SEARS & ZEMANSKY'S UNIVERSITY PHYSICS

WITH MODERN PHYSICS

YOUNG AND FREEDMAN 13TH EDITION

PhET SIMULATIONS

Available in the Pearson eText and in the Study Area of MasteringPhysics (MP)

Extended Edition includes Chapters 1–44. Standard Edition includes Chapters 1–37. Three-volume edition: *Volume 1 includes Chapters 1–20, Volume 2 includes Chapters 21–37, and Volume 3 includes Chapters 37–44.*

Section		Page	Section		Page
1.6	Estimation	10	25.6	Conductivity	838
1.7	Vector Addition	13	26.4	*Circuit Construction Kit (AC+DC), *Circuit	
2.4	*Forces in 1 Dimension	47		Construction Kit (DC Only)	866
2.4	*The Moving Man	49	27.3	Magnet and Compass, Magnets and	
2.5	Lunar Lander	52		Electromagnets	891
3.2	Maze Game	76	28.5	Faraday's Electromagnetic Lab, Magnets	
3.3	* Projectile Motion	79		and Electromagnets	933
3.4	Ladybug Revolution, Motion in 2D	87	29.2	Faraday's Electromagnetic Lab, Faraday's	
5.2	Lunar Lander	146		Law, Generator	962
5.3	Forces in 1 Dimension, Friction, *The Ramp	149	31.3	*Circuit Construction Kit (AC+DC),	
6.2	*The Ramp	181		Faraday's Electromagnetic Lab	1031
6.3	Molecular Motors, Stretching DNA	188	32.3	Radio Waves & Electromagnetic Fields	1061
7.3	*The Ramp	222	32.5	Microwaves	1070
7.5	*Energy Skate Park	229	34.4	*Geometric Optics	1131
9.3	Ladybug Revolution	286	34.6	Color Vision	1142
10.6	Torque	326	35.2	* Wave Interference	1168
12.3	Balloons & Buoyancy	380	36.2	* Wave Interference	1192
13.2	Lunar Lander	406	38.1	Photoelectric Effect	1262
13.4	My Solar System	412	38.4	Fourier: Making Waves, Quantum Wave	
14.2	Motion in 2D	443		Interference	1274
14.3	*Masses & Springs	446	39.2	Davisson-Germer: Electron Diffraction	1287
14.5	* Pendulum Lab	453	39.2	Rutherford Scattering	1294
15.8	Fourier: Making Waves, Waves on a String	495	39.3	Models of the Hydrogen Atom	1297
16.6	Sound, Wave Interference	529	39.3	Neon Lights and Other Discharge Lamps	1304
17.6	States of Matter	566	39.4	Lasers	1307
17.7	The Greenhouse Effect	570	39.5	Blackbody Spectrum, The Greenhouse	
18.3	Balloons & Buoyancy, Friction,			Effect	1310
	Gas Properties	599	40.1	Fourier: Making Waves	1328
18.6	States of Matter	612	40.1	Quantum Tunneling and Wave Packets	1337
21.2	Balloons and Static Electricity,		40.3	Double Wells & Covalent Bonds, Quantum	
	John Travoltage	691		Bound States	1343
21.6	*Charges and Fields, Electric Field of Dreams,		40.4	Quantum Tunneling and Wave Packets	1347
	Electric Field Hockey	708	41.5	Stern-Gerlach Experiment	1383
21.7	Microwaves	711	42.1	Double Wells and Covalent Bonds	1406
23.2	*Charges & Fields	761	42.2	The Greenhouse Effect	1409
24.5	Molecular Motors, Optical Tweezers and		42.4	Band Structure, Conductivity	1417
	Applications, Stretching DNA	806	42.6	Semiconductors, Conductivity	1422
25.3	Resistance in a Wire	825	43.1	Simplified MRI	1444
25.4	Battery Voltage, Signal Circuit	829	43.3	Alpha Decay	1450
25.5	Battery-Resistor Circuit, *Circuit Construction	n	43.7	Nuclear Fission	1464
	Kit (AC+DC), *Circuit Construction Kit				
	(DC Only), Ohm's Law	834			

*Indicates an associated tutorial available in the MasteringPhysics Item Library.

ActivPhysics OnLine™ ACTIVITIES

(MP) www.masteringphysics.com

1.1 Analyzing Motion Using Diagrams 1.2 Analyzing Motion Using Graphs Predicting Motion from Graphs 1.3 1.4 Predicting Motion from Equations 1.5 Problem-Solving Strategies for Kinematics 1.6 Skier Races Downhill 1.7 Balloonist Drops Lemonade 1.8 Seat Belts Save Lives 1.9 Screeching to a Halt Pole-Vaulter Lands 1.10 1.11 Car Starts, Then Stops Solving Two-Vehicle Problems 1.12 1.13 Car Catches Truck Avoiding a Rear-End Collision 1.14 2.1.1 Force Magnitudes 2.1.2 Skydiver 2.1.3 Tension Change Sliding on an Incline 2.1.4 2.1.5 Car Race Lifting a Crate 2.2 Lowering a Crate 2.3 Rocket Blasts Off 2.4 2.5 Truck Pulls Crate 2.6 Pushing a Crate Up a Wall 2.7 Skier Goes Down a Slope 2.8 Skier and Rope Tow Pole-Vaulter Vaults 2.9 Truck Pulls Two Crates 2.10 Modified Atwood Machine 2.11 31 Solving Projectile Motion Problems 3.2 Two Balls Falling 3.3 Changing the x-Velocity 3.4 Projectile x- and y-Accelerations 35 Initial Velocity Components 3.6 Target Practice I 3.7 Target Practice II 4.1 Magnitude of Centripetal Acceleration 4.2 Circular Motion Problem Solving 4.3 Cart Goes Over Circular Path 4.4 Ball Swings on a String 4.5 Car Circles a Track 4.6 Satellites Orbit 5.1 Work Calculations Upward-Moving Elevator Stops 5.2 5.3 Stopping a Downward-Moving Elevator 5.4 Inverse Bungee Jumper 55 Spring-Launched Bowler Skier Speed 5.6 5.7 Modified Atwood Machine Momentum and Energy Change 6.1 Collisions and Elasticity 6.2 Momentum Conservation and Collisions 6.3 6.4 Collision Problems 6.5 Car Collision: Two Dimensions 6.6 Saving an Astronaut Explosion Problems 6.7 Skier and Cart 6.8 Pendulum Bashes Box 6.9 Pendulum Person-Projectile Bowling 6.10 7.1 Calculating Torques A Tilted Beam: Torques and Equilibrium 7.2 7.3 Arm Levers Two Painters on a Beam 7.4 7.5 Lecturing from a Beam

7.6	Rotational Inertia
7.7	Rotational Kinematics
78	Rotoride–Dynamics Approach
79	Falling Ladder
7.10	Woman and Elywheel Elevator Dynamics
7.10	Approach
7.11	Race Between a Block and a Disk
7.12	Woman and Flywheel Elevator-Energy
	Approach
7 13	Rotoride_Energy Approach
7.14	Ball Hite Bat
0.1	Characteristics of a Cos
0.1	
8.2	Distribution–Conceptual Analysis
8.3	Maxwell-Boltzmann
	Distribution-Quantitative Analysis
8.4	State Variables and Ideal Gas Law
85	Work Done By a Gas
8.6	Heat Internal Energy and First I aw
0.0	of Thermodynamics
07	Hast Consoity
0.7	Lead Capacity
8.8	Isochoric Process
8.9	Isobaric Process
8.10	Isothermal Process
8.11	Adiabatic Process
8.12	Cyclic Process–Strategies
8.13	Cyclic Process–Problems
8.14	Carnot Cycle
9.1	Position Graphs and Equations
9.2	Describing Vibrational Motion
93	Vibrational Energy
94	Two Ways to Weigh Young Tarzan
0.5	Ane Drops Tarzan
0.6	Palaasing a Vibrating Skiar I
9.0	Releasing a vibrating Skier I
9.7	Releasing a vibrating Skier II
9.8	One-and Two-Spring Vibrating Systems
9.9	Vibro-Ride
9.10	Pendulum Frequency
9.11	Risky Pendulum Walk
9.12	Physical Pendulum
10.1	Properties of Mechanical Waves
10.2	Speed of Waves on a String
10.3	Speed of Sound in a Gas
10.4	Standing Wayes on Strings
10.5	Tuning a Stringed Instrument
	Standing Wayes
10.6	String Mass and Standing Wayes
10.7	Beats and Beat Frequency
10.7	Doppler Effect: Conceptual Introduction
10.0	Doppler Effect: Conceptual Infoduction
10.9	Doppler Effect: Problems
10.10	Complex waves: Fourier Analysis
11.1	Electric Force: Coulomb's Law
11.2	Electric Force: Superposition Principle
11.3	Electric Force: Superposition Principle
	(Quantitative)
11.4	Electric Field: Point Charge
11.5	Electric Field Due to a Dipole
11.6	Electric Field: Problems
11.7	Electric Flux
11.8	Gauss's Law
11.0	Motion of a Charge in an Electric Eald
11.9	Introduction
11.10	Motion in on Electric Eichl. D. 11
11.10	Mouon in an Electric Field: Problems
11.11	Electric Potential: Qualitative
	Introduction

- 11.12 Electric Potential, Field, and Force
- Electrical Potential Energy and Potential 11.13
- DC Series Circuits (Qualitative) 12.1
- 12.2 DC Parallel Circuits
- 12.3 DC Circuit Puzzles
- 12.4 Using Ammeters and Voltmeters
- 12.5 Using Kirchhoff's Laws
- 12.6 Capacitance
- Series and Parallel Capacitors 12.7
- 12.8 RC Circuit Time Constants
- 13.1 Magnetic Field of a Wire
- Magnetic Field of a Loop 13.2
- Magnetic Field of a Solenoid 13.3
- 13.4 Magnetic Force on a Particle
- 135 Magnetic Force on a Wire
- Magnetic Torque on a Loop 13.6 13.7
- Mass Spectrometer 13.8 Velocity Selector
- 139 Electromagnetic Induction
- 13.10 Motional emf
- 14.1 The RL Circuit
- The RLC Oscillator 14.2
- 14.3 The Driven Oscillator
- 15.1 Reflection and Refraction
- 15.2 Total Internal Reflection
- 15.3 **Refraction Applications**
- 15.4 Plane Mirrors
- 15.5 Spherical Mirrors: Ray Diagrams
- Spherical Mirror: The Mirror Equation 15.6
- Spherical Mirror: Linear Magnification 157
- 15.8 Spherical Mirror: Problems
- Thin-Lens Ray Diagrams 15.9
- 15.10 Converging Lens Problems
- 15.11 Diverging Lens Problems
- 15.12 Two-Lens Optical Systems
- 16.1 Two-Source Interference: Introduction
- 16.2 Two-Source Interference: Qualitative Questions
- 16.3 Two-Source Interference: Problems
- 16.4 The Grating: Introduction and Qualitative Questions
- 16.5 The Grating: Problems
- Single-Slit Diffraction 16.6
- 16.7 Circular Hole Diffraction
- Resolving Power 16.8
- 16.9 Polarization
- Relativity of Time 17.1
- 17.2Relativity of Length
- 17.3 Photoelectric Effect
- 17.4 Compton Scattering
- 17.5 Electron Interference
- 17.6 Uncertainty Principle
- 17.7 Wave Packets
- 18.1 The Bohr Model
- 18.2 Spectroscopy
- 18.3 The Laser
- 19.1 Particle Scattering

 - Nuclear Binding Energy
- Radioactivity

- 20.2
- Potential Barriers 20.4
- 19.2 193 Fusion
 - 194
 - 19.5 Particle Physics
 - Potential Energy Diagrams 20.1
 - Particle in a Box
 - 20.3Potential Wells

SEARS AND ZEMANSKY'S

UNIVERSITY PHYSICS

WITH MODERN PHYSICS

13TH EDITION

HUGH D. YOUNG

CARNEGIE MELLON UNIVERSITY

ROGER A. FREEDMAN

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

CONTRIBUTING AUTHOR A. LEWIS FORD TEXAS A&M UNIVERSITY

Addison-Wesley

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Publisher: Jim SmithExecutive Editor: Nancy WhiltonProject Editor: Chandrika MadhavanDirector of Development: Michael GillespieEditorial Manager: Laura KenneySenior Development Editor: Margot OtwayEditorial Assistant: Steven LeAssociate Media Producer: Kelly ReedManaging Editor: Corinne BensonProduction Project Manager: Beth Collins

Production Management and Composition: Nesbitt Graphics Copyeditor: Carol Reitz Interior Designer: Elm Street Publishing Services Cover Designer: Derek Bacchus Illustrators: Rolin Graphics Senior Art Editor: Donna Kalal Photo Researcher: Eric Shrader Manufacturing Buyer: Jeff Sargent Senior Marketing Manager: Kerry Chapman

Cover Photo Credits: Getty Images/Mirko Cassanelli; Mirko Cassanelli

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text or on p. C-1.

Copyright ©2012, 2008, 2004 Pearson Education, Inc., publishing as Addison-Wesley, 1301 Sansome Street, San Francisco, CA, 94111. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 1900 E. Lake Ave., Glenview, IL 60025. For information regarding permissions, call (847) 486-2635.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Mastering Physics[®] is a registered trademark, in the U.S. and/or other countries, of Pearson Education, Inc. or its affiliates.

Library of Congress Cataloging-in-Publication Data

Young, Hugh D.
Sears and Zemansky's university physics : with modern physics. -- 13th ed.
/ Hugh D. Young, Roger A. Freedman ; contributing author, A. Lewis Ford. p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-321-69686-1 (student ed. : alk. paper)
ISBN-10: 0-321-69686-7 (student ed. : alk. paper)
ISBN-13: 978-0-321-69685-4 (exam copy)
ISBN-10: 0-321-69685-9 (exam copy)
I. Physics--Textbooks. I. Freedman, Roger A. II. Ford, A. Lewis (Albert Lewis) III. Sears, Francis Weston, 1898-1975. University physics. IV. Title.
V. Title: University physics.
QC21.3.Y68 2012
530--dc22

2010044896

ISBN 13: 978-0-321-69686-1; ISBN 10: 0-321-69686-7 (Student edition) ISBN 13: 978-0-321-69685-4; ISBN 10: 0-321-69685-9 (Exam copy)

Addison-Wesley is an imprint of

BRIEF CONTENTS

MECHANICS

1	Units, Physical Quantities, and Vector	s 1
2	Motion Along a Straight Line	35
З	Motion in Two or Three Dimensions	69
4	Newton's Laws of Motion	104
5	Applying Newton's Laws	134
6	Work and Kinetic Energy	176
7	Potential Energy and Energy Conservation	207
8	Momentum, Impulse, and Collisions	241
9	Rotation of Rigid Bodies	278
10	Dynamics of Rotational Motion	308
11	Equilibrium and Elasticity	344
12	Fluid Mechanics	373
13	Gravitation	402
14	Periodic Motion	437
WAVE	S/ACOUSTICS	
15	Mechanical Waves	472
16	Sound and Hearing	509
THER	MODYNAMICS	
17	Temperature and Heat	551
18	Thermal Properties of Matter	590
19	The First Law of Thermodynamics	624
20	The Second Law of Thermodynamics	652
ELEC1	ROMAGNETISM	
21	Electric Charge and Electric Field	687
22	Gauss's Law	725
23	Electric Potential	754
24	Capacitance and Dielectrics	788
25	Current, Resistance, and Electromotive Force	818

26 Direct-Current Circuits850

27	Magnetic Field and Magnetic Forces	883
28	Sources of Magnetic Field	923
29	Electromagnetic Induction	957
30	Inductance	991
31	Alternating Current	1021
32	Electromagnetic Waves	1051

OPTICS

33	The Nature and Propagation of Light	1080
34	Geometric Optics	1114
35	Interference	1163
36	Diffraction	1190

MODERN PHYSICS

37	Relativity	1223
38	Photons: Light Waves Behaving as Particles	1261
39	Particles Behaving as Waves	1286
40	Quantum Mechanics	1328
41	Atomic Structure	1364
42	Molecules and Condensed Matter	1405
43	Nuclear Physics	1439
44	Particle Physics and Cosmology	1480

APPENDICES

А	The International System of Units	A-1
В	Useful Mathematical Relations	A-3
С	The Greek Alphabet	A-4
D	Periodic Table of Elements	A-5
Е	Unit Conversion Factors	A-6
F	Numerical Constants	A-7

Answers to Odd-Numbered Problems A-9

Build Skills

earn basic and advanced skills that help solve a broad range of physics problems.

This text's **uniquely extensive set** of **Examples** enables students to explore problem-solving challenges in exceptional detail.

Consistent

The Identify / Set Up / Execute / Evaluate format, used in all Examples, encourages students to tackle problems thoughtfully rather than skipping to the math.

All Examples and Problem-Solving Strategies are revised to be more concise and focused.

Most Examples employ a diagramoften a **pencil sketch** that shows what a student should draw.

Problem-Solving Strategies coach students in how to approach specific types of problems.

Problem-Solving Strategy 5.2 Newton's Second Law: Dynamics of Particles

DENTIFY the relevant concepts: You have to use Newton's second accelerate in different directions, you can use a different set of aw for any problem that involves forces acting on an accelerating axes for each body. \vec{a} , identify any you might need tant accelera-

Example 5.17 Toboggan ride with friction II

The same toboggan with the same coefficient of friction as in From the second equation and Eq. (5.5) we get an expression for f_k : Example 5.16 accelerates down a steeper hill. Derive an expres $n = mg \cos \alpha$ sion for the acceleration in terms of g, α , μ_k , and w. $f_k = \mu_k n = \mu_k mg \cos \alpha$

SOLUTION

IDENTIFY and SET UP: The toboggan is accelerating, so we must use Newton's second law as given in Eqs. (5.4). Our target variable is the downhill acceleration.

Our sketch and free-body diagram (Fig. 5.23) are almost the same as for Example 5.16. The toboggan's y-component of acceleration a_y is still zero but the x-component a_x is not, so we've drawn the downhill component of weight as a longer vector than the (uphill) friction force

EXECUTE: It's convenient to express the weight as w = mg. Then Newton's second law in component form says

> $\sum F_x = mg \sin \alpha + (-f_k) = ma_x$ $\sum F_y = n + (-mg \cos \alpha) = 0$

5.23 Our sketches for this problem.

(b) Free-body diagram for toboggan (a) The situation

 $a_x = g(\sin \alpha - \mu_k \cos \alpha)$ EVALUATE: As for the frictionless toboggan in Example 5.10, the acceleration doesn't depend on the mass m of the toboggan. That's because all of the forces that act on the toboggan (weight, normal force, and kinetic friction force) are proportional to *m*.

We substitute this into the x-component equation and solve for ax:

 $mg\sin\alpha + (-\mu_k mg\cos\alpha) = ma_x$

(MP)

ay be relation-

ations relating

the forces along

represent a force

twice.

ough the orig-

tities. In your

component of

ition, write any 4 of "Set Up."

to find the tar-

correct units?

m/s2.) Does it

ider particular

the results with

(ariables)

be connected

Let's check some special cases. If the hill is vertical ($\alpha = 90^{\circ}$) so that sin $\alpha = 1$ and $\cos \alpha = 0$, we have $a_x = g$ (the toboggan falls freely). For a certain value of α the acceleration is zero; this happens if

```
\sin \alpha = \mu_k \cos \alpha and \mu_k = \tan \alpha
```

This agrees with our result for the constant-velocity toboggan in Example 5.16. If the angle is even smaller, $\mu_k \cos \alpha$ is greater than $\sin \alpha$ and a_x is *negative*; if we give the toboggan an initial downhill push to start it moving, it will slow down and stop. Finally, if In pash to start it moving, it win stow down and stop, rimary, it the hill is frictionless so that $\mu_k = 0$, we retrieve the result of Example 5.10: $a_i = g \sin \alpha$. Notice that we started with a simple problem (Example 5.10)

and extended it to more and more general situations. The general result we found in this example includes *all* the previous ones as special cases. Don't memorize this result, but do make sure you Suppose instead we give the toboggan an initial push up the

hill. The direction of the kinetic friction force is now reversed, so the acceleration of different from the downhill value. It turns out that the expression for a_x is the same as for downhill motion except that the minus sign becomes plus. Can you show this?

NEW! Video Tutor Solution for Every Example

of MasteringPhysics[®] and in the Pearson eText.

Each Example is explained and solved by an instructor

in a Video Tutor solution provided in the Study Area

NEW! Mathematics Review Tutorials

MasteringPhysics offers an extensive set of assignable mathematics review tutorials-covering differential and integral calculus as well as algebra and trigonometry.

Build **Confidence**

NEW! Bridging Problems

At the start of each problem set, a Bridging Problem helps students make the leap from routine exercises to challenging problems with confidence and ease.

Each Bridging Problem poses a moderately difficult, multi-concept problem, which often draws on earlier chapters. In place of a full solution, it provides a skeleton solution guide consisting of questions and hints.

> A full solution is explained in a Video Tutor, provided in the Study Area of MasteringPhysics® and in the Pearson eText.

14.95 . CP In Fig. P14.95 the Figure P14,95 upper ball is released from rest. ollides with the stationary lower ball, and sticks to it. The strings are both 50.0 cm long. The upper ball has mass 2.00 kg, and it is inifially 10.0 cm higher than the lower ball, which has mass 3.00 kg. Find the frequency and maximum angular displacement of the motion after the collision. 14.96 - CP Bill T. rex. Model the leg of the T. rex in Example

14.10 (Section 14.6) as two uniform rods, each 1.55 m lor joined rigidly end to end. Let the lower rod have mass M and the upper rod mass 2M. The composite object is pivoted about the top of the upper rod. Compute the oscillation period of this object for small-amplitude oscillations. Compare your result to that of

Example 14.10. 14.97 •• CALC A slender, uniform, metal rod with mass M is pivoted without friction about an axis through its midpoint and perpendicular to the rod. A horizontal spring with force constant k is attached to the lower end of the rod, with the other end of the spring attached to a rigid sup port. If the rod is displaced by a small angle O from the vertical (Fig. P14.97) and released, show that it moves in angular SHM

and calculate the period. (Hint: Assume that the angle O is small enough for the approximations sin $\Theta \approx \Theta$ and $\cos \Theta \approx 1$ to be valid. The motion is simple harmonic if $d^2\theta/dt^2 = -\omega^2\theta$, and the period is then $T = 2\pi/\omega_0$.)

evelop problem-solving confidence through a range of practice options-from guided to unguided.

BRIDGING PROBLEM Billiard Physics A cue ball (a uniform solid sphere of mass m and radius R) is at 3. Draw two free-body diagrams for the ball in part (b): one show rest on a level pool table. Using a pool cue, you guive the ball a sharp, horizontal hit of magnitude F at a height h above the center of the ball (Fig. 10.37). The force of the hit is much greater than the friction force f that the table surface exerts on the ball. The hit lasts for a short time Δt . (a) For what value of h will the ball roll without slipping? (b) If you hit the ball decenter (h = 0), the ball will slide across the table for a while, but eventually it will roll without slipping. What will the speed of its center of mass be then? Draw two tree-body diagrams for the ball in part (b): one show-ing the forces during the hit and the other showing the forces after the hit but before the ball is rolling without slipping. What is the angular speed of the ball in part (b) just after the hit? While the ball is sliding, does v_{cm} increase or decrease? Does ω increase or decrease? What is the relationship between v_{cm} and ω when the ball is finally rolling without slipping? EXECUTE . In part (a), use the impulse-momentum theorem to find the In part (a), use the impulse-momentum theorem to han the speed of the ball's centre of mass immediately after the hit. Then use the rotational version of the impulse-momentum the-orem to find the angular speed immediately after the hit. (*Hint:* To write down the rotational version of the impulse-momentum theorem, remember that the relationship between torque and angular momentum is the same as that between force and linear momentum). SOLUTION GUIDE See MasteringPhysics® study area for a Video Tutor solution. **IDENTIFY** and **SET UP** IDENTIFY and SET UP 1. Draw a free-body diagram for the ball for the situation in part (a), including your choice of coordinate axes. Note that the cue exerts both an impulsive force on the ball and an impulsive torque around the center of mass. The cue force applied for a time A r gives the ball's center of mass a speed r_{em}, and the cue torque applied for that same time gives the ball an angular speed o. What must be the relationship between v_{em} and ω for the ball to roll without stimming. angulan momentum. and stand a built and we want as that a built are at mean momentum. 6. Use your results from step 5 to find the value of *h* that will cause the ball to roll without slipping immediately after the hit. 7. In part (b), again find the ball's center-of-mass speed and angular speed immediately after the hit. Then write Newton's second law for the translational motion and rotational motion of the ball as it is sliding. Use these equations to write expressions for $v_{\rm cm}$ and ω as functions of the elapsed time slipping since the hit. Using your results from step 7, find the time t when v.... and ω have the correct relationship for rolling without slipping. Then find the value of $v_{\rm cm}$ at this time. 10.37 EVALUATE 9. If you have access to a pool table, test out the results of parts (a) and (b) for yourself! 10. Can you show that if you used a hollow cylinder rather than a mass m solid ball, you would have to hit the top of the cylinder to cause rolling without slipping as in part (a)?

- In response to professors, the Problem Sets now include more biomedically oriented problems (BIO), more difficult problems requiring calculus (CALC), and more cumulative problems that draw on earlier chapters (CP).

About 20% of problems are new or revised. These revisions are driven by detailed student-performance data gathered nationally through MasteringPhysics.

Problem difficulty is now indicated by a three-dot ranking system based on data from MasteringPhysics.

Van de Graat Geverafor:	Part A
Do a horned day, an interno field of 3 dois 10 ⁴ M/C is a smarph to produce spatial added in 10 dois 10 ⁴ M/C is an except to a spatial added in 10 dois 10 ⁴ M/C is a spatial added added added added added added added added gates, 2003 Leith is stratem sealant of 17.0 is in it producing spatial 3 stratem long	Park A C
	(ment) in time of tweet tweet

NEW! Enhanced End-of-Chapter Problems in MasteringPhysics Select end-of-chapter problems will now offer additional support such as problem-solving strategy hints, relevant math review and practice, and links to the eText. These new enhanced problems bridge the gap between guided tutorials and traditional homework problems.

Bring Physics to Life

eepen knowledge of physics by building connections to the real world.

NEW! Applications of Physics

Throughout the text, free-standing captioned photos apply physics to real situations, with particular emphasis on applications of biomedical and general interest.

Application Moment of Inertia of a Bird's Wing When a bird flaps its wings, it rotates the wings up and down around the shoulder. A hummingbird has small wings with a small moment of inertia, so the bird can make its wings move rapidly (up to 70 beats per sec-and). By contrast, the Andean condor (*Vultu* gryphus) has immense wings that are hard to move due to their large moment of inertia. Condors flap their wings at about one beat per econd on takeoff, but at most times prefer oar while holding their wings steady.

al blood flow in the human aorta is ar, but a small disturbance such as a h an, but a small usual banks such as a near t athology can cause the flow to become turbu-nt. Turbulence makes noise, which is why stening to blood flow with a stethoscope is a seful diagnostic technique.

ndons Are Non

Springs Washes samt forces via the tandons that stach them to bones. A tendon consists of ong, stifly elastic collagen filters. The graph ahows how the tendon from the hind leg of wallably (a small kangarou) stretches in eseponse to an applied force. The tendon doe not deal spring, so the work it does has to be not down the tendon (Fig. 67.7). Note that the candon userts liess force while relaxing than due to stretch it. Sa e result, the relaxing than doen to stretch it.

one to stretch it.

NEW! PhET Simulations and Tutorials

Sixteen assignable PhET Tutorials enable students to make connections between real-life phenomena and the underlying physics. 76 PhET simulations are provided in the Study Area of MasteringPhysics[®] and in the Pearson eText.

The comprehensive library of ActivPhysics applets and applet-based tutorials is also available.

NEW! Video Tutor Demonstrations and Tutorials

"Pause and predict" demonstration videos of key physics concepts engage students by asking them to submit a prediction before seeing the outcome. These videos are available through the Study Area of MasteringPhysics and in the Pearson eText. A set of assignable tutorials based on these videos challenge students to transfer their understanding of the demonstration to a related problem situation.

Biomedically Based End-of-Chapter Problems

To serve biosciences students, the text adds a substantial number of problems based on biological and biomedical situations.

Make a Difference with MasteringPhysics®

A steringPhysics is the most effective and widely used online science tutorial, homework, and assessment system available.

www.masteringphysics.com

NEW! Pre-Built Assignments

For every chapter in the book, MasteringPhysics now provides pre-built assignments that cover the material with a tested mix of tutorials and end-of-chapter problems of graded difficulty. Professors may use these assignments as-is or take them as a starting point for modification.

																_	
Physics 10	D1 (MARTIN	78972.)															
My Courses -	Course Settings	t I Ven	as Studen	5													
	_	-		_											-	-0	
Course Home	Analgomenta	Restar	Gradeb	ook 🗈	in Library	1 A A			_	_	_		WELCO	Resource	0.014	90	nty An
The Shawing same	In All Categorie	Tor All Sta	dents														
a here Direc	Column 10	durfs Bir I	1yya 25	¥													
Name	Jage 1			A-116- 1		alla i			3-1 H	a. 2 (c	Lautila (ALL C	Lug In 1	salls 1	S.11)	Total
Class Average	-	91.5	57.3	95.5	\$3.6	85.5	80.3	87.3	91.8-	81.3	86.2	85.4	77.5	72.3	78.8	-8	81.2
Mitchell, Dovg	-1	16.2	49.0	12.1	61.9	204	102	104	85.0	100	95.0	98.7	54.9	0.0	103	1	73.2
Larsen, Melanie	-0	104	100	96.6	12.2	102	93.9	0.0	15.0	101	100	0.0	87.4	p.d	104		82.1
Thomas, Dylan	-0	20.4	104	95.9	64.3	105	0.0	88.9	100	75.8	100	86.3	77.8	102	50.0		71.1
auton, Madson	-1	28.8	45.3	87.5	0.0	103	17.5	82.0	15.0	11.4	98.0	93.2	65.1	94.2	32.3		12.2
Diavez, Matthew	-1	-	97.3	13.6	92.9	98.0	43.5	12.0	12.9	- 41.2	80.0	86.9	16.5	104	09.5		78.1
Tabl. Indra	-1	101	104	96.9	58.0	97.7	100	96.3	100	99.2	100	89.0	75.3	17.7	88.3		90.3
AcAlister, Rachel	-1	00	80.7	92.5	0.4	30.7	16.3	25.7	80.0	82.4	90.0	76.2	67.0	104	100		-
															-	-	

Class Performance on Assignment

Click on a problem to see which step your students struggled with most, and even their most common wrong answers. Compare results at every stage with the national average or with your previous class.

by a rie bolk stangement roll	the Publi	sner:	
1. Select an Assignment Type:	Shared A	ssignments for Young/Freedman's University Physics 13e (SHAREDYF 18)
2. Select an Assignment to Copy:	SELECT	ASSIGNMENT TITLE (click to preview)	CATEGORY
	n	Chapter 01 - Units, Physical Quantities, And Vectors	Homework 💌
		Chapter 02 - Motion Along A Straight Line	Homework
	n.	Chapter 03 - Motion In Two Or Three Dimensions	Homework
		Chapter 04 - Newton's Laws Of Motion	Homework 💌
	Π.	Chapter 05 - Applying Newton's Laws	Homework ·
	г	Chapter 05 - Work And Kinetic Energy	Homework
		Chapter 07 - Potential Energy And Energy Conservation	Homework:
	r	Chapter 08 - Momentum, Impulse, And Collisions	Homework *

Gradebook

- Every assignment is graded automatically.
- Shades of red highlight vulnerable students and challenging assignments.

m Library			-			
			100	uciór Resource	el ellert Stat	y Anne
		Mariag	n Dis Ann	Ast	signment Summary	2
		-				
	-Time-		Calify Constitu	Property lies	Ranazenan Variaden 🌚	
3	24m	5				4
3	28m	Completed b	y 27 stud	erts.		
System	Averag	pe				
MPDE	MOGR	ADES				
3	1601	2				
3	23m	Completed b	y 25 stud	arts.		
System	t Averag	pe .				-
MPDE	MOGRA	ADES				
.1	901	5				
4	tim	Completed b	y 25 whid	erts		
Aysteen Averag	pe.					
MPDEMOG	RADES					
2	27m	Practice				
5	32m	Completed to	y 6 stude	its.		
System Avera	91					
	Difficulty 3 3 3 3 3 5 5 5 5 5	Diffusion Rese 3 Zein 3 Zein System Average MOVEMORGAN 4 MOVEMORGAN 4 Time MOVEMORGAN MOVEMORGAN 2 Zein 4 Time MOVEMORGAN Zein 5 Zein 5 Zein	Officially Date: Offi	Officianty Same Point Vision Charles 3 24m 5 Completed by 27 mild 3 24m Completed by 27 mild 3 24m Completed by 27 mild System Average MPDEMOGRADES 3 3 16m 2 MPDEMOGRADES 3 3 4 15m Completed by 25 stad System Average MPDEMOGRADES 2 2 27m Pactore 5 32m Completed by 5 stad System Average MPDEMOGRADES 3	Official Date Participant Par	Officially Table East years Marget years Marget years 3 Zén S

Gradebook Diagnostics

This screen provides your favorite weekly diagnostics. With a single click, charts summarize the most difficult problems, vulnerable students, grade distribution, and even improvement in scores over the course.

ABOUT THE AUTHORS

Hugh D. Young is Emeritus Professor of Physics at Carnegie Mellon University. He earned both his undergraduate and graduate degrees from that university. He earned his Ph.D. in fundamental particle theory under the direction of the late Richard Cutkosky. He joined the faculty of Carnegie Mellon in 1956 and retired in 2004. He also had two visiting professorships at the University of California, Berkeley.

Dr. Young's career has centered entirely on undergraduate education. He has written several undergraduate-level textbooks, and in 1973 he became a coauthor with Francis Sears and Mark Zemansky for their well-known introductory texts. In addition to his role on Sears and Zemansky's *University Physics*, he is also author of Sears and Zemansky's *College Physics*.

Dr. Young earned a bachelor's degree in organ performance from Carnegie Mellon in 1972 and spent several years as Associate Organist at St. Paul's Cathedral in Pittsburgh. He has played numerous organ recitals in the Pittsburgh area. Dr. Young and his wife, Alice, usually travel extensively in the summer, especially overseas and in the desert canyon country of southern Utah.

Roger A. Freedman is a Lecturer in Physics at the University of California, Santa Barbara. Dr. Freedman was an undergraduate at the University of California campuses in San Diego and Los Angeles, and did his doctoral research in nuclear theory at Stanford University under the direction of Professor J. Dirk Walecka. He came to UCSB in 1981 after three years teaching and doing research at the University of Washington.

At UCSB, Dr. Freedman has taught in both the Department of Physics and the College of Creative Studies, a branch of the university intended for highly gifted and motivated undergraduates. He has published research in nuclear physics, elementary particle physics, and laser physics. In recent years, he has worked to make physics lectures a more interactive experience through the use of classroom response systems.

In the 1970s Dr. Freedman worked as a comic book letterer and helped organize the San Diego Comic-Con (now the world's largest popular culture convention) during its first few years. Today, when not in the classroom or slaving over a computer, Dr. Freedman can be found either flying (he holds a commercial pilot's license) or driving with his wife, Caroline, in their 1960 Nash Metropolitan convertible.

A. Lewis Ford is Professor of Physics at Texas A&M University. He received a B.A. from Rice University in 1968 and a Ph.D. in chemical physics from the University of Texas at Austin in 1972. After a one-year postdoc at Harvard University, he joined the Texas A&M physics faculty in 1973 and has been there ever since. Professor Ford's research area is theoretical atomic physics, with a specialization in atomic collisions. At Texas A&M he has taught a variety of undergraduate and graduate courses, but primarily introductory physics.

HOW TO SUCCEED IN PHYSICS BY REALLY TRYING

Mark Hollabaugh Normandale Community College

Physics encompasses the large and the small, the old and the new. From the atom to galaxies, from electrical circuitry to aerodynamics, physics is very much a part of the world around us. You probably are taking this introductory course in calculusbased physics because it is required for subsequent courses you plan to take in preparation for a career in science or engineering. Your professor wants you to learn physics and to enjoy the experience. He or she is very interested in helping you learn this fascinating subject. That is part of the reason your professor chose this textbook for your course. That is also the reason Drs. Young and Freedman asked me to write this introductory section. We want you to succeed!

The purpose of this section of *University Physics* is to give you some ideas that will assist your learning. Specific suggestions on how to use the textbook will follow a brief discussion of general study habits and strategies.

Preparation for This Course

If you had high school physics, you will probably learn concepts faster than those who have not because you will be familiar with the language of physics. If English is a second language for you, keep a glossary of new terms that you encounter and make sure you understand how they are used in physics. Likewise, if you are farther along in your mathematics courses, you will pick up the mathematical aspects of physics faster. Even if your mathematics is adequate, you may find a book such as Arnold D. Pickar's *Preparing for General Physics: Math Skill Drills and Other Useful Help (Calculus Version)* to be useful. Your professor may actually assign sections of this math review to assist your learning.

Learning to Learn

Each of us has a different learning style and a preferred means of learning. Understanding your own learning style will help you to focus on aspects of physics that may give you difficulty and to use those components of your course that will help you overcome the difficulty. Obviously you will want to spend more time on those aspects that give you the most trouble. If you learn by hearing, lectures will be very important. If you learn by explaining, then working with other students will be useful to you. If solving problems is difficult for you, spend more time learning how to solve problems. Also, it is important to understand and develop good study habits. Perhaps the most important thing you can do for yourself is to set aside adequate, regularly scheduled study time in a distraction-free environment.

Answer the following questions for yourself:

- Am I able to use fundamental mathematical concepts from algebra, geometry and trigonometry? (If not, plan a program of review with help from your professor.)
- In similar courses, what activity has given me the most trouble? (Spend more time on this.) What has been the easiest for me? (Do this first; it will help to build your confidence.)

- Do I understand the material better if I read the book before or after the lecture? (You may learn best by skimming the material, going to lecture, and then undertaking an in-depth reading.)
- Do I spend adequate time in studying physics? (A rule of thumb for a class like this is to devote, on the average, 2.5 hours out of class for each hour in class. For a course meeting 5 hours each week, that means you should spend about 10 to 15 hours per week studying physics.)
- Do I study physics every day? (Spread that 10 to 15 hours out over an entire week!) At what time of the day am I at my best for studying physics? (Pick a specific time of the day and stick to it.)
- Do I work in a quiet place where I can maintain my focus? (Distractions will break your routine and cause you to miss important points.)

Working with Others

Scientists or engineers seldom work in isolation from one another but rather work cooperatively. You will learn more physics and have more fun doing it if you work with other students. Some professors may formalize the use of cooperative learning or facilitate the formation of study groups. You may wish to form your own informal study group with members of your class who live in your neighborhood or dorm. If you have access to e-mail, use it to keep in touch with one another. Your study group is an excellent resource when reviewing for exams.

Lectures and Taking Notes

An important component of any college course is the lecture. In physics this is especially important because your professor will frequently do demonstrations of physical principles, run computer simulations, or show video clips. All of these are learning activities that will help you to understand the basic principles of physics. Don't miss lectures, and if for some reason you do, ask a friend or member of your study group to provide you with notes and let you know what happened.

Take your class notes in outline form, and fill in the details later. It can be very difficult to take word for word notes, so just write down key ideas. Your professor may use a diagram from the textbook. Leave a space in your notes and just add the diagram later. After class, edit your notes, filling in any gaps or omissions and noting things you need to study further. Make references to the textbook by page, equation number, or section number.

Make sure you ask questions in class, or see your professor during office hours. Remember the only "dumb" question is the one that is not asked. Your college may also have teaching assistants or peer tutors who are available to help you with difficulties you may have.

Examinations

Taking an examination is stressful. But if you feel adequately prepared and are well-rested, your stress will be lessened. Preparing for an exam is a continual process; it begins the moment the last exam is over. You should immediately go over the exam and understand any mistakes you made. If you worked a problem and made substantial errors, try this: Take a piece of paper and divide it down the middle with a line from top to bottom. In one column, write the proper solution to the problem. In the other column, write what you did and why, if you know, and why your solution was incorrect. If you are uncertain why you made your mistake, or how to avoid making it again, talk with your professor. Physics continually builds on fundamental ideas and it is important to correct any misunderstandings immediately. *Warning:* While cramming at the last minute may get you through the present exam, you will not adequately retain the concepts for use on the next exam.

TO THE INSTRUCTOR

PREFACE

This book is the product of more than six decades of leadership and innovation in physics education. When the first edition of *University Physics* by Francis W. Sears and Mark W. Zemansky was published in 1949, it was revolutionary among calculus-based physics textbooks in its emphasis on the fundamental principles of physics and how to apply them. The success of *University Physics* with generations of several million students and educators around the world is a testament to the merits of this approach, and to the many innovations it has introduced subsequently.

In preparing this new Thirteenth Edition, we have further enhanced and developed *University Physics* to assimilate the best ideas from education research with enhanced problem-solving instruction, pioneering visual and conceptual pedagogy, the first systematically enhanced problems, and the most pedagogically proven and widely used online homework and tutorial system in the world.

New to This Edition

- Included in each chapter, **Bridging Problems** provide a transition between the single-concept Examples and the more challenging end-of-chapter problems. Each Bridging Problem poses a difficult, multiconcept problem, which often incorporates physics from earlier chapters. In place of a full solution, it provides a skeleton **Solution Guide** consisting of questions and hints, which helps train students to approach and solve challenging problems with confidence.
- All Examples, Conceptual Examples, and Problem-Solving Strategies are revised to enhance conciseness and clarity for today's students.
- The **core modern physics chapters** (Chapters 38–41) are revised extensively to provide a more idea-centered, less historical approach to the material. Chapters 42–44 are also revised significantly.
- The fluid mechanics chapter now precedes the chapters on gravitation and periodic motion, so that the latter immediately precedes the chapter on mechanical waves.
- Additional bioscience applications appear throughout the text, mostly in the form of marginal photos with explanatory captions, to help students see how physics is connected to many breakthroughs and discoveries in the biosciences.
- The **text has been streamlined** for tighter and more focused language.
- Using data from MasteringPhysics, changes to the end-of-chapter content include the following:
 - 15%-20% of problems are new.
 - The number and level of calculus-requiring problems has been increased.
 - Most chapters include five to seven biosciences-related problems.
 - The number of **cumulative problems** (those incorporating physics from earlier chapters) has been increased.
- **Over 70 PhET simulations** are linked to the Pearson eText and provided in the Study Area of the MasteringPhysics website (with icons in the print text). These powerful simulations allow students to interact productively with the physics concepts they are learning. PhET clicker questions are also included on the Instructor Resource DVD.
- Video Tutors bring key content to life throughout the text:
 - Dozens of Video Tutors feature "pause-and-predict" demonstrations of key physics concepts and incorporate assessment as the student progresses to actively engage the student in understanding the key conceptual ideas underlying the physics principles.

Standard, Extended, and Three-Volume Editions

With MasteringPhysics:

- Standard Edition: Chapters 1–37 (ISBN 978-0-321-69688-5)
- Extended Edition: Chapters 1–44 (ISBN 978-0-321-67546-0)

Without MasteringPhysics:

- Standard Edition: Chapters 1–37 (ISBN 978-0-321-69689-2)
- Extended Edition: Chapters 1–44 (ISBN 978-0-321-69686-1)
- Volume 1: Chapters 1–20 (ISBN 978-0-321-73338-2)
- Volume 2: Chapters 21–37 (ISBN 978-0-321-75121-8)
- Volume 3: Chapters 37–44 (ISBN 978-0-321-75120-1)

- Every Worked Example in the book is accompanied by a Video Tutor Solution that walks students through the problem-solving process, providing a virtual teaching assistant on a round-the-clock basis.
- All of these Video Tutors play directly through links within the Pearson eText. Many also appear in the Study Area within MasteringPhysics.

Key Features of University Physics

- Deep and extensive **problem sets** cover a wide range of difficulty and exercise both physical understanding and problem-solving expertise. Many problems are based on complex real-life situations.
- This text offers a larger number of **Examples** and **Conceptual Examples** than any other leading calculus-based text, allowing it to explore problem-solving challenges not addressed in other texts.
- A research-based **problem-solving approach (Identify, Set Up, Execute, Evaluate)** is used not just in every Example but also in the Problem-Solving Strategies and throughout the Student and Instructor Solutions Manuals and the Study Guide. This consistent approach teaches students to tackle problems thoughtfully rather than cutting straight to the math.
- Problem-Solving Strategies coach students in how to approach specific types of problems.
- The **Figures** use a simplified graphical style to focus on the physics of a situation, and they incorporate **explanatory annotation**. Both techniques have been demonstrated to have a strong positive effect on learning.
- Figures that illustrate Example solutions often take the form of black-andwhite **pencil sketches**, which directly represent what a student should draw in solving such a problem.
- The popular Caution paragraphs focus on typical misconceptions and student problem areas.
- End-of-section **Test Your Understanding** questions let students check their grasp of the material and use a multiple-choice or ranking-task format to probe for common misconceptions.
- Visual Summaries at the end of each chapter present the key ideas in words, equations, and thumbnail pictures, helping students to review more effectively.

Instructor Supplements

Note: For convenience, all of the following instructor supplements (except for the Instructor Resource DVD) can be downloaded from the Instructor Area, accessed via the left-hand navigation bar of MasteringPhysics (www.masteringphysics.com).

Instructor Solutions, prepared by A. Lewis Ford (Texas A&M University) and Wayne Anderson, contain complete and detailed solutions to all end-ofchapter problems. All solutions follow consistently the same Identify/Set Up/ Execute/Evaluate problem-solving framework used in the textbook. Download only from the MasteringPhysics Instructor Area or from the Instructor Resource Center (www.pearsonhighered.com/irc).

The cross-platform **Instructor Resource DVD** (ISBN 978-0-321-69661-8) provides a comprehensive library of more than 420 applets from ActivPhysics OnLine as well as all line figures from the textbook in JPEG format. In addition, all the key equations, problem-solving strategies, tables, and chapter summaries are provided in editable Word format. In-class weekly multiple-choice questions for use with various Classroom Response Systems (CRS) are also provided, based on the Test Your Understanding questions in the text. Lecture outlines in PowerPoint are also included along with over 70 PhET simulations.

MasteringPhysics[®] (www.masteringphysics.com) is the most advanced, educationally effective, and widely used physics homework and tutorial system in the world. Eight years in development, it provides instructors with a library of extensively pre-tested end-of-chapter problems and rich, multipart, multistep tutorials that incorporate a wide variety of answer types, wrong answer feedback, individualized help (comprising hints or simpler sub-problems upon request), all driven by the largest metadatabase of student problem-solving in the world. NSFsponsored published research (and subsequent studies) show that Mastering-Physics has dramatic educational results. MasteringPhysics allows instructors to build wide-ranging homework assignments of just the right difficulty and length and provides them with efficient tools to analyze both class trends, and the work of any student in unprecedented detail.

MasteringPhysics routinely provides instant and individualized feedback and guidance to more than 100,000 students every day. A wide range of tools and support make MasteringPhysics fast and easy for instructors and students to learn to use. Extensive class tests show that by the end of their course, an unprecedented eight of nine students recommend MasteringPhysics as their preferred way to study physics and do homework.

MasteringPhysics enables instructors to:

- Quickly build homework assignments that combine regular end-of-chapter problems and tutoring (through additional multi-step tutorial problems that offer wrong-answer feedback and simpler problems upon request).
- Expand homework to include the widest range of automatically graded activities available—from numerical problems with randomized values, through algebraic answers, to free-hand drawing.
- Choose from a wide range of nationally pre-tested problems that provide accurate estimates of time to complete and difficulty.
- After an assignment is completed, quickly identify not only the problems that were the trickiest for students but the individual problem types where students had trouble.
- Compare class results against the system's worldwide average for each problem assigned, to identify issues to be addressed with just-in-time teaching.
- Check the work of an individual student in detail, including time spent on each problem, what wrong answers they submitted at each step, how much help they asked for, and how many practice problems they worked.

ActivPhysics OnLine[™] (which is accessed through the Study Area within www.masteringphysics.com) provides a comprehensive library of more than 420 tried and tested ActivPhysics applets updated for web delivery using the latest online technologies. In addition, it provides a suite of highly regarded applet-based tutorials developed by education pioneers Alan Van Heuvelen and Paul D'Alessandris. Margin icons throughout the text direct students to specific exercises that complement the textbook discussion.

The online exercises are designed to encourage students to confront misconceptions, reason qualitatively about physical processes, experiment quantitatively, and learn to think critically. The highly acclaimed ActivPhysics OnLine companion workbooks help students work through complex concepts and understand them more clearly. More than 420 applets from the ActivPhysics OnLine library are also available on the Instructor Resource DVD for this text.

The **Test Bank** contains more than 2,000 high-quality problems, with a range of multiple-choice, true/false, short-answer, and regular homework-type questions. Test files are provided both in TestGen (an easy-to-use, fully networkable program for creating and editing quizzes and exams) and Word format. Download only from the MasteringPhysics Instructor Area or from the Instructor Resource Center (www.pearsonhighered.com/irc).

Five Easy Lessons: Strategies for Successful Physics Teaching (ISBN 978-0-805-38702-5) by Randall D. Knight (California Polytechnic State University, San Luis Obispo) is packed with creative ideas on how to enhance any physics course. It is an invaluable companion for both novice and veteran physics instructors.

Student Supplements

The **Study Guide** by Laird Kramer reinforces the text's emphasis on problemsolving strategies and student misconceptions. The *Study Guide for Volume 1* (ISBN 978-0-321-69665-6) covers Chapters 1–20, and the *Study Guide for Volumes 2 and 3* (ISBN 978-0-321-69669-4) covers Chapters 21–44.

The **Student Solutions Manual** by Lewis Ford (Texas A&M University) and Wayne Anderson contains detailed, step-by-step solutions to more than half of the odd-numbered end-of-chapter problems from the textbook. All solutions follow consistently the same Identify/Set Up/Execute/Evaluate problem-solving framework used in the textbook. The *Student Solutions Manual for Volume 1* (ISBN 978-0-321-69668-7) covers Chapters 1–20, and the *Student Solutions Manual for Volumes 2 and 3* (ISBN 978-0-321-69667-0) covers Chapters 21–44.

MasteringPhysics[®] (www.masteringphysics.com) is a homework, tutorial, and assessment system based on years of research into how students work physics problems and precisely where they need help. Studies show that students who use MasteringPhysics significantly increase their scores compared to hand-written homework. MasteringPhysics achieves this improvement by providing students with instantaneous feedback specific to their wrong answers, simpler sub-problems upon request when they get stuck, and partial credit for their method(s). This individualized, 24/7 Socratic tutoring is recommended by nine out of ten students to their peers as the most effective and time-efficient way to study.

Pearson eText is available through MasteringPhysics, either automatically when MasteringPhysics is packaged with new books, or available as a purchased upgrade online. Allowing students access to the text wherever they have access to the Internet, Pearson eText comprises the full text, including figures that can be enlarged for better viewing. With eText, students are also able to pop up definitions and terms to help with vocabulary and the reading of the material. Students can also take notes in eText using the annotation feature at the top of each page.

Pearson Tutor Services (www.pearsontutorservices.com). Each student's subscription to MasteringPhysics also contains complimentary access to Pearson Tutor Services, powered by Smarthinking, Inc. By logging in with their MasteringPhysics ID and password, students will be connected to highly qualified e-instructors who provide additional interactive online tutoring on the major concepts of physics. Some restrictions apply; offer subject to change.

ActivPhysics OnLineTM (which is accessed through the Study Area within www.masteringphysics.com) provides students with a suite of highly regarded applet-based tutorials (see above). The following workbooks help students work through complex concepts and understand them more clearly.

ActivPhysics OnLine Workbook, Volume 1: Mechanics * Thermal Physics * Oscillations & Waves (978-0-805-39060-5)

ActivPhysics OnLine Workbook, Volume 2: Electricity & Magnetism * Optics * Modern Physics (978-0-805-39061-2)

Acknowledgments

We would like to thank the hundreds of reviewers and colleagues who have offered valuable comments and suggestions over the life of this textbook. The continuing success of *University Physics* is due in large measure to their contributions.

Edward Adelson (Ohio State University), Ralph Alexander (University of Missouri at Rolla), J. G. Anderson, R. S. Anderson, Wayne Anderson (Sacramento City College), Alex Azima (Lansing Community College), Dilip Balamore (Nassau Community College), Harold Bale (University of North Dakota), Arun Bansil (Northeastern University), John Barach (Vanderbilt University), J. D. Barnett, H. H. Barschall, Albert Bartlett (University of Colorado), Marshall Bartlett (Hollins University), Paul Baum (CUNY, Queens College), Frederick Becchetti (University of Michigan), B. Bederson, David Bennum (University of Nevada, Reno), Lev I. Berger (San Diego State University), Robert Boeke (William Rainey Harper College), S. Borowitz, A. C. Braden, James Brooks (Boston University), Nicholas E. Brown (California Polytechnic State University, San Luis Obispo), Tony Buffa (California Polytechnic State University, San Luis Obispo), A. Capecelatro, Michael Cardamone (Pennsylvania State University), Duane Carmony (Purdue University), Troy Carter (UCLA), P. Catranides, John Cerne (SUNY at Buffalo), Tim Chupp (University of Michigan), Shinil Cho (La Roche College), Roger Clapp (University of South Florida), William M. Cloud (Eastern Illinois University), Leonard Cohen (Drexel University), W. R. Coker (University of Texas, Austin), Malcolm D. Cole (University of Missouri at Rolla), H. Conrad, David Cook (Lawrence University), Gayl Cook (University of Colorado), Hans Courant (University of Minnesota), Bruce A. Craver (University of Dayton), Larry Curtis (University of Toledo), Jai Dahiya (Southeast Missouri State University), Steve Detweiler (University of Florida), George Dixon (Oklahoma State University), Donald S. Duncan, Boyd Edwards (West Virginia University), Robert Eisenstein (Carnegie Mellon University), Amy Emerson Missourn (Virginia Institute of Technology), William Faissler (Northeastern University), William Fasnacht (U.S. Naval Academy), Paul Feldker (St. Louis Community College), Carlos Figueroa (Cabrillo College), L. H. Fisher, Neil Fletcher (Florida State University), Robert Folk, Peter Fong (Emory University), A. Lewis Ford (Texas A&M University), D. Frantszog, James R. Gaines (Ohio State University), Solomon Gartenhaus (Purdue University), Ron Gautreau (New Jersey Institute of Technology), J. David Gavenda (University of Texas, Austin), Dennis Gay (University of North Florida), James Gerhart (University of Washington), N. S. Gingrich, J. L. Glathart, S. Goodwin, Rich Gottfried (Frederick Community College), Walter S. Gray (University of Michigan), Paul Gresser (University of Maryland), Benjamin Grinstein (UC San Diego), Howard Grotch (Pennsylvania State University), John Gruber (San Jose State University), Graham D. Gutsche (U.S. Naval Academy), Michael J. Harrison (Michigan State University), Harold Hart (Western Illinois University), Howard Hayden (University of Connecticut), Carl Helrich (Goshen College), Laurent Hodges (Iowa State University), C. D. Hodgman, Michael Hones (Villanova University), Keith Honey (West Virginia Institute of Technology), Gregory Hood (Tidewater Community College), John Hubisz (North Carolina State University), M. Iona, John Jaszczak (Michigan Technical University), Alvin Jenkins (North Carolina State University), Robert P. Johnson (UC Santa Cruz), Lorella Jones (University of Illinois), John Karchek (GMI Engineering & Management Institute), Thomas Keil (Worcester Polytechnic Institute), Robert Kraemer (Carnegie Mellon University), Jean P. Krisch (University of Michigan), Robert A. Kromhout, Andrew Kunz (Marquette University), Charles Lane (Berry College), Thomas N. Lawrence (Texas State University), Robert J. Lee, Alfred Leitner (Rensselaer Polytechnic University), Gerald P. Lietz (De Paul University), Gordon Lind (Utah State University), S. Livingston, Elihu Lubkin (University of Wisconsin, Milwaukee), Robert Luke (Boise State University), David Lynch (Iowa State University), Michael Lysak (San Bernardino Valley College), Jeffrey Mallow (Loyola University), Robert Mania (Kentucky State University), Robert Marchina (University of Memphis), David Markowitz (University of Connecticut), R. J. Maurer, Oren Maxwell (Florida International University), Joseph L. McCauley (University of Houston), T. K. McCubbin, Jr. (Pennsylvania State University), Charles McFarland (University of Missouri at Rolla), James Mcguire (Tulane University), Lawrence McIntyre (University of Arizona), Fredric Messing (Carnegie-Mellon University), Thomas Meyer (Texas A&M University), Andre Mirabelli (St. Peter's College, New Jersey), Herbert Muether (S.U.N.Y., Stony Brook), Jack Munsee (California State University, Long Beach), Lorenzo Narducci (Drexel University), Van E. Neie (Purdue University), David A. Nordling (U. S. Naval Academy), Benedict Oh (Pennsylvania State University), L. O. Olsen, Jim Pannell (DeVry Institute of Technology), W. F. Parks (University of Missouri), Robert Paulson (California State University, Chico), Jerry Peacher (University of Missouri at Rolla), Arnold Perlmutter (University of Miami), Lennart Peterson (University of Florida), R. J. Peterson (University of Colorado, Boulder), R. Pinkston, Ronald Poling (University of Minnesota), J. G. Potter, C. W. Price (Millersville University), Francis Prosser (University of Kansas), Shelden H. Radin, Roberto Ramos (Drexel University), Michael Rapport (Anne Arundel Community College), R. Resnick, James A. Richards, Jr., John S. Risley (North Carolina State University), Francesc Roig (University of California, Santa Barbara), T. L. Rokoske, Richard Roth (Eastern Michigan University), Carl Rotter (University of West Virginia), S. Clark Rowland (Andrews University), Rajarshi Roy (Georgia Institute of Technology), Russell A. Roy (Santa Fe Community College), Dhiraj Sardar (University of Texas, San Antonio), Bruce Schumm (UC Santa Cruz), Melvin Schwartz (St. John's University), F. A. Scott, L. W. Seagondollar, Paul Shand (University of Northern Iowa), Stan Shepherd (Pennsylvania State University), Douglas Sherman (San Jose State), Bruce Sherwood (Carnegie Mellon University), Hugh Siefkin (Greenville College), Tomasz Skwarnicki (Syracuse University), C. P. Slichter, Charles W. Smith (University of Maine, Orono), Malcolm Smith (University of Lowell), Ross Spencer (Brigham Young University), Julien Sprott (University of Wisconsin), Victor Stanionis (Iona College), James Stith (American Institute of Physics), Chuck Stone (North Carolina A&T State

University), Edward Strother (Florida Institute of Technology), Conley Stutz (Bradley University), Albert Stwertka (U.S. Merchant Marine Academy), Kenneth Szpara-DeNisco (Harrisburg Area Community College), Martin Tiersten (CUNY, City College), David Toot (Alfred University), Somdev Tyagi (Drexel University), F. Verbrugge, Helmut Vogel (Carnegie Mellon University), Robert Webb (Texas A & M), Thomas Weber (Iowa State University), M. Russell Wehr, (Pennsylvania State University), Robert Weidman (Michigan Technical University), Dan Whalen (UC San Diego), Lester V. Whitney, Thomas Wiggins (Pennsylvania State University), David Willey (University of Pittsburgh, Johnstown), George Williams (University of Utah), John Williams (Auburn University), Stanley Williams (Iowa State University), Jack Willis, Suzanne Willis (Northern Illinois University), Robert Wilson (San Bernardino Valley College), L. Wolfenstein, James Wood (Palm Beach Junior College), Lowell Wood (University of Houston), R. E. Worley, D. H. Ziebell (Manatee Community College), George O. Zimmerman (Boston University)

In addition, we both have individual acknowledgments we would like to make.

I want to extend my heartfelt thanks to my colleagues at Carnegie Mellon, especially Professors Robert Kraemer, Bruce Sherwood, Ruth Chabay, Helmut Vogel, and Brian Quinn, for many stimulating discussions about physics pedagogy and for their support and encouragement during the writing of several successive editions of this book. I am equally indebted to the many generations of Carnegie Mellon students who have helped me learn what good teaching and good writing are, by showing me what works and what doesn't. It is always a joy and a privilege to express my gratitude to my wife Alice and our children Gretchen and Rebecca for their love, support, and emotional sustenance during the writing of several successive editions of this book. May all men and women be blessed with love such as theirs. — H. D. Y.

I would like to thank my past and present colleagues at UCSB, including Rob Geller, Carl Gwinn, Al Nash, Elisabeth Nicol, and Francesc Roig, for their wholehearted support and for many helpful discussions. I owe a special debt of gratitude to my early teachers Willa Ramsay, Peter Zimmerman, William Little, Alan Schwettman, and Dirk Walecka for showing me what clear and engaging physics teaching is all about, and to Stuart Johnson for inviting me to become a co-author of *University Physics* beginning with the 9th edition. I want to express special thanks to the editorial staff at Addison-Wesley and their partners: to Nancy Whilton for her editorial vision; to Margot Otway for her superb graphic sense and careful development of this edition; to Peter Murphy for his contributions to the worked examples; to Jason J. B. Harlow for his careful reading of the page proofs; and to Chandrika Madhavan, Steven Le, and Cindy Johnson for keeping the editorial and production pipeline flowing. Most of all, I want to express my gratitude and love to my wife Caroline, to whom I dedicate my contribution to this book. Hey, Caroline, the new edition's done at last — let's go flying! — R. A. F.

Please Tell Us What You Think!

We welcome communications from students and professors, especially concerning errors or deficiencies that you find in this edition. We have devoted a lot of time and effort to writing the best book we know how to write, and we hope it will help you to teach and learn physics. In turn, you can help us by letting us know what still needs to be improved! Please feel free to contact us either electronically or by ordinary mail. Your comments will be greatly appreciated.

December 2010

Hugh D. Young Department of Physics Carnegie Mellon University Pittsburgh, PA 15213 hdy@andrew.cmu.edu Roger A. Freedman Department of Physics University of California, Santa Barbara Santa Barbara, CA 93106-9530 airboy@physics.ucsb.edu http://www.physics.ucsb.edu/~airboy/

DETAILED CONTENTS

MECHANICS

1	UNITS, PHYSICAL Quantities, and vectors	1
1.1	The Nature of Physics	2
1.2	Solving Physics Problems	2
1.3	Standards and Units	4
1.4	Unit Consistency and Conversions	6
1.5	Uncertainty and Significant Figures	8
1.6	Estimates and Orders of Magnitude	10
1.7	Vectors and Vector Addition	10
1.8	Components of Vectors	14
1.9	Unit Vectors	19
1.10	Products of Vectors	20
	Questions/Exercises/Problems	26 27
2	MOTION ALONG	
	A STRAIGHT LINE	35
2.1	Displacement, Time, and Average	0.0
2.2	Velocity	36
2.2	Instantaneous velocity	38 42
2.5	Motion with Constant Acceleration	42
2.5	Freely Falling Bodies	52
2.6	Velocity and Position by Integration	55
	Summary	58
	Questions/Exercises/Problems	59
3	MOTION IN TWO OR	
_	THREE DIMENSIONS	69
3.1	Position and Velocity Vectors	70
3.2	The Acceleration Vector	72
3.3	Projectile Motion	77
3.4	Motion in a Circle	85
3.5	Relative Velocity	88
	Summary	94
	Questions/Exercises/Problems	95
4	NEWTON'S LAWS OF MOTION	104
4.1	Force and Interactions	105
4.2	Newton's First Law	108
4.3	Newton's Second Law	112
4.4	Mass and Weight	117
4.5	Newton's Third Law	120
4.0	Filee-Body Diagrams	124
	Ouestions/Exercises/Problems	120
	Zuesdons/ Exercises/1100/ems	14/

5 APPLYING NEWTON'S LAWS 134 5.1 Using Newton's First Law: Particles in Equilibrium 134 5.2 Using Newton's Second Law: Dynamics of Particles 140 Frictional Forces 5.3 146 Dynamics of Circular Motion 5.4 154 5.5 The Fundamental Forces of Nature 159 Summarv 161 Questions/Exercises/Problems 162 6 WORK AND KINETIC ENERGY 176 6.1 Work 177 6.2 Kinetic Energy and the Work–Energy Theorem 181 6.3 Work and Energy with Varying Forces 187 6.4 Power 193 Summary 196 Questions/Exercises/Problems 197 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 207 7.1 208 Gravitational Potential Energy Elastic Potential Energy 7.2 216 7.3 Conservative and Nonconservative Forces 221 Force and Potential Energy 225 7.4 7.5 **Energy Diagrams** 228 Summary 230 Questions/Exercises/Problems 231 MOMENTUM, IMPULSE, 8 AND COLLISIONS 241 8.1 Momentum and Impulse 241 8.2 Conservation of Momentum 247 Momentum Conservation and Collisions 251 8.3 **Elastic Collisions** 255 8.4 Center of Mass 258 8.5 8.6 **Rocket Propulsion** 262

266

267

278

278

283

285

288

Summary

Acceleration

9

9.1

9.2

9.3

9.4

Questions/Exercises/Problems

ROTATION OF RIGID BODIES

Relating Linear and Angular Kinematics

Angular Velocity and Acceleration

Rotation with Constant Angular

Energy in Rotational Motion

9.5 9.6	Parallel-Axis Theorem Moment-of-Inertia Calculations Summary Questions/Exercises/Problems	293 294 297 298
10	DYNAMICS OF ROTATIONAL Motion	308
10.1 10.2	Torque Torque and Angular Acceleration	308
10.3	for a Rigid Body Rigid-Body Rotation About a Moving Axis	311 314
10.4	Angular Momentum	320
10.5	Conservation of Angular Momentum	325
10.7	Gyroscopes and Precession	328
1017	Summary	331
	Questions/Exercises/Problems	332
11	EQUILIBRIUM AND ELASTICITY	344
11.1	Conditions for Equilibrium	345
11.2	Center of Gravity	345
11.3	Solving Rigid-Body Equilibrium Problems	348
11.4	Stress, Strain, and Elastic Moduli	352
11.5	Elasticity and Plasticity	357
	Summary	359
	Questions/Exercises/Problems	360
12	FLUID MECHANICS	373
12 12.1	FLUID MECHANICS Density	373 373
12 12.1 12.2	FLUID MECHANICS Density Pressure in a Fluid	373 373 375
12 .1 12.2 12.3	FLUID MECHANICS Density Pressure in a Fluid Buoyancy	373 373 375 380
12 12.1 12.2 12.3 12.4	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow	373 373 375 380 382
12 12.1 12.2 12.3 12.4 12.5	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation	373 373 375 380 382 385
12 12.1 12.2 12.3 12.4 12.5 12.6	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence	373 373 375 380 382 385 389
12 .1 12.2 12.3 12.4 12.5 12.6	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary	373 373 375 380 382 385 389 392
12 .1 12.2 12.3 12.4 12.5 12.6	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems	373 373 375 380 382 385 389 392 393
 12.1 12.2 12.3 12.4 12.5 12.6 	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION	 373 373 375 380 382 385 389 392 393 402
12 12.1 12.2 12.3 12.4 12.5 12.6 13	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation	 373 373 375 380 382 385 389 392 393 402 402
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight	 373 373 375 380 382 385 389 392 393 402 402 406 406
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 12.4	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy	 373 373 375 380 382 385 389 392 393 402 402 402 406 409 411
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 12.5	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites	 373 373 375 380 382 385 389 392 393 402 402 406 409 411 414
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 13.5 13.6	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets	 373 373 375 380 382 385 389 392 393 402 402 402 406 409 411 414 418
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions	373 373 375 380 382 385 389 392 393 402 402 402 406 409 411 414 418 421
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions Apparent Weight and the Earth's Rotation	 373 373 375 380 382 385 389 392 393 402 402 402 406 409 411 414 418 421 423
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions Apparent Weight and the Earth's Rotation Black Holes Summary	 373 373 375 380 382 385 389 392 393 402 402 402 406 409 411 414 418 421 423 427
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions Apparent Weight and the Earth's Rotation Black Holes Summary Questions/Exercises/Problems	 373 373 375 380 382 385 389 392 393 402 402 402 406 409 411 414 418 421 423 427 428
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 14	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions Apparent Weight and the Earth's Rotation Black Holes Summary Questions/Exercises/Problems	 373 373 375 380 382 385 389 392 393 402 402 402 406 409 411 418 421 423 427 428 437
12 12.1 12.2 12.3 12.4 12.5 12.6 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 14	FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary Questions/Exercises/Problems GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions Apparent Weight and the Earth's Rotation Black Holes Summary Questions/Exercises/Problems PERIODIC MOTION	 373 373 375 380 382 385 389 392 393 402 402 402 406 409 411 414 418 421 423 427 428 437

14.3	Energy in Simple Harmonic Motion	446
14.4	Applications of Simple Harmonic Motion	450
14.5	The Simple Pendulum	453
14.6	The Physical Pendulum	455
14.7	Damped Oscillations	457
14.8	Forced Oscillations and Resonance	459
	Summary	461
	Questions/Exercises/Problems	462

WAVES/ACOUSTICS

15	MECHANICAL WAVES	472
15.1	Types of Mechanical Waves	473
15.2	Periodic Waves	474
15.3	Mathematical Description of a Wave	477
15.4	Speed of a Transverse Wave	482
15.5	Energy in Wave Motion	486
15.6	Wave Interference, Boundary Conditions,	
	and Superposition	489
15.7	Standing Waves on a String	491
15.8	Normal Modes of a String	495
	Summary	499
	Questions/Exercises/Problems	500
16	SOUND AND HEARING	509
16 .1	SOUND AND HEARING Sound Waves	509 509
16 16.1 16.2	SOUND AND HEARING Sound Waves Speed of Sound Waves	509 509 514
16 .1 16.2 16.3	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity	509 509 514 518
16 .1 16.2 16.3 16.4	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves	509 509 514 518
16 .1 16.2 16.3 16.4	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes	509 509 514 518 522
16 .1 16.2 16.3 16.4 16.5	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes Resonance and Sound	509 509 514 518 522 527
16 .1 16.2 16.3 16.4 16.5 16.6	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes Resonance and Sound Interference of Waves	509 509 514 518 522 527 529
16 .1 16.2 16.3 16.4 16.5 16.6 16.7	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes Resonance and Sound Interference of Waves Beats	509 509 514 518 522 527 529 531
16 .1 16.2 16.3 16.4 16.5 16.6 16.7 16.8	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes Resonance and Sound Interference of Waves Beats The Doppler Effect	509 509 514 518 522 527 529 531 533
16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes Resonance and Sound Interference of Waves Beats The Doppler Effect Shock Waves	509 509 514 518 522 527 529 531 533 538
16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes Resonance and Sound Interference of Waves Beats The Doppler Effect Shock Waves Summary	509 509 514 518 522 527 529 531 533 538 541

THERMODYNAMICS

17	TEMPERATURE AND HEAT	551
----	----------------------	-----

17.1	Temperature and Thermal Equilibrium	552
17.2	Thermometers and Temperature Scales	553
17.3	Gas Thermometers and the Kelvin Scale	554
17.4	Thermal Expansion	557
17.5	Quantity of Heat	562
17.6	Calorimetry and Phase Changes	565
17.7	Mechanisms of Heat Transfer	570
	Summary	578
	Questions/Exercises/Problems	579

18	THERMAL PROPERTIES	500
18.1 18.2 18.3 18.4 18.5 18.6	Equations of State Molecular Properties of Matter Kinetic-Molecular Model of an Ideal Gas Heat Capacities Molecular Speeds Phases of Matter Summary Questions/Exercises/Problems	591 596 599 605 608 610 614 615
19	THE FIRST LAW OF Thermodynamics	624
19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8	Thermodynamic Systems Work Done During Volume Changes Paths Between Thermodynamic States Internal Energy and the First Law of Thermodynamics Kinds of Thermodynamic Processes Internal Energy of an Ideal Gas Heat Capacities of an Ideal Gas Adiabatic Processes for an Ideal Gas Summary Questions/Exercises/Problems	624 625 628 634 636 636 639 643 644
20	THE SECOND LAW OF THERMODYNAMICS	652
20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8	Directions of Thermodynamic Processes Heat Engines Internal-Combustion Engines Refrigerators The Second Law of Thermodynamics The Carnot Cycle Entropy Microscopic Interpretation of Entropy Summary Questions/Exercises/Problems	652 654 657 659 661 663 669 675 678 679
ELECT	ROMAGNETISM	
21	ELECTRIC CHARGE	687

21	ELECTRIC CHARGE AND ELECTRIC FIELD	687	
21.1	Electric Charge	688	2
21.2	Conductors, Insulators, and Induced Ch	narges 691	
21.3	Coulomb's Law	693	26
21.4	Electric Field and Electric Forces	698	26
21.5	Electric-Field Calculations	703	26
21.6	Electric Field Lines	708	26
21.7	Electric Dipoles	709	26
	Summary	714	
	Questions/Exercises/Problems	715	

22	GAUSS'S LAW	725
22.1	Charge and Electric Flux	725
22.2	Calculating Electric Flux	728
22.3	Gauss's Law	732
22.4	Applications of Gauss's Law	736
22.5	Charges on Conductors	741
	Summary	746
	Questions/Exercises/Problems	747
22	ELECTDIC DOTENTIAL	754
20	ELECTRIC FOTENTIAL	734
23.1	Electric Potential Energy	754
23.2	Electric Potential	761
23.3	Calculating Electric Potential	767
23.4	Equipotential Surfaces	771
23.5	Potential Gradient	774
	Summary	777
	Questions/Exercises/Problems	778
24	CAPACITANCE	
	AND DIELECTRICS	788
24.1	Compatitors and Compatitones	790
24.1	Capacitors and Capacitance	789
24.2	Capacitors in Series and Parallel	193
24.3	and Electric Field Energy	706
24.4	Dielectrics	800
24.4	Molecular Model of Induced Charge	800
24.5	Gauss's Law in Dielectrics	803
24.0	Summary	809
	Questions/Exercises/Problems	810
	Questions, Exercises, 11001ems	010
25	CURRENT, RESISTANCE, AND	
	ELECTROMOTIVE FORCE	818
25.1	Current	819
25.2	Resistivity	822
25.3	Resistance	825
25.4	Electromotive Force and Circuits	828
25.5	Energy and Power in Electric Circuits	834
25.6	Theory of Metallic Conduction	838
	Summary	841
	Questions/Exercises/Problems	842
06	DIDEOT OF DESTE OF OF THE	0.50
20	DIRECI-CURRENT CIRCUITS	850
26.1	Resistors in Series and Parallel	850
26.2	Kirchhoff's Rules	855
26.3	Electrical Measuring Instruments	860
26.4	<i>R-C</i> Circuits	864
26.5	Power Distribution Systems	868
	Summary	8/3
	Questions/Exercises/Problems	8/4

27	MAGNETIC FIELD		31
	AND MAGNETIC FORCES	883	31.1
27.1	Magnetism	883	
27.2	Magnetic Field	885	31.2
27.3	Magnetic Field Lines and Magnetic Flux	889	31.3
27.4	Motion of Charged Particles		31.4
	in a Magnetic Field	892	
27.5	Applications of Motion		31.5
	of Charged Particles	896	
27.6	Magnetic Force on a		31.6
	Current-Carrying Conductor	898	
27.7	Force and Torque on a Current Loop	901	
27.8	The Direct-Current Motor	907	
27.9	The Hall Effect	909	32
	Summary	911	
	Questions/Exercises/Problems	912	32.1
28	SOURCES OF MAGNETIC FIELD	923	32.2
28.1	Magnetic Field of a Moving Charge	023	22.2
20.1	Magnetic Field of a Current Element	925	32.3
20.2	Magnetic Field of a Straight	920	32.4
20.3	Current Corrying Conductor	028	22.5
28/	Force Between Parallel Conductors	920	32.3
20.4	Magnetic Field of a Circular Current Loon	032	
20.5	Ampere's Law	932	
28.0	Amplications of Ampere's Law	933	
20.7	Applications of Ampere's Law Magnetic Materials	938	
20.0	Summary	941 047	OPTI
	Ouestions/Exercises/Problems	949	
			33
29	ELECTROMAGNETIC		
	INDUCTION	957	
2 0 1		0.50	33.1
29.1	Induction Experiments	958	33.2
29.2	Faraday's Law	959	33.3
29.3	Lenz's Law	967	33.4
29.4	Motional Electromotive Force	969	33.5
29.5	Induced Electric Fields	971	33.6
29.6	Eddy Currents	974	33.7
29.7	Displacement Current and	075	
20.0	Maxwell's Equations	975	
29.8	Superconductivity	979	
	Summary	981	34
	Questions/Exercises/Problems	982	34.1
30	INDUCTANCE	991	54.1
			34.2
30.1	Mutual Inductance	991	34.3
30.2	Self-Inductance and Inductors	994	34.4
30.3	Magnetic-Field Energy	998	34.5
30.4	The <i>R</i> - <i>L</i> Circuit	1001	34.6
30.5	The <i>L</i> - <i>C</i> Circuit	1005	34.7
30.6	The <i>L-R-C</i> Series Circuit	1009	34.8
	Summary	1012	
	Questions/Exercises/Problems	1013	

31	ALTERNATING CURRENT	1021
31.1	Phasors and Alternating	
	Currents	1021
31.2	Resistance and Reactance	1024
31.3	The L-R-C Series Circuit	1030
31.4	Power in Alternating-Current	
	Circuits	1034
31.5	Resonance in Alternating-Current	
	Circuits	1037
31.6	Transformers	1040
	Summary	1043
	Questions/Exercises/Problems	1044
32	ELECTROMAGNETIC WAVES	1051
32 32.1	ELECTROMAGNETIC WAVES Maxwell's Equations and	1051
32 32.1	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves	1051
32 .1 32.2	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves	1051 1052
32 .1 32.2	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves and the Speed of Light	1051 1052 1055
32 32.1 32.2 32.3	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves and the Speed of Light Sinusoidal Electromagnetic Waves	1051 1052 1055 1060
32 32.1 32.2 32.3 32.4	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves and the Speed of Light Sinusoidal Electromagnetic Waves Energy and Momentum	1051 1052 1055 1060
32 .1 32.2 32.3 32.4	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves and the Speed of Light Sinusoidal Electromagnetic Waves Energy and Momentum in Electromagnetic Waves	1051 1052 1055 1060 1064
32 .1 32.2 32.3 32.4 32.5	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves and the Speed of Light Sinusoidal Electromagnetic Waves Energy and Momentum in Electromagnetic Waves Standing Electromagnetic Waves	1051 1052 1055 1060 1064 1069
32 .1 32.2 32.3 32.4 32.5	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves and the Speed of Light Sinusoidal Electromagnetic Waves Energy and Momentum in Electromagnetic Waves Standing Electromagnetic Waves Summary	1051 1052 1055 1060 1064 1069 1073
32 .1 32.2 32.3 32.4 32.5	ELECTROMAGNETIC WAVES Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves and the Speed of Light Sinusoidal Electromagnetic Waves Energy and Momentum in Electromagnetic Waves Standing Electromagnetic Waves Summary Questions/Exercises/Problems	1051 1052 1055 1060 1064 1069 1073 1074

OPTICS

33 THE NATURE AND
PROPAGATION OF LIGHT1080

33.1	The Nature of Light	1080
33.2	Reflection and Refraction	1082
33.3	Total Internal Reflection	1088
33.4	Dispersion	1091
33.5	Polarization	1093
33.6	Scattering of Light	1100
33.7	Huygens's Principle	1102
	Summary	1105
	Questions/Exercises/Problems	1106

34 GEOMETRIC OPTICS 1114

34.1	Reflection and Refraction at a	
	Plane Surface	1114
34.2	Reflection at a Spherical Surface	1118
34.3	Refraction at a Spherical Surface	1126
34.4	Thin Lenses	1131
34.5	Cameras	1139
34.6	The Eye	1142
34.7	The Magnifier	1146
34.8	Microscopes and Telescopes	1147
	Summary	1152
	Questions/Exercises/Problems	1153

35	INTERFERENCE	1163
35.1	Interference and Coherent Sources	1164
35.2	Two-Source Interference of Light	1166
35.3	Intensity in Interference Patterns	1170
35.4	Interference in Thin Films	1173
35.5	The Michelson Interferometer	1179
	Summary	1182
	Questions/Exercises/Problems	1183
36	DIFFRACTION	1190
36.1	Fresnel and Fraunhofer Diffraction	1191
36.2	Diffraction from a Single Slit	1192
36.3	Intensity in the Single-Slit Pattern	1195
36.4	Multiple Slits	1199
36.5	The Diffraction Grating	1201
36.6	X-Ray Diffraction	1205
36.7	Circular Apertures and Resolving Power	1208
36.8	Holography	1211
	Summary	1214
	Questions/Exercises/Problems	1215

MODERN PHYSICS

37	RELATIVITY	1223
37.1	Invariance of Physical Laws	1223
37.2	Relativity of Simultaneity	1227
37.3	Relativity of Time Intervals	1228
37.4	Relativity of Length	1233
37.5	The Lorentz Transformations	1237
37.6	The Doppler Effect for	
	Electromagnetic Waves	1241
37.7	Relativistic Momentum	1243
37.8	Relativistic Work and Energy	1246
37.9	Newtonian Mechanics and Relativity	1249
	Summary	1252
	Questions/Exercises/Problems	1253
38	PHOTONS: LIGHT WAVES Behaving as particles	1261
38.1	Light Absorbed as Photons:	
	The Photoelectric Effect	1261
38.2	Light Emitted as Photons:	
	X-Ray Production	1266
38.3	Light Scattered as Photons: Compton	
	Scattering and Pair Production	1269
38.4	Wave–Particle Duality, Probability,	
	and Uncertainty	1273
	Summary	1280
	Questions/Exercises/Problems	1281

39	PARTICLES BEHAVING	
	AS WAVES	1286
39.1	Electron Waves	1286
39.2	The Nuclear Atom and Atomic Spectra	1292
39.3	Energy Levels and the Bohr Model	1007
20.4	of the Atom	1297
39.4	Continuous Spectra	1307
39.6	The Uncertainty Principle Revisited	1314
	Summary	1318
	Questions/Exercises/Problems	1319
40	QUANTUM MECHANICS	1328
40.1	Wave Functions and the One-Dimensiona	al
	Schrödinger Equation	1328
40.2	Particle in a Box	1338
40.3	Potential Wells	1343
40.4	The Harmonic Oscillator	1347
40.5	Summary	1350
	Ouestions/Exercises/Problems	1356
		1000
41	ATOMIC STRUCTURE	1364
41.1	The Schrödinger Equation in	10.00
41.0	Three Dimensions	1365
41.2 41.3	The Hydrogen Atom	1300
41.5	The Zeeman Effect	1372
41.5	Electron Spin	1383
41.6	Many-Electron Atoms	
	and the Exclusion Principle	1387
41.7	X-Ray Spectra	1393
	Summary	1397
	Questions/Exercises/Problems	1399
42	MOLECULES AND	
	CONDENSED MATTER	1405
42.1	Types of Molecular Bonds	1405
42.2	Molecular Spectra	1408
42.3	Structure of Solids	1412
42.4	Energy Bands	1416
42.5	Free-Electron Model of Metals	1418
42.6	Semiconductors	1422
42.1 19 8	Superconductor Devices	1423
ע.0	Summary	1430
	Questions/Exercises/Problems	1432
43	NUCLEAR PHYSICS	1439
43.1	Properties of Nuclei	1439
43.2	Nuclear Binding and Nuclear Structure	1444

XXIV DETAILED CONTENTS

43.3	Nuclear Stability and Radioactivity	1449
43.4	Activities and Half-Lives	1456
43.5	Biological Effects of Radiation	1459
43.6	Nuclear Reactions	1462
43.7	Nuclear Fission	1464
43.8	Nuclear Fusion	1469
	Summary	1472
	Questions/Exercises/Problems	1473

44 PARTICLE PHYSICS AND COSMOLOGY 1480

44.1	Fundamental Particles—A History	1480
44.2	Particle Accelerators and Detectors	1485
44.3	Particles and Interactions	1490
44.4	Quarks and the Eightfold Way	1496
44.5	The Standard Model	
	and Beyond	1499

The Expanding Universe	1501
The Beginning of Time	1508
Summary	1517
Questions/Exercises/Problems	1518
	The Expanding Universe The Beginning of Time Summary Questions/Exercises/Problems

APPENDICES

А	The International System of Units	A-1
В	Useful Mathematical Relations	A-3
С	The Greek Alphabet	A-4
D	Periodic Table of Elements	A-5
Е	Unit Conversion Factors	A-6
F	Numerical Constants	A-7
	Answers to Odd-Numbered Problems	A-9
	Photo Credits	C-1
	Index	I-1

UNITS, PHYSICAL QUANTITIES, AND VECTORS

Peing able to predict the path of a thunderstorm is essential for minimizing the damage it does to lives and property. If a thunderstorm is moving at 20 km/h in a direction 53° north of east, how far north does the thunderstorm move in 1 h?

Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics.

The study of physics is also an adventure. You will find it challenging, sometimes frustrating, occasionally painful, and often richly rewarding. If you've ever wondered why the sky is blue, how radio waves can travel through empty space, or how a satellite stays in orbit, you can find the answers by using fundamental physics. You will come to see physics as a towering achievement of the human intellect in its quest to understand our world and ourselves.

In this opening chapter, we'll go over some important preliminaries that we'll need throughout our study. We'll discuss the nature of physical theory and the use of idealized models to represent physical systems. We'll introduce the systems of units used to describe physical quantities and discuss ways to describe the accuracy of a number. We'll look at examples of problems for which we can't (or don't want to) find a precise answer, but for which rough estimates can be useful and interesting. Finally, we'll study several aspects of vectors and vector algebra. Vectors will be needed throughout our study of physics to describe and analyze physical quantities, such as velocity and force, that have direction as well as magnitude.

LEARNING GOALS

By studying this chapter, you will learn:

- Three fundamental quantities of physics and the units physicists use to measure them.
- How to keep track of significant figures in your calculations.
- The difference between scalars and vectors, and how to add and subtract vectors graphically.
- What the components of a vector are, and how to use them in calculations.
- What unit vectors are, and how to use them with components to describe vectors.
- Two ways of multiplying vectors.

1.1 Two research laboratories. (a) According to legend, Galileo investigated falling bodies by dropping them from the Leaning Tower in Pisa, Italy, and he studied pendulum motion by observing the swinging of the chandelier in the adjacent cathedral. (b) The Large Hadron Collider (LHC) in Geneva, Switzerland, the world's largest particle accelerator, is used to explore the smallest and most fundamental constituents of matter. This photo shows a portion of one of the LHC's detectors (note the worker on the yellow platform).

(a)

(b)

1.1 The Nature of Physics

Physics is an *experimental* science. Physicists observe the phenomena of nature and try to find patterns that relate these phenomena. These patterns are called physical theories or, when they are very well established and widely used, physical laws or principles.

CAUTION The meaning of the word "theory" Calling an idea a theory does *not* mean that it's just a random thought or an unproven concept. Rather, a theory is an explanation of natural phenomena based on observation and accepted fundamental principles. An example is the well-established theory of biological evolution, which is the result of extensive research and observation by generations of biologists.

To develop a physical theory, a physicist has to learn to ask appropriate questions, design experiments to try to answer the questions, and draw appropriate conclusions from the results. Figure 1.1 shows two famous facilities used for physics experiments.

Legend has it that Galileo Galilei (1564–1642) dropped light and heavy objects from the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether their rates of fall were the same or different. From examining the results of his experiments (which were actually much more sophisticated than in the legend), he made the inductive leap to the principle, or theory, that the acceleration of a falling body is independent of its weight.

The development of physical theories such as Galileo's often takes an indirect path, with blind alleys, wrong guesses, and the discarding of unsuccessful theories in favor of more promising ones. Physics is not simply a collection of facts and principles; it is also the *process* by which we arrive at general principles that describe how the physical universe behaves.

No theory is ever regarded as the final or ultimate truth. The possibility always exists that new observations will require that a theory be revised or discarded. It is in the nature of physical theory that we can disprove a theory by finding behavior that is inconsistent with it, but we can never prove that a theory is always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They certainly do *not* fall at the same rate. This does not mean that Galileo was wrong; it means that his theory was incomplete. If we drop the feather and the cannonball *in a vacuum* to eliminate the effects of the air, then they do fall at the same rate. Galileo's theory has a **range of validity:** It applies only to objects for which the force exerted by the air (due to air resistance and buoyancy) is much less than the weight. Objects like feathers or parachutes are clearly outside this range.

Often a new development in physics extends a principle's range of validity. Galileo's analysis of falling bodies was greatly extended half a century later by Newton's laws of motion and law of gravitation.

1.2 Solving Physics Problems

At some point in their studies, almost all physics students find themselves thinking, "I understand the concepts, but I just can't solve the problems." But in physics, truly understanding a concept *means* being able to apply it to a variety of problems. Learning how to solve problems is absolutely essential; you don't *know* physics unless you can *do* physics.

How do you learn to solve physics problems? In every chapter of this book you will find *Problem-Solving Strategies* that offer techniques for setting up and solving problems efficiently and accurately. Following each *Problem-Solving Strategy* are one or more worked *Examples* that show these techniques in action. (The *Problem-Solving Strategies* will also steer you away from some *incorrect* techniques that you may be tempted to use.) You'll also find additional examples that aren't associated with a particular *Problem-Solving Strategy*. In addition, at the end of each chapter you'll find a *Bridging Problem* that uses more than one of the key ideas from the chapter. Study these strategies and problems carefully, and work through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics problems, which is why this book offers dozens of *Problem-Solving Strategies*. No matter what kind of problem you're dealing with, however, there are certain key steps that you'll always follow. (These same steps are equally useful for problems in math, engineering, chemistry, and many other fields.) In this book we've organized these steps into four stages of solving a problem.

All of the *Problem-Solving Strategies* and *Examples* in this book will follow these four steps. (In some cases we will combine the first two or three steps.) We encourage you to follow these same steps when you solve problems yourself. You may find it useful to remember the acronym *I SEE*—short for *Identify, Set up, Execute,* and *Evaluate.*

Problem-Solving Strategy 1.1 Solving Physics Problems

IDENTIFY *the relevant concepts:* Use the physical conditions stated in the problem to help you decide which physics concepts are relevant. Identify the **target variables** of the problem—that is, the quantities whose values you're trying to find, such as the speed at which a projectile hits the ground, the intensity of a sound made by a siren, or the size of an image made by a lens. Identify the known quantities, as stated or implied in the problem. This step is essential whether the problem asks for an algebraic expression or a numerical answer.

SET UP *the problem:* Given the concepts you have identified and the known and target quantities, choose the equations that you'll use to solve the problem and decide how you'll use them. Make sure that the variables you have identified correlate exactly with those in the equations. If appropriate, draw a sketch of the situation described in the problem. (Graph paper, ruler, protractor, and compass will help you make clear, useful sketches.) As best you can,

estimate what your results will be and, as appropriate, predict what the physical behavior of a system will be. The worked examples in this book include tips on how to make these kinds of estimates and predictions. If this seems challenging, don't worry—you'll get better with practice!

EXECUTE *the solution:* This is where you "do the math." Study the worked examples to see what's involved in this step.

EVALUATE *your answer:* Compare your answer with your estimates, and reconsider things if there's a discrepancy. If your answer includes an algebraic expression, assure yourself that it represents what would happen if the variables in it were taken to extremes. For future reference, make note of any answer that represents a quantity of particular significance. Ask yourself how you might answer a more general or more difficult version of the problem you have just solved.

Idealized Models

In everyday conversation we use the word "model" to mean either a small-scale replica, such as a model railroad, or a person who displays articles of clothing (or the absence thereof). In physics a **model** is a simplified version of a physical system that would be too complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball (Fig. 1.2a). How complicated is this problem? The ball is not a perfect sphere (it has raised seams), and it spins as it moves through the air. Wind and air resistance influence its motion, the ball's weight varies a little as its distance from the center of the earth changes, and so on. If we try to include all these things, the analysis gets hopelessly complicated. Instead, we invent a simplified version of the problem. We neglect the size and shape of the ball by representing it as a point object, or **particle.** We neglect air resistance by making the ball move in a vacuum, and we make the weight constant. Now we have a problem that is simple enough to deal with (Fig. 1.2b). We will analyze this model in detail in Chapter 3.

We have to overlook quite a few minor effects to make an idealized model, but we must be careful not to neglect too much. If we ignore the effects of gravity completely, then our model predicts that when we throw the ball up, it will go in a straight line and disappear into space. A useful model is one that simplifies a problem enough to make it manageable, yet keeps its essential features. **1.2** To simplify the analysis of (a) a baseball in flight, we use (b) an idealized model.

(a) A real baseball in flight Baseball spins and has a complex shape.

No air resistance. Direction of Gravitational force on ball is constant. The validity of the predictions we make using a model is limited by the validity of the model. For example, Galileo's prediction about falling bodies (see Section 1.1) corresponds to an idealized model that does not include the effects of air resistance. This model works fairly well for a dropped cannonball, but not so well for a feather.

Idealized models play a crucial role throughout this book. Watch for them in discussions of physical theories and their applications to specific problems.

1.3 Standards and Units

As we learned in Section 1.1, physics is an experimental science. Experiments require measurements, and we generally use numbers to describe the results of measurements. Any number that is used to describe a physical phenomenon quantitatively is called a **physical quantity.** For example, two physical quantities that describe you are your weight and your height. Some physical quantities are so fundamental that we can define them only by describing how to measure them. Such a definition is called an **operational definition.** Two examples are measuring a distance by using a ruler and measuring a time interval by using a stopwatch. In other cases we define a physical quantity by describing how to calculate it from other quantities that we *can* measure. Thus we might define the average speed of a moving object as the distance traveled (measured with a ruler) divided by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference standard. When we say that a Ferrari 458 Italia is 4.53 meters long, we mean that it is 4.53 times as long as a meter stick, which we define to be 1 meter long. Such a standard defines a **unit** of the quantity. The meter is a unit of distance, and the second is a unit of time. When we use a number to describe a physical quantity, we must always specify the unit that we are using; to describe a distance as simply "4.53" wouldn't mean anything.

To make accurate, reliable measurements, we need units of measurement that do not change and that can be duplicated by observers in various locations. The system of units used by scientists and engineers around the world is commonly called "the metric system," but since 1960 it has been known officially as the **International System**, or **SI** (the abbreviation for its French name, *Système International*). Appendix A gives a list of all SI units as well as definitions of the most fundamental units.

Time

From 1889 until 1967, the unit of time was defined as a certain fraction of the mean solar day, the average time between successive arrivals of the sun at its highest point in the sky. The present standard, adopted in 1967, is much more precise. It is based on an atomic clock, which uses the energy difference between the two lowest energy states of the cesium atom. When bombarded by microwaves of precisely the proper frequency, cesium atoms undergo a transition from one of these states to the other. One **second** (abbreviated s) is defined as the time required for 9,192,631,770 cycles of this microwave radiation (Fig. 1.3a).

Length

In 1960 an atomic standard for the meter was also established, using the wavelength of the orange-red light emitted by atoms of krypton (⁸⁶Kr) in a glow discharge tube. Using this length standard, the speed of light in vacuum was measured to be 299,792,458 m/s. In November 1983, the length standard was changed again so that the speed of light in vacuum was *defined* to be precisely

1.3 The measurements used to determine (a) the duration of a second and (b) the length of a meter. These measurements are useful for setting standards because they give the same results no matter where they are made.

(a) Measuring the second

An atomic clock uses this phenomenon to tune microwaves to this exact frequency. It then counts 1 second for each 9,192,631,770 cycles.

299,792,458 m/s. Hence the new definition of the **meter** (abbreviated m) is the distance that light travels in vacuum in 1/299,792,458 second (Fig. 1.3b). This provides a much more precise standard of length than the one based on a wavelength of light.

Mass

The standard of mass, the **kilogram** (abbreviated kg), is defined to be the mass of a particular cylinder of platinum–iridium alloy kept at the International Bureau of Weights and Measures at Sèvres, near Paris (Fig. 1.4). An atomic standard of mass would be more fundamental, but at present we cannot measure masses on an atomic scale with as much accuracy as on a macroscopic scale. The *gram* (which is not a fundamental unit) is 0.001 kilogram.

Unit Prefixes

Once we have defined the fundamental units, it is easy to introduce larger and smaller units for the same physical quantities. In the metric system these other units are related to the fundamental units (or, in the case of mass, to the gram) by multiples of 10 or $\frac{1}{10}$. Thus one kilometer (1 km) is 1000 meters, and one centimeter (1 cm) is $\frac{1}{100}$ meter. We usually express multiples of 10 or $\frac{1}{10}$ in exponential notation: $1000 = 10^3$, $\frac{1}{1000} = 10^{-3}$, and so on. With this notation, 1 km = 10^3 m and 1 cm = 10^{-2} m.

The names of the additional units are derived by adding a **prefix** to the name of the fundamental unit. For example, the prefix "kilo-," abbreviated k, always means a unit larger by a factor of 1000; thus

1 kilometer = 1 km = 10^3 meters = 10^3 m 1 kilogram = 1 kg = 10^3 grams = 10^3 g 1 kilowatt = 1 kW = 10^3 watts = 10^3 W

A table on the inside back cover of this book lists the standard SI prefixes, with their meanings and abbreviations.

Table 1.1 gives some examples of the use of multiples of 10 and their prefixes with the units of length, mass, and time. Figure 1.5 shows how these prefixes are used to describe both large and small distances.

The British System

Finally, we mention the British system of units. These units are used only in the United States and a few other countries, and in most of these they are being replaced by SI units. British units are now officially defined in terms of SI units, as follows:

Length: 1 inch = 2.54 cm (exactly) Force: 1 pound = 4.448221615260 newtons (exactly)

Table 1.1 Some Units of Length, Mass, and Time

Length Mass Time 1 nanometer = 1 nm = 10^{-9} m 1 microgram = $1 \mu g = 10^{-6} g = 10^{-9} kg$ 1 nanosecond = 1 ns = 10^{-9} s (mass of a very small dust particle) (time for light to travel 0.3 m) (a few times the size of the largest atom) 1 milligram = 1 mg = 10^{-3} g = 10^{-6} kg 1 micrometer = $1 \mu m = 10^{-6} m$ 1 microsecond = 1 μ s = 10⁻⁶ s (size of some bacteria and living cells) (mass of a grain of salt) (time for space station to move 8 mm) $= 1 \text{ g} = 10^{-3} \text{ kg}$ 1 millisecond = $1 \text{ ms} = 10^{-3} \text{ s}$ 1 millimeter = 1 mm = 10^{-3} m 1 gram (diameter of the point of a ballpoint pen) (mass of a paper clip) (time for sound to travel 0.35 m) 1 centimeter = 1 cm = 10^{-2} m (diameter of your little finger) 1 kilometer = $1 \text{ km} = 10^3 \text{ m}$ (a 10-minute walk)

1.4 The international standard kilogram is the metal object carefully enclosed within these nested glass containers.

1.5 Some typical lengths in the universe. (f) is a scanning tunneling microscope image of atoms on a crystal surface; (g) is an artist's impression.

1.6 Many everyday items make use of both SI and British units. An example is this speedometer from a U.S.-built automobile, which shows the speed in both kilometers per hour (inner scale) and miles per hour (outer scale).

The newton, abbreviated N, is the SI unit of force. The British unit of time is the second, defined the same way as in SI. In physics, British units are used only in mechanics and thermodynamics; there is no British system of electrical units.

In this book we use SI units for all examples and problems, but we occasionally give approximate equivalents in British units. As you do problems using SI units, you may also wish to convert to the approximate British equivalents if they are more familiar to you (Fig. 1.6). But you should try to *think* in SI units as much as you can.

1.4 Unit Consistency and Conversions

We use equations to express relationships among physical quantities, represented by algebraic symbols. Each algebraic symbol always denotes both a number and a unit. For example, d might represent a distance of 10 m, t a time of 5 s, and v a speed of 2 m/s.

An equation must always be **dimensionally consistent.** You can't add apples and automobiles; two terms may be added or equated only if they have the same units. For example, if a body moving with constant speed v travels a distance d in a time t, these quantities are related by the equation

$$d = vt$$

If d is measured in meters, then the product vt must also be expressed in meters. Using the above numbers as an example, we may write

$$10 \text{ m} = \left(2 \frac{\text{m}}{\text{g}}\right) (5 \text{ g})$$

Because the unit 1/s on the right side of the equation cancels the unit s, the product has units of meters, as it must. In calculations, units are treated just like algebraic symbols with respect to multiplication and division.

CAUTION Always use units in calculations When a problem requires calculations using numbers with units, *always* write the numbers with the correct units and carry the units through the calculation as in the example above. This provides a very useful check. If at some stage in a calculation you find that an equation or an expression has inconsistent units, you know you have made an error somewhere. In this book we will *always* carry units through all calculations, and we strongly urge you to follow this practice when you solve problems.

Problem-Solving Strategy 1.2 Solving Physics Problems

IDENTIFY *the relevant concepts:* In most cases, it's best to use the fundamental SI units (lengths in meters, masses in kilograms, and times in seconds) in every problem. If you need the answer to be in a different set of units (such as kilometers, grams, or hours), wait until the end of the problem to make the conversion.

SET UP *the problem* and **EXECUTE** *the solution:* Units are multiplied and divided just like ordinary algebraic symbols. This gives us an easy way to convert a quantity from one set of units to another: Express the same physical quantity in two different units and form an equality.

For example, when we say that $1 \min = 60$ s, we don't mean that the number 1 is equal to the number 60; rather, we mean that 1 min represents the same physical time interval as 60 s. For this reason, the ratio $(1 \min)/(60 \text{ s})$ equals 1, as does its reciprocal $(60 \text{ s})/(1 \min)$. We may multiply a quantity by either of these

factors (which we call *unit multipliers*) without changing that quantity's physical meaning. For example, to find the number of seconds in 3 min, we write

$$3 \min = (3 \min) \left(\frac{60 \text{ s}}{1 \min} \right) = 180 \text{ s}$$

EVALUATE your answer: If you do your unit conversions correctly, unwanted units will cancel, as in the example above. If, instead, you had multiplied 3 min by (1 min)/(60 s), your result would have been the nonsensical $\frac{1}{20} \text{ min}^2/\text{s}$. To be sure you convert units properly, you must write down the units at *all* stages of the calculation.

Finally, check whether your answer is reasonable. For example, the result $3 \min = 180$ s is reasonable because the second is a smaller unit than the minute, so there are more seconds than minutes in the same time interval.

Example 1.1 Converting speed units

The world land speed record is 763.0 mi/h, set on October 15, 1997, by Andy Green in the jet-engine car *Thrust SSC*. Express this speed in meters per second.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We need to convert the units of a speed from mi/h to m/s. We must therefore find unit multipliers that relate (i) miles to meters and (ii) hours to seconds. In Appendix E (or inside the front cover of this book) we find the equalities 1 mi = 1.609 km, 1 km = 1000 m, and 1 h = 3600 s. We set up the conversion as follows, which ensures that all the desired cancellations by division take place:

$$763.0 \text{ mi/h} = \left(763.0 \frac{\text{pair}}{\text{h}}\right) \left(\frac{1.609 \text{ km}}{1 \text{ mi}}\right) \left(\frac{1000 \text{ m}}{1 \text{ km}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right)$$
$$= 341.0 \text{ m/s}$$

Example 1.2 **Converting volume units**

The world's largest cut diamond is the First Star of Africa (mounted in the British Royal Sceptre and kept in the Tower of London). Its volume is 1.84 cubic inches. What is its volume in cubic centimeters? In cubic meters?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Here we are to convert the units of a volume from cubic inches (in.³) to both cubic centimeters (cm³) and cubic meters (m³). Appendix E gives us the equality 1 in. = 2.540 cm, from which we obtain 1 in.³ = $(2.54 \text{ cm})^3$. We then have

$$1.84 \text{ in.}^{3} = (1.84 \text{ in.}^{3}) \left(\frac{2.54 \text{ cm}}{1 \text{ in.}}\right)^{3}$$
$$= (1.84)(2.54)^{3} \frac{\text{in.}^{3} \text{ cm}^{3}}{\text{in.}^{3}} = 30.2 \text{ cm}^{3}$$

EVALUATE: Green's was the first supersonic land speed record (the speed of sound in air is about 340 m/s). This example shows a useful rule of thumb: A speed expressed in m/s is a bit less than half the value expressed in mi/h, and a bit less than one-third the value expressed in km/h. For example, a normal freeway speed is about 30 m/s = 67 mi/h = 108 km/h, and a typical walking speed is about 1.4 m/s = 3.1 mi/h = 5.0 km/h.

Appendix F also gives us 1 m = 100 cm, so

3

$$0.2 \text{ cm}^3 = (30.2 \text{ cm}^3) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^3$$
$$= (30.2) \left(\frac{1}{100}\right)^3 \frac{\text{cm}^3 \text{ m}^3}{\text{cm}^3} = 30.2 \times 10^{-6} \text{ m}^3$$
$$= 3.02 \times 10^{-5} \text{ m}^3$$

EVALUATE: Following the pattern of these conversions, you can show that $1 \text{ in.}^3 \approx 16 \text{ cm}^3$ and that $1 \text{ m}^3 \approx 60,000 \text{ in.}^3$. These approximate unit conversions may be useful for future reference.

1.7 This spectacular mishap was the result of a very small percent error—traveling a few meters too far at the end of a journey of hundreds of thousands of meters.

Table 1.2 Using SignificantFigures

Multiplication or division: Result may have no more significant figures than the starting number with the fewest significant figures:

 $1.32578 \times 10^7 \times 4.11 \times 10^{-3} = 5.45 \times 10^4$

Addition or subtraction:

Number of significant figures is determined by the starting number with the largest uncertainty (i.e., fewest digits to the right of the decimal point):

27.153 + 138.2 - 11.74 = 153.6

1.8 Determining the value of π from the circumference and diameter of a circle.

The measured values have only three significant figures, so their calculated ratio (π) also has only three significant figures.

1.5 Uncertainty and Significant Figures

Measurements always have uncertainties. If you measure the thickness of the cover of a hardbound version of this book using an ordinary ruler, your measurement is reliable only to the nearest millimeter, and your result will be 3 mm. It would be *wrong* to state this result as 3.00 mm; given the limitations of the measuring device, you can't tell whether the actual thickness is 3.00 mm, 2.85 mm, or 3.11 mm. But if you use a micrometer caliper, a device that measures distances reliably to the nearest 0.01 mm, the result will be 2.91 mm. The distinction between these two measurements is in their **uncertainty**. The measurement using the micrometer caliper has a smaller uncertainty; it's a more accurate measurement. The uncertainty is also called the **error** because it indicates the maximum difference there is likely to be between the measured value and the true value. The uncertainty or error of a measured value depends on the measurement technique used.

We often indicate the **accuracy** of a measured value—that is, how close it is likely to be to the true value—by writing the number, the symbol \pm , and a second number indicating the uncertainty of the measurement. If the diameter of a steel rod is given as 56.47 \pm 0.02 mm, this means that the true value is unlikely to be less than 56.45 mm or greater than 56.49 mm. In a commonly used shorthand notation, the number 1.6454(21) means 1.6454 \pm 0.0021. The numbers in parentheses show the uncertainty in the final digits of the main number.

We can also express accuracy in terms of the maximum likely **fractional** error or percent error (also called *fractional uncertainty* and *percent uncertainty*). A resistor labeled "47 ohms \pm 10%" probably has a true resistance that differs from 47 ohms by no more than 10% of 47 ohms—that is, by about 5 ohms. The resistance is probably between 42 and 52 ohms. For the diameter of the steel rod given above, the fractional error is (0.02 mm)/(56.47 mm), or about 0.0004; the percent error is (0.0004)(100%), or about 0.04%. Even small percent errors can sometimes be very significant (Fig. 1.7).

In many cases the uncertainty of a number is not stated explicitly. Instead, the uncertainty is indicated by the number of meaningful digits, or **significant figures**, in the measured value. We gave the thickness of the cover of this book as 2.91 mm, which has three significant figures. By this we mean that the first two digits are known to be correct, while the third digit is uncertain. The last digit is in the hundredths place, so the uncertainty is about 0.01 mm. Two values with the *same* number of significant figures may have *different* uncertainties; a distance given as 137 km also has three significant figures, but the uncertainty is about 1 km.

When you use numbers that have uncertainties to compute other numbers, the computed numbers are also uncertain. When numbers are multiplied or divided, the number of significant figures in the result can be no greater than in the factor with the fewest significant figures. For example, $3.1416 \times 2.34 \times 0.58 = 4.3$. When we add and subtract numbers, it's the location of the decimal point that matters, not the number of significant figures. For example, 123.62 + 8.9 = 132.5. Although 123.62 has an uncertainty of about 0.01, 8.9 has an uncertainty of about 0.1. So their sum has an uncertainty of about 0.1 and should be written as 132.5, not 132.52. Table 1.2 summarizes these rules for significant figures.

As an application of these ideas, suppose you want to verify the value of π , the ratio of the circumference of a circle to its diameter. The true value of this ratio to ten digits is 3.141592654. To test this, you draw a large circle and measure its circumference and diameter to the nearest millimeter, obtaining the values 424 mm and 135 mm (Fig. 1.8). You punch these into your calculator and obtain the quotient (424 mm)/(135 mm) = 3.140740741. This may seem to disagree with the true value of π , but keep in mind that each of your measurements has three significant figures, so your measured value of π can have only three significant figures. It should be stated simply as 3.14. Within the limit of three significant figures, your value does agree with the true value.

In the examples and problems in this book we usually give numerical values with three significant figures, so your answers should usually have no more than three significant figures. (Many numbers in the real world have even less accuracy. An automobile speedometer, for example, usually gives only two significant figures.) Even if you do the arithmetic with a calculator that displays ten digits, it would be wrong to give a ten-digit answer because it misrepresents the accuracy of the results. Always round your final answer to keep only the correct number of significant figures or, in doubtful cases, one more at most. In Example 1.1 it would have been wrong to state the answer as 341.01861 m/s. Note that when you reduce such an answer to the appropriate number of significant figures, you must *round*, not *truncate*. Your calculator will tell you that the ratio of 525 m to 311 m is 1.688102894; to three significant figures, this is 1.69, not 1.68.

When we calculate with very large or very small numbers, we can show significant figures much more easily by using **scientific notation**, sometimes called **powers-of-10 notation**. The distance from the earth to the moon is about 384,000,000 m, but writing the number in this form doesn't indicate the number of significant figures. Instead, we move the decimal point eight places to the left (corresponding to dividing by 10^8) and multiply by 10^8 ; that is,

$$384,000,000 \text{ m} = 3.84 \times 10^8 \text{ m}$$

In this form, it is clear that we have three significant figures. The number 4.00×10^{-7} also has three significant figures, even though two of them are zeros. Note that in scientific notation the usual practice is to express the quantity as a number between 1 and 10 multiplied by the appropriate power of 10.

When an integer or a fraction occurs in a general equation, we treat that number as having no uncertainty at all. For example, in the equation $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$, which is Eq. (2.13) in Chapter 2, the coefficient 2 is *exactly* 2. We can consider this coefficient as having an infinite number of significant figures (2.000000...). The same is true of the exponent 2 in v_x^2 and v_{0x}^2 .

Finally, let's note that **precision** is not the same as *accuracy*. A cheap digital watch that gives the time as 10:35:17 A.M. is very *precise* (the time is given to the second), but if the watch runs several minutes slow, then this value isn't very *accurate*. On the other hand, a grandfather clock might be very accurate (that is, display the correct time), but if the clock has no second hand, it isn't very precise. A high-quality measurement is both precise *and* accurate.

Example 1.3 Significant figures in multiplication

The rest energy *E* of an object with rest mass *m* is given by Einstein's famous equation $E = mc^2$, where *c* is the speed of light in vacuum. Find *E* for an electron for which (to three significant figures) $m = 9.11 \times 10^{-31}$ kg. The SI unit for *E* is the joule (J); $1 \text{ J} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$.

SOLUTION

IDENTIFY and SET UP: Our target variable is the energy *E*. We are given the value of the mass *m*; from Section 1.3 (or Appendix F) the speed of light is $c = 2.99792458 \times 10^8$ m/s.

EXECUTE: Substituting the values of m and c into Einstein's equation, we find

$$E = (9.11 \times 10^{-31} \text{ kg})(2.99792458 \times 10^8 \text{ m/s})^2$$

= (9.11)(2.99792458)²(10⁻³¹)(10⁸)² kg · m²/s²
= (81.87659678)(10^[-31+(2×8)]) kg · m²/s²
= 8.187659678 × 10⁻¹⁴ kg · m²/s²

Since the value of *m* was given to only three significant figures, we must round this to

$$E = 8.19 \times 10^{-14} \text{ kg} \cdot \text{m}^2/\text{s}^2 = 8.19 \times 10^{-14} \text{ J}$$

EVALUATE: While the rest energy contained in an electron may seem ridiculously small, on the atomic scale it is tremendous. Compare our answer to 10^{-19} J, the energy gained or lost by a single atom during a typical chemical reaction. The rest energy of an electron is about 1,000,000 times larger! (We'll discuss the significance of rest energy in Chapter 37.)

Mastering PHYSICS PhET: Estimation **Test Your Understanding of Section 1.5** The density of a material is equal to its mass divided by its volume. What is the density (in kg/m³) of a rock of mass 1.80 kg and volume 6.0×10^{-4} m³? (i) 3×10^{3} kg/m³; (ii) 3.0×10^{3} kg/m³; (iii) 3.00×10^{3} kg/m³; (iv) 3.000×10^{3} kg/m³; (v) any of these—all of these answers are mathematically equivalent.

1.6 Estimates and Orders of Magnitude

We have stressed the importance of knowing the accuracy of numbers that represent physical quantities. But even a very crude estimate of a quantity often gives us useful information. Sometimes we know how to calculate a certain quantity, but we have to guess at the data we need for the calculation. Or the calculation might be too complicated to carry out exactly, so we make some rough approximations. In either case our result is also a guess, but such a guess can be useful even if it is uncertain by a factor of two, ten, or more. Such calculations are often called **order-of-magnitude estimates.** The great Italian-American nuclear physicist Enrico Fermi (1901–1954) called them "back-of-the-envelope calculations."

Exercises 1.16 through 1.25 at the end of this chapter are of the estimating, or order-of-magnitude, variety. Most require guesswork for the needed input data. Don't try to look up a lot of data; make the best guesses you can. Even when they are off by a factor of ten, the results can be useful and interesting.

Example 1.4 An order-of-magnitude estimate

You are writing an adventure novel in which the hero escapes across the border with a billion dollars' worth of gold in his suitcase. Could anyone carry that much gold? Would it fit in a suitcase?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Gold sells for around \$400 an ounce. (The price has varied between \$200 and \$1000 over the past decade or so.) An ounce is about 30 grams; that's worth remembering. So ten dollars' worth of gold has a mass of $\frac{1}{40}$ ounce, or around one gram. A billion (10⁹) dollars' worth of gold

is a hundred million (10^8) grams, or a hundred thousand (10^5) kilograms. This corresponds to a weight in British units of around 200,000 lb, or 100 tons. No human hero could lift that weight!

Roughly what is the *volume* of this gold? The density of gold is much greater than that of water (1 g/cm^3) , or 1000 kg/m^3 ; if its density is 10 times that of water, this much gold will have a volume of 10 m^3 , many times the volume of a suitcase.

EVALUATE: Clearly your novel needs rewriting. Try the calculation again with a suitcase full of five-carat (1-gram) diamonds, each worth \$100,000. Would this work?

Application Scalar Temperature, Vector Wind

This weather station measures temperature, a scalar quantity that can be positive or negative (say, $+20^{\circ}$ C or -5° C) but has no direction. It also measures wind velocity, which is a vector quantity with both magnitude and direction (for example, 15 km/h from the west).

Test Your Understanding of Section 1.6 Can you estimate the total number of teeth in all the mouths of everyone (students, staff, and faculty) on your campus? (*Hint:* How many teeth are in your mouth? Count them!)

1.7 Vectors and Vector Addition

Some physical quantities, such as time, temperature, mass, and density, can be described completely by a single number with a unit. But many other important quantities in physics have a *direction* associated with them and cannot be described by a single number. A simple example is describing the motion of an airplane: We must say not only how fast the plane is moving but also in what direction. The speed of the airplane combined with its direction of motion together constitute a quantity called *velocity*. Another example is *force*, which in physics means a push or pull exerted on a body. Giving a complete description of a force means describing both how hard the force pushes or pulls on the body and the direction of the push or pull.
When a physical quantity is described by a single number, we call it a **scalar quantity.** In contrast, a **vector quantity** has both a **magnitude** (the "how much" or "how big" part) and a direction in space. Calculations that combine scalar quantities use the operations of ordinary arithmetic. For example, 6 kg + 3 kg = 9 kg, or $4 \times 2 \text{ s} = 8 \text{ s}$. However, combining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the simplest vector quantity, **displacement.** Displacement is simply a change in the position of an object. Displacement is a vector quantity because we must state not only how far the object moves but also in what direction. Walking 3 km north from your front door doesn't get you to the same place as walking 3 km southeast; these two displacements have the same magnitude but different directions.

We usually represent a vector quantity such as displacement by a single letter, such as \vec{A} in Fig. 1.9a. In this book we always print vector symbols in **boldface** *italic type with an arrow above them.* We do this to remind you that vector quantities have different properties from scalar quantities; the arrow is a reminder that vectors have direction. When you handwrite a symbol for a vector, *always* write it with an arrow on top. If you don't distinguish between scalar and vector quantities in your notation, you probably won't make the distinction in your thinking either, and hopeless confusion will result.

We always *draw* a vector as a line with an arrowhead at its tip. The length of the line shows the vector's magnitude, and the direction of the line shows the vector's direction. Displacement is always a straight-line segment directed from the starting point to the ending point, even though the object's actual path may be curved (Fig. 1.9b). Note that displacement is not related directly to the total *distance* traveled. If the object were to continue on past P_2 and then return to P_1 , the displacement for the entire trip would be *zero* (Fig. 1.9c).

If two vectors have the same direction, they are **parallel.** If they have the same magnitude *and* the same direction, they are *equal*, no matter where they are located in space. The vector \vec{A}' from point P_3 to point P_4 in Fig. 1.10 has the same length and direction as the vector \vec{A} from P_1 to P_2 . These two displacements are equal, even though they start at different points. We write this as $\vec{A}' = \vec{A}$ in Fig. 1.10; the boldface equals sign emphasizes that equality of two vector quantities is not the same relationship as equality of two scalar quantities. Two vector quantities are equal only when they have the same magnitude *and* the same direction.

The vector \vec{B} in Fig. 1.10, however, is not equal to \vec{A} because its direction is *opposite* to that of \vec{A} . We define the **negative of a vector** as a vector having the same magnitude as the original vector but the *opposite* direction. The negative of vector quantity \vec{A} is denoted as $-\vec{A}$, and we use a boldface minus sign to emphasize the vector nature of the quantities. If \vec{A} is 87 m south, then $-\vec{A}$ is 87 m north. Thus we can write the relationship between \vec{A} and \vec{B} in Fig. 1.10 as $\vec{A} = -\vec{B}$ or $\vec{B} = -\vec{A}$. When two vectors \vec{A} and \vec{B} have opposite directions, whether their magnitudes are the same or not, we say that they are **antiparallel**.

We usually represent the *magnitude* of a vector quantity (in the case of a displacement vector, its length) by the same letter used for the vector, but in *light italic type* with *no* arrow on top. An alternative notation is the vector symbol with vertical bars on both sides:

(Magnitude of
$$\vec{A}$$
) = $A = |\vec{A}|$ (1.1)

The magnitude of a vector quantity is a scalar quantity (a number) and is *always* positive. Note that a vector can never be equal to a scalar because they are different kinds of quantities. The expression " $\vec{A} = 6$ m" is just as wrong as "2 oranges = 3 apples"!

When drawing diagrams with vectors, it's best to use a scale similar to those used for maps. For example, a displacement of 5 km might be represented in a diagram by a vector 1 cm long, and a displacement of 10 km by a vector 2 cm long. In a diagram for velocity vectors, a vector that is 1 cm long might represent

1.9 Displacement as a vector quantity. A displacement is always a straight-line segment directed from the starting point to the ending point, even if the path is curved.

(b) Displacement depends only on the starting and ending positions—not on the path taken.

(c) Total displacement for a round trip is 0, regardless of the distance traveled.

1.10 The meaning of vectors that have the same magnitude and the same or opposite direction.

negative of \vec{A} .

1.11 Three ways to add two vectors. As shown in (b), the order in vector addition doesn't matter; vector addition is commutative.

(a) We can add two vectors by placing them head to tail.

(b) Adding them in reverse order gives the same result.

(c) We can also add them by constructing a parallelogram.

1.12 (a) Only when two vectors \vec{A} and \vec{B} are parallel does the magnitude of their sum equal the sum of their magnitudes: C = A + B. (b) When \vec{A} and \vec{B} are antiparallel, the magnitude of their sum equals the *difference* of their magnitudes: C = |A - B|.

(a) The sum of two parallel vectors

$$\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$$

(b) The sum of two antiparallel vectors

a velocity of magnitude 5 m/s. A velocity of 20 m/s would then be represented by a vector 4 cm long.

Vector Addition and Subtraction

Suppose a particle undergoes a displacement \vec{A} followed by a second displacement \vec{B} . The final result is the same as if the particle had started at the same initial point and undergone a single displacement \vec{C} (Fig. 1.11a). We call displacement \vec{C} the vector sum, or resultant, of displacements \vec{A} and \vec{B} . We express this relationship symbolically as

$$\vec{C} = \vec{A} + \vec{B} \tag{1.2}$$

The boldface plus sign emphasizes that adding two vector quantities requires a geometrical process and is not the same operation as adding two scalar quantities such as 2 + 3 = 5. In vector addition we usually place the *tail* of the *second* vector at the *head*, or tip, of the *first* vector (Fig. 1.11a).

If we make the displacements \vec{A} and \vec{B} in reverse order, with \vec{B} first and \vec{A} second, the result is the same (Fig. 1.11b). Thus

$$\vec{C} = \vec{B} + \vec{A}$$
 and $\vec{A} + \vec{B} = \vec{B} + \vec{A}$ (1.3)

This shows that the order of terms in a vector sum doesn't matter. In other words, vector addition obeys the commutative law.

Figure 1.11c shows another way to represent the vector sum: If vectors \vec{A} and \vec{B} are both drawn with their tails at the same point, vector \vec{C} is the diagonal of a parallelogram constructed with \vec{A} and \vec{B} as two adjacent sides.

CAUTION Magnitudes in vector addition It's a common error to conclude that if $\vec{C} = \vec{A} + \vec{B}$, then the magnitude *C* should equal the magnitude *A* plus the magnitude *B*. In general, this conclusion is *wrong*; for the vectors shown in Fig. 1.11, you can see that C < A + B. The magnitude of $\vec{A} + \vec{B}$ depends on the magnitudes of \vec{A} and \vec{B} and on the angle between \vec{A} and \vec{B} (see Problem 1.90). Only in the special case in which \vec{A} and \vec{B} are *parallel* is the magnitude of $\vec{C} = \vec{A} + \vec{B}$ equal to the sum of the magnitudes of \vec{A} and \vec{B} (Fig. 1.12a). When the vectors are *antiparallel* (Fig. 1.12b), the magnitude of \vec{C} equals the *difference* of the magnitudes of \vec{A} and \vec{B} . Be careful about distinguishing between scalar and vector quantities, and you'll avoid making errors about the magnitude of a vector sum.

When we need to add more than two vectors, we may first find the vector sum of any two, add this vectorially to the third, and so on. Figure 1.13a shows three vectors \vec{A} , \vec{B} , and \vec{C} . In Fig. 1.13b we first add \vec{A} and \vec{B} to give a vector sum \vec{D} ; we then add vectors \vec{C} and \vec{D} by the same process to obtain the vector sum \vec{R} :

$$\vec{R} = (\vec{A} + \vec{B}) + \vec{C} = \vec{D} + \vec{C}$$

1.13 Several constructions for finding the vector sum $\vec{A} + \vec{B} + \vec{C}$.

1.14 To construct the vector difference $\vec{A} - \vec{B}$, you can either place the tail of $-\vec{B}$ at the head of \vec{A} or place the two vectors \vec{A} and \vec{B} head to head.

Alternatively, we can first add \vec{B} and \vec{C} to obtain vector \vec{E} (Fig. 1.13c), and then add \vec{A} and \vec{E} to obtain \vec{R} :

$$\vec{R} = \vec{A} + (\vec{B} + \vec{C}) = \vec{A} + \vec{E}$$

We don't even need to draw vectors \vec{D} and \vec{E} ; all we need to do is draw \vec{A} , \vec{B} , and \vec{C} in succession, with the tail of each at the head of the one preceding it. The sum vector \vec{R} extends from the tail of the first vector to the head of the last vector (Fig. 1.13d). The order makes no difference; Fig. 1.13e shows a different order, and we invite you to try others. We see that vector addition obeys the associative law.

We can *subtract* vectors as well as add them. To see how, recall that vector $-\vec{A}$ has the same magnitude as \vec{A} but the opposite direction. We define the difference $\vec{A} - \vec{B}$ of two vectors \vec{A} and \vec{B} to be the vector sum of \vec{A} and $-\vec{B}$:

$$\vec{A} - \vec{B} = \vec{A} + (-\vec{B}) \tag{1.4}$$

Figure 1.14 shows an example of vector subtraction.

A vector quantity such as a displacement can be multiplied by a scalar quantity (an ordinary number). The displacement $2\vec{A}$ is a displacement (vector quantity) in the same direction as the vector \vec{A} but twice as long; this is the same as adding \vec{A} to itself (Fig. 1.15a). In general, when a vector \vec{A} is multiplied by a scalar c, the result $c\vec{A}$ has magnitude |c|A (the absolute value of c multiplied by the magnitude of the vector \vec{A}). If c is positive, $c\vec{A}$ is in the same direction as \vec{A} ; if c is negative, $c\vec{A}$ is in the direction opposite to \vec{A} . Thus $3\vec{A}$ is parallel to \vec{A} , while $-3\vec{A}$ is antiparallel to \vec{A} (Fig. 1.15b).

A scalar used to multiply a vector may also be a physical quantity. For example, you may be familiar with the relationship $\vec{F} = m\vec{a}$; the net force \vec{F} (a vector quantity) that acts on a body is equal to the product of the body's mass *m* (a scalar quantity) and its acceleration \vec{a} (a vector quantity). The direction of \vec{F} is the same as that of \vec{a} because *m* is positive, and the magnitude of \vec{F} is equal to the mass *m* (which is positive) multiplied by the magnitude of \vec{a} . The unit of force is the unit of mass multiplied by the unit of acceleration.

Example 1.5 Addition of two vectors at right angles

A cross-country skier skis 1.00 km north and then 2.00 km east on a horizontal snowfield. How far and in what direction is she from the starting point?

SOLUTION

IDENTIFY and SET UP: The problem involves combining two displacements at right angles to each other. In this case, vector addition amounts to solving a right triangle, which we can do using the Pythagorean theorem and simple trigonometry. The target variables are the skier's straight-line distance and direction from her

starting point. Figure 1.16 is a scale diagram of the two displacements and the resultant net displacement. We denote the direction from the starting point by the angle ϕ (the Greek letter phi). The displacement appears to be about 2.4 km. Measurement with a protractor indicates that ϕ is about 63°.

EXECUTE: The distance from the starting point to the ending point is equal to the length of the hypotenuse:

$$\sqrt{(1.00 \text{ km})^2 + (2.00 \text{ km})^2} = 2.24 \text{ km}$$

PhET: Vector Addition

Mastering

1.15 Multiplying a vector (a) by a positive scalar and (b) by a negative scalar.

(a) Multiplying a vector by a positive scalar changes the magnitude (length) of the vector, but not its direction.

(b) Multiplying a vector by a negative scalar changes its magnitude and reverses its direction.

-3A is three times as long as A and point in the opposite direction.

A little trigonometry (from Appendix B) allows us to find angle ϕ :

$$\tan \phi = \frac{\text{Opposite side}}{\text{Adjacent side}} = \frac{2.00 \text{ km}}{1.00 \text{ km}}$$
$$\phi = 63.4^{\circ}$$

We can describe the direction as 63.4° east of north or $90^{\circ} - 63.4^{\circ} = 26.6^{\circ}$ north of east.

EVALUATE: Our answers (2.24 km and $\phi = 63.4^{\circ}$) are close to our predictions. In the more general case in which you have to add two vectors *not* at right angles to each other, you can use the law of cosines in place of the Pythagorean theorem and use the law of sines to find an angle corresponding to ϕ in this example. (You'll find these trigonometric rules in Appendix B.) We'll see more techniques for vector addition in Section 1.8.

MP

Test Your Understanding of Section 1.7 Two displacement vectors, \vec{S} and \vec{T} , have magnitudes S = 3 m and T = 4 m. Which of the following could be the magnitude of the difference vector $\vec{S} - \vec{T}$? (There may be more than one correct answer.) (i) 9 m; (ii) 7 m; (iii) 5 m; (iv) 1 m; (v) 0 m; (vi) -1 m.

1.8 Components of Vectors

In Section 1.7 we added vectors by using a scale diagram and by using properties of right triangles. Measuring a diagram offers only very limited accuracy, and calculations with right triangles work only when the two vectors are perpendicular. So we need a simple but general method for adding vectors. This is called the method of *components*.

To define what we mean by the components of a vector \vec{A} , we begin with a rectangular (Cartesian) coordinate system of axes (Fig. 1.17a). We then draw the vector with its tail at O, the origin of the coordinate system. We can represent any vector lying in the *xy*-plane as the sum of a vector parallel to the *x*-axis and a vector parallel to the *y*-axis. These two vectors are labeled \vec{A}_x and \vec{A}_y in Fig. 1.17a; they are called the **component vectors** of vector \vec{A} , and their vector sum is equal to \vec{A} . In symbols,

$$\vec{A} = \vec{A}_x + \vec{A}_y \tag{1.5}$$

Since each component vector lies along a coordinate-axis direction, we need only a single number to describe each one. When \vec{A}_x points in the positive *x*-direction, we define the number A_x to be equal to the magnitude of \vec{A}_x . When \vec{A}_x points in the negative *x*-direction, we define the number A_x to be equal to the negative of that magnitude (the magnitude of a vector quantity is itself never negative). We define the number A_y in the same way. The two numbers A_x and A_y are called the **components** of \vec{A} (Fig. 1.17b).

CAUTION Components are not vectors The components A_x and A_y of a vector \vec{A} are just numbers; they are *not* vectors themselves. This is why we print the symbols for components in light italic type with *no* arrow on top instead of in boldface italic with an arrow, which is reserved for vectors.

We can calculate the components of the vector \vec{A} if we know its magnitude A and its direction. We'll describe the direction of a vector by its angle relative to some reference direction. In Fig. 1.17b this reference direction is the positive *x*-axis, and the angle between vector \vec{A} and the positive *x*-axis

1.17 Representing a vector \vec{A} in terms of (a) component vectors \vec{A}_x and \vec{A}_y and (b) components A_x and A_y (which in this case are both positive).

The component vectors of \vec{A}

(a)

is θ (the Greek letter theta). Imagine that the vector \vec{A} originally lies along the +*x*-axis and that you then rotate it to its correct direction, as indicated by the arrow in Fig. 1.17b on the angle θ . If this rotation is from the +*x*-axis toward the +*y*-axis, as shown in Fig. 1.17b, then θ is *positive;* if the rotation is from the +*x*-axis toward the -*y*-axis, θ is *negative*. Thus the +*y*-axis is at an angle of 90°, the -*x*-axis at 180°, and the -*y*-axis at 270° (or -90°). If θ is measured in this way, then from the definition of the trigonometric functions,

$$\frac{A_x}{A} = \cos\theta \qquad \text{and} \qquad \frac{A_y}{A} = \sin\theta$$

$$A_x = A\cos\theta \qquad \text{and} \qquad A_y = A\sin\theta$$
(1.6)

(θ measured from the +x-axis, rotating toward the +y-axis)

In Fig. 1.17b A_x and A_y are positive. This is consistent with Eqs. (1.6); θ is in the first quadrant (between 0° and 90°), and both the cosine and the sine of an angle in this quadrant are positive. But in Fig. 1.18a the component B_x is negative. Again, this agrees with Eqs. (1.6); the cosine of an angle in the second quadrant is negative. The component B_y is positive (sin θ is positive in the second quadrant). In Fig. 1.18b both C_x and C_y are negative (both $\cos\theta$ and $\sin\theta$ are negative in the third quadrant).

CAUTION Relating a vector's magnitude and direction to its components Equations (1.6) are correct *only* when the angle θ is measured from the positive *x*-axis as described above. If the angle of the vector is given from a different reference direction or using a different sense of rotation, the relationships are different. Be careful! Example 1.6 illustrates this point.

1.18 The components of a vector may be positive or negative numbers.

(a)

Both components of C are negative.

Example 1.6 Finding components

(a) What are the x- and y-components of vector \vec{D} in Fig. 1.19a? The magnitude of the vector is D = 3.00 m, and the angle $\alpha = 45^{\circ}$. (b) What are the x- and y-components of vector \vec{E} in Fig. 1.19b? The magnitude of the vector is E = 4.50 m, and the angle $\beta = 37.0^{\circ}$.

SOLUTION

IDENTIFY and SET UP: We can use Eqs. (1.6) to find the components of these vectors, but we have to be careful: Neither of the angles α or β in Fig. 1.19 is measured from the +x-axis toward the +y-axis. We estimate from the figure that the lengths of the com-

ponents in part (a) are both roughly 2 m, and that those in part (b) are 3m and 4 m. We've indicated the signs of the components in the figure.

EXECUTE: (a) The angle α (the Greek letter alpha) between the positive *x*-axis and \vec{D} is measured toward the *negative y*-axis. The angle we must use in Eqs. (1.6) is $\theta = -\alpha = -45^{\circ}$. We then find

$$D_x = D \cos \theta = (3.00 \text{ m})(\cos(-45^\circ)) = +2.1 \text{ m}$$
$$D_y = D \sin \theta = (3.00 \text{ m})(\sin(-45^\circ)) = -2.1 \text{ m}$$

Had you been careless and substituted $+45^{\circ}$ for θ in Eqs. (1.6), your result for D_y would have had the wrong sign.

(b) The x- and y-axes in Fig. 1.19b are at right angles, so it doesn't matter that they aren't horizontal and vertical, respectively. But to use Eqs. (1.6), we must use the angle $\theta = 90.0^{\circ} - \beta = 90.0^{\circ} - 37.0^{\circ} = 53.0^{\circ}$. Then we find

$$E_x = E \cos 53.0^\circ = (4.50 \text{ m})(\cos 53.0^\circ) = +2.71 \text{ m}$$

 $E_y = E \sin 53.0^\circ = (4.50 \text{ m})(\sin 53.0^\circ) = +3.59 \text{ m}$

EVALUATE: Our answers to both parts are close to our predictions. But ask yourself this: Why do the answers in part (a) correctly have only two significant figures?

Doing Vector Calculations Using Components

Using components makes it relatively easy to do various calculations involving vectors. Let's look at three important examples.

1. Finding a vector's magnitude and direction from its components. We can describe a vector completely by giving either its magnitude and direction or its *x*- and *y*-components. Equations (1.6) show how to find the components if we know the magnitude and direction. We can also reverse the process: We can find the magnitude and direction if we know the components. By applying the Pythagorean theorem to Fig. 1.17b, we find that the magnitude of vector \vec{A} is

$$A = \sqrt{A_x^2 + A_y^2}$$
 (1.7)

(We always take the positive root.) Equation (1.7) is valid for any choice of xaxis and y-axis, as long as they are mutually perpendicular. The expression for the vector direction comes from the definition of the tangent of an angle. If θ is measured from the positive x-axis, and a positive angle is measured toward the positive y-axis (as in Fig. 1.17b), then

$$\tan \theta = \frac{A_y}{A_x} \quad \text{and} \quad \theta = \arctan \frac{A_y}{A_x} \tag{1.8}$$

We will always use the notation arctan for the inverse tangent function. The notation \tan^{-1} is also commonly used, and your calculator may have an INV or 2ND button to be used with the TAN button.

CAUTION Finding the direction of a vector from its components There's one slight complication in using Eqs. (1.8) to find θ : Any two angles that differ by 180° have the same tangent. Suppose $A_x = 2$ m and $A_y = -2$ m as in Fig. 1.20; then $\tan \theta = -1$. But both 135° and 315° (or -45°) have tangents of -1. To decide which is correct, we have to look at the individual components. Because A_x is positive and A_y is negative, the angle must be in the fourth quadrant; thus $\theta = 315^{\circ}$ (or -45°) is the correct value. Most pocket calculators give $\arctan(-1) = -45^{\circ}$. In this case that is correct; but if instead we have $A_x = -2$ m and $A_y = 2$ m, then the correct angle is 135°. Similarly, when A_x and A_y are both negative, the tangent is positive, but the angle is in the third quadrant. You should *always* draw a sketch like Fig. 1.20 to check which of the two possibilities is the correct one.

2. Multiplying a vector by a scalar. If we multiply a vector \vec{A} by a scalar c, each component of the product $\vec{D} = c\vec{A}$ is the product of c and the corresponding component of \vec{A} :

$$D_x = cA_x$$
 $D_y = cA_y$ (components of $\vec{D} = c\vec{A}$) (1.9)

For example, Eq. (1.9) says that each component of the vector $2\vec{A}$ is twice as great as the corresponding component of the vector \vec{A} , so $2\vec{A}$ is in the same direction as \vec{A} but has twice the magnitude. Each component of the vector $-3\vec{A}$ is three times as great as the corresponding component of the vector \vec{A} but has the opposite sign, so $-3\vec{A}$ is in the opposite direction from \vec{A} and has three times the magnitude. Hence Eqs. (1.9) are consistent with our discussion in Section 1.7 of multiplying a vector by a scalar (see Fig. 1.15).

3. Using components to calculate the vector sum (resultant) of two or more vectors. Figure 1.21 shows two vectors \vec{A} and \vec{B} and their vector sum \vec{R} , along with the *x*- and *y*-components of all three vectors. You can see from the diagram that the *x*-component R_x of the vector sum is simply the sum $(A_x + B_x)$

1.20 Drawing a sketch of a vector reveals the signs of its *x*- and *y*-components.

of the *x*-components of the vectors being added. The same is true for the *y*-components. In symbols,

$$R_x = A_x + B_x$$
 $R_y = A_y + B_y$ (components of $\vec{R} = \vec{A} + \vec{B}$) (1.10)

Figure 1.21 shows this result for the case in which the components A_x , A_y , B_x , and B_y are all positive. You should draw additional diagrams to verify for yourself that Eqs. (1.10) are valid for *any* signs of the components of \vec{A} and \vec{B} .

If we know the components of any two vectors \vec{A} and \vec{B} , perhaps by using Eqs. (1.6), we can compute the components of the vector sum \vec{R} . Then if we need the magnitude and direction of \vec{R} , we can obtain them from Eqs. (1.7) and (1.8) with the *A*'s replaced by *R*'s.

We can extend this procedure to find the sum of any number of vectors. If \vec{R} is the vector sum of \vec{A} , \vec{B} , \vec{C} , \vec{D} , \vec{E} ,..., the components of \vec{R} are

$$R_{x} = A_{x} + B_{x} + C_{x} + D_{x} + E_{x} + \cdots$$

$$R_{y} = A_{y} + B_{y} + C_{y} + D_{y} + E_{y} + \cdots$$
(1.11)

We have talked only about vectors that lie in the *xy*-plane, but the component method works just as well for vectors having any direction in space. We can introduce a *z*-axis perpendicular to the *xy*-plane; then in general a vector \vec{A} has components A_x , A_y , and A_z in the three coordinate directions. Its magnitude A is

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$
(1.12)

Again, we always take the positive root. Also, Eqs. (1.11) for the components of the vector sum \vec{R} have an additional member:

$$R_z = A_z + B_z + C_z + D_z + E_z + \cdots$$

We've focused on adding *displacement* vectors, but the method is applicable to all vector quantities. When we study the concept of force in Chapter 4, we'll find that forces are vectors that obey the same rules of vector addition that we've used with displacement.

Problem-Solving Strategy 1.3 Vector Addition

IDENTIFY *the relevant concepts:* Decide what the target variable is. It may be the magnitude of the vector sum, the direction, or both.

SET UP *the problem:* Sketch the vectors being added, along with suitable coordinate axes. Place the tail of the first vector at the origin of the coordinates, place the tail of the second vector at the head of the first vector, and so on. Draw the vector sum \vec{R} from the tail of the first vector (at the origin) to the head of the last vector. Use your sketch to estimate the magnitude and direction of \vec{R} . Select the mathematical tools you'll use for the full calculation: Eqs. (1.6) to obtain the components of the vectors given, if necessary, Eqs. (1.11) to obtain the components of the vector sum, Eq. (1.12) to obtain its magnitude, and Eqs. (1.8) to obtain its direction.

EXECUTE *the solution* as follows:

1. Find the *x*- and *y*-components of each individual vector and record your results in a table, as in Example 1.7 below. If a vector is described by a magnitude *A* and an angle θ , measured

The components of \vec{R} are the sums of the components of \vec{A} and \vec{B} :

$$R_{v} = A_{v} + B_{v} \qquad R_{x} = A_{x} + B_{x}$$

from the +x-axis toward the +y-axis, then its components are given by Eqs. 1.6:

$$A_x = A \cos \theta$$
 $A_y = A \sin \theta$

If the angles of the vectors are given in some other way, perhaps using a different reference direction, convert them to angles measured from the +x-axis as in Example 1.6 above.

- 2. Add the individual *x*-components algebraically (including signs) to find R_x , the *x*-component of the vector sum. Do the same for the *y*-components to find R_y . See Example 1.7 below.
- 3. Calculate the magnitude *R* and direction θ of the vector sum using Eqs. (1.7) and (1.8):

$$R = \sqrt{R_x^2 + R_y^2}$$
 $\theta = \arctan \frac{R_y}{R_x}$

EVALUATE *your answer:* Confirm that your results for the magnitude and direction of the vector sum agree with the estimates you made from your sketch. The value of θ that you find with a calculator may be off by 180°; your drawing will indicate the correct value.

Example 1.7 Adding vectors using their components

Three players on a reality TV show are brought to the center of a large, flat field. Each is given a meter stick, a compass, a calculator, a shovel, and (in a different order for each contestant) the following three displacements:

- \vec{A} : 72.4 m, 32.0° east of north
- \vec{B} : 57.3 m, 36.0° south of west

 \vec{C} : 17.8 m due south

The three displacements lead to the point in the field where the keys to a new Porsche are buried. Two players start measuring immediately, but the winner first *calculates* where to go. What does she calculate?

SOLUTION

IDENTIFY and SET UP: The goal is to find the sum (resultant) of the three displacements, so this is a problem in vector addition. Figure 1.22 shows the situation. We have chosen the +x-axis as

1.22 Three successive displacements \vec{A} , \vec{B} , and \vec{C} and the resultant (vector sum) displacement $\vec{R} = \vec{A} + \vec{B} + \vec{C}$.

east and the +y-axis as north. We estimate from the diagram that the vector sum \vec{R} is about 10 m, 40° west of north (which corresponds to $\theta \approx 130^{\circ}$).

EXECUTE: The angles of the vectors, measured from the +x-axis toward the +y-axis, are $(90.0^{\circ} - 32.0^{\circ}) = 58.0^{\circ}$, $(180.0^{\circ} + 36.0^{\circ}) = 216.0^{\circ}$, and 270.0° , respectively. We may now use Eqs. (1.6) to find the components of \vec{A} :

$$A_x = A \cos \theta_A = (72.4 \text{ m})(\cos 58.0^\circ) = 38.37 \text{ m}$$

 $A_y = A \sin \theta_A = (72.4 \text{ m})(\sin 58.0^\circ) = 61.40 \text{ m}$

We've kept an extra significant figure in the components; we'll round to the correct number of significant figures at the end of our calculation. The table below shows the components of all the displacements, the addition of the components, and the other calculations.

Distance	Angle	x-component	y-component
A = 72.4 m	58.0°	38.37 m	61.40 m
B = 57.3 m	216.0°	-46.36 m	-33.68 m
C = 17.8 m	270.0°	0.00 m	−17.80 m
		$R_x = -7.99 \text{ m}$	$R_y = 9.92 \text{ m}$
R =	= $\sqrt{(-7.99)}$	$(m)^2 + (9.92 m)^2 =$	= 12.7 m
	0.0		

$$\theta = \arctan \frac{9.92 \text{ m}}{-7.99 \text{ m}} = -51^{\circ}$$

Comparing to Fig. 1.22 shows that the calculated angle is clearly off by 180°. The correct value is $\theta = 180^\circ - 51^\circ = 129^\circ$, or 39° west of north.

EVALUATE: Our calculated answers for *R* and θ agree with our estimates. Notice how drawing the diagram in Fig. 1.22 made it easy to avoid a 180° error in the direction of the vector sum.

Example 1.8 A simple vector addition in three dimensions

After an airplane takes off, it travels 10.4 km west, 8.7 km north, and 2.1 km up. How far is it from the takeoff point?

SOLUTION

Let the +x-axis be east, the +y-axis north, and the +z-axis up. Then the components of the airplane's displacement are $A_x = -10.4$ km, $A_y = 8.7$ km, and $A_z = 2.1$ km. From Eq. (1.12), the magnitude of the displacement is

$$A = \sqrt{(-10.4 \text{ km})^2 + (8.7 \text{ km})^2 + (2.1 \text{ km})^2} = 13.7 \text{ km}$$

Test Your Understanding of Section 1.8 Two vectors \vec{A} and \vec{B} both lie in the *xy*-plane. (a) Is it possible for \vec{A} to have the same magnitude as \vec{B} but different components? (b) Is it possible for \vec{A} to have the same components as \vec{B} but a different magnitude?

1.9 Unit Vectors

A **unit vector** is a vector that has a magnitude of 1, with no units. Its only purpose is to *point*—that is, to describe a direction in space. Unit vectors provide a convenient notation for many expressions involving components of vectors. We will always include a caret or "hat" (^) in the symbol for a unit vector to distinguish it from ordinary vectors whose magnitude may or may not be equal to 1.

In an x-y coordinate system we can define a unit vector \hat{i} that points in the direction of the positive x-axis and a unit vector \hat{j} that points in the direction of the positive y-axis (Fig. 1.23a). Then we can express the relationship between component vectors and components, described at the beginning of Section 1.8, as follows:

$$\dot{A}_x = A_x \hat{i}$$

$$\vec{A}_y = A_y \hat{j}$$
(1.13)

Similarly, we can write a vector \vec{A} in terms of its components as

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} \tag{1.14}$$

Equations (1.13) and (1.14) are vector equations; each term, such as $A_x \hat{i}$, is a vector quantity (Fig. 1.23b).

Using unit vectors, we can express the vector sum \vec{R} of two vectors \vec{A} and \vec{B} as follows:

$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$

$$\vec{B} = B_x \hat{i} + B_y \hat{j}$$

$$\vec{R} = \vec{A} + \vec{B}$$

$$= (A_x \hat{i} + A_y \hat{j}) + (B_x \hat{i} + B_y \hat{j})$$

$$= (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j}$$

$$= R_x \hat{i} + R_y \hat{j}$$

(1.15)

Equation (1.15) restates the content of Eqs. (1.10) in the form of a single vector equation rather than two component equations.

If the vectors do not all lie in the *xy*-plane, then we need a third component. We introduce a third unit vector \hat{k} that points in the direction of the positive *z*-axis (Fig. 1.24). Then Eqs. (1.14) and (1.15) become

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$$
 (1.16)

$$\vec{R} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_z + B_z)\hat{k}$$
$$= R_x\hat{i} + R_y\hat{j} + R_z\hat{k}$$
(1.17)

I

Example 1.9 Using unit vectors

Given the two displacements

$$\vec{D} = (6.00\,\hat{\imath} + 3.00\,\hat{\jmath} - 1.00\,\hat{k})\,\mathrm{m}$$
 and

$$\vec{E} = (4.00\,\hat{\imath} - 5.00\,\hat{\jmath} + 8.00\,\hat{k})\,\mathrm{m}$$

find the magnitude of the displacement $2\vec{D} - \vec{E}$.

SOLUTION

IDENTIFY and SET UP: We are to multiply the vector \vec{D} by 2 (a scalar) and subtract the vector \vec{E} from the result, so as to obtain the vector $\vec{F} = 2\vec{D} - \vec{E}$. Equation (1.9) says that to multiply \vec{D} by 2, we multiply each of its components by 2. We can use Eq. (1.17) to do the subtraction; recall from Section 1.7 that subtracting a vector is the same as adding the negative of that vector.

EXECUTE: We have

$$\vec{F} = 2(6.00\hat{i} + 3.00\hat{j} - 1.00\hat{k}) \text{ m} - (4.00\hat{i} - 5.00\hat{j} + 8.00\hat{k}) \text{ m}$$

$$= [(12.00 - 4.00)\hat{i} + (6.00 + 5.00)\hat{j} + (-2.00 - 8.00)\hat{k}] \text{ m}$$

$$= (8.00\hat{i} + 11.00\hat{j} - 10.00\hat{k}) \text{ m}$$
From Eq. (1.12) the magnitude of \vec{F} is
$$F = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

$$= \sqrt{(8.00 \text{ m})^2 + (11.00 \text{ m})^2 + (-10.00 \text{ m})^2}$$

= 16.9 m

EVALUATE: Our answer is of the same order of magnitude as the larger components that appear in the sum. We wouldn't expect our answer to be much larger than this, but it could be much smaller.

Test Your Understanding of Section 1.9 Arrange the following vectors in order of their magnitude, with the vector of largest magnitude first. (i) $\vec{A} = (3\hat{i} + 5\hat{j} - 2\hat{k})$ m; (ii) $\vec{B} = (-3\hat{i} + 5\hat{j} - 2\hat{k})$ m; (iii) $\vec{C} = (3\hat{i} - 5\hat{j} - 2\hat{k})$ m; (iv) $\vec{D} = (3\hat{i} + 5\hat{j} + 2\hat{k})$ m.

1.10 Products of Vectors

Vector addition develops naturally from the problem of combining displacements and will prove useful for calculating many other vector quantities. We can also express many physical relationships by using *products* of vectors. Vectors are not ordinary numbers, so ordinary multiplication is not directly applicable to vectors. We will define two different kinds of products of vectors. The first, called the *scalar product*, yields a result that is a scalar quantity. The second, the *vector product*, yields another vector.

Scalar Product

The scalar product of two vectors \vec{A} and \vec{B} is denoted by $\vec{A} \cdot \vec{B}$. Because of this notation, the scalar product is also called the **dot product.** Although \vec{A} and \vec{B} are vectors, the quantity $\vec{A} \cdot \vec{B}$ is a scalar.

To define the scalar product $\vec{A} \cdot \vec{B}$ we draw the two vectors \vec{A} and \vec{B} with their tails at the same point (Fig. 1.25a). The angle ϕ (the Greek letter phi) between their directions ranges from 0° to 180°. Figure 1.25b shows the projection of the vector \vec{B} onto the direction of \vec{A} ; this projection is the component of \vec{B} in the direction of \vec{A} and is equal to $B \cos \phi$. (We can take components along any direction that's convenient, not just the *x*- and *y*-axes.) We define $\vec{A} \cdot \vec{B}$ to be the magnitude of \vec{A} multiplied by the component of \vec{B} in the direction of \vec{A} . Expressed as an equation,

$$\vec{A} \cdot \vec{B} = AB\cos\phi = |\vec{A}||\vec{B}|\cos\phi$$
 (definition of the scalar
(dot) product) (1.18)

Alternatively, we can define $\vec{A} \cdot \vec{B}$ to be the magnitude of \vec{B} multiplied by the component of \vec{A} in the direction of \vec{B} , as in Fig. 1.25c. Hence $\vec{A} \cdot \vec{B} = B(A\cos\phi) = AB\cos\phi$, which is the same as Eq. (1.18).

The scalar product is a scalar quantity, not a vector, and it may be positive, negative, or zero. When ϕ is between 0° and 90°, $\cos \phi > 0$ and the scalar product is

positive (Fig. 1.26a). When ϕ is between 90° and 180° so that $\cos \phi < 0$, the component of \vec{B} in the direction of \vec{A} is negative, and $\vec{A} \cdot \vec{B}$ is negative (Fig. 1.26b). Finally, when $\phi = 90^\circ$, $\vec{A} \cdot \vec{B} = 0$ (Fig. 1.26c). The scalar product of two perpendicular vectors is always zero.

For any two vectors \vec{A} and \vec{B} , $AB\cos\phi = BA\cos\phi$. This means that $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$. The scalar product obeys the commutative law of multiplication; the order of the two vectors does not matter.

We will use the scalar product in Chapter 6 to describe work done by a force. When a constant force \vec{F} is applied to a body that undergoes a displacement \vec{s} , the work *W* (a scalar quantity) done by the force is given by

$$W = \vec{F} \cdot \vec{s}$$

The work done by the force is positive if the angle between \vec{F} and \vec{s} is between 0° and 90° , negative if this angle is between 90° and 180° , and zero if \vec{F} and \vec{s} are perpendicular. (This is another example of a term that has a special meaning in physics; in everyday language, "work" isn't something that can be positive or negative.) In later chapters we'll use the scalar product for a variety of purposes, from calculating electric potential to determining the effects that varying magnetic fields have on electric circuits.

Calculating the Scalar Product Using Components

We can calculate the scalar product $\vec{A} \cdot \vec{B}$ directly if we know the x-, y-, and zcomponents of \vec{A} and \vec{B} . To see how this is done, let's first work out the scalar products of the unit vectors. This is easy, since \hat{i} , \hat{j} , and \hat{k} all have magnitude 1 and are perpendicular to each other. Using Eq. (1.18), we find

$$\hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = \hat{k} \cdot \hat{k} = (1)(1)\cos 0^{\circ} = 1$$

$$\hat{\imath} \cdot \hat{\jmath} = \hat{\imath} \cdot \hat{k} = \hat{\jmath} \cdot \hat{k} = (1)(1)\cos 90^{\circ} = 0$$
(1.19)

Now we express \vec{A} and \vec{B} in terms of their components, expand the product, and use these products of unit vectors:

$$\vec{A} \cdot \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) \cdot (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$

$$= A_x \hat{\imath} \cdot B_x \hat{\imath} + A_x \hat{\imath} \cdot B_y \hat{\jmath} + A_x \hat{\imath} \cdot B_z \hat{k}$$

$$+ A_y \hat{\jmath} \cdot B_x \hat{\imath} + A_y \hat{\jmath} \cdot B_y \hat{\jmath} + A_y \hat{\jmath} \cdot B_z \hat{k}$$

$$+ A_z \hat{k} \cdot B_x \hat{\imath} + A_z \hat{k} \cdot B_y \hat{\jmath} + A_z \hat{k} \cdot B_z \hat{k} \qquad (1.20)$$

$$= A_x B_x \hat{\imath} \cdot \hat{\imath} + A_x B_y \hat{\imath} \cdot \hat{\jmath} + A_x B_z \hat{\imath} \cdot \hat{k}$$

$$+ A_y B_x \hat{\jmath} \cdot \hat{\imath} + A_z B_y \hat{\jmath} \cdot \hat{\jmath} + A_z B_z \hat{\jmath} \cdot \hat{k}$$

$$+ A_z B_x \hat{k} \cdot \hat{\imath} + A_z B_y \hat{k} \cdot \hat{\jmath} + A_z B_z \hat{k} \cdot \hat{k}$$

From Eqs. (1.19) we see that six of these nine terms are zero, and the three that survive give simply

 $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z \qquad (\text{scalar (dot) product in} \\ \text{terms of components}) \qquad (1.21)$

Thus the scalar product of two vectors is the sum of the products of their respective components.

The scalar product gives a straightforward way to find the angle ϕ between any two vectors \vec{A} and \vec{B} whose components are known. In this case we can use Eq. (1.21) to find the scalar product of \vec{A} and \vec{B} . Example 1.11 on the next page shows how to do this. **1.26** The scalar product $\vec{A} \cdot \vec{B} = AB \cos \phi$ can be positive, negative, or zero, depending on the angle between \vec{A} and \vec{B} .

(a)

Example 1.10 Calculating a scalar product

Find the scalar product $\vec{A} \cdot \vec{B}$ of the two vectors in Fig. 1.27. The magnitudes of the vectors are A = 4.00 and B = 5.00.

SOLUTION

IDENTIFY and SET UP: We can calculate the scalar product in two ways: using the magnitudes of the vectors and the angle between them (Eq. 1.18), and using the components of the vectors (Eq. 1.21). We'll do it both ways, and the results will check each other.

1.27 Two vectors in two dimensions.

EXECUTE: The angle between the two vectors is $\phi = 130.0^{\circ} - 53.0^{\circ} = 77.0^{\circ}$, so Eq. (1.18) gives us

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \phi = (4.00)(5.00) \cos 77.0^{\circ} = 4.50$$

To use Eq. (1.21), we must first find the components of the vectors. The angles of \vec{A} and \vec{B} are given with respect to the +*x*-axis and are measured in the sense from the +*x*-axis to the +*y*-axis, so we can use Eqs. (1.6):

$$A_x = (4.00) \cos 53.0^\circ = 2.407$$

$$A_y = (4.00) \sin 53.0^\circ = 3.195$$

$$B_x = (5.00) \cos 130.0^\circ = -3.214$$

$$B_y = (5.00) \sin 130.0^\circ = 3.830$$

As in Example 1.7, we keep an extra significant figure in the components and round at the end. Equation (1.21) now gives us

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

= (2.407)(-3.214) + (3.195)(3.830) + (0)(0) = 4.50

EVALUATE: Both methods give the same result, as they should.

Example 1.11 Finding an angle with the scalar product

Find the angle between the vectors

$$\vec{A} = 2.00\hat{i} + 3.00\hat{j} + 1.00\hat{k}$$
 and
 $\vec{B} = -4.00\hat{i} + 2.00\hat{i} - 1.00\hat{k}$

SOLUTION

IDENTIFY and SET UP: We're given the x-, y-, and z-components of two vectors. Our target variable is the angle ϕ between them (Fig. 1.28). To find this, we'll solve Eq. (1.18), $\vec{A} \cdot \vec{B} = AB \cos \phi$, for ϕ in terms of the scalar product $\vec{A} \cdot \vec{B}$ and the magnitudes A and B. We can evaluate the scalar product using Eq. (1.21),

1.28 Two vectors in three dimensions.

 $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$, and we can find A and B using Eq. (1.7).

EXECUTE: We solve Eq. (1.18) for $\cos \phi$ and write $\vec{A} \cdot \vec{B}$ using Eq. (1. 21). Our result is

$$\cos\phi = \frac{\vec{A} \cdot \vec{B}}{AB} = \frac{A_x B_x + A_y B_y + A_z B_z}{AB}$$

We can use this formula to find the angle between *any* two vectors \vec{A} and \vec{B} . Here we have $A_x = 2.00$, $A_y = 3.00$, and $A_z = 1.00$, and $B_x = -4.00$, $B_y = 2.00$, and $B_z = -1.00$. Thus

$$A \cdot B = A_x B_x + A_y B_y + A_z B_z$$

= (2.00)(-4.00) + (3.00)(2.00) + (1.00)(-1.00)
= -3.00
$$A = \sqrt{A_x^2 + A_y^2 + A_z^2} = \sqrt{(2.00)^2 + (3.00)^2 + (1.00)^2}$$

= $\sqrt{14.00}$
$$B = \sqrt{B_x^2 + B_y^2 + B_z^2} = \sqrt{(-4.00)^2 + (2.00)^2 + (-1.00)^2}$$

= $\sqrt{21.00}$
$$\cos \phi = \frac{A_x B_x + A_y B_y + A_z B_z}{AB} = \frac{-3.00}{\sqrt{14.00}\sqrt{21.00}} = -0.175$$

$$\phi = 100^\circ$$

EVALUATE: As a check on this result, note that the scalar product $\vec{A} \cdot \vec{B}$ is negative. This means that ϕ is between 90° and 180° (see Fig. 1.26), which agrees with our answer.

Vector Product

The vector product of two vectors \vec{A} and \vec{B} , also called the **cross product**, is denoted by $\vec{A} \times \vec{B}$. As the name suggests, the vector product is itself a vector. We'll use this product in Chapter 10 to describe torque and angular momentum; in Chapters 27 and 28 we'll use it to describe magnetic fields and forces.

To define the vector product $\vec{A} \times \vec{B}$, we again draw the two vectors \vec{A} and \vec{B} with their tails at the same point (Fig. 1.29a). The two vectors then lie in a plane. We define the vector product to be a vector quantity with a direction perpendicular to this plane (that is, perpendicular to both \vec{A} and \vec{B}) and a magnitude equal to $AB \sin \phi$. That is, if $\vec{C} = \vec{A} \times \vec{B}$, then

 $C = AB \sin \phi$ (magnitude of the vector (cross) product of \vec{A} and \vec{B}) (1.22)

We measure the angle ϕ from \vec{A} toward \vec{B} and take it to be the smaller of the two possible angles, so ϕ ranges from 0° to 180°. Then sin $\phi \ge 0$ and C in Eq. (1.22) is never negative, as must be the case for a vector magnitude. Note also that when \vec{A} and \vec{B} are parallel or antiparallel, $\phi = 0$ or 180° and C = 0. That is, the vector product of two parallel or antiparallel vectors is always zero. In particular, the vector product of any vector with itself is zero.

CAUTION Vector product vs. scalar product Be careful not to confuse the expression $AB \sin \phi$ for the magnitude of the vector product $\vec{A} \times \vec{B}$ with the similar expression $AB \cos \phi$ for the scalar product $\vec{A} \cdot \vec{B}$. To see the difference between these two expressions, imagine that we vary the angle between \vec{A} and \vec{B} while keeping their magnitudes constant. When \vec{A} and \vec{B} are parallel, the magnitude of the vector product will be zero and the scalar product will be maximum. When \vec{A} and \vec{B} are perpendicular, the magnitude of the vector product will be maximum and the scalar product will be zero.

There are always *two* directions perpendicular to a given plane, one on each side of the plane. We choose which of these is the direction of $\vec{A} \times \vec{B}$ as follows. Imagine rotating vector \vec{A} about the perpendicular line until it is aligned with \vec{B} , choosing the smaller of the two possible angles between \vec{A} and \vec{B} . Curl the fingers of your right hand around the perpendicular line so that the fingertips point in the direction of rotation; your thumb will then point in the direction of $\vec{A} \times \vec{B}$. Figure 1.29a shows this **right-hand rule** and describes a second way to think about this rule.

Similarly, we determine the direction of $\vec{B} \times \vec{A}$ by rotating \vec{B} into \vec{A} as in Fig. 1.29b. The result is a vector that is *opposite* to the vector $\vec{A} \times \vec{B}$. The vector product is *not* commutative! In fact, for any two vectors \vec{A} and \vec{B} ,

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A} \tag{1.23}$$

Just as we did for the scalar product, we can give a geometrical interpretation of the magnitude of the vector product. In Fig. 1.30a, $B \sin \phi$ is the component of vector \vec{B} that is *perpendicular* to the direction of vector \vec{A} . From Eq. (1.22) the magnitude of $\vec{A} \times \vec{B}$ equals the magnitude of \vec{A} multiplied by the component of \vec{B} perpendicular to \vec{A} . Figure 1.30b shows that the magnitude of $\vec{A} \times \vec{B}$ also equals the magnitude of \vec{B} multiplied by the component of \vec{A} perpendicular to \vec{B} . Note that Fig. 1.30 shows the case in which ϕ is between 0° and 90°; you should draw a similar diagram for ϕ between 90° and 180° to show that the same geometrical interpretation of the magnitude of $\vec{A} \times \vec{B}$ still applies.

Calculating the Vector Product Using Components

If we know the components of \vec{A} and \vec{B} , we can calculate the components of the vector product using a procedure similar to that for the scalar product. First we work out the multiplication table for the unit vectors \hat{i}, \hat{j} , and \hat{k} , all three of which

1.29 (a) The vector product $\vec{A} \times \vec{B}$ determined by the right-hand rule. (b) $\vec{B} \times \vec{A} = -\vec{A} \times \vec{B}$; the vector product is anticommutative.

(a) Using the right-hand rule to find the direction of $\vec{A} \times \vec{B}$

(a)

1.31 (a) We will always use a righthanded coordinate system, like this one. (b) We will never use a left-handed coordinate system (in which $\hat{i} \times \hat{j} = -\hat{k}$, and so on).

(a) A right-handed coordinate system

(b) A left-handed coordinate system; we will not use these.

are perpendicular to each other (Fig. 1.31a). The vector product of any vector with itself is zero, so

$$\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$$

The boldface zero is a reminder that each product is a zero *vector*—that is, one with all components equal to zero and an undefined direction. Using Eqs. (1.22) and (1.23) and the right-hand rule, we find

$$\hat{\imath} \times \hat{\jmath} = -\hat{\jmath} \times \hat{\imath} = \hat{k}$$
$$\hat{\jmath} \times \hat{k} = -\hat{k} \times \hat{\jmath} = \hat{\imath}$$
$$\hat{k} \times \hat{\imath} = -\hat{\imath} \times \hat{k} = \hat{\jmath}$$
(1.24)

You can verify these equations by referring to Fig. 1.31a.

Next we express \vec{A} and \vec{B} in terms of their components and the corresponding unit vectors, and we expand the expression for the vector product:

$$\vec{A} \times \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) \times (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$

$$= A_x \hat{\imath} \times B_x \hat{\imath} + A_x \hat{\imath} \times B_y \hat{\jmath} + A_x \hat{\imath} \times B_z \hat{k}$$

$$+ A_y \hat{\jmath} \times B_x \hat{\imath} + A_y \hat{\jmath} \times B_y \hat{\jmath} + A_y \hat{\jmath} \times B_z \hat{k}$$

$$+ A_z \hat{k} \times B_x \hat{\imath} + A_z \hat{k} \times B_y \hat{\jmath} + A_z \hat{k} \times B_z \hat{k}$$
(1.25)

We can also rewrite the individual terms in Eq. (1.25) as $A_x \hat{\imath} \times B_y \hat{\jmath} = (A_x B_y) \hat{\imath} \times \hat{\jmath}$, and so on. Evaluating these by using the multiplication table for the unit vectors in Eqs. (1.24) and then grouping the terms, we get

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{\imath} + (A_z B_x - A_x B_z)\hat{\jmath} + (A_x B_y - A_y B_x)\hat{k}$$
 (1.26)

Thus the components of $\vec{C} = \vec{A} \times \vec{B}$ are given by

$$C_x = A_y B_z - A_z B_y \qquad C_y = A_z B_x - A_x B_z \qquad C_z = A_x B_y - A_y B_x$$

(components of $\vec{C} = \vec{A} \times \vec{B}$) (1.27)

The vector product can also be expressed in determinant form as

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

If you aren't familiar with determinants, don't worry about this form.

With the axis system of Fig. 1.31a, if we reverse the direction of the z-axis, we get the system shown in Fig. 1.31b. Then, as you may verify, the definition of the vector product gives $\hat{i} \times \hat{j} = -\hat{k}$ instead of $\hat{i} \times \hat{j} = \hat{k}$. In fact, all vector products of the unit vectors \hat{i}, \hat{j} , and \hat{k} would have signs opposite to those in Eqs. (1.24). We see that there are two kinds of coordinate systems, differing in the signs of the vector products of unit vectors. An axis system in which $\hat{i} \times \hat{j} = \hat{k}$, as in Fig. 1.31a, is called a **right-handed system**. The usual practice is to use *only* right-handed systems, and we will follow that practice throughout this book.

Example 1.12 Calculating a vector product

Vector \vec{A} has magnitude 6 units and is in the direction of the +x-axis. Vector \vec{B} has magnitude 4 units and lies in the *xy*-plane, making an angle of 30° with the +x-axis (Fig. 1.32). Find the vector product $\vec{C} = \vec{A} \times \vec{B}$.

SOLUTION

IDENTIFY and SET UP: We'll find the vector product in two ways, which will provide a check of our calculations. First we'll use Eq. (1.22) and the right-hand rule; then we'll use Eqs. (1.27) to find the vector product using components.

1.32 Vectors \vec{A} and \vec{B} and their vector product $\vec{C} = \vec{A} \times \vec{B}$. The vector \vec{B} lies in the *xy*-plane.

EXECUTE: From Eq. (1.22) the magnitude of the vector product is

$$AB\sin\phi = (6)(4)(\sin 30^\circ) = 12$$

By the right-hand rule, the direction of $\vec{A} \times \vec{B}$ is along the +z-axis (the direction of the unit vector \hat{k}), so we have $\vec{C} = \vec{A} \times \vec{B} = 12\hat{k}$.

