) the force on the mass at that
time.
14.20 . BIO Weighing a Virus. In February 2004, scientists at
Purdue University used a highly sensitive technique to measure the
mass of a vaccinia virus (the kind used in smallpox vaccine). The
procedure involved measuring the frequency of oscillation of a
tiny sliver of silicon (just 30 nm long) with a laser, first without the
virus and then after the virus had attached itself to the silicon. The
difference in mass caused a change in the frequency. We can model
such a process as a mass on a spring. (a) Show that the ratio of the
frequency with the virus attached to the frequency without

the virus ƒS is given by the formula ,

where mV is the mass of the virus and mS is the mass of the silicon
sliver. Notice that it is not necessary to know or measure the force
constant of the spring. (b) In some data, the silicon sliver has a mass
of and a frequency of without the
virus and with the virus. What is the mass of the
virus, in grams and in femtograms?
14.21 .. CALC Jerk. A guitar string vibrates at a frequency of
440 Hz. A point at its center moves in SHM with an amplitude of

2.87 * 1014 Hz
2.00 * 1015 Hz2.10 * 10-16 g

ƒS+V

fS
=

1

21 + 1mV>mS2
21

1ƒS+V2

t = 1.00 s;

x1t2 = 17.40 cm2 cos314.16 s-12t - 2.424

vx1t2 = -13.60 cm>s2 sin314.71 s-12t - p>24.

–10.0

O 5.0 10.0 15.0

x (cm)

t (s)

10.0

Figure E14.4

0.120 m on the opposite side, and it has passed the equilibrium
position once during this interval. Find (a) the amplitude; (b) the
period; (c) the frequency.
14.3 . The tip of a tuning fork goes through 440 complete vibra-
tions in 0.500 s. Find the angular frequency and the period of the
motion.
14.4 . The displacement of an oscillating object as a function of
time is shown in Fig. E14.4. What are (a) the frequency; (b) the
amplitude; (c) the period; (d) the angular frequency of this motion?

tude of the motion is 0.090 m, it takes the block 2.70 s to travel
from to . If the amplitude is doubled,
to 0.180 m, how long does it take the block to travel (a) from

to and (b) from to
?

14.15 . BIO Weighing Astronauts. This procedure has actually
been used to “weigh” astronauts in space. A 42.5-kg chair is
attached to a spring and allowed to oscillate. When it is empty, the
chair takes 1.30 s to make one complete vibration. But with an
astronaut sitting in it, with her feet off the floor, the chair takes
2.54 s for one cycle. What is the mass of the astronaut?
14.16 . A 0.400-kg object undergoing SHM has 
when What is the time for one oscillation?
14.17 . On a frictionless, horizontal air track, a glider oscillates at
the end of an ideal spring of force constant The graph
in Fig. E14.17 shows the acceleration of the glider as a function 
of time. Find (a) the mass of the glider; (b) the maximum dis-
placement of the glider from the equilibrium point; (c) the maxi-
mum force the spring exerts on the glider.

2.50 N>cm.

x = 0.300 m.
ax = -2.70 m>s2

x = -0.090 m
x = 0.090 mx = -0.180 mx = 0.180 m

x = -0.090 mx = 0.090 m

–12.0
–6.0

O

ax (m/s2)

t (s)

12.0
6.0

0.400.10 0.20 0.30

Figure E14.17
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3.0 mm and a phase angle of zero. (a) Write an equation for the
position of the center of the string as a function of time. (b)
What are the maximum values of the magnitudes of the velocity
and acceleration of the center of the string? (c) The derivative of
the acceleration with respect to time is a quantity called the jerk.
Write an equation for the jerk of the center of the string as a
function of time, and find the maximum value of the magnitude
of the jerk.

Section 14.3 Energy in Simple Harmonic Motion
14.22 .. For the oscillating object in Fig. E14.4, what are (a) its
maximum speed and (b) its maximum acceleration?
14.23 . A small block is attached to an ideal spring and is mov-
ing in SHM on a horizontal, frictionless surface. The amplitude of
the motion is 0.120 m. The maximum speed of the block is 
3.90 m s. What is the maximum magnitude of the acceleration of
the block?
14.24 . A small block is attached to an ideal spring and is moving
in SHM on a horizontal, frictionless surface. The amplitude of the
motion is 0.250 m and the period is 3.20 s. What are the speed and
acceleration of the block when ?
14.25 .. A tuning fork labeled 392 Hz has the tip of each of its
two prongs vibrating with an amplitude of 0.600 mm. (a) What is
the maximum speed of the tip of a prong? (b) A housefly (Musca
domestica) with mass 0.0270 g is holding onto the tip of one of the
prongs. As the prong vibrates, what is the fly’s maximum kinetic
energy? Assume that the fly’s mass has a negligible effect on the
frequency of oscillation.
14.26 .. A harmonic oscillator has angular frequency and ampli-
tude A. (a) What are the magnitudes of the displacement and
velocity when the elastic potential energy is equal to the kinetic
energy? (Assume that at equilibrium.) (b) How often does
this occur in each cycle? What is the time between occurrences?
(c) At an instant when the displacement is equal to what fraction
of the total energy of the system is kinetic and what fraction is
potential?
14.27 . A 0.500-kg glider, attached to the end of an ideal spring
with force constant undergoes SHM with an ampli-
tude of 0.040 m. Compute (a) the maximum speed of the glider;
(b) the speed of the glider when it is at (c) the
magnitude of the maximum acceleration of the glider; (d) the
acceleration of the glider at (e) the total mechani-
cal energy of the glider at any point in its motion.
14.28 .. A cheerleader waves her pom-pom in SHM with an
amplitude of 18.0 cm and a frequency of 0.850 Hz. Find (a) the
maximum magnitude of the acceleration and of the velocity; 
(b) the acceleration and speed when the pom-pom’s coordinate is

(c) the time required to move from the equilibrium
position directly to a point 12.0 cm away. (d) Which of the quanti-
ties asked for in parts (a), (b), and (c) can be found using the
energy approach used in Section 14.3, and which cannot? Explain.
14.29 . CP For the situation described in part (a) of Example
14.5, what should be the value of the putty mass m so that the
amplitude after the collision is one-half the original amplitude?
For this value of m, what fraction of the original mechanical
energy is converted into heat?
14.30 . A 0.150-kg toy is undergoing SHM on the end of a hori-
zontal spring with force constant When the object
is 0.0120 m from its equilibrium position, it is observed to have a
speed of What are (a) the total energy of the object at
any point of its motion; (b) the amplitude of the motion; (c) the
maximum speed attained by the object during its motion?

0.300 m>s.

k = 300 N>m.

x = +9.0 cm;

x = -0.015 m;

x = -0.015 m;

k = 450 N>m,

A>2,

U = 0

v

x = 0.160 m

>

14.31 .. You are watching an object that is moving in SHM.
When the object is displaced 0.600 m to the right of its equilibrium
position, it has a velocity of to the right and an accelera-
tion of to the left. How much farther from this point will
the object move before it stops momentarily and then starts to
move back to the left?
14.32 .. On a horizontal, frictionless table, an open-topped 5.20-kg
box is attached to an ideal horizontal spring having force constant

Inside the box is a 3.44-kg stone. The system is oscillat-
ing with an amplitude of 7.50 cm. When the box has reached its
maximum speed, the stone is suddenly plucked vertically out of
the box without touching the box. Find (a) the period and (b) the
amplitude of the resulting motion of the box. (c) Without doing
any calculations, is the new period greater or smaller than the orig-
inal period? How do you know?
14.33 .. A mass is oscillating with amplitude A at the end of a
spring. How far (in terms of A) is this mass from the equilibrium
position of the spring when the elastic potential energy equals the
kinetic energy?
14.34 .. A mass m is attached to a spring of force constant 75 N m
and allowed to oscillate. Figure E14.34 shows a graph of its veloc-
ity as a function of time t. Find (a) the period, (b) the frequency,
and (c) the angular frequency of this motion. (d) What is the ampli-
tude (in cm), and at what times does the mass reach this position?
(e) Find the maximum acceleration of the mass and the times at
which it occurs. (f) What is the mass m?

vx

>

375 N>m.

8.40 m>s2
2.20 m>s

20
10

–10
–20

0.2 0.6 1.0 1.4 1.6

 vx 1cm/s2

t 1s2

Figure E14.34

14.35 . Inside a NASA test vehicle, a 3.50-kg ball is pulled along
by a horizontal ideal spring fixed to a friction-free table. The force
constant of the spring is The vehicle has a steady accel-
eration of and the ball is not oscillating. Suddenly,
when the vehicle’s speed has reached its engines turn
off, thus eliminating its acceleration but not its velocity. Find 
(a) the amplitude and (b) the frequency of the resulting oscillations
of the ball. (c) What will be the ball’s maximum speed relative to
the vehicle?

Section 14.4 Applications of Simple Harmonic Motion
14.36 . A proud deep-sea fisherman hangs a 65.0-kg fish from an
ideal spring having negligible mass. The fish stretches the spring
0.120 m. (a) Find the force constant of the spring. The fish is now
pulled down 5.00 cm and released. (b) What is the period of oscil-
lation of the fish? (c) What is the maximum speed it will reach?
14.37 . A 175-g glider on a horizontal, frictionless air track is
attached to a fixed ideal spring with force constant At
the instant you make measurements on the glider, it is moving at

and is 3.00 cm from its equilibrium point. Use energy
conservation to find (a) the amplitude of the motion and (b) the
maximum speed of the glider. (c) What is the angular frequency of
the oscillations?
14.38 . A thrill-seeking cat with mass 4.00 kg is attached by a
harness to an ideal spring of negligible mass and oscillates verti-
cally in SHM. The amplitude is 0.050 m, and at the highest point

0.815 m>s

155 N>m.

45.0 m>s,
5.00 m>s2,

225 N>m.



14.43 .. You want to find the
moment of inertia of a compli-
cated machine part about an axis through its center of mass. You
suspend it from a wire along this axis. The wire has a torsion con-
stant of . You twist the part a small amount about
this axis and let it go, timing 125 oscillations in 265 s. What is the
moment of inertia you want to find?
14.44 .. CALC The balance wheel of a watch vibrates with an
angular amplitude angular frequency and phase angle

(a) Find expressions for the angular velocity and
angular acceleration as functions of time. (b) Find the bal-
ance wheel’s angular velocity and angular acceleration when its
angular displacement is and when its angular displacement is

and is decreasing. (Hint: Sketch a graph of versus t.)

Section 14.5 The Simple Pendulum
14.45 .. You pull a simple pendulum 0.240 m long to the side
through an angle of and release it. (a) How much time does it
take the pendulum bob to reach its highest speed? (b) How much
time does it take if the pendulum is released at an angle of 
instead of 
14.46 . An 85.0-kg mountain climber plans to swing down, start-
ing from rest, from a ledge using a light rope 6.50 m long. He holds

3.50°?
1.75°

3.50°

uu™>2
™,

d2u>dt 2
du>dtf = 0.