To use Eqs. (1.27), we first determine the components of \vec{A} and \vec{B} :

$$A_x = 6$$

 $B_y = 4 \cos 30^\circ = 2\sqrt{3}$
 $A_y = 0$
 $A_z = 0$
 $A_z = 0$
 $B_y = 4 \sin 30^\circ = 2$
 $B_z = 0$

Then Eqs. (1.27) yield

$$C_x = (0)(0) - (0)(2) = 0$$

$$C_y = (0)(2\sqrt{3}) - (6)(0) = 0$$

$$C_z = (6)(2) - (0)(2\sqrt{3}) = 12$$

Thus again we have $\vec{C} = 12\hat{k}$.

EVALUATE: Both methods give the same result. Depending on the situation, one or the other of the two approaches may be the more convenient one to use.

Test Your Understanding of Section 1.10 Vector \vec{A} has magnitude 2 and vector \vec{B} has magnitude 3. The angle ϕ between \vec{A} and \vec{B} is known to be 0°, 90°, or 180°. For each of the following situations, state what the value of ϕ must be. (In each situation there may be more than one correct answer.) (a) $\vec{A} \cdot \vec{B} = 0$; (b) $\vec{A} \times \vec{B} = \mathbf{0}$; (c) $\vec{A} \cdot \vec{B} = 6$; (d) $\vec{A} \cdot \vec{B} = -6$; (e) (Magnitude of $\vec{A} \times \vec{B}$) = 6.

CHAPTER

SUMMARY

Physical quantities and units: Three fundamental physical quantities are mass, length, and time. The corresponding basic SI units are the kilogram, the meter, and the second. Derived units for other physical quantities are products or quotients of the basic units. Equations must be dimensionally consistent; two terms can be added only when they have the same units. (See Examples 1.1 and 1.2.)

Significant figures: The accuracy of a measurement can be indicated by the number of significant figures or by a stated uncertainty. The result of a calculation usually has no more significant figures than the input data. When only crude estimates are available for input data, we can often make useful order-of-magnitude estimates. (See Examples 1.3 and 1.4.)

Significant figures in magenta

$$\tau = \frac{C}{2r} = \frac{0.424 \text{ m}}{2(0.06750 \text{ m})} = 3.14$$

 \vec{A} + \vec{B} = $\vec{A} + \vec{B}$

123.62 + 8.9 = 132.5

Scalars, vectors, and vector addition: Scalar quantities are numbers and combine with the usual rules of arithmetic. Vector quantities have direction as well as magnitude and combine according to the rules of vector addition. The negative of a vector has the same magnitude but points in the opposite direction. (See Example 1.5.)

Vector components and vector addition: Vector addition can be carried out using components of vectors. The *x*-component of $\vec{R} = \vec{A} + \vec{B}$ is the sum of the x-components of \vec{A} and \vec{B} , and likewise for the y- and z-components. (See Examples 1.6–1.8.)

Unit vectors: Unit vectors describe directions in space. A unit vector has a magnitude of 1, with no units. The unit vectors \hat{i} , \hat{j} , and \hat{k} , aligned with the x-, y-, and z-axes of a rectangular coordinate system, are especially useful. (See Example 1.9.)

Scalar product: The scalar product $C = \vec{A} \cdot \vec{B}$ of two vectors \vec{A} and \vec{B} is a scalar quantity. It can be expressed in terms of the magnitudes of \vec{A} and \vec{B} and the angle ϕ between the two vectors, or in terms of the components of \vec{A} and \vec{B} . The scalar product is commutative; $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$. The scalar product of two perpendicular vectors is zero. (See Examples 1.10 and 1.11.)

Vector product: The vector product $\vec{C} = \vec{A} \times \vec{B}$ of two vectors \vec{A} and \vec{B} is another vector \vec{C} . The magnitude of $\vec{A} \times \vec{B}$ depends on the magnitudes of \vec{A} and \vec{B} and the angle ϕ between the two vectors. The direction of $\vec{A} \times \vec{B}$ is perpendicular to the plane of the two vectors being multiplied, as given by the right-hand rule. The components of $\vec{C} = \vec{A} \times \vec{B}$ can be expressed in terms of the components of \vec{A} and \vec{B} . The vector product is not commutative; $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$. The vector product of two parallel or antiparallel vectors is zero. (See Example 1.12.)

 $R_x = A_x + B_x$ $R_{\rm v} = A_{\rm v} + B_{\rm v}$ $R_z = A_z + B_z$

 $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$

 $C = AB\sin\phi$

 $C_x = A_y B_z - A_z B_y$

 $C_{v} = A_{z}B_{x} - A_{x}B_{z}$

 $C_{z} = A_{x}B_{y} - A_{y}B_{x}$

Ř

(1

10)
$$R_{y} \begin{bmatrix} B_{y} & & \overline{R} \\ B_{y} & & \overline{R} \\ A_{y} & & \overline{A} \\ O & A_{x} & B_{x} \end{bmatrix} - x$$

(1.16)

$$y_1$$

 $A_y \hat{j}$
 $\hat{k} = A_x \hat{i} + A_y,$
 \hat{j}
 $\hat{k} = A_x \hat{i} + A_y,$
 $A_x \hat{i}$

$$-A\hat{i} + A\hat{j} + A\hat{k}$$

BRIDGING PROBLEM Vectors on the Roof

An air-conditioning unit is fastened to a roof that slopes at an angle of 35° above the horizontal (Fig. 1.33). Its weight is a force on the air conditioner that is directed vertically downward. In order that the unit not crush the roof tiles, the component of the unit's weight perpendicular to the roof cannot exceed 425 N. (One newton, or 1 N, is the SI unit of force. It is equal to 0.2248 lb.) (a) What is the maximum allowed weight of the unit? (b) If the fasteners fail, the unit slides 1.50 m along the roof before it comes to a halt against a ledge. How much work does the weight force do on the unit during its slide if the unit has the weight calculated in part (a)? As we described in Section 1.10, the work done by a force \vec{F} on an object that undergoes a displacement \vec{s} is $W = \vec{F} \cdot \vec{s}$.

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution.

IDENTIFY and **SET UP**

- 1. This problem involves vectors and components. What are the known quantities? Which aspect(s) of the weight vector (magnitude, direction, and/or particular components) represent the target variable for part (a)? Which aspect(s) must you know to solve part (b)?
- 2. Make a sketch based on Fig. 1.33. Add *x* and *y*-axes, choosing the positive direction for each. Your axes don't have to be horizontal and vertical, but they do have to be mutually perpendicular. Make the most convenient choice.
- 3. Choose the equations you'll use to determine the target variables.

EXECUTE

4. Use the relationship between the magnitude and direction of a vector and its components to solve for the target variable in

part (a). Be careful: Is 35° the correct angle to use in the equation? (*Hint:* Check your sketch.)

- 5. Make sure your answer has the correct number of significant figures.
- 6. Use the definition of the scalar product to solve for the target variable in part (b). Again, make sure to use the correct number of significant figures.

EVALUATE

- 7. Did your answer to part (a) include a vector component whose absolute value is greater than the magnitude of the vector? Is that possible?
- 8. There are two ways to find the scalar product of two vectors, one of which you used to solve part (b). Check your answer by repeating the calculation using the other way. Do you get the same answer?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q1.1 How many correct experiments do we need to disprove a theory? How many do we need to prove a theory? Explain.

Q1.2 A guidebook describes the rate of climb of a mountain trail as 120 meters per kilometer. How can you express this as a number with no units?

Q1.3 Suppose you are asked to compute the tangent of 5.00 meters. Is this possible? Why or why not?

Q1.4 A highway contractor stated that in building a bridge deck he poured 250 yards of concrete. What do you think he meant?

Q1.5 What is your height in centimeters? What is your weight in newtons?

Q1.6 The U.S. National Institute of Standards and Technology (NIST) maintains several accurate copies of the international standard kilogram. Even after careful cleaning, these national standard

kilograms are gaining mass at an average rate of about $1 \mu g/y$ (y = year) when compared every 10 years or so to the standard international kilogram. Does this apparent change have any importance? Explain.

Q1.7 What physical phenomena (other than a pendulum or cesium clock) could you use to define a time standard?

Q1.8 Describe how you could measure the thickness of a sheet of paper with an ordinary ruler.

Q1.9 The quantity $\pi = 3.14159...$ is a number with no dimensions, since it is a ratio of two lengths. Describe two or three other geometrical or physical quantities that are dimensionless.

Q1.10 What are the units of volume? Suppose another student tells you that a cylinder of radius *r* and height *h* has volume given by $\pi r^3 h$. Explain why this cannot be right.

Q1.11 Three archers each fire four arrows at a target. Joe's four arrows hit at points 10 cm above, 10 cm below, 10 cm to the left, and 10 cm to the right of the center of the target. All four of Moe's arrows hit within 1 cm of a point 20 cm from the center, and Flo's four arrows all hit within 1 cm of the center. The contest judge says that one of the archers is precise but not accurate, another archer is accurate but not precise, and the third archer is both accurate and precise. Which description goes with which archer? Explain your reasoning.

Q1.12 A circular racetrack has a radius of 500 m. What is the displacement of a bicyclist when she travels around the track from the north side to the south side? When she makes one complete circle around the track? Explain your reasoning.

Q1.13 Can you find two vectors with different lengths that have a vector sum of zero? What length restrictions are required for three vectors to have a vector sum of zero? Explain your reasoning.

Q1.14 One sometimes speaks of the "direction of time," evolving from past to future. Does this mean that time is a vector quantity? Explain your reasoning.

Q1.15 Air traffic controllers give instructions to airline pilots telling them in which direction they are to fly. These instructions are called "vectors." If these are the only instructions given, is the name "vector" used correctly? Why or why not?

Q1.16 Can you find a vector quantity that has a magnitude of zero but components that are different from zero? Explain. Can the magnitude of a vector be less than the magnitude of any of its components? Explain.

Q1.17 (a) Does it make sense to say that a vector is *negative*? Why? (b) Does it make sense to say that one vector is the negative of another? Why? Does your answer here contradict what you said in part (a)?

Q1.18 If \vec{C} is the vector sum of \vec{A} and \vec{B} , $\vec{C} = \vec{A} + \vec{B}$, what must be true about the directions and magnitudes of \vec{A} and \vec{B} if C = A + B? What must be true about the directions and magnitudes of \vec{A} and \vec{B} if C = 0?

Q1.19 If \vec{A} and \vec{B} are nonzero vectors, is it possible for $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$ both to be zero? Explain.

Q1.20 What does $\vec{A} \cdot \vec{A}$, the scalar product of a vector with itself, give? What about $\vec{A} \times \vec{A}$, the vector product of a vector with itself?

Q1.21 Let \vec{A} represent any nonzero vector. Why is \vec{A}/A a unit vector, and what is its direction? If θ is the angle that \vec{A} makes with the +x-axis, explain why $(\vec{A}/A) \cdot \hat{i}$ is called the *direction cosine* for that axis.

Q1.22 Which of the following are legitimate mathematical operations: (a) $\vec{A} \cdot (\vec{B} - \vec{C})$; (b) $(\vec{A} - \vec{B}) \times \vec{C}$; (c) $\vec{A} \cdot (\vec{B} \times \vec{C})$; (d) $\vec{A} \times (\vec{B} \times \vec{C})$; (e) $\vec{A} \times (\vec{B} \cdot \vec{C})$? In each case, give the reason for your answer.

Q1.23 Consider the two repeated vector products $\vec{A} \times (\vec{B} \times \vec{C})$ and $(\vec{A} \times \vec{B}) \times \vec{C}$. Give an example that illustrates the general rule that these two vector products do not have the same magnitude or direction. Can you choose the vectors \vec{A} , \vec{B} , and \vec{C} such that these two vector products *are* equal? If so, give an example.

Q1.24 Show that, no matter what \vec{A} and \vec{B} are, $\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$. (*Hint:* Do not look for an elaborate mathematical proof. Rather look at the definition of the direction of the cross product.)

Q1.25 (a) If $\vec{A} \cdot \vec{B} = 0$, does it necessarily follow that A = 0 or B = 0? Explain. (b) If $\vec{A} \times \vec{B} = 0$, does it necessarily follow that A = 0 or B = 0? Explain.

Q1.26 If $\vec{A} = 0$ for a vector in the *xy*-plane, does it follow that $A_x = -A_y$? What *can* you say about A_x and A_y ?

EXERCISES

Section 1.3 Standards and Units Section 1.4 Unit Consistency and Conversions

1.1 • Starting with the definition 1 in. = 2.54 cm, find the number of (a) kilometers in 1.00 mile and (b) feet in 1.00 km.

1.2 •• According to the label on a bottle of salad dressing, the volume of the contents is 0.473 liter (L). Using only the conversions $1 L = 1000 \text{ cm}^3$ and 1 in. = 2.54 cm, express this volume in cubic inches.

1.3 •• How many nanoseconds does it take light to travel 1.00 ft in vacuum? (This result is a useful quantity to remember.)

1.4 •• The density of gold is 19.3 g/cm^3 . What is this value in kilograms per cubic meter?

1.5 • The most powerful engine available for the classic 1963 Chevrolet Corvette Sting Ray developed 360 horsepower and had a displacement of 327 cubic inches. Express this displacement in liters (L) by using only the conversions $1 L = 1000 \text{ cm}^3$ and 1 in. = 2.54 cm.

1.6 •• A square field measuring 100.0 m by 100.0 m has an area of 1.00 hectare. An acre has an area of 43,600 ft^2 . If a country lot has an area of 12.0 acres, what is the area in hectares?

1.7 • How many years older will you be 1.00 gigasecond from now? (Assume a 365-day year.)

1.8 • While driving in an exotic foreign land you see a speed limit sign on a highway that reads 180,000 furlongs per fortnight. How many miles per hour is this? (One furlong is $\frac{1}{8}$ mile, and a fortnight is 14 days. A furlong originally referred to the length of a plowed furrow.)

1.9 • A certain fuel-efficient hybrid car gets gasoline mileage of 55.0 mpg (miles per gallon). (a) If you are driving this car in Europe and want to compare its mileage with that of other European cars, express this mileage in km/L (L = liter). Use the conversion factors in Appendix E. (b) If this car's gas tank holds 45 L, how many tanks of gas will you use to drive 1500 km?

1.10 • The following conversions occur frequently in physics and are very useful. (a) Use 1 mi = 5280 ft and 1 h = 3600 s to convert 60 mph to units of ft/s. (b) The acceleration of a freely falling object is 32 ft/s^2 . Use 1 ft = 30.48 cm to express this acceleration in units of m/s². (c) The density of water is 1.0 g/cm^3 . Convert this density to units of kg/m³.

1.11 •• Neptunium. In the fall of 2002, a group of scientists at Los Alamos National Laboratory determined that the critical mass of neptunium-237 is about 60 kg. The critical mass of a fissionable material is the minimum amount that must be brought together to start a chain reaction. This element has a density of 19.5 g/cm^3 . What would be the radius of a sphere of this material that has a critical mass?

1.12 • **BIO** (a) The recommended daily allowance (RDA) of the trace metal magnesium is 410 mg/day for males. Express this quantity in μ g/day. (b) For adults, the RDA of the amino acid lysine is 12 mg per kg of body weight. How many grams per day should a 75-kg adult receive? (c) A typical multivitamin tablet can contain 2.0 mg of vitamin B₂ (riboflavin), and the RDA is 0.0030 g/day. How many such tablets should a person take each day to get the proper amount of this vitamin, assuming that he gets none from any other sources? (d) The RDA for the trace element selenium is 0.000070 g/day. Express this dose in mg/day.

Section 1.5 Uncertainty and Significant Figures

1.13 •• Figure 1.7 shows the result of unacceptable error in the stopping position of a train. (a) If a train travels 890 km from Berlin

to Paris and then overshoots the end of the track by 10 m, what is the percent error in the total distance covered? (b) Is it correct to write the total distance covered by the train as 890,010 m? Explain. **1.14** • With a wooden ruler you measure the length of a rectangular piece of sheet metal to be 12 mm. You use micrometer calipers to measure the width of the rectangle and obtain the value 5.98 mm. Give your answers to the following questions to the correct number of significant figures. (a) What is the area of the rectangle? (b) What is the ratio of the rectangle's width to its length? (c) What is the perimeter of the rectangle? (d) What is the difference between the length and width? (e) What is the ratio of the length to the width?

1.15 •• A useful and easy-to-remember approximate value for the number of seconds in a year is $\pi \times 10^7$. Determine the percent error in this approximate value. (There are 365.24 days in one year.)

Section 1.6 Estimates and Orders of Magnitude

1.16 • How many gallons of gasoline are used in the United States in one day? Assume that there are two cars for every three people, that each car is driven an average of 10,000 mi per year, and that the average car gets 20 miles per gallon.

1.17 •• **BIO** A rather ordinary middle-aged man is in the hospital for a routine check-up. The nurse writes the quantity 200 on his medical chart but forgets to include the units. Which of the following quantities could the 200 plausibly represent? (a) his mass in kilograms; (b) his height in meters; (c) his height in centimeters; (d) his height in millimeters; (e) his age in months.

1.18 • How many kernels of corn does it take to fill a 2-L soft drink bottle?

1.19 • How many words are there in this book?

1.20 • **BIO** Four astronauts are in a spherical space station. (a) If, as is typical, each of them breathes about 500 cm^3 of air with each breath, approximately what volume of air (in cubic meters) do these astronauts breathe in a year? (b) What would the diameter (in meters) of the space station have to be to contain all this air?

1.21 • **BIO** How many times does a typical person blink her eyes in a lifetime?

1.22 • **BIO** How many times does a human heart beat during a lifetime? How many gallons of blood does it pump? (Estimate that the heart pumps 50 cm^3 of blood with each beat.)

1.23 • In Wagner's opera *Das Rheingold*, the goddess Freia is ransomed for a pile of gold just tall enough and wide enough to hide her from sight. Estimate the monetary value of this pile. The density of gold is 19.3 g/cm^3 , and its value is about \$10 per gram (although this varies).

1.24 • You are using water to dilute small amounts of chemicals in the laboratory, drop by drop. How many drops of water are in a 1.0-L bottle? (*Hint:* Start by estimating the diameter of a drop of water.)

1.25 • How many pizzas are consumed each academic year by students at your school?

Section 1.7 Vectors and Vector Addition

1.26 •• Hearing rattles from a snake, you make two rapid displacements of magnitude 1.8 m and 2.4 m. In sketches (roughly to scale), show how your two displacements might add up to give a resultant of magnitude (a) 4.2 m; (b) 0.6 m; (c) 3.0 m.

1.27 •• A postal employee drives a delivery truck along the route shown in Fig. E1.27. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.34 for a different approach to this same problem.)

Figure **E1.27**

1.28 •• For the vectors \vec{A} and \vec{B} in Fig. E1.28, use a scale drawing to find the magnitude and direction of (a) the vector sum $\vec{A} + \vec{B}$ and (b) the vector difference $\vec{A} - \vec{B}$. Use your answers to find the magnitude and direction of (c) $-\vec{A} - \vec{B}$ and (d) $\vec{B} - \vec{A}$. (See also Exercise 1.35 for a different approach to this problem.)

1.29 •• A spelunker is surveying a cave. She follows a passage 180 m straight west, then 210 m in a direction 45° east of

south, and then 280 m at 30° east of north. After a fourth unmeasured displacement, she finds herself back where she started. Use a scale drawing to determine the magnitude and direction of the fourth displacement. (See also Problem 1.69 for a different approach to this problem.)

Section 1.8 Components of Vectors

1.30 •• Let the angle θ be the angle that the vector \vec{A} makes with the +x-axis, measured counterclockwise from that axis. Find the angle θ for a vector that has the following components: (a) $A_x = 2.00 \text{ m}, A_y = -1.00 \text{ m}$; (b) $A_x = 2.00 \text{ m}, A_y = 1.00 \text{ m}$; (c) $A_x = -2.00 \text{ m}, A_y = 1.00 \text{ m}$; (d) $A_x = -2.00 \text{ m}, A_y = -1.00 \text{ m}$. **1.31** • Compute the x- and y-components of the vectors \vec{A} , \vec{B} , \vec{C} , and \vec{D} in Fig. E1.28.

1.32 • Vector \vec{A} is in the direction 34.0° clockwise from the -y-axis. The *x*-component of \vec{A} is $A_x = -16.0$ m. (a) What is the *y*-component of \vec{A} ? (b) What is the magnitude of \vec{A} ?

1.33 • Vector \vec{A} has y-component $A_y = +13.0 \text{ m}$. \vec{A} makes an angle of 32.0° counterclockwise from the +y-axis. (a) What is the x-component of \vec{A} ? (b) What is the magnitude of \vec{A} ?

1.34 •• A postal employee drives a delivery truck over the route shown in Fig. E1.27. Use the method of components to determine the magnitude and direction of her resultant displacement. In a vector-addition diagram (roughly to scale), show that the resultant displacement found from your diagram is in qualitative agreement with the result you obtained using the method of components.

1.35 • For the vectors \vec{A} and \vec{B} in Fig. E1.28, use the method of components to find the magnitude and direction of (a) the vector sum $\vec{A} + \vec{B}$; (b) the vector sum $\vec{B} + \vec{A}$; (c) the vector difference $\vec{A} - \vec{B}$; (d) the vector difference $\vec{B} - \vec{A}$.

1.36 • Find the magnitude and direction of the vector represented by the following pairs of components: (a) $A_x = -8.60$ cm,

 $A_y = 5.20$ cm; (b) $A_x = -9.70$ m, $A_y = -2.45$ m; (c) $A_x = 7.75$ km, $A_y = -2.70$ km.

1.37 •• A disoriented physics professor drives 3.25 km north, then 2.90 km west, and then 1.50 km south. Find the magnitude and direction of the resultant displacement, using the method of components. In a vector-addition diagram (roughly to scale), show that the resultant displacement found from your diagram is in qualitative agreement with the result you obtained using the method of components.

1.38 •• Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 86.0° between them. What pull does each one exert if their resultant pull is 372 N directly upward?

1.39 •• Vector \vec{A} is 2.80 cm Figulong and is 60.0° above the *x*-axis in the first quadrant. Vector \vec{B} is 1.90 cm long and is 60.0° below the *x*-axis in the fourth quadrant (Fig. E1.39). Use components to find the magnitude and direction of (a) $\vec{A} + \vec{B}$; (b) $\vec{A} - \vec{B}$; (c) $\vec{B} - \vec{A}$. In each case, sketch the vector addition or subtraction and show that your numerical answers are in qualitative agreement with your sketch.

 \vec{A} (2.80 cm)

Figure E1.39

Section 1.9 Unit Vectors

1.40 • In each case, find the *x*- and *y*-components of vector \vec{A} : (a) $\vec{A} = 5.0\hat{i} - 6.3\hat{j}$; (b) $\vec{A} = 11.2\hat{j} - 9.91\hat{i}$; (c) $\vec{A} = -15.0\hat{i} + 22.4\hat{j}$; (d) $\vec{A} = 5.0\hat{B}$, where $\vec{B} = 4\hat{i} - 6\hat{j}$.

1.41 •• Write each vector in Fig. E1.28 in terms of the unit vectors \hat{i} and \hat{j} .

1.42 •• Given two vectors $\vec{A} = 4.00\hat{i} + 7.00\hat{j}$ and $\vec{B} = 5.00\hat{i} - 2.00\hat{j}$, (a) find the magnitude of each vector; (b) write an expression for the vector difference $\vec{A} - \vec{B}$ using unit vectors; (c) find the magnitude and direction of the vector difference $\vec{A} - \vec{B}$. (d) In a vector diagram show \vec{A} , \vec{B} , and $\vec{A} - \vec{B}$, and also show that your diagram agrees qualitatively with your answer in part (c).

Figure **E1.43**

1.43 •• (a) Write each vector in Fig. E1.43 in terms of the unit vectors \hat{i} and \hat{j} . (b) Use unit vectors to express the vector \vec{C} , where $\vec{C} = 3.00\vec{A} - 4.00\vec{B}$. (c) Find the magnitude and direction of \vec{C} .

1.44 •• (a) Is the vector $(\hat{i} + \hat{j} + \hat{k})$ a unit vector? Justify your answer. (b) Can a unit vector have any components with magnitude greater than

unity? Can it have any negative components? In each case justify your answer. (c) If $\vec{A} = a(3.0\hat{i} + 4.0\hat{j})$, where *a* is a constant, determine the value of *a* that makes \vec{A} a unit vector.

Section 1.10 Products of Vectors

1.45 • For the vectors \vec{A} , \vec{B} , and \vec{C} in Fig. E1.28, find the scalar products (a) $\vec{A} \cdot \vec{B}$; (b) $\vec{B} \cdot \vec{C}$; (c) $\vec{A} \cdot \vec{C}$.

1.46 •• (a) Find the scalar product of the two vectors \vec{A} and \vec{B} given in Exercise 1.42. (b) Find the angle between these two vectors. **1.47** •• Find the angle between each of the following pairs of vectors:

a) $\vec{A} = -2.00\hat{i} + 6.00\hat{j}$	and	$\vec{B} = 2.00\hat{i} - 3.00\hat{j}$
b) $\vec{A} = 3.00\hat{i} + 5.00\hat{j}$	and	$\vec{B} = 10.00\hat{i} + 6.00\hat{j}$
c) $\vec{A} = -4.00\hat{i} + 2.00\hat{j}$	and	$\vec{B} = 7.00\hat{i} + 14.00\hat{j}$

1.48 •• Find the vector product $\vec{A} \times \vec{B}$ (expressed in unit vectors) of the two vectors given in Exercise 1.42. What is the magnitude of the vector product?

1.49 • For the vectors \vec{A} and \vec{D} in Fig. E1.28, (a) find the magnitude and direction of the vector product $\vec{A} \times \vec{D}$; (b) find the magnitude and direction of $\vec{D} \times \vec{A}$.

1.50 • For the two vectors in Fig. E1.39, (a) find the magnitude and direction of the vector product $\vec{A} \times \vec{B}$; (b) find the magnitude and direction of $\vec{B} \times \vec{A}$.

1.51 • For the two vectors \vec{A} and \vec{B} in Fig. E1.43, (a) find the scalar product $\vec{A} \cdot \vec{B}$; (b) find the magnitude and direction of the vector product $\vec{A} \times \vec{B}$.

1.52 • The vector \vec{A} is 3.50 cm long and is directed into this page. Vector \vec{B} points from the lower right corner of this page to the upper left corner of this page. Define an appropriate right-handed coordinate system, and find the three components of the vector product $\vec{A} \times \vec{B}$, measured in cm². In a diagram, show your coordinate system and the vectors \vec{A} , \vec{B} , and $\vec{A} \times \vec{B}$.

1.53 • Given two vectors $\vec{A} = -2.00\hat{i} + 3.00\hat{j} + 4.00\hat{k}$ and $\vec{B} = 3.00\hat{i} + 1.00\hat{j} - 3.00\hat{k}$, do the following. (a) Find the magnitude of each vector. (b) Write an expression for the vector difference $\vec{A} - \vec{B}$ using unit vectors. (c) Find the magnitude of the vector difference $\vec{A} - \vec{B}$. Is this the same as the magnitude of $\vec{B} - \vec{A}$? Explain.

PROBLEMS

1.54 • An acre, a unit of land measurement still in wide use, has a length of one furlong $(\frac{1}{8} \text{ mi})$ and a width one-tenth of its length. (a) How many acres are in a square mile? (b) How many square feet are in an acre? See Appendix E. (c) An acre-foot is the volume of water that would cover 1 acre of flat land to a depth of 1 foot. How many gallons are in 1 acre-foot?

1.55 •• An Earthlike Planet. In January 2006 astronomers reported the discovery of a planet comparable in size to the earth orbiting another star and having a mass about 5.5 times the earth's mass. It is believed to consist of a mixture of rock and ice, similar to Neptune. If this planet has the same density as Neptune (1.76 g/cm^3) , what is its radius expressed (a) in kilometers and (b) as a multiple of earth's radius? Consult Appendix F for astronomical data.

1.56 •• The Hydrogen Maser. You can use the radio waves generated by a hydrogen maser as a standard of frequency. The frequency of these waves is 1,420,405,751.786 hertz. (A hertz is another name for one cycle per second.) A clock controlled by a hydrogen maser is off by only 1 s in 100,000 years. For the following questions, use only three significant figures. (The large number of significant figures given for the frequency simply illustrates the remarkable accuracy to which it has been measured.) (a) What is the time for one cycle of the radio wave? (b) How many cycles occur in 1 h? (c) How many cycles would have occurred during the age of the earth, which is estimated to be 4.6×10^9 years? (d) By how many seconds would a hydrogen maser clock be off after a time interval equal to the age of the earth?

1.57 • **BIO** Breathing Oxygen. The density of air under standard laboratory conditions is 1.29 kg/m^3 , and about 20% of that air consists of oxygen. Typically, people breathe about $\frac{1}{2}$ L of air per breath. (a) How many grams of oxygen does a person breathe

in a day? (b) If this air is stored uncompressed in a cubical tank, how long is each side of the tank?

1.58 ••• A rectangular piece of aluminum is 7.60 ± 0.01 cm long and 1.90 ± 0.01 cm wide. (a) Find the area of the rectangle and the uncertainty in the area. (b) Verify that the fractional uncertainty in the area is equal to the sum of the fractional uncertainties in the length and in the width. (This is a general result; see Challenge Problem 1.98.)

1.59 ••• As you eat your way through a bag of chocolate chip cookies, you observe that each cookie is a circular disk with a diameter of 8.50 ± 0.02 cm and a thickness of 0.050 ± 0.005 cm. (a) Find the average volume of a cookie and the uncertainty in the volume. (b) Find the ratio of the diameter to the thickness and the uncertainty in this ratio.

1.60 • **BIO** Biological tissues are typically made up of 98% water. Given that the density of water is $1.0 \times 10^3 \text{ kg/m}^3$, estimate the mass of (a) the heart of an adult human; (b) a cell with a diameter of 0.5 μ m; (c) a honey bee.

1.61 • **BIO** Estimate the number of atoms in your body. (*Hint:* Based on what you know about biology and chemistry, what are the most common types of atom in your body? What is the mass of each type of atom? Appendix D gives the atomic masses for different elements, measured in atomic mass units; you can find the value of an atomic mass unit, or 1 u, in Appendix E.)

1.62 ••• How many dollar bills would you have to stack to reach the moon? Would that be cheaper than building and launching a spacecraft? (*Hint:* Start by folding a dollar bill to see how many thicknesses make 1.0 mm.)

1.63 ••• How much would it cost to paper the entire United States (including Alaska and Hawaii) with dollar bills? What would be the cost to each person in the United States?

1.64 • Stars in the Universe. Astronomers frequently say that there are more stars in the universe than there are grains of sand on all the beaches on the earth. (a) Given that a typical grain of sand is about 0.2 mm in diameter, estimate the number of grains of sand on all the earth's beaches, and hence the approximate number of stars in the universe. It would be helpful to consult an atlas and do some measuring. (b) Given that a typical galaxy contains about 100 billion stars and there are more than 100 billion galaxies in the known universe, estimate the number of stars in the universe and compare this number with your result from part (a).

1.65 ••• Two workers pull horizontally on a heavy box, but one pulls twice as hard as the other. The larger pull is directed at 25.0° west of north, and the resultant of these two pulls is 460.0 N directly northward. Use vector components to find the magnitude of each of these pulls and the direction of the smaller pull.

Figure P1.66

30.0°

 \vec{A} (100.0 N)

30.0°

 \vec{B} (80.0 N)

53.0

 \vec{C} (40.0 N)

1.66 •• Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces \vec{A} , \vec{B} , and \vec{C} shown in Fig. P1.66. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero.

1.67 •• You are to program a robotic arm on an assembly line to move in the *xy*-plane. Its first displacement is \vec{A} ; its second displacement is \vec{R} of magnitude

displacement is \vec{B} , of magnitude 6.40 cm and direction 63.0° measured in the sense from the +x-axis toward the -y-axis. The resultant $\vec{C} = \vec{A} + \vec{B}$ of the two displacements should also have a magnitude of 6.40 cm, but a direction 22.0° measured in the sense

from the +x-axis toward the +y-axis. (a) Draw the vector-addition diagram for these vectors, roughly to scale. (b) Find the components of \vec{A} . (c) Find the magnitude and direction of \vec{A} .

1.68 ••• Emergency Landing. A plane leaves the airport in Galisteo and flies 170 km at 68° east of north and then changes direction to fly 230 km at 48° south of east, after which it makes an immediate emergency landing in a pasture. When the airport sends out a rescue crew, in which direction and how far should this crew fly to go directly to this plane?

1.69 ••• As noted in Exercise 1.29, a spelunker is surveying a cave. She follows a passage 180 m straight west, then 210 m in a direction 45° east of south, and then 280 m at 30° east of north. After a fourth unmeasured displacement she finds herself back where she started. Use the method of components to determine the magnitude and direction of the fourth displacement. Draw the vector-addition diagram and show that it is in qualitative agreement with your numerical solution.

1.70 •• (a) Find the magnitude and direction of the vector \vec{R} that is the sum of the three vectors \vec{A} , \vec{B} , and \vec{C} in Fig. E1.28. In a diagram, show how \vec{R} is formed from these three vectors. (b) Find the magnitude and direction of the vector $\vec{S} = \vec{C} - \vec{A} - \vec{B}$. In a diagram, show how \vec{S} is formed from these three vectors.

1.71 •• A rocket fires two engines simultaneously. One produces a thrust of 480 N directly forward, while the other gives a 513-N thrust at 32.4° above the forward direction. Find the magnitude and direction (relative to the forward direction) of the resultant force that these engines exert on the rocket.

1.72 •• A sailor in a small sailboat encounters shifting winds. She sails 2.00 km east, then 3.50 km southeast, and then an additional distance in an unknown direction. Her final position is 5.80 km directly east of the starting point (Fig. P1.72). Find the magnitude and direction of the third leg of the journey. Draw the vector-addition diagram and show that it is in qualitative agreement with your numerical solution.

1.73 ••• **BIO** Dislocated Shoulder. A patient with a dislocated shoulder is put into a traction apparatus as shown in Fig. P1.73. The pulls \vec{A} and \vec{B} have equal magnitudes and must combine to produce an outward traction force of 5.60 N on the patient's arm. How large should these pulls be?

1.74 ••• On a training flight, a student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, then to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.74). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram.

1.75 •• Equilibrium. We say an object is in *equilibrium* if all the forces on it balance (add up to zero). Figure P1.75 shows a beam weighing 124 N that is supported in equilibrium by a 100.0-N pull and a force \vec{F} at the floor. The third force on the

Figure P1.74

Figure **P1.75**

beam is the 124-N weight that acts vertically downward. (a) Use vector components to find the magnitude and direction of \vec{F} . (b) Check the reasonableness of your answer in part (a) by doing a graphical solution approximately to scale.

1.76 ••• Getting Back. An explorer in the dense jungles of equatorial Africa leaves his hut. He takes 40 steps northeast, then 80 steps 60° north of west, then 50 steps due south. Assume his steps all have equal length. (a) Sketch, roughly to scale, the three vectors and their resultant. (b) Save the explorer from becoming hopelessly lost in the jungle by giving him the displacement, calculated using the method of components, that will return him to his hut.

1.77 •••• A graphic artist is creating a new logo for her company's website. In the graphics program she is using, each pixel in an image file has coordinates (x, y), where the origin (0, 0) is at the upper left corner of the image, the +x-axis points to the right, and the +y-axis points down. Distances are measured in pixels. (a) The artist draws a line from the pixel location (10, 20) to the location (210, 200). She wishes to draw a second line that starts at (10, 20), is 250 pixels long, and is at an angle of 30° measured clockwise from the first line. At which pixel location should this second line end? Give your answer to the nearest pixel. (b) The artist now draws an arrow that connects the lower right end of the first line to the lower right end of the second line. Find the length and direction of this arrow. Draw a diagram showing all three lines. **1.78** •••• A ship leaves the island of Guam and sails 285 km at 40.0° north of west. In which direction must it now head and how far must it sail so that its resultant displacement will be 115 km directly east of Guam?

1.79 •• **BIO** Bones and Muscles. A patient in therapy has a forearm that weighs 20.5 N and that lifts a 112.0-N weight. These two forces have direction vertically downward. The only other significant forces on his forearm come from the biceps muscle (which acts perpendicularly to the forearm) and the force at the elbow. If the biceps produces a pull of 232 N when the forearm is raised 43° above the horizontal, find the magnitude and direction of the force that the elbow exerts on the forearm. (The sum of the elbow force and the biceps force must balance the weight of the

arm and the weight it is carrying, so their vector sum must be 132.5 N, upward.)

1.80 ••• You are hungry and decide to go to your favorite neighborhood fast-food restaurant. You leave your apartment and take the elevator 10 flights down (each flight is 3.0 m) and then go 15 m south to the apartment exit. You then proceed 0.2 km east, turn north, and go 0.1 km to the entrance of the restaurant. (a) Determine the displacement from your apartment to the restaurant. Use unit vector notation for your answer, being sure to make clear your choice of coordinates. (b) How far did you travel along the path you took from your apartment to the restaurant, and what is the magnitude of the displacement you calculated in part (a)?

1.81 •• While following a treasure map, you start at an old oak tree. You first walk 825 m directly south, then turn and walk 1.25 km at 30.0° west of north, and finally walk 1.00 km at 40.0° north of east, where you find the treasure: a biography of Isaac Newton! (a) To return to the old oak tree, in what direction should you head and how far will you walk? Use components to solve this problem. (b) To see whether your calculation in part (a) is reasonable, check it with a graphical solution drawn roughly to scale.

1.82 •• A fence post is 52.0 m from where you are standing, in a direction 37.0° north of east. A second fence post is due south from you. What is the distance of the second post from you, if the distance between the two posts is 80.0 m?

1.83 •• A dog in an open field runs 12.0 m east and then 28.0 m in a direction 50.0° west of north. In what direction and how far must the dog then run to end up 10.0 m south of her original starting point?

1.84 ••• Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different directions. Ricardo walks 26.0 m in a direction 60.0° west of north. Jane walks 16.0 m in a direction 30.0° south of west. They then stop and turn to face each other. (a) What is the distance between them? (b) In what direction should Ricardo walk to go directly toward Jane?

1.85 ••• John, Paul, and George are standing in a strawberry field. Paul is 14.0 m due west of John. George is 36.0 m from Paul, in a direction 37.0° south of east from Paul's location. How far is George from John? What is the direction of George's location from that of John?

1.86 •••• You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don't pitch your tents close together. Joe's tent is 21.0 m from yours, in the direction 23.0° south of east. Karl's tent is 32.0 m from yours, in the direction 37.0° north of east. What is the distance between Karl's tent and Joe's tent?

1.87 •• Vectors \vec{A} and \vec{B} have scalar product -6.00 and their vector product has magnitude +9.00. What is the angle between these two vectors?

1.88 •• Bond Angle in Methane. In the methane molecule, CH₄, each hydrogen atom is at a corner of a regular tetrahedron with the carbon atom at the center. In coordinates where one of the C-H bonds is in the direction of $\hat{i} + \hat{j} + \hat{k}$, an adjacent C-H bond is in the $\hat{i} - \hat{j} - \hat{k}$ direction. Calculate the angle between these two bonds.

1.89 •• Vector \vec{A} has magnitude 12.0 m and vector \vec{B} has magnitude 16.0 m. The scalar product $\vec{A} \cdot \vec{B}$ is 90.0 m². What is the magnitude of the vector product between these two vectors?

1.90 •• When two vectors \vec{A} and \vec{B} are drawn from a common point, the angle between them is ϕ . (a) Using vector techniques, show that the magnitude of their vector sum is given by

 $\sqrt{A^2 + B^2 + 2AB\cos\phi}$

(b) If \vec{A} and \vec{B} have the same magnitude, for which value of ϕ will their vector sum have the same magnitude as \vec{A} or \vec{B} ?

1.91 •• A cube is placed so that one corner is at the origin and three edges are along the *x*-, *y*-, and *z*-axes of a coordinate system (Fig. P1.91). Use vectors to compute (a) the angle between the edge along the *z*-axis (line *ab*) and the diagonal from the origin to the opposite corner (line *ad*), and (b) the angle between line *ac* (the diagonal of a face) and line *ad*.

1.92 •• Vector \vec{A} has magnitude 6.00 m and vector \vec{B} has magnitude 3.00 m. The vector product between these two vectors has magnitude 12.0 m². What are the two possible values for the scalar product of these two vectors? For each value of $\vec{A} \cdot \vec{B}$, draw a sketch that shows \vec{A} and \vec{B} and explain why the vector products in the two sketches are the same but the scalar products differ.

1.93 •• The scalar product of vectors \vec{A} and \vec{B} is +48.0 m². Vector \vec{A} has magnitude 9.00 m and direction 28.0° west of south. If vector \vec{B} has direction 39.0° south of east, what is the magnitude of \vec{B} ?

1.94 ••• Obtain a *unit vector* perpendicular to the two vectors given in Exercise 1.53.

1.95 •• You are given vectors $\vec{A} = 5.0\hat{i} - 6.5\hat{j}$ and $\vec{B} = -3.5\hat{i} + 7.0\hat{j}$. A third vector \vec{C} lies in the *xy*-plane. Vector \vec{C} is perpendicular to vector \vec{A} , and the scalar product of \vec{C} with \vec{B} is 15.0. From this information, find the components of vector \vec{C} .

1.96 •• Two vectors \vec{A} and \vec{B} have magnitudes A = 3.00 and B = 3.00. Their vector product is $\vec{A} \times \vec{B} = -5.00\hat{k} + 2.00\hat{i}$. What is the angle between \vec{A} and \vec{B} ?

1.97 •• Later in our study of physics we will encounter quantities represented by $(\vec{A} \times \vec{B}) \cdot \vec{C}$. (a) Prove that for any three vectors \vec{A} , \vec{B} , and \vec{C} , $\vec{A} \cdot (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \cdot \vec{C}$. (b) Calculate $(\vec{A} \times \vec{B}) \cdot \vec{C}$ for the three vectors \vec{A} with magnitude A = 5.00 and angle $\theta_A = 26.0^\circ$ measured in the sense from the +x-axis toward the +y-axis, \vec{B} with B = 4.00 and $\theta_B = 63.0^\circ$, and \vec{C} with magnitude 6.00 and in the +z-direction. Vectors \vec{A} and \vec{B} are in the xy-plane.

CHALLENGE PROBLEMS

1.98 ••• The length of a rectangle is given as $L \pm l$ and its width as $W \pm w$. (a) Show that the uncertainty in its area A is a = Lw + lW. Assume that the uncertainties l and w are small, so that the product lw is very small and you can ignore it. (b) Show that the fractional uncertainty in the area is equal to the sum of the fractional uncertainty in length and the fractional uncertainty in width. (c) A rectangular solid has dimensions $L \pm l$, $W \pm w$, and $H \pm h$. Find the fractional uncertainty in the volume, and show that it equals the sum of the fractional uncertainties in the length, width, and height.

1.99 ••• Completed Pass. At Enormous State University (ESU), the football team records its plays using vector displacements, with the origin taken to be the position of the ball before the play starts. In a certain pass play, the receiver starts at $+1.0\hat{i} - 5.0\hat{j}$, where the units are yards, \hat{i} is to the right, and

 \hat{j} is downfield. Subsequent displacements of the receiver are $+9.0\hat{i}$ (in motion before the snap), $+11.0\hat{j}$ (breaks downfield), $-6.0\hat{i} + 4.0\hat{j}$ (zigs), and $+12.0\hat{i} + 18.0\hat{j}$ (zags). Meanwhile, the quarterback has dropped straight back to a position $-7.0\hat{j}$. How far and in which direction must the quarterback throw the ball? (Like the coach, you will be well advised to diagram the situation before solving it numerically.)

1.100 ... Navigating in the Solar System. The *Mars Polar Lander* spacecraft was launched on January 3, 1999. On December 3, 1999, the day *Mars Polar Lander* touched down on the Martian surface, the positions of the earth and Mars were given by these coordinates:

	x	у	z
Earth	0.3182 AU	0.9329 AU	0.0000 AU
Mars	1.3087 AU	-0.4423AU	-0.0414 AU

In these coordinates, the sun is at the origin and the plane of the earth's orbit is the *xy*-plane. The earth passes through the +*x*-axis once a year on the autumnal equinox, the first day of autumn in the northern hemisphere (on or about September 22). One AU, or *astronomical unit*, is equal to 1.496×10^8 km, the average distance from the earth to the sun. (a) In a diagram, show the positions of the sun, the earth, and Mars on December 3, 1999. (b) Find the following distances in AU on December 3, 1999: (i) from the sun to the earth; (ii) from the sun to Mars; (iii) from the earth to Mars. (c) As seen from the earth, what was the angle between the direction to the sun and the direction to Mars on December 3, 1999? (d) Explain whether Mars was visible from your location at midnight on December 3, 1999. (When it is midnight at your location, the sun is on the opposite side of the earth from you.)

1.101 ••• Navigating in the Big Dipper. All the stars of the Big Dipper (part of the constellation Ursa Major) may appear to be the same distance from the earth, but in fact they are very far from each other. Figure P1.101 shows the distances from the earth to each of these stars. The distances are given in light-years (ly), the distance that light travels in one year. One light-year equals 9.461×10^{15} m. (a) Alkaid and Merak are 25.6° apart in the earth's sky. In a diagram, show the relative positions of Alkaid, Merak, and our sun. Find the distance in light-years from Alkaid to Merak. (b) To an inhabitant of a planet orbiting Merak, how many degrees apart in the sky would Alkaid and our sun be?

Figure **P1.101**

1.102 ••• The vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, called the *position vec*tor, points from the origin (0, 0, 0) to an arbitrary point in space with coordinates (x, y, z). Use what you know about vectors to prove the following: All points (x, y, z) that satisfy the equation Ax + By + Cz = 0, where A, B, and C are constants, lie in a plane that passes through the origin and that is perpendicular to the vector $A\hat{i} + B\hat{j} + C\hat{k}$. Sketch this vector and the plane.

Answers

Chapter Opening Question 💡

Take the +x-axis to point east and the +y-axis to point north. Then what we are trying to find is the y-component of the velocity vector, which has magnitude v = 20 km/h and is at an angle $\theta = 53^{\circ}$ measured from the +x-axis toward the +y-axis. From Eqs. (1.6) we have $v_y = v \sin \theta = (20 \text{ km/h}) \sin 53^{\circ} = 16 \text{ km/h}$. So the thunderstorm moves 16 km north in 1 h.

Test Your Understanding Questions

1.5 Answer: (ii) Density = $(1.80 \text{ kg})/(6.0 \times 10^{-4} \text{ m}^3) = 3.0 \times 10^3 \text{ kg/m}^3$. When we multiply or divide, the number with the fewest significant figures controls the number of significant figures in the result.

1.6 The answer depends on how many students are enrolled at your campus.

1.7 Answers: (ii), (iii), and (iv) The vector $-\vec{T}$ has the same magnitude as the vector \vec{T} , so $\vec{S} - \vec{T} = \vec{S} + (-\vec{T})$ is the sum of one vector of magnitude 3 m and one of magnitude 4 m. This sum has magnitude 7 m if \vec{S} and $-\vec{T}$ are parallel and magnitude 1 m if \vec{S} and $-\vec{T}$ are antiparallel. The magnitude of $\vec{S} - \vec{T}$ is 5 m if \vec{S} and $-\vec{T}$ are perpendicular, so that the vectors \vec{S} , \vec{T} , and $\vec{S} - \vec{T}$ form a 3-4-5 right triangle. Answer (i) is impossible because the magnitude of the sum of two vectors cannot be greater than the sum of the magnitudes; answer (v) is impossible because the sum of two vectors can be zero only if the two vectors are antiparallel and have the same magnitude; and answer (vi) is impossible because the magnitude of a vector cannot be negative.

1.8 Answers: (a) yes, (b) no Vectors \vec{A} and \vec{B} can have the same magnitude but different components if they point in different directions. If they have the same components, however, they are the same vector $(\vec{A} = \vec{B})$ and so must have the same magnitude.

1.9 Answer: all have the same magnitude The four vectors \vec{A} , \vec{B} , \vec{C} , and \vec{D} all point in different directions, but all have the same magnitude:

$$A = B = C = D = \sqrt{(\pm 3 \text{ m})^2 + (\pm 5 \text{ m})^2 + (\pm 2 \text{ m})^2}$$
$$= \sqrt{9 \text{ m}^2 + 25 \text{ m}^2 + 4 \text{ m}^2} = \sqrt{38 \text{ m}^2} = 6.2 \text{ m}$$

1.10 Answers: (a) $\phi = 90^{\circ}$, (b) $\phi = 0^{\circ}$ or $\phi = 180^{\circ}$, (c) $\phi = 0^{\circ}$, (d) $\phi = 180^{\circ}$, (e) $\phi = 90^{\circ}$ (a) The scalar product is zero only if \vec{A} and \vec{B} are perpendicular. (b) The vector product is zero only if \vec{A} and \vec{B} are either parallel or antiparallel. (c) The scalar product is equal to the product of the magnitudes $(\vec{A} \cdot \vec{B} = AB)$ only if \vec{A} and \vec{B} are parallel. (d) The scalar product is equal to the negative of the product of the magnitudes $(\vec{A} \cdot \vec{B} = -AB)$ only if \vec{A} and \vec{B} are antiparallel. (e) The magnitude of the vector product is equal to the product of the magnitudes $(\vec{A} \cdot \vec{B} = -AB)$ only if \vec{A} and \vec{B} are antiparallel. (e) The magnitude of the vector product is equal to the product of the magnitude of the vector product is equal to the product of the magnitude of $\vec{A} \times \vec{B}$ = AB only if \vec{A} and \vec{B} are perpendicular.

Bridging Problem

Answers: (a) 5.2×10^2 N (b) 4.5×10^2 N · m

MOTION ALONG A STRAIGHT LINE

2

A bungee jumper speeds up during the first part of his fall, then slows to a halt as the bungee cord stretches and becomes taut. Is it accurate to say that the jumper is *accelerating* as he slows during the final part of his fall?

What distance must an airliner travel down a runway before reaching takeoff speed? When you throw a baseball straight up in the air, how high does it go? When a glass slips from your hand, how much time do you have to catch it before it hits the floor? These are the kinds of questions you will learn to answer in this chapter. We are beginning our study of physics with *mechanics*, the study of the relationships among force, matter, and motion. In this chapter and the next we will study *kinematics*, the part of mechanics that enables us to describe motion. Later we will study *dynamics*, which relates motion to its causes.

In this chapter we concentrate on the simplest kind of motion: a body moving along a straight line. To describe this motion, we introduce the physical quantities *velocity* and *acceleration*. In physics these quantities have definitions that are more precise and slightly different from the ones used in everyday language. Both velocity and acceleration are *vectors:* As you learned in Chapter 1, this means that they have both magnitude and direction. Our concern in this chapter is with motion along a straight line only, so we won't need the full mathematics of vectors just yet. But using vectors will be essential in Chapter 3 when we consider motion in two or three dimensions.

We'll develop simple equations to describe straight-line motion in the important special case when the acceleration is constant. An example is the motion of a freely falling body. We'll also consider situations in which the acceleration varies during the motion; in this case, it's necessary to use integration to describe the motion. (If you haven't studied integration yet, Section 2.6 is optional.)

LEARNING GOALS

By studying this chapter, you will learn:

- How to describe straight-line motion in terms of average velocity, instantaneous velocity, average acceleration, and instantaneous acceleration.
- How to interpret graphs of position versus time, velocity versus time, and acceleration versus time for straight-line motion.
- How to solve problems involving straight-line motion with constant acceleration, including free-fall problems.
- How to analyze straight-line motion when the acceleration is not constant.

2.1 Displacement, Time, and Average Velocity

Suppose a drag racer drives her AA-fuel dragster along a straight track (Fig. 2.1). To study the dragster's motion, we need a coordinate system. We choose the *x*-axis to lie along the dragster's straight-line path, with the origin O at the starting line. We also choose a point on the dragster, such as its front end, and represent the entire dragster by that point. Hence we treat the dragster as a **particle**.

A useful way to describe the motion of the particle that represents the dragster is in terms of the change in the particle's coordinate x over a time interval. Suppose that 1.0 s after the start the front of the dragster is at point P_1 , 19 m from the origin, and 4.0 s after the start it is at point P_2 , 277 m from the origin. The *displacement* of the particle is a vector that points from P_1 to P_2 (see Section 1.7). Figure 2.1 shows that this vector points along the x-axis. The x-component of the displacement is the change in the value of x, (277 m - 19 m) = 258 m, that took place during the time interval of (4.0 s - 1.0 s) = 3.0 s. We define the dragster's **average velocity** during this time interval as a *vector* quantity whose x-component is the change in x divided by the time interval: (258 m)/(3.0 s) = 86 m/s.

In general, the average velocity depends on the particular time interval chosen. For a 3.0-s time interval *before* the start of the race, the average velocity would be zero because the dragster would be at rest at the starting line and would have zero displacement.

Let's generalize the concept of average velocity. At time t_1 the dragster is at point P_1 , with coordinate x_1 , and at time t_2 it is at point P_2 , with coordinate x_2 . The displacement of the dragster during the time interval from t_1 to t_2 is the vector from P_1 to P_2 . The x-component of the displacement, denoted Δx , is the change in the coordinate x:

$$\Delta x = x_2 - x_1 \tag{2.1}$$

The dragster moves along the *x*-axis only, so the *y*- and *z*-components of the displacement are equal to zero.

CAUTION The meaning of Δx Note that Δx is *not* the product of Δ and *x*; it is a single symbol that means "the change in the quantity *x*." We always use the Greek capital letter Δ (delta) to represent a *change* in a quantity, equal to the *final* value of the quantity minus the *initial* value—never the reverse. Likewise, the time interval from t_1 to t_2 is Δt , the change in the quantity t: $\Delta t = t_2 - t_1$ (final time minus initial time).

The x-component of average velocity, or **average x-velocity**, is the xcomponent of displacement, Δx , divided by the time interval Δt during which

2.1 Positions of a dragster at two times during its run.

the displacement occurs. We use the symbol v_{av-x} for average x-velocity (the subscript "av" signifies average value and the subscript x indicates that this is the x-component):

 $v_{\text{av-}x} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$ (average x-velocity, straight-line motion) (2.2)

As an example, for the dragster $x_1 = 19$ m, $x_2 = 277$ m, $t_1 = 1.0$ s, and $t_2 = 4.0$ s, so Eq. (2.2) gives

$$v_{\text{av-x}} = \frac{277 \text{ m} - 19 \text{ m}}{4.0 \text{ s} - 1.0 \text{ s}} = \frac{258 \text{ m}}{3.0 \text{ s}} = 86 \text{ m/s}$$

The average x-velocity of the dragster is positive. This means that during the time interval, the coordinate x increased and the dragster moved in the positive x-direction (to the right in Fig. 2.1).

If a particle moves in the *negative x*-direction during a time interval, its average velocity for that time interval is negative. For example, suppose an official's truck moves to the left along the track (Fig. 2.2). The truck is at $x_1 = 277$ m at $t_1 = 16.0$ s and is at $x_2 = 19$ m at $t_2 = 25.0$ s. Then $\Delta x = (19 \text{ m} - 277 \text{ m}) = -258 \text{ m}$ and $\Delta t = (25.0 \text{ s} - 16.0 \text{ s}) = 9.0 \text{ s}$. The *x*-component of average velocity is $v_{av-x} = \Delta x/\Delta t = (-258 \text{ m})/(9.0 \text{ s}) = -29 \text{ m/s}$. Table 2.1 lists some simple rules for deciding whether the *x*-velocity is positive or negative.

CAUTION Choice of the positive x-direction You might be tempted to conclude that positive average x-velocity must mean motion to the right, as in Fig. 2.1, and that negative average x-velocity must mean motion to the left, as in Fig. 2.2. But that's correct *only* if the positive x-direction is to the right, as we chose it to be in Figs. 2.1 and 2.2. Had we chosen the positive x-direction to be to the left, with the origin at the finish line, the dragster would have negative average x-velocity and the official's truck would have positive average x-velocity. In most problems the direction of the coordinate axis will be yours to choose. Once you've made your choice, you *must* take it into account when interpreting the signs of v_{av-x} and other quantities that describe motion!

With straight-line motion we sometimes call Δx simply the displacement and v_{av-x} simply the average velocity. But be sure to remember that these are really the *x*-components of vector quantities that, in this special case, have *only x*-components. In Chapter 3, displacement, velocity, and acceleration vectors will have two or three nonzero components.

Figure 2.3 is a graph of the dragster's position as a function of time—that is, an *x-t* graph. The curve in the figure *does not* represent the dragster's path in space; as Fig. 2.1 shows, the path is a straight line. Rather, the graph is a pictorial way to represent how the dragster's position changes with time. The points p_1 and p_2 on the graph correspond to the points P_1 and P_2 along the dragster's path. Line p_1p_2 is the hypotenuse of a right triangle with vertical side $\Delta x = x_2 - x_1$

Table 2.1 Rules for the Signof x-Velocity

If the <i>x</i> -coordinate is:	the <i>x</i> -velocity is:
Positive & increasing (getting more positive)	Positive: Particle is moving in $+x$ -direction
Positive & decreasing (getting less positive)	Negative: Particle is moving in $-x$ -direction
Negative & increasing (getting less negative)	Positive: Particle is moving in $+x$ -direction
Negative & decreasing (getting more negative)	Negative: Particle is moving in $-x$ -direction

Note: These rules apply to both the average *x*-velocity v_{av-x} and the instantaneous *x*-velocity v_x (to be discussed in Section 2.2).

2.3 The position of a dragster as a function of time.

Table 2.2 Typical VelocityMagnitudes

A snail's pace	$10^{-3} { m m/s}$
A brisk walk	2 m/s
Fastest human	11 m/s
Freeway speeds	30 m/s
Fastest car	341 m/s
Random motion of air molecules	500 m/s
Fastest airplane	1000 m/s
Orbiting communications satellite	3000 m/s
Electron orbiting in a hydrogen atom	$2 \times 10^6 \text{m/s}$
Light traveling in a vacuum	$3\times 10^8\text{m/s}$

2.4 The winner of a 50-m swimming race is the swimmer whose average velocity has the greatest magnitude—that is, the swimmer who traverses a displacement Δx of 50 m in the shortest elapsed time Δt .

and horizontal side $\Delta t = t_2 - t_1$. The average *x*-velocity $v_{av-x} = \Delta x / \Delta t$ of the dragster equals the *slope* of the line $p_1 p_2$ —that is, the ratio of the triangle's vertical side Δx to its horizontal side Δt .

The average x-velocity depends only on the total displacement $\Delta x = x_2 - x_1$ that occurs during the time interval $\Delta t = t_2 - t_1$, not on the details of what happens during the time interval. At time t_1 a motorcycle might have raced past the dragster at point P_1 in Fig. 2.1, then blown its engine and slowed down to pass through point P_2 at the same time t_2 as the dragster. Both vehicles have the same displacement during the same time interval and so have the same average x-velocity.

If distance is given in meters and time in seconds, average velocity is measured in meters per second (m/s). Other common units of velocity are kilometers per hour (km/h), feet per second (ft/s), miles per hour (mi/h), and knots (1 knot = 1 nautical mile/h = 6080 ft/h). Table 2.2 lists some typical velocity magnitudes.

Test Your Understanding of Section 2.1 Each of the following automobile trips takes one hour. The positive *x*-direction is to the east. (i) Automobile *A* travels 50 km due east. (ii) Automobile *B* travels 50 km due west. (iii) Automobile *C* travels 60 km due east, then turns around and travels 10 km due west. (iv) Automobile *D* travels 70 km due east. (v) Automobile *E* travels 20 km due west, then turns around and travels 20 km due east. (a) Rank the five trips in order of average *x*-velocity from most positive to most negative. (b) Which trips, if any, have the same average *x*-velocity? (c) For which trip, if any, is the average *x*-velocity equal to zero?

2.2 Instantaneous Velocity

Sometimes the average velocity is all you need to know about a particle's motion. For example, a race along a straight line is really a competition to see whose average velocity, v_{av-x} , has the greatest magnitude. The prize goes to the competitor who can travel the displacement Δx from the start to the finish line in the shortest time interval, Δt (Fig. 2.4).

But the average velocity of a particle during a time interval can't tell us how fast, or in what direction, the particle was moving at any given time during the interval. To do this we need to know the **instantaneous velocity**, or the velocity at a specific instant of time or specific point along the path.

CAUTION How long is an instant? Note that the word "instant" has a somewhat different definition in physics than in everyday language. You might use the phrase "It lasted just an instant" to refer to something that lasted for a very short time interval. But in physics an instant has no duration at all; it refers to a single value of time.

To find the instantaneous velocity of the dragster in Fig. 2.1 at the point P_1 , we move the second point P_2 closer and closer to the first point P_1 and compute the average velocity $v_{av-x} = \Delta x/\Delta t$ over the ever-shorter displacement and time interval. Both Δx and Δt become very small, but their ratio does not necessarily become small. In the language of calculus, the limit of $\Delta x/\Delta t$ as Δt approaches zero is called the **derivative** of x with respect to t and is written dx/dt. The instantaneous velocity is the limit of the average velocity as the time interval approaches zero; it equals the instantaneous rate of change of position with time. We use the symbol v_x , with no "av" subscript, for the instantaneous velocity along the x-axis, or the **instantaneous x-velocity:**

 $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ (instantaneous x-velocity, straight-line motion) (2.3)

The time interval Δt is always positive, so v_x has the same algebraic sign as Δx . A positive value of v_x means that x is increasing and the motion is in the positive x-direction; a negative value of v_x means that x is decreasing and the motion is in the negative x-direction. A body can have positive x and negative v_x , or the reverse; x tells us where the body is, while v_x tells us how it's moving (Fig. 2.5). The rules that we presented in Table 2.1 (Section 2.1) for the sign of average x-velocity v_{av-x} also apply to the sign of instantaneous x-velocity v_x .

Instantaneous velocity, like average velocity, is a vector quantity; Eq. (2.3) defines its *x*-component. In straight-line motion, all other components of instantaneous velocity are zero. In this case we often call v_x simply the instantaneous velocity. (In Chapter 3 we'll deal with the general case in which the instantaneous velocity can have nonzero *x*-, *y*-, and *z*-components.) When we use the term "velocity," we will always mean instantaneous rather than average velocity.

The terms "velocity" and "speed" are used interchangeably in everyday language, but they have distinct definitions in physics. We use the term **speed** to denote distance traveled divided by time, on either an average or an instantaneous basis. Instantaneous *speed*, for which we use the symbol v with *no* subscripts, measures how fast a particle is moving; instantaneous *velocity* measures how fast *and* in what direction it's moving. Instantaneous speed is the magnitude of instantaneous velocity and so can never be negative. For example, a particle with instantaneous velocity $v_x = 25$ m/s and a second particle with $v_x = -25$ m/s are moving in opposite directions at the same instantaneous speed 25 m/s.

CAUTION Average speed and average velocity Average speed is *not* the magnitude of average velocity. When César Cielo set a world record in 2009 by swimming 100.0 m in 46.91 s, his average speed was (100.0 m)/(46.91 s) = 2.132 m/s. But because he swam two lengths in a 50-m pool, he started and ended at the same point and so had zero total displacement and zero average *velocity*! Both average speed and instantaneous speed are scalars, not vectors, because these quantities contain no information about direction.

2.5 Even when he's moving forward, this cyclist's instantaneous *x*-velocity can be negative—if he's traveling in the negative *x*-direction. In any problem, the choice of which direction is positive and which is negative is entirely up to you.

Example 2.1 Average and instantaneous velocities

A cheetah is crouched 20 m to the east of an observer (Fig. 2.6a). At time t = 0 the cheetah begins to run due east toward an antelope that is 50 m to the east of the observer. During the first 2.0 s of the attack, the cheetah's coordinate x varies with time according to the equation $x = 20 \text{ m} + (5.0 \text{ m/s}^2)t^2$. (a) Find the cheetah's displacement between $t_1 = 1.0$ s and $t_2 = 2.0$ s. (b) Find its average velocity during that interval. (c) Find its instantaneous velocity at $t_1 = 1.0$ s by taking $\Delta t = 0.1$ s, then 0.01 s, then 0.001 s. (d) Derive an expression for the cheetah's instantaneous velocity as a function of time, and use it to find v_x at t = 1.0 s and t = 2.0 s.

SOLUTION

IDENTIFY and SET UP: Figure 2.6b shows our sketch of the cheetah's motion. We use Eq. (2.1) for displacement, Eq. (2.2) for average velocity, and Eq. (2.3) for instantaneous velocity.

2.6 A cheetah attacking an antelope from ambush. The animals are not drawn to the same scale as the axis.

EXECUTE: (a) At $t_1 = 1.0$ s and $t_2 = 2.0$ s the cheetah's positions x_1 and x_2 are

$$x_1 = 20 \text{ m} + (5.0 \text{ m/s}^2)(1.0 \text{ s})^2 = 25 \text{ m}$$

 $x_2 = 20 \text{ m} + (5.0 \text{ m/s}^2)(2.0 \text{ s})^2 = 40 \text{ m}$

The displacement during this 1.0-s interval is

$$\Delta x = x_2 - x_1 = 40 \text{ m} - 25 \text{ m} = 15 \text{ m}$$

(b) The average *x*-velocity during this interval is

$$v_{\text{av-x}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{40 \text{ m} - 25 \text{ m}}{2.0 \text{ s} - 1.0 \text{ s}} = \frac{15 \text{ m}}{1.0 \text{ s}} = 15 \text{ m/s}$$

(c) With $\Delta t = 0.1$ s the time interval is from $t_1 = 1.0$ s to a new $t_2 = 1.1$ s. At t_2 the position is

$$x_2 = 20 \text{ m} + (5.0 \text{ m/s}^2)(1.1 \text{ s})^2 = 26.05 \text{ m}$$

The average *x*-velocity during this 0.1-s interval is

$$v_{\text{av-x}} = \frac{26.05 \text{ m} - 25 \text{ m}}{1.1 \text{ s} - 1.0 \text{ s}} = 10.5 \text{ m/s}$$

Following this pattern, you can calculate the average x-velocities for 0.01-s and 0.001-s intervals: The results are 10.05 m/s and 10.005 m/s. As Δt gets smaller, the average x-velocity gets closer to 10.0 m/s, so we conclude that the instantaneous x-velocity at t = 1.0 s is 10.0 m/s. (We suspended the rules for significantfigure counting in these calculations.)

(d) To find the instantaneous *x*-velocity as a function of time, we take the derivative of the expression for *x* with respect to *t*. The derivative of a constant is zero, and for any *n* the derivative of t^n is nt^{n-1} , so the derivative of t^2 is 2*t*. We therefore have

$$v_x = \frac{dx}{dt} = (5.0 \text{ m/s}^2)(2t) = (10 \text{ m/s}^2)t$$

At t = 1.0 s, this yields $v_x = 10$ m/s, as we found in part (c); at t = 2.0 s, $v_x = 20$ m/s.

EVALUATE: Our results show that the cheetah picked up speed from t = 0 (when it was at rest) to t = 1.0 s ($v_x = 10$ m/s) to t = 2.0 s ($v_x = 20$ m/s). This makes sense; the cheetah covered only 5 m during the interval t = 0 to t = 1.0 s, but it covered 15 m during the interval t = 1.0 s to t = 2.0 s.

Mastering**PHYSICS**

ActivPhysics 1.1: Analyzing Motion Using Diagrams

Finding Velocity on an x-t Graph

We can also find the *x*-velocity of a particle from the graph of its position as a function of time. Suppose we want to find the *x*-velocity of the dragster in Fig. 2.1 at point P_1 . As point P_2 in Fig. 2.1 approaches point P_1 , point p_2 in the *x*-*t* graphs of Figs. 2.7a and 2.7b approaches point p_1 and the average *x*-velocity is calculated over shorter time intervals Δt . In the limit that $\Delta t \rightarrow 0$, shown in Fig. 2.7c, the slope of the line p_1p_2 equals the slope of the line tangent to the curve at point p_1 . Thus, on a graph of position as a function of time for straightline motion, the instantaneous *x*-velocity at any point is equal to the slope of the tangent to the curve at that point.

If the tangent to the *x*-*t* curve slopes upward to the right, as in Fig. 2.7c, then its slope is positive, the *x*-velocity is positive, and the motion is in the positive *x*-direction. If the tangent slopes downward to the right, the slope of the *x*-*t* graph

MP)

2.7 Using an *x*-*t* graph to go from (a), (b) average *x*-velocity to (c) instantaneous *x*-velocity v_x . In (c) we find the slope of the tangent to the *x*-*t* curve by dividing any vertical interval (with distance units) along the tangent by the corresponding horizontal interval (with time units).

2.8 (a) The *x*-*t* graph of the motion of a particular particle. The slope of the tangent at any point equals the velocity at that point. (b) A motion diagram showing the position and velocity of the particle at each of the times labeled on the *x*-*t* graph.

The steeper the slope (positive or negative) of an object's *x*-*t* graph, the greater is the object's speed in the positive or negative *x*-direction.

and the *x*-velocity are negative, and the motion is in the negative *x*-direction. When the tangent is horizontal, the slope and the *x*-velocity are zero. Figure 2.8 illustrates these three possibilities.

Figure 2.8 actually depicts the motion of a particle in two ways: as (a) an x-t graph and (b) a **motion diagram** that shows the particle's position at various instants (like frames from a video of the particle's motion) as well as arrows to represent the particle's velocity at each instant. We will use both x-t graphs and motion diagrams in this chapter to help you understand motion. You will find it worth your while to draw *both* an x-t graph and a motion diagram as part of solving any problem involving motion.

Test Your Understanding of Section 2.2 Figure 2.9 is an *x*-*t* graph of the motion of a particle. (a) Rank the values of the particle's *x*-velocity v_x at the points *P*, *Q*, *R*, and *S* from most positive to most negative. (b) At which points is v_x positive? (c) At which points is v_x negative? (d) At which points is v_x zero? (e) Rank the values of the particle's *speed* at the points *P*, *Q*, *R*, and *S* from fastest to slowest.

2.9 An *x*-*t* graph for a particle.

2.3 Average and Instantaneous Acceleration

Just as velocity describes the rate of change of position with time, *acceleration* describes the rate of change of velocity with time. Like velocity, acceleration is a vector quantity. When the motion is along a straight line, its only nonzero component is along that line. As we'll see, acceleration in straight-line motion can refer to either speeding up or slowing down.

Average Acceleration

Let's consider again a particle moving along the x-axis. Suppose that at time t_1 the particle is at point P_1 and has x-component of (instantaneous) velocity v_{1x} , and at a later time t_2 it is at point P_2 and has x-component of velocity v_{2x} . So the x-component of velocity changes by an amount $\Delta v_x = v_{2x} - v_{1x}$ during the time interval $\Delta t = t_2 - t_1$.

We define the **average acceleration** of the particle as it moves from P_1 to P_2 to be a vector quantity whose *x*-component a_{av-x} (called the **average** *x***-acceleration**) equals Δv_x , the change in the *x*-component of velocity, divided by the time interval Δt :

 $a_{\text{av-}x} = \frac{v_{2x} - v_{1x}}{t_2 - t_1} = \frac{\Delta v_x}{\Delta t} \qquad (\text{average x-acceleration}, \\ \text{straight-line motion})$ (2.4)

For straight-line motion along the *x*-axis we will often call a_{av-x} simply the average acceleration. (We'll encounter the other components of the average acceleration vector in Chapter 3.)

If we express velocity in meters per second and time in seconds, then average acceleration is in meters per second per second, or (m/s)/s. This is usually written as m/s^2 and is read "meters per second squared."

CAUTION Acceleration vs. velocity Be very careful not to confuse acceleration with velocity! Velocity describes how a body's position changes with time; it tells us how fast and in what direction the body moves. Acceleration describes how the velocity changes with time; it tells us how the speed and direction of motion are changing. It may help to remember the phrase "acceleration is to velocity as velocity is to position." It can also help to imagine yourself riding along with the moving body. If the body accelerates forward and gains speed, you feel pushed backward in your seat; if it accelerates backward and loses speed, you feel pushed forward. If the velocity is constant and there's no acceleration, you feel neither sensation. (We'll see the reason for these sensations in Chapter 4.)

Example 2.2 Average acceleration

An astronaut has left an orbiting spacecraft to test a new personal maneuvering unit. As she moves along a straight line, her partner on the spacecraft measures her velocity every 2.0 s, starting at time t = 1.0 s:

t	v_x	t t	v_x	
1.0 s	0.8 m/s	9.0 s	-0.4 m/s	
3.0 s	1.2 m/s	11.0 s	-1.0 m/s	
5.0 s	1.6 m/s	13.0 s	-1.6 m/s	
7.0 s	1.2 m/s	15.0 s	-0.8 m/s	

Find the average *x*-acceleration, and state whether the speed of the astronaut increases or decreases over each of these 2.0-s time intervals: (a) $t_1 = 1.0$ s to $t_2 = 3.0$ s; (b) $t_1 = 5.0$ s to $t_2 = 7.0$ s; (c) $t_1 = 9.0$ s to $t_2 = 11.0$ s; (d) $t_1 = 13.0$ s to $t_2 = 15.0$ s.

SOLUTION

IDENTIFY and SET UP: We'll use Eq. (2.4) to determine the average acceleration a_{av-x} from the change in velocity over each time interval. To find the changes in speed, we'll use the idea that speed v is the magnitude of the instantaneous velocity v_x .

2.10 Our graphs of *x*-velocity versus time (top) and average *x*-acceleration versus time (bottom) for the astronaut.

EXECUTE: Using Eq. (2.4), we find:

(a) $a_{av-x} = (1.2 \text{ m/s} - 0.8 \text{ m/s})/(3.0 \text{ s} - 1.0 \text{ s}) = 0.2 \text{ m/s}^2$. The speed (magnitude of instantaneous *x*-velocity) increases from 0.8 m/s to 1.2 m/s.

(b)
$$a_{av-x} = (1.2 \text{ m/s} - 1.6 \text{ m/s})/(7.0 \text{ s} - 5.0 \text{ s}) =$$

-0.2 m/s². The speed decreases from 1.6 m/s to 1.2 m/s.

(c) $a_{av-x} = [-1.0 \text{ m/s} - (-0.4 \text{ m/s})]/(11.0 \text{ s} - 9.0 \text{ s}) = -0.3 \text{ m/s}^2$. The speed increases from 0.4 m/s to 1.0 m/s.

(d) $a_{av-x} = [-0.8 \text{ m/s} - (-1.6 \text{ m/s})]/(15.0 \text{ s} - 13.0 \text{ s}) = 0.4 \text{ m/s}^2$. The speed decreases from 1.6 m/s to 0.8 m/s.

In the lower part of Fig. 2.10, we graph the values of a_{av-x} .

EVALUATE: The signs and relative magnitudes of the average accelerations agree with our qualitative predictions. For future reference, note this connection among speed, velocity, and acceleration: Our results show that when the average *x*-acceleration has the *same* direction (same algebraic sign) as the initial velocity, as in intervals (a) and (c), the astronaut goes faster. When a_{av-x} has the *opposite* direction (opposite algebraic sign) from the initial velocity, as in intervals (b) and (d), she slows down. Thus positive *x*-acceleration means speeding up if the *x*-velocity is positive [interval (a)] but slowing down if the *x*-velocity is negative [interval (d)]. Similarly, negative *x*-acceleration means speeding up if the *x*-velocity is negative [interval (b)].

Instantaneous Acceleration

We can now define **instantaneous acceleration** following the same procedure that we used to define instantaneous velocity. As an example, suppose a race car driver is driving along a straightaway as shown in Fig. 2.11. To define the instantaneous acceleration at point P_1 , we take the second point P_2 in Fig. 2.11 to be closer and closer to P_1 so that the average acceleration is computed over shorter and shorter time intervals. *The instantaneous acceleration is the limit of the average acceleration as the time interval approaches zero*. In the language of calculus, *instantaneous acceleration equals the derivative of velocity with time*. Thus

$$a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt} \qquad \text{(instantaneous x-acceleration,} \\ \text{straight-line motion)} \qquad (2.5)$$

Note that a_x in Eq. (2.5) is really the x-component of the acceleration vector, or the **instantaneous x-acceleration;** in straight-line motion, all other components of this vector are zero. From now on, when we use the term "acceleration," we will always mean instantaneous acceleration, not average acceleration.

Example 2.3 Average and instantaneous accelerations

Suppose the *x*-velocity v_x of the car in Fig. 2.11 at any time *t* is given by the equation

$$v_x = 60 \text{ m/s} + (0.50 \text{ m/s}^3)t^2$$

(a) Find the change in *x*-velocity of the car in the time interval $t_1 = 1.0$ s to $t_2 = 3.0$ s. (b) Find the average *x*-acceleration in this time interval. (c) Find the instantaneous *x*-acceleration at time $t_1 = 1.0$ s by taking Δt to be first 0.1 s, then 0.01 s, then 0.001 s. (d) Derive an expression for the instantaneous *x*-acceleration as a function of time, and use it to find a_x at t = 1.0 s and t = 3.0 s.

SOLUTION

IDENTIFY and SET UP: This example is analogous to Example 2.1 in Section 2.2. (Now is a good time to review that example.) In Example 2.1 we found the average *x*-velocity from the change in position over shorter and shorter time intervals, and we obtained an expression for the instantaneous *x*-velocity by differentiating the position as a function of time. In this example we have an exact parallel. Using Eq. (2.4), we'll find the average *x*-acceleration from the change in *x*-velocity over a time interval. Likewise, using Eq. (2.5), we'll obtain an expression for the instantaneous *x*-acceleration by differentiating the *x*-velocity as a function of time.

EXECUTE: (a) Before we can apply Eq. (2.4), we must find the *x*-velocity at each time from the given equation. At $t_1 = 1.0$ s and $t_2 = 3.0$ s, the velocities are

$$v_{1x} = 60 \text{ m/s} + (0.50 \text{ m/s}^3)(1.0 \text{ s})^2 = 60.5 \text{ m/s}$$

$$v_{2x} = 60 \text{ m/s} + (0.50 \text{ m/s}^3)(3.0 \text{ s})^2 = 64.5 \text{ m/s}$$

The change in x-velocity Δv_x between $t_1 = 1.0$ s and $t_2 = 3.0$ s is

 $\Delta v_x = v_{2x} - v_{1x} = 64.5 \text{ m/s} - 60.5 \text{ m/s} = 4.0 \text{ m/s}$

(b) The average *x*-acceleration during this time interval of duration $t_2 - t_1 = 2.0$ s is

$$a_{\text{av-}x} = \frac{v_{2x} - v_{1x}}{t_2 - t_1} = \frac{4.0 \text{ m/s}}{2.0 \text{ s}} = 2.0 \text{ m/s}^2$$

During this time interval the *x*-velocity and average *x*-acceleration have the same algebraic sign (in this case, positive), and the car speeds up.

(c) When $\Delta t = 0.1$ s, we have $t_2 = 1.1$ s. Proceeding as before, we find

$$v_{2x} = 60 \text{ m/s} + (0.50 \text{ m/s}^3)(1.1 \text{ s})^2 = 60.605 \text{ m/s}$$

 $\Delta v_x = 0.105 \text{ m/s}$
 $a_{av-x} = \frac{\Delta v_x}{\Delta t} = \frac{0.105 \text{ m/s}}{0.1 \text{ s}} = 1.05 \text{ m/s}^2$

You should follow this pattern to calculate a_{av-x} for $\Delta t = 0.01$ s and $\Delta t = 0.001$ s; the results are $a_{av-x} = 1.005$ m/s² and $a_{av-x} = 1.0005$ m/s², respectively. As Δt gets smaller, the average x-acceleration gets closer to 1.0 m/s², so the instantaneous x-acceleration at t = 1.0 s is 1.0 m/s².

(d) By Eq. (2.5) the instantaneous *x*-acceleration is $a_x = dv_x/dt$. The derivative of a constant is zero and the derivative of t^2 is 2t, so

$$a_x = \frac{dv_x}{dt} = \frac{d}{dt} [60 \text{ m/s} + (0.50 \text{ m/s}^3)t^2]$$
$$= (0.50 \text{ m/s}^3)(2t) = (1.0 \text{ m/s}^3)t$$

When t = 1.0 s,

$$a_{\rm r} = (1.0 \text{ m/s}^3)(1.0 \text{ s}) = 1.0 \text{ m/s}^2$$

When t = 3.0 s,

$$a_x = (1.0 \text{ m/s}^3)(3.0 \text{ s}) = 3.0 \text{ m/s}^2$$

EVALUATE: Neither of the values we found in part (d) is equal to the average *x*-acceleration found in part (b). That's because the car's instantaneous *x*-acceleration varies with time. The rate of change of acceleration with time is sometimes called the "jerk."

Finding Acceleration on a v_x -t Graph or an x-t Graph

In Section 2.2 we interpreted average and instantaneous *x*-velocity in terms of the slope of a graph of position versus time. In the same way, we can interpret average and instantaneous *x*-acceleration by using a graph with instantaneous velocity v_x on the vertical axis and time *t* on the horizontal axis—that is, a v_x -*t* graph (Fig. 2.12). The points on the graph labeled p_1 and p_2 correspond to points P_1 and P_2 in Fig. 2.11. The average *x*-acceleration $a_{av-x} = \Delta v_x / \Delta t$ during this interval is the slope of the line p_1p_2 . As point P_2 in Fig. 2.11 approaches point P_1 , point p_2 in the v_x -*t* graph of Fig. 2.12 approaches point p_1 , and the slope of the line p_1p_2 approaches the slope of the line tangent to the curve at point p_1 . Thus, on a graph of *x*-velocity as a function of time, the instantaneous *x*-acceleration at any point is equal to the slope of the tangent to the curve at that point. Tangents drawn at different points along the curve in Fig. 2.12 have different slopes, so the instantaneous *x*-acceleration varies with time.

CAUTION The signs of x-acceleration and x-velocity By itself, the algebraic sign of the x-acceleration does not tell you whether a body is speeding up or slowing down. You must compare the signs of the x-velocity and the x-acceleration. When v_x and a_x have the same sign, the body is speeding up. If both are positive, the body is moving in the positive direction with increasing speed. If both are negative, the body is moving in the negative direction with an x-velocity that is becoming more and more negative, and again the speed is increasing. When v_x and a_x have opposite signs, the body is slowing down. If v_x is positive and a_x is negative, the body is moving in the negative direction with decreasing speed; if v_x is negative and a_x is positive, the body is moving in the negative direction with an x-velocity that is becoming less negative, and again the body is slowing down. Table 2.3 summarizes these ideas, and Fig. 2.13 illustrates some of these possibilities.

The term "deceleration" is sometimes used for a decrease in speed. Because it may mean positive or negative a_x , depending on the sign of v_x , we avoid this term.

We can also learn about the acceleration of a body from a graph of its *position* versus time. Because $a_x = dv_x/dt$ and $v_x = dx/dt$, we can write

$$a_x = \frac{dv_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$
(2.6)

Table 2.3 Rules for the Signof x-Acceleration

If x-velocity is:	<i>x</i> -acceleration is:
Positive & increasing (getting more positive)	Positive: Particle is moving in $+x$ -direction & speeding up
Positive & decreasing (getting less positive)	Negative: Particle is moving in $+x$ -direction & slowing down
Negative & increasing (getting less negative)	Positive: Particle is moving in $-x$ -direction & slowing down
Negative & decreasing (getting more negative)	Negative: Particle is moving in $-x$ -direction & speeding up

Note: These rules apply to both the average *x*-acceleration a_{av-x} and the instantaneous *x*-acceleration a_x .

2.13 (a) A v_x -t graph of the motion of a different particle from that shown in Fig. 2.8. The slope of the tangent at any point equals the *x*-acceleration at that point. (b) A motion diagram showing the position, velocity, and acceleration of the particle at each of the times labeled on the v_x -t graph. The positions are consistent with the v_x -t graph; for instance, from t_A to t_B the velocity is negative, so at t_B the particle is at a more negative value of x than at t_A .

(a) v_x -*t* graph for an object moving on the *x*-axis

(b) Object's position, velocity, and acceleration on the *x*-axis

2.14 (a) The same x-t graph as shown in Fig. 2.8a. The x-velocity is equal to the *slope* of the graph, and the acceleration is given by the *concavity* or *curvature* of the graph. (b) A motion diagram showing the position, velocity, and acceleration of the particle at each of the times labeled on the x-t graph.

(a) x-t graph

(b) Object's motion

The greater the curvature (upward or downward) of an object's *x-t* graph, the greater is the object's acceleration in the positive or negative *x*-direction.

That is, a_x is the second derivative of x with respect to t. The second derivative of any function is directly related to the *concavity* or *curvature* of the graph of that function (Fig. 2.14). Where the x-t graph is concave up (curved upward), the x-acceleration is positive and v_x is increasing; at a point where the x-t graph is concave down (curved downward), the x-acceleration is negative and v_x is decreasing. At a point where the x-t graph has no curvature, such as an inflection point, the x-acceleration is zero and the velocity is not changing. Figure 2.14 shows all three of these possibilities.

Examining the curvature of an *x*-*t* graph is an easy way to decide what the *sign* of acceleration is. This technique is less helpful for determining numerical values of acceleration because the curvature of a graph is hard to measure accurately.

MP

I

Test Your Understanding of Section 2.3 Look again at the *x*-*t* graph in Fig. 2.9 at the end of Section 2.2. (a) At which of the points *P*, *Q*, *R*, and *S* is the *x*-acceleration a_x positive? (b) At which points is the *x*-acceleration negative? (c) At which points does the *x*-acceleration appear to be zero? (d) At each point state whether the velocity is increasing, decreasing, or not changing.

2.4 Motion with Constant Acceleration

The simplest kind of accelerated motion is straight-line motion with *constant* acceleration. In this case the velocity changes at the same rate throughout the motion. As an example, a falling body has a constant acceleration if the effects of the air are not important. The same is true for a body sliding on an incline or along a rough horizontal surface, or for an airplane being catapulted from the deck of an aircraft carrier.

Figure 2.15 is a motion diagram showing the position, velocity, and acceleration for a particle moving with constant acceleration. Figures 2.16 and 2.17 depict this same motion in the form of graphs. Since the *x*-acceleration is constant, the a_x -t graph (graph of *x*-acceleration versus time) in Fig. 2.16 is a horizontal line. The graph of *x*-velocity versus time, or v_x -t graph, has a constant *slope* because the acceleration is constant, so this graph is a straight line (Fig. 2.17).

2.15 A motion diagram for a particle moving in a straight line in the positive *x*-direction with constant positive *x*-acceleration a_x . The position, velocity, and acceleration are shown at five equally spaced times.

However, the position changes by *different* amounts in equal time intervals because the velocity is changing.
When the *x*-acceleration a_x is constant, the average *x*-acceleration a_{av-x} for any time interval is the same as a_x . This makes it easy to derive equations for the position *x* and the *x*-velocity v_x as functions of time. To find an expression for v_x , we first replace a_{av-x} in Eq. (2.4) by a_x :

$$a_x = \frac{v_{2x} - v_{1x}}{t_2 - t_1} \tag{2.7}$$

Now we let $t_1 = 0$ and let t_2 be any later time *t*. We use the symbol v_{0x} for the *x*-velocity at the initial time t = 0; the *x*-velocity at the later time *t* is v_x . Then Eq. (2.7) becomes

$$a_x = \frac{v_x - v_{0x}}{t - 0} \quad \text{or}$$

$$v_x = v_{0x} + a_x t \quad \text{(constant x-acceleration only)} \quad (2.8)$$

In Eq. (2.8) the term $a_x t$ is the product of the constant rate of change of *x*-velocity, a_x , and the time interval *t*. Therefore it equals the *total* change in *x*-velocity from the initial time t = 0 to the later time *t*. The *x*-velocity v_x at any time *t* then equals the initial *x*-velocity v_{0x} (at t = 0) plus the change in *x*-velocity $a_x t$ (Fig. 2.17).

Equation (2.8) also says that the change in *x*-velocity $v_x - v_{0x}$ of the particle between t = 0 and any later time *t* equals the *area* under the a_x -*t* graph between those two times. You can verify this from Fig. 2.16: Under this graph is a rectangle of vertical side a_x , horizontal side *t*, and area $a_x t$. From Eq. (2.8) this is indeed equal to the change in velocity $v_x - v_{0x}$. In Section 2.6 we'll show that even if the *x*-acceleration is not constant, the change in *x*-velocity during a time interval is still equal to the area under the a_x -*t* curve, although in that case Eq. (2.8) does not apply.

Next we'll derive an equation for the position x as a function of time when the x-acceleration is constant. To do this, we use two different expressions for the average x-velocity v_{av-x} during the interval from t = 0 to any later time t. The first expression comes from the definition of v_{av-x} , Eq. (2.2), which is true whether or not the acceleration is constant. We call the position at time t = 0 the *initial position*, denoted by x_0 . The position at the later time t is simply x. Thus for the time interval $\Delta t = t - 0$ the displacement is $\Delta x = x - x_0$, and Eq. (2.2) gives

$$v_{\text{av-}x} = \frac{x - x_0}{t} \tag{2.9}$$

We can also get a second expression for v_{av-x} that is valid only when the *x*-acceleration is constant, so that the *x*-velocity changes at a constant rate. In this case the average *x*-velocity for the time interval from 0 to *t* is simply the average of the *x*-velocities at the beginning and end of the interval:

$$v_{\text{av-}x} = \frac{v_{0x} + v_x}{2}$$
 (constant *x*-acceleration only) (2.10)

(constant x-acceleration only)

(2.11)

(This equation is *not* true if the *x*-acceleration varies during the time interval.) We also know that with constant *x*-acceleration, the *x*-velocity v_x at any time *t* is given by Eq. (2.8). Substituting that expression for v_x into Eq. (2.10), we find

$$v_{\text{av-}x} = \frac{1}{2}(v_{0x} + v_{0x} + a_x t)$$

 $= v_{0x} + \frac{1}{2}a_{x}t$

2.16 An acceleration-time (a_x-t) graph for straight-line motion with constant positive *x*-acceleration a_x .

2.17 A velocity-time (v_x-t) graph for straight-line motion with constant positive *x*-acceleration a_x . The initial *x*-velocity v_{0x} is also positive in this case.

Mastering PHYSICS

PhET: Forces in 1 Dimension ActivPhysics 1.1: Analyzing Motion Using Diagrams ActivPhysics 1.2: Analyzing Motion Using Graphs ActivPhysics 1.3: Predicting Motion from Graphs ActivPhysics 1.4: Predicting Motion from Equations ActivPhysics 1.5: Problem-Solving Strategies for Kinematics

ActivPhysics 1.6: Skier Races Downhill

Application Testing Humans at High Accelerations

In experiments carried out by the U.S. Air Force in the 1940s and 1950s, humans riding a rocket sled demonstrated that they could withstand accelerations as great as 440 m/s². The first three photos in this sequence show Air Force physician John Stapp speeding up from rest to 188 m/s (678 km/h = 421 mi/h) in just 5 s. Photos 4–6 show the even greater magnitude of acceleration as the rocket sled braked to a halt.

2.18 (a) Straight-line motion with constant acceleration. (b) A position-time (*x*-*t*) graph for this motion (the same motion as is shown in Figs. 2.15, 2.16, and 2.17). For this motion the initial position x_0 , the initial velocity v_{0x} , and the acceleration a_x are all positive.

Finally, we set Eqs. (2.9) and (2.11) equal to each other and simplify:

$$v_{0x} + \frac{1}{2}a_x t = \frac{x - x_0}{t} \quad \text{or}$$

$$x = x_0 + v_{0x}t + \frac{1}{2}a_x t^2 \quad (\text{constant } x \text{-acceleration only}) \quad (2.12)$$

Here's what Eq. (2.12) tells us: If at time t = 0 a particle is at position x_0 and has x-velocity v_{0x} , its new position x at any later time t is the sum of three terms—its initial position x_0 , plus the distance $v_{0x}t$ that it would move if its x-velocity were constant, plus an additional distance $\frac{1}{2}a_xt^2$ caused by the change in x-velocity.

A graph of Eq. (2.12)—that is, an *x*-*t* graph for motion with constant *x*-acceleration (Fig. 2.18a)—is always a *parabola*. Figure 2.18b shows such a graph. The curve intercepts the vertical axis (*x*-axis) at x_0 , the position at t = 0. The slope of the tangent at t = 0 equals v_{0x} , the initial *x*-velocity, and the slope of the tangent at any time *t* equals the *x*-velocity v_x at that time. The slope and *x*-velocity are continuously increasing, so the *x*-acceleration a_x is positive; you can also see this because the graph in Fig. 2.18b is concave up (it curves upward). If a_x is negative, the *x*-*t* graph is a parabola that is concave down (has a downward curvature).

If there is zero x-acceleration, the x-t graph is a straight line; if there is a constant x-acceleration, the additional $\frac{1}{2}a_xt^2$ term in Eq. (2.12) for x as a function of t curves the graph into a parabola (Fig. 2.19a). We can analyze the v_x -t graph in the same way. If there is zero x-acceleration this graph is a horizontal line (the x-velocity is constant); adding a constant x-acceleration gives a slope to the v_x -t graph (Fig. 2.19b).

2.19 (a) How a constant *x*-acceleration affects a body's (a) *x*-*t* graph and (b) v_x -*t* graph.

MP

(b) The v_x -t graph for the same object

Just as the change in *x*-velocity of the particle equals the area under the a_x -*t* graph, the displacement—that is, the change in position—equals the area under the v_x -*t* graph. To be specific, the displacement $x - x_0$ of the particle between t = 0 and any later time *t* equals the area under the v_x -*t* graph between those two times. In Fig. 2.17 we divide the area under the graph into a dark-colored rectangle (vertical side v_{0x} , horizontal side *t*, and area $v_{0x}t$) and a light-colored right triangle (vertical side $a_x t$, horizontal side *t*, and area $\frac{1}{2}(a_x t)(t) = \frac{1}{2}a_x t^2$). The total area under the v_x -*t* graph is

$$x - x_0 = v_{0x}t + \frac{1}{2}a_xt^2$$

in agreement with Eq. (2.12).

The displacement during a time interval is always equal to the area under the v_x -t curve. This is true even if the acceleration is *not* constant, although in that case Eq. (2.12) does not apply. (We'll show this in Section 2.6.)

It's often useful to have a relationship for position, *x*-velocity, and (constant) *x*-acceleration that does not involve the time. To obtain this, we first solve Eq. (2.8) for *t* and then substitute the resulting expression into Eq. (2.12):

$$t = \frac{v_x - v_{0x}}{a_x}$$
$$x = x_0 + v_{0x} \left(\frac{v_x - v_{0x}}{a_x}\right) + \frac{1}{2}a_x \left(\frac{v_x - v_{0x}}{a_x}\right)^2$$

We transfer the term x_0 to the left side and multiply through by $2a_x$:

$$2a_x(x - x_0) = 2v_{0x}v_x - 2v_{0x}^2 + v_x^2 - 2v_{0x}v_x + v_{0x}^2$$

Finally, simplifying gives us

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$
 (constant *x*-acceleration only) (2.13)

We can get one more useful relationship by equating the two expressions for v_{av-x} , Eqs. (2.9) and (2.10), and multiplying through by t. Doing this, we obtain

$$x - x_0 = \left(\frac{v_{0x} + v_x}{2}\right)t$$
 (constant *x*-acceleration only) (2.14)

Note that Eq. (2.14) does not contain the x-acceleration a_x . This equation can be handy when a_x is constant but its value is unknown.

Equations (2.8), (2.12), (2.13), and (2.14) are the *equations of motion with constant acceleration* (Table 2.4). By using these equations, we can solve *any* problem involving straight-line motion of a particle with constant acceleration.

For the particular case of motion with constant *x*-acceleration depicted in Fig. 2.15 and graphed in Figs. 2.16, 2.17, and 2.18, the values of x_0 , v_{0x} , and a_x are all positive. We invite you to redraw these figures for cases in which one, two, or all three of these quantities are negative.

Mastering**PHYSICS**

PhET: The Moving Man ActivPhysics 1.8: Seat Belts Save Lives ActivPhysics 1.9: Screeching to a Halt ActivPhysics 1.11: Car Starts, Then Stops ActivPhysics 1.12: Solving Two-Vehicle Problems ActivPhysics 1.13: Car Catches Truck ActivPhysics 1.14: Avoiding a Rear-End Collision

Table 2.4 Equations of Motionwith Constant Acceleration

Equation			Includes Quantities			
$v_x = v_{0x} + a_x t$	(2.8)	t		v_x	a_x	
$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$	(2.12)	t	x		a_x	
$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$) (2.13)		x	v _x	a _x	
$x - x_0 = \left(\frac{v_{0x} + v_x}{2}\right)t$	(2.14)	t	x	v _x		

Problem-Solving Strategy 2.1 Motion with Constant Acceleration

IDENTIFY *the relevant concepts:* In most straight-line motion problems, you can use the constant-acceleration equations (2.8), (2.12), (2.13), and (2.14). If you encounter a situation in which the acceleration *isn't* constant, you'll need a different approach (see Section 2.6).

SET UP *the problem* using the following steps:

- 1. Read the problem carefully. Make a motion diagram showing the location of the particle at the times of interest. Decide where to place the origin of coordinates and which axis direction is positive. It's often helpful to place the particle at the origin at time t = 0; then $x_0 = 0$. Remember that your choice of the positive axis direction automatically determines the positive directions for *x*-velocity and *x*-acceleration. If *x* is positive to the right of the origin, then v_x and a_x are also positive toward the right.
- 2. Identify the physical quantities (times, positions, velocities, and accelerations) that appear in Eqs. (2.8), (2.12), (2.13), and (2.14) and assign them appropriate symbols x, x_0 , v_x , v_{0x} , and a_x , or symbols related to those. Translate the prose into physics: "*When* does the particle arrive at its highest point" means "What is the value of t when x has its maximum value?" In Example 2.4 below, "Where is the motorcyclist when his velocity is 25 m/s?" means "What is the value of x when $v_x = 25$ m/s?" Be alert for implicit information. For example, "A car sits at a stop light" usually means $v_{0x} = 0$.
- 3. Make a list of the quantities such as x, x_0 , v_x , v_{0x} , a_x , and t. Some of them will be known and some will be unknown.

Example 2.4 Constant-acceleration calculations

A motorcyclist heading east through a small town accelerates at a constant 4.0 m/s² after he leaves the city limits (Fig. 2.20). At time t = 0 he is 5.0 m east of the city-limits signpost, moving east at 15 m/s. (a) Find his position and velocity at t = 2.0 s. (b) Where is he when his velocity is 25 m/s?

SOLUTION

IDENTIFY and SET UP: The *x*-acceleration is constant, so we can use the constant-acceleration equations. We take the signpost as the origin of coordinates (x = 0) and choose the positive *x*-axis to point east (see Fig. 2.20, which is also a motion diagram). The known variables are the initial position and velocity, $x_0 = 5.0$ m and $v_{0x} = 15$ m/s, and the acceleration, $a_x = 4.0$ m/s². The unknown target variables in part (a) are the values of the position *x* and the *x*-velocity v_x at t = 2.0 s; the target variable in part (b) is the value of *x* when $v_x = 25$ m/s.

EXECUTE: (a) Since we know the values of x_0 , v_{0x} , and a_x , Table 2.4 tells us that we can find the position x at t = 2.0 s by using

2.20 A motorcyclist traveling with constant acceleration.

Write down the values of the known quantities, and decide which of the unknowns are the target variables. Make note of the *absence* of any of the quantities that appear in the four constant-acceleration equations.

- 4. Use Table 2.4 to identify the applicable equations. (These are often the equations that don't include any of the absent quantities that you identified in step 3.) Usually you'll find a single equation that contains only one of the target variables. Sometimes you must find two equations, each containing the same two unknowns.
- 5. Sketch graphs corresponding to the applicable equations. The v_x -t graph of Eq. (2.8) is a straight line with slope a_x . The *x*-t graph of Eq. (2.12) is a parabola that's concave up if a_x is positive and concave down if a_x is negative.
- 6. On the basis of your accumulated experience with such problems, and taking account of what your sketched graphs tell you, make any qualitative and quantitative predictions you can about the solution.

EXECUTE *the solution:* If a single equation applies, solve it for the target variable, *using symbols only*; then substitute the known values and calculate the value of the target variable. If you have two equations in two unknowns, solve them simultaneously for the target variables.

EVALUATE *your answer:* Take a hard look at your results to see whether they make sense. Are they within the general range of values that you expected?

Eq. (2.12) and the x-velocity v_x at this time by using Eq. (2.8):

$$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$$

= 5.0 m + (15 m/s)(2.0 s) + $\frac{1}{2}$ (4.0 m/s²)(2.0 s)²
= 43 m
 $v_x = v_{0x} + a_xt$
= 15 m/s + (4.0 m/s²)(2.0 s) = 23 m/s

(b) We want to find the value of x when $v_x = 25$ m/s, but we don't know the time when the motorcycle has this velocity. Table 2.4 tells us that we should use Eq. (2.13), which involves x, v_x , and a_x but does *not* involve t:

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$

Solving for *x* and substituting the known values, we find

ι

$$x = x_0 + \frac{v_x^2 - v_{0x}^2}{2a_x}$$

= 5.0 m + $\frac{(25 \text{ m/s})^2 - (15 \text{ m/s})^2}{2(4.0 \text{ m/s}^2)} = 55 \text{ m}$

EVALUATE: You can check the result in part (b) by first using Eq. (2.8), $v_x = v_{0x} + a_x t$, to find the time at which $v_x = 25$ m/s, which turns out to be t = 2.5 s. You can then use Eq. (2.12), $x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$, to solve for x. You should find x = 55 m, the same answer as above. That's the long way to solve the problem, though. The method we used in part (b) is much more efficient.

Example 2.5 Two bodies with different accelerations

A motorist traveling with a constant speed of 15 m/s (about 34 mi/h) passes a school-crossing corner, where the speed limit is 10 m/s (about 22 mi/h). Just as the motorist passes the school-crossing sign, a police officer on a motorcycle stopped there starts in pursuit with a constant acceleration of 3.0 m/s² (Fig. 2.21a). (a) How much time elapses before the officer passes the motorist? (b) What is the officer's speed at that time? (c) At that time, what distance has each vehicle traveled?

SOLUTION

IDENTIFY and SET UP: The officer and the motorist both move with constant acceleration (equal to zero for the motorist), so we can use the constant-acceleration formulas. We take the origin at the sign, so $x_0 = 0$ for both, and we take the positive direction to the right. Let x_P and x_M represent the positions of the officer and the motorist at any time; their initial velocities are $v_{P0x} = 0$ and $v_{M0x} = 15$ m/s, and their accelerations are $a_{Px} = 3.0$ m/s² and $a_{Mx} = 0$. Our target variable in part (a) is the time when the officer passes the motorist—that is, when the two vehicles are at the same position *x*; Table 2.4 tells us that Eq. (2.12) is useful for this part. In part (b) we're looking for the officer's speed *v* (the magnitude of his velocity) at the time found in part (a). We'll use Eq. (2.8) for this part. In part (c) we'll use Eq. (2.12) again to find the position of either vehicle at this same time.

Figure 2.21b shows an *x*-*t* graph for both vehicles. The straight line represents the motorist's motion, $x_{\rm M} = x_{\rm M0} + v_{\rm M0x}t = v_{\rm M0x}t$. The graph for the officer's motion is the right half of a concave–up parabola:

$$x_{\rm P} = x_{\rm P0} + v_{\rm P0x}t + \frac{1}{2}a_{\rm Px}t^2 = \frac{1}{2}a_{\rm Px}t^2$$

A good sketch will show that the officer and motorist are at the same position $(x_P = x_M)$ at about t = 10 s, at which time both have traveled about 150 m from the sign.

EXECUTE: (a) To find the value of the time *t* at which the motorist and police officer are at the same position, we set $x_P = x_M$ by equating the expressions above and solving that equation for *t*:

$$v_{M0x}t = \frac{1}{2}a_{Px}t^2$$

 $t = 0$ or $t = \frac{2v_{M0x}}{a_{Px}} = \frac{2(15 \text{ m/s})}{3.0 \text{ m/s}^2} = 10 \text{ s}$

Both vehicles have the same *x*-coordinate at *two* times, as Fig. 2.21b indicates. At t = 0 the motorist passes the officer; at t = 10 s the officer passes the motorist.

(b) We want the magnitude of the officer's *x*-velocity v_{Px} at the time *t* found in part (a). Substituting the values of v_{P0x} and a_{Px} into Eq. (2.8) along with t = 10 s from part (a), we find

$$v_{\text{Px}} = v_{\text{P0x}} + a_{\text{Px}}t = 0 + (3.0 \text{ m/s}^2)(10 \text{ s}) = 30 \text{ m/s}^2$$

The officer's speed is the absolute value of this, which is also 30 m/s.

(c) In 10 s the motorist travels a distance

$$x_{\rm M} = v_{{\rm M}0x}t = (15 \text{ m/s})(10 \text{ s}) = 150 \text{ m}$$

and the officer travels

$$x_{\rm P} = \frac{1}{2}a_{\rm Px}t^2 = \frac{1}{2}(3.0 \text{ m/s}^2)(10 \text{ s})^2 = 150 \text{ m}$$

This verifies that they have gone equal distances when the officer passes the motorist.

EVALUATE: Our results in parts (a) and (c) agree with our estimates from our sketch. Note that at the time when the officer passes the motorist, they do *not* have the same velocity. At this time the motorist is moving at 15 m/s and the officer is moving at 30 m/s. You can also see this from Fig. 2.21b. Where the two *x*-*t* curves cross, their slopes (equal to the values of v_x for the two vehicles) are different.

Is it just coincidence that when the two vehicles are at the same position, the officer is going twice the speed of the motorist? Equation (2.14), $x - x_0 = [(v_{0x} + v_x)/2]t$, gives the answer. The motorist has constant velocity, so $v_{M0x} = v_{Mx}$, and the distance $x - x_0$ that the motorist travels in time t is $v_{M0x}t$. The officer has zero initial velocity, so in the same time t the officer travels a distance $\frac{1}{2}v_{Px}t$. If the two vehicles cover the same distance in the same amount of time, the two values of $x - x_0$ must be the same. Hence when the officer passes the motorist $v_{M0x}t = \frac{1}{2}v_{Px}t$ and $v_{Px} = 2v_{M0x}$ —that is, the officer has exactly twice the motorist's velocity. Note that this is true no matter what the value of the officer's acceleration.

2.21 (a) Motion with constant acceleration overtaking motion with constant velocity. (b) A graph of x versus t for each vehicle.

Test Your Understanding of Section 2.4 Four possible v_x -t graphs are shown for the two vehicles in Example 2.5. Which graph is correct?

2.5 Freely Falling Bodies

The most familiar example of motion with (nearly) constant acceleration is a body falling under the influence of the earth's gravitational attraction. Such motion has held the attention of philosophers and scientists since ancient times. In the fourth century B.C., Aristotle thought (erroneously) that heavy bodies fall faster than light bodies, in proportion to their weight. Nineteen centuries later, Galileo (see Section 1.1) argued that a body should fall with a downward acceleration that is constant and independent of its weight.

Experiment shows that if the effects of the air can be neglected, Galileo is right; all bodies at a particular location fall with the same downward acceleration, regardless of their size or weight. If in addition the distance of the fall is small compared with the radius of the earth, and if we ignore small effects due to the earth's rotation, the acceleration is constant. The idealized motion that results under all of these assumptions is called **free fall**, although it includes rising as well as falling motion. (In Chapter 3 we will extend the discussion of free fall to include the motion of projectiles, which move both vertically and horizontally.)

Figure 2.22 is a photograph of a falling ball made with a stroboscopic light source that produces a series of short, intense flashes. As each flash occurs, an image of the ball at that instant is recorded on the photograph. There are equal time intervals between flashes, so the average velocity of the ball between successive flashes is proportional to the distance between corresponding images. The increasing distances between images show that the velocity is continuously changing; the ball is accelerating downward. Careful measurement shows that the velocity change is the same in each time interval, so the acceleration of the freely falling ball is constant.

The constant acceleration of a freely falling body is called the **acceleration due to gravity**, and we denote its magnitude with the letter g. We will frequently use the approximate value of g at or near the earth's surface:

 $g = 9.8 \text{ m/s}^2 = 980 \text{ cm/s}^2 = 32 \text{ ft/s}^2$ (approximate value near the earth's surface)

The exact value varies with location, so we will often give the value of g at the earth's surface to only two significant figures. On the surface of the moon, the acceleration due to gravity is caused by the attractive force of the moon rather than the earth, and $g = 1.6 \text{ m/s}^2$. Near the surface of the sun, $g = 270 \text{ m/s}^2$.

CAUTION *g* is always a positive number Because *g* is the *magnitude* of a vector quantity, it is always a *positive* number. If you take the positive direction to be upward, as we do in Example 2.6 and in most situations involving free fall, the acceleration is negative (downward) and equal to -g. Be careful with the sign of *g*, or else you'll have no end of trouble with free-fall problems.

In the following examples we use the constant-acceleration equations developed in Section 2.4. You should review Problem-Solving Strategy 2.1 in that section before you study the next examples.

2.22 Multiflash photo of a freely falling ball.

MasteringPHYSICS

PhET: Lunar Lander ActivPhysics 1.7: Balloonist Drops Lemonade ActivPhysics 1.10: Pole-Vaulter Lands

Example 2.6 A freely falling coin

A one-euro coin is dropped from the Leaning Tower of Pisa and falls freely from rest. What are its position and velocity after 1.0 s, 2.0 s, and 3.0 s?

SOLUTION

IDENTIFY and SET UP: "Falls freely" means "falls with constant acceleration due to gravity," so we can use the constant-acceleration equations. The right side of Fig. 2.23 shows our motion diagram for the coin. The motion is vertical, so we use a vertical

2.23 A coin freely falling from rest.

coordinate axis and call the coordinate y instead of x. We take the origin O at the starting point and the *upward* direction as positive. The initial coordinate y_0 and initial y-velocity v_{0y} are both zero. The y-acceleration is downward (in the negative y-direction), so $a_y = -g = -9.8 \text{ m/s}^2$. (Remember that, by definition, g itself is a positive quantity.) Our target variables are the values of y and v_y at the three given times. To find these, we use Eqs. (2.12) and (2.8) with x replaced by y. Our choice of the upward direction as positive means that all positions and velocities we calculate will be negative.

EXECUTE: At a time *t* after the coin is dropped, its position and *y*-velocity are

$$y = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 = 0 + 0 + \frac{1}{2}(-g)t^2 = (-4.9 \text{ m/s}^2)t^2$$

$$v_y = v_{0y} + a_yt = 0 + (-g)t = (-9.8 \text{ m/s}^2)t$$

When t = 1.0 s, $y = (-4.9 \text{ m/s}^2)(1.0 \text{ s})^2 = -4.9 \text{ m}$ and $v_y = (-9.8 \text{ m/s}^2)(1.0 \text{ s}) = -9.8 \text{ m/s}$; after 1 s, the coin is 4.9 m below the origin (y is negative) and has a downward velocity (v_y is negative) with magnitude 9.8 m/s.

We can find the positions and y-velocities at 2.0 s and 3.0 s in the same way. The results are y = -20 m and $v_y = -20$ m/s at t = 2.0 s, and y = -44 m and $v_y = -29$ m/s at t = 3.0 s.

EVALUATE: All our answers are negative, as we expected. If we had chosen the positive y-axis to point downward, the acceleration would have been $a_y = +g$ and all our answers would have been positive.

Example 2.7 Up-and-down motion in free fall

You throw a ball vertically upward from the roof of a tall building. The ball leaves your hand at a point even with the roof railing with an upward speed of 15.0 m/s; the ball is then in free fall. On its way back down, it just misses the railing. Find (a) the ball's position and velocity 1.00 s and 4.00 s after leaving your hand; (b) the ball's velocity when it is 5.00 m above the railing; (c) the maximum height reached; (d) the ball's acceleration when it is at its maximum height.

SOLUTION

IDENTIFY and SET UP: The words "in free fall" mean that the acceleration is due to gravity, which is constant. Our target variables are position [in parts (a) and (c)], velocity [in parts (a) and (b)], and acceleration [in part (d)]. We take the origin at the point where the ball leaves your hand, and take the positive direction to be upward (Fig. 2.24). The initial position y_0 is zero, the initial y-velocity v_{0y} is +15.0 m/s, and the y-acceleration is $a_y = -g = -9.80 \text{ m/s}^2$.

In part (a), as in Example 2.6, we'll use Eqs. (2.12) and (2.8) to find the position and velocity as functions of time. In part (b) we must find the velocity at a given *position* (no time is given), so we'll use Eq. (2.13).

Figure 2.25 shows the *y*-*t* and v_y -*t* graphs for the ball. The *y*-*t* graph is a concave-down parabola that rises and then falls, and the v_y -*t* graph is a downward-sloping straight line. Note that the ball's velocity is zero when it is at its highest point.

EXECUTE: (a) The position and y-velocity at time t are given by Eqs. (2.12) and (2.8) with x's replaced by y's:

$$y = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 = y_0 + v_{0y}t + \frac{1}{2}(-g)t^2$$

= (0) + (15.0 m/s)t + $\frac{1}{2}(-9.80 m/s^2)t^2$
 $v_y = v_{0y} + a_yt = v_{0y} + (-g)t$
= 15.0 m/s + (-9.80 m/s²)t

Continued

When t = 1.00 s, these equations give y = +10.1 m and $v_y = +5.2$ m/s. That is, the ball is 10.1 m above the origin (y is positive) and moving upward (v_y is positive) with a speed of 5.2 m/s. This is less than the initial speed because the ball slows as it ascends. When t = 4.00 s, those equations give y = -18.4 m and $v_y = -24.2$ m/s. The ball has passed its highest point and is 18.4 m *below* the origin (y is negative). It is moving *downward* (v_y is negative) with a speed of 24.2 m/s. The ball gains speed as it descends; Eq. (2.13) tells us that it is moving at the initial 15.0-m/s speed as it moves downward past the ball's launching point, and continues to gain speed as it descends further.

(b) The *y*-velocity at any position *y* is given by Eq. (2.13) with *x*'s replaced by *y*'s:

$$v_y^2 = v_{0y}^2 + 2a_y(y - y_0) = v_{0y}^2 + 2(-g)(y - 0)$$

= (15.0 m/s)² + 2(-9.80 m/s²)y

When the ball is 5.00 m above the origin we have y = +5.00 m, so

$$v_y^2 = (15.0 \text{ m/s})^2 + 2(-9.80 \text{ m/s}^2)(5.00 \text{ m}) = 127 \text{ m}^2/\text{s}^2$$

 $v_y = \pm 11.3 \text{ m/s}$

We get *two* values of v_y because the ball passes through the point y = +5.00 m twice, once on the way up (so v_y is positive) and once on the way down (so v_y is negative) (see Figs. 2.24 and 2.25a).

2.24 Position and velocity of a ball thrown vertically upward.

(c) At the instant at which the ball reaches its maximum height y_1 , its y-velocity is momentarily zero: $v_y = 0$. We use Eq. (2.13) to find y_1 . With $v_y = 0$, $y_0 = 0$, and $a_y = -g$, we get

$$0 = v_{0y}^{2} + 2(-g)(y_{1} - 0)$$

$$y_{1} = \frac{v_{0y}^{2}}{2g} = \frac{(15.0 \text{ m/s})^{2}}{2(9.80 \text{ m/s}^{2})} = +11.5 \text{ m}$$

(d) **CAUTION** A free-fall misconception It's a common misconception that at the highest point of free-fall motion, where the velocity is zero, the acceleration is also zero. If this were so, once the ball reached the highest point it would hang there suspended in midair! Remember that acceleration is the rate of change of velocity, and the ball's velocity is continuously changing. At every point, including the highest point, and at any velocity, including zero, the acceleration in free fall is always $a_y = -g =$ -9.80 m/s^2 .

EVALUATE: A useful way to check any free-fall problem is to draw the *y*-*t* and v_y -*t* graphs as we did in Fig. 2.25. Note that these are graphs of Eqs. (2.12) and (2.8), respectively. Given the numerical values of the initial position, initial velocity, and acceleration, you can easily create these graphs using a graphing calculator or an online mathematics program.

Example 2.8 Two solutions or one?

At what time after being released has the ball in Example 2.7 fallen 5.00 m below the roof railing?

SOLUTION

IDENTIFY and SET UP: We treat this as in Example 2.7, so y_0 , v_{0y} , and $a_y = -g$ have the same values as there. In this example, however, the target variable is the time at which the ball is at y = -5.00 m.

The best equation to use is Eq.
$$(2.12)$$
, which gives the position y as a function of time *t*:

$$y = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 = y_0 + v_{0y}t + \frac{1}{2}(-g)t^2$$

This is a *quadratic* equation for t, which we want to solve for the value of t when y = -5.00 m.

EXECUTE: We rearrange the equation so that is has the standard form of a quadratic equation for an unknown x, $Ax^2 + Bx + C = 0$:

$$(\frac{1}{2}g)t^{2} + (-v_{0y})t + (y - y_{0}) = At^{2} + Bt + C = 0$$

By comparison, we identify $A = \frac{1}{2}g$, $B = -v_{0y}$, and $C = y - y_0$. The quadratic formula (see Appendix B) tells us that this equation has *two* solutions:

$$t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

= $\frac{-(-v_{0y}) \pm \sqrt{(-v_{0y})^2 - 4(\frac{1}{2}g)(y - y_0))}}{2(\frac{1}{2}g)}$
= $\frac{v_{0y} \pm \sqrt{v_{0y}^2 - 2g(y - y_0)}}{g}$

Substituting the values $y_0 = 0$, $v_{0y} = +15.0$ m/s, g = 9.80 m/s², and y = -5.00 m, we find

$$t = \frac{(15.0 \text{ m/s}) \pm \sqrt{(15.0 \text{ m/s})^2 - 2(9.80 \text{ m/s}^2)(-5.00 \text{ m} - 0)}}{9.80 \text{ m/s}^2}$$

You can confirm that the numerical answers are t = +3.36 s and t = -0.30 s. The answer t = -0.30 s doesn't make physical

Test Your Understanding of Section 2.5 If you toss a ball upward with a certain initial speed, it falls freely and reaches a maximum height *h* a time *t* after it leaves your hand. (a) If you throw the ball upward with double the initial speed, what new maximum height does the ball reach? (i) $h\sqrt{2}$; (ii) 2h; (iii) 4h; (iv) 8h; (v) 16*h*. (b) If you throw the ball upward with double the initial speed, how long does it take to reach its new maximum height? (i) t/2; (ii) $t/\sqrt{2}$; (iii) t; (iv) $t\sqrt{2}$; (v) 2*t*.

2.6 Velocity and Position by Integration

This section is intended for students who have already learned a little integral calculus. In Section 2.4 we analyzed the special case of straight-line motion with constant acceleration. When a_x is not constant, as is frequently the case, the equations that we derived in that section are no longer valid (Fig. 2.26). But even when a_x varies with time, we can still use the relationship $v_x = dx/dt$ to find the *x*-velocity v_x as a function of time if the position *x* is a known function of time. And we can still use $a_x = dv_x/dt$ to find the *x*-acceleration a_x as a function of time if the *x*-velocity v_x is a known function of time.

In many situations, however, position and velocity are not known functions of time, while acceleration is (Fig. 2.27). How can we find the position and velocity in straight-line motion from the acceleration function $a_x(t)$?

We first consider a graphical approach. Figure 2.28 is a graph of x-acceleration versus time for a body whose acceleration is not constant. We can divide the time interval between times t_1 and t_2 into many smaller intervals, calling a typical one Δt . Let the average x-acceleration during Δt be a_{av-x} . From Eq. (2.4) the change in x-velocity Δv_x during Δt is

$$\Delta v_x = a_{\text{av-}x} \Delta u$$

Graphically, Δv_x equals the area of the shaded strip with height a_{av-x} and width Δt —that is, the area under the curve between the left and right sides of Δt . The total change in x-velocity during any interval (say, t_1 to t_2) is the sum of the x-velocity changes Δv_x in the small subintervals. So the total x-velocity change is represented graphically by the *total* area under the a_x -t curve between the vertical

sense, since it refers to a time *before* the ball left your hand at t = 0. So the correct answer is t = +3.36 s.

EVALUATE: Why did we get a second, fictitious solution? The explanation is that constant-acceleration equations like Eq. (2.12) are based on the assumption that the acceleration is constant for *all* values of time, whether positive, negative, or zero. Hence the solution t = -0.30 s refers to an imaginary moment when a freely falling ball was 5.00 m below the roof railing and rising to meet your hand. Since the ball didn't leave your hand and go into free fall until t = 0, this result is pure fiction.

You should repeat these calculations to find the times when the ball is 5.00 m *above* the origin (y = +5.00 m). The two answers are t = +0.38 s and t = +2.68 s. These are both positive values of *t*, and both refer to the real motion of the ball after leaving your hand. At the earlier time the ball passes through y = +5.00 m moving upward; at the later time it passes through this point moving downward. [Compare this with part (b) of Example 2.7, and again refer to Fig. 2.25a.]

You should also solve for the times when y = +15.0 m. In this case, both solutions involve the square root of a negative number, so there are *no* real solutions. Again Fig. 2.25a shows why; we found in part (c) of Example 2.7 that the ball's maximum height is y = +11.5 m, so it *never* reaches y = +15.0 m. While a quadratic equation such as Eq. (2.12) always has two solutions, in some situations one or both of the solutions will not be physically reasonable.

2.26 When you push your car's accelerator pedal to the floorboard, the resulting acceleration is *not* constant: The greater the car's speed, the more slowly it gains additional speed. A typical car takes twice as long to accelerate from 50 km/h to 100 km/h as it does to accelerate from 0 to 50 km/h.

2.27 The inertial navigation system (INS) on board a long-range airliner keeps track of the airliner's acceleration. The pilots input the airliner's initial position and velocity before takeoff, and the INS uses the acceleration data to calculate the airliner's position and velocity throughout the flight.

2.28 An a_x -t graph for a body whose *x*-acceleration is not constant.

lines t_1 and t_2 . (In Section 2.4 we showed this for the special case in which the acceleration is constant.)

In the limit that all the Δt 's become very small and their number very large, the value of a_{av-x} for the interval from any time t to $t + \Delta t$ approaches the instantaneous x-acceleration a_x at time t. In this limit, the area under the a_x -t curve is the *integral* of a_x (which is in general a function of t) from t_1 to t_2 . If v_{1x} is the x-velocity of the body at time t_1 and v_{2x} is the velocity at time t_2 , then

$$v_{2x} - v_{1x} = \int_{v_{1x}}^{v_{2x}} dv_x = \int_{t_1}^{t_2} a_x \, dt$$
 (2.15)

The change in the x-velocity v_x is the time integral of the x-acceleration a_x .

We can carry out exactly the same procedure with the curve of x-velocity versus time. If x_1 is a body's position at time t_1 and x_2 is its position at time t_2 , from Eq. (2.2) the displacement Δx during a small time interval Δt is equal to $v_{av-x} \Delta t$, where v_{av-x} is the average x-velocity during Δt . The total displacement $x_2 - x_1$ during the interval $t_2 - t_1$ is given by

$$x_2 - x_1 = \int_{x_1}^{x_2} dx = \int_{t_1}^{t_2} v_x dt$$
 (2.16)

The change in position *x*—that is, the displacement—is the time integral of *x*-velocity v_x . Graphically, the displacement between times t_1 and t_2 is the area under the v_x -*t* curve between those two times. [This is the same result that we obtained in Section 2.4 for the special case in which v_x is given by Eq. (2.8).]

If $t_1 = 0$ and t_2 is any later time *t*, and if x_0 and v_{0x} are the position and velocity, respectively, at time t = 0, then we can rewrite Eqs. (2.15) and (2.16) as follows:

$$v_x = v_{0x} + \int_0^t a_x \, dt \tag{2.17}$$

$$x = x_0 + \int_0^t v_x \, dt \tag{2.18}$$

Here *x* and v_x are the position and *x*-velocity at time *t*. If we know the *x*-acceleration a_x as a function of time and we know the initial velocity v_{0x} , we can use Eq. (2.17) to find the *x*-velocity v_x at any time; in other words, we can find v_x as a function of time. Once we know this function, and given the initial position x_0 , we can use Eq. (2.18) to find the position *x* at any time.

Example 2.9 Motion with changing acceleration

Sally is driving along a straight highway in her 1965 Mustang. At t = 0, when she is moving at 10 m/s in the positive x-direction, she passes a signpost at x = 50 m. Her x-acceleration as a function of time is

$$a_x = 2.0 \text{ m/s}^2 - (0.10 \text{ m/s}^3)t$$

(a) Find her *x*-velocity v_x and position *x* as functions of time. (b) When is her *x*-velocity greatest? (c) What is that maximum *x*-velocity? (d) Where is the car when it reaches that maximum *x*-velocity?

SOLUTION

IDENTIFY and SET UP: The *x*-acceleration is a function of time, so we *cannot* use the constant-acceleration formulas of Section 2.4. Instead, we use Eq. (2.17) to obtain an expression for v_x as a function of time, and then use that result in Eq. (2.18) to find an expression for *x* as a function of *t*. We'll then be able to answer a variety of questions about the motion.

EXECUTE: (a) At t = 0, Sally's position is $x_0 = 50$ m and her *x*-velocity is $v_{0x} = 10$ m/s. To use Eq. (2.17), we note that the integral of t^n (except for n = -1) is $\int t^n dt = \frac{1}{n+1}t^{n+1}$. Hence we find

$$v_x = 10 \text{ m/s} + \int_0^t [2.0 \text{ m/s}^2 - (0.10 \text{ m/s}^3)t] dt$$
$$= 10 \text{ m/s} + (2.0 \text{ m/s}^2)t - \frac{1}{2}(0.10 \text{ m/s}^3)t^2$$

Now we use Eq. (2.18) to find x as a function of t:

$$x = 50 \text{ m} + \int_0^t [10 \text{ m/s} + (2.0 \text{ m/s}^2)t - \frac{1}{2}(0.10 \text{ m/s}^3)t^2] dt$$

= 50 m + (10 m/s)t + $\frac{1}{2}(2.0 \text{ m/s}^2)t^2 - \frac{1}{6}(0.10 \text{ m/s}^3)t^3$

Figure 2.29 shows graphs of a_x , v_x , and x as functions of time as given by the equations above. Note that for any time t, the slope of the v_x -t graph equals the value of a_x and the slope of the x-t graph equals the value of v_x .

(b) The maximum value of v_x occurs when the x-velocity stops increasing and begins to decrease. At that instant, $dv_x/dt = a_x = 0$. So we set the expression for a_x equal to zero and solve for t:

$$0 = 2.0 \text{ m/s}^2 - (0.10 \text{ m/s}^3)t$$
$$t = \frac{2.0 \text{ m/s}^2}{0.10 \text{ m/s}^3} = 20 \text{ s}$$

(c) We find the maximum *x*-velocity by substituting t = 20 s, the time from part (b) when velocity is maximum, into the equation for v_x from part (a):

$$v_{\text{max-x}} = 10 \text{ m/s} + (2.0 \text{ m/s}^2)(20 \text{ s}) - \frac{1}{2}(0.10 \text{ m/s}^3)(20 \text{ s})^2$$

= 30 m/s

(d) To find the car's position at the time that we found in part (b), we substitute t = 20 s into the expression for *x* from part (a):

$$x = 50 \text{ m} + (10 \text{ m/s})(20 \text{ s}) + \frac{1}{2}(2.0 \text{ m/s}^2)(20 \text{ s})^2$$
$$- \frac{1}{6}(0.10 \text{ m/s}^3)(20 \text{ s})^3$$
$$= 517 \text{ m}$$

EVALUATE: Figure 2.29 helps us interpret our results. The top graph shows that a_x is positive between t = 0 and t = 20 s and negative after that. It is zero at t = 20 s, the time at which v_x is maximum (the high point in the middle graph). The car speeds up until t = 20 s (because v_x and a_x have the same sign) and slows down after t = 20 s (because v_x and a_x have opposite signs).

Since v_x is maximum at t = 20 s, the *x*-*t* graph (the bottom graph in Fig. 2.29) has its maximum positive slope at this time. Note that the *x*-*t* graph is concave up (curved upward) from t = 0 to t = 20 s, when a_x is positive. The graph is concave down (curved downward) after t = 20 s, when a_x is negative.

2.29 The position, velocity, and acceleration of the car in Example 2.9 as functions of time. Can you show that if this motion continues, the car will stop at t = 44.5 s?

Test Your Understanding of Section 2.6 If the *x*-acceleration a_x is increasing with time, will the v_x -*t* graph be (i) a straight line, (ii) concave up (i.e., with an upward curvature), or (iii) concave down (i.e., with a downward curvature)?

Straight-line motion, average and instantaneous

x-velocity: When a particle moves along a straight line, we describe its position with respect to an origin O by means of a coordinate such as x. The particle's average x-velocity v_{av-x} during a time interval $\Delta t = t_2 - t_1$ is equal to its displacement $\Delta x = x_2 - x_1$ divided by Δt . The instantaneous x-velocity v_x at any time t is equal to the average x-velocity for the time interval from t to $t + \Delta t$ in the limit that Δt goes to zero. Equivalently, v_x is the derivative of the position function with respect to time. (See Example 2.1.)

Average and instantaneous x-acceleration: The average x-acceleration a_{av-x} during a time interval Δt is equal to the change in velocity $\Delta v_x = v_{2x} - v_{1x}$ during that time interval divided by Δt . The instantaneous x-acceleration a_x is the limit of a_{av-x} as Δt goes to zero, or the derivative of v_x with respect to t. (See Examples 2.2 and 2.3.)

Straight-line motion with constant acceleration: When the x-acceleration is constant, four equations relate the position x and the x-velocity v_x at any time t to the initial position x_0 , the initial x-velocity v_{0x} (both measured at time t = 0), and the x-acceleration a_x . (See Examples 2.4 and 2.5.)

Freely falling bodies: Free fall is a case of motion with constant acceleration. The magnitude of the acceleration due to gravity is a positive quantity, g. The acceleration of a body in free fall is always downward. (See Examples 2.6-2.8.)

Straight-line motion with varying acceleration: When the acceleration is not constant but is a known function of time, we can find the velocity and position as functions of time by integrating the acceleration function. (See Example 2.9.)

$$v_{\text{av-}x} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

(2.2)

(2.3)

(2.4)

(2.5)

(2.8)

Constant *x*-acceleration only:

$$v_{x} = v_{0x} + a_{x}t$$
(2.8)

$$x = x_{0} + v_{0x}t + \frac{1}{2}a_{x}t^{2}$$
(2.12)

$$v_{x}^{2} = v_{0x}^{2} + 2a_{x}(x - x_{0})$$
(2.13)

$$x - x_{0} = \left(\frac{v_{0x} + v_{x}}{2}\right)t$$
(2.14)

 $v_x = v_{0x} + \int_0^t a_x dt$ $x = x_0 + \int_0^t v_x dt$

BRIDGING PROBLEM The Fall of a Superhero

The superhero Green Lantern steps from the top of a tall building. He falls freely from rest to the ground, falling half the total distance to the ground during the last 1.00 s of his fall. What is the height *h* of the building?

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution. (MP

IDENTIFY and **SET UP**

- 1. You're told that Green Lantern falls freely from rest. What does this imply about his acceleration? About his initial velocity?
- 2. Choose the direction of the positive *y*-axis. It's easiest to make the same choice we used for freely falling objects in Section 2.5.
- 3. You can divide Green Lantern's fall into two parts: from the top of the building to the halfway point and from the halfway point to the ground. You know that the second part of the fall lasts 1.00 s. Decide what you would need to know about Green

Lantern's motion at the halfway point in order to solve for the target variable h. Then choose two equations, one for the first part of the fall and one for the second part, that you'll use together to find an expression for h. (There are several pairs of equations that you could choose.)

EXECUTE

4. Use your two equations to solve for the height *h*. Note that heights are always positive numbers, so your answer should be positive.

EVALUATE

5. To check your answer for *h*, use one of the free-fall equations to find how long it takes Green Lantern to fall (i) from the top of the building to half the height and (ii) from the top of the building to the ground. If your answer for *h* is correct, time (ii) should be 1.00 s greater than time (i). If it isn't, you'll need to go back and look for errors in how you found *h*.

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q2.1 Does the speedometer of a car measure speed or velocity? Explain.

Q2.2 The top diagram in Fig. Q2.2 represents a series of high-speed photographs of an insect flying in a straight line from left to right (in the positive *x*-direction). Which of the graphs in Fig. Q2.2 most plausibly depicts this insect's motion?

Figure **Q2.2**

Q2.3 Can an object with constant acceleration reverse its direction of travel? Can it reverse its direction *twice*? In each case, explain your reasoning.

Q2.4 Under what conditions is average velocity equal to instantaneous velocity?

Q2.5 Is it possible for an object (a) to be slowing down while its acceleration is increasing in magnitude; (b) to be speeding up while its acceleration is decreasing? In each case, explain your reasoning.

Q2.6 Under what conditions does the magnitude of the average velocity equal the average speed?

Q2.7 When a Dodge Viper is at Elwood's Car Wash, a BMW Z3 is at Elm and Main. Later, when the Dodge reaches Elm and Main,

the BMW reaches Elwood's Car Wash. How are the cars' average velocities between these two times related?

Q2.8 A driver in Massachusetts was sent to traffic court for speeding. The evidence against the driver was that a policewoman observed the driver's car alongside a second car at a certain moment, and the policewoman had already clocked the second car as going faster than the speed limit. The driver argued, "The second car was passing me. I was not speeding." The judge ruled against the driver because, in

the judge's words, "If two cars were side by side, you were both speeding." If you were a lawyer representing the accused driver, how would you argue this case?

Q2.9 Can you have a zero displacement and a nonzero average velocity? A nonzero velocity? Illustrate your answers on an *x*-*t* graph. **Q2.10** Can you have zero acceleration and nonzero velocity? Explain using a v_x -*t* graph.

Q2.11 Can you have zero velocity and nonzero average acceleration? Zero velocity and nonzero acceleration? Explain using a v_x -t graph, and give an example of such motion.

Q2.12 An automobile is traveling west. Can it have a velocity toward the west and at the same time have an acceleration toward the east? Under what circumstances?

Q2.13 The official's truck in Fig. 2.2 is at $x_1 = 277$ m at $t_1 = 16.0$ s and is at $x_2 = 19$ m at $t_2 = 25.0$ s. (a) Sketch *two* different possible *x*-*t* graphs for the motion of the truck. (b) Does the average velocity v_{av-x} during the time interval from t_1 to t_2 have the same value for both of your graphs? Why or why not?

Q2.14 Under constant acceleration the average velocity of a particle is half the sum of its initial and final velocities. Is this still true if the acceleration is *not* constant? Explain.

Q2.15 You throw a baseball straight up in the air so that it rises to a maximum height much greater than your height. Is the magnitude of the acceleration greater while it is being thrown or after it leaves your hand? Explain.

Q2.16 Prove these statements: (a) As long as you can neglect the effects of the air, if you throw anything vertically upward, it will have the same speed when it returns to the release point as when it was released. (b) The time of flight will be twice the time it takes to get to its highest point.

Q2.17 A dripping water faucet steadily releases drops 1.0 s apart. As these drops fall, will the distance between them increase, decrease, or remain the same? Prove your answer.

Q2.18 If the initial position and initial velocity of a vehicle are known and a record is kept of the acceleration at each instant, can you compute the vehicle's position after a certain time from these data? If so, explain how this might be done.

Q2.19 From the top of a tall building you throw one ball straight up with speed v_0 and one ball straight down with speed v_0 . (a) Which ball has the greater speed when it reaches the ground? (b) Which ball gets to the ground first? (c) Which ball has a greater displacement when it reaches the ground? (d) Which ball has traveled the greater distance when it hits the ground?

Q2.20 A ball is dropped from rest from the top of a building of height *h*. At the same instant, a second ball is projected vertically upward from ground level, such that it has zero speed when it reaches the top of the building. When the two balls pass each other, which ball has the greater speed, or do they have the same speed? Explain. Where will the two balls be when they are alongside each other: at height h/2 above the ground, below this height, or above this height? Explain.

Q2.21 An object is thrown straight up into the air and feels no air resistance. How is it possible for the object to have an acceleration when it has stopped moving at its highest point?

Q2.22 When you drop an object from a certain height, it takes time T to reach the ground with no air resistance. If you dropped it from three times that height, how long (in terms of T) would it take to reach the ground?

EXERCISES

Section 2.1 Displacement, Time, and Average Velocity

2.1 • A car travels in the +*x*-direction on a straight and level road. For the first 4.00 s of its motion, the average velocity of the car is $v_{av-x} = 6.25$ m/s. How far does the car travel in 4.00 s?

2.2 •• In an experiment, a shearwater (a seabird) was taken from its nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin in the nest and extend the +x-axis to the release point, what was the bird's average velocity in m/s (a) for the return flight, and (b) for the whole episode, from leaving the nest to returning?

2.3 •• **Trip Home.** You normally drive on the freeway between San Diego and Los Angeles at an average speed of 105 km/h (65 mi/h), and the trip takes 2 h and 20 min. On a Friday afternoon, however, heavy traffic slows you down and you drive the same distance at an average speed of only 70 km/h (43 mi/h). How much longer does the trip take?

2.4 •• From Pillar to Post. Starting from a pillar, you run 200 m east (the +x-direction) at an average speed of 5.0 m/s, and then run 280 m west at an average speed of 4.0 m/s to a post. Calculate (a) your average speed from pillar to post and (b) your average velocity from pillar to post.

2.5 • Starting from the front door of your ranch house, you walk 60.0 m due east to your windmill, and then you turn around and slowly walk 40.0 m west to a bench where you sit and watch the sunrise. It takes you 28.0 s to walk from your house to the windmill and then 36.0 s to walk from the windmill to the bench. For the entire trip from your front door to the bench, what are (a) your average velocity and (b) your average speed?

2.6 •• A Honda Civic travels in a straight line along a road. Its distance x from a stop sign is given as a function of time t by the equation $x(t) = \alpha t^2 - \beta t^3$, where $\alpha = 1.50 \text{ m/s}^2$ and $\beta = 0.0500 \text{ m/s}^3$. Calculate the average velocity of the car for each time interval: (a) t = 0 to t = 2.00 s; (b) t = 0 to t = 4.00 s; (c) t = 2.00 s to t = 4.00 s.

Section 2.2 Instantaneous Velocity

2.7 • **CALC** A car is stopped at a traffic light. It then travels along a straight road so that its distance from the light is given by $x(t) = bt^2 - ct^3$, where $b = 2.40 \text{ m/s}^2$ and $c = 0.120 \text{ m/s}^3$. (a) Calculate the average velocity of the car for the time interval t = 0 to t = 10.0 s. (b) Calculate the instantaneous velocity of the car at t = 0, t = 5.0 s, and t = 10.0 s. (c) How long after starting from rest is the car again at rest?

2.8 • **CALC** A bird is flying due east. Its distance from a tall building is given by $x(t) = 28.0 \text{ m} + (12.4 \text{ m/s})t - (0.0450 \text{ m/s}^3)t^3$. What is the instantaneous velocity of the bird when t = 8.00 s?

2.9 •• A ball moves in a straight line (the *x*-axis). The graph in Fig. E2.9 shows this ball's velocity as a function of time. (a) What are the ball's average speed and average velocity during the first 3.0 s? (b) Suppose that the ball moved in such a way that the graph segment after 2.0 s was -3.0 m/s instead of +3.0 m/s. Find the ball's average speed and average velocity in this case.

Figure **E2.9**

2.10 • A physics professor leaves her house and walks along the sidewalk toward campus. After 5 min it starts to rain and she returns home. Her distance from her house as a function of time is shown in Fig. E2.10. At which of the labeled points is her velocity (a) zero? (b) constant and positive? (c) constant and negative? (d) increasing in magnitude? (e) decreasing in magnitude?

Figure **E2.10**

2.11 •• A test car travels in a straight line along the *x*-axis. The graph in Fig. E2.11 shows the car's position x as a function of time. Find its instantaneous velocity at points A through G.

Section 2.3 Average and Instantaneous Acceleration

2.12 • Figure E2.12 shows the velocity of a solar-powered car as a function of time. The driver accelerates from a stop sign, cruises for 20 s at a constant speed of 60 km/h, and then brakes to come to a stop 40 s after leaving the stop sign. (a) Compute the average acceleration during the following time intervals: (i) t = 0 to t = 10 s; (ii) t = 30 s to t = 40 s; (iii) t = 10 s to t = 30 s; (iv) t = 0 to t = 40 s. (b) What is the instantaneous acceleration at t = 20 s and at t = 35 s?

2.13 • The Fastest (and Most Expensive) Car! The table shows test data for the Bugatti Veyron, the fastest car made. The car is moving in a straight line (the *x*-axis).

Time (s)	0	2.1	20.0	53
Speed (mi/h)	0	60	200	253

(a) Make a v_x -t graph of this car's velocity (in mi/h) as a function of time. Is its acceleration constant? (b) Calculate the car's average acceleration (in m/s²) between (i) 0 and 2.1 s; (ii) 2.1 s and 20.0 s; (iii) 20.0 s and 53 s. Are these results consistent with your graph in part (a)? (Before you decide to buy this car, it might be helpful to know that only 300 will be built, it runs out of gas in 12 minutes at top speed, and it costs \$1.25 million!)

2.14 •• CALC A race car starts from rest and travels east along a straight and level track. For the first 5.0 s of the car's motion, the eastward component of the car's velocity is given by $v_x(t) = (0.860 \text{ m/s}^3)t^2$. What is the acceleration of the car when $v_x = 16.0 \text{ m/s}$?

2.15 • **CALC** A turtle crawls along a straight line, which we will call the *x*-axis with the positive direction to the right. The equation for the turtle's position as a function of time is $x(t) = 50.0 \text{ cm} + (2.00 \text{ cm/s})t - (0.0625 \text{ cm/s}^2)t^2$. (a) Find the turtle's initial velocity, initial position, and initial acceleration. (b) At what time *t*

is the velocity of the turtle zero? (c) How long after starting does it take the turtle to return to its starting point? (d) At what times t is the turtle a distance of 10.0 cm from its starting point? What is the velocity (magnitude and direction) of the turtle at each of these times? (e) Sketch graphs of x versus t, v_x versus t, and a_x versus t, for the time interval t = 0 to t = 40 s.

2.16 • An astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity changes, each taking place in a 10-s interval. What are the magnitude, the algebraic sign, and the direction of the average acceleration in each interval? Assume that the positive direction is to the right. (a) At the beginning of the interval the astronaut is moving toward the right along the *x*-axis at 15.0 m/s, and at the end of the interval she is moving toward the left at 5.0 m/s, and at the end she is moving toward the left at 15.0 m/s. (c) At the beginning she is moving toward the left at 15.0 m/s, and at the end she is moving toward the right at 15.0 m/s, and at the end she is moving toward the left at 15.0 m/s, and at the end she is moving toward the left at 15.0 m/s, and at the end she is moving toward the right at 15.0 m/s, and at the end she is moving toward the right at 15.0 m/s, and at the end she is moving toward the right at 15.0 m/s, and at the end she is moving toward the right at 15.0 m/s, and at the end she is moving toward the right at 15.0 m/s, and at the end she is moving toward the right at 15.0 m/s.

2.17 • **CALC** A car's velocity as a function of time is given by $v_x(t) = \alpha + \beta t^2$, where $\alpha = 3.00$ m/s and $\beta = 0.100$ m/s³. (a) Calculate the average acceleration for the time interval t = 0 to t = 5.00 s. (b) Calculate the instantaneous acceleration for t = 0 and t = 5.00 s. (c) Draw v_x -t and a_x -t graphs for the car's motion between t = 0 and t = 5.00 s.

2.18 •• CALC The position of the front bumper of a test car under microprocessor control is given by $x(t) = 2.17 \text{ m} + (4.80 \text{ m/s}^2)t^2 - (0.100 \text{ m/s}^6)t^6$. (a) Find its position and acceleration at the instants when the car has zero velocity. (b) Draw *x*-*t*, v_x -*t*, and a_x -*t* graphs for the motion of the bumper between t = 0 and t = 2.00 s.

Section 2.4 Motion with Constant Acceleration

2.19 •• An antelope moving with constant acceleration covers the distance between two points 70.0 m apart in 7.00 s. Its speed as it passes the second point is 15.0 m/s. (a) What is its speed at the first point? (b) What is its acceleration?

2.20 •• **BIO Blackout?** A jet fighter pilot wishes to accelerate from rest at a constant acceleration of 5g to reach Mach 3 (three times the speed of sound) as quickly as possible. Experimental tests reveal that he will black out if this acceleration lasts for more than 5.0 s. Use 331 m/s for the speed of sound. (a) Will the period of acceleration last long enough to cause him to black out? (b) What is the greatest speed he can reach with an acceleration of 5g before blacking out?

2.21 • A Fast Pitch. The fastest measured pitched baseball left the pitcher's hand at a speed of 45.0 m/s. If the pitcher was in contact with the ball over a distance of 1.50 m and produced constant acceleration, (a) what acceleration did he give the ball, and (b) how much time did it take him to pitch it?

2.22 •• A Tennis Serve. In the fastest measured tennis serve, the ball left the racquet at 73.14 m/s. A served tennis ball is typically in contact with the racquet for 30.0 ms and starts from rest. Assume constant acceleration. (a) What was the ball's acceleration during this serve? (b) How far did the ball travel during the serve?

2.23 •• **BIO** Automobile Airbags. The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the acceleration is less than 250 m/s². If you are in an automobile accident with an initial speed of 105 km/h (65 mi/h) and you are stopped by an airbag that inflates from the dashboard, over what distance must the airbag stop you for you to survive the crash? **2.24** • **BIO** If a pilot accelerates at more than 4g, he begins to "gray out" but doesn't completely lose consciousness. (a) Assuming constant acceleration, what is the shortest time that a jet pilot starting from rest can take to reach Mach 4 (four times the speed of sound) without graying out? (b) How far would the plane travel during this period of acceleration? (Use 331 m/s for the speed of sound in cold air.)

2.25 • **BIO Air-Bag Injuries.** During an auto accident, the vehicle's air bags deploy and slow down the passengers more gently than if they had hit the windshield or steering wheel. According to safety standards, the bags produce a maximum acceleration of 60g that lasts for only 36 ms (or less). How far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g?

2.26 • **BIO Prevention of Hip Fractures.** Falls resulting in hip fractures are a major cause of injury and even death to the elderly. Typically, the hip's speed at impact is about 2.0 m/s. If this can be reduced to 1.3 m/s or less, the hip will usually not fracture. One way to do this is by wearing elastic hip pads. (a) If a typical pad is 5.0 cm thick and compresses by 2.0 cm during the impact of a fall, what constant acceleration (in m/s^2 and in g's) does the hip undergo to reduce its speed from 2.0 m/s to 1.3 m/s? (b) The acceleration you found in part (a) may seem rather large, but to fully assess its effects on the hip, calculate how long it lasts.

2.27 • BIO Are We Martians? It has been suggested, and not facetiously, that life might have originated on Mars and been carried to the earth when a meteor hit Mars and blasted pieces of rock (perhaps containing primitive life) free of the surface. Astronomers know that many Martian rocks have come to the earth this way. (For information on one of these, search the Internet for "ALH 84001.") One objection to this idea is that microbes would have to undergo an enormous lethal acceleration during the impact. Let us investigate how large such an acceleration might be. To escape Mars, rock fragments would have to reach its escape velocity of 5.0 km/s, and this would most likely happen over a distance of about 4.0 m during the meteor impact. (a) What would be the acceleration (in m/s^2 and g's) of such a rock fragment, if the acceleration is constant? (b) How long would this acceleration last? (c) In tests, scientists have found that over 40% of Bacillius subtilis bacteria survived after an acceleration of 450,000g. In light of your answer to part (a), can we rule out the hypothesis that life might have been blasted from Mars to the earth?

2.28 • Entering the Freeway. A car sits in an entrance ramp to a freeway, waiting for a break in the traffic. The driver accelerates with constant acceleration along the ramp and onto the freeway. The car starts from rest, moves in a straight line, and has a speed of 20 m/s (45 mi/h) when it reaches the end of the 120-m-long ramp. (a) What is the acceleration of the car? (b) How much time does it take the car to travel the length of the ramp? (c) The traffic on the freeway is moving at a constant speed of 20 m/s. What distance does the traffic travel while the car is moving the length of the ramp?

2.29 •• Launch of the Space Shuttle. At launch the space shuttle weighs 4.5 million pounds. When it is launched from rest, it takes 8.00 s to reach 161 km/h, and at the end of the first 1.00 min its speed is 1610 km/h. (a) What is the average acceleration (in m/s^2) of the shuttle (i) during the first 8.00 s, and (ii) between 8.00 s and the end of the first 1.00 min? (b) Assuming the acceleration is constant during each time interval (but not necessarily the same in both intervals), what distance does the shuttle travel (i) during the first 8.00 s to 1.00 min?

2.30 •• A cat walks in a straight line, which we shall call the *x*-axis with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. E2.30). (a) Find the cat's velocity at t = 4.0 s and at t = 7.0 s. (b) What is the cat's acceleration at t = 3.0 s? At t = 6.0 s? At t = 7.0 s? (c) What distance does the cat move during the first 4.5 s? From t = 0 to t = 7.5 s? (d) Sketch clear graphs of the cat's acceleration and position as functions of time, assuming that the cat started at the origin.

2.31 •• The graph in Fig. E2.31 shows the velocity of a motorcycle police officer plotted as a function of time. (a) Find the instantaneous acceleration at t = 3 s, at t = 7 s, and at t = 11 s. (b) How far does the officer go in the first 5 s? The first 9 s? The first 13 s?

Figure E2.31

2.32 • Two cars, *A* and *B*, move along the *x*-axis. Figure E2.32 is a graph of the positions of *A* and *B* versus time. (a) In motion diagrams (like Figs. 2.13b and 2.14b), show the position, velocity, and acceleration of each of the two cars at t = 0, t = 1 s, and t = 3 s. (b) At what time(s), if any, do *A* and *B* have the same position? (c) Graph velocity ver-

Figure **E2.32**

sus time for both *A* and *B*. (d) At what time(s), if any, do *A* and *B* have the same velocity? (e) At what time(s), if any, does car *A* pass car *B*? (f) At what time(s), if any, does car *B* pass car *A*?

2.33 •• Mars Landing. In January 2004, NASA landed exploration vehicles on Mars. Part of the descent consisted of the following stages:

Stage A: Friction with the atmosphere reduced the speed from 19,300 km/h to 1600 km/h in 4.0 min.

Stage B: A parachute then opened to slow it down to 321 km/h in 94 s.

Stage C: Retro rockets then fired to reduce its speed to zero over a distance of 75 m.

Assume that each stage followed immediately after the preceding one and that the acceleration during each stage was constant. (a) Find the rocket's acceleration (in m/s^2) during each stage. (b) What total distance (in km) did the rocket travel during stages A, B, and C?

2.34 • At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant acceleration of 3.20 m/s². At the same instant a truck, traveling with a constant speed of 20.0 m/s, overtakes and passes the car. (a) How far beyond its starting point does the car overtake the truck? (b) How fast is the car traveling when it overtakes the truck? (c) Sketch an *x*-*t* graph of the motion of both vehicles. Take x = 0 at the intersection. (d) Sketch a v_x -*t* graph of the motion of both vehicles.

Section 2.5 Freely Falling Bodies

2.35 •• (a) If a flea can jump straight up to a height of 0.440 m, what is its initial speed as it leaves the ground? (b) How long is it in the air?

2.36 •• A small rock is thrown vertically upward with a speed of 18.0 m/s from the edge of the roof of a 30.0-m-tall building. The rock doesn't hit the building on its way back down and lands in the street below. Air resistance can be neglected. (a) What is the speed of the rock just before it hits the street? (b) How much time elapses from when the rock is thrown until it hits the street?

2.37 • A juggler throws a bowling pin straight up with an initial speed of 8.20 m/s. How much time elapses until the bowling pin returns to the juggler's hand?

2.38 •• You throw a glob of putty straight up toward the ceiling, which is 3.60 m above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.50 m/s. (a) What is the speed of the putty just before it strikes the ceiling? (b) How much time from when it leaves your hand does it take the putty to reach the ceiling?

2.39 •• A tennis ball on Mars, where the acceleration due to gravity is 0.379g and air resistance is negligible, is hit directly upward and returns to the same level 8.5 s later. (a) How high above its original point did the ball go? (b) How fast was it moving just after being hit? (c) Sketch graphs of the ball's vertical position, vertical

velocity, and vertical acceleration as functions of time while it's in the Martian air.

2.40 •• Touchdown on the Moon. A lunar lander is making its descent to Moon Base I (Fig. E2.40). The lander descends slowly under the retro-thrust of its descent engine. The engine is cut off when the lander is 5.0 m above the surface and has a downward speed of 0.8 m/s. With the engine off,

the lander is in free fall. What is the speed of the lander just before it touches the surface? The acceleration due to gravity on the moon is 1.6 m/s^2 .

2.41 •• A Simple Reaction-Time Test. A meter stick is held vertically above your hand, with the lower end between your thumb and first finger. On seeing the meter stick released, you grab it with these two fingers. You can calculate your reaction time from the distance the meter stick falls, read directly from the point where your fingers grabbed it. (a) Derive a relationship for your reaction time in terms of this measured distance, *d*. (b) If the measured distance is 17.6 cm, what is the reaction time?

2.42 •• A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 2.50 s. You may ignore air resistance, so the brick is in free fall. (a) How tall, in meters, is the building? (b) What is the magnitude of the brick's velocity just before it reaches the ground? (c) Sketch a_y -t, v_y -t, and y-t graphs for the motion of the brick.

2.43 •• Launch Failure. A 7500-kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.25 m/s² and feels no appreciable air resistance. When it has reached a height of 525 m, its engines suddenly fail so that the only force acting on it is now gravity. (a) What is the maximum height this rocket will reach above the launch pad? (b) How much time after engine failure will elapse before the rocket comes crashing down to the launch pad, and how fast will it be moving just before it crashes? (c) Sketch a_y -t, v_y -t, and y-t graphs of the rocket's motion from the instant of blast-off to the instant just before it strikes the launch pad.

2.44 •• A hot-air balloonist, rising vertically with a constant velocity of magnitude 5.00 m/s, releases a sandbag at an instant when the balloon is 40.0 m above the ground (Fig. E2.44). After it is released, the sandbag is in free fall. (a) Compute the position and velocity of the sandbag at 0.250 s and 1.00 s after its release. (b) How many seconds after its release will the bag strike the ground? (c) With what magnitude of velocity does it strike the ground? (d) What is the greatest height above the ground that the sandbag reaches? (e) Sketch a_v -t, v_v -t, and y-t graphs for the motion.

2.45 • **BIO** The rocket-driven sled *Sonic Wind No. 2*, used for investigating the physiological effects of large accelerations, runs on a straight, level track 1070 m (3500 ft) long. Starting from rest, it can reach a speed of 224 m/s (500 mi/h) in 0.900 s. (a) Compute the acceleration in m/s^2 , assuming that it is constant. (b) What is the ratio of this acceleration to that of a freely falling body (g)? (c) What distance is covered in 0.900 s? (d) A magazine article states that at the end of a certain run, the speed of the sled decreased from 283 m/s (632 mi/h) to zero in 1.40 s and that during this time the magnitude of the acceleration was greater than 40g. Are these figures consistent?

2.46 • An egg is thrown nearly vertically upward from a point near the cornice of a tall building. It just misses the cornice on the way down and passes a point 30.0 m below its starting point 5.00 s after it leaves the thrower's hand. Air resistance may be ignored.

(a) What is the initial speed of the egg? (b) How high does it rise above its starting point? (c) What is the magnitude of its velocity at the highest point? (d) What are the magnitude and direction of its acceleration at the highest point? (e) Sketch a_y -t, v_y -t, and y-t graphs for the motion of the egg.

2.47 •• A 15-kg rock is dropped from rest on the earth and reaches the ground in 1.75 s. When it is dropped from the same height on Saturn's satellite Enceladus, it reaches the ground in 18.6 s. What is the acceleration due to gravity on Enceladus?

2.48 • A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Air resistance may be ignored. (a) At what time after being ejected is the boulder moving at 20.0 m/s upward? (b) At what time is it moving at 20.0 m/s downward? (c) When is the displacement of the boulder from its initial position zero? (d) When is the velocity of the boulder zero? (e) What are the magnitude and direction of the acceleration while the boulder is (i) moving upward? (ii) Moving downward? (iii) At the highest point? (f) Sketch a_v -t, v_v -t, and y-t graphs for the motion.

2.49 •• Two stones are thrown vertically upward from the ground, one with three times the initial speed of the other. (a) If the faster stone takes 10 s to return to the ground, how long will it take the slower stone to return? (b) If the slower stone reaches a maximum height of H, how high (in terms of H) will the faster stone go? Assume free fall.

Section 2.6 Velocity and Position by Integration

2.50 • **CALC** For constant a_x , use Eqs. (2.17) and (2.18) to find v_x and x as functions of time. Compare your results to Eqs. (2.8) and (2.12).

2.51 • **CALC** A rocket starts from rest and moves upward from the surface of the earth. For the first 10.0 s of its motion, the vertical acceleration of the rocket is given by $a_y = (2.80 \text{ m/s}^3)t$, where the +y-direction is upward. (a) What is the height of the rocket above the surface of the earth at t = 10.0 s? (b) What is the speed of the rocket when it is 325 m above the surface of the earth? **2.52** •• **CALC** The acceleration of a bus is given by $a_x(t) = \alpha t$, where $\alpha = 1.2 \text{ m/s}^3$. (a) If the bus's velocity at time t = 1.0 s is 5.0 m/s, what is its velocity at time t = 2.0 s? (b) If the bus's position at time t = 1.0 s is 6.0 m, what is its position at time t = 2.0 s? (c) Sketch a_x -t, v_x -t, and x-t graphs for the motion.

2.53 •• CALC The acceleration of a motorcycle is given by $a_x(t) = At - Bt^2$, where $A = 1.50 \text{ m/s}^3$ and $B = 0.120 \text{ m/s}^4$. The motorcycle is at rest at the origin at time t = 0. (a) Find its position and velocity as functions of time. (b) Calculate the maximum velocity it attains.

2.54 •• **BIO** Flying Leap of the Flea. High-speed motion pictures (3500 frames/second) of a jumping, 210- μ g flea yielded the data used to plot the graph given in Fig. E2.54. (See "The Flying Leap of the Flea" by M. Rothschild, Y. Schlein, K. Parker, C. Neville, and S. Sternberg in the November 1973 *Scientific*

Figure E2.54

American.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Use the graph to answer the questions. (a) Is the acceleration of the flea ever zero? If so, when? Justify your answer. (b) Find the maximum height the flea reached in the first 2.5 ms. (c) Find the flea's acceleration at 0.5 ms, 1.0 ms, and 1.5 ms. (d) Find the flea's height at 0.5 ms, 1.0 ms, and 1.5 ms.

PROBLEMS

2.55 • **BIO** A typical male sprinter can maintain his maximum acceleration for 2.0 s and his maximum speed is 10 m/s. After reaching this maximum speed, his acceleration becomes zero and then he runs at constant speed. Assume that his acceleration is constant during the first 2.0 s of the race, that he starts from rest, and that he runs in a straight line. (a) How far has the sprinter run when he reaches his maximum speed? (b) What is the magnitude of his average velocity for a race of the following lengths: (i) 50.0 m, (ii) 100.0 m, (iii) 200.0 m?

2.56 •• On a 20-mile bike ride, you ride the first 10 miles at an average speed of 8 mi/h. What must your average speed over the next 10 miles be to have your average speed for the total 20 miles be (a) 4 mi/h? (b) 12 mi/h? (c) Given this average speed for the first 10 miles, can you possibly attain an average speed of 16 mi/h for the total 20-mile ride? Explain.

2.57 •• CALC The position of a particle between t = 0 and t = 2.00 s is given by $x(t) = (3.00 \text{ m/s}^3)t^3 - (10.0 \text{ m/s}^2)t^2 +$ (9.00 m/s)t. (a) Draw the x-t, v_x -t, and a_x -t graphs of this particle. (b) At what time(s) between t = 0 and t = 2.00 s is the particle instantaneously at rest? Does your numerical result agree with the v_x -t graph in part (a)? (c) At each time calculated in part (b), is the acceleration of the particle positive or negative? Show that in each case the same answer is deduced from $a_x(t)$ and from the v_x -t graph. (d) At what time(s) between t = 0 and t = 2.00 s is the velocity of the particle instantaneously not changing? Locate this point on the v_x -t and a_x -t graphs of part (a). (e) What is the particle's greatest distance from the origin (x = 0) between t = 0 and t = 2.00 s? (f) At what time(s) between t = 0 and t = 2.00 s is the particle speeding up at the greatest rate? At what time(s) between t = 0 and t = 2.00 s is the particle *slowing down* at the greatest rate? Locate these points on the v_x -t and a_x -t graphs of part (a).

2.58 •• CALC A lunar lander is descending toward the moon's surface. Until the lander reaches the surface, its height above the surface of the moon is given by $y(t) = b - ct + dt^2$, where b = 800 m is the initial height of the lander above the surface, c = 60.0 m/s, and d = 1.05 m/s². (a) What is the initial velocity of the lander, at t = 0? (b) What is the velocity of the lander just before it reaches the lunar surface?

2.59 ... Earthquake Analysis. Earthquakes produce several types of shock waves. The most well known are the P-waves (P for *primary* or *pressure*) and the S-waves (S for *secondary* or *shear*). In the earth's crust, the P-waves travel at around 6.5 km/s, while the S-waves move at about 3.5 km/s. The actual speeds vary depending on the type of material they are going through. The time delay between the arrival of these two waves at a seismic recording station tells geologists how far away the earthquake occurred. If the time delay is 33 s, how far from the seismic station did the earthquake occur?

2.60 •• Relay Race. In a relay race, each contestant runs 25.0 m while carrying an egg balanced on a spoon, turns around, and comes back to the starting point. Edith runs the first 25.0 m in 20.0 s. On the return trip she is more confident and takes only 15.0 s. What is the magnitude of her average velocity for (a) the

first 25.0 m? (b) The return trip? (c) What is her average velocity for the entire round trip? (d) What is her average speed for the round trip?

2.61 ••• A rocket carrying a satellite is accelerating straight up from the earth's surface. At 1.15 s after liftoff, the rocket clears the top of its launch platform, 63 m above the ground. After an additional 4.75 s, it is 1.00 km above the ground. Calculate the magnitude of the average velocity of the rocket for (a) the 4.75-s part of its flight and (b) the first 5.90 s of its flight.

2.62 ••• The graph in Fig. P2.62 describes the acceleration as a function of time for a stone rolling down a hill starting from rest. (a) Find the stone's velocity at t = 2.5 s and at t = 7.5 s. (b) Sketch a graph of the stone's velocity as a function of time.

Figure **P2.62**

2.63 •• Dan gets on Interstate Highway I–80 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88 km/h. After traveling 76 km, he reaches the Aurora exit (Fig. P2.63). Realizing he has gone too far, he turns around and drives due east 34 km back to the York exit at an average velocity of magnitude 72 km/h. For his whole trip from Seward to the York exit, what are (a) his average speed and (b) the magnitude of his average velocity?

Figure **P2.63**

2.64 ••• A subway train starts from rest at a station and accelerates at a rate of 1.60 m/s^2 for 14.0 s. It runs at constant speed for 70.0 s and slows down at a rate of 3.50 m/s^2 until it stops at the next station. Find the *total* distance covered.

2.65 •• A world-class sprinter accelerates to his maximum speed in 4.0 s. He then maintains this speed for the remainder of a 100-m race, finishing with a total time of 9.1 s. (a) What is the runner's average acceleration during the first 4.0 s? (b) What is his average

acceleration during the last 5.1 s? (c) What is his average acceleration for the entire race? (d) Explain why your answer to part (c) is not the average of the answers to parts (a) and (b).

2.66 •• A sled starts from rest at the top of a hill and slides down with a constant acceleration. At some later time the sled is 14.4 m from the top, 2.00 s after that it is 25.6 m from the top, 2.00 s later 40.0 m from the top, and 2.00 s later it is 57.6 m from the top. (a) What is the magnitude of the average velocity of the sled during each of the 2.00-s intervals after passing the 14.4-m point? (b) What is the acceleration of the sled? (c) What is the speed of the sled when it passes the 14.4-m point? (d) How much time did it take to go from the top to the 14.4-m point? (e) How far did the sled go during the first second after passing the 14.4-m point?

2.67 • A gazelle is running in a straight line (the *x*-axis). The graph in Fig. P2.67 shows this animal's velocity as a function of time. During the first 12.0 s, find (a) the total distance moved and (b) the displacement of the gazelle. (c) Sketch an a_x -t graph showing this gazelle's acceleration as a function of time for the first 12.0 s.

Figure P2.67

2.68 • A rigid ball traveling in a straight line (the *x*-axis) hits a solid wall and suddenly rebounds during a brief instant. The v_x -t graph in Fig. P2.68 shows this ball's velocity as a function of time. During the first 20.0 s of its motion, find (a) the total distance the ball moves and (b) its displacement. (c) Sketch a graph of a_x -t for this ball's motion. (d) Is the graph shown really vertical at 5.00 s? Explain.

Figure **P2.68**

2.69 •••• A ball starts from rest and rolls down a hill with uniform acceleration, traveling 150 m during the second 5.0 s of its motion. How far did it roll during the first 5.0 s of motion?

2.70 •• Collision. The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on

Figure **P2.70**

the same track (Fig. P2.70). The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s² in a direction opposite to the train's velocity, while the freight train continues with constant speed. Take x = 0 at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the passenger train and the back of the freight train.

2.71 ••• Large cockroaches can run as fast as 1.50 m/s in short bursts. Suppose you turn on the light in a cheap motel and see one scurrying directly away from you at a constant 1.50 m/s. If you start 0.90 m behind the cockroach with an initial speed of 0.80 m/s toward it, what minimum constant acceleration would you need to catch up with it when it has traveled 1.20 m, just short of safety under a counter?

2.72 •• Two cars start 200 m apart and drive toward each other at a steady 10 m/s. On the front of one of them, an energetic grasshopper jumps back and forth between the cars (he has strong legs!) with a constant horizontal velocity of 15 m/s relative to the ground. The insect jumps the instant he lands, so he spends no time resting on either car. What total distance does the grasshopper travel before the cars hit?

2.73 • An automobile and a truck start from rest at the same instant, with the automobile initially at some distance behind the truck. The truck has a constant acceleration of 2.10 m/s², and the automobile an acceleration of 3.40 m/s². The automobile overtakes the truck after the truck has moved 40.0 m. (a) How much time does it take the automobile to overtake the truck? (b) How far was the automobile behind the truck initially? (c) What is the speed of each when they are abreast? (d) On a single graph, sketch the position of each vehicle as a function of time. Take x = 0 at the initial location of the truck.

2.74 ••• Two stunt drivers drive directly toward each other. At time t = 0 the two cars are a distance *D* apart, car 1 is at rest, and car 2 is moving to the left with speed v_0 . Car 1 begins to move at t = 0, speeding up with a constant acceleration a_x . Car 2 continues to move with a constant velocity. (a) At what time do the two cars collide? (b) Find the speed of car 1 just before it collides with car 2. (c) Sketch *x*-*t* and v_x -*t* graphs for car 1 and car 2. For each of the two graphs, draw the curves for both cars on the same set of axes.

2.75 •• A marble is released from one rim of a hemispherical bowl of diameter 50.0 cm and rolls down and up to the opposite rim in 10.0 s. Find (a) the average speed and (b) the average velocity of the marble.

2.76 •• CALC An object's velocity is measured to be $v_x(t) = \alpha - \beta t^2$, where $\alpha = 4.00$ m/s and $\beta = 2.00$ m/s³. At t = 0 the object is at x = 0. (a) Calculate the object's position and acceleration as functions of time. (b) What is the object's maximum *positive* displacement from the origin?

2.77 •• Passing. The driver of a car wishes to pass a truck that is traveling at a constant speed of 20.0 m/s (about 45 mi/h). Initially, the car is also traveling at 20.0 m/s and its front bumper is 24.0 m behind the truck's rear bumper. The car accelerates at a constant 0.600 m/s^2 , then pulls back into the truck's lane when the rear of the car is 26.0 m ahead of the front of the truck. The car is 4.5 m long and the truck is 21.0 m long. (a) How much time is required for the car to pass the truck? (b) What distance does the car travel during this time? (c) What is the final speed of the car?

2.78 •• On Planet X, you drop a 25-kg stone from rest and measure its speed at various times. Then you use the data you obtained to construct a graph of its speed v as a function of time t (Fig. P2.78). From the information in the graph, answer the following questions: (a) What is g on Planet X? (b) An astronaut drops a piece of equipment from rest out of the landing

module, 3.5 m above the surface of Planet X. How long will it take this equipment to reach the ground, and how fast will it be moving when it gets there? (c) How fast would an astronaut have to project an object straight upward to reach a height of 18.0 m above the release point, and how long would it take to reach that height?

2.79 ••• CALC The acceleration of a particle is given by $a_x(t) = -2.00 \text{ m/s}^2 + (3.00 \text{ m/s}^3)t$. (a) Find the initial velocity v_{0x} such that the particle will have the same *x*-coordinate at t = 4.00 s as it had at t = 0. (b) What will be the velocity at t = 4.00 s?