v,™,

0.450 N # m>rad
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of the motion the spring has its natural unstretched length. Calcu-
late the elastic potential energy of the spring (take it to be zero for
the unstretched spring), the kinetic energy of the cat, the gravita-
tional potential energy of the system relative to the lowest point 
of the motion, and the sum of these three energies when the cat is
(a) at its highest point; (b) at its lowest point; (c) at its equilibrium
position.
14.39 .. A 1.50-kg ball and a 2.00-kg ball are glued together with
the lighter one below the heavier one. The upper ball is attached to
a vertical ideal spring of force constant and the system
is vibrating vertically with amplitude 15.0 cm. The glue connect-
ing the balls is old and weak, and it suddenly comes loose when
the balls are at the lowest position in their motion. (a) Why is the
glue more likely to fail at the lowest point than at any other point in
the motion? (b) Find the amplitude and frequency of the vibrations
after the lower ball has come loose.
14.40 .. A uniform, solid metal disk of mass 6.50 kg and diame-
ter 24.0 cm hangs in a horizontal plane, supported at its center by a
vertical metal wire. You find that it requires a horizontal force of
4.23 N tangent to the rim of the disk to turn it by thus twist-
ing the wire. You now remove this force and release the disk from
rest. (a) What is the torsion constant for the metal wire? (b) What
are the frequency and period of the torsional oscillations of the
disk? (c) Write the equation of motion for for the disk.
14.41 .. A certain alarm clock ticks four times each second,
with each tick representing half a period. The balance wheel con-
sists of a thin rim with radius 0.55 cm, connected to the balance
staff by thin spokes of negligible mass. The total mass of the bal-
ance wheel is 0.90 g. (a) What is the moment of inertia of the bal-
ance wheel about its shaft? (b) What is the torsion constant of the
coil spring (Fig. 14.19)?
14.42 . A thin metal disk with
mass and radius
2.20 cm is attached at its center
to a long fiber (Fig. E14.42).
The disk, when twisted and
released, oscillates with a period
of 1.00 s. Find the torsion con-
stant of the fiber.

2.00 * 10-3 kg

u1t2

3.34°,

165 N>m,

one end of the rope, and the other end is tied higher up on a rock
face. Since the ledge is not very far from the rock face, the rope
makes a small angle with the vertical. At the lowest point of his
swing, he plans to let go and drop a short distance to the ground.
(a) How long after he begins his swing will the climber first reach
his lowest point? (b) If he missed the first chance to drop off, how
long after first beginning his swing will the climber reach his low-
est point for the second time?
14.47 . A building in San Francisco has light fixtures consisting
of small 2.35-kg bulbs with shades hanging from the ceiling at the
end of light, thin cords 1.50 m long. If a minor earthquake occurs,
how many swings per second will these fixtures make?
14.48 . A Pendulum on Mars. A certain simple pendulum has
a period on the earth of 1.60 s. What is its period on the surface of
Mars, where 
14.49 . After landing on an unfamiliar planet, a space explorer
constructs a simple pendulum of length 50.0 cm. She finds that the
pendulum makes 100 complete swings in 136 s. What is the value
of g on this planet?
14.50 .. A small sphere with mass m is attached to a massless rod
of length L that is pivoted at the top, forming a simple pendulum.
The pendulum is pulled to one side so that the rod is at an angle 
from the vertical, and released from rest. (a) In a diagram, show
the pendulum just after it is released. Draw vectors representing
the forces acting on the small sphere and the acceleration of the
sphere. Accuracy counts! At this point, what is the linear accelera-
tion of the sphere? (b) Repeat part (a) for the instant when the pen-
dulum rod is at an angle from the vertical. (c) Repeat part (a)
for the instant when the pendulum rod is vertical. At this point,
what is the linear speed of the sphere?
14.51 . A simple pendulum 2.00 m long swings through a maxi-
mum angle of with the vertical. Calculate its period 
(a) assuming a small amplitude, and (b) using the first three terms
of Eq. (14.35). (c) Which of the answers in parts (a) and (b) is
more accurate? For the one that is less accurate, by what percent is
it in error from the more accurate answer?

Section 14.6 The Physical Pendulum
14.52 .. We want to hang a thin hoop on a horizontal nail and
have the hoop make one complete small-angle oscillation each 2.0 s.
What must the hoop’s radius be?
14.53 . A 1.80-kg connecting
rod from a car engine is pivoted
about a horizontal knife edge as
shown in Fig. E14.53. The center
of gravity of the rod was located
by balancing and is 0.200 m
from the pivot. When the rod is
set into small-amplitude oscilla-
tion, it makes 100 complete
swings in 120 s. Calculate the
moment of inertia of the rod
about the rotation axis through
the pivot.

30.0°

™>2

™

g = 3.71 m>s2?

R

Figure E14.42

d 5 0.200 m

cg

Figure E14.53

14.54 .. A 1.80-kg monkey wrench is pivoted 0.250 m from its
center of mass and allowed to swing as a physical pendulum. The
period for small-angle oscillations is 0.940 s. (a) What is the
moment of inertia of the wrench about an axis through the pivot?
(b) If the wrench is initially displaced 0.400 rad from its equilib-
rium position, what is the angular speed of the wrench as it passes
through the equilibrium position?



14.67 . CP SHM in a Car Engine. The motion of the piston of
an automobile engine  is approximately simple harmonic. (a) If the
stroke of an engine (twice the amplitude) is 0.100 m and the 
engine runs at compute the acceleration of the pis-
ton at the endpoint of its stroke. (b) If the piston has mass 
0.450 kg, what net force must be exerted on it at this point? 
(c) What are the speed and kinetic energy of the piston at the mid-
point of its stroke? (d) What average power is required to accelerate
the piston from rest to the speed found in part (c)? (e) If the engine
runs at what are the answers to parts (b), (c), and (d)?
14.68 . Four passengers with combined mass 250 kg compress
the springs of a car with worn-out shock absorbers by 4.00 cm
when they get in. Model the car and passengers as a single body 
on a single ideal spring. If the loaded car has a period of vibration
of 1.92 s, what is the period of vibration of the empty car?
14.69 . A glider is oscillating in SHM on an air track with an
amplitude You slow it so that its amplitude is halved. What
happens to its (a) period, frequency, and angular frequency; 

A1.

7000 rev>min,

4500 rev>min,
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14.55 . Two pendulums have the same dimensions (length L) and
total mass Pendulum A is a very small ball swinging at the
end of a uniform massless bar. In pendulum B, half the mass is in
the ball and half is in the uniform bar. Find the period of each pen-
dulum for small oscillations. Which one takes longer for a swing?
14.56 .. CP A holiday ornament in the shape of a hollow sphere
with mass and radius is hung from a
tree limb by a small loop of wire attached to the surface of the
sphere. If the ornament is displaced a small distance and released,
it swings back and forth as a physical pendulum with negligible
friction. Calculate its period. (Hint: Use the parallel-axis theorem
to find the moment of inertia of the sphere about the pivot at the
tree limb.)
14.57 .. The two pendulums shown in Fig. E14.57 each consist
of a uniform solid ball of mass M supported by a rigid massless
rod, but the ball for pendulum A is very tiny while the ball for pen-
dulum B is much larger. Find the period of each pendulum for
small displacements. Which ball takes longer to complete a swing?

R = 0.050 mM = 0.015 kg

1m2.

Section 14.8 Forced Oscillations and Resonance
14.63 . A sinusoidally varying driving force is applied to a
damped harmonic oscillator. (a) What are the units of the damping
constant b? (b) Show that the quantity has the same units
as b. (c) In terms of and k, what is the amplitude for 

when (i) and (ii) Compare
your results to Fig. 14.28.
14.64 . A sinusoidally varying driving force is applied to a
damped harmonic oscillator of force constant k and mass m. If 
the damping constant has a value the amplitude is when the
driving angular frequency equals In terms of what is
the amplitude for the same driving frequency and the same driving
force amplitude if the damping constant is (a) and 
(b)

PROBLEMS
14.65 .. An object is undergoing SHM with period 1.200 s and
amplitude 0.600 m. At the object is at and is moving
in the negative x-direction. How far is the object from the equilib-
rium position when 
14.66 ... An object is undergoing SHM with period 0.300 s and
amplitude 6.00 cm. At the object is instantaneously at rest at

Calculate the time it takes the object to go from
to x = -1.50 cm.x = 6.00 cm

x = 6.00 cm.
t = 0

t = 0.480 s?

x = 0t = 0

b1>2?
3b1Fmax,

A1,2k>m.
A1b1,

b = 0.42km?b = 0.22km2k>m
vd =Fmax

2km

L

M

A

L

L /2

M

B

Figure E14.57

Section 14.7 Damped Oscillations
14.58 . A 2.50-kg rock is attached at the end of a thin, very light
rope 1.45 m long. You start it swinging by releasing it when the
rope makes an 11° angle with the vertical. You record the observa-
tion that it rises only to an angle of 4.5° with the vertical after 
swings. (a) How much energy has this system lost during that
time? (b) What happened to the “lost” energy? Explain how it
could have been “lost.”
14.59 . An unhappy 0.300-kg rodent, moving on the end of a
spring with force constant is acted on by a damping
force (a) If the constant b has the value 
what is the frequency of oscillation of the rodent? (b) For what
value of the constant b will the motion be critically damped?
14.60 .. A 50.0-g hard-boiled egg moves on the end of a spring
with force constant Its initial displacement is
0.300 m. A damping force acts on the egg, and the
amplitude of the motion decreases to 0.100 m in 5.00 s. Calculate
the magnitude of the damping constant b.
14.61 .. CALC The motion of an underdamped oscillator is
described by Eq. (14.42). Let the phase angle be zero. 
(a) According to this equation, what is the value of x at
(b) What are the magnitude and direction of the velocity at 
What does the result tell you about the slope of the graph of x ver-
sus t near (c) Obtain an expression for the acceleration at

For what value or range of values of the damping constant b
(in terms of k and m) is the acceleration at negative, zero,
and positive? Discuss each case in terms of the shape of the graph
of x versus t near t = 0.

t = 0
t = 0.

axt = 0?

t = 0?
t = 0?

f

Fx = -bvx

k = 25.0 N>m.

0.900 kg>s,Fx = -bvx.
k = 2.50 N>m,

10 1
2

5

–5
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x 1cm2

O
t 1s2
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Figure E14.62

14.62 .. A mass is vibrating at the end of a spring of force con-
stant 225 N m. Figure E14.62 shows a graph of its position x as a
function of time t. (a) At what times is the mass not moving? (b)
How much energy did this system originally contain? (c) How
much energy did the system lose between and 
Where did this energy go?

t = 4.0 s?t = 1.0 s

>



14.79 .. CP A square object of
mass m is constructed of four
identical uniform thin sticks, each
of length L, attached together.
This object is hung on a hook 
at its upper corner (Fig. P14.79).
If it is rotated slightly to the 
left and then released, at what
frequency will it swing back and
forth?
14.80 ... An object with mass
0.200 kg is acted on by an elas-
tic restoring force with force constant (a) Graph elastic
potential energy U as a function of displacement x over a range of
x from to On your graph, let 
vertically and horizontally. The object is set into
oscillation with an initial potential energy of 0.140 J and an ini-
tial kinetic energy of 0.060 J. Answer the following questions by
referring to the graph. (b) What is the amplitude of oscillation?
(c) What is the potential energy when the displacement is one-
half the amplitude? (d) At what displacement are the kinetic and
potential energies equal? (e) What is the value of the phase
angle if the initial velocity is positive and the initial displace-
ment is negative?
14.81 . CALC A 2.00-kg bucket containing 10.0 kg of water is
hanging from a vertical ideal spring of force constant 
and oscillating up and down with an amplitude of 3.00 cm. Sud-
denly the bucket springs a leak in the bottom such that water drops
out at a steady rate of When the bucket is half full, find2.00 g>s.