2.80 • Egg Drop. You are on the roof of the physics building, 46.0 m above the ground (Fig. P2.80). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your professor's head, where should the professor be when you release the egg? Assume that the egg is in free fall.

2.81 • A certain volcano on earth can eject rocks vertically to a maximum height H. (a) How

Figure **P2.80**

high (in terms of *H*) would these rocks go if a volcano on Mars ejected them with the same initial velocity? The acceleration due to gravity on Mars is 3.71 m/s^2 , and you can neglect air resistance on both planets. (b) If the rocks are in the air for a time *T* on earth, for how long (in terms of *T*) will they be in the air on Mars?

2.82 •• An entertainer juggles balls while doing other activities. In one act, she throws a ball vertically upward, and while it is in the air, she runs to and from a table 5.50 m away at a constant speed of 2.50 m/s, returning just in time to catch the falling ball. (a) With what minimum initial speed must she throw the ball upward to accomplish this feat? (b) How high above its initial position is the ball just as she reaches the table?

2.83 • Visitors at an amusement park watch divers step off a platform 21.3 m (70 ft) above a pool of water. According to the announcer, the divers enter the water at a speed of 56 mi/h (25 m/s). Air resistance may be ignored. (a) Is the announcer correct in this claim? (b) Is it possible for a diver to leap directly upward off the board so that, missing the board on the way down, she enters the water at 25.0 m/s? If so, what initial upward speed is required? Is the required initial speed physically attainable?

2.84 ••• A flowerpot falls off a windowsill and falls past the window below. You may ignore air resistance. It takes the pot 0.420 s to pass from the top to the bottom of this window, which is 1.90 m high. How far is the top of the window below the windowsill from which the flowerpot fell?

2.85 ••• Look Out Below. Sam heaves a 16-lb shot straight upward, giving it a constant upward acceleration from rest of 35.0 m/s^2 for 64.0 cm. He releases it 2.20 m above the ground. You may ignore air resistance. (a) What is the speed of the shot when Sam releases it? (b) How high above the ground does it go? (c) How much time does he have to get out of its way before it returns to the height of the top of his head, 1.83 m above the ground?

2.86 ••• A Multistage Rocket. In the first stage of a two-stage rocket, the rocket is fired from the launch pad starting from rest but with a constant acceleration of 3.50 m/s^2 upward. At 25.0 s after launch, the second stage fires for 10.0 s, which boosts the rocket's velocity to 132.5 m/s upward at 35.0 s after launch. This firing uses up all the fuel, however, so after the second stage has finished firing, the only force acting on the rocket is gravity. Air resistance can be neglected. (a) Find the maximum height that the stage-two rocket reaches above the launch pad. (b) How much time after the end of the stage-two firing will it take for the rocket to fall back to the launch pad? (c) How fast will the stage-two rocket be moving just as it reaches the launch pad?

2.87 •• Juggling Act. A juggler performs in a room whose ceiling is 3.0 m above the level of his hands. He throws a ball upward so that it just reaches the ceiling. (a) What is the initial velocity of the ball? (b) What is the time required for the ball to reach the ceiling? At the instant when the first ball is at the ceiling, the juggler throws a second ball upward with two-thirds the initial velocity of the first. (c) How long after the second ball is thrown do the two balls pass each other? (d) At what distance above the juggler's hand do they pass each other?

2.88 •• A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help." When she has fallen for 3.0 s, she hears the echo of her shout from the valley floor below. The speed of sound is 340 m/s. (a) How tall is the cliff? (b) If air resistance is neglected, how fast will she be moving just before she hits the ground? (Her actual speed will be less than this, due to air resistance.)

2.89 ••• A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s^2 . Secret agent Austin Powers jumps on just as the helicopter lifts off the ground. After the two men struggle for 10.0 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s^2 . How far is Powers above the ground when the helicopter crashes into the ground?

2.90 •• **Cliff Height.** You are climbing in the High Sierra where you suddenly find yourself at the edge of a fog-shrouded cliff. To

find the height of this cliff, you drop a rock from the top and 10.0 s later hear the sound of it hitting the ground at the foot of the cliff. (a) Ignoring air resistance, how high is the cliff if the speed of sound is 330 m/s? (b) Suppose you had ignored the time it takes the sound to reach you. In that case, would you have overestimated or underestimated the height of the cliff? Explain your reasoning.

2.91 ••• Falling Can. A painter is standing on scaffolding that is raised at constant speed. As he travels upward, he accidentally nudges a paint can off the scaffolding and it falls 15.0 m to the ground. You are watching, and measure with your stopwatch that it takes 3.25 s for the can to reach the ground. Ignore air resistance. (a) What is the speed of the can just before it hits the ground? (b) Another painter is standing on a ledge, with his hands 4.00 m above the can when it falls off. He has lightning-fast reflexes and if the can passes in front of him, he can catch it. Does he get the chance? **2.92** •• Determined to test the law of gravity for himself, a student walks off a skyscraper 180 m high, stopwatch in hand, and starts his free fall (zero initial velocity). Five seconds later, Superman arrives at the scene and dives off the roof to save the student. Superman leaves the roof with an initial speed v_0 that he produces by pushing himself downward from the edge of the roof with his legs of steel. He then falls with the same acceleration as any freely falling body. (a) What must the value of v_0 be so that Superman catches the student just before they reach the ground? (b) On the same graph, sketch the positions of the student and of Superman as functions of time. Take Superman's initial speed to have the value calculated in part (a). (c) If the height of the skyscraper is less than some minimum value, even Superman can't reach the student before he hits the ground. What is this minimum height?

2.93 ••• During launches, rockets often discard unneeded parts. A certain rocket starts from rest on the launch pad and accelerates upward at a steady 3.30 m/s^2 . When it is 235 m above the launch pad, it discards a used fuel canister by simply disconnecting it. Once it is disconnected, the only force acting on the canister is gravity (air resistance can be ignored). (a) How high is the rocket when the canister hits the launch pad, assuming that the rocket does not change its acceleration? (b) What total distance did the canister travel between its release and its crash onto the launch pad?

2.94 •• A ball is thrown straight up from the ground with speed v_0 . At the same instant, a second ball is dropped from rest from a height *H*, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of *H* in terms of v_0 and *g* so that at the instant when the balls collide, the first ball is at the highest point of its motion.

2.95 • **CALC** Two cars, *A* and *B*, travel in a straight line. The distance of *A* from the starting point is given as a function of time by $x_A(t) = \alpha t + \beta t^2$, with $\alpha = 2.60$ m/s and $\beta = 1.20$ m/s². The distance of *B* from the starting point is $x_B(t) = \gamma t^2 - \delta t^3$, with $\gamma = 2.80$ m/s² and $\delta = 0.20$ m/s³. (a) Which car is ahead just after they leave the starting point? (b) At what time(s) are the cars at the same point? (c) At what time(s) is the distance from *A* to *B* neither increasing nor decreasing? (d) At what time(s) do *A* and *B* have the same acceleration?

CHALLENGE PROBLEMS

2.96 ••• In the vertical jump, an athlete starts from a crouch and jumps upward to reach as high as possible. Even the best athletes spend little more than 1.00 s in the air (their "hang time"). Treat the athlete as a particle and let y_{max} be his maximum height above the floor. To explain why he seems to hang in the air, calculate the

ratio of the time he is above $y_{\text{max}}/2$ to the time it takes him to go from the floor to that height. You may ignore air resistance.

2.97 ••• Catching the Bus. A student is running at her top speed of 5.0 m/s to catch a bus, which is stopped at the bus stop. When the student is still 40.0 m from the bus, it starts to pull away, moving with a constant acceleration of 0.170 m/s². (a) For how much time and what distance does the student have to run at 5.0 m/s before she overtakes the bus? (b) When she reaches the bus, how fast is the bus traveling? (c) Sketch an x-t graph for both the student and the bus. Take x = 0 at the initial position of the student. (d) The equations you used in part (a) to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue their specified motions. Explain the significance of this second solution. How fast is the bus traveling at this point? (e) If the student's top speed is 3.5 m/s, will she catch the bus? (f) What is the minimum speed the student must have to just catch up with the bus? For what time and what distance does she have to run in that case?

2.98 ••• An alert hiker sees a boulder fall from the top of a distant cliff and notes that it takes 1.30 s for the boulder to fall the last third of the way to the ground. You may ignore air resistance.

(a) What is the height of the cliff in meters? (b) If in part (a) you get two solutions of a quadratic equation and you use one for your answer, what does the other solution represent?

2.99 ••• A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof 1.00 s later. You may ignore air resistance. (a) If the height of the building is 20.0 m, what must the initial speed of the first ball be if both are to hit the ground at the same time? On the same graph, sketch the position of each ball as a function of time, measured from when the first ball is thrown. Consider the same situation, but now let the initial speed v_0 of the first ball be given and treat the height h of the building as an unknown. (b) What must the height of the building be for both balls to reach the ground at the same time (i) if v_0 is 6.0 m/s and (ii) if v_0 is 9.5 m/s? (c) If v_0 is greater than some value v_{max} , a value of h does not exist that allows both balls to hit the ground at the same time. Solve for v_{max} . The value v_{max} has a simple physical interpretation. What is it? (d) If v_0 is less than some value v_{\min} , a value of h does not exist that allows both balls to hit the ground at the same time. Solve for v_{\min} . The value v_{\min} also has a simple physical interpretation. What is it?

Answers

Chapter Opening Question **?**

Yes. Acceleration refers to *any* change in velocity, including both speeding up and slowing down.

Test Your Understanding Questions

2.1 Answer to (a): (iv), (i) and (iii) (tie), (v), (ii); answer to (b): (i) and (iii); answer to (c): (v) In (a) the average *x*-velocity is $v_{av-x} = \Delta x/\Delta t$. For all five trips, $\Delta t = 1$ h. For the individual trips, we have (i) $\Delta x = +50$ km, $v_{av-x} = +50$ km/h; (ii) $\Delta x = -50$ km, $v_{av-x} = -50$ km/h; (iii) $\Delta x = 60$ km - 10 km = +50 km, $v_{av-x} = +50$ km/h; (iv) $\Delta x = +70$ km, $v_{av-x} = +70$ km/h; (v) $\Delta x = -20$ km + 20 km = 0, $v_{av-x} = 0$. In (b) both have $v_{av-x} = +50$ km/h.

2.2 Answers: (a) P, Q and S (tie), R The *x*-velocity is (b) positive when the slope of the *x*-*t* graph is positive (P), (c) negative when the slope is negative (R), and (d) zero when the slope is zero (Q and S). (e) R, P, Q and S (tie) The speed is greatest when the slope of the *x*-*t* graph is steepest (either positive or negative) and zero when the slope is zero.

2.3 Answers: (a) *S*, where the *x*-*t* graph is curved upward (concave up). (b) *Q*, where the *x*-*t* graph is curved downward (concave down). (c) *P* and *R*, where the *x*-*t* graph is not curved either up or down. (d) At *P*, $a_x = 0$ (velocity is not changing); at *Q*, $a_x < 0$

(velocity is **decreasing**, i.e., changing from positive to zero to negative); at R, $a_x = 0$ (velocity is **not changing**); and at S, $a_x > 0$ (velocity is **increasing**, i.e., changing from negative to zero to positive).

2.4 Answer: (b) The officer's x-acceleration is constant, so her v_x -t graph is a straight line, and the officer's motorcycle is moving faster than the motorist's car when the two vehicles meet at t = 10 s.

2.5 Answers: (a) (iii) Use Eq. (2.13) with x replaced by y and $a_y = g$; $v_y^2 = v_{0y}^2 - 2g(y - y_0)$. The starting height is $y_0 = 0$ and the y-velocity at the maximum height y = h is $v_y = 0$, so $0 = v_{0y}^2 - 2gh$ and $h = v_{0y}^2/2g$. If the initial y-velocity is increased by a factor of 2, the maximum height increases by a factor of $2^2 = 4$ and the ball goes to height 4h. (b) (v) Use Eq. (2.8) with x replaced by y and $a_y = g$; $v_y = v_{0y} - gt$. The y-velocity at the maximum height is $v_y = 0$, so $0 = v_{0y} - gt$ and $t = v_{0y}/g$. If the initial y-velocity at the maximum height is $v_y = 0$, so $0 = v_{0y} - gt$ and $t = v_{0y}/g$. If the initial y-velocity is increased by a factor of 2, the time to reach the maximum height increases by a factor of 2, the time to reach the maximum height increases by a factor of 2 and becomes 2t.

2.6 Answer: (ii) The acceleration a_x is equal to the slope of the v_x -t graph. If a_x is increasing, the slope of the v_x -t graph is also increasing and the graph is concave up.

Bridging Problem

Answer: h = 57.1 m

MOTION IN TWO OR THREE DIMENSIONS

3

If a cyclist is going around a curve at constant speed, is he accelerating? If so, in which direction is he accelerating?

hat determines where a batted baseball lands? How do you describe the motion of a roller coaster car along a curved track or the flight of a circling hawk? Which hits the ground first: a baseball that you simply drop or one that you throw horizontally?

We can't answer these kinds of questions using the techniques of Chapter 2, in which particles moved only along a straight line. Instead, we need to extend our descriptions of motion to two- and three-dimensional situations. We'll still use the vector quantities displacement, velocity, and acceleration, but now these quantities will no longer lie along a single line. We'll find that several important kinds of motion take place in two dimensions only—that is, in a *plane*. We can describe these motions with two components of position, velocity, and acceleration.

We also need to consider how the motion of a particle is described by different observers who are moving relative to each other. The concept of *relative velocity* will play an important role later in the book when we study collisions, when we explore electromagnetic phenomena, and when we introduce Einstein's special theory of relativity.

This chapter merges the vector mathematics of Chapter 1 with the kinematic language of Chapter 2. As before, we are concerned with describing motion, not with analyzing its causes. But the language you learn here will be an essential tool in later chapters when we study the relationship between force and motion.

LEARNING GOALS

By studying this chapter, you will learn:

- How to represent the position of a body in two or three dimensions using vectors.
- How to determine the vector velocity of a body from a knowledge of its path.
- How to find the vector acceleration of a body, and why a body can have an acceleration even if its speed is constant.
- How to interpret the components of a body's acceleration parallel to and perpendicular to its path.
- How to describe the curved path followed by a projectile.
- The key ideas behind motion in a circular path, with either constant speed or varying speed.
- How to relate the velocity of a moving body as seen from two different frames of reference.

3.1 The position vector \vec{r} from the origin to point *P* has components *x*, *y*, and *z*. The path that the particle follows through space is in general a curve (Fig. 3.2).

3.2 The average velocity \vec{v}_{av} between points P_1 and P_2 has the same direction as the displacement $\Delta \vec{r}$.

3.3 The vectors \vec{v}_1 and \vec{v}_2 are the instantaneous velocities at the points P_1 and P_2 shown in Fig. 3.2.

3.1 Position and Velocity Vectors

To describe the *motion* of a particle in space, we must first be able to describe the particle's *position*. Consider a particle that is at a point *P* at a certain instant. The **position vector** \vec{r} of the particle at this instant is a vector that goes from the origin of the coordinate system to the point *P* (Fig. 3.1). The Cartesian coordinates *x*, *y*, and *z* of point *P* are the *x*-, *y*-, and *z*-components of vector \vec{r} . Using the unit vectors we introduced in Section 1.9, we can write

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 (position vector) (3.1)

During a time interval Δt the particle moves from P_1 , where its position vector is \vec{r}_1 , to P_2 , where its position vector is \vec{r}_2 . The change in position (the displacement) during this interval is $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$. We define the **average velocity** \vec{v}_{av} during this interval in the same way we did in Chapter 2 for straight-line motion, as the displacement divided by the time interval:

$$\vec{v}_{av} = \frac{\vec{r}_2 - \vec{r}_1}{t_2 - t_1} = \frac{\Delta \vec{r}}{\Delta t}$$
 (average velocity vector) (3.2)

Dividing a vector by a scalar is really a special case of multiplying a vector by a scalar, described in Section 1.7; the average velocity \vec{v}_{av} is equal to the displacement vector $\Delta \vec{r}$ multiplied by $1/\Delta t$, the reciprocal of the time interval. Note that the *x*-component of Eq. (3.2) is $v_{av-x} = (x_2 - x_1)/(t_2 - t_1) = \Delta x/\Delta t$. This is just Eq. (2.2), the expression for average *x*-velocity that we found in Section 2.1 for one-dimensional motion.

We now define **instantaneous velocity** just as we did in Chapter 2: It is the limit of the average velocity as the time interval approaches zero, and it equals the instantaneous rate of change of position with time. The key difference is that position \vec{r} and instantaneous velocity \vec{v} are now both vectors:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d \vec{r}}{dt}$$
 (instantaneous velocity vector) (3.3)

The *magnitude* of the vector \vec{v} at any instant is the *speed* v of the particle at that instant. The *direction* of \vec{v} at any instant is the same as the direction in which the particle is moving at that instant.

Note that as $\Delta t \rightarrow 0$, points P_1 and P_2 in Fig. 3.2 move closer and closer together. In this limit, the vector $\Delta \vec{r}$ becomes tangent to the path. The direction of $\Delta \vec{r}$ in this limit is also the direction of the instantaneous velocity \vec{v} . This leads to an important conclusion: At every point along the path, the instantaneous velocity vector is tangent to the path at that point (Fig. 3.3).

It's often easiest to calculate the instantaneous velocity vector using components. During any displacement $\Delta \vec{r}$, the changes Δx , Δy , and Δz in the three coordinates of the particle are the *components* of $\Delta \vec{r}$. It follows that the components v_x , v_y , and v_z of the instantaneous velocity \vec{v} are simply the time derivatives of the coordinates x, y, and z. That is,

$$v_x = \frac{dx}{dt}$$
 $v_y = \frac{dy}{dt}$ $v_z = \frac{dz}{dt}$ (components of instantaneous velocity) (3.4)

The x-component of \vec{v} is $v_x = dx/dt$, which is the same as Eq. (2.3)—the expression for instantaneous velocity for straight-line motion that we obtained in Section 2.2. Hence Eq. (3.4) is a direct extension of the idea of instantaneous velocity to motion in three dimensions.

We can also get Eq. (3.4) by taking the derivative of Eq. (3.1). The unit vectors \hat{i} , \hat{j} , and \hat{k} are constant in magnitude and direction, so their derivatives are zero, and we find

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}$$
(3.5)

This shows again that the components of \vec{v} are dx/dt, dy/dt, and dz/dt.

The magnitude of the instantaneous velocity vector \vec{v} —that is, the speed—is given in terms of the components v_x , v_y , and v_z by the Pythagorean relation:

$$|\vec{v}| = v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$
 (3.6)

Figure 3.4 shows the situation when the particle moves in the *xy*-plane. In this case, *z* and v_z are zero. Then the speed (the magnitude of \vec{v}) is

$$v = \sqrt{v_x^2 + v_y^2}$$

and the direction of the instantaneous velocity \vec{v} is given by the angle α (the Greek letter alpha) in the figure. We see that

$$\tan \alpha = \frac{v_y}{v_x} \tag{3.7}$$

(We always use Greek letters for angles. We use α for the direction of the instantaneous velocity vector to avoid confusion with the direction θ of the *position* vector of the particle.)

The instantaneous velocity vector is usually more interesting and useful than the average velocity vector. From now on, when we use the word "velocity," we will always mean the instantaneous velocity vector \vec{v} (rather than the average velocity vector). Usually, we won't even bother to call \vec{v} a vector; it's up to you to remember that velocity is a vector quantity with both magnitude and direction.

Example 3.1 Calculating average and instantaneous velocity

A robotic vehicle, or rover, is exploring the surface of Mars. The stationary Mars lander is the origin of coordinates, and the surrounding Martian surface lies in the *xy*-plane. The rover, which we represent as a point, has *x*- and *y*-coordinates that vary with time:

$$x = 2.0 \text{ m} - (0.25 \text{ m/s}^2)t^2$$

y = (1.0 m/s)t + (0.025 m/s^3)t^3

(a) Find the rover's coordinates and distance from the lander at t = 2.0 s. (b) Find the rover's displacement and average velocity vectors for the interval t = 0.0 s to t = 2.0 s. (c) Find a general expression for the rover's instantaneous velocity vector \vec{v} . Express \vec{v} at t = 2.0 s in component form and in terms of magnitude and direction.

SOLUTION

IDENTIFY and SET UP: This problem involves motion in two dimensions, so we must use the vector equations obtained in this section. Figure 3.5 shows the rover's path (dashed line). We'll use Eq. (3.1) for position \vec{r} , the expression $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$ for displacement, Eq. (3.2) for average velocity, and Eqs. (3.5), (3.6), and (3.7)

3.5 At t = 0.0 s the rover has position vector \vec{r}_0 and instantaneous velocity vector \vec{v}_0 . Likewise, \vec{r}_1 and \vec{v}_1 are the vectors at t = 1.0 s; \vec{r}_2 and \vec{v}_2 are the vectors at t = 2.0 s.

Continued

for instantaneous velocity and its magnitude and direction. The target variables are stated in the problem.

EXECUTE: (a) At t = 2.0 s the rover's coordinates are

$$x = 2.0 \text{ m} - (0.25 \text{ m/s}^2)(2.0 \text{ s})^2 = 1.0 \text{ m}$$

$$y = (1.0 \text{ m/s})(2.0 \text{ s}) + (0.025 \text{ m/s}^3)(2.0 \text{ s})^3 = 2.2 \text{ m}$$

The rover's distance from the origin at this time is

$$r = \sqrt{x^2 + y^2} = \sqrt{(1.0 \text{ m})^2 + (2.2 \text{ m})^2} = 2.4 \text{ m}$$

(b) To find the displacement and average velocity over the given time interval, we first express the position vector \vec{r} as a function of time *t*. From Eq. (3.1) this is

$$\vec{r} = x\hat{i} + y\hat{j}$$

= [2.0 m - (0.25 m/s²)t²] \hat{i}
+ [(1.0 m/s)t + (0.025 m/s³)t³] \hat{j}

At t = 0.0 s the position vector \vec{r}_0 is

$$\vec{r}_0 = (2.0 \text{ m})\hat{\imath} + (0.0 \text{ m})\hat{\jmath}$$

From part (a), the position vector \vec{r}_2 at t = 2.0 s is

$$\vec{r}_2 = (1.0 \text{ m})\hat{\imath} + (2.2 \text{ m})\hat{\jmath}$$

The displacement from t = 0.0 s to t = 2.0 s is therefore

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_0 = (1.0 \text{ m})\hat{\imath} + (2.2 \text{ m})\hat{\jmath} - (2.0 \text{ m})\hat{\imath}$$

= $(-1.0 \text{ m})\hat{\imath} + (2.2 \text{ m})\hat{\jmath}$

During this interval the rover moves 1.0 m in the negative *x*-direction and 2.2 m in the positive *y*-direction. From Eq. (3.2), the average velocity over this interval is the displacement divided by the elapsed time:

$$\vec{v}_{av} = \frac{\Delta \vec{r}}{\Delta t} = \frac{(-1.0 \text{ m})\hat{\imath} + (2.2 \text{ m})\hat{\jmath}}{2.0 \text{ s} - 0.0 \text{ s}}$$
$$= (-0.50 \text{ m/s})\hat{\imath} + (1.1 \text{ m/s})\hat{\jmath}$$

The components of this average velocity are $v_{av-x} = -0.50 \text{ m/s}$ and $v_{av-y} = 1.1 \text{ m/s}$. (c) From Eq. (3.4) the components of *instantaneous* velocity are the time derivatives of the coordinates:

$$v_x = \frac{dx}{dt} = (-0.25 \text{ m/s}^2)(2t)$$
$$v_y = \frac{dy}{dt} = 1.0 \text{ m/s} + (0.025 \text{ m/s}^3)(3t^2)$$

Hence the instantaneous velocity vector is

$$\vec{v} = v_x \hat{i} + v_y \hat{j} = (-0.50 \text{ m/s}^2) t \hat{i} + [1.0 \text{ m/s} + (0.075 \text{ m/s}^3) t^2] \hat{j}$$

At t = 2.0 s the velocity vector \vec{v}_2 has components

$$v_{2x} = (-0.50 \text{ m/s}^2)(2.0 \text{ s}) = -1.0 \text{ m/s}$$

 $v_{2y} = 1.0 \text{ m/s} + (0.075 \text{ m/s}^3)(2.0 \text{ s})^2 = 1.3 \text{ m/s}$

The magnitude of the instantaneous velocity (that is, the speed) at t = 2.0 s is

$$v_2 = \sqrt{v_{2x}^2 + v_{2y}^2} = \sqrt{(-1.0 \text{ m/s})^2 + (1.3 \text{ m/s})^2}$$

= 1.6 m/s

Figure 3.5 shows the direction of the velocity vector \vec{v}_2 , which is at an angle α between 90° and 180° with respect to the positive *x*-axis. From Eq. (3.7) we have

$$\arctan \frac{v_y}{v_x} = \arctan \frac{1.3 \text{ m/s}}{-1.0 \text{ m/s}} = -52^{\circ}$$

This is off by 180°; the correct value of the angle is $\alpha = 180^{\circ} - 52^{\circ} = 128^{\circ}$, or 38° west of north.

EVALUATE: Compare the components of *average* velocity that we found in part (b) for the interval from t = 0.0 s to t = 2.0 s $(v_{av-x} = -0.50 \text{ m/s}, v_{av-y} = 1.1 \text{ m/s})$ with the components of *instantaneous* velocity at t = 2.0 s that we found in part (c) $(v_{2x} = -1.0 \text{ m/s}, v_{2y} = 1.3 \text{ m/s})$. The comparison shows that, just as in one dimension, the average velocity vector \vec{v}_{av} over an interval is in general *not* equal to the instantaneous velocity \vec{v} at the end of the interval (see Example 2.1).

Figure 3.5 shows the position vectors \vec{r} and instantaneous velocity vectors \vec{v} at t = 0.0 s, 1.0 s, and 2.0 s. (You should calculate these quantities for t = 0.0 s and t = 1.0 s.) Notice that \vec{v} is tangent to the path at every point. The magnitude of \vec{v} increases as the rover moves, which means that its speed is increasing.

Test Your Understanding of Section 3.1 In which of these situations would the average velocity vector \vec{v}_{av} over an interval be equal to the instantaneous velocity \vec{v} at the end of the interval? (i) a body moving along a curved path at constant speed; (ii) a body moving along a curved path and speeding up; (iii) a body moving along a straight line at constant speed; (iv) a body moving along a straight line and speeding up.

3.2 The Acceleration Vector

Now let's consider the *acceleration* of a particle moving in space. Just as for motion in a straight line, acceleration describes how the velocity of the particle changes. But since we now treat velocity as a vector, acceleration will describe changes in the velocity magnitude (that is, the speed) *and* changes in the direction of velocity (that is, the direction in which the particle is moving).

In Fig. 3.6a, a car (treated as a particle) is moving along a curved road. The vectors \vec{v}_1 and \vec{v}_2 represent the car's instantaneous velocities at time t_1 , when the car

3.6 (a) A car moving along a curved road from P_1 to P_2 . (b) How to obtain the change in velocity $\Delta \vec{v} = \vec{v}_2 - \vec{v}_1$ by vector subtraction. (c) The vector $\vec{a}_{av} = \Delta \vec{v} / \Delta t$ represents the average acceleration between P_1 and P_2 .

is at point P_1 , and at time t_2 , when the car is at point P_2 . The two velocities may differ in both magnitude and direction. During the time interval from t_1 to t_2 , the vector change in velocity is $\vec{v}_2 - \vec{v}_1 = \Delta \vec{v}$, so $\vec{v}_2 = \vec{v}_1 + \Delta \vec{v}$ (Fig. 3.6b). We define the **average acceleration** \vec{a}_{av} of the car during this time interval as the velocity change divided by the time interval $t_2 - t_1 = \Delta t$:

$$\vec{a}_{av} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$
 (average acceleration vector) (3.8)

Average acceleration is a *vector* quantity in the same direction as the vector $\Delta \vec{v}$ (Fig. 3.6c). The *x*-component of Eq. (3.8) is $a_{av-x} = (v_{2x} - v_{1x})/(t_2 - t_1) = \Delta v_x/\Delta t$, which is just Eq. (2.4) for the average acceleration in straight-line motion.

As in Chapter 2, we define the **instantaneous acceleration** \vec{a} (a vector quantity) at point P_1 as the limit of the average acceleration vector when point P_2 approaches point P_1 , so $\Delta \vec{v}$ and Δt both approach zero (Fig. 3.7). The instantaneous acceleration is also equal to the instantaneous rate of change of velocity with time:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d \vec{v}}{dt}$$
 (instantaneous acceleration vector) (3.9)

The velocity vector \vec{v} , as we have seen, is tangent to the path of the particle. The instantaneous acceleration vector \vec{a} , however, does *not* have to be tangent to the path. Figure 3.7a shows that if the path is curved, \vec{a} points toward the concave side of the path—that is, toward the inside of any turn that the particle is making. The acceleration is tangent to the path only if the particle moves in a straight line (Fig. 3.7b).

CAUTION Any particle following a curved path is accelerating When a particle is moving in a curved path, it always has nonzero acceleration, even when it moves with constant speed. This conclusion may seem contrary to your intuition, but it's really just contrary to the everyday use of the word "acceleration" to mean that speed is increasing. The more precise definition given in Eq. (3.9) shows that there is a nonzero acceleration whenever the velocity vector changes in any way, whether there is a change of speed, direction, or both.

To convince yourself that a particle has a nonzero acceleration when moving on a curved path with constant speed, think of your sensations when you ride in a car. When the car accelerates, you tend to move inside the car in a **3.7** (a) Instantaneous acceleration \vec{a} at point P_1 in Fig. 3.6. (b) Instantaneous acceleration for motion along a straight line.

(a) Acceleration: curved trajectory

Application Horses on a Curved Path

By leaning to the side and hitting the ground with their hooves at an angle, these horses give themselves the sideways acceleration necessary to make a sharp change in direction.

direction *opposite* to the car's acceleration. (We'll discover the reason for this behavior in Chapter 4.) Thus you tend to slide toward the back of the car when it accelerates forward (speeds up) and toward the front of the car when it accelerates backward (slows down). If the car makes a turn on a level road, you tend to slide toward the outside of the turn; hence the car has an acceleration toward the inside of the turn.

We will usually be interested in the instantaneous acceleration, not the average acceleration. From now on, we will use the term "acceleration" to mean the instantaneous acceleration vector \vec{a} .

Each component of the acceleration vector is the derivative of the corresponding component of velocity:

$$a_x = \frac{dv_x}{dt}$$
 $a_y = \frac{dv_y}{dt}$ $a_z = \frac{dv_z}{dt}$ (components of instantaneous acceleration) (3.10)

In terms of unit vectors,

$$\vec{a} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} + \frac{dv_z}{dt}\hat{k}$$
(3.11)

The *x*-component of Eqs. (3.10) and (3.11), $a_x = dv_x/dt$, is the expression from Section 2.3 for instantaneous acceleration in one dimension, Eq. (2.5). Figure 3.8 shows an example of an acceleration vector that has both *x*- and *y*-components.

Since each component of velocity is the derivative of the corresponding coordinate, we can express the components a_x , a_y , and a_z of the acceleration vector \vec{a} as

$$a_x = \frac{d^2 x}{dt^2}$$
 $a_y = \frac{d^2 y}{dt^2}$ $a_z = \frac{d^2 z}{dt^2}$ (3.12)

The acceleration vector \vec{a} itself is

$$\vec{a} = \frac{d^2x}{dt^2}\hat{i} + \frac{d^2y}{dt^2}\hat{j} + \frac{d^2z}{dt^2}\hat{k}$$
(3.13)

Example 3.2 Calculating average and instantaneous acceleration

Let's return to the motions of the Mars rover in Example 3.1. (a) Find the components of the average acceleration for the interval t = 0.0 s to t = 2.0 s. (b) Find the instantaneous acceleration at t = 2.0 s.

SOLUTION

IDENTIFY and SET UP: In Example 3.1 we found the components of the rover's instantaneous velocity at any time *t*:

$$v_x = \frac{dx}{dt} = (-0.25 \text{ m/s}^2)(2t) = (-0.50 \text{ m/s}^2)t$$
$$v_y = \frac{dy}{dt} = 1.0 \text{ m/s} + (0.025 \text{ m/s}^3)(3t^2)$$
$$= 1.0 \text{ m/s} + (0.075 \text{ m/s}^3)t^2$$

We'll use the vector relationships among velocity, average acceleration, and instantaneous acceleration. In part (a) we determine the values of v_x and v_y at the beginning and end of the interval and then use Eq. (3.8) to calculate the components of the average acceleration. In part (b) we obtain expressions for the instantaneous acceleration components at any time *t* by taking the time derivatives of the velocity components as in Eqs. (3.10).

EXECUTE: (a) In Example 3.1 we found that at t = 0.0 s the velocity components are

$$v_x = 0.0 \text{ m/s}$$
 $v_y = 1.0 \text{ m/s}$

and that at t = 2.00 s the components are

$$v_x = -1.0 \text{ m/s}$$
 $v_y = 1.3 \text{ m/s}$

Thus the components of average acceleration in the interval t = 0.0 s to t = 2.0 s are

$$a_{\text{av-}x} = \frac{\Delta v_x}{\Delta t} = \frac{-1.0 \text{ m/s} - 0.0 \text{ m/s}}{2.0 \text{ s} - 0.0 \text{ s}} = -0.50 \text{ m/s}^2$$
$$a_{\text{av-}y} = \frac{\Delta v_y}{\Delta t} = \frac{1.3 \text{ m/s} - 1.0 \text{ m/s}}{2.0 \text{ s} - 0.0 \text{ s}} = 0.15 \text{ m/s}^2$$

3.8 When the arrow is released, its acceleration vector has both a horizontal component (a_x) and a vertical component (a_y) .

(b) Using Eqs. (3.10), we find

$$a_x = \frac{dv_x}{dt} = -0.50 \text{ m/s}^2$$
 $a_y = \frac{dv_y}{dt} = (0.075 \text{ m/s}^3)(2t)$

Hence the instantaneous acceleration vector \vec{a} at time *t* is

$$\vec{a} = a_x \hat{i} + a_y \hat{j} = (-0.50 \text{ m/s}^2)\hat{i} + (0.15 \text{ m/s}^3)t$$

At t = 2.0 s the components of acceleration and the acceleration vector are

$$a_x = -0.50 \text{ m/s}^2 \qquad a_y = (0.15 \text{ m/s}^3)(2.0 \text{ s}) = 0.30 \text{ m/s}^2$$
$$\vec{a} = (-0.50 \text{ m/s}^2)\hat{i} + (0.30 \text{ m/s}^2)\hat{j}$$

The magnitude of acceleration at this time is

$$a = \sqrt{a_x^2 + a_y^2}$$

= $\sqrt{(-0.50 \text{ m/s}^2)^2 + (0.30 \text{ m/s}^2)^2} = 0.58 \text{ m/s}^2$

A sketch of this vector (Fig. 3.9) shows that the direction angle β of \vec{a} with respect to the positive *x*-axis is between 90° and 180°. From Eq. (3.7) we have

$$\arctan \frac{a_y}{a_x} = \arctan \frac{0.30 \text{ m/s}^2}{-0.50 \text{ m/s}^2} = -31^{\circ}$$

Hence $\beta = 180^{\circ} + (-31^{\circ}) = 149^{\circ}$.

EVALUATE: Figure 3.9 shows the rover's path and the velocity and acceleration vectors at t = 0.0 s, 1.0 s, and 2.0 s. (You should use

3.9 The path of the robotic rover, showing the velocity and acceleration at t = 0.0 s (\vec{v}_0 and \vec{a}_0), t = 1.0 s (\vec{v}_1 and \vec{a}_1), and t = 2.0 s (\vec{v}_2 and \vec{a}_2).

Parallel and Perpendicular Components of Acceleration

Equations (3.10) tell us about the components of a particle's instantaneous acceleration vector \vec{a} along the *x*-, *y*-, and *z*-axes. Another useful way to think about \vec{a} is in terms of its component *parallel* to the particle's path—that is, parallel to the velocity—and its component *perpendicular* to the path—and hence perpendicular to the velocity (Fig. 3.10). That's because the parallel component a_{\parallel} tells us about changes in the particle's *speed*, while the perpendicular component a_{\perp} tells us about changes in the particle's *direction of motion*. To see why the parallel and perpendicular components of \vec{a} have these properties, let's consider two special cases.

In Fig. 3.11a the acceleration vector is in the same direction as the velocity \vec{v}_1 , so \vec{a} has only a parallel component a_{\parallel} (that is, $a_{\perp} = 0$). The velocity change $\Delta \vec{v}$ during a small time interval Δt is in the same direction as \vec{a} and hence in the same direction as \vec{v}_1 . The velocity \vec{v}_2 at the end of Δt is in the same direction as \vec{v}_1 but has greater magnitude. Hence during the time interval Δt the particle in Fig. 3.11a moved in a straight line with increasing speed (compare Fig. 3.7b).

In Fig. 3.11b the acceleration is *perpendicular* to the velocity, so \vec{a} has only a perpendicular component a_{\parallel} (that is, $a_{\parallel} = 0$). In a small time interval Δt , the

3.11 The effect of acceleration directed (a) parallel to and (b) perpendicular to a particle's velocity.

(a) Acceleration parallel to velocity

(b) Acceleration perpendicular to velocity

3.10 The acceleration can be resolved into a component a_{\parallel} parallel to the path (that is, along the tangent to the path) and a component a_{\perp} perpendicular to the path (that is, along the normal to the path).

velocity change $\Delta \vec{v}$ is very nearly perpendicular to \vec{v}_1 , and so \vec{v}_1 and \vec{v}_2 have different directions. As the time interval Δt approaches zero, the angle ϕ in the figure also approaches zero, $\Delta \vec{v}$ becomes perpendicular to *both* \vec{v}_1 and \vec{v}_2 , and \vec{v}_1 and \vec{v}_2 , have the same magnitude. In other words, the speed of the particle stays the same, but the direction of motion changes and the path of the particle curves.

In the most general case, the acceleration \vec{a} has components *both* parallel and perpendicular to the velocity \vec{v} , as in Fig. 3.10. Then the particle's speed will change (described by the parallel component a_{\parallel}) and its direction of motion will change (described by the perpendicular component a_{\perp}) so that it follows a curved path.

Figure 3.12 shows a particle moving along a curved path for three different situations: constant speed, increasing speed, and decreasing speed. If the speed is constant, \vec{a} is perpendicular, or *normal*, to the path and to \vec{v} and points toward the concave side of the path (Fig. 3.12a). If the speed is increasing, there is still a perpendicular component of \vec{a} , but there is also a parallel component having the same direction as \vec{v} (Fig. 3.12b). Then \vec{a} points ahead of the normal to the path. (This was the case in Example 3.2.) If the speed is decreasing, the parallel component has the direction opposite to \vec{v} , and \vec{a} points behind the normal to the path (Fig. 3.12c; compare Fig. 3.7a). We will use these ideas again in Section 3.4 when we study the special case of motion in a circle.

3.12 Velocity and acceleration vectors for a particle moving through a point *P* on a curved path with (a) constant speed, (b) increasing speed, and (c) decreasing speed.

Example 3.3 Calculating parallel and perpendicular components of acceleration

For the rover of Examples 3.1 and 3.2, find the parallel and perpendicular components of the acceleration at t = 2.0 s.

SOLUTION

IDENTIFY and SET UP: We want to find the components of the acceleration vector \vec{a} that are parallel and perpendicular to the velocity vector \vec{v} . We found the directions of \vec{v} and \vec{a} in Examples 3.1 and 3.2, respectively; Fig. 3.9 shows the results. From these directions we can find the angle between the two vectors and the components of \vec{a} with respect to the direction of \vec{v} .

EXECUTE: From Example 3.2, at t = 2.0 s the particle has an acceleration of magnitude 0.58 m/s^2 at an angle of 149° with respect to the positive *x*-axis. In Example 3.1 we found that at this time the velocity vector is at an angle of 128° with respect to the positive *x*-axis. The angle between \vec{a} and \vec{v} is therefore 149° $- 128^\circ = 21^\circ$ (Fig. 3.13). Hence the components of acceleration parallel and perpendicular to \vec{v} are

$$a_{\parallel} = a \cos 21^{\circ} = (0.58 \text{ m/s}^2)\cos 21^{\circ} = 0.54 \text{ m/s}^2$$

 $a_{\parallel} = a \sin 21^{\circ} = (0.58 \text{ m/s}^2)\sin 21^{\circ} = 0.21 \text{ m/s}^2$

3.13 The parallel and perpendicular components of the acceleration of the rover at t = 2.0 s.

EVALUATE: The parallel component a_{\parallel} is positive (in the same direction as \vec{v}), which means that the speed is increasing at this instant. The value $a_{\parallel} = +0.54 \text{ m/s}^2$ tells us that the speed is increasing at this instant at a rate of 0.54 m/s per second. The perpendicular component a_{\perp} is not zero, which means that at this instant the rover is turning—that is, it is changing direction and following a curved path.

MasteringPHYSICS

PhET: Maze Game

Conceptual Example 3.4 Acceleration of a skier

A skier moves along a ski-jump ramp (Fig. 3.14a). The ramp is straight from point A to point C and curved from point C onward. The skier speeds up as she moves downhill from point A to point E, where her speed is maximum. She slows down after passing point E. Draw the direction of the acceleration vector at each of the points B, D, E, and F.

SOLUTION

Figure 3.14b shows our solution. At point *B* the skier is moving in a straight line with increasing speed, so her acceleration points downhill, in the same direction as her velocity. At points *D*, *E*, and *F* the skier is moving along a curved path, so her acceleration has a component perpendicular to the path (toward the concave side of the path) at each of these points. At point *D* there is also an acceleration component in the direction of her motion because she is speeding up. So the acceleration vector points *ahead* of the normal to her path at point *D*, as Fig. 3.14b shows. At point *E*, the skier's speed is instantaneously not changing; her speed is maximum at this point, so its derivative is zero. There is therefore no parallel component of \vec{a} , and the acceleration component *opposite to* the direction of her motion because now she's slowing down. The acceleration vector therefore points *behind* the normal to her path.

In the next section we'll consider the skier's acceleration after she flies off the ramp.

Test Your Understanding of Section 3.2 A sled travels over the crest of a snow-covered hill. The sled slows down as it climbs up one side of the hill and gains speed as it descends on the other side. Which of the vectors (1 through 9) in the figure correctly shows the direction of the

sled's acceleration at the crest? (Choice 9 is that the acceleration is zero.)

3.3 Projectile Motion

A **projectile** is any body that is given an initial velocity and then follows a path determined entirely by the effects of gravitational acceleration and air resistance. A batted baseball, a thrown football, a package dropped from an airplane, and a bullet shot from a rifle are all projectiles. The path followed by a projectile is called its **trajectory**.

To analyze this common type of motion, we'll start with an idealized model, representing the projectile as a particle with an acceleration (due to gravity) that is constant in both magnitude and direction. We'll neglect the effects of air resistance and the curvature and rotation of the earth. Like all models, this one has limitations. Curvature of the earth has to be considered in the flight of long-range missiles, and air resistance is of crucial importance to a sky diver. Nevertheless, we can learn a lot from analysis of this simple model. For the remainder of this chapter the phrase "projectile motion" will imply that we're ignoring air resistance. In Chapter 5 we will see what happens when air resistance cannot be ignored.

Projectile motion is always confined to a vertical plane determined by the direction of the initial velocity (Fig. 3.15). This is because the acceleration due to

3.15 The trajectory of an idealized projectile.

3.14 (a) The skier's path. (b) Our solution.

3.16 The red ball is dropped from rest, and the yellow ball is simultaneously projected horizontally; successive images in this stroboscopic photograph are separated by equal time intervals. At any given time, both balls have the same *y*-position, *y*-velocity, and *y*-acceleration, despite having different *x*-positions and *x*-velocities.

Mastering **PHYSICS**

ActivPhysics 3.2: Two Balls Falling

Problems

ActivPhysics 3.1: Solving Projectile Motion

ActivPhysics 3.3: Changing the x-velocity

ActivPhysics 3.4: Projecting x-y-Accelerations

gravity is purely vertical; gravity can't accelerate the projectile sideways. Thus projectile motion is *two-dimensional*. We will call the plane of motion the *xy*-coordinate plane, with the *x*-axis horizontal and the *y*-axis vertically upward.

The key to analyzing projectile motion is that we can treat the *x*- and *y*-coordinates separately. The *x*-component of acceleration is zero, and the *y*-component is constant and equal to -g. (By definition, *g* is always positive; with our choice of coordinate directions, a_y is negative.) So we can analyze projectile motion as a combination of horizontal motion with constant velocity and vertical motion with constant acceleration. Figure 3.16 shows two projectiles with different *x*-motion but identical *y*-motion; one is dropped from rest and the other is projected horizontally, but both projectiles fall the same distance in the same time.

We can then express all the vector relationships for the projectile's position, velocity, and acceleration by separate equations for the horizontal and vertical components. The components of \vec{a} are

$$a_x = 0$$
 $a_y = -g$ (projectile motion, no air resistance) (3.14)

Since the *x*-acceleration and *y*-acceleration are both constant, we can use Eqs. (2.8), (2.12), (2.13), and (2.14) directly. For example, suppose that at time t = 0 our particle is at the point (x_0, y_0) and that at this time its velocity components have the initial values v_{0x} and v_{0y} . The components of acceleration are $a_x = 0$, $a_y = -g$. Considering the *x*-motion first, we substitute 0 for a_x in Eqs. (2.8) and (2.12). We find

$$v_x = v_{0x}$$
 (3.15)

$$= x_0 + v_{0x}t$$
 (3.16)

For the y-motion we substitute y for x, v_y for v_x , v_{0y} for v_{0x} , and $a_y = -g$ for a_x :

х

$$v_{\rm v} = v_{\rm 0v} - gt$$
 (3.17)

MP

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2$$
(3.18)

It's usually simplest to take the initial position (at t = 0) as the origin; then $x_0 = y_0 = 0$. This might be the position of a ball at the instant it leaves the thrower's hand or the position of a bullet at the instant it leaves the gun barrel.

Figure 3.17 shows the trajectory of a projectile that starts at (or passes through) the origin at time t = 0, along with its position, velocity, and velocity

3.17 If air resistance is negligible, the trajectory of a projectile is a combination of horizontal motion with constant velocity and vertical motion with constant acceleration.

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration is zero, so it moves equal *x*-distances in equal time intervals.

components at equal time intervals. The *x*-component of acceleration is zero, so v_x is constant. The *y*-component of acceleration is constant and not zero, so v_y changes by equal amounts in equal times, just the same as if the projectile were launched vertically with the same initial *y*-velocity.

We can also represent the initial velocity \vec{v}_0 by its magnitude v_0 (the initial speed) and its angle α_0 with the positive x-axis (Fig. 3.18). In terms of these quantities, the components v_{0x} and v_{0y} of the initial velocity are

$$v_{0x} = v_0 \cos \alpha_0$$
 $v_{0y} = v_0 \sin \alpha_0$ (3.19)

If we substitute these relationships in Eqs. (3.15) through (3.18) and set $x_0 = y_0 = 0$, we find

$x = (v_0 \cos \alpha_0)t$	(projectile motion)	(3.20)
$y = (v_0 \sin \alpha_0)t - \frac{1}{2}gt^2$	(projectile motion)	(3.21)
$v_x = v_0 \cos \alpha_0$	(projectile motion)	(3.22)
$v_y = v_0 \sin \alpha_0 - gt$	(projectile motion)	(3.23)

These equations describe the position and velocity of the projectile in Fig. 3.17 at any time t.

We can get a lot of information from Eqs. (3.20) through (3.23). For example, at any time the distance *r* of the projectile from the origin (the magnitude of the position vector \vec{r}) is given by

$$r = \sqrt{x^2 + y^2}$$
(3.24)

The projectile's speed (the magnitude of its velocity) at any time is

$$v = \sqrt{v_x^2 + v_y^2}$$
(3.25)

The *direction* of the velocity, in terms of the angle α it makes with the positive *x*-direction (see Fig. 3.17), is given by

$$\tan \alpha = \frac{v_y}{v_x} \tag{3.26}$$

The velocity vector \vec{v} is tangent to the trajectory at each point.

We can derive an equation for the trajectory's shape in terms of x and y by eliminating t. From Eqs. (3.20) and (3.21), which assume $x_0 = y_0 = 0$, we find $t = x/(v_0 \cos \alpha_0)$ and

$$y = (\tan \alpha_0) x - \frac{g}{2v_0^2 \cos^2 \alpha_0} x^2$$
(3.27)

Don't worry about the details of this equation; the important point is its general form. Since v_0 , tan α_0 , cos α_0 , and g are constants, Eq. (3.27) has the form

$$y = bx - cx^2$$

where b and c are constants. This is the equation of a *parabola*. In our simple model of projectile motion, the trajectory is always a parabola (Fig. 3.19).

When air resistance *isn't* always negligible and has to be included, calculating the trajectory becomes a lot more complicated; the effects of air resistance depend on velocity, so the acceleration is no longer constant. Figure 3.20 shows a

3.18 The initial velocity components v_{0x} and v_{0y} of a projectile (such as a kicked soccer ball) are related to the initial speed v_0 and initial angle α_0 .

Mastering **PHYSICS**

PhET: Projectile Motion ActivPhysics 3.5: Initial Velocity Components ActivPhysics 3.6: Target Practice I ActivPhysics 3.7: Target Practice II

3.19 The nearly parabolic trajectories of (a) a bouncing ball and (b) blobs of molten rock ejected from a volcano.

(a) Successive images of ball are separated by equal time intervals.

3.20 Air resistance has a large cumulative effect on the motion of a baseball. In this simulation we allow the baseball to fall below the height from which it was thrown (for example, the baseball could have been thrown from a cliff).

Baseball's initial velocity: v(m) $= 50 \text{ m/s}, \alpha_0 = 53.1^{\circ}$ 100 v_0 50 x(m)0 100 200300 -50-100With air No air resistance resistance

computer simulation of the trajectory of a baseball both without air resistance and with air resistance proportional to the square of the baseball's speed. We see that air resistance has a very large effect; the maximum height and range both decrease, and the trajectory is no longer a parabola. (If you look closely at Fig. 3.19b, you'll see that the trajectories of the volcanic blobs deviate in a similar way from a parabolic shape.)

Conceptual Example 3.5 Acceleration of a skier, continued

Let's consider again the skier in Conceptual Example 3.4. What is her acceleration at each of the points *G*, *H*, and *I* in Fig. 3.21a *after* she flies off the ramp? Neglect air resistance.

SOLUTION

Figure 3.21b shows our answer. The skier's acceleration changed from point to point while she was on the ramp. But as soon as she

3.21 (a) The skier's path during the jump. (b) Our solution.

leaves the ramp, she becomes a projectile. So at points *G*, *H*, and *I*, and indeed at *all* points after she leaves the ramp, the skier's acceleration points vertically downward and has magnitude *g*. No matter how complicated the acceleration of a particle before it becomes a projectile, its acceleration as a projectile is given by $a_x = 0, a_y = -g$.

Problem-Solving Strategy 3.1 Projectile Motion

NOTE: The strategies we used in Sections 2.4 and 2.5 for straightline, constant-acceleration problems are also useful here.

IDENTIFY *the relevant concepts:* The key concept to remember is that throughout projectile motion, the acceleration is downward and has a constant magnitude *g*. Note that the projectile-motion equations don't apply to *throwing* a ball, because during the throw the ball is acted on by both the thrower's hand and gravity. These equations apply only *after* the ball leaves the thrower's hand.

SET UP *the problem* using the following steps:

- 1. Define your coordinate system and make a sketch showing your axes. Usually it's easiest to make the *x*-axis horizontal and the *y*-axis upward, and to place the origin at the initial (t = 0) position where the body first becomes a projectile (such as where a ball leaves the thrower's hand). Then the components of the (constant) acceleration are $a_x = 0$, $a_y = -g$, and the initial position is $x_0 = 0$, $y_0 = 0$.
- 2. List the unknown and known quantities, and decide which unknowns are your target variables. For example, you might be given the initial velocity (either the components or the magnitude and direction) and asked to find the coordinates and velocity components at some later time. In any case, you'll be using

Eqs. (3.20) through (3.23). (Equations (3.24) through (3.27) may be useful as well.) Make sure that you have as many equations as there are target variables to be found.

3. State the problem in words and then translate those words into symbols. For example, *when* does the particle arrive at a certain point? (That is, at what value of *t*?) *Where* is the particle when its velocity has a certain value? (That is, what are the values of *x* and *y* when v_x or v_y has the specified value?) Since $v_y = 0$ at the highest point in a trajectory, the question "When does the projectile reach its highest point?" translates into "What is the value of *t* when $v_y = 0$?" Similarly, "When does the projectile return to its initial elevation?" translates into "What is the value of *t* when $y = y_0$?"

EXECUTE the solution: Find the target variables using the equations you chose. Resist the temptation to break the trajectory into segments and analyze each segment separately. You don't have to start all over when the projectile reaches its highest point! It's almost always easier to use the same axes and time scale throughout the problem. If you need numerical values, use $g = 9.80 \text{ m/s}^2$.

EVALUATE *your answer:* As always, look at your results to see whether they make sense and whether the numerical values seem reasonable.

Example 3.6 A body projected horizontally

A motorcycle stunt rider rides off the edge of a cliff. Just at the edge his velocity is horizontal, with magnitude 9.0 m/s. Find the motorcycle's position, distance from the edge of the cliff, and velocity 0.50 s after it leaves the edge of the cliff.

SOLUTION

IDENTIFY and SET UP: Figure 3.22 shows our sketch of the motorcycle's trajectory. He is in projectile motion as soon as he leaves the edge of the cliff, which we choose to be the origin of coordinates so $x_0 = 0$ and $y_0 = 0$. His initial velocity \vec{v}_0 at the edge of the cliff is horizontal (that is, $\alpha_0 = 0$), so its components are $v_{0x} = v_0 \cos \alpha_0 = 9.0$ m/s and $v_{0y} = v_0 \sin \alpha_0 = 0$. To find the motorcycle's position at t = 0.50 s, we use Eqs. (3.20) and (3.21); we then find the distance from the origin using Eq. (3.24). Finally, we use Eqs. (3.22) and (3.23) to find the velocity components at t = 0.50 s.

EXECUTE: From Eqs. (3.20) and (3.21), the motorcycle's *x*- and *y*-coordinates at t = 0.50 s are

$$x = v_{0x}t = (9.0 \text{ m/s})(0.50 \text{ s}) = 4.5 \text{ m}$$
$$y = -\frac{1}{2}gt^2 = -\frac{1}{2}(9.80 \text{ m/s}^2)(0.50 \text{ s})^2 = -1.2 \text{ m}$$

The negative value of y shows that the motorcycle is below its starting point.

From Eq. (3.24), the motorcycle's distance from the origin at t = 0.50 s is

$$r = \sqrt{x^2 + y^2} = \sqrt{(4.5 \text{ m})^2 + (-1.2 \text{ m})^2} = 4.7 \text{ m}$$

From Eqs. (3.22) and (3.23), the velocity components at t = 0.50 s are

$$v_x = v_{0x} = 9.0 \text{ m/s}$$

 $v_y = -gt = (-9.80 \text{ m/s}^2)(0.50 \text{ s}) = -4.9 \text{ m/s}$

3.22 Our sketch for this problem.

The motorcycle has the same horizontal velocity v_x as when it left the cliff at t = 0, but in addition there is a downward (negative) vertical velocity v_y . The velocity vector at t = 0.50 s is

$$\vec{v} = v_x \hat{i} + v_y \hat{j} = (9.0 \text{ m/s})\hat{i} + (-4.9 \text{ m/s})\hat{j}$$

From Eq. (3.25), the speed (magnitude of the velocity) at t = 0.50 s is

$$v = \sqrt{v_x^2 + v_y^2}$$

= $\sqrt{(9.0 \text{ m/s})^2 + (-4.9 \text{ m/s})^2} = 10.2 \text{ m/s}$

From Eq. (3.26), the angle α of the velocity vector is

$$\alpha = \arctan \frac{v_y}{v_x} = \arctan \left(\frac{-4.9 \text{ m/s}}{9.0 \text{ m/s}} \right) = -29^{\circ}$$

The velocity is 29° below the horizontal.

EVALUATE: Just as in Fig. 3.17, the motorcycle's horizontal motion is unchanged by gravity; the motorcycle continues to move horizontally at 9.0 m/s, covering 4.5 m in 0.50 s. The motorcycle initially has zero vertical velocity, so it falls vertically just like a body released from rest and descends a distance $\frac{1}{2}gt^2 = 1.2$ m in 0.50 s.

Example 3.7 Height and range of a projectile I: A batted baseball

A batter hits a baseball so that it leaves the bat at speed $v_0 = 37.0 \text{ m/s}$ at an angle $\alpha_0 = 53.1^{\circ}$. (a) Find the position of the ball and its velocity (magnitude and direction) at t = 2.00 s. (b) Find the time when the ball reaches the highest point of its flight, and its height *h* at this time. (c) Find the *horizontal range R*—that is, the horizontal distance from the starting point to where the ball hits the ground.

SOLUTION

IDENTIFY and SET UP: As Fig. 3.20 shows, air resistance strongly affects the motion of a baseball. For simplicity, however, we'll ignore air resistance here and use the projectile-motion equations to describe the motion. The ball leaves the bat at t = 0 a meter or so above ground level, but we'll neglect this distance and assume that it starts at ground level ($y_0 = 0$). Figure 3.23 shows our

3.23 Our sketch for this problem.

sketch of the ball's trajectory. We'll use the same coordinate system as in Figs. 3.17 and 3.18, so we can use Eqs. (3.20) through *Continued*

(3.23). Our target variables are (a) the position and velocity of the ball 2.00 s after it leaves the bat, (b) the time t when the ball is at its maximum height (that is, when $v_y = 0$) and the y-coordinate at this time, and (c) the x-coordinate when the ball returns to ground level (y = 0).

EXECUTE: (a) We want to find x, y, v_x , and v_y at t = 2.00 s. The initial velocity of the ball has components

$$v_{0x} = v_0 \cos \alpha_0 = (37.0 \text{ m/s}) \cos 53.1^\circ = 22.2 \text{ m/s}$$

$$v_{0y} = v_0 \sin \alpha_0 = (37.0 \text{ m/s}) \sin 53.1^\circ = 29.6 \text{ m/s}$$

From Eqs. (3.20) through (3.23),

$$x = v_{0x}t = (22.2 \text{ m/s})(2.00 \text{ s}) = 44.4 \text{ m}$$

$$y = v_{0y}t - \frac{1}{2}gt^2$$

$$= (29.6 \text{ m/s})(2.00 \text{ s}) - \frac{1}{2}(9.80 \text{ m/s}^2)(2.00 \text{ s})^2$$

$$= 39.6 \text{ m}$$

$$v_x = v_{0x} = 22.2 \text{ m/s}$$

$$v_y = v_{0y} - gt = 29.6 \text{ m/s} - (9.80 \text{ m/s}^2)(2.00 \text{ s})$$

$$= 10.0 \text{ m/s}$$

The *y*-component of velocity is positive at t = 2.00 s, so the ball is still moving upward (Fig. 3.23). From Eqs. (3.25) and (3.26), the magnitude and direction of the velocity are

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{(22.2 \text{ m/s})^2 + (10.0 \text{ m/s})^2}$$

= 24.4 m/s
$$\alpha = \arctan\left(\frac{10.0 \text{ m/s}}{22.2 \text{ m/s}}\right) = \arctan 0.450 = 24.2^\circ$$

The direction of the velocity (the direction of the ball's motion) is 24.2° above the horizontal.

(b) At the highest point, the vertical velocity v_y is zero. Call the time when this happens t_1 ; then

$$v_y = v_{0y} - gt_1 = 0$$

 $t_1 = \frac{v_{0y}}{g} = \frac{29.6 \text{ m/s}}{9.80 \text{ m/s}^2} = 3.02 \text{ s}$

The height *h* at the highest point is the value of *y* at time t_1 :

$$h = v_{0y}t_1 - \frac{1}{2}gt_1^2$$

= (29.6 m/s)(3.02 s) - $\frac{1}{2}$ (9.80 m/s²)(3.02 s)²
= 44.7 m

(c) We'll find the horizontal range in two steps. First, we find the time t_2 when y = 0 (the ball is at ground level):

$$y = 0 = v_{0y}t_2 - \frac{1}{2}gt_2^2 = t_2(v_{0y} - \frac{1}{2}gt_2)$$

This is a quadratic equation for t_2 . It has two roots:

$$t_2 = 0$$
 and $t_2 = \frac{2v_{0y}}{g} = \frac{2(29.6 \text{ m/s})}{9.80 \text{ m/s}^2} = 6.04 \text{ s}$

The ball is at y = 0 at both times. The ball *leaves* the ground at $t_2 = 0$, and it hits the ground at $t_2 = 2v_{0y}/g = 6.04$ s.

The horizontal range *R* is the value of *x* when the ball returns to the ground at $t_2 = 6.04$ s:

$$R = v_{0x}t_2 = (22.2 \text{ m/s})(6.04 \text{ s}) = 134 \text{ m}$$

The vertical component of velocity when the ball hits the ground is

$$v_y = v_{0y} - gt_2 = 29.6 \text{ m/s} - (9.80 \text{ m/s}^2)(6.04 \text{ s})$$

= -29.6 m/s

That is, v_y has the same magnitude as the initial vertical velocity v_{0y} but the opposite direction (down). Since v_x is constant, the angle $\alpha = -53.1^{\circ}$ (below the horizontal) at this point is the negative of the initial angle $\alpha_0 = 53.1^{\circ}$.

EVALUATE: It's often useful to check results by getting them in a different way. For example, we can also find the maximum height in part (b) by applying the constant-acceleration formula Eq. (2.13) to the *y*-motion:

$$v_y^2 = v_{0y}^2 + 2a_y(y - y_0) = v_{0y}^2 - 2g(y - y_0)$$

At the highest point, $v_y = 0$ and y = h. You should solve this equation for *h*; you should get the same answer that we obtained in part (b). (Do you?)

Note that the time to hit the ground, $t_2 = 6.04$ s, is exactly twice the time to reach the highest point, $t_1 = 3.02$ s. Hence the time of descent equals the time of ascent. This is *always* true if the starting and end points are at the same elevation and if air resistance can be neglected.

Note also that h = 44.7 m in part (b) is comparable to the 52.4-m height above the playing field of the roof of the Hubert H. Humphrey Metrodome in Minneapolis, and the horizontal range R = 134 m in part (c) is greater than the 99.7-m distance from home plate to the right-field fence at Safeco Field in Seattle. In reality, due to air resistance (which we have neglected) a batted ball with the initial speed and angle we've used here won't go as high or as far as we've calculated (see Fig. 3.20).

Example 3.8 Height and range of a projectile II: Maximum height, maximum range

Find the maximum height *h* and horizontal range *R* (see Fig. 3.23) of a projectile launched with speed v_0 at an initial angle α_0 between 0° and 90°. For a given v_0 , what value of α_0 gives maximum height? What value gives maximum horizontal range?

SOLUTION

IDENTIFY and SET UP: This is almost the same as parts (b) and (c) of Example 3.7, except that now we want general expressions for *h* and *R*. We also want the values of α_0 that give the maximum values
of *h* and *R*. In part (b) of Example 3.7 we found that the projectile reaches the high point of its trajectory (so that $v_y = 0$) at time $t_1 = v_{0y}/g$, and in part (c) we found that the projectile returns to its starting height (so that $y = y_0$) at time $t_2 = 2v_{0y}/g = 2t_1$. We'll use Eq. (3.21) to find the *y*-coordinate *h* at t_1 and Eq. (3.20) to find the *x*-coordinate *R* at time t_2 . We'll express our answers in terms of the launch speed v_0 and launch angle α_0 using Eqs. (3.19).

EXECUTE: From Eqs. (3.19), $v_{0x} = v_0 \cos \alpha_0$ and $v_{0y} = v_0 \sin \alpha_0$. Hence we can write the time t_1 when $v_y = 0$ as

$$_{1}=\frac{v_{0y}}{g}=\frac{v_{0}\sin\alpha_{0}}{g}$$

Equation (3.21) gives the height y = h at this time:

$$h = (v_0 \sin \alpha_0) \left(\frac{v_0 \sin \alpha_0}{g} \right) - \frac{1}{2}g \left(\frac{v_0 \sin \alpha_0}{g} \right)^2$$
$$= \frac{v_0^2 \sin^2 \alpha_0}{2g}$$

For a given launch speed v_0 , the maximum value of h occurs for $\sin \alpha_0 = 1$ and $\alpha_0 = 90^\circ$ —that is, when the projectile is launched straight up. (If it is launched horizontally, as in Example 3.6, $\alpha_0 = 0$ and the maximum height is zero!)

The time t_2 when the projectile hits the ground is

$$t_2 = \frac{2v_{0y}}{g} = \frac{2v_0 \sin \alpha_0}{g}$$

The horizontal range R is the value of x at this time. From Eq. (3.20), this is

$$R = (v_0 \cos \alpha_0) t_2 = (v_0 \cos \alpha_0) \frac{2v_0 \sin \alpha_0}{g}$$
$$= \frac{v_0^2 \sin 2\alpha_0}{g}$$

Example 3.9 Different initial and final heights

You throw a ball from your window 8.0 m above the ground. When the ball leaves your hand, it is moving at 10.0 m/s at an angle of 20° below the horizontal. How far horizontally from your window will the ball hit the ground? Ignore air resistance.

SOLUTION

IDENTIFY and SET UP: As in Examples 3.7 and 3.8, we want to find the horizontal coordinate of a projectile when it is at a given *y*-value. The difference here is that this value of *y* is *not* the same as the initial value. We again choose the *x*-axis to be horizontal and the *y*-axis to be upward, and place the origin of coordinates at the point where the ball leaves your hand (Fig. 3.25). We have $v_0 = 10.0 \text{ m/s}$ and $\alpha_0 = -20^\circ$ (the angle is negative because the initial velocity is below the horizontal). Our target variable is the value of *x* when the ball reaches the ground at y = -8.0 m. We'll use Eq. (3.21) to find the time *t* when this happens, then use Eq. (3.20) to find the value of *x* at this time.

(We used the trigonometric identity $2 \sin \alpha_0 \cos \alpha_0 = \sin 2\alpha_0$, found in Appendix B.) The maximum value of $\sin 2\alpha_0$ is 1; this occurs when $2\alpha_0 = 90^\circ$ or $\alpha_0 = 45^\circ$. This angle gives the maximum range for a given initial speed if air resistance can be neglected.

EVALUATE: Figure 3.24 is based on a composite photograph of three trajectories of a ball projected from a small spring gun at angles of 30°, 45°, and 60°. The initial speed v_0 is approximately the same in all three cases. The horizontal range is greatest for the 45° angle. The ranges are nearly the same for the 30° and 60° angles: Can you prove that for a given value of v_0 the range is the same for both an initial angle α_0 and an initial angle 90° $-\alpha_0$? (This is not the case in Fig. 3.24 due to air resistance.)

CAUTION Height and range of a projectile We don't recommend memorizing the above expressions for h, R, and R_{max} . They are applicable only in the special circumstances we have described. In particular, the expressions for the range R and maximum range R_{max} can be used *only* when launch and landing heights are equal. There are many end-of-chapter problems to which these equations do *not* apply.

3.24 A launch angle of 45° gives the maximum horizontal range. The range is shorter with launch angles of 30° and 60° .

3.25 Our sketch for this problem.

EXECUTE: To determine *t*, we rewrite Eq. (3.21) in the standard form for a quadratic equation for *t*:

$$\frac{1}{2}gt^2 - (v_0\sin\alpha_0)t + y = 0$$

The roots of this equation are

$$t = \frac{v_0 \sin \alpha_0 \pm \sqrt{(-v_0 \sin \alpha_0)^2 - 4(\frac{1}{2}g)y}}{2(\frac{1}{2}g)}$$

= $\frac{v_0 \sin \alpha_0 \pm \sqrt{v_0^2 \sin^2 \alpha_0 - 2gy}}{g}$
= $\frac{\left[(10.0 \text{ m/s}) \sin(-20^\circ) \pm \sqrt{(10.0 \text{ m/s})^2 \sin^2(-20^\circ) - 2(9.80 \text{ m/s}^2)(-8.0 \text{ m})}\right]}{9.80 \text{ m/s}^2}$
= -1.7 s or 0.98 s

Example 3.10 The zookeeper and the monkey

A monkey escapes from the zoo and climbs a tree. After failing to entice the monkey down, the zookeeper fires a tranquilizer dart directly at the monkey (Fig. 3.26). The monkey lets go at the instant the dart leaves the gun. Show that the dart will *always* hit the monkey, provided that the dart reaches the monkey before he hits the ground and runs away.

SOLUTION

IDENTIFY and SET UP: We have *two* bodies in projectile motion: the dart and the monkey. They have different initial positions and initial velocities, but they go into projectile motion at the same time t = 0. We'll first use Eq. (3.20) to find an expression for the time t when the *x*-coordinates x_{monkey} and x_{dart} are equal. Then we'll use that expression in Eq. (3.21) to see whether y_{monkey} and y_{dart} are also equal at this time; if they are, the dart hits the monkey. We

We discard the negative root, since it refers to a time before the ball left your hand. The positive root tells us that the ball reaches the ground at t = 0.98 s. From Eq. (3.20), the ball's *x*-coordinate at that time is

$$x = (v_0 \cos \alpha_0)t = (10.0 \text{ m/s})[\cos(-20^\circ)](0.98 \text{ s})$$

= 9.2 m

The ball hits the ground a horizontal distance of 9.2 m from your window.

EVALUATE: The root t = -1.7 s is an example of a "fictional" solution to a quadratic equation. We discussed these in Example 2.8 in Section 2.5; you should review that discussion.

make the usual choice for the *x*- and *y*-directions, and place the origin of coordinates at the muzzle of the tranquilizer gun (Fig. 3.26).

EXECUTE: The monkey drops straight down, so $x_{\text{monkey}} = d$ at all times. From Eq. (3.20), $x_{\text{dart}} = (v_0 \cos \alpha_0)t$. We solve for the time *t* when these *x*-coordinates are equal:

$$d = (v_0 \cos \alpha_0)t$$
 so $t = \frac{d}{v_0 \cos \alpha_0}$

We must now show that $y_{\text{monkey}} = y_{\text{dart}}$ at this time. The monkey is in one-dimensional free fall; its position at any time is given by Eq. (2.12), with appropriate symbol changes. Figure 3.26 shows that the monkey's initial height above the dart-gun's muzzle is $y_{\text{monkey}-0} = d \tan \alpha_0$, so

$$y_{\text{monkey}} = d \tan \alpha_0 - \frac{1}{2}gt^2$$

3.26 The tranquilizer dart hits the falling monkey.

From Eq. (3.21),

$$y_{\text{dart}} = (v_0 \sin \alpha_0)t - \frac{1}{2}gt^2$$

Comparing these two equations, we see that we'll have $y_{\text{monkey}} = y_{\text{dart}}$ (and a hit) if $d \tan \alpha_0 = (v_0 \sin \alpha_0)t$ at the time when the two *x*-coordinates are equal. To show that this happens, we replace *t* with $d/(v_0 \cos \alpha_0)$, the time when $x_{\text{monkey}} = x_{\text{dart}}$. Sure enough, we find that

$$(v_0 \sin \alpha_0)t = (v_0 \sin \alpha_0) \frac{d}{v_0 \cos \alpha_0} = d \tan \alpha_0$$

EVALUATE: We've proved that the *y*-coordinates of the dart and the monkey are equal at the same time that their *x*-coordinates are equal; a dart aimed at the monkey *always* hits it, no matter what v_0 is (provided the monkey doesn't hit the ground first). This result is independent of the value of *g*, the acceleration due to gravity. With no gravity (g = 0), the monkey would remain motionless, and the dart would travel in a straight line to hit him. With gravity, both fall the same distance $gt^2/2$ below their t = 0 positions, and the dart still hits the monkey (Fig. 3.26).

I

Test Your Understanding of Section 3.3 In Example 3.10, suppose the tranquilizer dart has a relatively low muzzle velocity so that the dart reaches a maximum height at a point *P* before striking the monkey, as shown in the figure. When the dart is at point *P*, will the monkey be (i) at point *A* (higher than *P*), (ii) at point *B* (at the same height as *P*), or (iii) at point *C* (lower than *P*)? Ignore air resistance.

3.4 Motion in a Circle

When a particle moves along a curved path, the direction of its velocity changes. As we saw in Section 3.2, this means that the particle *must* have a component of acceleration perpendicular to the path, even if its speed is constant (see Fig. 3.11b). In this section we'll calculate the acceleration for the important special case of motion in a circle.

Uniform Circular Motion

When a particle moves in a circle with *constant speed*, the motion is called **uniform circular motion.** A car rounding a curve with constant radius at constant speed, a satellite moving in a circular orbit, and an ice skater skating in a circle with constant speed are all examples of uniform circular motion (Fig. 3.27c; compare Fig. 3.12a). There is no component of acceleration parallel (tangent) to the path; otherwise, the speed would change. The acceleration vector is perpendicular (normal) to the path and hence directed inward (never outward!) toward the center of the circular path. This causes the direction of the velocity to change without changing the speed.

3.27 A car moving along a circular path. If the car is in uniform circular motion as in (c), the speed is constant and the acceleration is directed toward the center of the circular path (compare Fig. 3.12).

(a) Car speeding up along a circular path

(b) Car slowing down along a circular path

Component of acceleration parallel to velocity: Changes car's speed

Velocity: Changes car's direction

Component of acceleration parallel to velocity: Changes car's speed

(c) Uniform circular motion: Constant speed along a circular path

Acceleration is exactly perpendicular to velocity; no parallel component

To center of circle

3.28 Finding the velocity change $\Delta \vec{v}$, average acceleration \vec{a}_{av} , and instantaneous acceleration \vec{a}_{rad} for a particle moving in a circle with constant speed.

(a) A particle moves a distance Δs at constant speed along a circular path.

(c) The instantaneous acceleration

We can find a simple expression for the magnitude of the acceleration in uniform circular motion. We begin with Fig. 3.28a, which shows a particle moving with constant speed in a circular path of radius *R* with center at *O*. The particle moves from P_1 to P_2 in a time Δt . The vector change in velocity $\Delta \vec{v}$ during this time is shown in Fig. 3.28b.

The angles labeled $\Delta \phi$ in Figs. 3.28a and 3.28b are the same because \vec{v}_1 is perpendicular to the line OP_1 and \vec{v}_2 is perpendicular to the line OP_2 . Hence the triangles in Figs. 3.28a and 3.28b are *similar*. The ratios of corresponding sides of similar triangles are equal, so

$$\frac{|\Delta \vec{v}|}{v_1} = \frac{\Delta s}{R} \quad \text{or} \quad |\Delta \vec{v}| = \frac{v_1}{R} \Delta s$$

The magnitude a_{av} of the average acceleration during Δt is therefore

$$a_{\rm av} = rac{|\Delta \vec{v}|}{\Delta t} = rac{v_1}{R} rac{\Delta s}{\Delta t}$$

The magnitude *a* of the *instantaneous* acceleration \vec{a} at point P_1 is the limit of this expression as we take point P_2 closer and closer to point P_1 :

$$a = \lim_{\Delta t \to 0} \frac{v_1}{R} \frac{\Delta s}{\Delta t} = \frac{v_1}{R} \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

If the time interval Δt is short, Δs is the distance the particle moves along its curved path. So the limit of $\Delta s/\Delta t$ is the speed v_1 at point P_1 . Also, P_1 can be any point on the path, so we can drop the subscript and let v represent the speed at any point. Then

$$a_{\rm rad} = \frac{v^2}{R}$$
 (uniform circular motion) (3.28)

We have added the subscript "rad" as a reminder that the direction of the instantaneous acceleration at each point is always along a radius of the circle (toward the center of the circle; see Figs. 3.27c and 3.28c). So we have found that *in uniform circular motion, the magnitude* a_{rad} *of the instantaneous acceleration is equal to the square of the speed* v *divided by the radius R of the circle. Its direction is perpendicular to* \vec{v} *and inward along the radius.*

Because the acceleration in uniform circular motion is always directed toward the center of the circle, it is sometimes called **centripetal acceleration**. The word "centripetal" is derived from two Greek words meaning "seeking the center." Figure 3.29a shows the directions of the velocity and acceleration vectors at several points for a particle moving with uniform circular motion.

3.29 Acceleration and velocity (a) for a particle in uniform circular motion and (b) for a projectile with no air resistance.

CAUTION Uniform circular motion vs. projectile motion The acceleration in uniform circular motion (Fig. 3.29a) has some similarities to the acceleration in projectile motion without air resistance (Fig. 3.29b), but there are also some important differences. In both kinds of motion the *magnitude* of acceleration is the same at all times. However, in uniform circular motion the *direction* of \vec{a} changes continuously so that it always points toward the center of the circle. (At the top of the circle the acceleration points down; at the bottom of the circle the acceleration points up.) In projectile motion, by contrast, the direction of \vec{a} remains the same at all times.

We can also express the magnitude of the acceleration in uniform circular motion in terms of the **period** *T* of the motion, the time for one revolution (one complete trip around the circle). In a time *T* the particle travels a distance equal to the circumference $2\pi R$ of the circle, so its speed is

$$v = \frac{2\pi R}{T} \tag{3.29}$$

When we substitute this into Eq. (3.28), we obtain the alternative expression

 $a_{\rm rad} = \frac{4\pi^2 R}{T^2}$ (uniform circular motion) (3.30)

Example 3.11 Centripetal acceleration on a curved road

An Aston Martin V8 Vantage sports car has a "lateral acceleration" of $0.96g = (0.96)(9.8 \text{ m/s}^2) = 9.4 \text{ m/s}^2$. This is the maximum centripetal acceleration the car can sustain without skidding out of a curved path. If the car is traveling at a constant 40 m/s (about 89 mi/h, or 144 km/h) on level ground, what is the radius *R* of the tightest unbanked curve it can negotiate?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: The car is in uniform circular motion because it's moving at a constant speed along a curve that is a segment of a circle. Hence we can use Eq. (3.28) to solve for the target variable *R* in terms of the given centripetal acceleration

 $a_{\rm rad}$ and speed v:

$$R = \frac{v^2}{a_{\rm rad}} = \frac{(40 \text{ m/s})^2}{9.4 \text{ m/s}^2} = 170 \text{ m} \text{ (about 560 ft)}$$

Mastering **PHYSICS**

PhET: Ladybug Revolution **PhET:** Motion in 2D

This is the *minimum* radius because a_{rad} is the *maximum* centripetal acceleration.

EVALUATE: The minimum turning radius *R* is proportional to the *square* of the speed, so even a small reduction in speed can make *R* substantially smaller. For example, reducing *v* by 20% (from 40 m/s to 32 m/s) would decrease *R* by 36% (from 170 m to 109 m).

Another way to make the minimum turning radius smaller is to *bank* the curve. We'll investigate this option in Chapter 5.

Example 3.12 Centripetal acceleration on a carnival ride

Passengers on a carnival ride move at constant speed in a horizontal circle of radius 5.0 m, making a complete circle in 4.0 s. What is their acceleration?

SOLUTION

IDENTIFY and SET UP: The speed is constant, so this is uniform circular motion. We are given the radius R = 5.0 m and the period T = 4.0 s, so we can use Eq. (3.30) to calculate the acceleration directly, or we can calculate the speed v using Eq. (3.29) and then find the acceleration using Eq. (3.28).

EXECUTE: From Eq. (3.30),

$$a_{\rm rad} = \frac{4\pi^2(5.0 \text{ m})}{(4.0 \text{ s})^2} = 12 \text{ m/s}^2 = 1.3g$$

We can check this answer by using the second, roundabout approach. From Eq. (3.29), the speed is

$$v = \frac{2\pi R}{T} = \frac{2\pi (5.0 \text{ m})}{4.0 \text{ s}} = 7.9 \text{ m/s}$$

The centripetal acceleration is then

$$u_{\rm rad} = \frac{v^2}{R} = \frac{(7.9 \text{ m/s})^2}{5.0 \text{ m}} = 12 \text{ m/s}^2$$

EVALUATE: As in Example 3.11, the direction of \vec{a} is always toward the center of the circle. The magnitude of \vec{a} is relatively mild as carnival rides go; some roller coasters subject their passengers to accelerations as great as 4g.

Application Watch Out: Tight Curves Ahead!

These roller coaster cars are in nonuniform circular motion: They slow down and speed up as they move around a vertical loop. The large accelerations involved in traveling at high speed around a tight loop mean extra stress on the passengers' circulatory systems, which is why people with cardiac conditions are cautioned against going on such rides.

3.30 A particle moving in a vertical loop with a varying speed, like a roller coaster car.

Nonuniform Circular Motion

We have assumed throughout this section that the particle's speed is constant as it goes around the circle. If the speed varies, we call the motion **nonuniform circular motion**. In nonuniform circular motion, Eq. (3.28) still gives the *radial* component of acceleration $a_{rad} = v^2/R$, which is always *perpendicular* to the instantaneous velocity and directed toward the center of the circle. But since the speed v has different values at different points in the motion, the value of a_{rad} is not constant. The radial (centripetal) acceleration is greatest at the point in the circle where the speed is greatest.

In nonuniform circular motion there is also a component of acceleration that is *parallel* to the instantaneous velocity (see Figs. 3.27a and 3.27b). This is the component a_{\parallel} that we discussed in Section 3.2; here we call this component a_{tan} to emphasize that it is *tangent* to the circle. The tangential component of acceleration a_{tan} is equal to the rate of change of *speed*. Thus

$$a_{\text{rad}} = \frac{v^2}{R}$$
 and $a_{\text{tan}} = \frac{d|\vec{v}|}{dt}$ (nonuniform circular motion) (3.31)

The tangential component is in the same direction as the velocity if the particle is speeding up, and in the opposite direction if the particle is slowing down (Fig. 3.30). If the particle's speed is constant, $a_{tan} = 0$.

CAUTION Uniform vs. nonuniform circular motion Note that the two quantities

$l \vec{v} $	and	$d\vec{v}$
dt	anu	dt

are *not* the same. The first, equal to the tangential acceleration, is the rate of change of speed; it is zero whenever a particle moves with constant speed, even when its direction of motion changes (such as in *uniform* circular motion). The second is the magnitude of the vector acceleration; it is zero only when the particle's acceleration *vector* is zero—that is, when the particle moves in a straight line with constant speed. In *uniform* circular motion $|d\vec{v}/dt| = a_{rad} = v^2/r$; in *nonuniform* circular motion there is also a tangential component of acceleration, so $|d\vec{v}/dt| = \sqrt{a_{rad}^2 + a_{tan}^2}$.

Test Your Understanding of Section 3.4 Suppose that the particle in Fig. 3.30 experiences four times the acceleration at the bottom of the loop as it does at the top of the loop. Compared to its speed at the top of the loop, is its speed at the bottom of the loop (i) $\sqrt{2}$ times as great; (ii) 2 times as great; (iii) 2 $\sqrt{2}$ times as great; (iv) 4 times as great; or (v) 16 times as great?

3.5 Relative Velocity

You've no doubt observed how a car that is moving slowly forward appears to be moving backward when you pass it. In general, when two observers measure the velocity of a moving body, they get different results if one observer is moving relative to the other. The velocity seen by a particular observer is called the velocity *relative* to that observer, or simply **relative velocity**. Figure 3.31 shows a situation in which understanding relative velocity is extremely important.

We'll first consider relative velocity along a straight line, then generalize to relative velocity in a plane.

Relative Velocity in One Dimension

A passenger walks with a velocity of 1.0 m/s along the aisle of a train that is moving with a velocity of 3.0 m/s (Fig. 3.32a). What is the passenger's velocity?

It's a simple enough question, but it has no single answer. As seen by a second passenger sitting in the train, she is moving at 1.0 m/s. A person on a bicycle standing beside the train sees the walking passenger moving at 1.0 m/s + 3.0 m/s = 4.0 m/s. An observer in another train going in the opposite direction would give still another answer. We have to specify which observer we mean, and we speak of the velocity *relative* to a particular observer. The walking passenger's velocity relative to the train is 1.0 m/s, her velocity relative to the cyclist is 4.0 m/s, and so on. Each observer, equipped in principle with a meter stick and a stopwatch, forms what we call a **frame of reference**. Thus a frame of reference is a coordinate system plus a time scale.

Let's use the symbol *A* for the cyclist's frame of reference (at rest with respect to the ground) and the symbol *B* for the frame of reference of the moving train. In straight-line motion the position of a point *P* relative to frame *A* is given by $x_{P/A}$ (the position of *P* with respect to *A*), and the position of *P* relative to frame *B* is given by $x_{P/B}$ (Fig. 3.32b). The position of the origin of *B* with respect to the origin of *A* is $x_{B/A}$. Figure 3.32b shows that

$$x_{P/A} = x_{P/B} + x_{B/A} \tag{3.32}$$

In words, the coordinate of *P* relative to *A* equals the coordinate of *P* relative to *B* plus the coordinate of *B* relative to *A*.

The *x*-velocity of *P* relative to frame *A*, denoted by $v_{P/A-x}$, is the derivative of $x_{P/A}$ with respect to time. The other velocities are similarly obtained. So the time derivative of Eq. (3.32) gives us a relationship among the various velocities:

$$\frac{dx_{P/A}}{dt} = \frac{dx_{P/B}}{dt} + \frac{dx_{B/A}}{dt} \quad \text{or}$$

$$P_{A-x} = v_{P/B-x} + v_{B/A-x} \quad \text{(relative velocity along a line)} \quad (3.33)$$

Getting back to the passenger on the train in Fig. 3.32, we see that A is the cyclist's frame of reference, B is the frame of reference of the train, and point P represents the passenger. Using the above notation, we have

$$v_{P/B-x} = +1.0 \text{ m/s}$$
 $v_{B/A-x} = +3.0 \text{ m/s}$

From Eq. (3.33) the passenger's velocity $v_{P/A}$ relative to the cyclist is

$$v_{P/A-x} = +1.0 \text{ m/s} + 3.0 \text{ m/s} = +4.0 \text{ m/s}$$

as we already knew.

In this example, both velocities are toward the right, and we have taken this as the positive x-direction. If the passenger walks toward the *left* relative to the train, then $v_{P/B-x} = -1.0 \text{ m/s}$, and her x-velocity relative to the cyclist is $v_{P/A-x} = -1.0 \text{ m/s} + 3.0 \text{ m/s} = +2.0 \text{ m/s}$. The sum in Eq. (3.33) is always an algebraic sum, and any or all of the x-velocities may be negative.

When the passenger looks out the window, the stationary cyclist on the ground appears to her to be moving backward; we can call the cyclist's velocity relative to her $v_{A/P-x}$. Clearly, this is just the negative of the *passenger's* velocity relative to the *cyclist*, $v_{P/A-x}$. In general, if A and B are any two points or frames of reference,

$$v_{A/B-x} = -v_{B/A-x}$$

(3.34)

3.31 Airshow pilots face a complicated problem involving relative velocities. They must keep track of their motion relative to the air (to maintain enough airflow over the wings to sustain lift), relative to each other (to keep a tight formation without colliding), and relative to their audience (to remain in sight of the spectators).

3.32 (a) A passenger walking in a train. (b) The position of the passenger relative to the cyclist's frame of reference.

Problem-Solving Strategy 3.2 Relative Velocity

IDENTIFY *the relevant concepts:* Whenever you see the phrase "velocity relative to" or "velocity with respect to," it's likely that the concepts of relative velocity will be helpful.

SET UP *the problem:* Sketch and label each frame of reference in the problem. Each moving body has its own frame of reference; in addition, you'll almost always have to include the frame of reference of the earth's surface. (Statements such as "The car is traveling north at 90 km/h" implicitly refer to the car's velocity relative to the surface of the earth.) Use the labels to help identify the target variable. For example, if you want to find the *x*-velocity of a car (*C*) with respect to a bus (*B*), your target variable is $v_{C/B-x}$.

EXECUTE *the solution:* Solve for the target variable using Eq. (3.33). (If the velocities aren't along the same direction, you'll need to use the vector form of this equation, derived later in this section.) It's

Example 3.13 Relative velocity on a straight road

You drive north on a straight two-lane road at a constant 88 km/h. A truck in the other lane approaches you at a constant 104 km/h (Fig. 3.33). Find (a) the truck's velocity relative to you and (b) your velocity relative to the truck. (c) How do the relative velocities change after you and the truck pass each other? Treat this as a one-dimensional problem.

SOLUTION

IDENTIFY and SET UP: In this problem about relative velocities along a line, there are three reference frames: you (Y), the truck (T), and the earth's surface (E). Let the positive *x*-direction be north (Fig. 3.33). Then your *x*-velocity relative to the earth is $v_{Y/E-x} = +88 \text{ km/h}$. The truck is initially approaching you, so it is moving south and its *x*-velocity with respect to the earth is $v_{T/E-x} = -104 \text{ km/h}$. The target variables in parts (a) and (b) are $v_{T/Y-x}$ and $v_{Y/T-x}$, respectively. We'll use Eq. (3.33) to find the first target variable and Eq. (3.34) to find the second.

EXECUTE: (a) To find $v_{T/Y-x}$, we write Eq. (3.33) for the known $v_{T/F-x}$ and rearrange:

 $v_{T/E-x} = v_{T/Y-x} + v_{Y/E-x}$ $v_{T/Y-x} = v_{T/E-x} - v_{Y/E-x}$ = -104 km/h - 88 km/h = -192 km/h

The truck is moving at 192 km/h in the negative *x*-direction (south) relative to you.

(b) From Eq. (3.34),

$$v_{Y/T-x} = -v_{T/Y-x} = -(-192 \text{ km/h}) = +192 \text{ km/h}$$

important to note the order of the double subscripts in Eq. (3.33): $v_{B/A-x}$ means "*x*-velocity of *B* relative to *A*." These subscripts obey a kind of algebra, as Eq. (3.33) shows. If we regard each one as a fraction, then the fraction on the left side is the *product* of the fractions on the right side: P/A = (P/B)(B/A). You can apply this rule to any number of frames of reference. For example, if there are three different frames of reference *A*, *B*, and *C*, Eq. (3.33) becomes

$$v_{P/A-x} = v_{P/C-x} + v_{C/B-x} + v_{B/A-x}$$

EVALUATE *your answer:* Be on the lookout for stray minus signs in your answer. If the target variable is the *x*-velocity of a car relative to a bus $(v_{C/B-x})$, make sure that you haven't accidentally calculated the *x*-velocity of the *bus* relative to the *car* $(v_{B/C-x})$. If you've made this mistake, you can recover using Eq. (3.34).

3.33 Reference frames for you and the truck.

You are moving at 192 km/h in the positive *x*-direction (north) relative to the truck.

(c) The relative velocities do *not* change after you and the truck pass each other. The relative *positions* of the bodies don't matter. After it passes you the truck is still moving at 192 km/h toward the south relative to you, even though it is now moving away from you instead of toward you.

EVALUATE: To check your answer in part (b), use Eq. (3.33) directly in the form $v_{Y/T-x} = v_{Y/E-x} + v_{E/T-x}$. (The *x*-velocity of the earth with respect to the truck is the opposite of the *x*-velocity of the truck with respect to the earth: $v_{E/T-x} = -v_{T/E-x}$.) Do you get the same result?

Relative Velocity in Two or Three Dimensions

We can extend the concept of relative velocity to include motion in a plane or in space by using vector addition to combine velocities. Suppose that the passenger in Fig. 3.32a is walking not down the aisle of the railroad car but from one side of the car to the other, with a speed of 1.0 m/s (Fig. 3.34a). We can again describe the passenger's position *P* in two different frames of reference: *A* for

the stationary ground observer and *B* for the moving train. But instead of coordinates *x*, we use position vectors \vec{r} because the problem is now two-dimensional. Then, as Fig. 3.34b shows,

$$\vec{r}_{P/A} = \vec{r}_{P/B} + \vec{r}_{B/A}$$
 (3.35)

Just as we did before, we take the time derivative of this equation to get a relationship among the various velocities; the velocity of *P* relative to *A* is $\vec{v}_{P/A} = d\vec{r}_{P/A}/dt$ and so on for the other velocities. We get

$$\vec{v}_{P/A} = \vec{v}_{P/B} + \vec{v}_{B/A}$$
 (relative velocity in space) (3.36)

Equation (3.36) is known as the *Galilean velocity transformation*. It relates the velocity of a body *P* with respect to frame *A* and its velocity with respect to frame *B* ($\vec{v}_{P/A}$ and $\vec{v}_{P/B}$, respectively) to the velocity of frame *B* with respect to frame *A* ($\vec{v}_{B/A}$). If all three of these velocities lie along the same line, then Eq. (3.36) reduces to Eq. (3.33) for the components of the velocities along that line.

If the train is moving at $v_{B/A} = 3.0 \text{ m/s}$ relative to the ground and the passenger is moving at $v_{P/B} = 1.0 \text{ m/s}$ relative to the train, then the passenger's velocity vector $\vec{v}_{P/A}$ relative to the ground is as shown in Fig. 3.34c. The Pythagorean theorem then gives us

$$v_{P/A} = \sqrt{(3.0 \text{ m/s})^2 + (1.0 \text{ m/s})^2} = \sqrt{10 \text{ m}^2/\text{s}^2} = 3.2 \text{ m/s}$$

Figure 3.34c also shows that the *direction* of the passenger's velocity vector relative to the ground makes an angle ϕ with the train's velocity vector $\vec{v}_{B/A}$, where

$$\tan \phi = \frac{v_{P/B}}{v_{B/A}} = \frac{1.0 \text{ m/s}}{3.0 \text{ m/s}} \quad \text{and} \quad \phi = 18^{\circ}$$

As in the case of motion along a straight line, we have the general rule that if *A* and *B* are *any* two points or frames of reference,

$$\vec{\boldsymbol{v}}_{A/B} = -\vec{\boldsymbol{v}}_{B/A} \tag{3.37}$$

The velocity of the passenger relative to the train is the negative of the velocity of the train relative to the passenger, and so on.

In the early 20th century Albert Einstein showed in his special theory of relativity that the velocity-addition relationship given in Eq. (3.36) has to be modified when speeds approach the speed of light, denoted by *c*. It turns out that if the passenger in Fig. 3.32a could walk down the aisle at 0.30c and the train could move at 0.90c, then her speed relative to the ground would be not 1.20c but 0.94c; nothing can travel faster than light! We'll return to the special theory of relativity in Chapter 37.

3.34 (a) A passenger walking across a railroad car. (b) Position of the passenger relative to the cyclist's frame and the train's frame. (c) Vector diagram for the velocity of the passenger relative to the ground (the cyclist's frame), $\vec{v}_{P/A}$.

Example 3.14 Flying in a crosswind

An airplane's compass indicates that it is headed due north, and its airspeed indicator shows that it is moving through the air at 240 km/h. If there is a 100-km/h wind from west to east, what is the velocity of the airplane relative to the earth?

SOLUTION

IDENTIFY and SET UP: This problem involves velocities in two dimensions (northward and eastward), so it is a relative velocity problem using vectors. We are given the magnitude and direction of the velocity of the plane (P) relative to the air (A). We are also given the magnitude and direction of the wind velocity, which is the velocity of the air A with respect to the earth (E):

 $\vec{v}_{P/A} = 240 \text{ km/h}$ due north $\vec{v}_{A/E} = 100 \text{ km/h}$ due east

We'll use Eq. (3.36) to find our target variables: the magnitude and direction of the velocity $\vec{v}_{P/E}$ of the plane relative to the earth.

EXECUTE: From Eq. (3.36) we have

$$\vec{v}_{\rm P/E} = \vec{v}_{\rm P/A} + \vec{v}_{\rm A/E}$$

Figure 3.35 shows that the three relative velocities constitute a right-triangle vector addition; the unknowns are the speed $v_{P/E}$ and the angle α . We find

$$v_{\rm P/E} = \sqrt{(240 \text{ km/h})^2 + (100 \text{ km/h})^2} = 260 \text{ km/h}$$

 $\alpha = \arctan\left(\frac{100 \text{ km/h}}{240 \text{ km/h}}\right) = 23^\circ \text{ E of N}$

EVALUATE: You can check the results by taking measurements on the scale drawing in Fig. 3.35. The crosswind increases the speed of the airplane relative to the earth, but pushes the airplane off course.

3.35 The plane is pointed north, but the wind blows east, giving the resultant velocity $\vec{v}_{P/E}$ relative to the earth.

Example 3.15 Correcting for a crosswind

With wind and airspeed as in Example 3.14, in what direction should the pilot head to travel due north? What will be her velocity relative to the earth?

SOLUTION

IDENTIFY and SET UP: Like Example 3.14, this is a relative velocity problem with vectors. Figure 3.36 is a scale drawing of the situation. Again the vectors add in accordance with Eq. (3.36) and form a right triangle:

$$\vec{v}_{\rm P/E} = \vec{v}_{\rm P/A} + \vec{v}_{\rm A/E}$$

As Fig. 3.36 shows, the pilot points the nose of the airplane at an angle β into the wind to compensate for the crosswind. This angle, which tells us the direction of the vector $\vec{v}_{P/A}$ (the velocity of the airplane relative to the air), is one of our target variables. The other target variable is the speed of the airplane over the ground, which is the magnitude of the vector $\vec{v}_{P/E}$ (the velocity of the airplane relative to the earth). The known and unknown quantities are

 $\vec{v}_{\rm P/E}$ = magnitude unknown due north $\vec{v}_{\rm P/A}$ = 240 km/h direction unknown $\vec{v}_{\rm A/E}$ = 100 km/h due east **3.36** The pilot must point the plane in the direction of the vector $\vec{v}_{P/A}$ to travel due north relative to the earth.

We'll solve for the target variables using Fig. 3.36 and trigonometry.

EXECUTE: From Fig. 3.36 the speed $v_{P/E}$ and the angle β are

$$v_{P/E} = \sqrt{(240 \text{ km/h})^2 - (100 \text{ km/h})^2} = 218 \text{ km/h}$$

 $\beta = \arcsin\left(\frac{100 \text{ km/h}}{240 \text{ km/h}}\right) = 25^{\circ}$

The pilot should point the airplane 25° west of north, and her ground speed is then 218 km/h.

EVALUATE: There were two target variables—the magnitude of a vector and the direction of a vector—in both this example and Example 3.14. In Example 3.14 the magnitude and direction referred to the *same* vector ($\vec{v}_{P/E}$); here they refer to *different* vectors ($\vec{v}_{P/E}$ and $\vec{v}_{P/A}$).

While we expect a *headwind* to reduce an airplane's speed relative to the ground, this example shows that a *crosswind* does, too. That's an unfortunate fact of aeronautical life.

Test Your Understanding of Section 3.5 Suppose the nose of an airplane is pointed due east and the airplane has an airspeed of 150 km/h. Due to the wind, the airplane is moving due *north* relative to the ground and its speed relative to the ground is 150 km/h. What is the velocity of the air relative to the earth? (i) 150 km/h from east to west; (ii) 150 km/h from south to north; (iii) 150 km/h from south to north; (iv) 212 km/h from south to north; (vi) 212 km/h from southeast to northwest; (vii) there is no possible wind velocity that could cause this.

Position, velocity, and acceleration vectors: The position vector \vec{r} of a point *P* in space is the vector from the origin to *P*. Its components are the coordinates *x*, *y*, and *z*.

The average velocity vector \vec{v}_{av} during the time interval Δt is the displacement $\Delta \vec{r}$ (the change in the position vector \vec{r}) divided by Δt . The instantaneous velocity vector \vec{v} is the time derivative of \vec{r} , and its components are the time derivatives of x, y, and z. The instantaneous speed is the magnitude of \vec{v} . The velocity \vec{v} of a particle is always tangent to the particle's path. (See Example 3.1.)

The average acceleration vector \vec{a}_{av} during the time interval Δt equals $\Delta \vec{v}$ (the change in the velocity vector \vec{v}) divided by Δt . The instantaneous acceleration vector \vec{a} is the time derivative of \vec{v} , and its components are the time derivatives of v_x , v_y , and v_z . (See Example 3.2.)

The component of acceleration parallel to the direction of the instantaneous velocity affects the speed, while the component of \vec{a} perpendicular to \vec{v} affects the direction of motion. (See Examples 3.3 and 3.4.)

Projectile motion: In projectile motion with no air resistance, $a_x = 0$ and $a_y = -g$. The coordinates and velocity components are simple functions of time, and the shape of the path is always a parabola. We usually choose the origin to be at the initial position of the projectile. (See Examples 3.5–3.10.)

Uniform and nonuniform circular motion: When a particle moves in a circular path of radius *R* with constant speed *v* (uniform circular motion), its acceleration \vec{a} is directed toward the center of the circle and perpendicular to \vec{v} . The magnitude a_{rad} of the acceleration can be expressed in terms of *v* and *R* or in terms of *R* and the period *T* (the time for one revolution), where $v = 2\pi R/T$. (See Examples 3.11 and 3.12.)

If the speed is not constant in circular motion (nonuniform circular motion), there is still a radial component of \vec{a} given by Eq. (3.28) or (3.30), but there is also a component of \vec{a} parallel (tangential) to the path. This tangential component is equal to the rate of change of speed, dv/dt.

Relative velocity: When a body *P* moves relative to a body (or reference frame) *B*, and *B* moves relative to *A*, we denote the velocity of *P* relative to *B* by $\vec{v}_{P/B}$, the velocity of *P* relative to *A* by $\vec{v}_{P/A}$, and the velocity of *B* relative to *A* by $\vec{v}_{B/A}$. If these velocities are all along the same line, their components along that line are related by Eq. (3.33). More generally, these velocities are related by Eq. (3.36). (See Examples 3.13–3.15.)

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\vec{v}_{av} = \frac{\vec{r}_2 - \vec{r}_1}{t_2 - t_1} = \frac{\Delta \vec{r}}{\Delta t}$$

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

$$v_x = \frac{dx}{dt} \quad v_y = \frac{dy}{dt} \quad v_z = \frac{dz}{dt}$$

$$\vec{a}_{av} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$a_x = \frac{dv_x}{dt}$$

(3.1)

(3.2)

(3.3)

(3.4)

(3.8)

(3.9)

(3.20)

(3.21)

(3.22)

(3.23)

$$a_{y} = \frac{dv_{y}}{dt}$$
(3.10)
$$a_{z} = \frac{dv_{z}}{dt}$$

 $\begin{array}{c|c} y \\ \downarrow \\ \Delta y \\ \psi \\ y_2 \\ \hline O \\ \hline x_1 \\ \hline \Delta x \\ \hline \end{array} \begin{array}{c} \vec{v}_{av} = \frac{\Delta \vec{r}}{\Delta t} \\ \vec{r}_2 \\ \hline \hline \\ x_1 \\ \hline \\ \Delta x \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \\ x_1 \\ \hline \\ \Delta x \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \\ x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \\ x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \\ x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \\ x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \\ x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \begin{array}{c} x_1 \\ \hline \end{array} \begin{array}{c} x_2 \\ \hline \end{array} \end{array}$

$x = (v_0 \cos \alpha_0)t$				
$y = (v_0 \sin \alpha_0)t - \frac{1}{2}gt^2$				
$v_x = v_0 \cos \alpha_0$				
$v_y = v_0 \sin \alpha_0 - gt$				

MP

BRIDGING PROBLEM Launching Up an Incline

You fire a ball with an initial speed v_0 at an angle ϕ above the surface of an incline, which is itself inclined at an angle θ above the horizontal (Fig. 3.37). (a) Find the distance, measured along the incline, from the launch point to the point when the ball strikes the incline. (b) What angle ϕ gives the maximum range, measured along the incline? Ignore air resistance.

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution.

IDENTIFY and SET UP

- Since there's no air resistance, this is a problem in projectile motion. The goal is to find the point where the ball's parabolic trajectory intersects the incline.
- 2. Choose the *x* and *y*-axes and the position of the origin. When in doubt, use the suggestions given in Problem-Solving Strategy 3.1 in Section 3.3.
- 3. In the projectile equations from Section 3.3, the launch angle α_0 is measured from the horizontal. What is this angle in terms of θ and ϕ ? What are the initial *x* and *y*-components of the ball's initial velocity?
- 4. You'll need to write an equation that relates *x* and *y* for points along the incline. What is this equation? (This takes just geometry and trigonometry, not physics.)

3.37 Launching a ball from an inclined ramp.

EXECUTE

- 5. Write the equations for the *x*-coordinate and *y*-coordinate of the ball as functions of time *t*.
- 6. When the ball hits the incline, *x* and *y* are related by the equation that you found in step 4. Based on this, at what time *t* does the ball hit the incline?
- 7. Based on your answer from step 6, at what coordinates *x* and *y* does the ball land on the incline? How far is this point from the launch point?
- 8. What value of ϕ gives the *maximum* distance from the launch point to the landing point? (Use your knowledge of calculus.)

EVALUATE

9. Check your answers for the case $\theta = 0$, which corresponds to the incline being horizontal rather than tilted. (You already know the answers for this case. Do you know why?)

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q3.1 A simple pendulum (a mass swinging at the end of a string) swings back and forth in a circular arc. What is the direction of the acceleration of the mass when it is at the ends of the swing? At the midpoint? In each case, explain how you obtain your answer.

Q3.2 Redraw Fig. 3.11a if \vec{a} is antiparallel to \vec{v}_1 . Does the particle move in a straight line? What happens to its speed?

Q3.3 A projectile moves in a parabolic path without air resistance. Is there any point at which \vec{a} is parallel to \vec{v} ? Perpendicular to \vec{v} ? Explain.

Q3.4 When a rifle is fired at a distant target, the barrel is not lined up exactly on the target. Why not? Does the angle of correction depend on the distance to the target?

Q3.5 At the same instant that you fire a bullet horizontally from a rifle, you drop a bullet from the height of the barrel. If there is no air resistance, which bullet hits the ground first? Explain.

Q3.6 A package falls out of an airplane that is flying in a straight line at a constant altitude and speed. If you could ignore air resistance, what would be the path of the package as observed by the pilot? As observed by a person on the ground?

Q3.7 Sketch the six graphs of the *x*- and *y*-components of position, velocity, and acceleration versus time for projectile motion with $x_0 = y_0 = 0$ and $0 < \alpha_0 < 90^\circ$.

Q3.8 If a jumping frog can give itself the same initial speed regardless of the direction in which it jumps (forward or straight up), how is the maximum vertical height to which it can jump related to its maximum horizontal range $R_{\text{max}} = v_0^2/g$?

Q3.9 A projectile is fired upward at an angle θ above the horizontal with an initial speed v_0 . At its maximum height, what are its velocity vector, its speed, and its acceleration vector?

Q3.10 In uniform circular motion, what are the *average* velocity and *average* acceleration for one revolution? Explain.

Q3.11 In uniform circular motion, how does the acceleration change when the speed is increased by a factor of 3? When the radius is decreased by a factor of 2?

Q3.12 In uniform circular motion, the acceleration is perpendicular to the velocity at every instant. Is this still true when the motion is not uniform—that is, when the speed is not constant?

Q3.13 Raindrops hitting the side windows of a car in motion often leave diagonal streaks even if there is no wind. Why? Is the explanation the same or different for diagonal streaks on the windshield?

Q3.14 In a rainstorm with a strong wind, what determines the best position in which to hold an umbrella?

Q3.15 You are on the west bank of a river that is flowing north with a speed of 1.2 m/s. Your swimming speed relative to the

on.

water is 1.5 m/s, and the river is 60 m wide. What is your path relative to the earth that allows you to cross the river in the shortest time? Explain your reasoning.

Q3.16 A stone is thrown into the air at an angle above the horizontal and feels negligible air resistance. Which graph in Fig. Q3.16 best depicts the stone's *speed* v as a function of time t while it is in the air?

Figure **Q3.16**

EXERCISES

Section 3.1 Position and Velocity Vectors

3.1 • A squirrel has *x*- and *y*-coordinates (1.1 m, 3.4 m) at time $t_1 = 0$ and coordinates (5.3 m, -0.5 m) at time $t_2 = 3.0 \text{ s}$. For this time interval, find (a) the components of the average velocity, and (b) the magnitude and direction of the average velocity.

3.2 • A rhinoceros is at the origin of coordinates at time $t_1 = 0$. For the time interval from $t_1 = 0$ to $t_2 = 12.0$ s, the rhino's average velocity has x-component -3.8 m/s and y-component 4.9 m/s. At time $t_2 = 12.0$ s, (a) what are the x- and y-coordinates of the rhino? (b) How far is the rhino from the origin?

3.3 •• **CALC** A web page designer creates an animation in which a dot on a computer screen has a position of $\vec{r} = [4.0 \text{ cm} + (2.5 \text{ cm/s}^2)t^2]\hat{\imath} + (5.0 \text{ cm/s})t\hat{\jmath}$. (a) Find the magnitude and direction of the dot's average velocity between t = 0 and t = 2.0 s. (b) Find the magnitude and direction of the instantaneous velocity at t = 0, t = 1.0 s, and t = 2.0 s. (c) Sketch the dot's trajectory from t = 0 to t = 2.0 s, and show the velocities calculated in part (b).

3.4 • **CALC** The position of a squirrel running in a park is given by $\vec{r} = [(0.280 \text{ m/s})t + (0.0360 \text{ m/s}^2)t^2]\hat{\iota} + (0.0190 \text{ m/s}^3)t^3\hat{\jmath}$. (a) What are $v_x(t)$ and $v_y(t)$, the x- and y-components of the velocity of the squirrel, as functions of time? (b) At t = 5.00 s, how far is the squirrel from its initial position? (c) At t = 5.00 s, what are the magnitude and direction of the squirrel's velocity?

Section 3.2 The Acceleration Vector

3.5 • A jet plane is flying at a constant altitude. At time $t_1 = 0$ it has components of velocity $v_x = 90 \text{ m/s}$, $v_y = 110 \text{ m/s}$. At time $t_2 = 30.0 \text{ s}$ the components are $v_x = -170 \text{ m/s}$, $v_y = 40 \text{ m/s}$. (a) Sketch the velocity vectors at t_1 and t_2 . How do these two vectors differ? For this time interval calculate (b) the components of the average acceleration, and (c) the magnitude and direction of the average acceleration.

3.6 •• A dog running in an open field has components of velocity $v_x = 2.6 \text{ m/s}$ and $v_y = -1.8 \text{ m/s}$ at $t_1 = 10.0 \text{ s}$. For the time interval from $t_1 = 10.0 \text{ s}$ to $t_2 = 20.0 \text{ s}$, the average acceleration of the dog has magnitude 0.45 m/s^2 and direction 31.0° measured from the +x-axis toward the +y-axis. At $t_2 = 20.0 \text{ s}$, (a) what are the x- and y-components of the dog's velocity? (b) What are the magnitude and direction of the dog's velocity? (c) Sketch the velocity vectors at t_1 and t_2 . How do these two vectors differ?

3.7 •• **CALC** The coordinates of a bird flying in the *xy*-plane are given by $x(t) = \alpha t$ and $y(t) = 3.0 \text{ m} - \beta t^2$, where $\alpha = 2.4 \text{ m/s}$ and $\beta = 1.2 \text{ m/s}^2$. (a) Sketch the path of the bird between t = 0 and t = 2.0 s. (b) Calculate the velocity and acceleration vectors of the bird as functions of time. (c) Calculate the magnitude and direction of the bird's velocity and acceleration at t = 2.0 s. (d) Sketch the velocity and acceleration t = 2.0 s. (d) Sketch the velocity and acceleration vectors at t = 2.0 s. At this instant, is the bird speeding up, is it slowing down, or is its speed instantaneously not changing? Is the bird turning? If so, in what direction?

Section 3.3 Projectile Motion

3.8 • **CALC** A remote-controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by $\vec{v} = [5.00 \text{ m/s} - (0.0180 \text{ m/s}^3)t^2]\hat{i} + [2.00 \text{ m/s} + (0.550 \text{ m/s}^2)t]\hat{j}$. (a) What are $a_x(t)$ and $a_y(t)$, the x- and y-components of the velocity of the car as functions of time? (b) What are the magnitude and direction of the velocity of the car at t = 8.00 s? (b) What are the magnitude and direction of the acceleration of the car at t = 8.00 s? **3.9** • A physics book slides off a horizontal tabletop with a speed of 1.10 m/s. It strikes the floor in 0.350 s. Ignore air resistance. Find (a) the height of the tabletop above the floor; (b) the horizontal distance from the edge of the table to the point where the book strikes the floor; (c) the horizontal and vertical components of the book's velocity, and the magnitude and direction of its velocity, just before the book reaches the floor. (d) Draw x-t, y-t, v_x -t, and v_y -t graphs for the motion.

3.10 •• A daring 510-N swimmer dives off a cliff with a running horizontal leap, as shown in Fig. E3.10. What must her minimum speed be just as she leaves the top of the cliff so that she will miss the ledge at the bottom, which is 1.75 m wide and 9.00 m below the top of the cliff?

3.11 • Two crickets, Chirpy and

Milada, jump from the top of a vertical cliff. Chirpy just drops and reaches the ground in 3.50 s, while Milada jumps horizontally with an initial speed of 95.0 cm/s. How far from the base of the cliff will Milada hit the ground?

3.12 • A rookie quarterback throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore air resistance. (a) How much time is required for the football to reach the highest point of the trajectory? (b) How high is this point? (c) How much time (after it is thrown) is required for the football to return to its original level? How does this compare with the time calculated in part (a)? (d) How far has the football traveled horizontally during this time? (e) Draw *x-t*, *y-t*, v_x -*t*, and v_y -*t* graphs for the motion.

3.13 •• Leaping the River I. A car traveling on a level horizontal road comes to a bridge during a storm and finds the bridge washed out. The driver must get to the other side, so he decides to try leaping it with his car. The side of the road the car is on is 21.3 m above the river, while the opposite side is a mere 1.8 m above the river. The river itself is a raging torrent 61.0 m wide. (a) How fast should the car be traveling at the time it leaves the road in order just to clear the river and land safely on the opposite side? (b) What is the speed of the car just before it lands on the other side?

3.14 • **BIO** The Champion Jumper of the Insect World. The froghopper, *Philaenus spumarius*, holds the world record for

insect jumps. When leaping at an angle of 58.0° above the horizontal, some of the tiny critters have reached a maximum height of 58.7 cm above the level ground. (See *Nature*, Vol. 424, July 31, 2003, p. 509.) (a) What was the takeoff speed for such a leap? (b) What horizontal distance did the froghopper cover for this world-record leap?

3.15 •• Inside a starship at rest on the earth, a ball rolls off the top of a horizontal table and lands a distance D from the foot of the table. This starship now lands on the unexplored Planet X. The commander, Captain Curious, rolls the same ball off the same table with the same initial speed as on earth and finds that it lands a distance 2.76D from the foot of the table. What is the acceleration due to gravity on Planet X?

3.16 • On level ground a shell is fired with an initial velocity of 50.0 m/s at 60.0° above the horizontal and feels no appreciable air resistance. (a) Find the horizontal and vertical components of the shell's initial velocity. (b) How long does it take the shell to reach its highest point? (c) Find its maximum height above the ground. (d) How far from its firing point does the shell land? (e) At its highest point, find the horizontal and vertical components of its acceleration and velocity.

3.17 • A major leaguer hits a baseball so that it leaves the bat at a speed of 30.0 m/s and at an angle of 36.9° above the horizontal. You can ignore air resistance. (a) At what *two* times is the baseball at a height of 10.0 m above the point at which it left the bat? (b) Calculate the horizontal and vertical components of the baseball's velocity at each of the two times calculated in part (a). (c) What are the magnitude and direction of the baseball's velocity when it returns to the level at which it left the bat?

3.18 • A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0° above the horizontal. The shot hits the ground 2.08 s later. You can ignore air resistance. (a) What are the components of the shot's acceleration while in flight? (b) What are the components of the shot's velocity at the beginning and at the end of its trajectory? (c) How far did she throw the shot horizontally? (d) Why does the expression for *R* in Example 3.8 *not* give the correct answer for part (c)? (e) How high was the shot above the ground when she released it? (f) Draw *x*-*t*, *y*-*t*, *v*_x-*t*, and *v*_y-*t* graphs for the motion.

3.19 •• Win the Prize. In a carnival booth, you win a stuffed giraffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal distance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin lands in the dish. You can ignore air resistance. (a) What is the height of the shelf above the point where the

Figure E3.19

quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish?

3.20 •• Suppose the departure angle α_0 in Fig. 3.26 is 42.0° and the distance *d* is 3.00 m. Where will the dart and monkey meet if the initial speed of the dart is (a) 12.0 m/s? (b) 8.0 m/s? (c) What will happen if the initial speed of the dart is 4.0 m/s? Sketch the trajectory in each case.

3.21 •• A man stands on the roof of a 15.0-m-tall building and throws a rock with a velocity of magnitude 30.0 m/s at an angle of 33.0° above the horizontal. You can ignore air resistance. Calculate (a) the maximum height above the roof reached by the rock; (b) the magnitude of the velocity of the rock just before it strikes the ground; and (c) the horizontal range from the base of the building to the point where the rock strikes the ground. (d) Draw *x*-*t*, *y*-*t*, v_x -*t*, and v_y -*t* graphs for the motion.

3.22 • Firemen are shooting a stream of water at a burning building using a high-pressure hose that shoots out the water with a speed of 25.0 m/s as it leaves the end of the hose. Once it leaves the hose, the water moves in projectile motion. The firemen adjust the angle of elevation α of the hose until the water takes 3.00 s to reach a building 45.0 m away. You can ignore air resistance; assume that the end of the hose is at ground level. (a) Find the angle of elevation α . (b) Find the speed and acceleration of the water at the highest point in its trajectory. (c) How high above the ground does the water strike the building, and how fast is it moving just before it hits the building?

3.23 •• A 124-kg balloon carrying a 22-kg basket is descending with a constant downward velocity of 20.0 m/s. A 1.0-kg stone is thrown from the basket with an initial velocity of 15.0 m/s perpendicular to the path of the descending balloon, as measured relative to a person at rest in the basket. The person in the basket sees the stone hit the ground 6.00 s after being thrown. Assume that the balloon continues its downward descent with the same constant speed of 20.0 m/s. (a) How high was the balloon when the rock was thrown out? (b) How high is the balloon when the rock hits the ground? (c) At the instant the rock hits the ground, how far is it from the basket? (d) Just before the rock hits the ground, find its horizontal and vertical velocity components as measured by an observer (i) at rest in the basket and (ii) at rest on the ground.

Section 3.4 Motion in a Circle

3.24 •• **BIO Dizziness.** Our balance is maintained, at least in part, by the endolymph fluid in the inner ear. Spinning displaces this fluid, causing dizziness. Suppose a dancer (or skater) is spinning at a very fast 3.0 revolutions per second about a vertical axis through the center of his head. Although the distance varies from person to person, the inner ear is approximately 7.0 cm from the axis of spin. What is the radial acceleration (in m/s^2 and in g's) of the endolymph fluid?

3.25 •• The earth has a radius of 6380 km and turns around once on its axis in 24 h. (a) What is the radial acceleration of an object at the earth's equator? Give your answer in m/s^2 and as a fraction of g. (b) If a_{rad} at the equator is greater than g, objects will fly off the earth's surface and into space. (We will see the reason for this in Chapter 5.) What would the period of the earth's rotation have to be for this to occur?

3.26 •• A model of a helicopter rotor has four blades, each 3.40 m long from the central shaft to the blade tip. The model is rotated in a wind tunnel at 550 rev/min. (a) What is the linear speed of the blade tip, in m/s? (b) What is the radial acceleration of the blade tip expressed as a multiple of the acceleration of gravity, g?

3.28 • The radius of the earth's orbit around the sun (assumed to be circular) is 1.50×10^8 km, and the earth travels around this orbit in 365 days. (a) What is the magnitude of the orbital velocity of the earth, in m/s? (b) What is the radial acceleration of the earth toward the sun, in m/s²? (c) Repeat parts (a) and (b) for the motion of the planet Mercury (orbit radius = 5.79×10^7 km, orbital period = 88.0 days).

Figure **E3.29**

3.29 • A Ferris wheel with radius 14.0 m is turning about a horizontal axis through its center (Fig. E3.29). The linear speed of a passenger on the rim is constant and equal to 7.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion? (b) The highest point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?

3.30 •• **BIO Hypergravity.** At its Ames Research Center, NASA uses its large "20-G" centrifuge to test the effects of very large accelerations ("hypergravity") on test pilots and astronauts. In this device, an arm 8.84 m long rotates about one end in a horizontal plane, and the astronaut is strapped in at the other end. Suppose that he is aligned along the arm with his head at the outermost end. The maximum sustained acceleration to which humans are subjected in this machine is typically 12.5g. (a) How fast must the astronaut's head be moving to experience this maximum acceleration? (b) What is the *difference* between the acceleration of his head and feet if the astronaut is 2.00 m tall? (c) How fast in rpm (rev/min) is the arm turning to produce the maximum sustained acceleration?

Section 3.5 Relative Velocity

3.31 • A "moving sidewalk" in an airport terminal building moves at 1.0 m/s and is 35.0 m long. If a woman steps on at one end and walks at 1.5 m/s relative to the moving sidewalk, how much time does she require to reach the opposite end if she walks (a) in the same direction the sidewalk is moving? (b) In the opposite direction?

3.32 • A railroad flatcar is traveling to the right at a speed of 13.0 m/s relative to an observer standing on the ground. Someone is riding a motor scooter on the flatcar (Fig. E3.32). What is the velocity (magnitude and direction) of the motor scooter relative to the flatcar if its velocity relative to the observer on the ground is (a) 18.0 m/s to the right? (b) 3.0 m/s to the left? (c) zero?

3.33 •• A canoe has a velocity of 0.40 m/s southeast relative to the earth. The canoe is on a river that is flowing 0.50 m/s east relative to the earth. Find the velocity (magnitude and direction) of the canoe relative to the river.

3.34 • Two piers, A and B, are located on a river: B is 1500 m downstream from A (Fig. E3.34). Two friends must make round trips from pier A to pier B and return. One rows a boat at a constant speed of 4.00 km/h relative to the water; the other walks on the shore at a constant speed of 4.00 km/h. The velocity of the river is 2.80 km/h in the direction from A to B. How much time does it take each person to make the round trip?

Figure E3.34

3.35 • **Crossing the River I.** A river flows due south with a speed of 2.0 m/s. A man steers a motorboat across the river; his velocity relative to the water is 4.2 m/s due east. The river is 800 m wide. (a) What is his velocity (magnitude and direction) relative to the earth? (b) How much time is required to cross the river? (c) How far south of his starting point will he reach the opposite bank?

3.36 • Crossing the River II. (a) In which direction should the motorboat in Exercise 3.35 head in order to reach a point on the opposite bank directly east from the starting point? (The boat's speed relative to the water remains 4.2 m/s.) (b) What is the velocity of the boat relative to the earth? (c) How much time is required to cross the river?

3.37 •• The nose of an ultralight plane is pointed south, and its airspeed indicator shows 35 m/s. The plane is in a 10-m/s wind blowing toward the southwest relative to the earth. (a) In a vector-addition diagram, show the relationship of $\vec{v}_{P/E}$ (the velocity of the plane relative to the earth) to the two given vectors. (b) Letting *x* be east and *y* be north, find the components of $\vec{v}_{P/E}$. (c) Find the magnitude and direction of $\vec{v}_{P/E}$.

3.38 •• An airplane pilot wishes to fly due west. A wind of 80.0 km/h (about 50 mi/h) is blowing toward the south. (a) If the airspeed of the plane (its speed in still air) is 320.0 km/h (about 200 mi/h), in which direction should the pilot head? (b) What is the speed of the plane over the ground? Illustrate with a vector diagram.

3.39 •• **BIO Bird Migration.** Canadian geese migrate essentially along a north–south direction for well over a thousand kilometers in some cases, traveling at speeds up to about 100 km/h. If one such bird is flying at 100 km/h relative to the air, but there is a

Figure **E3.27**

40 km/h wind blowing from west to east, (a) at what angle relative to the north–south direction should this bird head so that it will be traveling directly southward relative to the ground? (b) How long will it take the bird to cover a ground distance of 500 km from north to south? (*Note:* Even on cloudy nights, many birds can navigate using the earth's magnetic field to fix the north–south direction.)

PROBLEMS

3.40 •• An athlete starts at point *A* and runs at a constant speed of 6.0 m/s around a circular track 100 m in diameter, as shown in Fig. P3.40. Find the *x*-and *y*-components of this runner's average velocity and average acceleration between points (a) *A* and *B*, (b) *A* and *C*, (c) *C* and *D*, and (d) *A* and *A* (a full lap). (e) Calculate the magnitude of the runner's average velocity

between *A* and *B*. Is his average speed equal to the magnitude of his average velocity? Why or why not? (f) How can his velocity be changing if he is running at constant speed?

3.41 • **CALC** A rocket is fired at an angle from the top of a tower of height $h_0 = 50.0$ m. Because of the design of the engines, its position coordinates are of the form $x(t) = A + Bt^2$ and $y(t) = C + Dt^3$, where A, B, C, and D are constants. Furthermore, the acceleration of the rocket 1.00 s after firing is $\vec{a} = (4.00\hat{i} + 3.00\hat{j}) \text{ m/s}^2$. Take the origin of coordinates to be at the base of the tower. (a) Find the constants A, B, C, and D, including their SI units. (b) At the instant after the rocket is fired, what are its acceleration vector and its velocity? (c) What are the *x*- and *y*-components of the rocket's velocity 10.0 s after it is fired, and how fast is it moving? (d) What is the position vector of the rocket 10.0 s after it is fired?

3.42 ••• **CALC** A faulty model rocket moves in the *xy*-plane (the positive *y*-direction is vertically upward). The rocket's acceleration has components $a_x(t) = \alpha t^2$ and $a_y(t) = \beta - \gamma t$, where $\alpha = 2.50 \text{ m/s}^4$, $\beta = 9.00 \text{ m/s}^2$, and $\gamma = 1.40 \text{ m/s}^3$. At t = 0 the rocket is at the origin and has velocity $\vec{v}_0 = v_{0x}\hat{i} + v_{0y}\hat{j}$ with $v_{0x} = 1.00 \text{ m/s}$ and $v_{0y} = 7.00 \text{ m/s}$. (a) Calculate the velocity and position vectors as functions of time. (b) What is the maximum height reached by the rocket? (c) Sketch the path of the rocket. (d) What is the horizontal displacement of the rocket when it returns to y = 0?

3.43 •• CALC If $\vec{r} = bt^2\hat{i} + ct^3\hat{j}$, where *b* and *c* are positive constants, when does the velocity vector make an angle of 45.0° with the *x*- and *y*-axes?

3.44 •• **CALC** The position of a dragonfly that is flying parallel to the ground is given as a function of time by $\vec{r} = [2.90 \text{ m} + (0.0900 \text{ m/s}^2)t^2]\hat{\iota} - (0.0150 \text{ m/s}^3)t^3\hat{j}$. (a) At what value of t does the velocity vector of the insect make an angle of 30.0° clockwise from the +x-axis? (b) At the time calculated in part (a), what are the magnitude and direction of the acceleration vector of the insect?

3.45 •• **CP CALC** A small toy airplane is flying in the *xy*-plane parallel to the ground. In the time interval t = 0 to t = 1.00 s, its velocity as a function of time is given by $\vec{v} = (1.20 \text{ m/s}^2)t\hat{i} + [12.0 \text{ m/s} - (2.00 \text{ m/s}^2)t]\hat{j}$. At what

value of t is the velocity of the plane perpendicular to its acceleration?

3.46 •• CALC A bird flies in the *xy*-plane with a velocity vector given by $\vec{v} = (\alpha - \beta t^2)\hat{i} + \gamma t\hat{j}$, with $\alpha = 2.4 \text{ m/s}$, $\beta = 1.6 \text{ m/s}^3$, and $\gamma = 4.0 \text{ m/s}^2$. The positive y-direction is vertically upward. At t = 0 the bird is at the origin. (a) Calculate the position and acceleration vectors of the bird as functions of time. (b) What is the bird's altitude (y-coordinate) as it flies over x = 0 for the first time after t = 0?

3.47 ••• **CP** A test rocket is launched by accelerating it along a 200.0-m incline at 1.25 m/s^2 starting from rest at point *A* (Fig. P3.47). The incline rises at 35.0° above the horizontal, and at the instant the rocket leaves it, its engines turn off and it is sub-

ject only to gravity (air resistance can be ignored). Find (a) the maximum height above the ground that the rocket reaches, and (b) the greatest horizontal range of the rocket beyond point *A*.

3.48 • Martian Athletics. In the long jump, an athlete launches herself at an angle above the ground and lands at the same height, trying to travel the greatest horizontal distance. Suppose that on earth she is in the air for time *T*, reaches a maximum height *h*, and achieves a horizontal distance *D*. If she jumped in *exactly* the same way during a competition on Mars, where g_{Mars} is 0.379 of its earth value, find her time in the air, maximum height, and horizontal distance. Express each of these three quantities in terms of its earth value. Air resistance can be neglected on both planets.

3.49 •• **Dynamite!** A demolition crew uses dynamite to blow an old building apart. Debris from the explosion flies off in all directions and is later found at distances as far as 50 m from the explosion. Estimate the maximum speed at which debris was blown outward by the explosion. Describe any assumptions that you make.

3.50 ••• BIO Spiraling Up. It is common to see birds of prey rising upward on thermals. The paths they take may be spiral-like. You can model the spiral motion as uniform circular motion combined with a constant upward velocity. Assume a bird completes a circle of radius 6.00 m every 5.00 s and rises vertically at a constant rate of 3.00 m/s. Determine: (a) the speed of the bird relative to the ground; (b) the bird's acceleration (magnitude and direction); and (c) the angle between the bird's velocity vector and the horizontal.

3.51 •• A jungle veterinarian with a blow-gun loaded with a tranquilizer dart and a sly 1.5-kg monkey are each 25 m above the ground in trees 70 m apart. Just as the hunter shoots horizontally at the monkey, the monkey drops from the tree in a vain attempt to escape being hit. What must the minimum muzzle velocity of the dart have been for the hunter to have hit the monkey before it reached the ground?

3.52 ••• A movie stuntwoman drops from a helicopter that is 30.0 m above the ground and moving with a constant velocity whose components are 10.0 m/s upward and 15.0 m/s horizontal and toward the south. You can ignore air resistance. (a) Where on the ground (relative to the position of the helicopter when she drops) should the stuntwoman have placed the foam mats that break her fall? (b) Draw *x*-*t*, *y*-*t*, v_x -*t*, and v_y -*t* graphs of her motion. **3.53** •• In fighting forest fires, airplanes work in support of ground crews by dropping water on the fires. A pilot is practicing by dropping a canister of red dye, hoping to hit a target on the ground below. If the plane is flying in a horizontal path 90.0 m above the ground and with a speed of 64.0 m/s (143 mi/h), at what horizontal distance from the target should the pilot release the canister? Ignore air resistance.

3.54 •• A cannon, located 60.0 m from the base of a vertical 25.0-m-tall cliff, shoots a 15-kg shell at 43.0° above the horizontal toward the cliff. (a) What must the minimum muzzle velocity be for the shell to clear the top of the cliff? (b) The ground at the top of the cliff is level, with a constant elevation of 25.0 m above the cannon. Under the conditions of part (a), how far does the shell land past the edge of the cliff?

3.55 •• An airplane is flying with a velocity of 90.0 m/s at an angle of 23.0° above the horizontal. When the plane is 114 m directly above a dog that is standing on level ground, a suitcase drops out of the luggage compartment. How far from the dog will the suitcase land? You can ignore air resistance.

3.56 ••• As a ship is approaching the dock at 45.0 cm/s, an important piece of landing equipment needs to be thrown to it before it can dock. This equipment is thrown at 15.0 m/s at 60.0° above the horizontal from the top of a tower at the edge of the water, 8.75 m above the ship's deck (Fig. P3.56). For this equipment to land at the front of the ship, at what distance *D* from the dock should the ship be when the equipment is thrown? Air resistance can be neglected.

Figure **P3.56**

3.57 • **CP CALC** A toy rocket is launched with an initial velocity of 12.0 m/s in the horizontal direction from the roof of a 30.0-m-tall building. The rocket's engine produces a horizontal acceleration of $(1.60 \text{ m/s}^3)t$, in the same direction as the initial velocity, but in the vertical direction the acceleration is g, downward. Air resistance can be neglected. What horizontal distance does the rocket travel before reaching the ground?

3.58 •• An Errand of Mercy. An airplane is dropping bales of hay to cattle stranded in a blizzard on the Great Plains. The pilot releases the bales at 150 m above the level ground when the plane is flying at 75 m/s in a direction 55° above the horizontal. How far in front of the cattle should the pilot release the hay so that the bales land at the point where the cattle are stranded?

3.59 ••• The Longest Home Run. According to the *Guinness Book of World Records*, the longest home run ever measured was hit by Roy "Dizzy" Carlyle in a minor league game. The ball traveled 188 m (618 ft) before landing on the ground outside the ballpark. (a) Assuming the ball's initial velocity was in a direction 45° above the horizontal and ignoring air resistance, what did the initial speed of the ball need to be to produce such a home run if the ball was hit at a point 0.9 m (3.0 ft) above ground level? Assume that the ground was perfectly flat. (b) How far

would the ball be above a fence 3.0 m (10 ft) high if the fence was 116 m (380 ft) from home plate?

3.60 ••• A water hose is used to fill a large cylindrical storage tank of diameter D and height 2D. The hose shoots the water at 45° above the horizontal from the same level as the base of the tank and is a distance 6D away (Fig. P3.60). For what *range* of launch speeds (v_0) will the water enter the tank? Ignore air resistance, and express your answer in terms of D and g.

Figure **P3.60**

3.61 •• A projectile is being launched from ground level with no air resistance. You want to avoid having it enter a temperature inversion layer in the atmosphere a height h above the ground. (a) What is the maximum launch speed you could give this projectile if you shot it straight up? Express your answer in terms of h and g. (b) Suppose the launcher available shoots projectiles at twice the maximum launch speed you found in part (a). At what maximum angle above the horizontal should you launch the projectile? (c) How far (in terms of h) from the launcher does the projectile in part (b) land?

3.62 •• Kicking a Field Goal. In U.S. football, after a touchdown the team has the opportunity to earn one more point by kicking the ball over the bar between the goal posts. The bar is 10.0 ft above the ground, and the ball is kicked from ground level, 36.0 ft horizontally from the bar (Fig. P3.62). Football regulations are stated in English units, but convert them to SI units for this problem. (a) There is a minimum angle above the ground such that if the ball is launched below this angle, it can never clear the bar, no matter how fast it is kicked. What is this angle? (b) If the ball is kicked at 45.0° above the horizontal, what must its initial speed be if it is to just clear the bar? Express your answer in m/s and in km/h. Figure **P3.62**

Figure **P3.63**

3.63 •• A grasshopper leaps into the air from the edge of a vertical cliff, as shown in Fig. P3.63. Use information from the figure to find (a) the initial speed of the grasshopper and (b) the height of the cliff.

3.64 •• A World Record. In the shot put, a standard trackand-field event, a 7.3-kg object (the shot) is thrown by releasing it at approximately 40° over a straight left leg. The world record for distance,

set by Randy Barnes in 1990, is 23.11 m. Assuming that Barnes released the shot put at 40.0° from a height of 2.00 m above the ground, with what speed, in m/s and in mph, did he release it?

3.65 ••• Look Out! A snowball rolls off a barn roof that slopes downward at an angle of 40° (Fig. P3.65). The edge of the roof is 14.0 m above the ground, and the snowball has a speed of 7.00 m/s as it rolls off the roof. Ignore air resistance. (a) How far from the edge of the barn does the snowball strike the ground if it doesn't strike anything else while falling? (b) Draw *x*-*t*, *y*-*t*, v_x -*t*, and v_y -*t* graphs for the motion in part (a). (c) A man 1.9 m tall is standing 4.0 m from the

3.66 ••• On the Flying Trapeze. Figure

A new circus act is called the Texas Tumblers. Lovely Mary Belle swings from a trapeze, projects herself at an angle of 53° , and is supposed to be caught by Joe Bob, whose hands are 6.1 m above and 8.2 m horizontally from her launch point (Fig. P3.66). You can ignore air resistance. (a) What initial speed v_0 must Mary Belle have just to reach Joe Bob? (b) For the initial speed calculated in part (a), what are the magnitude

and direction of her velocity when Mary Belle reaches Joe Bob? (c) Assuming that Mary Belle has the initial speed calculated in part (a), draw *x*-*t*, *y*-*t*, v_x -*t*, and v_y -*t* graphs showing the motion of both tumblers. Your graphs should show the motion up until the point where Mary Belle reaches Joe Bob. (d) The night of their debut performance, Joe Bob misses her completely as she flies past. How far horizontally does Mary Belle travel, from her initial launch point, before landing in the safety net 8.6 m below her starting point?

3.67 •• Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.67). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. You can ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land?

Figure **P3.67**

edge of the barn. Will he be hit by the snowball?

3.68 •• A rock is thrown from the roof of a building with a velocity v_0 at an angle of α_0 from the horizontal. The building has height *h*. You can ignore air resistance. Calculate the magnitude of the velocity of the rock just before it strikes the ground, and show that this speed is independent of α_0 .

3.69 • A 5500-kg cart carrying a vertical rocket launcher moves to the right at a constant speed of 30.0 m/s along a horizontal track. It launches a 45.0-kg rocket vertically upward with an initial speed of 40.0 m/s relative to the cart. (a) How high will the rocket go? (b) Where, relative to the cart, will the rocket land? (c) How far does the cart move while the rocket is in the air? (d) At what angle, relative to the horizontal, is the rocket traveling just as it leaves the cart, as measured by an observer at rest on the ground? (e) Sketch the rocket's trajectory as seen by an observer (i) stationary on the cart and (ii) stationary on the ground.

3.70 • A 2.7-kg ball is thrown upward with an initial speed of 20.0 m/s from the edge of a 45.0-m-high cliff. At the instant the ball is thrown, a woman starts running away from the base of the cliff with a constant speed of 6.00 m/s. The woman runs in a straight line on level ground, and air resistance acting on the ball can be ignored. (a) At what angle above the horizontal should the ball be thrown so that the runner will catch it just before it hits the ground, and how far does the woman run before she catches the ball? (b) Carefully sketch the ball's trajectory as viewed by (i) a person at rest on the ground and (ii) the runner.

3.71 • A 76.0-kg boulder is rolling horizontally at the top of a vertical cliff that is 20 m above the surface of a lake, as shown in Fig. P3.71. The top of the vertical face of a dam is located 100 m from the foot of the cliff, with the top of the dam level with the surface of the water in the lake. A level plain is 25 m below the top of the dam. (a) What must be the minimum speed of the rock just as it leaves the cliff so it will travel to the plain without striking the dam? (b) How far from the foot of the dam does the rock hit the plain?

3.72 •• Tossing Your Lunch. Henrietta is going off to her physics class, jogging down the sidewalk at 3.05 m/s. Her husband Bruce suddenly realizes that she left in such a hurry that she forgot her lunch of bagels, so he runs to the window of their apartment, which is 38.0 m above the street level and directly above the sidewalk, to throw them to her. Bruce throws them horizontally 9.00 s after Henrietta has passed below the window, and she catches them on the run. You can ignore air resistance. (a) With what initial speed must Bruce throw the bagels so Henrietta can catch them just before they hit the ground? (b) Where is Henrietta when she catches the bagels?

3.73 ••• Two tanks are engaged in a training exercise on level ground. The first tank fires a paint-filled training round with a muzzle speed of 250 m/s at 10.0° above the horizontal while advancing toward the second tank with a speed of 15.0 m/s relative to the ground. The second tank is retreating at 35.0 m/s relative to the ground, but is hit by the shell. You can ignore air

resistance and assume the shell hits at the same height above ground from which it was fired. Find the distance between the tanks (a) when the round was first fired and (b) at the time of impact.

3.74 ••• **CP Bang!** A student sits atop a platform a distance h above the ground. He throws a large firecracker horizontally with a speed v. However, a wind blowing parallel to the ground gives the firecracker a constant horizontal acceleration with magnitude a. This results in the firecracker reaching the ground directly under the student. Determine the height h in terms of v, a, and g. You can ignore the effect of air resistance on the vertical motion.

3.75 •• In a Fourth of July celebration, a firework is launched from ground level with an initial velocity of 25.0 m/s at 30.0° from the *vertical*. At its maximum height it explodes in a starburst into many fragments, two of which travel forward initially at 20.0 m/s at $\pm 53.0^{\circ}$ with respect to the horizontal, both quantities measured *relative to the original firework just before it exploded*. With what angles with respect to the horizontal do the two fragments initially move right after the explosion, as measured by a spectator standing on the ground?

3.76 • When it is 145 m above the ground, a rocket traveling vertically upward at a constant 8.50 m/s relative to the ground launches a secondary rocket at a speed of 12.0 m/s at an angle of 53.0° above the horizontal, both quantities being measured by an astronaut sitting in the rocket. After it is launched the secondary rocket is in free-fall. (a) Just as the secondary rocket is launched, what are the horizontal and vertical components of its velocity relative to (i) the astronaut sitting in the rocket and (ii) Mission Control on the ground? (b) Find the initial speed and launch angle of the secondary rocket as measured by Mission Control. (c) What maximum height above the ground does the secondary rocket reach?

3.77 ••• In an action-adventure film, the hero is supposed to throw a grenade from his car, which is going 90.0 km/h, to his enemy's car, which is going 110 km/h. The enemy's car is 15.8 m in front of the hero's when he lets go of the grenade. If the hero throws the grenade so its initial velocity relative to him is at an angle of 45° above the horizontal, what should the magnitude of the initial velocity be? The cars are both traveling in the same direction on a level road. You can ignore air resistance. Find the magnitude of the velocity both relative to the hero and relative to the earth.

3.78 • A 400.0-m-wide river flows from west to east at 30.0 m/min. Your boat moves at 100.0 m/min relative to the water no matter which direction you point it. To cross this river, you start from a dock at point *A* on the south bank. There is a boat landing directly opposite at point *B* on the north bank, and also one at point *C*, 75.0 m downstream from *B* (Fig. P3.78). (a) Where on the north shore will you land if you point your boat perpendicular to the water current, and what distance will you have traveled? (b) If you initially aim your boat directly toward point *C* and do not change that bearing relative to the shore, where on the north shore will you

Figure P3.78

land? (c) To reach point *C*: (i) at what bearing must you aim your boat, (ii) how long will it take to cross the river, (iii) what distance do you travel, and (iv) and what is the speed of your boat as measured by an observer standing on the river bank?

3.79 • **CALC** Cycloid. A particle moves in the *xy*-plane. Its coordinates are given as functions of time by

$$x(t) = R(\omega t - \sin \omega t)$$
 $y(t) = R(1 - \cos \omega t)$

where R and ω are constants. (a) Sketch the trajectory of the particle. (This is the trajectory of a point on the rim of a wheel that is rolling at a constant speed on a horizontal surface. The curve traced out by such a point as it moves through space is called a cycloid.) (b) Determine the velocity components and the acceleration components of the particle at any time t. (c) At which times is the particle momentarily at rest? What are the coordinates of the particle at these times? What are the magnitude and direction of the acceleration at these times? (d) Does the magnitude of the acceleration depend on time? Compare to uniform circular motion. **3.80** •• A projectile is fired from point A at an angle above the horizontal. At its highest point, after having traveled a horizontal distance D from its launch point, it suddenly explodes into two identical fragments that travel horizontally with equal but opposite velocities as measured relative to the projectile just before it exploded. If one fragment lands back at point A, how far from A (in terms of D) does the other fragment land?

3.81 •• An airplane pilot sets a compass course due west and maintains an airspeed of 220 km/h. After flying for 0.500 h, she finds herself over a town 120 km west and 20 km south of her starting point. (a) Find the wind velocity (magnitude and direction). (b) If the wind velocity is 40 km/h due south, in what direction should the pilot set her course to travel due west? Use the same airspeed of 220 km/h.

3.82 •• Raindrops. When a train's velocity is 12.0 m/s eastward, raindrops that are falling vertically with respect to the earth make traces that are inclined 30.0° to the vertical on the windows of the train. (a) What is the horizontal component of a drop's velocity with respect to the earth? With respect to the train? (b) What is the magnitude of the velocity of the raindrop with respect to the earth? With respect to the train?

3.83 ••• In a World Cup soccer match, Juan is running due north toward the goal with a speed of 8.00 m/s relative to the ground. A teammate passes the ball to him. The ball has a speed of 12.0 m/s and is moving in a direction 37.0° east of north, relative to the ground. What are the magnitude and direction of the ball's velocity relative to Juan?

3.84 •• An elevator is moving upward at a constant speed of 2.50 m/s. A bolt in the elevator ceiling 3.00 m above the elevator floor works loose and falls. (a) How long does it take for the bolt to fall to the elevator floor? What is the speed of the bolt just as it hits the elevator floor (b) according to an observer in the elevator? (c) According to an observer standing on one of the floor landings of the building? (d) According to the observer in part (c), what distance did the bolt travel between the ceiling and the floor of the elevator?

3.85 • **CP** Suppose the elevator in Problem 3.84 starts from rest and maintains a constant upward acceleration of 4.00 m/s^2 , and the bolt falls out the instant the elevator begins to move. (a) How long does it take for the bolt to reach the floor of the elevator? (b) Just as it reaches the floor, how fast is the bolt moving according to an observer (i) in the elevator? (ii) Standing on the floor landings of the building? (c) According to each observer in part (b), how far has the bolt traveled between the ceiling and floor of the elevator?

3.86 •• Two soccer players, Mia and Alice, are running as Alice passes the ball to Mia. Mia is running due north with a speed of 6.00 m/s. The velocity of the ball relative to Mia is 5.00 m/s in a direction 30.0° east of south. What are the magnitude and direction of the velocity of the ball relative to the ground?

3.87 ••• Projectile Motion on an Incline. Refer to the Bridging Problem in Chapter 3. (a) An archer on ground that has a constant upward slope of 30.0° aims at a target 60.0 m farther up the incline. The arrow in the bow and the bull's-eye at the center of the target are each 1.50 m above the ground. The initial velocity of the arrow just after it leaves the bow has magnitude 32.0 m/s. At what angle above the *horizontal* should the archer aim to hit the bull's-eye? If there are two such angles, calculate the smaller of the two. You might have to solve the equation for the angle by iteration—that is, by trial and error. How does the angle compare to that required when the ground is level, with 0 slope? (b) Repeat the problem for ground that has a constant *downward* slope of 30.0°.

CHALLENGE PROBLEMS

3.88 ••• CALC A projectile is thrown from a point *P*. It moves in such a way that its distance from *P* is always increasing. Find the maximum angle above the horizontal with which the projectile could have been thrown. You can ignore air resistance.

3.89 ••• Two students are canoeing on a river. While heading upstream, they accidentally drop an empty bottle overboard. They then continue paddling for 60 minutes, reaching a point 2.0 km farther upstream. At this point they realize that the bottle is missing

and, driven by ecological awareness, they turn around and head downstream. They catch up with and retrieve the bottle (which has been moving along with the current) 5.0 km downstream from the turn-around point. (a) Assuming a constant paddling effort throughout, how fast is the river flowing? (b) What would the canoe speed in a still lake be for the same paddling effort?

3.90 ••• **CP** A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/h, the rocket is dropped. After the drop, the airliner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its rocket motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3.00g directed at an angle of 30.0° above the horizontal. For reasons of safety, the rocket should be at least 1.00 km in front of the airliner when it climbs through the airliner's altitude. Your job is to determine the minimum time that the rocket must fall before its engine starts. You can ignore air resistance. Your answer should include (i) a diagram showing the flight paths of both the rocket and the airliner, labeled at several points with vectors for their velocities and accelerations; (ii) an x-t graph showing the motions of both the rocket and the airliner; and (iii) a *y-t* graph showing the motions of both the rocket and the airliner. In the diagram and the graphs, indicate when the rocket is dropped, when the rocket motor turns on, and when the rocket climbs through the altitude of the airliner.

Answers

Chapter Opening Question **?**

A cyclist going around a curve at constant speed has an acceleration directed toward the inside of the curve (see Section 3.2, especially Fig. 3.12a).

Test Your Understanding Questions

3.1 Answer: (iii) If the instantaneous velocity \vec{v} is constant over an interval, its value at any point (including the end of the interval) is the same as the average velocity \vec{v}_{av} over the interval. In (i) and (ii) the direction of \vec{v} at the end of the interval is tangent to the path at that point, while the direction of \vec{v}_{av} points from the beginning of the path to its end (in the direction of the net displacement). In (iv) \vec{v} and \vec{v}_{av} are both directed along the straight line, but \vec{v} has a greater magnitude because the speed has been increasing.

3.2 Answer: vector 7 At the high point of the sled's path, the speed is minimum. At that point the speed is neither increasing nor decreasing, and the parallel component of the acceleration (that is, the horizontal component) is zero. The acceleration has only a perpendicular component toward the inside of the sled's curved path. In other words, the acceleration is downward.

3.3 Answer: (i) If there were no gravity (g = 0), the monkey would not fall and the dart would follow a straight-line path (shown as a dashed line). The effect of gravity is to make the

monkey and the dart both fall the same distance $\frac{1}{2}gt^2$ below their g = 0 positions. Point A is the same distance below the monkey's initial position as point P is below the dashed straight line, so point A is where we would find the monkey at the time in question.

3.4 Answer: (ii) At both the top and bottom of the loop, the acceleration is purely radial and is given by Eq. (3.28). The radius *R* is the same at both points, so the difference in acceleration is due purely to differences in speed. Since a_{rad} is proportional to the square of *v*, the speed must be twice as great at the bottom of the loop as at the top.

3.5 Answer: (vi) The effect of the wind is to cancel the airplane's eastward motion and give it a northward motion. So the velocity of the air relative to the ground (the wind velocity) must have one 150-km/h component to the west and one 150-km/h component to the north. The combination of these is a vector of magnitude $\sqrt{(150 \text{ km/h})^2 + (150 \text{ km/h})^2} = 212 \text{ km/h}$ that points to the northwest.

Bridging Problem

Answers: (a)
$$R = \frac{2v_0^2}{g} \frac{\cos(\theta + \phi)\sin\phi}{\cos^2\theta}$$
 (b) $\phi = 45^\circ - \frac{\theta}{2}$

A NEWTON'S LAWS OF MOTION

By studying this chapter, you will learn:

- What the concept of force means in physics, and why forces are vectors.
- The significance of the net force on an object, and what happens when the net force is zero.
- The relationship among the net force on an object, the object's mass, and its acceleration.
- How the forces that two bodies exert on each other are related.

This pit crew member is pushing a race car forward. Is the race car pushing back on him? If so, does it push back with the same magnitude of force or a different amount?

e've seen in the last two chapters how to use the language and mathematics of *kinematics* to describe motion in one, two, or three dimensions. But what *causes* bodies to move the way that they do? For example, how can a tugboat push a cruise ship that's much heavier than the tug? Why is it harder to control a car on wet ice than on dry concrete? The answers to these and similar questions take us into the subject of **dynamics**, the relationship of motion to the forces that cause it.

In this chapter we will use two new concepts, *force* and *mass*, to analyze the principles of dynamics. These principles were clearly stated for the first time by Sir Isaac Newton (1642–1727); today we call them **Newton's laws of motion**. The first law states that when the net force on a body is zero, its motion doesn't change. The second law relates force to acceleration when the net force is *not* zero. The third law is a relationship between the forces that two interacting bodies exert on each other.

Newton did not *derive* the three laws of motion, but rather *deduced* them from a multitude of experiments performed by other scientists, especially Galileo Galilei (who died the same year Newton was born). These laws are truly fundamental, for they cannot be deduced or proved from other principles. Newton's laws are the foundation of **classical mechanics** (also called **Newtonian mechanics**); using them, we can understand most familiar kinds of motion. Newton's laws need modification only for situations involving extremely high speeds (near the speed of light) or very small sizes (such as within the atom).

Newton's laws are very simple to state, yet many students find these laws difficult to grasp and to work with. The reason is that before studying physics, you've spent years walking, throwing balls, pushing boxes, and doing dozens of things that involve motion. Along the way, you've developed a set of "common sense" ideas about motion and its causes. But many of these "common sense" ideas don't stand up to logical analysis. A big part of the job of this chapter—and of the rest of our study of physics—is helping you to recognize how "common sense" ideas can sometimes lead you astray, and how to adjust your understanding of the physical world to make it consistent with what experiments tell us.

4.1 Force and Interactions

In everyday language, a **force** is a push or a pull. A better definition is that a force is an *interaction* between two bodies or between a body and its environment (Fig. 4.1). That's why we always refer to the force that one body *exerts* on a second body. When you push on a car that is stuck in the snow, you exert a force on the car; a steel cable exerts a force on the beam it is hoisting at a construction site; and so on. As Fig. 4.1 shows, force is a *vector* quantity; you can push or pull a body in different directions.

When a force involves direct contact between two bodies, such as a push or pull that you exert on an object with your hand, we call it a **contact force**. Figures 4.2a, 4.2b, and 4.2c show three common types of contact forces. The **normal force** (Fig. 4.2a) is exerted on an object by any surface with which it is in contact. The adjective *normal* means that the force always acts perpendicular to the surface of contact, no matter what the angle of that surface. By contrast, the **friction force** (Fig. 4.2b) exerted on an object by a surface acts *parallel* to the surface, in the direction that opposes sliding. The pulling force exerted by a stretched rope or cord on an object to which it's attached is called a **tension force** (Fig. 4.2c). When you tug on your dog's leash, the force that pulls on her collar is a tension force.

In addition to contact forces, there are **long-range forces** that act even when the bodies are separated by empty space. The force between two magnets is an example of a long-range force, as is the force of gravity (Fig. 4.2d); the earth pulls a dropped object toward it even though there is no direct contact between the object and the earth. The gravitational force that the earth exerts on your body is called your **weight**.

To describe a force vector \vec{F} , we need to describe the *direction* in which it acts as well as its *magnitude*, the quantity that describes "how much" or "how hard" the force pushes or pulls. The SI unit of the magnitude of force is the *newton*, abbreviated N. (We'll give a precise definition of the newton in Section 4.3.) Table 4.1 lists some typical force magnitudes.

4.1 Some properties of forces.

- A force is a push or a pull.
- A force is an interaction between two objects or between an object and its environment.
- A force is a vector quantity, with magnitude and direction.

4.2 Four common types of forces.

(a) Normal force \vec{n} : When an object rests or pushes on a surface, the surface exerts a push on it that is directed perpendicular to the surface.

(b) Friction force \vec{f} : In addition to the normal force, a surface may exert a frictional force on an object, directed parallel to the surface.

(c) Tension force \vec{T} : A pulling force exerted on an object by a rope, cord, etc.

(d) Weight \vec{w} : The pull of gravity on an object is a long-range force (a force that acts over a distance).

Table 4.1 Typical Force Magnitudes

Sun's gravitational force on the earth	$3.5 \times 10^{22} \mathrm{N}$
Thrust of a space shuttle during launch	$3.1 \times 10^7 \mathrm{N}$
Weight of a large blue whale	$1.9 \times 10^6 \mathrm{N}$
Maximum pulling force of a locomotive	$8.9 \times 10^5 \mathrm{N}$
Weight of a 250-lb linebacker	$1.1 \times 10^3 \mathrm{N}$
Weight of a medium apple	1 N
Weight of smallest insect eggs	$2\times 10^{-6}\mathrm{N}$
Electric attraction between the proton and the electron in a hydrogen atom	$8.2\times10^{-8}\mathrm{N}$
Weight of a very small bacterium	$1 \times 10^{-18} \mathrm{N}$
Weight of a hydrogen atom	$1.6\times10^{-26}\mathrm{N}$
Weight of an electron	$8.9\times10^{-30}\mathrm{N}$
Gravitational attraction between the proton and the electron in a hydrogen atom	$3.6 imes 10^{-47}$ N

4.3 Using a vector arrow to denote the force that we exert when (a) pulling a block with a string or (b) pushing a block with a stick.

(a) A 10-N pull directed 30° above the horizontal

(b) A 10-N push directed 45° below the horizontal

4.4 Superposition of forces.

Two forces \vec{F}_1 and \vec{F}_2 acting on a body at point *O* have the same effect as a single force \vec{R} equal to their vector sum.

A common instrument for measuring force magnitudes is the *spring balance*. It consists of a coil spring enclosed in a case with a pointer attached to one end. When forces are applied to the ends of the spring, it stretches by an amount that depends on the force. We can make a scale for the pointer by using a number of identical bodies with weights of exactly 1 N each. When one, two, or more of these are suspended simultaneously from the balance, the total force stretching the spring is 1 N, 2 N, and so on, and we can label the corresponding positions of the pointer 1 N, 2 N, and so on. Then we can use this instrument to measure the magnitude of an unknown force. We can also make a similar instrument that measures pushes instead of pulls.

Figure 4.3 shows a spring balance being used to measure a pull or push that we apply to a box. In each case we draw a vector to represent the applied force. The length of the vector shows the magnitude; the longer the vector, the greater the force magnitude.

Superposition of Forces

When you throw a ball, there are at least two forces acting on it: the push of your hand and the downward pull of gravity. Experiment shows that when two forces \vec{F}_1 and \vec{F}_2 act at the same time at the same point on a body (Fig. 4.4), the effect on the body's motion is the same as if a single force \vec{R} were acting equal to the vector sum of the original forces: $\vec{R} = \vec{F}_1 + \vec{F}_2$. More generally, any number of forces applied at a point on a body have the same effect as a single force equal to the vector sum of the forces. This important principle is called **superposition of forces**.

The principle of superposition of forces is of the utmost importance, and we will use it throughout our study of physics. For example, in Fig. 4.5a, force \vec{F} acts on a body at point *O*. The component vectors of \vec{F} in the directions *Ox* and *Oy* are \vec{F}_x and \vec{F}_y . When \vec{F}_x and \vec{F}_y are applied simultaneously, as in Fig. 4.5b, the effect is exactly the same as the effect of the original force \vec{F} . Hence any force can be replaced by its component vectors, acting at the same point.

It's frequently more convenient to describe a force \vec{F} in terms of its *x*- and *y*-components F_x and F_y rather than by its component vectors (recall from Section 1.8 that *component vectors* are vectors, but *components* are just numbers). For the case shown in Fig. 4.5, both F_x and F_y are positive; for other orientations of the force \vec{F} , either F_x or F_y may be negative or zero.

Our coordinate axes don't have to be vertical and horizontal. Figure 4.6 shows a crate being pulled up a ramp by a force \vec{F} , represented by its components F_x and F_y parallel and perpendicular to the sloping surface of the ramp.

4.5 The force \vec{F} , which acts at an angle θ from the *x*-axis, may be replaced by its rectangular component vectors \vec{F}_x and \vec{F}_y .

CAUTION Using a wiggly line in force diagrams In Fig. 4.6 we draw a wiggly line through the force vector \vec{F} to show that we have replaced it by its *x*- and *y*-components. Otherwise, the diagram would include the same force twice. We will draw such a wiggly line in any force diagram where a force is replaced by its components. Look for this wiggly line in other figures in this and subsequent chapters.

We will often need to find the vector sum (resultant) of *all* the forces acting on a body. We call this the **net force** acting on the body. We will use the Greek letter Σ (capital sigma, equivalent to the Roman *S*) as a shorthand notation for a sum. If the forces are labeled \vec{F}_1 , \vec{F}_2 , \vec{F}_3 , and so on, we abbreviate the sum as

$$\vec{R} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots = \sum \vec{F}$$
 (4.1)

We read $\sum \vec{F}$ as "the vector sum of the forces" or "the net force." The component version of Eq. (4.1) is the pair of component equations

$$R_x = \sum F_x \qquad R_y = \sum F_y \tag{4.2}$$

Here $\sum F_x$ is the sum of the *x*-components and $\sum F_y$ is the sum of the *y*-components (Fig. 4.7). Each component may be positive or negative, so be careful with signs when you evaluate these sums. (You may want to review Section 1.8.)

Once we have R_x and R_y we can find the magnitude and direction of the net force $\vec{R} = \sum \vec{F}$ acting on the body. The magnitude is

$$R = \sqrt{R_x^2 + R_y^2}$$

and the angle θ between \vec{R} and the +x-axis can be found from the relationship $\tan \theta = R_y/R_x$. The components R_x and R_y may be positive, negative, or zero, and the angle θ may be in any of the four quadrants.

In three-dimensional problems, forces may also have z-components; then we add the equation $R_z = \sum F_z$ to Eq. (4.2). The magnitude of the net force is then

$$R = \sqrt{R_x^2 + R_y^2 + R_z^2}$$

Example 4.1 Superposition of forces

Three professional wrestlers are fighting over a champion's belt. Figure 4.8a shows the horizontal force each wrestler applies to the belt, as viewed from above. The forces have magnitudes $F_1 = 250$ N, $F_2 = 50$ N, and $F_3 = 120$ N. Find the *x*- and *y*-components of the net force on the belt, and find its magnitude and direction.

SOLUTION

IDENTIFY and SET UP: This is a problem in vector addition in which the vectors happen to represent forces. We want to find the x- and y-components of the net force \vec{R} , so we'll use the component method of vector addition expressed by Eqs. (4.2). Once we know the components of \vec{R} , we can find its magnitude and direction.

EXECUTE: From Fig. 4.8a the angles between the three forces \vec{F}_1 , \vec{F}_2 , and \vec{F}_3 and the +x-axis are $\theta_1 = 180^\circ - 53^\circ = 127^\circ$, $\theta_2 = 0^\circ$, and $\theta_3 = 270^\circ$. The x- and y-components of the three forces are

 $F_{1x} = (250 \text{ N}) \cos 127^\circ = -150 \text{ N}$ $F_{1y} = (250 \text{ N}) \sin 127^\circ = 200 \text{ N}$ $F_{2x} = (50 \text{ N}) \cos 0^\circ = 50 \text{ N}$ **4.6** F_x and F_y are the components of \vec{F} parallel and perpendicular to the sloping surface of the inclined plane.

4.7 Finding the components of the vector sum (resultant) \vec{R} of two forces \vec{F}_1 and \vec{F}_2 .

 \vec{R} is the sum (resultant) of $\vec{F_1}$ and $\vec{F_2}$. The y-component of \vec{R} equals the sum of the ycomponents of $\vec{F_1}$ and $\vec{F_2}$. The same goes for components.

4.8 (a) Three forces acting on a belt. (b) The net force $\vec{R} = \sum \vec{F}$ and its components.

$$F_{2y} = (50 \text{ N}) \sin 0^\circ = 0 \text{ N}$$

 $F_{3x} = (120 \text{ N}) \cos 270^\circ = 0 \text{ N}$
 $F_{3y} = (120 \text{ N}) \sin 270^\circ = -120 \text{ N}$

From Eqs. (4.2) the net force $\vec{R} = \sum \vec{F}$ has components $R_x = F_{1x} + F_{2x} + F_{3x} = (-150 \text{ N}) + 50 \text{ N} + 0 \text{ N} = -100 \text{ N}$ $R_y = F_{1y} + F_{2y} + F_{3y} = 200 \text{ N} + 0 \text{ N} + (-120 \text{ N}) = 80 \text{ N}$ The net force has a negative x-component and a positive y-component, as shown in Fig. 4.8b.

The magnitude of \vec{R} is

$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(-100 \text{ N})^2 + (80 \text{ N})^2} = 128 \text{ N}$$

To find the angle between the net force and the +x-axis, we use Eq. (1.8):

$$\theta = \arctan \frac{R_y}{R_x} = \arctan \left(\frac{80 \text{ N}}{-100 \text{ N}} \right) = \arctan (-0.80)$$

The arctangent of -0.80 is -39° , but Fig. 4.8b shows that the net force lies in the second quadrant. Hence the correct solution is $\theta = -39^{\circ} + 180^{\circ} = 141^{\circ}.$

EVALUATE: The net force is not zero. Your intuition should suggest that wrestler 1 (who exerts the largest force on the belt, $F_1 = 250$ N) will walk away with it when the struggle ends.

You should check the direction of \vec{R} by adding the vectors \vec{F}_1 , \vec{F}_2 , and \vec{F}_3 graphically. Does your drawing show that $\vec{R} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$ points in the second quadrant as we found

I

Test Your Understanding of Section 4.1 Figure 4.6 shows a force \vec{F} MP acting on a crate. With the x- and y-axes shown in the figure, which statement about the components of the gravitational force that the earth exerts on the crate (the crate's weight) is correct? (i) The x- and y-components are both positive. (ii) The x-component is zero and the y-component is positive. (iii) The x-component is negative and the y-component is positive. (iv) The x- and y-components are both negative. (v) The x-component is zero and the y-component is negative. (vi) The x-component is positive and the y-component is negative.

4.2 Newton's First Law

How do the forces that act on a body affect its motion? To begin to answer this question, let's first consider what happens when the net force on a body is zero. You would almost certainly agree that if a body is at rest, and if no net force acts on it (that is, no net push or pull), that body will remain at rest. But what if there is zero net force acting on a body in *motion*?

To see what happens in this case, suppose you slide a hockey puck along a horizontal tabletop, applying a horizontal force to it with your hand (Fig. 4.9a). After you stop pushing, the puck does not continue to move indefinitely; it slows down and stops. To keep it moving, you have to keep pushing (that is, applying a force). You might come to the "common sense" conclusion that bodies in motion naturally come to rest and that a force is required to sustain motion.

But now imagine pushing the puck across a smooth surface of ice (Fig. 4.9b). After you quit pushing, the puck will slide a lot farther before it stops. Put it on an air-hockey table, where it floats on a thin cushion of air, and it moves still farther (Fig. 4.9c). In each case, what slows the puck down is *friction*, an interaction between the lower surface of the puck and the surface on which it slides. Each surface exerts a frictional force on the puck that resists the puck's motion; the difference in the three cases is the magnitude of the frictional force. The ice exerts less friction than the tabletop, so the puck travels farther. The gas molecules of the air-hockey table exert the least friction of all. If we could eliminate friction completely, the puck would never slow down, and we would need no force at all to keep the puck moving once it had been started. Thus the "common sense" idea that a force is required to sustain motion is *incorrect*.

Experiments like the ones we've just described show that when no net force acts on a body, the body either remains at rest or moves with constant velocity in a straight line. Once a body has been set in motion, no net force is needed to keep it moving. We call this observation Newton's first law of motion:

Newton's first law of motion: A body acted on by no net force moves with constant velocity (which may be zero) and zero acceleration.

4.9 The slicker the surface, the farther a puck slides after being given an initial velocity. On an air-hockey table (c) the friction force is practically zero, so the puck continues with almost constant velocity.

(a) Table: puck stops short.

The tendency of a body to keep moving once it is set in motion results from a property called **inertia**. You use inertia when you try to get ketchup out of a bottle by shaking it. First you start the bottle (and the ketchup inside) moving forward; when you jerk the bottle back, the ketchup tends to keep moving forward and, you hope, ends up on your burger. The tendency of a body at rest to remain at rest is also due to inertia. You may have seen a tablecloth yanked out from under the china without breaking anything. The force on the china isn't great enough to make it move appreciably during the short time it takes to pull the tablecloth away.

It's important to note that the *net* force is what matters in Newton's first law. For example, a physics book at rest on a horizontal tabletop has two forces acting on it: an upward supporting force, or normal force, exerted by the tabletop (see Fig. 4.2a) and the downward force of the earth's gravitational attraction (a long-range force that acts even if the tabletop is elevated above the ground; see Fig. 4.2d). The upward push of the surface is just as great as the downward pull of gravity, so the *net* force acting on the book (that is, the vector sum of the two forces) is zero. In agreement with Newton's first law, if the book is at rest on the tabletop, it remains at rest. The same principle applies to a hockey puck sliding on a horizontal, frictionless surface: The vector sum of the upward push of the surface and the downward pull of gravity is zero. Once the puck is in motion, it continues to move with constant velocity because the *net* force acting on it is zero.

Here's another example. Suppose a hockey puck rests on a horizontal surface with negligible friction, such as an air-hockey table or a slab of wet ice. If the puck is initially at rest and a single horizontal force \vec{F}_1 acts on it (Fig. 4.10a), the puck starts to move. If the puck is in motion to begin with, the force changes its speed, its direction, or both, depending on the direction of the force. In this case the net force is equal to \vec{F}_1 , which is *not* zero. (There are also two vertical forces: the earth's gravitational attraction and the upward normal force exerted by the surface. But as we mentioned earlier, these two forces cancel.)

Now suppose we apply a second force \vec{F}_2 (Fig. 4.10b), equal in magnitude to \vec{F}_1 but opposite in direction. The two forces are negatives of each other, $\vec{F}_2 = -\vec{F}_1$, and their vector sum is zero:

$$\sum \vec{F} = \vec{F}_1 + \vec{F}_2 = \vec{F}_1 + (-\vec{F}_1) = \mathbf{0}$$

Again, we find that if the body is at rest at the start, it remains at rest; if it is initially moving, it continues to move in the same direction with constant speed. These results show that in Newton's first law, *zero net force is equivalent to no force at all.* This is just the principle of superposition of forces that we saw in Section 4.1.