125 N>m

f

1 cm = 0.05 m
1 cm = 0.05 J+0.300 m.-0.300 m

10.0 N>m.
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(b) total mechanical energy; (c) maximum speed; (d) speed at
(e) potential and kinetic energies at 

14.70 ... CP A child with poor table manners is sliding his 
dinner plate back and forth in SHM with an amplitude of 0.100 m
on a horizontal surface. At a point 0.060 m away from equilibrium,
the speed of the plate is (a) What is the period? (b)
What is the displacement when the speed is (c) In the
center of the dinner plate is a 10.0-g carrot slice. If the carrot slice
is just on the verge of slipping at the endpoint of the path, what is
the coefficient of static friction between the carrot slice and the
plate?
14.71 ... A 1.50-kg, horizontal, uniform tray is attached to a
vertical ideal spring of force constant and a 275-g
metal ball is in the tray. The spring is below the tray, so it can
oscillate up and down. The tray is then pushed down to point A,
which is 15.0 cm below the equilibrium point, and released from
rest. (a) How high above point A will the tray be when the metal
ball leaves the tray? (Hint: This does not occur when the ball
and tray reach their maximum speeds.) (b) How much time
elapses between releasing the system at point A and the ball
leaving the tray? (c) How fast is the ball moving just as it leaves
the tray?
14.72 .. CP A block with mass M rests on a frictionless surface
and is connected to a horizontal spring of force constant k. The
other end of the spring is attached to a wall (Fig. P14.72). A second
block with mass m rests on top of the first block. The coefficient of
static friction between the blocks is Find the maximum ampli-
tude of oscillation such that the top block will not slip on the bot-
tom block.

ms.

185 N>m

0.160 m>s?
0.400 m>s.

250-g
x = �A1>4?x = �A1>4;

upright in a liquid with density (a) Calculate the vertical dis-
tance from the surface of the liquid to the bottom of the floating
object at equilibrium. (b) A downward force with magnitude F is
applied to the top of the object. At the new equilibrium position,
how much farther below the surface of the liquid is the bottom of
the object than it was in part (a)? (Assume that some of the object
remains above the surface of the liquid.) (c) Your result in part (b)
shows that if the force is suddenly removed, the object will oscil-
late up and down in SHM. Calculate the period of this motion in
terms of the density of the liquid, the mass M, and the cross-
sectional area A of the object. You can ignore the damping due to
fluid friction (see Section 14.7).
14.77 .. CP A 950-kg, cylindrical can buoy floats vertically in
salt water. The diameter of the buoy is 0.900 m. (a) Calculate the
additional distance the buoy will sink when a 70.0-kg man stands
on top of it. (Use the expression derived in part (b) of Problem
14.76.) (b) Calculate the period of the resulting vertical SHM
when the man dives off. (Use the expression derived in part (c) of
Problem 14.76, and as in that problem, you can ignore the damping
due to fluid friction.)
14.78 ... CP Tarzan to the Rescue! Tarzan spies a 35-kg
chimpanzee in severe danger, so he swings to the rescue. He
adjusts his strong, but very light, vine so that he will first come to
rest 4.0 s after beginning his swing, at which time his vine makes a
12° angle with the vertical. (a) How long is Tarzan’s vine, assum-
ing that he swings at the bottom end of it? (b) What are the fre-
quency and amplitude (in degrees) of Tarzan’s swing? (c) Just as
he passes through the lowest point in his swing, Tarzan nabs the
chimp from the ground and sweeps him out of the jaws of danger.
If Tarzan’s mass is 65 kg, find the frequency and amplitude (in
degrees) of the swing with Tarzan holding onto the grateful chimp.

r

r.

k m

M

ms

Figure P14.72

14.73 . CP A 10.0-kg mass is traveling to the right with a speed
of on a smooth horizontal surface when it collides with
and sticks to a second mass that is initially at rest but is
attached to a light spring with force constant (a) Find
the frequency, amplitude, and period of the subsequent oscilla-
tions. (b) How long does it take the system to return the first time
to the position it had immediately after the collision?
14.74 . CP A rocket is accelerating upward at from
the launchpad on the earth. Inside a small, 1.50-kg ball hangs from
the ceiling by a light, 1.10-m wire. If the ball is displaced 
from the vertical and released, find the amplitude and period of the
resulting swings of this pendulum.
14.75 ... An apple weighs 1.00 N. When you hang it from the
end of a long spring of force constant and negligible
mass, it bounces up and down in SHM. If you stop the bouncing
and let the apple swing from side to side through a small angle,
the frequency of this simple pendulum is half the bounce fre-
quency. (Because the angle is small, the back-and-forth swings do
not cause any appreciable change in the length of the spring.)
What is the unstretched length of the spring (with the apple
removed)?
14.76 ... CP SHM of a Floating Object. An object with
height h, mass M, and a uniform cross-sectional area A floats

1.50 N>m

8.50°

4.00 m>s2

110.0 N>m.
10.0-kg

2.00 m>s

Hook

L
L

L
L

Figure P14.79
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(a) the period of oscillation and (b) the rate at which the period 
is changing with respect to time. Is the period getting longer or
shorter? (c) What is the shortest period this system can have?
14.82 .. CP A hanging wire is 1.80 m long. When a 60.0-kg steel
ball is suspended from the wire, the wire stretches by 2.00 mm. If
the ball is pulled down a small additional distance and released, at
what frequency will it vibrate? Assume that the stress on the wire
is less than the proportional limit (see Section 11.5).
14.83 .. A 5.00-kg partridge is suspended from a pear tree by an
ideal spring of negligible mass. When the partridge is pulled down
0.100 m below its equilibrium position and released, it vibrates
with a period of 4.20 s. (a) What is its speed as it passes through
the equilibrium position? (b) What is its acceleration when it is
0.050 m above the equilibrium position? (c) When it is moving
upward, how much time is required for it to move from a point
0.050 m below its equilibrium position to a point 0.050 m above
it? (d) The motion of the partridge is stopped, and then it is
removed from the spring. How much does the spring shorten?
14.84 .. A 0.0200-kg bolt moves with SHM that has an amplitude
of 0.240 m and a period of 1.500 s. The displacement of the bolt is

when Compute (a) the displacement of the bolt
when (b) the magnitude and direction of the force act-
ing on the bolt when (c) the minimum time required
for the bolt to move from its initial position to the point where

(d) the speed of the bolt when 
14.85 .. CP SHM of a Butcher’s Scale. A spring of negligible
mass and force constant is hung vertically, and a
0.200-kg pan is suspended from its lower end. A butcher drops a
2.2-kg steak onto the pan from a height of 0.40 m. The steak makes
a totally inelastic collision with the pan and sets the system into
vertical SHM. What are (a) the speed of the pan and steak immedi-
ately after the collision; (b) the amplitude of the subsequent
motion; (c) the period of that motion?
14.86 .. A uniform beam is suspended horizontally by two iden-
tical vertical springs that are attached between the ceiling and each
end of the beam. The beam has mass 225 kg, and a 175-kg sack of
gravel sits on the middle of it. The beam is oscillating in SHM,
with an amplitude of 40.0 cm and a frequency of 
(a) The sack of gravel falls off the beam when the beam has its max-
imum upward displacement. What are the frequency and amplitude
of the subsequent SHM of the beam? (b) If the gravel instead falls
off when the beam has its maximum speed, what are the frequency
and amplitude of the subsequent SHM of the beam?
14.87 ... CP On the planet Newtonia, a simple pendulum having
a bob with mass 1.25 kg and a length of 185.0 cm takes 1.42 s,
when released from rest, to swing through an angle of where
it again has zero speed. The circumference of Newtonia is meas-
ured to be 51,400 km. What is the mass of the planet Newtonia?
14.88 .. A 40.0-N force stretches a vertical spring 0.250 m. 
(a) What mass must be suspended from the spring so that the sys-
tem will oscillate with a period of 1.00 s? (b) If the amplitude of the
motion is 0.050 m and the period is that specified in part (a), where
is the object and in what direction is it moving 0.35 s after it has
passed the equilibrium position, moving downward? (c) What force
(magnitude and direction) does the spring exert on the object when
it is 0.030 m below the equilibrium position, moving upward?
14.89 .. Don’t Miss the Boat. While on a visit to Minnesota
(“Land of 10,000 Lakes”), you sign up to take an excursion around
one of the larger lakes. When you go to the dock where the 1500-kg
boat is tied, you find that the boat is bobbing up and down in the
waves, executing simple harmonic motion with amplitude 20 cm.
The boat takes 3.5 s to make one complete up-and-down cycle.

12.5°,

0.600 cycle>s.

k = 400 N>m

x = -0.180 m.x = -0.180 m;

t = 0.500 s;
t = 0.500 s;

t = 0.+0.240 m

When the boat is at its highest point, its deck is at the same height
as the stationary dock. As you watch the boat bob up and down,
you (mass 60 kg) begin to feel a bit woozy, due in part to the previ-
ous night’s dinner of lutefisk. As a result, you refuse to board the
boat unless the level of the boat’s deck is within 10 cm of the dock
level. How much time do you have to board the boat comfortably
during each cycle of up-and-down motion?
14.90 . CP An interesting, though highly impractical example of
oscillation is the motion of an object dropped down a hole that
extends from one side of the earth, through its center, to the other
side. With the assumption (not realistic) that the earth is a sphere of
uniform density, prove that the motion is simple harmonic and find
the period. [Note: The gravitational force on the object as a func-
tion of the object’s distance r from the center of the earth was
derived in Example 13.10 (Section 13.6). The motion is simple har-
monic if the acceleration and the displacement from equilibrium
x are related by Eq. (14.8), and the period is then ]
14.91 ... CP A rifle bullet with mass 8.00 g and initial horizontal
velocity 280 m s strikes and embeds itself in a block with mass
0.992 kg that rests on a frictionless surface and is attached to one
end of an ideal spring. The other end of the spring is attached to the
wall. The impact compresses the spring a maximum distance of
18.0 cm. After the impact, the block moves in SHM. Calculate the
period of this motion.
14.92 .. CP CALC For a certain oscillator the net force on the
body with mass m is given by (a) What is the potential
energy function for this oscillator if we take at 
(b) One-quarter of a period is the time for the body to move from

to Calculate this time and hence the period. [Hint:
Begin with Eq. (14.20), modified to include the potential-energy
function you found in part (a), and solve for the velocity as a
function of x. Then replace with Separate the variable by
writing all factors containing x on one side and all factors con-
taining t on the other side so that each side can be integrated. In
the x-integral make the change of variable The resulting
integral can be evaluated by numerical methods on a computer and

has the value ] (c) According to the result
you obtained in part (b), does the period depend on the amplitude
A of the motion? Are the oscillations simple harmonic?
14.93 . CP CALC An approximation for the potential energy of a
KCl molecule is where 

, , and r is the distance between
the two atoms. Using this approximation: (a) Show that the radial
component of the force on each atom is 
(b) Show that is the equilibrium separation. (c) Find the mini-
mum potential energy. (d) Use and the first two terms
of the binomial theorem (Eq. 14.28) to show that

so that the molecule’s force constant is
(e) With both the K and Cl atoms vibrating in oppo-

site directions on opposite sides of the molecule’s center of mass,
is the mass to use in cal-

culating the frequency. Calculate the frequency of small-amplitude
vibrations.
14.94 ... CP Two uniform solid spheres, each with mass

and radius , are connected by a short,
light rod that is along a diameter of each sphere and are at rest on a
horizontal tabletop. A spring with force constant has
one end attached to the wall and the other end attached to a fric-
tionless ring that passes over the rod at the center of mass of the
spheres, which is midway between the centers of the two spheres.
The spheres are each pulled the same distance from the wall,
stretching the spring, and released. There is sufficient friction

k = 160 N>m

R = 0.0800 mM = 0.800 kg

m1m2>1m1 + m22 = 3.06 * 10-26 kg

k = 7A>R 3
0 .