When a body is either at rest or moving with constant velocity (in a straight line with constant speed), we say that the body is in **equilibrium.** For a body to be in equilibrium, it must be acted on by no forces, or by several forces such that their vector sum—that is, the net force—is zero:

$$\sum \vec{F} = 0$$
 (body in equilibrium) (4.3)

For this to be true, each component of the net force must be zero, so

$$\sum F_x = 0$$
 $\sum F_y = 0$ (body in equilibrium) (4.4)

We are assuming that the body can be represented adequately as a point particle. When the body has finite size, we also have to consider *where* on the body the forces are applied. We will return to this point in Chapter 11. **4.10** (a) A hockey puck accelerates in the direction of a net applied force \vec{F}_{1} . (b) When the net force is zero, the acceleration is zero, and the puck is in equilibrium.

(a) A puck on a frictionless surface accelerates when acted on by a single horizontal force.

(b) An object acted on by forces whose vector sum is zero behaves as though no forces act on it.

Application Sledding with Newton's First Law

The downward force of gravity acting on the child and sled is balanced by an upward normal force exerted by the ground. The adult's foot exerts a forward force that balances the backward force of friction on the sled. Hence there is no net force on the child and sled, and they slide with a constant velocity.

Conceptual Example 4.2 Zero net force means constant velocity

In the classic 1950 science fiction film *Rocketship X-M*, a spaceship is moving in the vacuum of outer space, far from any star or planet, when its engine dies. As a result, the spaceship slows down and stops. What does Newton's first law say about this scene?

SOLUTION

After the engine dies there are no forces acting on the spaceship, so according to Newton's first law it will *not* stop but will continue to move in a straight line with constant speed. Some science fiction movies are based on accurate science; this is not one of them.

Conceptual Example 4.3 Constant velocity means zero net force

You are driving a Maserati GranTurismo S on a straight testing track at a constant speed of 250 km/h. You pass a 1971 Volkswagen Beetle doing a constant 75 km/h. On which car is the net force greater?

SOLUTION

The key word in this question is "net." Both cars are in equilibrium because their velocities are constant; Newton's first law therefore says that the *net* force on each car is *zero*.

This seems to contradict the "common sense" idea that the faster car must have a greater force pushing it. Thanks to your

Maserati's high-power engine, it's true that the track exerts a greater forward force on your Maserati than it does on the Volkswagen. But a *backward* force also acts on each car due to road friction and air resistance. When the car is traveling with constant velocity, the vector sum of the forward and backward forces is zero. There is more air resistance on the fast-moving Maserati than on the slow-moving Volkswagen, which is why the Maserati's engine must be more powerful than that of the Volkswagen.

Inertial Frames of Reference

In discussing relative velocity in Section 3.5, we introduced the concept of *frame* of reference. This concept is central to Newton's laws of motion. Suppose you are in a bus that is traveling on a straight road and speeding up. If you could stand in the aisle on roller skates, you would start moving *backward* relative to the bus as the bus gains speed. If instead the bus was slowing to a stop, you would start moving forward down the aisle. In either case, it looks as though Newton's first law is not obeyed; there is no net force acting on you, yet your velocity changes. What's wrong?

The point is that the bus is accelerating with respect to the earth and is *not* a suitable frame of reference for Newton's first law. This law is valid in some frames of reference and not valid in others. A frame of reference in which Newton's first law *is* valid is called an **inertial frame of reference**. The earth is at least approximately an inertial frame of reference, but the bus is not. (The earth is not a completely inertial frame, owing to the acceleration associated with its rotation and its motion around the sun. These effects are quite small, however; see Exercises 3.25 and 3.28.) Because Newton's first law is used to define what we mean by an inertial frame of reference, it is sometimes called the *law of inertia*.

Figure 4.11 helps us understand what you experience when riding in a vehicle that's accelerating. In Fig. 4.11a, a vehicle is initially at rest and then begins to accelerate to the right. A passenger on roller skates (which nearly eliminate the effects of friction) has virtually no net force acting on her, so she tends to remain at rest relative to the inertial frame of the earth. As the vehicle accelerates around her, she moves backward relative to the vehicle. In the same way, a passenger in a vehicle that is slowing down tends to continue moving with constant velocity relative to the earth, and so moves forward relative to the vehicle (Fig. 4.11b). A vehicle is also accelerating if it moves at a constant speed but is turning (Fig. 4.11c). In this case a passenger tends to continue moving relative to

You tend to continue moving in a straight line as the vehicle turns.

the earth at constant speed in a straight line; relative to the vehicle, the passenger moves to the side of the vehicle on the outside of the turn.

In each case shown in Fig. 4.11, an observer in the vehicle's frame of reference might be tempted to conclude that there *is* a net force acting on the passenger, since the passenger's velocity *relative to the vehicle* changes in each case. This conclusion is simply wrong; the net force on the passenger is indeed zero. The vehicle observer's mistake is in trying to apply Newton's first law in the vehicle's frame of reference, which is *not* an inertial frame and in which Newton's first law isn't valid (Fig. 4.12). In this book we will use *only* inertial frames of reference.

We've mentioned only one (approximately) inertial frame of reference: the earth's surface. But there are many inertial frames. If we have an inertial frame of reference *A*, in which Newton's first law is obeyed, then *any* second frame of reference *B* will also be inertial if it moves relative to *A* with constant velocity $\vec{v}_{B/A}$. We can prove this using the relative-velocity relationship Eq. (3.36) from Section 3.5:

$$\vec{\boldsymbol{v}}_{P/A} = \vec{\boldsymbol{v}}_{P/B} + \vec{\boldsymbol{v}}_{B/A}$$

Suppose that *P* is a body that moves with constant velocity $\vec{v}_{P/A}$ with respect to an inertial frame *A*. By Newton's first law the net force on this body is zero. The velocity of *P* relative to another frame *B* has a different value, $\vec{v}_{P/B} = \vec{v}_{P/A} - \vec{v}_{B/A}$. But if the relative velocity $\vec{v}_{B/A}$ of the two frames is constant, then $\vec{v}_{P/B}$ is constant as well. Thus *B* is also an inertial frame; the velocity of *P* in this frame is constant, and the net force on *P* is zero, so Newton's first law is obeyed in *B*. Observers in frames *A* and *B* will disagree about the velocity of *P*, but they will agree that *P* has a constant velocity (zero acceleration) and has zero net force acting on it.

4.12 From the frame of reference of the car, it seems as though a force is pushing the crash test dummies forward as the car comes to a sudden stop. But there is really no such force: As the car stops, the dummies keep moving forward as a consequence of Newton's first law.

There is no single inertial frame of reference that is preferred over all others for formulating Newton's laws. If one frame is inertial, then every other frame moving relative to it with constant velocity is also inertial. Viewed in this light, the state of rest and the state of motion with constant velocity are not very different; both occur when the vector sum of forces acting on the body is zero.

Test Your Understanding of Section 4.2 In which of the following situations is there zero net force on the body? (i) an airplane flying due north at a steady 120 m/s and at a constant altitude; (ii) a car driving straight up a hill with a 3° slope at a constant 90 km/h; (iii) a hawk circling at a constant 20 km/h at a constant height of 15 m above an open field; (iv) a box with slick, frictionless surfaces in the back of a truck as the truck accelerates forward on a level road at 5 m/s².

4.3 Newton's Second Law

Newton's first law tells us that when a body is acted on by zero net force, it moves with constant velocity and zero acceleration. In Fig. 4.13a, a hockey puck is sliding to the right on wet ice. There is negligible friction, so there are no horizontal forces acting on the puck; the downward force of gravity and the upward normal force exerted by the ice surface sum to zero. So the net force $\sum \vec{F}$ acting on the puck is zero, the puck has zero acceleration, and its velocity is constant.

But what happens when the net force is *not* zero? In Fig. 4.13b we apply a constant horizontal force to a sliding puck in the same direction that the puck is moving. Then $\sum \vec{F}$ is constant and in the same horizontal direction as \vec{v} . We find that during the time the force is acting, the velocity of the puck changes at a constant rate;

4.13 Exploring the relationship between the acceleration of a body and the net force acting on the body (in this case, a hockey puck on a frictionless surface).

(a) A puck moving with constant velocity (in equilibrium): $\Sigma \vec{F} = 0$, $\vec{a} = 0$

(b) A constant net force in the direction of motion causes a constant acceleration in the same direction as the net force.

(c) A constant net force opposite the direction of motion causes a constant acceleration in the same direction as the net force.

that is, the puck moves with constant acceleration. The speed of the puck increases, so the acceleration \vec{a} is in the same direction as \vec{v} and $\sum \vec{F}$.

In Fig. 4.13c we reverse the direction of the force on the puck so that $\sum \vec{F}$ acts opposite to \vec{v} . In this case as well, the puck has an acceleration; the puck moves more and more slowly to the right. The acceleration \vec{a} in this case is to the left, in the same direction as $\sum \vec{F}$. As in the previous case, experiment shows that the acceleration is constant if $\sum \vec{F}$ is constant.

We conclude that *a net force acting on a body causes the body to accelerate in the same direction as the net force.* If the magnitude of the net force is constant, as in Figs. 4.13b and 4.13c, then so is the magnitude of the acceleration.

These conclusions about net force and acceleration also apply to a body moving along a curved path. For example, Fig. 4.14 shows a hockey puck moving in a horizontal circle on an ice surface of negligible friction. A rope is attached to the puck and to a stick in the ice, and this rope exerts an inward tension force of constant magnitude on the puck. The net force and acceleration are both constant in magnitude and directed toward the center of the circle. The speed of the puck is constant, so this is uniform circular motion, as discussed in Section 3.4.

Figure 4.15a shows another experiment to explore the relationship between acceleration and net force. We apply a constant horizontal force to a puck on a frictionless horizontal surface, using the spring balance described in Section 4.1 with the spring stretched a constant amount. As in Figs. 4.13b and 4.13c, this horizontal force equals the net force on the puck. If we change the magnitude of the net force, the acceleration changes in the same proportion. Doubling the net force doubles the acceleration (Fig. 4.15b), halving the net force halves the acceleration (Fig. 4.15c), and so on. Many such experiments show that *for any given body, the magnitude of the acceleration is directly proportional to the magnitude of the net force acting on the body.*

Mass and Force

Our results mean that for a given body, the *ratio* of the magnitude $|\Sigma \vec{F}|$ of the net force to the magnitude $a = |\vec{a}|$ of the acceleration is constant, regardless of the magnitude of the net force. We call this ratio the *inertial mass*, or simply the **mass**, of the body and denote it by *m*. That is,

$$m = \frac{\left|\sum \vec{F}\right|}{a}$$
 or $\left|\sum \vec{F}\right| = ma$ or $a = \frac{\left|\sum \vec{F}\right|}{m}$ (4.5)

Mass is a quantitative measure of inertia, which we discussed in Section 4.2. The last of the equations in Eqs. (4.5) says that the greater its mass, the more a body "resists" being accelerated. When you hold a piece of fruit in your hand at the supermarket and move it slightly up and down to estimate its heft, you're applying a force and seeing how much the fruit accelerates up and down in response. If a force causes a large acceleration, the fruit has a small mass; if the same force causes only a small acceleration, the fruit has a large mass. In the same way, if you hit a table-tennis ball and then a basketball with the same force, the basketball has much smaller acceleration because it has much greater mass.

The SI unit of mass is the **kilogram.** We mentioned in Section 1.3 that the kilogram is officially defined to be the mass of a cylinder of platinum–iridium alloy kept in a vault near Paris. We can use this standard kilogram, along with Eqs. (4.5), to define the **newton:**

One newton is the amount of net force that gives an acceleration of 1 meter per second squared to a body with a mass of 1 kilogram.

4.14 A top view of a hockey puck in uniform circular motion on a frictionless horizontal surface.

At all points, the acceleration \vec{a} and the net force $\Sigma \vec{F}$ point in the same direction—always toward the center of the circle.

4.15 For a body of a given mass *m*, the magnitude of the body's acceleration is directly proportional to the magnitude of the net force acting on the body.

(a) A constant net force $\Sigma \vec{F}$ causes a constant acceleration \vec{a} .

(b) Doubling the net force doubles the acceleration.

(c) Halving the force halves the acceleration. \vec{a}_2

 $\Sigma \vec{F} = \frac{1}{2} \vec{F}$

This definition allows us to calibrate the spring balances and other instruments used to measure forces. Because of the way we have defined the newton, it is related to the units of mass, length, and time. For Eqs. (4.5) to be dimensionally consistent, it must be true that

1 newton = (1 kilogram)(1 meter per second squared)

or

$$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$$

We will use this relationship many times in the next few chapters, so keep it in mind.

We can also use Eqs. (4.5) to compare a mass with the standard mass and thus to *measure* masses. Suppose we apply a constant net force $\sum \vec{F}$ to a body having a known mass m_1 and we find an acceleration of magnitude a_1 (Fig. 4.16a). We then apply the same force to another body having an unknown mass m_2 , and we find an acceleration of magnitude a_2 (Fig. 4.16b). Then, according to Eqs. (4.5),

$$m_1 a_1 = m_2 a_2$$

 $\frac{m_2}{m_1} = \frac{a_1}{a_2}$ (same net force) (4.6)

For the same net force, the ratio of the masses of two bodies is the inverse of the ratio of their accelerations. In principle we could use Eq. (4.6) to measure an unknown mass m_2 , but it is usually easier to determine mass indirectly by measuring the body's *weight*. We'll return to this point in Section 4.4.

When two bodies with masses m_1 and m_2 are fastened together, we find that the mass of the composite body is always $m_1 + m_2$ (Fig. 4.16c). This additive property of mass may seem obvious, but it has to be verified experimentally. Ultimately, the mass of a body is related to the number of protons, electrons, and neutrons it contains. This wouldn't be a good way to *define* mass because there is no practical way to count these particles. But the concept of mass is the most fundamental way to characterize the quantity of matter in a body.

Stating Newton's Second Law

We've been careful to state that the *net* force on a body is what causes that body to accelerate. Experiment shows that if a combination of forces $\vec{F}_1, \vec{F}_2, \vec{F}_3$, and so on is applied to a body, the body will have the same acceleration (magnitude and direction) as when only a single force is applied, if that single force is equal to the vector sum $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \cdots$. In other words, the principle of superposition of forces (see Fig. 4.4) also holds true when the net force is not zero and the body is accelerating.

Equations (4.5) relate the magnitude of the net force on a body to the magnitude of the acceleration that it produces. We have also seen that the direction of the net force is the same as the direction of the acceleration, whether the body's path is straight or curved. Newton wrapped up all these relationships and experimental results in a single concise statement that we now call *Newton's second law of motion:*

Newton's second law of motion: If a net external force acts on a body, the body accelerates. The direction of acceleration is the same as the direction of the net force. The mass of the body times the acceleration of the body equals the net force vector.

4.16 For a given net force $\sum \vec{F}$ acting on a body, the acceleration is inversely proportional to the mass of the body. Masses add like ordinary scalars.

(a) A known force $\Sigma \vec{F}$ causes an object with mass m_1 to have an acceleration \vec{a}_1 .

(b) Applying the same force $\Sigma \vec{F}$ to a second object and noting the acceleration allow us to measure the mass.

(c) When the two objects are fastened together, the same method shows that their composite mass is the sum of their individual masses.

In symbols,

$$\sum \vec{F} = m\vec{a}$$
 (Newton's second law of motion) (4.7)

An alternative statement is that the acceleration of a body is in the same direction as the net force acting on the body, and is equal to the net force divided by the body's mass:

$$\vec{a} = \frac{\sum \vec{F}}{m}$$

Newton's second law is a fundamental law of nature, the basic relationship between force and motion. Most of the remainder of this chapter and all of the next are devoted to learning how to apply this principle in various situations.

Equation (4.7) has many practical applications (Fig. 4.17). You've actually been using it all your life to measure your body's acceleration. In your inner ear, microscopic hair cells sense the magnitude and direction of the force that they must exert to cause small membranes to accelerate along with the rest of your body. By Newton's second law, the acceleration of the membranes—and hence that of your body as a whole—is proportional to this force and has the same direction. In this way, you can sense the magnitude and direction of your acceleration even with your eyes closed!

Using Newton's Second Law

There are at least four aspects of Newton's second law that deserve special attention. First, Eq. (4.7) is a *vector* equation. Usually we will use it in component form, with a separate equation for each component of force and the corresponding component of acceleration:

$$\sum F_x = ma_x$$
 $\sum F_y = ma_y$ $\sum F_z = ma_z$ (Newton's second
law of motion) (4.8)

This set of component equations is equivalent to the single vector equation (4.7). Each component of the net force equals the mass times the corresponding component of acceleration.

Second, the statement of Newton's second law refers to *external* forces. By this we mean forces exerted on the body by other bodies in its environment. It's impossible for a body to affect its own motion by exerting a force on itself; if it were possible, you could lift yourself to the ceiling by pulling up on your belt! That's why only external forces are included in the sum $\sum \vec{F}$ in Eqs. (4.7) and (4.8).

Third, Eqs. (4.7) and (4.8) are valid only when the mass *m* is *constant*. It's easy to think of systems whose masses change, such as a leaking tank truck, a rocket ship, or a moving railroad car being loaded with coal. But such systems are better handled by using the concept of momentum; we'll get to that in Chapter 8.

Finally, Newton's second law is valid only in inertial frames of reference, just like the first law. Thus it is not valid in the reference frame of any of the accelerating vehicles in Fig. 4.11; relative to any of these frames, the passenger accelerates even though the net force on the passenger is zero. We will usually assume that the earth is an adequate approximation to an inertial frame, although because of its rotation and orbital motion it is not precisely inertial.

CAUTION $m\vec{a}$ is not a force You must keep in mind that even though the vector $m\vec{a}$ is equal to the vector sum $\sum \vec{F}$ of all the forces acting on the body, the vector $m\vec{a}$ is *not* a force. Acceleration is a *result* of a nonzero net force; it is not a force itself. It's "common sense" to think that there is a "force of acceleration" that pushes you back into your seat

4.17 The design of high-performance motorcycles depends fundamentally on Newton's second law. To maximize the forward acceleration, the designer makes the motorcycle as light as possible (that is, minimizes the mass) and uses the most powerful engine possible (thus maximizing the forward force).

Application Blame Newton's Second Law

This car stopped because of Newton's second law: The tree exerted an external force on the car, giving the car an acceleration that changed its velocity to zero.

Mastering PHYSICS

ActivPhysics 2.1.3: Tension Change ActivPhysics 2.1.4: Sliding on an Incline when your car accelerates forward from rest. But *there is no such force;* instead, your inertia causes you to tend to stay at rest relative to the earth, and the car accelerates around you (see Fig. 4.11a). The "common sense" confusion arises from trying to apply Newton's second law where it isn't valid, in the noninertial reference frame of an accelerating car. We will always examine motion relative to *inertial* frames of reference only.

In learning how to use Newton's second law, we will begin in this chapter with examples of straight-line motion. Then in Chapter 5 we will consider more general cases and develop more detailed problem-solving strategies.

Example 4.4 Determining acceleration from force

A worker applies a constant horizontal force with magnitude 20 N to a box with mass 40 kg resting on a level floor with negligible friction. What is the acceleration of the box?

SOLUTION

IDENTIFY and SET UP: This problem involves force and acceleration, so we'll use Newton's second law. In *any* problem involving forces, the first steps are to choose a coordinate system and to identify all of the forces acting on the body in question. It's usually convenient to take one axis either along or opposite the direction of the body's acceleration, which in this case is horizontal. Hence we take the +x-axis to be in the direction of the applied horizontal force (that is, the direction in which the box accelerates) and the +y-axis to be upward (Fig. 4.18). In most force problems that you'll encounter (including this one), the force vectors all lie in a plane, so the *z*-axis isn't used.

The forces acting on the box are (i) the horizontal force \vec{F} exerted by the worker, of magnitude 20 N; (ii) the weight \vec{w} of the box—that is, the downward gravitational force exerted by the earth; and (iii) the upward supporting force \vec{n} exerted by the floor. As in Section 4.2, we call \vec{n} a *normal* force because it is normal (perpendicular) to the surface of contact. (We use an italic letter *n* to avoid confusion with the abbreviation N for newton.) Friction is negligible, so no friction force is present.

The box doesn't move vertically, so the y-acceleration is zero: $a_y = 0$. Our target variable is the x-acceleration, a_x . We'll find it using Newton's second law in component form, Eqs. (4.8).

EXECUTE: From Fig. 4.18 only the 20-N force exerted by the worker has a nonzero *x*-component. Hence the first of Eqs. (4.8) tells us that

$$\sum F_x = F = 20 \text{ N} = ma_x$$

4.18 Our sketch for this problem. The tiles under the box are freshly waxed, so we assume that friction is negligible.

The *x*-component of acceleration is therefore

$$a_x = \frac{\sum F_x}{m} = \frac{20 \text{ N}}{40 \text{ kg}} = \frac{20 \text{ kg} \cdot \text{m/s}^2}{40 \text{ kg}} = 0.50 \text{ m/s}^2$$

EVALUATE: The acceleration is in the +x-direction, the same direction as the net force. The net force is constant, so the acceleration is also constant. If we know the initial position and velocity of the box, we can find its position and velocity at any later time from the constant-acceleration equations of Chapter 2.

To determine a_x , we didn't need the y-component of Newton's second law from Eqs. (4.8), $\sum F_y = ma_y$. Can you use this equation to show that the magnitude *n* of the normal force in this situation is equal to the weight of the box?

Example 4.5 Determining force from acceleration

A waitress shoves a ketchup bottle with mass 0.45 kg to her right along a smooth, level lunch counter. The bottle leaves her hand moving at 2.8 m/s, then slows down as it slides because of a constant horizontal friction force exerted on it by the countertop. It slides for 1.0 m before coming to rest. What are the magnitude and direction of the friction force acting on the bottle?

SOLUTION

IDENTIFY and SET UP: This problem involves forces and acceleration (the slowing of the ketchup bottle), so we'll use Newton's second law to solve it. As in Example 4.4, we choose a coordinate system and identify the forces acting on the bottle (Fig. 4.19). We choose the +x-axis to be in the direction that the bottle slides, and

4.19 Our sketch for this problem.

We draw one diagram for the bottle's motion and one showing the forces on the bottle.

take the origin to be where the bottle leaves the waitress's hand. The friction force \vec{f} slows the bottle down, so its direction must be opposite the direction of the bottle's velocity (see Fig. 4.13c).

Our target variable is the magnitude f of the friction force. We'll find it using the *x*-component of Newton's second law from Eqs. (4.8). We aren't told the *x*-component of the bottle's acceleration, a_x , but we know that it's constant because the friction force that causes the acceleration is constant. Hence we can calculate a_x using a constant-acceleration formula from Section 2.4. We know the bottle's initial and final *x*-coordinates ($x_0 = 0$ and x = 1.0 m) and its initial and final *x*-velocity ($v_{0x} = 2.8$ m/s and $v_x = 0$), so the easiest equation to use is Eq. (2.13), $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$.

Some Notes on Units

A few words about units are in order. In the cgs metric system (not used in this book), the unit of mass is the gram, equal to 10^{-3} kg, and the unit of distance is the centimeter, equal to 10^{-2} m. The cgs unit of force is called the *dyne*:

$$1 \text{ dyne} = 1 \text{ g} \cdot \text{cm/s}^2 = 10^{-5} \text{ N}$$

In the British system, the unit of force is the *pound* (or pound-force) and the unit of mass is the *slug* (Fig. 4.20). The unit of acceleration is 1 foot per second squared, so

$$1 \text{ pound} = 1 \text{ slug} \cdot \text{ft/s}^2$$

The official definition of the pound is

1 pound = 4.448221615260 newtons

It is handy to remember that a pound is about 4.4 N and a newton is about 0.22 pound. Another useful fact: A body with a mass of 1 kg has a weight of about 2.2 lb at the earth's surface.

Table 4.2 lists the units of force, mass, and acceleration in the three systems.

Test Your Understanding of Section 4.3 Rank the following situations in order of the magnitude of the object's acceleration, from lowest to highest. Are there any cases that have the same magnitude of acceleration? (i) a 2.0-kg object acted on by a 2.0-N net force; (ii) a 2.0-kg object acted on by a 8.0-N net force; (iii) an 8.0-kg object acted on by a 2.0-N net force; (iv) an 8.0-kg object acted on by a 8.0-N net force.

4.4 Mass and Weight

One of the most familiar forces is the *weight* of a body, which is the gravitational force that the earth exerts on the body. (If you are on another planet, your weight is the gravitational force that planet exerts on you.) Unfortunately, the terms *mass* and *weight* are often misused and interchanged in everyday conversation. It is absolutely essential for you to understand clearly the distinctions between these two physical quantities.

EXECUTE: We solve Eq. (2.13) for a_x :

$$a_x = \frac{v_x^2 - v_{0x}^2}{2(x - x_0)} = \frac{(0 \text{ m/s})^2 - (2.8 \text{ m/s})^2}{2(1.0 \text{ m} - 0 \text{ m})} = -3.9 \text{ m/s}^2$$

The negative sign means that the bottle's acceleration is toward the *left* in Fig. 4.19, opposite to its velocity; this is as it must be, because the bottle is slowing down. The net force in the *x*-direction is the *x*-component -f of the friction force, so

$$\sum F_x = -f = ma_x = (0.45 \text{ kg})(-3.9 \text{ m/s}^2)$$

= -1.8 kg \cdot m/s^2 = -1.8 N

The negative sign shows that the net force on the bottle is toward the left. The *magnitude* of the friction force is f = 1.8 N.

EVALUATE: As a check on the result, try repeating the calculation with the +x-axis to the *left* in Fig. 4.19. You'll find that $\sum F_x$ is equal to +f = +1.8 N (because the friction force is now in the +x-direction), and again you'll find f = 1.8 N. The answers for the *magnitudes* of forces don't depend on the choice of coordinate axes!

4.20 Despite its name, the English unit of mass has nothing to do with the type of slug shown here. A common garden slug has a mass of about 15 grams, or about 10^{-3} slug.

Table 4.2 Units of Force, Mass,and Acceleration

System of Units	Force	Mass	Acceleration
SI	newton (N)	kilogram (kg)	m/s ²
cgs	dyne (dyn)	gram (g)	cm/s^2
British	pound (lb)	slug	ft/s^2

Mastering **PHYSICS** ActivPhysics 2.9: Pole-Vaulter Vaults

4.21 The relationship of mass and weight.

is falling or stationary.

Mass characterizes the *inertial* properties of a body. Mass is what keeps the china on the table when you yank the tablecloth out from under it. The greater the mass, the greater the force needed to cause a given acceleration; this is reflected in Newton's second law, $\sum \vec{F} = m\vec{a}$.

Weight, on the other hand, is a *force* exerted on a body by the pull of the earth. Mass and weight are related: Bodies having large mass also have large weight. A large stone is hard to throw because of its large *mass*, and hard to lift off the ground because of its large *weight*.

To understand the relationship between mass and weight, note that a freely falling body has an acceleration of magnitude g. Newton's second law tells us that a force must act to produce this acceleration. If a 1-kg body falls with an acceleration of 9.8 m/s² the required force has magnitude

$$F = ma = (1 \text{ kg})(9.8 \text{ m/s}^2) = 9.8 \text{ kg} \cdot \text{m/s}^2 = 9.8 \text{ N}$$

The force that makes the body accelerate downward is its weight. Any body near the surface of the earth that has a mass of 1 kg *must* have a weight of 9.8 N to give it the acceleration we observe when it is in free fall. More generally, a body with mass *m* must have weight with magnitude *w* given by

w = mg (magnitude of the weight of a body of mass m) (4.9)

Hence the magnitude w of a body's weight is directly proportional to its mass m. The weight of a body is a force, a vector quantity, and we can write Eq. (4.9) as a vector equation (Fig. 4.21):

$$\vec{w} = m\vec{g} \tag{4.10}$$

Remember that g is the *magnitude* of \vec{g} , the acceleration due to gravity, so g is always a positive number, by definition. Thus w, given by Eq. (4.9), is the *magnitude* of the weight and is also always positive.

CAUTION A body's weight acts at all times It is important to understand that the weight of a body acts on the body *all the time*, whether it is in free fall or not. If we suspend an object from a rope, it is in equilibrium, and its acceleration is zero. But its weight, given by Eq. (4.10), is still pulling down on it (Fig. 4.21). In this case the rope pulls up on the object, applying an upward force. The *vector sum* of the forces is zero, but the weight still acts.

Conceptual Example 4.6 Net force and acceleration in free fall

In Example 2.6, a one-euro coin was dropped from rest from the Leaning Tower of Pisa. If the coin falls freely, so that the effects of the air are negligible, how does the net force on the coin vary as it falls?

SOLUTION

In free fall, the acceleration \vec{a} of the coin is constant and equal to \vec{g} . Hence by Newton's second law the net force $\sum \vec{F} = m\vec{a}$ is also constant and equal to $m\vec{g}$, which is the coin's weight \vec{w} (Fig. 4.22). The coin's velocity changes as it falls, but the net force acting on it is constant. (If this surprises you, reread Conceptual Example 4.3.)

The net force on a freely falling coin is constant even if you initially toss it upward. The force that your hand exerts on the coin to toss it is a contact force, and it disappears the instant the coin leaves your hand. From then on, the only force acting on the coin is its weight \vec{w} .

4.22 The acceleration of a freely falling object is constant, and so is the net force acting on the object.

Variation of g with Location

We will use $g = 9.80 \text{ m/s}^2$ for problems set on the earth (or, if the other data in the problem are given to only two significant figures, $g = 9.8 \text{ m/s}^2$). In fact, the value of g varies somewhat from point to point on the earth's surface—from about 9.78 to 9.82 m/s²—because the earth is not perfectly spherical and because of effects due to its rotation and orbital motion. At a point where $g = 9.80 \text{ m/s}^2$, the weight of a standard kilogram is w = 9.80 N. At a different point, where $g = 9.78 \text{ m/s}^2$, the weight is w = 9.78 N but the mass is still 1 kg. The weight of a body varies from one location to another; the mass does not.

If we take a standard kilogram to the surface of the moon, where the acceleration of free fall (equal to the value of g at the moon's surface) is 1.62 m/s^2 , its weight is 1.62 N, but its mass is still 1 kg (Fig. 4.23). An 80.0-kg astronaut has a weight on earth of $(80.0 \text{ kg})(9.80 \text{ m/s}^2) = 784 \text{ N}$, but on the moon the astronaut's weight would be only $(80.0 \text{ kg})(1.62 \text{ m/s}^2) = 130 \text{ N}$. In Chapter 13 we'll see how to calculate the value of g at the surface of the moon or on other worlds.

Measuring Mass and Weight

In Section 4.3 we described a way to compare masses by comparing their accelerations when they are subjected to the same net force. Usually, however, the easiest way to measure the mass of a body is to measure its weight, often by comparing with a standard. Equation (4.9) says that two bodies that have the same weight at a particular location also have the same mass. We can compare weights very precisely; the familiar equal-arm balance (Fig. 4.24) can determine with great precision (up to 1 part in 10^6) when the weights of two bodies are equal and hence when their masses are equal.

The concept of mass plays two rather different roles in mechanics. The weight of a body (the gravitational force acting on it) is proportional to its mass; we call the property related to gravitational interactions *gravitational mass*. On the other hand, we call the inertial property that appears in Newton's second law the *inertial mass*. If these two quantities were different, the acceleration due to gravity might well be different for different bodies. However, extraordinarily precise experiments have established that in fact the two *are* the same to a precision of better than one part in 10^{12} .

CAUTION Don't confuse mass and weight The SI units for mass and weight are often misused in everyday life. Incorrect expressions such as "This box weighs 6 kg" are nearly universal. What is meant is that the *mass* of the box, probably determined indirectly by *weighing*, is 6 kg. Be careful to avoid this sloppy usage in your own work! In SI units, weight (a force) is measured in newtons, while mass is measured in kilograms.

(a) on earth and (b) on the moon. (a)

4.23 The weight of a 1-kilogram mass

4.24 An equal-arm balance determines the mass of a body (such as an apple) by comparing its weight to a known weight.

Example 4.7 Mass and weight

A 2.49 \times 10⁴ N Rolls-Royce Phantom traveling in the +*x*-direction makes an emergency stop; the *x*-component of the net force acting on it is -1.83×10^4 N. What is its acceleration?

SOLUTION

IDENTIFY and SET UP: Our target variable is the *x*-component of the car's acceleration, a_x . We use the *x*-component portion of Newton's second law, Eqs. (4.8), to relate force and acceleration. To do this, we need to know the car's mass. The newton is a unit for

force, however, so 2.49×10^4 N is the car's *weight*, not its mass. Hence we'll first use Eq. (4.9) to determine the car's mass from its weight. The car has a positive *x*-velocity and is slowing down, so its *x*-acceleration will be negative.

EXECUTE: The mass of the car is

$$m = \frac{w}{g} = \frac{2.49 \times 10^4 \text{ N}}{9.80 \text{ m/s}^2} = \frac{2.49 \times 10^4 \text{ kg} \cdot \text{m/s}^2}{9.80 \text{ m/s}^2}$$

= 2540 kg Continued

Then $\sum F_x = ma_x$ gives

$$a_x = \frac{\sum F_x}{m} = \frac{-1.83 \times 10^4 \text{ N}}{2540 \text{ kg}} = \frac{-1.83 \times 10^4 \text{ kg} \cdot \text{m/s}^2}{2540 \text{ kg}}$$
$$= -7.20 \text{ m/s}^2$$

EVALUATE: The negative sign means that the acceleration vector points in the negative *x*-direction, as we expected. The magnitude

of this acceleration is pretty high; passengers in this car will experience a lot of rearward force from their shoulder belts.

The acceleration is also equal to -0.735g. The number -0.735 is also the ratio of -1.83×10^4 N (the *x*-component of the net force) to 2.49×10^4 N (the weight). In fact, the acceleration of a body, expressed as a multiple of *g*, is *always* equal to the ratio of the net force on the body to its weight. Can you see why?

Test Your Understanding of Section 4.4 Suppose an astronaut landed on a planet where $g = 19.6 \text{ m/s}^2$. Compared to earth, would it be easier, harder, or just as easy for her to walk around? Would it be easier, harder, or just as easy for her to catch a ball that is moving horizontally at 12 m/s? (Assume that the astronaut's spacesuit is a lightweight model that doesn't impede her movements in any way.)

4.5 Newton's Third Law

A force acting on a body is always the result of its interaction with another body, so forces always come in pairs. You can't pull on a doorknob without the doorknob pulling back on you. When you kick a football, the forward force that your foot exerts on the ball launches it into its trajectory, but you also feel the force the ball exerts back on your foot. If you kick a boulder, the pain you feel is due to the force that the boulder exerts on your foot.

In each of these cases, the force that you exert on the other body is in the opposite direction to the force that body exerts on you. Experiments show that whenever two bodies interact, the two forces that they exert on each other are always *equal in magnitude* and *opposite in direction*. This fact is called *Newton's third law of motion*:

Newton's third law of motion: If body *A* exerts a force on body *B* (an "action"), then body *B* exerts a force on body *A* (a "reaction"). These two forces have the same magnitude but are opposite in direction. These two forces act on *different* bodies.

For example, in Fig. 4.25 $\vec{F}_{A \text{ on } B}$ is the force applied by body A (first subscript) on body B (second subscript), and $\vec{F}_{B \text{ on } A}$ is the force applied by body B (first subscript) on body A (second subscript). The mathematical statement of Newton's third law is

$$\vec{F}_{A \text{ on } B} = -\vec{F}_{B \text{ on } A}$$
 (Newton's third law of motion) (4.11)

It doesn't matter whether one body is inanimate (like the soccer ball in Fig. 4.25) and the other is not (like the kicker): They necessarily exert forces on each other that obey Eq. (4.11).

In the statement of Newton's third law, "action" and "reaction" are the two opposite forces (in Fig. 4.25, $\vec{F}_{A \text{ on } B}$ and $\vec{F}_{B \text{ on } A}$); we sometimes refer to them as an **action-reaction pair.** This is *not* meant to imply any cause-and-effect relationship; we can consider either force as the "action" and the other as the "reaction." We often say simply that the forces are "equal and opposite," meaning that they have equal magnitudes and opposite directions.

CAUTION The two forces in an action–reaction pair act on different bodies. We stress that the two forces described in Newton's third law act on *different* bodies. This is important in problems involving Newton's first or second law, which involve the forces that act on a single body. For instance, the net force on the soccer ball in Fig. 4.25 is the vector sum of the weight of the ball and the force $\vec{F}_{A \text{ on } B}$ exerted by the kicker. You wouldn't include the force $\vec{F}_{B \text{ on } A}$ because this force acts on the kicker, not on the ball.

4.25 If body *A* exerts a force $\vec{F}_{A \text{ on } B}$ on body *B*, then body *B* exerts a force $\vec{F}_{B \text{ on } A}$ on body *A* that is equal in magnitude and opposite in direction: $\vec{F}_{A \text{ on } B} = -\vec{F}_{B \text{ on } A}$.

In Fig. 4.25 the action and reaction forces are *contact* forces that are present only when the two bodies are touching. But Newton's third law also applies to *long-range* forces that do not require physical contact, such as the force of gravitational attraction. A table-tennis ball exerts an upward gravitational force on the earth that's equal in magnitude to the downward gravitational force the earth exerts on the ball. When you drop the ball, both the ball and the earth accelerate toward each other. The net force on each body has the same magnitude, but the earth's acceleration is microscopically small because its mass is so great. Nevertheless, it does move!

Conceptual Example 4.8 Which force is greater?

After your sports car breaks down, you start to push it to the nearest repair shop. While the car is starting to move, how does the force you exert on the car compare to the force the car exerts on you? How do these forces compare when you are pushing the car along at a constant speed?

SOLUTION

Newton's third law says that in *both* cases, the force you exert on the car is equal in magnitude and opposite in direction to the force the car exerts on you. It's true that you have to push harder to get the car going than to keep it going. But no matter how hard you push on the car, the car pushes just as hard back on you. Newton's third law gives the same result whether the two bodies are at rest, moving with constant velocity, or accelerating. You may wonder how the car "knows" to push back on you with the same magnitude of force that you exert on it. It may help to visualize the forces you and the car exert on each other as interactions between the atoms at the surface of your hand and the atoms at the surface of the car. These interactions are analogous to miniature springs between adjacent atoms, and a compressed spring exerts equally strong forces on both of its ends.

Fundamentally, though, the reason we know that objects of different masses exert equally strong forces on each other is that experiment tells us so. Physics isn't merely a collection of rules and equations; rather, it's a systematic description of the natural world based on experiment and observation.

Conceptual Example 4.9 Applying Newton's third law: Objects at rest

An apple sits at rest on a table, in equilibrium. What forces act on the apple? What is the reaction force to each of the forces acting on the apple? What are the action—reaction pairs?

SOLUTION

Figure 4.26a shows the forces acting on the apple. $\vec{F}_{earth on apple}$ is the weight of the apple—that is, the downward gravitational force exerted by the earth on the apple. Similarly, $\vec{F}_{table on apple}$ is the upward force exerted by the table on the apple.

Figure 4.26b shows one of the action-reaction pairs involving the apple. As the earth pulls down on the apple, with force $\vec{F}_{earth \text{ on apple}}$, the apple exerts an equally strong upward pull on the earth $\vec{F}_{apple \text{ on earth}}$. By Newton's third law (Eq. 4.11) we have

$$\vec{F}_{apple on earth} = -\vec{F}_{earth on apple}$$

Also, as the table pushes up on the apple with force $\vec{F}_{table \text{ on apple}}$, the corresponding reaction is the downward force $\vec{F}_{apple \text{ on table}}$

remains.

4.26 The two forces in an action–reaction pair always act on different bodies.

Continued

exerted by the apple on the table (Fig. 4.26c). For this action– reaction pair we have

$$\vec{F}_{apple \text{ on table}} = -\vec{F}_{table \text{ on apple}}$$

The two forces acting on the apple, $\vec{F}_{table on apple}$ and $\vec{F}_{earth on apple}$, are *not* an action–reaction pair, despite being equal in magnitude and opposite in direction. They do not represent the mutual interaction of two bodies; they are two different forces act-

ing on the *same* body. Figure 4.26d shows another way to see this. If we suddenly yank the table out from under the apple, the forces $\vec{F}_{apple \text{ on table}}$ and $\vec{F}_{table \text{ on apple}}$ suddenly become zero, but $\vec{F}_{apple \text{ on earth}}$ and $\vec{F}_{earth \text{ on apple}}$ are unchanged (the gravitational interaction is still present). Because $\vec{F}_{table \text{ on apple}}$ is now zero, it can't be the negative of the nonzero $\vec{F}_{earth \text{ on apple}}$, and these two forces can't be an action–reaction pair. The two forces in an action–reaction pair never act on the same body.

Conceptual Example 4.10 Applying Newton's third law: Objects in motion

A stonemason drags a marble block across a floor by pulling on a rope attached to the block (Fig. 4.27a). The block is not necessarily in equilibrium. How are the various forces related? What are the action–reaction pairs?

SOLUTION

We'll use the subscripts B for the block, R for the rope, and M for the mason. In Fig. 4.27b the vector $\vec{F}_{M \text{ on } R}$ represents the force exerted by the *mason* on the *rope*. The corresponding reaction is the equal and opposite force $\vec{F}_{R \text{ on } M}$ exerted by the *rope* on the *mason*. Similarly, $\vec{F}_{R \text{ on } B}$ represents the force exerted by the *rope* on the *block*, and the corresponding reaction is the equal and opposite force $\vec{F}_{B \text{ on } R}$ exerted by the *block* on the *rope*. For these two action–reaction pairs, we have

$$\vec{F}_{\text{R on M}} = -\vec{F}_{\text{M on R}}$$
 and $\vec{F}_{\text{B on R}} = -\vec{F}_{\text{R on B}}$

Be sure you understand that the forces $\vec{F}_{M \text{ on } R}$ and $\vec{F}_{B \text{ on } R}$ (Fig. 4.27c) are *not* an action–reaction pair, because both of these forces act on the *same* body (the rope); an action and its reaction *must* always act on *different* bodies. Furthermore, the forces $\vec{F}_{M \text{ on } R}$ and $\vec{F}_{B \text{ on } R}$ are not necessarily equal in magnitude. Applying Newton's second law to the rope, we get

$$\sum \vec{F} = \vec{F}_{M \text{ on } R} + \vec{F}_{B \text{ on } R} = m_{\text{rope}} \vec{a}_{\text{rope}}$$

If the block and rope are accelerating (speeding up or slowing down), the rope is not in equilibrium, and $\vec{F}_{\rm M \ on \ R}$ must have a

different magnitude than $\vec{F}_{B \text{ on } R}$. By contrast, the action–reaction forces $\vec{F}_{M \text{ on } R}$ and $\vec{F}_{R \text{ on } M}$ are always equal in magnitude, as are $\vec{F}_{R \text{ on } B}$ and $\vec{F}_{B \text{ on } R}$. Newton's third law holds whether or not the bodies are accelerating.

In the special case in which the rope is in equilibrium, the forces $\vec{F}_{\rm M \ on \ R}$ and $\vec{F}_{\rm B \ on \ R}$ are equal in magnitude, and they are opposite in direction. But this is an example of Newton's *first* law, not his third; these are two forces on the same body, not forces of two bodies on each other. Another way to look at this is that in equilibrium, $\vec{a}_{\rm rope} = 0$ in the preceding equation. Then $\vec{F}_{\rm B \ on \ R} = -\vec{F}_{\rm M \ on \ R}$ because of Newton's first or second law.

Another special case is if the rope is accelerating but has negligibly small mass compared to that of the block or the mason. In this case, $m_{\text{rope}} = 0$ in the above equation, so again $\vec{F}_{\text{B on R}} = -\vec{F}_{\text{M on R}}$. Since Newton's third law says that $\vec{F}_{\text{B on R}}$ always equals $-\vec{F}_{\text{R on B}}$ (they are an action-reaction pair), in this "massless-rope" case $\vec{F}_{\text{R on B}}$ also equals $\vec{F}_{\text{M on R}}$.

For both the "massless-rope" case and the case of the rope in equilibrium, the force of the rope on the block is equal in magnitude and direction to the force of the mason on the rope (Fig. 4.27d). Hence we can think of the rope as "transmitting" to the block the force the mason exerts on the rope. This is a useful point of view, but remember that it is valid *only* when the rope has negligibly small mass or is in equilibrium.

(d) Not necessarily equal

4.27 Identifying the forces that act when a mason pulls on a rope attached to a block.

(b) The action-reaction pairs

(a) The block, the rope, and the mason

(c) *Not* an action–reaction pair

Conceptual Example 4.11 A Newton's third law paradox?

We saw in Conceptual Example 4.10 that the stonemason pulls as hard on the rope–block combination as that combination pulls back on him. Why, then, does the block move while the stonemason remains stationary?

SOLUTION

To resolve this seeming paradox, keep in mind the difference between Newton's *second* and *third* laws. The only forces involved in Newton's second law are those that act *on* a given body. The vector sum of these forces determines the body's acceleration, if any. By contrast, Newton's third law relates the forces that two *different* bodies exert on *each other*. The third law alone tells you nothing about the motion of either body.

If the rope-block combination is initially at rest, it begins to slide if the stonemason exerts a force $\vec{F}_{M \text{ on } R}$ that is *greater* in magnitude than the friction force that the floor exerts on the block (Fig. 4.28). (The block has a smooth underside, which helps to minimize friction.) Then there is a net force to the right on the rope-block combination, and it accelerates to the right. By contrast, the stonemason *doesn't* move because the net force acting on him is *zero*. His shoes have nonskid soles that don't slip on the floor, so the friction force that the floor exerts on him is strong enough to balance the pull of the rope on him, $\vec{F}_{R \text{ on } M}$. (Both the block and the stonemason also experience a downward force of gravity and an upward normal force exerted by the floor. These forces balance each other and cancel out, so we haven't included them in Fig. 4.28.)

Once the block is moving at the desired speed, the stonemason doesn't need to pull as hard; he must exert only enough force to balance the friction force on the block. Then the net force on the **4.28** The horizontal forces acting on the block–rope combination (left) and the mason (right). (The vertical forces are not shown.)

moving block is zero, and the block continues to move toward the mason at a constant velocity, in accordance with Newton's first law.

So the block accelerates but the stonemason doesn't because different amounts of friction act on them. If the floor were freshly waxed, so that there was little friction between the floor and the stonemason's shoes, pulling on the rope might start the block sliding to the right *and* start him sliding to the left.

The moral of this example is that when analyzing the motion of a body, you must remember that only the forces acting *on* a body determine its motion. From this perspective, Newton's third law is merely a tool that can help you determine what those forces are.

I

A body that has pulling forces applied at its ends, such as the rope in Fig. 4.27, is said to be in *tension*. The **tension** at any point is the magnitude of force acting at that point (see Fig. 4.2c). In Fig. 4.27b the tension at the right end of the rope is the magnitude of $\vec{F}_{M \text{ on } R}$ (or of $\vec{F}_{R \text{ on } M}$), and the tension at the left end equals the magnitude of $\vec{F}_{B \text{ on } R}$ (or of $\vec{F}_{R \text{ on } B}$). If the rope is in equilibrium and if no forces act except at its ends, the tension is the *same* at both ends and throughout the rope. Thus, if the magnitudes of $\vec{F}_{B \text{ on } R}$ and $\vec{F}_{M \text{ on } R}$ are 50 N each, the tension in the rope is 50 N (*not* 100 N). The *total* force vector $\vec{F}_{B \text{ on } R} + \vec{F}_{M \text{ on } R}$ acting on the rope in this case is zero!

We emphasize once more a fundamental truth: The two forces in an action-reaction pair *never* act on the same body. Remembering this simple fact can often help you avoid confusion about action-reaction pairs and Newton's third law.

Test Your Understanding of Section 4.5 You are driving your car on a country road when a mosquito splatters on the windshield. Which has the greater magnitude: the force that the car exerted on the mosquito or the force that the mosquito exerted on the car? Or are the magnitudes the same? If they are different, how can you reconcile this fact with Newton's third law? If they are equal, why is the mosquito splattered while the car is undamaged?

MasteringPHYSICS

ActivPhysics 2.1.1: Force Magnitudes

4.29 The simple act of walking depends crucially on Newton's third law. To start moving forward, you push backward on the ground with your foot. As a reaction, the ground pushes forward on your foot (and hence on your body as a whole) with a force of the same magnitude. This *external* force provided by the ground is what accelerates your body forward.

4.6 Free-Body Diagrams

Newton's three laws of motion contain all the basic principles we need to solve a wide variety of problems in mechanics. These laws are very simple in form, but the process of applying them to specific situations can pose real challenges. In this brief section we'll point out three key ideas and techniques to use in any problems involving Newton's laws. You'll learn others in Chapter 5, which also extends the use of Newton's laws to cover more complex situations.

- 1. Newton's first and second laws apply to a specific body. Whenever you use Newton's first law, $\sum \vec{F} = 0$, for an equilibrium situation or Newton's second law, $\sum \vec{F} = m\vec{a}$, for a nonequilibrium situation, you must decide at the beginning to which body you are referring. This decision may sound trivial, but it isn't.
- 2. Only forces acting on the body matter. The sum $\Sigma \vec{F}$ includes all the forces that act on the body in question. Hence, once you've chosen the body to analyze, you have to identify all the forces acting on it. Don't get confused between the forces acting on a body and the forces exerted by that body on some other body. For example, to analyze a person walking, you would include in $\Sigma \vec{F}$ the force that the ground exerts on the person as he walks, but *not* the force that the person exerts on the ground (Fig. 4.29). These forces form an action-reaction pair and are related by Newton's third law, but only the member of the pair that acts on the body you're working with goes into $\Sigma \vec{F}$.
- 3. *Free-body diagrams are essential to help identify the relevant forces.* A **free-body diagram** is a diagram showing the chosen body by itself, "free" of its surroundings, with vectors drawn to show the magnitudes and directions of all the forces applied to the body by the various other bodies that interact with it. We have already shown some free-body diagrams in Figs. 4.18, 4.19, 4.21, and 4.26a. Be careful to include all the forces acting *on* the body, but be equally careful *not* to include any forces that the body exerts on any other body. In particular, the two forces in an action–reaction pair must *never* appear in the same free-body diagram because they never act on the same body. Furthermore, forces that a body exerts on itself are never included, since these can't affect the body's motion.

CAUTION Forces in free-body diagrams When you have a complete free-body diagram, you *must* be able to answer this question for each force: What other body is applying this force? If you can't answer that question, you may be dealing with a nonexistent force. Be especially on your guard to avoid nonexistent forces such as "the force of acceleration" or "the $m\vec{a}$ force," discussed in Section 4.3.

When a problem involves more than one body, you have to take the problem apart and draw a separate free-body diagram for each body. For example, Fig. 4.27c shows a separate free-body diagram for the rope in the case in which the rope is considered massless (so that no gravitational force acts on it). Figure 4.28 also shows diagrams for the block and the mason, but these are *not* complete free-body diagrams because they don't show all the forces acting on each body. (We left out the vertical forces—the weight force exerted by the earth and the upward normal force exerted by the floor.)

Figure 4.30 presents three real-life situations and the corresponding complete free-body diagrams. Note that in each situation a person exerts a force on something in his or her surroundings, but the force that shows up in the person's free-body diagram is the surroundings pushing back *on* the person.

Test Your Understanding of Section 4.6 The buoyancy force shown in Fig. 4.30c is one half of an action–reaction pair. What force is the other half of this pair? (i) the weight of the swimmer; (ii) the forward thrust force; (iii) the backward drag force; (iv) the downward force that the swimmer exerts on the water; (v) the backward force that the swimmer exerts on the water by kicking.

4.30 Examples of free-body diagrams. Each free-body diagram shows all of the external forces that act on the object in question.

(b)

(a)

The force of the starting block on the runner has a vertical component that counteracts her weight and a large horizontal component that accelerates her.

buoyancy

ŵ

I

To jump up, this player will push down against the floor, increasing the upward reaction force \vec{n} of the floor on him.

(c)

Kicking causes the water to exert a forward reaction force, or thrust, on the swimmer. *F*_{drag} Thrust is countered by drag forces exerted by the water on the moving swimmer.

•The water exerts a buoyancy force that counters the swimmer's weight.

CHAPTER 4 SUMMARY

Force as a vector: Force is a quantitative measure of the interaction between two bodies. It is a vector quantity. When several forces act on a body, the effect on its motion is the same as when a single force, equal to the vector sum (resultant) of the forces, acts on the body. (See Example 4.1.)

The net force on a body and Newton's first law:

Newton's first law states that when the vector sum of all forces acting on a body (the net force) is zero, the body is in equilibrium and has zero acceleration. If the body is initially at rest, it remains at rest; if it is initially in motion, it continues to move with constant velocity. This law is valid only in inertial frames of reference. (See Examples 4.2 and 4.3.)

Mass, acceleration, and Newton's second law: The inertial properties of a body are characterized by its mass. The acceleration of a body under the action of a given set of forces is directly proportional to the vector sum of the forces (the net force) and inversely proportional to the mass of the body. This relationship is Newton's second law. Like Newton's first law, this law is valid only in inertial frames of reference. The unit of force is defined in terms of the units of mass and acceleration. In SI units, the unit of force is the newton (N), equal to 1 kg \cdot m/s². (See Examples 4.4 and 4.5.)

Weight: The weight \vec{w} of a body is the gravitational force exerted on it by the earth. Weight is a vector quantity. The magnitude of the weight of a body at any specific location is equal to the product of its mass m and the magnitude of the acceleration due to gravity g at that location. While the weight of a body depends on its location, the mass is independent of location. (See Examples 4.6 and 4.7.)

Newton's third law and action-reaction pairs:

Newton's third law states that when two bodies interact, they exert forces on each other that at each instant are equal in magnitude and opposite in direction. These forces are called action and reaction forces. Each of these two forces acts on only one of the two bodies; they never act on the same body. (See Examples 4.8–4.11.)

$$\vec{R} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \cdots = \sum \vec{F}$$
 (4.1)

 $\sum \vec{F} = 0$

 $\sum \vec{F} = m\vec{a}$

 $\sum F_x = ma_x$

 $\sum F_v = ma_v$

 $\sum F_7 = ma_7$

w = mg

 $\vec{F}_{B \text{ on } A}$

(мр

BRIDGING PROBLEM Links in a Chain

A student suspends a chain consisting of three links, each of mass m = 0.250 kg, from a light rope. She pulls upward on the rope, so that the rope applies an upward force of 9.00 N to the chain. (a) Draw a free-body diagram for the entire chain, considered as a body, and one for each of the three links. (b) Use the diagrams of part (a) and Newton's laws to find (i) the acceleration of the chain, (ii) the force exerted by the top link on the middle link, and (iii) the force exerted by the middle link on the bottom link. Treat the rope as massless.

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution.

IDENTIFY and **SET UP**

- 1. There are four objects of interest in this problem: the chain as a whole and the three individual links. For each of these four objects, make a list of the external forces that act on it. Besides the force of gravity, your list should include only forces exerted by other objects that *touch* the object in question.
- 2. Some of the forces in your lists form action–reaction pairs (one pair is the force of the top link on the middle link and the force of the middle link on the top link). Identify all such pairs.
- 3. Use your lists to help you draw a free-body diagram for each of the four objects. Choose the coordinate axes.

4. Use your lists to decide how many unknowns there are in this problem. Which of these are target variables?

EXECUTE

- 5. Write a Newton's second law equation for each of the four objects, and write a Newton's third law equation for each action–reaction pair. You should have at least as many equations as there are unknowns (see step 4). Do you?
- 6. Solve the equations for the target variables.

EVALUATE

MP

- 7. You can check your results by substituting them back into the equations from step 6. This is especially important to do if you ended up with more equations in step 5 than you used in step 6.
- 8. Rank the force of the rope on the chain, the force of the top link on the middle link, and the force of the middle link on the bottom link in order from smallest to largest magnitude. Does this ranking make sense? Explain.
- 9. Repeat the problem for the case where the upward force that the rope exerts on the chain is only 7.35 N. Is the ranking in step 8 the same? Does this make sense?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q4.1 Can a body be in equilibrium when only one force acts on it? Explain.

Q4.2 A ball thrown straight up has zero velocity at its highest point. Is the ball in equilibrium at this point? Why or why not?

Q4.3 A helium balloon hovers in midair, neither ascending nor descending. Is it in equilibrium? What forces act on it?

Q4.4 When you fly in an airplane at night in smooth air, there is no sensation of motion, even though the plane may be moving at 800 km/h (500 mi/h). Why is this?

Q4.5 If the two ends of a rope in equilibrium are pulled with forces of equal magnitude and opposite direction, why is the total tension in the rope not zero?

Q4.6 You tie a brick to the end of a rope and whirl the brick around you in a horizontal circle. Describe the path of the brick after you suddenly let go of the rope.

Q4.7 When a car stops suddenly, the passengers tend to move forward relative to their seats. Why? When a car makes a sharp turn, the passengers tend to slide to one side of the car. Why?

Q4.8 Some people say that the "force of inertia" (or "force of momentum") throws the passengers forward when a car brakes sharply. What is wrong with this explanation?

Q4.9 A passenger in a moving bus with no windows notices that a ball that has been at rest in the aisle suddenly starts to move toward

the rear of the bus. Think of two different possible explanations, and devise a way to decide which is correct.

Q4.10 Suppose you chose the fundamental SI units to be force, length, and time instead of mass, length, and time. What would be the units of mass in terms of those fundamental units?

Q4.11 Some of the ancient Greeks thought that the "natural state" of an object was to be at rest, so objects would seek their natural state by coming to rest if left alone. Explain why this incorrect view can actually seem quite plausible in the everyday world.

Q4.12 Why is the earth only approximately an inertial reference frame?

Q4.13 Does Newton's second law hold true for an observer in a van as it speeds up, slows down, or rounds a corner? Explain.

Q4.14 Some students refer to the quantity $m\vec{a}$ as "the force of acceleration." Is it correct to refer to this quantity as a force? If so, what exerts this force? If not, what is a better description of this quantity?

Q4.15 The acceleration of a falling body is measured in an elevator traveling upward at a constant speed of 9.8 m/s. What result is obtained?

Q4.16 You can play catch with a softball in a bus moving with constant speed on a straight road, just as though the bus were at rest. Is this still possible when the bus is making a turn at constant speed on a level road? Why or why not?

Q4.17 Students sometimes say that the force of gravity on an object is 9.8 m/s^2 . What is wrong with this view?

Q4.18 The head of a hammer begins to come loose from its wooden handle. How should you strike the handle on a concrete sidewalk to reset the head? Why does this work?

Q4.19 Why can it hurt your foot more to kick a big rock than a small pebble? *Must* the big rock hurt more? Explain.

Q4.20 "It's not the fall that hurts you; it's the sudden stop at the bottom." Translate this saying into the language of Newton's laws of motion.

Q4.21 A person can dive into water from a height of 10 m without injury, but a person who jumps off the roof of a 10-m-tall building and lands on a concrete street is likely to be seriously injured. Why is there a difference?

Q4.22 Why are cars designed to crumple up in front and back for safety? Why not for side collisions and rollovers?

Q4.23 When a bullet is fired from a rifle, what is the origin of the force that accelerates the bullet?

Q4.24 When a string barely strong enough lifts a heavy weight, it can lift the weight by a steady pull; but if you jerk the string, it will break. Explain in terms of Newton's laws of motion.

Q4.25 A large crate is suspended from the end of a vertical rope. Is the tension in the rope greater when the crate is at rest or when it is moving upward at constant speed? If the crate is traveling upward, is the tension in the rope greater when the crate is speeding up or when it is slowing down? In each case explain in terms of Newton's laws of motion.

Q4.26 Which feels a greater pull due to the earth's gravity, a 10-kg stone or a 20-kg stone? If you drop them, why does the 20-kg stone not fall with twice the acceleration of the 10-kg stone? Explain your reasoning.

Q4.27 Why is it incorrect to say that 1.0 kg *equals* 2.2 lb?

Q4.28 A horse is hitched to a wagon. Since the wagon pulls back on the horse just as hard as the horse pulls on the wagon, why doesn't the wagon remain in equilibrium, no matter how hard the horse pulls?

Q4.29 True or false? You exert a push P on an object and it pushes back on you with a force F. If the object is moving at constant velocity, then F is equal to P, but if the object is being accelerated, then P must be greater than F.

Q4.30 A large truck and a small compact car have a head-on collision. During the collision, the truck exerts a force $\vec{F}_{T \text{ on } C}$ on the car, and the car exerts a force $\vec{F}_{C \text{ on } T}$ on the truck. Which force has the larger magnitude, or are they the same? Does your answer depend on how fast each vehicle was moving before the collision? Why or why not?

Q4.31 When a car comes to a stop on a level highway, what force causes it to slow down? When the car increases its speed on the same highway, what force causes it to speed up? Explain.

Q4.32 A small compact car is pushing a large van that has broken down, and they travel along the road with equal velocities and accelerations. While the car is speeding up, is the force it exerts on the van larger than, smaller than, or the same magnitude as the force the van exerts on it? Which object, the car or the van, has the larger net force on it, or are the net forces the same? Explain.

Q4.33 Consider a tug-of-war between two people who pull in opposite directions on the ends of a rope. By Newton's third law, the force that A exerts on B is just as great as the force that B exerts on A. So what determines who wins? (*Hint:* Draw a free-body diagram showing all the forces that act on each person.)

Q4.34 On the moon, $g = 1.62 \text{ m/s}^2$. If a 2-kg brick drops on your foot from a height of 2 m, will this hurt more, or less, or the same if it happens on the moon instead of on the earth? Explain. If a 2-kg brick is thrown and hits you when it is moving horizontally at 6 m/s, will this hurt more, less, or the same if it happens on the moon instead of

on the earth? Explain. (On the moon, assume that you are inside a pressurized structure, so you are not wearing a spacesuit.)

Q4.35 A manual for student pilots contains the following passage: "When an airplane flies at a steady altitude, neither climbing nor descending, the upward lift force from the wings equals the airplane's weight. When the airplane is climbing at a steady rate, the upward lift is greater than the weight; when the airplane is descending at a steady rate, the upward lift is less than the weight." Are these statements correct? Explain.

Q4.36 If your hands are wet and no towel is handy, you can remove some of the excess water by shaking them. Why does this get rid of the water?

Q4.37 If you are squatting down (such as when you are examining the books on the bottom shelf in a library or bookstore) and suddenly get up, you can temporarily feel light-headed. What do Newton's laws of motion have to say about why this happens?

Q4.38 When a car is hit from behind, the passengers can receive a whiplash. Use Newton's laws of motion to explain what causes this to occur.

Q4.39 In a head-on auto collision, passengers not wearing seat belts can be thrown through the windshield. Use Newton's laws of motion to explain why this happens.

Q4.40 In a head-on collision between a compact 1000-kg car and a large 2500-kg car, which one experiences the greater force? Explain. Which one experiences the greater acceleration? Explain why. Now explain why passengers in the small car are more likely to be injured than those in the large car, even if the bodies of both cars are equally strong.

Q4.41 Suppose you are in a rocket with no windows, traveling in deep space far from any other objects. Without looking outside the rocket or making any contact with the outside world, explain how you could determine if the rocket is (a) moving forward at a constant 80% of the speed of light and (b) accelerating in the forward direction.

EXERCISES

Section 4.1 Force and Interactions

4.1 • Two forces have the same magnitude *F*. What is the angle

between the two vectors if their sum has a magnitude of (a) 2F? (b) $\sqrt{2}F$? (c) zero? Sketch the three vectors in each case.

4.2 • Workmen are trying to free an SUV stuck in the mud. To extricate the vehicle, they use three horizontal ropes, producing the force vectors shown in Fig. E4.2. (a) Find the x- and y-components of each of the three pulls. (b) Use the components to find the magnitude and direction of the resultant of the three pulls.

4.3 • **BIO** Jaw Injury. Due to a jaw injury, a patient must wear a strap (Fig. E4.3) that produces a net upward force of 5.00 N on his chin. The tension is the same throughout the strap. To what tension must the strap be adjusted to provide the necessary upward force?

4.4 • A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0°, and the man pulls upward with a force \vec{F} whose direction makes an angle of 30.0° with the ramp (Fig. E4.4). (a) How large a force \vec{F} is necessary for the component F_x parallel to the

Figure **E4.4**

ramp to be 60.0 N? (b) How large will the component F_y perpendicular to the ramp then be?

4.5 •• Two dogs pull horizontally on ropes attached to a post; the angle between the ropes is 60.0° . If dog *A* exerts a force of 270 N and dog *B* exerts a force of 300 N, find the magnitude of the resultant force and the angle it makes with dog *A*'s rope.

4.6 • Two forces, \vec{F}_1 and \vec{F}_2 , act at a point. The magnitude of \vec{F}_1 is 9.00 N, and its direction is 60.0° above the *x*-axis in the second quadrant. The magnitude of \vec{F}_2 is 6.00 N, and its direction is 53.1° below the *x*-axis in the third quadrant. (a) What are the *x*- and *y*-components of the resultant force? (b) What is the magnitude of the resultant force?

Section 4.3 Newton's Second Law

4.7 •• A 68.5-kg skater moving initially at 2.40 m/s on rough horizontal ice comes to rest uniformly in 3.52 s due to friction from the ice. What force does friction exert on the skater?

4.8 •• You walk into an elevator, step onto a scale, and push the "up" button. You also recall that your normal weight is 625 N. Start answering each of the following questions by drawing a freebody diagram. (a) If the elevator has an acceleration of magnitude 2.50 m/s², what does the scale read? (b) If you start holding a 3.85-kg package by a light vertical string, what will be the tension in this string once the elevator begins accelerating?

4.9 • A box rests on a frozen pond, which serves as a frictionless horizontal surface. If a fisherman applies a horizontal force with magnitude 48.0 N to the box and produces an acceleration of magnitude 3.00 m/s^2 , what is the mass of the box?

4.10 •• A dockworker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves 11.0 m in 5.00 s. (a) What is the mass of the block of ice? (b) If the worker stops pushing at the end of 5.00 s, how far does the block move in the next 5.00 s?

4.11 • A hockey puck with mass 0.160 kg is at rest at the origin (x = 0) on the horizontal, frictionless surface of the rink. At time t = 0 a player applies a force of 0.250 N to the puck, parallel to the *x*-axis; he continues to apply this force until t = 2.00 s. (a) What are the position and speed of the puck at t = 2.00 s? (b) If the same force is again applied at t = 5.00 s, what are the position and speed of the puck at t = 7.00 s?

4.12 • A crate with mass 32.5 kg initially at rest on a warehouse floor is acted on by a net horizontal force of 140 N. (a) What acceleration is produced? (b) How far does the crate travel in 10.0 s?

(c) What is its speed at the end of 10.0 s?

Figure E4.13

4.13 • A 4.50-kg toy cart undergoes an acceleration in a straight line (the *x*-axis). The graph in Fig. E4.13 shows this acceleration as a function of time. (a) Find the

maximum net force on this cart. When does this maximum force occur? (b) During what times is the net force on the cart a constant? (c) When is the net force equal to zero?

4.14 • A 2.75-kg cat moves in a straight line (the *x*axis). Figure E4.14 shows a graph of the *x*-component of this cat's velocity as a function of time. (a) Find the maximum net force on this cat. When does this force occur? (b) When is the net force on

the cat equal to zero? (c) What is the net force at time 8.5 s?

4.15 • A small 8.00-kg rocket burns fuel that exerts a time-varying upward force on the rocket as the rocket moves upward from the launch pad. This force obeys the equation $F = A + Bt^2$. Measurements show that at t = 0, the force is 100.0 N, and at the end of the first 2.00 s, it is 150.0 N. (a) Find the constants A and B, including their SI units. (b) Find the *net* force on this rocket and its acceleration (i) the instant after the fuel ignites and (ii) 3.00 s after fuel ignition. (c) Suppose you were using this rocket in outer space, far from all gravity. What would its acceleration be 3.00 s after fuel ignition?

4.16 • An electron (mass = 9.11×10^{-31} kg) leaves one end of a TV picture tube with zero initial speed and travels in a straight line to the accelerating grid, which is 1.80 cm away. It reaches the grid with a speed of 3.00×10^6 m/s. If the accelerating force is constant, compute (a) the acceleration; (b) the time to reach the grid; (c) the net force, in newtons. (You can ignore the gravitational force on the electron.)

Section 4.4 Mass and Weight

4.17 • Superman throws a 2400-N boulder at an adversary. What horizontal force must Superman apply to the boulder to give it a horizontal acceleration of 12.0 m/s^2 ?

4.18 • **BIO** (a) An ordinary flea has a mass of 210 μ g. How many newtons does it weigh? (b) The mass of a typical froghopper is 12.3 mg. How many newtons does it weigh? (c) A house cat typically weighs 45 N. How many pounds does it weigh, and what is its mass in kilograms?

4.19 • At the surface of Jupiter's moon Io, the acceleration due to gravity is $g = 1.81 \text{ m/s}^2$. A watermelon weighs 44.0 N at the surface of the earth. (a) What is the watermelon's mass on the earth's surface? (b) What are its mass and weight on the surface of Io?

4.20 • An astronaut's pack weighs 17.5 N when she is on earth but only 3.24 N when she is at the surface of an asteroid. (a) What is the acceleration due to gravity on this asteroid? (b) What is the mass of the pack on the asteroid?

Section 4.5 Newton's Third Law

4.21 • **BIO** World-class sprinters can accelerate out of the starting blocks with an acceleration that is nearly horizontal and has magnitude 15 m/s^2 . How much horizontal force must a 55-kg sprinter exert on the starting blocks during a start to produce this acceleration? Which body exerts the force that propels the sprinter: the blocks or the sprinter herself?

4.22 A small car (mass 380 kg) is pushing a large truck (mass 900 kg) due east on a level road. The car exerts a horizontal force of 1200 N on the truck. What is the magnitude of the force that the truck exerts on the car?

4.23 Boxes *A* and *B* are in contact on a horizontal, frictionless surface, as shown in Fig. E4.23. Box *A* has mass 20.0 kg and box *B* has mass 5.0 kg. A horizontal force of 100 N is exerted on box *A*. What is the magnitude of the force that box *A* exerts on box *B*?

4.24 •• The upward normal force exerted by the floor is 620 N on an elevator passenger who weighs 650 N. What are the reaction forces to these two forces? Is the passenger accelerating? If so, what are the magnitude and direction of the acceleration?

4.25 •• A student with mass 45 kg jumps off a high diving board. Using 6.0×10^{24} kg for the mass of the earth, what is the acceleration of the earth toward her as she accelerates toward the earth with an acceleration of 9.8 m/s²? Assume that the net force on the earth is the force of gravity she exerts on it.

Section 4.6 Free-Body Diagrams

4.26 • An athlete throws a ball of mass *m* directly upward, and it feels no appreciable air resistance. Draw a free-body diagram of this ball while it is free of the athlete's hand and (a) moving upward; (b) at its highest point; (c) moving downward. (d) Repeat parts (a), (b), and (c) if the athlete throws the ball at a 60° angle above the horizontal instead of directly upward.

4.27 •• Two crates, A and B, sit at rest side by side on a frictionless horizontal surface. The crates have masses m_A and m_B . A horizontal force \vec{F} is applied to crate A and the two crates move off to the right. (a) Draw clearly labeled free-body diagrams for crate A and for crate B. Indicate which pairs of forces, if any, are thirdlaw action-reaction pairs. (b) If the magnitude of force \vec{F} is less than the total weight of the two crates, will it cause the crates to move? Explain.

4.28 •• A person pulls horizontally on block B in Fig. E4.28, causing both blocks to move together as a unit. While this system is moving, make a carefully labeled free-body diagram of block A if (a) the table

is frictionless and (b) there is friction between block B and the table and the pull is equal to the friction force on block B due to the table.

4.29 • A ball is hanging from a long string that is tied to the ceiling of a train car traveling eastward on horizontal tracks. An observer inside the train car sees the ball hang motionless. Draw a clearly labeled free-body diagram for the ball if (a) the train has a uniform velocity, and (b) the train is speeding up uniformly. Is the net force on the ball zero in either case? Explain.

4.30 •• **CP** A .22 rifle bullet, traveling at 350 m/s, strikes a large tree, which it penetrates to a depth of 0.130 m. The mass of the bullet is 1.80 g. Assume a constant retarding force. (a) How much time is required for the bullet to stop? (b) What force, in newtons, does the tree exert on the bullet?

4.31 •• A chair of mass 12.0 kg is sitting on the horizontal floor; the floor is not frictionless. You push on the chair with a force F = 40.0 N that is directed at an angle of 37.0° below the horizontal and the chair slides along the floor. (a) Draw a clearly labeled free-body diagram for the chair. (b) Use your diagram and Newton's laws to calculate the normal force that the floor exerts on the chair.

4.32 •• A skier of mass 65.0 kg is pulled up a snow-covered slope at constant speed by a tow rope that is parallel to the ground. The ground slopes upward at a constant angle of 26.0° above the horizontal, and you can ignore friction. (a) Draw a clearly labeled freebody diagram for the skier. (b) Calculate the tension in the tow rope.

PROBLEMS

4.33 CP A 4.80-kg bucket of water is accelerated upward by a cord of negligible mass whose breaking strength is 75.0 N. If the bucket starts from rest, what is the minimum time required to raise the bucket a vertical distance of 12.0 m without breaking the cord? **4.34** ••• A large box containing your new computer sits on the bed of your pickup truck. You are stopped at a red light. The light turns green and you stomp on the gas and the truck accelerates. To your horror, the box starts to slide toward the back of the truck. Draw clearly labeled free-body diagrams for the truck and for the box. Indicate pairs of forces, if any, that are third-law action–reaction pairs. (The bed of the truck is *not* frictionless.)

4.35 • Two horses pull horizontally on ropes attached to a stump. The two forces \vec{F}_1 and \vec{F}_2 that they apply to the stump are such that the net (resultant) force \vec{R} has a magnitude equal to that of \vec{F}_1 and makes an angle of 90° with \vec{F}_1 . Let $F_1 = 1300$ N and R = 1300 N also. Find the magnitude of \vec{F}_2 and its direction (relative to \vec{F}_1).

4.36 •• **CP** You have just landed on Planet X. You take out a 100-g ball, release it from rest from a height of 10.0 m, and measure that it takes 2.2 s to reach the ground. You can ignore any force on the ball from the atmosphere of the planet. How much does the 100-g ball weigh on the surface of Planet X?

4.37 •• Two adults and a child want to push a wheeled cart in the direction marked x in Fig. P4.37. The two adults push with horizontal forces \vec{F}_1 and \vec{F}_2 as shown in the figure. (a) Find the magnitude and direction of the *smallest* force that the child should exert. You can ignore the effects of friction. (b) If the child exerts the minimum force found in part (a), the cart accelerates at 2.0 m/s² in the +x-direction. What is the weight of the cart?

4.38 • **CP** An oil tanker's engines have broken down, and the wind is blowing the tanker straight toward a reef at a constant speed of 1.5 m/s (Fig. P4.38). When the tanker is 500 m from the reef, the wind dies down just as the engineer gets the engines going again. The rudder is stuck, so the only choice is to try to accelerate straight backward away from the reef. The mass of the tanker and cargo is 3.6×10^7 kg, and the engines produce a net horizontal force of 8.0×10^4 N on the tanker. Will the ship hit the reef? If it does, will the oil be safe? The hull can withstand an impact at a speed of 0.2 m/s or less. You can ignore the retarding force of the water on the tanker's hull.

4.39 •• **CP BIO A Standing Vertical Jump.** Basketball player Darrell Griffith is on record as attaining a standing vertical jump of 1.2 m (4 ft). (This means that he moved upward by 1.2 m after his feet left the floor.) Griffith weighed 890 N (200 lb). (a) What is his speed as he leaves the floor? (b) If the time of the part of the jump before his feet left the floor was 0.300 s, what was his average acceleration (magnitude and direction) while he was pushing against the floor? (c) Draw his free-body diagram (see Section 4.6). In terms of the forces on the diagram, what is the net force on him? Use Newton's laws and the results of part (b) to calculate the average force he applied to the ground.

4.40 ••• **CP** An advertisement claims that a particular automobile can "stop on a dime." What net force would actually be necessary to stop a 850-kg automobile traveling initially at 45.0 km/h in a distance equal to the diameter of a dime, which is 1.8 cm?

4.41 •• **BIO** Human Biomechanics. The fastest pitched baseball was measured at 46 m/s. Typically, a baseball has a mass of 145 g. If the pitcher exerted his force (assumed to be horizontal and constant) over a distance of 1.0 m, (a) what force did he produce on the ball during this record-setting pitch? (b) Draw free-body diagrams of the ball during the pitch and just *after* it left the pitcher's hand.

4.42 •• **BIO** Human Biomechanics. The fastest served tennis ball, served by "Big Bill" Tilden in 1931, was measured at 73.14 m/s. The mass of a tennis ball is 57 g, and the ball is typically in contact with the tennis racquet for 30.0 ms, with the ball starting from rest. Assuming constant acceleration, (a) what force did Big Bill's tennis racquet exert on the tennis ball if he hit it essentially horizontally? (b) Draw free-body diagrams of the tennis ball during the serve and just after it moved free of the racquet.

4.43 • Two crates, one with mass 4.00 kg and the other with mass 6.00 kg, sit on the frictionless surface of a frozen pond, connected by a light rope (Fig. P4.43). A woman wearing golf shoes (so she can get traction on the ice) pulls horizontally on the 6.00-kg crate with a force *F* that gives the crate an acceleration of 2.50 m/s^2 . (a) What is the acceleration of the 4.00-kg crate? (b) Draw a free-body diagram for the 4.00-kg crate. Use that diagram and Newton's second law to find the tension *T* in the rope that connects the two crates. (c) Draw a free-body diagram for the 6.00-kg crate? What is the direction of the net force on the 6.00-kg crate? Which is larger in magnitude, force *T* or force *F*? (d) Use part (c) and Newton's second law to calculate the magnitude of the force *F*.

4.44 • An astronaut is tethered by a strong cable to a spacecraft. The astronaut and her spacesuit have a total mass of 105 kg, while the mass of the cable is negligible. The mass of the spacecraft is 9.05 \times 10⁴ kg. The spacecraft is far from any large astronomical bodies, so we can ignore the gravitational forces on it and the astronaut. We also assume that both the spacecraft and the astronaut are initially at rest in an inertial reference frame. The astronaut then pulls on the cable with a force of 80.0 N. (a) What force does the cable exert on the astronaut? (b) Since $\Sigma \vec{F} = m\vec{a}$, how can a "massless" (m = 0) cable exert a force? (c) What is the astronaut's acceleration? (d) What force does the cable exert on the spacecraft?

4.45 • **CALC** To study damage to aircraft that collide with large birds, you design a test gun that will accelerate chicken-sized objects so that their displacement along the gun barrel is given by $x = (9.0 \times 10^3 \text{ m/s}^2)t^2 - (8.0 \times 10^4 \text{ m/s}^3)t^3$. The object leaves the end of the barrel at t = 0.025 s. (a) How long must the gun barrel be? (b) What will be the speed of the objects as they leave the end of the barrel? (c) What net force must be exerted on a 1.50-kg object at (i) t = 0 and (ii) t = 0.025 s?

4.46 •• A spacecraft descends vertically near the surface of Planet X. An upward thrust of 25.0 kN from its engines slows it down at a rate of 1.20 m/s^2 , but it speeds up at a rate of 0.80 m/s^2 with an upward thrust of 10.0 kN. (a) In each case, what is the direction of the acceleration of the spacecraft? (b) Draw a free-body diagram for the spacecraft. In each case, speeding up or slowing down, what is the direction of the net force on the spacecraft? (c) Apply Newton's second law to each case, slowing down or speeding up, and use this to find the spacecraft's weight near the surface of Planet X.

4.47 •• **CP** A 6.50-kg instrument is hanging by a vertical wire inside a space ship that is blasting off at the surface of the earth. This ship starts from rest and reaches an altitude of 276 m in 15.0 s with constant acceleration. (a) Draw a free-body diagram for the instrument during this time. Indicate which force is greater. (b) Find the force that the wire exerts on the instrument.

4.48 •• Suppose the rocket in Problem 4.47 is coming in for a vertical landing instead of blasting off. The captain adjusts the engine thrust so that the magnitude of the rocket's acceleration is the same as it was during blast-off. Repeat parts (a) and (b).

4.49 •• **BIO** Insect Dynamics. The froghopper (*Philaenus spumarius*), the champion leaper of the insect world, has a mass of 12.3 mg and leaves the ground (in the most energetic jumps) at 4.0 m/s from a vertical start. The jump itself lasts a mere 1.0 ms before the insect is clear of the ground. Assuming constant acceleration, (a) draw a free-body diagram of this mighty leaper while the jump is taking place; (b) find the force that the ground exerts on the froghopper during its jump; and (c) express the force in part (b) in terms of the froghopper's weight.

4.50 • A loaded elevator with very worn cables has a total mass of 2200 kg, and the cables can withstand a maximum tension of 28,000 N. (a) Draw the free-body force diagram for the elevator. In terms of the forces on your diagram, what is the net force on the elevator? Apply Newton's second law to the elevator and find the maximum upward acceleration for the elevator if the cables are not to break. (b) What would be the answer to part (a) if the elevator were on the moon, where $g = 1.62 \text{ m/s}^2$?

4.51 •• **CP** Jumping to the Ground. A 75.0-kg man steps off a platform 3.10 m above the ground. He keeps his legs straight as he falls, but at the moment his feet touch the ground his knees begin to bend, and, treated as a particle, he moves an additional 0.60 m before coming to rest. (a) What is his speed at the instant his feet touch the ground? (b) Treating him as a particle, what is his acceleration (magnitude and direction) as he slows down, if the acceleration is assumed to be constant? (c) Draw his free-body diagram (see Section 4.6). In terms of the forces on the diagram, what is the net force on him? Use Newton's laws and the results of part (b) to calculate the average force his feet exert on the ground while he slows down. Express this force in newtons and also as a multiple of his weight.

4.52 ••• **CP** A 4.9-N hammer head is stopped from an initial downward velocity of 3.2 m/s in a distance of 0.45 cm by a nail in a pine board. In addition to its weight, there is a 15-N downward force on the hammer head applied by the person using the hammer. Assume that the acceleration of the hammer head is constant while

it is in contact with the nail and moving downward. (a) Draw a free-body diagram for the hammer head. Identify the reaction force to each action force in the diagram. (b) Calculate the downward force \vec{F} exerted by the hammer head on the nail while the hammer head is in contact with the nail and moving downward. (c) Suppose the nail is in hardwood and the distance the hammer head travels in coming to rest is only 0.12 cm. The downward forces on the hammer head are the same as in part (b). What then is the force \vec{F} exerted by the hammer head on the nail while the hammer head is in contact with the nail and moving downward?

4.53 •• A uniform cable of weight *w* hangs vertically downward, supported by an upward force of magnitude *w* at its top end. What is the tension in the cable (a) at its top end; (b) at its bottom end; (c) at its middle? Your answer to each part must include a freebody diagram. (*Hint:* For each question choose the body to analyze to be a section of the cable or a point along the cable.) (d) Graph the tension in the rope versus the distance from its top end.

4.54 •• The two blocks in Fig. P4.54 are connected by a heavy uniform rope with a mass of 4.00 kg. An upward force of 200 N is applied as shown. (a) Draw three free-body diagrams: one for the 6.00-kg block, one for the 4.00-kg rope, and another one for the 5.00-kg block. For each force, indicate what body exerts that force. (b) What is the acceleration of the system? (c) What is the tension at the top of the heavy rope? (d) What is the tension at the tension at the midpoint of the rope?

4.55 •• **CP** An athlete whose mass is 90.0 kg is performing weight-lifting exercises. Starting from the rest position, he lifts, with constant acceleration, a barbell

that weighs 490 N. He lifts the barbell a distance of 0.60 m in 1.6 s. (a) Draw a clearly labeled free-body force diagram for the barbell and for the athlete. (b) Use the diagrams in part (a) and Newton's laws to find the total force that his feet exert on the ground as he lifts the barbell.

4.56 ••• A hot-air balloon consists of a basket, one passenger, and some cargo. Let the total mass be M. Even though there is an

Answers

Chapter Opening Question **?**

Newton's third law tells us that the car pushes on the crew member just as hard as the crew member pushes on the car, but in the opposite direction. This is true whether the car's engine is on and the car is moving forward partly under its own power, or the engine is off and being propelled by the crew member's push alone. The force magnitudes are different in the two situations, but in either case the push of the car on the crew member is just as strong as the push of the crew member on the car.

Test Your Understanding Questions

4.1 Answer: (iv) The gravitational force on the crate points straight downward. In Fig. 4.6 the *x*-axis points up and to the right, and the *y*-axis points up and to the left. Hence the gravitational force has both an *x*-component and a *y*-component, and both are negative.

upward lift force on the balloon, the balloon is initially accelerating downward at a rate of g/3. (a) Draw a free-body diagram for the descending balloon. (b) Find the upward lift force in terms of the initial total weight Mg. (c) The passenger notices that he is heading straight for a waterfall and decides he needs to go up. What fraction of the total weight must he drop overboard so that the balloon accelerates *upward* at a rate of g/2? Assume that the upward lift force remains the same. Figure **P4.57**

4.57 CP Two boxes, *A* and *B*, are connected to each end of a light vertical rope, as shown in Fig. P4.57. A constant upward force F = 80.0 N is applied to box *A*. Starting from rest, box *B* descends 12.0 m in 4.00 s. The tension in the rope connecting the two boxes is 36.0 N. (a) What is the mass of box *B*? (b) What is the mass of box *A*?

4.58 ••• CALC The position of a 2.75×10^5 -N

training helicopter under test is given by $\vec{r} = (0.020 \text{ m/s}^3)t^3\hat{i} + (2.2 \text{ m/s})t\hat{j} - (0.060 \text{ m/s}^2)t^2\hat{k}$. Find the net force on the helicopter at t = 5.0 s.

4.59 • **CALC** An object with mass *m* moves along the *x*-axis. Its position as a function of time is given by $x(t) = At - Bt^3$, where *A* and *B* are constants. Calculate the net force on the object as a function of time.

4.60 • **CALC** An object with mass *m* initially at rest is acted on by a force $\vec{F} = k_1 \hat{i} + k_2 t^3 \hat{j}$, where k_1 and k_2 are constants. Calculate the velocity $\vec{v}(t)$ of the object as a function of time.

4.61 •• **CP CALC** A mysterious rocket-propelled object of mass 45.0 kg is initially at rest in the middle of the horizontal, frictionless surface of an ice-covered lake. Then a force directed east and with magnitude F(t) = (16.8 N/s)t is applied. How far does the object travel in the first 5.00 s after the force is applied?

CHALLENGE PROBLEMS

4.62 ••• CALC An object of mass *m* is at rest in equilibrium at the origin. At t = 0 a new force $\vec{F}(t)$ is applied that has components

$$F_x(t) = k_1 + k_2 y$$
 $F_y(t) = k_3 x$

where k_1, k_2 , and k_3 are constants. Calculate the position $\vec{r}(t)$ and velocity $\vec{v}(t)$ vectors as functions of time.

4.2 Answer: (i), (ii), and (iv) In (i), (ii), and (iv) the body is not accelerating, so the net force on the body is zero. [In (iv), the box remains stationary as seen in the inertial reference frame of the ground as the truck accelerates forward, like the skater in Fig. 4.11a.] In (iii), the hawk is moving in a circle; hence it is accelerating and is *not* in equilibrium.

4.3 Answer: (iii), (i) and (iv) (tie), (ii) The acceleration is equal to the net force divided by the mass. Hence the magnitude of the acceleration in each situation is

(i)
$$a = (2.0 \text{ N})/(2.0 \text{ kg}) = 1.0 \text{ m/s}^2$$
;
(ii) $a = (8.0 \text{ N})/(2.0 \text{ N}) = 4.0 \text{ m/s}^2$;
(iii) $a = (2.0 \text{ N})/(8.0 \text{ kg}) = 0.25 \text{ m/s}^2$;
(iv) $a = (8.0 \text{ N})/(8.0 \text{ kg}) = 1.0 \text{ m/s}^2$.

4.4 It would take twice the effort for the astronaut to walk around because her weight on the planet would be twice as much as on the earth. But it would be just as easy to catch a ball moving horizontally. The ball's *mass* is the same as on earth, so the horizontal force the astronaut would have to exert to bring it to a stop (i.e., to give it the same acceleration) would also be the same as on earth. **4.5** By Newton's third law, the two forces have equal magnitudes. Because the car has much greater mass than the mosquito, it undergoes only a tiny, imperceptible acceleration in response to the force of the impact. By contrast, the mosquito, with its minuscule mass, undergoes a catastrophically large acceleration.

4.6 Answer: (iv) The buoyancy force is an *upward* force that the *water* exerts on the *swimmer*. By Newton's third law, the

other half of the action-reaction pair is a *downward* force that the *swimmer* exerts on the *water* and has the same magnitude as the buoyancy force. It's true that the weight of the swimmer is also downward and has the same magnitude as the buoyancy force; however, the weight acts on the same body (the swimmer) as the buoyancy force, and so these forces aren't an actionreaction pair.

Bridging Problem

Answers: (a) See a Video Tutor solution on MasteringPhysics[®] (b) (i) 2.20 m/s²; (ii) 6.00 N; (iii) 3.00 N

APPLYING NEWTON'S LAWS

LEARNING GOALS

By studying this chapter, you will learn:

- How to use Newton's first law to solve problems involving the forces that act on a body in equilibrium.
- How to use Newton's second law to solve problems involving the forces that act on an accelerating body.
- The nature of the different types of friction forces—static friction, kinetic friction, rolling friction, and fluid resistance—and how to solve problems that involve these forces.
- How to solve problems involving the forces that act on a body moving along a circular path.
- The key properties of the four fundamental forces of nature.

This skydiver is descending under a parachute at a steady rate. In this situation, which has a greater magnitude: the force of gravity or the upward force of the air on the skydiver?

V e saw in Chapter 4 that Newton's three laws of motion, the foundation of classical mechanics, can be stated very simply. But *applying* these laws to situations such as an iceboat skating across a frozen lake, a toboggan sliding down a hill, or an airplane making a steep turn requires analytical skills and problem-solving technique. In this chapter we'll help you extend the problem-solving skills you began to develop in Chapter 4.

We'll begin with equilibrium problems, in which we analyze the forces that act on a body at rest or moving with constant velocity. We'll then consider bodies that are not in equilibrium, for which we'll have to deal with the relationship between forces and motion. We'll learn how to describe and analyze the contact force that acts on a body when it rests on or slides over a surface. We'll also analyze the forces that act on a body that moves in a circle with constant speed. We close the chapter with a brief look at the fundamental nature of force and the classes of forces found in our physical universe.

5.1 Using Newton's First Law: Particles in Equilibrium

We learned in Chapter 4 that a body is in *equilibrium* when it is at rest or moving with constant velocity in an inertial frame of reference. A hanging lamp, a kitchen table, an airplane flying straight and level at a constant speed—all are examples of equilibrium situations. In this section we consider only equilibrium of a body that can be modeled as a particle. (In Chapter 11 we'll see how to analyze a body in equilibrium that can't be represented adequately as a particle, such as a bridge that's supported at various points along its span.) The essential physical principle is Newton's first law: When a particle is in equilibrium, the *net* force acting on it—that is, the vector sum of all the forces acting on it—must be zero:

$$\sum \vec{F} = 0$$
 (particle in equilibrium, vector form) (5.1)

We most often use this equation in component form:

$$\sum F_x = 0$$
 (particle in equilibrium, component form) (5.2)

This section is about using Newton's first law to solve problems dealing with bodies in equilibrium. Some of these problems may seem complicated, but the important thing to remember is that *all* problems involving particles in equilibrium are done in the same way. Problem-Solving Strategy 5.1 details the steps you need to follow for any and all such problems. Study this strategy carefully, look at how it's applied in the worked-out examples, and try to apply it yourself when you solve assigned problems.

Problem-Solving Strategy 5.1 Newton's First Law: Equilibrium of a Particle

IDENTIFY *the relevant concepts:* You must use Newton's *first* law for any problem that involves forces acting on a body in equilibrium—that is, either at rest or moving with constant velocity. For example, a car is in equilibrium when it's parked, but also when it's traveling down a straight road at a steady speed.

If the problem involves more than one body and the bodies interact with each other, you'll also need to use Newton's *third* law. This law allows you to relate the force that one body exerts on a second body to the force that the second body exerts on the first one.

Identify the target variable(s). Common target variables in equilibrium problems include the magnitude and direction (angle) of one of the forces, or the components of a force.

SET UP *the problem* using the following steps:

- 1. Draw a very simple sketch of the physical situation, showing dimensions and angles. You don't have to be an artist!
- 2. Draw a free-body diagram for each body that is in equilibrium. For the present, we consider the body as a particle, so you can represent it as a large dot. In your free-body diagram, *do not* include the other bodies that interact with it, such as a surface it may be resting on or a rope pulling on it.
- 3. Ask yourself what is interacting with the body by touching it or in any other way. On your free-body diagram, draw a force vector for each interaction. Label each force with a symbol for the *magnitude* of the force. If you know the angle at which a force is directed, draw the angle accurately and label it. Include the body's weight, unless the body has negligible mass. If the mass is given, use w = mg to find the weight. A surface in contact with the body exerts a normal force perpendicular to the surface and possibly a friction force parallel to the surface. A rope or chain exerts a pull (never a push) in a direction along its length.
- 4. *Do not* show in the free-body diagram any forces exerted *by* the body on any other body. The sums in Eqs. (5.1) and (5.2)

include only forces that act *on* the body. For each force on the body, ask yourself "What other body causes that force?" If you can't answer that question, you may be imagining a force that isn't there.

5. Choose a set of coordinate axes and include them in your free-body diagram. (If there is more than one body in the problem, choose axes for each body separately.) Label the positive direction for each axis. If a body rests or slides on a plane surface, it usually simplifies things to choose axes that are parallel and perpendicular to this surface, even when the plane is tilted.

EXECUTE *the solution* as follows:

- Find the components of each force along each of the body's coordinate axes. Draw a wiggly line through each force vector that has been replaced by its components, so you don't count it twice. The *magnitude* of a force is always positive, but its *components* may be positive or negative.
- 2. Set the sum of all *x*-components of force equal to zero. In a separate equation, set the sum of all *y*-components equal to zero. (*Never* add *x* and *y*-components in a single equation.)
- 3. If there are two or more bodies, repeat all of the above steps for each body. If the bodies interact with each other, use Newton's third law to relate the forces they exert on each other.
- 4. Make sure that you have as many independent equations as the number of unknown quantities. Then solve these equations to obtain the target variables.

EVALUATE *your answer:* Look at your results and ask whether they make sense. When the result is a symbolic expression or formula, check to see that your formula works for any special cases (particular values or extreme cases for the various quantities) for which you can guess what the results ought to be.

Example 5.1 One-dimensional equilibrium: Tension in a massless rope

A gymnast with mass $m_{\rm G} = 50.0$ kg suspends herself from the lower end of a hanging rope of negligible mass. The upper end of the rope is attached to the gymnasium ceiling. (a) What is the gymnast's weight? (b) What force (magnitude and direction) does the rope exert on her? (c) What is the tension at the top of the rope?

SOLUTION

IDENTIFY and SET UP: The gymnast and the rope are in equilibrium, so we can apply Newton's first law to both bodies. We'll use Newton's third law to relate the forces that they exert on each other. The target variables are the gymnast's weight, w_G ; the force that the bottom of the rope exerts on the gymnast (call it $T_{R \text{ on } G}$); and the force that the ceiling exerts on the top of the rope (call it $T_{C \text{ on } R}$). Figure 5.1 shows our sketch of the situation and free-body diagrams for the gymnast and for the rope. We take the positive *y*-axis to be upward in each diagram. Each force acts in the vertical direction and so has only a *y*-component.

The forces $T_{\text{R on G}}$ (the upward force of the rope on the gymnast, Fig. 5.1b) and $T_{\text{G on R}}$ (the downward force of the gymnast on the rope, Fig. 5.1c) form an action–reaction pair. By Newton's third law, they must have the same magnitude.

5.1 Our sketches for this problem.

Note that Fig. 5.1c includes only the forces that act *on* the rope. In particular, it doesn't include the force that the *rope* exerts on the *ceiling* (compare the discussion of the apple in Conceptual Example 4.9 in Section 4.5). Similarly, the force that the rope exerts on the ceiling doesn't appear in Fig. 5.1c.

EXECUTE: (a) The magnitude of the gymnast's weight is the product of her mass and the acceleration due to gravity, g:

 $w_{\rm G} = m_{\rm G}g = (50.0 \text{ kg})(9.80 \text{ m/s}^2) = 490 \text{ N}$

(b) The gravitational force on the gymnast (her weight) points in the negative y-direction, so its y-component is $-w_G$. The upward force of the rope on the gymnast has unknown magnitude $T_{\rm R \ on \ G}$ and positive y-component $+T_{\rm R \ on \ G}$. We find this using Newton's first law:

Gymnast:
$$\sum F_y = T_{\text{R on G}} + (-w_{\text{G}}) = 0 \text{ so}$$
$$T_{\text{R on G}} = w_{\text{G}} = 490 \text{ N}$$

The rope pulls *up* on the gymnast with a force $T_{\text{R on }G}$ of magnitude 490 N. (By Newton's third law, the gymnast pulls *down* on the rope with a force of the same magnitude, $T_{\text{G on }R} = 490$ N.)

(c) We have assumed that the rope is weightless, so the only forces on it are those exerted by the ceiling (upward force of unknown magnitude $T_{\rm C \ on \ R}$) and by the gymnast (downward force of magnitude $T_{\rm G \ on \ R} = 490$ N). From Newton's first law, the *net* vertical force on the rope in equilibrium must be zero:

Rope:
$$\sum F_y = T_{\text{C on R}} + (-T_{\text{G on R}}) = 0 \text{ so}$$
$$T_{\text{C on R}} = T_{\text{G on R}} = 490 \text{ N}$$

EVALUATE: The *tension* at any point in the rope is the magnitude of the force that acts at that point. For this weightless rope, the tension $T_{\text{G on R}}$ at the lower end has the same value as the tension $T_{\text{C on R}}$ at the upper end. For such an ideal weightless rope, the tension has the same value at any point along the rope's length. (See the discussion in Conceptual Example 4.10 in Section 4.5.)

Example 5.2 One-dimensional equilibrium: Tension in a rope with mass

Find the tension at each end of the rope in Example 5.1 if the weight of the rope is 120 N.

SOLUTION

IDENTIFY and SET UP: As in Example 5.1, the target variables are the magnitudes $T_{\text{G on R}}$ and $T_{\text{C on R}}$ of the forces that act at the bottom and top of the rope, respectively. Once again, we'll apply Newton's first law to the gymnast and to the rope, and use Newton's third law to relate the forces that the gymnast and rope exert on each other. Again we draw separate free-body diagrams for the gymnast (Fig. 5.2a) and the rope (Fig. 5.2b). There is now a *third* force acting on the rope, however: the weight of the rope, of magnitude $w_{\text{R}} = 120 \text{ N}$.

EXECUTE: The gymnast's free-body diagram is the same as in Example 5.1, so her equilibrium condition is also the same. From

Newton's third law, $T_{R \text{ on } G} = T_{G \text{ on } R}$, and we again have

Gymnast:
$$\sum F_y = T_{\text{R on G}} + (-w_{\text{G}}) = 0 \text{ so}$$
$$T_{\text{R on G}} = T_{\text{G on R}} = w_{\text{G}} = 490 \text{ N}$$

The equilibrium condition $\sum F_y = 0$ for the rope is now

Rope:
$$\sum F_y = T_{C \text{ on } R} + (-T_{G \text{ on } R}) + (-w_R) = 0$$

Note that the y-component of $T_{\text{C on R}}$ is positive because it points in the +y-direction, but the y-components of both $T_{\text{G on R}}$ and w_{R} are negative. We solve for $T_{\text{C on R}}$ and substitute the values $T_{\text{G on R}} = T_{\text{R on G}} = 490 \text{ N}$ and $w_{\text{R}} = 120 \text{ N}$:

$$T_{\rm C on R} = T_{\rm G on R} + w_{\rm R} = 490 \,\rm{N} + 120 \,\rm{N} = 610 \,\rm{N}$$

EVALUATE: When we include the weight of the rope, the tension is *different* at the rope's two ends: 610 N at the top and 490 N at

the bottom. The force $T_{C \text{ on } R} = 610 \text{ N}$ exerted by the ceiling has to hold up both the 490-N weight of the gymnast and the 120-N weight of the rope.

To see this more clearly, we draw a free-body diagram for a composite body consisting of the gymnast and rope together (Fig. 5.2c). Only two external forces act on this composite body: the force $T_{\text{C on R}}$ exerted by the ceiling and the total weight $w_{\text{G}} + w_{\text{R}} = 490 \text{ N} + 120 \text{ N} = 610 \text{ N}$. (The forces $T_{\text{G on R}}$ and $T_{\text{R on G}}$ are *internal* to the composite body. Newton's first law applies only to *external* forces, so these internal forces play no role.) Hence Newton's first law applied to this composite body is

Composite body:
$$\sum F_y = T_{\text{C on R}} + [-(w_{\text{G}} + w_{\text{R}})] = 0$$

and so $T_{C \text{ on } R} = w_{G} + w_{R} = 610 \text{ N}.$

Treating the gymnast and rope as a composite body is simpler, but we can't find the tension $T_{G \text{ on } R}$ at the bottom of the rope by this method. *Moral: Whenever you have more than one body in a problem involving Newton's laws, the safest approach is to treat each body separately.*

Example 5.3 Two-dimensional equilibrium

In Fig. 5.3a, a car engine with weight w hangs from a chain that is linked at ring O to two other chains, one fastened to the ceiling and the other to the wall. Find expressions for the tension in each of the three chains in terms of w. The weights of the ring and chains are negligible compared with the weight of the engine.

SOLUTION

IDENTIFY and SET UP: The target variables are the tension magnitudes T_1 , T_2 , and T_3 in the three chains (Fig. 5.3a). All the bodies are in equilibrium, so we'll use Newton's first law. We need three independent equations, one for each target variable. However, applying Newton's first law to just one body gives us only *two* equations, as in Eqs. (5.2). So we'll have to consider more than one body in equilibrium. We'll look at the engine (which is acted on by T_1) and the ring (which is acted on by all three chains and so is acted on by all three tensions).

Figures 5.3b and 5.3c show our free-body diagrams and choice of coordinate axes. There are two forces that act on the engine: its weight w and the upward force T_1 exerted by the vertical chain.

5.3 (a) The situation. (b), (c) Our free-body diagrams.

(a) Engine, chains, and ring

Three forces act on the ring: the tensions from the vertical chain (T_1) , the horizontal chain (T_2) , and the slanted chain (T_3) . Because the vertical chain has negligible weight, it exerts forces of the same magnitude T_1 at both of its ends (see Example 5.1). (If the weight of this chain were not negligible, these two forces would have different magnitudes like the rope in Example 5.2.) The weight of the ring is also negligible, which is why it isn't included in Fig. 5.3c.

EXECUTE: The forces acting on the engine are along the *y*-axis only, so Newton's first law says

gine:
$$\sum F_y = T_1 + (-w) = 0$$
 and $T_1 = w$

The horizontal and slanted chains don't exert forces on the engine itself because they are not attached to it. These forces do appear when we apply Newton's first law to the ring, however. In the free-body diagram for the ring (Fig. 5.3c), remember that T_1 , T_2 , and T_3 are the *magnitudes* of the forces. We resolve the force with magnitude T_3 into its x- and y-components. The ring is in equilibrium, so using Newton's first law we can write (separate)

(b) Free-body (c) Free-body diagram for engine *diagram for ring O*

Fr

equations stating that the *x*- and *y*-components of the net force on the ring are zero:

Ring:
$$\sum F_x = T_3 \cos 60^\circ + (-T_2) = 0$$

Ring: $\sum F_y = T_3 \sin 60^\circ + (-T_1) = 0$

Because $T_1 = w$ (from the engine equation), we can rewrite the second ring equation as

$$T_3 = \frac{T_1}{\sin 60^\circ} = \frac{w}{\sin 60^\circ} = 1.2w$$

We can now use this result in the first ring equation:

$$T_2 = T_3 \cos 60^\circ = w \frac{\cos 60^\circ}{\sin 60^\circ} = 0.58w$$

Example 5.4 An inclined plane

A car of weight w rests on a slanted ramp attached to a trailer (Fig. 5.4a). Only a cable running from the trailer to the car prevents the car from rolling off the ramp. (The car's brakes are off and its transmission is in neutral.) Find the tension in the cable and the force that the ramp exerts on the car's tires.

SOLUTION

IDENTIFY: The car is in equilibrium, so we use Newton's first law. The ramp exerts a separate force on each of the car's tires, but for simplicity we lump these forces into a single force. For a further simplification, we'll neglect any friction force the ramp exerts on the tires (see Fig. 4.2b). Hence the ramp only exerts a force on the car that is *perpendicular* to the ramp. As in Section 4.1, we call this force the *normal* force (see Fig. 4.2a). The two target variables are the magnitude n of the normal force and the magnitude T of the tension in the cable.

SET UP: Figure 5.4 shows the situation and a free-body diagram for the car. The three forces acting on the car are its weight (magnitude w), the tension in the cable (magnitude T), and the normal force (magnitude n). Note that the angle α between the ramp and the horizontal is equal to the angle α between the weight vector \vec{w} and the downward normal to the plane of the ramp. Note also that we choose the *x*- and *y*-axes to be parallel and perpendicular to the ramp so that we only need to resolve one force (the weight) into *x*- and *y*-components. If we chose axes that were horizontal and vertical, we'd have to resolve both the normal force and the tension into components.

5.4 A cable holds a car at rest on a ramp.

(a) Car on ramp

(b) Free-body diagram for car

EVALUATE: The chain attached to the ceiling exerts a force on the ring with a *vertical* component equal to T_1 , which in turn is equal to w. But this force also has a horizontal component, so its magnitude T_3 is somewhat larger than w. This chain is under the greatest tension and is the one most susceptible to breaking.

To get enough equations to solve this problem, we had to consider not only the forces on the engine but also the forces acting on a second body (the ring connecting the chains). Situations like this are fairly common in equilibrium problems, so keep this technique in mind.

EXECUTE: To write down the *x*- and *y*-components of Newton's first law, we must first find the components of the weight. One complication is that the angle α in Fig. 5.4b is *not* measured from the +*x*-axis toward the +*y*-axis. Hence we *cannot* use Eqs. (1.6) directly to find the components. (You may want to review Section 1.8 to make sure that you understand this important point.)

One way to find the components of \vec{w} is to consider the right triangles in Fig. 5.4b. The sine of α is the magnitude of the *x*-component of \vec{w} (that is, the side of the triangle opposite α) divided by the magnitude *w* (the hypotenuse of the triangle). Similarly, the cosine of α is the magnitude of the *y*-component (the side of the triangle adjacent to α) divided by *w*. Both components are negative, so $w_x = -w \sin \alpha$ and $w_y = -w \cos \alpha$.

Another approach is to recognize that one component of \vec{w} must involve $\sin \alpha$ while the other component involves $\cos \alpha$. To decide which is which, draw the free-body diagram so that the angle α is noticeably smaller or larger than 45°. (You'll have to fight the natural tendency to draw such angles as being close to 45°.) We've drawn Fig. 5.4b so that α is smaller than 45°, so $\sin \alpha$ is less than $\cos \alpha$. The figure shows that the *x*-component of \vec{w} is smaller than the *y*-component, so the *x*-component must involve $\sin \alpha$ and the *y*-component must involve $\cos \alpha$. We again find $w_x = -w \sin \alpha$ and $w_y = -w \cos \alpha$.

In Fig. 5.4b we draw a wiggly line through the original vector representing the weight to remind us not to count it twice. Newton's first law gives us

$$\sum F_x = T + (-w \sin \alpha) = 0$$
$$\sum F_y = n + (-w \cos \alpha) = 0$$

(Remember that T, w, and n are all *magnitudes* of vectors and are therefore all positive.) Solving these equations for T and n, we find

$$T = w \sin \alpha$$
$$n = w \cos \alpha$$

EVALUATE: Our answers for *T* and *n* depend on the value of α . To check this dependence, let's look at some special cases. If the ramp is horizontal ($\alpha = 0$), we get T = 0 and n = w. As you might expect, no cable tension *T* is needed to hold the car, and the normal force *n* is equal in magnitude to the weight. If the ramp is vertical ($\alpha = 90^\circ$), we get T = w and n = 0. The cable tension *T* supports

all of the car's weight, and there's nothing pushing the car against the ramp.

CAUTION Normal force and weight may not be equal It's a common error to automatically assume that the magnitude n of the normal force is equal to the weight w: Our result shows that this is *not* true in general. It's always best to treat n as a variable and solve for its value, as we have done here.

How would the answers for T and n be affected if the car were being pulled up the ramp at a constant speed? This, too, is an equilibrium situation, since the car's velocity is constant. So the calculation is the same, and T and n have the same values as when the car is at rest. (It's true that T must be greater than $w \sin \alpha$ to *start* the car moving up the ramp, but that's not what we asked.)

Example 5.5 Equilibrium of bodies connected by cable and pulley

Blocks of granite are to be hauled up a 15° slope out of a quarry, and dirt is to be dumped into the quarry to fill up old holes. To simplify the process, you design a system in which a granite block on a cart with steel wheels (weight w_1 , including both block and cart) is pulled uphill on steel rails by a dirt-filled bucket (weight w_2 , including both dirt and bucket) that descends vertically into the quarry (Fig. 5.5a). How must the weights w_1 and w_2 be related in order for the system to move with constant speed? Ignore friction in the pulley and wheels, and ignore the weight of the cable.

SOLUTION

IDENTIFY and SET UP: The cart and bucket each move with a constant velocity (in a straight line at constant speed). Hence each body is in equilibrium, and we can apply Newton's first law to each. Our target is an expression relating the weights w_1 and w_2 .

Figure 5.5b shows our idealized model for the system, and Figs. 5.5c and 5.5d show our free-body diagrams. The two forces on the bucket are its weight w_2 and an upward tension exerted by the cable. As for the car on the ramp in Example 5.4, three forces act on the cart: its weight w_1 , a normal force of magnitude *n* exerted by the rails, and a tension force from the cable. (We're ignoring friction, so we assume that the rails exert no force on the cart parallel to the incline.) Note that we orient the axes differ-

ently for each body; the choices shown are the most convenient ones.

We're assuming that the cable has negligible weight, so the tension forces that the cable exerts on the cart and on the bucket have the same magnitude T. As we did for the car in Example 5.4, we represent the weight of the cart in terms of its x- and y-components.

EXECUTE: Applying $\Sigma F_v = 0$ to the bucket in Fig. 5.5c, we find

$$\sum F_y = T + (-w_2) = 0$$
 so $T = w_2$

Applying $\sum F_x = 0$ to the cart (and block) in Fig. 5.5d, we get

$$\sum F_x = T + (-w_1 \sin 15^\circ) = 0$$
 so $T = w_1 \sin 15^\circ$

Equating the two expressions for T, we find

$$w_2 = w_1 \sin 15^\circ = 0.26 w_1$$

EVALUATE: Our analysis doesn't depend at all on the direction in which the cart and bucket move. Hence the system can move with constant speed in *either* direction if the weight of the dirt and bucket is 26% of the weight of the granite block and cart. What would happen if w_2 were greater than $0.26w_1$? If it were less than $0.26w_1$?

Notice that we didn't need the equation $\sum F_y = 0$ for the cart and block. Can you use this to show that $n = w_1 \cos 15^\circ$?

5.5 (a) The situation. (b) Our idealized model. (c), (d) Our free-body diagrams.

Test Your Understanding of Section 5.1 A traffic light of weight *w* hangs from two lightweight cables, one on each side of the light. Each cable hangs at a 45° angle from the horizontal. What is the tension in each cable? (i) w/2; (ii) $w/\sqrt{2}$; (iii) $w/\sqrt{2}$; (v) 2w.

MP

5.6 Correct and incorrect free-body diagrams for a falling body.

(b) Correct free-body diagram

(c) Incorrect free-body diagram

5.2 Using Newton's Second Law: Dynamics of Particles

We are now ready to discuss *dynamics* problems. In these problems, we apply Newton's second law to bodies on which the net force is *not* zero. These bodies are *not* in equilibrium and hence are accelerating. The net force on the body is equal to the mass of the body times its acceleration:

$$\sum \vec{F} = m\vec{a}$$
 (Newton's second law, vector form) (5.3)

We most often use this relationship in component form:

$$\sum F_x = ma_x$$
 $\sum F_y = ma_y$ (Newton's second law,
component form) (5.4)

The following problem-solving strategy is very similar to Problem-Solving Strategy 5.1 for equilibrium problems in Section 5.1. Study it carefully, watch how we apply it in our examples, and use it when you tackle the end-of-chapter problems. You can solve *any* dynamics problem using this strategy.

CAUTION $m\vec{a}$ doesn't helong in free-hody diagrams Remember that the quantity $m\vec{a}$ is the *result* of forces acting on a body, *not* a force itself; it's not a push or a pull exerted by anything in the body's environment. When you draw the free-body diagram for an accelerating body (like the fruit in Fig. 5.6a), make sure you *never* include the " $m\vec{a}$ force" because *there is no such force* (Fig. 5.6c). You should review Section 4.3 if you're not clear on this point. Sometimes we draw the acceleration vector \vec{a} alongside a free-body diagram, as in Fig. 5.6b. But we *never* draw the acceleration vector with its tail touching the body (a position reserved exclusively for the forces that act on the body).

Problem-Solving Strategy 5.2 Newton's Second Law: Dynamics of Particles

IDENTIFY *the relevant concepts:* You have to use Newton's second law for *any* problem that involves forces acting on an accelerating body.

Identify the target variable—usually an acceleration or a force. If the target variable is something else, you'll need to select another concept to use. For example, suppose the target variable is how fast a sled is moving when it reaches the bottom of a hill. Newton's second law will let you find the sled's acceleration; you'll then use the constant-acceleration relationships from Section 2.4 to find velocity from acceleration.

SET UP *the problem* using the following steps:

- 1. Draw a simple sketch of the situation that shows each moving body. For each body, draw a free-body diagram that shows all the forces acting *on* the body. (The acceleration of a body is determined by the forces that act on it, *not* by the forces that it exerts on anything else.) Make sure you can answer the question "What other body is applying this force?" for each force in your diagram. Never include the quantity $m\vec{a}$ in your free-body diagram; it's not a force!
- 2. Label each force with an algebraic symbol for the force's *magnitude*. Usually, one of the forces will be the body's weight; it's usually best to label this as w = mg.
- 3. Choose your *x* and *y*-coordinate axes for each body, and show them in its free-body diagram. Be sure to indicate the positive direction for each axis. If you know the direction of the acceleration, it usually simplifies things to take one positive axis along that direction. If your problem involves two or more bodies that

accelerate in different directions, you can use a different set of axes for each body.

4. In addition to Newton's second law, $\sum \vec{F} = m\vec{a}$, identify any other equations you might need. For example, you might need one or more of the equations for motion with constant acceleration. If more than one body is involved, there may be relationships among their motions; for example, they may be connected by a rope. Express any such relationships as equations relating the accelerations of the various bodies.

EXECUTE *the solution* as follows:

- For each body, determine the components of the forces along each of the body's coordinate axes. When you represent a force in terms of its components, draw a wiggly line through the original force vector to remind you not to include it twice.
- 2. Make a list of all the known and unknown quantities. In your list, identify the target variable or variables.
- 3. For each body, write a separate equation for each component of Newton's second law, as in Eqs. (5.4). In addition, write any additional equations that you identified in step 4 of "Set Up." (You need as many equations as there are target variables.)
- 4. Do the easy part—the math! Solve the equations to find the target variable(s).

EVALUATE your answer: Does your answer have the correct units? (When appropriate, use the conversion $1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$.) Does it have the correct algebraic sign? When possible, consider particular values or extreme cases of quantities and compare the results with your intuitive expectations. Ask, "Does this result make sense?"

Example 5.6 Straight-line motion with a constant force

An iceboat is at rest on a frictionless horizontal surface (Fig. 5.7a). A wind is blowing along the direction of the runners so that 4.0 s after the iceboat is released, it is moving at 6.0 m/s (about 22 km/h, or 13 mi/h). What constant horizontal force F_W does the wind exert on the iceboat? The combined mass of iceboat and rider is 200 kg.

SOLUTION

IDENTIFY and SET UP: Our target variable is one of the forces (F_W) acting on the accelerating iceboat, so we need to use Newton's second law. The forces acting on the iceboat and rider (considered as a unit) are the weight *w*, the normal force *n* exerted by the surface, and the horizontal force F_W . Figure 5.7b shows the free-body diagram. The net force and hence the acceleration are to the right, so we chose the positive *x*-axis in this direction. The acceleration isn't given; we'll need to find it. Since the wind is assumed to exert a constant force, the resulting acceleration is constant and we can use one of the constant-acceleration formulas from Section 2.4.

(b) Free-body diagram

5.7 (a) The situation. (b) Our free-body diagram.

(a) Iceboat and rider on frictionless ice

The iceboat starts at rest (its initial x-velocity is $v_{0x} = 0$) and it attains an x-velocity $v_x = 6.0$ m/s after an elapsed time t = 4.0 s. To relate the x-acceleration a_x to these quantities we use Eq. (2.8), $v_x = v_{0x} + a_x t$. There is no vertical acceleration, so we expect that the normal force on the iceboat is equal in magnitude to the iceboat's weight.

EXECUTE: The *known* quantities are the mass m = 200 kg, the initial and final *x*-velocities $v_{0x} = 0$ and $v_x = 6.0$ m/s, and the elapsed time t = 4.0 s. The three *unknown* quantities are the acceleration a_x , the normal force *n*, and the horizontal force F_W . Hence we need three equations.

The first two equations are the *x*- and *y*-equations for Newton's second law. The force F_W is in the positive *x*-direction, while the forces *n* and w = mg are in the positive and negative *y*-directions, respectively. Hence we have

$$\sum F_x = F_W = ma_x$$

$$\sum F_y = n + (-mg) = 0 \quad \text{so} \quad n = mg$$

The third equation is the constant-acceleration relationship, Eq. (2.8):

$$v_x = v_{0x} + a_x t$$

To find F_W , we first solve this third equation for a_x and then substitute the result into the $\sum F_x$ equation:

$$a_x = \frac{v_x - v_{0x}}{t} = \frac{6.0 \text{ m/s} - 0 \text{ m/s}}{4.0 \text{ s}} = 1.5 \text{ m/s}^2$$

$$F_W = ma_x = (200 \text{ kg})(1.5 \text{ m/s}^2) = 300 \text{ kg} \cdot \text{m/s}^2$$

Since $1 \text{ kg} \cdot \text{m/s}^2 = 1 \text{ N}$, the final answer is

$$F_{\rm W} = 300 \, {\rm N} \, ({\rm about} \, 67 \, {\rm lb})$$

EVALUATE: Our answers for F_W and *n* have the correct units for a force, and (as expected) the magnitude *n* of the normal force is equal to *mg*. Does it seem reasonable that the force F_W is substantially *less* than *mg*?

Example 5.7 Straight-line motion with friction

Suppose a constant horizontal friction force with magnitude 100 N opposes the motion of the iceboat in Example 5.6. In this case, what constant force $F_{\rm W}$ must the wind exert on the iceboat to cause the same constant *x*-acceleration $a_x = 1.5 \text{ m/s}^2$?

SOLUTION

IDENTIFY and SET UP: Again the target variable is F_W . We are given the *x*-acceleration, so to find F_W all we need is Newton's second law. Figure 5.8 shows our new free-body diagram. The only difference from Fig. 5.7b is the addition of the friction force \vec{f} , which points opposite the motion. (Note that the *magnitude* f = 100 N is a positive quantity, but the *component* in the *x*-direction f_x is negative, equal to -f or -100 N.) Because the wind must now overcome the friction force to yield the same acceleration as in Example 5.6, we expect our answer for F_W to be greater than the 300 N we found there.

5.8 Our free-body diagram for the iceboat and rider with a friction force \vec{f} opposing the motion.

EXECUTE: Two forces now have x-components: the force of the wind and the friction force. The x-component of Newton's second law gives

$$\sum F_x = F_W + (-f) = ma_x$$

$$F_W = ma_x + f = (200 \text{ kg})(1.5 \text{ m/s}^2) + (100 \text{ N}) = 400 \text{ N}$$

Example 5.8 Tension in an elevator cable

An elevator and its load have a combined mass of 800 kg (Fig. 5.9a). The elevator is initially moving downward at 10.0 m/s; it slows to a stop with constant acceleration in a distance of 25.0 m. What is the tension T in the supporting cable while the elevator is being brought to rest?

SOLUTION

IDENTIFY and SET UP: The target variable is the tension T, which we'll find using Newton's second law. As in Example 5.6, we'll determine the acceleration using a constant-acceleration formula. Our free-body diagram (Fig. 5.9b) shows two forces acting on the elevator: its weight w and the tension force T of the cable. The elevator is moving downward with decreasing speed, so its acceleration is upward; we chose the positive y-axis to be upward.

The elevator is moving in the negative y-direction, so its initial y-velocity v_{0y} and its y-displacement $y - y_0$ are both negative: $v_{0y} = -10.0 \text{ m/s}$ and $y - y_0 = -25.0 \text{ m}$. The final y-velocity is $v_{y} = 0$. To find the y-acceleration a_{y} from this information, we'll use Eq. (2.13) in the form $v_y^2 = v_{0y}^2 + 2a_y(y - y_0)$. Once we have a_y , we'll substitute it into the y-component of Newton's second law from Eqs. (5.4) and solve for T. The net force must be upward to give an upward acceleration, so we expect T to be greater than the weight $w = mg = (800 \text{ kg})(9.80 \text{ m/s}^2) = 7840 \text{ N}.$

EXECUTE: First let's write out Newton's second law. The tension force acts upward and the weight acts downward, so

$$\sum F_y = T + (-w) = ma_y$$

We solve for the target variable *T*:

$$T = w + ma_v = mg + ma_v = m(g + a_v)$$

EVALUATE: The required value of $F_{\rm W}$ is 100 N greater than in Example 5.6 because the wind must now push against an additional 100-N friction force.

5.9 (a) The situation. (b) Our free-body diagram.

To determine a_v , we rewrite the constant-acceleration equation $v_y^2 = v_{0y}^2 + 2a_y(y - y_0)$:

$$a_{y} = \frac{v_{y}^{2} - v_{0y}^{2}}{2(y - y_{0})} = \frac{(0)^{2} - (-10.0 \text{ m/s})^{2}}{2(-25.0 \text{ m})} = +2.00 \text{ m/s}^{2}$$

The acceleration is upward (positive), just as it should be.

Now we can substitute the acceleration into the equation for the tension:

$$T = m(g + a_y) = (800 \text{ kg})(9.80 \text{ m/s}^2 + 2.00 \text{ m/s}^2)$$

= 9440 N

EVALUATE: The tension is greater than the weight, as expected. Can you see that we would get the same answers for a_y and T if the elevator were moving upward and gaining speed at a rate of 2.00 m/s^2 ?

Example 5.9 Apparent weight in an accelerating elevator

A 50.0-kg woman stands on a bathroom scale while riding in the elevator in Example 5.8. What is the reading on the scale?

SOLUTION

IDENTIFY and SET UP: The scale (Fig. 5.10a) reads the magnitude of the downward force exerted by the woman on the scale. By Newton's third law, this equals the magnitude of the upward normal force exerted by the scale on the woman. Hence our target variable is the magnitude n of the normal force. We'll find n by applying Newton's second law to the woman. We already know her acceleration; it's the same as the acceleration of the elevator, which we calculated in Example 5.8.

Figure 5.10b shows our free-body diagram for the woman. The forces acting on her are the normal force n exerted by the scale and her weight $w = mg = (50.0 \text{ kg})(9.80 \text{ m/s}^2) = 490 \text{ N}.$

5.10 (a) The situation. (b) Our free-body diagram.

(The tension force, which played a major role in Example 5.8, doesn't appear here because it doesn't act on the woman.) From Example 5.8, the *y*-acceleration of the elevator and of the woman is $a_y = +2.00 \text{ m/s}^2$. As in Example 5.8, the upward force on the body accelerating upward (in this case, the normal force on the woman) will have to be greater than the body's weight to produce the upward acceleration.

EXECUTE: Newton's second law gives

$$\sum F_y = n + (-mg) = ma_y$$

$$n = mg + ma_y = m(g + a_y)$$

$$= (50.0 \text{ kg})(9.80 \text{ m/s}^2 + 2.00 \text{ m/s}^2) = 590 \text{ N}$$

EVALUATE: Our answer for n means that while the elevator is stopping, the scale pushes up on the woman with a force of 590 N. By Newton's third law, she pushes down on the scale with the same force. So the scale reads 590 N, which is 100 N more than her actual

Apparent Weight and Apparent Weightlessness

Let's generalize the result of Example 5.9. When a passenger with mass *m* rides in an elevator with *y*-acceleration a_y , a scale shows the passenger's apparent weight to be

$$n = m(g + a_v)$$

When the elevator is accelerating upward, a_y is positive and n is greater than the passenger's weight w = mg. When the elevator is accelerating downward, a_y is negative and n is less than the weight. If the passenger doesn't know the elevator is accelerating, she may feel as though her weight is changing; indeed, this is just what the scale shows.

The extreme case occurs when the elevator has a downward acceleration $a_y = -g$ —that is, when it is in free fall. In that case n = 0 and the passenger *seems* to be weightless. Similarly, an astronaut orbiting the earth with a spacecraft experiences *apparent weightlessness* (Fig. 5.11). In each case, the person is not truly weightless because a gravitational force still acts. But the person's sensations in this free-fall condition are exactly the same as though the person were in outer space with no gravitational force at all. In both cases the person and the vehicle (elevator or spacecraft) fall together with the same acceleration g, so nothing pushes the person against the floor or walls of the vehicle.

weight. The scale reading is called the passenger's **apparent weight**. The woman *feels* the floor pushing up harder on her feet than when the elevator is stationary or moving with constant velocity.

What would the woman feel if the elevator were accelerating *downward*, so that $a_y = -2.00 \text{ m/s}^2$? This would be the case if the elevator were moving upward with decreasing speed or moving downward with increasing speed. To find the answer for this situation, we just insert the new value of a_y in our equation for *n*:

$$n = m(g + a_y) = (50.0 \text{ kg})[9.80 \text{ m/s}^2 + (-2.00 \text{ m/s}^2)]$$

= 390 N

Now the woman feels as though she weighs only 390 N, or 100 N *less* than her actual weight *w*.

You can feel these effects yourself; try taking a few steps in an elevator that is coming to a stop after descending (when your apparent weight is greater than *w*) or coming to a stop after ascending (when your apparent weight is less than *w*).

5.11 Astronauts in orbit feel "weightless" because they have the same acceleration as their spacecraft—*not* because they are "outside the pull of the earth's gravity." (If no gravity acted on them, the astronauts and their spacecraft wouldn't remain in orbit, but would fly off into deep space.)

Example 5.10 Acceleration down a hill

A toboggan loaded with students (total weight w) slides down a snow-covered slope. The hill slopes at a constant angle α , and the toboggan is so well waxed that there is virtually no friction. What is its acceleration?

SOLUTION

IDENTIFY and SET UP: Our target variable is the acceleration, which we'll find using Newton's second law. There is no friction, so only two forces act on the toboggan: its weight w and the normal force n exerted by the hill.

Figure 5.12 shows our sketch and free-body diagram. As in Example 5.4, the surface is inclined, so the normal force is not vertical and is not equal in magnitude to the weight. Hence we must use both components of $\sum \vec{F} = m\vec{a}$ in Eqs. (5.4). We take axes parallel

5.12 Our sketches for this problem.

Continued

and perpendicular to the surface of the hill, so that the acceleration (which is parallel to the hill) is along the positive *x*-direction.

EXECUTE: The normal force has only a y-component, but the weight has both x- and y-components: $w_x = w \sin \alpha$ and $w_y = -w \cos \alpha$. (In Example 5.4 we had $w_x = -w \sin \alpha$. The difference is that the positive x-axis was uphill in Example 5.4 but is downhill in Fig. 5.12b.) The wiggly line in Fig. 5.12b reminds us that we have resolved the weight into its components. The acceleration is purely in the +x-direction, so $a_y = 0$. Newton's second law in component form then tells us that

$$\sum F_x = w \sin \alpha = ma_x$$
$$\sum F_y = n - w \cos \alpha = ma_y =$$

Since w = mg, the x-component equation tells us that $mg \sin \alpha = ma_x$, or

$$a_r = g \sin \alpha$$

Note that we didn't need the *y*-component equation to find the acceleration. That's part of the beauty of choosing the *x*-axis to lie along the acceleration direction! The *y*-equation tells us the mag-

nitude of the normal force exerted by the hill on the toboggan:

$$n = w \cos \alpha = mg \cos \alpha$$

EVALUATE: Notice that the normal force *n* is not equal to the toboggan's weight (compare Example 5.4). Notice also that the mass *m* does not appear in our result for the acceleration. That's because the downhill force on the toboggan (a component of the weight) is proportional to *m*, so the mass cancels out when we use $\sum F_x = ma_x$ to calculate a_x . Hence *any* toboggan, regardless of its mass, slides down a frictionless hill with acceleration *g* sin α .

If the plane is horizontal, $\alpha = 0$ and $a_x = 0$ (the toboggan does not accelerate); if the plane is vertical, $\alpha = 90^\circ$ and $a_x = g$ (the toboggan is in free fall).

CAUTION Common free-body diagram errors Figure 5.13 shows both the correct way (Fig. 5.13a) and a common *incorrect* way (Fig. 5.13b) to draw the free-body diagram for the toboggan. The diagram in Fig. 5.13b is wrong for two reasons: The normal force must be drawn perpendicular to the surface, and there's no such thing as the " $m\vec{a}$ force." If you remember that "normal" means "perpendicular" and that $m\vec{a}$ is not itself a force, you'll be well on your way to always drawing correct free-body diagrams.

5.13 Correct and incorrect free-body diagrams for a toboggan on a frictionless hill.

0

Example 5.11 Two bodies with the same acceleration

You push a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. The tray pushes on a 0.50-kg carton of milk (Fig. 5.14a). The tray and carton slide on a horizontal surface so greasy that friction can be neglected. Find the acceleration of the tray and carton and the horizontal force that the tray exerts on the carton.

SOLUTION

IDENTIFY and SET UP: Our *two* target variables are the acceleration of the tray–carton system and the force of the tray on the carton. We'll use Newton's second law to get two equations, one for each target variable. We set up and solve the problem in two ways.

Method 1: We treat the milk carton (mass $m_{\rm C}$) and tray (mass $m_{\rm T}$) as separate bodies, each with its own free-body diagram (Figs. 5.14b and 5.14c). The force *F* that you exert on the tray doesn't appear in the free-body diagram for the carton, which is accelerated by the force (of magnitude $F_{\rm T \ on \ C}$) exerted on it by the tray. By Newton's third law, the carton exerts a force of equal magnitude on the tray: $F_{\rm C \ on \ T} = F_{\rm T \ on \ C}$. We take the acceleration to

be in the positive *x*-direction; both the tray and milk carton move with the same *x*-acceleration a_{x} .

Method 2: We treat the tray and milk carton as a composite body of mass $m = m_{\rm T} + m_{\rm C} = 1.50 \,\rm kg$ (Fig. 5.14d). The only horizontal force acting on this body is the force *F* that you exert. The forces $F_{\rm T on C}$ and $F_{\rm C on T}$ don't come into play because they're *internal* to this composite body, and Newton's second law tells us that only *external* forces affect a body's acceleration (see Section 4.3). To find the magnitude $F_{\rm T on C}$ we'll again apply Newton's second law to the carton, as in Method 1.

EXECUTE: *Method 1:* The *x*-component equations of Newton's second law are

Tray:
$$\sum F_x = F - F_{C \text{ on } T} = F - F_{T \text{ on } C} = m_T a_x$$

Carton: $\sum F_x = F_{T \text{ on } C} = m_C a_x$

These are two simultaneous equations for the two target variables a_x and $F_{T \text{ on } C}$. (Two equations are all we need, which means that

the y-components don't play a role in this example.) An easy way to solve the two equations for a_x is to add them; this eliminates $F_{\text{T on C}}$, giving

$$F = m_{\mathrm{T}}a_x + m_{\mathrm{C}}a_x = (m_{\mathrm{T}} + m_{\mathrm{C}})a_x$$

and

$$a_x = \frac{F}{m_{\rm T} + m_{\rm C}} = \frac{9.0 \,\mathrm{N}}{1.00 \,\mathrm{kg} + 0.50 \,\mathrm{kg}} = 6.0 \,\mathrm{m/s^2} = 0.61g$$

Substituting this value into the carton equation gives

$$F_{\text{Ton C}} = m_{\text{C}} a_x = (0.50 \text{ kg})(6.0 \text{ m/s}^2) = 3.0 \text{ N}$$

Method 2: The *x*-component of Newton's second law for the composite body of mass m is

$$\sum F_x = F = ma_x$$

The acceleration of this composite body is

$$a_x = \frac{F}{m} = \frac{9.0 \text{ N}}{1.50 \text{ kg}} = 6.0 \text{ m/s}^2$$

Then, looking at the milk carton by itself, we see that to give it an acceleration of 6.0 m/s^2 requires that the tray exert a force

$$F_{\text{T on C}} = m_{\text{C}}a_x = (0.50 \text{ kg})(6.0 \text{ m/s}^2) = 3.0 \text{ N}$$

EVALUATE: The answers are the same with both methods. To check the answers, note that there are different forces on the two sides of the tray: F = 9.0 N on the right and $F_{\text{C on T}} = 3.0$ N on the left. The net horizontal force on the tray is $F - F_{\text{C on T}} = 6.0$ N, exactly enough to accelerate a 1.00-kg tray at 6.0 m/s².

Treating two bodies as a single, composite body works *only* if the two bodies have the same magnitude *and* direction of acceleration. If the accelerations are different we must treat the two bodies separately, as in the next example.

Example 5.12 Two bodies with the same magnitude of acceleration

Figure 5.15a shows an air-track glider with mass m_1 moving on a level, frictionless air track in the physics lab. The glider is connected to a lab weight with mass m_2 by a light, flexible, non-stretching string that passes over a stationary, frictionless pulley. Find the acceleration of each body and the tension in the string.

SOLUTION

IDENTIFY and SET UP: The glider and weight are accelerating, so again we must use Newton's second law. Our three target variables are the tension T in the string and the accelerations of the two bodies.

The two bodies move in different directions—one horizontal, one vertical—so we can't consider them together as we did the bodies in Example 5.11. Figures 5.15b and 5.15c show our free-body diagrams and coordinate systems. It's convenient to have both bodies accelerate in the positive axis directions,

5.15 (a) The situation. (b), (c) Our free-body diagrams.

Continued

so we chose the positive *y*-direction for the lab weight to be downward.

We consider the string to be massless and to slide over the pulley without friction, so the tension T in the string is the same throughout and it applies a force of the same magnitude T to each body. (You may want to review Conceptual Example 4.10, in which we discussed the tension force exerted by a massless string.) The weights are m_1g and m_2g .

While the *directions* of the two accelerations are different, their *magnitudes* are the same. (That's because the string doesn't stretch, so the two bodies must move equal distances in equal times and their speeds at any instant must be equal. When the speeds change, they change at the same rate, so the accelerations of the two bodies must have the same magnitude *a*.) We can express this relationship as $a_{1x} = a_{2y} = a$, which means that we have only *two* target variables: *a* and the tension *T*.

What results do we expect? If $m_1 = 0$ (or, approximately, for m_1 much less than m_2) the lab weight will fall freely with acceleration g, and the tension in the string will be zero. For $m_2 = 0$ (or, approximately, for m_2 much less than m_1) we expect zero acceleration and zero tension.

EXECUTE: Newton's second law gives

Glider: $\sum F_x = T = m_1 a_{1x} = m_1 a$ Glider: $\sum F_y = n + (-m_1 g) = m_1 a_{1y} = 0$ Lab weight: $\sum F_y = m_2 g + (-T) = m_2 a_{2y} = m_2 a$

(There are no forces on the lab weight in the *x*-direction.) In these equations we've used $a_{1y} = 0$ (the glider doesn't accelerate vertically) and $a_{1x} = a_{2y} = a$.

Mastering **PHYSICS**

PhET: Lunar Lander ActivPhysics 2.1.5: Car Race ActivPhysics 2.2: Lifting a Crate ActivPhysics 2.3: Lowering a Crate ActivPhysics 2.4: Rocket Blasts Off ActivPhysics 2.5: Modified Atwood Machine

5.16 The sport of ice hockey depends on having the right amount of friction between a player's skates and the ice. If there were too much friction, the players would move too slowly; if there were too little friction, they would fall over.

The *x*-equation for the glider and the equation for the lab weight give us two simultaneous equations for *T* and *a*:

Glider:
$$T = m_1 a$$

Lab weight: $m_2 g - T = m_2 a$

We add the two equations to eliminate T, giving

$$m_2g = m_1a + m_2a = (m_1 + m_2)a$$

and so the magnitude of each body's acceleration is

$$a = \frac{m_2}{m_1 + m_2}g$$

Substituting this back into the glider equation $T = m_1 a$, we get

$$T = \frac{m_1 m_2}{m_1 + m_2} g$$

EVALUATE: The acceleration is in general less than g, as you might expect; the string tension keeps the lab weight from falling freely. The tension T is *not* equal to the weight m_2g of the lab weight, but is *less* by a factor of $m_1/(m_1 + m_2)$. If T were equal to m_2g , then the lab weight would be in equilibrium, and it isn't.

As predicted, the acceleration is equal to g for $m_1 = 0$ and equal to zero for $m_2 = 0$, and T = 0 for either $m_1 = 0$ or $m_2 = 0$.

CAUTION Tension and weight may not be equal It's a common mistake to assume that if an object is attached to a vertical string, the string tension must be equal to the object's weight. That was the case in Example 5.5, where the acceleration was zero, but it's not the case in this example! The only safe approach is *always* to treat the tension as a variable, as we did here.

Test Your Understanding of Section 5.2 Suppose you hold the glider in Example 5.12 so that it and the weight are initially at rest. You give the glider a push to the left in Fig. 5.15a and then release it. The string remains taut as the glider moves to the left, comes instantaneously to rest, then moves to the right. At the instant the glider has zero velocity, what is the tension in the string? (i) greater than in Example 5.12; (ii) the same as in Example 5.12; (iii) less than in Example 5.12, but greater than zero; (iv) zero.

5.3 Frictional Forces

We've seen several problems where a body rests or slides on a surface that exerts forces on the body. Whenever two bodies interact by direct contact (touching) of their surfaces, we describe the interaction in terms of *contact forces*. The normal force is one example of a contact force; in this section we'll look in detail at another contact force, the force of friction.

Friction is important in many aspects of everyday life. The oil in a car engine minimizes friction between moving parts, but without friction between the tires and the road we couldn't drive or turn the car. Air drag—the frictional force exerted by the air on a body moving through it—decreases automotive fuel economy but makes parachutes work. Without friction, nails would pull out, light bulbs would unscrew effortlessly, and ice hockey would be hopeless (Fig. 5.16).

Kinetic and Static Friction

When you try to slide a heavy box of books across the floor, the box doesn't move at all unless you push with a certain minimum force. Then the box starts moving, and you can usually keep it moving with less force than you needed to

get it started. If you take some of the books out, you need less force than before to get it started or keep it moving. What general statements can we make about this behavior?

First, when a body rests or slides on a surface, we can think of the surface as exerting a single contact force on the body, with force components perpendicular and parallel to the surface (Fig. 5.17). The perpendicular component vector is the normal force, denoted by \vec{n} . The component vector parallel to the surface (and perpendicular to \vec{n}) is the **friction force**, denoted by \vec{f} . If the surface is frictionless, then \vec{f} is zero but there is still a normal force. (Frictionless surfaces are an unattainable idealization, like a massless rope. But we can approximate a surface as frictionless if the effects of friction are negligibly small.) The direction of the friction force is always such as to oppose relative motion of the two surfaces.

The kind of friction that acts when a body slides over a surface is called a **kinetic friction force** \vec{f}_k . The adjective "kinetic" and the subscript "k" remind us that the two surfaces are moving relative to each other. The *magnitude* of the kinetic friction force usually increases when the normal force increases. This is why it takes more force to slide a box across the floor when it's full of books than when it's empty. Automotive brakes use the same principle: The harder the brake pads are squeezed against the rotating brake disks, the greater the braking effect. In many cases the magnitude of the kinetic friction force f_k is found experimentally to be approximately *proportional* to the magnitude *n* of the normal force. In such cases we represent the relationship by the equation

 $f_{\rm k} = \mu_{\rm k} n$ (magnitude of kinetic friction force) (5.5)

where μ_k (pronounced "mu-sub-k") is a constant called the **coefficient of kinetic friction.** The more slippery the surface, the smaller this coefficient. Because it is a quotient of two force magnitudes, μ_k is a pure number without units.

CAUTION Friction and normal forces are always perpendicular Remember that Eq. (5.5) is *not* a vector equation because \vec{f}_k and \vec{n} are always perpendicular. Rather, it is a scalar relationship between the magnitudes of the two forces.

Equation (5.5) is only an approximate representation of a complex phenomenon. On a microscopic level, friction and normal forces result from the intermolecular forces (fundamentally electrical in nature) between two rough surfaces at points where they come into contact (Fig. 5.18). As a box slides over the floor, bonds between the two surfaces form and break, and the total number of such bonds varies; hence the kinetic friction force is not perfectly constant. Smoothing the surfaces can actually increase friction, since more molecules are able to interact and bond; bringing two smooth surfaces of the same metal together can cause a "cold weld." Lubricating oils work because an oil film between two surfaces (such as the pistons and cylinder walls in a car engine) prevents them from coming into actual contact.

Table 5.1 lists some representative values of μ_k . Although these values are given with two significant figures, they are only approximate, since friction forces can also depend on the speed of the body relative to the surface. For now we'll ignore this effect and assume that μ_k and f_k are independent of speed, in order to concentrate on the simplest cases. Table 5.1 also lists coefficients of static friction; we'll define these shortly.

Friction forces may also act when there is *no* relative motion. If you try to slide a box across the floor, the box may not move at all because the floor exerts an equal and opposite friction force on the box. This is called a **static friction** force \vec{f}_s . In Fig. 5.19a, the box is at rest, in equilibrium, under the action of its weight \vec{w} and the upward normal force \vec{n} . The normal force is equal in magnitude to the weight (n = w) and is exerted on the box by the floor. Now we tie a rope

5.17 When a block is pushed or pulled over a surface, the surface exerts a contact force on it.

5.18 The normal and friction forces arise from interactions between molecules at high points on the surfaces of the block and the floor.

On a microscopic level, even smooth surfaces are rough; they tend to catch and cling.

Table 5.1 ApproximateCoefficients of Friction

Materials	Coefficient of Static Friction, μ _s	Coefficient of Kinetic Friction, μ _k
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Copper on steel	0.53	0.36
Brass on steel	0.51	0.44
Zinc on cast iron	0.85	0.21
Copper on cast iron	1.05	0.29
Glass on glass	0.94	0.40
Copper on glass	0.68	0.53
Teflon on Teflon	0.04	0.04
Teflon on steel	0.04	0.04
Rubber on concrete (dry)	1.0	0.8
Rubber on concrete	0.30	0.25

5.19 (a), (b), (c) When there is no relative motion, the magnitude of the static friction force f_s is less than or equal to $\mu_s n$. (d) When there is relative motion, the magnitude of the kinetic friction force f_k equals $\mu_k n$. (e) A graph of the friction force magnitude f as a function of the magnitude T of the applied force. The kinetic friction force varies somewhat as intermolecular bonds form and break.

to the box (Fig. 5.19b) and gradually increase the tension T in the rope. At first the box remains at rest because the force of static friction f_s also increases and stays equal in magnitude to T.

At some point *T* becomes greater than the maximum static friction force f_s the surface can exert. Then the box "breaks loose" (the tension *T* is able to break the bonds between molecules in the surfaces of the box and floor) and starts to slide. Figure 5.19c shows the forces when *T* is at this critical value. If *T* exceeds this value, the box is no longer in equilibrium. For a given pair of surfaces the maximum value of f_s depends on the normal force. Experiment shows that in many cases this maximum value, called $(f_s)_{max}$, is approximately *proportional* to *n*; we call the proportionality factor μ_s the **coefficient of static friction**. Table 5.1 lists some representative values of μ_s . In a particular situation, the actual force of static friction can have any magnitude between zero (when there is no other force parallel to the surface) and a maximum value given by $\mu_s n$. In symbols,

$$f_s \le \mu_s n$$
 (magnitude of static friction force) (5.6)

Like Eq. (5.5), this is a relationship between magnitudes, *not* a vector relationship. The equality sign holds only when the applied force *T* has reached the critical value at which motion is about to start (Fig. 5.19c). When *T* is less than this value (Fig. 5.19b), the inequality sign holds. In that case we have to use the equilibrium conditions $(\Sigma \vec{F} = 0)$ to find f_s . If there is no applied force (T = 0) as in Fig. 5.19a, then there is no static friction force either $(f_s = 0)$.

As soon as the box starts to slide (Fig. 5.19d), the friction force usually *decreases* (Fig. 5.19e); it's easier to keep the box moving than to start it moving. Hence the coefficient of kinetic friction is usually *less* than the coefficient of static friction for any given pair of surfaces, as Table 5.1 shows.

Application Static Friction and Windshield Wipers

The squeak of windshield wipers on dry glass is a stick-slip phenomenon. The moving wiper blade sticks to the glass momentarily, then slides when the force applied to the blade by the wiper motor overcomes the maximum force of static friction. When the glass is wet from rain or windshield cleaning solution, friction is reduced and the wiper blade doesn't stick.

In some situations the surfaces will alternately stick (static friction) and slip (kinetic friction). This is what causes the horrible sound made by chalk held at the wrong angle while writing on the blackboard and the shriek of tires sliding on asphalt pavement. A more positive example is the motion of a violin bow against the string.

When a body slides on a layer of gas, friction can be made very small. In the linear air track used in physics laboratories, the gliders are supported on a layer of air. The frictional force is velocity dependent, but at typical speeds the effective coefficient of friction is of the order of 0.001.

Example 5.13 Friction in horizontal motion

You want to move a 500-N crate across a level floor. To start the crate moving, you have to pull with a 230-N horizontal force. Once the crate "breaks loose" and starts to move, you can keep it moving at constant velocity with only 200 N. What are the coefficients of static and kinetic friction?

SOLUTION

IDENTIFY and SET UP: The crate is in equilibrium both when it is at rest and when it is moving with constant velocity, so we use Newton's first law, as expressed by Eqs. (5.2). We use Eqs. (5.5) and (5.6) to find the target variables μ_s and μ_k .

Figures 5.20a and 5.20b show our sketch and free-body diagram for the instant just before the crate starts to move, when the static friction force has its maximum possible value

5.20 Our sketches for this problem.

Mastering **PHYSICS**

PhET: Forces in 1 Dimension PhET: Friction PhET: The Ramp ActivPhysics 2.5: Truck Pulls Crate ActivPhysics 2.6: Pushing a Crate Up a Wall ActivPhysics 2.7: Skier Goes Down a Slope ActivPhysics 2.8: Skier and Rope Tow ActivPhysics 2.10: Truck Pulls Two Crates

 $(f_s)_{max} = \mu_s n$. Once the crate is moving, the friction force changes to its kinetic form (Fig. 5.20c). In both situations, four forces act on the crate: the downward weight (magnitude w = 500 N), the upward normal force (magnitude n) exerted by the floor, a tension force (magnitude T) to the right exerted by the rope, and a friction force to the left exerted by the ground. Because the rope in Fig. 5.20a is in equilibrium, the tension is the same at both ends. Hence the tension force that the rope exerts on the crate has the same magnitude as the force you exert on the rope. Since it's easier to keep the crate moving than to start it moving, we expect that $\mu_k < \mu_s$.

EXECUTE: Just before the crate starts to move (Fig. 5.20b), we have from Eqs. (5.2)

$$\sum F_x = T + (-(f_s)_{max}) = 0 \text{ so } (f_s)_{max} = T = 230 \text{ N}$$

$$\sum F_v = n + (-w) = 0 \text{ so } n = w = 500 \text{ N}$$

Now we solve Eq. (5.6), $(f_s)_{max} = \mu_s n$, for the value of μ_s :

$$\mu_{\rm s} = \frac{(f_{\rm s})_{\rm max}}{n} = \frac{230 \,\rm N}{500 \,\rm N} = 0.46$$

After the crate starts to move (Fig. 5.20c) we have

$$\sum F_x = T + (-f_k) = 0 \text{ so } f_k = T = 200 \text{ N}$$

$$\sum F_y = n + (-w) = 0 \text{ so } n = w = 500 \text{ N}$$

Using $f_k = \mu_k n$ from Eq. (5.5), we find

$$\mu_{\rm k} = \frac{f_{\rm k}}{n} = \frac{200\,{\rm N}}{500\,{\rm N}} = 0.40$$

EVALUATE: As expected, the coefficient of kinetic friction is less than the coefficient of static friction.

Example 5.14 Static friction can be less than the maximum

In Example 5.13, what is the friction force if the crate is at rest on the surface and a horizontal force of 50 N is applied to it?

SOLUTION

IDENTIFY and SET UP: The applied force is less than the maximum force of static friction, $(f_s)_{max} = 230$ N. Hence the crate remains at rest and the net force acting on it is zero. The target variable is the magnitude f_s of the friction force. The free-body diagram is the

same as in Fig. 5.20b, but with $(f_s)_{max}$ replaced by f_s and T = 230 N replaced by T = 50 N.

EXECUTE: From the equilibrium conditions, Eqs. (5.2), we have

$$\sum F_x = T + (-f_s) = 0$$
 so $f_s = T = 50$ N

EVALUATE: The friction force can prevent motion for any horizontal applied force up to $(f_s)_{max} = \mu_s n = 230$ N. Below that value, f_s has the same magnitude as the applied force.

Example 5.15 Minimizing kinetic friction

In Example 5.13, suppose you move the crate by pulling upward on the rope at an angle of 30° above the horizontal. How hard must you pull to keep it moving with constant velocity? Assume that $\mu_{\rm k} = 0.40$.

SOLUTION

IDENTIFY and SET UP: The crate is in equilibrium because its velocity is constant, so we again apply Newton's first law. Since the crate is in motion, the floor exerts a *kinetic* friction force. The target variable is the magnitude T of the tension force.

Figure 5.21 shows our sketch and free-body diagram. The kinetic friction force f_k is still equal to $\mu_k n$, but now the normal

5.21 Our sketches for this problem.

Example 5.16 Toboggan ride with friction I

Let's go back to the toboggan we studied in Example 5.10. The wax has worn off, so there is now a nonzero coefficient of kinetic friction μ_k . The slope has just the right angle to make the toboggan slide with constant velocity. Find this angle in terms of *w* and μ_k .

SOLUTION

IDENTIFY and SET UP: Our target variable is the slope angle α . The toboggan is in equilibrium because its velocity is constant, so we use Newton's first law in the form of Eqs. (5.2).

Three forces act on the toboggan: its weight, the normal force, and the kinetic friction force. The motion is downhill, so the friction force (which opposes the motion) is directed uphill. Figure 5.22 shows our sketch and free-body diagram (compare Fig. 5.12b in Example 5.10). The magnitude of the kinetic friction force is $f_k = \mu_k n$. We expect that the greater the value of μ_k , the steeper will be the required slope.

EXECUTE: The equilibrium conditions are

$$\sum F_x = w \sin \alpha + (-f_k) = w \sin \alpha - \mu_k n = 0$$

$$\sum F_y = n + (-w \cos \alpha) = 0$$

Rearranging these two equations, we get

$$u_k n = w \sin \alpha$$
 and $n = w \cos \alpha$

As in Example 5.10, the normal force is *not* equal to the weight. We eliminate n by dividing the first of these equations by the

force *n* is *not* equal in magnitude to the crate's weight. The force exerted by the rope has a vertical component that tends to lift the crate off the floor; this *reduces n* and so reduces f_k .

EXECUTE: From the equilibrium conditions and the equation $f_k = \mu_k n$, we have

$$\sum F_x = T \cos 30^\circ + (-f_k) = 0 \text{ so } T \cos 30^\circ = \mu_k n$$

$$\sum F_y = T \sin 30^\circ + n + (-w) = 0 \text{ so } n = w - T \sin 30^\circ$$

These are two equations for the two unknown quantities T and n. One way to find T is to substitute the expression for n in the second equation into the first equation and then solve the resulting equation for T:

$$T \cos 30^{\circ} = \mu_{\rm k}(w - T \sin 30^{\circ})$$
$$T = \frac{\mu_{\rm k}w}{\cos 30^{\circ} + \mu_{\rm k} \sin 30^{\circ}} = 188$$

We can substitute this result into either of the original equations to obtain n. If we use the second equation, we get

$$n = w - T \sin 30^\circ = (500 \text{ N}) - (188 \text{ N}) \sin 30^\circ = 406 \text{ N}$$

EVALUATE: As expected, the normal force is less than the 500-N weight of the box. It turns out that the tension required to keep the crate moving at constant speed is a little less than the 200-N force needed when you pulled horizontally in Example 5.13. Can you find an angle where the required pull is *minimum*? (See Challenge Problem 5.121.)

5.22 Our sketches for this problem.

(a) The situation

(b) Free-body diagram for toboggan

Ν

second, with the result

$$\mu_k = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$
 so $\alpha = \arctan \mu_k$

EVALUATE: The weight *w* doesn't appear in this expression. Any toboggan, regardless of its weight, slides down an incline with constant speed if the coefficient of kinetic friction equals the tangent of the slope angle of the incline. The arctangent function increases as its argument increases, so it's indeed true that the slope angle α increases as μ_k increases.

Example 5.17 Toboggan ride with friction II

The same toboggan with the same coefficient of friction as in Example 5.16 *accelerates* down a steeper hill. Derive an expression for the acceleration in terms of g, α , μ_k , and w.

SOLUTION

IDENTIFY and SET UP: The toboggan is accelerating, so we must use Newton's second law as given in Eqs. (5.4). Our target variable is the downhill acceleration.

Our sketch and free-body diagram (Fig. 5.23) are almost the same as for Example 5.16. The toboggan's *y*-component of acceleration a_y is still zero but the *x*-component a_x is not, so we've drawn the downhill component of weight as a longer vector than the (uphill) friction force.

EXECUTE: It's convenient to express the weight as w = mg. Then Newton's second law in component form says

$$\sum F_x = mg \sin \alpha + (-f_k) = ma_y$$

$$\sum F_y = n + (-mg \cos \alpha) = 0$$

5.23 Our sketches for this problem.

(a) The situation (b) Free-body diagram for toboggan

From the second equation and Eq. (5.5) we get an expression for f_k :

$$n = mg \cos \alpha$$

 $f_k = \mu_k n = \mu_k mg \cos \alpha$

We substitute this into the x-component equation and solve for a_x :

$$mg\sin\alpha + (-\mu_k mg\cos\alpha) = ma_x$$
$$a_x = g(\sin\alpha - \mu_k\cos\alpha)$$

EVALUATE: As for the frictionless toboggan in Example 5.10, the acceleration doesn't depend on the mass m of the toboggan. That's because all of the forces that act on the toboggan (weight, normal force, and kinetic friction force) are proportional to m.

Let's check some special cases. If the hill is vertical ($\alpha = 90^{\circ}$) so that sin $\alpha = 1$ and cos $\alpha = 0$, we have $a_x = g$ (the toboggan falls freely). For a certain value of α the acceleration is zero; this happens if

$$\sin \alpha = \mu_k \cos \alpha$$
 and $\mu_k = \tan \alpha$

This agrees with our result for the constant-velocity toboggan in Example 5.16. If the angle is even smaller, $\mu_k \cos \alpha$ is greater than $\sin \alpha$ and a_x is *negative*; if we give the toboggan an initial downhill push to start it moving, it will slow down and stop. Finally, if the hill is frictionless so that $\mu_k = 0$, we retrieve the result of Example 5.10: $a_x = g \sin \alpha$.

Notice that we started with a simple problem (Example 5.10) and extended it to more and more general situations. The general result we found in this example includes *all* the previous ones as special cases. Don't memorize this result, but do make sure you understand how we obtained it and what it means.

Suppose instead we give the toboggan an initial push up the hill. The direction of the kinetic friction force is now reversed, so the acceleration is different from the downhill value. It turns out that the expression for a_x is the same as for downhill motion except that the minus sign becomes plus. Can you show this?

Rolling Friction

It's a lot easier to move a loaded filing cabinet across a horizontal floor using a cart with wheels than to slide it. How much easier? We can define a **coefficient of rolling friction** μ_r , which is the horizontal force needed for constant speed on a flat surface divided by the upward normal force exerted by the surface. Transportation engineers call μ_r the *tractive resistance*. Typical values of μ_r are 0.002 to 0.003 for steel wheels on steel rails and 0.01 to 0.02 for rubber tires on concrete. These values show one reason railroad trains are generally much more fuel efficient than highway trucks.

Fluid Resistance and Terminal Speed

Sticking your hand out the window of a fast-moving car will convince you of the existence of **fluid resistance**, the force that a fluid (a gas or liquid) exerts on a body moving through it. The moving body exerts a force on the fluid to push it out of the way. By Newton's third law, the fluid pushes back on the body with an equal and opposite force.

The *direction* of the fluid resistance force acting on a body is always opposite the direction of the body's velocity relative to the fluid. The *magnitude* of the fluid resistance force usually increases with the speed of the body through the fluid.

5.24 A metal ball falling through a fluid (oil).

(a) Metal ball falling through oil

(b) Free-body diagram for ball in oil

Application Pollen and Fluid Resistance

These spiky spheres are pollen grains from the ragweed flower (Ambrosia psilostachya) and a common cause of hay fever. Because of their small radius (about 10 um = 0.01 mm), when they are released into the air the fluid resistance force on them is proportional to their speed. The terminal speed given by Eq. (5.9) is only about 1 cm/s. Hence even a moderate wind can keep pollen grains aloft and carry them substantial distances from their source.

This is very different from the kinetic friction force between two surfaces in contact, which we can usually regard as independent of speed. For small objects moving at very low speeds, the magnitude f of the fluid resistance force is approximately proportional to the body's speed *v*:

$$f = kv$$
 (fluid resistance at low speed) (5.7)

where k is a proportionality constant that depends on the shape and size of the body and the properties of the fluid. Equation (5.7) is appropriate for dust particles falling in air or a ball bearing falling in oil. For larger objects moving through air at the speed of a tossed tennis ball or faster, the resisting force is approximately proportional to v^2 rather than to v. It is then called **air drag** or simply *drag*. Airplanes, falling raindrops, and bicyclists all experience air drag. In this case we replace Eq. (5.7) by

$$f = Dv^2$$
 (fluid resistance at high speed) (5.8)

Because of the v^2 dependence, air drag increases rapidly with increasing speed. The air drag on a typical car is negligible at low speeds but comparable to or greater than rolling resistance at highway speeds. The value of D depends on the shape and size of the body and on the density of the air. You should verify that the units of the constant k in Eq. (5.7) are N \cdot s/m or kg/s, and that the units of the constant D in Eq. (5.8) are $N \cdot s^2/m^2$ or kg/m.

Because of the effects of fluid resistance, an object falling in a fluid does not have a constant acceleration. To describe its motion, we can't use the constantacceleration relationships from Chapter 2; instead, we have to start over using Newton's second law. As an example, suppose you drop a metal ball at the surface of a bucket of oil and let it fall to the bottom (Fig. 5.24a). The fluid resistance force in this situation is given by Eq. (5.7). What are the acceleration, velocity, and position of the metal ball as functions of time?

Figure 5.24b shows the free-body diagram. We take the positive y-direction to be downward and neglect any force associated with buoyancy in the oil. Since the ball is moving downward, its speed v is equal to its y-velocity v_y and the fluid resistance force is in the -y-direction. There are no x-components, so Newton's second law gives

$$\sum F_y = mg + (-kv_y) = ma_y$$

When the ball first starts to move, $v_y = 0$, the resisting force is zero, and the initial acceleration is $a_v = g$. As the speed increases, the resisting force also increases, until finally it is equal in magnitude to the weight. At this time $mg - kv_v = 0$, the acceleration becomes zero, and there is no further increase in speed. The final speed $v_{\rm t}$, called the **terminal speed**, is given by $mg - kv_{\rm t} = 0$, or

$$v_{\rm t} = \frac{mg}{k}$$
 (terminal speed, fluid resistance $f = kv$) (5.9)

Figure 5.25 shows how the acceleration, velocity, and position vary with time. As time goes by, the acceleration approaches zero and the velocity approaches v_t

5.25 Graphs of the motion of a body falling without fluid resistance and with fluid resistance proportional to the speed.

Acceleration versus time

(remember that we chose the positive *y*-direction to be down). The slope of the graph of *y* versus *t* becomes constant as the velocity becomes constant.

To see how the graphs in Fig. 5.25 are derived, we must find the relationship between velocity and time during the interval before the terminal speed is reached. We go back to Newton's second law, which we rewrite using $a_y = dv_y/dt$:

$$m\frac{dv_y}{dt} = mg - kv_y$$

After rearranging terms and replacing mg/k by v_t , we integrate both sides, noting that $v_y = 0$ when t = 0:

$$\int_0^v \frac{dv_y}{v_y - v_t} = -\frac{k}{m} \int_0^t dt$$

which integrates to

$$\ln \frac{v_{t} - v_{y}}{v_{t}} = -\frac{k}{m}t$$
 or $1 - \frac{v_{y}}{v_{t}} = e^{-(k/m)t}$

and finally

$$v_y = v_t [1 - e^{-(k/m)t}]$$
 (5.10)

Note that v_y becomes equal to the terminal speed v_t only in the limit that $t \to \infty$; the ball cannot attain terminal speed in any finite length of time.

The derivative of v_y gives a_y as a function of time, and the integral of v_y gives y as a function of time. We leave the derivations for you to complete; the results are

$$a_v = g e^{-(k/m)t}$$
 (5.11)

$$y = v_t \left[t - \frac{m}{k} (1 - e^{-(k/m)t}) \right]$$
 (5.12)

Now look again at Fig. 5.25, which shows graphs of these three relationships.

In deriving the terminal speed in Eq. (5.9), we assumed that the fluid resistance force is proportional to the speed. For an object falling through the air at high speeds, so that the fluid resistance is equal to Dv^2 as in Eq. (5.8), the terminal speed is reached when Dv^2 equals the weight mg (Fig. 5.26a). You can show that the terminal speed v_t is given by

$$v_{\rm t} = \sqrt{\frac{mg}{D}}$$
 (terminal speed, fluid resistance $f = Dv^2$) (5.13)

This expression for terminal speed explains why heavy objects in air tend to fall faster than light objects. Two objects with the same physical size but different mass (say, a table-tennis ball and a lead ball with the same radius) have the same value of D but different values of m. The more massive object has a higher terminal speed and falls faster. The same idea explains why a sheet of paper falls faster if you first crumple it into a ball; the mass m is the same, but the smaller size makes D smaller (less air drag for a given speed) and v_t larger. Skydivers use the same principle to control their descent (Fig. 5.26b).

Figure 5.27 shows the trajectories of a baseball with and without air drag, assuming a coefficient $D = 1.3 \times 10^{-3} \text{ kg/m}$ (appropriate for a batted ball at sea level). You can see that both the range of the baseball and the maximum height reached are substantially less than the zero-drag calculation would lead you to believe. Hence the baseball trajectory we calculated in Example 3.8 (Section 3.3) by ignoring air drag is unrealistic. Air drag is an important part of the game of baseball!

5.26 (a) Air drag and terminal speed. (b) By changing the positions of their arms and legs while falling, skydivers can change the value of the constant *D* in Eq. (5.8) and hence adjust the terminal speed of their fall [Eq. (5.13)].

(a) Free-body diagrams for falling with air drag

(b) A skydiver falling at terminal speed

5.27 Computer-generated trajectories of a baseball launched at 50 m/s at 35° above the horizontal. Note that the scales are different on the horizontal and vertical axes.

Example 5.18 Terminal speed of a skydiver

For a human body falling through air in a spread-eagle position (Fig. 5.26b), the numerical value of the constant D in Eq. (5.8) is about 0.25 kg/m. Find the terminal speed for a lightweight 50-kg skydiver.

SOLUTION

IDENTIFY and SET UP: This example uses the relationship among terminal speed, mass, and drag coefficient. We use Eq. (5.13) to find the target variable v_1 .

EXECUTE: We find for m = 50 kg:

$$v_{\rm t} = \sqrt{\frac{mg}{D}} = \sqrt{\frac{(50 \text{ kg})(9.8 \text{ m/s}^2)}{0.25 \text{ kg/m}}}$$

= 44 m/s (about 160 km/h, or 99 mi/h)

EVALUATE: The terminal speed is proportional to the square root of the skydiver's mass. A skydiver with the same drag coefficient D but twice the mass would have a terminal speed $\sqrt{2} = 1.41$ times greater, or 63 m/s. (A more massive skydiver would also have more frontal area and hence a larger drag coefficient, so his terminal speed would be a bit less than 63 m/s.) Even the lightweight skydiver's terminal speed is quite high, so skydives don't last very long. A drop from 2800 m (9200 ft) to the surface at the terminal speed takes only (2800 m)/(44 m/s) = 64 s.

When the skydiver deploys the parachute, the value of D increases greatly. Hence the terminal speed of the skydiver and parachute decreases dramatically to a much lower value.

5.29 What happens if the inward radial force suddenly ceases to act on a body in circular motion?

A ball attached to a string whirls in a circle on a frictionless surface.

No net force now acts on the ball, so it obeys Newton's first law—it moves in a straight line at constant velocity.

Test Your Understanding of Section 5.3 Consider a box that is placed on different surfaces. (a) In which situation(s) is there *no* friction force acting on the box? (b) In which situation(s) is there a *static* friction force acting on the box? (c) In which situation(s) is there a *kinetic* friction force on the box? (i) The box is at rest on a rough horizontal surface. (ii) The box is at rest on a rough tilted surface. (iii) The box is on the rough-surfaced flat bed of a truck—the truck is moving at a constant velocity on a straight, level road, and the box remains in the same place in the middle of the truck bed. (iv) The box is on the rough-surfaced flat bed of a truck—the truck is speeding up on a straight, level road, and the box remains in the same place in the middle of the truck bed. (v) The box is on the rough-surfaced flat bed of a truck—the truck is climbing a hill, and the box is sliding toward the back of the truck.

5.4 Dynamics of Circular Motion

We talked about uniform circular motion in Section 3.4. We showed that when a particle moves in a circular path with constant speed, the particle's acceleration is always directed toward the center of the circle (perpendicular to the instantaneous velocity). The magnitude a_{rad} of the acceleration is constant and is given in terms of the speed v and the radius R of the circle by

$$v_{\rm rad} = \frac{v^2}{R}$$
 (uniform circular motion) (5.14)

The subscript "rad" is a reminder that at each point the acceleration is radially inward toward the center of the circle, perpendicular to the instantaneous velocity. We explained in Section 3.4 why this acceleration is often called *centripetal acceleration*.

We can also express the centripetal acceleration a_{rad} in terms of the *period T*, the time for one revolution:

$$T = \frac{2\pi R}{v} \tag{5.15}$$

In terms of the period, $a_{\rm rad}$ is

0

$$a_{\rm rad} = \frac{4\pi^2 R}{T^2}$$
 (uniform circular motion) (5.16)

Uniform circular motion, like all other motion of a particle, is governed by Newton's second law. To make the particle accelerate toward the center of the circle, the net force $\sum \vec{F}$ on the particle must always be directed toward the center (Fig. 5.28). The magnitude of the acceleration is constant, so the magnitude F_{net} of the net force must also be constant. If the inward net force stops acting, the particle flies off in a straight line tangent to the circle (Fig. 5.29).
The magnitude of the radial acceleration is given by $a_{rad} = v^2/R$, so the magnitude F_{net} of the net force on a particle with mass *m* in uniform circular motion must be

$$F_{\rm net} = ma_{\rm rad} = m \frac{v^2}{R}$$
 (uniform circular motion) (5.17)

Uniform circular motion can result from *any* combination of forces, just so the net force $\sum \vec{F}$ is always directed toward the center of the circle and has a constant magnitude. Note that the body need not move around a complete circle: Equation (5.17) is valid for *any* path that can be regarded as part of a circular arc.

CAUTION Avoid using "centrifugal force" Figure 5.30 shows both a correct free-body diagram for uniform circular motion (Fig. 5.30a) and a common incorrect diagram (Fig. 5.30b). Figure 5.30b is incorrect because it includes an extra outward force of magnitude $m(v^2/R)$ to "keep the body out there" or to "keep it in equilibrium." There are three reasons not to include such an outward force, usually called *centrifugal force* ("centrifugal" means "fleeing from the center"). First, the body does not "stay out there": It is in constant motion around its circular path. Because its velocity is constantly changing in direction, the body accelerates and is not in equilibrium. Second, if there were an additional outward force that balanced the inward force, the net force would be zero and the body would move in a straight line, not a circle (Fig. 5.29). And third, the quantity $m(v^2/R)$ is not a force; it corresponds to the $m\vec{a}$ side of $\Sigma \vec{F} = m\vec{a}$ and does not appear in $\Sigma \vec{F}$ (Fig. 5.30a). It's true that when you ride in a car that goes around a circular path, you tend to slide to the outside of the turn as though there was a "centrifugal force." But we saw in Section 4.2 that what really happens is that you tend to keep moving in a straight line, and the outer side of the car "runs into" you as the car turns (Fig. 4.11c). In an inertial frame of reference there is no such thing as "centrifugal force." We won't mention this term again, and we strongly advise you to avoid using it as well.