Fr L -17A>R 3
0 2x,

r = R0 + x
R0

A31R 7
0 >r

92 - 1>r 24.Fr =

A = 2.31 * 10-28 J # m10-10 m
R0 = 2.67 *U = A31R 7

0 >8r 82 - 1>r4,

11
0 du>21 - u4 = 1.31.

u = x>A.

dx>dt.vx

vx

x = A.x = 0

x = 0?U = 0
Fx = -cx3.

>

T = 2p>v.
ax



m, suspended from a uniform
spring with a force constant k,
vibrates with a frequency 
When the spring is cut in half
and the same object is sus-
pended from one of the halves,
the frequency is What is the
ratio ƒ2>ƒ1?

ƒ2.

ƒ1.
14.97 .. CALC A slender, uni-
form, metal rod with mass M
is pivoted without friction about
an axis through its midpoint and
perpendicular to the rod. A hori-
zontal spring with force constant
k is attached to the lower end of
the rod, with the other end of the
spring attached to a rigid sup-
port. If the rod is displaced by a
small angle from the vertical
(Fig. P14.97) and released, show
that it moves in angular SHM
and calculate the period. (Hint: Assume that the angle is small
enough for the approximations and to be
valid. The motion is simple harmonic if and the
period is then )
14.98 .. The Silently Ringing Bell Problem. A large bell is
hung from a wooden beam so it can swing back and forth with neg-
ligible friction. The center of mass of the bell is 0.60 m below the
pivot, the bell has mass 34.0 kg, and the moment of inertia of the
bell about an axis at the pivot is The clapper is a
small, 1.8-kg mass attached to one end of a slender rod that has
length L and negligible mass. The other end of the rod is attached to
the inside of the bell so it can swing freely about the same axis as
the bell. What should be the length L of the clapper rod for the bell
to ring silently—that is, for the period of oscillation for the bell to
equal that for the clapper?
14.99 ... Two identical thin
rods, each with mass m and
length L, are joined at right
angles to form an L-shaped
object. This object is balanced
on top of a sharp edge (Fig.
P14.99). If the L-shaped object
is deflected slightly, it oscillates.
Find the frequency of oscillation.

18.0 kg # m2.

T = 2p>v.
d2u>dt 2 = -v2u,

cos ™ L 1sin ™ L ™
™

™

14.95 . CP In Fig. P14.95 the
upper ball is released from rest,
collides with the stationary lower
ball, and sticks to it. The strings
are both 50.0 cm long. The upper
ball has mass 2.00 kg, and it is ini-
tially 10.0 cm higher than the
lower ball, which has mass 
3.00 kg. Find the frequency and
maximum angular displacement
of the motion after the collision.
14.96 .. CP BIO T. rex. Model
the leg of the T. rex in Example
14.10 (Section 14.6) as two uniform rods, each 1.55 m long,
joined rigidly end to end. Let the lower rod have mass M and the
upper rod mass 2M. The composite object is pivoted about the top
of the upper rod. Compute the oscillation period of this object for
small-amplitude oscillations. Compare your result to that of
Example 14.10.
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between the tabletop and the spheres for the spheres to roll without
slipping as they move back and forth on the end of the spring. Show
that the motion of the center of mass of the spheres is simple har-
monic and calculate the period.

14.100 . CP CALC A uniform rod of length L oscillates through
small angles about a point a distance x from its center. (a) Prove
that its angular frequency is (b) Show that
its maximum angular frequency occurs when 
(c) What is the length of the rod if the maximum angular frequency
is

CHALLENGE PROBLEMS
14.101 ... The Effective Force
Constant of Two Springs.
Two springs with the same
unstretched length but different
force constants and are
attached to a block with mass m
on a level, frictionless surface.
Calculate the effective force
constant in each of the three
cases (a), (b), and (c) depicted in
Fig. P14.101. (The effective force
constant is defined by 

) (d) An object with mass-keffx.
gFx =

keff

k2k1

2p rad>s?

x = L>112.
2gx>31L2>122 + x24.

10.0 cm

Figure P14.95

u

Figure P14.97

LL

Figure P14.99

k1

k2

m

(a)

k1 k2
m

(b)

k1 k2
m

(c)

Figure P14.101

14.102 ... Two springs, each with unstretched length 0.200 m but
with different force constants and are attached to opposite
ends of a block with mass m on a level, frictionless surface. The
outer ends of the springs are now attached to two pins and 
0.100 m from the original positions of the ends of the springs (Fig.
P14.102). Let and 

(a) Find the length of each spring when the block is in its
new equilibrium position after the springs have been attached to
the pins. (b) Find the period of vibration of the block if it is slightly
displaced from its new equilibrium position and released.