5.30 (a) Correct and (b) incorrect freebody diagrams for a body in uniform circular motion.

(a) Correct free-body diagram

If you include the acceleration, draw it to one side of the body to show that it's not a force.

(b) Incorrect free-body diagram

The quantity mv^2/R is *not* a force—it doesn't belong in a free-body diagram.

Example 5.19 Force in uniform circular motion

A sled with a mass of 25.0 kg rests on a horizontal sheet of essentially frictionless ice. It is attached by a 5.00-m rope to a post set in the ice. Once given a push, the sled revolves uniformly in a circle around the post (Fig. 5.31a). If the sled makes five complete revolutions every minute, find the force F exerted on it by the rope.

SOLUTION

IDENTIFY and SET UP: The sled is in uniform circular motion, so it has a constant radial acceleration. We'll apply Newton's second law to the sled to find the magnitude *F* of the force exerted by the rope (our target variable).

5.31 (a) The situation. (b) Our free-body diagram.

Figure 5.31b shows our free-body diagram for the sled. The acceleration has only an *x*-component; this is toward the center of the circle, so we denote it as a_{rad} . The acceleration isn't given, so we'll need to determine its value using either Eq. (5.14) or Eq. (5.16).

EXECUTE: The force F appears in Newton's second law for the x-direction:

$$\sum F_x = F = ma_{\rm rad}$$

We can find the centripetal acceleration a_{rad} using Eq. (5.16). The sled moves in a circle of radius R = 5.00 m with a period T = (60.0 s)/(5 rev) = 12.0 s, so

$$a_{\rm rad} = \frac{4\pi^2 R}{T^2} = \frac{4\pi^2 (5.00 \text{ m})}{(12.0 \text{ s})^2} = 1.37 \text{ m/s}^2$$

The magnitude F of the force exerted by the rope is then

$$F = ma_{rad} = (25.0 \text{ kg})(1.37 \text{ m/s}^2)$$

= 34.3 kg · m/s² = 34.3 N

EVALUATE: You can check our value for a_{rad} by first finding the speed using Eq. (5.15), $v = 2\pi R/T$, and then using $a_{rad} = v^2/R$ from Eq. (5.14). Do you get the same result?

A greater force would be needed if the sled moved around the circle at a higher speed v. In fact, if v were doubled while R remained the same, F would be four times greater. Can you show this? How would F change if v remained the same but the radius R were doubled?

Example 5.20 A conical pendulum

An inventor designs a pendulum clock using a bob with mass *m* at the end of a thin wire of length *L*. Instead of swinging back and forth, the bob is to move in a horizontal circle with constant speed *v*, with the wire making a fixed angle β with the vertical direction (Fig. 5.32a). This is called a *conical pendulum* because the suspending wire traces out a cone. Find the tension *F* in the wire and the period *T* (the time for one revolution of the bob).

SOLUTION

IDENTIFY and SET UP: To find our target variables, the tension F and period T, we need two equations. These will be the horizontal and vertical components of Newton's second law applied to the bob. We'll find the radial acceleration of the bob using one of the circular motion equations.

Figure 5.32b shows our free-body diagram and coordinate system for the bob at a particular instant. There are just two forces on the bob: the weight mg and the tension F in the wire. Note that the

5.32 (a) The situation. (b) Our free-body diagram.

Example 5.21 Rounding a flat curve

The sports car in Example 3.11 (Section 3.4) is rounding a flat, unbanked curve with radius *R* (Fig. 5.33a). If the coefficient of static friction between tires and road is μ_s , what is the maximum speed v_{max} at which the driver can take the curve without sliding?

SOLUTION

IDENTIFY and SET UP: The car's acceleration as it rounds the curve has magnitude $a_{rad} = v^2/R$. Hence the maximum speed v_{max} (our target variable) corresponds to the maximum acceleration a_{rad} and to the maximum horizontal force on the car toward the center of its circular path. The only horizontal force acting on the car is the friction force exerted by the road. So to solve this problem we'll need Newton's second law, the equations of uniform circular motion, and our knowledge of the friction force from Section 5.3.

The free-body diagram in Fig. 5.33b includes the car's weight w = mg and the two forces exerted by the road: the normal force n and the horizontal friction force f. The friction force must point toward the center of the circular path in order to cause the radial acceleration. The car doesn't slide toward or away from the center

center of the circular path is in the same horizontal plane as the bob, *not* at the top end of the wire. The horizontal component of tension is the force that produces the radial acceleration a_{rad} .

EXECUTE: The bob has zero vertical acceleration; the horizontal acceleration is toward the center of the circle, which is why we use the symbol a_{rad} . Newton's second law says

$$\sum F_x = F \sin \beta = ma_{rad}$$
$$\sum F_y = F \cos \beta + (-mg) = 0$$

These are two equations for the two unknowns F and β . The equation for $\sum F_y$ gives $F = mg/\cos\beta$; that's our target expression for F in terms of β . Substituting this result into the equation for $\sum F_x$ and using $\sin \beta/\cos \beta = \tan \beta$, we find

$$a_{\rm rad} = g \tan \beta$$

To relate β to the period *T*, we use Eq. (5.16) for a_{rad} , solve for *T*, and insert $a_{rad} = g \tan \beta$:

$$a_{\rm rad} = rac{4\pi^2 R}{T^2}$$
 so $T^2 = rac{4\pi^2 R}{a_{
m rad}}$
 $T = 2\pi \sqrt{rac{R}{g \tan \beta}}$

Figure 5.32a shows that $R = L \sin \beta$. We substitute this and use $\sin \beta / \tan \beta = \cos \beta$:

$$T = 2\pi \sqrt{\frac{L\cos\beta}{g}}$$

EVALUATE: For a given length L, as the angle β increases, $\cos \beta$ decreases, the period T becomes smaller, and the tension $F = mg/\cos\beta$ increases. The angle can never be 90°, however; this would require that T = 0, $F = \infty$, and $v = \infty$. A conical pendulum would not make a very good clock because the period depends on the angle β in such a direct way.

of the circle, so the friction force is *static* friction, with a maximum magnitude $f_{\text{max}} = \mu_s n$ [see Eq. (5.6)].

EXECUTE: The acceleration toward the center of the circular path is $a_{\text{rad}} = v^2/R$. There is no vertical acceleration. Thus we have

$$\sum F_x = f = ma_{\text{rad}} = m \frac{v^2}{R}$$
$$\sum F_y = n + (-mg) = 0$$

The second equation shows that n = mg. The first equation shows that the friction force *needed* to keep the car moving in its circular path increases with the car's speed. But the maximum friction force *available* is $f_{\text{max}} = \mu_s n = \mu_s mg$, and this determines the car's maximum speed. Substituting $\mu_s mg$ for f and v_{max} for v in the first equation, we find

$$\mu_{\rm s}mg = m \frac{v_{\rm max}^2}{R}$$
 so $v_{\rm max} = \sqrt{\mu_{\rm s}gR}$

Example 5.22 Rounding a banked curve

For a car traveling at a certain speed, it is possible to bank a curve at just the right angle so that no friction at all is needed to maintain the car's turning radius. Then a car can safely round the curve even on wet ice. (Bobsled racing depends on this same idea.) Your engineering firm plans to rebuild the curve in Example 5.21 so that a car moving at a chosen speed v can safely make the turn even with no friction (Fig. 5.34a). At what angle β should the curve be banked?

SOLUTION

IDENTIFY and SET UP: With no friction, the only forces acting on the car are its weight and the normal force. Because the road is banked, the normal force (which acts perpendicular to the road surface) has a horizontal component. This component causes the car's horizontal acceleration toward the center of the car's circular path. We'll use Newton's second law to find the target variable β .

Our free-body diagram (Fig. 5.34b) is very similar to the diagram for the conical pendulum in Example 5.20 (Fig. 5.32b). The normal force acting on the car plays the role of the tension force exerted by the wire on the pendulum bob.

EXECUTE: The normal force \vec{n} is perpendicular to the roadway and is at an angle β with the vertical (Fig. 5.34b). Thus it has a vertical component $n \cos \beta$ and a horizontal component $n \sin \beta$.

5.34 (a) The situation. (b) Our free-body diagram.

(a) Car rounding banked curve

$$v_{\text{max}} = \sqrt{(0.96)(9.8 \text{ m/s}^2)(230 \text{ m})} = 47 \text{ m/s}$$

or about 170 km/h (100 mi/h). This is the maximum speed for this radius.

EVALUATE: If the car's speed is slower than $v_{\text{max}} = \sqrt{\mu_s gR}$, the required friction force is less than the maximum value $f_{\text{max}} = \mu_s mg$, and the car can easily make the curve. If we try to take the curve going *faster* than v_{max} , we will skid. We could still go in a circle without skidding at this higher speed, but the radius would have to be larger.

The maximum centripetal acceleration (called the "lateral acceleration" in Example 3.11) is equal to $\mu_s g$. That's why it's best to take curves at less than the posted speed limit if the road is wet or icy, either of which can reduce the value of μ_s and hence $\mu_s g$.

The acceleration in the x-direction is the centripetal acceleration $a_{\rm rad} = v^2/R$; there is no acceleration in the y-direction. Thus the equations of Newton's second law are

$$\sum F_x = n \sin \beta = ma_{rad}$$
$$\sum F_y = n \cos \beta + (-mg) = 0$$

From the $\sum F_y$ equation, $n = mg/\cos\beta$. Substituting this into the $\sum F_x$ equation and using $a_{rad} = v^2/R$, we get an expression for the bank angle:

$$\tan \beta = \frac{a_{\rm rad}}{g} = \frac{v^2}{gR}$$
 so $\beta = \arctan \frac{v^2}{gR}$

EVALUATE: The bank angle depends on both the speed and the radius. For a given radius, no one angle is correct for all speeds. In the design of highways and railroads, curves are often banked for the average speed of the traffic over them. If R = 230 m and v = 25 m/s (equal to a highway speed of 88 km/h, or 55 mi/h), then

$$\beta = \arctan \frac{(25 \text{ m/s})^2}{(9.8 \text{ m/s}^2)(230 \text{ m})} = 15^{\circ}$$

This is within the range of banking angles actually used in highways.

(b) Free-body

diagram for car

5.35 An airplane banks to one side in order to turn in that direction. The vertical component of the lift force \vec{L} balances the force of gravity; the horizontal component of \vec{L} causes the acceleration v^2/R .

Mastering **PHYSICS**

ActivPhysics 4.2: Circular Motion Problem Solving ActivPhysics 4.3: Cart Goes over Circular

Path ActivPhysics 4.4: Ball Swings on a String ActivPhysics 4.5: Car Circles a Track

Banked Curves and the Flight of Airplanes

The results of Example 5.22 also apply to an airplane when it makes a turn in level flight (Fig. 5.35). When an airplane is flying in a straight line at a constant speed and at a steady altitude, the airplane's weight is exactly balanced by the lift force \vec{L} exerted by the air. (The upward lift force that the air exerts on the wings is a reaction to the downward push the wings exert on the air as they move through it.) To make the airplane turn, the pilot banks the airplane to one side so that the lift force has a horizontal component as Fig. 5.35 shows. (The pilot also changes the angle at which the wings "bite" into the air so that the vertical component of lift continues to balance the weight.) The bank angle is related to the airplane's speed v and the radius R of the turn by the same expression as in Example 5.22: $\tan \beta = v^2/gR$. For an airplane to make a tight turn (small R) at high speed (large v), tan β must be large and the required bank angle β must approach 90°.

We can also apply the results of Example 5.22 to the *pilot* of an airplane. The free-body diagram for the pilot of the airplane is exactly as shown in Fig. 5.34b; the normal force $n = mg/\cos\beta$ is exerted on the pilot by the seat. As in Example 5.9, *n* is equal to the apparent weight of the pilot, which is greater than the pilot's true weight mg. In a tight turn with a large bank angle β , the pilot's apparent weight can be tremendous: n = 5.8mg at $\beta = 80^{\circ}$ and n = 9.6mg at $\beta = 84^{\circ}$. Pilots black out in such tight turns because the apparent weight of their blood increases by the same factor, and the human heart isn't strong enough to pump such apparently "heavy" blood to the brain.

Motion in a Vertical Circle

In Examples 5.19, 5.20, 5.21, and 5.22 the body moved in a horizontal circle. Motion in a *vertical* circle is no different in principle, but the weight of the body has to be treated carefully. The following example shows what we mean.

Example 5.23 Uniform circular motion in a vertical circle

A passenger on a carnival Ferris wheel moves in a vertical circle of radius R with constant speed v. The seat remains upright during the motion. Find expressions for the force the seat exerts on the passenger at the top of the circle and at the bottom.

Top:
$$\sum F_y = n_T + (-mg) = -m\frac{v^2}{R}$$
 or

IDENTIFY and SET UP: The target variables are $n_{\rm T}$, the upward normal force the seat applies to the passenger at the top of the circle, and $n_{\rm B}$, the normal force at the bottom. We'll find these using Newton's second law and the uniform circular motion equations.

Figure 5.36a shows the passenger's velocity and acceleration at the two positions. The acceleration always points toward the center of the circle-downward at the top of the circle and upward at the bottom of the circle. At each position the only forces acting are vertical: the upward normal force and the downward force of gravity. Hence we need only the vertical component of Newton's second law. Figures 5.36b and 5.36c show free-body diagrams for the two positions. We take the positive y-direction as upward in both cases (that is, opposite the direction of the acceleration at the top of the circle).

EXECUTE: At the top the acceleration has magnitude v^2/R , but its vertical component is negative because its direction is downward.

Hence $a_v = -v^2/R$ and Newton's second law tells us that

Top:
$$\sum F_y = n_T + (-mg) = -m\frac{v^2}{R}$$
 of $n_T = mg\left(1 - \frac{v^2}{gR}\right)$

5.36 Our sketches for this problem.

(a) Sketch of two positions (b) Free-body diagram

for passenger at top

At the bottom the acceleration is upward, so $a_y = +v^2/R$ and Newton's second law says

Bottom:
$$\sum F_y = n_B + (-mg) = +m\frac{v^2}{R}$$
 or
 $n_B = mg\left(1 + \frac{v^2}{gR}\right)$

EVALUATE: Our result for $n_{\rm T}$ tells us that at the top of the Ferris wheel, the upward force the seat applies to the passenger is *smaller*

When we tie a string to an object and whirl it in a vertical circle, the analysis in Example 5.23 isn't directly applicable. The reason is that v is *not* constant in this case; except at the top and bottom of the circle, the net force (and hence the acceleration) does *not* point toward the center of the circle (Fig. 5.37). So both $\sum \vec{F}$ and \vec{a} have a component tangent to the circle, which means that the speed changes. Hence this is a case of *nonuniform* circular motion (see Section 3.4). Even worse, we can't use the constant-acceleration formulas to relate the speeds at various points because *neither* the magnitude nor the direction of the acceleration is constant. The speed relationships we need are best obtained by using the concept of energy. We'll consider such problems in Chapter 7.

Test Your Understanding of Section 5.4 Satellites are held in orbit by the force of our planet's gravitational attraction. A satellite in a small-radius orbit moves at a higher speed than a satellite in an orbit of large radius. Based on this information, what you can conclude about the earth's gravitational attraction for the satellite? (i) It increases with increasing distance from the earth. (ii) It is the same at all distances from the earth. (iii) It decreases with increasing distance from the earth. (iv) This information by itself isn't enough to answer the question.

5.5 The Fundamental Forces of Nature

We have discussed several kinds of forces—including weight, tension, friction, fluid resistance, and the normal force—and we will encounter others as we continue our study of physics. But just how many kinds of forces are there? Our current understanding is that all forces are expressions of just four distinct classes of *fundamental* forces, or interactions between particles (Fig. 5.38). Two are familiar in everyday experience. The other two involve interactions between subatomic particles that we cannot observe with the unaided senses.

Gravitational interactions include the familiar force of your *weight*, which results from the earth's gravitational attraction acting on you. The mutual gravitational attraction of various parts of the earth for each other holds our planet together (Fig. 5.38a). Newton recognized that the sun's gravitational attraction for the earth keeps the earth in its nearly circular orbit around the sun. In Chapter 13 we will study gravitational interactions in greater detail, and we will analyze their vital role in the motions of planets and satellites.

The second familiar class of forces, **electromagnetic interactions**, includes electric and magnetic forces. If you run a comb through your hair, the comb ends up with an electric charge; you can use the electric force exerted by this charge to pick up bits of paper. All atoms contain positive and negative electric charge, so atoms and molecules can exert electric forces on one another (Fig. 5.38b). Contact forces, including the normal force, friction, and fluid resistance, are the combination of all such forces exerted on the atoms of a body by atoms in its surroundings. *Magnetic* forces, such as those between magnets or between a magnet and a piece of iron, are actually the result of electric charges in motion. For example, an electromagnet causes magnetic interactions because electric

in magnitude than the passenger's weight w = mg. If the ride goes fast enough that $g - v^2/R$ becomes zero, the seat applies *no* force, and the passenger is about to become airborne. If v becomes still larger, n_T becomes negative; this means that a *downward* force (such as from a seat belt) is needed to keep the passenger in the seat. By contrast, the normal force n_B at the bottom is always *greater* than the passenger's weight. You feel the seat pushing up on you more firmly than when you are at rest. You can see that n_T and n_B are the values of the passenger's *apparent weight* at the top and bottom of the circle (see Section 5.2).

5.38 Examples of the fundamental interactions in nature. (a) The moon and the earth are held together and held in orbit by gravitational forces. (b) This molecule of bacterial plasmid DNA is held together by electromagnetic forces between its atoms. (c) The sun shines because in its core, strong forces between nuclear particles cause the release of energy. (d) When a massive star explodes into a supernova, a flood of energy is released by weak interactions between the star's nuclear particles.

(a) Gravitational forces hold planets together.

(b) Electromagnetic forces hold molecules together.

(c) Strong forces release energy to power the sun.

(d) Weak forces play a role in exploding stars.

charges move through its wires. We will study electromagnetic interactions in detail in the second half of this book.

On the atomic or molecular scale, gravitational forces play no role because electric forces are enormously stronger: The electrical repulsion between two protons is stronger than their gravitational attraction by a factor of about 10^{35} . But in bodies of astronomical size, positive and negative charges are usually present in nearly equal amounts, and the resulting electrical interactions nearly cancel out. Gravitational interactions are thus the dominant influence in the motion of planets and in the internal structure of stars.

The other two classes of interactions are less familiar. One, the **strong interaction,** is responsible for holding the nucleus of an atom together. Nuclei contain electrically neutral neutrons and positively charged protons. The electric force between charged protons tries to push them apart; the strong attractive force between nuclear particles counteracts this repulsion and makes the nucleus stable. In this context the strong interaction is also called the *strong nuclear force*. It has much shorter range than electrical interactions, but within its range it is much stronger. The strong interaction plays a key role in thermonuclear reactions that take place at the sun's core and generate the sun's heat and light (Fig. 5.38c).

Finally, there is the **weak interaction.** Its range is so short that it plays a role only on the scale of the nucleus or smaller. The weak interaction is responsible for a common form of radioactivity called beta decay, in which a neutron in a radioactive nucleus is transformed into a proton while ejecting an electron and a nearly massless particle called an antineutrino. The weak interaction between the antineutrino and ordinary matter is so feeble that an antineutrino could easily penetrate a wall of lead a million kilometers thick! Yet when a giant star undergoes a cataclysmic explosion called a supernova, most of the energy is released by way of the weak interaction (Fig. 5.38d).

In the 1960s physicists developed a theory that described the electromagnetic and weak interactions as aspects of a single *electroweak* interaction. This theory has passed every experimental test to which it has been put. Encouraged by this success, physicists have made similar attempts to describe the strong, electromagnetic, and weak interactions in terms of a single *grand unified theory* (GUT), and have taken steps toward a possible unification of all interactions into a *theory of everything* (TOE). Such theories are still speculative, and there are many unanswered questions in this very active field of current research.

CHAPTER 5 SUMMARY

Using Newton's first law: When a body is in equilibrium in an inertial frame of reference—that is, either at rest or moving with constant velocity—the vector sum of forces acting on it must be zero (Newton's first law). Free-body diagrams are essential in identifying the forces that act on the body being considered.

Newton's third law (action and reaction) is also frequently needed in equilibrium problems. The two forces in an action–reaction pair *never* act on the same body. (See Examples 5.1–5.5.)

The normal force exerted on a body by a surface is *not* always equal to the body's weight. (See Example 5.3.)

Using Newton's second law: If the vector sum of forces on a body is *not* zero, the body accelerates. The acceleration is related to the net force by Newton's second law.

Just as for equilibrium problems, free-body diagrams are essential for solving problems involving Newton's second law, and the normal force exerted on a body is not always equal to its weight. (See Examples 5.6–5.12.)

Friction and fluid resistance: The contact force between two bodies can always be represented in terms of a normal force \vec{n} perpendicular to the surface of contact and a friction force \vec{f} parallel to the surface.

When a body is sliding over the surface, the friction force is called *kinetic* friction. Its magnitude f_k is approximately equal to the normal force magnitude *n* multiplied by the coefficient of kinetic friction μ_k . When a body is *not* moving relative to a surface, the friction force is called *static* friction. The *maximum* possible static friction force is approximately equal to the magnitude *n* of the normal force multiplied by the coefficient of static friction μ_s . The *actual* static friction force may be anything from zero to this maximum value, depending on the situation. Usually μ_s is greater than μ_k for a given pair of surfaces in contact. (See Examples 5.13–5.17.)

Rolling friction is similar to kinetic friction, but the force of fluid resistance depends on the speed of an object through a fluid. (See Example 5.18.)

Forces in circular motion: In uniform circular motion, the acceleration vector is directed toward the center of the circle. The motion is governed by Newton's second law, $\Sigma \vec{F} = m\vec{a}$. (See Examples 5.19–5.23.)

(5.3)

Vector form:

 $\sum \vec{F} = m\vec{a}$ Component form:

$$\sum F_x = ma_x$$
 $\sum F_y = ma_y$ (5.4)

Magnitude of kinetic friction force:

 $f_{k} = \mu_{k}n \qquad (5.5) \qquad f \qquad f_{k} = \frac{1}{f_{s}}n \qquad (5.6) \qquad f_{s} = \frac{1}{f_{s}}n \qquad (5.6)$

Acceleration in uniform circular motion:

$$a_{\rm rad} = \frac{v^2}{R} = \frac{4\pi^2 R}{T^2}$$
 (5.14), (5.16)

BRIDGING PROBLEM In a

In a Rotating Cone

A small block with mass *m* is placed inside an inverted cone that is rotating about a vertical axis such that the time for one revolution of the cone is *T* (Fig. 5.39). The walls of the cone make an angle β with the horizontal. The coefficient of static friction between the block and the cone is μ_s . If the block is to remain at a constant height *h* above the apex of the cone, what are (a) the maximum value of *T* and (b) the minimum value of *T*? (That is, find expressions for T_{max} and T_{min} in terms of β and *h*.)

SOLUTION GUIDE

See MasteringPhysics[®] Study Area for a Video Tutor solution.

IDENTIFY and **SET UP**

- 1. Although we want the block to not slide up or down on the inside of the cone, this is *not* an equilibrium problem. The block rotates with the cone and is in uniform circular motion, so it has an acceleration directed toward the center of its circular path.
- 2. Identify the forces on the block. What is the direction of the friction force when the cone is rotating as slowly as possible, so T has its maximum value T_{max} ? What is the direction of the friction force when the cone is rotating as rapidly as possible, so T has its minimum value T_{min} ? In these situations does the static friction force have its *maximum* magnitude? Why or why not?
- 3. Draw a free-body diagram for the block when the cone is rotating with $T = T_{\text{max}}$ and a free-body diagram when the cone is rotating with $T = T_{\text{min}}$. Choose coordinate axes, and remember that it's usually easiest to choose one of the axes to be in the direction of the acceleration.
- 4. What is the radius of the circular path that the block follows? Express this in terms of β and *h*.
- 5. Make a list of the unknown quantities, and decide which of these are the target variables.

5.39 A block inside a spinning cone.

EXECUTE

- 6. Write Newton's second law in component form for the case in which the cone is rotating with $T = T_{\text{max}}$. Write the acceleration in terms of T_{max} , β , and h, and write the static friction force in terms of the normal force n.
- 7. Solve these equations for the target variable T_{max} .
- 8. Repeat steps 6 and 7 for the case in which the cone is rotating with $T = T_{\text{min}}$, and solve for the target variable T_{min} .

EVALUATE

- 9. You'll end up with some fairly complicated expressions for T_{max} and T_{min} , so check them over carefully. Do they have the correct units? Is the minimum time T_{min} less than the maximum time T_{max} , as it must be?
- 10. What do your expressions for T_{max} and T_{min} become if $\mu_{\text{s}} = 0$? Check your results by comparing with Example 5.22 in Section 5.4.

MP

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q5.1 A man sits in a seat that is suspended from a rope. The rope passes over a pulley suspended from the ceiling, and the man holds the other end of the rope in his hands. What is the tension in the rope, and what force does the seat exert on the man? Draw a freebody force diagram for the man.

Q5.2 "In general, the normal force is not equal to the weight." Give an example where these two forces are equal in magnitude, and at least two examples where they are not.

Q5.3 A clothesline hangs between two poles. No matter how tightly the line is stretched, it always sags a little at the center. Explain why. **Q5.4** A car is driven up a steep hill at constant speed. Discuss all the forces acting on the car. What pushes it up the hill?

Q5.5 For medical reasons it is important for astronauts in outer space to determine their body mass at regular intervals. Devise a scheme for measuring body mass in an apparently weightless environment.

Q5.6 To push a box up a ramp, is the force required smaller if you push horizontally or if you push parallel to the ramp? Why?

Q5.7 A woman in an elevator lets go of her briefcase but it does not fall to the floor. How is the elevator moving?

Q5.8 You can classify scales for weighing objects as those that use springs and those that use standard masses to balance unknown masses. Which group would be more accurate when used in an accelerating spaceship? When used on the moon?

Q5.9 When you tighten a nut on a bolt, how are you increasing the frictional force? How does a lock washer work?

Q5.10 A block rests on an inclined plane with enough friction to prevent it from sliding down. To start the block moving, is it easier to push it up the plane or down the plane? Why?

Q5.11 A crate of books rests on a level floor. To move it along the floor at a constant velocity, why do you exert a smaller force if you pull it at an angle θ above the horizontal than if you push it at the same angle below the horizontal?

Q5.12 In a world without friction, which of the following activities could you do (or not do)? Explain your reasoning. (a) drive around an unbanked highway curve; (b) jump into the air; (c) start walking on a horizontal sidewalk; (d) climb a vertical ladder; (e) change lanes on the freeway.

Q5.13 Walking on horizontal slippery ice can be much more tiring than walking on ordinary pavement. Why?

Q5.14 When you stand with bare feet in a wet bathtub, the grip feels fairly secure, and yet a catastrophic slip is quite possible. Explain this in terms of the two coefficients of friction.

Q5.15 You are pushing a large crate from the back of a freight elevator to the front as the elevator is moving to the next floor. In which situation is the force you must apply to move the crate the smallest and in which is it the largest: when the elevator is accelerating upward, when it is accelerating downward, or when it is traveling at constant speed? Explain.

Q5.16 The moon is accelerating toward the earth. Why isn't it getting closer to us?

Q5.17 An automotive magazine calls decreasing-radius curves "the bane of the Sunday driver." Explain.

Q5.18 You often hear people say that "friction always opposes motion." Give at least one example where (a) static friction *causes* motion, and (b) kinetic friction *causes* motion.

Q5.19 If there is a net force on a particle in uniform circular motion, why doesn't the particle's speed change?

Q5.20 A curve in a road has the banking angle calculated and posted for 80 km/h. However, the road is covered with ice so you cautiously plan to drive slower than this limit. What may happen to your car? Why?

Q5.21 You swing a ball on the end of a lightweight string in a horizontal circle at constant speed. Can the string ever be truly horizontal? If not, would it slope above the horizontal or below the horizontal? Why?

Q5.22 The centrifugal force is not included in the free-body diagrams of Figs. 5.34b and 5.35. Explain why not.

05.23 A professor swings a rubber stopper in a horizontal circle on the end of a string in front of his class. He tells Caroline, in the first row, that he is going to let the string go when the stopper is directly in front of her face. Should Caroline worry?

Q5.24 To keep the forces on the riders within allowable limits, loop-the-loop roller coaster rides are often designed so that the loop, rather than being a perfect circle, has a larger radius of curvature at the bottom than at the top. Explain.

Q5.25 A tennis ball drops from rest at the top of a tall glass cylinder, first with the air pumped out of the cylinder so there is no air resistance, and then a second time after the air has been readmitted to the cylinder. You examine multiflash photographs of the two drops. From these photos how can you tell which one is which, or can you? **Q5.26** If you throw a baseball straight upward with speed v_0 , how does its speed, when it returns to the point from where you threw it, compare to v_0 (a) in the absence of air resistance and (b) in the presence of air resistance? Explain.

Q5.27 You throw a baseball straight upward. If air resistance is *not* ignored, how does the time required for the ball to go from the height at which it was thrown up to its maximum height compare to the time required for it to fall from its maximum height back down to the height from which it was thrown? Explain your answer.

Q5.28 You take two identical tennis balls and fill one with water. You release both balls simultaneously from the top of a tall building. If air resistance is negligible, which ball strikes the ground first? Explain. What is the answer if air resistance is *not* negligible?

Q5.29 A ball is dropped from rest and feels air resistance as it falls. Which of the graphs in Fig. Q5.29 best represents its acceleration as a function of time?

Figure Q5.29

Q5.30 A ball is dropped from rest and feels air resistance as it falls. Which of the graphs in Fig. Q5.30 best represents its vertical velocity component as a function of time?

Figure Q5.30

Q5.31 When does a baseball in flight have an acceleration with a positive upward component? Explain in terms of the forces on the ball and also in terms of the velocity components compared to the terminal speed. Do *not* ignore air resistance.

Q5.32 When a batted baseball moves with air drag, does it travel a greater horizontal distance while climbing to its maximum height or while descending from its maximum height back to the ground? Or is the horizontal distance traveled the same for both? Explain in terms of the forces acting on the ball.

Q5.33 "A ball is thrown from the edge of a high cliff. No matter what the angle at which it is thrown, due to air resistance, the ball will eventually end up moving vertically downward." Justify this statement.

EXERCISES

Section 5.1 Using Newton's First Law: Particles in Equilibrium

5.1 • Two 25.0-N weights are suspended at opposite ends of a rope that passes over a light, frictionless pulley. The pulley is attached to a chain that goes to the ceiling. (a) What is the tension in the rope? (b) What is the tension in the chain?

5.2 • In Fig. E5.2 each of the suspended blocks has weight w. The pulleys are frictionless and the ropes have negligible weight. Calculate, in each case, the tension T in the rope in terms of the weight w. In each case, include the free-body diagram or diagrams you used to determine the answer.

5.3 • A 75.0-kg wrecking ball hangs from a uniform heavy-duty chain having a mass of 26.0 kg. (a) Find the maximum and minimum tension in the chain. (b) What is the tension at a point three-fourths of the way up from the bottom of the chain?

5.4 •• BIO Injuries to the Spinal Column. In the treatment of spine injuries, it is often necessary to provide some tension along the spinal column to stretch the backbone. One device for doing this is the Stryker frame, illustrated in Fig. E5.4a. A weight *W* is attached to the patient (sometimes around a neck collar, as shown in Fig. E5.4b), and friction between the person's body and the bed prevents sliding. (a) If the coefficient of static friction between a 78.5-kg patient's body and the bed is 0.75, what is the maximum traction force along the spinal column that *W* can provide without causing the patient to slide? (b) Under the conditions of maximum traction, what is the tension in each cable attached to the neck collar?

Figure E5.4

5.5 •• A picture frame hung against a wall is suspended by two wires attached to its upper corners. If the two wires make the same angle with the vertical, what must this angle be if the tension in each wire is equal to 0.75 of the weight of the frame? (Ignore any friction between the wall and the picture frame.)

5.6 •• A large wrecking ball is held in place by two light steel cables (Fig. E5.6). If the mass *m* of the wrecking ball is 4090 kg, what are (a) the tension T_B in the cable that makes an angle of 40° with the vertical and (b) the tension T_A in the horizontal cable?

5.7 •• Find the tension in each cord in Fig. E5.7 if the weight of the suspended object is *w*.

Figure E5.7

5.8 •• A 1130-kg car is held in place by a light cable on a very smooth (frictionless) ramp, as shown in Fig. E5.8. The cable

makes an angle of 31.0° above the surface of the ramp, and the ramp itself rises at 25.0° above the horizontal. (a) Draw a free-body diagram for the car. (b) Find the tension in the cable. (c) How hard does the surface of the ramp push on the car?

5.9 •• A man pushes on a piano with mass 180 kg so that

Figure E5.8

it slides at constant velocity down a ramp that is inclined at 11.0° above the horizontal floor. Neglect any friction acting on the piano. Calculate the magnitude of the force applied by the man if he pushes (a) parallel to the incline and (b) parallel to the floor.

5.10 •• In Fig. E5.10 the weight *w* is 60.0 N. (a) What is the tension in the diagonal string? (b) Find the magnitudes of the horizontal forces \vec{F}_1 and \vec{F}_2 that must be applied to hold the system in the position shown.

Figure **E5.10**

Section 5.2 Using Newton's Second Law: Dynamics of Particles

5.11 •• **BIO** Stay Awake! An astronaut is inside a 2.25×10^6 kg rocket that is blasting off vertically from the launch pad. You want this rocket to reach the speed of sound (331 m/s) as quickly as possible, but you also do not want the astronaut to black out. Medical tests have shown that astronauts are in danger of blacking out at an acceleration greater than 4g. (a) What is the maximum thrust the engines of the rocket can have to just barely avoid blackout? Start with a free-body diagram of the rocket. (b) What force, in terms of her weight w, does the rocket exert on the astronaut? Start with a free-body diagram of the astronaut. (c) What is the shortest time it can take the rocket to reach the speed of sound?

5.12 •• A 125-kg (including all the contents) rocket has an engine that produces a constant vertical force (the *thrust*) of 1720 N. Inside this rocket, a 15.5-N electrical power supply rests on the floor. (a) Find the acceleration of the rocket. (b) When it has reached an altitude of 120 m, how hard does the floor push on the power supply? (*Hint:* Start with a free-body diagram for the power supply.)

5.13 •• **CP** *Genesis* **Crash.** On September 8, 2004, the *Genesis* spacecraft crashed in the Utah desert because its parachute did not open. The 210-kg capsule hit the ground at 311 km/h and penetrated the soil to a depth of 81.0 cm. (a) Assuming it to be constant, what was its acceleration (in m/s^2 and in g's) during the crash? (b) What force did the ground exert on the capsule during the crash? Express the force in newtons and as a multiple of the capsule's weight. (c) For how long did this force last?

5.14 • Three sleds are being pulled horizontally on frictionless horizontal ice using horizontal ropes (Fig. E5.14). The pull is of magnitude 125 N. Find (a) the acceleration of the system and (b) the tension in ropes A and B.

Figure E5.14

5.15 •• Atwood's Machine. A 15.0-kg load of bricks hangs from one end of a rope that passes over a small, frictionless pulley. A 28.0kg counterweight is suspended from the other end of the rope, as shown in Fig. E5.15. The system is released from rest. (a) Draw two free-body diagrams, one for the load of bricks and one for the counterweight. (b) What is the magnitude of the upward acceleration of the load of bricks? (c) What is the tension in the rope while the load is moving? How does the tension compare to the weight of the load of bricks? To the weight of the counterweight?

5.16 •• **CP** A 8.00-kg block of ice, released from rest at the top of a 1.50-m-long frictionless ramp, slides downhill, reaching a speed of 2.50 m/s at the bottom. (a) What is the angle between the ramp and the horizontal? (b) What would be the speed of the ice at the bottom if the motion were opposed by a constant friction force of 10.0 N parallel to the surface of the ramp?

5.17 •• A light rope is attached to a block with mass 4.00 kg that rests on a frictionless, horizontal surface. The horizontal rope passes over a frictionless, massless pulley, and a block with mass m is suspended from the other end. When the blocks are released, the tension in the rope is 10.0 N. (a) Draw two free-body diagrams, one for the 4.00-kg block and one for the block with mass m. (b) What is the acceleration of either block? (c) Find the mass m of the hanging block. (d) How does the tension compare to the weight of the hanging block?

5.18 •• **CP Runway Design.** A transport plane takes off from a level landing field with two gliders in tow, one behind the other. The mass of each glider is 700 kg, and the total resistance (air drag plus friction with the runway) on each may be assumed constant and equal to 2500 N. The tension in the towrope between the transport plane and the first glider is not to exceed 12,000 N. (a) If a speed of 40 m/s is required for takeoff, what minimum length of runway is needed? (b) What is the tension in the towrope between the two gliders while they are accelerating for the takeoff?

5.19 •• **CP** A 750.0-kg boulder is raised from a quarry 125 m deep by a long uniform chain having a mass of 575 kg. This chain is of uniform strength, but at any point it can support a maximum tension no greater than 2.50 times its weight without breaking. (a) What is the maximum acceleration the boulder can have and still get out of the quarry, and (b) how long does it take to be lifted out at maximum acceleration if it started from rest?

5.20 •• Apparent Weight. A 550-N physics student stands on a bathroom scale in an 850-kg (including the student) elevator that is supported by a cable. As the elevator starts moving, the scale reads

450 N. (a) Find the acceleration of the elevator (magnitude and direction). (b) What is the acceleration if the scale reads 670 N?(c) If the scale reads zero, should the student worry? Explain.(d) What is the tension in the cable in parts (a) and (c)?

5.21 •• **CP BIO** Force During a Jump. An average person can reach a maximum height of about 60 cm when jumping straight up from a crouched position. During the jump itself, the person's body from the knees up typically rises a distance of around 50 cm. To keep the calculations simple and yet get a reasonable result, assume that the *entire body* rises this much during the jump. (a) With what initial speed does the person leave the ground to reach a height of 60 cm? (b) Draw a free-body diagram of the person during the jump. (c) In terms of this jumper's weight *w*, what force does the ground exert on him or her during the jump?

5.22 •• **CP CALC** A 2540-kg test rocket is launched vertically from the launch pad. Its fuel (of negligible mass) provides a thrust force so that its vertical velocity as a function of time is given by $v(t) = At + Bt^2$, where *A* and *B* are constants and time is measured from the instant the fuel is ignited. At the instant of ignition, the rocket has an upward acceleration of 1.50 m/s² and 1.00 s later an upward velocity of 2.00 m/s. (a) Determine *A* and *B*, including their SI units. (b) At 4.00 s after fuel ignition, what is the acceleration of the rocket, and (c) what thrust force does the burning fuel exert on it, assuming no air resistance? Express the thrust in newtons and as a multiple of the rocket's weight. (d) What was the initial thrust due to the fuel?

5.23 •• **CP CALC** A 2.00-kg box is moving to the right with speed 9.00 m/s on a horizontal, frictionless surface. At t = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude $F(t) = (6.00 \text{ N/s}^2)t^2$. (a) What distance does the box move from its position at t = 0 before its speed is reduced to zero? (b) If the force continues to be applied, what is the speed of the box at t = 3.00 s?

5.24 •• **CP CALC** A 5.00-kg crate is suspended from the end of a short vertical rope of negligible mass. An upward force F(t) is applied to the end of the rope, and the height of the crate above its initial position is given by $y(t) = (2.80 \text{ m/s})t + (0.610 \text{ m/s}^3)t^3$. What is the magnitude of the force *F* when t = 4.00 s?

Section 5.3 Frictional Forces

5.25 • **BIO** The Trendelenburg Position. In emergencies with major blood loss, the doctor will order the patient placed in the Trendelenburg position, in which the foot of the bed is raised to get maximum blood flow to the brain. If the coefficient of static friction between the typical patient and the bedsheets is 1.20, what is the maximum angle at which the bed can be tilted with respect to the floor before the patient begins to slide?

5.26 • In a laboratory experiment on friction, a 135-N block resting on a rough horizontal table is pulled by a horizontal wire. The pull gradually increases until the block begins to move and continues to increase thereafter. Figure E5.26 shows a graph of the friction force on this block as a function of the pull. (a) Identify the

regions of the graph where static and kinetic friction occur. (b) Find the coefficients of static and kinetic friction between the block and the table. (c) Why does the graph slant upward in the first part but then level out? (d) What would the graph look like if a 135-N brick were placed on the box, and what would the coefficients of friction be in that case?

5.27 •• **CP** A stockroom worker pushes a box with mass 11.2 kg on a horizontal surface with a constant speed of 3.50 m/s. The coefficient of kinetic friction between the box and the surface is 0.20. (a) What horizontal force must the worker apply to maintain the motion? (b) If the force calculated in part (a) is removed, how far does the box slide before coming to rest?

5.28 •• A box of bananas weighing 40.0 N rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.40, and the coefficient of kinetic friction is 0.20. (a) If no horizontal force is applied to the box and the box is at rest, how large is the friction force exerted on the box? (b) What is the magnitude of the friction force if a monkey applies a horizontal force of 6.0 N to the box and the box is initially at rest? (c) What minimum horizontal force must the monkey apply to start the box in motion? (d) What minimum horizontal force of 18.0 N, what is the magnitude of the friction force and what is the box's acceleration?

5.29 •• A 45.0-kg crate of tools rests on a horizontal floor. You exert a gradually increasing horizontal push on it and observe that the crate just begins to move when your force exceeds 313 N. After that you must reduce your push to 208 N to keep it moving at a steady 25.0 cm/s. (a) What are the coefficients of static and kinetic friction between the crate and the floor? (b) What push must you exert to give it an acceleration of 1.10 m/s^2 ? (c) Suppose you were performing the same experiment on this crate but were doing it on the moon instead, where the acceleration due to gravity is 1.62 m/s^2 . (i) What magnitude push would cause it to move? (ii) What would its acceleration be if you maintained the push in part (b)?

5.30 •• Some sliding rocks approach the base of a hill with a speed of 12 m/s. The hill rises at 36° above the horizontal and has coefficients of kinetic and static friction of 0.45 and 0.65, respectively, with these rocks. (a) Find the acceleration of the rocks as they slide up the hill. (b) Once a rock reaches its highest point, will it stay there or slide down the hill? If it stays there, show why. If it slides down, find its acceleration on the way down.

5.31 •• You are lowering two boxes, one on top of the other, down the ramp shown in Fig. E5.31 by pulling on a rope parallel to the surface of the ramp. Both boxes move together at a constant speed of 15.0 cm/s. The coefficient of kinetic friction between the ramp and the lower box is 0.444, and the coefficient of static friction between the two boxes is 0.800. (a) What force do you need to exert to accomplish this? (b) What are the magnitude and direction of the friction force on the upper box?

Figure E5.31

5.32 •• A pickup truck is carrying a toolbox, but the rear gate of the truck is missing, so the box will slide out if it is set moving. The coefficients of kinetic and static friction between the box and the bed of the truck are 0.355 and 0.650, respectively. Starting from rest, what is the shortest time this truck could accelerate uniformly to 30.0 m/s without causing the box to slide? Include a free-body diagram of the toolbox as part of your solution.

5.33 •• **CP** Stopping Distance. (a) If the coefficient of kinetic friction between tires and dry pavement is 0.80, what is the shortest distance in which you can stop an automobile by locking the brakes when traveling at 28.7 m/s (about 65 mi/h)? (b) On wet pavement the coefficient of kinetic friction may be only 0.25. How fast should you drive on wet pavement in order to be able to stop in the same distance as in part (a)? (*Note:* Locking the brakes is *not* the safest way to stop.)

5.34 •• Consider the Figure **E5.34** system shown in Fig.

E5.34. Block A weighs 45.0 N and block B weighs 25.0 N. Once block B is set into downward motion, it descends at a constant

speed. (a) Calculate the coefficient of kinetic friction between block A and the tabletop. (b) A cat, also of weight 45.0 N, falls asleep on top of block A. If block B is now set into downward motion, what is its acceleration (magnitude and direction)?

5.35 • Two crates connected by a rope lie on a horizontal surface (Fig. E5.35). Crate *A* has mass m_A and crate *B* has mass m_B . The coefficient of kinetic friction between each crate and the surface is μ_k . The crates are pulled to the right at constant velocity by a horizontal force \vec{F} . In terms of m_A , m_B , and μ_k , calculate (a) the magnitude of the force \vec{F} and (b) the tension in the rope connecting the blocks. Include the free-body diagram or diagrams you used to determine each answer.

Figure E5.35

5.36 •• **CP** A 25.0-kg box of textbooks rests on a loading ramp that makes an angle α with the horizontal. The coefficient of kinetic friction is 0.25, and the coefficient of static friction is 0.35. (a) As the angle α is increased, find the minimum angle at which the box starts to slip. (b) At this angle, find the acceleration once the box has begun to move. (c) At this angle, how fast will the box be moving after it has slid 5.0 m along the loading ramp?

5.37 •• **CP** As shown in Fig. E5.34, block *A* (mass 2.25 kg) rests on a tabletop. It is connected by a horizontal cord passing over a light, frictionless pulley to a hanging block *B* (mass 1.30 kg). The coefficient of kinetic friction between block *A* and the tabletop is 0.450. After the blocks are released from rest, find (a) the speed of each block after moving 3.00 cm and (b) the tension in the cord. Include the free-body diagram or diagrams you used to determine the answers.

5.38 •• A box with mass *m* is dragged across a level floor having a coefficient of kinetic friction μ_k by a rope that is pulled upward at an angle θ above the horizontal with a force of magnitude *F*. (a) In terms of *m*, μ_k , θ , and *g*, obtain an expression for the magnitude of the force required to move the box with constant speed. (b) Knowing that you are studying physics, a CPR instructor asks you

how much force it would take to slide a 90-kg patient across a floor at constant speed by pulling on him at an angle of 25° above the horizontal. By dragging some weights wrapped in an old pair of pants down the hall with a spring balance, you find that $\mu_k = 0.35$. Use the result of part (a) to answer the instructor's question.

5.39 •• A large crate with mass *m* rests on a horizontal floor. The coefficients of friction between the crate and the floor are μ_s and μ_k . A woman pushes downward at an angle θ below the horizontal on the crate with a force \vec{F} . (a) What magnitude of force \vec{F} is required to keep the crate moving at constant velocity? (b) If μ_s is greater than some critical value, the woman cannot start the crate moving no matter how hard she pushes. Calculate this critical value of μ_s .

5.40 •• You throw a baseball straight up. The drag force is proportional to v^2 . In terms of g, what is the y-component of the ball's acceleration when its speed is half its terminal speed and (a) it is moving up? (b) It is moving back down?

5.41 • (a) In Example 5.18 (Section 5.3), what value of *D* is required to make $v_t = 42 \text{ m/s}$ for the skydiver? (b) If the skydiver's daughter, whose mass is 45 kg, is falling through the air and has the same D (0.25 kg/m) as her father, what is the daughter's terminal speed?

Section 5.4 Dynamics of Circular Motion

5.42 •• A small car with mass

0.800 kg travels at constant Figure **E5.42** speed on the inside of a track that is a vertical circle with radius 5.00 m (Fig. E5.42). If the normal force exerted by the track on the car when it is at the top of the track (point *B*) is 6.00 N, what is the normal force on the car when it is at the bottom of the track (point *A*)?

5.43 •• A machine part consists of a thin 40.0-cm-long bar with small 1.15-kg masses fastened by screws to its ends. The screws can support a maximum

force of 75.0 N without pulling out. This bar rotates about an axis perpendicular to it at its center. (a) As the bar is turning at a constant rate on a horizontal, frictionless surface, what is the maximum speed the masses can have without pulling out the screws? (b) Suppose the machine is redesigned so that the bar turns at a constant rate in a vertical circle. Will one of the screws be more likely to pull out when the mass is at the top of the circle or at the bottom? Use a free-body diagram to see why. (c) Using the result of part (b), what is the greatest speed the masses can have without pulling a screw?

5.44 • A flat (unbanked) curve on a highway has a radius of 220.0 m. A car rounds the curve at a speed of 25.0 m/s. (a) What is the minimum coefficient of friction that will prevent sliding? (b) Suppose the highway is icy and the coefficient of friction between the tires and pavement is only one-third what you found in part (a). What should be the maximum speed of the car so it can round the curve safely?

5.45 •• A 1125-kg car and a 2250-kg pickup truck approach a curve on the expressway that has a radius of 225 m. (a) At what angle should the highway engineer bank this curve so that vehicles traveling at 65.0 mi/h can safely round it regardless of the condition of their tires? Should the heavy truck go slower than the

lighter car? (b) As the car and truck round the curve at find the normal force on each one due to the highway surface.

5.46 •• The "Giant Swing" at a county fair consists of a vertical central shaft with a number of horizontal arms attached at its upper end (Fig. E5.46). Each arm supports a seat suspended from a cable 5.00 m long, the upper end of the cable being fastened to the arm at a point 3.00 m from the central shaft. (a) Find the time of one revolution of the swing if the cable supporting a seat makes an angle of 30.0° with the vertical. (b) Does the angle depend on the weight of the passenger for a given rate of revolution?

5.47 •• In another version of the "Giant Swing" (see Exercise 5.46), the seat is connected to two cables as shown in Fig. E5.47, one of which is horizontal. The seat swings in a horizontal circle at a rate of 32.0 rpm (rev/min). If the seat weighs 255 N and an 825-N person is sitting in it, find the tension in each cable.

5.48 •• A small button placed on a horizontal rotating platform with diameter 0.320 m

will revolve with the platform when it is brought up to a speed of 40.0 rev/min, provided the button is no more than 0.150 m from the axis. (a) What is the coefficient of static friction between the button and the platform? (b) How far from the axis can the button be placed, without slipping, if the platform rotates at 60.0 rev/min? **5.49** •• **Rotating Space Stations.** One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates "artificial gravity" at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the "artificial gravity" acceleration to be 9.80 m/s²? (b) If the space station is a waiting area for travelers going to Mars, it might be desirable to simulate the acceleration due to gravity on the Martian surface (3.70 m/s^2) . How many revolutions per minute are needed in this case?

5.50 • The Cosmoclock 21 Ferris wheel in Yokohama City, Japan, has a diameter of 100 m. Its name comes from its 60 arms, each of which can function as a second hand (so that it makes one revolution every 60.0 s). (a) Find the speed of the passengers when the Ferris wheel is rotating at this rate. (b) A passenger

weighs 882 N at the weight-guessing booth on the ground. What is his apparent weight at the highest and at the lowest point on the Ferris wheel? (c) What would be the time for one revolution if the passenger's apparent weight at the highest point were zero? (d) What then would be the passenger's apparent weight at the lowest point?

5.51 •• An airplane flies in a loop (a circular path in a vertical plane) of radius 150 m. The pilot's head always points toward the center of the loop. The speed of the airplane is not constant; the airplane goes slowest at the top of the loop and fastest at the bottom. (a) At the top of the loop, the pilot feels weightless. What is the speed of the airplane at this point? (b) At the bottom of the loop, the speed of the airplane is 280 km/h. What is the apparent weight of the pilot at this point? His true weight is 700 N.

5.52 •• A 50.0-kg stunt pilot who has been diving her airplane vertically pulls out of the dive by changing her course to a circle in a vertical plane. (a) If the plane's speed at the lowest point of the circle is 95.0 m/s, what is the minimum radius of the circle for the acceleration at this point not to exceed 4.00g? (b) What is the apparent weight of the pilot at the lowest point of the pullout?

5.53 • Stay Dry! You tie a cord to a pail of water, and you swing the pail in a vertical circle of radius 0.600 m. What minimum speed must you give the pail at the highest point of the circle if no water is to spill from it?

5.54 •• A bowling ball weighing 71.2 N (16.0 lb) is attached to the ceiling by a 3.80-m rope. The ball is pulled to one side and released; it then swings back and forth as a pendulum. As the rope swings through the vertical, the speed of the bowling ball is 4.20 m/s. (a) What is the acceleration of the bowling ball, in magnitude and direction, at this instant? (b) What is the tension in the rope at this instant?

5.55 •• **BIO** Effect on Blood of Walking. While a person is walking, his arms swing through approximately a 45° angle in $\frac{1}{2}$ s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. A typical arm is 70.0 cm long, measured from the shoulder joint. (a) What is the acceleration of a 1.0-g drop of blood in the fingertips at the bottom of the swing? (b) Draw a free-body diagram of the drop of blood in part (a). (c) Find the force that the blood vessel must exert on the drop of blood in part (a). Which way does this force point? (d) What force would the blood vessel exert if the arm were not swinging?

PROBLEMS

5.56 •• An adventurous archaeologist crosses between two rock cliffs by slowly going hand over hand along a rope stretched between the cliffs. He stops to rest at the middle of the rope (Fig. P5.56). The rope will break if the tension in it exceeds 2.50×10^4 N, and our hero's mass is 90.0 kg. (a) If the angle θ is 10.0° , find the tension in the rope. (b) What is the smallest value the angle θ can have if the rope is not to break?

Figure **P5.56**

5.57 ••• Two ropes are connected to a steel cable that supports a hanging weight as shown in Fig. P5.57. (a) Draw a free-body diagram showing all of the forces acting at the knot that connects the two ropes to the steel cable. Based on your force diagram, which of the two ropes will have the greater ten-

5.58 •• In Fig. P5.58 a worker lifts a weight w by pulling down on a rope with a force \mathbf{F} . The upper pulley is attached to the ceiling by a chain, and the lower pulley is attached to the weight by another chain. In terms of w, find the tension in each chain and the magnitude of the force \mathbf{F} if the weight is lifted at constant speed. Include the free-body diagram or diagrams you used to determine your answers. Assume that the rope, pulleys, and chains all have negligible weights.

5.59 ••• A solid uniform 45.0-kg ball of diameter 32.0 cm is supported against a vertical, frictionless wall using a thin 30.0-cm wire of negligible mass, as shown in Fig. P5.59. (a) Draw a free-body diagram for the ball and use it to find the tension in the wire. (b) How hard does the ball push against the wall?

5.60 ••• A horizontal wire holds a solid uniform ball of mass m in place on a tilted ramp that rises 35.0° above the horizontal. The surface of this ramp is perfectly smooth, and the wire is directed away from the center of the ball (Fig. P5.60). (a) Draw a free-body

sion? (b) If the maximum tension either rope can sustain without breaking is 5000 N, determine the maximum value of the hanging weight that these ropes can safely support. You can ignore the weight of the ropes and the steel cable.

¹ Figure **P5.58**

Figure **P5.59**

Figure **P5.60**

diagram for the ball. (b) How hard does the surface of the ramp push on the ball? (c) What is the tension in the wire?

5.61 •• **CP BIO** Forces During Chin-ups. People who do chinups raise their chin just over a bar (the chinning bar), supporting themselves with only their arms. Typically, the body below the arms is raised by about 30 cm in a time of 1.0 s, starting from rest. Assume that the entire body of a 680-N person doing chin-ups is raised this distance and that half the 1.0 s is spent accelerating upward and the other half accelerating downward, uniformly in both cases. Draw a free-body diagram of the person's body, and then apply it to find the force his arms must exert on him during the accelerating part of the chin-up.

5.62 •• **CP BIO Prevention of Hip Injuries.** People (especially the elderly) who are prone to falling can wear hip pads to

cushion the impact on their hip from a fall. Experiments have shown that if the speed at impact can be reduced to 1.3 m/s or less, the hip will usually not fracture. Let us investigate the worst-case scenario in which a 55-kg person completely loses her footing (such as on icy pavement) and falls a distance of 1.0 m, the distance from her hip to the ground. We shall assume that the person's entire body has the same acceleration, which, in reality, would not quite be true. (a) With what speed does her hip reach the ground? (b) A typical hip pad can reduce the person's speed to 1.3 m/s over a distance of 2.0 cm. Find the acceleration (assumed to be constant) of this person's hip while she is slowing down and the force the pad exerts on it. (c) The force in part (b) is very large. To see whether it is likely to cause injury, calculate how long it lasts. **5.63** ... CALC A 3.00-kg box that is several hundred meters above the surface of the earth is suspended from the end of a short vertical rope of negligible mass. A time-dependent upward force is applied to the upper end of the rope, and this results in a tension in the rope of T(t) = (36.0 N/s)t. The box is at rest at t = 0. The only forces on the box are the tension in the rope and gravity. (a) What is the velocity of the box at (i) t = 1.00 s and (ii) t = 3.00 s? (b) What is the maximum distance that the box descends below its initial position? (c) At what value of t does the box return to its initial position? **5.64** •• **CP** A 5.00-kg box sits at rest at the bottom of a ramp that is 8.00 m long and that is inclined at 30.0° above the horizontal. The coefficient of kinetic friction is $\mu_k = 0.40$, and the coefficient of static friction is $\mu_s = 0.50$. What constant force F, applied parallel to the surface of the ramp, is required to push the box to the top of the ramp in a time of 4.00 s?

5.65 •• Two boxes connected by a light horizontal rope are on a horizontal surface, as shown in Fig. P5.35. The coefficient of kinetic friction between each box and the surface is $\mu_k = 0.30$. One box (box *B*) has mass 5.00 kg, and the other box (box *A*) has mass *m*. A force *F* with magnitude 40.0 N and direction 53.1° above the horizontal is applied to the 5.00-kg box, and both boxes move to the right with $a = 1.50 \text{ m/s}^2$. (a) What is the tension *T* in the rope that connects the boxes? (b) What is the mass *m* of the second box? **5.66** ••• A 6.00-kg box sits on a ramp that is inclined at 37.0° above the horizontal. The coefficient of kinetic friction between the box and the ramp is $\mu_k = 0.30$. What *horizontal* force is required to move the box up the incline with a constant acceleration of 4.20 m/s²?

5.67 •• **CP** In Fig. P5.34 block *A* has mass *m* and block *B* has mass 6.00 kg. The coefficient of kinetic friction between block *A* and the tabletop is $\mu_k = 0.40$. The mass of the rope connecting the blocks can be neglected. The pulley is light and frictionless. When the system is released from rest, the hanging block descends 5.00 m in 3.00 s. What is the mass *m* of block *A*?

5.68 •• **CP** In Fig. P5.68 $m_1 = 20.0 \text{ kg}$ and $\alpha =$ 53.1°. The coefficient of kinetic friction between the block and the incline is $\mu_k =$ 0.40. What must be the mass m_2 of the hanging block if it is to descend 12.0 m in the first 3.00 s after the system is released from rest?

5.69 ••• **CP Rolling Friction.** Two bicycle tires are set rolling with the same initial speed of 3.50 m/s on a long, straight road, and the distance each travels before its speed is reduced by half is measured. One tire is inflated to a pressure of 40 psi and goes 18.1 m; the other is at 105 psi and goes 92.9 m. What is the coefficient of rolling friction μ_r for each? Assume that the net horizontal force is due to rolling friction only.

5.70 •• A Rope with Mass. A block with mass *M* is attached to the lower end of a vertical, uniform rope with mass *m* and length *L*. A constant upward force \vec{F} is applied to the top of the rope, causing the rope and block to accelerate upward. Find the tension in the rope at a distance *x* from the top end of the rope, where *x* can have any value from 0 to *L*.

5.71 •• A block with mass m_1 is placed on an inclined plane with slope angle α and is connected to a second hanging block with mass m_2 by a cord passing over a small, frictionless pulley (Fig. P5.68). The coefficient of static friction is μ_s and the coefficient of kinetic friction is μ_k . (a) Find the mass m_2 for which block m_1 moves up the plane at constant speed once it is set in motion. (b) Find the mass m_2 for which block m_1 moves down the plane at constant speed once it is set in motion. (c) For what range of values of m_2 will the blocks remain at rest if they are released from rest?

5.72 •• Block *A* in Fig. P5.72 weighs 60.0 N. The coefficient of static friction between the block and the surface on which it rests is 0.25. The weight *w* is 12.0 N and the system is in equilibrium. (a) Find the friction force exerted on block *A*. (b) Find the maximum weight *w* for which the system will remain in equilibrium.

Figure **P5.72**

5.73 •• Block *A* in Fig. P5.73 weighs 2.40 N and block *B* weighs 3.60 N. The coefficient of kinetic friction between all surfaces is 0.300. Find the magnitude of the horizontal force \vec{F} necessary to drag block *B* to the left at constant speed (a) if *A* rests on *B* and moves with it (Fig. P5.73a). (b) If *A* is held at rest (Fig. P5.73b).

Figure **P5.73**

5.74 ••• A window washer pushes his scrub brush up a vertical window at constant speed by applying a force \vec{F} as shown in Fig. P5.74. The brush weighs 15.0 N and the coefficient of kinetic friction is $\mu_k = 0.150$. Calculate (a) the magnitude of the force \vec{F} and (b) the normal force exerted by the window on the brush.

5.75 •• **BIO** The Flying Leap of a Flea. High-speed motion pictures (3500 frames/second) of a jumping $210-\mu g$ flea yielded the data to plot the flea's acceleration as a function of time as

shown in Fig. P5.75. (See "The Flying Leap of the Flea," by M. Rothschild et al. in the November 1973 *Scientific American.*) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Use the measurements shown on the graph to answer the questions. (a) Find the *initial* net external force on the flea. How does it compare to the flea's weight? (b) Find the *maximum* net external force on this jumping flea. When does this maximum force occur? (c) Use the graph to find the flea's maximum speed.

Figure P5.75

5.76 •• **CP** A 25,000-kg rocket blasts off vertically from the earth's surface with a constant acceleration. During the motion considered in the problem, assume that g remains constant (see Chapter 13). Inside the rocket, a 15.0-N instrument hangs from a wire that can support a maximum tension of 45.0 N. (a) Find the minimum time for this rocket to reach the sound barrier (330 m/s) without breaking the inside wire and the maximum vertical thrust of the rocket engines under these conditions. (b) How far is the rocket above the earth's surface when it breaks the sound barrier? **5.77** ••• **CP CALC** You are standing on a bathroom scale in an elevator in a tall building. Your mass is 64 kg. The elevator starts from rest and travels upward with a speed that varies with time according to $v(t) = (3.0 \text{ m/s}^2)t + (0.20 \text{ m/s}^3)t^2$. When t = 4.0 s, what is the reading of the bathroom scale?

5.78 ••• **CP** Elevator Design. You are designing an elevator for a hospital. The force exerted on a passenger by the floor of the elevator is not to exceed 1.60 times the passenger's weight. The elevator accelerates upward with constant acceleration for a distance of 3.0 m and then starts to slow down. What is the maximum speed of the elevator?

5.79 •• **CP** You are working for a shipping company. Your job is to stand at the bottom of a 8.0-m-long ramp that is inclined at 37° above the horizontal. You grab packages off a conveyor belt and propel them up the ramp. The coefficient of kinetic friction between the packages and the ramp is $\mu_k = 0.30$. (a) What speed do you need to give a package at the bottom of the ramp so that it has zero speed at the top of the ramp? (b) Your coworker is supposed to grab the packages as they arrive at the top of the ramp, but she misses one and it slides back down. What is its speed when it returns to you?

5.80 •• A hammer is hanging by a light rope from the ceiling of a bus. The ceiling of the bus is parallel to the roadway. The bus is traveling in a straight line on a horizontal street. You observe that the hammer hangs at rest with respect to the bus when the angle between the rope and the ceiling of the bus is 67°. What is the acceleration of the bus?

5.81 ••• A steel washer is suspended inside an empty shipping crate from a light string attached to the top of the crate. The crate slides down a long ramp that is inclined at an angle of 37° above the horizontal. The crate has mass 180 kg. You are sitting inside the crate

(with a flashlight); your mass is 55 kg. As the crate is sliding down the ramp, you find the washer is at rest with respect to the crate when the string makes an angle of 68° with the top of the crate. What is the coefficient of kinetic friction between the ramp and the crate?

5.82 • **CP** Lunch Time! You are riding your motorcycle one day down a wet street that slopes downward at an angle of 20° below the horizontal. As you start to ride down the hill, you notice a construction crew has dug a deep hole in the street at the bottom of the hill. A Siberian tiger, escaped from the City Zoo, has taken up residence in the hole. You apply the brakes and lock your wheels at the top of the hill, where you are moving with a speed of 20 m/s. The inclined street in front of you is 40 m long. (a) Will you plunge into the hole and become the tiger's lunch, or do you skid to a stop before you reach the hole? (The coefficients of friction between your motorcycle tires and the wet pavement are $\mu_s = 0.90$ and $\mu_k = 0.70$.) (b) What must your initial speed be if you are to stop just before reaching the hole?

5.83 ••• In the system shown in Fig. P5.34, block A has mass m_A , block B has mass m_B , and the rope connecting them has a *nonzero* mass $m_{\rm rope}$. The rope has a total length L, and the pulley has a very small radius. You can ignore any sag in the horizontal part of the rope. (a) If there is no friction between block A and the tabletop, find the acceleration of the blocks at an instant when a length d of rope hangs vertically between the pulley and block B. As block B falls, will the magnitude of the acceleration of the system increase, decrease, or remain constant? Explain. (b) Let $m_A = 2.00 \text{ kg}$, $m_B = 0.400 \text{ kg}, m_{\text{rope}} = 0.160 \text{ kg}, \text{ and } L = 1.00 \text{ m}.$ If there is friction between block A and the tabletop, with $\mu_{\rm k}=0.200$ and $\mu_{\rm s} = 0.250$, find the minimum value of the distance d such that the blocks will start to move if they are initially at rest. (c) Repeat part (b) for the case $m_{\rm rope} = 0.040$ kg. Will the blocks move in this case? 5.84 ••• If the coefficient of static friction between a table and a uniform massive rope is μ_s , what fraction of the rope can hang over the edge of the table without the rope sliding?

5.85 •• A 40.0-kg packing case is initially at rest on the floor of a 1500-kg pickup truck. The coefficient of static friction between the case and the truck floor is 0.30, and the coefficient of kinetic friction is 0.20. Before each acceleration given below, the truck is traveling due north at constant speed. Find the magnitude and direction of the friction force acting on the case (a) when the truck accelerates at 2.20 m/s^2 northward and (b) when it accelerates at 3.40 m/s^2 southward.

5.86 • **CP Traffic Court.** You are called as an expert witness in the trial of a traffic violation. The facts are these: A driver slammed on his brakes and came to a stop with constant acceleration. Measurements of his tires and the skid marks on the pavement indicate

that he locked his car's wheels, the car traveled 192 ft before stopping, and the coefficient of kinetic friction between the road and his tires was 0.750. The charge is that he was speeding in a 45-mi/h zone. He pleads innocent. What is your conclusion, guilty or innocent? How fast was he going when he hit his brakes?

5.87 ••• Two identical 15.0-kg balls, each 25.0 cm in diameter, are suspended by two 35.0-cm wires as shown in Fig. P5.87. The entire apparatus is supported by a single 18.0-cm wire, and the surfaces of the balls are perfectly smooth. (a) Find the tension in each of the three wires. (b) How hard does each ball push on the other one?

5.88 •• **CP** Losing Cargo. A 12.0-kg box rests on the flat floor of a truck. The coefficients of friction between the box and floor are $\mu_s = 0.19$ and $\mu_k = 0.15$. The truck stops at a stop sign and then starts to move with an acceleration of 2.20 m/s². If the box is 1.80 m from the rear of the truck when the truck starts, how much time elapses before the box falls off the truck? How far does the truck travel in this time?

5.89 ... Block *A* in Fig. Figure **P5.89** P5.89 weighs 1.90 N, and block *B* weighs 4.20 N. The coefficient of kinetic friction between all surfaces is 0.30. Find the magnitude of the horizontal force \vec{F} necessary to drag block *B* to the left at constant speed if *A* and *B* are connected by a light,

flexible cord passing around a fixed, frictionless pulley.

5.90 ••• **CP** You are part of a design team for future exploration of the planet Mars, where $g = 3.7 \text{ m/s}^2$. An explorer is to step out of a survey vehicle traveling horizontally at 33 m/s when it is 1200 m above the surface and then fall freely for 20 s. At that time, a portable advanced propulsion system (PAPS) is to exert a constant force that will decrease the explorer's speed to zero at the instant she touches the surface. The total mass (explorer, suit, equipment, and PAPS) is 150 kg. Assume the change in mass of the PAPS to be negligible. Find the horizontal and vertical components of the force the PAPS must exert, and for what interval of time the PAPS must exert it. You can ignore air resistance.

5.91 •• Block *A* in Fig. P5.91 has a mass of 4.00 kg, and block *B* has mass 12.0 kg. The coefficient of kinetic friction between block *B* and the horizontal surface is 0.25. (a) What is the mass of block *C* if block *B* is moving to the right and speeding up with an acceleration of 2.00 m/s^2 ? (b) What is the tension in each cord when block *B* has this acceleration?

Figure **P5.91**

5.92 •• Two blocks connected by a cord passing over a small, frictionless pulley rest on frictionless planes (Fig. P5.92). (a) Which way will the system move when the blocks are released from rest? (b) What is the acceleration of the blocks? (c) What is the tension in the cord?

Figure **P5.92**

5.93 •• In terms of m_1 , Figure **P5.93** m_2 , and g, find the acceleration of each block in Fig. P5.93. There is no friction anywhere in the system.

5.94 ... Block *B*, with mass 5.00 kg, rests on block *A*, with mass 8.00 kg, which in turn is on a horizontal tabletop (Fig. P5.94). There is no

friction between block A and the tabletop, but the coefficient of static friction between block A and block B is 0.750. A light string attached to block A passes over a frictionless, massless pulley, and block C is suspended from the other end of the string. What is the largest mass that block C can have so that blocks A and B still slide together when the system is released from rest?

Figure **P5.94**

5.95 ••• Two objects with masses 5.00 kg and 2.00 kg hang 0.600 m above the floor from the ends of a cord 6.00 m long passing over a frictionless pulley. Both objects start from rest. Find the maximum height reached by the 2.00-kg object.

5.96 •• Friction in an Elevator. You are riding in an elevator on the way to the 18th floor of your dormitory. The elevator is accelerating upward with $a = 1.90 \text{ m/s}^2$. Beside you is the box containing your new computer; the box and its contents have a total mass of 28.0 kg. While the elevator is accelerating upward, you push horizontally on the box to slide it at constant speed toward the elevator door. If the coefficient of kinetic friction between the box and the elevator floor is $\mu_k = 0.32$, what magnitude of force must you apply?

5.97 • A block is placed against the vertical front of a cart as shown in Fig. P5.97. What acceleration must the cart have so that block *A* does not fall? The coefficient of static friction between the block and the cart is μ_{s} . How would an observer on the cart describe the

5.98 ••• Two block? **5.98** ••• Two blocks with masses 4.00 kg and 8.00 kg are connected by a string and slide down a 30.0° inclined plane (Fig. P5.98). The coefficient of kinetic friction between the

4.00-kg block and the plane is 0.25; that between the 8.00-kg block and the plane is 0.35. (a) Calculate the acceleration of each block. (b) Calculate the tension in the string. (c) What happens if the positions of the blocks are reversed, so the 4.00-kg block is above the 8.00-kg block?

5.99 ... Block *A*, with weight *B* Figure **P5.99** Figure **P5.99** *w*, slides down an inclined plane *S* of slope angle 36.9° at a constant speed while plank *B*, with weight *w*, rests on top of *A*. The plank is attached by a cord to the wall (Fig. P5.99). (a) Draw a diagram of all the forces acting on block *A*. (b) If the coefficient of kinetic friction is the same between *A* and *B* and between *S* and *A*, determine its value.

5.100 •• Accelerometer. The system shown in Fig. P5.100 can be used to measure the acceleration of the system. An observer riding on the platform measures the angle θ that the thread supporting the light ball makes with the vertical. There is no friction anywhere. (a) How is θ related to the acceleration of the system? (b) If $m_1 = 250$ kg and $m_2 = 1250$ kg, what is θ ? (c) If you can vary m_1 and m_2 , what is the largest angle θ you could achieve? Explain how you need to adjust m_1 and m_2 to do this.

5.101 ••• **Banked Curve I.** A curve with a 120-m radius on a level road is banked at the correct angle for a speed of 20 m/s. If an automobile rounds this curve at 30 m/s, what is the minimum coefficient of static friction needed between tires and road to prevent skidding?

5.102 •• **Banked Curve II.** Consider a wet roadway banked as in Example 5.22 (Section 5.4), where there is a coefficient of static friction of 0.30 and a coefficient of kinetic friction of 0.25 between the tires and the roadway. The radius of the curve is R = 50 m. (a) If the banking angle is $\beta = 25^{\circ}$, what is the *maximum* speed the automobile can have before sliding *up* the banking? (b) What is the *minimum* speed the automobile can have before sliding *down* the banking?

5.103 ••• Blocks *A*, *B*, and *C* are placed as in Fig. P5.103 and connected by ropes of negligible mass. Both *A* and *B* weigh 25.0 N each, and the coefficient of kinetic friction between each block and the surface is 0.35. Block *C* descends with constant velocity. (a) Draw two separate free-body diagrams showing the forces acting on *A* and on *B*. (b) Find the tension in the rope connecting blocks *A* and *B* were cut, what would be the acceleration of *C*?

Figure **P5.103**

5.104 •• You are riding in a school bus. As the bus rounds a flat curve at constant speed, a lunch box with mass 0.500 kg, suspended from the ceiling of the bus by a string 1.80 m long, is found to hang at rest relative to the bus when the string makes an angle of 30.0° with the vertical. In this position the lunch box is 50.0 m from the center of curvature of the curve. What is the speed v of the bus?

5.105 • The Monkey and Bananas Problem. A 20-kg monkey has a firm hold on a light rope that passes over a frictionless pulley and is attached to a 20-kg bunch of bananas (Fig. P5.105). The monkey looks up, sees the bananas, and starts to climb the rope to get them. (a) As the monkey climbs, do the bananas move up, down, or remain at rest? (b) As the monkey climbs, does the distance between the monkey and the bananas decrease, increase, or remain constant? (c) The monkey releases her hold on the rope. What happens to the distance between the monkey and the bananas while she is falling? (d) Before reaching the

Figure **P5.105**

ground, the monkey grabs the rope to stop her fall. What do the bananas do?

5.106 •• **CALC** You throw a rock downward into water with a speed of 3mg/k, where k is the coefficient in Eq. (5.7). Assume that the relationship between fluid resistance and speed is as given in Eq. (5.7), and calculate the speed of the rock as a function of time. **5.107** •• A rock with mass m = 3.00 kg falls from rest in a viscous medium. The rock is acted on by a net constant downward force of 18.0 N (a combination of gravity and the buoyant force exerted by the medium) and by a fluid resistance force f = kv, where v is the speed in m/s and k = 2.20 N • s/m (see Section 5.3). (a) Find the initial acceleration a_0 . (b) Find the acceleration when the speed is 3.00 m/s. (c) Find the speed when the acceleration equals $0.1a_0$. (d) Find the terminal speed v_t . (e) Find the coordinate, speed, and acceleration 2.00 s after the start of the motion. (f) Find the time required to reach a speed of $0.9v_t$.

5.108 •• **CALC** A rock with mass *m* slides with initial velocity v_0 on a horizontal surface. A retarding force F_R that the surface exerts on the rock is proportional to the square root of the instantaneous velocity of the rock ($F_R = -kv^{1/2}$). (a) Find expressions for the velocity and position of the rock as a function of time. (b) In terms of *m*, *k*, and v_0 , at what time will the rock come to rest? (c) In terms of *m*, *k*, and v_0 , what is the distance of the rock from its starting point when it comes to rest?

5.109 ••• You observe a 1350-kg sports car rolling along flat pavement in a straight line. The only horizontal forces acting on it are a constant rolling friction and air resistance (proportional to the

square of its speed). You take the following data during a time interval of 25 s: When its speed is 32 m/s, the car slows down at a rate of -0.42 m/s^2 , and when its speed is decreased to 24 m/s, it slows down at -0.30 m/s^2 . (a) Find the coefficient of rolling friction and the air drag constant *D*. (b) At what constant speed will this car move down an incline that makes a 2.2° angle with the horizontal? (c) How is the constant speed for an incline of angle β related to the terminal speed of this sports car if the car drops off a high cliff? Assume that in both cases the air resistance force is proportional to the square of the speed, and the air drag constant is the same.

5.110 ••• The 4.00-kg block in Fig. P5.110 is attached to a vertical rod by means of two strings. When the system rotates about the axis of the rod, the strings are extended as shown in the diagram and the tension in the upper string is 80.0 N. (a) What is the tension in the lower cord? (b) How many revolutions per minute does the system make? (c) Find the number of revolutions per minute at which the lower cord just goes slack. (d) Explain what happens if the

number of revolutions per minute is less than in part (c).

5.111 ••• CALC Equation (5.10) applies to the case where the initial velocity is zero. (a) Derive the corresponding equation for $v_y(t)$ when the falling object has an initial downward velocity with magnitude v_0 . (b) For the case where $v_0 < v_t$, sketch a graph of v_y as a function of t and label v_t on your graph. (c) Repeat part (b) for the case where $v_0 > v_t$. (d) Discuss what your result says about $v_y(t)$ when $v_0 = v_t$.

5.112 ••• **CALC** A small rock moves in water, and the force exerted on it by the water is given by Eq. (5.7). The terminal speed of the rock is measured and found to be 2.0 m/s. The rock is projected *upward* at an initial speed of 6.0 m/s. You can ignore the buoyancy force on the rock. (a) In the absence of fluid resistance, how high will the rock rise and how long will it take to reach this maximum height? (b) When the effects of fluid resistance are included, what are the answers to the questions in part (a)?

5.113 •• Merry-Go-Round. One December identical twins Jena and Jackie are playing on a large merry-go-round (a disk mounted parallel to the ground, on a vertical axle through its center) in their school playground in northern Minnesota. Each twin has mass 30.0 kg. The icy coating on the merry-go-round surface makes it frictionless. The merry-go-round revolves at a constant rate as the twins ride on it. Jena, sitting 1.80 m from the center of the merry-go-round, must hold on to one of the metal posts attached to the merry-go-round with a horizontal force of 60.0 N to keep from sliding off. Jackie is sitting at the edge, 3.60 m from the center. (a) With what horizontal force must Jackie hold on to keep from falling off? (b) If Jackie falls off, what will be her horizontal velocity when she becomes airborne?

5.114 •• A 70-kg person rides in a 30-kg cart moving at 12 m/s at the top of a hill that is in the shape of an arc of a circle with a radius of 40 m. (a) What is the apparent weight of the person as the cart passes over the top of the hill? (b) Determine the maximum speed that the cart may travel at the top of the hill without losing contact with the surface. Does your answer depend on the mass of the cart or the mass of the person? Explain.

5.115 •• On the ride "Spindletop" at the amusement park Six Flags Over Texas, people stood against the inner wall of a hollow vertical cylinder with radius 2.5 m. The cylinder started to rotate, and when it reached a constant rotation rate of 0.60 rev/s, the floor on which people were standing dropped about 0.5 m. The people remained pinned against the wall. (a) Draw a force diagram for a person on this ride, after the floor has dropped. (b) What minimum coefficient of static friction is required if the person on the ride is not to slide downward to the new position of the floor? (c) Does your answer in part (b) depend on the mass of the passenger? (*Note:* When the ride is over, the cylinder is slowly brought to rest. As it slows down, people slide down the walls to the floor.)

5.116 •• A passenger with mass 85 kg rides in a Ferris wheel like that in Example 5.23 (Section 5.4). The seats travel in a circle of radius 35 m. The Ferris wheel rotates at constant speed and makes one complete revolution every 25 s. Calculate the magnitude and direction of the net force exerted on the passenger by the seat when she is (a) one-quarter revolution past her lowest point and (b) one-quarter revolution past her highest point.

5.117 • Ulterior Motives. You are driving a classic 1954 Nash Ambassador with a friend who is sitting to your right on the passenger side of the front seat. The Ambassador has flat bench seats. You would like to be closer to your friend and decide to use physics to achieve your romantic goal by making a quick turn. (a) Which way (to the left or to the right) should you turn the car to get your friend to slide closer to you? (b) If the coefficient of static friction between your friend and the car seat is 0.35, and you keep driving at a constant speed of 20 m/s, what is the maximum radius you could make your turn and still have your friend slide your way?

5.118 •• A physics major is working to pay his college tuition by performing in a traveling carnival. He rides a motorcycle inside a hollow, transparent plastic sphere. After gaining sufficient speed, he travels in a vertical circle with a radius of 13.0 m. The physics major has mass 70.0 kg, and his motorcycle has mass 40.0 kg. (a) What minimum speed must he have at the top of the circle if the tires of the motorcycle are not to lose contact with the sphere? (b) At the bottom of the circle, his speed is twice the value calculated in part (a). What is the magnitude of the normal force exerted on the motorcycle by the sphere at this point?

5.119 •• A small bead can slide without friction on a circular hoop that is in a vertical plane and has a radius of 0.100 m. The hoop rotates at a constant rate of 4.00 rev/s about a vertical diameter (Fig. P5.119). (a) Find the angle β at which the bead is in vertical equilibrium. (Of course, it has a radial acceleration toward the axis.) (b) Is it possible for the bead to "ride" at the same elevation as the center of the hoop? (c) What will happen if the hoop rotates at 1.00 rev/s? 5.120 •• A small remote-

controlled car with mass 1.60 kg moves at a constant speed of v = 12.0 m/s in a vertical circle inside a hollow metal cylinder that has a radius of 5.00 m (Fig. P5.120). What is the magnitude of the normal force exerted on the car by the walls of the cylinder at

(a) point A (at the bottom of the vertical circle) and (b) point B (at the top of the vertical circle)?

CHALLENGE PROBLEMS

5.121 ••• CALC Angle for Minimum Force. A box with weight w is pulled at constant speed along a level floor by a force \vec{F} that is at an angle θ above the horizontal. The coefficient of kinetic friction between the floor and box is μ_k . (a) In terms of θ , μ_k , and w, calculate F. (b) For w = 400 N and $\mu_k = 0.25$, calculate F for θ ranging from 0° to 90° in increments of 10°. Graph F versus θ . (c) From the general expression in part (a), calculate the value of θ for which the value of F, required to maintain constant speed, is a minimum. (*Hint:* At a point where a function is minimum, what are the first and second derivatives of the function? Here F is a function of θ .) For the special case of w = 400 N and $\mu_k = 0.25$, evaluate this optimal θ and compare your result to the graph you constructed in part (b).

5.122 ••• Moving Wedge. A wedge with mass M rests on a frictionless, horizontal tabletop. A block with mass m is placed on the wedge (Fig. P5.122a). There is no friction between the block and the wedge. The system is released from rest. (a) Calculate the acceleration of the wedge and the horizontal and vertical components of the acceleration of the block. (b) Do your answers to part (a) reduce to the correct results when M is very large? (c) As seen by a stationary observer, what is the shape of the trajectory of the block?

Figure **P5.122**

5.123 ••• A wedge with mass *M* rests on a frictionless horizontal tabletop. A block with mass *m* is placed on the wedge and a horizontal force \vec{F} is applied to the wedge (Fig. P5.122b). What must the magnitude of \vec{F} be if the block is to remain at a constant height above the tabletop?

5.124 ••• **CALC** Falling Baseball. You drop a baseball from the roof of a tall building. As the ball falls, the air exerts a drag force proportional to the square of the ball's speed $(f = Dv^2)$. (a) In a diagram, show the direction of motion and indicate, with the aid of vectors, all the forces acting on the ball. (b) Apply Newton's second law and infer from the resulting equation the general properties of the motion. (c) Show that the ball acquires a terminal speed

that is as given in Eq. (5.13). (d) Derive the equation for the speed at any time. (*Note:*

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{a} \operatorname{arctanh}\left(\frac{x}{a}\right)$$

$$anh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x}}{e^{2x}}$$

defines the hyperbolic tangent.) **5.125** ••• Double Atwood's Machine. In Fig. P5.125 masses m_1 and m_2 are connected by a light string A over a light, frictionless pulley B. The axle of pulley B is connected by a second light string C over a second light, frictionless pulley D to a mass m_3 . Pulley D is suspended from the ceiling by an attachment to its axle. The system is released from rest. In terms of m_1, m_2, m_3 , and g, what are (a) the acceleration of block m_3 ; (b) the acceleration of pulley B; (c) the acceleration of

ta

where

block m_1 ; (d) the acceleration of block m_2 ; (e) the tension in string A; (f) the tension in string C? (g) What do your expressions give for the special case of $m_1 = m_2$ and $m_3 = m_1 + m_2$? Is this sensible?

5.126 ••• The masses of blocks *A* and *B* in Fig. P5.126 Figure **P5.126** are 20.0 kg and 10.0 kg, respectively. The blocks are initially at rest on the floor and are connected by a massless string passing over a massless and frictionless pulley. An upward force \vec{F} is applied to the pulley. Find the accelerations \vec{a}_A of block *A* and \vec{a}_B of block *B* when *F* is (a) 124 N; (b) 294 N; (c) 424 N.

5.127 ••• A ball is held at rest at position A in Fig. P5.127 by two light strings. The hori-

zontal string is cut and the ball starts swinging as a pendulum. Point B is the farthest to the right the ball goes as it swings back and forth. What is the ratio of the tension in the supporting string at position B to its value at A before the horizontal string was cut?

Figure **P5.127**

Answers

Chapter Opening Question 了

Neither; the upward force of the air has the *same* magnitude as the force of gravity. Although the skydiver and parachute are descending, their vertical velocity is constant and so their vertical acceleration is zero. Hence the net vertical force on the skydiver and parachute must also be zero, and the individual vertical forces must balance.

Test Your Understanding Questions

5.1 Answer: (ii) The two cables are arranged symmetrically, so the tension in either cable has the same magnitude *T*. The vertical component of the tension from each cable is $T\sin 45^\circ$ (or, equivalently, $T\cos 45^\circ$), so Newton's first law applied to the vertical forces tells us that $2T\sin 45^\circ - w = 0$. Hence $T = w/(2\sin 45^\circ) = w/\sqrt{2} = 0.71w$. Each cable supports half of the weight of the traffic light, but the tension is greater than w/2 because only the vertical component of the tension counteracts the weight.

5.2 Answer: (ii) No matter what the instantaneous velocity of the glider, its acceleration is constant and has the value found in Example 5.12. In the same way, the acceleration of a body in free fall is the same whether it is ascending, descending, or at the high point of its motion (see Section 2.5).

5.3 Answers to (a): (i), (iii); answers to (b): (ii), (iv); answer to (c): (v) In situations (i) and (iii) the box is not accelerating (so the net force on it must be zero) and there is no other force acting parallel to the horizontal surface; hence no friction force is needed to prevent sliding. In situations (ii) and (iv) the box would start to slide over the surface if no friction were present, so a static friction force must act to prevent this. In situation (v) the box is sliding over a rough surface, so a kinetic friction force acts on it.

5.4 Answer: (iii) A satellite of mass *m* orbiting the earth at speed *v* in an orbit of radius *r* has an acceleration of magnitude v^2/r , so the net force acting on it from the earth's gravity has magnitude $F = mv^2/r$. The farther the satellite is from earth, the greater the value of *r*, the smaller the value of *v*, and hence the smaller the values of v^2/r and of *F*. In other words, the earth's gravitational force decreases with increasing distance.

Bridging Problem

Answers: (a)
$$T_{\text{max}} = 2\pi \sqrt{\frac{h(\cos\beta + \mu_{s}\sin\beta)}{g\tan\beta(\sin\beta - \mu_{s}\cos\beta)}}$$

(b) $T_{\text{min}} = 2\pi \sqrt{\frac{h(\cos\beta - \mu_{s}\sin\beta)}{g\tan\beta(\sin\beta + \mu_{s}\cos\beta)}}$

WORK AND KINETIC ENERGY

LEARNING GOALS

By studying this chapter, you will learn:

- What it means for a force to do work on a body, and how to calculate the amount of work done.
- The definition of the kinetic energy (energy of motion) of a body, and what it means physically.
- How the total work done on a body changes the body's kinetic energy, and how to use this principle to solve problems in mechanics.
- How to use the relationship between total work and change in kinetic energy when the forces are not constant, the body follows a curved path, or both.
- How to solve problems involving power (the rate of doing work).

After finding a piece of breakfast cereal on the floor, this ant picked it up and carried it away. As the ant was lifting the piece of cereal, did the *cereal* do work on the *ant*?

Suppose you try to find the speed of an arrow that has been shot from a bow. You apply Newton's laws and all the problem-solving techniques that we've learned, but you run across a major stumbling block: After the archer releases the arrow, the bow string exerts a *varying* force that depends on the arrow's position. As a result, the simple methods that we've learned aren't enough to calculate the speed. Never fear; we aren't by any means finished with mechanics, and there are other methods for dealing with such problems.

The new method that we're about to introduce uses the ideas of *work* and *energy*. The importance of the energy idea stems from the *principle of conservation of energy*: Energy is a quantity that can be converted from one form to another but cannot be created or destroyed. In an automobile engine, chemical energy stored in the fuel is converted partially to the energy of the automobile's motion and partially to thermal energy. In a microwave oven, electromagnetic energy obtained from your power company is converted to thermal energy of the food being cooked. In these and all other processes, the *total* energy—the sum of all energy present in all different forms—remains the same. No exception has ever been found.

We'll use the energy idea throughout the rest of this book to study a tremendous range of physical phenomena. This idea will help you understand why a sweater keeps you warm, how a camera's flash unit can produce a short burst of light, and the meaning of Einstein's famous equation $E = mc^2$.

In this chapter, though, our concentration will be on mechanics. We'll learn about one important form of energy called *kinetic energy*, or energy of motion, and how it relates to the concept of *work*. We'll also consider *power*, which is the time rate of doing work. In Chapter 7 we'll expand the ideas of work and kinetic energy into a deeper understanding of the concepts of energy and the conservation of energy.

6.1 Work

You'd probably agree that it's hard work to pull a heavy sofa across the room, to lift a stack of encyclopedias from the floor to a high shelf, or to push a stalled car off the road. Indeed, all of these examples agree with the everyday meaning of *work*—any activity that requires muscular or mental effort.

In physics, work has a much more precise definition. By making use of this definition we'll find that in any motion, no matter how complicated, the total work done on a particle by all forces that act on it equals the change in its *kinetic energy*—a quantity that's related to the particle's speed. This relationship holds even when the forces acting on the particle aren't constant, a situation that can be difficult or impossible to handle with the techniques you learned in Chapters 4 and 5. The ideas of work and kinetic energy enable us to solve problems in mechanics that we could not have attempted before.

In this section we'll see how work is defined and how to calculate work in a variety of situations involving *constant* forces. Even though we already know how to solve problems in which the forces are constant, the idea of work is still useful in such problems. Later in this chapter we'll relate work and kinetic energy, and then apply these ideas to problems in which the forces are *not* constant.

The three examples of work described above—pulling a sofa, lifting encyclopedias, and pushing a car—have something in common. In each case you do work by exerting a *force* on a body while that body *moves* from one place to another—that is, undergoes a *displacement* (Fig. 6.1). You do more work if the force is greater (you push harder on the car) or if the displacement is greater (you push the car farther down the road).

The physicist's definition of work is based on these observations. Consider a body that undergoes a displacement of magnitude *s* along a straight line. (For now, we'll assume that any body we discuss can be treated as a particle so that we can ignore any rotation or changes in shape of the body.) While the body moves, a constant force \vec{F} acts on it in the same direction as the displacement \vec{s} (Fig. 6.2). We define the **work** *W* done by this constant force under these circumstances as the product of the force magnitude *F* and the displacement magnitude *s*:

W = Fs (constant force in direction of straight-line displacement) (6.1)

The work done on the body is greater if either the force F or the displacement s is greater, in agreement with our observations above.

CAUTION Work = W, weight = w Don't confuse uppercase W (work) with lowercase w (weight). Though the symbols are similar, work and weight are different quantities.

The SI unit of work is the **joule** (abbreviated J, pronounced "jool," and named in honor of the 19th-century English physicist James Prescott Joule). From Eq. (6.1) we see that in any system of units, the unit of work is the unit of force multiplied by the unit of distance. In SI units the unit of force is the newton and the unit of distance is the meter, so 1 joule is equivalent to 1 *newton-meter* $(N \cdot m)$:

1 joule = (1 newton)(1 meter) or $1 \text{ J} = 1 \text{ N} \cdot \text{m}$

In the British system the unit of force is the pound (lb), the unit of distance is the foot (ft), and the unit of work is the *foot-pound* (ft \cdot lb). The following conversions are useful:

 $1 J = 0.7376 \text{ ft} \cdot \text{lb}$ $1 \text{ ft} \cdot \text{lb} = 1.356 \text{ J}$

As an illustration of Eq. (6.1), think of a person pushing a stalled car. If he pushes the car through a displacement \vec{s} with a constant force \vec{F} in the direction

6.1 These people are doing work as they push on the stalled car because they exert a force on the car as it moves.

6.2 The work done by a constant force acting in the same direction as the displacement.

Application Work and Muscle Fibers

Our ability to do work with our bodies comes from our skeletal muscles. The fiberlike cells of skeletal muscle, shown in this micrograph, have the ability to shorten, causing the muscle as a whole to contract and to exert force on the tendons to which it attaches. Muscle can exert a force of about 0.3 N per square millimeter of cross-sectional area: The greater the cross-sectional area, the more fibers the muscle has and the more force it can exert when it contracts.

6.3 The work done by a constant force acting at an angle to the displacement.

of motion, the amount of work he does on the car is given by Eq. (6.1): W = Fs. But what if the person pushes at an angle ϕ to the car's displacement (Fig. 6.3)? Then \vec{F} has a component $F_{\parallel} = F \cos \phi$ in the direction of the displacement and a component $F_{\perp} = F \sin \phi$ that acts perpendicular to the displacement. (Other forces must act on the car so that it moves along \vec{s} , not in the direction of \vec{F} . We're interested only in the work that the person does, however, so we'll consider only the force he exerts.) In this case only the parallel component F_{\parallel} is effective in moving the car, so we define the work as the product of this force component and the magnitude of the displacement. Hence $W = F_{\parallel}s =$ $(F \cos \phi)s$, or

 $W = Fs \cos \phi$ (constant force, straight-line displacement) (6.2)

We are assuming that F and ϕ are constant during the displacement. If $\phi = 0$, so that \vec{F} and \vec{s} are in the same direction, then $\cos \phi = 1$ and we are back to Eq. (6.1).

Equation (6.2) has the form of the *scalar product* of two vectors, which we introduced in Section 1.10: $\vec{A} \cdot \vec{B} = AB \cos \phi$. You may want to review that definition. Hence we can write Eq. (6.2) more compactly as

 $W = \vec{F} \cdot \vec{s}$ (constant force, straight-line displacement) (6.3)

CAUTION Work is a scalar Here's an essential point: Work is a *scalar* quantity, even though it's calculated by using two vector quantities (force and displacement). A 5-N force toward the east acting on a body that moves 6 m to the east does exactly the same amount of work as a 5-N force toward the north acting on a body that moves 6 m to the north.

Example 6.1 Work done by a constant force

(a) Steve exerts a steady force of magnitude 210 N (about 47 lb) on the stalled car in Fig. 6.3 as he pushes it a distance of 18 m. The car also has a flat tire, so to make the car track straight Steve must push at an angle of 30° to the direction of motion. How much work does Steve do? (b) In a helpful mood, Steve pushes a second stalled car with a steady force $\vec{F} = (160 \text{ N})\hat{i} - (40 \text{ N})\hat{j}$. The displacement of the car is $\vec{s} = (14 \text{ m})\hat{i} + (11 \text{ m})\hat{j}$. How much work does Steve do in this case?

SOLUTION

IDENTIFY and SET UP: In both parts (a) and (b), the target variable is the work *W* done by Steve. In each case the force is constant and the displacement is along a straight line, so we can use Eq. (6.2) or (6.3). The angle between \vec{F} and \vec{s} is given in part (a), so we can apply Eq. (6.2) directly. In part (b) both \vec{F} and \vec{s} are given in terms

of components, so it's best to calculate the scalar product using Eq. (1.21): $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$.

EXECUTE: (a) From Eq. (6.2),

 $W = Fs \cos \phi = (210 \text{ N})(18 \text{ m})\cos 30^\circ = 3.3 \times 10^3 \text{ J}$

(b) The components of \vec{F} are $F_x = 160$ N and $F_y = -40$ N, and the components of \vec{s} are x = 14 m and y = 11 m. (There are no z-components for either vector.) Hence, using Eqs. (1.21) and (6.3), we have

$$W = \vec{F} \cdot \vec{s} = F_{xx} + F_{yy}$$

= (160 N)(14 m) + (-40 N)(11 m)
= 1.8 × 10³ J

EVALUATE: In each case the work that Steve does is more than 1000 J. This shows that 1 joule is a rather small amount of work.

Work: Positive, Negative, or Zero

In Example 6.1 the work done in pushing the cars was positive. But it's important to understand that work can also be negative or zero. This is the essential way in which work as defined in physics differs from the "everyday" definition of work. When the force has a component in the *same direction* as the displacement (ϕ between zero and 90°), $\cos \phi$ in Eq. (6.2) is positive and the work *W* is *positive* (Fig. 6.4a). When the force has a component *opposite* to the displacement (ϕ between 90° and 180°), $\cos \phi$ is negative and the work is *negative* (Fig. 6.4b). When the force is *perpendicular* to the displacement, $\phi = 90^\circ$ and the work done by the force is *zero* (Fig. 6.4c). The cases of zero work and negative work bear closer examination, so let's look at some examples.

There are many situations in which forces act but do zero work. You might think it's "hard work" to hold a barbell motionless in the air for 5 minutes (Fig. 6.5). But in fact, you aren't doing any work at all on the barbell because there is no displacement. You get tired because the components of muscle fibers in your arm do work as they continually contract and relax. This is work done by one part of the arm exerting force on another part, however, *not* on the barbell. (We'll say more in Section 6.2 about work done by one part of a body on another part.) Even when you walk with constant velocity on a level floor while carrying a book, you still do no work on it. The book has a displacement, but the (vertical) supporting force that you exert on the book has no component in the direction of the (horizontal) motion. Then $\phi = 90^{\circ}$ in Eq. (6.2), and $\cos \phi = 0$. When a body slides along a surface, the work done on the body by the normal force is zero; and when a ball on a string moves in uniform circular motion, the work done on the ball by the tension in the string is also zero. In both cases the work is zero because the force has no component in the direction of motion.

What does it really mean to do *negative* work? The answer comes from Newton's third law of motion. When a weightlifter lowers a barbell as in Fig. 6.6a, his hands and the barbell move together with the same displacement \vec{s} . The barbell exerts a force $\vec{F}_{\text{barbell on hands}}$ on his hands in the same direction as the hands' displacement, so the work done by the *barbell* on his *hands* is positive (Fig. 6.6b). But by Newton's third law the weightlifter's hands exert an equal and opposite force $\vec{F}_{\text{hands on barbell}} = -\vec{F}_{\text{barbell on hands}}$ on the barbell (Fig. 6.6c). This force, which keeps the barbell from crashing to the floor, acts opposite to the barbell's displacement. Thus the work done by his *hands* on the *barbell* is negative. **6.5** A weightlifter does no work on a barbell as long as he holds it stationary.

6.6 This weightlifter's hands do negative work on a barbell as the barbell does positive work on his hands.

(a) A weightlifter lowers a barbell to the floor.

I

(b) The barbell does *positive* work on the

Because the weightlifter's hands and the barbell have the same displacement, the work that his hands do on the barbell is just the negative of the work that the barbell does on his hands. In general, when one body does negative work on a second body, the second body does an equal amount of *positive* work on the first body.

CAUTION Keep track of who's doing the work We always speak of work done *on* a particular body *by* a specific force. Always be sure to specify exactly what force is doing the work you are talking about. When you lift a book, you exert an upward force on the book and the book's displacement is upward, so the work done by the lifting force on the book is positive. But the work done by the *gravitational* force (weight) on a book being lifted is *negative* because the downward gravitational force is opposite to the upward displacement.

Total Work

How do we calculate work when *several* forces act on a body? One way is to use Eq. (6.2) or (6.3) to compute the work done by each separate force. Then, because work is a scalar quantity, the *total* work W_{tot} done on the body by all the forces is the algebraic sum of the quantities of work done by the individual forces. An alternative way to find the total work W_{tot} is to compute the vector sum of the forces (that is, the net force) and then use this vector sum as \vec{F} in Eq. (6.2) or (6.3). The following example illustrates both of these techniques.

Example 6.2 Work done by several forces

A farmer hitches her tractor to a sled loaded with firewood and pulls it a distance of 20 m along level ground (Fig. 6.7a). The total weight of sled and load is 14,700 N. The tractor exerts a constant 5000-N force at an angle of 36.9° above the horizontal. A 3500-N friction force opposes the sled's motion. Find the work done by each force acting on the sled and the total work done by all the forces.

SOLUTION

IDENTIFY AND SET UP: Each force is constant and the sled's displacement is along a straight line, so we can calculate the work using the ideas of this section. We'll find the total work in two ways: (1) by adding the work done on the sled by each force and (2) by finding the work done by the net force on the sled. We first draw a free-body diagram showing all of the forces acting on the sled, and we choose a coordinate system (Fig. 6.7b). For each force—weight, normal force, force of the tractor, and friction force—we know the angle between the displacement (in the positive *x*-direction) and the force. Hence we can use Eq. (6.2) to calculate the work each force does.

As in Chapter 5, we'll find the net force by adding the components of the four forces. Newton's second law tells us that because the sled's motion is purely horizontal, the net force can have only a horizontal component.

EXECUTE: (1) The work W_w done by the weight is zero because its direction is perpendicular to the displacement (compare Fig. 6.4c). For the same reason, the work W_n done by the normal force is also zero. (Note that we don't need to calculate the magnitude *n* to conclude this.) So $W_w = W_n = 0$.

That leaves the work W_T done by the force F_T exerted by the tractor and the work W_f done by the friction force f. From Eq. (6.2),

$$W_{\rm T} = F_{\rm T} s \cos \phi = (5000 \text{ N})(20 \text{ m})(0.800) = 80,000 \text{ N} \cdot \text{m}$$

= 80 kJ

The friction force \vec{f} is opposite to the displacement, so for this force $\phi = 180^{\circ}$ and $\cos \phi = -1$. Again from Eq. (6.2),

$$W_f = fs \cos 180^\circ = (3500 \text{ N})(20 \text{ m})(-1) = -70,000 \text{ N} \cdot \text{m}$$

= -70 kJ

6.7 Calculating the work done on a sled of firewood being pulled by a tractor.

(a)

(b) Free-body diagram for sled

(2) In the second approach, we first find the *vector* sum of all the forces (the net force) and then use it to compute the total work. The vector sum is best found by using components. From Fig. 6.7b,

$$\sum F_x = F_T \cos \phi + (-f) = (5000 \text{ N}) \cos 36.9^\circ - 3500 \text{ N}$$

= 500 N
$$\sum F_y = F_T \sin \phi + n + (-w)$$

= (5000 N) \sin 36.9^\circ + n - 14,700 N

We don't need the second equation; we know that the *y*-component of force is perpendicular to the displacement, so it does no work. Besides, there is no *y*-component of acceleration, so $\sum F_y$ must be zero anyway. The total work is therefore the work done by the total *x*-component:

$$W_{\text{tot}} = (\sum \vec{F}) \cdot \vec{s} = (\sum F_x)s = (500 \text{ N})(20 \text{ m}) = 10,000 \text{ J}$$

= 10 kJ

The total work W_{tot} done on the sled by all forces is the *algebraic* sum of the work done by the individual forces:

$$W_{\text{tot}} = W_w + W_n + W_{\text{T}} + W_f = 0 + 0 + 80 \text{ kJ} + (-70 \text{ kJ})$$

= 10 kJ

EVALUATE: We get the same result for W_{tot} with either method, as we should. Note also that the net force in the *x*-direction is *not* zero, and so the sled must accelerate as it moves. In Section 6.2 we'll return to this example and see how to use the concept of work to explore the sled's changes of speed.

Test Your Understanding of Section 6.1 An electron moves in a straight line toward the east with a constant speed of 8×10^7 m/s. It has electric, magnetic, and gravitational forces acting on it. During a 1-m displacement, the total work done on the electron is (i) positive; (ii) negative; (iii) zero; (iv) not enough information given to decide.

6.2 Kinetic Energy and the Work–Energy Theorem

The total work done on a body by external forces is related to the body's displacement—that is, to changes in its position. But the total work is also related to changes in the *speed* of the body. To see this, consider Fig. 6.8, which shows three examples of a block sliding on a frictionless table. The forces acting on the block are its weight \vec{w} , the normal force \vec{n} , and the force \vec{F} exerted on it by the hand.

In Fig. 6.8a the net force on the block is in the direction of its motion. From Newton's second law, this means that the block speeds up; from Eq. (6.1), this also means that the total work W_{tot} done on the block is positive. The total work is *negative* in Fig. 6.8b because the net force opposes the displacement; in this case the block slows down. The net force is zero in Fig. 6.8c, so the speed of the block stays the same and the total work done on the block is zero. We can conclude that when a particle undergoes a displacement, it speeds up if $W_{\text{tot}} > 0$, slows down if $W_{\text{tot}} < 0$, and maintains the same speed if $W_{\text{tot}} = 0$.

Let's make these observations more quantitative. Consider a particle with mass *m* moving along the *x*-axis under the action of a constant net force with magnitude *F* directed along the positive *x*-axis (Fig. 6.9). The particle's acceleration is constant and given by Newton's second law, $F = ma_x$. Suppose the speed changes from v_1 to v_2 while the particle undergoes a displacement $s = x_2 - x_1$

Masteringphysics Phet: The Ramp

6.9 A constant net force \vec{F} does work on a moving body.

When we multiply this equation by m and equate ma_x to the net force F, we find

from point x_1 to x_2 . Using a constant-acceleration equation, Eq. (2.13), and

 $v_2^2 = v_1^2 + 2a_x s$

 $a_x = \frac{v_2^2 - v_1^2}{2z}$

replacing v_{0x} by v_1 , v_x by v_2 , and $(x - x_0)$ by s, we have

$$F = ma_x = m\frac{v_2^2 - v_1^2}{2s} \quad \text{and}$$

$$Fs = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 \quad (6.4)$$

The product Fs is the work done by the net force F and thus is equal to the total work W_{tot} done by all the forces acting on the particle. The quantity $\frac{1}{2}mv^2$ is called the **kinetic energy** K of the particle:

$$K = \frac{1}{2}mv^2$$
 (definition of kinetic energy) (6.5)

Like work, the kinetic energy of a particle is a scalar quantity; it depends on only the particle's mass and speed, not its direction of motion (Fig. 6.10). A car (viewed as a particle) has the same kinetic energy when going north at 10 m/s as when going east at 10 m/s. Kinetic energy can never be negative, and it is zero only when the particle is at rest.

We can now interpret Eq. (6.4) in terms of work and kinetic energy. The first term on the right side of Eq. (6.4) is $K_2 = \frac{1}{2}mv_2^2$, the final kinetic energy of the particle (that is, after the displacement). The second term is the initial kinetic energy, $K_1 = \frac{1}{2}mv_1^2$, and the difference between these terms is the *change* in kinetic energy. So Eq. (6.4) says:

The work done by the net force on a particle equals the change in the particle's kinetic energy:

$$W_{\text{tot}} = K_2 - K_1 = \Delta K$$
 (work–energy theorem) (6.6)

Same mass, twice the speed: four times the kinetic energy

2**v**

2m

Twice the mass, same speed:

twice the kinetic energy

$$W_{\text{tot}} = K_2 - K_1 = \Delta K$$
 (work–energy theorem) (6.6)

This result is the work-energy theorem.

6.10 Comparing the kinetic energy $K = \frac{1}{2}mv^2$ of different bodies.

Same mass, same speed, different directions of motion: same kinetic energy

The work-energy theorem agrees with our observations about the block in Fig. 6.8. When W_{tot} is *positive*, the kinetic energy *increases* (the final kinetic energy K_2 is greater than the initial kinetic energy K_1) and the particle is going faster at the end of the displacement than at the beginning. When W_{tot} is *negative*, the kinetic energy *decreases* (K_2 is less than K_1) and the speed is less after the displacement. When $W_{\text{tot}} = 0$, the kinetic energy stays the same ($K_1 = K_2$) and the speed is unchanged. Note that the work-energy theorem by itself tells us only about changes in *speed*, not velocity, since the kinetic energy doesn't depend on the direction of motion.

From Eq. (6.4) or Eq. (6.6), kinetic energy and work must have the same units. Hence the joule is the SI unit of both work and kinetic energy (and, as we will see later, of all kinds of energy). To verify this, note that in SI units the quantity $K = \frac{1}{2}mv^2$ has units kg \cdot (m/s)² or kg \cdot m²/s²; we recall that 1 N = 1 kg \cdot m/s², so

$$1 \text{ J} = 1 \text{ N} \cdot \text{m} = 1 (\text{kg} \cdot \text{m/s}^2) \cdot \text{m} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$$

In the British system the unit of kinetic energy and of work is

$$1 \text{ ft} \cdot \text{lb} = 1 \text{ ft} \cdot \text{slug} \cdot \text{ft/s}^2 = 1 \text{ slug} \cdot \text{ft}^2/\text{s}^2$$

Because we used Newton's laws in deriving the work–energy theorem, we can use this theorem only in an inertial frame of reference. Note also that the work–energy theorem is valid in *any* inertial frame, but the values of W_{tot} and $K_2 - K_1$ may differ from one inertial frame to another (because the displacement and speed of a body may be different in different frames).

We've derived the work–energy theorem for the special case of straightline motion with constant forces, and in the following examples we'll apply it to this special case only. We'll find in the next section that the theorem is valid in general, even when the forces are not constant and the particle's trajectory is curved.

Problem-Solving Strategy 6.1 Work and Kinetic Energy

IDENTIFY the relevant concepts: The work–energy theorem, $W_{\text{tot}} = K_2 - K_1$, is extremely useful when you want to relate a body's speed v_1 at one point in its motion to its speed v_2 at a different point. (It's less useful for problems that involve the *time* it takes a body to go from point 1 to point 2 because the work–energy theorem doesn't involve time at all. For such problems it's usually best to use the relationships among time, position, velocity, and acceleration described in Chapters 2 and 3.)

SET UP *the problem* using the following steps:

- 1. Identify the initial and final positions of the body, and draw a free-body diagram showing all the forces that act on the body.
- Choose a coordinate system. (If the motion is along a straight line, it's usually easiest to have both the initial and final positions lie along one of the axes.)
- 3. List the unknown and known quantities, and decide which unknowns are your target variables. The target variable may be the body's initial or final speed, the magnitude of one of the forces acting on the body, or the body's displacement.

EXECUTE *the solution:* Calculate the work W done by each force. If the force is constant and the displacement is a straight line, you can use Eq. (6.2) or Eq. (6.3). (Later in this chapter we'll see how to handle varying forces and curved trajectories.) Be sure to check signs; W must be positive if the force has a component in the

direction of the displacement, negative if the force has a component opposite to the displacement, and zero if the force and displacement are perpendicular.

Add the amounts of work done by each force to find the total work W_{tot} . Sometimes it's easier to calculate the vector sum of the forces (the net force) and then find the work done by the net force; this value is also equal to W_{tot} .

Write expressions for the initial and final kinetic energies, K_1 and K_2 . Note that kinetic energy involves *mass*, not *weight*; if you are given the body's weight, use w = mg to find the mass.

Finally, use Eq. (6.6), $W_{\text{tot}} = K_2 - K_1$, and Eq. (6.5), $K = \frac{1}{2}mv^2$, to solve for the target variable. Remember that the right-hand side of Eq. (6.6) represents the change of the body's kinetic energy between points 1 and 2; that is, it is the *final* kinetic energy minus the *initial* kinetic energy, never the other way around. (If you can predict the sign of W_{tot} , you can predict whether the body speeds up or slows down.)

EVALUATE your answer: Check whether your answer makes sense. Remember that kinetic energy $K = \frac{1}{2}mv^2$ can never be negative. If you come up with a negative value of K, perhaps you interchanged the initial and final kinetic energies in $W_{\text{tot}} = K_2 - K_1$ or made a sign error in one of the work calculations.

Example 6.3 Using work and energy to calculate speed

Let's look again at the sled in Fig. 6.7 and our results from Example 6.2. Suppose the sled's initial speed v_1 is 2.0 m/s. What is the speed of the sled after it moves 20 m?

SOLUTION

IDENTIFY and SET UP: We'll use the work-energy theorem, Eq. (6.6), $W_{\text{tot}} = K_2 - K_1$, since we are given the initial speed $v_1 = 2.0$ m/s and want to find the final speed v_2 . Figure 6.11 shows our sketch of the situation. The motion is in the positive *x*-direction. In Example 6.2 we calculated the total work done by all the forces: $W_{\text{tot}} = 10$ kJ. Hence the kinetic energy of the sled and its load must increase by 10 kJ, and the speed of the sled must also increase.

EXECUTE: To write expressions for the initial and final kinetic energies, we need the mass of the sled and load. The combined *weight* is 14,700 N, so the mass is

$$m = \frac{w}{g} = \frac{14,700 \text{ N}}{9.8 \text{ m/s}^2} = 1500 \text{ kg}$$

Then the initial kinetic energy K_1 is

$$K_1 = \frac{1}{2} m v_1^2 = \frac{1}{2} (1500 \text{ kg}) (2.0 \text{ m/s})^2 = 3000 \text{ kg} \cdot \text{m}^2/\text{s}^2$$

= 3000 J

6.11 Our sketch for this problem.

Example 6.4 Forces on a hammerhead

The 200-kg steel hammerhead of a pile driver is lifted 3.00 m above the top of a vertical I-beam being driven into the ground (Fig. 6.12a). The hammerhead is then dropped, driving the I-beam 7.4 cm deeper into the ground. The vertical guide rails exert a constant 60-N friction force on the hammerhead. Use the work–energy theorem to find (a) the speed of the hammerhead just as it hits the I-beam and (b) the average force the hammerhead exerts on the I-beam. Ignore the effects of the air.

SOLUTION

IDENTIFY: We'll use the work–energy theorem to relate the hammerhead's speed at different locations and the forces acting on it. There are *three* locations of interest: point 1, where the hammerhead starts from rest; point 2, where it first contacts the I-beam; and point 3, where the hammerhead and I-beam come to a halt (Fig. 6.12a). The two target variables are the hammerhead's speed at point 2 and the average force the hammerhead exerts between points 2 and 3. Hence we'll apply the work–energy theorem

The final kinetic energy K_2 is

$$K_2 = \frac{1}{2}mv_2^2 = \frac{1}{2}(1500 \text{ kg})v_2^2$$

The work-energy theorem, Eq. (6.6), gives

$$K_2 = K_1 + W_{\text{tot}} = 3000 \text{ J} + 10,000 \text{ J} = 13,000 \text{ J}$$

Setting these two expressions for K_2 equal, substituting 1 J = 1 kg \cdot m²/s², and solving for the final speed v_2 , we find

$$v_2 = 4.2 \text{ m/s}$$

EVALUATE: The total work is positive, so the kinetic energy increases $(K_2 > K_1)$ and the speed increases $(v_2 > v_1)$.

This problem can also be solved without the work–energy theorem. We can find the acceleration from $\sum \vec{F} = m\vec{a}$ and then use the equations of motion for constant acceleration to find v_2 . Since the acceleration is along the *x*-axis,

$$a = a_x = \frac{\sum F_x}{m} = \frac{500 \text{ N}}{1500 \text{ kg}} = 0.333 \text{ m/s}^2$$

Then, using Eq. (2.13),

$$v_2^2 = v_1^2 + 2as = (2.0 \text{ m/s})^2 + 2(0.333 \text{ m/s}^2)(20 \text{ m})$$

= 17.3 m²/s²
 $v_2 = 4.2 \text{ m/s}$

This is the same result we obtained with the work–energy approach, but there we avoided the intermediate step of finding the acceleration. You will find several other examples in this chapter and the next that *can* be done without using energy considerations but that are easier when energy methods are used. When a problem can be done by two methods, doing it by both methods (as we did here) is a good way to check your work.

twice: once for the motion from 1 to 2, and once for the motion from 2 to 3.

SET UP: Figure 6.12b shows the vertical forces on the hammerhead as it falls from point 1 to point 2. (We can ignore any horizontal forces that may be present because they do no work as the hammerhead moves vertically.) For this part of the motion, our target variable is the hammerhead's final speed v_2 .

Figure 6.12c shows the vertical forces on the hammerhead during the motion from point 2 to point 3. In addition to the forces shown in Fig. 6.12b, the I-beam exerts an upward normal force of magnitude n on the hammerhead. This force actually varies as the hammerhead comes to a halt, but for simplicity we'll treat n as a constant. Hence n represents the *average* value of this upward force during the motion. Our target variable for this part of the motion is the force that the *hammerhead* exerts on the I-beam; it is the reaction force to the normal force exerted by the I-beam, so by Newton's third law its magnitude is also n. **EXECUTE:** (a) From point 1 to point 2, the vertical forces are the downward weight $w = mg = (200 \text{ kg})(9.8 \text{ m/s}^2) = 1960 \text{ N}$ and the upward friction force f = 60 N. Thus the net downward force is w - f = 1900 N. The displacement of the hammerhead from point 1 to point 2 is downward and equal to $s_{12} = 3.00 \text{ m}$. The total work done on the hammerhead between point 1 and point 2 is then

$$W_{\text{tot}} = (w - f)s_{12} = (1900 \text{ N})(3.00 \text{ m}) = 5700 \text{ J}$$

At point 1 the hammerhead is at rest, so its initial kinetic energy K_1 is zero. Hence the kinetic energy K_2 at point 2 equals the total work done on the hammerhead between points 1 and 2:

$$W_{\text{tot}} = K_2 - K_1 = K_2 - 0 = \frac{1}{2}mv_2^2 - 0$$
$$v_2 = \sqrt{\frac{2W_{\text{tot}}}{m}} = \sqrt{\frac{2(5700 \text{ J})}{200 \text{ kg}}} = 7.55 \text{ m/s}$$

This is the hammerhead's speed at point 2, just as it hits the I-beam.

(b) As the hammerhead moves downward from point 2 to point 3, its displacement is $s_{23} = 7.4$ cm = 0.074 m and the net downward force acting on it is w - f - n (Fig. 6.12c). The total work done on the hammerhead during this displacement is

$$W_{\rm tot} = (w - f - n)s_{23}$$

The initial kinetic energy for this part of the motion is K_2 , which from part (a) equals 5700 J. The final kinetic energy is $K_3 = 0$ (the hammerhead ends at rest). From the work–energy theorem,

$$W_{\text{tot}} = (w - f - n)s_{23} = K_3 - K_2$$

$$n = w - f - \frac{K_3 - K_2}{s_{23}}$$

= 1960 N - 60 N - $\frac{0 \text{ J} - 5700 \text{ J}}{0.074 \text{ m}}$ = 79,000 N

The downward force that the hammerhead exerts on the I-beam has this same magnitude, 79,000 N (about 9 tons)—more than 40 times the weight of the hammerhead.

EVALUATE: The net change in the hammerhead's kinetic energy from point 1 to point 3 is zero; a relatively small net force does positive work over a large distance, and then a much larger net force does negative work over a much smaller distance. The same thing happens if you speed up your car gradually and then drive it into a brick wall. The very large force needed to reduce the kinetic energy to zero over a short distance is what does the damage to your car—and possibly to you.

6.12 (a) A pile driver pounds an I-beam into the ground. (b), (c) Free-body diagrams. Vector lengths are not to scale.

The Meaning of Kinetic Energy

Example 6.4 gives insight into the physical meaning of kinetic energy. The hammerhead is dropped from rest, and its kinetic energy when it hits the I-beam equals the total work done on it up to that point by the net force. This result is true in general: To accelerate a particle of mass m from rest (zero kinetic energy) **6.13** When a billiards player hits a cue ball at rest, the ball's kinetic energy after being hit is equal to the work that was done on it by the cue. The greater the force exerted by the cue and the greater the distance the ball moves while in contact with it, the greater the ball's kinetic energy.

up to a speed, the total work done on it must equal the change in kinetic energy from zero to $K = \frac{1}{2}mv^2$:

$$W_{\rm tot} = K - 0 = K$$

So the kinetic energy of a particle is equal to the total work that was done to accelerate it from rest to its present speed (Fig. 6.13). The definition $K = \frac{1}{2}mv^2$, Eq. (6.5), wasn't chosen at random; it's the *only* definition that agrees with this interpretation of kinetic energy.

In the second part of Example 6.4 the kinetic energy of the hammerhead did work on the I-beam and drove it into the ground. This gives us another interpretation of kinetic energy: *The kinetic energy of a particle is equal to the total work that particle can do in the process of being brought to rest.* This is why you pull your hand and arm backward when you catch a ball. As the ball comes to rest, it does an amount of work (force times distance) on your hand equal to the ball's initial kinetic energy. By pulling your hand back, you maximize the distance over which the force acts and so minimize the force on your hand.

Conceptual Example 6.5 Comparing kinetic energies

Two iceboats like the one in Example 5.6 (Section 5.2) hold a race on a frictionless horizontal lake (Fig. 6.14). The two iceboats have masses *m* and 2*m*. The iceboats have identical sails, so the wind exerts the same constant force \vec{F} on each iceboat. They start from rest and cross the finish line a distance *s* away. Which iceboat crosses the finish line with greater kinetic energy?

SOLUTION

If you use the definition of kinetic energy, $K = \frac{1}{2}mv^2$, Eq. (6.5), the answer to this problem isn't obvious. The iceboat of mass 2m has greater mass, so you might guess that it has greater kinetic energy at the finish line. But the lighter iceboat, of mass m, has greater acceleration and crosses the finish line with a greater speed, so you might guess that *this* iceboat has the greater kinetic energy. How can we decide?

The key is to remember that *the kinetic energy of a particle is equal to the total work done to accelerate it from rest*. Both iceboats travel the same distance *s* from rest, and only the horizontal force *F* in the direction of motion does work on either iceboat. Hence the total work done between the starting line and the finish line is the *same* for each iceboat, $W_{tot} = Fs$. At the finish line, each iceboat has a kinetic energy equal to the work W_{tot} done on it, because each iceboat started from rest. So both iceboats have the *same* kinetic energy at the finish line!

6.14 A race between iceboats.

You might think this is a "trick" question, but it isn't. If you really understand the meanings of quantities such as kinetic energy, you can solve problems more easily and with better insight.

Notice that we didn't need to know anything about how much time each iceboat took to reach the finish line. This is because the work–energy theorem makes no direct reference to time, only to displacement. In fact the iceboat of mass m has greater acceleration and so takes less time to reach the finish line than does the iceboat of mass 2m.

Work and Kinetic Energy in Composite Systems

In this section we've been careful to apply the work–energy theorem only to bodies that we can represent as *particles*—that is, as moving point masses. New subtleties appear for more complex systems that have to be represented as many particles with different motions. We can't go into these subtleties in detail in this chapter, but here's an example.

Suppose a boy stands on frictionless roller skates on a level surface, facing a rigid wall (Fig. 6.15). He pushes against the wall, which makes him move to the right. The forces acting on him are his weight \vec{w} , the upward normal forces \vec{n}_1 and \vec{n}_2 exerted by the ground on his skates, and the horizontal force \vec{F} exerted on him by the wall. There is no vertical displacement, so \vec{w} , \vec{n}_1 , and \vec{n}_2 do no work. Force \vec{F} accelerates him to the right, but the parts of his body where that force is applied (the boy's hands) do not move while the force acts. Thus the force \vec{F} also does no work. Where, then, does the boy's kinetic energy come from?

The explanation is that it's not adequate to represent the boy as a single point mass. Different parts of the boy's body have different motions; his hands remain stationary against the wall while his torso is moving away from the wall. The various parts of his body interact with each other, and one part can exert forces and do work on another part. Therefore the *total* kinetic energy of this *composite* system of body parts can change, even though no work is done by forces applied by bodies (such as the wall) that are outside the system. In Chapter 8 we'll consider further the motion of a collection of particles that interact with each other. We'll discover that just as for the boy in this example, the total kinetic energy of such a system can change even when no work is done on any part of the system by anything outside it.

Test Your Understanding of Section 6.2 Rank the following bodies in order of their kinetic energy, from least to greatest. (i) a 2.0-kg body moving at 5.0 m/s; (ii) a 1.0-kg body that initially was at rest and then had 30 J of work done on it; (iii) a 1.0-kg body that initially was moving at 4.0 m/s and then had 20 J of work done on it; (iv) a 2.0-kg body that initially was moving at 10 m/s and then did 80 J of work on another body.

6.3 Work and Energy with Varying Forces

So far in this chapter we've considered work done by *constant forces* only. But what happens when you stretch a spring? The more you stretch it, the harder you have to pull, so the force you exert is *not* constant as the spring is stretched. We've also restricted our discussion to *straight-line* motion. There are many situations in which a body moves along a curved path and is acted on by a force that varies in magnitude, direction, or both. We need to be able to compute the work done by the force in these more general cases. Fortunately, we'll find that the work–energy theorem holds true even when varying forces are considered and when the body's path is not straight.

Work Done by a Varying Force, Straight-Line Motion

To add only one complication at a time, let's consider straight-line motion along the x-axis with a force whose x-component F_x may change as the body moves. (A real-life example is driving a car along a straight road with stop signs, so the driver has to alternately step on the gas and apply the brakes.) Suppose a particle moves along the x-axis from point x_1 to x_2 (Fig. 6.16a). Figure 6.16b is a graph of the x-component of force as a function of the particle's coordinate x. To find the work done by this force, we divide the total displacement into small segments Δx_a , Δx_b , and so on (Fig. 6.16c). We approximate the work done by the force during segment Δx_a as the average x-component of force F_{ax} in that segment multiplied by the x-displacement Δx_a . We do this for each segment and then add the results for all the segments. The work done by the force in the total displacement from x_1 to x_2 is approximately

$$W = F_{ax}\Delta x_a + F_{bx}\Delta x_b + \cdots$$

6.15 The external forces acting on a skater pushing off a wall. The work done by these forces is zero, but the skater's kinetic energy changes nonetheless.

6.16 Calculating the work done by a varying force F_x in the *x*-direction as a particle moves from x_1 to x_2 .

(a) Particle moving from x_1 to x_2 in response to a changing force in the *x*-direction

Mastering PHYSICS PhET: Molecular Motors PhET: Stretching DNA

6.17 The work done by a constant force F in the *x*-direction as a particle moves from x_1 to x_2 .

6.18 The force needed to stretch an ideal spring is proportional to the spring's elon-gation: $F_x = kx$.

6.19 Calculating the work done to stretch a spring by a length *X*.

The area under the graph represents the work done on the spring as the spring is stretched from x = 0 to a maximum value X:

In the limit that the number of segments becomes very large and the width of each becomes very small, this sum becomes the *integral* of F_x from x_1 to x_2 :

$$W = \int_{x_1}^{x_2} F_x \, dx \qquad \begin{array}{c} \text{(varying x-component of force,} \\ \text{straight-line displacement)} \end{array}$$
(6.7)

Note that $F_{ax}\Delta x_a$ represents the *area* of the first vertical strip in Fig. 6.16c and that the integral in Eq. (6.7) represents the area under the curve of Fig. 6.16b between x_1 and x_2 . On a graph of force as a function of position, the total work done by the force is represented by the area under the curve between the initial and final positions. An alternative interpretation of Eq. (6.7) is that the work W equals the average force that acts over the entire displacement, multiplied by the displacement.

In the special case that F_x , the x-component of the force, is constant, it may be taken outside the integral in Eq. (6.7):

$$W = \int_{x_1}^{x_2} F_x \, dx = F_x \int_{x_1}^{x_2} dx = F_x (x_2 - x_1) \qquad \text{(constant force)}$$

But $x_2 - x_1 = s$, the total displacement of the particle. So in the case of a constant force *F*, Eq. (6.7) says that W = Fs, in agreement with Eq. (6.1). The interpretation of work as the area under the curve of F_x as a function of *x* also holds for a constant force; W = Fs is the area of a rectangle of height *F* and width *s* (Fig. 6.17).

Now let's apply these ideas to the stretched spring. To keep a spring stretched beyond its unstretched length by an amount x, we have to apply a force of equal magnitude at each end (Fig. 6.18). If the elongation x is not too great, the force we apply to the right-hand end has an x-component directly proportional to x:

$$F_x = kx$$
 (force required to stretch a spring) (6.8)

where *k* is a constant called the **force constant** (or spring constant) of the spring. The units of *k* are force divided by distance: N/m in SI units and lb/ft in British units. A floppy toy spring such as a SlinkyTM has a force constant of about 1 N/m; for the much stiffer springs in an automobile's suspension, *k* is about 10^5 N/m. The observation that force is directly proportional to elongation for elongations that are not too great was made by Robert Hooke in 1678 and is known as **Hooke's law.** It really shouldn't be called a "law," since it's a statement about a specific device and not a fundamental law of nature. Real springs don't always obey Eq. (6.8) precisely, but it's still a useful idealized model. We'll discuss Hooke's law more fully in Chapter 11.

To stretch a spring, we must do work. We apply equal and opposite forces to the ends of the spring and gradually increase the forces. We hold the left end stationary, so the force we apply at this end does no work. The force at the moving end *does* do work. Figure 6.19 is a graph of F_x as a function of x, the elongation of the spring. The work done by this force when the elongation goes from zero to a maximum value X is

$$W = \int_0^X F_x \, dx = \int_0^X kx \, dx = \frac{1}{2}kX^2 \tag{6.9}$$

We can also obtain this result graphically. The area of the shaded triangle in Fig. 6.19, representing the total work done by the force, is equal to half the product of the base and altitude, or

$$W = \frac{1}{2}(X)(kX) = \frac{1}{2}kX^2$$

This equation also says that the work is the *average* force kX/2 multiplied by the total displacement *X*. We see that the total work is proportional to the *square* of the final elongation *X*. To stretch an ideal spring by 2 cm, you must do four times as much work as is needed to stretch it by 1 cm.

Equation (6.9) assumes that the spring was originally unstretched. If initially the spring is already stretched a distance x_1 , the work we must do to stretch it to a greater elongation x_2 (Fig. 6.20a) is

$$W = \int_{x_1}^{x_2} F_x \, dx = \int_{x_1}^{x_2} kx \, dx = \frac{1}{2} k x_2^2 - \frac{1}{2} k x_1^2 \tag{6.10}$$

You should use your knowledge of geometry to convince yourself that the trapezoidal area under the graph in Fig. 6.20b is given by the expression in Eq. (6.10).

If the spring has spaces between the coils when it is unstretched, then it can also be compressed, and Hooke's law holds for compression as well as stretching. In this case the force and displacement are in the opposite directions from those shown in Fig. 6.18, and so F_x and x in Eq. (6.8) are both negative. Since both F_x and x are reversed, the force again is in the same direction as the displacement, and the work done by F_x is again positive. So the total work is still given by Eq. (6.9) or (6.10), even when X is negative or either or both of x_1 and x_2 are negative.

CAUTION Work done on a spring vs. work done by a spring Note that Eq. (6.10) gives the work that *you* must do on a spring to change its length. For example, if you stretch a spring that's originally relaxed, then $x_1 = 0, x_2 > 0$, and W > 0: The force you apply to one end of the spring is in the same direction as the displacement, and the work you do is positive. By contrast, the work that the *spring* does on whatever it's attached to is given by the *negative* of Eq. (6.10). Thus, as you pull on the spring, the spring does negative work on you. Paying careful attention to the sign of work will eliminate confusion later on!

6.20 Calculating the work done to stretch a spring from one extension to a greater one.

(a) Stretching a spring from elongation x_1 to elongation x_2

(b) Force-versus-distance graph

The trapezoidal area under the graph represents the work done on the spring to stretch it from

Example 6.6 Work done on a spring scale

A woman weighing 600 N steps on a bathroom scale that contains a stiff spring (Fig. 6.21). In equilibrium, the spring is compressed 1.0 cm under her weight. Find the force constant of the spring and the total work done on it during the compression.

SOLUTION

IDENTIFY and SET UP: In equilibrium the upward force exerted by the spring balances the downward force of the woman's weight. We'll use this principle and Eq. (6.8) to determine the force constant k, and we'll use Eq. (6.10) to calculate the work W that the

6.21 Compressing a spring in a bathroom scale.

woman does on the spring to compress it. We take positive values of x to correspond to elongation (upward in Fig. 6.21), so that the displacement of the end of the spring (x) and the x-component of the force that the woman exerts on it (F_x) are both negative. The applied force and the displacement are in the same direction, so the work done on the spring will be positive.

EXECUTE: The top of the spring is displaced by x = -1.0 cm = -0.010 m, and the woman exerts a force $F_x = -600$ N on the spring. From Eq. (6.8) the force constant is then

$$k = \frac{F_x}{x} = \frac{-600 \text{ N}}{-0.010 \text{ m}} = 6.0 \times 10^4 \text{ N/m}$$

Then, using $x_1 = 0$ and $x_2 = -0.010$ m in Eq. (6.10), we have

$$W = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2$$

= $\frac{1}{2}(6.0 \times 10^4 \text{ N/m})(-0.010 \text{ m})^2 - 0 = 3.0 \text{ J}$

EVALUATE: The work done is positive, as expected. Our arbitrary choice of the positive direction has no effect on the answer for W. You can test this by taking the positive *x*-direction to be downward, corresponding to compression. Do you get the same values for *k* and *W* as we found here?

Application Tendons Are Nonideal Springs

Muscles exert forces via the tendons that attach them to bones. A tendon consists of long, stiff, elastic collagen fibers. The graph shows how the tendon from the hind leg of a wallaby (a small kangaroo) stretches in response to an applied force. The tendon does not exhibit the simple, straight-line behavior of an ideal spring, so the work it does has to be found by integration [Eq. (6.7)]. Note that the tendon exerts less force while relaxing than while stretching. As a result, the relaxing tendon does only about 93% of the work that was done to stretch it.

Varying Forces

Work-Energy Theorem for Straight-Line Motion,

In Section 6.2 we derived the work–energy theorem, $W_{\text{tot}} = K_2 - K_1$, for the special case of straight-line motion with a constant net force. We can now prove that this theorem is true even when the force varies with position. As in Section 6.2, let's consider a particle that undergoes a displacement x while being acted on by a net force with x-component F_x , which we now allow to vary. Just as in Fig. 6.16, we divide the total displacement x into a large number of small segments Δx . We can apply the work–energy theorem, Eq. (6.6), to each segment because the value of F_x in each small segment is approximately constant. The change in kinetic energy in segment Δx_a is equal to the work $F_{ax}\Delta x_a$, and so on. The total change of kinetic energy is the sum of the changes in the individual segments, and thus is equal to the total work done on the particle during the entire displacement. So $W_{\text{tot}} = \Delta K$ holds for varying forces as well as for constant ones.

Here's an alternative derivation of the work–energy theorem for a force that may vary with position. It involves making a change of variable from x to v_x in the work integral. As a preliminary, we note that the acceleration a of the particle can be expressed in various ways, using $a_x = dv_x/dt$, $v_x = dx/dt$, and the chain rule for derivatives:

$$a_x = \frac{dv_x}{dt} = \frac{dv_x}{dx}\frac{dx}{dt} = v_x\frac{dv_x}{dx}$$
(6.11)

From this result, Eq. (6.7) tells us that the total work done by the *net* force F_x is

$$W_{\text{tot}} = \int_{x_1}^{x_2} F_x \, dx = \int_{x_1}^{x_2} ma_x \, dx = \int_{x_1}^{x_2} mv_x \frac{dv_x}{dx} \, dx \tag{6.12}$$

Now $(dv_x/dx)dx$ is the change in velocity dv_x during the displacement dx, so in Eq. (6.12) we can substitute dv_x for $(dv_x/dx)dx$. This changes the integration variable from x to v_x , so we change the limits from x_1 and x_2 to the corresponding x-velocities v_1 and v_2 at these points. This gives us

$$W_{\rm tot} = \int_{v_1}^{v_2} m v_x \, dv_x$$

The integral of $v_x dv_x$ is just $v_x^2/2$. Substituting the upper and lower limits, we finally find

$$W_{\rm tot} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 \tag{6.13}$$

This is the same as Eq. (6.6), so the work–energy theorem is valid even without the assumption that the net force is constant.

Example 6.7 Motion with a varying force

An air-track glider of mass 0.100 kg is attached to the end of a horizontal air track by a spring with force constant 20.0 N/m (Fig. 6.22a). Initially the spring is unstretched and the glider is moving at 1.50 m/s to the right. Find the maximum distance *d* that the glider moves to the right (a) if the air track is turned on, so that there is no friction, and (b) if the air is turned off, so that there is kinetic friction with coefficient $\mu_k = 0.47$.

SOLUTION

IDENTIFY and SET UP: The force exerted by the spring is not constant, so we *cannot* use the constant-acceleration formulas of Chapter 2 to solve this problem. Instead, we'll use the

work–energy theorem, since the total work done involves the distance moved (our target variable). In Figs. 6.22b and 6.22c we choose the positive x-direction to be to the right (in the direction of the glider's motion). We take x = 0 at the glider's initial position (where the spring is unstretched) and x = d (the target variable) at the position where the glider stops. The motion is purely horizontal, so only the horizontal forces do work. Note that Eq. (6.10) gives the work done by the *glider* on the *spring* as it stretches; to use the work–energy theorem we need the work done by the *spring* on the *glider*, which is the negative of Eq. (6.10). We expect the glider to move farther without friction than with friction.

6.22 (a) A glider attached to an air track by a spring. (b), (c) Our free-body diagrams.

EXECUTE: (a) Equation (6.10) says that as the glider moves from $x_1 = 0$ to $x_2 = d$, it does an amount of work $W = \frac{1}{2}kd^2 - \frac{1}{2}k(0)^2 = \frac{1}{2}kd^2$ on the spring. The amount of work that the *spring* does on the *glider* is the negative of this, $-\frac{1}{2}kd^2$. The spring stretches until the glider comes instantaneously to rest, so the final kinetic energy K_2 is zero. The initial kinetic energy is $\frac{1}{2}mv_1^2$, where $v_1 = 1.50$ m/s is the glider's initial speed. From the work–energy theorem,

$$-\frac{1}{2}kd^2 = 0 - \frac{1}{2}mv_1^2$$

We solve for the distance *d* the glider moves:

$$d = v_1 \sqrt{\frac{m}{k}} = (1.50 \text{ m/s}) \sqrt{\frac{0.100 \text{ kg}}{20.0 \text{ N/m}}}$$

= 0.106 m = 10.6 cm

The stretched spring subsequently pulls the glider back to the left, so the glider is at rest only instantaneously.

(b) If the air is turned off, we must include the work done by the kinetic friction force. The normal force n is equal in magnitude to the weight of the glider, since the track is horizontal and there are

no other vertical forces. Hence the kinetic friction force has constant magnitude $f_k = \mu_k n = \mu_k mg$. The friction force is directed opposite to the displacement, so the work done by friction is

$$W_{\rm fric} = f_{\rm k} d\cos 180^\circ = -f_{\rm k} d = -\mu_{\rm k} mgd$$

The total work is the sum of W_{fric} and the work done by the spring, $-\frac{1}{2} kd^2$. The work–energy theorem then says that

$$-\mu_{k}mgd - \frac{1}{2}kd^{2} = 0 - \frac{1}{2}mv_{1}^{2} \qquad \text{or}$$
$$\frac{1}{2}kd^{2} + \mu_{k}mgd - \frac{1}{2}mv_{1}^{2} = 0$$

This is a quadratic equation for d. The solutions are

$$d = -\frac{\mu_k mg}{k} \pm \sqrt{\left(\frac{\mu_k mg}{k}\right)^2 + \frac{mv_1^2}{k}}$$

We have

$$\frac{\mu_k mg}{k} = \frac{(0.47)(0.100 \text{ kg})(9.80 \text{ m/s}^2)}{20.0 \text{ N/m}} = 0.02303 \text{ m}$$
$$\frac{mv_1^2}{k} = \frac{(0.100 \text{ kg})(1.50 \text{ m/s})^2}{20.0 \text{ N/m}} = 0.01125 \text{ m}^2$$

so

$$d = -(0.02303 \text{ m}) \pm \sqrt{(0.02303 \text{ m})^2 + 0.01125 \text{ m}^2}$$

= 0.086 m or -0.132 m

The quantity d is a positive displacement, so only the positive value of d makes sense. Thus with friction the glider moves a distance d = 0.086 m = 8.6 cm.

EVALUATE: Note that if we set $\mu_k = 0$, our algebraic solution for *d* in part (b) reduces to $d = v_1 \sqrt{m/k}$, the zero-friction result from part (a). With friction, the glider goes a shorter distance. Again the glider stops instantaneously, and again the spring force pulls it toward the left; whether it moves or not depends on how great the *static* friction force is. How large would the coefficient of static friction μ_s have to be to keep the glider from springing back to the left?

Work-Energy Theorem for Motion Along a Curve

We can generalize our definition of work further to include a force that varies in direction as well as magnitude, and a displacement that lies along a curved path. Figure 6.23a shows a particle moving from P_1 to P_2 along a curve. We divide the curve between these points into many infinitesimal vector displacements, and we call a typical one of these $d\vec{l}$. Each $d\vec{l}$ is tangent to the path at its position. Let \vec{F} be the force at a typical point along the path, and let ϕ be the angle between \vec{F} and $d\vec{l}$ at this point. Then the small element of work dWdone on the particle during the displacement $d\vec{l}$ may be written as

$$dW = F\cos\phi \, dl = F_{\parallel} \, dl = \vec{F} \cdot d\vec{l}$$

where $F_{\parallel} = F \cos \phi$ is the component of \vec{F} in the direction parallel to $d\vec{l}$ (Fig. 6.23b). The total work done by \vec{F} on the particle as it moves from P_1 to P_2 is then

$$W = \int_{P_1}^{P_2} F \cos \phi \, dl = \int_{P_1}^{P_2} F_{\parallel} \, dl = \int_{P_1}^{P_2} \vec{F} \cdot d\vec{l} \qquad \text{(work done on a curved path)}$$
(6.14)

6.23 A particle moves along a curved path from point P_1 to P_2 , acted on by a force \vec{F} that varies in magnitude and direction.

(a)

During an infinitesimal displacement $d\vec{l}$, the force \vec{F} does work dW on the particle: $dW = \vec{F} \cdot d\vec{l} = F \cos \phi \, dl$

Only the component of \vec{F} parallel to the displacement, $F_{II} = F \cos \phi$, contributes to the work done by \vec{F} .

Example 6.8 Motion on a curved path

At a family picnic you are appointed to push your obnoxious cousin Throckmorton in a swing (Fig. 6.24a). His weight is *w*, the length of the chains is *R*, and you push Throcky until the chains make an angle θ_0 with the vertical. To do this, you exert a varying horizontal force \vec{F} that starts at zero and gradually increases just enough that Throcky and the swing move very slowly and remain very nearly in equilibrium throughout the process. What is the total work done on Throcky by all forces? What is the work done by the tension *T* in the chains? What is the work you do by exerting the force \vec{F} ? (Neglect the weight of the chains and seat.)

SOLUTION

IDENTIFY and SET UP: The motion is along a curve, so we'll use Eq. (6.14) to calculate the work done by the net force, by the tension force, and by the force \vec{F} . Figure 6.24b shows our free-body diagram and coordinate system for some arbitrary point in Throcky's motion. We have replaced the sum of the tensions in the two chains with a single tension *T*.

EXECUTE: There are two ways to find the total work done during the motion: (1) by calculating the work done by each force and then adding those quantities, and (2) by calculating the work done by the net force. The second approach is far easier here because Throcky is in equilibrium at every point. Hence the net force on him is zero, the integral of the net force in Eq. (6.14) is zero, and the total work done on him is zero.

It's also easy to find the work done by the chain tension T because this force is perpendicular to the direction of motion at all points along the path. Hence at all points the angle between the chain tension and the displacement vector $d\vec{l}$ is 90° and the scalar product in Eq. (6.14) is zero. Thus the chain tension does zero work.

We can now show that the work-energy theorem, Eq. (6.6), holds true even with varying forces and a displacement along a curved path. The force \vec{F} is essentially constant over any given infinitesimal segment $d\vec{l}$ of the path, so we can apply the work-energy theorem for straight-line motion to that segment. Thus the change in the particle's kinetic energy *K* over that segment equals the work $dW = F_{\parallel} dl = \vec{F} \cdot d\vec{l}$ done on the particle. Adding up these infinitesimal quantities of work from all the segments along the whole path gives the total work done, Eq. (6.14), which equals the total change in kinetic energy over the whole path. So $W_{\text{tot}} = \Delta K = K_2 - K_1$ is true *in general*, no matter what the path and no matter what the character of the forces. This can be proved more rigorously by using steps like those in Eqs. (6.11) through (6.13).

Note that only the component of the net force parallel to the path, F_{\parallel} , does work on the particle, so only this component can change the speed and kinetic energy of the particle. The component perpendicular to the path, $F_{\perp} = F \sin \phi$, has no effect on the particle's speed; it acts only to change the particle's direction.

The integral in Eq. (6.14) is called a *line integral*. To evaluate this integral in a specific problem, we need some sort of detailed description of the path and of the way in which \vec{F} varies along the path. We usually express the line integral in terms of some scalar variable, as in the following example.

6.24 (a) Pushing cousin Throckmorton in a swing. (b) Our free-body diagram.

To compute the work done by \vec{F} , we need to know how this force varies with the angle θ . The net force on Throcky is zero, so $\sum F_x = 0$ and $\sum F_y = 0$. From Fig. 6.24b,

$$\sum F_x = F + (-T\sin\theta) = 0$$
$$\sum F_y = T\cos\theta + (-w) = 0$$

By eliminating T from these two equations, we obtain the magnitude $F = w \tan \theta$.

The point where \vec{F} is applied moves through the arc *s* (Fig. 6.24a). The arc length *s* equals the radius *R* of the circular path multiplied by the length θ (in radians), so $s = R\theta$. Therefore the displacement $d\vec{l}$ corresponding to a small change of

angle $d\theta$ has a magnitude $dl = ds = R \ d\theta$. The work done by \vec{F} is then

$$W = \int \vec{F} \cdot d\vec{l} = \int F \cos \theta \ d$$

Now we express *F* and *ds* in terms of the angle θ , whose value increases from 0 to θ_0 :

$$W = \int_0^{\theta_0} (w \tan \theta) \cos \theta \ (R \ d\theta) = wR \int_0^{\theta_0} \sin \theta \, d\theta$$
$$= wR(1 - \cos \theta_0)$$

EVALUATE: If $\theta_0 = 0$, there is no displacement; then $\cos \theta_0 = 1$ and W = 0, as we should expect. If $\theta_0 = 90^\circ$, then $\cos \theta_0 = 0$ and W = wR. In that case the work you do is the same as if you had lifted Throcky straight up a distance *R* with a force equal to his weight *w*. In fact (as you may wish to confirm), the quantity $R(1 - \cos \theta_0)$ is the increase in his height above the ground during the displacement, so for any value of θ_0 the work done by the force \vec{F} is the change in height multiplied by the weight. This is an example of a more general result that we'll prove in Section 7.1.

We can check our results by writing the forces and the infinitesimal displacement $d\vec{l}$ in terms of their *x*- and *y*-components. Figure 6.24a shows that $d\vec{l}$ has a magnitude of *ds*, an *x*-component of $ds \cos \theta$, and a *y*-component of $ds \sin \theta$. Hence $d\vec{l} =$

Test Your Understanding of Section 6.3 In Example 5.20 (Section 5.4) we examined a conical pendulum. The speed of the pendulum bob remains constant as it travels around the circle shown in Fig. 5.32a. (a) Over one complete circle, how much work does the tension force F do on the bob? (i) a positive amount; (ii) a negative amount; (iii) zero. (b) Over one complete circle, how much work does the weight do on the bob? (i) a positive amount; (iii) a negative amount; (iii) zero.

6.4 Power

The definition of work makes no reference to the passage of time. If you lift a barbell weighing 100 N through a vertical distance of 1.0 m at constant velocity, you do (100 N)(1.0 m) = 100 J of work whether it takes you 1 second, 1 hour, or 1 year to do it. But often we need to know how quickly work is done. We describe this in terms of *power*. In ordinary conversation the word "power" is often synonymous with "energy" or "force." In physics we use a much more precise definition: **Power** is the time *rate* at which work is done. Like work and energy, power is a scalar quantity.

When a quantity of work ΔW is done during a time interval Δt , the average work done per unit time or **average power** P_{av} is defined to be

$$P_{\rm av} = \frac{\Delta W}{\Delta t}$$
 (average power) (6.15)

The rate at which work is done might not be constant. We can define **instantaneous power** *P* as the quotient in Eq. (6.15) as Δt approaches zero:

$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt} \qquad \text{(instantaneous power)} \tag{6.16}$$

The SI unit of power is the **watt** (W), named for the English inventor James Watt. One watt equals 1 joule per second: 1 W = 1 J/s (Fig. 6.25). The kilowatt

 $\hat{i} \, ds \cos \theta + \hat{j} \, ds \sin \theta$. Similarly, we can write the three forces as

$$\vec{T} = \hat{\iota}(-T\sin\theta) + \hat{j}T\cos\theta$$
$$\vec{w} = \hat{j}(-w)$$
$$\vec{F} = \hat{\iota}F$$

We use Eq. (1.21) to calculate the scalar product of each of these forces with $d\vec{l}$:

$$\vec{T} \cdot d\vec{l} = (-T\sin\theta)(ds\cos\theta) + (T\cos\theta)(ds\sin\theta) = 0$$

$$\vec{w} \cdot d\vec{l} = (-w)(ds\sin\theta) = -w\sin\theta ds$$

$$\vec{F} \cdot d\vec{l} = F(ds\cos\theta) = F\cos\theta ds$$

Since $\vec{T} \cdot d\vec{l} = 0$, the integral of this quantity is zero and the work done by the chain tension is zero, just as we found above. Using $ds = R \ d\theta$, we find the work done by the force of gravity is

$$\int \vec{w} \cdot d\vec{l} = \int (-w\sin\theta)R\,d\theta = -wR \int_0^{\theta_0} \sin\theta\,d\theta$$
$$= -wR(1 - \cos\theta_0)$$

Gravity does negative work because this force pulls down while Throcky moves upward. Finally, the work done by the force \vec{F} is the same integral $\int \vec{F} \cdot d\vec{l} = \int F \cos\theta \, ds$ that we calculated above. The method of components is often the most convenient way to calculate scalar products, so use it when it makes your life easier!

6.25 The same amount of work is done in both of these situations, but the power (the rate at which work is done) is different.

Work you do on the box
to lift it in 5 s:
$$W = 100 \text{ J}$$

Your power output:
 $P = \frac{W}{t} = \frac{100 \text{ J}}{5 \text{ s}} = 20 \text{ W}$
 $t = 0$
 $t = 1 \text{ s}$
Work you do on the same
box to lift it the same
distance in 1 s:
 $W = 100 \text{ J}$
Your power output:
 $P = \frac{W}{t} = \frac{100 \text{ J}}{1 \text{ s}} = 100 \text{ W}$
 $t = 0$

6.26 The value of the horsepower derives from experiments by James Watt, who measured that a horse could do 33,000 foot-pounds of work per minute in lifting coal from a coal pit.

 $(1 \text{ kW} = 10^3 \text{ W})$ and the megawatt $(1 \text{ MW} = 10^6 \text{ W})$ are also commonly used. In the British system, work is expressed in foot-pounds, and the unit of power is the foot-pound per second. A larger unit called the *horsepower* (hp) is also used (Fig. 6.26):

$$1 \text{ hp} = 550 \text{ ft} \cdot 1 \text{b/s} = 33,000 \text{ ft} \cdot 1 \text{b/min}$$

That is, a 1-hp motor running at full load does 33,000 ft \cdot lb of work every minute. A useful conversion factor is

$$l hp = 746 W = 0.746 kW$$

The watt is a familiar unit of *electrical* power; a 100-W light bulb converts 100 J of electrical energy into light and heat each second. But there's nothing inherently electrical about a watt. A light bulb could be rated in horsepower, and an engine can be rated in kilowatts.

The *kilowatt-hour* (kW \cdot h) is the usual commercial unit of electrical energy. One kilowatt-hour is the total work done in 1 hour (3600 s) when the power is 1 kilowatt (10³ J/s), so

$$1 \text{ kW} \cdot \text{h} = (10^3 \text{ J/s})(3600 \text{ s}) = 3.6 \times 10^6 \text{ J} = 3.6 \text{ MJ}$$

The kilowatt-hour is a unit of work or energy, not power.

In mechanics we can also express power in terms of force and velocity. Suppose that a force \vec{F} acts on a body while it undergoes a vector displacement $\Delta \vec{s}$. If F_{\parallel} is the component of \vec{F} tangent to the path (parallel to $\Delta \vec{s}$), then the work done by the force is $\Delta W = F_{\parallel} \Delta s$. The average power is

$$P_{\rm av} = \frac{F_{\parallel} \Delta s}{\Delta t} = F_{\parallel} \frac{\Delta s}{\Delta t} = F_{\parallel} v_{\rm av}$$
(6.17)

Instantaneous power *P* is the limit of this expression as $\Delta t \rightarrow 0$:

$$P = F_{\parallel} v \tag{6.18}$$

where v is the magnitude of the instantaneous velocity. We can also express Eq. (6.18) in terms of the scalar product:

$$P = \vec{F} \cdot \vec{v} \qquad (\text{instantaneous rate at which} \\ \text{force } \vec{F} \text{ does work on a particle}) \qquad (6.19)$$

Example 6.9 Force and power

Each of the four jet engines on an Airbus A380 airliner develops a thrust (a forward force on the airliner) of 322,000 N (72,000 lb). When the airplane is flying at 250 m/s (900 km/h, or roughly 560 mi/h), what horsepower does each engine develop?

SOLUTION

IDENTIFY, SET UP and EXECUTE: Our target variable is the instantaneous power *P*, which is the rate at which the thrust does work. We use Eq. (6.18). The thrust is in the direction of motion, so F_{\parallel} is just equal to the thrust. At v = 250 m/s, the power developed by each engine is

$$P = F_{\parallel}v = (3.22 \times 10^{5} \text{ N})(250 \text{ m/s}) = 8.05 \times 10^{7} \text{ W}$$
$$= (8.05 \times 10^{7} \text{ W})\frac{1 \text{ hp}}{746 \text{ W}} = 108,000 \text{ hp}$$

EVALUATE: The speed of modern airliners is directly related to the power of their engines (Fig. 6.27). The largest propeller-driven airliners of the 1950s had engines that developed about 3400 hp

6.27 (a) Propeller-driven and (b) jet airliners.

(a) (b)

 $(2.5 \times 10^6 \text{ W})$, giving them maximum speeds of about 600 km/h (370 mi/h). Each engine on an Airbus A380 develops more than 30 times more power, enabling it to fly at about 900 km/h (560 mi/h) and to carry a much heavier load.

If the engines are at maximum thrust while the airliner is at rest on the ground so that v = 0, the engines develop *zero* power. Force and power are not the same thing!

Example 6.10 A "power climb"

A 50.0-kg marathon runner runs up the stairs to the top of Chicago's 443-m-tall Willis Tower, the tallest building in the United States (Fig. 6.28). To lift herself to the top in 15.0 minutes, what must be her average power output? Express your answer in watts, in kilowatts, and in horsepower.

SOLUTION

IDENTIFY and SET UP: We'll treat the runner as a particle of mass m. Her average power output P_{av} must be enough to lift her at constant speed against gravity.

We can find P_{av} in two ways: (1) by determining how much work she must do and dividing that quantity by the elapsed time, as in Eq. (6.15), or (2) by calculating the average upward force she must exert (in the direction of the climb) and multiplying that quantity by her upward velocity, as in Eq. (6.17).

EXECUTE: (1) As in Example 6.8, lifting a mass m against gravity requires an amount of work equal to the weight mg multiplied by the height h it is lifted. Hence the work the runner must do is

$$W = mgh = (50.0 \text{ kg})(9.80 \text{ m/s}^2)(443 \text{ m})$$

= 2.17 × 10⁵ J

She does this work in a time 15.0 min = 900 s, so from Eq. (6.15) the average power is

$$P_{\rm av} = \frac{2.17 \times 10^5 \text{J}}{900 \text{ s}} = 241 \text{ W} = 0.241 \text{ kW} = 0.323 \text{ hp}$$

(2) The force exerted is vertical and the average vertical component of velocity is (443 m)/(900 s) = 0.492 m/s, so from Eq. (6.17) the average power is

6.28 How much power is required to run up the stairs of Chicago's Willis Tower in 15 minutes?

$$P_{av} = F_{\parallel}v_{av} = (mg)v_{av}$$

= (50.0 kg)(9.80 m/s²)(0.492 m/s) = 241 W

which is the same result as before.

EVALUATE: The runner's *total* power output will be several times greater than 241 W. The reason is that the runner isn't really a particle but a collection of parts that exert forces on each other and do work, such as the work done to inhale and exhale and to make her arms and legs swing. What we've calculated is only the part of her power output that lifts her to the top of the building.

Test Your Understanding of Section 6.4 The air surrounding an airplane in flight exerts a drag force that acts opposite to the airplane's motion. When the Airbus A380 in Example 6.9 is flying in a straight line at a constant altitude at a constant 250 m/s, what is the rate at which the drag force does work on it? (i) 432,000 hp; (ii) 108,000 hp; (iii) 0; (iv) -108,000 hp; (v) -432,000 hp.

CHAPTER 6 SUMMARY

Work done by a force: When a constant force \vec{F} acts on a particle that undergoes a straight-line displacement \vec{s} , the work done by the force on the particle is defined to be the scalar product of \vec{F} and \vec{s} . The unit of work in SI units is 1 joule = 1 newton-meter $(1 \text{ J} = 1 \text{ N} \cdot \text{m})$. Work is a scalar quantity; it can be positive or negative, but it has no direction in space. (See Examples 6.1 and 6.2.)

Kinetic energy: The kinetic energy *K* of a particle equals the amount of work required to accelerate the particle from rest to speed *v*. It is also equal to the amount of work the particle can do in the process of being brought to rest. Kinetic energy is a scalar that has no direction in space; it is always positive or zero. Its units are the same as the units of work: $1 J = 1 N \cdot m = 1 \text{ kg} \cdot m^2/\text{s}^2$.

The work–energy theorem: When forces act on a particle while it undergoes a displacement, the particle's kinetic energy changes by an amount equal to the total work done on the particle by all the forces. This relationship, called the work–energy theorem, is valid whether the forces are constant or varying and whether the particle moves along a straight or curved path. It is applicable only to bodies that can be treated as particles. (See Examples 6.3–6.5.)

Work done by a varying force or on a curved path: When a force varies during a straight-line displacement, the work done by the force is given by an integral, Eq. (6.7). (See Examples 6.6 and 6.7.) When a particle follows a curved path, the work done on it by a force \vec{F} is given by an integral that involves the angle ϕ between the force and the displacement. This expression is valid even if the force magnitude and the angle ϕ vary during the displacement. (See Example 6.8.)

Power: Power is the time rate of doing work. The average power P_{av} is the amount of work ΔW done in time Δt divided by that time. The instantaneous power is the limit of the average power as Δt goes to zero. When a force \vec{F} acts on a particle moving with velocity \vec{v} , the instantaneous power (the rate at which the force does work) is the scalar product of \vec{F} and \vec{v} . Like work and kinetic energy, power is a scalar quantity. The SI unit of power is 1 watt = 1 joule/second (1 W = 1 J/s). (See Examples 6.9 and 6.10.)

 $W = \vec{F} \cdot \vec{s} = Fs \cos \phi$ (6.2), (6.3) $\phi = \text{ angle between } \vec{F} \text{ and } \vec{s}$

 $W_{\text{tot}} = K_2 - K_1 = \Delta K$

$$P = \vec{F} \cdot \vec{v}$$

BRIDGING PROBLEM A Spring That Disobeys Hooke's Law

Consider a hanging spring of negligible mass that does *not* obey Hooke's law. When the spring is extended by a distance x, the force exerted by the spring has magnitude αx^2 , where α is a positive constant. The spring is not extended when a block of mass m is attached to it. The block is then released, stretching the spring as it falls (Fig. 6.29). (a) How fast is the block moving when it has fallen a distance x_1 ? (b) At what rate does the spring do work on the block at this point? (c) Find the maximum distance x_2 that the spring stretches. (d) Will the block *remain* at the point found in part (c)?

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution. (MP

IDENTIFY and **SET UP**

- 1. The spring force in this problem isn't constant, so you have to use the work–energy theorem. You'll also need to use Eq. (6.7) to find the work done by the spring over a given displacement.
- 2. Draw a free-body diagram for the block, including your choice of coordinate axes. Note that *x* represents how far the spring is *stretched*, so choose the positive *x*-axis accordingly. On your coordinate axis, label the points $x = x_1$ and $x = x_2$.
- 3. Make a list of the unknown quantities, and decide which of these are the target variables.

EXECUTE

4. Calculate the work done on the block by the spring as the block falls an arbitrary distance *x*. (The integral isn't a difficult one. Use Appendix B if you need a reminder.) Is the work done by the spring positive, negative, or zero?

6.29 The block is attached to a spring that does not obey Hooke's law.

- 5. Calculate the work done on the block by any other forces as the block falls an arbitrary distance *x*. Is this work positive, negative, or zero?
- 6. Use the work–energy theorem to find the target variables. (You'll also need to use an equation for power.) *Hint:* When the spring is at its maximum stretch, what is the speed of the block?
- 7. To answer part (d), consider the *net* force that acts on the block when it is at the point found in part (c).

EVALUATE

- 8. We learned in Chapter 2 that after an object dropped from rest has fallen freely a distance x_1 , its speed is $\sqrt{2gx_1}$. Use this to decide whether your answer in part (a) makes sense. In addition, ask yourself whether the algebraic sign of your answer in part (b) makes sense.
- 9. Find the value of x where the net force on the block would be zero. How does this compare to your result for x₂? Is this consistent with your answer in part (d)?

Problems

For instructor-assigned homework, go to www.masteringphysics.com (MP

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q6.1 The sign of many physical quantities depends on the choice of coordinates. For example, a_y for free-fall motion can be negative or positive, depending on whether we choose upward or downward as positive. Is the same thing true of work? In other words, can we make positive work negative by a different choice of coordinates? Explain.

Q6.2 An elevator is hoisted by its cables at constant speed. Is the total work done on the elevator positive, negative, or zero? Explain. **Q6.3** A rope tied to a body is pulled, causing the body to accelerate. But according to Newton's third law, the body pulls back on the rope with an equal and opposite force. Is the total work done then zero? If so, how can the body's kinetic energy change? Explain.

Q6.4 If it takes total work W to give an object a speed v and kinetic energy K, starting from rest, what will be the object's speed (in terms of v) and kinetic energy (in terms of K) if we do twice as much work on it, again starting from rest?

Q6.5 If there is a net nonzero force on a moving object, is it possible for the total work done on the object to be zero? Explain, with an example that illustrates your answer.

Q6.6 In Example 5.5 (Section 5.1), how does the work done on the bucket by the tension in the cable compare to the work done on the cart by the tension in the cable?

Q6.7 In the conical pendulum in Example 5.20 (Section 5.4), which of the forces do work on the bob while it is swinging?

Q6.8 For the cases shown in Fig. Q6.8, the object is released from rest at the top and feels no friction or air resistance. In

Figure **Q6.8**

which (if any) cases will the mass have (i) the greatest speed at the bottom and (ii) the most work done on it by the time it reaches the bottom?

Q6.9 A force \vec{F} is in the *x*-direction and has a magnitude that depends on *x*. Sketch a possible graph of *F* versus *x* such that the force does zero work on an object that moves from x_1 to x_2 , even though the force magnitude is not zero at all *x* in this range.

Q6.10 Does the kinetic energy of a car change more when it speeds up from 10 to 15 m/s or from 15 to 20 m/s? Explain.

Q6.11 A falling brick has a mass of 1.5 kg and is moving straight downward with a speed of 5.0 m/s. A 1.5-kg physics book is sliding across the floor with a speed of 5.0 m/s. A 1.5-kg melon is traveling with a horizontal velocity component 3.0 m/s to the right and a vertical component 4.0 m/s upward. Do these objects all have the same velocity? Do these objects all have the same kinetic energy? For each question, give the reasoning behind your answer. **Q6.12** Can the *total* work done on an object during a displacement be negative? Explain. If the total work is negative, can its magnitude be larger than the initial kinetic energy of the object? Explain. **Q6.13** A net force acts on an object and accelerates it from rest to a speed v_1 . In doing so, the force does an amount of work W_1 . By what factor must the work done on the object again starting from rest?

06.14 A truck speeding down the highway has a lot of kinetic energy relative to a stopped state trooper, but no kinetic energy relative to the truck driver. In these two frames of reference, is the same amount of work required to stop the truck? Explain.

Q6.15 You are holding a briefcase by the handle, with your arm straight down by your side. Does the force your hand exerts do work on the briefcase when (a) you walk at a constant speed down a horizontal hallway and (b) you ride an escalator from the first to second floor of a building? In each case justify your answer.

Q6.16 When a book slides along a tabletop, the force of friction does negative work on it. Can friction ever do *positive* work? Explain. (*Hint:* Think of a box in the back of an accelerating truck.) **Q6.17** Time yourself while running up a flight of steps, and compute the average rate at which you do work against the force of gravity. Express your answer in watts and in horsepower.

Q6.18 Fractured Physics. Many terms from physics are badly misused in everyday language. In each case, explain the errors involved. (a) A *strong* person is called *powerful*. What is wrong with this use of *power*? (b) When a worker carries a bag of concrete along a level construction site, people say he did a lot of *work*. Did he?

Q6.19 An advertisement for a portable electrical generating unit claims that the unit's diesel engine produces 28,000 hp to drive an electrical generator that produces 30 MW of electrical power. Is this possible? Explain.

Q6.20 A car speeds up while the engine delivers constant power. Is the acceleration greater at the beginning of this process or at the end? Explain.

Q6.21 Consider a graph of instantaneous power versus time, with the vertical *P*-axis starting at P = 0. What is the physical significance of the area under the *P*-versus-*t* curve between vertical lines at t_1 and

 t_2 ? How could you find the average power from the graph? Draw a *P*-versus-*t* curve that consists of two straight-line sections and for which the peak power is equal to twice the average power.

Q6.22 A nonzero net force acts on an object. Is it possible for any of the following quantities to be constant: (a) the particle's speed; (b) the particle's velocity; (c) the particle's kinetic energy?

Q6.23 When a certain force is applied to an ideal spring, the spring stretches a distance x from its unstretched length and does work W. If instead twice the force is applied, what distance (in terms of x) does the spring stretch from its unstretched length, and how much work (in terms of W) is required to stretch it this distance?

Q6.24 If work W is required to stretch a spring a distance x from its unstretched length, what work (in terms of W) is required to stretch the spring an *additional* distance x?

EXERCISES

Section 6.1 Work

6.1 • You push your physics book 1.50 m along a horizontal tabletop with a horizontal push of 2.40 N while the opposing force of friction is 0.600 N. How much work does each of the following forces do on the book: (a) your 2.40-N push, (b) the friction force, (c) the normal force from the tabletop, and (d) gravity? (e) What is the net work done on the book?

6.2 • A tow truck pulls a car 5.00 km along a horizontal roadway using a cable having a tension of 850 N. (a) How much work does the cable do on the car if it pulls horizontally? If it pulls at 35.0° above the horizontal? (b) How much work does the cable do on the tow truck in both cases of part (a)? (c) How much work does gravity do on the car in part (a)?

6.3 • A factory worker pushes a 30.0-kg crate a distance of 4.5 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction between the crate and the floor is 0.25. (a) What magnitude of force must the worker apply? (b) How much work is done on the crate by this force? (c) How much work is done on the crate by friction? (d) How much work is done on the crate?

6.4 •• Suppose the worker in Exercise 6.3 pushes downward at an angle of 30° below the horizontal. (a) What magnitude of force must the worker apply to move the crate at constant velocity? (b) How much work is done on the crate by this force when the crate is pushed a distance of 4.5 m? (c) How much work is done on the crate by friction during this displacement? (d) How much work is done on the crate by the normal force? By gravity? (e) What is the total work done on the crate?

6.5 •• A 75.0-kg painter climbs a ladder that is 2.75 m long leaning against a vertical wall. The ladder makes a 30.0° angle with the wall. (a) How much work does gravity do on the painter? (b) Does the answer to part (a) depend on whether the painter climbs at constant speed or accelerates up the ladder?

6.6 •• Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 1.80×10^6 N, one 14° west of north and the other 14° east of north, as they pull the tanker 0.75 km toward the north. What is the total work they do on the supertanker?

6.7 • Two blocks are connected by a very light string passing over a massless and frictionless pulley (Fig. E6.7). Traveling at constant speed, the 20.0-N block moves 75.0 cm to the right and the 12.0-N block moves 75.0 cm downward. During this process, how much work is done (a) on the 12.0-N block by (i) gravity and (ii) the tension in the string? (b) On the 20.0-N block by (i) gravity,

(ii) the tension in the string, (iii) friction, and (iv) the normal force? (c) Find the total work done on each block.

Figure E6.7

6.8 •• A loaded grocery cart is rolling across a parking lot in a strong wind. You apply a constant force $\vec{F} = (30 \text{ N})\hat{i} - (40 \text{ N})\hat{j}$ to the cart as it undergoes a displacement $\vec{s} = (-9.0 \text{ m})\hat{i} - (3.0 \text{ m})\hat{j}$. How much work does the force you apply do on the grocery cart?

6.9 • A 0.800-kg ball is tied to the end of a string 1.60 m long and swung in a vertical circle. (a) During one complete circle, starting anywhere, calculate the total work done on the ball by (i) the tension in the string and (ii) gravity. (b) Repeat part (a) for motion along the semicircle from the lowest to the highest point on the path.

6.10 •• An 8.00-kg package in a mail-sorting room slides 2.00 m down a chute that is inclined at 53.0° below the horizontal. The coefficient of kinetic friction between the package and the chute's surface is 0.40. Calculate the work done on the package by (a) friction, (b) gravity, and (c) the normal force. (d) What is the net work done on the package?

6.11 •• A boxed 10.0-kg computer monitor is dragged by friction 5.50 m up along the moving surface of a conveyor belt inclined at an angle of 36.9° above the horizontal. If the monitor's speed is a constant 2.10 cm/s, how much work is done on the monitor by (a) friction, (b) gravity, and (c) the normal force of the conveyor belt? **6.12** •• You apply a constant force $\vec{F} = (-68.0 \text{ N})\hat{i} + (36.0 \text{ N})\hat{j}$ to a 380-kg car as the car travels 48.0 m in a direction that is 240.0° counterclockwise from the +x-axis. How much work does the force you apply do on the car?

Section 6.2 Kinetic Energy and the Work-Energy Theorem

6.13 •• Animal Energy. **BIO** Adult cheetahs, the fastest of the great cats, have a mass of about 70 kg and have been clocked running at up to 72 mph (32 m/s). (a) How many joules of kinetic energy does such a swift cheetah have? (b) By what factor would its kinetic energy change if its speed were doubled?

6.14 •• A 1.50-kg book is sliding along a rough horizontal surface. At point *A* it is moving at 3.21 m/s, and at point *B* it has slowed to 1.25 m/s. (a) How much work was done on the book between *A* and *B*? (b) If -0.750 J of work is done on the book from *B* to *C*, how fast is it moving at point *C*? (c) How fast would it be moving at *C* if +0.750 J of work were done on it from *B* to *C*? **6.15** • **Meteor Crater.** About 50,000 years ago, a meteor crashed into the earth near present-day Flagstaff, Arizona. Measurements from 2005 estimate that this meteor had a mass of about 1.4×10^8 kg (around 150,000 tons) and hit the ground at a speed of 12 km/s. (a) How much kinetic energy did this meteor deliver to the ground? (b) How does this energy compare to the energy released by a 1.0-megaton nuclear bomb? (A megaton bomb releases the same amount of energy as a million tons of TNT, and 1.0 ton of TNT releases 4.184×10^9 J of energy.)

6.16 • Some Typical Kinetic Energies. (a) In the Bohr model of the atom, the ground-state electron in hydrogen has an orbital speed of 2190 km/s. What is its kinetic energy? (Consult Appendix F.)

(b) If you drop a 1.0-kg weight (about 2 lb) from a height of 1.0 m, how many joules of kinetic energy will it have when it reaches the ground? (c) Is it reasonable that a 30-kg child could run fast enough to have 100 J of kinetic energy?

6.17 •• In Fig. E6.7 assume that there is no friction force on the 20.0-N block that sits on the tabletop. The pulley is light and frictionless. (a) Calculate the tension T in the light string that connects the blocks. (b) For a displacement in which the 12.0-N block descends 1.20 m, calculate the total work done on (i) the 20.0-N block and (ii) the 12.0-N block. (c) For the displacement in part (b), calculate the total work done on the system of the two blocks. How does your answer compare to the work done on the 12.0-N block by gravity? (d) If the system is released from rest, what is the speed of the 12.0-N block when it has descended 1.20 m?

6.18 • A 4.80-kg watermelon is dropped from rest from the roof of a 25.0-m-tall building and feels no appreciable air resistance. (a) Calculate the work done by gravity on the watermelon during its displacement from the roof to the ground. (b) Just before it strikes the ground, what is the watermelon's (i) kinetic energy and (ii) speed? (c) Which of the answers in parts (a) and (b) would be *different* if there were appreciable air resistance?

6.19 •• Use the work–energy theorem to solve each of these problems. You can use Newton's laws to check your answers. Neglect air resistance in all cases. (a) A branch falls from the top of a 95.0-m-tall redwood tree, starting from rest. How fast is it moving when it reaches the ground? (b) A volcano ejects a boulder directly upward 525 m into the air. How fast was the boulder moving just as it left the volcano? (c) A skier moving at 5.00 m/s encounters a long, rough horizontal patch of snow having coefficient of kinetic friction 0.220 with her skis. How far does she travel on this patch before stopping? (d) Suppose the rough patch in part (c) was only 2.90 m long? How fast would the skier be moving when she reached the end of the patch? (e) At the base of a frictionless icy hill that rises at 25.0° above the horizontal, a toboggan has a speed of 12.0 m/s toward the hill. How high vertically above the base will it go before stopping?

6.20 •• You throw a 20-N rock vertically into the air from ground level. You observe that when it is 15.0 m above the ground, it is traveling at 25.0 m/s upward. Use the work–energy theorem to find (a) the rock's speed just as it left the ground and (b) its maximum height. **6.21** •• You are a member of an Alpine Rescue Team. You must project a box of supplies up an incline of constant slope angle α so that it reaches a stranded skier who is a vertical distance h above the bottom of the incline. The incline is slippery, but there is some friction present, with kinetic friction coefficient μ_k . Use the work–energy theorem to calculate the minimum speed you must give the box at the bottom of the incline so that it will reach the skier. Express your answer in terms of g, h, μ_k , and α .

6.22 •• A mass *m* slides down a smooth inclined plane from an initial vertical height *h*, making an angle α with the horizontal. (a) The work done by a force is the sum of the work done by the components of the force. Consider the components of gravity parallel and perpendicular to the surface of the plane. Calculate the work done on the mass by each of the components, and use these results to show that the work done by gravity is exactly the same as if the mass had fallen straight down through the air from a height *h*. (b) Use the work–energy theorem to prove that the speed of the mass at the bottom of the incline is the same as if it had been dropped from height *h*, independent of the slope angle. (c) Use the results of part (b) to find the speed of a rock that slides down an icy frictionless hill, starting from rest 15.0 m above the bottom.

6.23 • A sled with mass 8.00 kg moves in a straight line on a frictionless horizontal surface. At one point in its path, its speed is 4.00 m/s; after it has traveled 2.50 m beyond this point, its speed is 6.00 m/s. Use the work–energy theorem to find the force acting on the sled, assuming that this force is constant and that it acts in the direction of the sled's motion.

6.24 •• A soccer ball with mass 0.420 kg is initially moving with speed 2.00 m/s. A soccer player kicks the ball, exerting a constant force of magnitude 40.0 N in the same direction as the ball's motion. Over what distance must the player's foot be in contact with the ball to increase the ball's speed to 6.00 m/s?

6.25 • A 12-pack of Omni-Cola (mass 4.30 kg) is initially at rest on a horizontal floor. It is then pushed in a straight line for 1.20 m by a trained dog that exerts a horizontal force with magnitude 36.0 N. Use the work–energy theorem to find the final speed of the 12-pack if (a) there is no friction between the 12-pack and the floor, and (b) the coefficient of kinetic friction between the 12-pack and the floor is 0.30.

6.26 • A batter hits a baseball with mass 0.145 kg straight upward with an initial speed of 25.0 m/s. (a) How much work has gravity done on the baseball when it reaches a height of 20.0 m above the bat? (b) Use the work–energy theorem to calculate the speed of the baseball at a height of 20.0 m above the bat. You can ignore air resistance. (c) Does the answer to part (b) depend on whether the baseball is moving upward or downward at a height of 20.0 m? Explain.

6.27 • A little red wagon with mass 7.00 kg moves in a straight line on a frictionless horizontal surface. It has an initial speed of 4.00 m/s and then is pushed 3.0 m in the direction of the initial velocity by a force with a magnitude of 10.0 N. (a) Use the work–energy theorem to calculate the wagon's final speed. (b) Calculate the acceleration produced by the force. Use this acceleration in the kinematic relationships of Chapter 2 to calculate the wagon's final speed. Compare this result to that calculated in part (a).

6.28 •• A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9° below the horizontal. If the block of ice starts from rest, what is its final speed? You can ignore friction.

6.29 • Stopping Distance. A car is traveling on a level road with speed v_0 at the instant when the brakes lock, so that the tires slide rather than roll. (a) Use the work–energy theorem to calculate the minimum stopping distance of the car in terms of v_0 , g, and the coefficient of kinetic friction μ_k between the tires and the road. (b) By what factor would the minimum stopping distance change if (i) the coefficient of kinetic friction were doubled, or (ii) the initial speed were doubled, or (iii) both the coefficient of kinetic friction and the initial speed were doubled?

6.30 •• A 30.0-kg crate is initially moving with a velocity that has magnitude 3.90 m/s in a direction 37.0° west of north. How much work must be done on the crate to change its velocity to 5.62 m/s in a direction 63.0° south of east?

Section 6.3 Work and Energy with Varying Forces

6.31 • **BIO** Heart Repair. A surgeon is using material from a donated heart to repair a patient's damaged aorta and needs to know the elastic characteristics of this aortal material. Tests performed on a 16.0-cm strip of the donated aorta reveal that it stretches 3.75 cm when a 1.50-N pull is exerted on it. (a) What is the force constant of this strip of aortal material? (b) If the maximum distance it will be able to stretch when it replaces the aorta in the damaged heart is 1.14 cm, what is the greatest force it will be able to exert there?

6.32 •• To stretch a spring 3.00 cm from its unstretched length, 12.0 J of work must be done. (a) What is the force constant of this spring? (b) What magnitude force is needed to stretch the spring 3.00 cm from its unstretched length? (c) How much work must be done to compress this spring 4.00 cm from its unstretched length, and what force is needed to compress it this distance? Figure **E6.33**

6.33 • Three identical 6.40-kg masses are hung by three identical springs, as shown in Fig. E6.33. Each spring has a force constant of 7.80 kN/m and was 12.0 cm long before any masses were attached to it. (a) Draw a free-body diagram of each mass. (b) How long is each spring when hanging as shown? (*Hint:* First isolate only the bottom mass. Then treat the bottom two masses as a system. Finally, treat all three masses as a system.)

6.34 • A child applies a force \vec{F} parallel to the *x*-axis to a 10.0-kg sled moving on the frozen surface of a small pond. As the child controls the speed of the sled, the *x*-component of the force she applies varies with the *x*-coordinate of the sled as shown in Fig. E6.34. Calculate the work done by the force \vec{F} when the sled moves (a) from x = 0 to x = 8.0 m; (b) from

-w--w-

x = 8.0 m to x = 12.0 m; (c) from x = 0 to 12.0 m.

6.35 •• Suppose the sled in Exercise 6.34 is initially at rest at x = 0. Use the work–energy theorem to find the speed of the sled at (a) x = 8.0 m and (b) x = 12.0 m. You can ignore friction between the sled and the surface of the pond.

6.36 • A 2.0-kg box and a 3.0-kg box on a perfectly smooth horizontal floor have a spring of force constant 250 N/m compressed between them. If the initial compression of the spring is 6.0 cm, find the acceleration of each box the instant after they are released. Be sure to include free-body diagrams of each box as part of your solution.

6.37 •• A 6.0-kg box moving at 3.0 m/s on a horizontal, frictionless surface runs into a light spring of force constant 75 N/cm. Use the work–energy theorem to find the maximum compression of the spring.

6.38 •• Leg Presses. As part of your daily workout, you lie on your back and push with your feet against a platform attached to two stiff springs arranged side by side so that they are parallel to each other. When you push the platform, you compress the springs. You do 80.0 J of work when you compress the springs 0.200 m from their uncompressed length. (a) What magnitude of force must you apply to hold the platform in this position? (b) How much *additional* work must you do to move the platform 0.200 m *farther,* and what maximum force must you apply?

6.39 •• (a) In Example 6.7 (Section 6.3) it was calculated that with the air track turned off, the glider travels 8.6 cm before it stops instantaneously. How large would the coefficient of static friction μ_s have to be to keep the glider from springing back to the left? (b) If the coefficient of static friction between the glider and the track is $\mu_s = 0.60$, what is the maximum initial speed v_1 that the glider can be given and still remain at rest after it stops

instantaneously? With the air track turned off, the coefficient of kinetic friction is $\mu_k = 0.47$.

6.40 • A 4.00-kg block of ice is placed against a horizontal spring that has force constant k = 200 N/m and is compressed 0.025 m. The spring is released and accelerates the block along a horizontal surface. You can ignore friction and the mass of the spring. (a) Calculate the work done on the block by the spring during the motion of the block from its initial position to where the spring has returned to its uncompressed length. (b) What is the speed of the block after it leaves the spring?

6.41 • A force \vec{F} is applied to a 2.0-kg radio-controlled model car parallel to the *x*-axis as it moves along a straight track. The *x*-component of the force varies with the *x*-coordinate of the car as shown in Fig. E6.41. Calculate the work done by the force \vec{F} when the car moves from (a) x = 0 to x = 3.0 m; (b) x = 3.0 m to x = 4.0 m; (c) x = 4.0 m to x = 7.0 m; (d) x = 0 to x = 7.0 m; (e) x = 7.0 m to x = 2.0 m.

Figure E6.41

6.42 • Suppose the 2.0-kg model car in Exercise 6.41 is initially at rest at x = 0 and \vec{F} is the net force acting on it. Use the work–energy theorem to find the speed of the car at (a) x = 3.0 m; (b) x = 4.0 m; (c) x = 7.0 m.

6.43 •• At a waterpark, sleds with riders are sent along a slippery, horizontal surface by the release of a large compressed spring. The spring with force constant k = 40.0 N/cm and negligible mass rests on the frictionless horizontal surface. One end is in contact with a stationary wall. A sled and rider with total mass 70.0 kg are pushed against the other end, compressing the spring 0.375 m. The sled is then released with zero initial velocity. What is the sled's speed when the spring (a) returns to its uncompressed length and (b) is still compressed 0.200 m?

6.44 • Half of a Spring. (a) Suppose you cut a massless ideal spring in half. If the full spring had a force constant k, what is the force constant of each half, in terms of k? (*Hint:* Think of the original spring as two equal halves, each producing the same force as the entire spring. Do you see why the forces must be equal?) (b) If you cut the spring into three equal segments instead, what is the force constant of each one, in terms of k?

6.45 •• A small glider is placed against a compressed spring at the bottom of an air track that slopes upward at an angle of 40.0° above the horizontal. The glider has mass 0.0900 kg. The spring has k = 640 N/m and negligible mass. When the spring is released, the glider travels a maximum distance of 1.80 m along the air track before sliding back down. Before reaching this maximum distance, the glider loses contact with the spring. (a) What distance was the spring originally compressed? (b) When the glider has traveled along the air track 0.80 m from its initial position against the compressed spring, is it still in contact with the spring? What is the kinetic energy of the glider at this point?

6.46 • An ingenious bricklayer builds a device for shooting bricks up to the top of the wall where he is working. He places a

brick on a vertical compressed spring with force constant k = 450 N/m and negligible mass. When the spring is released, the brick is propelled upward. If the brick has mass 1.80 kg and is to reach a maximum height of 3.6 m above its initial position on the compressed spring, what distance must the bricklayer compress the spring initially? (The brick loses contact with the spring when the spring returns to its uncompressed length. Why?)

6.47 •• CALC A force in the +x-direction with magnitude F(x) = 18.0 N - (0.530 N/m)x is applied to a 6.00-kg box that is sitting on the horizontal, frictionless surface of a frozen lake. F(x) is the only horizontal force on the box. If the box is initially at rest at x = 0, what is its speed after it has traveled 14.0 m?

Section 6.4 Power

6.48 •• A crate on a motorized cart starts from rest and moves with a constant eastward acceleration of $a = 2.80 \text{ m/s}^2$. A worker assists the cart by pushing on the crate with a force that is eastward and has magnitude that depends on time according to F(t) = (5.40 N/s)t. What is the instantaneous power supplied by this force at t = 5.00 s?

6.49 • How many joules of energy does a 100-watt light bulb use per hour? How fast would a 70-kg person have to run to have that amount of kinetic energy?

6.50 •• **BIO** Should You Walk or Run? It is 5.0 km from your home to the physics lab. As part of your physical fitness program, you could run that distance at 10 km/h (which uses up energy at the rate of 700 W), or you could walk it leisurely at 3.0 km/h (which uses energy at 290 W). Which choice would burn up more energy, and how much energy (in joules) would it burn? Why is it that the more intense exercise actually burns up less energy than the less intense exercise?

6.51 •• Magnetar. On December 27, 2004, astronomers observed the greatest flash of light ever recorded from outside the solar system. It came from the highly magnetic neutron star SGR 1806-20 (a *magnetar*). During 0.20 s, this star released as much energy as our sun does in 250,000 years. If P is the average power output of our sun, what was the average power output (in terms of P) of this magnetar?

6.52 •• A 20.0-kg rock is sliding on a rough, horizontal surface at 8.00 m/s and eventually stops due to friction. The coefficient of kinetic friction between the rock and the surface is 0.200. What average power is produced by friction as the rock stops?

6.53 • A tandem (two-person) bicycle team must overcome a force of 165 N to maintain a speed of 9.00 m/s. Find the power required per rider, assuming that each contributes equally. Express your answer in watts and in horsepower.

6.54 •• When its 75-kW (100-hp) engine is generating full power, a small single-engine airplane with mass 700 kg gains altitude at a rate of 2.5 m/s (150 m/min, or 500 ft/min). What fraction of the engine power is being used to make the airplane climb? (The remainder is used to overcome the effects of air resistance and of inefficiencies in the propeller and engine.)

6.55 •• Working Like a Horse. Your job is to lift 30-kg crates a vertical distance of 0.90 m from the ground onto the bed of a truck. (a) How many crates would you have to load onto the truck in 1 minute for the average power output you use to lift the crates to equal 0.50 hp? (b) How many crates for an average power output of 100 W?

6.56 • An elevator has mass 600 kg, not including passengers. The elevator is designed to ascend, at constant speed, a vertical

distance of 20.0 m (five floors) in 16.0 s, and it is driven by a motor that can provide up to 40 hp to the elevator. What is the maximum number of passengers that can ride in the elevator? Assume that an average passenger has mass 65.0 kg.

6.57 •• A ski tow operates on a 15.0° slope of length 300 m. The rope moves at 12.0 km/h and provides power for 50 riders at one time, with an average mass per rider of 70.0 kg. Estimate the power required to operate the tow.

6.58 •• The aircraft carrier *John F. Kennedy* has mass 7.4×10^7 kg. When its engines are developing their full power of 280,000 hp, the *John F. Kennedy* travels at its top speed of 35 knots (65 km/h). If 70% of the power output of the engines is applied to pushing the ship through the water, what is the magnitude of the force of water resistance that opposes the carrier's motion at this speed?

6.59 • **BIO** A typical flying insect applies an average force equal to twice its weight during each downward stroke while hovering. Take the mass of the insect to be 10 g, and assume the wings move an average downward distance of 1.0 cm during each stroke. Assuming 100 downward strokes per second, estimate the average power output of the insect.

PROBLEMS

6.60 ••• **CALC** A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn door, the cow walks from x = 0 to x = 6.9 m as you apply a force with *x*-component $F_x = -[20.0 \text{ N} + (3.0 \text{ N/m})x]$. How much work does the force you apply do on the cow during this displacement?

6.61 •• CALC Rotating Bar. A thin, uniform 12.0-kg bar that is 2.00 m long rotates uniformly about a pivot at one end, making 5.00 complete revolutions every 3.00 seconds. What is the kinetic energy of this bar? (Hint: Different points in the bar have different speeds. Break the bar up into infinitesimal segments of mass dm and integrate to add up the kinetic energies of all these segments.) 6.62 •• A Near-Earth Asteroid. On April 13, 2029 (Friday the 13th!), the asteroid 99942 Apophis will pass within 18,600 mi of the earth—about $\frac{1}{13}$ the distance to the moon! It has a density of 2600 kg/m³, can be modeled as a sphere 320 m in diameter, and will be traveling at 12.6 km/s. (a) If, due to a small disturbance in its orbit, the asteroid were to hit the earth, how much kinetic energy would it deliver? (b) The largest nuclear bomb ever tested by the United States was the "Castle/Bravo" bomb, having a yield of 15 megatons of TNT. (A megaton of TNT releases 4.184×10^{15} J of energy.) How many Castle/Bravo bombs would be equivalent to the energy of Apophis?

6.63 • A luggage handler pulls a 20.0-kg suitcase up a ramp inclined at 25.0° above the horizontal by a force \vec{F} of magnitude 140 N that acts parallel to the ramp. The coefficient of kinetic friction between the ramp and the incline is $\mu_k = 0.300$. If the suitcase travels 3.80 m along the ramp, calculate (a) the work done on the suitcase by the force \vec{F} ; (b) the work done on the suitcase by the gravitational force; (c) the work done on the suitcase by the friction force; (e) the total work done on the suitcase. (f) If the speed of the suitcase is zero at the bottom of the ramp, what is its speed after it has traveled 3.80 m along the ramp?

6.64 • **BIO** Chin-Ups. While doing a chin-up, a man lifts his body 0.40 m. (a) How much work must the man do per kilogram of body mass? (b) The muscles involved in doing a chin-up can generate about 70 J of work per kilogram of muscle mass. If the man can

just barely do a 0.40-m chin-up, what percentage of his body's mass do these muscles constitute? (For comparison, the *total* percentage of muscle in a typical 70-kg man with 14% body fat is about 43%.) (c) Repeat part (b) for the man's young son, who has arms half as long as his father's but whose muscles can also generate 70 J of work per kilogram of muscle mass. (d) Adults and children have about the same percentage of muscle in their bodies. Explain why children can commonly do chin-ups more easily than their fathers.

6.65 ••• **CP** A 20.0-kg crate sits at rest at the bottom of a 15.0-m-long ramp that is inclined at 34.0° above the horizontal. A constant horizontal force of 290 N is applied to the crate to push it up the ramp. While the crate is moving, the ramp exerts a constant frictional force on it that has magnitude 65.0 N. (a) What is the total work done on the crate during its motion from the bottom to the top of the ramp? (b) How much time does it take the crate to travel to the top of the ramp?

6.66 ••• Consider the blocks in Exercise 6.7 as they move 75.0 cm. Find the total work done on each one (a) if there is no friction between the table and the 20.0-N block, and (b) if $\mu_s = 0.500$ and $\mu_k = 0.325$ between the table and the 20.0-N block.

6.67 • The space shuttle, with mass 86,400 kg, is in a circular orbit of radius 6.66×10^6 m around the earth. It takes 90.1 min for the shuttle to complete each orbit. On a repair mission, the shuttle is cautiously moving 1.00 m closer to a disabled satellite every 3.00 s. Calculate the shuttle's kinetic energy (a) relative to the earth and (b) relative to the satellite.

6.68 •• A 5.00-kg package slides 1.50 m down a long ramp that is inclined at 24.0° below the horizontal. The coefficient of kinetic friction between the package and the ramp is $\mu_k = 0.310$. Calculate (a) the work done on the package by friction; (b) the work done on the package by gravity; (c) the work done on the package by the normal force; (d) the total work done on the package. (e) If the package has a speed of 2.20 m/s at the top of the ramp, what is its speed after sliding 1.50 m down the ramp?

6.69 •• **CP BIO Whiplash Injuries.** When a car is hit from behind, its passengers undergo sudden forward acceleration, which can cause a severe neck injury known as whiplash. During normal acceleration, the neck muscles play a large role in accelerating the head so that the bones are not injured. But during a very sudden acceleration, the muscles do not react immediately because they are flexible, so most of the accelerating force is provided by the neck bones. Experimental tests have shown that these bones will fracture if they absorb more than 8.0 J of energy. (a) If a car waiting at a stoplight is rear-ended in a collision that lasts for 10.0 ms, what is the greatest speed this car and its driver can reach without breaking neck bones if the driver's head has a mass of 5.0 kg (which is about right for a 70-kg person)? Express your answer in m/s and in mph. (b) What is the acceleration of the passengers during the collision in part (a), and how large a force is acting to accelerate their heads? Express the acceleration in m/s^2 and in g's. 6.70 •• CALC A net force along the x-axis that has x-component $F_x = -12.0 \text{ N} + (0.300 \text{ N/m}^2)x^2$ is applied to a 5.00-kg object that is initially at the origin and moving in the -x-direction with a speed of 6.00 m/s. What is the speed of the object when it reaches the point x = 5.00 m?

6.71 • **CALC** An object is attracted toward the origin with a force given by $F_x = -k/x^2$. (Gravitational and electrical forces have this distance dependence.) (a) Calculate the work done by the force F_x when the object moves in the x-direction from x_1 to x_2 . If $x_2 > x_1$, is the work done by F_x positive or negative? (b) The only other force acting on the object is a force that you exert with your

hand to move the object slowly from x_1 to x_2 . How much work do you do? If $x_2 > x_1$, is the work you do positive or negative? (c) Explain the similarities and differences between your answers to parts (a) and (b).

6.72 ••• **CALC** The gravitational pull of the earth on an object is inversely proportional to the square of the distance of the object from the center of the earth. At the earth's surface this force is equal to the object's normal weight mg, where $g = 9.8 \text{ m/s}^2$, and at large distances, the force is zero. If a 20,000-kg asteroid falls to earth from a very great distance away, what will be its minimum speed as it strikes the earth's surface, and how much kinetic energy will it impart to our planet? You can ignore the effects of the earth's atmosphere.

6.73 • **CALC** Varying Coefficient of Friction. A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point *P*, it encounters a rough section. On the rough section, the coefficient of friction is not constant, but starts at 0.100 at *P* and increases linearly with distance past *P*, reaching a value of 0.600 at 12.5 m past point *P*. (a) Use the work–energy theorem to find how far this box slides before stopping. (b) What is the coefficient of friction at the stopping point? (c) How far would the box have slid if the friction coefficient didn't increase but instead had the constant value of 0.100?

6.74 •• CALC Consider a spring that does not obey Hooke's law very faithfully. One end of the spring is fixed. To keep the spring stretched or compressed an amount x, a force along the x-axis with x-component $F_x = kx - bx^2 + cx^3$ must be applied to the free end. Here k = 100 N/m, $b = 700 \text{ N/m}^2$, and $c = 12,000 \text{ N/m}^3$. Note that x > 0 when the spring is stretched and x < 0 when it is compressed. (a) How much work must be done to stretch this spring by 0.050 m from its unstretched length? (b) How much work must be done to compress this spring by 0.050 m from its unstretched length? (c) Is it easier to stretch or compress this spring? Explain why in terms of the dependence of F_x on x. (Many real springs behave qualitatively in the same way.)

6.75 •• **CP** A small block with a mass of 0.0900 kg is attached to a cord passing through a hole in a frictionless, horizontal surface (Fig. P6.75). The block is originally revolving at a distance of 0.40 m from the hole with a speed of 0.70 m/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.10 m. At this new distance, the speed of the

block is observed to be 2.80 m/s. (a) What is the tension in the cord in the original situation when the block has speed v = 0.70 m/s? (b) What is the tension in the cord in the final situation when the block has speed v = 2.80 m/s? (c) How much work was done by the person who pulled on the cord?

6.76 •• CALC Proton Bombardment. A proton with mass 1.67×10^{-27} kg is propelled at an initial speed of 3.00×10^5 m/s directly toward a uranium nucleus 5.00 m away. The proton is repelled by the uranium nucleus with a force of magnitude $F = \alpha/x^2$, where x is the separation between the two objects and $\alpha = 2.12 \times 10^{-26} \text{ N} \cdot \text{m}^2$. Assume that the uranium nucleus remains at rest. (a) What is the speed of the proton when it is 8.00×10^{-10} m from the uranium nucleus? (b) As the proton approaches the uranium nucleus, the repulsive force slows down

the proton until it comes momentarily to rest, after which the proton moves away from the uranium nucleus. How close to the uranium nucleus does the proton get? (c) What is the speed of the proton when it is again 5.00 m away from the uranium nucleus?

6.77 •• **CP CALC** A block of ice with mass 4.00 kg is initially at rest on a frictionless, horizontal surface. A worker then applies a horizontal force \vec{F} to it. As a result, the block moves along the *x*-axis such that its position as a function of time is given by $x(t) = \alpha t^2 + \beta t^3$, where $\alpha = 0.200 \text{ m/s}^2$ and $\beta = 0.0200 \text{ m/s}^3$. (a) Calculate the velocity of the object when t = 4.00 s. (b) Calculate the magnitude of \vec{F} when t = 4.00 s. (c) Calculate the work done by the force \vec{F} during the first 4.00 s of the motion.

6.78 •• You and your bicycle have combined mass 80.0 kg. When you reach the base of a bridge, you are traveling along the road at 5.00 m/s (Fig. P6.78). At the top of the bridge, you have climbed a vertical distance of 5.20 m and have slowed to 1.50 m/s. You can ignore work done by friction and any inefficiency in the bike or your legs. (a) What is the total work done on you and your bicycle when you go from the base to the top of the bridge? (b) How much work have you done with the force you apply to the pedals?

6.79 •• You are asked to design spring bumpers for the walls of a parking garage. A freely rolling 1200-kg car moving at 0.65 m/s is to compress the spring no more than 0.090 m before stopping. What should be the force constant of the spring? Assume that the spring has negligible mass.

6.80 •• The spring of a spring gun has force constant k = 400 N/m and negligible mass. The spring is compressed 6.00 cm, and a ball with mass 0.0300 kg is placed in the horizontal barrel against the compressed spring. The spring is then released, and the ball is propelled out the barrel of the gun. The barrel is 6.00 cm long, so the ball leaves the barrel at the same point that it loses contact with the spring. The gun is held so the barrel is horizontal. (a) Calculate the speed with which the ball leaves the barrel if you can ignore friction. (b) Calculate the speed of the ball as it leaves the barrel if a constant resisting force of 6.00 N acts on the ball as it moves along the barrel. (c) For the situation in part (b), at what position along the barrel does the ball have the greatest speed, and what is that speed? (In this case, the maximum speed does not occur at the end of the barrel.)

6.81 ••• A 2.50-kg textbook is forced against a horizontal spring of negligible mass and force constant 250 N/m, compressing the spring a distance of 0.250 m. When released, the textbook slides on a horizontal tabletop with coefficient of kinetic friction

 $\mu_{\rm k} = 0.30$. Use the work–energy theorem to find how far the textbook moves from its initial position before coming to rest.

6.82 ••• Pushing a Cat. Your cat "Ms." (mass 7.00 kg) is trying to make it to the top of a frictionless ramp 2.00 m long and inclined upward at 30.0° above the horizontal. Since the poor cat can't get any traction on the ramp, you push her up the entire length of the ramp by exerting a constant 100-N force parallel to the ramp. If Ms. takes a running start so that she is moving at 2.40 m/s at the bottom of the ramp, what is her speed when she reaches the top of the incline? Use the work–energy theorem.

6.83 •• **Crash Barrier.** A student proposes a design for an automobile crash barrier in which a 1700-kg sport utility vehicle moving at 20.0 m/s crashes into a spring of negligible mass that slows it to a stop. So that the passengers are not injured, the acceleration of the vehicle as it slows can be no greater than 5.00g. (a) Find the required spring constant k, and find the distance the spring will compress in slowing the vehicle to a stop. In your calculation, disregard any deformation or crumpling of the vehicle and the friction between the vehicle and the ground. (b) What disadvantages are there to this design?

6.84 ••• A physics professor is pushed up a ramp inclined upward at 30.0° above the horizontal as he sits in his desk chair that slides on frictionless rollers. The combined mass of the professor and chair is 85.0 kg. He is pushed 2.50 m along the incline by a group of students who together exert a constant horizontal force of 600 N. The professor's speed at the bottom of the ramp is 2.00 m/s. Use the work–energy theorem to find his speed at the top of the ramp.

Figure **P6.85**

= 500 N/m

NNNN

6.85 • A 5.00-kg block is moving at $v_0 = 6.00$ m/s along a frictionless, horizontal surface toward a spring with force constant k = 500 N/m that is attached to a wall (Fig. P6.85). The spring has negligible mass.

(a) Find the maximum distance the spring will be compressed. (b) If the spring is to compress by no more than 0.150 m, what should be the maximum value of v_0 ?

6.86 •• Consider the system shown in Fig. P6.86. The rope and pulley have negligible mass, and the pulley is frictionless. The coefficient of kinetic friction between the 8.00-kg block and the tabletop is $\mu_k = 0.250$. The blocks are released from rest. Use energy methods to calculate the speed of the 6.00-kg block after it has descended 1.50 m.

 $v_0 = 6.00 \text{ m/s}$

5.00

kg

6.87 •• Consider the system shown in Fig. P6.86. The rope and pulley have negligible mass, and the pulley is frictionless. Initially the 6.00-kg block is moving downward and the 8.00-kg block is moving to the right, both with a speed of 0.900 m/s. The blocks come to rest after moving 2.00 m. Use the work–energy theorem to calculate the coefficient of kinetic friction between the 8.00-kg block and the tabletop.

6.88 ••• **CALC** Bow and Arrow. Figure P6.88 shows how the force exerted by the string of a compound bow on an arrow varies as a function of how far back the arrow is pulled (the

draw length). Assume that the same force is exerted on the arrow as it moves forward after being released. Full draw for this bow is at a draw length of 75.0 cm. If the bow shoots a 0.0250-kg arrow from full draw, what is the speed of the arrow as it leaves the bow?

Figure **P6.88**

6.89 •• On an essentially frictionless, horizontal ice rink, a skater moving at 3.0 m/s encounters a rough patch that reduces her speed to 1.65 m/s due to a friction force that is 25% of her weight. Use the work–energy theorem to find the length of this rough patch.

6.90 • **Rescue.** Your friend (mass 65.0 kg) is standing on the ice in the middle of a frozen pond. There is very little friction between her feet and the ice, so she is unable to walk. Fortunately, a light rope is tied around her waist and you stand on the bank holding the other end. You pull on the rope for 3.00 s and accelerate your friend from rest to a speed of 6.00 m/s while you remain at rest. What is the average power supplied by the force you applied?

6.91 •• A pump is required to lift 800 kg of water (about 210 gallons) per minute from a well 14.0 m deep and eject it with a speed of 18.0 m/s. (a) How much work is done per minute in lifting the water? (b) How much work is done in giving the water the kinetic energy it has when ejected? (c) What must be the power output of the pump?

6.92 •• **BIO** All birds, independent of their size, must maintain a power output of 10–25 watts per kilogram of body mass in order to fly by flapping their wings. (a) The Andean giant hummingbird (*Patagona gigas*) has mass 70 g and flaps its wings 10 times per second while hovering. Estimate the amount of work done by such a hummingbird in each wingbeat. (b) A 70-kg athlete can maintain a power output of 1.4 kW for no more than a few seconds; the *steady* power output of a typical athlete is only 500 W or so. Is it possible for a human-powered aircraft to fly for extended periods by flapping its wings? Explain.

6.93 ••• A physics student spends part of her day walking between classes or for recreation, during which time she expends energy at an average rate of 280 W. The remainder of the day she is sitting in class, studying, or resting; during these activities, she expends energy at an average rate of 100 W. If she expends a total of 1.1×10^7 J of energy in a 24-hour day, how much of the day did she spend walking?

6.94 ••• The Grand Coulee Dam is 1270 m long and 170 m high. The electrical power output from generators at its base is approximately 2000 MW. How many cubic meters of water must flow from the top of the dam per second to produce this amount of power if 92% of the work done on the water by gravity is converted to electrical energy? (Each cubic meter of water has a mass of 1000 kg.)

6.95 • **BIO Power of the Human Heart.** The human heart is a powerful and extremely reliable pump. Each day it takes in and discharges about 7500 L of blood. Assume that the work done by the heart is equal to the work required to lift this amount of blood a height equal to that of the average American woman (1.63 m). The density (mass per unit volume) of blood is $1.05 \times 10^3 \text{ kg/m}^3$. (a) How much work does the heart do in a day? (b) What is the heart's power output in watts?

6.96 ••• Six diesel units in series can provide 13.4 MW of power to the lead car of a freight train. The diesel units have total mass 1.10×10^6 kg. The average car in the train has mass 8.2×10^4 kg and requires a horizontal pull of 2.8 kN to move at a constant 27 m/s on level tracks. (a) How many cars can be in the train under these conditions? (b) This would leave no power for accelerating or climbing hills. Show that the extra force needed to accelerate the train is about the same for a 0.10-m/s² acceleration or a 1.0% slope (slope angle α = arctan 0.010). (c) With the 1.0% slope, show that an extra 2.9 MW of power is needed to maintain the 27-m/s speed of the diesel units. (d) With 2.9 MW less power available, how many cars can the six diesel units pull up a 1.0% slope at a constant 27 m/s?

6.97 • It takes a force of 53 kN on the lead car of a 16-car passenger train with mass 9.1×10^5 kg to pull it at a constant 45 m/s (101 mi/h) on level tracks. (a) What power must the locomotive provide to the lead car? (b) How much more power to the lead car than calculated in part (a) would be needed to give the train an acceleration of 1.5 m/s², at the instant that the train has a speed of 45 m/s on level tracks? (c) How much more power to the lead car than that calculated in part (a) would be needed to move the train up a 1.5% grade (slope angle α = arctan 0.015) at a constant 45 m/s?

6.98 • **CALC** An object has several forces acting on it. One of these forces is $\vec{F} = axy\hat{i}$, a force in the *x*-direction whose magnitude depends on the position of the object, with $\alpha = 2.50 \text{ N/m}^2$. Calculate the work done on the object by this force for the following displacements of the object: (a) The object starts at the point x = 0, y = 3.00 m and moves parallel to the *x*-axis to the point x = 2.00 m, y = 3.00 m. (b) The object starts at the point x = 2.00 m, y = 0 and moves in the *y*-direction to the point x = 2.00 m, y = 3.00 m. (c) The object starts at the origin and moves on the line y = 1.5x to the point x = 2.00 m, y = 3.00 m.

6.99 •• Cycling. For a touring bicyclist the drag coefficient $C(f_{air} = \frac{1}{2}CA\rho v^2)$ is 1.00, the frontal area A is 0.463 m², and the coefficient of rolling friction is 0.0045. The rider has mass 50.0 kg, and her bike has mass 12.0 kg. (a) To maintain a speed of 12.0 m/s (about 27 mi/h) on a level road, what must the rider's power output to the rear wheel be? (b) For racing, the same rider uses a different bike with coefficient of rolling friction 0.0030 and mass 9.00 kg. She also crouches down, reducing her drag coefficient to 0.88 and reducing her frontal area to 0.366 m². What must her power output to the rear wheel be then to maintain a speed of 12.0 m/s? (c) For the situation in part (b), what power output is required to maintain a speed of 6.0 m/s? Note the great drop in power requirement when the speed is only halved. (For more on aerodynamic speed limitations for a wide variety of human-powered vehicles, see "The Aerodynamics of Human-Powered Land Vehicles," Scientific American, December 1983.)

6.100 •• Automotive Power I. A truck engine transmits 28.0 kW (37.5 hp) to the driving wheels when the truck is traveling at a constant velocity of magnitude 60.0 km/h (37.3 mi/h) on a level

road. (a) What is the resisting force acting on the truck? (b) Assume that 65% of the resisting force is due to rolling friction and the remainder is due to air resistance. If the force of rolling friction is independent of speed, and the force of air resistance is proportional to the square of the speed, what power will drive the truck at 30.0 km/h? At 120.0 km/h? Give your answers in kilowatts and in horsepower.

6.101 •• Automotive Power II. (a) If 8.00 hp are required to drive a 1800-kg automobile at 60.0 km/h on a level road, what is the total retarding force due to friction, air resistance, and so on? (b) What power is necessary to drive the car at 60.0 km/h up a 10.0% grade (a hill rising 10.0 m vertically in 100.0 m horizontally)? (c) What power is necessary to drive the car at 60.0 km/h *down* a 1.00% grade? (d) Down what percent grade would the car coast at 60.0 km/h?

CHALLENGE PROBLEMS

6.102 •••• **CALC** On a winter day in Maine, a warehouse worker is shoving boxes up a rough plank inclined at an angle α above the horizontal. The plank is partially covered with ice, with more ice near the bottom of the plank than near the top, so that the coefficient of friction increases with the distance x along the plank: $\mu = Ax$, where A is a positive constant and the bottom of the plank is at x = 0. (For this plank the coefficients of kinetic and static friction are equal: $\mu_k = \mu_s = \mu$.) The worker shoves a box up the plank so that it leaves the bottom of the plank moving at speed v_0 . Show that when the box first comes to rest, it will remain at rest if

$${v_0}^2 \ge \frac{3g\sin^2\!\alpha}{A\cos\alpha}$$

6.103 ••• CALC A Spring with Mass. We usually ignore the kinetic energy of the moving coils of a spring, but let's try to get a reasonable approximation to this. Consider a spring of mass M, equilibrium length L_0 , and spring constant k. The work done to stretch or compress the spring by a distance L is $\frac{1}{2}kX^2$, where $X = L - L_0$. Consider a spring, as described above, that has one end fixed and the other end moving with speed v. Assume that the speed of points along the length of the spring varies linearly with distance l from the fixed end. Assume also that the mass Mof the spring is distributed uniformly along the length of the spring. (a) Calculate the kinetic energy of the spring in terms of M and v. (Hint: Divide the spring into pieces of length dl; find the speed of each piece in terms of l, v, and L; find the mass of each piece in terms of dl, M, and L; and integrate from 0 to L. The result is not $\frac{1}{2}Mv^2$, since not all of the spring moves with the same speed.) In a spring gun, a spring of mass 0.243 kg and force constant 3200 N/m is compressed 2.50 cm from its unstretched length. When the trigger is pulled, the spring pushes horizontally on a 0.053-kg ball. The work done by friction is negligible. Calculate the ball's speed when the spring reaches its uncompressed length (b) ignoring the mass of the spring and (c) including, using the results of part (a), the mass of the spring. (d) In part (c), what is the final kinetic energy of the ball and of the spring?

6.104 •••• **CALC** An airplane in flight is subject to an air resistance force proportional to the square of its speed v. But there is an additional resistive force because the airplane has wings. Air flowing over the wings is pushed down and slightly forward, so from Newton's third law the air exerts a force on the wings and airplane

that is up and slightly backward (Fig. P6.104). The upward force is the lift force that keeps the airplane aloft, and the backward force is called *induced drag*. At flying speeds, induced drag is inversely proportional to v^2 , so that the total air resistance force can be expressed by $F_{air} = \alpha v^2 + \beta / v^2$, where α and β are positive constants that depend on the shape and size of the airplane and the density of the air. For a Cessna 150, a small single-engine airplane, $\alpha = 0.30 \text{ N} \cdot \text{s}^2/\text{m}^2$ and $\beta = 3.5 \times 10^5 \text{ N} \cdot \text{m}^2/\text{s}^2$. In steady flight, the engine must provide a forward force that exactly balances the air resistance force. (a) Calculate the speed (in km/h) at which this airplane will have the maximum *range* (that is, travel the greatest distance) for a given quantity of fuel. (b) Calculate the speed (in km/h) for which the airplane will have the maximum *endurance* (that is, remain in the air the longest time).

Answers

Chapter Opening Question

The answer is yes. As the ant was exerting an upward force on the piece of cereal, the cereal was exerting a downward force of the same magnitude on the ant (due to Newton's third law). However, because the ant's body had an upward displacement, the work that the cereal did on the ant was *negative* (see Section 6.1).

Test Your Understanding Questions

6.1 Answer: (iii) The electron has constant velocity, so its acceleration is zero and (by Newton's second law) the net force on the electron is also zero. Therefore the total work done by all the forces (equal to the work done by the net force) must be zero as well. The individual forces may do nonzero work, but that's not what the question asks.

6.2 Answer: (iv), (i), (iii), (ii) Body (i) has kinetic energy $K = \frac{1}{2}mv^2 = \frac{1}{2}(2.0 \text{ kg})(5.0 \text{ m/s})^2 = 25 \text{ J}$. Body (ii) had zero kinetic energy initially and then had 30 J of work done it, so its final kinetic energy is $K_2 = K_1 + W = 0 + 30 \text{ J} = 30 \text{ J}$. Body (iii) had initial kinetic energy $K_1 = \frac{1}{2}mv_1^2 = \frac{1}{2}(1.0 \text{ kg})(4.0 \text{ m/s})^2 = 8.0 \text{ J}$ and then had 20 J of work done on it, so its final kinetic energy is $K_2 = K_1 + W = 8.0 \text{ J} + 20 \text{ J} = 28 \text{ J}$. Body (iv) had initial kinetic energy $K_1 = \frac{1}{2}mv_1^2 = \frac{1}{2}(2.0 \text{ kg})(10 \text{ m/s})^2 = 100 \text{ J}$; when it did 80 J of work on another body, the other body did -80 J of work on body (iv), so the final kinetic energy of body (iv) is $K_2 = K_1 + W = 100 \text{ J} + (-80 \text{ J}) = 20 \text{ J}$.

Figure **P6.104**

6.3 Answers: (a) (iii), (b) (iii) At any point during the pendulum bob's motion, the tension force and the weight both act perpendicular to the motion-that is, perpendicular to an infinitesimal displacement $d\vec{l}$ of the bob. (In Fig. 5.32b, the displacement $d\vec{l}$ would be directed outward from the plane of the free-body diagram.) Hence for either force the scalar product inside the integral in Eq. (6.14) is $\vec{F} \cdot d\vec{l} = 0$, and the work done along any part of the circular path (including a complete circle) is $W = \int \vec{F} \cdot d\vec{l} = 0$. 6.4 Answer: (v) The airliner has a constant horizontal velocity, so the net horizontal force on it must be zero. Hence the backward drag force must have the same magnitude as the forward force due to the combined thrust of the four engines. This means that the drag force must do negative work on the airplane at the same rate that the combined thrust force does positive work. The combined thrust does work at a rate of 4(108,000 hp) = 432,000 hp, so the drag force must do work at a rate of -432,000 hp.

Bridging Problem

Answers: (a)
$$v_1 = \sqrt{\frac{2}{m}(mgx_1 - \frac{1}{3}\alpha x_1^3)} = \sqrt{2gx_1 - \frac{2\alpha x_1^3}{3m}}$$

(b) $P = -F_{\text{spring}-1}v_1 = -\alpha x_1^2 \sqrt{2gx_1 - \frac{2\alpha x_1^3}{3m}}$
(c) $x_2 = \sqrt{\frac{3mg}{\alpha}}$ (d) No

POTENTIAL ENERGY AND ENERGY CONSERVATION

7

As this mallard glides in to a landing, it descends along a straight-line path at a constant speed. Does the mallard's mechanical energy increase, decrease, or stay the same during the glide? If it increases, where does the added energy come from? If it decreases, where does the lost energy go?

hen a diver jumps off a high board into a swimming pool, he hits the water moving pretty fast, with a lot of kinetic energy. Where does that energy come from? The answer we learned in Chapter 6 was that the gravitational force (his weight) does work on the diver as he falls. The diver's kinetic energy—energy associated with his *motion*—increases by an amount equal to the work done.

However, there is a very useful alternative way to think about work and kinetic energy. This new approach is based on the concept of *potential energy*, which is energy associated with the *position* of a system rather than its motion. In this approach, there is *gravitational potential energy* even while the diver is standing on the high board. Energy is not added to the earth–diver system as the diver falls, but rather a storehouse of energy is *transformed* from one form (potential energy) to another (kinetic energy) as he falls. In this chapter we'll see how the work–energy theorem explains this transformation.

If the diver bounces on the end of the board before he jumps, the bent board stores a second kind of potential energy called *elastic potential energy*. We'll discuss elastic potential energy of simple systems such as a stretched or compressed spring. (An important third kind of potential energy is associated with the positions of electrically charged particles relative to each other. We'll encounter this potential energy in Chapter 23.)

We will prove that in some cases the sum of a system's kinetic and potential energy, called the *total mechanical energy* of the system, is constant during the motion of the system. This will lead us to the general statement of the *law of conservation of energy*, one of the most fundamental and far-reaching principles in all of science.

LEARNING GOALS

By studying this chapter, you will learn:

- How to use the concept of gravitational potential energy in problems that involve vertical motion.
- How to use the concept of elastic potential energy in problems that involve a moving body attached to a stretched or compressed spring.
- The distinction between conservative and nonconservative forces, and how to solve problems in which both kinds of forces act on a moving body.
- How to calculate the properties of a conservative force if you know the corresponding potential-energy function.
- How to use energy diagrams to understand the motion of an object moving in a straight line under the influence of a conservative force.

7.1 As a basketball descends, gravitational potential energy is converted to kinetic energy and the basketball's speed increases.

7.2 When a body moves vertically from an initial height y_1 to a final height y_2 , the gravitational force \vec{w} does work and the gravitational potential energy changes.

(a) A body moves downward

7.1 Gravitational Potential Energy

We learned in Chapter 6 that a particle gains or loses kinetic energy because it interacts with other objects that exert forces on it. During any interaction, the change in a particle's kinetic energy is equal to the total work done on the particle by the forces that act on it.

In many situations it seems as though energy has been stored in a system, to be recovered later. For example, you must do work to lift a heavy stone over your head. It seems reasonable that in hoisting the stone into the air you are storing energy in the system, energy that is later converted into kinetic energy when you let the stone fall.

This example points to the idea of an energy associated with the *position* of bodies in a system. This kind of energy is a measure of the *potential* or *possibility* for work to be done; when a stone is raised into the air, there is a potential for work to be done on it by the gravitational force, but only if the stone is allowed to fall to the ground. For this reason, energy associated with position is called **potential energy**. Our discussion suggests that there is potential energy associated with a body's weight and its height above the ground. We call this *gravitational potential energy* (Fig. 7.1).

We now have *two* ways to describe what happens when a body falls without air resistance. One way is to say that gravitational potential energy decreases and the falling body's kinetic energy increases. The other way, which we learned in Chapter 6, is that a falling body's kinetic energy increases because the force of the earth's gravity (the body's weight) does work on the body. Later in this section we'll use the work–energy theorem to show that these two descriptions are equivalent.

To begin with, however, let's derive the expression for gravitational potential energy. Suppose a body with mass *m* moves along the (vertical) *y*-axis, as in Fig. 7.2. The forces acting on it are its weight, with magnitude w = mg, and possibly some other forces; we call the vector sum (resultant) of all the other forces \vec{F}_{other} . We'll assume that the body stays close enough to the earth's surface that the weight is constant. (We'll find in Chapter 13 that weight decreases with altitude.) We want to find the work done by the weight when the body moves downward from a height y_1 above the origin to a lower height y_2 (Fig. 7.2a). The weight and displacement are in the same direction, so the work W_{grav} done on the body by its weight is positive;

$$W_{\text{grav}} = Fs = w(y_1 - y_2) = mgy_1 - mgy_2$$
(7.1)

This expression also gives the correct work when the body moves *upward* and y_2 is greater than y_1 (Fig. 7.2b). In that case the quantity $(y_1 - y_2)$ is negative, and W_{grav} is negative because the weight and displacement are opposite in direction.

Equation (7.1) shows that we can express W_{grav} in terms of the values of the quantity mgy at the beginning and end of the displacement. This quantity, the product of the weight mg and the height y above the origin of coordinates, is called the **gravitational potential energy**, U_{grav} :

$$U_{\text{grav}} = mgy$$
 (gravitational potential energy) (7.2)

Its initial value is $U_{\text{grav},1} = mgy_1$ and its final value is $U_{\text{grav},2} = mgy_2$. The change in U_{grav} is the final value minus the initial value, or $\Delta U_{\text{grav}} = U_{\text{grav},2} - U_{\text{grav},1}$. We can express the work W_{grav} done by the gravitational force during the displacement from y_1 to y_2 as

$$W_{\text{grav}} = U_{\text{grav},1} - U_{\text{grav},2} = -(U_{\text{grav},2} - U_{\text{grav},1}) = -\Delta U_{\text{grav}}$$
 (7.3)

The negative sign in front of ΔU_{grav} is *essential*. When the body moves up, y increases, the work done by the gravitational force is negative, and the gravitational

potential energy increases ($\Delta U_{\text{grav}} > 0$). When the body moves down, y decreases, the gravitational force does positive work, and the gravitational potential energy decreases ($\Delta U_{\text{grav}} < 0$). It's like drawing money out of the bank (decreasing U_{grav}) and spending it (doing positive work). The unit of potential energy is the joule (J), the same unit as is used for work.

CAUTION To what body does gravitational potential energy "belong"? It is *not* correct to call $U_{\text{grav}} = mgy$ the "gravitational potential energy of the body." The reason is that gravitational potential energy U_{grav} is a *shared* property of the body and the earth. The value of U_{grav} increases if the earth stays fixed and the body moves upward, away from the earth; it also increases if the body stays fixed and the earth is moved away from it. Notice that the formula $U_{\text{grav}} = mgy$ involves characteristics of both the body (its mass *m*) and the earth (the value of *g*).

Conservation of Mechanical Energy (Gravitational Forces Only)

To see what gravitational potential energy is good for, suppose the body's weight is the *only* force acting on it, so $\vec{F}_{other} = 0$. The body is then falling freely with no air resistance and can be moving either up or down. Let its speed at point y_1 be v_1 and let its speed at y_2 be v_2 . The work–energy theorem, Eq. (6.6), says that the total work done on the body equals the change in the body's kinetic energy: $W_{tot} = \Delta K = K_2 - K_1$. If gravity is the only force that acts, then from Eq. (7.3), $W_{tot} = W_{grav} = -\Delta U_{grav} = U_{grav,1} - U_{grav,2}$. Putting these together, we get

$$\Delta K = -\Delta U_{\text{grav}}$$
 or $K_2 - K_1 = U_{\text{grav},1} - U_{\text{grav},2}$

which we can rewrite as

$$K_1 + U_{\text{grav},1} = K_2 + U_{\text{grav},2}$$
 (if only gravity does work) (7.4)

or

$$\frac{1}{2}mv_1^2 + mgy_1 = \frac{1}{2}mv_2^2 + mgy_2$$
 (if only gravity does work) (7.5)

The sum $K + U_{\text{grav}}$ of kinetic and potential energy is called *E*, the **total mechan**ical energy of the system. By "system" we mean the body of mass *m* and the earth considered together, because gravitational potential energy *U* is a shared property of both bodies. Then $E_1 = K_1 + U_{\text{grav},1}$ is the total mechanical energy at y_1 and $E_2 = K_2 + U_{\text{grav},2}$ is the total mechanical energy at y_2 . Equation (7.4) says that when the body's weight is the only force doing work on it, $E_1 = E_2$. That is, *E* is constant; it has the same value at y_1 and y_2 . But since the positions y_1 and y_2 are arbitrary points in the motion of the body, the total mechanical energy *E* has the same value at *all* points during the motion:

 $E = K + U_{\text{grav}} = \text{constant}$ (if only gravity does work)

A quantity that always has the same value is called a *conserved* quantity. *When* only the force of gravity does work, the total mechanical energy is constant—that is, it is conserved (Fig. 7.3). This is our first example of the **conservation of** mechanical energy.

When we throw a ball into the air, its speed decreases on the way up as kinetic energy is converted to potential energy; $\Delta K < 0$ and $\Delta U_{\text{grav}} > 0$. On the way back down, potential energy is converted back to kinetic energy and the ball's speed increases; $\Delta K > 0$ and $\Delta U_{\text{grav}} < 0$. But the *total* mechanical energy (kinetic plus potential) is the same at every point in the motion, provided that no force other than gravity does work on the ball (that is, air resistance must be negligible). It's still true that the gravitational force does work on the body as it

Application Which Egg Has More Mechanical Energy?

The mechanical energy of each of these identical eggs has the *same* value. The mechanical energy for an egg at rest atop the stone is purely gravitational potential energy. For the falling egg, the gravitational potential energy decreases as the egg descends and the egg's kinetic energy increases. If there is negligible air resistance, the mechanical energy of the falling egg remains constant.

MasteringPHYSICS

ActivPhysics 5.2: Upward-Moving Elevator Stops ActivPhysics 5.3: Stopping a Downward-Moving Elevator ActivPhysics 5.6: Skier Speed **7.3** While this athlete is in midair, only gravity does work on him (if we neglect the minor effects of air resistance). Mechanical energy *E*—the sum of kinetic and gravitational potential energy—is conserved.

moves up or down, but we no longer have to calculate work directly; keeping track of changes in the value of U_{grav} takes care of this completely.

CAUTION Choose "zero height" to be wherever you like When working with gravitational potential energy, we may choose any height to be y = 0. If we shift the origin for y, the values of y_1 and y_2 change, as do the values of $U_{\text{grav},1}$ and $U_{\text{grav},2}$. But this shift has no effect on the difference in height $y_2 - y_1$ or on the difference in gravitational potential energy $U_{\text{grav},2} - U_{\text{grav},1} = mg(y_2 - y_1)$. As the following example shows, the physically significant quantity is not the value of U_{grav} at a particular point, but only the difference in U_{grav} between two points. So we can define U_{grav} to be zero at whatever point we choose without affecting the physics.

Example 7.1 Height of a baseball from energy conservation

You throw a 0.145-kg baseball straight up, giving it an initial velocity of magnitude 20.0 m/s. Find how high it goes, ignoring air resistance.

SOLUTION

IDENTIFY and SET UP: After the ball leaves your hand, only gravity does work on it. Hence mechanical energy is conserved, and we can use Eqs. (7.4) and (7.5). We take point 1 to be where the ball leaves your hand and point 2 to be where it reaches its maximum height. As in Fig. 7.2, we take the positive y-direction to be upward. The ball's speed at point 1 is $v_1 = 20.0$ m/s; at its maximum height it is instantaneously at rest, so $v_2 = 0$. We take the origin at point 1, so $y_1 = 0$ (Fig. 7.4). Our target variable, the distance the ball moves vertically between the two points, is the displacement $y_2 - y_1 = y_2 - 0 = y_2$.

EXECUTE: We have $y_1 = 0$, $U_{\text{grav}, 1} = mgy_1 = 0$, and $K_2 = \frac{1}{2}mv_2^2 = 0$. Then Eq. (7.4), $K_1 + U_{\text{grav}, 1} = K_2 + U_{\text{grav}, 2}$, becomes

$$K_1 = U_{\text{grav},2}$$

As the energy bar graphs in Fig. 7.4 show, this equation says that the kinetic energy of the ball at point 1 is completely converted to gravitational potential energy at point 2. We substitute $K_1 = \frac{1}{2}mv_1^2$ and $U_{\text{grav},2} = mgy_2$ and solve for y_2 :

$$\frac{1}{2}mv_1^2 = mgy_2$$

$$y_2 = \frac{v_1^2}{2g} = \frac{(20.0 \text{ m/s})^2}{2(9.80 \text{ m/s}^2)} = 20.4 \text{ m}$$

7.4 After a baseball leaves your hand, mechanical energy E = K + U is conserved.

EVALUATE: As a check on our work, use the given value of v_1 and our result for y_2 to calculate the kinetic energy at point 1 and the gravitational potential energy at point 2. You should find that these are equal: $K_1 = \frac{1}{2}mv_1^2 = 29.0 \text{ J}$ and $U_{\text{grav},2} = mgy_2 = 29.0 \text{ J}$. Note also that we could have found the result $y_2 = v_1^2/2g$ using Eq. (2.13).

What if we put the origin somewhere else? For example, what if we put it 5.0 m below point 1, so that $y_1 = 5.0$ m? Then the total mechanical energy at point 1 is part kinetic and part potential; at point 2 it's still purely potential because $v_2 = 0$. You'll find that this choice of origin yields $y_2 = 25.4$ m, but again $y_2 - y_1 = 20.4$ m. In problems like this, you are free to choose the height at which $U_{\text{grav}} = 0$. The physics doesn't depend on your choice, so don't agonize over it.

When Forces Other Than Gravity Do Work

If other forces act on the body in addition to its weight, then \vec{F}_{other} in Fig. 7.2 is *not* zero. For the pile driver described in Example 6.4 (Section 6.2), the force applied by the hoisting cable and the friction with the vertical guide rails are examples of forces that might be included in \vec{F}_{other} . The gravitational work W_{grav} is still given by Eq. (7.3), but the total work W_{tot} is then the sum of W_{grav} and the work done by \vec{F}_{other} . We will call this additional work W_{other} , so the total work done by all forces is $W_{tot} = W_{grav} + W_{other}$. Equating this to the change in kinetic energy, we have

$$W_{\text{other}} + W_{\text{grav}} = K_2 - K_1$$
 (7.6)

Also, from Eq. (7.3), $W_{\text{grav}} = U_{\text{grav},1} - U_{\text{grav},2}$, so

$$W_{\text{other}} + U_{\text{grav},1} - U_{\text{grav},2} = K_2 - K_1$$

which we can rearrange in the form

$$K_1 + U_{\text{grav},1} + W_{\text{other}} = K_2 + U_{\text{grav},2}$$
 (if forces other than
gravity do work) (7.7)

Finally, using the appropriate expressions for the various energy terms, we obtain

$$\frac{1}{2}mv_1^2 + mgy_1 + W_{\text{other}} = \frac{1}{2}mv_2^2 + mgy_2 \qquad \begin{array}{c} \text{(if forces other than} \\ \text{gravity do work)} \end{array}$$
(7.8)

The meaning of Eqs. (7.7) and (7.8) is this: The work done by all forces other than the gravitational force equals the change in the total mechanical energy $E = K + U_{\text{grav}}$ of the system, where U_{grav} is the gravitational potential energy. When W_{other} is positive, E increases and $K_2 + U_{\text{grav}, 2}$ is greater than $K_1 + U_{\text{grav}, 1}$. When W_{other} is negative, E decreases (Fig. 7.5). In the special case in which no forces other than the body's weight do work, $W_{\text{other}} = 0$. The total mechanical energy is then constant, and we are back to Eq. (7.4) or (7.5).

7.5 As this skydiver moves downward, the upward force of air resistance does negative work W_{other} on him. Hence the total mechanical energy E = K + U decreases: The skydiver's speed and kinetic energy *K* stay the same, while the gravitational potential energy *U* decreases.

Problem-Solving Strategy 7.1 Problems Using Mechanical Energy I

IDENTIFY the relevant concepts: Decide whether the problem should be solved by energy methods, by using $\sum \vec{F} = m\vec{a}$ directly, or by a combination of these. The energy approach is best when the problem involves varying forces or motion along a curved path (discussed later in this section). If the problem involves elapsed time, the energy approach is usually *not* the best choice because it doesn't involve time directly.

SET UP *the problem* using the following steps:

- 1. When using the energy approach, first identify the initial and final states (the positions and velocities) of the bodies in question. Use the subscript 1 for the initial state and the subscript 2 for the final state. Draw sketches showing these states.
- 2. Define a coordinate system, and choose the level at which y = 0. Choose the positive y-direction to be upward, as is assumed in Eq. (7.1) and in the equations that follow from it.
- 3. Identify any forces that do work on each body and that *cannot* be described in terms of potential energy. (So far, this means

any forces other than gravity. In Section 7.2 we'll see that the work done by an ideal spring can also be expressed as a change in potential energy.) Sketch a free-body diagram for each body.

4. List the unknown and known quantities, including the coordinates and velocities at each point. Identify the target variables.

EXECUTE the solution: Write expressions for the initial and final kinetic and potential energies K_1 , K_2 , $U_{\text{grav},1}$, and $U_{\text{grav},2}$. If no other forces do work, use Eq. (7.4). If there are other forces that do work, use Eq. (7.7). Draw bar graphs showing the initial and final values of K, $U_{\text{grav},1}$, and $E = K + U_{\text{grav}}$. Then solve to find your target variables.

EVALUATE your answer: Check whether your answer makes physical sense. Remember that the gravitational work is included in ΔU_{grav} , so do not include it in W_{other} .

Example 7.2 Work and energy in throwing a baseball

In Example 7.1 suppose your hand moves upward by 0.50 m while you are throwing the ball. The ball leaves your hand with an upward velocity of 20.0 m/s. (a) Find the magnitude of the force (assumed constant) that your hand exerts on the ball. (b) Find the speed of the ball at a point 15.0 m above the point where it leaves your hand. Ignore air resistance.

SOLUTION

IDENTIFY and SET UP: In Example 7.1 only gravity did work. Here we must include the nongravitational, "other" work done by your hand. Figure 7.6 shows a diagram of the situation, including a free-body diagram for the ball while it is being thrown. We let point 1 be where your hand begins to move, point 2 be where the ball leaves your hand, and point 3 be where the ball is 15.0 m above point 2. The nongravitational force \vec{F} of your hand acts only between points 1 and 2. Using the same coordinate system as in Example 7.1, we have $y_1 = -0.50$ m, $y_2 = 0$, and $y_3 = 15.0$ m. The ball starts at rest at point 1, so $v_1 = 0$, and the ball's speed as it leaves your hand is $v_2 = 20.0$ m/s. Our target variables are (a) the magnitude F of the force of your hand and (b) the ball's velocity v_{3y} at point 3.

EXECUTE: (a) To determine F, we'll first use Eq. (7.7) to calculate the work W_{other} done by this force. We have

$$K_1 = 0$$

 $U_{\text{grav},1} = mgy_1 = (0.145 \text{ kg})(9.80 \text{ m/s}^2)(-0.50 \text{ m}) = -0.71 \text{ J}$

7.6 (a) Applying energy ideas to a ball thrown vertically upward. (b) Free-body diagram for the ball as you throw it.

$$K_2 = \frac{1}{2}mv_2^2 = \frac{1}{2}(0.145 \text{ kg})(20.0 \text{ m/s})^2 = 29.0 \text{ J}$$

$$U_{\text{grav},2} = mgy_2 = (0.145 \text{ kg})(9.80 \text{ m/s}^2)(0) = 0$$

(Don't worry that $U_{\text{grav},1}$ is less than zero; all that matters is the *difference* in potential energy from one point to another.) From Eq. (7.7),

$$K_1 + U_{\text{grav},1} + W_{\text{other}} = K_2 + U_{\text{grav},2}$$
$$W_{\text{other}} = (K_2 - K_1) + (U_{\text{grav},2} - U_{\text{grav},1})$$
$$= (29.0 \text{ J} - 0) + [0 - (-0.71 \text{ J})] = 29.7 \text{ J}$$

But since \vec{F} is constant and upward, the work done by \vec{F} equals the force magnitude times the displacement: $W_{\text{other}} = F(y_2 - y_1)$. So

$$F = \frac{W_{\text{other}}}{y_2 - y_1} = \frac{29.7 \text{ J}}{0.50 \text{ m}} = 59 \text{ N}$$

This is more than 40 times the weight of the ball (1.42 N).

(b) To find v_{3y} , note that between points 2 and 3 only gravity acts on the ball. So between these points mechanical energy is conserved and $W_{\text{other}} = 0$. From Eq. (7.4), we can solve for K_3 and from that solve for v_{3y} :

$$K_{2} + U_{\text{grav},2} = K_{3} + U_{\text{grav},3}$$

$$U_{\text{grav},3} = mgy_{3} = (0.145 \text{ kg})(9.80 \text{ m/s}^{2})(15.0 \text{ m}) = 21.3 \text{ J}$$

$$K_{3} = (K_{2} + U_{\text{grav},2}) - U_{\text{grav},3}$$

$$= (29.0 \text{ J} + 0 \text{ J}) - 21.3 \text{ J} = 7.7 \text{ J}$$

Since $K_3 = \frac{1}{2}mv_{3y}^2$, we find

$$v_{3y} = \pm \sqrt{\frac{2K_3}{m}} = \pm \sqrt{\frac{2(7.7 \text{ J})}{0.145 \text{ kg}}} = \pm 10 \text{ m/s}$$

The plus-or-minus sign reminds us that the ball passes point 3 on the way up and again on the way down. The total mechanical energy *E* is constant and equal to $K_2 + U_{\text{grav},2} = 29.0 \text{ J}$ while the ball is in free fall, and the potential energy at point 3 is $U_{\text{grav},3} = mgy_3 = 21.3 \text{ J}$ whether the ball is moving up or down. So at point 3, the ball's kinetic energy K_3 (and therefore its speed) don't depend on the direction the ball is moving. The velocity v_{3y} is positive (+10 m/s) when the ball is moving up and negative (-10 m/s) when it is moving down; the speed v_3 is 10 m/s in either case.

EVALUATE: In Example 7.1 we found that the ball reaches a maximum height y = 20.4 m. At that point all of the kinetic energy it had when it left your hand at y = 0 has been converted to gravitational potential energy. At y = 15.0 m, the ball is about three-fourths of the way to its maximum height, so about three-fourths of its mechanical energy should be in the form of potential energy. (The energy bar graphs in Fig. 7.6a show this.) Can you show that this is true from our results for K_3 and $U_{\text{grav},3}$?

Gravitational Potential Energy for Motion Along a Curved Path

In our first two examples the body moved along a straight vertical line. What happens when the path is slanted or curved (Fig. 7.7a)? The body is acted on by the gravitational force $\vec{w} = m\vec{g}$ and possibly by other forces whose resultant we

7.7 Calculating the change in gravita-

along a curved path.

(a)

tional potential energy for a displacement

call \vec{F}_{other} . To find the work done by the gravitational force during this displacement, we divide the path into small segments $\Delta \vec{s}$; Fig. 7.7b shows a typical segment. The work done by the gravitational force over this segment is the scalar product of the force and the displacement. In terms of unit vectors, the force is $\vec{w} = m\vec{g} = -mg\hat{j}$ and the displacement is $\Delta \vec{s} = \Delta x\hat{i} + \Delta y\hat{j}$, so the work done by the gravitational force is

$$\vec{w} \cdot \Delta \vec{s} = -mg\hat{j} \cdot (\Delta x\hat{i} + \Delta y\hat{j}) = -mg\Delta y$$

The work done by gravity is the same as though the body had been displaced vertically a distance Δy , with no horizontal displacement. This is true for every segment, so the *total* work done by the gravitational force is -mg multiplied by the *total* vertical displacement $(y_2 - y_1)$:

$$W_{\text{grav}} = -mg(y_2 - y_1) = mgy_1 - mgy_2 = U_{\text{grav},1} - U_{\text{grav},2}$$

This is the same as Eq. (7.1) or (7.3), in which we assumed a purely vertical path. So even if the path a body follows between two points is curved, the total work done by the gravitational force depends only on the difference in height between the two points of the path. This work is unaffected by any horizontal motion that may occur. So we can use the same expression for gravitational potential energy whether the body's path is curved or straight.

Conceptual Example 7.3 Energy in projectile motion

A batter hits two identical baseballs with the same initial speed and from the same initial height but at different initial angles. Prove that both balls have the same speed at any height h if air resistance can be neglected.

SOLUTION

The only force acting on each ball after it is hit is its weight. Hence the total mechanical energy for each ball is constant. Figure 7.8 shows the trajectories of two balls batted at the same height with the same initial speed, and thus the same total mechanical energy, but with different initial angles. At all points at the same height the potential energy is the same. Thus the kinetic energy at this height must be the same for both balls, and the speeds are the same.

7.8 For the same initial speed and initial height, the speed of a projectile at a given elevation h is always the same, neglecting air resistance.

Example 7.4 Speed at the bottom of a vertical circle

Your cousin Throckmorton skateboards from rest down a curved, frictionless ramp. If we treat Throcky and his skateboard as a particle, he moves through a quarter-circle with radius R = 3.00 m (Fig. 7.9). Throcky and his skateboard have a total mass of 25.0 kg. (a) Find his speed at the bottom of the ramp. (b) Find the normal force that acts on him at the bottom of the curve.

SOLUTION

IDENTIFY: We can't use the constant-acceleration equations of Chapter 2 because Throcky's acceleration isn't constant; the slope decreases as he descends. Instead, we'll use the energy approach. Throcky moves along a circular arc, so we'll also use what we learned about circular motion in Section 5.4. **SET UP:** The only forces on Throcky are his weight and the normal force \vec{n} exerted by the ramp (Fig. 7.9b). Although \vec{n} acts all along the path, it does zero work because \vec{n} is perpendicular to Throcky's displacement at every point. Hence $W_{other} = 0$ and mechanical energy is conserved. We take point 1 at the starting point and point 2 at the bottom of the ramp, and we let y = 0 be at the bottom of the ramp (Fig. 7.9a). We take the positive y-direction upward; then $y_1 = R$ and $y_2 = 0$. Throcky starts at rest at the top, so $v_1 = 0$. In part (a) our target variable is his speed v_2 at the bottom; in part (b) the target variable is the magnitude n of the normal force at point 2. To find n, we'll use Newton's second law and the relation $a = v^2/R$.

EXECUTE: (a) The various energy quantities are

$$K_1 = 0 \qquad U_{\text{grav},1} = mgR$$

$$K_2 = \frac{1}{2}mv_2^2 \qquad U_{\text{grav},2} = 0$$

From conservation of mechanical energy, Eq. (7.4),

$$K_1 + U_{\text{grav},1} = K_2 + U_{\text{grav},2}$$

$$0 + mgR = \frac{1}{2}mv_2^2 + 0$$

$$v_2 = \sqrt{2gR}$$

$$= \sqrt{2(9.80 \text{ m/s}^2)(3.00 \text{ m})} = 7.67 \text{ m/s}^2$$

This answer doesn't depend on the ramp being circular; Throcky will have the same speed $v_2 = \sqrt{2gR}$ at the bottom of any ramp of height *R*, no matter what its shape.

(b) To find *n* at point 2 using Newton's second law, we need the free-body diagram at that point (Fig. 7.9b). At point 2, Throcky is moving at speed $v_2 = \sqrt{2gR}$ in a circle of radius *R*; his acceleration is toward the center of the circle and has magnitude

$$a_{\rm rad} = \frac{v_2^2}{R} = \frac{2gR}{R} = 2g$$

The y-component of Newton's second law is

$$\sum F_{y} = n + (-w) = ma_{rad} = 2mg$$

$$n = w + 2mg = 3mg$$

$$= 3(25.0 \text{ kg})(9.80 \text{ m/s}^{2}) = 735 \text{ N}$$

At point 2 the normal force is three times Throcky's weight. This result doesn't depend on the radius R of the ramp. We saw in Examples 5.9 and 5.23 that the magnitude of n is the *apparent weight*, so at the bottom of the *curved part* of the ramp Throcky feels as though he weighs three times his true weight mg. But when he reaches the *horizontal* part of the ramp, immediately to the right of point 2, the normal force decreases to w = mg and thereafter Throcky feels his true weight again. Can you see why?

EVALUATE: This example shows a general rule about the role of forces in problems in which we use energy techniques: What matters is not simply whether a force *acts*, but whether that force *does work*. If the force does no work, like the normal force \vec{n} here, then it does not appear in Eqs. (7.4) and (7.7).

7.9 (a) Throcky skateboarding down a frictionless circular ramp. The total mechanical energy is constant. (b) Free-body diagrams for Throcky and his skateboard at various points on the ramp.

Example 7.5 A vertical circle with friction

Suppose that the ramp of Example 7.4 is not frictionless, and that Throcky's speed at the bottom is only 6.00 m/s, not the 7.67 m/s we found there. What work was done on him by the friction force?

SOLUTION

IDENTIFY and SET UP: Figure 7.10 shows that again the normal force does no work, but now there is a friction force \vec{f} that *does* do work W_f . Hence the nongravitational work W_{other} done on Throcky between points 1 and 2 is equal to W_f and is not zero. We use the same coordinate system and the same initial and final points as in Example 7.4. Our target variable is $W_f = W_{other}$, which we'll find using Eq. (7.7).

EXECUTE: The energy quantities are

$$K_1 = 0$$

$$U_{\text{grav},1} = mgR = (25.0 \text{ kg})(9.80 \text{ m/s}^2)(3.00 \text{ m}) = 735 \text{ J}$$

$$K_2 = \frac{1}{2}mv_2^2 = \frac{1}{2}(25.0 \text{ kg})(6.00 \text{ m/s})^2 = 450 \text{ J}$$

$$U_{\text{grav},2} = 0$$

7.10 Energy bar graphs and free-body diagrams for Throcky skateboarding down a ramp with friction.

$$W_f = W_{\text{other}} = K_2 + U_{\text{grav},2} - K_1 - U_{\text{grav},1}$$

= 450 J + 0 - 0 - 735 J = -285 J

The work done by the friction force is -285 J, and the total mechanical energy *decreases* by 285 J.

EVALUATE: Our result for W_f is negative. Can you see from the free-body diagrams in Fig. 7.10 why this must be so?

Example 7.6 An inclined plane with friction

We want to slide a 12-kg crate up a 2.5-m-long ramp inclined at 30° . A worker, ignoring friction, calculates that he can do this by giving it an initial speed of 5.0 m/s at the bottom and letting it go. But friction is *not* negligible; the crate slides only 1.6 m up the ramp, stops, and slides back down (Fig. 7.11a). (a) Find the magnitude of the friction force acting on the crate, assuming that it is constant. (b) How fast is the crate moving when it reaches the bottom of the ramp?

SOLUTION

IDENTIFY and SET UP: The friction force does work on the crate as it slides. The first part of the motion is from point 1, at the bottom of the ramp, to point 2, where the crate stops instantaneously $(v_2 = 0)$. In the second part of the motion, the crate returns to the bottom of the ramp, which we'll also call point 3 (Fig. 7.11a). We take the positive y-direction upward. We take y = 0 (and hence $U_{\text{grav}} = 0$) to be at ground level (point 1), so that $y_1 = 0$, $y_2 = (1.6 \text{ m})\sin 30^\circ = 0.80 \text{ m}$, and $y_3 = 0$. We are given $v_1 = 5.0 \text{ m/s}$. In part (a) our target variable is f, the magnitude of the friction force as the crate slides up; as in Example 7.2, we'll find this using the energy approach. In part (b) our target variable is v_3 , the crate's speed at the bottom of the ramp. We'll calculate the work done by friction as the crate slides back down, then use the energy approach to find v_3 .

7.11 (a) A crate slides partway up the ramp, stops, and slides back down. (b) Energy bar graphs for points 1, 2, and 3.

It would be very difficult to apply Newton's second law, $\sum \vec{F} = m\vec{a}$, directly to this problem because the normal and friction forces and the acceleration are continuously changing in both magnitude and direction as Throcky descends. The energy approach, by contrast, relates the motions at the top and bottom of the ramp without involving the details of the motion in between.

EXECUTE: (a) The energy quantities are

$$K_{1} = \frac{1}{2}(12 \text{ kg})(5.0 \text{ m/s})^{2} = 150 \text{ J}$$
$$U_{\text{grav}, 1} = 0$$
$$K_{2} = 0$$
$$U_{\text{grav}, 2} = (12 \text{ kg})(9.8 \text{ m/s}^{2})(0.80 \text{ m}) = 94 \text{ J}$$
$$W_{\text{other}} = -fs$$

Here s = 1.6 m. Using Eq. (7.7), we find

$$K_{1} + U_{\text{grav},1} + W_{\text{other}} = K_{2} + U_{\text{grav},2}$$

$$W_{\text{other}} = -fs = (K_{2} + U_{\text{grav},2}) - (K_{1} + U_{\text{grav},1})$$

$$= (0 + 94 \text{ J}) - (150 \text{ J} + 0) = -56 \text{ J} = -fs$$

$$f = \frac{W_{\text{other}}}{s} = \frac{56 \text{ J}}{1.6 \text{ m}} = 35 \text{ N}$$

The friction force of 35 N, acting over 1.6 m, causes the mechanical energy of the crate to decrease from 150 J to 94 J (Fig. 7.11b).

(b) As the crate moves from point 2 to point 3, the work done by friction has the same negative value as from point 1 to point 2. (The friction force and the displacement both reverse direction but have the same magnitudes.) The total work done by friction between points 1 and 3 is therefore

$$W_{\text{other}} = W_{\text{fric}} = -2fs = -2(56 \text{ J}) = -112 \text{ J}$$

From part (a), $K_1 = 150$ J and $U_{\text{grav},1} = 0$. Equation (7.7) then gives

$$K_1 + U_{\text{grav},1} + W_{\text{other}} = K_3 + U_{\text{grav},3}$$
$$K_3 = K_1 + U_{\text{grav},1} - U_{\text{grav},3} + W_{\text{other}}$$
$$= 150 \text{ J} + 0 - 0 + (-112 \text{ J}) = 38 \text{ J}$$

The crate returns to the bottom of the ramp with only 38 J of the original 150 J of mechanical energy (Fig. 7.11b). Since $K_3 = \frac{1}{2}mv_3^2$,

$$v_3 = \sqrt{\frac{2K_3}{m}} = \sqrt{\frac{2(38 \text{ J})}{12 \text{ kg}}} = 2.5 \text{ m/s}$$

EVALUATE: Energy was lost due to friction, so the crate's speed $v_3 = 2.5$ m/s when it returns to the bottom of the ramp is less than the speed $v_1 = 5.0$ m/s at which it left that point. In part (b) we applied Eq. (7.7) to points 1 and 3, considering the round trip as a whole. Alternatively, we could have considered the second part of the motion by itself and applied Eq. (7.7) to points 2 and 3. Try it; do you get the same result for v_3 ?

Test Your Understanding of Section 7.1 The figure shows two different frictionless ramps. The heights y_1 and y_2 are the same for both ramps. If a block of mass *m* is released from rest at the left-hand end of each ramp, which block arrives at the right-hand end with the greater speed? (i) block I; (ii) block II; (iii) the speed is the same for both blocks.

7.2 Elastic Potential Energy

There are many situations in which we encounter potential energy that is not gravitational in nature. One example is a rubber-band slingshot. Work is done on the rubber band by the force that stretches it, and that work is stored in the rubber band until you let it go. Then the rubber band gives kinetic energy to the projectile.

This is the same pattern we saw with the pile driver in Section 7.1: Do work on the system to store energy, which can later be converted to kinetic energy. We'll describe the process of storing energy in a deformable body such as a spring or rubber band in terms of *elastic potential energy* (Fig. 7.12). A body is called *elastic* if it returns to its original shape and size after being deformed.

To be specific, we'll consider storing energy in an ideal spring, like the ones we discussed in Section 6.3. To keep such an ideal spring stretched by a distance x, we must exert a force F = kx, where k is the force constant of the spring. The ideal spring is a useful idealization because many elastic bodies show this same direct proportionality between force \vec{F} and displacement x, provided that x is sufficiently small.

Let's proceed just as we did for gravitational potential energy. We begin with the work done by the elastic (spring) force and then combine this with the work–energy theorem. The difference is that gravitational potential energy is a shared property of a body and the earth, but elastic potential energy is stored just in the spring (or other deformable body).

Figure 7.13 shows the ideal spring from Fig. 6.18, with its left end held stationary and its right end attached to a block with mass *m* that can move along the *x*-axis. In Fig. 7.13a the body is at x = 0 when the spring is neither stretched nor compressed. We move the block to one side, thereby stretching or compressing the spring, and then let it go. As the block moves from one position x_1 to another position x_2 , how much work does the elastic (spring) force do on the block?

We found in Section 6.3 that the work we must do *on* the spring to move one end from an elongation x_1 to a different elongation x_2 is

$$W = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2$$
 (work done *on* a spring)

where k is the force constant of the spring. If we stretch the spring farther, we do positive work on the spring; if we let the spring relax while holding one end, we do negative work on it. We also saw that this expression for work is still correct if the spring is compressed, not stretched, so that x_1 or x_2 or both are negative. Now we need to find the work done *by* the spring. From Newton's third law the two quantities of work are just negatives of each other. Changing the signs in this equation, we find that in a displacement from x_1 to x_2 the spring does an amount of work W_{el} given by

$$W_{\rm el} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2$$
 (work done by a spring)

7.12 The Achilles tendon, which runs along the back of the ankle to the heel bone, acts like a natural spring. When it stretches and then relaxes, this tendon stores and then releases elastic potential energy. This spring action reduces the amount of work your leg muscles must do as you run.

Mastering PHYSICS ActivPhysics 5.4: Inverse Bungee Jumper ActivPhysics 5.5: Spring-Launched Bowler

The subscript "el" stands for *elastic*. When x_1 and x_2 are both positive and $x_2 > x_1$ (Fig. 7.13b), the spring does negative work on the block, which moves in the +x-direction while the spring pulls on it in the -x-direction. The spring stretches farther, and the block slows down. When x_1 and x_2 are both positive and $x_2 < x_1$ (Fig. 7.13c), the spring does positive work as it relaxes and the block speeds up. If the spring can be compressed as well as stretched, x_1 or x_2 or both may be negative, but the expression for W_{el} is still valid. In Fig. 7.13d, both x_1 and x_2 are negative, but x_2 is less negative than x_1 ; the compressed spring does positive work as it relaxes.

Just as for gravitational work, we can express the work done by the spring in terms of a given quantity at the beginning and end of the displacement. This quantity is $\frac{1}{2}kx^2$, and we define it to be the **elastic potential energy:**

$$U_{\rm el} = \frac{1}{2}kx^2$$
 (elastic potential energy) (7.9)

Figure 7.14 is a graph of Eq. (7.9). The unit of U_{el} is the joule (J), the unit used for *all* energy and work quantities; to see this from Eq. (7.9), recall that the units of k are N/m and that $1 \text{ N} \cdot \text{m} = 1 \text{ J}$.

We can use Eq. (7.9) to express the work W_{el} done on the block by the elastic force in terms of the change in elastic potential energy:

$$W_{\rm el} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2 = U_{\rm el,1} - U_{\rm el,2} = -\Delta U_{\rm el}$$
(7.10)

When a stretched spring is stretched farther, as in Fig. 7.13b, W_{el} is negative and U_{el} *increases;* a greater amount of elastic potential energy is stored in the spring. When a stretched spring relaxes, as in Fig. 7.13c, x decreases, W_{el} is positive, and U_{el} *decreases;* the spring loses elastic potential energy. Negative values of x refer to a compressed spring. But, as Fig. 7.14 shows, U_{el} is positive for both positive and negative x, and Eqs. (7.9) and (7.10) are valid for both cases. The more a spring is compressed *or* stretched, the greater its elastic potential energy.

CAUTION Gravitational potential energy vs. elastic potential energy An important difference between gravitational potential energy $U_{\text{grav}} = mgy$ and elastic potential energy $U_{\text{el}} = \frac{1}{2}kx^2$ is that we do *not* have the freedom to choose x = 0 to be wherever we wish. To be consistent with Eq. (7.9), x = 0 must be the position at which the spring is neither stretched nor compressed. At that position, its elastic potential energy and the force that it exerts are both zero.

The work–energy theorem says that $W_{tot} = K_2 - K_1$, no matter what kind of forces are acting on a body. If the elastic force is the *only* force that does work on the body, then

$$W_{\rm tot} = W_{\rm el} = U_{\rm el, 1} - U_{\rm el, 2}$$

The work–energy theorem, $W_{\text{tot}} = K_2 - K_1$, then gives us

$$K_1 + U_{el,1} = K_2 + U_{el,2}$$
 (if only the elastic force does work) (7.11)

Here U_{el} is given by Eq. (7.9), so

$$\frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2 = \frac{1}{2}mv_2^2 + \frac{1}{2}kx_2^2$$
 (if only the elastic force does work) (7.12)

In this case the total mechanical energy $E = K + U_{el}$ —the sum of kinetic and *elastic* potential energy—is *conserved*. An example of this is the motion of the

7.13 Calculating the work done by a spring attached to a block on a horizontal surface. The quantity *x* is the extension or compression of the spring.

7.14 The graph of elastic potential energy for an ideal spring is a parabola: $U_{el} = \frac{1}{2}kx^2$, where *x* is the extension or compression of the spring. Elastic potential energy U_{el} is never negative.

Application Elastic Potential Energy of a Cheetah

When a cheetah gallops, its back flexes and extends by an exceptional amount. Flexion of the back stretches elastic tendons and muscles along the top of the spine and also compresses the spine, storing mechanical energy. When the cheetah launches into its next bound, this energy helps to extend the spine, enabling the cheetah to run more efficiently.

Difference in nose-to-tail length

7.15 Trampoline jumping involves an interplay among kinetic energy, gravitational potential energy, and elastic potential energy. Due to air resistance and frictional forces within the trampoline, mechanical energy is not conserved. That's why the bouncing eventually stops unless the jumper does work with his or her legs to compensate for the lost energy.

block in Fig. 7.13, provided the horizontal surface is frictionless so that no force does work other than that exerted by the spring.

For Eq. (7.12) to be strictly correct, the ideal spring that we've been discussing must also be *massless*. If the spring has a mass, it also has kinetic energy as the coils of the spring move back and forth. We can neglect the kinetic energy of the spring if its mass is much less than the mass m of the body attached to the spring. For instance, a typical automobile has a mass of 1200 kg or more. The springs in its suspension have masses of only a few kilograms, so their mass can be neglected if we want to study how a car bounces on its suspension.

Situations with Both Gravitational and Elastic Potential Energy

Equations (7.11) and (7.12) are valid when the only potential energy in the system is elastic potential energy. What happens when we have *both* gravitational and elastic forces, such as a block attached to the lower end of a vertically hanging spring? And what if work is also done by other forces that *cannot* be described in terms of potential energy, such as the force of air resistance on a moving block? Then the total work is the sum of the work done by the gravitational force (W_{grav}), the work done by the elastic force (W_{el}), and the work done by other forces (W_{other}): $W_{\text{tot}} = W_{\text{grav}} + W_{\text{el}} + W_{\text{other}}$. Then the work–energy theorem gives

$$W_{\text{grav}} + W_{\text{el}} + W_{\text{other}} = K_2 - K_1$$

The work done by the gravitational force is $W_{\text{grav}} = U_{\text{grav},1} - U_{\text{grav},2}$ and the work done by the spring is $W_{\text{el}} = U_{\text{el},1} - U_{\text{el},2}$. Hence we can rewrite the work–energy theorem for this most general case as

$$K_1 + U_{\text{grav},1} + U_{\text{el},1} + W_{\text{other}} = K_2 + U_{\text{grav},2} + U_{\text{el},2}$$
 (valid in general) (7.13)

or, equivalently,

$$K_1 + U_1 + W_{\text{other}} = K_2 + U_2$$
 (valid in general) (7.14)

where $U = U_{\text{grav}} + U_{\text{el}} = mgy + \frac{1}{2}kx^2$ is the *sum* of gravitational potential energy and elastic potential energy. For short, we call U simply "the potential energy."

Equation (7.14) is *the most general statement* of the relationship among kinetic energy, potential energy, and work done by other forces. It says:

The work done by all forces other than the gravitational force or elastic force equals the change in the total mechanical energy E = K + U of the system, where $U = U_{\text{grav}} + U_{\text{el}}$ is the sum of the gravitational potential energy and the elastic potential energy.

The "system" is made up of the body of mass *m*, the earth with which it interacts through the gravitational force, and the spring of force constant *k*.

If W_{other} is positive, E = K + U increases; if W_{other} is negative, *E* decreases. If the gravitational and elastic forces are the *only* forces that do work on the body, then $W_{other} = 0$ and the total mechanical energy (including both gravitational and elastic potential energy) is conserved. (You should compare Eq. (7.14) to Eqs. (7.7) and (7.8), which describe situations in which there is gravitational potential energy but no elastic potential energy.)

Trampoline jumping (Fig. 7.15) involves transformations among kinetic energy, elastic potential energy, and gravitational potential energy. As the jumper descends through the air from the high point of the bounce, gravitational potential energy U_{grav} decreases and kinetic energy *K* increases. Once the jumper touches the trampoline, some of the mechanical energy goes into elastic potential energy U_{el} stored

MP

in the trampoline's springs. Beyond a certain point the jumper's speed and kinetic energy *K* decrease while U_{grav} continues to decrease and U_{el} continues to increase. At the low point the jumper comes to a momentary halt (*K* = 0) at the lowest point of the trajectory (U_{grav} is minimum) and the springs are maximally stretched (U_{el} is maximum). The springs then convert their energy back into *K* and U_{grav} , propelling the jumper upward.

Problem-Solving Strategy 7.2 Problems Using Mechanical Energy II

Problem-Solving Strategy 7.1 (Section 7.1) is equally useful in solving problems that involve elastic forces as well as gravitational forces. The only new wrinkle is that the potential energy U now includes the elastic potential energy $U_{el} = \frac{1}{2}kx^2$, where x is the dis-

placement of the spring *from its unstretched length*. The work done by the gravitational and elastic forces is accounted for by their potential energies; the work done by other forces, W_{other} , must still be included separately.

Example 7.7 Motion with elastic potential energy

A glider with mass m = 0.200 kg sits on a frictionless horizontal air track, connected to a spring with force constant k = 5.00 N/m. You pull on the glider, stretching the spring 0.100 m, and release it from rest. The glider moves back toward its equilibrium position (x = 0). What is its *x*-velocity when x = 0.080 m?

SOLUTION

IDENTIFY and SET UP: As the glider starts to move, elastic potential energy is converted to kinetic energy. The glider remains at the same height throughout the motion, so gravitational potential energy is not a factor and $U = U_{el} = \frac{1}{2}kx^2$. Figure 7.16 shows our sketches. Only the spring force does work on the glider, so $W_{other} = 0$ and we may use Eq. (7.11). We designate the point

7.16 Our sketches and energy bar graphs for this problem.

where the glider is released as point 1 (that is, $x_1 = 0.100 \text{ m}$) and $x_2 = 0.080 \text{ m}$ as point 2. We are given $v_{1x} = 0$; our target variable is v_{2x} .

EXECUTE: The energy quantities are

$$K_{1} = \frac{1}{2}mv_{1x}^{2} = \frac{1}{2}(0.200 \text{ kg})(0)^{2} = 0$$

$$U_{1} = \frac{1}{2}kx_{1}^{2} = \frac{1}{2}(5.00 \text{ N/m})(0.100 \text{ m})^{2} = 0.0250 \text{ J}$$

$$K_{2} = \frac{1}{2}mv_{2x}^{2}$$

$$U_{2} = \frac{1}{2}kx_{2}^{2} = \frac{1}{2}(5.00 \text{ N/m})(0.080 \text{ m})^{2} = 0.0160 \text{ J}$$

We use Eq. (7.11) to solve for K_2 and then find v_{2x} :

$$K_2 = K_1 + U_1 - U_2 = 0 + 0.0250 \text{ J} - 0.0160 \text{ J} = 0.0090 \text{ J}$$
$$v_{2x} = \pm \sqrt{\frac{2K_2}{m}} = \pm \sqrt{\frac{2(0.0090 \text{ J})}{0.200 \text{ kg}}} = \pm 0.30 \text{ m/s}$$

We choose the negative root because the glider is moving in the -x-direction. Our answer is $v_{2x} = -0.30$ m/s.

EVALUATE: Eventually the spring will reverse the glider's motion, pushing it back in the +x-direction (see Fig. 7.13d). The solution $v_{2x} = +0.30 \text{ m/s}$ tells us that when the glider passes through x = 0.080 m on this return trip, its speed will be 0.30 m/s, just as when it passed through this point while moving to the left.

Example 7.8 Motion with elastic potential energy and work done by other forces

Suppose the glider in Example 7.7 is initially at rest at x = 0, with the spring unstretched. You then push on the glider with a constant force \vec{F} (magnitude 0.610 N) in the +*x*-direction. What is the glider's velocity when it has moved to x = 0.100 m?

SOLUTION

IDENTIFY and SET UP: Although the force \vec{F} you apply is constant, the spring force isn't, so the acceleration of the glider won't be constant. Total mechanical energy is not conserved because of

the work done by the force \vec{F} , so we must use the generalized energy relationship given by Eq. (7.13). As in Example 7.7, we ignore gravitational potential energy because the glider's height doesn't change. Hence we again have $U = U_{el} = \frac{1}{2}kx^2$. This time, we let point 1 be at $x_1 = 0$, where the velocity is $v_{1x} = 0$, and let point 2 be at x = 0.100 m. The glider's displacement is then $\Delta x = x_2 - x_1 = 0.100$ m. Our target variable is v_{2x} , the velocity at point 2.

EXECUTE: The force \vec{F} is constant and in the same direction as the displacement, so the work done by this force is $F\Delta x$. Then the energy quantities are

$$K_{1} = 0$$

$$U_{1} = \frac{1}{2}kx_{1}^{2} = 0$$

$$K_{2} = \frac{1}{2}mv_{2x}^{2}$$

$$U_{2} = \frac{1}{2}kx_{2}^{2} = \frac{1}{2}(5.00 \text{ N/m})(0.100 \text{ m})^{2} = 0.0250 \text{ J}$$

$$W_{\text{other}} = F\Delta x = (0.610 \text{ N})(0.100 \text{ m}) = 0.0610 \text{ J}$$

The initial total mechanical energy is zero; the work done by \vec{F} increases the total mechanical energy to 0.0610 J, of which $U_2 = 0.0250$ J is elastic potential energy. The remainder is kinetic energy. From Eq. (7.13),

$$K_1 + U_1 + W_{\text{other}} = K_2 + U_2$$

 $K_2 = K_1 + U_1 + W_{\text{other}} - U_2$

$$= 0 + 0 + 0.0610 \text{ J} - 0.0250 \text{ J} = 0.0360 \text{ J}$$
$$v_{2x} = \sqrt{\frac{2K_2}{m}} = \sqrt{\frac{2(0.0360 \text{ J})}{0.200 \text{ kg}}} = 0.60 \text{ m/s}$$

We choose the positive square root because the glider is moving in the +x-direction.

EVALUATE: To test our answer, think what would be different if we disconnected the glider from the spring. Then only \vec{F} would do work, there would be zero elastic potential energy at all times, and Eq. (7.13) would give us

$$K_2 = K_1 + W_{\text{other}} = 0 + 0.0610 \text{ J}$$

 $v_{2x} = \sqrt{\frac{2K_2}{m}} = \sqrt{\frac{2(0.0610 \text{ J})}{0.200 \text{ kg}}} = 0.78 \text{ m/s}$

Our answer $v_{2x} = 0.60$ m/s is less than 0.78 m/s because the spring does negative work on the glider as it stretches (see Fig. 7.13b).

If you stop pushing on the glider when it reaches x = 0.100 m, only the spring force does work on it thereafter. Hence for x > 0.100 m, the total mechanical energy E = K + U = 0.0610 J is constant. As the spring continues to stretch, the glider slows down and the kinetic energy K decreases as the potential energy increases. The glider comes to rest at some point $x = x_3$, at which the kinetic energy is zero and the potential energy $U = U_{el} = \frac{1}{2}kx_3^2$ equals the total mechanical energy 0.0610 J. Can you show that $x_3 = 0.156$ m? (It moves an additional 0.056 m after you stop pushing.) If there is no friction, will the glider remain at rest?

Example 7.9 Motion with gravitational, elastic, and friction forces

A 2000-kg (19,600-N) elevator with broken cables in a test rig is falling at 4.00 m/s when it contacts a cushioning spring at the bottom of the shaft. The spring is intended to stop the elevator, compressing 2.00 m as it does so (Fig. 7.17). During the motion a safety clamp applies a constant 17,000-N frictional force to the elevator. What is the necessary force constant *k* for the spring?

7.17 The fall of an elevator is stopped by a spring and by a constant friction force.

SOLUTION

IDENTIFY and SET UP: We'll use the energy approach to determine k, which appears in the expression for elastic potential energy. This problem involves *both* gravitational and elastic potential energy. Total mechanical energy is not conserved because the friction force does negative work W_{other} on the elevator. We'll therefore use the most general form of the energy relationship, Eq. (7.13). We take point 1 as the position of the bottom of the elevator when it contacts the spring, and point 2 as its position when it stops. We choose the origin to be at point 1, so $y_1 = 0$ and $y_2 = -2.00$ m. With this choice the coordinate of the upper end of the spring after contact is the same as the coordinate of the elevator, so the elastic potential energy at any point between points 1 and 2 is $U_{el} = \frac{1}{2}ky^2$. The gravitational potential energy is $U_{grav} = mgy$ as usual. We know the initial and final speeds of the elevator and the magnitude of the friction force, so the only unknown is the force constant *k* (our target variable).

EXECUTE: The elevator's initial speed is $v_1 = 4.00 \text{ m/s}$, so its initial kinetic energy is

$$K_1 = \frac{1}{2}mv_1^2 = \frac{1}{2}(2000 \text{ kg})(4.00 \text{ m/s})^2 = 16,000 \text{ J}$$

The elevator stops at point 2, so $K_2 = 0$. At point 1 the potential energy $U_1 = U_{\text{grav}} + U_{\text{el}}$ is zero; U_{grav} is zero because $y_1 = 0$, and $U_{\text{el}} = 0$ because the spring is uncompressed. At point 2 there is both gravitational and elastic potential energy, so

$$U_2 = mgy_2 + \frac{1}{2}ky_2^2$$

The gravitational potential energy at point 2 is

$$ngy_2 = (2000 \text{ kg})(9.80 \text{ m/s}^2)(-2.00 \text{ m}) = -39,200 \text{ J}$$

The "other" force is the constant 17,000-N friction force. It acts opposite to the 2.00-m displacement, so

$$W_{\text{other}} = -(17,000 \text{ N})(2.00 \text{ m}) = -34,000 \text{ J}$$

We put these terms into Eq. (7.14), $K_1 + U_1 + W_{\text{other}} = K_2 + U_2$:

$$K_{1} + 0 + W_{\text{other}} = 0 + (mgy_{2} + \frac{1}{2}ky_{2}^{2})$$

$$k = \frac{2(K_{1} + W_{\text{other}} - mgy_{2})}{y_{2}^{2}}$$

$$= \frac{2[16,000 \text{ J} + (-34,000 \text{ J}) - (-39,200 \text{ J})]}{(-2.00 \text{ m})^{2}}$$

$$= 1.06 \times 10^{4} \text{ N/m}$$

This is about one-tenth the force constant of a spring in an automobile suspension.

EVALUATE: There might seem to be a paradox here. The elastic potential energy at point 2 is

$$\frac{1}{2}ky_2^2 = \frac{1}{2}(1.06 \times 10^4 \,\text{N/m})(-2.00 \,\text{m})^2 = 21,200 \,\text{J}$$

This is *more* than the total mechanical energy at point 1:

$$E_1 = K_1 + U_1 = 16,000 \text{ J} + 0 = 16,000 \text{ J}$$

But the friction force *decreased* the mechanical energy of the system by 34,000 J between points 1 and 2. Did energy appear from nowhere? No. At point 2, which is below the origin, there is also *negative* gravitational potential energy $mgy_2 = -39,200$ J. The total mechanical energy at point 2 is therefore not 21,200 J but rather

$$E_2 = K_2 + U_2 = 0 + \frac{1}{2}ky_2^2 + mgy_2$$

= 0 + 21,200 J + (-39,200 J) = -18,000 J

This is just the initial mechanical energy of 16,000 J minus 34,000 J lost to friction.

Will the elevator stay at the bottom of the shaft? At point 2 the compressed spring exerts an upward force of magnitude $F_{\text{spring}} = (1.06 \times 10^4 \text{ N/m})(2.00 \text{ m}) = 21,200 \text{ N}$, while the downward force of gravity is only $w = mg = (2000 \text{ kg})(9.80 \text{ m/s}^2) = 19,600 \text{ N}$. If there were no friction, there would be a net upward force of 21,200 N – 19,600 N = 1600 N, and the elevator would rebound. But the safety clamp can exert a kinetic friction force of 17,000 N, and it can presumably exert a maximum static friction force greater than that. Hence the clamp will keep the elevator from rebounding.

I

Test Your Understanding of Section 7.2 Consider the situation in Example 7.9 at the instant when the elevator is still moving downward and the spring is compressed by 1.00 m. Which of the energy bar graphs in the figure most accurately shows the kinetic energy K, gravitational potential energy U_{grav} , and elastic potential energy U_{el} at this instant?

7.3 Conservative and Nonconservative Forces

In our discussions of potential energy we have talked about "storing" kinetic energy by converting it to potential energy. We always have in mind that later we may retrieve it again as kinetic energy. For example, when you throw a ball up in the air, it slows down as kinetic energy is converted to gravitational potential energy. But on the way down, the conversion is reversed, and the ball speeds up as potential energy is converted back to kinetic energy. If there is no air resistance, the ball is moving just as fast when you catch it as when you threw it.

Another example is a glider moving on a frictionless horizontal air track that runs into a spring bumper at the end of the track. The glider stops as it compresses the spring and then bounces back. If there is no friction, the glider ends up with the same speed and kinetic energy it had before the collision. Again, there is a two-way conversion from kinetic to potential energy and back. In both cases we can define a potential-energy function so that the total mechanical energy, kinetic plus potential, is constant or *conserved* during the motion.

Conservative Forces

A force that offers this opportunity of two-way conversion between kinetic and potential energies is called a **conservative force.** We have seen two examples of

7.18 The work done by a conservative force such as gravity depends only on the end points of a path, not on the specific path taken between those points.

Because the gravitational force is conservative, the work it does is the same for all three paths.

Mastering PHYSICS PhET: The Ramp conservative forces: the gravitational force and the spring force. (Later in this book we will study another conservative force, the electric force between charged objects.) An essential feature of conservative forces is that their work is always *reversible*. Anything that we deposit in the energy "bank" can later be withdrawn without loss. Another important aspect of conservative forces is that a body may move from point 1 to point 2 by various paths, but the work done by a conservative force is the same for all of these paths (Fig. 7.18). Thus, if a body stays close to the surface of the earth, the gravitational force $m\vec{g}$ is independent of height, and the work done by this force depends only on the change in height. If the body moves around a closed path, ending at the same point where it started, the *total* work done by the gravitational force is always zero.

The work done by a conservative force *always* has four properties:

- 1. It can be expressed as the difference between the initial and final values of a *potential-energy* function.
- 2. It is reversible.
- 3. It is independent of the path of the body and depends only on the starting and ending points.
- 4. When the starting and ending points are the same, the total work is zero.

When the *only* forces that do work are conservative forces, the total mechanical energy E = K + U is constant.

Nonconservative Forces

Not all forces are conservative. Consider the friction force acting on the crate sliding on a ramp in Example 7.6 (Section 7.1). When the body slides up and then back down to the starting point, the total work done on it by the friction force is *not* zero. When the direction of motion reverses, so does the friction force, and friction does *negative* work in *both* directions. When a car with its brakes locked skids across the pavement with decreasing speed (and decreasing kinetic energy), the lost kinetic energy cannot be recovered by reversing the motion or in any other way, and mechanical energy is *not* conserved. There is *no* potential-energy function force.

In the same way, the force of fluid resistance (see Section 5.3) is not conservative. If you throw a ball up in the air, air resistance does negative work on the ball while it's rising *and* while it's descending. The ball returns to your hand with less speed and less kinetic energy than when it left, and there is no way to get back the lost mechanical energy.

A force that is not conservative is called a **nonconservative force**. The work done by a nonconservative force *cannot* be represented by a potential-energy function. Some nonconservative forces, like kinetic friction or fluid resistance, cause mechanical energy to be lost or dissipated; a force of this kind is called a **dissipative force**. There are also nonconservative forces that *increase* mechanical energy. The fragments of an exploding firecracker fly off with very large kinetic energy, thanks to a chemical reaction of gunpowder with oxygen. The forces unleashed by this reaction are nonconservative because the process is not reversible. (The fragments never spontaneously reassemble themselves into a complete firecracker!)

Example 7.10 Frictional work depends on the path

You are rearranging your furniture and wish to move a 40.0-kg futon 2.50 m across the room. A heavy coffee table, which you don't want to move, blocks this straight-line path. Instead, you slide the futon along a dogleg path; the doglegs are 2.00 m and 1.50 m long. How much more work must you do to push the futon along the dogleg path than along the straight-line path? The coefficient of kinetic friction is $\mu_k = 0.200$.

SOLUTION

IDENTIFY and SET UP: Here both you and friction do work on the futon, so we must use the energy relationship that includes "other" forces. We'll use this relationship to find a connection between the work that *you* do and the work that *friction* does. Figure 7.19 shows our sketch. The futon is at rest at both point 1 and point 2, so

7.19 Our sketch for this problem.

 $K_1 = K_2 = 0$. There is no elastic potential energy (there are no springs), and the gravitational potential energy does not change because the futon moves only horizontally, so $U_1 = U_2$. From Eq. (7.14) it follows that $W_{\text{other}} = 0$. That "other" work done on the futon is the sum of the positive work you do, W_{you} , and the negative work done by friction, W_{fric} . Since the sum of these is zero, we have

$$W_{\rm you} = -W_{\rm fri}$$

Thus we'll calculate the work done by friction to determine W_{you} .

EXECUTE: The floor is horizontal, so the normal force on the futon equals its weight mg and the magnitude of the friction force is $f_k = \mu_k n = \mu_k mg$. The work you do over each path is then

$$W_{you} = -W_{fric} = -(-f_k s) = +\mu_k mgs$$

= (0.200)(40.0 kg)(9.80 m/s²)(2.50 m)
= 196 J (straight-line path)
$$W_{you} = -W_{fric} = +\mu_k mgs$$

= (0.200)(40.0 kg)(9.80 m/s²)(2.00 m + 1.50 m)
= 274 J (dogleg path)

The extra work you must do is 274 J - 196 J = 78 J.

EVALUATE: Friction does different amounts of work on the futon, -196 J and -274 J, on these different paths between points 1 and 2. Hence friction is a *nonconservative* force.

Example 7.11 Conservative or nonconservative?

In a region of space the force on an electron is $\vec{F} = Cx\hat{j}$, where *C* is a positive constant. The electron moves around a square loop in the *xy*-plane (Fig. 7.20). Calculate the work done on the electron by the force \vec{F} during a counterclockwise trip around the square. Is this force conservative or nonconservative?

SOLUTION

IDENTIFY and SET UP: The force \vec{F} is not constant, and in general it is not in the same direction as the displacement. To calculate the work done by \vec{F} , we'll use the general expression for work, Eq. (6.14):

$$W = \int_{P_1}^{P_2} \vec{F} \cdot d\vec{l}$$

where $d\vec{l}$ is an infinitesimal displacement. We'll calculate the work done on each leg of the square separately, and add the results to find the work done on the round trip. If this round-trip work is zero, force \vec{F} is conservative and can be represented by a potential-energy function.

7.20 An electron moving around a square loop while being acted on by the force $\vec{F} = Cx\hat{j}$.

EXECUTE: On the first leg, from (0, 0) to (L, 0), the force is everywhere perpendicular to the displacement. So $\vec{F} \cdot d\vec{l} = 0$, and the work done on the first leg is $W_1 = 0$. The force has the same value $\vec{F} = CL\hat{j}$ everywhere on the second leg, from (L, 0) to (L, L). The displacement on this leg is in the +y-direction, so $d\vec{l} = dy\hat{j}$ and

$$\vec{F} \cdot d\vec{l} = CL\hat{j} \cdot dy\hat{j} = CL \, dy$$

The work done on the second leg is then

$$W_2 = \int_{(L,0)}^{(L,L)} \vec{F} \cdot d\vec{l} = \int_{y=0}^{y=L} CL \, dy = CL \int_0^L dy = CL^2$$

On the third leg, from (L, L) to (0, L), \vec{F} is again perpendicular to the displacement and so $W_3 = 0$. The force is zero on the final leg, from (0, L) to (0, 0), so $W_4 = 0$. The work done by \vec{F} on the round trip is therefore

$$W = W_1 + W_2 + W_3 + W_4 = 0 + CL^2 + 0 + 0 = CL^2$$

The starting and ending points are the same, but the total work done by \vec{F} is not zero. This is a *nonconservative* force; it *cannot* be represented by a potential-energy function.

EVALUATE: Because *W* is positive, the mechanical energy *increases* as the electron goes around the loop. This is not a mathematical curiosity; it's a much-simplified description of what happens in an electrical generating plant. There, a loop of wire is moved through a magnetic field, which gives rise to a nonconservative force similar to the one here. Electrons in the wire gain energy as they move around the loop, and this energy is carried via transmission lines to the consumer. (We'll discuss how this works in Chapter 29.)

If the electron went *clockwise* around the loop, \vec{F} would be unaffected but the direction of each infinitesimal displacement $d\vec{l}$ would be reversed. Thus the sign of work would also reverse, and the work for a clockwise round trip would be $W = -CL^2$. This is a different behavior than the nonconservative friction force. The work done by friction on a body that slides in any direction over a stationary surface is always negative (see Example 7.6 in Section 7.1).

7.21 When 1 liter of gasoline is burned in an automotive engine, it releases 3.3×10^7 J of internal energy. Hence $\Delta U_{int} = -3.3 \times 10^7$ J, where the minus sign means that the amount of energy stored in the gasoline has decreased. This energy can be converted to kinetic energy (making the car go faster) or to potential energy (enabling the car to climb uphill).

The Law of Conservation of Energy

Nonconservative forces cannot be represented in terms of potential energy. But we can describe the effects of these forces in terms of kinds of energy other than kinetic and potential energy. When a car with locked brakes skids to a stop, the tires and the road surface both become hotter. The energy associated with this change in the state of the materials is called **internal energy**. Raising the temperature of a body increases its internal energy; lowering the body's temperature decreases its internal energy.

To see the significance of internal energy, let's consider a block sliding on a rough surface. Friction does *negative* work on the block as it slides, and the change in internal energy of the block and surface (both of which get hotter) is *positive*. Careful experiments show that the increase in the internal energy is *exactly* equal to the absolute value of the work done by friction. In other words,

$$\Delta U_{\rm int} = -W_{\rm other}$$

where ΔU_{int} is the change in internal energy. If we substitute this into Eq. (7.7) or (7.14), we find

$$K_1 + U_1 - \Delta U_{\text{int}} = K_2 + U_2$$

Writing $\Delta K = K_2 - K_1$ and $\Delta U = U_2 - U_1$, we can finally express this as

$$\Delta K + \Delta U + \Delta U_{int} = 0$$
 (law of conservation of energy) (7.15)

This remarkable statement is the general form of the **law of conservation of energy.** In a given process, the kinetic energy, potential energy, and internal energy of a system may all change. But the *sum* of those changes is always zero. If there is a decrease in one form of energy, it is made up for by an increase in the other forms (Fig. 7.21). When we expand our definition of energy to include internal energy, Eq. (7.15) says: *Energy is never created or destroyed; it only changes form.* No exception to this rule has ever been found.

The concept of work has been banished from Eq. (7.15); instead, it suggests that we think purely in terms of the conversion of energy from one form to another. For example, when you throw a baseball straight up, you convert a portion of the internal energy of your molecules to kinetic energy of the baseball. This is converted to gravitational potential energy as the ball climbs and back to kinetic energy as the ball falls. If there is air resistance, part of the energy is used to heat up the air and the ball and increase their internal energy. Energy is converted back to the kinetic form as the ball falls. If you catch the ball in your hand, whatever energy was not lost to the air once again becomes internal energy; the ball and your hand are now warmer than they were at the beginning.

In Chapters 19 and 20, we will study the relationship of internal energy to temperature changes, heat, and work. This is the heart of the area of physics called *thermodynamics*.

Conceptual Example 7.12 Work done by friction

Let's return to Example 7.5 (Section 7.1), in which Throcky skateboards down a curved ramp. He starts with zero kinetic energy and 735 J of potential energy, and at the bottom he has 450 J of kinetic energy and zero potential energy; hence $\Delta K = +450$ J and $\Delta U = -735$ J. The work $W_{\text{other}} = W_{\text{fric}}$ done by the friction forces is -285 J, so the change in internal energy is $\Delta U_{\text{int}} = -W_{\text{other}} = +285$ J. The skateboard wheels and bearings

$$\Delta K + \Delta U + \Delta U_{\text{int}} = +450 \text{ J} + (-735 \text{ J}) + 285 \text{ J} = 0$$

The total energy of the system (including internal, nonmechanical forms of energy) is conserved.

Test Your Understanding of Section 7.3 In a hydroelectric generating station, falling water is used to drive turbines ("water wheels"), which in turn run electric generators. Compared to the amount of gravitational potential energy released by the falling water, how much electrical energy is produced? (i) the same; (ii) more; (iii) less.

(MP

I

7.4 Force and Potential Energy

For the two kinds of conservative forces (gravitational and elastic) we have studied, we started with a description of the behavior of the *force* and derived from that an expression for the *potential energy*. For example, for a body with mass min a uniform gravitational field, the gravitational force is $F_y = -mg$. We found that the corresponding potential energy is U(y) = mgy. To stretch an ideal spring by a distance x, we exert a force equal to +kx. By Newton's third law the force that an ideal spring exerts on a body is opposite this, or $F_x = -kx$. The corresponding potential energy function is $U(x) = \frac{1}{2}kx^2$.

In studying physics, however, you'll encounter situations in which you are given an expression for the *potential energy* as a function of position and have to find the corresponding *force*. We'll see several examples of this kind when we study electric forces later in this book: It's often far easier to calculate the electric potential energy first and then determine the corresponding electric force afterward.

Here's how we find the force that corresponds to a given potential-energy expression. First let's consider motion along a straight line, with coordinate x. We denote the x-component of force, a function of x, by $F_x(x)$, and the potential energy as U(x). This notation reminds us that both F_x and U are *functions* of x. Now we recall that in any displacement, the work W done by a conservative force equals the negative of the change ΔU in potential energy:

$$W = -\Delta U$$

Let's apply this to a small displacement Δx . The work done by the force $F_x(x)$ during this displacement is approximately equal to $F_x(x) \Delta x$. We have to say "approximately" because $F_x(x)$ may vary a little over the interval Δx . But it is at least approximately true that

$$F_x(x) \Delta x = -\Delta U$$
 and $F_x(x) = -\frac{\Delta U}{\Delta x}$

You can probably see what's coming. We take the limit as $\Delta x \rightarrow 0$; in this limit, the variation of F_x becomes negligible, and we have the exact relationship

$$F_x(x) = -\frac{dU(x)}{dx}$$
 (force from potential energy, one dimension) (7.16)

This result makes sense; in regions where U(x) changes most rapidly with x (that is, where dU(x)/dx is large), the greatest amount of work is done during a given displacement, and this corresponds to a large force magnitude. Also, when $F_x(x)$ is in the positive x-direction, U(x) decreases with increasing x. So $F_x(x)$ and dU(x)/dx should indeed have opposite signs. The physical meaning of Eq. (7.16) is that a conservative force always acts to push the system toward lower potential energy.

As a check, let's consider the function for elastic potential energy, $U(x) = \frac{1}{2}kx^2$. Substituting this into Eq. (7.16) yields

$$F_x(x) = -\frac{d}{dx} \left(\frac{1}{2}kx^2\right) = -kx$$

which is the correct expression for the force exerted by an ideal spring (Fig. 7.22a). Similarly, for gravitational potential energy we have U(y) = mgy; taking care to change x to y for the choice of axis, we get $F_y = -dU/dy = -d(mgy)/dy = -mg$, which is the correct expression for gravitational force (Fig. 7.22b).

7.22 A conservative force is the negative derivative of the corresponding potential energy.

Example 7.13 An electric force and its potential energy

An electrically charged particle is held at rest at the point x = 0; a second particle with equal charge is free to move along the positive x-axis. The potential energy of the system is U(x) = C/x, where C is a positive constant that depends on the magnitude of the charges. Derive an expression for the x-component of force acting on the movable particle as a function of its position.

SOLUTION

IDENTIFY and SET UP: We are given the potential-energy function U(x). We'll find the corresponding force function using Eq. (7.16), $F_x(x) = -dU(x)/dx$.

EXECUTE: The derivative of 1/x with respect to x is $-1/x^2$. So for x > 0 the force on the movable charged particle x > 0 is

$$F_x(x) = -\frac{dU(x)}{dx} = -C\left(-\frac{1}{x^2}\right) = \frac{C}{x^2}$$

EVALUATE: The *x*-component of force is positive, corresponding to a repulsion between like electric charges. Both the potential energy and the force are very large when the particles are close together (small x), and both get smaller as the particles move farther apart (large x); the force pushes the movable particle toward large positive values of x, where the potential energy is lower. (We'll study electric forces in detail in Chapter 21.)

Force and Potential Energy in Three Dimensions

We can extend this analysis to three dimensions, where the particle may move in the x-, y-, or z-direction, or all at once, under the action of a conservative force that has components F_x , F_y , and F_z . Each component of force may be a function of the coordinates x, y, and z. The potential-energy function U is also a function of all three space coordinates. We can now use Eq. (7.16) to find each component of force. The potential-energy change ΔU when the particle moves a small distance Δx in the x-direction is again given by $-F_x \Delta x$; it doesn't depend on F_y and F_z , which represent force components that are perpendicular to the displacement and do no work. So we again have the approximate relationship

$$F_x = -\frac{\Delta U}{\Delta x}$$

The *y*- and *z*-components of force are determined in exactly the same way:

$$F_y = -\frac{\Delta U}{\Delta y}$$
 $F_z = -\frac{\Delta U}{\Delta z}$

To make these relationships exact, we take the limits $\Delta x \rightarrow 0$, $\Delta y \rightarrow 0$, and $\Delta z \rightarrow 0$ so that these ratios become derivatives. Because U may be a function of all three coordinates, we need to remember that when we calculate each of these derivatives, only one coordinate changes at a time. We compute the derivative of U with respect to x by assuming that y and z are constant and only x varies, and so on. Such a derivative is called a *partial derivative*. The usual

MP
Application Topography and

Potential Energy Gradient

The greater the elevation of a hiker in Canada's Banff National Park, the greater is the gravitational potential energy $U_{\rm grav}$. Think of an *x*-axis that runs horizontally from west to east and a *y*-axis that runs horizontally from south to north. Then the function $U_{\rm grav}(x,y)$ tells us the elevation as a function of position in the park. Where the mountains have steep slopes, $\vec{F} = -\vec{\nabla}U_{\rm grav}$ has a large magnitude

and there's a strong force pushing you along the mountain's surface toward a region of lower elevation (and hence lower $U_{\rm grav}$). There's zero force along the surface of the lake, which is all at the same elevation. Hence $U_{\rm grav}$ is constant at all points on the lake

notation for a partial derivative is $\partial U/\partial x$ and so on; the symbol ∂ is a modified *d*. So we write

$$F_x = -\frac{\partial U}{\partial x}$$
 $F_y = -\frac{\partial U}{\partial y}$ $F_z = -\frac{\partial U}{\partial z}$ (force from potential energy) (7.17)

We can use unit vectors to write a single compact vector expression for the force \vec{F} :

$$\vec{F} = -\left(\frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j} + \frac{\partial U}{\partial z}\hat{k}\right) \qquad \text{(force from potential energy)} \qquad (7.18)$$

The expression inside the parentheses represents a particular operation on the function U, in which we take the partial derivative of U with respect to each coordinate, multiply by the corresponding unit vector, and then take the vector sum. This operation is called the **gradient** of U and is often abbreviated as ∇U . Thus the force is the negative of the gradient of the potential-energy function:

$$\vec{F} = -\vec{\nabla}U \tag{7.19}$$

As a check, let's substitute into Eq. (7.19) the function U = mgy for gravitational potential energy:

$$\vec{F} = -\vec{\nabla}(mgy) = -\left(\frac{\partial(mgy)}{\partial x}\hat{i} + \frac{\partial(mgy)}{\partial y}\hat{j} + \frac{\partial(mgy)}{\partial z}\hat{k}\right) = (-mg)\hat{j}$$

This is just the familiar expression for the gravitational force.

Example 7.14 Force and potential energy in two dimensions

A puck with coordinates x and y slides on a level, frictionless airhockey table. It is acted on by a conservative force described by the potential-energy function

$$U(x, y) = \frac{1}{2}k(x^2 + y^2)$$

Find a vector expression for the force acting on the puck, and find an expression for the magnitude of the force.

SOLUTION

IDENTIFY and SET UP: Starting with the function U(x, y), we need to find the vector components and magnitude of the corresponding force \vec{F} . We'll find the components using Eq. (7.18). The function U doesn't depend on z, so the partial derivative of U with respect to z is $\partial U/\partial z = 0$ and the force has no *z*-component. We'll determine the magnitude F of the force using $F = \sqrt{F_x^2 + F_y^2}$.

EXECUTE: The *x*- and *y*-components of \vec{F} are

$$F_x = -\frac{\partial U}{\partial x} = -kx$$
 $F_y = -\frac{\partial U}{\partial y} = -ky$

From Eq. (7.18), the vector expression for the force is

$$\mathbf{F} = (-kx)\mathbf{\hat{i}} + (-ky)\mathbf{\hat{j}} = -k(x\mathbf{\hat{i}} + y\mathbf{\hat{j}})$$

The magnitude of the force is

$$F = \sqrt{(-kx)^2 + (-ky)^2} = k\sqrt{x^2 + y^2} = kr$$

EVALUATE: Because $x\hat{i} + y\hat{j}$ is just the position vector \vec{r} of the particle, we can rewrite our result as $\vec{F} = -k\vec{r}$. This represents a force that is opposite in direction to the particle's position vector—that is, a force directed toward the origin, r = 0. This is the force that would be exerted on the puck if it were attached to one end of a spring that obeys Hooke's law and has a negligibly small unstretched length compared to the other distances in the problem. (The other end is attached to the air-hockey table at r = 0.)

To check our result, note that $U = \frac{1}{2}kr^2$, where $r^2 = x^2 + y^2$. We can find the force from this expression using Eq. (7.16) with *x* replaced by *r*:

$$F_r = -\frac{dU}{dr} = -\frac{d}{dr} \left(\frac{1}{2}kr^2\right) = -kr$$

As we found above, the force has magnitude kr; the minus sign indicates that the force is toward the origin (at r = 0).

7.23 (a) A glider on an air track. The spring exerts a force $F_x = -kx$. (b) The potential-energy function.

(a)

(b)

On the graph, the limits of motion are the points where the U curve intersects the horizontal line representing total mechanical energy E.

Application Acrobats in Equilibrium

Each of these acrobats is in *unstable* equilibrium. The gravitational potential energy is lower no matter which way an acrobat tips, so if she begins to fall she will keep on falling. Staying balanced requires the acrobats' constant attention.

Test Your Understanding of Section 7.4 A particle moving along the *x*-axis is acted on by a conservative force F_x . At a certain point, the force is zero. (a) Which of the following statements about the value of the potential-energy function U(x) at that point is correct? (i) U(x) = 0; (ii) U(x) > 0; (iii) U(x) < 0; (iv) not enough information is given to decide. (b) Which of the following statements about the value of the derivative of U(x) at that point is correct? (i) dU(x)/dx = 0; (ii) dU(x)/dx > 0; (iii) dU(x)/dx < 0; (iv) not enough information is given to decide.

7.5 Energy Diagrams

When a particle moves along a straight line under the action of a conservative force, we can get a lot of insight into its possible motions by looking at the graph of the potential-energy function U(x). Figure 7.23a shows a glider with mass m that moves along the *x*-axis on an air track. The spring exerts on the glider a force with *x*-component $F_x = -kx$. Figure 7.23b is a graph of the corresponding potential-energy function $U(x) = \frac{1}{2}kx^2$. If the elastic force of the spring is the *only* horizontal force acting on the glider, the total mechanical energy E = K + U is constant, independent of *x*. A graph of *E* as a function of *x* is thus a straight horizontal line. We use the term **energy diagram** for a graph like this, which shows both the potential-energy function U(x) and the energy of the particle subjected to the force that corresponds to U(x).

The vertical distance between the U and E graphs at each point represents the difference E - U, equal to the kinetic energy K at that point. We see that K is greatest at x = 0. It is zero at the values of x where the two graphs cross, labeled A and -A in the diagram. Thus the speed v is greatest at x = 0, and it is zero at $x = \pm A$, the points of *maximum* possible displacement from x = 0 for a given value of the total energy E. The potential energy U can never be greater than the total energy E; if it were, K would be negative, and that's impossible. The motion is a back-and-forth oscillation between the points x = A and x = -A.

At each point, the force F_x on the glider is equal to the negative of the slope of the U(x) curve: $F_x = -dU/dx$ (see Fig. 7.22a). When the particle is at x = 0, the slope and the force are zero, so this is an *equilibrium* position. When x is positive, the slope of the U(x) curve is positive and the force F_x is negative, directed toward the origin. When x is negative, the slope is negative and F_x is positive, again directed toward the origin. Such a force is called a *restoring force;* when the glider is displaced to either side of x = 0, the force tends to "restore" it back to x = 0. An analogous situation is a marble rolling around in a round-bottomed bowl. We say that x = 0 is a point of **stable equilibrium**. More generally, *any minimum in a potential-energy curve is a stable equilibrium position*.

Figure 7.24a shows a hypothetical but more general potential-energy function U(x). Figure 7.24b shows the corresponding force $F_x = -dU/dx$. Points x_1 and x_3 are stable equilibrium points. At each of these points, F_x is zero because the slope of the U(x) curve is zero. When the particle is displaced to either side, the force pushes back toward the equilibrium point. The slope of the U(x) curve is also zero at points x_2 and x_4 , and these are also equilibrium points. But when the particle is displaced a little to the right of either point, the slope of the U(x) curve becomes negative, corresponding to a positive F_x that tends to push the particle still farther from the point. When the particle is displaced a little to the left, F_x is negative, again pushing away from equilibrium. This is analogous to a marble rolling on the top of a bowling ball. Points x_2 and x_4 are called **unstable equilibrium** points; any maximum in a potential-energy curve is an unstable equilibrium position.

7.24 The maxima and minima of a potential-energy function U(x) correspond to points where $F_x = 0$.

(a) A hypothetical potential-energy function U(x)

CAUTION Potential energy and the direction of a conservative force The direction of the force on a body is *not* determined by the sign of the potential energy U. Rather, it's the sign of $F_x = -dU/dx$ that matters. As we discussed in Section 7.1, the physically significant quantity is the *difference* in the values of U between two points, which is just what the derivative $F_x = -dU/dx$ measures. This means that you can always add a constant to the potential-energy function without changing the physics of the situation.

If the total energy is E_1 and the particle is initially near x_1 , it can move only in the region between x_a and x_b determined by the intersection of the E_1 and Ugraphs (Fig. 7.24a). Again, U cannot be greater than E_1 because K can't be negative. We speak of the particle as moving in a *potential well*, and x_a and x_b are the *turning points* of the particle's motion (since at these points, the particle stops and reverses direction). If we increase the total energy to the level E_2 , the particle can move over a wider range, from x_c to x_d . If the total energy is greater than E_3 , the particle can "escape" and move to indefinitely large values of x. At the other extreme, E_0 represents the least possible total energy the system can have.

Test Your Understanding of Section 7.5 The curve in Fig. 7.24b has a maximum at a point between x_2 and x_3 . Which statement correctly describes what happens to the particle when it is at this point? (i) The particle's acceleration is zero. (ii) The particle accelerates in the positive *x*-direction; the magnitude of the acceleration is less than at any other point between x_2 and x_3 . (iii) The particle accelerates in the positive *x*-direction; the magnitude of the accelerates in the positive *x*-direction; the magnitude of the accelerates in the negative *x*-direction; the magnitude of the accelerates in the negative *x*-direction; the magnitude of the accelerates in the negative *x*-direction; the magnitude of the accelerates in the negative *x*-direction; the magnitude of the acceleration is greater than at any other point between x_2 and x_3 . (v) The particle accelerates in the negative *x*-direction; the magnitude of the acceleration is greater than at any other point between x_2 and x_3 . (v) The particle accelerates in the negative *x*-direction; the magnitude of the acceleration is greater than at any other point between x_2 and x_3 . (v) The particle accelerates in the negative *x*-direction; the magnitude of the acceleration is greater than at any other point between x_2 and x_3 .

Mastering PHYSICS PhET: Energy Skate Park

CHAPTER 7 SUMMARY

Gravitational potential energy and elastic potential energy: The work done on a particle by a constant gravitational force can be represented as a change in the gravitational potential energy $U_{\text{grav}} = mgy$. This energy is a shared property of the particle and the earth. A potential energy is also associated with the elastic force $F_x = -kx$ exerted by an ideal spring, where x is the amount of stretch or compression. The work done by this force can be represented as a change in the elastic potential energy of the spring, $U_{\text{el}} = \frac{1}{2}kx^2$.

When total mechanical energy is conserved:

The total potential energy *U* is the sum of the gravitational and elastic potential energy: $U = U_{\text{grav}} + U_{\text{el}}$. If no forces other than the gravitational and elastic forces do work on a particle, the sum of kinetic and potential energy is conserved. This sum E = K + U is called the total mechanical energy. (See Examples 7.1, 7.3, 7.4, and 7.7.)

When total mechanical energy is not conserved:

When forces other than the gravitational and elastic forces do work on a particle, the work W_{other} done by these other forces equals the change in total mechanical energy (kinetic energy plus total potential energy). (See Examples 7.2, 7.5, 7.6, 7.8, and 7.9.)

Conservative forces, nonconservative forces, and the law of conservation of energy: All forces are either conservative or nonconservative. A conservative force is one for which the work–kinetic energy relationship is completely reversible. The work of a conservative force can always be represented by a potential-energy function, but the work of a nonconservative force cannot. The work done by nonconservative forces manifests itself as changes in the internal energy of bodies. The sum of kinetic, potential, and internal energy is always conserved. (See Examples 7.10–7.12.)

Determining force from potential energy: For motion along a straight line, a conservative force $F_x(x)$ is the negative derivative of its associated potentialenergy function *U*. In three dimensions, the components of a conservative force are negative partial derivatives of *U*. (See Examples 7.13 and 7.14.)

$$W_{\text{grav}} = mgy_1 - mgy_2 = U_{\text{grav},1} - U_{\text{grav},2} = -\Delta U_{\text{grav}}$$
(7.1), (7.3)
$$W_{\text{el}} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2$$

$$= U_{\rm el,1} - U_{\rm el,2} = -\Delta U_{\rm el}$$
 (7.10)

 $K_1 + U_1 + W_{\text{other}} = K_2 + U_2$ (7.14)

 $\Delta K + \Delta U + \Delta U_{\rm int} = 0$

(7.4), (7.11)

(7.15)

 $K_1 + U_1 = K_2 + U_2$

 $U_{\text{grav},1} = mgy_1$ $U_{\text{el}} = \frac{1}{2}kx^2$ $U_{\text{grav},2} = mgy_2$ $U_{\text{grav},2} = mgy_2$

 $F_{x}(x) = -\frac{dU(x)}{dx}$ (7.16) $F_{x} = -\frac{\partial U}{\partial x} \quad F_{y} = -\frac{\partial U}{\partial y}$ (7.17) $F_{z} = -\frac{\partial U}{\partial z} \quad (7.17)$ $\vec{F} = -\left(\frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j} + \frac{\partial U}{\partial z}\hat{k}\right)$ (7.18)

BRIDGING PROBLEM A Spring and Friction on an Incline

A 2.00-kg package is released on a 53.1° incline, 4.00 m from a long spring with force constant 1.20×10^2 N/m that is attached at the bottom of the incline (Fig. 7.25). The coefficients of friction between the package and incline are $\mu_s = 0.400$ and $\mu_k = 0.200$. The mass of the spring is negligible.

(a) What is the maximum compression of the spring? (b) The package rebounds up the incline. How close does it get to its original position? (c) What is the change in the internal energy of the package and incline from when the package is released to when it rebounds to its maximum height?

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution. (MP

IDENTIFY and **SET UP**

- 1. This problem involves the gravitational force, a spring force, and the friction force, as well as the normal force that acts on the package. Since the spring force isn't constant, you'll have to use energy methods. Is mechanical energy conserved during any part of the motion? Why or why not?
- 2. Draw free-body diagrams for the package as it is sliding down the incline and sliding back up the incline. Include your choice of coordinate axis. (*Hint:* If you choose x = 0 to be at the end of the uncompressed spring, you'll be able to use $U_{el} = \frac{1}{2}kx^2$ for the elastic potential energy of the spring.)
- 3. Label the three critical points in the package's motion: its starting position, its position when it comes to rest with the spring maximally compressed, and its position when it's rebounded as far as possible up the incline. (*Hint:* You can assume that the

package is no longer in contact with the spring at the last of these positions. If this turns out to be incorrect, you'll calculate a value of *x* that tells you the spring is still partially compressed at this point.)

4. Make a list of the unknown quantities and decide which of these are the target variables.

EXECUTE

- 5. Find the magnitude of the friction force that acts on the package. Does the magnitude of this force depend on whether the package is moving up or down the incline, or on whether or not the package is in contact with the spring? Does the *direction* of the normal force depend on any of these?
- 6. Write the general energy equation for the motion of the package between the first two points you labeled in step 3. Use this equation to solve for the distance that the spring is compressed when the package is at its lowest point. (*Hint:* You'll have to solve a quadratic equation. To decide which of the two solutions of this equation is the correct one, remember that the distance the spring is compressed is positive.)
- Write the general energy equation for the motion of the package between the second and third points you labeled in step 3. Use this equation to solve for how far the package rebounds.
- Calculate the change in internal energy for the package's trip down and back up the incline. Remember that the amount the internal energy *increases* is equal to the amount the total mechanical energy *decreases*.

EVALUATE

- 9. Was it correct to assume in part (b) that the package is no longer in contact with the spring when it reaches it maximum rebound height?
- 10. Check your result for part (c) by finding the total work done by the force of friction over the entire trip. Is this in accordance with your result from step 8?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q7.1 A baseball is thrown straight up with initial speed v_0 . If air resistance cannot be ignored, when the ball returns to its initial height its speed is less than v_0 . Explain why, using energy concepts. **Q7.2** A projectile has the same initial kinetic energy no matter what the angle of projection. Why doesn't it rise to the same maximum height in each case?

Q7.3 An object is released from rest at the top of a ramp. If the ramp is frictionless, does the object's speed at the bottom of the ramp depend on the shape of the ramp or just on its height? Explain. What if the ramp is *not* frictionless?

Q7.4 An egg is released from rest from the roof of a building and falls to the ground. Its fall is observed by a student on the roof of the building, who uses coordinates with origin at the roof, and by a student on the ground, who uses coordinates with origin at the ground. Do the two students assign the same or different values to the initial gravitational potential energy, the final gravitational potential energy, the change in gravitational potential energy, and the kinetic energy of the egg just before it strikes the ground? Explain.

Q7.5 A physics teacher had a bowling ball suspended from a very long rope attached to the high ceiling of a large lecture hall. To illustrate his faith in conservation of energy, he would back up to

one side of the stage, pull the ball far to one side until the taut rope brought it just to the end of his nose, and then release it. The massive ball would swing in a mighty arc across the stage and then return to stop momentarily just in front of the nose of the stationary, unflinching teacher. However, one day after the demonstration he looked up just in time to see a student at the other side of the stage *push* the ball away from his nose as he tried to duplicate the demonstration. Tell the rest of the story and explain the reason for the potentially tragic outcome.

Q7.6 Lost Energy? The principle of the conservation of energy tells us that energy is never lost, but only changes from one form to another. Yet in many ordinary situations, energy may appear to be lost. In each case, explain what happens to the "lost" energy. (a) A box sliding on the floor comes to a halt due to friction. How did friction take away its kinetic energy, and what happened to that energy? (b) A car stops when you apply the brakes. What happened to its kinetic energy? (c) Air resistance uses up some of the original gravitational potential energy of a falling object. What type of energy did the "lost" potential energy become? (d) When a returning space shuttle touches down on the runway, it has lost almost all its kinetic energy and gravitational potential energy. Where did all that energy go?

Q7.7 Is it possible for a frictional force to *increase* the mechanical energy of a system? If so, give examples.

Q7.8 A woman bounces on a trampoline, going a little higher with each bounce. Explain how she increases the total mechanical energy.

Q7.9 Fractured Physics. People often call their electric bill a *power* bill, yet the quantity on which the bill is based is expressed in *kilowatt-hours*. What are people really being billed for?

Q7.10 A rock of mass m and a rock of mass 2m are both released from rest at the same height and feel no air resistance as they fall. Which statements about these rocks are true? (There may be more than one correct choice.) (a) Both have the same initial gravitational potential energy. (b) Both have the same kinetic energy when they reach the ground. (c) Both reach the ground with the same speed. (d) When it reaches the ground, the heavier rock has twice the kinetic energy of the lighter one. (e) When it reaches the ground, the heavier rock has four times the kinetic energy of the lighter one.

Q7.11 On a friction-free ice pond, a hockey puck is pressed against (but not attached to) a fixed ideal spring, compressing the spring by a distance x_0 . The maximum energy stored in the spring is U_0 , the maximum speed the puck gains after being released is v_0 , and its maximum kinetic energy is K_0 . Now the puck is pressed so it compresses the spring twice as far as before. In this case, (a) what is the maximum potential energy stored in the spring (in terms of U_0), and (b) what are the puck's maximum kinetic energy and speed (in terms of K_0 and x_0)?

Q7.12 When people are cold, they often rub their hands together to warm them up. How does doing this produce heat? Where did the heat come from?

Q7.13 You often hear it said that most of our energy ultimately comes from the sun. Trace each of the following energies back to the sun: (a) the kinetic energy of a jet plane; (b) the potential energy gained by a mountain climber; (c) the electrical energy used to run a computer; (d) the electrical energy from a hydroelectric plant.

Q7.14 A box slides down a ramp and work is done on the box by the forces of gravity and friction. Can the work of each of these forces be expressed in terms of the change in a potential-energy function? For each force explain why or why not.

Q7.15 In physical terms, explain why friction is a nonconservative force. Does it store energy for future use?

Q7.16 A compressed spring is clamped in its compressed position and then is dissolved in acid. What becomes of its potential energy?

Q7.17 Since only changes in potential energy are important in any problem, a student decides to let the elastic potential energy of a spring be zero when the spring is stretched a distance x_1 . The student decides, therefore, to let $U = \frac{1}{2}k(x - x_1)^2$. Is this correct? Explain.

Q7.18 Figure 7.22a shows the potential-energy function for the force $F_x = -kx$. Sketch the potential-energy function for the force $F_x = +kx$. For this force, is x = 0 a point of equilibrium? Is this equilibrium stable or unstable? Explain.

Q7.19 Figure 7.22b shows the potential-energy function associated with the gravitational force between an object and the earth. Use this graph to explain why objects always fall toward the earth when they are released.

Q7.20 For a system of two particles we often let the potential energy for the force between the particles approach zero as the separation of the particles approaches infinity. If this choice is made, explain why the potential energy at noninfinite separation is positive if the particles repel one another and negative if they attract.

Q7.21 Explain why the points x = A and x = -A in Fig. 7.23b are called *turning points*. How are the values of *E* and *U* related at a turning point?

Q7.22 A particle is in *neutral equilibrium* if the net force on it is zero and remains zero if the particle is displaced slightly in any direction. Sketch the potential-energy function near a point of neutral equilibrium for the case of one-dimensional motion. Give an example of an object in neutral equilibrium.

Q7.23 The net force on a particle of mass *m* has the potentialenergy function graphed in Fig. 7.24a. If the total energy is E_1 , graph the speed *v* of the particle versus its position *x*. At what value of *x* is the speed greatest? Sketch *v* versus *x* if the total energy is E_2 .

Q7.24 The potential-energy function for a force \vec{F} is $U = \alpha x^3$, where α is a positive constant. What is the direction of \vec{F} ?

EXERCISES

Section 7.1 Gravitational Potential Energy

7.1 • In one day, a 75-kg mountain climber ascends from the 1500-m level on a vertical cliff to the top at 2400 m. The next day, she descends from the top to the base of the cliff, which is at an elevation of 1350 m. What is her change in gravitational potential energy (a) on the first day and (b) on the second day?

7.2 • **BIO** How High Can We Jump? The maximum height a typical human can jump from a crouched start is about 60 cm. By how much does the gravitational potential energy increase for a 72-kg person in such a jump? Where does this energy come from?

7.3 •• **CP** A 120-kg mail bag hangs by a vertical rope 3.5 m long. A postal worker then displaces the bag to a position 2.0 m sideways from its original position, always keeping the rope taut. (a) What horizontal force is necessary to hold the bag in the new position? (b) As the bag is moved to this position, how much work is done (i) by the rope and (ii) by the worker?

7.4 •• **BIO** Food Calories. The *food calorie*, equal to 4186 J, is a measure of how much energy is released when food is metabolized by the body. A certain brand of fruit-and-cereal bar contains

140 food calories per bar. (a) If a 65-kg hiker eats one of these bars, how high a mountain must he climb to "work off" the calories, assuming that all the food energy goes only into increasing gravitational potential energy? (b) If, as is typical, only 20% of the food calories go into mechanical energy, what would be the answer to part (a)? (*Note:* In this and all other problems, we are assuming that 100% of the food calories that are eaten are absorbed and used by the body. This is actually not true. A person's "metabolic efficiency" is the percentage of calories eaten that are actually used; the rest are eliminated by the body. Metabolic efficiency varies considerably from person to person.)

7.5 • A baseball is thrown from the roof of a 22.0-m-tall building with an initial velocity of magnitude 12.0 m/s and directed at an angle of 53.1° above the horizontal. (a) What is the speed of the ball just before it strikes the ground? Use energy methods and ignore air resistance. (b) What is the answer for part (a) if the initial velocity is at an angle of 53.1° below the horizontal? (c) If the effects of air resistance are included, will part (a) or (b) give the higher speed?

7.6 •• A crate of mass *M* starts from rest at the top of a frictionless ramp inclined at an angle α above the horizontal. Find its speed at the bottom of the ramp, a distance *d* from where it started. Do this in two ways: (a) Take the level at which the potential energy is zero to be at the bottom of the ramp with *y* positive upward. (b) Take the zero level for potential energy to be at the top of the ramp with *y* positive upward. (c) Why did the normal force not enter into your solution?

7.7 •• BIO Human Energy vs. Insect Energy. For its size, the common flea is one of the most accomplished jumpers in the animal world. A 2.0-mm-long, 0.50-mg critter can reach a height of 20 cm in a single leap. (a) Neglecting air drag, what is the takeoff speed of such a flea? (b) Calculate the kinetic energy of this flea at takeoff and its kinetic energy per kilogram of mass. (c) If a 65-kg, 2.0-m-tall human could jump to the same height compared with his length as the flea jumps compared with its length, how high could the human jump, and what takeoff speed would he need? (d) In fact, most humans can jump no more than 60 cm from a crouched start. What is the kinetic energy per kilogram of mass at takeoff for such a 65-kg person? (e) Where does the flea store the energy that allows it to make such a sudden leap?

7.8 •• An empty crate is given an initial push down a ramp, starting with speed v_0 , and reaches the bottom with speed v and kinetic energy *K*. Some books are now placed in the crate, so that the total mass is quadrupled. The coefficient of kinetic friction is constant and air resistance is negligible. Starting again with v_0 at the top of the ramp, what are the speed and kinetic energy at the bottom? Explain the reasoning behind your answers.

7.9 •• **CP** A small rock with mass 0.20 kg is released from rest at point *A*, which is at the top edge of a large, hemispherical bowl with radius R = 0.50 m (Fig. E7.9). Assume that the size of the rock is small compared to *R*, so that the rock can be treated

as a particle, and assume that the rock slides rather than rolls. The work done by friction on the rock when it moves from point A to point B at the bottom of the bowl has magnitude 0.22 J. (a) Between points A and B, how much work is done on the rock by (i) the normal force and (ii) gravity? (b) What is the speed of the rock as it reaches point B? (c) Of the three forces acting on the rock as it slides down the bowl, which (if any) are constant and which

are not? Explain. (d) Just as the rock reaches point *B*, what is the normal force on it due to the bottom of the bowl?

7.10 •• BIO Bone Fractures. The maximum energy that a bone can absorb without breaking depends on its characteristics, such as its cross-sectional area and its elasticity. For healthy human leg bones of approximately 6.0 cm² cross-sectional area, this energy has been experimentally measured to be about 200 J. (a) From approximately what maximum height could a 60-kg person jump and land rigidly upright on both feet without breaking his legs? (b) You are probably surprised at how small the answer to part (a) is. People obviously jump from much greater heights without breaking their legs. How can that be? What else absorbs the energy when they jump from greater heights? (Hint: How did the person in part (a) land? How do people normally land when they jump from greater heights?) (c) In light of your answers to parts (a) and (b), what might be some of the reasons that older people are much more prone than younger ones to bone fractures from simple falls (such as a fall in the shower)?

7.11 •• You are testing a new amusement park roller coaster with an empty car of mass 120 kg. One part of the track is a vertical loop with radius 12.0 m. At the bottom of the loop (point A) the car has speed 25.0 m/s, and at the top of the loop (point B) it has speed 8.0 m/s. As the car rolls from point A to point B, how much work is done by friction?

7.12 • Tarzan and Jane. Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 m that makes an angle of 45° with the vertical, steps off his tree limb, and swings down and then up to Jane's open arms. When he arrives, his vine makes an angle of 30° with the vertical. Determine whether he gives her a tender embrace or knocks her off her limb by calculating Tarzan's speed just before he reaches Jane. You can ignore air resistance and the mass of the vine.

7.13 •• **CP** A 10.0-kg microwave oven is pushed 8.00 m up the sloping surface of a loading ramp inclined at an angle of 36.9° above the horizontal, by a constant force \vec{F} with a magnitude 110 N and acting parallel to the ramp. The coefficient of kinetic friction between the oven and the ramp is 0.250. (a) What is the work done on the oven by the force \vec{F} ? (b) What is the work done on the oven by the force? (c) Compute the increase in potential energy for the oven. (d) Use your answers to parts (a), (b), and (c) to calculate the increase in the oven's kinetic energy. (e) Use $\Sigma \vec{F} = m\vec{a}$ to calculate the acceleration of the oven. Assuming that the oven is initially at rest, use the acceleration to calculate the increase in the oven's kinetic energy. and compare it to the answer you got in part (d).

Section 7.2 Elastic Potential Energy

7.14 •• An ideal spring of negligible mass is 12.00 cm long when nothing is attached to it. When you hang a 3.15-kg weight from it, you measure its length to be 13.40 cm. If you wanted to store 10.0 J of potential energy in this spring, what would be its *total* length? Assume that it continues to obey Hooke's law.

7.15 •• A force of 800 N stretches a certain spring a distance of 0.200 m. (a) What is the potential energy of the spring when it is stretched 0.200 m? (b) What is its potential energy when it is compressed 5.00 cm?

7.16 • **BIO** Tendons. Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laboratory tests on a particular tendon, it was found that, when a 250-g object was hung from it, the tendon stretched 1.23 cm. (a) Find the force constant of this tendon in N/m. (b) Because of its thickness, the maximum tension this

tendon can support without rupturing is 138 N. By how much can the tendon stretch without rupturing, and how much energy is stored in it at that point?

7.17 • A spring stores potential energy U_0 when it is compressed a distance x_0 from its uncompressed length. (a) In terms of U_0 , how much energy does it store when it is compressed (i) twice as much and (ii) half as much? (b) In terms of x_0 , how much must it be compressed from its uncompressed length to store (i) twice as much energy and (ii) half as much energy?

7.18 • A slingshot will shoot a 10-g pebble 22.0 m straight up. (a) How much potential energy is stored in the slingshot's rubber band? (b) With the same potential energy stored in the rubber band, how high can the slingshot shoot a 25-g pebble? (c) What physical effects did you ignore in solving this problem?

7.19 •• A spring of negligible mass has force constant k = 1600 N/m. (a) How far must the spring be compressed for 3.20 J of potential energy to be stored in it? (b) You place the spring vertically with one end on the floor. You then drop a 1.20-kg book onto it from a height of 0.80 m above the top of the spring. Find the maximum distance the spring will be compressed.

7.20 • A 1.20-kg piece of cheese is placed on a vertical spring of negligible mass and force constant k = 1800 N/m that is compressed 15.0 cm. When the spring is released, how high does the cheese rise from this initial position? (The cheese and the spring are *not* attached.)

7.21 •• Consider the glider of Example 7.7 (Section 7.2) and Fig. 7.16. As in the example, the glider is released from rest with the spring stretched 0.100 m. What is the displacement x of the glider from its equilibrium position when its speed is 0.20 m/s? (You should get more than one answer. Explain why.)

7.22 •• Consider the glider of Example 7.7 (Section 7.2) and Fig. 7.16. (a) As in the example, the glider is released from rest with the spring stretched 0.100 m. What is the speed of the glider when it returns to x = 0? (b) What must the initial displacement of the glider be if its maximum speed in the subsequent motion is to be 2.50 m/s?

7.23 •• A 2.50-kg mass is pushed against a horizontal spring of force constant 25.0 N/cm on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 11.5 J of potential energy in it, the mass is suddenly released from rest. (a) Find the greatest speed the mass reaches. When does this occur? (b) What is the greatest acceleration of the mass, and when does it occur?

7.24 •• (a) For the elevator of Example 7.9 (Section 7.2), what is the speed of the elevator after it has moved downward 1.00 m from point 1 in Fig. 7.17? (b) When the elevator is 1.00 m below point 1 in Fig. 7.17, what is its acceleration?

7.25 •• You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m/s relative to an orbiting space shuttle. Your spring is to give the satellite a maximum acceleration of 5.00g. The spring's mass, the recoil kinetic energy of the shuttle, and changes in gravitational potential energy will all be negligible. (a) What must the force constant of the spring be? (b) What distance must the spring be compressed?

7.26 •• A 2.50-kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m. The spring has force constant 840 N/m. The coefficient of kinetic friction between the floor and the block is $\mu_k = 0.40$. The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of

0.0200 m from its initial position? (At this point the spring is compressed 0.0100 m.)

Section 7.3 Conservative and Nonconservative Forces

7.27 • A 10.0-kg box is pulled by a horizontal wire in a circle on a rough horizontal surface for which the coefficient of kinetic friction is 0.250. Calculate the work done by friction during one complete circular trip if the radius is (a) 2.00 m and (b) 4.00 m. (c) On the basis of the results you just obtained, would you say that friction is a conservative or nonconservative force? Explain.

7.28 • A 75-kg roofer climbs a vertical 7.0-m ladder to the flat roof of a house. He then walks 12 m on the roof, climbs down another vertical 7.0-m ladder, and finally walks on the ground back to his starting point. How much work is done on him by gravity (a) as he climbs up; (b) as he climbs down; (c) as he walks on the roof and on the ground? (d) What is the total work done on him by gravity during this round trip? (e) On the basis of your answer to part (d), would you say that gravity is a conservative or nonconservative force? Explain.

7.29 • A 0.60-kg book slides on a horizontal table. The kinetic friction force on the book has magnitude 1.2 N. (a) How much work is done on the book by friction during a displacement of 3.0 m to the left? (b) The book now slides 3.0 m to the right, returning to its starting point. During this second 3.0-m displacement, how much work is done on the book by friction? (c) What is the total work done on the book by friction during the complete round trip? (d) On the basis of your answer to part (c), would you say that the friction force is conservative or nonconservative? Explain.

7.30 •• CALC In an experiment, one of the forces exerted on a proton is $\vec{F} = -\alpha x^2 \hat{i}$, where $\alpha = 12 \text{ N/m}^2$. (a) How much work does \vec{F} do when the proton moves along the straight-line path from the point (0.10 m, 0) to the point (0.10 m, 0.40 m)? (b) Along the straight-line path from the point (0.10 m, 0) to the point (0.30 m, 0)? (c) Along the straight-line path from the point (0.30 m, 0) to the point (0.10 m, 0)? (d) Is the force \vec{F} conservative? Explain. If \vec{F} is conservative, what is the potential-energy func-

tion for it? Let U = 0 when x = 0. **7.31** • You and three friends stand at the corners of a square whose sides are 8.0 m long in the middle of the gym floor, as shown in Fig. E7.31. You take your physics book and push it from one person to the other. The book has a mass of 1.5 kg, and the coefficient of kinetic friction between the book and the floor is $\mu_{\rm k} = 0.25$. (a) The book

slides from you to Beth and then from Beth to Carlos, along the lines connecting these people. What is the work done by friction during this displacement? (b) You slide the book from you to Carlos along the diagonal of the square. What is the work done by friction during this displacement? (c) You slide the book to Kim, who then slides it back to you. What is the total work done by friction during this motion of the book? (d) Is the friction force on the book conservative or nonconservative? Explain.

7.32 • While a roofer is working on a roof that slants at 36° above the horizontal, he accidentally nudges his 85.0-N toolbox, causing it to start sliding downward, starting from rest. If it starts 4.25 m from the lower edge of the roof, how fast will the toolbox be moving just as it reaches the edge of the roof if the kinetic friction force on it is 22.0 N?

7.33 •• A 62.0-kg skier is moving at 6.50 m/s on a frictionless, horizontal, snow-covered plateau when she encounters a rough patch 3.50 m long. The coefficient of kinetic friction between this patch and her skis is 0.300. After crossing the rough patch and returning to friction-free snow, she skis down an icy, frictionless hill 2.50 m high. (a) How fast is the skier moving when she gets to the bottom of the hill? (b) How much internal energy was generated in crossing the rough patch?

Section 7.4 Force and Potential Energy

7.34 •• **CALC** The potential energy of a pair of hydrogen atoms separated by a large distance x is given by $U(x) = -C_6/x^6$, where C_6 is a positive constant. What is the force that one atom exerts on the other? Is this force attractive or repulsive?

7.35 •• CALC A force parallel to the *x*-axis acts on a particle moving along the *x*-axis. This force produces potential energy U(x) given by $U(x) = \alpha x^4$, where $\alpha = 1.20 \text{ J/m}^4$. What is the force (magnitude and direction) when the particle is at x = -0.800 m?

7.36 •• CALC An object moving in the *xy*-plane is acted on by a conservative force described by the potential-energy function $U(x, y) = \alpha(1/x^2 + 1/y^2)$, where α is a positive constant. Derive an expression for the force expressed in terms of the unit vectors \hat{i} and \hat{j} .

7.37 •• **CALC** A small block with mass 0.0400 kg is moving in the *xy*-plane. The net force on the block is described by the potentialenergy function $U(x, y) = (5.80 \text{ J/m}^2)x^2 - (3.60 \text{ J/m}^3)y^3$. What are the magnitude and direction of the acceleration of the block when it is at the point x = 0.300 m, y = 0.600 m?

Figure **E7.38**

d

U

 $O \mid a$

Section 7.5 Energy Diagrams

7.38 • A marble moves along the *x*-axis. The potential-energy function is shown in Fig. E7.38. (a) At which of the labeled *x*-coordinates is the force on the marble zero? (b) Which of the labeled *x*-coordinates is a position of stable equilibrium? (c) Which of the labeled *x*-coordinates is a position of unstable equilibrium?

7.39 • **CALC** The potential energy of two atoms in a diatomic molecule is approximated by $U(r) = a/r^{12} - b/r^6$, where *r* is the spacing between atoms and *a* and *b* are positive constants. (a) Find the force F(r) on one atom as a function of *r*. Draw two graphs: one of U(r) versus *r* and one of F(r) versus *r*. (b) Find the equilibrium distance between the two atoms. Is this equilibrium stable? (c) Suppose the distance between the two atoms is equal to the equilibrium distance found in part (b). What minimum energy must be added to the molecule to *dissociate* it—that is, to separate the two atoms to an infinite distance apart? This is called the *dissociation energy* of the molecule. (d) For the molecule CO, the equilibrium distance between the carbon and oxygen atoms is 1.13×10^{-10} m and the dissociation energy is 1.54×10^{-18} J per molecule. Find the values of the constants *a* and *b*.

PROBLEMS

7.40 •• Two blocks with different masses are attached to either end of a light rope that passes over a light, frictionless pulley suspended from the ceiling. The masses are released from rest, and the more massive one starts to descend. After this block has descended 1.20 m, its speed is 3.00 m/s. If the total mass of the two blocks is 15.0 kg, what is the mass of each block? **7.41** ••• At a construction site, a 65.0-kg bucket of concrete hangs from a light (but strong) cable that passes over a light, friction-free pulley and is connected to an 80.0-kg box on a horizontal roof (Fig. P7.41). The cable pulls horizontally on the box, and a 50.0-kg bag of gravel rests on top of the box. The coefficients of friction between the box and roof are shown. (a) Find the friction force on the bag of gravel and on the box. (b) Suddenly a worker picks up the bag of gravel. Use energy conservation to find the speed of the bucket after it has descended 2.00 m from rest. (You can check your answer by solving this problem using Newton's laws.)

Figure **P7.41**

7.42 • A 2.00-kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless incline with slope 37.0° (Fig. P7.42). (a) What is the speed of the block as it slides along the horizontal surface after having left the spring? (b) How far does the block travel up the incline before starting to slide back down?

Figure **P7.42**

7.43 • A block with mass 0.50 kg is forced against a horizontal spring of negligible mass, compressing the spring a distance of 0.20 m (Fig. P7.43). When released, the block moves on a horizontal tabletop for 1.00 m before coming to rest. The spring constant k is 100 N/m. What is the coefficient of kinetic friction μ_k between the block and the tabletop?

Figure **P7.43**

7.44 • On a horizontal surface, a crate with mass 50.0 kg is placed against a spring that stores 360 J of energy. The spring is released, and the crate slides 5.60 m before coming to rest. What is the speed of the crate when it is 2.00 m from its initial position?

7.45 •• A 350-kg roller coaster starts from rest at point *A* and slides down the frictionless loop-the-loop shown in Fig. P7.45. (a) How fast is this roller coaster moving at point *B*? (b) How hard does it press against the track at point *B*?

Figure **P7.45**

7.46 •• **CP** Riding a Loop-the-Loop. A car in an amusement park ride rolls without friction around the track shown in Fig. P7.46. It starts from rest at point A at a height h above the bottom of the loop. Treat the car as a particle. (a) What is the minimum

value of h (in terms of R) such that the car moves around the loop without falling off at the top (point B)? (b) If h = 3.50R and R = 20.0 m, compute the speed, radial acceleration, and tangential acceleration of the passengers when the car is at point C, which is at the end of a horizontal diameter. Show these acceleration components in a diagram, approximately to scale.

7.47 •• A 2.0-kg piece of wood slides on the surface shown in Fig. P7.47. The curved sides are perfectly smooth, but the rough horizontal bottom is 30 m long and has a kinetic friction coeffi-

cient of 0.20 with the wood. The piece of wood starts from rest 4.0 m above the rough bottom. (a) Where will this wood eventually come to rest? (b) For the motion from the initial release until the piece of wood comes to rest, what is the total amount of work done by friction?

7.48 •• Up and Down the Hill. A 28-kg rock approaches the foot of a hill with a speed of 15 m/s. This hill slopes upward at a constant angle of 40.0° above the horizontal. The coefficients of static and kinetic friction between the hill and the rock are 0.75 and 0.20, respectively. (a) Use energy conservation to find the maximum height above the foot of the hill reached by the rock. (b) Will the rock remain at rest at its highest point, or will it slide back down the hill? (c) If the rock does slide back down, find its speed when it returns to the bottom of the hill.

7.49 •• A 15.0-kg stone slides down a snow-covered hill (Fig. P7.49), leaving point *A* with a speed of 10.0 m/s. There is no friction on the hill between points *A* and *B*, but there is friction on the level ground at the bottom of the hill, between *B* and the wall. After entering the rough horizontal

region, the stone travels 100 m and then runs into a very long, light spring with force constant 2.00 N/m. The coefficients of kinetic and static friction between the stone and the horizontal ground are 0.20 and 0.80, respectively. (a) What is the speed of the stone when it reaches point B? (b) How far will the stone compress the spring? (c) Will the stone move again after it has been stopped by the spring?

7.50 •• **CP** A 2.8-kg block slides over the smooth, icy hill shown in Fig. P7.50. The top of the hill is horizontal and 70 m higher than its base. What minimum speed must the block have at the base of the hill in order for it to pass over the pit at the far side of the hill?

7.51 ••• Bungee Jump. A bungee cord is 30.0 m long and, when stretched a distance x, it exerts a restoring force of magnitude kx. Your father-in-law (mass 95.0 kg) stands on a platform 45.0 m above the ground, and one end of the cord is tied securely to his ankle and the other end to the platform. You have promised him that when he steps off the platform he will fall a maximum distance of only 41.0 m before the cord stops him. You had several bungee cords to select from, and you tested them by stretching them out, tying one end to a tree, and pulling on the other end with a force of 380.0 N. When you do this, what distance will the bungee cord that you should select have stretched?

7.52 •• Ski Jump Ramp. You are designing a ski jump ramp for the next Winter Olympics. You need to calculate the vertical height h from the starting gate to the bottom of the ramp. The skiers push off hard with their ski poles at the start, just above the starting gate, so they typically have a speed of 2.0 m/s as they reach the gate. For safety, the skiers should have a speed no higher than 30.0 m/s when they reach the bottom of the ramp. You determine that for a 85.0-kg skier with good form, friction and air resistance will do total work of magnitude 4000 J on him during his run down the ramp. What is the maximum height h for which the maximum safe speed will not be exceeded?

7.53 ••• The Great Sandini is a 60-kg circus performer who is shot from a cannon (actually a spring gun). You don't find many men of his caliber, so you help him design a new gun. This new gun has a very large spring with a very small mass and a force constant of 1100 N/m that he will compress with a force of 4400 N. The inside of the gun barrel is coated with Teflon, so the average friction force will be only 40 N during the 4.0 m he moves in the barrel. At what speed will he emerge from the end of the barrel, 2.5 m above his initial rest position?

7.54 •••• You are designing a delivery ramp for crates containing exercise equipment. The 1470-N crates will move at 1.8 m/s at the top of a ramp that slopes downward at 22.0°. The ramp exerts a 550-N kinetic friction force on each crate, and the maximum static friction force also has this value. Each crate will compress a spring at the bottom of the ramp and will come to rest after traveling a total distance of 8.0 m along the ramp. Once stopped, a crate must not rebound back up the ramp. Calculate the force constant of the spring that will be needed in order to meet the design criteria.

7.55 •• A system of two paint buckets connected by a lightweight rope is released from rest with the 12.0-kg bucket 2.00 m above the floor (Fig. P7.55). Use the principle of conservation of energy to find the speed with which this bucket strikes the floor. You can ignore friction and the mass of the pulley.

Figure **P7.55**

7.56 •• A 1500-kg rocket is to be launched with an initial upward speed of 50.0 m/s. In order to assist its engines, the engineers will start it from rest on a ramp that rises 53° above the horizontal (Fig. P7.56). At the bottom, the ramp turns upward and launches the rocket vertically. The engines provide a constant forward thrust of 2000 N, and friction with

Figure **P7.56**

the ramp surface is a constant 500 N. How far from the base of the ramp should the rocket start, as measured along the surface of the ramp?

7.57 • Legal Physics. In an auto accident, a car hit a pedestrian and the driver then slammed on the brakes to stop the car. During the subsequent trial, the driver's lawyer claimed that he was obeying the posted 35-mph speed limit, but that the legal speed was too high to allow him to see and react to the pedestrian in time. You have been called in as the state's expert witness. Your investigation of the accident found that the skid marks made while the brakes were applied were 280 ft long, and the tread on the tires produced a coefficient of kinetic friction of 0.30 with the road. (a) In your testimony in court, will you say that the driver was obeying the posted speed? You must be able to back up your conclusion with clear reasoning because one of the lawyers will surely cross-examine you. (b) If the driver's speeding ticket were \$10 for each mile per hour he was driving above the posted speed limit, would he have to pay a fine? If so, how much would it be?

7.58 ••• A wooden rod of negligible mass and length 80.0 cm is pivoted about a horizontal axis through its center. A white rat with mass 0.500 kg clings to one end of the stick, and a mouse with mass 0.200 kg clings to the other end. The system is released from rest with the rod horizontal. If the animals can manage to hold on, what are their speeds as the rod swings through a vertical position? **7.59** •• **CP** A 0.300-kg potato is tied to a string with length 2.50 m, and the other end of the string is tied to a rigid support. The potato is held straight out horizontally from the point of support, with the string pulled taut, and is then released. (a) What is the speed of the potato at the lowest point of its motion? (b) What is the tension in the string at this point?

7.60 •• These data are from a computer simulation for a batted baseball with mass 0.145 kg, including air resistance:

t	x	у	v_x	v_y
0	0	0	30.0 m/s	40.0 m/s
3.05 s	70.2 m	53.6 m	18.6 m/s	0
6.59 s	124.4 m	0	11.9 m/s	-28.7 m/s

(a) How much work was done by the air on the baseball as it moved from its initial position to its maximum height? (b) How much work was done by the air on the baseball as it moved from its maximum height back to the starting elevation? (c) Explain why the magnitude of the answer in part (b) is smaller than the magnitude of the answer in part (a).

7.61 •• Down the Pole. A fireman of mass *m* slides a distance *d* down a pole. He starts from rest. He moves as fast at the bottom as if he had stepped off a platform a distance $h \le d$ above the ground and descended with negligible air resistance. (a) What average friction force did the fireman exert on the pole? Does your answer make sense in the special cases of h = d and h = 0? (b) Find a numerical value for the average friction force a 75-kg fireman exerts, for d = 2.5 m and h = 1.0 m. (c) In terms of *g*, *h*, and *d*, what is the speed of the fireman when he is a distance *y* above the bottom of the pole?