0.100 kg.
m =k2 = 6.00 N>m,k1 = 2.00 N>m,

P2,P1

k2,k1

m
m

P1 P2

0.100 m 0.200 m 0.200 m 0.100

Figure P14.102

14.103 ... CALC A Spring with Mass. The preceding prob-
lems in this chapter have assumed that the springs had negligible
mass. But of course no spring is completely massless. To find the
effect of the spring’s mass, consider a spring with mass M, equilib-
rium length and spring constant k. When stretched or compressed
to a length L, the potential energy is where
(a) Consider a spring, as described above, that has one end fixed
and the other end moving with speed Assume that the speed of
points along the length of the spring varies linearly with distance l
from the fixed end. Assume also that the mass M of the spring is
distributed uniformly along the length of the spring. Calculate the
kinetic energy of the spring in terms of M and (Hint: Divide the
spring into pieces of length dl; find the speed of each piece in

v.

v.

x = L - L0.1
2 kx2,

L0,
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terms of l, and L; find the mass of each piece in terms of dl, M,
and L; and integrate from 0 to L. The result is not since not
all of the spring moves with the same speed.) (b) Take the time
derivative of the conservation of energy equation, Eq. (14.21), for
a mass m moving on the end of a massless spring. By comparing

1
2 Mv2,

v, your results to Eq. (14.8), which defines show that the angular
frequency of oscillation is (c) Apply the procedure of
part (b) to obtain the angular frequency of oscillation of the
spring considered in part (a). If the effective mass of the spring
is defined by what is in terms of M?M¿v = 2k>M¿,

M¿
v

v = 2k>m.
v,

Chapter Opening Question ?
The length of the leg is more important. The back-and-forth
motion of a leg during walking is like a physical pendulum, for

the same expression as for a body attached to a
horizontal spring. Neither m nor k changes when the apparatus is
taken to Mars, so the period is unchanged. The only difference is
that in equilibrium, the spring will stretch a shorter distance on
Mars than on earth due to the weaker gravity.
14.5 Answer: no Just as for an object oscillating on a spring, at
the equilibrium position the speed of the pendulum bob is instanta-
neously not changing (this is where the speed is maximum, so its
derivative at this time is zero). But the direction of motion is
changing because the pendulum bob follows a circular path.
Hence the bob must have a component of acceleration perpendicu-
lar to the path and toward the center of the circle (see Section 3.4).
To cause this acceleration at the equilibrium position when the
string is vertical, the upward tension force at this position must be
greater than the weight of the bob. This causes a net upward force
on the bob and an upward acceleration toward the center of the cir-
cular path.
14.6 Answer: (i) The period of a physical pendulum is given by
Eq. (14.39), The distance from the pivot
to the center of gravity is the same for both the rod and the simple
pendulum, as is the mass m. This means that for any displacement
angle the same restoring torque acts on both the rod and the sim-
ple pendulum. However, the rod has a greater moment of inertia:

and (all the mass of the
pendulum is a distance L from the pivot). Hence the rod has a
longer period.
14.7 Answer: (ii) The oscillations are underdamped with a
decreasing amplitude on each cycle of oscillation, like those
graphed in Fig. 14.26. If the oscillations were undamped, they
would continue indefinitely with the same amplitude. If they were
critically damped or overdamped, the nose would not bob up and
down but would return smoothly to the original equilibrium atti-
tude without overshooting.
14.8 Answer: (i) Figure 14.28 shows that the curve of amplitude
versus driving frequency moves upward at all frequencies as the
value of the damping constant b is decreased. Hence for fixed val-
ues of k and m, the oscillator with the least damping (smallest value
of b) will have the greatest response at any driving frequency.

Bridging Problem

Answer: T = 2p23M>2k

Isimple = mL2Irod = 1
3 m12L22 = 4

3 mL2

u

d = LT = 2p2I>mgd .

T = 2p2m>k ,

Answers

which the oscillation period is [see Eq. (14.39)].
In this expression I is the moment of inertia of the pendulum, m is
its mass, and d is the distance from the rotation axis to the pendu-
lum center of mass. The moment of inertia I is proportional to the
mass m, so the mass cancels out of this expression for the period T.
Hence only the dimensions of the leg matter. (See Examples 14.9
and 14.10.)

Test Your Understanding Questions
14.1 Answers: (a) (b) (c) (d)
(e) (f) Figure 14.2 shows that the net x-component
of force and the x-acceleration are both positive when 
(so the body is displaced to the left and the spring is compressed),
while and are both negative when (so the body is dis-
placed to the right and the spring is stretched). Hence x and
always have opposite signs. This is true whether the object is mov-
ing to the right to the left or not at all

since the force exerted by the spring depends only on
whether it is compressed or stretched and by what distance. This
explains the answers to (a) through (e). If the acceleration is zero
as in (f), the net force must also be zero and so the spring must be
relaxed; hence 
14.2 Answers: (a) (b)
In both situations the initial x-velocity is nonzero, so

from Eq. (14.19) the amplitude is greater
than the initial x-coordinate From Eq. (14.18) the
phase angle is which is positive if the
quantity (the argument of the arctangent function) is
positive and negative if is negative. In part (a) and

are both positive, so and In part (b) 
is positive and is negative, so and 
14.3 Answers: (a) (iii), (b) (v) To increase the total energy

by a factor of 2, the amplitude A must increase by a fac-
tor of Because the motion is SHM, changing the amplitude
has no effect on the frequency.
14.4 Answer: (i) The oscillation period of a body of mass m
attached to a hanging spring of force constant k is given by

12 .
E = 1

2 kA2

f 7 0.-v0x>vx0 7 0v0x

x0f 6 0.-v0x>vx0 6 0v0x

x0-v0x>vx0

-v0x>vx0

f = arctan1-v0x>vx02,
x0 = 0.10 m.

A = 2x0
2 + 1v0x

2>v22

v0x1t = 02
A>0.10 m, F>0A>0.10 m, F<0;

x = 0.

1vx = 02,
1vx 6 02,1vx 7 02,

ax

x 7 0axFx

x 6 0axFx

x � 0x>0,
x>0,x<0,x>0,x<0,

T = 2p2I>mgd