7.62 •• A 60.0-kg skier starts from rest at the top of a ski slope 65.0 m high. (a) If frictional forces do -10.5 kJ of work on her as she descends, how fast is she going at the bottom of the slope? (b) Now moving horizontally, the skier crosses a patch of soft snow, where $\mu_k = 0.20$. If the patch is 82.0 m wide and the average force of air resistance on the skier is 160 N, how fast is she going after crossing the patch? (c) The skier hits a snowdrift and penetrates 2.5 m into it before coming to a stop. What is the average force exerted on her by the snowdrift as it stops her?

7.63 • **CP** A skier starts at the top of a very large, frictionless snowball, with a very small initial speed, and skis straight down the side (Fig. P7.63). At what point does she lose contact with the snowball and fly off at a tangent? That is, at the instant she loses contact with the snowball, what angle α does a radial line from the center of the snowball to the skier make with the vertical?

7.64 •• A ball is thrown upward with an initial velocity of 15 m/s at an angle of 60.0° above the horizontal. Use energy conservation to find the ball's greatest height above the ground.

7.65 •• In a truck-loading station at a post office, a small 0.200-kg package is released from rest at point A on a track that is one-quarter of a circle with radius 1.60 m (Fig. P7.65). The size of the package is much less than 1.60 m, so the package can be treated as a particle. It slides down the track and reaches point B with a speed of 4.80 m/s. From point B, it slides on a level surface a distance of

Figure **P7.65**

3.00 m to point *C*, where it comes to rest. (a) What is the coefficient of kinetic friction on the horizontal surface? (b) How much work is done on the package by friction as it slides down the circular arc from *A* to *B*?

7.66 ••• A truck with mass *m* has a brake failure while going down an icy mountain road of constant downward slope angle α (Fig. P7.66). Initially the truck is moving downhill at speed v_0 . After careening downhill a distance *L* with negligible friction, the truck driver steers the runaway vehicle onto a runaway truck ramp of constant upward slope angle β . The truck ramp has a soft sand surface for which the coefficient of rolling friction is μ_r . What is the distance that the truck moves up the ramp before coming to a halt? Solve using energy methods.

Figure **P7.66**

7.67 •• **CALC** A certain spring is found *not* to obey Hooke's law; it exerts a restoring force $F_x(x) = -\alpha x - \beta x^2$ if it is stretched or compressed, where $\alpha = 60.0$ N/m and $\beta = 18.0$ N/m². The mass of the spring is negligible. (a) Calculate the potential-energy function U(x) for this spring. Let U = 0 when x = 0. (b) An object with mass 0.900 kg on a frictionless, horizontal surface is attached to this spring, pulled a distance 1.00 m to the right (the +x-direction) to stretch the spring, and released. What is the speed of the object when it is 0.50 m to the right of the x = 0 equilibrium position?

7.68 •• **CP** A sled with rider having a combined mass of 125 kg travels over the perfectly smooth icy hill shown in Fig. 7.68. How far does the sled land from the foot of the cliff?

Figure **P7.68**

7.69 •• A 0.150-kg block of ice is placed against a horizontal, compressed spring mounted on a horizontal tabletop that is 1.20 m above the floor. The spring has force constant 1900 N/m and is initially compressed 0.045 m. The mass of the spring is negligible. The spring is released, and the block slides along the table, goes off the edge, and travels to the floor. If there is negligible friction between the block of ice and the tabletop, what is the speed of the block of ice when it reaches the floor?

7.70 •• A 3.00-kg block is connected to two ideal horizontal springs having force constants $k_1 = 25.0 \text{ N/cm}$ and $k_2 = 20.0 \text{ N/cm}$ (Fig. P7.70). The

system is initially in equilibrium on a horizontal, frictionless surface. The block is now pushed 15.0 cm to the right and released

from rest. (a) What is the maximum speed of the block? Where in the motion does the maximum speed occur? (b) What is the maximum compression of spring 1?

7.71 •• An experimental apparatus with mass m is placed on a vertical spring of negligible mass and pushed down until the spring is compressed a distance x. The apparatus is then released and reaches its maximum height at a distance h above the point where it is released. The apparatus is not attached to the spring, and at its maximum height it is no longer in contact with the spring. The maximum magnitude of acceleration the apparatus can have without being damaged is a, where a > g. (a) What should the force constant of the spring be? (b) What distance x must the spring be compressed initially?

7.72 •• If a fish is attached to a vertical spring and slowly lowered to its equilibrium position, it is found to stretch the spring by an amount d. If the same fish is attached to the end of the unstretched spring and then allowed to fall from rest, through what maximum distance does it stretch the spring? (*Hint:* Calculate the force constant of the spring in terms of the distance d and the mass m of the fish.)

7.73 ••• **CALC** A 3.00-kg fish is attached to the lower end of a vertical spring that has negligible mass and force constant 900 N/m. The spring initially is neither stretched nor compressed. The fish is released from rest. (a) What is its speed after it has descended 0.0500 m from its initial position? (b) What is the maximum speed of the fish as it descends?

7.74 •• A basket of negligible weight hangs from a vertical spring scale of force constant 1500 N/m. (a) If you suddenly put a 3.0-kg adobe brick in the basket, find the maximum distance that the spring will stretch. (b) If, instead, you release the brick from 1.0 m above the basket, by how much will the spring stretch at its maximum elongation?

7.75 • A 0.500-kg block, attached to a spring with length 0.60 m and force constant 40.0 N/m, is at rest with the back of the block at point A on a frictionless, horizontal air table (Fig. P7.75). The mass of the spring is negligible. You move the block to the right along the surface by pulling with a constant 20.0-N horizontal force. (a) What is the block's speed when the back of the block reaches point *B*, which is 0.25 m to the right of point *A*? (b) When the back of the block reaches point *B*, you let go of the block. In the subsequent motion, how close does the block get to the wall where the left end of the spring is attached?

Figure **P7.75**

7.76 •• Fraternity Physics. The brothers of Iota Eta Pi fraternity build a platform, supported at all four corners by vertical springs, in the basement of their frat house. A brave fraternity brother wearing a football helmet stands in the middle of the platform; his weight compresses the springs by 0.18 m. Then four of his fraternity brothers, pushing down at the corners of the platform, compress the springs another 0.53 m until the top of the brave brother's helmet is 0.90 m below the basement ceiling. They then simultaneously release the platform. You can ignore the

masses of the springs and platform. (a) When the dust clears, the fraternity asks you to calculate their fraternity brother's speed just before his helmet hit the flimsy ceiling. (b) Without the ceiling, how high would he have gone? (c) In discussing their probation, the dean of students suggests that the next time they try this, they do it outdoors on another planet. Would the answer to part (b) be the same if this stunt were performed on a planet with a different value of g? Assume that the fraternity brothers push the platform down 0.53 m as before. Explain your reasoning.

7.77 ••• **CP** A small block with mass 0.0500 kg slides in a vertical circle of radius R = 0.800 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.40 N. What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path?

7.78 ••• **CP** A small block with mass 0.0400 kg slides in a vertical circle of radius R = 0.500 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point *A*, the magnitude of the normal force exerted on the block by the track has magnitude 3.95 N. In this same revolution, when the block reaches the top of its path, point *B*, the magnitude of the normal force exerted on the block has magnitude 0.680 N. How much work was done on the block by friction during the motion of the block from point *A* to point *B*?

7.79 •• A hydroelectric dam holds back a lake of surface area $3.0 \times 10^6 \text{ m}^2$ that has vertical sides below the water level. The water level in the lake is 150 m above the base of the dam. When the water passes through turbines at the base of the dam, its mechanical energy is converted to electrical energy with 90% efficiency. (a) If gravitational potential energy is taken to be zero at the base of the dam, how much energy is stored in the top meter of the water in the lake? The density of water is 1000 kg/m³. (b) What volume of water must pass through the dam to produce 1000 kilowatt-hours of electrical energy? What distance does the level of water in the lake fall when this much water passes through the dam?

7.80 •• **CALC** How much total energy is stored in the lake in Problem 7.79? As in that problem, take the gravitational potential energy to be zero at the base of the dam. Express your answer in joules and in kilowatt-hours. (*Hint:* Break the lake up into infinitesimal horizontal layers of thickness dy, and integrate to find the total potential energy.)

7.81 ••• A wooden block with mass 1.50 kg is placed against a compressed spring at the bottom of an incline of slope 30.0° (point *A*). When the spring is released, it projects the block up the incline. At point *B*, a distance of 6.00 m up the incline from *A*, the block is moving up the incline at 7.00 m/s and is no longer in contact with the spring. The coefficient of kinetic friction between the block and the incline is $\mu_k = 0.50$. The mass of the spring is negligible. Calculate the amount of potential energy that was initially stored in the spring.

7.82 •• **CP Pendulum.** A small rock with mass 0.12 kg is fastened to a massless string with length 0.80 m to form a pendulum. The pendulum is swinging so as to make a maximum angle of 45° with the vertical. Air resistance is negligible. (a) What is the speed of the rock when the string passes through the vertical position? (b) What is the tension in the string when it makes an angle of 45° with the vertical? (c) What is the tension in the string as it passes through the vertical?

7.83 ••• CALC A cutting tool under microprocessor control has several forces acting on it. One force is $\vec{F} = -\alpha x y^2 \hat{j}$, a force in

the negative y-direction whose magnitude depends on the position of the tool. The constant is $\alpha = 2.50 \text{ N/m}^3$. Consider the displacement of the tool from the origin to the point x = 3.00 m, y = 3.00 m. (a) Calculate the work done on the tool by \vec{F} if this displacement is along the straight line y = x that connects these two points. (b) Calculate the work done on the tool by \vec{F} if the tool is first moved out along the x-axis to the point x = 3.00 m, y = 0 and then moved parallel to the y-axis to the point x = 3.00 m, y = 3.00 m. (c) Compare the work done by \vec{F} along these two paths. Is \vec{F} conservative or nonconservative? Explain.

7.84 • CALC (a) Is the force $\vec{F} = Cy^2 \hat{j}$, where *C* is a negative constant with units of N/m², conservative or nonconservative? Justify your answer. (b) Is the force $\vec{F} = Cy^2 \hat{i}$, where *C* is a negative constant with units of N/m², conservative or nonconservative? Justify your answer.

7.85 •• CALC An object has several forces acting on it. One force is $\vec{F} = \alpha xy\hat{i}$, a force in the *x*-direction whose magnitude depends on the position of the object. (See Problem 6.98.) The constant is $\alpha = 2.00 \text{ N/m}^2$. The object moves along the following path: (1) It starts at the origin and moves along the *y*-axis to the point x = 0, y = 1.50 m; (2) it moves parallel to the *x*-axis to the point x = 1.50 m, y = 1.50 m; (3) it moves parallel to the *y*-axis to the point x = 1.50 m, y = 0; (4) it moves parallel to the *x*-axis back to the origin. (a) Sketch this path in the *xy*-plane. (b) Calculate the work done on the object by \vec{F} for each leg of the path and for the complete round trip. (c) Is \vec{F} conservative or nonconservative? Explain.

7.86 • A particle moves along the *x*-axis while acted on by a single conservative force parallel to the *x*-axis. The force corresponds to the potential-energy function graphed in Fig. P7.86. The particle is released from rest at point A. (a) What is the direction of the force on the particle

when it is at point A? (b) At point B? (c) At what value of x is the kinetic energy of the particle a maximum? (d) What is the force on the particle when it is at point C? (e) What is the largest value of x reached by the particle during its motion? (f) What value or values of x correspond to points of stable equilibrium? (g) Of unstable equilibrium?

CHALLENGE PROBLEM

7.87 ••• **CALC** A proton with mass *m* moves in one dimension. The potential-energy function is $U(x) = \alpha/x^2 - \beta/x$, where α and β are positive constants. The proton is released from rest at $x_0 = \alpha/\beta$. (a) Show that U(x) can be written as

$$U(x) = \frac{\alpha}{x_0^2} \left[\left(\frac{x_0}{x} \right)^2 - \frac{x_0}{x} \right]$$

Graph U(x). Calculate $U(x_0)$ and thereby locate the point x_0 on the graph. (b) Calculate v(x), the speed of the proton as a function of position. Graph v(x) and give a qualitative description of the motion. (c) For what value of x is the speed of the proton a maximum? What is the value of that maximum speed? (d) What is the force on the proton at the point in part (c)? (e) Let the proton be released instead at $x_1 = 3\alpha/\beta$. Locate the point x_1 on the graph of U(x). Calculate v(x) and give a qualitative description of the motion. (f) For each release point $(x = x_0 \text{ and } x = x_1)$, what are the maximum and minimum values of x reached during the motion?

Answers

Chapter Opening Question **?**

The mallard's kinetic energy K remains constant because the speed remains the same, but the gravitational potential energy U_{grav} decreases as the mallard descends. Hence the total mechanical energy $E = K + U_{\text{grav}}$ decreases. The lost mechanical energy goes into warming the mallard's skin (that is, an increase in the mallard's internal energy) and stirring up the air through which the mallard passes (an increase in the internal energy of the air). See the discussion in Section 7.3.

Test Your Understanding Questions

7.1 Answer: (iii) The initial kinetic energy $K_1 = 0$, the initial potential energy $U_1 = mgy_1$, and the final potential energy $U_2 = mgy_2$ are the same for both blocks. Mechanical energy is conserved in both cases, so the final kinetic energy $K_2 = \frac{1}{2}mv_2^2$ is also the same for both blocks. Hence the speed at the right-hand end is the *same* in both cases!

7.2 Answer: (iii) The elevator is still moving downward, so the kinetic energy K is positive (remember that K can never be nega-

tive); the elevator is below point 1, so y < 0 and $U_{\text{grav}} < 0$; and the spring is compressed, so $U_{\text{el}} > 0$.

7.3 Answer: (iii) Because of friction in the turbines and between the water and turbines, some of the potential energy goes into raising the temperatures of the water and the mechanism.

7.4 Answers: (a) (iv), (b) (i) If $F_x = 0$ at a point, then the derivative of U(x) must be zero at that point because $F_x = -dU(x)/dx$. However, this tells us absolutely nothing about the *value* of U(x) at that point.

7.5 Answers: (iii) Figure 7.24b shows the *x*-component of force, F_x . Where this is maximum (most positive), the *x*-component of force and the *x*-acceleration have more positive values than at adjacent values of *x*.

Bridging Problem

Answers:	(a)	1.06 m
	(b)	1.32 m
	(c)	20.7 J

MOMENTUM, IMPULSE, AND COLLISIONS

8

Which could potentially do greater damage to this carrot: a .22-caliber bullet moving at 220 m/s as shown here, or a lightweight bullet of the same length and diameter but half the mass moving at twice the speed?

here are many questions involving forces that cannot be answered by directly applying Newton's second law, $\Sigma \vec{F} = m\vec{a}$. For example, when a moving van collides head-on with a compact car, what determines which way the wreckage moves after the collision? In playing pool, how do you decide how to aim the cue ball in order to knock the eight ball into the pocket? And when a meteorite collides with the earth, how much of the meteorite's kinetic energy is released in the impact?

A common theme of all these questions is that they involve forces about which we know very little: the forces between the car and the moving van, between the two pool balls, or between the meteorite and the earth. Remarkably, we will find in this chapter that we don't have to know *anything* about these forces to answer questions of this kind!

Our approach uses two new concepts, *momentum* and *impulse*, and a new conservation law, *conservation of momentum*. This conservation law is every bit as important as the law of conservation of energy. The law of conservation of momentum is valid even in situations in which Newton's laws are inadequate, such as bodies moving at very high speeds (near the speed of light) or objects on a very small scale (such as the constituents of atoms). Within the domain of Newtonian mechanics, conservation of momentum enables us to analyze many situations that would be very difficult if we tried to use Newton's laws directly. Among these are *collision* problems, in which two bodies collide and can exert very large forces on each other for a short time.

8.1 Momentum and Impulse

In Chapter 6 we re-expressed Newton's second law for a particle, $\sum \vec{F} = m\vec{a}$, in terms of the work-energy theorem. This theorem helped us tackle a great number of physics problems and led us to the law of conservation of energy. Let's now return to $\sum \vec{F} = m\vec{a}$ and see yet another useful way to restate this fundamental law.

LEARNING GOALS

By studying this chapter, you will learn:

- The meaning of the momentum of a particle, and how the impulse of the net force acting on a particle causes its momentum to change.
- The conditions under which the total momentum of a system of particles is constant (conserved).
- How to solve problems in which two bodies collide with each other.
- The important distinction among elastic, inelastic, and completely inelastic collisions.
- The definition of the center of mass of a system, and what determines how the center of mass moves.
- How to analyze situations such as rocket propulsion in which the mass of a body changes as it moves.

Newton's Second Law in Terms of Momentum

Consider a particle of constant mass *m*. (Later in this chapter we'll see how to deal with situations in which the mass of a body changes.) Because $\vec{a} = d\vec{v}/dt$, we can write Newton's second law for this particle as

$$\Sigma \vec{F} = m \frac{d\vec{v}}{dt} = \frac{d}{dt} (m\vec{v})$$
(8.1)

We can move the mass *m* inside the derivative because it is constant. Thus Newton's second law says that the net force $\sum \vec{F}$ acting on a particle equals the time rate of change of the combination $m\vec{v}$, the product of the particle's mass and velocity. We'll call this combination the **momentum**, or **linear momentum**, of the particle. Using the symbol \vec{p} for momentum, we have

$$\vec{p} = m\vec{v}$$
 (definition of momentum) (8.2)

The greater the mass *m* and speed *v* of a particle, the greater is its magnitude of momentum *mv*. Keep in mind, however, that momentum is a *vector* quantity with the same direction as the particle's velocity (Fig. 8.1). Hence a car driving north at 20 m/s and an identical car driving east at 20 m/s have the same *magnitude* of momentum (mv) but different momentum *vectors* $(m\vec{v})$ because their directions are different.

We often express the momentum of a particle in terms of its components. If the particle has velocity components v_x , v_y , and v_z , then its momentum components p_x , p_y , and p_z (which we also call the *x*-momentum, *y*-momentum, and *z*-momentum) are given by

$$p_x = mv_x \qquad p_y = mv_y \qquad p_z = mv_z \tag{8.3}$$

These three component equations are equivalent to Eq. (8.2).

The units of the magnitude of momentum are units of mass times speed; the SI units of momentum are kg \cdot m/s. The plural of momentum is "momenta."

If we now substitute the definition of momentum, Eq. (8.2), into Eq. (8.1), we get

$$\Sigma \vec{F} = \frac{d\vec{p}}{dt}$$
 (Newton's second law in terms of momentum) (8.4)

The net force (vector sum of all forces) acting on a particle equals the time rate of change of momentum of the particle. This, not $\sum \vec{F} = m\vec{a}$, is the form in which Newton originally stated his second law (although he called momentum the "quantity of motion"). This law is valid only in inertial frames of reference.

According to Eq. (8.4), a rapid change in momentum requires a large net force, while a gradual change in momentum requires less net force. This principle is used in the design of automobile safety devices such as air bags (Fig. 8.2).

The Impulse–Momentum Theorem

A particle's momentum $\vec{p} = m\vec{v}$ and its kinetic energy $K = \frac{1}{2}mv^2$ both depend on the mass and velocity of the particle. What is the fundamental difference between these two quantities? A purely mathematical answer is that momentum is a vector whose magnitude is proportional to speed, while kinetic energy is a scalar proportional to the speed squared. But to see the *physical* difference between momentum and kinetic energy, we must first define a quantity closely related to momentum called *impulse*.

8.1 The velocity and momentum vectors of a particle.

Momentum \vec{p} is a vector quantity; a particle's momentum has the same direction as its velocity \vec{v} .

8.2 If a fast-moving automobile stops suddenly in a collision, the driver's momentum (mass times velocity) changes from a large value to zero in a short time. An air bag causes the driver to lose momentum more gradually than would an abrupt collision with the steering wheel, reducing the force exerted on the driver as well as the possibility of injury.

Let's first consider a particle acted on by a *constant* net force $\sum \vec{F}$ during a time interval Δt from t_1 to t_2 . (We'll look at the case of varying forces shortly.) The **impulse** of the net force, denoted by \vec{J} , is defined to be the product of the net force and the time interval:

$$\vec{J} = \sum \vec{F}(t_2 - t_1) = \sum \vec{F} \Delta t$$
 (assuming constant net force) (8.5)

Impulse is a vector quantity; its direction is the same as the net force $\Sigma \vec{F}$. Its magnitude is the product of the magnitude of the net force and the length of time that the net force acts. The SI unit of impulse is the newton-second $(N \cdot s)$. Because $1 N = 1 \text{ kg} \cdot \text{m/s}^2$, an alternative set of units for impulse is kg $\cdot \text{m/s}$, the same as the units of momentum.

To see what impulse is good for, let's go back to Newton's second law as restated in terms of momentum, Eq. (8.4). If the net force $\sum \vec{F}$ is constant, then $d\vec{p}/dt$ is also constant. In that case, $d\vec{p}/dt$ is equal to the *total* change in momentum $\vec{p}_2 - \vec{p}_1$ during the time interval $t_2 - t_1$, divided by the interval:

$$\Sigma \vec{F} = \frac{\vec{p}_2 - \vec{p}_1}{t_2 - t_1}$$

Multiplying this equation by $(t_2 - t_1)$, we have

$$\sum \vec{F}(t_2 - t_1) = \vec{p}_2 - \vec{p}_1$$

Comparing with Eq. (8.5), we end up with a result called the **impulse-momentum theorem:**

$$\vec{J} = \vec{p}_2 - \vec{p}_1$$
 (impulse–momentum theorem) (8.6)

The change in momentum of a particle during a time interval equals the impulse of the net force that acts on the particle during that interval.

The impulse-momentum theorem also holds when forces are not constant. To see this, we integrate both sides of Newton's second law $\sum \vec{F} = d\vec{p}/dt$ over time between the limits t_1 and t_2 :

$$\int_{t_1}^{t_2} \Sigma \vec{F} \, dt = \int_{t_1}^{t_2} \frac{d\vec{p}}{dt} \, dt = \int_{\vec{p}_1}^{\vec{p}_2} d\vec{p} = \vec{p}_2 - \vec{p}_1$$

The integral on the left is defined to be the impulse \vec{J} of the net force $\sum \vec{F}$ during this interval:

$$\vec{J} = \int_{t_1}^{t_2} \sum \vec{F} \, dt$$
 (general definition of impulse) (8.7)

With this definition, the impulse-momentum theorem $\vec{J} = \vec{p}_2 - \vec{p}_1$, Eq. (8.6), is valid even when the net force $\sum \vec{F}$ varies with time.

We can define an *average* net force \vec{F}_{av} such that even when $\sum \vec{F}$ is not constant, the impulse \vec{J} is given by

$$\vec{J} = \vec{F}_{av}(t_2 - t_1)$$
 (8.8)

When $\sum \vec{F}$ is constant, $\sum \vec{F} = \vec{F}_{av}$ and Eq. (8.8) reduces to Eq. (8.5).

Figure 8.3a shows the x-component of net force $\sum F_x$ as a function of time during a collision. This might represent the force on a soccer ball that is in contact with a player's foot from time t_1 to t_2 . The x-component of impulse during this interval is represented by the red area under the curve between t_1 and t_2 . This

Application Woodpecker Impulse

The pileated woodpecker (*Dryocopus pileatus*) has been known to strike its beak against a tree up to 20 times a second and up to 12,000 times a day. The impact force can be as much as 1200 times the weight of the bird's head. Because the impact lasts such a short time, the impulse—the product of the net force during the impact multiplied by the duration of the impact—is relatively small. (The woodpecker has a thick skull of spongy bone as well as shock-absorbing cartilage at the base of the lower jaw, and so avoids injury.)

8.3 The meaning of the area under a graph of $\sum F_x$ versus *t*.

(a)

The area under the curve of net force versus time equals the impulse of the net force:

area is equal to the green rectangular area bounded by t_1 , t_2 , and $(F_{av})_x$, so $(F_{av})_x(t_2 - t_1)$ is equal to the impulse of the actual time-varying force during the same interval. Note that a large force acting for a short time can have the same impulse as a smaller force acting for a longer time if the areas under the force–time curves are the same (Fig. 8.3b). In this language, an automobile airbag (see Fig. 8.2) provides the same impulse to the driver as would the steering wheel or the dashboard by applying a weaker and less injurious force for a longer time.

Impulse and momentum are both vector quantities, and Eqs. (8.5)–(8.8) are all vector equations. In specific problems, it is often easiest to use them in component form:

$$J_{x} = \int_{t_{1}}^{t_{2}} \sum F_{x} dt = (F_{av})_{x}(t_{2} - t_{1}) = p_{2x} - p_{1x} = mv_{2x} - mv_{1x}$$

$$J_{y} = \int_{t_{1}}^{t_{2}} \sum F_{y} dt = (F_{av})_{y}(t_{2} - t_{1}) = p_{2y} - p_{1y} = mv_{2y} - mv_{1y}$$
(8.9)

and similarly for the *z*-component.

Momentum and Kinetic Energy Compared

We can now see the fundamental difference between momentum and kinetic energy. The impulse-momentum theorem $\vec{J} = \vec{p}_2 - \vec{p}_1$ says that changes in a particle's momentum are due to impulse, which depends on the *time* over which the net force acts. By contrast, the work-energy theorem $W_{\text{tot}} = K_2 - K_1$ tells us that kinetic energy changes when work is done on a particle; the total work depends on the *distance* over which the net force acts. Consider a particle that starts from rest at t_1 so that $\vec{v}_1 = 0$. Its initial momentum is $\vec{p}_1 = m\vec{v}_1 = 0$, and its initial kinetic energy is $K_1 = \frac{1}{2}mv_1^2 = 0$. Now let a constant net force equal to \vec{F} act on that particle from time t_1 until time t_2 . During this interval, the particle moves a distance *s* in the direction of the force. From Eq. (8.6), the particle's momentum at time t_2 is

$$\vec{p}_2 = \vec{p}_1 + \vec{J} = \vec{J}$$

where $\vec{J} = \vec{F}(t_2 - t_1)$ is the impulse that acts on the particle. So the momentum of a particle equals the impulse that accelerated it from rest to its present speed; impulse is the product of the net force that accelerated the particle and the time required for the acceleration. By comparison, the kinetic energy of the particle at t_2 is $K_2 = W_{\text{tot}} = Fs$, the total work done on the particle to accelerate it from rest. The total work is the product of the net force and the *distance* required to accelerate the particle (Fig. 8.4).

Here's an application of the distinction between momentum and kinetic energy. Suppose you have a choice between catching a 0.50-kg ball moving at 4.0 m/s or a 0.10-kg ball moving at 20 m/s. Which will be easier to catch? Both balls have the same magnitude of momentum, $p = mv = (0.50 \text{ kg})(4.0 \text{ m/s}) = (0.10 \text{ kg})(20 \text{ m/s}) = 2.0 \text{ kg} \cdot \text{m/s}$. However, the two balls have different values of kinetic energy $K = \frac{1}{2}mv^2$; the large, slow-moving ball has K = 4.0 J, while the small, fast-moving ball has K = 20 J. Since the momentum is the same for both balls, both require the same *impulse* to be brought to rest. But stopping the 0.10-kg ball with your hand requires five times more *work* than stopping the 0.50-kg ball because the smaller ball has five times more kinetic energy. For a given force that you exert with your hand, it takes the same amount of time (the duration of the catch) to stop either ball, but your hand and arm will be pushed back five times farther if you choose to catch the small, fast-moving ball with its lower kinetic energy.

Both the impulse-momentum and work-energy theorems are relationships between force and motion, and both rest on the foundation of Newton's laws. They are *integral* principles, relating the motion at two different times separated

ActivPhysics 6.1: Momentum and Energy Change

8.4 The *kinetic energy* of a pitched baseball is equal to the work the pitcher does on it (force multiplied by the distance the ball moves during the throw). The *momentum* of the ball is equal to the impulse the pitcher imparts to it (force multiplied by the time it took to bring the ball up to speed).

by a finite interval. By contrast, Newton's second law itself (in either of the forms $\sum \vec{F} = m\vec{a}$ or $\sum \vec{F} = d\vec{p}/dt$) is a *differential* principle, relating the forces to the rate of change of velocity or momentum at each instant.

Conceptual Example 8.1 Momentum versus kinetic energy

Consider again the race described in Conceptual Example 6.5 (Section 6.2) between two iceboats on a frictionless frozen lake. The boats have masses m and 2m, and the wind exerts the same constant horizontal force \vec{F} on each boat (see Fig. 6.14). The boats start from rest and cross the finish line a distance s away. Which boat crosses the finish line with greater momentum?

In Conceptual Example 6.5 we asked how the kinetic energies of

the boats compare when they cross the finish line. We answered

this by remembering that a body's kinetic energy equals the total

work done to accelerate it from rest. Both boats started from rest,

and the total work done was the same for both boats (because the

net force and the displacement were the same for both). Hence

that the momentum of each boat equals the impulse that accelerated

Similarly, to compare the *momenta* of the boats we use the idea

both boats had the same kinetic energy at the finish line.

boat equals the constant horizontal wind force \vec{F} . Let Δt be the time a boat takes to reach the finish line, so that the impulse on the boat during that time is $\vec{J} = \vec{F} \Delta t$. Since the boat starts from rest, this equals the boat's momentum \vec{p} at the finish line:

it from rest. As in Conceptual Example 6.5, the net force on each

$$\vec{p} = \vec{F} \Delta t$$

Both boats are subjected to the same force \vec{F} , but they take different times Δt to reach the finish line. The boat of mass 2m accelerates more slowly and takes a longer time to travel the distance *s*; thus there is a greater impulse on this boat between the starting and finish lines. So the boat of mass 2m crosses the finish line with a greater magnitude of momentum than the boat of mass *m* (but with the same kinetic energy). Can you show that the boat of mass 2m has $\sqrt{2}$ times as much momentum at the finish line as the boat of mass *m*?

Example 8.2 A ball hits a wall

You throw a ball with a mass of 0.40 kg against a brick wall. It hits the wall moving horizontally to the left at 30 m/s and rebounds horizontally to the right at 20 m/s. (a) Find the impulse of the net force on the ball during its collision with the wall. (b) If the ball is in contact with the wall for 0.010 s, find the average horizontal force that the wall exerts on the ball during the impact.

SOLUTION

SOLUTION

IDENTIFY and SET UP: We're given enough information to determine the initial and final values of the ball's momentum, so we can use the impulse–momentum theorem to find the impulse. We'll then use the definition of impulse to determine the average force. Figure 8.5 shows our sketch. We need only a single axis because the motion is purely horizontal. We'll take the positive *x*-direction to be to the right. In part (a) our target variable is the *x*-component of impulse, J_x , which we'll find from the *x*-components of momentum before and after the impact, using Eqs. (8.9). In part (b), our target variable is the average *x*-component of force $(F_{av})_x$; once we know J_x , we can also find this force by using Eqs. (8.9).

8.5 Our sketch for this problem.

EXECUTE: (a) With our choice of *x*-axis, the initial and final *x*-components of momentum of the ball are

$$p_{1x} = mv_{1x} = (0.40 \text{ kg})(-30 \text{ m/s}) = -12 \text{ kg} \cdot \text{m/s}$$

$$p_{2x} = mv_{2x} = (0.40 \text{ kg})(+20 \text{ m/s}) = +8.0 \text{ kg} \cdot \text{m/s}$$

From the *x*-equation in Eqs. (8.9), the *x*-component of impulse equals the *change* in the *x*-momentum:

$$J_x = p_{2x} - p_{1x}$$

= 8.0 kg · m/s - (-12 kg · m/s) = 20 kg · m/s = 20 N · s

(b) The collision time is $t_2 - t_1 = \Delta t = 0.010$ s. From the x-equation in Eqs. (8.9), $J_x = (F_{av})_x(t_2 - t_1) = (F_{av})_x \Delta t$, so

$$(F_{\rm av})_x = \frac{J_x}{\Delta t} = \frac{20 \,\mathrm{N} \cdot \mathrm{s}}{0.010 \,\mathrm{s}} = 2000 \,\mathrm{N}$$

EVALUATE: The *x*-component of impulse J_x is positive—that is, to the right in Fig. 8.5. This is as it should be: The impulse represents the "kick" that the wall imparts to the ball, and this "kick" is certainly to the right.

CAUTION Momentum is a vector Because momentum is a vector, we had to include the negative sign in writing $p_{1x} = -12 \text{ kg} \cdot \text{m/s}$. Had we carelessly omitted it, we would have calculated the impulse to be $8.0 \text{ kg} \cdot \text{m/s} - (12 \text{ kg} \cdot \text{m/s}) = -4 \text{ kg} \cdot \text{m/s}$. This would say that the wall had somehow given the ball a kick to the *left!* Make sure that you account for the *direction* of momentum in your calculations.

The force that the wall exerts on the ball must have such a large magnitude (2000 N, equal to the weight of a 200-kg object) to

change the ball's momentum in such a short time. Other forces that act on the ball during the collision are comparatively weak; for instance, the gravitational force is only 3.9 N. Thus, during the short time that the collision lasts, we can ignore all other forces on the ball. Figure 8.6 shows the impact of a tennis ball and racket.

Note that the 2000-N value we calculated is the *average* horizontal force that the wall exerts on the ball during the impact. It corresponds to the horizontal line $(F_{av})_x$ in Fig. 8.3a. The horizontal force is zero before impact, rises to a maximum, and then decreases to zero when the ball loses contact with the wall. If the ball is relatively rigid, like a baseball or golf ball, the collision lasts a short time and the maximum force is large, as in the blue curve in Fig. 8.3b. If the ball is softer, like a tennis ball, the collision time is longer and the maximum force is less, as in the orange curve in Fig. 8.3b.

Example 8.3 Kicking a soccer ball

A soccer ball has a mass of 0.40 kg. Initially it is moving to the left at 20 m/s, but then it is kicked. After the kick it is moving at 45° upward and to the right with speed 30 m/s (Fig. 8.7a). Find the impulse of the net force and the average net force, assuming a collision time $\Delta t = 0.010$ s.

SOLUTION

IDENTIFY and SET UP: The ball moves in two dimensions, so we must treat momentum and impulse as vector quantities. We take the *x*-axis to be horizontally to the right and the *y*-axis to be vertically upward. Our target variables are the components of the net

8.7 (a) Kicking a soccer ball. (b) Finding the average force on the ball from its components.

(a) Before-and-after diagram

(b) Average force on the ball

8.6 Typically, a tennis ball is in contact with the racket for approximately 0.01 s. The ball flattens noticeably due to the tremendous force exerted by the racket.

impulse on the ball, J_x and J_y , and the components of the average net force on the ball, $(F_{av})_x$ and $(F_{av})_y$. We'll find them using the impulse–momentum theorem in its component form, Eqs. (8.9).

EXECUTE: Using $\cos 45^\circ = \sin 45^\circ = 0.707$, we find the ball's velocity components before and after the kick:

$$v_{1x} = -20 \text{ m/s}$$
 $v_{1y} = 0$
 $v_{2x} = v_{2y} = (30 \text{ m/s})(0.707) = 21.2 \text{ m/s}$

From Eqs. (8.9), the impulse components are

$$J_x = p_{2x} - p_{1x} = m(v_{2x} - v_{1x})$$

= (0.40 kg)[21.2 m/s - (-20 m/s)] = 16.5 kg · m/s
$$J_y = p_{2y} - p_{1y} = m(v_{2y} - v_{1y})$$

 $= (0.40 \text{ kg})(21.2 \text{ m/s} - 0) = 8.5 \text{ kg} \cdot \text{m/s}$

From Eq. (8.8), the average net force components are

$$(F_{\rm av})_x = \frac{J_x}{\Delta t} = 1650 \text{ N} \qquad (F_{\rm av})_y = \frac{J_y}{\Delta t} = 850 \text{ N}$$

The magnitude and direction of the average net force \vec{F}_{av} are

$$F_{\text{av}} = \sqrt{(1650 \text{ N})^2 + (850 \text{ N})^2} = 1.9 \times 10^3 \text{ N}$$
$$\theta = \arctan \frac{850 \text{ N}}{1650 \text{ N}} = 27^{\circ}$$

The ball was not initially at rest, so its final velocity does *not* have the same direction as the average force that acted on it.

EVALUATE: \vec{F}_{av} includes the force of gravity, which is very small; the weight of the ball is only 3.9 N. As in Example 8.2, the average force acting during the collision is exerted almost entirely by the object that the ball hit (in this case, the soccer player's foot).

I

Test Your Understanding of Section 8.1 Rank the following situations according to the magnitude of the impulse of the net force, from largest value to smallest value. In each situation a 1000-kg automobile is moving along a straight east–west road. (i) The automobile is initially moving east at 25 m/s and comes to a stop in 10 s. (ii) The automobile is initially moving east at 25 m/s and comes to a stop in 5 s. (iii) The automobile is initially moving east at 25 m/s, and a 2000-N net force toward the east is applied to it for 10 s. (iv) The automobile is initially moving east at 25 m/s, and a 2000-N net force toward the west is applied to it for 10 s. (v) The automobile is initially moving east at 25 m/s, and a 2000-N net force toward the 30-s period, the automobile reverses direction and ends up moving west at 25 m/s.

8.2 Conservation of Momentum

The concept of momentum is particularly important in situations in which we have two or more bodies that *interact*. To see why, let's consider first an idealized system of two bodies that interact with each other but not with anything else—for example, two astronauts who touch each other as they float freely in the zero-gravity environment of outer space (Fig. 8.8). Think of the astronauts as particles. Each particle exerts a force on the other; according to Newton's third law, the two forces are always equal in magnitude and opposite in direction. Hence, the *impulses* that act on the two particles are equal and opposite, and the changes in momentum of the two particles are equal and opposite.

Let's go over that again with some new terminology. For any system, the forces that the particles of the system exert on each other are called **internal forces**. Forces exerted on any part of the system by some object outside it are called **external forces**. For the system shown in Fig. 8.8, the internal forces are $\vec{F}_{B \text{ on } A}$, exerted by particle *B* on particle *A*, and $\vec{F}_{A \text{ on } B}$, exerted by particle *A* on particle *B*. There are *no* external forces; when this is the case, we have an **isolated system**.

The net force on particle *A* is $\vec{F}_{B \text{ on } A}$ and the net force on particle *B* is $\vec{F}_{A \text{ on } B}$, so from Eq. (8.4) the rates of change of the momenta of the two particles are

$$\vec{F}_{B \text{ on } A} = \frac{d\vec{p}_{A}}{dt} \qquad \vec{F}_{A \text{ on } B} = \frac{d\vec{p}_{B}}{dt}$$
(8.10)

The momentum of each particle changes, but these changes are related to each other by Newton's third law: The two forces $\vec{F}_{B \text{ on } A}$ and $\vec{F}_{A \text{ on } B}$ are always equal in magnitude and opposite in direction. That is, $\vec{F}_{B \text{ on } A} = -\vec{F}_{A \text{ on } B}$, so $\vec{F}_{B \text{ on } A} + \vec{F}_{A \text{ on } B} = 0$. Adding together the two equations in Eq. (8.10), we have

$$\vec{F}_{B \text{ on } A} + \vec{F}_{A \text{ on } B} = \frac{d\vec{p}_A}{dt} + \frac{d\vec{p}_B}{dt} = \frac{d(\vec{p}_A + \vec{p}_B)}{dt} = \mathbf{0}$$
 (8.11)

The rates of change of the two momenta are equal and opposite, so the rate of change of the vector sum $\vec{p}_A + \vec{p}_B$ is zero. We now define the **total momentum** \vec{P} of the system of two particles as the vector sum of the momenta of the individual particles; that is,

$$\vec{P} = \vec{p}_A + \vec{p}_B \tag{8.12}$$

Then Eq. (8.11) becomes, finally,

$$\vec{F}_{B \text{ on } A} + \vec{F}_{A \text{ on } B} = \frac{d\vec{P}}{dt} = \mathbf{0}$$
 (8.13)

The time rate of change of the *total* momentum \vec{P} is zero. Hence the total momentum of the system is constant, even though the individual momenta of the particles that make up the system can change.

If external forces are also present, they must be included on the left side of Eq. (8.13) along with the internal forces. Then the total momentum is, in general, not constant. But if the vector sum of the external forces is zero, as in Fig. 8.9, these forces have no effect on the left side of Eq. (8.13), and $d\vec{P}/dt$ is again zero. Thus we have the following general result:

If the vector sum of the external forces on a system is zero, the total momentum of the system is constant.

This is the simplest form of the **principle of conservation of momentum.** This principle is a direct consequence of Newton's third law. What makes this principle useful is that it doesn't depend on the detailed nature of the internal forces that

8.8 Two astronauts push each other as they float freely in the zero-gravity environment of space.

No external forces act on the two-astronaut system, so its total momentum is conserved.

The forces the astronauts exert on each other form an action–reaction pair.

The forces the skaters exert on each other form an action–reaction pair.

Although the normal and gravitational forces are external, their vector sum is zero, so the total momentum is conserved.

act between members of the system. This means that we can apply conservation of momentum even if (as is often the case) we know very little about the internal forces. We have used Newton's second law to derive this principle, so we have to be careful to use it only in inertial frames of reference.

We can generalize this principle for a system that contains any number of particles A, B, C, \ldots interacting only with one another. The total momentum of such a system is

$$\vec{P} = \vec{p}_A + \vec{p}_B + \cdots = m_A \vec{v}_A + m_B \vec{v}_B + \cdots$$
 (total momentum of
a system of particles) (8.14)

We make the same argument as before: The total rate of change of momentum of the system due to each action–reaction pair of internal forces is zero. Thus the total rate of change of momentum of the entire system is zero whenever the vector sum of the external forces acting on it is zero. The internal forces can change the momenta of individual particles in the system but not the *total* momentum of the system.

CAUTION Conservation of momentum means conservation of its components When you apply the conservation of momentum to a system, remember that momentum is a *vector* quantity. Hence you must use vector addition to compute the total momentum of a system (Fig. 8.10). Using components is usually the simplest method. If p_{Ax} , p_{Ay} , and p_{Az} are the components of momentum of particle A, and similarly for the other particles, then Eq. (8.14) is equivalent to the component equations

$$P_{x} = p_{Ax} + p_{Bx} + \cdots$$

$$P_{y} = p_{Ay} + p_{By} + \cdots$$

$$P_{z} = p_{Az} + p_{Bz} + \cdots$$
(8.15)

If the vector sum of the external forces on the system is zero, then P_x , P_y , and P_z are all constant.

In some ways the principle of conservation of momentum is more general than the principle of conservation of mechanical energy. For example, mechanical energy is conserved only when the internal forces are *conservative*—that is, when the forces allow two-way conversion between kinetic and potential energy—but conservation of momentum is valid even when the internal forces are *not* conservative. In this chapter we will analyze situations in which both momentum and mechanical energy are conserved, and others in which only momentum is conserved. These two principles play a fundamental role in all areas of physics, and we will encounter them throughout our study of physics.

Problem-Solving Strategy 8.1 Conservation of Momentum

IDENTIFY *the relevant concepts:* Confirm that the vector sum of the external forces acting on the system of particles is zero. If it isn't zero, you can't use conservation of momentum.

SET UP the problem using the following steps:

- Treat each body as a particle. Draw "before" and "after" sketches, including velocity vectors. Assign algebraic symbols to each magnitude, angle, and component. Use letters to label each particle and subscripts 1 and 2 for "before" and "after" quantities. Include any given values such as magnitudes, angles, or components.
- 2. Define a coordinate system and show it in your sketches; define the positive direction for each axis.
- 3. Identify the target variables.

EXECUTE the solution:

- 1. Write an equation in symbols equating the total initial and final *x*-components of momentum, using $p_x = mv_x$ for each particle. Write a corresponding equation for the *y*-components. Velocity components can be positive or negative, so be careful with signs!
- 2. In some problems, energy considerations (discussed in Section 8.4) give additional equations relating the velocities.
- 3. Solve your equations to find the target variables.

EVALUATE *your answer:* Does your answer make physical sense? If your target variable is a certain body's momentum, check that the direction of the momentum is reasonable.

Mastering PHYSICS

ActivPhysics 6.3: Momentum Conservation and Collisions ActivPhysics 6.7: Explosion Problems ActivPhysics 6.10: Pendulum Person-Projectile Bowling

8.10 When applying conservation of momentum, remember that momentum is a vector quantity!

You CANNOT find the magnitude of the total momentum by adding the magnitudes of the individual momenta!

$$P = p_A + p_B = 42 \text{ kg} \cdot \text{m/s} \quad \blacktriangleleft \text{WRONG}$$

Instead, use vector addition:

Example 8.4 Recoil of a rifle

A marksman holds a rifle of mass $m_{\rm R} = 3.00$ kg loosely, so it can recoil freely. He fires a bullet of mass $m_{\rm B} = 5.00$ g horizontally with a velocity relative to the ground of $v_{\rm Bx} = 300$ m/s. What is the recoil velocity $v_{\rm Rx}$ of the rifle? What are the final momentum and kinetic energy of the bullet and rifle?

SOLUTION

IDENTIFY and SET UP: If the marksman exerts negligible horizontal forces on the rifle, then there is no net horizontal force on the system (the bullet and rifle) during the firing, and the total horizontal momentum of the system is conserved. Figure 8.11 shows our sketch. We take the positive *x*-axis in the direction of aim. The rifle and the bullet are initially at rest, so the initial *x*-component of total momentum is zero. After the shot is fired, the bullet's *x*-momentum is $p_{Bx} = m_B v_{Bx}$ and the rifle's *x*-momentum

8.11 Our sketch for this problem.

<u>After</u>

Example 8.5 Collision along a straight line

Two gliders with different masses move toward each other on a frictionless air track (Fig. 8.12a). After they collide (Fig. 8.12b), glider *B* has a final velocity of $\pm 2.0 \text{ m/s}$ (Fig. 8.12c). What is the final velocity of glider *A*? How do the changes in momentum and in velocity compare?

SOLUTION

IDENTIFY and SET UP: As for the skaters in Fig. 8.9, the total vertical force on each glider is zero, and the net force on each individual glider is the horizontal force exerted on it by the other glider. The net external force on the *system* of two gliders is zero, so their total momentum is conserved. We take the positive *x*-axis to be to the right. We are given the masses and initial velocities of both gliders and the final velocity of glider *B*. Our target variables are v_{A2x} , the final *x*-component of velocity of glider *A*, and the changes in momentum and in velocity of the two gliders (the value *after* the collision minus the value *before* the collision).

EXECUTE: The *x*-component of total momentum before the collision is

$$P_x = m_A v_{A1x} + m_B v_{B1x}$$

= (0.50 kg)(2.0 m/s) + (0.30 kg)(-2.0 m/s)
= 0.40 kg · m/s

is $p_{\text{R}x} = m_{\text{R}}v_{\text{R}x}$. Our target variables are $v_{\text{R}x}$, $p_{\text{B}x}$, $p_{\text{R}x}$, and the final kinetic energies $K_{\text{B}} = \frac{1}{2}m_{\text{B}}v_{\text{B}x}^2$ and $K_{\text{R}} = \frac{1}{2}m_{\text{R}}v_{\text{R}x}^2$.

EXECUTE: Conservation of the *x*-component of total momentum gives

$$P_x = 0 = m_{\rm B} v_{\rm Bx} + m_{\rm R} v_{\rm Rx}$$
$$v_{\rm Rx} = -\frac{m_{\rm B}}{m_{\rm R}} v_{\rm Bx} = -\left(\frac{0.00500 \text{ kg}}{3.00 \text{ kg}}\right)(300 \text{ m/s}) = -0.500 \text{ m/s}$$

The negative sign means that the recoil is in the direction opposite to that of the bullet.

The final momenta and kinetic energies are

$$p_{Bx} = m_B v_{Bx} = (0.00500 \text{ kg})(300 \text{ m/s}) = 1.50 \text{ kg} \cdot \text{m/s}$$

$$K_B = \frac{1}{2} m_B v_{Bx}^2 = \frac{1}{2} (0.00500 \text{ kg})(300 \text{ m/s})^2 = 225 \text{ J}$$

$$p_{Rx} = m_R v_{Rx} = (3.00 \text{ kg})(-0.500 \text{ m/s}) = -1.50 \text{ kg} \cdot \text{m/s}$$

$$K_R = \frac{1}{2} m_R v_{Rx}^2 = \frac{1}{2} (3.00 \text{ kg})(-0.500 \text{ m/s})^2 = 0.375 \text{ J}$$

EVALUATE: The bullet and rifle have equal and opposite final *momenta* thanks to Newton's third law: They experience equal and opposite interaction forces that act for the same *time*, so the impulses are equal and opposite. But the bullet travels a much greater *distance* than the rifle during the interaction. Hence the force on the bullet does more work than the force on the rifle, giving the bullet much greater *kinetic energy* than the rifle. The 600:1 ratio of the two kinetic energies is the inverse of the ratio of the masses; in fact, you can show that this always happens in recoil situations (see Exercise 8.26).

This is positive (to the right in Fig. 8.12) because A has a greater magnitude of momentum than B. The *x*-component of total momentum has the same value after the collision, so

$$P_x = m_A v_{A2x} + m_B v_{B2x}$$

Continued

We solve for v_{A2x} :

$$v_{A2x} = \frac{P_x - m_B v_{B2x}}{m_A} = \frac{0.40 \text{ kg} \cdot \text{m/s} - (0.30 \text{ kg})(2.0 \text{ m/s})}{0.50 \text{ kg}}$$
$$= -0.40 \text{ m/s}$$

The changes in the *x*-momenta are

 $m_A v_{A2x} - m_A v_{A1x} = (0.50 \text{ kg})(-0.40 \text{ m/s})$ $- (0.50 \text{ kg})(2.0 \text{ m/s}) = -1.2 \text{ kg} \cdot \text{m/s}$ $m_B v_{B2x} - m_B v_{B1x} = (0.30 \text{ kg})(2.0 \text{ m/s})$ $- (0.30 \text{ kg})(-2.0 \text{ m/s}) = +1.2 \text{ kg} \cdot \text{m/s}$

Example 8.6 Collision in a horizontal plane

Figure 8.13a shows two battling robots on a frictionless surface. Robot *A*, with mass 20 kg, initially moves at 2.0 m/s parallel to the *x*-axis. It collides with robot *B*, which has mass 12 kg and is initially at rest. After the collision, robot *A* moves at 1.0 m/s in a direction that makes an angle $\alpha = 30^{\circ}$ with its initial direction (Fig. 8.13b). What is the final velocity of robot *B*?

SOLUTION

IDENTIFY and SET UP: There are no horizontal external forces, so the *x*- and *y*-components of the total momentum of the system are both conserved. Momentum conservation requires that the sum of the *x*-components of momentum *before* the collision (subscript 1) must equal the sum *after* the collision (subscript 2), and similarly for the sums of the *y*-components. Our target variable is \vec{v}_{B2} , the final velocity of robot *B*.

8.13 Views from above of the velocities (a) before and (b) after the collision.

(a) Before collision

(b) After collision

The changes in *x*-velocities are

$$v_{A2x} - v_{A1x} = (-0.40 \text{ m/s}) - 2.0 \text{ m/s} = -2.4 \text{ m/s}$$

 $v_{B2x} - v_{B1x} = 2.0 \text{ m/s} - (-2.0 \text{ m/s}) = +4.0 \text{ m/s}$

EVALUATE: The gliders were subjected to equal and opposite interaction forces for the same time during their collision. By the impulse–momentum theorem, they experienced equal and opposite impulses and therefore equal and opposite changes in momentum. But by Newton's second law, the less massive glider (B) had a greater magnitude of acceleration and hence a greater velocity change.

EXECUTE: The momentum-conservation equations and their solutions for v_{B2x} and v_{B2y} are

$$m_A v_{A1x} + m_B v_{B1x} = m_A v_{A2x} + m_B v_{B2x}$$

$$v_{B2x} = \frac{m_A v_{A1x} + m_B v_{B1x} - m_A v_{A2x}}{m_B}$$

$$= \frac{\left[(20 \text{ kg})(2.0 \text{ m/s}) + (12 \text{ kg})(0) \right]}{12 \text{ kg}}$$

$$= 1.89 \text{ m/s}$$

$$m_A v_{A1y} + m_B v_{B1y} = m_A v_{A2y} + m_B v_{B2y}$$

$$v_{B2y} = \frac{m_A v_{A1y} + m_B v_{B1y} - m_A v_{A2y}}{m_B}$$

$$= \frac{\left[(20 \text{ kg})(0) + (12 \text{ kg})(0) - (20 \text{ kg})(1.0 \text{ m/s})(\sin 30^\circ) \right]}{12 \text{ kg}}$$

$$= -0.83 \text{ m/s}$$

Figure 8.13b shows the motion of robot *B* after the collision. The magnitude of \vec{v}_{B2} is

$$v_{B2} = \sqrt{(1.89 \text{ m/s})^2 + (-0.83 \text{ m/s})^2} = 2.1 \text{ m/s}$$

and the angle of its direction from the positive *x*-axis is

$$\beta = \arctan \frac{-0.83 \text{ m/s}}{1.89 \text{ m/s}} = -24$$

EVALUATE: We can check our answer by confirming that the components of total momentum before and after the collision are equal. Initially robot A has x-momentum $m_A v_{A1x} = (20 \text{ kg})$ $(2.0 \text{ m/s}) = 40 \text{ kg} \cdot \text{m/s}$ and zero y-momentum; robot B has zero momentum. After the collision, the momentum components are $m_A v_{A2x} = (20 \text{ kg})(1.0 \text{ m/s})(\cos 30^\circ) = 17 \text{ kg} \cdot \text{m/s}$ and $m_B v_{B2x} = (12 \text{ kg})(1.89 \text{ m/s}) = 23 \text{ kg} \cdot \text{m/s}$; the total x-momentum is $40 \text{ kg} \cdot \text{m/s}$, the same as before the collision. The final y-components are $m_A v_{A2y} = (20 \text{ kg})(1.0 \text{ m/s})(\sin 30^\circ) = 10 \text{ kg} \cdot \text{m/s}$ and $m_B v_{B2y} = (12 \text{ kg})(-0.83 \text{ m/s}) = -10 \text{ kg} \cdot \text{m/s}$; the total y-component of momentum is zero, the same as before the collision.

Test Your Understanding of Section 8.2 A spring-loaded toy sits at rest on a horizontal, frictionless surface. When the spring releases, the toy breaks into three equal-mass pieces, *A*, *B*, and *C*, which slide along the surface. Piece *A* moves off in the negative *x*-direction, while piece *B* moves off in the negative *y*-direction. (a) What are the signs of the velocity components of piece *C*? (b) Which of the three pieces is moving the fastest?

8.3 Momentum Conservation and Collisions

To most people the term *collision* is likely to mean some sort of automotive disaster. We'll use it in that sense, but we'll also broaden the meaning to include any strong interaction between bodies that lasts a relatively short time. So we include not only car accidents but also balls colliding on a billiard table, neutrons hitting atomic nuclei in a nuclear reactor, the impact of a meteor on the Arizona desert, and a close encounter of a spacecraft with the planet Saturn.

If the forces between the bodies are much larger than any external forces, as is the case in most collisions, we can neglect the external forces entirely and treat the bodies as an *isolated* system. Then momentum is conserved and the total momentum of the system has the same value before and after the collision. Two cars colliding at an icy intersection provide a good example. Even two cars colliding on dry pavement can be treated as an isolated system during the collision if the forces between the cars are much larger than the friction forces of pavement against tires.

Elastic and Inelastic Collisions

If the forces between the bodies are also *conservative*, so that no mechanical energy is lost or gained in the collision, the total *kinetic* energy of the system is the same after the collision as before. Such a collision is called an **elastic collision**. A collision between two marbles or two billiard balls is almost completely elastic. Figure 8.14 shows a model for an elastic collision. When the gliders collide, their springs are momentarily compressed and some of the original kinetic energy is momentarily converted to elastic potential energy. Then the gliders bounce apart, the springs expand, and this potential energy is converted back to kinetic energy.

A collision in which the total kinetic energy after the collision is *less* than before the collision is called an **inelastic collision.** A meatball landing on a plate of spaghetti and a bullet embedding itself in a block of wood are examples of inelastic collisions. An inelastic collision in which the colliding bodies stick together and move as one body after the collision is often called a **completely inelastic collision.** Figure 8.15 shows an example; we have replaced the spring bumpers in Fig. 8.14 with Velcro[®], which sticks the two bodies together.

CAUTION An inelastic collision doesn't have to be *completely* inelastic It's a common misconception that the *only* inelastic collisions are those in which the colliding bodies stick together. In fact, inelastic collisions include many situations in which the bodies do *not* stick. If two cars bounce off each other in a "fender bender," the work done to deform the fenders cannot be recovered as kinetic energy of the cars, so the collision is inelastic (Fig. 8.16).

Remember this rule: In any collision in which external forces can be neglected, momentum is conserved and the total momentum before equals the total momentum after; in elastic collisions *only*, the total kinetic energy before equals the total kinetic energy after.

Completely Inelastic Collisions

Let's look at what happens to momentum and kinetic energy in a *completely* inelastic collision of two bodies (*A* and *B*), as in Fig. 8.15. Because the two bodies stick together after the collision, they have the same final velocity \vec{v}_2 :

$$\vec{\boldsymbol{v}}_{A2} = \vec{\boldsymbol{v}}_{B2} = \vec{\boldsymbol{v}}_2$$

8.14 Two gliders undergoing an elastic collision on a frictionless surface. Each glider has a steel spring bumper that exerts a conservative force on the other glider.

(a) Before collision

Kinetic energy is stored as potential energy in compressed springs.

(c) After collision

The system of the two gliders has the same kinetic energy after the collision as before it.

8.15 Two gliders undergoing a completely inelastic collision. The spring bumpers on the gliders are replaced by Velcro[®], so the gliders stick together after collision.

(a) Before collision

(b) Completely inelastic collision

(c) After collision

The system of the two gliders has less kinetic energy after the collision than before it.

8.16 Automobile collisions are intended to be inelastic, so that the structure of the car absorbs as much of the energy of the collision as possible. This absorbed energy cannot be recovered, since it goes into a permanent deformation of the car.

Conservation of momentum gives the relationship

 $m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = (m_A + m_B) \vec{v}_2$ (completely inelastic collision) (8.16)

If we know the masses and initial velocities, we can compute the common final velocity \vec{v}_2 .

Suppose, for example, that a body with mass m_A and initial *x*-component of velocity v_{A1x} collides inelastically with a body with mass m_B that is initially at rest ($v_{B1x} = 0$). From Eq. (8.16) the common *x*-component of velocity v_{2x} of both bodies after the collision is

$$v_{2x} = \frac{m_A}{m_A + m_B} v_{A1x}$$
 (completely inelastic collision,
B initially at rest) (8.17)

Let's verify that the total kinetic energy after this completely inelastic collision is less than before the collision. The motion is purely along the *x*-axis, so the kinetic energies K_1 and K_2 before and after the collision, respectively, are

$$K_{1} = \frac{1}{2}m_{A}v_{A1x}^{2}$$

$$K_{2} = \frac{1}{2}(m_{A} + m_{B})v_{2x}^{2} = \frac{1}{2}(m_{A} + m_{B})\left(\frac{m_{A}}{m_{A} + m_{B}}\right)^{2}v_{A1x}^{2}$$

The ratio of final to initial kinetic energy is

$$\frac{K_2}{K_1} = \frac{m_A}{m_A + m_B}$$
 (completely inelastic collision,
B initially at rest) (8.18)

The right side is always less than unity because the denominator is always greater than the numerator. Even when the initial velocity of m_B is not zero, it is not hard to verify that the kinetic energy after a completely inelastic collision is always less than before.

Please note: We don't recommend memorizing Eq. (8.17) or (8.18). We derived them only to prove that kinetic energy is always lost in a completely inelastic collision.

Example 8.7 A completely inelastic collision

We repeat the collision described in Example 8.5 (Section 8.2), but this time equip the gliders so that they stick together when they collide. Find the common final *x*-velocity, and compare the initial and final kinetic energies of the system.

SOLUTION

IDENTIFY and SET UP: There are no external forces in the *x*-direction, so the *x*-component of momentum is conserved. Figure 8.17 shows our sketch. Our target variables are the final *x*-velocity v_{2x} and the initial and final kinetic energies K_1 and K_2 .

8.17 Our sketch for this problem.

$$\frac{\text{Before}}{M_{A} = 0.50 \text{ kg}} \xrightarrow{V_{A1x} = 2.0 \text{ m/s}} \xrightarrow{V_{B1x} = -2.0 \text{ m/s}} B \xrightarrow{M_{B1x} = -2.0 \text{ m/s}} X$$

EXECUTE: From conservation of momentum,

$$m_A v_{A1x} + m_B v_{B1x} = (m_A + m_B) v_{2x}$$

$$v_{2x} = \frac{m_A v_{A1x} + m_B v_{B1x}}{m_A + m_B}$$

$$= \frac{(0.50 \text{ kg})(2.0 \text{ m/s}) + (0.30 \text{ kg})(-2.0 \text{ m/s})}{0.50 \text{ kg} + 0.30 \text{ kg}}$$

$$= 0.50 \text{ m/s}$$

Because v_{2x} is positive, the gliders move together to the right after the collision. Before the collision, the kinetic energies are

$$K_A = \frac{1}{2}m_A v_{A1x}^2 = \frac{1}{2}(0.50 \text{ kg})(2.0 \text{ m/s})^2 = 1.0 \text{ J}$$

$$K_B = \frac{1}{2}m_B v_{B1x}^2 = \frac{1}{2}(0.30 \text{ kg})(-2.0 \text{ m/s})^2 = 0.60 \text{ J}$$

The total kinetic energy before the collision is $K_1 = K_A + K_B =$ 1.6 J. The kinetic energy after the collision is

$$K_2 = \frac{1}{2}(m_A + m_B)v_{2x}^2 = \frac{1}{2}(0.50 \text{ kg} + 0.30 \text{ kg})(0.50 \text{ m/s})^2$$

= 0.10 J

EVALUATE: The final kinetic energy is only $\frac{1}{16}$ of the original; $\frac{15}{16}$ is converted from mechanical energy to other forms. If there is a wad of chewing gum between the gliders, it squashes and becomes warmer. If there is a spring between the gliders that is compressed as they lock

Example 8.8 The ballistic pendulum

Figure 8.18 shows a ballistic pendulum, a simple system for measuring the speed of a bullet. A bullet of mass $m_{\rm B}$ makes a completely inelastic collision with a block of wood of mass $m_{\rm W}$, which is suspended like a pendulum. After the impact, the block swings up to a maximum height y. In terms of y, $m_{\rm B}$, and $m_{\rm W}$, what is the initial speed v_1 of the bullet?

SOLUTION

IDENTIFY: We'll analyze this event in two stages: (1) the embedding of the bullet in the block and (2) the pendulum swing of the block. During the first stage, the bullet embeds itself in the block so quickly that the block does not move appreciably. The supporting strings remain nearly vertical, so negligible external horizontal force acts on the bullet–block system, and the horizontal component of momentum is conserved. Mechanical energy is *not* conserved during this stage, however, because a nonconservative force does work (the force of friction between bullet and block).

In the second stage, the block and bullet move together. The only forces acting on this system are gravity (a conservative force) and the string tensions (which do no work). Thus, as the block swings, *mechanical energy* is conserved. Momentum is *not*

8.18 A ballistic pendulum.

together, the energy is stored as potential energy of the spring. In both cases the *total* energy of the system is conserved, although *kinetic* energy is not. In an isolated system, however, momentum is *always* conserved whether the collision is elastic or not.

conserved during this stage, however, because there is a net external force (the forces of gravity and string tension don't cancel when the strings are inclined).

SET UP: We take the positive *x*-axis to the right and the positive *y*-axis upward. Our target variable is v_1 . Another unknown quantity is the speed v_2 of the system just after the collision. We'll use momentum conservation in the first stage to relate v_1 to v_2 , and we'll use energy conservation in the second stage to relate v_2 to *y*.

EXECUTE: In the first stage, all velocities are in the +x-direction. Momentum conservation gives

$$m_{\rm B}v_1 = (m_{\rm B} + m_{\rm W})v_2$$

 $v_1 = \frac{m_{\rm B} + m_{\rm W}}{m_{\rm B}}v_2$

At the beginning of the second stage, the system has kinetic energy $K = \frac{1}{2}(m_{\rm B} + m_{\rm W})v_2^2$. The system swings up and comes to rest for an instant at a height y, where its kinetic energy is zero and the potential energy is $(m_{\rm B} + m_{\rm W})gy$; it then swings back down. Energy conservation gives

$$b(m_{\rm B} + m_{\rm W})v_2^2 = (m_{\rm B} + m_{\rm W})gy$$
$$v_2 = \sqrt{2gy}$$

We substitute this expression for v_2 into the momentum equation:

$$v_1 = \frac{m_{\rm B} + m_{\rm W}}{m_{\rm B}} \sqrt{2gy}$$

EVALUATE: Let's plug in the realistic numbers $m_{\rm B} = 5.00 \text{ g} = 0.00500 \text{ kg}$, $m_{\rm W} = 2.00 \text{ kg}$, and y = 3.00 cm = 0.0300 m. We then have

$$v_1 = \frac{0.00500 \text{ kg} + 2.00 \text{ kg}}{0.00500 \text{ kg}} \sqrt{2(9.80 \text{ m/s}^2)(0.0300 \text{ m})}$$

= 307 m/s

The speed v_2 of the block just after impact is

$$v_2 = \sqrt{2gy} = \sqrt{2(9.80 \text{ m/s}^2)(0.0300 \text{ m})}$$

= 0.767 m/s

The speeds v_1 and v_2 seem realistic. The kinetic energy of the bullet before impact is $\frac{1}{2}(0.00500 \text{ kg})(307 \text{ m/s})^2 = 236 \text{ J}$. Just after impact the kinetic energy of the system is $\frac{1}{2}(2.005 \text{ kg})(0.767 \text{ m/s})^2 = 0.590 \text{ J}$. Nearly all the kinetic energy disappears as the wood splinters and the bullet and block become warmer.

Example 8.9 An automobile collision

A 1000-kg car traveling north at 15 m/s collides with a 2000-kg truck traveling east at 10 m/s. The occupants, wearing seat belts, are uninjured, but the two vehicles move away from the impact point as one. The insurance adjustor asks you to find the velocity of the wreckage just after impact. What is your answer?

SOLUTION

IDENTIFY and SET UP: We'll treat the cars as an isolated system, so that the momentum of the system is conserved. We can do so because (as we show below) the magnitudes of the horizontal forces that the cars exert on each other during the collision are much larger than any external forces such as friction. Figure 8.19 shows our sketch and the coordinate axes. We can find the total momentum \vec{P} before the collision using Eqs. (8.15). The momentum has the same value just after the collision; hence we can find the velocity \vec{V} just after the collision (our target variable) using $\vec{P} = M\vec{V}$, where $M = m_{\rm C} + m_{\rm T} = 3000$ kg is the mass of the wreckage.

EXECUTE: From Eqs. (8.15), the components of \vec{P} are

$$P_x = p_{Cx} + p_{Tx} = m_C v_{Cx} + m_T v_{Tx}$$

= (1000 kg)(0) + (2000 kg)(10 m/s)
= 2.0 × 10⁴ kg · m/s
$$P_y = p_{Cy} + p_{Ty} = m_C v_{Cy} + m_T v_{Ty}$$

= (1000 kg)(15 m/s) + (2000 kg)(0)
= 1.5 × 10⁴ kg · m/s

The magnitude of \vec{P} is

$$P = \sqrt{(2.0 \times 10^4 \,\mathrm{kg} \cdot \mathrm{m/s})^2 + (1.5 \times 10^4 \,\mathrm{kg} \cdot \mathrm{m/s})^2}$$

= 2.5 × 10⁴ kg · m/s

and its direction is given by the angle θ shown in Fig. 8.19:

$$\tan \theta = \frac{P_y}{P_x} = \frac{1.5 \times 10^4 \,\text{kg} \cdot \text{m/s}}{2.0 \times 10^4 \,\text{kg} \cdot \text{m/s}} = 0.75 \quad \theta = 37^\circ$$

8.19 Our sketch for this problem.

From $\vec{P} = M\vec{V}$, the direction of the velocity \vec{V} just after the collision is also $\theta = 37^{\circ}$. The velocity magnitude is

$$V = \frac{P}{M} = \frac{2.5 \times 10^4 \,\mathrm{kg} \cdot \mathrm{m/s}}{3000 \,\mathrm{kg}} = 8.3 \,\mathrm{m/s}$$

EVALUATE: This is an inelastic collision, so we expect the total kinetic energy to be less after the collision than before. As you can show, the initial kinetic energy is 2.1×10^5 J and the final value is 1.0×10^5 J.

We can now justify our neglect of the external forces on the vehicles during the collision. The car's weight is about 10,000 N; if the coefficient of kinetic friction is 0.5, the friction force on the car during the impact is about 5000 N. The car's initial kinetic energy is $\frac{1}{2}(1000 \text{ kg})(15 \text{ m/s})^2 = 1.1 \times 10^5 \text{ J}$, so $-1.1 \times 10^5 \text{ J}$ of work must be done to stop it. If the car crumples by 0.20 m in stopping, a force of magnitude $(1.1 \times 10^5 \text{ J})/(0.20 \text{ m}) = 5.5 \times 10^5 \text{ N}$ would be needed; that's 110 times the friction force. So it's reasonable to treat the external force of friction as negligible compared with the internal forces the vehicles exert on each other.

Classifying Collisions

It's important to remember that we can classify collisions according to energy considerations (Fig. 8.20). A collision in which kinetic energy is conserved is called *elastic*. (We'll explore these in more depth in the next section.) A collision in which the total kinetic energy decreases is called *inelastic*. When the two bodies have a common final velocity, we say that the collision is *completely inelastic*. There are also cases in which the final kinetic energy is *greater* than the initial value. Rifle recoil, discussed in Example 8.4 (Section 8.2), is an example.

Finally, we emphasize again that we can sometimes use momentum conservation even when there are external forces acting on the system, if the net external force acting on the colliding bodies is small in comparison with the internal forces during the collision (as in Example 8.9)

Test Your Understanding of Section 8.3 For each situation, state whether the collision is elastic or inelastic. If it is inelastic, state whether it is completely inelastic. (a) You drop a ball from your hand. It collides with the floor and bounces back up so that it just reaches your hand. (b) You drop a different ball from your hand and let it collide with the ground. This ball bounces back up to half the height from which it was dropped. (c) You drop a ball of clay from your hand. When it collides with the ground, it stops.

8.4 Elastic Collisions

We saw in Section 8.3 that an *elastic collision* in an isolated system is one in which kinetic energy (as well as momentum) is conserved. Elastic collisions occur when the forces between the colliding bodies are *conservative*. When two billiard balls collide, they squash a little near the surface of contact, but then they spring back. Some of the kinetic energy is stored temporarily as elastic potential energy, but at the end it is reconverted to kinetic energy (Fig. 8.21).

Let's look at an elastic collision between two bodies *A* and *B*. We start with a one-dimensional collision, in which all the velocities lie along the same line; we choose this line to be the *x*-axis. Each momentum and velocity then has only an *x*-component. We call the *x*-velocities before the collision v_{A1x} and v_{B1x} , and those after the collision v_{A2x} and v_{B2x} . From conservation of kinetic energy we have

$$\frac{1}{2}m_A v_{A1x}^2 + \frac{1}{2}m_B v_{B1x}^2 = \frac{1}{2}m_A v_{A2x}^2 + \frac{1}{2}m_B v_{B2x}^2$$

and conservation of momentum gives

$$m_A v_{A1x} + m_B v_{B1x} = m_A v_{A2x} + m_B v_{B2x}$$

If the masses m_A and m_B and the initial velocities v_{A1x} and v_{B1x} are known, we can solve these two equations to find the two final velocities v_{A2x} and v_{B2x} .

Elastic Collisions, One Body Initially at Rest

The general solution to the above equations is a little complicated, so we will concentrate on the particular case in which body *B* is at rest before the collision (so $v_{B1x} = 0$). Think of body *B* as a target for body *A* to hit. Then the kinetic energy and momentum conservation equations are, respectively,

$$\frac{1}{2}m_A v_{A1x}^2 = \frac{1}{2}m_A v_{A2x}^2 + \frac{1}{2}m_B v_{B2x}^2 \tag{8.19}$$

$$m_A v_{A1x} = m_A v_{A2x} + m_B v_{B2x} \tag{8.20}$$

We can solve for v_{A2x} and v_{B2x} in terms of the masses and the initial velocity v_{A1x} . This involves some fairly strenuous algebra, but it's worth it. No pain, no gain! The simplest approach is somewhat indirect, but along the way it uncovers an additional interesting feature of elastic collisions.

First we rearrange Eqs. (8.19) and (8.20) as follows:

$$m_B v_{B2x}^2 = m_A (v_{A1x}^2 - v_{A2x}^2) = m_A (v_{A1x} - v_{A2x}) (v_{A1x} + v_{A2x})$$
(8.21)
$$m_B v_{B2x} = m_A (v_{A1x} - v_{A2x})$$
(8.22)

Now we divide Eq. (8.21) by Eq. (8.22) to obtain

$$v_{B2x} = v_{A1x} + v_{A2x} \tag{8.23}$$

8.21 Billiard balls deform very little when they collide, and they quickly spring back from any deformation they do undergo. Hence the force of interaction between the balls is almost perfectly conservative, and the collision is almost perfectly elastic.

Mastering **PHYSICS**

ActivPhysics 6.2: Collisions and Elasticity ActivPhysics 6.5: Car Collisions: Two Dimensions ActivPhysics 6.9: Pendulum Bashes Box **8.22** Collisions between (a) a moving Ping-Pong ball and an initially stationary bowling ball, and (b) a moving bowling ball and an initially stationary Ping-Pong ball.

(a) Ping-Pong ball strikes bowling ball.

BEFORE

R

A

When a moving object A has a 1-D elastic collision with an equal-mass, motionless object B ... v_{A1x}

We substitute this expression back into Eq. (8.22) to eliminate v_{B2x} and then solve for v_{A2x} :

$$n_B(v_{A1x} + v_{A2x}) = m_A(v_{A1x} - v_{A2x})$$
$$v_{A2x} = \frac{m_A - m_B}{m_A + m_B} v_{A1x}$$
(8.24)

Finally, we substitute this result back into Eq. (8.23) to obtain

ł

$$v_{B2x} = \frac{2m_A}{m_A + m_B} v_{A1x}$$
(8.25)

Now we can interpret the results. Suppose body *A* is a Ping-Pong ball and body *B* is a bowling ball. Then we expect *A* to bounce off after the collision with a velocity nearly equal to its original value but in the opposite direction (Fig. 8.22a), and we expect *B*'s velocity to be much less. That's just what the equations predict. When m_A is much smaller than m_B , the fraction in Eq. (8.24) is approximately equal to (-1), so v_{A2x} is approximately equal to $-v_{A1x}$. The fraction in Eq. (8.25) is much smaller than unity, so v_{B2x} is much less than v_{A1x} . Figure 8.22b shows the opposite case, in which *A* is the bowling ball and *B* the Ping-Pong ball and m_A is much larger than m_B . What do you expect to happen then? Check your predictions against Eqs. (8.24) and (8.25).

Another interesting case occurs when the masses are equal (Fig. 8.23). If $m_A = m_B$, then Eqs. (8.24) and (8.25) give $v_{A2x} = 0$ and $v_{B2x} = v_{A1x}$. That is, the body that was moving stops dead; it gives all its momentum and kinetic energy to the body that was at rest. This behavior is familiar to all pool players.

Elastic Collisions and Relative Velocity

Let's return to the more general case in which A and B have different masses. Equation (8.23) can be rewritten as

$$v_{A1x} = v_{B2x} - v_{A2x} \tag{8.26}$$

Here $v_{B2x} - v_{A2x}$ is the velocity of *B* relative to *A* after the collision; from Eq. (8.26), this equals v_{A1x} , which is the *negative* of the velocity of *B* relative to *A* before the collision. (We discussed relative velocity in Section 3.5.) The relative velocity has the same magnitude, but opposite sign, before and after the collision. The sign changes because *A* and *B* are approaching each other before the collision but moving apart after the collision. If we view this collision from a second coordinate system moving with constant velocity relative to the first, the velocities of the bodies are different but the *relative* velocities are the same. Hence our statement about relative velocities holds for *any* straight-line elastic collision, even when neither body is at rest initially. In a straight-line elastic collision of two bodies, the relative velocities before and after the collision have the same magnitude but opposite sign. This means that if *B* is moving before the collision, Eq. (8.26) becomes

$$v_{B2x} - v_{A2x} = -(v_{B1x} - v_{A1x}) \tag{8.27}$$

It turns out that a *vector* relationship similar to Eq. (8.27) is a general property of *all* elastic collisions, even when both bodies are moving initially and the velocities do not all lie along the same line. This result provides an alternative and equivalent definition of an elastic collision: *In an elastic collision, the relative velocity of the two bodies has the same magnitude before and after the collision.* Whenever this condition is satisfied, the total kinetic energy is also conserved.

When an elastic two-body collision isn't head-on, the velocities don't all lie along a single line. If they all lie in a plane, then each final velocity has two unknown components, and there are four unknowns in all. Conservation of energy and conservation of the x- and y-components of momentum give only three equations. To determine the final velocities uniquely, we need additional information, such as the direction or magnitude of one of the final velocities.

Example 8.10 An elastic straight-line collision

We repeat the air-track collision of Example 8.5 (Section 8.2), but now we add ideal spring bumpers to the gliders so that the collision is elastic. What are the final velocities of the gliders?

SOLUTION

IDENTIFY and SET UP: The net external force on the system is zero, so the momentum of the system is conserved. Figure 8.24 shows our sketch. We'll find our target variables, v_{A2x} and v_{B2x} , using Eq. (8.27), the relative-velocity relationship for an elastic collision, and the momentum-conservation equation.

EXECUTE: From Eq. (8.27),

$$v_{B2x} - v_{A2x} = -(v_{B1x} - v_{A1x})$$

= -(-2.0 m/s - 2.0 m/s) = 4.0 m/s

From conservation of momentum,

$$m_A v_{A1x} + m_B v_{B1x} = m_A v_{A2x} + m_B v_{B2x}$$

(0.50 kg)(2.0 m/s) + (0.30 kg)(-2.0 m/s)
= (0.50 kg) v_{A2x} + (0.30 kg) v_{B2x}
0.50 v_{A2x} + 0.30 v_{B2x} = 0.40 m/s

(To get the last equation we divided both sides of the equation just above it by the quantity 1 kg. This makes the units the same as in the first equation.) Solving these equations simultaneously, we find

$$v_{A2x} = -1.0 \text{ m/s}$$
 $v_{B2x} = 3.0 \text{ m/s}$

8.24 Our sketch for this problem.

$$\frac{Before}{M_{A1x} = 2.0 \text{ m/s}} \quad \frac{V_{B1x} = -2.0 \text{ m/s}}{W_{B1x} = -2.0 \text{ m/s}} \times \frac{W_{B1x}}{W_{B1x}} \times$$

EVALUATE: Both bodies reverse their directions of motion; A moves to the left at 1.0 m/s and B moves to the right at 3.0 m/s. This is unlike the result of Example 8.5 because that collision was *not* elastic. The more massive glider A slows down in the collision and so loses kinetic energy. The less massive glider B speeds up and gains kinetic energy. The total kinetic energy before the collision (which we calculated in Example 8.7) is 1.6 J. The total kinetic energy after the collision is

$$\frac{1}{2}(0.50 \text{ kg})(-1.0 \text{ m/s})^2 + \frac{1}{2}(0.30 \text{ kg})(3.0 \text{ m/s})^2 = 1.6 \text{ J}$$

As expected, the kinetic energies before and after this elastic collision are equal. Kinetic energy is transferred from A to B, but none of it is lost.

CAUTION Be careful with the elastic collision equations You could *not* have solved this problem using Eqs. (8.24) and (8.25), which apply only if body *B* is initially *at rest*. Always be sure that you solve the problem at hand using equations that are applicable!

Example 8.11 Moderating fission neutrons in a nuclear reactor

The fission of uranium nuclei in a nuclear reactor produces highspeed neutrons. Before such neutrons can efficiently cause additional fissions, they must be slowed down by collisions with nuclei in the *moderator* of the reactor. The first nuclear reactor (built in 1942 at the University of Chicago) used carbon (graphite) as the moderator. Suppose a neutron (mass 1.0 u) traveling at 2.6 × 10^7 m/s undergoes a head-on elastic collision with a carbon nucleus (mass 12 u) initially at rest. Neglecting external forces during the collision, find the velocities after the collision. (1 u is the *atomic mass unit*, equal to 1.66×10^{-27} kg.)

SOLUTION

IDENTIFY and SET UP: We neglect external forces, so momentum is conserved in the collision. The collision is elastic, so kinetic

energy is also conserved. Figure 8.25 shows our sketch. We take the *x*-axis to be in the direction in which the neutron is moving initially. The collision is head-on, so both particles move along this same axis after the collision. The carbon nucleus is initially at rest, so we can use Eqs. (8.24) and (8.25); we replace A by n (for the neutron) and B by C (for the carbon nucleus). We have $m_n = 1.0$ u, $m_C = 12$ u, and $v_{n1x} = 2.6 \times 10^7$ m/s. The target variables are the final velocities v_{n2x} and v_{C2x} .

EXECUTE: You can do the arithmetic. (*Hint:* There's no reason to convert atomic mass units to kilograms.) The results are

$$v_{n2x} = -2.2 \times 10^7 \text{ m/s}$$
 $v_{C2x} = 0.4 \times 10^7 \text{ m/s}$

EVALUATE: The neutron ends up with $|(m_n - m_C)/(m_n + m_C)| = \frac{11}{13}$ of its initial speed, and the speed of the recoiling carbon nucleus is $|2m_n/(m_n + m_C)| = \frac{2}{13}$ of the neutron's initial speed. Kinetic energy is proportional to speed squared, so the neutron's final kinetic energy is $(\frac{11}{13})^2 \approx 0.72$ of its original value. After a second head-on collision, its kinetic energy is $(0.72)^2$, or about half its original value, and so on. After a few dozen collisions (few of which are head-on), the neutron speed will be low enough that it can efficiently cause a fission reaction in a uranium nucleus.

Example 8.12 A two-dimensional elastic collision

Figure 8.26 shows an elastic collision of two pucks (masses $m_A = 0.500 \text{ kg}$ and $m_B = 0.300 \text{ kg}$) on a frictionless air-hockey table. Puck *A* has an initial velocity of 4.00 m/s in the positive *x*-direction and a final velocity of 2.00 m/s in an unknown direction α . Puck *B* is initially at rest. Find the final speed v_{B2} of puck *B* and the angles α and β .

SOLUTION

IDENTIFY and SET UP: We'll use the equations for conservation of energy and conservation of *x*- and *y*-momentum. These three equations should be enough to solve for the three target variables given in the problem statement.

EXECUTE: The collision is elastic, so the initial and final kinetic energies of the system are equal:

$$\frac{1}{2}m_A v_{A1}^2 = \frac{1}{2}m_A v_{A2}^2 + \frac{1}{2}m_B v_{B2}^2$$
$$v_{B2}^2 = \frac{m_A v_{A1}^2 - m_A v_{A2}^2}{m_B}$$
$$= \frac{(0.500 \text{ kg})(4.00 \text{ m/s})^2 - (0.500 \text{ kg})(2.00 \text{ m/s})^2}{0.300 \text{ kg}}$$

 $v_{B2} = 4.47 \text{ m/s}$

Conservation of the x- and y-components of total momentum gives

$$m_A v_{A1x} = m_A v_{A2x} + m_B v_{B2x}$$

(0.500 kg)(4.00 m/s) = (0.500 kg)(2.00 m/s)(cos α)
+ (0.300 kg)(4.47 m/s)(cos β)
0 = $m_A v_{A2y} + m_B v_{B2y}$
0 = (0.500 kg)(2.00 m/s)(sin α)
- (0.300 kg)(4.47 m/s)(sin β)

8.26 An elastic collision that isn't head-on.

These are two simultaneous equations for α and β . We'll leave it to you to supply the details of the solution. (*Hint:* Solve the first equation for $\cos \beta$ and the second for $\sin \beta$; square each equation and add. Since $\sin^2\beta + \cos^2\beta = 1$, this eliminates β and leaves an equation that you can solve for $\cos \alpha$ and hence for α . Substitute this value into either of the two equations and solve for β .) The results are

$$\alpha = 36.9^{\circ} \qquad \beta = 26.6$$

EVALUATE: To check the answers we confirm that the *y*-momentum, which was zero before the collision, is in fact zero after the collision. The *y*-momenta are

$$p_{A2y} = (0.500 \text{ kg})(2.00 \text{ m/s})(\sin 36.9^\circ) = +0.600 \text{ kg} \cdot \text{m/s}$$

 $p_{B2y} = -(0.300 \text{ kg})(4.47 \text{ m/s})(\sin 26.6^\circ) = -0.600 \text{ kg} \cdot \text{m/s}$
and their sum is indeed zero.

Test Your Understanding of Section 8.4 Most present-day nuclear reactors use water as a moderator (see Example 8.11). Are water molecules (mass $m_w = 18.0$ u) a better or worse moderator than carbon atoms? (One advantage of water is that it also acts as a coolant for the reactor's radioactive core.)

8.5 Center of Mass

We can restate the principle of conservation of momentum in a useful way by using the concept of **center of mass.** Suppose we have several particles with masses m_1, m_2 , and so on. Let the coordinates of m_1 be (x_1, y_1) , those of m_2 be (x_2, y_2) , and so on. We define the center of mass of the system as the point that has coordinates (x_{cm}, y_{cm}) given by

$$x_{\rm cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots} = \frac{\sum_i m_i x_i}{\sum_i m_i}$$

(center of mass) (8.28)

$$y_{\rm cm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \cdots}{m_1 + m_2 + m_3 + \cdots} = \frac{\sum_i m_i y_i}{\sum_i m_i}$$

The position vector \vec{r}_{cm} of the center of mass can be expressed in terms of the position vectors $\vec{r}_1, \vec{r}_2, \ldots$ of the particles as

$$\vec{r}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3 + \cdots}{m_1 + m_2 + m_3 + \cdots} = \frac{\sum_i m_i \vec{r}_i}{\sum_i m_i}$$
 (center of mass) (8.29)

In statistical language, the center of mass is a *mass-weighted average* position of the particles.

Example 8.13 Center of mass of a water molecule

Figure 8.27 shows a simple model of a water molecule. The oxygenhydrogen separation is $d = 9.57 \times 10^{-11}$ m. Each hydrogen atom has mass 1.0 u, and the oxygen atom has mass 16.0 u. Find the position of the center of mass.

SOLUTION

IDENTIFY and SET UP: Nearly all the mass of each atom is concentrated in its nucleus, whose radius is only about 10^{-5} times the overall radius of the atom. Hence we can safely represent each atom as a point particle. Figure 8.27 shows our coordinate system, with

8.27 Where is the center of mass of a water molecule?

the *x*-axis chosen to lie along the molecule's symmetry axis. We'll use Eqs. (8.28) to find x_{cm} and y_{cm} .

EXECUTE: The oxygen atom is at x = 0, y = 0. The x-coordinate of each hydrogen atom is $d\cos(105^{\circ}/2)$; the y-coordinates are $\pm d\sin(105^{\circ}/2)$. From Eqs. (8.28),

$$x_{\rm cm} = \frac{\left[(1.0 \text{ u})(d\cos 52.5^\circ) + (1.0 \text{ u}) \right] \times (d\cos 52.5^\circ) + (16.0 \text{ u})(0) \right]}{1.0 \text{ u} + 1.0 \text{ u} + 16.0 \text{ u}} = 0.068d$$
$$y_{\rm cm} = \frac{\left[(1.0 \text{ u})(d\sin 52.5^\circ) + (1.0 \text{ u}) \right] \times (-d\sin 52.5^\circ) + (16.0 \text{ u})(0) \right]}{1.0 \text{ u} + 1.0 \text{ u} + 16.0 \text{ u}} = 0$$

Substituting $d = 9.57 \times 10^{-11}$ m, we find

$$x_{\rm cm} = (0.068)(9.57 \times 10^{-11} \,{\rm m}) = 6.5 \times 10^{-12} \,{\rm m}$$

EVALUATE: The center of mass is much closer to the oxygen atom (located at the origin) than to either hydrogen atom because the oxygen atom is much more massive. The center of mass lies along the molecule's *axis of symmetry*. If the molecule is rotated 180° around this axis, it looks exactly the same as before. The position of the center of mass can't be affected by this rotation, so it *must* lie on the axis of symmetry.

For solid bodies, in which we have (at least on a macroscopic level) a continuous distribution of matter, the sums in Eqs. (8.28) have to be replaced by integrals. The calculations can get quite involved, but we can say three general things about such problems (Fig. 8.28). First, whenever a homogeneous body has a geometric center, such as a billiard ball, a sugar cube, or a can of frozen orange juice, the center of mass is at the geometric center. Second, whenever a body has an axis of symmetry, such as a wheel or a pulley, the center of mass always lies on that axis. Third, there is no law that says the center of mass has to be within the body. For example, the center of mass of a donut is right in the middle of the hole.

We'll talk a little more about locating the center of mass in Chapter 11 in connection with the related concept of *center of gravity*.

Motion of the Center of Mass

To see the significance of the center of mass of a collection of particles, we must ask what happens to the center of mass when the particles move. The *x*- and *y*-components of velocity of the center of mass, v_{cm-x} and v_{cm-y} , are the time derivatives of x_{cm} and y_{cm} . Also, dx_1/dt is the *x*-component of velocity of particle 1,

If a homogeneous object has a geometric center, that is where the center of mass is located.

If an object has an axis of symmetry, the center of mass lies along it. As in the case of the donut, the center of mass may not be within the object.

8.29 The center of mass of this wrench is marked with a white dot. The net external force acting on the wrench is almost zero. As the wrench spins on a smooth horizontal surface, the center of mass moves in a straight line with nearly constant velocity.

and so on, so $dx_1/dt = v_{1x}$, and so on. Taking time derivatives of Eqs. (8.28), we get

$$v_{\rm cm-x} = \frac{m_1 v_{1x} + m_2 v_{2x} + m_3 v_{3x} + \cdots}{m_1 + m_2 + m_3 + \cdots}$$

$$v_{\rm cm-y} = \frac{m_1 v_{1y} + m_2 v_{2y} + m_3 v_{3y} + \cdots}{m_1 + m_2 + m_3 + \cdots}$$
(8.30)

These equations are equivalent to the single vector equation obtained by taking the time derivative of Eq. (8.29):

$$\vec{v}_{\rm cm} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + \cdots}{m_1 + m_2 + m_3 + \cdots}$$
(8.31)

We denote the *total* mass $m_1 + m_2 + \cdots$ by M. We can then rewrite Eq. (8.31) as

$$M\vec{v}_{cm} = m_1\vec{v}_1 + m_2\vec{v}_2 + m_3\vec{v}_3 + \cdots = \vec{P}$$
 (8.32)

The right side is simply the total momentum \vec{P} of the system. Thus we have proved that the total momentum is equal to the total mass times the velocity of the center of mass. When you catch a baseball, you are really catching a collection of a very large number of molecules of masses m_1, m_2, m_3, \ldots . The impulse you feel is due to the total momentum of this entire collection. But this impulse is the same as if you were catching a single particle of mass $M = m_1 + m_2 + m_3 + \cdots$ moving with velocity \vec{v}_{cm} , the velocity of the collection's center of mass. So Eq. (8.32) helps to justify representing an extended body as a particle.

For a system of particles on which the net external force is zero, so that the total momentum \vec{P} is constant, the velocity of the center of mass $\vec{v}_{cm} = \vec{P}/M$ is also constant. Suppose we mark the center of mass of a wrench and then slide the wrench with a spinning motion across a smooth, horizontal tabletop (Fig. 8.29). The overall motion appears complicated, but the center of mass follows a straight line, as though all the mass were concentrated at that point.

Example 8.14 A tug-of-war on the ice

James (mass 90.0 kg) and Ramon (mass 60.0 kg) are 20.0 m apart on a frozen pond. Midway between them is a mug of their favorite beverage. They pull on the ends of a light rope stretched between them. When James has moved 6.0 m toward the mug, how far and in what direction has Ramon moved?

SOLUTION

IDENTIFY and SET UP: The surface is horizontal and (we assume) frictionless, so the net external force on the system of James, Ramon, and the rope is zero; their total momentum is conserved. Initially there is no motion, so the total momentum is zero. The velocity of the center of mass is therefore zero, and it remains at rest. Let's take the origin at the position of the mug and let the +x-axis extend from the mug toward Ramon. Figure 8.30 shows

8.30 Our sketch for this problem.

our sketch. We use Eq. (8.28) to calculate the position of the center of mass; we neglect the mass of the light rope.

EXECUTE: The initial x-coordinates of James and Ramon are -10.0 m and +10.0 m, respectively, so the x-coordinate of the center of mass is

$$x_{\rm cm} = \frac{(90.0 \,\rm kg)(-10.0 \,\rm m) + (60.0 \,\rm kg)(10.0 \,\rm m)}{90.0 \,\rm kg + 60.0 \,\rm kg} = -2.0 \,\rm m$$

When James moves 6.0 m toward the mug, his new *x*-coordinate is -4.0 m; we'll call Ramon's new *x*-coordinate x_2 . The center of mass doesn't move, so

$$x_{\rm cm} = \frac{(90.0 \text{ kg})(-4.0 \text{ m}) + (60.0 \text{ kg})x_2}{90.0 \text{ kg} + 60.0 \text{ kg}} = -2.0 \text{ m}$$
$$x_2 = 1.0 \text{ m}$$

James has moved 6.0 m and is still 4.0 m from the mug, but Ramon has moved 9.0 m and is only 1.0 m from it.

EVALUATE: The ratio of the distances moved, $(6.0 \text{ m})/(9.0 \text{ m}) = \frac{2}{3}$, is the *inverse* ratio of the masses. Can you see why? Because the surface is frictionless, the two men will keep moving and collide at the center of mass; Ramon will reach the mug first. This is independent of how hard either person pulls; pulling harder just makes them move faster.

External Forces and Center-of-Mass Motion

If the net external force on a system of particles is not zero, then total momentum is not conserved and the velocity of the center of mass changes. Let's look at the relationship between the motion of the center of mass and the forces acting on the system.

Equations (8.31) and (8.32) give the *velocity* of the center of mass in terms of the velocities of the individual particles. We take the time derivatives of these equations to show that the *accelerations* are related in the same way. Let $\vec{a}_{\rm cm} = d\vec{v}_{\rm cm}/dt$ be the acceleration of the center of mass; then we find

$$M\vec{a}_{\rm cm} = m_1\vec{a}_1 + m_2\vec{a}_2 + m_3\vec{a}_3 + \cdots$$
 (8.33)

Now $m_1 \vec{a}_1$ is equal to the vector sum of forces on the first particle, and so on, so the right side of Eq. (8.33) is equal to the vector sum $\sum \vec{F}$ of *all* the forces on *all* the particles. Just as we did in Section 8.2, we can classify each force as *external* or *internal*. The sum of all forces on all the particles is then

$$\Sigma \vec{F} = \Sigma \vec{F}_{ext} + \Sigma \vec{F}_{int} = M \vec{a}_{cn}$$

Because of Newton's third law, the internal forces all cancel in pairs, and $\sum \vec{F}_{int} = 0$. What survives on the left side is the sum of only the *external* forces:

$$\Sigma \vec{F}_{\text{ext}} = M \vec{a}_{\text{cm}}$$
 (body or collection of particles) (8.34)

When a body or a collection of particles is acted on by external forces, the center of mass moves just as though all the mass were concentrated at that point and it were acted on by a net force equal to the sum of the external forces on the system.

This result may not sound very impressive, but in fact it is central to the whole subject of mechanics. In fact, we've been using this result all along; without it, we would not be able to represent an extended body as a point particle when we apply Newton's laws. It explains why only *external* forces can affect the motion of an extended body. If you pull upward on your belt, your belt exerts an equal downward force on your hands; these are *internal* forces that cancel and have no effect on the overall motion of your body.

Suppose a cannon shell traveling in a parabolic trajectory (neglecting air resistance) explodes in flight, splitting into two fragments with equal mass (Fig. 8.31a). The fragments follow new parabolic paths, but the center of mass continues on the original parabolic trajectory, just as though all the mass were still concentrated at that point. A skyrocket exploding in air (Fig. 8.31b) is a spectacular example of this effect.

8.31 (a) A shell explodes into two fragments in flight. If air resistance is ignored, the center of mass continues on the same trajectory as the shell's path before exploding. (b) The same effect occurs with exploding fireworks.

(b)

This property of the center of mass is important when we analyze the motion of rigid bodies. We describe the motion of an extended body as a combination of translational motion of the center of mass and rotational motion about an axis through the center of mass. We will return to this topic in Chapter 10. This property also plays an important role in the motion of astronomical objects. It's not correct to say that the moon orbits the earth; rather, the earth and moon both move in orbits around their center of mass.

There's one more useful way to describe the motion of a system of particles. Using $\vec{a}_{\rm cm} = d\vec{v}_{\rm cm}/dt$, we can rewrite Eq. (8.33) as

$$M\vec{a}_{\rm cm} = M \frac{d\vec{v}_{\rm cm}}{dt} = \frac{d(M\vec{v}_{\rm cm})}{dt} = \frac{d\vec{P}}{dt}$$
(8.35)

The total system mass M is constant, so we're allowed to move it inside the derivative. Substituting Eq. (8.35) into Eq. (8.34), we find

$$\Sigma \vec{F}_{ext} = \frac{d\vec{P}}{dt}$$
 (extended body or system of particles) (8.36)

This equation looks like Eq. (8.4). The difference is that Eq. (8.36) describes a *system* of particles, such as an extended body, while Eq. (8.4) describes a single particle. The interactions between the particles that make up the system can change the individual momenta of the particles, but the *total* momentum \vec{P} of the system can be changed only by external forces acting from outside the system.

Finally, we note that if the net external force is zero, Eq. (8.34) shows that the acceleration \vec{a}_{cm} of the center of mass is zero. So the center-of-mass velocity \vec{v}_{cm} is constant, as for the wrench in Fig. 8.29. From Eq. (8.36) the total momentum \vec{P} is also constant. This reaffirms our statement in Section 8.3 of the principle of conservation of momentum.

Test Your Understanding of Section 8.5 Will the center of mass in Fig. 8.31a continue on the same parabolic trajectory even after one of the fragments hits the ground? Why or why not?

8.6 Rocket Propulsion

Momentum considerations are particularly useful for analyzing a system in which the masses of parts of the system change with time. In such cases we can't use Newton's second law $\sum \vec{F} = m\vec{a}$ directly because *m* changes. Rocket propulsion offers a typical and interesting example of this kind of analysis. A rocket is propelled forward by rearward ejection of burned fuel that initially was in the rocket (which is why rocket fuel is also called *propellant*). The forward force on the rocket is the reaction to the backward force on the ejected material. The total mass of the system is constant, but the mass of the rocket itself decreases as material is ejected.

As a simple example, consider a rocket fired in outer space, where there is no gravitational force and no air resistance. Let *m* denote the mass of the rocket, which will change as it expends fuel. We choose our *x*-axis to be along the rocket's direction of motion. Figure 8.32a shows the rocket at a time *t*, when its mass is *m* and its *x*-velocity relative to our coordinate system is *v*. (For simplicity, we will drop the subscript *x* in this discussion.) The *x*-component of total momentum at this instant is $P_1 = mv$. In a short time interval *dt*, the mass of the rocket's mass *m* decreases with time. During *dt*, a positive mass -dm of burned fuel is ejected from the rocket. Let v_{ex} be the exhaust speed of this material relative to the rocket; the burned fuel is ejected opposite the direction of motion,

Application Jet Propulsion in Squids

Both a jet engine and a squid use variations in their mass to provide propulsion: They increase their mass by taking in fluid at low speed (air for a jet engine, water for a squid), then decrease their mass by ejecting that fluid at high speed. The net result is a propulsive force.

so its x-component of velocity relative to the rocket is $-v_{ex}$. The x-velocity v_{fuel} of the burned fuel relative to our coordinate system is then

$$v_{\text{fuel}} = v + (-v_{\text{ex}}) = v - v_{\text{ex}}$$

and the x-component of momentum of the ejected mass (-dm) is

$$(-dm)v_{\rm fuel} = (-dm)(v - v_{\rm ex})$$

Figure 8.32b shows that at the end of the time interval dt, the x-velocity of the rocket and unburned fuel has increased to v + dv, and its mass has decreased to m + dm (remember that dm is negative). The rocket's momentum at this time is

$$(m + dm)(v + dv)$$

Thus the *total x*-component of momentum P_2 of the rocket plus ejected fuel at time t + dt is

$$P_2 = (m + dm)(v + dv) + (-dm)(v - v_{ex})$$

According to our initial assumption, the rocket and fuel are an isolated system. Thus momentum is conserved, and the total x-component of momentum of the system must be the same at time t and at time t + dt: $P_1 = P_2$. Hence

$$mv = (m + dm)(v + dv) + (-dm)(v - v_{ex})$$

This can be simplified to

$$m dv = -dm v_{ex} - dm dv$$

We can neglect the term (-dm dv) because it is a product of two small quantities and thus is much smaller than the other terms. Dropping this term, dividing by dt, and rearranging, we find

$$m\frac{dv}{dt} = -v_{\rm ex}\frac{dm}{dt}$$
(8.37)

Now dv/dt is the acceleration of the rocket, so the left side of this equation (mass times acceleration) equals the net force F, or thrust, on the rocket:

$$F = -v_{\rm ex} \frac{dm}{dt} \tag{8.38}$$

The thrust is proportional both to the relative speed v_{ex} of the ejected fuel and to the mass of fuel ejected per unit time, -dm/dt. (Remember that dm/dt is negative because it is the rate of change of the rocket's mass, so F is positive.)

The x-component of acceleration of the rocket is

$$a = \frac{dv}{dt} = -\frac{v_{\rm ex}}{m}\frac{dm}{dt}$$
(8.39)

8.32 A rocket moving in gravity-free outer space at (a) time t and (b) time t + dt. (b)

At time t, the rocket has mass m and x-component of velocity v.

(a)

At time t + dt, the rocket has mass m + dm (where dm is inherently negative) and x-component of velocity v + dv. The burned fuel has x-component of velocity $v_{\text{fuel}} = v - v_{\text{ex}}$ and mass -dm. (The minus sign is needed to make -dm positive because dm is negative.)

8.33 To provide enough thrust to lift its payload into space, this Atlas V launch vehicle ejects more than 1000 kg of burned fuel per second at speeds of nearly 4000 m/s.

This is positive because v_{ex} is positive (remember, it's the exhaust *speed*) and dm/dt is negative. The rocket's mass *m* decreases continuously while the fuel is being consumed. If v_{ex} and dm/dt are constant, the acceleration increases until all the fuel is gone.

Equation (8.38) tells us that an effective rocket burns fuel at a rapid rate (large -dm/dt) and ejects the burned fuel at a high relative speed (large v_{ex}), as in Fig. 8.33. In the early days of rocket propulsion, people who didn't understand conservation of momentum thought that a rocket couldn't function in outer space because "it doesn't have anything to push against." On the contrary, rockets work *best* in outer space, where there is no air resistance! The launch vehicle in Fig. 8.33 is *not* "pushing against the ground" to get into the air.

If the exhaust speed v_{ex} is constant, we can integrate Eq. (8.39) to find a relationship between the velocity v at any time and the remaining mass m. At time t = 0, let the mass be m_0 and the velocity v_0 . Then we rewrite Eq. (8.39) as

$$dv = -v_{\rm ex} \frac{dm}{m}$$

We change the integration variables to v' and m', so we can use v and m as the upper limits (the final speed and mass). Then we integrate both sides, using limits v_0 to v and m_0 to m, and take the constant v_{ex} outside the integral:

$$\int_{v_0}^{v} dv' = -\int_{m_0}^{m} v_{\text{ex}} \frac{dm'}{m'} = -v_{\text{ex}} \int_{m_0}^{m} \frac{dm'}{m'}$$
$$v - v_0 = -v_{\text{ex}} \ln \frac{m}{m_0} = v_{\text{ex}} \ln \frac{m_0}{m}$$
(8.40)

The ratio m_0/m is the original mass divided by the mass after the fuel has been exhausted. In practical spacecraft this ratio is made as large as possible to maximize the speed gain, which means that the initial mass of the rocket is almost all fuel. The final velocity of the rocket will be greater in magnitude (and is often *much* greater) than the relative speed v_{ex} if $\ln(m_0/m) > 1$ —that is, if $m_0/m > e = 2.71828...$

We've assumed throughout this analysis that the rocket is in gravity-free outer space. However, gravity must be taken into account when a rocket is launched from the surface of a planet, as in Fig. 8.33 (see Problem 8.112).

Example 8.15 Acceleration of a rocket

The engine of a rocket in outer space, far from any planet, is turned on. The rocket ejects burned fuel at a constant rate; in the first second of firing, it ejects $\frac{1}{120}$ of its initial mass m_0 at a relative speed of 2400 m/s. What is the rocket's initial acceleration?

SOLUTION

IDENTIFY and SET UP: We are given the rocket's exhaust speed v_{ex} and the fraction of the initial mass lost during the first second of firing, from which we can find dm/dt. We'll use Eq. (8.39) to find the acceleration of the rocket.

EXECUTE: The initial rate of change of mass is

$$\frac{dm}{dt} = -\frac{m_0/120}{1 \text{ s}} = -\frac{m_0}{120 \text{ s}}$$

From Eq. (8.39),

$$a = -\frac{v_{\text{ex}}}{m_0} \frac{dm}{dt} = -\frac{2400 \text{ m/s}}{m_0} \left(-\frac{m_0}{120 \text{ s}}\right) = 20 \text{ m/s}^2$$

EVALUATE: The answer doesn't depend on m_0 . If v_{ex} is the same, the initial acceleration is the same for a 120,000-kg spacecraft that ejects 1000 kg/s as for a 60-kg astronaut equipped with a small rocket that ejects 0.5 kg/s.

Example 8.16 Speed of a rocket

Suppose that $\frac{3}{4}$ of the initial mass of the rocket in Example 8.15 is fuel, so that the fuel is completely consumed at a constant rate in 90 s. The final mass of the rocket is $m = m_0/4$. If the rocket starts from rest in our coordinate system, find its speed at the end of this time.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We are given the initial velocity $v_0 = 0$, the exhaust speed $v_{ex} = 2400$ m/s, and the final mass *m* as a fraction of the initial mass m_0 . We'll use Eq. (8.40) to find the final speed *v*:

 $v = v_0 + v_{\text{ex}} \ln \frac{m_0}{m} = 0 + (2400 \text{ m/s})(\ln 4) = 3327 \text{ m/s}$

Test Your Understanding of Section 8.6 (a) If a rocket in gravity-free outer space has the same thrust at all times, is its acceleration constant, increasing, or decreasing? (b) If the rocket has the same acceleration at all times, is the thrust constant, increasing, or decreasing?

EVALUATE: Let's examine what happens as the rocket gains speed. (To illustrate our point, we use more figures than are significant.) At the start of the flight, when the velocity of the rocket is zero, the ejected fuel is moving backward at 2400 m/s relative to our frame of reference. As the rocket moves forward and speeds up, the fuel's speed relative to our system decreases; when the rocket speed reaches 2400 m/s, this relative speed is *zero*. [Knowing the rate of fuel consumption, you can solve Eq. (8.40) to show that this occurs at about t = 75.6 s.] After this time the ejected burned fuel moves *forward*, not backward, in our system. Relative to our frame of reference, the last bit of ejected fuel has a forward velocity of 3327 m/s - 2400 m/s = 927 m/s.

MP

1

SUMMARY CHAPTER

Momentum of a particle: The momentum \vec{p} of a particle is a vector quantity equal to the product of the particle's mass *m* and velocity \vec{v} . Newton's second law says that the net force on a particle is equal to the rate of change of the particle's momentum.

Impulse and momentum: If a constant net force $\sum \vec{F}$ acts on a particle for a time interval Δt from t_1 to t_2 , the impulse \vec{J} of the net force is the product of the net force and the time interval. If $\sum \vec{F}$ varies with time, \vec{J} is the integral of the net force over the time interval. In any case, the change in a particle's momentum during a time interval equals the impulse of the net force that acted on the particle during that interval. The momentum of a particle equals the impulse that accelerated it from rest to its present speed. (See Examples 8.1-8.3.)

Conservation of momentum: An internal force is a force exerted by one part of a system on another. An external force is a force exerted on any part of a system by something outside the system. If the net external force on a system is zero, the total momentum of the system \vec{P} (the vector sum of the momenta of the individual particles that make up the system) is constant, or conserved. Each component of total momentum is separately conserved. (See Examples 8.4-8.6.)

 $\vec{p} = m\vec{v}$ dr

$$\sum \vec{F} = \frac{dF}{dt}$$

0 $\vec{J} = \sum \vec{F}(t_2 - t_1) = \sum \vec{F} \Delta t$ (8.5)

(8.7)

(8.6)

(8.2)

(8.4)

 p_x

 $= m\vec{v}$

 $\vec{P} = \vec{p}_A + \vec{p}_B + \cdots$ $= m_A \vec{v}_A + m_B \vec{v}_B + \cdots$ (8.14)

If
$$\sum \vec{F} = 0$$
, then $\vec{P} = \text{constant}$.

Collisions: In collisions of all kinds, the initial and final total momenta are equal. In an elastic collision between two bodies, the initial and final total kinetic energies are also equal, and the initial and final relative velocities have the same magnitude. In an inelastic two-body collision, the total kinetic energy is less after the collision than before. If the two bodies have the same final velocity, the collision is completely inelastic. (See Examples 8.7–8.12.)

Center of mass: The position vector of the center of mass of a system of particles, \vec{r}_{cm} , is a weighted average of the positions $\vec{r}_1, \vec{r}_2, \ldots$ of the individual particles. The total momentum \vec{P} of a system equals its total mass M multiplied by the velocity of its center of mass, $\vec{v}_{\rm cm}$. The center of mass moves as though all the mass M were concentrated at that point. If the net external force on the system is zero, the center-of-mass velocity $\vec{v}_{\rm cm}$ is constant. If the net external force is not zero, the center of mass accelerates as though it were a particle of mass M being acted on by the same net external force. (See Examples 8.13 and 8.14.)

$$\vec{r}_{\rm cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3 + \cdots}{m_1 + m_2 + m_3 + \cdots}$$
$$= \frac{\sum_i m_i \vec{r}_i}{\sum_i m_i}$$
(8.29)
$$\vec{P} = m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + \cdots$$

$$= M\vec{v}_{\rm cm}$$

$$= M\vec{v}_{\rm cm}$$
(8.32)
$$\vec{F}_{\rm ext} = M\vec{a}_{\rm cm}$$
(8.34)

Rocket propulsion: In rocket propulsion, the mass of a rocket changes as the fuel is used up and ejected from the rocket. Analysis of the motion of the rocket must include the momentum carried away by the spent fuel as well as the momentum of the rocket itself. (See Examples 8.15 and 8.16.)

BRIDGING PROBLEM One Collision After Another

Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. Sphere *B*, of mass 1.80 kg, is initially to the right of sphere A and moving to the right at 2.00 m/s. After the two spheres collide, sphere B is moving at 3.00 m/s in the same direction as before. (a) What is the velocity (magnitude and direction) of sphere A after this collision? (b) Is this collision elastic or inelastic? (c) Sphere B then has an off-center collision with sphere C, which has mass 1.20 kg and is initially at rest. After this collision, sphere B is moving at 19.0° to its initial direction at 2.00 m/s. What is the velocity (magnitude and direction) of sphere C after this collision? (d) What is the impulse (magnitude and direction) imparted to sphere B by sphere C when they collide? (e) Is this second collision elastic or inelastic? (f) What is the velocity (magnitude and direction) of the center of mass of the system of three spheres (A, B, and C) after the second collision? No external forces act on any of the spheres in this problem.

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution. (MP

IDENTIFY AND SET UP

- 1. Momentum is conserved in these collisions. Can you explain why?
- 2. Choose the *x* and *y*-axes, and assign subscripts to values before the first collision, after the first collision but before the second collision, and after the second collision.
- 3. Make a list of the target variables, and choose the equations that you'll use to solve for these.

EXECUTE

- 4. Solve for the velocity of sphere *A* after the first collision. Does *A* slow down or speed up in the collision? Does this make sense?
- 5. Now that you know the velocities of both *A* and *B* after the first collision, decide whether or not this collision is elastic. (How will you do this?)
- 6. The second collision is two-dimensional, so you'll have to demand that *both* components of momentum are conserved. Use this to find the speed and direction of sphere *C* after the second collision. (*Hint:* After the first collision, sphere *B* maintains the same velocity until it hits sphere *C*.)
- 7. Use the definition of impulse to find the impulse imparted to sphere *B* by sphere *C*. Remember that impulse is a vector.
- 8. Use the same technique that you employed in step 5 to decide whether or not the second collision is elastic.
- 9. Find the velocity of the center of mass after the second collision.

EVALUATE

- 10. Compare the directions of the vectors you found in steps 6 and 7. Is this a coincidence? Why or why not?
- 11. Find the velocity of the center of mass before and after the first collision. Compare to your result from step 9. Again, is this a coincidence? Why or why not?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus, **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q8.1 In splitting logs with a hammer and wedge, is a heavy hammer more effective than a lighter hammer? Why?

Q8.2 Suppose you catch a baseball and then someone invites you to catch a bowling ball with either the same momentum or the same kinetic energy as the baseball. Which would you choose? Explain.

Q8.3 When rain falls from the sky, what happens to its momentum as it hits the ground? Is your answer also valid for Newton's famous apple?

Q8.4 A car has the same kinetic energy when it is traveling south at 30 m/s as when it is traveling northwest at 30 m/s. Is the momentum of the car the same in both cases? Explain.

Q8.5 A truck is accelerating as it speeds down the highway. One inertial frame of reference is attached to the ground with its origin at a fence post. A second frame of reference is attached to a police car that is traveling down the highway at constant velocity. Is the momentum of the truck the same in these two reference frames? Explain. Is the rate of change of the truck's momentum the same in these two frames? Explain.

Q8.6 (a) When a large car collides with a small car, which one undergoes the greater change in momentum: the large one or the small one? Or is it the same for both? (b) In light of your answer to part (a), why are the occupants of the small car more likely to be hurt than those of the large car, assuming that both cars are equally sturdy?

Q8.7 A woman holding a large rock stands on a frictionless, horizontal sheet of ice. She throws the rock with speed v_0 at an angle α above the horizontal. Consider the system consisting of the woman plus the rock. Is the momentum of the system conserved? Why or why not? Is any component of the momentum of the system conserved? Again, why or why not?

Q8.8 In Example 8.7 (Section 8.3), where the two gliders in Fig. 8.15 stick together after the collision, the collision is inelastic because $K_2 < K_1$. In Example 8.5 (Section 8.2), is the collision inelastic? Explain.

Q8.9 In a completely inelastic collision between two objects, where the objects stick together after the collision, is it possible for the final kinetic energy of the system to be zero? If so, give an example in which this would occur. If the final kinetic energy is zero, what must the initial momentum of the system be? Is the initial kinetic energy of the system zero? Explain.

Q8.10 Since for a particle the kinetic energy is given by $K = \frac{1}{2}mv^2$ and the momentum by $\vec{p} = m\vec{v}$, it is easy to show that $K = p^2/2m$. How, then, is it possible to have an event during which the total momentum of the system is constant but the total kinetic energy changes?

Q8.11 In each of Examples 8.10, 8.11, and 8.12 (Section 8.4), verify that the relative velocity vector of the two bodies has the same magnitude before and after the collision. In each case what happens to the *direction* of the relative velocity vector?

Q8.12 A glass dropped on the floor is more likely to break if the floor is concrete than if it is wood. Why? (Refer to Fig. 8.3b.)

Q8.13 In Fig. 8.22b, the kinetic energy of the Ping-Pong ball is larger after its interaction with the bowling ball than before. From where does the extra energy come? Describe the event in terms of conservation of energy.

Q8.14 A machine gun is fired at a steel plate. Is the average force on the plate from the bullet impact greater if the bullets bounce off or if they are squashed and stick to the plate? Explain.

Q8.15 A net force of 4 N acts on an object initially at rest for 0.25 s and gives it a final speed of 5 m/s. How could a net force of 2 N produce the same final speed?

Q8.16 A net force with *x*-component $\sum F_x$ acts on an object from time t_1 to time t_2 . The *x*-component of the momentum of the object is the same at t_1 as it is at t_2 , but $\sum F_x$ is not zero at all times between t_1 and t_2 . What can you say about the graph of $\sum F_x$ versus t?

Q8.17 A tennis player hits a tennis ball with a racket. Consider the system made up of the ball and the racket. Is the total momentum of the system the same just before and just after the hit? Is the total momentum just after the hit the same as 2 s later, when the ball is in midair at the high point of its trajectory? Explain any differences between the two cases.

Q8.18 In Example 8.4 (Section 8.2), consider the system consisting of the rifle plus the bullet. What is the speed of the system's center of mass after the rifle is fired? Explain.

Q8.19 An egg is released from rest from the roof of a building and falls to the ground. As the egg falls, what happens to the momentum of the system of the egg plus the earth?

Q8.20 A woman stands in the middle of a perfectly smooth, frictionless, frozen lake. She can set herself in motion by throwing things, but suppose she has nothing to throw. Can she propel herself to shore *without* throwing anything?

Q8.21 In a zero-gravity environment, can a rocket-propelled spaceship ever attain a speed greater than the relative speed with which the burnt fuel is exhausted?

Q8.22 When an object breaks into two pieces (explosion, radioactive decay, recoil, etc.), the lighter fragment gets more kinetic energy than the heavier one. This is a consequence of momentum conservation, but can you also explain it using Newton's laws of motion?

Q8.23 An apple falls from a tree and feels no air resistance. As it is falling, which of these statements about it are true? (a) Only its momentum is conserved; (b) only its mechanical energy is conserved, (c) both its momentum and its mechanical energy are conserved, (d) its kinetic energy is conserved.

Q8.24 Two pieces of clay collide and stick together. During the collision, which of these statements are true? (a) Only the momentum of the clay is conserved, (b) only the mechanical energy of the clay is conserved, (c) both the momentum and the mechanical energy of the clay are conserved, (d) the kinetic energy of the clay is conserved.

Q8.25 Two marbles are pressed together with a light ideal spring between them, but they are not attached to the spring in any way.

They are then released on a frictionless horizontal table and soon move free of the spring. As the marbles are moving away from each other, which of these statements about them are true? (a) Only the momentum of the marbles is conserved, (b) only the mechanical energy of the marbles is conserved, (c) both the momentum and the mechanical energy of the marbles are conserved, (d) the kinetic energy of the marbles is conserved.

Q8.26 A very heavy SUV collides head-on with a very light compact car. Which of these statements about the collision are correct? (a) The amount of kinetic energy lost by the SUV is equal to the amount of kinetic energy gained by the compact, (b) the amount of momentum lost by the SUV is equal to the amount of momentum gained by the compact, (c) the compact feels a considerably greater force during the collision than the SUV does, (d) both cars lose the same amount of kinetic energy.

EXERCISES

Section 8.1 Momentum and Impulse

8.1 • (a) What is the magnitude of the momentum of a 10,000-kg truck whose speed is 12.0 m/s? (b) What speed would a 2000-kg SUV have to attain in order to have (i) the same momentum? (ii) the same kinetic energy?

8.2 • In a certain men's track and field event, the shotput has a mass of 7.30 kg and is released with a speed of 15.0 m/s at 40.0° above the horizontal over a man's straight left leg. What are the initial horizontal and vertical components of the momentum of this shotput?

8.3 •• (a) Show that the kinetic energy *K* and the momentum magnitude *p* of a particle with mass *m* are related by $K = p^2/2m$. (b) A 0.040-kg cardinal (*Richmondena cardinalis*) and a 0.145-kg baseball have the same kinetic energy. Which has the greater magnitude of momentum? What is the ratio of the cardinal's magnitude of momentum to the baseball's? (c) A 700-N man and a 450-N woman have the same momentum. Who has the greater kinetic energy? What is the ratio of the man's kinetic energy to that of the woman?

8.4 • Two vehicles are approaching an intersection. One is a 2500-kg pickup traveling at 14.0 m/s from east to west (the -x-direction), and the other is a 1500-kg sedan going from south to north (the +y-direction) at 23.0 m/s. (a) Find the *x*- and *y*-components of the net momentum of this system. (b) What are the magnitude and direction of the net momentum?

8.5 • One 110-kg football lineman is running to the right at 2.75 m/s while another 125-kg lineman is running directly toward him at 2.60 m/s. What are (a) the magnitude and direction of the net momentum of these two athletes, and (b) their total kinetic energy?

8.6 •• BIO Biomechanics. The mass of a regulation tennis ball is 57 g (although it can vary slightly), and tests have shown that the ball is in contact with the tennis racket for 30 ms. (This number can also vary, depending on the racket and swing.) We shall assume a 30.0-ms contact time for this exercise. The fastest-known served tennis ball was served by "Big Bill" Tilden in 1931, and its speed was measured to be 73.14 m/s. (a) What impulse and what force did Big Bill exert on the tennis ball in his record serve? (b) If Big Bill's opponent returned his serve with a speed of 55 m/s, what force and what impulse did he exert on the ball, assuming only horizontal motion?

8.7 • Force of a Golf Swing. A 0.0450-kg golf ball initially at rest is given a speed of 25.0 m/s when a club strikes. If the club and ball are in contact for 2.00 ms, what average force acts on the

ball? Is the effect of the ball's weight during the time of contact significant? Why or why not?

8.8 • Force of a Baseball Swing. A baseball has mass 0.145 kg. (a) If the velocity of a pitched ball has a magnitude of 45.0 m/s and the batted ball's velocity is 55.0 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat. (b) If the ball remains in contact with the bat for 2.00 ms, find the magnitude of the average force applied by the bat.

8.9 • A 0.160-kg hockey puck is moving on an icy, frictionless, horizontal surface. At t = 0, the puck is moving to the right at 3.00 m/s. (a) Calculate the velocity of the puck (magnitude and direction) after a force of 25.0 N directed to the right has been applied for 0.050 s. (b) If, instead, a force of 12.0 N directed to the left is applied from t = 0 to t = 0.050 s, what is the final velocity of the puck?

8.10 • An engine of the orbital maneuvering system (OMS) on a space shuttle exerts a force of $(26,700 \text{ N})\hat{j}$ for 3.90 s, exhausting a negligible mass of fuel relative to the 95,000-kg mass of the shuttle. (a) What is the impulse of the force for this 3.90 s? (b) What is the shuttle's change in momentum from this impulse? (c) What is the shuttle's change in velocity from this impulse? (d) Why can't we find the resulting change in the kinetic energy of the shuttle?

8.11 • **CALC** At time t = 0, a 2150-kg rocket in outer space fires an engine that exerts an increasing force on it in the +x-direction. This force obeys the equation $F_x = At^2$, where t is time, and has a magnitude of 781.25 N when t = 1.25 s. (a) Find the SI value of the constant A, including its units. (b) What impulse does the engine exert on the rocket during the 1.50-s interval starting 2.00 s after the engine is fired? (c) By how much does the rocket's velocity change during this interval?

8.12 •• A bat strikes a 0.145-kg baseball. Just before impact, the ball is traveling horizontally to the right at 50.0 m/s, and it leaves the bat traveling to the left at an angle of 30° above horizontal with a speed of 65.0 m/s. If the ball and bat are in contact for 1.75 ms, find the horizontal and vertical components of the average force on the ball.

8.13 • A 2.00-kg stone is sliding to the right on a frictionless horizontal surface at 5.00 m/s when it is suddenly struck by an object that exerts a large horizontal force on it for a short period of time. The graph in Fig. E8.13 shows the magnitude of this force as a function of time. (a) What impulse does this force exert on

Figure **E8.13**

the stone? (b) Just after the force stops acting, find the magnitude and direction of the stone's velocity if the force acts (i) to the right or (ii) to the left.

8.14 •• **BIO Bone Fracture.** Experimental tests have shown that bone will rupture if it is subjected to a force density of $1.03 \times 10^8 \text{ N/m}^2$. Suppose a 70.0-kg person carelessly roller-skates into an overhead metal beam that hits his forehead and completely stops his forward motion. If the area of contact with the person's forehead is 1.5 cm², what is the greatest speed with which he can hit the wall without breaking any bone if his head is in contact with the beam for 10.0 ms?

8.15 •• To warm up for a match, a tennis player hits the 57.0-g ball vertically with her racket. If the ball is stationary just

before it is hit and goes 5.50 m high, what impulse did she impart to it?

8.16 •• CALC Starting at t = 0, a horizontal net force $\vec{F} = (0.280 \text{ N/s})t\hat{i} + (-0.450 \text{ N/s}^2)t^2\hat{j}$ is applied to a box that has an initial momentum $\vec{p} = (-3.00 \text{ kg} \cdot \text{m/s})\hat{i} + (4.00 \text{ kg} \cdot \text{m/s})\hat{j}$. What is the momentum of the box at t = 2.00 s?

Section 8.2 Conservation of Momentum

8.17 •• The expanding gases that leave the muzzle of a rifle also contribute to the recoil. A .30-caliber bullet has mass 0.00720 kg and a speed of 601 m/s relative to the muzzle when fired from a rifle that has mass 2.80 kg. The loosely held rifle recoils at a speed of 1.85 m/s relative to the earth. Find the momentum of the propellant gases in a coordinate system attached to the earth as they leave the muzzle of the rifle.

8.18 • A 68.5-kg astronaut is doing a repair in space on the orbiting space station. She throws a 2.25-kg tool away from her at 3.20 m/s relative to the space station. With what speed and in what direction will she begin to move?

8.19 • **BIO** Animal Propulsion. Squids and octopuses propel themselves by expelling water. They do this by keeping water in a cavity and then suddenly contracting the cavity to force out the water through an opening. A 6.50-kg squid (including the water in the cavity) at rest suddenly sees a dangerous predator. (a) If the squid has 1.75 kg of water in its cavity, at what speed must it expel this water to suddenly achieve a speed of 2.50 m/s to escape the predator? Neglect any drag effects of the surrounding water. (b) How much kinetic energy does the squid create by this maneuver?

8.20 •• You are standing on a sheet of ice that covers the football stadium parking lot in Buffalo; there is negligible friction between your feet and the ice. A friend throws you a 0.400-kg ball that is traveling horizontally at 10.0 m/s. Your mass is 70.0 kg. (a) If you catch the ball, with what speed do you and the ball move afterward? (b) If the ball hits you and bounces off your chest, so afterward it is moving horizontally at 8.0 m/s in the opposite direction, what is your speed after the collision?

8.21 •• On a frictionless, horizontal air table, puck *A* (with mass 0.250 kg) is moving toward puck *B* (with mass 0.350 kg), which is initially at rest. After the collision, puck *A* has a velocity of 0.120 m/s to the left, and puck *B* has a velocity of 0.650 m/s to the right. (a) What was the speed of puck *A* before the collision? (b) Calculate the change in the total kinetic energy of the system that occurs during the collision.

8.22 •• When cars are equipped with flexible bumpers, they will bounce off each other during low-speed collisions, thus causing less damage. In one such accident, a 1750-kg car traveling to the right at 1.50 m/s collides with a 1450-kg car going to the left at 1.10 m/s. Measurements show that the heavier car's speed just after the collision was 0.250 m/s in its original direction. You can ignore any road friction during the collision? (b) Calculate the change in the combined kinetic energy of the two-car system during this collision.

8.23 •• Two identical 1.50-kg masses are pressed against opposite ends of a light spring of force constant 1.75 N/cm, compressing the spring by 20.0 cm from its normal length. Find the speed of each mass when it has moved free of the spring on a frictionless horizontal table.

8.24 • Block *A* in Fig. E8.24 has mass 1.00 kg, and block *B* has mass 3.00 kg. The blocks are forced together, compressing a spring

S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. Block *B* acquires a speed of 1.20 m/s. (a) What is the final speed of block *A*? (b) How much potential energy was stored in the compressed spring?

Figure **E8.24**

8.25 •• A hunter on a frozen, essentially frictionless pond uses a rifle that shoots 4.20-g bullets at 965 m/s. The mass of the hunter (including his gun) is 72.5 kg, and the hunter holds tight to the gun after firing it. Find the recoil velocity of the hunter if he fires the rifle (a) horizontally and (b) at 56.0° above the horizontal.

8.26 • An atomic nucleus suddenly bursts apart (fissions) into two pieces. Piece *A*, of mass m_A , travels off to the left with speed v_A . Piece *B*, of mass m_B , travels off to the right with speed v_B . (a) Use conservation of momentum to solve for v_B in terms of m_A , m_B , and v_A . (b) Use the results of part (a) to show that $K_A/K_B = m_B/m_A$, where K_A and K_B are the kinetic energies of the two pieces.

8.27 •• Two ice skaters, Daniel (mass 65.0 kg) and Rebecca (mass 45.0 kg), are practicing. Daniel stops to tie his shoelace and, while at rest, is struck by Rebecca, who is moving at 13.0 m/s before she collides with him. After the collision, Rebecca has a velocity of magnitude 8.00 m/s at an angle of 53.1° from her initial direction. Both skaters move on the frictionless, horizontal surface of the rink. (a) What are the magnitude and direction of Daniel's velocity after the collision? (b) What is the change in total kinetic energy of the two skaters as a result of the collision?

8.28 •• You are standing on a large sheet of frictionless ice and holding a large rock. In order to get off the ice, you throw the rock so it has velocity 12.0 m/s relative to the earth at an angle of 35.0° above the horizontal. If your mass is 70.0 kg and the rock's mass is 15.0 kg, what is your speed after you throw the rock? (See Discussion Question Q8.7.)

8.29 • Changing Mass. An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and the rain is falling vertically downward. Originally, the car is empty and moving with a speed of 4.00 m/s. (a) What is the speed of the car after it has collected 3000 kg of rainwater? (b) Since the rain is falling downward, how is it able to affect the horizontal motion of the car?

8.30 • An astronaut in space cannot use a conventional means, such as a scale or balance, to determine the mass of an object. But she does have devices to measure distance and time accurately. She knows her own mass is 78.4 kg, but she is unsure of the mass of a large gas canister in the airless rocket. When this canister is approaching her at 3.50 m/s, she pushes against it, which slows it down to 1.20 m/s (but does not reverse it) and gives her a speed of 2.40 m/s. What is the mass of this canister?

8.31 •• Asteroid Collision. Two asteroids of equal mass in the asteroid belt between Mars and Jupiter collide with a glancing blow. Asteroid *A*, which was initially traveling at 40.0 m/s, is deflected 30.0° from its original direction, while asteroid *B*,

which was initially at rest, travels at 45.0° to the original direction of *A* (Fig. E8.31). (a) Find the speed of each asteroid after the collision. (b) What fraction of the original kinetic energy of asteroid *A* dissipates during this collision?

Section 8.3 Momentum Conservation and Collisions

8.32 • Two skaters collide and grab on to each other on frictionless ice. One of them, of mass 70.0 kg, is moving to the right at 2.00 m/s, while the other, of mass 65.0 kg, is moving to the left at 2.50 m/s. What are the magnitude and direction of the velocity of these skaters just after they collide?

8.33 •• A 15.0-kg fish swimming at 1.10 m/s suddenly gobbles up a 4.50-kg fish that is initially stationary. Neglect any drag effects of the water. (a) Find the speed of the large fish just after it eats the small one. (b) How much mechanical energy was dissipated during this meal?

8.34 • Two fun-loving otters are sliding toward each other on a muddy (and hence frictionless) horizontal surface. One of them, of mass 7.50 kg, is sliding to the left at 5.00 m/s, while the other, of mass 5.75 kg, is slipping to the right at 6.00 m/s. They hold fast to each other after they collide. (a) Find the magnitude and direction of the velocity of these free-spirited otters right after they collide. (b) How much mechanical energy dissipates during this play?

8.35 • Deep Impact Mission. In July 2005, NASA's "Deep Impact" mission crashed a 372-kg probe directly onto the surface of the comet Tempel 1, hitting the surface at 37,000 km/h. The original speed of the comet at that time was about 40,000 km/h, and its mass was estimated to be in the range $(0.10 - 2.5) \times 10^{14}$ kg. Use the smallest value of the estimated mass. (a) What change in the comet's velocity did this collision produce? Would this change be noticeable? (b) Suppose this comet were to hit the earth and fuse with it. By how much would it change our planet's velocity? Would this change be noticeable? (The mass of the earth is 5.97×10^{24} kg.)

8.36 • A 1050-kg sports car is moving westbound at 15.0 m/s on a level road when it collides with a 6320-kg truck driving east on the same road at 10.0 m/s. The two vehicles remain locked together after the collision. (a) What is the velocity (magnitude and direction) of the two vehicles just after the collision? (b) At what speed should the truck have been moving so that it and the car are both stopped in the collision? (c) Find the change in kinetic energy of the system of two vehicles for the situations of part (a) and part (b). For which situation is the change in kinetic energy greater in magnitude?

8.37 •• On a very muddy football field, a 110-kg linebacker tackles an 85-kg halfback. Immediately before the collision, the linebacker is slipping with a velocity of 8.8 m/s north and the halfback is sliding with a velocity of 7.2 m/s east. What is the velocity (magnitude and direction) at which the two players move together immediately after the collision?

8.38 •• Accident Analysis. Two cars collide at an intersection. Car *A*, with a mass of 2000 kg, is going from west to east, while car *B*, of mass 1500 kg, is going from north to south at 15 m/s. As a result of this collision, the two cars become enmeshed and move as one afterward. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of 65° south of east from the point of impact.

(a) How fast were the enmeshed cars moving just after the collision? (b) How fast was car *A* going just before the collision?

8.39 • Two cars, one a compact with mass 1200 kg and the other a large gas-guzzler with mass 3000 kg, collide head-on at typical freeway speeds. (a) Which car has a greater magnitude of momentum change? Which car has a greater velocity change? (b) If the larger car changes its velocity by Δv , calculate the change in the velocity of the small car in terms of Δv . (c) Which car's occupants would you expect to sustain greater injuries? Explain.

8.40 •• **BIO Bird Defense.** To protect their young in the nest, peregrine falcons will fly into birds of prey (such as ravens) at high speed. In one such episode, a 600-g falcon flying at 20.0 m/s hit a 1.50-kg raven flying at 9.0 m/s. The falcon hit the raven at right angles to its original path and bounced back at 5.0 m/s. (These figures were estimated by the author as he watched this attack occur in northern New Mexico.) (a) By what angle did the falcon change the raven's direction of motion? (b) What was the raven's speed right after the collision?

8.41 • At the intersection of Texas Avenue and University Drive, a yellow subcompact car with mass 950 kg traveling east on University collides with a red pickup truck with mass 1900 kg that is traveling north on Texas and has run a red light (Fig. E8.41). The two vehicles stick together as a result of the collision, and the wreckage slides at 16.0 m/s in the direction 24.0° east of north. Calculate the

speed of each vehicle before the collision. The collision occurs during a heavy rainstorm; you can ignore friction forces between the vehicles and the wet road.

8.42 •• A 5.00-g bullet is fired horizontally into a 1.20-kg wooden block resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.20. The bullet remains embedded in the block, which is observed to slide 0.230 m along the surface before stopping. What was the initial speed of the bullet?

8.43 •• A Ballistic Pendulum. A 12.0-g rifle bullet is fired with a speed of 380 m/s into a ballistic pendulum with mass 6.00 kg, suspended from a cord 70.0 cm long (see Example 8.8 in Section 8.3). Compute (a) the vertical height through which the pendulum rises, (b) the initial kinetic energy of the bullet, and (c) the kinetic energy of the bullet and pendulum immediately after the bullet becomes embedded in the pendulum.

8.44 •• Combining Conservation Laws. A 15.0-kg block is attached to a very light horizontal spring of force constant 500.0 N/m and is resting on a frictionless horizontal table. (Fig. E8.44). Suddenly it is struck by a 3.00-kg stone traveling horizontally at 8.00 m/s to the right, whereupon the stone rebounds at 2.00 m/s horizontally to the left. Find the maximum distance that the block will compress the spring after the collision.

Figure E8.44

8.45 •• **CP** A 5.00-kg ornament is hanging by a 1.50-m wire when it is suddenly hit by a 3.00-kg missile traveling horizontally at 12.0 m/s. The missile embeds itself in the ornament during the collision. What is the tension in the wire immediately after the collision?

Section 8.4 Elastic Collisions

8.46 •• A 0.150-kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.80 m/s. It has a head-on collision with a 0.300-kg glider that is moving to the left with a speed of 2.20 m/s. Find the final velocity (magnitude and direction) of each glider if the collision is elastic.

8.47 •• Blocks *A* (mass 2.00 kg) and *B* (mass 10.00 kg) move on a frictionless, horizontal surface. Initially, block *B* is at rest and block *A* is moving toward it at 2.00 m/s. The blocks are equipped with ideal spring bumpers, as in Example 8.10 (Section 8.4). The collision is head-on, so all motion before and after the collision is along a straight line. (a) Find the maximum energy stored in the spring bumpers and the velocity of each block at that time. (b) Find the velocity of each block after they have moved apart.

Figure **E8.48**

8.48 • A 10.0-g marble slides to the left with a velocity of magnitude 0.400 m/s on the frictionless, horizontal surface of an icy New York sidewalk and has a head-on, elastic collision with a larger 30.0-g marble sliding to the right with a velocity of mag-

nitude 0.200 m/s (Fig. E8.48). (a) Find the velocity of each marble (magnitude and direction) after the collision. (Since the collision is head-on, all the motion is along a line.) (b) Calculate the *change in momentum* (that is, the momentum after the collision minus the momentum before the collision) for each marble. Compare the values you get for each marble. (c) Calculate the *change in kinetic energy* (that is, the kinetic energy after the collision minus the kinetic energy before the collision) for each marble. Compare the values you get for each marble.

8.49 •• Moderators. Canadian nuclear reactors use *heavy water* moderators in which elastic collisions occur between the neutrons and deuterons of mass 2.0 u (see Example 8.11 in Section 8.4). (a) What is the speed of a neutron, expressed as a fraction of its original speed, after a head-on, elastic collision with a deuteron that is initially at rest? (b) What is its kinetic energy, expressed as a fraction of its original kinetic energy? (c) How many such successive collisions will reduce the speed of a neutron to 1/59,000 of its original value?

8.50 •• You are at the controls of a particle accelerator, sending a beam of 1.50×10^7 m/s protons (mass *m*) at a gas target of an unknown element. Your detector tells you that some protons bounce straight back after a collision with one of the nuclei of the unknown element. All such protons rebound with a speed of 1.20×10^7 m/s. Assume that the initial speed of the target nucleus is negligible and the collision is elastic. (a) Find the mass of one nucleus of the unknown element. Express your answer in terms of the proton mass *m*. (b) What is the speed of the unknown nucleus immediately after such a collision?

Section 8.5 Center of Mass

8.51 • Three odd-shaped blocks of chocolate have the following masses and center-of-mass coordinates: (1) 0.300 kg, (0.200 m,

0.300 m; (2) 0.400 kg, (0.100 m, -0.400 m); (3) 0.200 kg, (-0.300 m, 0.600 m). Find the coordinates of the center of mass of the system of three chocolate blocks.

8.52 • Find the position of the center of mass of the system of the sun and Jupiter. (Since Jupiter is more massive than the rest of the planets combined, this is essentially the position of the center of mass of the solar system.) Does the center of mass lie inside or outside the sun? Use the data in Appendix F.

8.53 •• Pluto and Charon. Pluto's diameter is approximately 2370 km, and the diameter of its satellite Charon is 1250 km. Although the distance varies, they are often about 19,700 km apart, center to center. Assuming that both Pluto and Charon have the same composition and hence the same average density, find the location of the center of mass of this system relative to the center of Pluto.

8.54 • A 1200-kg station wagon is moving along a straight highway at 12.0 m/s. Another car, with mass 1800 kg and speed 20.0 m/s, has its center of mass 40.0 m ahead of the center of mass of the station wagon (Fig. E8.54). (a) Find the position of the center of mass of the system consisting of the two automobiles. (b) Find the magnitude of the total momentum of the system from the given data. (c) Find the speed of the center of mass of the system, using the speed of the center of mass. Compare your result with that of part (b).

Figure **E8.55**

8.55 • A machine part consists of a thin, uniform 4.00-kg bar that is 1.50 m long, hinged perpendicular to a similar vertical bar of mass 3.00 kg and length 1.80 m. The longer bar has a small but dense 2.00-kg ball at one end (Fig. E8.55). By what distance will the center of mass of this part move horizontally and vertically if the vertical bar is pivoted counterclockwise

Hinge

through 90° to make the entire part horizontal?

8.56 • At one instant, the center of mass of a system of two particles is located on the *x*-axis at x = 2.0 m and has a velocity of $(5.0 \text{ m/s})\hat{i}$. One of the particles is at the origin. The other particle has a mass of 0.10 kg and is at rest on the *x*-axis at x = 8.0 m. (a) What is the mass of the particle at the origin? (b) Calculate the total momentum of this system. (c) What is the velocity of the particle at the origin?

8.57 •• In Example 8.14 (Section 8.5), Ramon pulls on the rope to give himself a speed of 0.70 m/s. What is James's speed?

8.58 • **CALC** A system consists of two particles. At t = 0 one particle is at the origin; the other, which has a mass of 0.50 kg, is on the y-axis at y = 6.0 m. At t = 0 the center of mass of the system is on the y-axis at y = 2.4 m. The velocity of the center of mass is given by $(0.75 \text{ m/s}^3)t^2\hat{\imath}$. (a) Find the total mass of the system. (b) Find the acceleration of the center of mass at any time t. (c) Find the net external force acting on the system at t = 3.0 s.

8.59 • **CALC** A radio-controlled model airplane has a momentum given by $[(-0.75 \text{ kg} \cdot \text{m/s}^3)t^2 + (3.0 \text{ kg} \cdot \text{m/s})]\hat{i} + (0.25 \text{ kg} \cdot \text{m/s}^2)t\hat{j}$. What are the *x*-, *y*-, and *z*-components of the net force on the airplane?

8.60 •• **BIO** Changing Your Center of Mass. To keep the calculations fairly simple, but still reasonable, we shall model a human leg that is 92.0 cm long (measured from the hip joint) by assuming that the upper leg and the lower leg (which includes the foot) have equal lengths and that each of them is uniform. For a 70.0-kg person, the mass of the upper leg would be 8.60 kg, while that of the lower leg (including the foot) would be 5.25 kg. Find the location of the center of mass of this leg, relative to the hip joint, if it is (a) stretched out horizontally and (b) bent at the knee to form a right angle with the upper leg remaining horizontal.

Section 8.6 Rocket Propulsion

8.61 •• A 70-kg astronaut floating in space in a 110-kg MMU (manned maneuvering unit) experiences an acceleration of 0.029 m/s² when he fires one of the MMU's thrusters. (a) If the speed of the escaping N_2 gas relative to the astronaut is 490 m/s, how much gas is used by the thruster in 5.0 s? (b) What is the thrust of the thruster?

8.62 • A small rocket burns 0.0500 kg of fuel per second, ejecting it as a gas with a velocity relative to the rocket of magnitude 1600 m/s. (a) What is the thrust of the rocket? (b) Would the rocket operate in outer space where there is no atmosphere? If so, how would you steer it? Could you brake it?

8.63 • A C6-5 model rocket engine has an impulse of $10.0 \text{ N} \cdot \text{s}$ while burning 0.0125 kg of propellant in 1.70 s. It has a maximum thrust of 13.3 N. The initial mass of the engine plus propellant is 0.0258 kg. (a) What fraction of the maximum thrust is the average thrust? (b) Calculate the relative speed of the exhaust gases, assuming it is constant. (c) Assuming that the relative speed of the exhaust gases is constant, find the final speed of the engine if it was attached to a very light frame and fired from rest in gravity-free outer space.

8.64 •• Obviously, we can make rockets to go very fast, but what is a reasonable top speed? Assume that a rocket is fired from rest at a space station in deep space, where gravity is negligible. (a) If the rocket ejects gas at a relative speed of 2000 m/s and you want the rocket's speed eventually to be $1.00 \times 10^{-3}c$, where *c* is the speed of light, what fraction of the initial mass of the rocket and fuel is *not* fuel? (b) What is this fraction if the final speed is to be 3000 m/s?

8.65 •• A single-stage rocket is fired from rest from a deep-space platform, where gravity is negligible. If the rocket burns its fuel in 50.0 s and the relative speed of the exhaust gas is $v_{\text{ex}} = 2100 \text{ m/s}$, what must the mass ratio m_0/m be for a final speed v of 8.00 km/s (about equal to the orbital speed of an earth satellite)?

PROBLEMS

8.66 •• **CP CALC** A young girl with mass 40.0 kg is sliding on a horizontal, frictionless surface with an initial momentum that is due east and that has magnitude 90.0 kg • m/s. Starting at t = 0, a net force with magnitude F = (8.20 N/s)t and direction due west is applied to the girl. (a) At what value of t does the girl have a westward momentum of magnitude 60.0 kg • m/s? (b) How much work has been done on the girl by the force in the time interval from t = 0 to the time calculated in part (a)? (c) What is the magnitude of the acceleration of the girl at the time calculated in part (a)?

8.67 •• A steel ball with mass 40.0 g is dropped from a height of 2.00 m onto a horizontal steel slab. The ball rebounds to a height of 1.60 m. (a) Calculate the impulse delivered to the ball during impact. (b) If the ball is in contact with the slab for 2.00 ms, find the average force on the ball during impact.

8.68 • In a volcanic eruption, a 2400-kg boulder is thrown vertically upward into the air. At its highest point, it suddenly explodes (due to trapped gases) into two fragments, one being three times the mass of the other. The lighter fragment starts out with only horizontal velocity and lands 318 m directly north of the point of the explosion. Where will the other fragment land? Neglect any air resistance. **8.69** • Just before it is struck by a racket, a tennis ball weighing 0.560 N has a velocity of $(20.0 \text{ m/s})\hat{i} - (4.0 \text{ m/s})\hat{j}$. During the 3.00 ms that the racket and ball are in contact, the net force on the ball is constant and equal to $-(380 \text{ N})\hat{i} + (110 \text{ N})\hat{j}$. (a) What are the *x*- and *y*-components of the impulse of the final velocity of the ball? (b) What are the *x*- and *y*-components of the final velocity of the ball?

8.70 • Three identical pucks on a horizontal air table have repelling magnets. They are held together and then released simultaneously. Each has the same speed at any instant. One puck moves due west. What is the direction of the velocity of each of the other two pucks?

8.71 •• A 1500-kg blue convertible is traveling south, and a 2000-kg red SUV is traveling west. If the total momentum of the system consisting of the two cars is 7200 kg \cdot m/s directed at 60.0° west of south, what is the speed of each vehicle?

8.72 •• A railroad handcar is moving along straight, frictionless tracks with negligible air resistance. In the following cases, the car initially has a total mass (car and contents) of 200 kg and is traveling east with a velocity of magnitude 5.00 m/s. Find the *final velocity* of the car in each case, assuming that the handcar does not leave the tracks. (a) A 25.0-kg mass is thrown sideways out of the car with a velocity of magnitude 2.00 m/s relative to the car's initial velocity. (b) A 25.0-kg mass is thrown backward out of the car with a velocity of 5.00 m/s relative to the initial motion of the car. (c) A 25.0-kg mass is thrown into the car with a velocity of 6.00 m/s relative to the ground and opposite in direction to the initial velocity of the car.

8.73 • Spheres A (mass 0.020 kg), B (mass 0.030 kg), and C (mass 0.050 kg) are approaching the origin as they slide on a frictionless air table (Fig. P8.73). The initial velocities of A and B are given in the figure. All three spheres arrive at the origin at the same time and stick together. (a) What must the x- and y-components of the initial velocity of C be if all three objects are to end up moving at 0.50 m/s in the +x-direction after the collision? (b) If C has the velocity found in part (a), what is the change in the kinetic energy of the system of three spheres as a result of the collision?

Figure **P8.73**

8.74 ••• You and your friends are doing physics experiments on a frozen pond that serves as a frictionless, horizontal surface. Sam, with mass 80.0 kg, is given a push and slides eastward. Abigail, with mass 50.0 kg, is sent sliding northward. They collide, and after the collision Sam is moving at 37.0° north of east with a speed of 6.00 m/s and Abigail is moving at 23.0° south of east with a speed of 9.00 m/s. (a) What was the speed of each person before the collision? (b) By how much did the total kinetic energy of the two people decrease during the collision?

8.75 ••• The nucleus of ²¹⁴Po decays radioactively by emitting an alpha particle (mass 6.65×10^{-27} kg) with kinetic energy 1.23×10^{-12} J, as measured in the laboratory reference frame. Assuming that the Po was initially at rest in this frame, find the recoil velocity of the nucleus that remains after the decay.

8.76 • **CP** At a classic auto show, a 840-kg 1955 Nash Metropolitan motors by at 9.0 m/s, followed by a 1620-kg 1957 Packard Clipper purring past at 5.0 m/s. (a) Which car has the greater kinetic energy? What is the ratio of the kinetic energy of the Nash to that of the Packard? (b) Which car has the greater magnitude of momentum? What is the ratio of the magnitude of momentum of the Nash to that of the Packard? (c) Let F_N be the net force required to stop the Nash in time *t*, and let F_P be the net force required to stop the Packard in the same time. Which is larger: F_N or F_P ? What is the ratio F_N/F_P of these two forces? (d) Now let F_P be the net force required to stop the Nash in a distance *d*, and let F_P be the net force required to stop the Nash in a distance. Which is larger: F_N or F_P ? What is the ratio F_P ?

8.77 •• **CP** An 8.00-kg block of wood sits at the edge of a frictionless table, 2.20 m above the floor. A 0.500-kg blob of clay slides along the length of the table with a speed of 24.0 m/s, strikes the block of wood, and sticks to it. The combined object leaves the edge of the table and travels to the floor. What horizontal distance has the combined object traveled when it reaches the floor?

8.78 ••• **CP** A small wooden block with mass 0.800 kg is suspended from the lower end of a light cord that is 1.60 m long. The block is initially at rest. A bullet with mass 12.0 g is fired at the block with a horizontal velocity v_0 . The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.800 m, the tension in the cord is 4.80 N. What was the initial speed v_0 of the bullet?

8.79 •• Combining Conservation Laws. A 5.00-kg chunk of ice is sliding at 12.0 m/s on the floor of an ice-covered valley when it collides with and sticks to another 5.00-kg chunk of ice that is initially at rest. (Fig. P8.79). Since the valley is icy, there is no friction. After the collision, how high above the valley floor will the combined chunks go?

8.80 •• Automobile Accident Analysis. You are called as an expert witness to analyze the following auto accident: Car B, of mass 1900 kg, was stopped at a red light when it was hit from behind by car A, of mass 1500 kg. The cars locked bumpers during the collision and slid to a stop with brakes locked on all wheels. Measurements of the skid marks left by the tires showed them to

be 7.15 m long. The coefficient of kinetic friction between the tires and the road was 0.65. (a) What was the speed of car *A* just before the collision? (b) If the speed limit was 35 mph, was car *A* speeding, and if so, by how many miles per hour was it *exceeding* the speed limit?

8.81 •• Accident Analysis. A 1500-kg sedan goes through a wide intersection traveling from north to south when it is hit by a 2200-kg SUV traveling from east to west. The two cars become enmeshed due to the impact and slide as one thereafter. On-the-scene measurements show that the coefficient of kinetic friction between the tires of these cars and the pavement is 0.75, and the cars slide to a halt at a point 5.39 m west and 6.43 m south of the impact point. How fast was each car traveling just before the collision?

8.82 ••• **CP** A 0.150-kg frame, when suspended from a coil spring, stretches the spring 0.070 m. A 0.200-kg lump of putty is dropped from rest onto the frame from a height of 30.0 cm (Fig. P8.82). Find the maximum distance the frame moves downward from its initial position.

8.83 • A rifle bullet with mass 8.00 g strikes and embeds itself in a block with mass 0.992 kg that rests on a frictionless, horizontal surface and is attached to a coil spring (Fig. P8.83).

The impact compresses the spring 15.0 cm. Calibration of the spring shows that a force of 0.750 N is required to compress the spring 0.250 cm. (a) Find the magnitude of the block's velocity just after impact. (b) What was the initial speed of the bullet?

Figure P8.83

8.84 •• A Ricocheting Bullet. 0.100-kg stone rests on a frictionless, horizontal surface. A bullet of mass 6.00 g, traveling horizontally at 350 m/s, strikes the stone and rebounds horizontally at right angles to its original direction with a speed of 250 m/s. (a) Compute the magnitude and direction of the velocity of the stone after it is struck. (b) Is the collision perfectly elastic?

8.85 •• A movie stuntman (mass 80.0 kg) stands on a window ledge 5.0 m above the floor (Fig. P8.85). Grabbing a rope attached to a chandelier, he swings down to grapple with the movie's villain (mass 70.0 kg), who is standing directly under the chandelier. (Assume that the stuntman's center of mass moves downward 5.0 m. He releases the rope just as he

reaches the villain.) (a) With what speed do the entwined foes start to slide across the floor? (b) If the coefficient of kinetic friction of their bodies with the floor is $\mu_k = 0.250$, how far do they slide?

8.86 •• **CP** Two identical masses are released from rest in a smooth hemispherical bowl of radius *R* from the positions shown in Fig. P8.86. You can ignore friction between the masses and the surface of the bowl. If they stick together when they collide, how high above the bottom of the bowl will the masses go after colliding?

8.87 •• A ball with mass M, moving horizontally at 4.00 m/s, collides elastically with a block with mass 3M that is initially hanging at rest from the ceiling on the end of a 50.0-cm wire. Find the maximum angle through which the block swings after it is hit.

8.88 ••• **CP** A 20.00-kg lead sphere is hanging from a hook by a thin wire 3.50 m long and is free to swing in a complete circle. Suddenly it is struck horizontally by a 5.00-kg steel dart that embeds itself in the lead sphere. What must be the minimum initial speed of the dart so that the combination makes a complete circular loop after the collision?

8.89 ••• **CP** An 8.00-kg ball, hanging from the ceiling by a light wire 135 cm long, is struck in an elastic collision by a 2.00-kg ball moving horizontally at 5.00 m/s just before the collision. Find the tension in the wire just after the collision.

8.90 •• A 7.0-kg shell at rest explodes into two fragments, one with a mass of 2.0 kg and the other with a mass of 5.0 kg. If the heavier fragment gains 100 J of kinetic energy from the explosion, how much kinetic energy does the lighter one gain?

8.91 •• A 4.00-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.800 kg, initially at rest on a level surface. The bullet passes through the block and emerges with its speed reduced to 190 m/s. The block slides a distance of 45.0 cm along the surface from its initial position. (a) What is the coefficient of kinetic friction between block and surface? (b) What is the decrease in kinetic energy of the bullet? (c) What is the kinetic energy of the block at the instant after the bullet passes through it?

8.92 •• A 5.00-g bullet is shot *through* a 1.00-kg wood block suspended on a string 2.00 m long. The center of mass of the block rises a distance of 0.38 cm. Find the speed of the bullet as it emerges from the block if its initial speed is 450 m/s.

8.93 •• A neutron with mass *m* makes a head-on, elastic collision with a nucleus of mass *M*, which is initially at rest. (a) Show that if the neutron's initial kinetic energy is K_0 , the kinetic energy that it loses during the collision is $4mMK_0/(M + m)^2$. (b) For what value of *M* does the incident neutron lose the most energy? (c) When *M* has the value calculated in part (b), what is the speed of the neutron after the collision?

8.94 •• Energy Sharing in Elastic Collisions. A stationary object with mass m_B is struck head-on by an object with mass m_A that is moving initially at speed v_0 . (a) If the collision is elastic, what percentage of the original energy does each object have after the collision? (b) What does your answer in part (a) give for the special cases (i) $m_A = m_B$ and (ii) $m_A = 5m_B$? (c) For what values, if any, of the mass ratio m_A/m_B is the original kinetic energy shared equally by the two objects after the collision?

8.95 •• **CP** In a shipping company distribution center, an open cart of mass 50.0 kg is rolling to the left at a speed of 5.00 m/s

Figure **P8.82**

(Fig. P8.95). You can ignore friction between the cart and the floor. A 15.0-kg package slides down a chute that is inclined at 37° from the horizontal and leaves the end of the chute with a speed of 3.00 m/s. The package lands in the cart and they roll off together. If the lower end of the chute is a vertical distance of 4.00 m above the bottom of

the cart, what are (a) the speed of the package just before it lands in the cart and (b) the final speed of the cart?

8.96 • A blue puck with mass 0.0400 kg, sliding with a velocity of magnitude 0.200 m/s on a frictionless, horizontal air table, makes a perfectly elastic, head-on collision with a red puck with mass *m*, initially at rest. After the collision, the velocity of the blue puck is 0.050 m/s in the same direction as its initial velocity. Find (a) the velocity (magnitude and direction) of the red puck after the collision and (b) the mass *m* of the red puck.

8.97 ••• Jack and Jill are standing on a crate at rest on the frictionless, horizontal surface of a frozen pond. Jack has mass 75.0 kg, Jill has mass 45.0 kg, and the crate has mass 15.0 kg. They remember that they must fetch a pail of water, so each jumps horizontally from the top of the crate. Just after each jumps, that person is moving away from the crate with a speed of 4.00 m/s relative to the crate. (a) What is the final speed of the crate if both Jack and Jill jump simultaneously and in the same direction? (*Hint:* Use an inertial coordinate system attached to the ground.) (b) What is the final speed of the crate if Jack jumps first and then a few seconds later Jill jumps in the same direction? (c) What is the final speed of the crate if Jill jumps first and then Jack, again in the same direction?

8.98 • Suppose you hold a small ball in contact with, and directly over, the center of a large ball. If you then drop the small ball a short time after dropping the large ball, the small ball rebounds with surprising speed. To show the extreme case, ignore air resistance and suppose the large ball makes an elastic collision with the floor and then rebounds to make an elastic collision with the still-descending small ball. Just before the collision between the two balls, the large ball is moving upward with velocity \vec{v} and the small ball has velocity $-\vec{v}$. (Do you see why?) Assume the large ball has a much greater mass than the small ball. (a) What is the velocity of the small ball immediately after its collision with the large ball? (b) From the answer to part (a), what is the ratio of the small ball's rebound distance to the distance it fell before the collision?

8.99 ••• Hockey puck *B* rests on a smooth ice surface and is struck by a second puck *A*, which has the same mass. Puck *A* is initially traveling at 15.0 m/s and is deflected 25.0° from its initial direction. Assume that the collision is perfectly elastic. Find the final speed of each puck and the direction of *B*'s velocity after the collision.

8.100 ••• Energy Sharing. An object with mass m, initially at rest, explodes into two fragments, one with mass m_A and the other with mass m_B , where $m_A + m_B = m$. (a) If energy Q is released in the explosion, how much kinetic energy does each fragment have immediately after the explosion? (b) What percentage of the total energy released does each fragment get when one fragment has four times the mass of the other?

8.101 ••• Neutron Decay. A neutron at rest decays (breaks up) to a proton and an electron. Energy is released in the decay

and appears as kinetic energy of the proton and electron. The mass of a proton is 1836 times the mass of an electron. What fraction of the total energy released goes into the kinetic energy of the proton?

8.102 •• A ²³²Th (thorium) nucleus at rest decays to a ²²⁸Ra (radium) nucleus with the emission of an alpha particle. The total kinetic energy of the decay fragments is 6.54×10^{-13} J. An alpha particle has 1.76% of the mass of a ²²⁸Ra nucleus. Calculate the kinetic energy of (a) the recoiling ²²⁸Ra nucleus and (b) the alpha particle.

8.103 • Antineutrino. In beta decay, a nucleus emits an electron. A ²¹⁰Bi (bismuth) nucleus at rest undergoes beta decay to ²¹⁰Po (polonium). Suppose the emitted electron moves to the right with a momentum of 5.60×10^{-22} kg·m/s. The ²¹⁰Po nucleus, with mass 3.50×10^{-25} kg, recoils to the left at a speed of 1.14×10^3 m/s. Momentum conservation requires that a second particle, called an antineutrino, must also be emitted. Calculate the magnitude and direction of the momentum of the antineutrino that is emitted in this decay.

8.104 •• Jonathan and Jane are sitting in a sleigh that is at rest on frictionless ice. Jonathan's weight is 800 N, Jane's weight is 600 N, and that of the sleigh is 1000 N. They see a poisonous spider on the floor of the sleigh and immediately jump off. Jonathan jumps to the left with a velocity of 5.00 m/s at 30.0° above the horizontal (relative to the ice), and Jane jumps to the right at 7.00 m/s at 36.9° above the horizontal (relative to the ice). Calculate the sleigh's horizontal velocity (magnitude and direction) after they jump out.

8.105 •• Two friends, Burt and Ernie, are standing at opposite ends of a uniform log that is floating in a lake. The log is 3.0 m long and has mass 20.0 kg. Burt has mass 30.0 kg and Ernie has mass 40.0 kg. Initially the log and the two friends are at rest relative to the shore. Burt then offers Ernie a cookie, and Ernie walks to Burt's end of the log to get it. Relative to the shore, what distance has the log moved by the time Ernie reaches Burt? Neglect any horizontal force that the water exerts on the log and assume that neither Burt nor Ernie falls off the log.

8.106 •• A 45.0-kg woman stands up in a 60.0-kg canoe 5.00 m long. She walks from a point 1.00 m from one end to a point 1.00 m from the other end (Fig. P8.106). If you ignore resistance to motion of the canoe in the water, how far does the canoe move during this process?

8.107 •• You are standing on a concrete slab that in turn is resting on a frozen lake. Assume there is no friction between the slab and the ice. The slab has a weight five times your weight. If you begin walking forward at 2.00 m/s relative to the ice, with what speed, relative to the ice, does the slab move?

8.108 •• **CP** A 20.0-kg projectile is fired at an angle of 60.0° above the horizontal with a speed of 80.0 m/s. At the highest point

of its trajectory, the projectile explodes into two fragments with equal mass, one of which falls vertically with zero initial speed. You can ignore air resistance. (a) How far from the point of firing does the other fragment strike if the terrain is level? (b) How much energy is released during the explosion?

8.109 ••• **CP** A fireworks rocket is fired vertically upward. At its maximum height of 80.0 m, it explodes and breaks into two pieces: one with mass 1.40 kg and the other with mass 0.28 kg. In the explosion, 860 J of chemical energy is converted to kinetic energy of the two fragments. (a) What is the speed of each fragment just after the explosion? (b) It is observed that the two fragments hit the ground at the same time. What is the distance between the points on the ground where they land? Assume that the ground is level and air resistance can be ignored.

8.110 ••• A 12.0-kg shell is launched at an angle of 55.0° above the horizontal with an initial speed of 150 m/s. When it is at its highest point, the shell explodes into two fragments, one three times heavier than the other. The two fragments reach the ground at the same time. Assume that air resistance can be ignored. If the heavier fragment lands back at the same point from which the shell was launched, where will the lighter fragment land, and how much energy was released in the explosion?

8.111 • **CP** A wagon with two boxes of gold, having total mass 300 kg, is cut loose from the horses by an outlaw when the wagon is at rest 50 m up a 6.0° slope (Fig. P8.111). The outlaw plans to have the wagon roll down the slope and across the level ground, and then fall into a canyon where his confederates wait. But in a tree 40 m from the canyon edge wait the Lone Ranger (mass 75.0 kg) and Tonto (mass 60.0 kg). They drop vertically into the wagon as it passes beneath them. (a) If they require 5.0 s to grab the gold and jump out, will they make it before the wagon goes over the edge? The wagon rolls with negligible friction. (b) When the two heroes drop into the wagon, is the kinetic energy of the system of the heroes plus the wagon conserved? If not, does it increase or decrease, and by how much?

Figure **P8.111**

8.112 •• **CALC** In Section 8.6, we considered a rocket fired in outer space where there is no air resistance and where gravity is negligible. Suppose instead that the rocket is accelerating vertically upward from rest on the earth's surface. Continue to ignore air resistance and consider only that part of the motion where the altitude of the rocket is small so that g may be assumed to be constant. (a) How is Eq. (8.37) modified by the presence of the gravity force? (b) Derive an expression for the acceleration a of the rocket, analogous to Eq. (8.39). (c) What is the acceleration of the rocket in Example 8.15 (Section 8.6) if it is near the earth's surface rather than in outer space? You can ignore air resistance. (d) Find the speed of the rocket in Example 8.16 (Section 8.6) after 90 s if the rocket is fired from the earth's surface rather than in outer space.

You can ignore air resistance. How does your answer compare with the rocket speed calculated in Example 8.16?

8.113 •• A Multistage Rocket. Suppose the first stage of a twostage rocket has total mass 12,000 kg, of which 9000 kg is fuel. The total mass of the second stage is 1000 kg, of which 700 kg is fuel. Assume that the relative speed v_{ex} of ejected material is constant, and ignore any effect of gravity. (The effect of gravity is small during the firing period if the rate of fuel consumption is large.) (a) Suppose the entire fuel supply carried by the two-stage rocket is utilized in a single-stage rocket with the same total mass of 13,000 kg. In terms of v_{ex} , what is the speed of the rocket, starting from rest, when its fuel is exhausted? (b) For the two-stage rocket, what is the speed when the fuel of the first stage is exhausted if the first stage carries the second stage with it to this point? This speed then becomes the initial speed of the second stage. At this point, the second stage separates from the first stage. (c) What is the final speed of the second stage? (d) What value of $v_{\rm ex}$ is required to give the second stage of the rocket a speed of 7.00 km/s?

CHALLENGE PROBLEMS

8.114 • **CALC** A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby *increasing* its mass as it falls. The force on the raindrop is

$$F_{\text{ext}} = \frac{dp}{dt} = m\frac{dv}{dt} + v\frac{dm}{dt}$$

Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm/dt = kv. This gives, since $F_{\text{ext}} = mg$,

$$mg = m\frac{dv}{dt} + v(kv)$$

Or, dividing by *k*,

$$xg = x\frac{dv}{dt} + v^2$$

This is a differential equation that has a solution of the form v = at, where *a* is the acceleration and is constant. Take the initial velocity of the raindrop to be zero. (a) Using the proposed solution for *v*, find the acceleration *a*. (b) Find the distance the raindrop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, *American Journal of Physics*, Vol. 49 (1981), pp. 113–117.)

8.115 •• CALC In Section 8.5 we calculated the center of mass by considering objects composed of a *finite* number of point masses or objects that, by symmetry, could be represented by a finite number of point masses. For a solid object whose mass distribution does not allow for a simple determination of the center of mass by symmetry, the sums of Eqs. (8.28) must be generalized to integrals

$$x_{\rm cm} = \frac{1}{M} \int x \, dm \qquad y_{\rm cm} = \frac{1}{M} \int y \, dm$$

where x and y are the coordinates of the small piece of the object that has mass dm. The integration is over the whole of the object.

Consider a thin rod of length *L*, mass *M*, and cross-sectional area *A*. Let the origin of the coordinates be at the left end of the rod and the positive *x*-axis lie along the rod. (a) If the density $\rho = M/V$ of the object is uniform, perform the integration described above to show that the *x*-coordinate of the center of mass of the rod is at its geometrical center. (b) If the density of the object varies linearly with *x*—that is, $\rho = \alpha x$, where α is a positive constant—calculate the *x*-coordinate of the rod's center of mass.

8.116 •• **CALC** Use the methods of Challenge Problem 8.115 to calculate the *x*- and *y*-coordinates of the center of mass of a semicircular metal plate with uniform density ρ and thickness *t*. Let the radius of the plate be *a*. The mass of the plate is thus $M = \frac{1}{2}\rho\pi a^2 t$. Use the coordinate system indicated in Fig. P8.116.

Answers

Chapter Opening Question

The two bullets have the same magnitude of momentum p = mv (the product of mass and speed), but the faster, lightweight bullet has twice as much kinetic energy $K = \frac{1}{2}mv^2$. Hence, the lightweight bullet can do twice as much work on the carrot (and twice as much damage) in the process of coming to a halt (see Section 8.1).

Test Your Understanding Questions

8.1 Answer: (v), (i) and (ii) (tied for second place), (iii) and (iv) (tied for third place) We use two interpretations of the impulse of the net force: (1) the net force multiplied by the time that the net force acts, and (2) the change in momentum of the particle on which the net force acts. Which interpretation we use depends on what information we are given. We take the positive x-direction to be to the east. (i) The force is not given, so we use interpretation 2: $J_x = mv_{2x} - mv_{1x} = (1000 \text{ kg})(0) - (1000 \text{ kg})(25 \text{ m/s}) =$ $-25,000 \text{ kg} \cdot \text{m/s}$, so the magnitude of the impulse is $25,000 \text{ kg} \cdot \text{m/s} = 25,000 \text{ N} \cdot \text{s}$. (ii) For the same reason as in (i), we use interpretation 2: $J_x = mv_{2x} - mv_{1x} = (1000 \text{ kg})(0) (1000 \text{ kg})(25 \text{ m/s}) = -25,000 \text{ kg} \cdot \text{m/s}$, and the magnitude of the impulse is again 25,000 kg \cdot m/s = 25,000 N \cdot s. (iii) The final velocity is not given, so we use interpretation 1: $J_x = (\Sigma F_x)_{av}(t_2 - t_1) = (2000 \text{ N})(10 \text{ s}) = 20,000 \text{ N} \cdot \text{s}$, so the magnitude of the impulse is 20,000 N \cdot s. (iv) For the same reason as in (iii), we use interpretation 1: $J_x = (\sum F_x)_{av}(t_2 - t_1) =$ $(-2000 \text{ N})(10 \text{ s}) = -20,000 \text{ N} \cdot \text{s}$, so the magnitude of the impulse is 20,000 N \cdot s. (v) The force is not given, so we use interpretation 2: $J_x = mv_{2x} - mv_{1x} = (1000 \text{ kg})(-25 \text{ m/s}) (1000 \text{ kg})(25 \text{ m/s}) = -50,000 \text{ kg} \cdot \text{m/s}$, so the magnitude of the impulse is 50,000 kg \cdot m/s = 50,000 N \cdot s.

8.2 Answers: (a) $v_{C2x} > 0$, $v_{C2y} > 0$, (b) piece *C* There are no external horizontal forces, so the *x*- and *y*-components of the total momentum of the system are both conserved. Both components of the total momentum are zero before the spring releases, so they must be zero after the spring releases. Hence,

$$P_{x} = 0 = m_{A}v_{A2x} + m_{B}v_{B2x} + m_{C}v_{C2x}$$

$$P_{y} = 0 = m_{A}v_{A2y} + m_{B}v_{B2y} + m_{C}v_{C2y}$$

We are given that $m_A = m_B = m_C$, $v_{A2x} < 0$, $v_{A2y} = 0$, $v_{B2x} = 0$, and $v_{B2y} < 0$. You can solve the above equations to

Figure **P8.116**

show that $v_{C2x} = -v_{A2x} > 0$ and $v_{C2y} = -v_{B2y} > 0$, so the velocity components of piece *C* are both positive. Piece *C* has speed $\sqrt{v_{C2x}^2 + v_{C2y}^2} = \sqrt{v_{A2x}^2 + v_{B2y}^2}$, which is greater than the speed of either piece *A* or piece *B*.

8.3 Answers: (a) elastic, (b) inelastic, (c) completely inelastic In each case gravitational potential energy is converted to kinetic energy as the ball falls, and the collision is between the ball and the ground. In (a) all of the initial energy is converted back to gravitational potential energy, so no kinetic energy is lost in the bounce and the collision is elastic. In (b) there is less gravitational potential energy at the end than at the beginning, so some kinetic energy was lost in the bounce. Hence the collision is inelastic. In (c) the ball loses all the kinetic energy it has to give, the ball and the ground stick together, and the collision is completely inelastic.

8.4 Answer: worse After a collision with a water molecule initially at rest, the speed of the neutron is $|(m_n - m_w)/(m_n + m_w)| = |(1.0 \text{ u} - 18 \text{ u})/(1.0 \text{ u} + 18 \text{ u})| = \frac{17}{19}$ of its initial speed, and its kinetic energy is $(\frac{17}{19})^2 = 0.80$ of the initial value. Hence a water molecule is a worse moderator than a carbon atom, for which the corresponding numbers are $\frac{11}{13}$ and $(\frac{11}{13})^2 = 0.72$.

8.5 Answer: no If gravity is the only force acting on the system of two fragments, the center of mass will follow the parabolic trajectory of a freely falling object. Once a fragment lands, however, the ground exerts a normal force on that fragment. Hence the net force on the system has changed, and the trajectory of the center of mass changes in response.

8.6 Answers: (a) increasing, (b) decreasing From Eqs. (8.37) and (8.38), the thrust F is equal to m(dv/dt), where m is the rocket's mass and dv/dt is its acceleration. Because m decreases with time, if the thrust F is constant, then the acceleration must increase with time (the same force acts on a smaller mass); if the acceleration dv/dt is constant, then the thrust must decrease with time (a smaller force is all that's needed to accelerate a smaller mass).

Bridging Problem

- Answers: (a) 1.00 m/s to the right (b) Elastic
 - (c) 1.93 m/s at -30.4°
 - (d) 2.31 kg \cdot m/s at 149.6° (e) Inelastic
 - (f) 1.67 m/s in the positive x-direction

ROTATION OF RIGID BODIES

LEARNING GOALS

By studying this chapter, you will learn:

- How to describe the rotation of a rigid body in terms of angular coordinate, angular velocity, and angular acceleration.
- How to analyze rigid-body rotation when the angular acceleration is constant.
- How to relate the rotation of a rigid body to the linear velocity and linear acceleration of a point on the body.
- The meaning of a body's moment of inertia about a rotation axis, and how it relates to rotational kinetic energy.
- How to calculate the moment of inertia of various bodies.

9.1 A speedometer needle (an example of a rigid body) rotating counterclockwise about a fixed axis.

Axis of rotation passes through origin and points out of page.

All segments of a rotating wind turbine blade have the same angular velocity. Compared to a given blade segment, how many times greater is the linear speed of a second segment twice as far from the axis of rotation? How many times greater is the radial acceleration?

hat do the motions of a compact disc, a Ferris wheel, a circular saw blade, and a ceiling fan have in common? None of these can be represented adequately as a moving *point;* each involves a body that *rotates* about an axis that is stationary in some inertial frame of reference.

Rotation occurs at all scales, from the motions of electrons in atoms to the motions of entire galaxies. We need to develop some general methods for analyzing the motion of a rotating body. In this chapter and the next we consider bodies that have definite size and definite shape, and that in general can have rotational as well as translational motion.

Real-world bodies can be very complicated; the forces that act on them can deform them—stretching, twisting, and squeezing them. We'll neglect these deformations for now and assume that the body has a perfectly definite and unchanging shape and size. We call this idealized model a **rigid body**. This chapter and the next are mostly about rotational motion of a rigid body.

We begin with kinematic language for *describing* rotational motion. Next we look at the kinetic energy of rotation, the key to using energy methods for rotational motion. Then in Chapter 10 we'll develop dynamic principles that relate the forces on a body to its rotational motion.

9.1 Angular Velocity and Acceleration

In analyzing rotational motion, let's think first about a rigid body that rotates about a *fixed axis*—an axis that is at rest in some inertial frame of reference and does not change direction relative to that frame. The rotating rigid body might be a motor shaft, a chunk of beef on a barbecue skewer, or a merry-go-round.

Figure 9.1 shows a rigid body (in this case, the indicator needle of a speedometer) rotating about a fixed axis. The axis passes through point O and is

perpendicular to the plane of the diagram, which we choose to call the *xy*-plane. One way to describe the rotation of this body would be to choose a particular point *P* on the body and to keep track of the *x*- and *y*-coordinates of this point. This isn't a terribly convenient method, since it takes two numbers (the two coordinates *x* and *y*) to specify the rotational position of the body. Instead, we notice that the line *OP* is fixed in the body and rotates with it. The angle θ that this line makes with the +*x*-axis describes the rotational position of the body; we will use this single quantity θ as a *coordinate* for rotation.

The angular coordinate θ of a rigid body rotating around a fixed axis can be positive or negative. If we choose positive angles to be measured counterclockwise from the positive *x*-axis, then the angle θ in Fig. 9.1 is positive. If we instead choose the positive rotation direction to be clockwise, then θ in Fig. 9.1 is negative. When we considered the motion of a particle along a straight line, it was essential to specify the direction of positive displacement along that line; when we discuss rotation around a fixed axis, it's just as essential to specify the direction of positive rotation.

To describe rotational motion, the most natural way to measure the angle θ is not in degrees, but in **radians.** As shown in Fig. 9.2a, one radian (1 rad) is the angle subtended at the center of a circle by an arc with a length equal to the radius of the circle. In Fig. 9.2b an angle θ is subtended by an arc of length *s* on a circle of radius *r*. The value of θ (in radians) is equal to *s* divided by *r*:

$$\theta = \frac{s}{r}$$
 or $s = r\theta$ (9.1)

An angle in radians is the ratio of two lengths, so it is a pure number, without dimensions. If s = 3.0 m and r = 2.0 m, then $\theta = 1.5$, but we will often write this as 1.5 rad to distinguish it from an angle measured in degrees or revolutions.

The circumference of a circle (that is, the arc length all the way around the circle) is 2π times the radius, so there are 2π (about 6.283) radians in one complete revolution (360°). Therefore

$$1 \text{ rad} = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$$

Similarly, $180^{\circ} = \pi$ rad, $90^{\circ} = \pi/2$ rad, and so on. If we had insisted on measuring the angle θ in degrees, we would have needed to include an extra factor of $(2\pi/360)$ on the right-hand side of $s = r\theta$ in Eq. (9.1). By measuring angles in radians, we keep the relationship between angle and distance along an arc as simple as possible.

Angular Velocity

The coordinate θ shown in Fig. 9.1 specifies the rotational position of a rigid body at a given instant. We can describe the rotational *motion* of such a rigid body in terms of the rate of change of θ . We'll do this in an analogous way to our description of straight-line motion in Chapter 2. In Fig. 9.3a, a reference line *OP* in a rotating body makes an angle θ_1 with the +*x*-axis at time t_1 . At a later time t_2 the angle has changed to θ_2 . We define the **average angular velocity** ω_{av-z} (the Greek letter omega) of the body in the time interval $\Delta t = t_2 - t_1$ as the ratio of the **angular displacement** $\Delta \theta = \theta_2 - \theta_1$ to Δt :

$$\omega_{\text{av-}z} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta\theta}{\Delta t}$$
(9.2)

The subscript *z* indicates that the body in Fig. 9.3a is rotating about the *z*-axis, which is perpendicular to the plane of the diagram. The **instantaneous angular velocity** ω_z is the limit of ω_{av-z} as Δt approaches zero—that is, the derivative of θ with respect to *t*:

$$\omega_z = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \qquad \text{(definition of angular velocity)} \tag{9.3}$$

When we refer simply to "angular velocity," we mean the instantaneous angular velocity, not the average angular velocity.

The angular velocity ω_z can be positive or negative, depending on the direction in which the rigid body is rotating (Fig. 9.4). The angular speed ω , which we will use extensively in Sections 9.3 and 9.4, is the magnitude of angular velocity. Like ordinary (linear) speed v, the angular speed is never negative.

CAUTION Angular velocity vs. linear velocity Keep in mind the distinction between angular velocity ω_z and ordinary velocity, or *linear velocity*, v_x (see Section 2.2). If an object has a velocity v_x , the object as a whole is *moving* along the *x*-axis. By contrast, if an object has an angular velocity ω_z , then it is *rotating* around the *z*-axis. We do *not* mean that the object is moving along the *z*-axis.

Different points on a rotating rigid body move different distances in a given time interval, depending on how far each point lies from the rotation axis. But because the body is rigid, *all* points rotate through the same angle in the same time (Fig. 9.3b). Hence *at any instant, every part of a rotating rigid body has the same angular velocity.* The angular velocity is positive if the body is rotating in the direction of increasing θ and negative if it is rotating in the direction of decreasing θ .

If the angle θ is in radians, the unit of angular velocity is the radian per second (rad/s). Other units, such as the revolution per minute (rev/min or rpm), are often used. Since 1 rev = 2π rad, two useful conversions are

$$1 \text{ rev/s} = 2\pi \text{ rad/s}$$
 and $1 \text{ rev/min} = 1 \text{ rpm} = \frac{2\pi}{60} \text{ rad/s}$

That is, 1 rad/s is about 10 rpm.

9.4 A rigid body's average angular velocity (shown here) and instantaneous angular velocity can be positive or negative.

Axis of rotation (*z*-axis) passes through origin and points out of page.

Example 9.1 Calculating angular velocity

The angular position θ of a 0.36-m-diameter flywheel is given by

$$\theta = (2.0 \text{ rad/s}^3)t^3$$

(a) Find θ , in radians and in degrees, at $t_1 = 2.0$ s and $t_2 = 5.0$ s. (b) Find the distance that a particle on the flywheel rim moves over the time interval from $t_1 = 2.0$ s to $t_2 = 5.0$ s. (c) Find the average angular velocity, in rad/s and in rev/min, over that interval. (d) Find the instantaneous angular velocities at $t_1 = 2.0$ s and $t_2 = 5.0$ s.

SOLUTION

IDENTIFY and SET UP: We can find the target variables θ_1 (the angular position at time t_1), θ_2 (the angular position at time t_2), and the angular displacement $\Delta \theta = \theta_2 - \theta_1$ from the given expression. Knowing $\Delta \theta$, we'll find the distance traveled and the average angular velocity between t_1 and t_2 using Eqs. (9.1) and (9.2), respectively. To find the instantaneous angular velocities ω_{1z} (at time t_1) and ω_{2z} (at time t_2), we'll take the derivative of the given equation for θ with respect to time, as in Eq. (9.3).

EXECUTE: (a) We substitute the values of *t* into the equation for θ :

$$\theta_1 = (2.0 \text{ rad/s}^3)(2.0 \text{ s})^3 = 16 \text{ rad}$$
$$= (16 \text{ rad}) \frac{360^\circ}{2\pi \text{ rad}} = 920^\circ$$
$$\theta_2 = (2.0 \text{ rad/s}^3)(5.0 \text{ s})^3 = 250 \text{ rad}$$
$$= (250 \text{ rad}) \frac{360^\circ}{2\pi \text{ rad}} = 14,000^\circ$$

(b) During the interval from t_1 to t_2 the flywheel's angular displacement is $\Delta \theta = \theta_2 - \theta_1 = 250$ rad - 16 rad = 234 rad.

The radius r is half the diameter, or 0.18 m. To use Eq. (9.1), the angles *must* be expressed in radians:

$$s = r\theta_2 - r\theta_1 = r\Delta\theta = (0.18 \text{ m})(234 \text{ rad}) = 42 \text{ m}$$

We can drop "radians" from the unit for *s* because θ is a pure, dimensionless number; the distance *s* is measured in meters, the same as *r*.

(c) From Eq. (9.2),

$$\omega_{\text{av-}z} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{250 \text{ rad} - 16 \text{ rad}}{5.0 \text{ s} - 2.0 \text{ s}} = 78 \text{ rad/s}$$
$$= \left(78 \frac{\text{rad}}{\text{s}}\right) \left(\frac{1 \text{ rev}}{2\pi \text{ rad}}\right) \left(\frac{60 \text{ s}}{1 \text{ min}}\right) = 740 \text{ rev/min}$$

(d) From Eq. (9.3),

$$\omega_z = \frac{d\theta}{dt} = \frac{d}{dt} [(2.0 \text{ rad/s}^3)t^3] = (2.0 \text{ rad/s}^3)(3t^2)$$

= (6.0 rad/s^3)t^2

At times $t_1 = 2.0$ s and $t_2 = 5.0$ s we have

$$\omega_{1z} = (6.0 \text{ rad/s}^3)(2.0 \text{ s})^2 = 24 \text{ rad/s}$$

$$\omega_{2z} = (6.0 \text{ rad/s}^3)(5.0 \text{ s})^2 = 150 \text{ rad/s}$$

EVALUATE: The angular velocity $\omega_z = (6.0 \text{ rad/s}^3)t^2$ increases with time. Our results are consistent with this; the instantaneous angular velocity at the end of the interval ($\omega_{2z} = 150 \text{ rad/s}$) is greater than at the beginning ($\omega_{1z} = 24 \text{ rad/s}$), and the average angular velocity $\omega_{av-z} = 78 \text{ rad/s}$ over the interval is intermediate between these two values.

Angular Velocity As a Vector

As we have seen, our notation for the angular velocity ω_z about the z-axis is reminiscent of the notation v_x for the ordinary velocity along the x-axis (see Section 2.2). Just as v_x is the x-component of the velocity vector \vec{v} , ω_z is the z-component of an angular velocity vector $\vec{\omega}$ directed along the axis of rotation. As Fig. 9.5a shows, the direction of $\vec{\omega}$ is given by the right-hand rule that we used to define the vector

9.5 (a) The right-hand rule for the direction of the angular velocity vector $\vec{\omega}$. Reversing the direction of rotation reverses the direction of $\vec{\omega}$. (b) The sign of ω_z for rotation along the *z*-axis.

product in Section 1.10. If the rotation is about the z-axis, then $\vec{\omega}$ has only a z-component; this component is positive if $\vec{\omega}$ is along the positive z-axis and negative if $\vec{\omega}$ is along the negative z-axis (Fig. 9.5b).

The vector formulation is especially useful in situations in which the direction of the rotation axis *changes*. We'll examine such situations briefly at the end of Chapter 10. In this chapter, however, we'll consider only situations in which the rotation axis is fixed. Hence throughout this chapter we'll use "angular velocity" to refer to ω_z , the component of the angular velocity vector $\vec{\omega}$ along the axis.

Angular Acceleration

When the angular velocity of a rigid body changes, it has an *angular acceleration*. When you pedal your bicycle harder to make the wheels turn faster or apply the brakes to bring the wheels to a stop, you're giving the wheels an angular acceleration. You also impart an angular acceleration whenever you change the rotation speed of a piece of spinning machinery such as an automobile engine's crankshaft.

If ω_{1z} and ω_{2z} are the instantaneous angular velocities at times t_1 and t_2 , we define the **average angular acceleration** α_{av-z} over the interval $\Delta t = t_2 - t_1$ as the change in angular velocity divided by Δt (Fig. 9.6):

$$\alpha_{\text{av-}z} = \frac{\omega_{2z} - \omega_{1z}}{t_2 - t_1} = \frac{\Delta\omega_z}{\Delta t}$$
(9.4)

The instantaneous angular acceleration α_z is the limit of α_{av-z} as $\Delta t \rightarrow 0$:

(

$$\alpha_z = \lim_{\Delta t \to 0} \frac{\Delta \omega_z}{\Delta t} = \frac{d\omega_z}{dt} \qquad \text{(definition of angular acceleration)} \quad (9.5)$$

The usual unit of angular acceleration is the radian per second per second, or rad/s^2 . From now on we will use the term "angular acceleration" to mean the instantaneous angular acceleration rather than the average angular acceleration.

Because $\omega_z = d\theta/dt$, we can also express angular acceleration as the second derivative of the angular coordinate:

$$\alpha_z = \frac{d}{dt}\frac{d\theta}{dt} = \frac{d^2\theta}{dt^2}$$
(9.6)

You have probably noticed that we are using Greek letters for angular kinematic quantities: θ for angular position, ω_z for angular velocity, and α_z for angular acceleration. These are analogous to x for position, v_x for velocity, and α_x for acceleration, respectively, in straight-line motion. In each case, velocity is the rate of change of position with respect to time and acceleration is the rate of change of velocity with respect to time. We will sometimes use the terms "*linear* velocity" and "*linear* acceleration" for the familiar quantities we defined in Chapters 2 and 3 to distinguish clearly between these and the *angular* quantities introduced in this chapter.

In rotational motion, if the angular acceleration α_z is positive, then the angular velocity ω_z is increasing; if α_z is negative, then ω_z is decreasing. The rotation is speeding up if α_z and ω_z have the same sign and slowing down if α_z and ω_z have opposite signs. (These are exactly the same relationships as those between *linear* acceleration a_x and *linear* velocity v_x for straight-line motion; see Section 2.3.)

9.6 Calculating the average angular acceleration of a rotating rigid body.

The average angular acceleration is the change in angular velocity divided by the time interval:

Example 9.2 Calculating angular acceleration

For the flywheel of Example 9.1, (a) find the average angular acceleration between $t_1 = 2.0$ s and $t_2 = 5.0$ s. (b) Find the instantaneous angular accelerations at $t_1 = 2.0$ s and $t_2 = 5.0$ s.

SOLUTION

IDENTIFY and SET UP: We use Eq. (9.4) for the average angular acceleration α_{av-z} and Eq. (9.5) for the instantaneous angular acceleration α_z .

EXECUTE: (a) From Example 9.1, the values of ω_z at the two times are

$$\omega_{1z} = 24 \text{ rad/s}$$
 $\omega_{2z} = 150 \text{ rad/s}$

From Eq. (9.4), the average angular acceleration is

$$\alpha_{\text{av-z}} = \frac{150 \text{ rad/s} - 24 \text{ rad/s}}{5.0 \text{ s} - 2.0 \text{ s}} = 42 \text{ rad/s}^2$$

Angular Acceleration As a Vector

Just as we did for angular velocity, it's useful to define an angular acceleration *vector* $\vec{\alpha}$. Mathematically, $\vec{\alpha}$ is the time derivative of the angular velocity vector $\vec{\omega}$. If the object rotates around the fixed *z*-axis, then $\vec{\alpha}$ has only a *z*-component; the quantity α_z is just that component. In this case, $\vec{\alpha}$ is in the same direction as $\vec{\omega}$ if the rotation is speeding up and opposite to $\vec{\omega}$ if the rotation is slowing down (Fig. 9.7).

The angular acceleration vector will be particularly useful in Chapter 10 when we discuss what happens when the rotation axis can change direction. In this chapter, however, the rotation axis will always be fixed and we need use only the *z*-component α_z .

Test Your Understanding of Section 9.1

The figure shows a graph of ω_z and α_z versus time for a particular rotating body. (a) During which time intervals is the rotation speeding up? (i) 0 < t < 2 s; (ii) 2 s < t < 4 s; (iii) 4 s < t < 6 s. (b) During which time intervals is the rotation slowing down? (i) 0 < t < 2 s; (ii) 2 s < t < 4 s; (iii) 4 s < t < 6 s.

In Chapter 2 we found that straight-line motion is particularly simple when the acceleration is constant. This is also true of rotational motion about a fixed axis. When the angular acceleration is constant, we can derive equations for angular velocity and angular position using exactly the same procedure that we used for straight-line motion in Section 2.4. In fact, the equations we are about to derive are identical to Eqs. (2.8), (2.12), (2.13), and (2.14) if we replace x with θ , v_x with ω_z , and a_x with α_z . We suggest that you review Section 2.4 before continuing.

Let ω_{0z} be the angular velocity of a rigid body at time t = 0, and let ω_z be its angular velocity at any later time t. The angular acceleration α_z is constant and equal to the average value for any interval. Using Eq. (9.4) with the interval from 0 to t, we find

$$\alpha_z = \frac{\omega_z - \omega_{0z}}{t - 0} \qquad \text{or}$$

 $\omega_z = \omega_{0z} + \alpha_z t$ (constant angular acceleration only) (9.7)

(b) From Eq. (9.5), the value of α_z at any time t is

$$\alpha_z = \frac{d\omega_z}{dt} = \frac{d}{dt} [(6.0 \text{ rad/s}^3)(t^2)] = (6.0 \text{ rad/s}^3)(2t)$$
$$= (12 \text{ rad/s}^3)t$$

Hence

$$\alpha_{1z} = (12 \text{ rad/s}^3)(2.0 \text{ s}) = 24 \text{ rad/s}^2$$

$$\alpha_{2z} = (12 \text{ rad/s}^3)(5.0 \text{ s}) = 60 \text{ rad/s}^2$$

EVALUATE: Note that the angular acceleration is *not* constant in this situation. The angular velocity ω_z is always increasing because α_z is always positive. Furthermore, the rate at which the angular velocity increases is itself increasing, since α_z increases with time.

9.7 When the rotation axis is fixed, the angular acceleration and angular velocity vectors both lie along that axis.

Application Rotational Motion in Bacteria

Escherichia coli bacteria (about 2 μ m by 0.5 μ m) are found in the lower intestines of humans and other warm-blooded animals. The bacteria swim by rotating their long, corkscrew-shaped flagella, which act like the blades of a propeller. Each flagellum is powered by a remarkable protein motor at its base. The motor can rotate the flagellum at angular speeds from 200 to 1000 rev/min (about 20 to 100 rad/s) and can vary its speed to give the flagellum an angular acceleration.

The product $\alpha_z t$ is the total change in ω_z between t = 0 and the later time t; the angular velocity ω_z at time t is the sum of the initial value ω_{0z} and this total change.

With constant angular acceleration, the angular velocity changes at a uniform rate, so its average value between 0 and *t* is the average of the initial and final values:

$$\omega_{\text{av-}z} = \frac{\omega_{0z} + \omega_z}{2} \tag{9.8}$$

We also know that ω_{av-z} is the total angular displacement $(\theta - \theta_0)$ divided by the time interval (t - 0):

$$\omega_{\text{av-}z} = \frac{\theta - \theta_0}{t - 0} \tag{9.9}$$

When we equate Eqs. (9.8) and (9.9) and multiply the result by t, we get

θ

$$\theta - \theta_0 = \frac{1}{2}(\omega_{0z} + \omega_z)t$$
 (constant angular acceleration only) (9.10)

To obtain a relationship between θ and t that doesn't contain ω_z , we substitute Eq. (9.7) into Eq. (9.10):

$$\theta - \theta_0 = \frac{1}{2} [\omega_{0z} + (\omega_{0z} + \alpha_z t)]t \quad \text{or}$$

$$\theta = \theta_0 + \omega_{0z} t + \frac{1}{2} \alpha_z t^2 \quad \text{(constant angular acceleration only)} \quad (9.11)$$

That is, if at the initial time t = 0 the body is at angular position θ_0 and has angular velocity ω_{0z} , then its angular position θ at any later time t is the sum of three terms: its initial angular position θ_0 , plus the rotation $\omega_{0z}t$ it would have if the angular velocity were constant, plus an additional rotation $\frac{1}{2}\alpha_z t^2$ caused by the changing angular velocity.

Following the same procedure as for straight-line motion in Section 2.4, we can combine Eqs. (9.7) and (9.11) to obtain a relationship between θ and ω_z that does not contain *t*. We invite you to work out the details, following the same procedure we used to get Eq. (2.13). (See Exercise 9.12.) In fact, because of the perfect analogy between straight-line and rotational quantities, we can simply take Eq. (2.13) and replace each straight-line quantity by its rotational analog. We get

$$\omega_z^2 = \omega_{0z}^2 + 2\alpha_z(\theta - \theta_0)$$
 (constant angular acceleration only) (9.12)

CAUTION Constant angular acceleration Keep in mind that all of these results are valid *only* when the angular acceleration α_z is *constant;* be careful not to try to apply them to problems in which α_z is *not* constant. Table 9.1 shows the analogy between Eqs. (9.7), (9.10), (9.11), and (9.12) for fixed-axis rotation with constant angular acceleration and the corresponding equations for straight-line motion with constant linear acceleration.

Straight-Line Motion with Constant Linear Acceleration		Fixed-Axis Rotation with Constant Angular Acceleration	
$a_x = \text{constant}$		$\alpha_z = \text{constant}$	
$v_x = v_{0x} + a_x t$	(2.8)	$\omega_z = \omega_{0z} + \alpha_z t$	(9.7)
$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$	(2.12)	$\theta = \theta_0 + \omega_{0z}t + \frac{1}{2}\alpha_z t^2$	(9.11)
$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$	(2.13)	$\omega_z^2 = \omega_{0z}^2 + 2\alpha_z(\theta - \theta_0)$	(9.12)
$x - x_0 = \frac{1}{2}(v_{0x} + v_x)t$	(2.14)	$\theta - \theta_0 = \frac{1}{2}(\omega_{0z} + \omega_z)t$	(9.10)

Table 9.1 Comparison of Linear and Angular Motion with Constant Acceleration

Example 9.3 **Rotation with constant angular acceleration**

You have finished watching a movie on Blu-ray and the disc is slowing to a stop. The disc's angular velocity at t = 0 is 27.5 rad/s, and its angular acceleration is a constant -10.0 rad/s^2 . A line PQ on the disc's surface lies along the +x-axis at t = 0 (Fig. 9.8). (a) What is the disc's angular velocity at t = 0.300 s? (b) What angle does the line PQ make with the +x-axis at this time?

SOLUTION

IDENTIFY and SET UP: The angular acceleration of the disc is constant, so we can use any of the equations derived in this section (Table 9.1). Our target variables are the angular velocity ω_{z} and the angular displacement θ at t = 0.300 s. Given $\omega_{0z} = 27.5$ rad/s, $\theta_0 = 0$, and $\alpha_z = -10.0 \text{ rad/s}^2$, it's easiest to use Eqs. (9.7) and (9.11) to find the target variables.

9.8 A line PQ on a rotating Blu-ray disc at t = 0.

EXECUTE: (a) From Eq. (9.7), at
$$t = 0.300$$
 s we have

$$\omega_z = \omega_{0z} + \alpha_z t = 27.5 \text{ rad/s} + (-10.0 \text{ rad/s}^2)(0.300 \text{ s})$$

= 24.5 rad/s
(b) From Eq. (9.11),
$$\theta = \theta_0 + \omega_{0z} t + \frac{1}{2}\alpha_z t^2$$

= 0 + (27.5 rad/s)(0.300 s) + $\frac{1}{2}(-10.0 \text{ rad/s}^2)(0.300 \text{ s})^2$
= 7.80 rad = 7.80 rad $\left(\frac{1 \text{ rev}}{2\pi \text{ rad}}\right)$ = 1.24 rev

The disc has turned through one complete revolution plus an additional 0.24 revolution—that is, through 360° plus (0.24 rev) $(360^{\circ}/\text{rev}) = 87^{\circ}$. Hence the line PQ makes an angle of 87° with the +x-axis.

EVALUATE: Our answer to part (a) tells us that the disc's angular velocity has decreased, as it should since $\alpha_z < 0$. We can use our result for ω_z from part (a) with Eq. (9.12) to check our result for θ from part (b). To do so, we solve Eq. (9.12) for θ :

$$\omega_z^2 = \omega_{0z}^2 + 2\alpha_z(\theta - \theta_0)$$

$$\theta = \theta_0 + \left(\frac{\omega_z^2 - \omega_{0z}^2}{2\alpha_z}\right)$$

$$= 0 + \frac{(24.5 \text{ rad/s})^2 - (27.5 \text{ rad/s})^2}{2(-10.0 \text{ rad/s}^2)} = 7.80 \text{ rad}$$

This agrees with our previous result from part (b).

Test Your Understanding of Section 9.2 Suppose the disc in Example 9.3 was initially spinning at twice the rate (55.0 rad/s rather than 27.5 rad/s) and slowed down at twice the rate $(-20.0 \text{ rad/s}^2 \text{ rather than})$ -10.0 rad/s^2). (a) Compared to the situation in Example 9.3, how long would it take the disc to come to a stop? (i) the same amount of time; (ii) twice as much time; (iii) 4 times as much time; (iv) $\frac{1}{2}$ as much time; (v) $\frac{1}{4}$ as much time. (b) Compared to the situation in Example 9.3, through how many revolutions would the disc rotate before coming to a stop? (i) the same number of revolutions; (ii) twice as many revolutions; (iii) 4 times as many revolutions; (iv) $\frac{1}{2}$ as many revolutions; (v) $\frac{1}{4}$ as many revolutions.

9.3 Relating Linear and Angular Kinematics

How do we find the linear speed and acceleration of a particular point in a rotating rigid body? We need to answer this question to proceed with our study of rotation. For example, to find the kinetic energy of a rotating body, we have to start from $K = \frac{1}{2}mv^2$ for a particle, and this requires knowing the speed v for each particle in the body. So it's worthwhile to develop general relationships between the angular speed and acceleration of a rigid body rotating about a fixed axis and the *linear* speed and acceleration of a specific point or particle in the body.

Linear Speed in Rigid-Body Rotation

When a rigid body rotates about a fixed axis, every particle in the body moves in a circular path. The circle lies in a plane perpendicular to the axis and is centered on the axis. The speed of a particle is directly proportional to the body's angular

9.9 A rigid body rotating about a fixed axis through point *O*.

Mastering PHYSICS PhET: Ladybug Revolution

9.10 A rigid body whose rotation is speeding up. The acceleration of point *P* has a component a_{rad} toward the rotation axis (perpendicular to \vec{v}) and a component a_{tan} along the circle that point *P* follows (parallel to \vec{v}).

Radial and tangential acceleration components: • $a_{rad} = \omega^2 r$ is point *P*'s centripetal acceleration.

• $a_{tan} = r\alpha$ means that *P*'s rotation is speeding up (the body has angular acceleration).

velocity; the faster the body rotates, the greater the speed of each particle. In Fig. 9.9, point *P* is a constant distance *r* from the axis of rotation, so it moves in a circle of radius *r*. At any time, the angle θ (in radians) and the arc length *s* are related by

$$s = r\theta$$

We take the time derivative of this, noting that r is constant for any specific particle, and take the absolute value of both sides:

$$\left| \frac{ds}{dt} \right| = r \left| \frac{d\theta}{dt} \right|$$

Now |ds/dt| is the absolute value of the rate of change of arc length, which is equal to the instantaneous *linear* speed v of the particle. Analogously, $|d\theta/dt|$, the absolute value of the rate of change of the angle, is the instantaneous **angular** speed ω —that is, the magnitude of the instantaneous angular velocity in rad/s. Thus

 $v = r\omega$ (relationship between linear and angular speeds) (9.13)

The farther a point is from the axis, the greater its linear speed. The *direction* of the linear velocity *vector* is tangent to its circular path at each point (Fig. 9.9).

CAUTION Speed vs. velocity Keep in mind the distinction between the linear and angular speeds v and ω , which appear in Eq. (9.13), and the linear and angular velocities v_x and ω_z . The quantities without subscripts, v and ω , are never negative; they are the magnitudes of the vectors \vec{v} and $\vec{\omega}$, respectively, and their values tell you only how fast a particle is moving (v) or how fast a body is rotating (ω) . The corresponding quantities with subscripts, v_x and ω_z , can be either positive or negative; their signs tell you the direction of the motion.

Linear Acceleration in Rigid-Body Rotation

We can represent the acceleration of a particle moving in a circle in terms of its centripetal and tangential components, a_{rad} and a_{tan} (Fig. 9.10), as we did in Section 3.4. It would be a good idea to review that section now. We found that the **tangential component of acceleration** a_{tan} , the component parallel to the instantaneous velocity, acts to change the *magnitude* of the particle's velocity (i.e., the speed) and is equal to the rate of change of speed. Taking the derivative of Eq. (9.13), we find

$$a_{\text{tan}} = \frac{dv}{dt} = r\frac{d\omega}{dt} = r\alpha$$
 (tangential acceleration of
a point on a rotating body) (9.14)

This component of a particle's acceleration is always tangent to the circular path of the particle.

The quantity $\alpha = d\omega/dt$ in Eq. (9.14) is the rate of change of the angular *speed*. It is not quite the same as $\alpha_z = d\omega_z/dt$, which is the rate of change of the angular *velocity*. For example, consider a body rotating so that its angular velocity vector points in the -z-direction (see Fig. 9.5b). If the body is gaining angular speed at a rate of 10 rad/s per second, then $\alpha = 10 \text{ rad/s}^2$. But ω_z is negative and becoming more negative as the rotation gains speed, so $\alpha_z = -10 \text{ rad/s}^2$. The rule for rotation about a fixed axis is that α is equal to α_z if ω_z is positive but equal to $-\alpha_z$ if ω_z is negative.

The component of the particle's acceleration directed toward the rotation $rac{1}{2}$ axis, the **centripetal component of acceleration** a_{rad} , is associated with the

change of *direction* of the particle's velocity. In Section 3.4 we worked out the relationship $a_{rad} = v^2/r$. We can express this in terms of ω by using Eq. (9.13):

$$a_{\rm rad} = \frac{v^2}{r} = \omega^2 r$$
 (centripetal acceleration of
a point on a rotating body) (9.15)

This is true at each instant, *even when* ω *and* v *are not constant*. The centripetal component always points toward the axis of rotation.

The vector sum of the centripetal and tangential components of acceleration of a particle in a rotating body is the linear acceleration \vec{a} (Fig. 9.10).

CAUTION Use angles in radians in all equations It's important to remember that Eq. (9.1), $s = r\theta$, is valid *only* when θ is measured in radians. The same is true of any equation derived from this, including Eqs. (9.13), (9.14), and (9.15). When you use these equations, you *must* express the angular quantities in radians, not revolutions or degrees (Fig. 9.11).

Equations (9.1), (9.13), and (9.14) also apply to any particle that has the same tangential velocity as a point in a rotating rigid body. For example, when a rope wound around a circular cylinder unwraps without stretching or slipping, its speed and acceleration at any instant are equal to the speed and tangential acceleration of the point at which it is tangent to the cylinder. The same principle holds for situations such as bicycle chains and sprockets, belts and pulleys that turn without slipping, and so on. We will have several opportunities to use these relationships later in this chapter and in Chapter 10. Note that Eq. (9.15) for the centripetal component a_{rad} is applicable to the rope or chain *only* at points that are in contact with the cylinder or sprocket. Other points do not have the same acceleration toward the center of the circle that points on the cylinder or sprocket have.

Example 9.4 Throwing a discus

An athlete whirls a discus in a circle of radius 80.0 cm. At a certain instant, the athlete is rotating at 10.0 rad/s and the angular speed is increasing at 50.0 rad/s². At this instant, find the tangential and centripetal components of the acceleration of the discus and the magnitude of the acceleration.

SOLUTION

IDENTIFY and SET UP: We treat the discus as a particle traveling in a circular path (Fig. 9.12a), so we can use the ideas developed in this section. We are given r = 0.800 m, $\omega = 10.0$ rad/s, and $\alpha = 50.0$ rad/s² (Fig. 9.12b). We'll use Eqs. (9.14) and (9.15), respectively, to find the acceleration components a_{tan} and a_{rad} ; we'll then find the magnitude *a* using the Pythagorean theorem.

9.12 (a) Whirling a discus in a circle. (b) Our sketch showing the acceleration components for the discus.

In any equation that relates linear quantities to angular quantities, the angles MUST be expressed in radians ...

RIGHT! \triangleright $s = (\pi/3)r$... never in degrees or revolutions. **WRONG** \triangleright s = 50r

EXECUTE: From Eqs. (9.14) and (9.15),

$$a_{\text{tan}} = r\alpha = (0.800 \text{ m})(50.0 \text{ rad/s}^2) = 40.0 \text{ m/s}^2$$

 $a_{\text{rad}} = \omega^2 r = (10.0 \text{ rad/s})^2 (0.800 \text{ m}) = 80.0 \text{ m/s}^2$

Then

$$a = \sqrt{a_{\tan}^2 + a_{rad}^2} = 89.4 \text{ m/s}^2$$

EVALUATE: Note that we dropped the unit "radian" from our results for a_{tan} , a_{rad} , and a. We can do this because "radian" is a dimensionless quantity. Can you show that if the angular speed doubles to 20.0 rad/s while α remains the same, the acceleration magnitude a increases to 322 m/s²?

Example 9.5 Designing a propeller

You are designing an airplane propeller that is to turn at 2400 rpm (Fig. 9.13a). The forward airspeed of the plane is to be 75.0 m/s, and the speed of the tips of the propeller blades through the air must not exceed 270 m/s. (This is about 80% of the speed of sound in air. If the speed of the propeller tips were greater than this, they would produce a lot of noise.) (a) What is the maximum possible propeller radius? (b) With this radius, what is the acceleration of the propeller tip?

SOLUTION

IDENTIFY and SET UP: We consider a particle at the tip of the propeller; our target variables are the particle's distance from the axis and its acceleration. The speed of this particle through the air, which cannot exceed 270 m/s, is due to both the propeller's rotation and the forward motion of the airplane. Figure 9.13b shows that the particle's velocity \vec{v}_{tip} is the vector sum of its tangential velocity due to the propeller's rotation of magnitude $v_{tan} = \omega r$, given by Eq. (9.13), and the forward velocity of the airplane of magnitude $v_{plane} = 75.0 \text{ m/s}$. The propeller rotates in a plane perpendicular to the direction of flight, so \vec{v}_{tan} and \vec{v}_{plane} are perpendicular to each other, and we can use the Pythagorean theorem to obtain an expression for v_{tip} from v_{tan} and v_{plane} . We will then set $v_{tip} = 270 \text{ m/s}$ and solve for the radius *r*. The angular speed of the propeller is constant, so the acceleration of the propeller tip has only a radial component; we'll find it using Eq. (9.15).

EXECUTE: We first convert ω to rad/s (see Fig. 9.11):

$$\omega = 2400 \text{ rpm} = \left(2400 \frac{\text{rev}}{\text{min}}\right) \left(\frac{2\pi \text{ rad}}{1 \text{ rev}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right)$$
$$= 251 \text{ rad/s}$$

(a) From Fig. 9.13b and Eq. (9.13),

$$v_{\text{tip}}^{2} = v_{\text{plane}}^{2} + v_{\text{tan}}^{2} = v_{\text{plane}}^{2} + r^{2}\omega^{2}$$
 so
 $r^{2} = \frac{v_{\text{tip}}^{2} - v_{\text{plane}}^{2}}{\omega^{2}}$ and $r = \frac{\sqrt{v_{\text{tip}}^{2} - v_{\text{plane}}^{2}}}{\omega}$

If $v_{\rm tip} = 270$ m/s, the maximum propeller radius is

$$r = \frac{\sqrt{(270 \text{ m/s})^2 - (75.0 \text{ m/s})^2}}{251 \text{ rad/s}} = 1.03 \text{ m}$$

(b) The centripetal acceleration of the particle is

$$a_{\rm rad} = \omega^2 r = (251 \text{ rad/s})^2 (1.03 \text{ m})^2$$

= 6.5 × 10⁴ m/s² = 6600g

The tangential acceleration a_{rad} is zero because the angular speed is constant.

EVALUATE: From $\sum \vec{F} = m\vec{a}$, the propeller must exert a force of 6.5×10^4 N on each kilogram of material at its tip! This is why propellers are made out of tough material, usually aluminum alloy.

9.13 (a) A propeller-driven airplane in flight. (b) Our sketch showing the velocity components for the propeller tip.

Test Your Understanding of Section 9.3 Information is stored on a disc (see Fig. 9.8) in a coded pattern of tiny pits. The pits are arranged in a track that spirals outward toward the rim of the disc. As the disc spins inside a player, the track is scanned at a constant *linear* speed. How must the rotation speed of the disc change as the player's scanning head moves over the track? (i) The rotation speed must increase. (ii) The rotation speed must decrease. (iii) The rotation speed must stay the same.

9.4 Energy in Rotational Motion

A rotating rigid body consists of mass in motion, so it has kinetic energy. As we will see, we can express this kinetic energy in terms of the body's angular speed and a new quantity, called *moment of inertia*, that depends on the body's mass and how the mass is distributed.

To begin, we think of a body as being made up of a large number of particles, with masses m_1, m_2, \ldots at distances r_1, r_2, \ldots from the axis of rotation. We label the particles with the index *i*: The mass of the *i*th particle is m_i and its distance from the axis of rotation is r_i . The particles don't necessarily all lie in the same plane, so we specify that r_i is the *perpendicular* distance from the axis to the *i*th particle.

When a rigid body rotates about a fixed axis, the speed v_i of the *i*th particle is given by Eq. (9.13), $v_i = r_i \omega$, where ω is the body's angular speed. Different particles have different values of *r*, but ω is the same for all (otherwise, the body wouldn't be rigid). The kinetic energy of the *i*th particle can be expressed as

$$\frac{1}{2}m_iv_i^2 = \frac{1}{2}m_ir_i^2\omega^2$$

The *total* kinetic energy of the body is the sum of the kinetic energies of all its particles:

$$K = \frac{1}{2}m_1r_1^2\omega^2 + \frac{1}{2}m_2r_2^2\omega^2 + \cdots = \sum_i \frac{1}{2}m_ir_i^2\omega^2$$

Taking the common factor $\omega^2/2$ out of this expression, we get

$$K = \frac{1}{2} (m_1 r_1^2 + m_2 r_2^2 + \cdots) \omega^2 = \frac{1}{2} (\sum_i m_i r_i^2) \omega^2$$

The quantity in parentheses, obtained by multiplying the mass of each particle by the square of its distance from the axis of rotation and adding these products, is denoted by I and is called the **moment of inertia** of the body for this rotation axis:

$$I = m_1 r_1^2 + m_2 r_2^2 + \cdots = \sum_i m_i r_i^2 \qquad \text{(definition of moment of inertia)}$$
(9.16)

The word "moment" means that *I* depends on how the body's mass is distributed in space; it has nothing to do with a "moment" of time. For a body with a given rotation axis and a given total mass, the greater the distance from the axis to the particles that make up the body, the greater the moment of inertia. In a rigid body, the distances r_i are all constant and *I* is independent of how the body rotates around the given axis. The SI unit of moment of inertia is the kilogram-meter² (kg · m²).

In terms of moment of inertia I, the **rotational kinetic energy** K of a rigid body is

$$K = \frac{1}{2}I\omega^2$$
 (rotational kinetic energy of a rigid body) (9.17)

The kinetic energy given by Eq. (9.17) is *not* a new form of energy; it's simply the sum of the kinetic energies of the individual particles that make up the rotating rigid body. To use Eq. (9.17), ω must be measured in radians per second, not revolutions or degrees per second, to give *K* in joules. That's because we used $v_i = r_i \omega$ in our derivation.

Equation (9.17) gives a simple physical interpretation of moment of inertia: *The greater the moment of inertia, the greater the kinetic energy of a rigid body rotating with a given angular speed* ω . We learned in Chapter 6 that the kinetic energy of a body equals the amount of work done to accelerate that body from rest. So the greater a body's moment of inertia, the harder it is to start the body rotating if it's at rest and the harder it is to stop its rotation if it's already rotating (Fig. 9.14). For this reason, *I* is also called the *rotational inertia*.

The next example shows how *changing* the rotation axis can affect the value of *I*.

ActivPhysics 7.7: Rotational Inertia

Mastering PHYSICS

9.14 An apparatus free to rotate around a vertical axis. To vary the moment of inertia, the two equal-mass cylinders can be locked into different positions on the horizontal shaft.

· Mass close to axis

Example 9.6 Moments of inertia for different rotation axes

A machine part (Fig. 9.15) consists of three disks linked by lightweight struts. (a) What is this body's moment of inertia about an axis through the center of disk *A*, perpendicular to the plane of the diagram? (b) What is its moment of inertia about an axis through the centers of disks *B* and *C*? (c) What is the body's kinetic energy if it rotates about the axis through *A* with angular speed $\omega =$ 4.0 rad/s?

SOLUTION

IDENTIFY and SET UP: We'll consider the disks as massive particles located at the centers of the disks, and consider the struts as

9.15 An oddly shaped machine part.

massless. In parts (a) and (b), we'll use Eq. (9.16) to find the moments of inertia. Given the moment of inertia about axis *A*, we'll use Eq. (9.17) in part (c) to find the rotational kinetic energy.

EXECUTE: (a) The particle at point A lies *on* the axis through A, so its distance r from the axis is zero and it contributes nothing to the moment of inertia. Hence only B and C contribute, and Eq. (9.16) gives

$$I_A = \sum m_i r_i^2 = (0.10 \text{ kg})(0.50 \text{ m})^2 + (0.20 \text{ kg})(0.40 \text{ m})^2$$
$$= 0.057 \text{ kg} \cdot \text{m}^2$$

(b) The particles at *B* and *C* both lie on axis *BC*, so neither particle contributes to the moment of inertia. Hence only *A* contributes:

$$I_{BC} = \sum m_i r_i^2 = (0.30 \text{ kg})(0.40 \text{ m})^2 = 0.048 \text{ kg} \cdot \text{m}^2$$

(c) From Eq. (9.17),
$$K_A = \frac{1}{2} I_A \omega^2 = \frac{1}{2} (0.057 \text{ kg} \cdot \text{m}^2) (4.0 \text{ rad/s})^2 = 0.46 \text{ J}$$

EVALUATE: The moment of inertia about axis *A* is greater than that about axis *BC*. Hence of the two axes it's easier to make the machine part rotate about axis *BC*.

Application Moment of Inertia of a Bird's Wing

When a bird flaps its wings, it rotates the wings up and down around the shoulder. A hummingbird has small wings with a small moment of inertia, so the bird can make its wings move rapidly (up to 70 beats per second). By contrast, the Andean condor (*Vultur gryphus*) has immense wings that are hard to move due to their large moment of inertia. Condors flap their wings at about one beat per second on takeoff, but at most times prefer to soar while holding their wings steady.

CAUTION Moment of inertia depends on the choice of axis The results of parts (a) and (b) of Example 9.6 show that the moment of inertia of a body depends on the location and orientation of the axis. It's not enough to just say, "The moment of inertia of this body is $0.048 \text{ kg} \cdot \text{m}^2$." We have to be specific and say, "The moment of inertia of this body *about the axis through B and C* is 0.048 kg $\cdot \text{m}^2$."

In Example 9.6 we represented the body as several point masses, and we evaluated the sum in Eq. (9.16) directly. When the body is a *continuous* distribution of matter, such as a solid cylinder or plate, the sum becomes an integral, and we need to use calculus to calculate the moment of inertia. We will give several examples of such calculations in Section 9.6; meanwhile, Table 9.2 gives moments of inertia for several familiar shapes in terms of their masses and dimensions. Each body shown in Table 9.2 is *uniform;* that is, the density has the same value at all points within the solid parts of the body.

CAUTION Computing the moment of inertia You may be tempted to try to compute the moment of inertia of a body by assuming that all the mass is concentrated at the center of mass and multiplying the total mass by the square of the distance from the center of mass to the axis. Resist that temptation; it doesn't work! For example, when a uniform thin rod of length *L* and mass *M* is pivoted about an axis through one end, perpendicular to the rod, the moment of inertia is $I = ML^2/3$ [case (b) in Table 9.2]. If we took the mass as concentrated at the center, a distance L/2 from the axis, we would obtain the *incorrect* result $I = M(L/2)^2 = ML^2/4$.

Now that we know how to calculate the kinetic energy of a rotating rigid body, we can apply the energy principles of Chapter 7 to rotational motion. Here are some points of strategy and some examples.

Table 9.2 Moments of Inertia of Various Bodies

Problem-Solving Strategy 9.1 Rotational Energy

IDENTIFY *the relevant concepts:* You can use work–energy relationships and conservation of energy to find relationships involving the position and motion of a rigid body rotating around a fixed axis. The energy method is usually not helpful for problems that involve elapsed time. In Chapter 10 we'll see how to approach rotational problems of this kind.

SET UP *the problem* using Problem-Solving Strategy 7.1 (Section 7.1), with the following additions:

- 5. You can use Eqs. (9.13) and (9.14) in problems involving a rope (or the like) wrapped around a rotating rigid body, if the rope doesn't slip. These equations relate the linear speed and tangential acceleration of a point on the body to the body's angular velocity and angular acceleration. (See Examples 9.7 and 9.8.)
- 6. Use Table 9.2 to find moments of inertia. Use the parallel-axis theorem, Eq. (9.19) (to be derived in Section 9.5), to find

moments of inertia for rotation about axes parallel to those shown in the table.

EXECUTE *the solution:* Write expressions for the initial and final kinetic and potential energies K_1 , K_2 , U_1 , and U_2 and for the nonconservative work W_{other} (if any), where K_1 and K_2 must now include any rotational kinetic energy $K = \frac{1}{2}I\omega^2$. Substitute these expressions into Eq. (7.14), $K_1 + U_1 + W_{\text{other}} = K_2 + U_2$ (if non-conservative work is done), or Eq. (7.11), $K_1 + U_1 = K_2 + U_2$ (if only conservative work is done), and solve for the target variables. It's helpful to draw bar graphs showing the initial and final values of K, U, and E = K + U.

EVALUATE *your answer:* Check whether your answer makes physical sense.

Example 9.7 An unwinding cable I

We wrap a light, nonstretching cable around a solid cylinder of mass 50 kg and diameter 0.120 m, which rotates in frictionless bearings about a stationary horizontal axis (Fig. 9.16). We pull the free end of the cable with a constant 9.0-N force for a distance of 2.0 m; it turns the cylinder as it unwinds without slipping. The cylinder is initially at rest. Find its final angular speed and the final speed of the cable.

SOLUTION

IDENTIFY: We'll solve this problem using energy methods. We'll assume that the cable is massless, so only the cylinder has kinetic energy. There are no changes in gravitational potential energy. There is friction between the cable and the cylinder, but because the cable doesn't slip, there is no motion of the cable relative to the *Continued*

9.16 A cable unwinds from a cylinder (side view).

cylinder and no mechanical energy is lost in frictional work. Because the cable is massless, the force that the cable exerts on the cylinder rim is equal to the applied force F.

SET UP: Point 1 is when the cable begins to move. The cylinder starts at rest, so $K_1 = 0$. Point 2 is when the cable has moved a distance s = 2.0 m and the cylinder has kinetic energy $K_2 = \frac{1}{2}I\omega^2$. One of our target variables is ω ; the other is the speed of the cable at point 2, which is equal to the tangential speed v of the cylinder at that point. We'll use Eq. (9.13) to find v from ω .

Example 9.8 An unwinding cable II

We wrap a light, nonstretching cable around a solid cylinder with mass M and radius R. The cylinder rotates with negligible friction about a stationary horizontal axis. We tie the free end of the cable to a block of mass m and release the block from rest at a distance h above the floor. As the block falls, the cable unwinds without stretching or slipping. Find expressions for the speed of the falling block and the angular speed of the cylinder as the block strikes the floor.

SOLUTION

IDENTIFY: As in Example 9.7, the cable doesn't slip and so friction does no work. We assume that the cable is massless, so that the

9.17 Our sketches for this problem.

EXECUTE: The work done on the cylinder is $W_{\text{other}} = Fs = (9.0 \text{ N})(2.0 \text{ m}) = 18 \text{ J}$. From Table 9.2 the moment of inertia is

$$I = \frac{1}{2}mR^2 = \frac{1}{2}(50 \text{ kg})(0.060 \text{ m})^2 = 0.090 \text{ kg} \cdot \text{m}^2$$

(The radius *R* is half the diameter.) From Eq. (7.14), $K_1 + U_1 + W_{\text{other}} = K_2 + U_2$, so

$$0 + 0 + W_{\text{other}} = \frac{1}{2}I\omega^2 + 0$$

$$\omega = \sqrt{\frac{2W_{\text{other}}}{I}} = \sqrt{\frac{2(18 \text{ J})}{0.090 \text{ kg} \cdot \text{m}^2}} = 20 \text{ rad/s}$$

From Eq. (9.13), the final tangential speed of the cylinder, and hence the final speed of the cable, is

 $v = R\omega = (0.060 \text{ m})(20 \text{ rad/s}) = 1.2 \text{ m/s}$

EVALUATE: If the cable mass is not negligible, some of the 18 J of work would go into the kinetic energy of the cable. Then the cylinder would have less kinetic energy and a lower angular speed than we calculated here.

forces it exerts on the cylinder and the block have equal magnitudes. At its upper end the force and displacement are in the same direction, and at its lower end they are in opposite directions, so the cable does no *net* work and $W_{\text{other}} = 0$. Only gravity does work, and mechanical energy is conserved.

SET UP: Figure 9.17a shows the situation before the block begins to fall (point 1). The initial kinetic energy is $K_1 = 0$. We take the gravitational potential energy to be zero when the block is at floor level (point 2), so $U_1 = mgh$ and $U_2 = 0$. (We ignore the gravitational potential energy for the rotating cylinder, since its height doesn't change.) Just before the block hits the floor (Fig. 9.17b), both the block and the cylinder have kinetic energy, so

$$K_2 = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

The moment of inertia of the cylinder is $I = \frac{1}{2}MR^2$. Also, $v = R\omega$ since the speed of the falling block must be equal to the tangential speed at the outer surface of the cylinder.

EXECUTE: We use our expressions for K_1 , U_1 , K_2 , and U_2 and the relationship $\omega = v/R$ in Eq. (7.4), $K_1 + U_1 = K_2 + U_2$, and solve for v:

$$0 + mgh = \frac{1}{2}mv^{2} + \frac{1}{2}\left(\frac{1}{2}MR^{2}\right)\left(\frac{v}{R}\right)^{2} + 0 = \frac{1}{2}\left(m + \frac{1}{2}M\right)v^{2}$$
$$v = \sqrt{\frac{2gh}{1 + M/2m}}$$

The final angular speed of the cylinder is $\omega = v/R$.

EVALUATE: When *M* is much larger than *m*, *v* is very small; when *M* is much smaller than *m*, *v* is nearly equal to $\sqrt{2gh}$, the speed of a body that falls freely from height *h*. Both of these results are as we would expect.

Gravitational Potential Energy for an Extended Body

In Example 9.8 the cable was of negligible mass, so we could ignore its kinetic energy as well as the gravitational potential energy associated with it. If the mass is *not* negligible, we need to know how to calculate the *gravitational potential energy* associated with such an extended body. If the acceleration of gravity g is the same at all points on the body, the gravitational potential energy is the same as though all the mass were concentrated at the center of mass of the body. Suppose we take the y-axis vertically upward. Then for a body with total mass M, the gravitational potential energy U is simply

$$U = Mgy_{cm}$$
 (gravitational potential energy for an extended body) (9.18)

where y_{cm} is the y-coordinate of the center of mass. This expression applies to any extended body, whether it is rigid or not (Fig. 9.18).

To prove Eq. (9.18), we again represent the body as a collection of mass elements m_i . The potential energy for element m_i is $m_i g y_i$, so the total potential energy is

$$U = m_1 g y_1 + m_2 g y_2 + \dots = (m_1 y_1 + m_2 y_2 + \dots) g$$

But from Eq. (8.28), which defines the coordinates of the center of mass,

$$m_1y_1 + m_2y_2 + \cdots = (m_1 + m_2 + \cdots)y_{\rm cm} = My_{\rm cm}$$

where $M = m_1 + m_2 + \cdots$ is the total mass. Combining this with the above expression for U, we find $U = Mgy_{cm}$ in agreement with Eq. (9.18).

We leave the application of Eq. (9.18) to the problems. We'll make use of this relationship in Chapter 10 in the analysis of rigid-body problems in which the axis of rotation moves.

Test Your Understanding of Section 9.4 Suppose the cylinder and block in Example 9.8 have the same mass, so m = M. Just before the block strikes the floor, which statement is correct about the relationship between the kinetic energy of the falling block and the rotational kinetic energy of the cylinder? (i) The block has more kinetic energy than the cylinder. (ii) The block has less kinetic energy than the cylinder have equal amounts of kinetic energy.

9.5 Parallel-Axis Theorem

We pointed out in Section 9.4 that a body doesn't have just one moment of inertia. In fact, it has infinitely many, because there are infinitely many axes about which it might rotate. But there is a simple relationship between the moment of inertia I_{cm} of a body of mass M about an axis through its center of mass and the moment of inertia I_P about any other axis parallel to the original one but displaced from it by a distance d. This relationship, called the **parallel-axis theorem**, states that

$$I_P = I_{\rm cm} + Md^2$$
 (parallel-axis theorem) (9.19)

To prove this theorem, we consider two axes, both parallel to the *z*-axis: one through the center of mass and the other through a point *P* (Fig. 9.19). First we take a very thin slice of the body, parallel to the *xy*-plane and perpendicular to the *z*-axis. We take the origin of our coordinate system to be at the center of mass of the body; the coordinates of the center of mass are then $x_{cm} = y_{cm} = z_{cm} = 0$. The axis through the center of mass passes through this thin slice at point *O*, and the parallel axis passes through point *P*, whose *x*- and *y*-coordinates are (a, b). The distance of this axis from the axis through the center of mass is *d*, where $d^2 = a^2 + b^2$.

9.18 In a technique called the "Fosbury flop" after its innovator, this athlete arches her body as she passes over the bar in the high jump. As a result, her center of mass actually passes *under* the bar. This technique requires a smaller increase in gravitational potential energy [Eq. (9.18)] than the older method of straddling the bar.

9.19 The mass element m_i has coordinates (x_i, y_i) with respect to an axis of rotation through the center of mass (cm) and coordinates $(x_i - a, y_i - b)$ with respect to the parallel axis through point *P*.

Axis of rotation passing through cm and perpendicular to the plane of the figure

We can write an expression for the moment of inertia I_P about the axis through point *P*. Let m_i be a mass element in our slice, with coordinates (x_i, y_i, z_i) . Then the moment of inertia I_{cm} of the slice about the axis through the center of mass (at *O*) is

$$I_{\rm cm} = \sum_{i} m_i (x_i^2 + y_i^2)$$

The moment of inertia of the slice about the axis through P is

$$I_P = \sum_{i} m_i [(x_i - a)^2 + (y_i - b)^2]$$

These expressions don't involve the coordinates z_i measured perpendicular to the slices, so we can extend the sums to include *all* particles in *all* slices. Then I_P becomes the moment of inertia of the *entire* body for an axis through *P*. We then expand the squared terms and regroup, and obtain

$$I_P = \sum_{i} m_i (x_i^2 + y_i^2) - 2a \sum_{i} m_i x_i - 2b \sum_{i} m_i y_i + (a^2 + b^2) \sum_{i} m_i$$

The first sum is I_{cm} . From Eq. (8.28), the definition of the center of mass, the second and third sums are proportional to x_{cm} and y_{cm} ; these are zero because we have taken our origin to be the center of mass. The final term is d^2 multiplied by the total mass, or Md^2 . This completes our proof that $I_P = I_{cm} + Md^2$.

As Eq. (9.19) shows, a rigid body has a lower moment of inertia about an axis through its center of mass than about any other parallel axis. Thus it's easier to start a body rotating if the rotation axis passes through the center of mass. This suggests that it's somehow most natural for a rotating body to rotate about an axis through its center of mass; we'll make this idea more quantitative in Chapter 10.

Example 9.9 Using the parallel-axis theorem

A part of a mechanical linkage (Fig. 9.20) has a mass of 3.6 kg. Its moment of inertia I_P about an axis 0.15 m from its center of mass is $I_P = 0.132 \text{ kg} \cdot \text{m}^2$. What is the moment of inertia I_{cm} about a parallel axis through the center of mass?

9.20 Calculating I_{cm} from a measurement of I_P .

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We'll determine the target variable $I_{\rm cm}$ using the parallel-axis theorem, Eq. (9.19). Rearranging the equation, we obtain

$$I_{\rm cm} = I_P - Md^2 = 0.132 \text{ kg} \cdot \text{m}^2 - (3.6 \text{ kg})(0.15 \text{ m})^2$$

= 0.051 kg \cdot m^2

EVALUATE: As we expect, I_{cm} is less than I_P ; the moment of inertia for an axis through the center of mass is lower than for any other parallel axis.

Test Your Understanding of Section 9.5 A pool cue is a wooden rod with a uniform composition and tapered with a larger diameter at one end than at the other end. Use the parallel-axis theorem to decide whether a pool cue has a larger moment of inertia (i) for an axis through the thicker end of the rod and perpendicular to the length of the rod, or (ii) for an axis through the thinner end of the rod and perpendicular to the length of the rod.

9.6 Moment-of-Inertia Calculations

If a rigid body is a continuous distribution of mass—like a solid cylinder or a solid sphere—it cannot be represented by a few point masses. In this case the *sum* of masses and distances that defines the moment of inertia [Eq. (9.16)]

becomes an *integral*. Imagine dividing the body into elements of mass dm that are very small, so that all points in a particular element are at essentially the same perpendicular distance from the axis of rotation. We call this distance r, as before. Then the moment of inertia is

$$I = \int r^2 \, dm \tag{9.20}$$

To evaluate the integral, we have to represent *r* and *dm* in terms of the same integration variable. When the object is effectively one-dimensional, such as the slender rods (a) and (b) in Table 9.2, we can use a coordinate *x* along the length and relate *dm* to an increment *dx*. For a three-dimensional object it is usually easiest to express *dm* in terms of an element of volume *dV* and the *density* ρ of the body. Density is mass per unit volume, $\rho = dm/dV$, so we may also write Eq. (9.20) as

$$I = \int r^2 \rho \, dV$$

This expression tells us that a body's moment of inertia depends on how its density varies within its volume (Fig. 9.21). If the body is uniform in density, then we may take ρ outside the integral:

$$I = \rho \int r^2 \, dV \tag{9.21}$$

To use this equation, we have to express the volume element dV in terms of the differentials of the integration variables, such as $dV = dx \, dy \, dz$. The element dV must always be chosen so that all points within it are at very nearly the same distance from the axis of rotation. The limits on the integral are determined by the shape and dimensions of the body. For regularly shaped bodies, this integration is often easy to do.

Example 9.10 Hollow or solid cylinder, rotating about axis of symmetry

Figure 9.22 shows a hollow cylinder of uniform mass density ρ with length *L*, inner radius R_1 , and outer radius R_2 . (It might be a steel cylinder in a printing press.) Using integration, find its moment of inertia about its axis of symmetry.

SOLUTION

IDENTIFY and SET UP: We choose as a volume element a thin cylindrical shell of radius r, thickness dr, and length L. All parts of this shell are at very nearly the same distance r from the axis. The volume of the shell is very nearly that of a flat sheet with thickness dr, length L, and width $2\pi r$ (the circumference of the shell). The mass of the shell is

$$dm = \rho \ dV = \rho (2\pi rL \ dr)$$

We'll use this expression in Eq. (9.20), integrating from $r = R_1$ to $r = R_2$.

EXECUTE: From Eq. (9.20), the moment of inertia is

$$I = \int r^2 dm = \int_{R_1}^{R_2} r^2 \rho(2\pi rL dr)$$

= $2\pi\rho L \int_{R_1}^{R_2} r^3 dr$
= $\frac{2\pi\rho L}{4} (R_2^4 - R_1^4)$
= $\frac{\pi\rho L}{2} (R_2^2 - R_1^2) (R_2^2 + R_1^2)$

9.22 Finding the moment of inertia of a hollow cylinder about its symmetry axis.

(In the last step we used the identity $a^2 - b^2 = (a - b)(a + b)$.) Let's express this result in terms of the total mass *M* of the body, which is its density ρ multiplied by the total volume *V*. The cylinder's volume is

$$V = \pi L (R_2^2 - R_1^2)$$

so its total mass M is

$$M = \rho V = \pi L \rho (R_2^2 - R_1^2)$$

9.21 By measuring small variations in the orbits of satellites, geophysicists can measure the earth's moment of inertia. This tells us how our planet's mass is distributed within its interior. The data show that the earth is far denser at the core than in its outer layers.

Continued

Comparing with the above expression for *I*, we see that

$$I = \frac{1}{2}M(R_1^2 + R_2^2)$$

EVALUATE: Our result agrees with Table 9.2, case (e). If the cylinder is solid, with outer radius $R_2 = R$ and inner radius $R_1 = 0$, its moment of inertia is

$$I = \frac{1}{2}MR^2$$

in agreement with case (f). If the cylinder wall is very thin, we have $R_1 \approx R_2 = R$ and the moment of inertia is

$$I = MR^2$$

in agreement with case (g). We could have predicted this last result without calculation; in a thin-walled cylinder, all the mass is at the same distance r = R from the axis, so $I = \int r^2 dm = R^2 \int dm = MR^2$.

Example 9.11 Uniform sphere with radius *R*, axis through center

Find the moment of inertia of a solid sphere of uniform mass density ρ (like a billiard ball) about an axis through its center.

SOLUTION

IDENTIFY and SET UP: We divide the sphere into thin, solid disks of thickness dx (Fig. 9.23), whose moment of inertia we know from Table 9.2, case (f). We'll integrate over these to find the total moment of inertia.

EXECUTE: The radius and hence the volume and mass of a disk depend on its distance x from the center of the sphere. The radius r of the disk shown in Fig. 9.23 is

$$r = \sqrt{R^2 - x^2}$$

Its volume is

$$dV = \pi r^2 dx = \pi (R^2 - x^2) dx$$

9.23 Finding the moment of inertia of a sphere about an axis through its center.

and so its mass is

$$dm = \rho \ dV = \pi \rho (R^2 - x^2) \ dx$$

From Table 9.2, case (f), the moment of inertia of a disk of radius r and mass dm is

$$dI = \frac{1}{2}r^2 dm = \frac{1}{2}(R^2 - x^2)[\pi\rho(R^2 - x^2) dx]$$
$$= \frac{\pi\rho}{2}(R^2 - x^2)^2 dx$$

Integrating this expression from x = 0 to x = R gives the moment of inertia of the right hemisphere. The total *I* for the entire sphere, including both hemispheres, is just twice this:

$$I = (2)\frac{\pi\rho}{2} \int_0^R (R^2 - x^2)^2 \, dx$$

Carrying out the integration, we find

$$I = \frac{8\pi\rho R^5}{15}$$

The volume of the sphere is $V = 4\pi R^3/3$, so in terms of its mass *M* its density is

$$\rho = \frac{M}{V} = \frac{3M}{4\pi R^3}$$

Hence our expression for I becomes

$$I = \left(\frac{8\pi R^5}{15}\right) \left(\frac{3M}{4\pi R^3}\right) = \frac{2}{5}MR^2$$

EVALUATE: This is just as in Table 9.2, case (h). Note that the moment of inertia $I = \frac{2}{5}MR^2$ of a solid sphere of mass *M* and radius *R* is less than the moment of inertia $I = \frac{1}{2}MR^2$ of a solid *cylinder* of the same mass and radius, because more of the sphere's mass is located close to the axis.

Test Your Understanding of Section 9.6 Two hollow cylinders have the same inner and outer radii and the same mass, but they have different lengths. One is made of low-density wood and the other of high-density lead. Which cylinder has the greater moment of inertia around its axis of symmetry? (i) the wood cylinder; (ii) the lead cylinder; (iii) the two moments of inertia are equal.

CHAPTER 9 SUMMARY

Rotational kinematics: When a rigid body rotates about a stationary axis (usually called the *z*-axis), its position is described by an angular coordinate θ . The angular velocity ω_z is the time derivative of θ , and the angular acceleration α_z is the time derivative of ω_z or the second derivative of θ . (See Examples 9.1 and 9.2.) If the angular acceleration is constant, then θ , ω_z , and α_z are related by simple kinematic equations analogous to those for straight-line motion with constant linear acceleration. (See Example 9.3.)

$$\omega_{z} = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$
(9.3)

$$\alpha_{z} = \lim_{\Delta t \to 0} \frac{\Delta \omega_{z}}{\Delta t} = \frac{d\omega_{z}}{dt} = \frac{d^{2}\theta}{dt^{2}}$$
(9.5), (9.6)

$$\theta = \theta_{0} + \omega_{0z}t + \frac{1}{2}\alpha_{z}t^{2}$$
(9.11)
(constant α_{z} only)

$$\theta - \theta_{0} = \frac{1}{2}(\omega_{0z} + \omega_{z})t$$
(9.10)
(constant α_{z} only)

$$\omega_{z} = \omega_{0z} + \alpha_{z}t$$
(9.7)
(constant α_{z} only)

$$\omega_{z}^{2} = \omega_{0z}^{2} + 2\alpha_{z}(\theta - \theta_{0})$$
(9.12)
(constant α_{z} only)

 $\omega_z = \frac{d\theta}{dt} \qquad y \qquad \alpha_z = \frac{d\omega_z}{dt}$ At t_2 At t_1 At t_2 At t_2 At t_1 At t_2 At t

Relating linear and angular kinematics: The angular speed ω of a rigid body is the magnitude of its angular velocity. The rate of change of ω is $\alpha = d\omega/dt$. For a particle in the body a distance *r* from the rotation axis, the speed *v* and the components of the acceleration \vec{a} are related to ω and α . (See Examples 9.4 and 9.5.)

$$v = r\omega$$
(9.13)
$$a_{tan} = \frac{dv}{dt} = r\frac{d\omega}{dt} = r\alpha$$
(9.14)
$$a_{rad} = \frac{v^2}{r} = \omega^2 r$$
(9.15)

Moment of inertia and rotational kinetic energy: The moment of inertia *I* of a body about a given axis is a measure of its rotational inertia: The greater the value of *I*, the more difficult it is to change the state of the body's rotation. The moment of inertia can be expressed as a sum over the particles m_i that make up the body, each of which is at its own perpendicular distance r_i from the axis. The rotational kinetic energy of a rigid body rotating about a fixed axis depends on the angular speed ω and the moment of inertia *I* for that rotation axis. (See Examples 9.6–9.8.)

Calculating the moment of inertia: The parallel-axis theorem relates the moments of inertia of a rigid body of mass M about two parallel axes: an axis through the center of mass (moment of inertia I_{cm}) and a parallel axis a distance d from the first axis (moment of inertia I_P). (See Example 9.9.) If the body has a continuous mass distribution, the moment of inertia can be calculated by integration. (See Examples 9.10 and 9.11.)

$$= m_1 r_1^{2} + m_2 r_2^{2} + \cdots$$

= $\sum_{i} m_i r_i^{2}$
= $\frac{1}{2} I \omega^{2}$

 $I_P = I_{\rm cm} + Md^2$

(9.19)

K

BRIDGING PROBLEM A Rotating, Uniform Thin Rod

Figure 9.24 shows a slender uniform rod with mass M and length L. It might be a baton held by a twirler in a marching band (less the rubber end caps). (a) Use integration to compute its moment of inertia about an axis through O, at an arbitrary distance h from one end. (b) Initially the rod is at rest. It is given a constant angular acceleration of magnitude α around the axis through O. Find how much work is done on the rod in a time t. (c) At time t, what is the *linear* acceleration of the point on the rod farthest from the axis?

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution.

IDENTIFY and **SET UP**

- 1. Make a list of the target variables for this problem.
- 2. To calculate the moment of inertia of the rod, you'll have to divide the rod into infinitesimal elements of mass. If an element has length *dx*, what is the mass of the element? What are the limits of integration?
- 3. What is the angular speed of the rod at time *t*? How does the work required to accelerate the rod from rest to this angular speed compare to the rod's kinetic energy at time *t*?
- 4. At time *t*, does the point on the rod farthest from the axis have a centripetal acceleration? A tangential acceleration? Why or why not?

9.24 A thin rod with an axis through *O*.

EXECUTE

- 5. Do the integration required to find the moment of inertia.
- 6. Use your result from step 5 to calculate the work done in time *t* to accelerate the rod from rest.
- 7. Find the linear acceleration components for the point in question at time *t*. Use these to find the magnitude of the acceleration.

EVALUATE

- 8. Check your results for the special cases h = 0 (the axis passes through one end of the rod) and h = L/2 (the axis passes through the middle of the rod). Are these limits consistent with Table 9.2? With the parallel-axis theorem?
- 9. Is the acceleration magnitude from step 7 constant? Would you expect it to be?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q9.1 Which of the following formulas is valid if the angular acceleration of an object is *not* constant? Explain your reasoning in each case. (a) $v = r\omega$; (b) $a_{tan} = r\alpha$; (c) $\omega = \omega_0 + \alpha t$; (d) $a_{tan} = r\omega^2$; (e) $K = \frac{1}{2}I\omega^2$.

Q9.2 A diatomic molecule can be modeled as two point masses, m_1 and m_2 , slightly separated (Fig. Q9.2). If the molecule is oriented along the y-axis, it has kinetic energy K when it spins about the x-axis. What will its kinetic energy (in terms of K) be if it spins at the same angular speed about (a) the z-axis and (b) the y-axis?

Figure Q9.2

Q9.3 What is the difference between tangential and radial acceleration for a point on a rotating body?

Q9.4 In Fig. Q9.4, all points on the chain have the same linear speed. Is the magnitude of the linear acceleration also the same for all points on the chain? How are the angular accelerations of the two sprockets related? Explain.

Q9.5 In Fig. Q9.4, how are the radial accelerations of points at the teeth of the two sprockets related? Explain the reasoning behind your answer.
Q9.6 A flywheel rotates with constant angular velocity. Does a point on its rim have a tangential acceleration? A radial acceleration? Are these accelerations constant in magnitude? In direction? In each case give the reasoning behind your answer.

Q9.7 What is the purpose of the spin cycle of a washing machine? Explain in terms of acceleration components.

Q9.8 Although angular velocity and angular acceleration can be treated as vectors, the angular displacement θ , despite having a magnitude and a direction, cannot. This is because θ does not follow the commutative law of vector addition (Eq. 1.3). Prove this to yourself in the following way: Lay your physics textbook flat on the desk in front of you with the cover side up so you can read the writing on it. Rotate it through 90° about a horizontal axis so that the farthest edge comes toward you. Call this angular displacement θ_1 . Then rotate it by 90° about a vertical axis so that the left edge comes toward you. Call this angular displacement θ_2 . The spine of the book should now face you, with the writing on it oriented so that you can read it. Now start over again but carry out the two rotations in the reverse order. Do you get a different result? That is, does $\theta_1 + \theta_2$ equal $\theta_2 + \theta_1$? Now repeat this experiment but this time with an angle of 1° rather than 90°. Do you think that the infinitesimal displacement $d\vec{\theta}$ obeys the commutative law of addition and hence qualifies as a vector? If so, how is the direction of $d\boldsymbol{\theta}$ related to the direction of $\vec{\boldsymbol{\omega}}$?

Q9.9 Can you think of a body that has the same moment of inertia for all possible axes? If so, give an example, and if not, explain why this is not possible. Can you think of a body that has the same moment of inertia for all axes passing through a certain point? If so, give an example and indicate where the point is located.

Q9.10 To maximize the moment of inertia of a flywheel while minimizing its weight, what shape and distribution of mass should it have? Explain.

Q9.11 How might you determine experimentally the moment of inertia of an irregularly shaped body about a given axis?

Q9.12 A cylindrical body has mass M and radius R. Can the mass be distributed within the body in such a way that its moment of inertia about its axis of symmetry is greater than MR^2 ? Explain.

Q9.13 Describe how you could use part (b) of Table 9.2 to derive the result in part (d).

Q9.14 A hollow spherical shell of radius R that is rotating about an axis through its center has rotational kinetic energy K. If you want to modify this sphere so that it has three times as much kinetic energy at the same angular speed while keeping the same mass, what should be its radius in terms of R?

Q9.15 For the equations for *I* given in parts (a) and (b) of Table 9.2 to be valid, must the rod have a circular cross section? Is there any restriction on the size of the cross section for these equations to apply? Explain.

Q9.16 In part (d) of Table 9.2, the thickness of the plate must be much less than a for the expression given for I to apply. But in part (c), the expression given for I applies no matter how thick the plate is. Explain.

Q9.17 Two identical balls, A and B, are each attached to very light string, and each string is wrapped around the rim of a frictionless pulley of mass M. The only difference is that the pulley for ball A is a solid disk, while the one for ball B is a hollow disk, like part (e) in Table 9.2. If both balls are released from rest and fall the same distance, which one will have more kinetic energy, or will they have the same kinetic energy? Explain your reasoning.

Q9.18 An elaborate pulley consists of four identical balls at the ends of spokes extending out from a rotating drum (Fig. Q9.18). A box is connected to a light thin rope wound around the rim of the drum. When it is released from rest, the box acquires a speed V after having fallen a distance d. Now the four balls are moved inward closer to the drum, and the box is again released from rest. After it has fallen a distance d, will its speed be equal to V, greater than V, or less than V? Show or explain why.

Q9.19 You can use any angular measure—radians, degrees, or revolutions—in some of the equations in Chapter 9, but you can use only radian measure in others. Identify those for which using radians is necessary and those for which it is not, and in each case give the reasoning behind your answer.

Q9.20 When calculating the moment of inertia of an object, can we treat all its mass as if it were concentrated at the center of mass of the object? Justify your answer.

Q9.21 A wheel is rotating about an axis perpendicular to the plane of the wheel and passing through the center of the wheel. The angular speed of the wheel is increasing at a constant rate. Point A is on the rim of the wheel and point B is midway between the rim and center of the wheel. For each of the following quantities, is its magnitude larger at point A or at point B, or is it the same at both points? (a) angular speed; (b) tangential speed; (c) angular acceleration; (d) tangential acceleration; (e) radial acceleration. Justify each of your answers.

Q9.22 Estimate your own moment of inertia about a vertical axis through the center of the top of your head when you are standing up straight with your arms outstretched. Make reasonable approximations and measure or estimate necessary quantities.

EXERCISES

Section 9.1 Angular Velocity and Acceleration

9.1 • (a) What angle in radians is subtended by an arc 1.50 m long on the circumference of a circle of radius 2.50 m? What is this angle in degrees? (b) An arc 14.0 cm long on the circumference of a circle subtends an angle of 128°. What is the radius of the circle? (c) The angle between two radii of a circle with radius 1.50 m is 0.700 rad. What length of arc is intercepted on the circumference of the circle by the two radii?

9.2 • An airplane propeller is rotating at 1900 rpm (rev/min). (a) Compute the propeller's angular velocity in rad/s. (b) How many seconds does it take for the propeller to turn through 35°?

9.3 • CP CALC The angular velocity of a flywheel obeys the equation $\omega_z(t) = A + Bt^2$, where t is in seconds and A and B are constants having numerical values 2.75 (for A) and 1.50 (for B). (a) What are the units of A and B if ω_z is in rad/s? (b) What is the angular acceleration of the wheel at (i) t = 0.00 and (ii) t = 5.00 s? (c) Through what angle does the flywheel turn during the first 2.00 s? (*Hint:* See Section 2.6.)

9.4 •• CALC A fan blade rotates with angular velocity given by $\omega_z(t) = \gamma - \beta t^2$, where $\gamma = 5.00 \text{ rad/s}$ and $\beta = 0.800 \text{ rad/s}^3$. (a) Calculate the angular acceleration as a function of time. (b) Calculate the instantaneous angular acceleration α_z at t = 3.00 s and the average angular acceleration α_{av-z} for the time interval t = 0 to t = 3.00 s. How do these two quantities compare? If they are different, why are they different?

9.5 •• **CALC** A child is pushing a merry-go-round. The angle through which the merry-go-round has turned varies with time according to $\theta(t) = \gamma t + \beta t^3$, where $\gamma = 0.400$ rad/s and $\beta = 0.0120$ rad/s³. (a) Calculate the angular velocity of the merry-go-round as a function of time. (b) What is the initial value of the angular velocity? (c) Calculate the instantaneous value of the angular velocity ω_z at t = 5.00 s and the average angular velocity ω_{av-z} for the time interval t = 0 to t = 5.00 s. Show that ω_{av-z} is *not* equal to the average of the instantaneous angular velocities at t = 0 and t = 5.00 s, and explain why it is not.

9.6 • **CALC** At t = 0 the current to a dc electric motor is reversed, resulting in an angular displacement of the motor shaft given by $\theta(t) = (250 \text{ rad/s})t - (20.0 \text{ rad/s}^2)t^2 - (1.50 \text{ rad/s}^3)t^3$. (a) At what time is the angular velocity of the motor shaft zero? (b) Calculate the angular acceleration at the instant that the motor shaft has zero angular velocity. (c) How many revolutions does the motor shaft turn through between the time when the current is reversed and the instant when the angular velocity is zero? (d) How fast was the motor shaft rotating at t = 0, when the current was reversed? (e) Calculate the average angular velocity for the time period from t = 0 to the time calculated in part (a).

9.7 • **CALC** The angle θ through which a disk drive turns is given by $\theta(t) = a + bt - ct^3$, where *a*, *b*, and *c* are constants, *t* is in seconds, and θ is in radians. When t = 0, $\theta = \pi/4$ rad and the angular velocity is 2.00 rad/s, and when t = 1.50 s, the angular acceleration is 1.25 rad/s². (a) Find *a*, *b*, and *c*, including their units. (b) What is the angular acceleration when $\theta = \pi/4$ rad? (c) What are θ and the angular velocity when the angular acceleration is 3.50 rad/s²?

9.8 • A wheel is rotating about an axis that is in the z-direction. The angular velocity ω_z is -6.00 rad/s at t = 0, increases linearly with time, and is +8.00 rad/s at t = 7.00 s. We have taken counterclockwise rotation to be positive. (a) Is the angular acceleration during this time interval positive or negative? (b) During what time interval is the speed of the wheel increasing? Decreasing? (c) What is the angular displacement of the wheel at t = 7.00 s?

Section 9.2 Rotation with Constant Angular Acceleration

9.9 • A bicycle wheel has an initial angular velocity of 1.50 rad/s. (a) If its angular acceleration is constant and equal to 0.300 rad/s², what is its angular velocity at t = 2.50 s? (b) Through what angle has the wheel turned between t = 0 and t = 2.50 s?

9.10 •• An electric fan is turned off, and its angular velocity decreases uniformly from 500 rev/min to 200 rev/min in 4.00 s. (a) Find the angular acceleration in rev/s² and the number of revolutions made by the motor in the 4.00-s interval. (b) How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in part (a)?

9.11 •• The rotating blade of a blender turns with constant angular acceleration 1.50 rad/s^2 . (a) How much time does it take to reach an angular velocity of 36.0 rad/s, starting from rest? (b) Through how many revolutions does the blade turn in this time interval?

9.12 • (a) Derive Eq. (9.12) by combining Eqs. (9.7) and (9.11) to eliminate *t*. (b) The angular velocity of an airplane propeller increases from 12.0 rad/s to 16.0 rad/s while turning through 7.00 rad. What is the angular acceleration in rad/s^2 ?

9.13 •• A turntable rotates with a constant 2.25 rad/s^2 angular acceleration. After 4.00 s it has rotated through an angle of 60.0 rad. What was the angular velocity of the wheel at the beginning of the 4.00-s interval?

9.14 • A circular saw blade 0.200 m in diameter starts from rest. In 6.00 s it accelerates with constant angular acceleration to an angular velocity of 140 rad/s. Find the angular acceleration and the angle through which the blade has turned.

9.15 •• A high-speed flywheel in a motor is spinning at 500 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm. The power is off for 30.0 s, and during this time the flywheel slows due to friction in its axle bearings. During the time the power is off, the flywheel makes 200 complete revolutions. (a) At what rate is the flywheel spinning when the power comes back on? (b) How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?

9.16 •• At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0 rad/s² until a circuit breaker trips at t = 2.00 s. From then on, it turns through 432 rad as it coasts to a stop at constant angular acceleration. (a) Through what total angle did the wheel turn between t = 0 and the time it stopped? (b) At what time did it stop? (c) What was its acceleration as it slowed down?

9.17 •• A safety device brings the blade of a power mower from an initial angular speed of ω_1 to rest in 1.00 revolution. At the same constant acceleration, how many revolutions would it take the blade to come to rest from an initial angular speed ω_3 that was three times as great, $\omega_3 = 3\omega_1$?

Section 9.3 Relating Linear and Angular Kinematics

9.18 • In a charming 19thcentury hotel, an old-style elevator is connected to a counterweight by a cable that passes over a rotating disk 2.50 m in diameter (Fig. E9.18). The elevator is raised and lowered by turning the disk, and the cable does not slip on the rim of the disk but turns with it. (a) At how many rpm must the disk turn to raise the elevator at 25.0 cm/s? (b) To start the elevator moving, it must be accelerated at $\frac{1}{8}g$. What must be the angular acceleration of the disk, in rad/s^2 ?

(c) Through what angle (in radians and degrees) has the disk turned when it has raised the elevator 3.25 m between floors?

9.19 • Using astronomical data from Appendix F, along with the fact that the earth spins on its axis once per day, calculate (a) the earth's orbital angular speed (in rad/s) due to its motion around the sun, (b) its angular speed (in rad/s) due to its axial spin, (c) the tangential speed of the earth around the sun (assuming a circular orbit), (d) the tangential speed of a point on the earth's equator due to the planet's axial spin, and (e) the radial and tangential acceleration components of the point in part (d).

9.20 • Compact Disc. A compact disc (CD) stores music in a coded pattern of tiny pits 10^{-7} m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and

outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant *linear* speed of 1.25 m/s. (a) What is the angular speed of the CD when the innermost part of the track is scanned? The outermost part of the track? (b) The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were stretched out in a straight line? (c) What is the average angular acceleration of a maximum-duration CD during its 74.0-min playing time? Take the direction of rotation of the disc to be positive.

9.21 •• A wheel of diameter 40.0 cm starts from rest and rotates with a constant angular acceleration of 3.00 rad/s². At the instant the wheel has computed its second revolution, compute the radial acceleration of a point on the rim in two ways: (a) using the relationship $a_{\rm rad} = \omega^2 r$ and (b) from the relationship $a_{\rm rad} = v^2/r$.

9.22 •• You are to design a rotating cylindrical axle to lift 800-N buckets of cement from the ground to a rooftop 78.0 m above the ground. The buckets will be attached to a hook on the free end of a cable that wraps around the rim of the axle; as the axle turns, the buckets will rise. (a) What should the diameter of the axle be in order to raise the buckets at a steady 2.00 cm/s when it is turning at 7.5 rpm? (b) If instead the axle must give the buckets an upward acceleration of 0.400 m/s², what should the angular acceleration of the axle be?

9.23 • A flywheel with a radius of 0.300 m starts from rest and accelerates with a constant angular acceleration of 0.600 rad/s^2 . Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim (a) at the start; (b) after it has turned through 60.0° ; (c) after it has turned through 120.0° .

9.24 •• An electric turntable 0.750 m in diameter is rotating about a fixed axis with an initial angular velocity of 0.250 rev/s and a constant angular acceleration of 0.900 rev/s². (a) Compute the angular velocity of the turntable after 0.200 s. (b) Through how many revolutions has the turntable spun in this time interval? (c) What is the tangential speed of a point on the rim of the turntable at t = 0.200 s? (d) What is the magnitude of the *resultant* acceleration of a point on the rim at t = 0.200 s?

9.25 •• Centrifuge. An advertisement claims that a centrifuge takes up only 0.127 m of bench space but can produce a radial acceleration of 3000g at 5000 rev/min. Calculate the required radius of the centrifuge. Is the claim realistic?

9.26 • (a) Derive an equation for the radial acceleration that includes v and ω , but not r. (b) You are designing a merry-go-round for which a point on the rim will have a radial acceleration of 0.500 m/s² when the tangential velocity of that point has magnitude 2.00 m/s. What angular velocity is required to achieve these values? **9.27** • **Electric Drill.** According to the shop manual, when drilling a 12.7-mm-diameter hole in wood, plastic, or aluminum, a drill should have a speed of 1250 rev/min. For a 12.7-mm-diameter drill bit turning at a constant 1250 rev/min, find (a) the maximum linear speed of any part of the bit and (b) the maximum radial acceleration of any part of the bit.

9.28 • At t = 3.00 s a point on the rim of a 0.200-m-radius wheel has a tangential speed of 50.0 m/s as the wheel slows down with a tangential acceleration of constant magnitude 10.0 m/s^2 . (a) Calculate the wheel's constant angular acceleration. (b) Calculate the angular velocities at t = 3.00 s and t = 0. (c) Through what angle did the wheel turn between t = 0 and t = 3.00 s? (d) At what time will the radial acceleration equal g? **9.29** • The spin cycles of a washing machine have two angular speeds, 423 rev/min and 640 rev/min. The internal diameter of the drum is 0.470 m. (a) What is the ratio of the maximum radial force on the laundry for the higher angular speed to that for the lower speed? (b) What is the ratio of the maximum tangential speed of the laundry for the higher angular speed to that for the lower speed? (c) Find the laundry's maximum tangential speed and the maximum radial acceleration, in terms of g.

Section 9.4 Energy in Rotational Motion

9.30 • Four small spheres, each of which you can regard as a point of mass 0.200 kg, are arranged in a square 0.400 m on a side and connected by extremely light rods (Fig. E9.30). Find the moment of inertia of the system about an axis (a) through the center of the square, perpendicular to

its plane (an axis through point O in the figure); (b) bisecting two opposite sides of the square (an axis along the line AB in the figure); (c) that passes through the centers of the upper left and lower right spheres and through point O.

9.31 • Calculate the moment of inertia of each of the following uniform objects about the axes indicated. Consult Table 9.2 as needed. (a) A thin 2.50-kg rod of length 75.0 cm, about an axis perpendicular to it and passing through (i) one end and (ii) its center, and (iii) about an axis parallel to the rod and passing through it. (b) A 3.00-kg sphere 38.0 cm in diameter, about an axis through its center, if the sphere is (i) solid and (ii) a thin-walled hollow shell. (c) An 8.00-kg cylinder, of length 19.5 cm and diameter 12.0 cm, about the central axis of the cylinder, if the cylinder is (i) thin-walled and hollow, and (ii) solid.

9.32 •• Small blocks, each with mass m, are clamped at the ends and at the center of a rod of length L and negligible mass. Compute the moment of inertia of the system about an axis perpendicular to the rod and passing through (a) the center of the rod and (b) a point one-fourth of the length from one end.

9.33 • A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.500 kg and can be treated as point masses. Find the moment of inertia of this combination about each of the following axes: (a) an axis perpendicular to the bar through its center; (b) an axis perpendicular to the bar through one of the balls; (c) an axis parallel to the bar through both balls; (d) an axis parallel to the bar and 0.500 m from it.

Figure **E9.34**

9.34 • A uniform disk of radius R is cut in half so that the remaining half has mass M (Fig. E9.34a). (a) What is the moment of inertia of this half about an axis perpendicular to its plane through point A? (b) Why did your answer in part (a) come out the same as if this were a complete disk of mass M? (c) What would be the moment of inertia of a quarter disk of mass M and radius R about an axis perpendicular to its plane through point B (Fig. E9.34b)?

9.35 •• A wagon wheel is constructed as shown in Fig. E9.35. The radius of the wheel is 0.300 m, and the rim has mass 1.40 kg. Each of the eight spokes that lie along a diameter and are 0.300 m long has mass 0.280 kg. What is the moment of inertia of the wheel about an axis through its center and perpendicular to the plane of the wheel? (Use the formulas given in Table 9.2.)

9.36 •• An airplane propeller is

2.08 m in length (from tip to tip) with mass 117 kg and is rotating at 2400 rpm (rev/min) about an axis through its center. You can model the propeller as a slender rod. (a) What is its rotational kinetic energy? (b) Suppose that, due to weight constraints, you had to reduce the propeller's mass to 75.0% of its original mass, but you still needed to keep the same size and kinetic energy. What would its angular speed have to be, in rpm?

9.37 •• A compound disk of outside diameter 140.0 cm is made up of a uniform solid disk of radius 50.0 cm and area density 3.00 g/cm^2 surrounded by a concentric ring of inner radius 50.0 cm, outer radius 70.0 cm, and area density 2.00 g/cm^2 . Find the moment of inertia of this object about an axis perpendicular to the plane of the object and passing through its center.

9.38 • A wheel is turning about an axis through its center with constant angular acceleration. Starting from rest, at t = 0, the wheel turns through 8.20 revolutions in 12.0 s. At t = 12.0 s the kinetic energy of the wheel is 36.0 J. For an axis through its center, what is the moment of inertia of the wheel?

9.39 • A uniform sphere with mass 28.0 kg and radius 0.380 m is rotating at constant angular velocity about a stationary axis that lies along a diameter of the sphere. If the kinetic energy of the sphere is 176 J, what is the tangential velocity of a point on the rim of the sphere?

9.40 •• A hollow spherical shell has mass 8.20 kg and radius 0.220 m. It is initially at rest and then rotates about a stationary axis that lies along a diameter with a constant acceleration of 0.890 rad/s^2 . What is the kinetic energy of the shell after it has turned through 6.00 rev?

9.41 • Energy from the Moon? Suppose that some time in the future we decide to tap the moon's rotational energy for use on earth. In additional to the astronomical data in Appendix F, you may need to know that the moon spins on its axis once every 27.3 days. Assume that the moon is uniform throughout. (a) How much total energy could we get from the moon's rotation? (b) The world presently uses about 4.0×10^{20} J of energy per year. If in the future the world uses five times as much energy yearly, for how many years would the moon's rotation provide us energy? In light of your answer, does this seem like a cost-effective energy source in which to invest?

9.42 •• You need to design an industrial turntable that is 60.0 cm in diameter and has a kinetic energy of 0.250 J when turning at 45.0 rpm (rev/min). (a) What must be the moment of inertia of the turntable about the rotation axis? (b) If your workshop makes this turntable in the shape of a uniform solid disk, what must be its mass?

9.43 •• The flywheel of a gasoline engine is required to give up 500 J of kinetic energy while its angular velocity decreases from 650 rev/min to 520 rev/min. What moment of inertia is required? **9.44** • A light, flexible rope is wrapped several times around a *hollow* cylinder, with a weight of 40.0 N and a radius of 0.25 m,

that rotates without friction about a fixed horizontal axis. The cylinder is attached to the axle by spokes of a negligible moment of inertia. The cylinder is initially at rest. The free end of the rope is pulled with a constant force P for a distance of 5.00 m, at which point the end of the rope is moving at 6.00 m/s. If the rope does not slip on the cylinder, what is the value of P?

9.45 •• Energy is to be stored in a 70.0-kg flywheel in the shape of a uniform solid disk with radius R = 1.20 m. To prevent structural failure of the flywheel, the maximum allowed radial acceleration of a point on its rim is 3500 m/s². What is the maximum kinetic energy that can be stored in the flywheel?

9.46 •• Suppose the solid cylinder in the apparatus described in Example 9.8 (Section 9.4) is replaced by a thin-walled, hollow cylinder with the same mass M and radius R. The cylinder is attached to the axle by spokes of a negligible moment of inertia. (a) Find the speed of the hanging mass m just as it strikes the floor. (b) Use energy concepts to explain why the answer to part (a) is different from the speed found in Example 9.8.

Figure **E9.47**

2.50-kg pulley

9.47 •• A frictionless pulley has the shape of a uniform solid disk of mass 2.50 kg and radius 20.0 cm. A 1.50-kg stone is attached to a very light wire that is wrapped around the rim of the pulley (Fig. E9.47), and the system is released from rest. (a) How far must the stone fall so that the pulley has 4.50 J of kinetic energy? (b) What percent of the total kinetic energy does the pulley have?

tied to a massless cable that is wrapped around the outer rim of a frictionless uniform pulley of radius R, similar to the system shown in Fig. E9.47. In terms of the stated variables, what must be the moment of inertia of the pulley so that it always has half as much kinetic energy as the bucket?

9.49 •• **CP** A thin, light wire is wrapped around the rim of a wheel, as shown in Fig. E9.49. The wheel rotates without friction about a stationary horizontal axis that passes through the center of the wheel. The wheel is a uniform disk with radius R = 0.280 m. An object of mass m = 4.20 kg is suspended from the free end of

1.50-kg

stone

the wire. The system is released from rest and the suspended object descends with constant acceleration. If the suspended object moves downward a distance of 3.00 m in 2.00 s, what is the mass of the wheel?

9.50 •• A uniform 2.00-m ladder of mass 9.00 kg is leaning against a vertical wall while making an angle of 53.0° with the floor. A worker pushes the ladder up against the wall until it is vertical. What is the increase in the gravitational potential energy of the ladder?

9.51 •• How *I* Scales. If we multiply all the design dimensions of an object by a scaling factor *f*, its volume and mass will be multiplied by f^3 . (a) By what factor will its moment of inertia be multiplied? (b) If a $\frac{1}{48}$ -scale model has a rotational kinetic energy of 2.5 J, what will be the kinetic energy for the full-scale

object of the same material rotating at the same angular velocity?

9.52 •• A uniform 3.00-kg rope 24.0 m long lies on the ground at the top of a vertical cliff. A mountain climber at the top lets down half of it to help his partner climb up the cliff. What was the change in potential energy of the rope during this maneuver?

Section 9.5 Parallel-Axis Theorem

9.53 •• About what axis will a uniform, balsa-wood sphere have the same moment of inertia as does a thin-walled, hollow, lead sphere of the same mass and radius, with the axis along a diameter? **9.54** •• Find the moment of inertia of a hoop (a thin-walled, hollow ring) with mass M and radius R about an axis perpendicular to the hoop's plane at an edge.

9.55 •• A thin, rectangular sheet of metal has mass M and sides of length a and b. Use the parallel-axis theorem to calculate the moment of inertia of the sheet for an axis that is perpendicular to the plane of the sheet and that passes through one corner of the sheet.

9.56 • (a) For the thin rectangular plate shown in part (d) of Table 9.2, find the moment of inertia about an axis that lies in the plane of the plate, passes through the center of the plate, and is parallel to the axis shown in the figure. (b) Find the moment of inertia of the plate for an axis that lies in the plane of the plate, passes through the center of the plate, passes through the center of the plate, and is perpendicular to the axis in part (a).

9.57 •• A thin uniform rod of mass M and length L is bent at its center so that the two segments are now perpendicular to each other. Find its moment of inertia about an axis perpendicular to its plane and passing through (a) the point where the two segments meet and (b) the midpoint of the line connecting its two ends.

Section 9.6 Moment-of-Inertia Calculations

9.58 • **CALC** Use Eq. (9.20) to calculate the moment of inertia of a slender, uniform rod with mass *M* and length *L* about an axis at one end, perpendicular to the rod.

9.59 •• **CALC** Use Eq. (9.20) to calculate the moment of inertia of a uniform, solid disk with mass M and radius R for an axis perpendicular to the plane of the disk and passing through its center.

9.60 •• **CALC** A slender rod with length *L* has a mass per unit length that varies with distance from the left end, where x = 0, according to $dm/dx = \gamma x$, where γ has units of kg/m². (a) Calculate the total mass of the rod in terms of γ and *L*. (b) Use Eq. (9.20) to calculate the moment of inertia of the rod for an axis at the left end, perpendicular to the rod. Use the expression you derived in part (a) to express *I* in terms of *M* and *L*. How does your result compare to that for a uniform rod? Explain this comparison. (c) Repeat part (b) for an axis at the right end of the rod. How do the results for parts (b) and (c) compare? Explain this result.

PROBLEMS

9.61 • **CP CALC** A flywheel has angular acceleration $\alpha_z(t) = 8.60 \text{ rad/s}^2 - (2.30 \text{ rad/s}^3)t$, where counterclockwise rotation is positive. (a) If the flywheel is at rest at t = 0, what is its angular velocity at 5.00 s? (b) Through what angle (in radians) does the flywheel turn in the time interval from t = 0 to t = 5.00 s?

9.62 •• **CALC** A uniform disk with radius R = 0.400 m and mass 30.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to $\theta(t) = (1.10 \text{ rad/s})t + (8.60 \text{ rad/s}^2)t^2$. What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.100 rev?

9.63 •• **CP** A circular saw blade with radius 0.120 m starts from rest and turns in a vertical plane with a constant angular acceleration of 3.00 rev/s^2 . After the blade has turned through 155 rev, a small piece of the blade breaks loose from the top of the blade. After the piece breaks loose, it travels with a velocity that is initially horizontal and equal to the tangential velocity of the rim of the blade. The piece travels a vertical distance of 0.820 m to the floor. How far does the piece travel horizontally, from where it broke off the blade until it strikes the floor?

9.64 • **CALC** A roller in a printing press turns through an angle $\theta(t)$ given by $\theta(t) = \gamma t^2 - \beta t^3$, where $\gamma = 3.20 \text{ rad/s}^2$ and $\beta = 0.500 \text{ rad/s}^3$. (a) Calculate the angular velocity of the roller as a function of time. (b) Calculate the angular acceleration of the roller as a function of time. (c) What is the maximum positive angular velocity, and at what value of *t* does it occur?

9.65 •• **CP CALC** A disk of radius 25.0 cm is free to turn about an axle perpendicular to it through its center. It has very thin but strong string wrapped around its rim, and the string is attached to a ball that is pulled tangentially away from the rim of the disk (Fig. P9.65). The pull increases in magnitude and produces an acceleration of the ball that obeys the equation a(t) = At, where *t* is in seconds and *A* is a constant. The cylinder starts from rest, and at the end of the third second, the ball's acceleration is 1.80 m/s^2 . (a) Find *A*. (b) Express the angular acceleration of the disk as a function of time. (c) How much time after the disk has begun to turn does it reach an angular speed of 15.0 rad/s? (d) Through what angle has the disk turned just as it reaches 15.0 rad/s? (*Hint:* See Section 2.6.)

Figure **P9.65**

9.66 •• When a toy car is rapidly scooted across the floor, it stores energy in a flywheel. The car has mass 0.180 kg, and its flywheel has moment of inertia $4.00 \times 10^{-5} \text{ kg} \cdot \text{m}^2$. The car is 15.0 cm long. An advertisement claims that the car can travel at a scale speed of up to 700 km/h (440 mi/h). The scale speed is the speed of the toy car multiplied by the ratio of the length of an actual car to the length of the toy. Assume a length of 3.0 m for a real car. (a) For a scale speed of 700 km/h, what is the actual translational speed of the car? (b) If all the kinetic energy that is initially in the flywheel is converted to the translational kinetic energy of the toy, how much energy is originally stored in the flywheel? (c) What initial angular velocity of the flywheel was needed to store the amount of energy calculated in part (b)?

9.67 • A classic 1957 Chevrolet Corvette of mass 1240 kg starts from rest and speeds up with a constant tangential acceleration of 2.00 m/s² on a circular test track of radius 60.0 m. Treat the car as a particle. (a) What is its angular acceleration? (b) What is its angular speed 6.00 s after it starts? (c) What is its radial acceleration at this time? (d) Sketch a view from above showing the circular track, the car, the velocity vector, and the acceleration component vectors 6.00 s after the car starts. (e) What are the magnitudes of the total acceleration and net force for the car at this time? (f) What

angle do the total acceleration and net force make with the car's velocity at this time?

9.68 •• Engineers are designing a system by which a falling mass m imparts kinetic energy to a rotating uniform drum to which it is attached by thin, very light wire wrapped around the rim of the drum (Fig. P9.68). There is no appreciable friction in the axle of the drum, and everything starts from rest. This system is being tested on earth, but it is to be used on Mars, where the acceleration due to gravity is 3.71 m/s^2 . In the earth tests, when m is set to 15.0 kg

and allowed to fall through 5.00 m, it gives 250.0 J of kinetic energy to the drum. (a) If the system is operated on Mars, through what distance would the 15.0-kg mass have to fall to give the same amount of kinetic energy to the drum? (b) How fast would the 15.0-kg mass be moving on Mars just as the drum gained 250.0 J of kinetic energy?

9.69 • A vacuum cleaner belt is looped over a shaft of radius 0.45 cm and a wheel of radius 1.80 cm. The arrangement of the belt, shaft, and wheel is similar to that of the chain and sprockets in Fig. Q9.4. The motor turns the shaft at 60.0 rev/s and the moving belt turns the wheel, which in turn is connected by another shaft to the roller that beats the dirt out of the rug being vacuumed. Assume that the belt doesn't slip on either the shaft or the wheel. (a) What is the speed of a point on the belt? (b) What is the angular velocity of the wheel, in rad/s?

9.70 •• The motor of a table saw is rotating at 3450 rev/min. A pulley attached to the motor shaft drives a second pulley of half the diameter by means of a V-belt. A circular saw blade of diameter 0.208 m is mounted on the same rotating shaft as the second pulley. (a) The operator is careless and the blade catches and throws back a small piece of wood. This piece of wood moves with linear speed equal to the tangential speed of the rim of the blade. What is this speed? (b) Calculate the radial acceleration of points on the outer edge of the blade to see why sawdust doesn't stick to its teeth.

9.71 ••• While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The front sprocket of a bicycle has radius 12.0 cm. If the angular speed of the front sprocket is 0.600 rev/s, what is the radius of the rear sprocket for which the tangential speed of a point on the rim of the rear wheel will be 5.00 m/s? The rear wheel has radius 0.330 m.

9.72 ••• A computer disk drive is turned on starting from rest and has constant angular acceleration. If it took 0.750 s for the drive to make its *second* complete revolution, (a) how long did it take to make the first complete revolution, and (b) what is its angular acceleration, in rad/s^2 ?

9.73 • A wheel changes its angular velocity with a constant angular acceleration while rotating about a fixed axis through its center. (a) Show that the change in the magnitude of the radial acceleration during any time interval of a point on the wheel is twice the product of the angular acceleration, the angular displacement, and the perpendicular distance of the point from the axis. (b) The radial acceleration of a point on the wheel that is 0.250 m from the axis changes from 25.0 m/s^2 to 85.0 m/s^2 as the wheel rotates through 20.0 rad. Calculate the tangential acceleration of this point. (c) Show that the change in the wheel's kinetic energy during any time interval is the product of the moment of inertia about the axis, the angular

acceleration, and the angular displacement. (d) During the 20.0-rad angular displacement of part (b), the kinetic energy of the wheel increases from 20.0 J to 45.0 J. What is the moment of inertia of the wheel about the rotation axis?

9.74 •• A sphere consists of a solid wooden ball of uniform density 800 kg/m³ and radius 0.30 m and is covered with a thin coating of lead foil with area density 20 kg/m². Calculate the moment of inertia of this sphere about an axis passing through its center.

9.75 ••• It has been argued that power plants should make use of off-peak hours (such as late at night) to generate mechanical energy and store it until it is needed during peak load times, such as the middle of the day. One suggestion has been to store the energy in large flywheels spinning on nearly frictionless ball bearings. Consider a flywheel made of iron (density 7800 kg/m³) in the shape of a 10.0-cm-thick uniform disk. (a) What would the diameter of such a disk need to be if it is to store 10.0 megajoules of kinetic energy when spinning at 90.0 rpm about an axis perpendicular to the disk at its center? (b) What would be the centripetal acceleration of a point on its rim when spinning at this rate?

9.76 •• While redesigning a rocket engine, you want to reduce its weight by replacing a solid spherical part with a hollow spherical shell of the same size. The parts rotate about an axis through their center. You need to make sure that the new part always has the same rotational kinetic energy as the original part had at any given rate of rotation. If the original part had mass M, what must be the mass of the new part?

9.77 • The earth, which is not a uniform sphere, has a moment of inertia of $0.3308MR^2$ about an axis through its north and south poles. It takes the earth 86,164 s to spin once about this axis. Use Appendix F to calculate (a) the earth's kinetic energy due to its rotation about this axis and (b) the earth's kinetic energy due to its orbital motion around the sun. (c) Explain how the value of the earth's moment of inertia tells us that the mass of the earth is concentrated toward the planet's center.

9.78 ••• A uniform, solid disk with mass m and radius R is pivoted about a horizontal axis through its center. A small object of the same mass m is glued to the rim of the disk. If the disk is released from rest with the small object at the end of a horizontal radius, find the angular speed when the small object is directly below the axis.

9.79 •• **CALC** A metal sign for a car dealership is a thin, uniform right triangle with base length b and height h. The sign has mass M. (a) What is the moment of inertia of the sign for rotation about the side of length h? (b) If M = 5.40 kg, b = 1.60 m, and h = 1.20 m, what is the kinetic energy of the sign when it is rotating about an axis along the 1.20-m side at 2.00 rev/s?

9.80 •• Measuring *I*. As an intern with an engineering firm, you are asked to measure the moment of inertia of a large wheel, for rotation about an axis through its center. Since you were a good physics student, you know what to do. You measure the diameter of the wheel to be 0.740 m and find that it weighs 280 N. You mount the wheel, using frictionless bearings, on a horizontal axis through the wheel's center. You wrap a light rope around the wheel and hang an 8.00-kg mass from the free end of the rope, as shown in Fig. 9.17. You release the mass from rest; the mass descends and the wheel turns as the rope unwinds. You find that the mass has speed 5.00 m/s after it has descended 2.00 m. (a) What is the moment of inertia of the wheel for an axis perpendicular to the wheel at its center? (b) Your boss tells you that a larger *I* is needed. He asks you to design a wheel of the same mass and radius that has $I = 19.0 \text{ kg} \cdot \text{m}^2$. How do you reply?

9.81 •• **CP** A meter stick with a mass of 0.180 kg is pivoted about one end so it can rotate without friction about a horizontal axis.

The meter stick is held in a horizontal position and released. As it swings through the vertical, calculate (a) the change in gravitational potential energy that has occurred; (b) the angular speed of the stick; (c) the linear speed of the end of the stick opposite the axis. (d) Compare the answer in part (c) to the speed of a particle that has fallen 1.00 m, starting from rest.

9.82 •• Exactly one turn of a flexible rope with mass *m* is wrapped around a uniform cylinder with mass M and radius R. The cylinder rotates without friction about a horizontal axle along the cylinder axis. One end of the rope is attached to the cylinder. The cylinder starts with angular speed ω_0 . After one revolution of the cylinder the rope has unwrapped and, at this instant, hangs vertically down, tangent to the cylinder. Find the angular speed of the cylinder and the linear speed of the lower end of the rope at this time. You can ignore the thickness of the rope. [*Hint*: Use Eq. (9.18).] **9.83** • The pulley in Fig. P9.83 has radius *R* and a moment of inertia I. The rope does not slip over the pulley, and the pulley spins on a frictionless axle. The coefficient of kinetic friction between block A and the tabletop is μ_k . The system is released from rest, and block B descends. Block A has mass m_A and block B has mass m_B . Use energy methods to calculate the speed of block B as a function of the distance d that it has descended.

Figure **P9.83**

9.84 •• The pulley in Fig. P9.84 has radius 0.160 m and moment of inertia 0.560 kg \cdot m². The rope does not slip on the pulley rim. Use energy methods to calculate the speed of the 4.00-kg block just before it strikes the floor.

9.85 •• You hang a thin hoop with radius *R* over a nail at the rim of the hoop. You displace it to the side (within the plane of the hoop) through an angle β from its equilibrium position and

let it go. What is its angular speed when it returns to its equilibrium position? [*Hint:* Use Eq. (9.18).]

9.86 •• A passenger bus in Zurich, Switzerland, derived its motive power from the energy stored in a large flywheel. The wheel was brought up to speed periodically, when the bus stopped at a station, by an electric motor, which could then be attached to the electric power lines. The flywheel was a solid cylinder with mass 1000 kg and diameter 1.80 m; its top angular speed was 3000 rev/min. (a) At this angular speed, what is the kinetic energy of the flywheel? (b) If the average power required to operate the bus is 1.86×10^4 W, how long could it operate between stops?

9.87 •• Two metal disks, one with radius $R_1 = 2.50$ cm and mass $M_1 = 0.80$ kg and the other with radius $R_2 = 5.00$ cm and mass $M_2 = 1.60$ kg, are welded together and mounted on a frictionless axis through their common center (Fig. P9.87). (a) What is the

total moment of inertia of the two disks? (b) A light string is wrapped around the edge of the smaller disk, and a 1.50-kg block is suspended from the free end of the string. If the block is released from rest at a distance of 2.00 m above the floor, what is its speed just before it strikes the floor? (c) Repeat the calculation of part (b), this time with the string wrapped around the edge of the larger disk. In which case is the final speed of the block greater? Explain why this is so. 9.88 •• A thin, light wire is wrapped around the rim of a wheel, as shown in Fig. E9.49. The wheel rotates about a stationary horizontal axle that passes through

the center of the wheel. The wheel has radius 0.180 m and moment of inertia for rotation about the axle of $I = 0.480 \text{ kg} \cdot \text{m}^2$. A small block with mass 0.340 kg is suspended from the free end of the wire. When the system is released from rest, the block descends with constant acceleration. The bearings in the wheel at the axle are rusty, so friction there does -6.00 J of work as the block descends 3.00 m. What is the magnitude of the angular velocity of the wheel after the block has descended 3.00 m?

9.89 ••• In the system shown in Fig. 9.17, a 12.0-kg mass is released from rest and falls, causing the uniform 10.0-kg cylinder of diameter 30.0 cm to turn about a frictionless axle through its center. How far will the mass have to descend to give the cylinder 480 J of kinetic energy?

9.90 • In Fig. P9.90, the cylinder and pulley turn without friction about stationary horizontal axles that pass through their centers. A light rope is wrapped around the cylinder, passes over the pulley, and has a 3.00-kg box suspended from its free end. There is no slip-

ping between the rope and the pulley surface. The uniform cylinder has mass 5.00 kg and radius 40.0 cm. The pulley is a uniform disk with mass 2.00 kg and radius 20.0 cm. The box is released from rest and descends as the rope unwraps from the cylinder. Find the speed of the box when it has fallen 2.50 m.

9.91 •• A thin, flat, uniform disk has mass M and radius R. A circular hole of radius R/4, centered at a point R/2 from the disk's center, is then punched in the disk. (a) Find the moment of inertia of the disk with the hole about an axis through the original center of the disk, perpendicular to the plane of the disk. (*Hint:* Find the moment of inertia of the piece Figure **P9.92**

moment of inertia of the piece punched from the disk.) (b) Find the moment of inertia of the disk with the hole about an axis through the center of the hole, perpendicular to the plane of the disk.

9.92 •• **BIO** Human Rotational Energy. A dancer is spinning at 72 rpm about an axis through her center with her arms outstretched, as shown in Fig. P9.92. From biomedical measurements, the typical distribution of mass in a human body is as follows:

Head: 7.0% Arms: 13% (for both) Trunk and legs: 80.0%

Suppose you are this dancer. Using this information plus length measurements on your own body, calculate (a) your moment of inertia about your spin axis and (b) your rotational kinetic energy. Use the figures in Table 9.2 to model reasonable approximations for the pertinent parts of your body.

9.93 •• BIO The Kinetic Energy of Walking. If a person of mass M simply moved forward with speed V, his kinetic energy would be $\frac{1}{2}MV^2$. However, in addition to possessing a forward motion, various parts of his body (such as the arms and legs) undergo rotation. Therefore, his total kinetic energy is the sum of the energy from his forward motion plus the rotational kinetic energy of his arms and legs. The purpose of this problem is to see how much this rotational motion contributes to the person's kinetic energy. Biomedical measurements show that the arms and hands together typically make up 13% of a person's mass, while the legs and feet together account for 37%. For a rough (but reasonable) calculation, we can model the arms and legs as thin uniform bars pivoting about the shoulder and hip, respectively. In a brisk walk, the arms and legs each move through an angle of about $\pm 30^{\circ}$ (a total of 60°) from the vertical in approximately 1 second. We shall assume that they are held straight, rather than being bent, which is not quite true. Let us consider a 75-kg person walking at 5.0 km/h, having arms 70 cm long and legs 90 cm long. (a) What is the average angular velocity of his arms and legs? (b) Using the average angular velocity from part (a), calculate the amount of rotational kinetic energy in this person's arms and legs as he walks. (c) What is the total kinetic energy due to both his forward motion and his rotation? (d) What percentage of his kinetic energy is due to the rotation of his legs and arms?

9.94 •• **BIO** The Kinetic Energy of Running. Using Problem 9.93 as a guide, apply it to a person running at 12 km/h, with his arms and legs each swinging through $\pm 30^{\circ}$ in $\frac{1}{2}$ s. As before, assume that the arms and legs are kept straight.

9.95 •• Perpendicular-Axis Theorem. Consider a rigid body that is a thin, plane sheet of arbitrary shape. Take the body to lie in the xy-plane and let the origin O of coordinates be located at any point within or outside the body. Let I_x and I_y be the moments of inertia about the x- and y-axes, and let I_O be the moment of inertia about an axis through O perpendicular to the plane. (a) By considering mass elements m_i with coordinates (x_i, y_i) , show that $I_x + I_y = I_0$. This is called the perpendicular-axis theorem. Note that point O does not have to be the center of mass. (b) For a thin washer with mass M and with inner and outer radii R_1 and R_2 , use the perpendicular-axis theorem to find the moment of inertia about an axis that is in the plane of the washer and that passes through its center. You may use the information in Table 9.2. (c) Use the perpendicular-axis theorem to show that for a thin, square sheet with mass M and side L, the moment of inertia about any axis in the plane of the sheet that passes through the center of the sheet is $\frac{1}{12}ML^2$. You may use the information in Table 9.2.

9.96 ••• A thin, uniform rod is bent into a square of side length a. If the total mass is M, find the moment of inertia about an axis through the center and perpendicular to the plane of the square. (*Hint:* Use the parallel-axis theorem.)

9.97 • **CALC** A cylinder with radius *R* and mass *M* has density that increases linearly with distance *r* from the cylinder axis, $\rho = \alpha r$, where α is a positive constant. (a) Calculate the moment of inertia of the cylinder about a longitudinal axis through its center in terms of *M* and *R*. (b) Is your answer greater or smaller than the moment

of inertia of a cylinder of the same mass and radius but of uniform density? Explain why this result makes qualitative sense.

9.98 •• CALC Neutron Stars and Supernova Remnants. The Crab Nebula is a cloud of glowing gas about 10 light-years across, located about 6500 light-years from the earth (Fig. P9.98). It is the remnant of a star that underwent a supernova explosion, seen on earth in 1054 A.D. Energy is

released by the Crab Nebula at a rate of about 5×10^{31} W, about 10^5 times the rate at which the sun radiates energy. The Crab Nebula obtains its energy from the rotational kinetic energy of a rapidly spinning *neutron star* at its center.

This object rotates once every 0.0331 s, and this period is increasing by 4.22×10^{-13} s for each second of time that elapses. (a) If the rate at which energy is lost by the neutron star is equal to the rate at which energy is released by the nebula, find the moment of inertia of the neutron star. (b) Theories of supernovae predict that the neutron star in the Crab Nebula has a mass about 1.4 times that of the sun. Modeling the neutron star as a solid uniform sphere, calculate its radius in kilometers. (c) What is the linear speed of a point on the equator of the neutron star is uniform and calculate its density. Compare to the density of ordinary rock (3000 kg/m³) and to the density of an atomic nucleus (about 10^{17} kg/m³). Justify the statement that a neutron star is essentially a large atomic nucleus.

9.99 •• CALC A sphere with radius R = 0.200 m has density ρ that decreases with distance r from the center of the sphere according to $\rho = 3.00 \times 10^3 \text{ kg/m}^3 - (9.00 \times 10^3 \text{ kg/m}^4)r$. (a) Calculate the total mass of the sphere. (b) Calculate the moment of inertia of the sphere for an axis along a diameter.

CHALLENGE PROBLEMS

9.100 ••• CALC Calculate the moment of inertia of a uniform solid cone about an axis through its center (Fig. P9.100). The cone has mass M and altitude h. The radius of its circular base is R.

9.101 ••• **CALC** On a compact disc (CD), music is coded in a pattern of tiny pits arranged in a track that spirals outward toward the rim of the disc. As the disc spins inside a CD player, the track is scanned at a constant *linear* speed of v = 1.25 m/s.

Because the radius of the track varies as it spirals outward, the *angular* speed of the disc must change as the CD is played. (See Exercise 9.20.) Let's see what angular acceleration is required to keep v constant. The equation of a spiral is $r(\theta) = r_0 + \beta \theta$, where r_0 is the radius of the spiral at $\theta = 0$ and β is a constant. On a CD, r_0 is the inner radius of the spiral track. If we take the rotation direction of the CD to be positive, β must be positive so that r increases as the disc turns and θ increases. (a) When the disc

rotates through a small angle $d\theta$, the distance scanned along the track is $ds = r d\theta$. Using the above expression for $r(\theta)$, integrate ds to find the total distance *s* scanned along the track as a function of the total angle θ through which the disc has rotated. (b) Since the track is scanned at a constant linear speed *v*, the distance *s* found in part (a) is equal to *vt*. Use this to find θ as a function of time. There will be two solutions for θ ; choose the positive one, and explain why this is the solution to choose. (c) Use your expression

sion for $\theta(t)$ to find the angular velocity ω_z and the angular acceleration α_z as functions of time. Is α_z constant? (d) On a CD, the inner radius of the track is 25.0 mm, the track radius increases by 1.55 μ m per revolution, and the playing time is 74.0 min. Find the values of r_0 and β , and find the total number of revolutions made during the playing time. (e) Using your results from parts (c) and (d), make graphs of ω_z (in rad/s) versus t and α_z (in rad/s²) versus t between t = 0 and t = 74.0 min.

Answers

Chapter Opening Question

Both segments of the rigid blade have the same angular speed ω . From Eqs. (9.13) and (9.15), doubling the distance *r* for the same ω doubles the linear speed $v = r\omega$ and doubles the radial acceleration $a_{rad} = \omega^2 r$.

Test Your Understanding Questions

9.1 Answers: (a) (i) and (iii), (b) (ii) The rotation is speeding up when the angular velocity and angular acceleration have the same sign, and slowing down when they have opposite signs. Hence it is speeding up for 0 < t < 2 s (ω_z and α_z are both positive) and for 4 s < t < 6 s (ω_z and α_z are both negative), but is slowing down for 2 s < t < 4 s (ω_z is positive and α_z is negative). Note that the body is rotating in one direction for t < 4 s (ω_z is positive) and in the opposite direction for t > 4 s (ω_z is negative).

9.2 Answers: (a) (i), (b) (ii) When the disc comes to rest, $\omega_z = 0$. From Eq. (9.7), the *time* when this occurs is $t = (\omega_z - \omega_{0z})/\alpha_z = -\omega_{0z}/\alpha_z$ (this is a positive time because α_z is negative). If we double the initial angular velocity ω_{0z} and also double the angular acceleration α_z , their ratio is unchanged and the rotation stops in the same amount of time. The *angle* through which the disc rotates is given by Eq. (9.10): $\theta - \theta_0 = \frac{1}{2}(\omega_{0z} + \omega_z)t = \frac{1}{2}\omega_{0z}t$ (since the final angular velocity is $\omega_z = 0$). The initial angular velocity ω_{0z} has been doubled but the time *t* is the same, so the angular displacement $\theta - \theta_0$ (and hence the number of revolutions) has doubled. You can also come to the same conclusion using Eq. (9.12).

9.3 Answer: (ii) From Eq. (9.13), $v = r\omega$. To maintain a constant linear speed v, the angular speed ω must decrease as the scanning head moves outward (greater r).

9.4 Answer: (i) The kinetic energy in the falling block is $\frac{1}{2}mv^2$, and the kinetic energy in the rotating cylinder is $\frac{1}{2}I\omega^2 = \frac{1}{2}(\frac{1}{2}mR^2)(\frac{v}{R})^2 = \frac{1}{4}mv^2$. Hence the total kinetic energy of the system is $\frac{3}{4}mv^2$, of which two-thirds is in the block and one-third is in the cylinder.

9.5 Answer: (ii) More of the mass of the pool cue is concentrated at the thicker end, so the center of mass is closer to that end. The moment of inertia through a point *P* at either end is $I_P = I_{\rm cm} + Md^2$; the thinner end is farther from the center of mass, so the distance *d* and the moment of inertia I_P are greater for the thinner end.

9.6 Answer: (iii) Our result from Example 9.10 does *not* depend on the cylinder length *L*. The moment of inertia depends only on the *radial* distribution of mass, not on its distribution along the axis.

Bridging Problem

Answers: (a)
$$I = \left[\frac{M}{L}\left(\frac{x^3}{3}\right)\right]_{-h}^{L-h} = \frac{1}{3}M(L^2 - 3Lh + 3h^2)$$

(b) $W = \frac{1}{6}M(L^2 - 3Lh + 3h^2)\alpha^2 t^2$
(c) $a = (L - h)\alpha\sqrt{1 + \alpha^2 t^4}$

10 DYNAMICS OF ROTATIONAL MOTION

LEARNING GOALS

By studying this chapter, you will learn:

- What is meant by the torque produced by a force.
- How the net torque on a body affects the rotational motion of the body.
- How to analyze the motion of a body that both rotates and moves as a whole through space.
- How to solve problems that involve work and power for rotating bodies.
- What is meant by the angular momentum of a particle or of a rigid body.
- How the angular momentum of a system changes with time.
- Why a spinning gyroscope goes through the curious motion called precession.

10.1 Which of these three equal-magnitude forces is most likely to loosen the tight bolt?

If you stand at the north pole, the north star, Polaris, is almost directly overhead, and the other stars appear to trace circles around it. But 5000 years ago a different star, Thuban, was directly above the north pole and was the north star. What caused this change?

e learned in Chapters 4 and 5 that a net force applied to a body gives that body an acceleration. But what does it take to give a body an *angular* acceleration? That is, what does it take to start a stationary body rotating or to bring a spinning body to a halt? A force is required, but it must be applied in a way that gives a twisting or turning action.

In this chapter we will define a new physical quantity, *torque*, that describes the twisting or turning effort of a force. We'll find that the net torque acting on a rigid body determines its angular acceleration, in the same way that the net force on a body determines its linear acceleration. We'll also look at work and power in rotational motion so as to understand such problems as how energy is transmitted by the rotating drive shaft in a car. Finally, we will develop a new conservation principle, *conservation of angular momentum*, that is tremendously useful for understanding the rotational motion of both rigid and nonrigid bodies. We'll finish this chapter by studying *gyroscopes*, rotating devices that seemingly defy common sense and don't fall over when you might think they should—but that actually behave in perfect accordance with the dynamics of rotational motion.

10.1 Torque

We know that forces acting on a body can affect its **translational motion**—that is, the motion of the body as a whole through space. Now we want to learn which aspects of a force determine how effective it is in causing or changing *rotational* motion. The magnitude and direction of the force are important, but so is the point on the body where the force is applied. In Fig. 10.1 a wrench is being used to loosen a tight bolt. Force \vec{F}_b , applied near the end of the handle, is more effective than an equal force \vec{F}_a applied near the bolt. Force \vec{F}_c doesn't do any good at all; it's applied at the same point and has the same magnitude as \vec{F}_b , but it's directed along the length of the handle. The quantitative measure of the tendency of a force to cause or change a body's rotational motion is called *torque*; we say that \vec{F}_a applies a torque about point *O* to the wrench in Fig. 10.1, \vec{F}_b applies a greater torque about *O*, and \vec{F}_c applies zero torque about *O*.

Figure 10.2 shows three examples of how to calculate torque. The body in the figure can rotate about an axis that is perpendicular to the plane of the figure and passes through point O. Three forces, \vec{F}_1 , \vec{F}_2 , and \vec{F}_3 , act on the body in the plane of the figure. The tendency of the first of these forces, \vec{F}_1 , to cause a rotation about O depends on its magnitude F_1 . It also depends on the *perpendicular* distance l_1 between point O and the **line of action** of the force (that is, the line along which the force vector lies). We call the distance l_1 the **lever arm** (or **moment arm**) of force \vec{F}_1 about O. The twisting effort is directly proportional to both F_1 and l_1 , so we define the **torque** (or *moment*) of the force \vec{F}_1 with respect to O as the product $F_1 l_1$. We use the Greek letter τ (tau) for torque. In general, for a force of magnitude F whose line of action is a perpendicular distance l from O, the torque is

$$\tau = Fl \tag{10.1}$$

Physicists usually use the term "torque," while engineers usually use "moment" (unless they are talking about a rotating shaft). Both groups use the term "lever arm" or "moment arm" for the distance l.

The lever arm of \vec{F}_1 in Fig. 10.2 is the perpendicular distance l_1 , and the lever arm of \vec{F}_2 is the perpendicular distance l_2 . The line of action of \vec{F}_3 passes through point O, so the lever arm for \vec{F}_3 is zero and its torque with respect to O is zero. In the same way, force \vec{F}_c in Fig. 10.1 has zero torque with respect to point O; \vec{F}_b has a greater torque than \vec{F}_a because its lever arm is greater.

CAUTION Torque is always measured about a point Note that torque is always defined with reference to a specific point. If we shift the position of this point, the torque of each force may also change. For example, the torque of force \vec{F}_3 in Fig. 10.2 is zero with respect to point *O*, but the torque of \vec{F}_3 is *not* zero about point *A*. It's not enough to refer to "the torque of \vec{F} "; you must say "the torque of \vec{F} with respect to point *X*" or "the torque of \vec{F} about point *X*."

Force \vec{F}_1 in Fig. 10.2 tends to cause *counterclockwise* rotation about *O*, while \vec{F}_2 tends to cause *clockwise* rotation. To distinguish between these two possibilities, we need to choose a positive sense of rotation. With the choice that *counterclockwise torques are positive and clockwise torques are negative*, the torques of \vec{F}_1 and \vec{F}_2 about *O* are

$$\tau_1 = +F_1 l_1$$
 $\tau_2 = -F_2 l_2$

Figure 10.2 shows this choice for the sign of torque. We will often use the symbol (+) to indicate our choice of the positive sense of rotation.

The SI unit of torque is the newton-meter. In our discussion of work and energy we called this combination the joule. But torque is *not* work or energy, and torque should be expressed in newton-meters, *not* joules.

Figure 10.3 shows a force \vec{F} applied at a point *P* described by a position vector \vec{r} with respect to the chosen point *O*. There are three ways to calculate the torque of this force:

- 1. Find the lever arm l and use $\tau = Fl$.
- 2. Determine the angle ϕ between the vectors \vec{r} and \vec{F} ; the lever arm is $r \sin \phi$, so $\tau = rF \sin \phi$.
- 3. Represent \vec{F} in terms of a radial component F_{rad} along the direction of \vec{r} and a tangential component F_{tan} at right angles, perpendicular to \vec{r} . (We call this a tangential component because if the body rotates, the point where the force acts moves in a circle, and this component is tangent to that circle.) Then

10.2 The torque of a force about a point is the product of the force magnitude and the lever arm of the force.

 \vec{F}_1 tends to cause *counterclockwise* rotation about point *O*, so its torque is *positive*: $\tau_1 = +F_1 l_1$

10.3 Three ways to calculate the torque of the force \vec{F} about the point *O*. In this figure, \vec{r} and \vec{F} are in the plane of the page and the torque vector $\vec{\tau}$ points out of the page toward you.

 $F_{\text{tan}} = F \sin \phi$ and $\tau = r(F \sin \phi) = F_{\text{tan}}r$. The component F_{rad} produces *no* torque with respect to *O* because its lever arm with respect to that point is zero (compare to forces \vec{F}_c in Fig. 10.1 and \vec{F}_3 in Fig. 10.2).

Summarizing these three expressions for torque, we have

$$\tau = Fl = rF\sin\phi = F_{tan}r$$
 (magnitude of torque) (10.2)

10.4 The torque vector $\vec{\tau} = \vec{r} \times \vec{F}$ is directed along the axis of the bolt, perpendicular to both \vec{r} and \vec{F} . The fingers of the right hand curl in the direction of the rotation that the torque tends to cause.

If you point the fingers of your right hand in the direction of \vec{r} and then curl them in the direction of \vec{F} , your outstretched thumb points in the direction of $\vec{\tau}$.

Torque as a Vector

We saw in Section 9.1 that angular velocity and angular acceleration can be represented as vectors; the same is true for torque. To see how to do this, note that the quantity $rF\sin\phi$ in Eq. (10.2) is the magnitude of the vector product $\vec{r} \times \vec{F}$ that we defined in Section 1.10. (You should go back and review that definition.) We now generalize the definition of torque as follows: When a force \vec{F} acts at a point having a position vector \vec{r} with respect to an origin O, as in Fig. 10.3, the torque $\vec{\tau}$ of the force with respect to O is the vector quantity

$$\vec{\tau} = \vec{r} \times \vec{F}$$
 (definition of torque vector) (10.3)

The torque as defined in Eq. (10.2) is just the magnitude of the torque vector $\vec{r} \times \vec{F}$. The direction of $\vec{\tau}$ is perpendicular to both \vec{r} and \vec{F} . In particular, if both \vec{r} and \vec{F} lie in a plane perpendicular to the axis of rotation, as in Fig. 10.3, then the torque vector $\vec{\tau} = \vec{r} \times \vec{F}$ is directed along the axis of rotation, with a sense given by the right-hand rule (Fig. 1.29). Figure 10.4 shows the direction relationships.

In diagrams that involve \vec{r} , \vec{F} , and $\vec{\tau}$, it's common to have one of the vectors oriented perpendicular to the page. (Indeed, by the very nature of the cross product, $\vec{\tau} = \vec{r} \times \vec{F}$ must be perpendicular to the plane of the vectors \vec{r} and \vec{F} .) We use a dot (•) to represent a vector that points out of the page (see Fig. 10.3) and a cross (\mathbf{x}) to represent a vector that points into the page.

In the following sections we will usually be concerned with rotation of a body about an axis oriented in a specified constant direction. In that case, only the component of torque along that axis is of interest, and we often call that component the torque with respect to the specified *axis*.

Example 10.1 Applying a torque

To loosen a pipe fitting, a weekend plumber slips a piece of scrap pipe (a "cheater") over his wrench handle. He stands on the end of the cheater, applying his full 900-N weight at a point 0.80 m from the center of the fitting (Fig. 10.5a). The wrench handle and

cheater make an angle of 19° with the horizontal. Find the magnitude and direction of the torque he applies about the center of the fitting.

10.5 (a) A weekend plumber tries to loosen a pipe fitting by standing on a "cheater." (b) Our vector diagram to find the torque about *O*.

(a) Diagram of situation

(b) Free-body diagram

SOLUTION

IDENTIFY and SET UP: Figure 10.5b shows the vectors \vec{r} and \vec{F} and the angle between them ($\phi = 109^\circ$). Equation (10.1) or (10.2) will tell us the magnitude of the torque. The right-hand rule with Eq. (10.3), $\vec{\tau} = \vec{r} \times \vec{F}$, will tell us the direction of the torque.

EXECUTE: To use Eq. (10.1), we first calculate the lever arm *l*. As Fig. 10.5b shows,

 $l = r \sin \phi = (0.80 \text{ m}) \sin 109^\circ = (0.80 \text{ m}) \sin 71^\circ = 0.76 \text{ m}$

Then Eq. (10.1) tells us that the magnitude of the torque is

 $\tau = Fl = (900 \text{ N})(0.76 \text{ m}) = 680 \text{ N} \cdot \text{m}$

We get the same result from Eq. (10.2):

 $\tau = rF\sin\phi = (0.80 \text{ m})(900 \text{ N})(\sin 109^\circ) = 680 \text{ N} \cdot \text{m}$

Alternatively, we can find F_{tan} , the tangential component of \vec{F} that acts perpendicular to \vec{r} . Figure 10.5b shows that this component is at an angle of $109^{\circ} - 90^{\circ} = 19^{\circ}$ from \vec{F} , so $F_{\text{tan}} = F \sin \phi = F(\cos 19^{\circ}) = (900 \text{ N})(\cos 19^{\circ}) = 851 \text{ N}$. Then, from Eq. 10.2,

 $\tau = F_{tan}r = (851 \text{ N})(0.80 \text{ m}) = 680 \text{ N} \cdot \text{m}$

Curl the fingers of your right hand from the direction of \vec{r} (in the plane of Fig. 10.5b, to the left and up) into the direction of \vec{F} (straight down). Then your right thumb points out of the plane of the figure: This is the direction of $\vec{\tau}$.

EVALUATE: To check the direction of $\vec{\tau}$, note that the force in Fig. 10.5 tends to produce a counterclockwise rotation about *O*. If you curl the fingers of your right hand in a counterclockwise direction, the thumb points out of the plane of Fig. 10.5, which is indeed the direction of the torque.

Test Your Understanding of Section 10.1 The figure shows a force *P* being applied to one end of a lever of length *L*. What is the magnitude of the torque of this force about point *A*? (i) *PL* sin θ ; (ii) *PL* cos θ ; (iii) *PL* tan θ .

10.2 Torque and Angular Acceleration for a Rigid Body

We are now ready to develop the fundamental relationship for the rotational dynamics of a rigid body. We will show that the angular acceleration of a rotating rigid body is directly proportional to the sum of the torque components along the axis of rotation. The proportionality factor is the moment of inertia.

To develop this relationship, we again imagine the body as being made up of a large number of particles. We choose the axis of rotation to be the z-axis; the first particle has mass m_1 and distance r_1 from this axis (Fig. 10.6). The *net force* \vec{F}_1 acting on this particle has a component $F_{1,\text{rad}}$ along the radial direction, a component $F_{1,\text{tan}}$ that is tangent to the circle of radius r_1 in which the particle moves as the body rotates, and a component F_{1z} along the axis of rotation. Newton's second law for the tangential component is

$$F_{1,\tan} = m_1 a_{1,\tan} \tag{10.4}$$

We can express the tangential acceleration of the first particle in terms of the angular acceleration α_z of the body using Eq. (9.14): $a_{1,tan} = r_1 \alpha_z$. Using this relationship and multiplying both sides of Eq. (10.4) by r_1 , we obtain

$$F_{1,\tan}r_1 = m_1 r_1^2 \alpha_z \tag{10.5}$$

From Eq. (10.2), $F_{1,\tan}r_1$ is just the *torque* of the net force with respect to the rotation axis, equal to the component τ_{1z} of the torque vector along the rotation axis. The subscript z is a reminder that the torque affects rotation around the z-axis, in the same way that the subscript on F_{1z} is a reminder that this force affects the motion of particle 1 along the z-axis.

10.6 As a rigid body rotates around the *z*-axis, a net force \vec{F}_1 acts on one particle of the body. Only the force component $F_{1,tan}$ can affect the rotation, because only $F_{1,tan}$ exerts a torque about *O* with a *z*-component (along the rotation axis).

Neither of the components $F_{1,rad}$ or F_{1z} contributes to the torque about the *z*-axis, since neither tends to change the particle's rotation about that axis. So $\tau_{1z} = F_{1,tan}r_1$ is the total torque acting on the particle with respect to the rotation axis. Also, $m_1r_1^2$ is I_1 , the moment of inertia of the particle about the rotation axis. Hence we can rewrite Eq. (10.5) as

$$\tau_{1z} = I_1 \alpha_z = m_1 r_1^2 \alpha_z$$

We write an equation like this for every particle in the body and then add all these equations:

$$\tau_{1z} + \tau_{2z} + \cdots = I_1 \alpha_z + I_2 \alpha_z + \cdots = m_1 r_1^2 \alpha_z + m_2 r_2^2 \alpha_z + \cdots$$

or

$$\sum \tau_{iz} = \left(\sum m_i r_i^2\right) \alpha_z \tag{10.6}$$

The left side of Eq. (10.6) is the sum of all the torques about the rotation axis that act on all the particles. The right side is $I = \sum m_i r_i^2$ the total moment of inertia about the rotation axis, multiplied by the angular acceleration α_z . Note that α_z is the same for every particle because this is a *rigid* body. Thus for the rigid body as a whole, Eq. (10.6) is the *rotational analog of Newton's second law:*

$$\sum \tau_z = I \alpha_z \tag{10.7}$$

(rotational analog of Newton's second law for a rigid body)

Just as Newton's second law says that the net force on a particle equals the particle's mass times its acceleration, Eq. (10.7) says that the net torque on a rigid body equals the body's moment of inertia about the rotation axis times its angular acceleration (Fig. 10.7).

Note that because our derivation assumed that the angular acceleration α_z is the same for all particles in the body, Eq. (10.7) is valid *only* for *rigid* bodies. Hence this equation doesn't apply to a rotating tank of water or a swirling tornado of air, different parts of which have different angular accelerations. Also note that since our derivation used Eq. (9.14), $a_{tan} = r\alpha_z$, α_z must be measured in rad/s².

The torque on each particle is due to the net force on that particle, which is the vector sum of external and internal forces (see Section 8.2). According to Newton's third law, the *internal* forces that any pair of particles in the rigid body exert on each other are equal and opposite (Fig. 10.8). If these forces act along the line joining the two particles, their lever arms with respect to any axis are also equal. So the torques for each such pair are equal and opposite, and add to zero. Hence *all* the internal torques add to zero, so the sum $\Sigma \tau_z$ in Eq. (10.7) includes only the torques of the *external* forces.

Often, an important external force acting on a body is its *weight*. This force is not concentrated at a single point; it acts on every particle in the entire body. Nevertheless, it turns out that if \vec{g} has the same value at all points, we always get the correct torque (about any specified axis) if we assume that all the weight is concentrated at the *center of mass* of the body. We will prove this statement in Chapter 11, but meanwhile we will use it for some of the problems in this chapter.

MasteringPHYSICS

ActivPhysics 7.8: Rotoride—Dynamics Approach ActivPhysics 7.9: Falling Ladder ActivPhysics 7.10: Woman and Flywheel Elevator—Dynamics Approach

10.7 Loosening or tightening a screw requires giving it an angular acceleration and hence applying a torque. This is made easier by using a screwdriver with a large-radius handle, which provides a large lever arm for the force you apply with your hand.

10.8 Two particles in a rigid body exert equal and opposite forces on each other. If the forces act along the line joining the particles, the lever arms of the forces with respect to an axis through *O* are the same and the torques due to the two forces are equal and opposite. Only *external* torques affect the body's rotation.

1. For each body, decide whether it undergoes translational

2. Express in algebraic form any geometrical relationships

in Section 5.2), $\Sigma \tau_z = I \alpha_z$, or both to the body.

motion, rotational motion, or both. Then apply $\sum \vec{F} = m\vec{a}$ (as

between the motions of two or more bodies. An example is a

string that unwinds, without slipping, from a pulley or a wheel

that rolls without slipping (discussed in Section 10.3). These

relationships usually appear as relationships between linear

3. Ensure that you have as many independent equations as there

EVALUATE your answer: Check that the algebraic signs of your

results make sense. As an example, if you are unrolling thread

from a spool, your answers should not tell you that the spool is

turning in the direction that rolls the thread back on to the spool!

Check that any algebraic results are correct for special cases or for

are unknowns. Solve the equations to find the target variables.

EXECUTE the solution:

and/or angular accelerations.

extreme values of quantities.

Problem-Solving Strategy 10.1 Rotational Dynamics for Rigid Bodies

Our strategy for solving problems in rotational dynamics is very similar to Problem-Solving Strategy 5.2 for solving problems involving Newton's second law.

IDENTIFY the relevant concepts: Equation (10.7), $\Sigma \tau_z = I\alpha_z$, is useful whenever torques act on a rigid body. Sometimes you can use an energy approach instead, as we did in Section 9.4. However, if the target variable is a force, a torque, an acceleration, an angular acceleration, or an elapsed time, using $\Sigma \tau_z = I\alpha_z$ is almost always best.

SET UP *the problem* using the following steps:

- 1. Sketch the situation and identify the body or bodies to be analyzed. Indicate the rotation axis.
- 2. For each body, draw a free-body diagram that shows the *shape* of each body, including all dimensions and angles that you will need for torque calculations. Label pertinent quantities with algebraic symbols.
- 3. Choose coordinate axes for each body and indicate a positive sense of rotation (clockwise or counterclockwise) for each rotating body. If you know the sense of α_z , pick that as the positive sense of rotation.

Example 10.2 An unwinding cable I

Figure 10.9a shows the situation analyzed in Example 9.7 using energy methods. What is the cable's acceleration?

SOLUTION

IDENTIFY and SET UP: We can't use the energy method of Section 9.4, which doesn't involve acceleration. Instead we'll apply rotational dynamics to find the angular acceleration of the cylinder (Fig. 10.9b). We'll then find a relationship between the motion of the cable and the motion of the cylinder rim, and use this to find the acceleration of the cable. The cylinder rotates counterclockwise when the cable is pulled, so we take counterclockwise rotation to be positive. The net force on the cylinder must be zero because its center of mass remains at rest. The force F exerted by the cable produces a torque about the rotation axis. The weight (magnitude Mg) and the normal force (magnitude n) exerted by the cylinder's bearings produce *no* torque about the rotation axis because they both act along lines through that axis.

EXECUTE: The lever arm of *F* is equal to the radius R = 0.060 m of the cylinder, so the torque is $\tau_z = FR$. (This torque is positive, as it tends to cause a counterclockwise rotation.) From Table 9.2, case (f), the moment of inertia of the cylinder about the rotation axis is $I = \frac{1}{2}MR^2$. Then Eq. (10.7) tells us that

$$\alpha_z = \frac{\tau_z}{I} = \frac{FR}{MR^2/2} = \frac{2F}{MR} = \frac{2(9.0 \text{ N})}{(50 \text{ kg})(0.060 \text{ m})} = 6.0 \text{ rad/s}^2$$

(We can add "rad" to our result because radians are dimensionless.)

To get the linear acceleration of the cable, recall from Section 9.3 that the acceleration of a cable unwinding from a cylinder is the same as the tangential acceleration of a point on the surface of the cylinder where the cable is tangent to it. This tangential acceleration is given by Eq. (9.14):

$$a_{tan} = R\alpha_z = (0.060 \text{ m})(6.0 \text{ rad/s}^2) = 0.36 \text{ m/s}^2$$

EVALUATE: Can you use this result, together with an equation from Chapter 2, to determine the speed of the cable after it has been pulled 2.0 m? Does your result agree with that of Example 9.7?

10.9 (a) Cylinder and cable. (b) Our free-body diagram for the cylinder.

Example 10.3 An unwinding cable II

In Example 9.8 (Section 9.4), what are the acceleration of the falling block and the tension in the cable?

SOLUTION

IDENTIFY and SET UP: We'll apply translational dynamics to the block and rotational dynamics to the cylinder. As in Example 10.2, we'll relate the linear acceleration of the block (our target variable) to the angular acceleration of the cylinder. Figure 10.10 shows our sketch of the situation and a free-body diagram for each body. We take the positive sense of rotation for the cylinder to be counterclockwise and the positive direction of the *y*-coordinate for the block to be downward.

10.10 (a) Our diagram of the situation. (b) Our free-body diagrams for the cylinder and the block. We assume the cable has negligible mass.

EXECUTE: For the block, Newton's second law gives

$$\sum F_y = mg + (-T) = ma_y$$

For the cylinder, the only torque about its axis is that due to the cable tension T. Hence Eq. (10.7) gives

$$\sum \tau_z = RT = I\alpha_z = \frac{1}{2}MR^2\alpha$$

As in Example 10.2, the acceleration of the cable is the same as the tangential acceleration of a point on the cylinder rim. From Eq. (9.14), this acceleration is $a_y = a_{tan} = R\alpha_z$. We use this to replace $R\alpha_z$ with a_y in the cylinder equation above, and then divide by *R*. The result is $T = \frac{1}{2}Ma_y$. Now we substitute this expression for *T* into Newton's second law for the block and solve for the acceleration a_y :

$$ag - \frac{1}{2}Ma_y = ma_y$$
$$a_y = \frac{g}{1 + M/2m}$$

n

To find the cable tension *T*, we substitute our expression for a_y into the block equation:

$$T = mg - ma_y = mg - m\left(\frac{g}{1 + M/2m}\right) = \frac{mg}{1 + 2m/M}$$

EVALUATE: The acceleration is positive (in the downward direction) and less than *g*, as it should be, since the cable is holding back the block. The cable tension is *not* equal to the block's weight *mg*; if it were, the block could not accelerate.

Let's check some particular cases. When *M* is much larger than *m*, the tension is nearly equal to *mg* and the acceleration is correspondingly much less than *g*. When *M* is zero, T = 0 and $a_y = g$; the object falls freely. If the object starts from rest $(v_{0y} = 0)$ a height *h* above the floor, its *y*-velocity when it strikes the ground is given by $v_y^2 = v_{0y}^2 + 2a_yh = 2a_yh$, so

$$v_y = \sqrt{2a_yh} = \sqrt{\frac{2gh}{1 + M/2m}}$$

We found this same result from energy considerations in Example 9.8.

Test Your Understanding of Section 10.2 The figure shows a glider of mass m_1 that can slide without friction on a horizontal air track. It is attached to an object of mass m_2 by a massless string. The pulley has radius R and moment of inertia I about its axis of rotation. When released, the hanging object accelerates downward, the glider accelerates to the right, and the string turns the pulley without slipping or stretching. Rank the magnitudes of the following forces that act during the motion, in order from largest to smallest magnitude. (i) the tension force (magnitude T_1) in the horizontal part of the string; (ii) the tension force (magnitude T_2) in the vertical part of the string; (iii) the weight m_2g of the hanging object.

10.3 Rigid-Body Rotation About a Moving Axis

We can extend our analysis of the dynamics of rotational motion to some cases in which the axis of rotation moves. When that happens, the motion of the body is **combined translation and rotation.** The key to understanding such situations is this: Every possible motion of a rigid body can be represented as a combination of *translational motion of the center of mass* and *rotation about an axis through the center of mass*. This is true even when the center of mass accelerates, so that it is not at rest in any inertial frame. Figure 10.11 illustrates this for the motion of a tossed baton: The center of mass of the baton follows a parabolic curve, as though the baton were a particle located at the center of mass. Other examples of combined translational and rotational motions include a ball rolling down a hill and a yo-yo unwinding at the end of a string.

Combined Translation and Rotation: Energy Relationships

It's beyond the scope of this book to prove that the motion of a rigid body can always be divided into translation of the center of mass and rotation about the center of mass. But we can show that this is true for the *kinetic energy* of a rigid body that has both translational and rotational motions. In this case, the body's kinetic energy is the sum of a part $\frac{1}{2}Mv_{cm}^2$ associated with motion of the center of mass and a part $\frac{1}{2}I_{cm}\omega^2$ associated with rotation about an axis through the center of mass:

$$K = \frac{1}{2}Mv_{\rm cm}^2 + \frac{1}{2}I_{\rm cm}\omega^2$$
(10.8)

(rigid body with both translation and rotation)

To prove this relationship, we again imagine the rigid body to be made up of particles. Consider a typical particle with mass m_i as shown in Fig. 10.12. The velocity \vec{v}_i of this particle relative to an inertial frame is the vector sum of the velocity \vec{v}_{cm} of the center of mass and the velocity \vec{v}_i' of the particle *relative to* the center of mass:

$$\vec{\boldsymbol{v}}_i = \vec{\boldsymbol{v}}_{\mathrm{cm}} + \vec{\boldsymbol{v}}_i'$$
 (10.9)

The kinetic energy K_i of this particle in the inertial frame is $\frac{1}{2}m_i v_i^2$, which we can also express as $\frac{1}{2}m_i(\vec{v}_i \cdot \vec{v}_i)$. Substituting Eq. (10.9) into this, we get

$$K_{i} = \frac{1}{2}m_{i}(\vec{\boldsymbol{v}}_{cm} + \vec{\boldsymbol{v}}_{i}') \cdot (\vec{\boldsymbol{v}}_{cm} + \vec{\boldsymbol{v}}_{i}')$$

$$= \frac{1}{2}m_{i}(\vec{\boldsymbol{v}}_{cm} \cdot \vec{\boldsymbol{v}}_{cm} + 2\vec{\boldsymbol{v}}_{cm} \cdot \vec{\boldsymbol{v}}_{i}' + \vec{\boldsymbol{v}}_{i}' \cdot \vec{\boldsymbol{v}}_{i}')$$

$$= \frac{1}{2}m_{i}(\boldsymbol{v}_{cm}^{2} + 2\vec{\boldsymbol{v}}_{cm} \cdot \vec{\boldsymbol{v}}_{i}' + \boldsymbol{v}_{i}'^{2})$$

The total kinetic energy is the sum $\sum K_i$ for all the particles making up the body. Expressing the three terms in this equation as separate sums, we get

$$K = \sum K_i = \sum \left(\frac{1}{2}m_i v_{\rm cm}^2\right) + \sum \left(m_i \vec{\boldsymbol{v}}_{\rm cm} \cdot \vec{\boldsymbol{v}}_i'\right) + \sum \left(\frac{1}{2}m_i v_i'^2\right)$$

The first and second terms have common factors that can be taken outside the sum:

$$K = \frac{1}{2} \left(\sum m_i \right) v_{\rm cm}^2 + \vec{v}_{\rm cm} \cdot \left(\sum m_i \vec{v}_i' \right) + \sum \left(\frac{1}{2} m_i v_i'^2 \right)$$
(10.10)

Now comes the reward for our effort. In the first term, $\sum m_i$ is the total mass M. The second term is zero because $\sum m_i \vec{v}'_i$ is M times the velocity of the center of mass *relative to the center of mass*, and this is zero by definition. The last term is the sum of the kinetic energies of the particles computed by using their speeds with respect to the center of mass; this is just the kinetic energy of rotation **10.11** The motion of a rigid body is a combination of translational motion of the center of mass and rotation around the center of mass.

This baton toss can be represented as a combination of ...

10.12 A rigid body with both translation and rotation.

Velocity \vec{v}_i of particle in rotating, translating rigid body = (velocity \vec{v}_{cm} of center of mass) + (particle's velocity \vec{v}_i' relative to center of mass)

Application Combined Translation and Rotation

A maple seed consists of a pod attached to a much lighter, flattened wing. Airflow around the wing slows the fall to about 1 m/s and causes the seed to rotate about its center of mass. The seed's slow fall means that a breeze can carry the seed some distance from the parent tree. In the absence of wind, the seed's center of mass falls straight down.

ActivPhysics 7.11: Race Between a Block and a Disk

10.13 The motion of a rolling wheel is the sum of the translational motion of the center of mass plus the rotational motion of the wheel around the center of mass.

around the center of mass. Using the same steps that led to Eq. (9.17) for the rotational kinetic energy of a rigid body, we can write this last term as $\frac{1}{2}I_{\rm cm}\omega^2$, where $I_{\rm cm}$ is the moment of inertia with respect to the axis through the center of mass and ω is the angular speed. So Eq. (10.10) becomes Eq. (10.8):

$$K = \frac{1}{2}Mv_{\rm cm}^2 + \frac{1}{2}I_{\rm cm}\omega^2$$

Rolling Without Slipping

An important case of combined translation and rotation is **rolling without slipping,** such as the motion of the wheel shown in Fig. 10.13. The wheel is symmetrical, so its center of mass is at its geometric center. We view the motion in an inertial frame of reference in which the surface on which the wheel rolls is at rest. In this frame, the point on the wheel that contacts the surface must be instantaneously *at rest* so that it does not slip. Hence the velocity \vec{v}_1 of the point of contact relative to the center of mass must have the same magnitude but opposite direction as the center-of-mass velocity \vec{v}_{cm} . If the radius of the wheel is *R* and its angular speed about the center of mass is ω , then the magnitude of \vec{v}_1 is $R\omega$; hence we must have

 $v_{\rm cm} = R\omega$ (condition for rolling without slipping) (10.11)

As Fig. 10.13 shows, the velocity of a point on the wheel is the vector sum of the velocity of the center of mass and the velocity of the point relative to the center of mass. Thus while point 1, the point of contact, is instantaneously at rest, point 3 at the top of the wheel is moving forward *twice as fast* as the center of mass, and points 2 and 4 at the sides have velocities at 45° to the horizontal.

At any instant we can think of the wheel as rotating about an "instantaneous axis" of rotation that passes through the point of contact with the ground. The angular velocity ω is the same for this axis as for an axis through the center of mass; an observer at the center of mass sees the rim make the same number of revolutions per second as does an observer at the rim watching the center of mass spin around him. If we think of the motion of the rolling wheel in Fig. 10.13 in this way, the kinetic energy of the wheel is $K = \frac{1}{2}I_1\omega^2$, where I_1 is the moment of inertia of the wheel about an axis through point 1. But by the parallel-axis theorem, Eq. (9.19), $I_1 = I_{cm} + MR^2$, where *M* is the total mass of the wheel and I_{cm} is the moment of inertia with respect to an axis through the center of mass. Using Eq. (10.11), the kinetic energy of the wheel is

$$K = \frac{1}{2}I_{1}\omega^{2} = \frac{1}{2}I_{cm}\omega^{2} + \frac{1}{2}MR^{2}\omega^{2} = \frac{1}{2}I_{cm}\omega^{2} + \frac{1}{2}Mv_{cm}^{2}$$

which is the same as Eq. (10.8).

where it contacts the ground.

CAUTION Rolling without slipping Note that the relationship $v_{cm} = R\omega$ holds *only* if there is rolling without slipping. When a drag racer first starts to move, the rear tires are spinning very fast even though the racer is hardly moving, so $R\omega$ is greater than v_{cm} (Fig. 10.14). If a driver applies the brakes too heavily so that the car skids, the tires will spin hardly at all and $R\omega$ is less than v_{cm} .

If a rigid body changes height as it moves, we must also consider gravitational potential energy. As we discussed in Section 9.4, the gravitational potential energy associated with any extended body of mass M, rigid or not, is the same as if we replace the body by a particle of mass M located at the body's center of mass. That is,

$$U = Mgy_{cm}$$

10.14 The smoke rising from this drag racer's rear tires shows that the tires are slipping on the road, so $v_{\rm cm}$ is *not* equal to $R\omega$.

Example 10.4 Speed of a primitive yo-yo

You make a primitive yo-yo by wrapping a massless string around a solid cylinder with mass M and radius R (Fig. 10.15). You hold the free end of the string stationary and release the cylinder from rest. The string unwinds but does not slip or stretch as the cylinder descends and rotates. Using energy considerations, find the speed $v_{\rm cm}$ of the center of mass of the cylinder after it has descended a distance h.

SOLUTION

IDENTIFY and SET UP: The upper end of the string is held fixed, not pulled upward, so your hand does no work on the string–cylinder system. There is friction between the string and the cylinder, but the string doesn't slip so no mechanical energy is lost. Hence we can use conservation of mechanical energy. The initial kinetic energy of the cylinder is $K_1 = 0$, and its final kinetic energy K_2 is given by

10.15 Calculating the speed of a primitive yo-yo.

Eq. (10.8); the massless string has no kinetic energy. The moment of inertia is $I = \frac{1}{2}MR^2$, and by Eq. (9.13) $\omega = v_{cm}/R$ because the string doesn't slip. The potential energies are $U_1 = Mgh$ and $U_2 = 0$.

EXECUTE: From Eq. (10.8), the kinetic energy at point 2 is

$$K_{2} = \frac{1}{2}Mv_{\rm cm}^{2} + \frac{1}{2}(\frac{1}{2}MR^{2})\left(\frac{v_{\rm cm}}{R}\right)^{2}$$
$$= \frac{3}{4}Mv_{\rm cm}^{2}$$

The kinetic energy is $1\frac{1}{2}$ times what it would be if the yo-yo were falling at speed $v_{\rm cm}$ without rotating. Two-thirds of the total kinetic energy $(\frac{1}{2}Mv_{\rm cm}^2)$ is translational and one-third $(\frac{1}{4}Mv_{\rm cm}^2)$ is rotational. Using conservation of energy,

$$K_{1} + U_{1} = K_{2} + U_{2}$$

$$0 + Mgh = \frac{3}{4}Mv_{cm}^{2} + 0$$

$$v_{cm} = \sqrt{\frac{4}{3}gh}$$

EVALUATE: No mechanical energy was lost or gained, so from the energy standpoint the string is merely a way to convert some of the gravitational potential energy (which is released as the cylinder falls) into rotational kinetic energy rather than translational kinetic energy. Because not all of the released energy goes into translation, $v_{\rm cm}$ is less than the speed $\sqrt{2gh}$ of an object dropped from height *h* with no strings attached.

Example 10.5 Race of the rolling bodies

In a physics demonstration, an instructor "races" various bodies that roll without slipping from rest down an inclined plane (Fig. 10.16). What shape should a body have to reach the bottom of the incline first?

SOLUTION

IDENTIFY and SET UP: Kinetic friction does no work if the bodies roll without slipping. We can also ignore the effects of *rolling fric-tion*, introduced in Section 5.3, if the bodies and the surface of the

incline are rigid. (Later in this section we'll explain why this is so.) We can therefore use conservation of energy. Each body starts from rest at the top of an incline with height *h*, so $K_1 = 0$, $U_1 = Mgh$, and $U_2 = 0$. Equation (10.8) gives the kinetic energy at the bottom of the incline; since the bodies roll without slipping, $\omega = v_{\rm cm}/R$. We can express the moments of inertia of the four round bodies in Table 9.2, cases (f)–(i), as $I_{\rm cm} = cMR^2$, where *c* is a number less than or equal to 1 that depends on the shape of the body. Our goal is to find the value of *c* that gives the body the greatest speed $v_{\rm cm}$ after its center of mass has descended a vertical distance *h*.

10.16 Which body rolls down the incline fastest, and why?

EXECUTE: From conservation of energy,

$$K_{1} + U_{1} = K_{2} + U_{2}$$

$$0 + Mgh = \frac{1}{2}Mv_{cm}^{2} + \frac{1}{2}cMR^{2}\left(\frac{v_{cm}}{R}\right)^{2} + 0$$

$$Mgh = \frac{1}{2}(1 + c)Mv_{cm}^{2}$$

$$v_{cm} = \sqrt{\frac{2gh}{1 + c}}$$

EVALUATE: For a given value of c, the speed v_{cm} after descending a distance h is *independent* of the body's mass M and radius R. Hence *all* uniform solid cylinders $(c = \frac{1}{2})$ have the same speed at the bottom, regardless of their mass and radii. The values of c tell us that the order of finish for uniform bodies will be as follows: (1) any solid sphere $(c = \frac{2}{5})$, (2) any solid cylinder $(c = \frac{1}{2})$, (3) any thin-walled, hollow sphere $(c = \frac{2}{3})$, and (4) any thin-walled, hollow cylinder (c = 1). Small-c bodies always beat large-c bodies because less of their kinetic energy is tied up in rotation and so more is available for translation.

Combined Translation and Rotation: Dynamics

We can also analyze the combined translational and rotational motions of a rigid body from the standpoint of dynamics. We showed in Section 8.5 that for a body with total mass M, the acceleration \vec{a}_{cm} of the center of mass is the same as that of a point mass M acted on by all the external forces on the actual body:

$$\sum \vec{F}_{\text{ext}} = M \vec{a}_{\text{cm}} \tag{10.12}$$

The rotational motion about the center of mass is described by the rotational analog of Newton's second law, Eq. (10.7):

$$\sum \tau_z = I_{\rm cm} \alpha_z \tag{10.13}$$

where I_{cm} is the moment of inertia with respect to an axis through the center of mass and the sum $\Sigma \tau_z$ includes all external torques with respect to this axis. It's not immediately obvious that Eq. (10.13) should apply to the motion of a translating rigid body; after all, our derivation of $\Sigma \tau_z = I\alpha_z$ in Section 10.2 assumed that the axis of rotation was stationary. But in fact, Eq. (10.13) is valid *even when the axis of rotation moves*, provided the following two conditions are met:

- 1. The axis through the center of mass must be an axis of symmetry.
- 2. The axis must not change direction.

These conditions are satisfied for many types of rotation (Fig. 10.17). Note that in general this moving axis of rotation is *not* at rest in an inertial frame of reference.

We can now solve dynamics problems involving a rigid body that undergoes translational and rotational motions at the same time, provided that the rotation axis satisfies the two conditions just mentioned. Problem-Solving Strategy 10.1 (Section 10.2) is equally useful here, and you should review it now. Keep in mind that when a body undergoes translational and rotational motions at the same time, we need two separate equations of motion *for the same body*. One of these, Eq. (10.12), describes the translational motion of the center of mass. The other equation of motion, Eq. (10.13), describes the rotational motion about the axis through the center of mass.

10.17 The axle of a bicycle wheel passes through the wheel's center of mass and is an axis of symmetry. Hence the rotation of the wheel is described by Eq. (10.13), provided the bicycle doesn't turn or tilt to one side (which would change the orientation of the axle).

Example 10.6 Acceleration of a primitive yo-yo

For the primitive yo-yo in Example 10.4 (Fig. 10.18a), find the downward acceleration of the cylinder and the tension in the string.

SOLUTION

IDENTIFY and SET UP: Figure 10.18b shows our free-body diagram for the yo-yo, including our choice of positive coordinate directions. Our target variables are a_{cm-v} and *T*. We'll use Eq. (10.12) for the

10.18 Dynamics of a primitive yo-yo (see Fig. 10.15).

translational motion of the center of mass and Eq. (10.13) for rotational motion around the center of mass. We'll also use Eq. (10.11), which says that the string unwinds without slipping. As in Example 10.4, the moment of inertia of the yo-yo for an axis through its center of mass is $I_{\rm cm} = \frac{1}{2}MR^2$.

EXECUTE: From Eq. (10.12),

$$\sum F_y = Mg + (-T) = Ma_{\text{cm-y}}$$
 (10.14)

From Eq. (10.13),

$$\sum \tau_z = TR = I_{\rm cm} \alpha_z = \frac{1}{2} M R^2 \alpha_z \qquad (10.15)$$

From Eq. (10.11), $v_{cm-z} = R\omega_z$; the derivative of this expression with respect to time gives us

$$a_{\rm cm-v} = R\alpha_z \tag{10.16}$$

We now use Eq. (10.16) to eliminate α_z from Eq. (10.15) and then solve Eqs. (10.14) and (10.15) simultaneously for *T* and a_{cm-y} . The results are

 $a_{\rm cm-y} = \frac{2}{3}g \qquad T = \frac{1}{3}Mg$

EVALUATE: The string slows the fall of the yo-yo, but not enough to stop it completely. Hence a_{cm-y} is less than the free-fall value g and T is less than the yo-yo weight Mg.

Example 10.7 Acceleration of a rolling sphere

A bowling ball rolls without slipping down a ramp, which is inclined at an angle β to the horizontal (Fig. 10.19a). What are the ball's acceleration and the magnitude of the friction force on the ball? Treat the ball as a uniform solid sphere, ignoring the finger holes.

SOLUTION

IDENTIFY and SET UP: The free-body diagram (Fig. 10.19b) shows that only the friction force exerts a torque about the center of mass. Our target variables are the acceleration a_{cm-x} of the ball's center of mass and the magnitude f of the friction force. (Because

10.19 A bowling ball rolling down a ramp.

the ball does not slip at the instantaneous point of contact with the ramp, this is a *static* friction force; it prevents slipping and gives the ball its angular acceleration.) We use Eqs. (10.12) and (10.13) as in Example 10.6.

EXECUTE: The ball's moment of inertia is $I_{\rm cm} = \frac{2}{5}MR^2$. The equations of motion are

$$\sum F_x = Mg\sin\beta + (-f) = Ma_{cm-x}$$
 (10.17)

$$\sum \tau_z = fR = I_{\rm cm} \alpha_z = \left(\frac{2}{5}MR^2\right) \alpha_z \tag{10.18}$$

The ball rolls without slipping, so as in Example 10.6 we use $a_{cm-x} = R\alpha_z$ to eliminate α_z from Eq. (10.18):

$$fR = \frac{2}{5}MRa_{\rm cm-y}$$

This equation and Eq. (10.17) are two equations for the unknowns a_{cm-x} and f. We solve Eq. (10.17) for f, substitute that expression into the above equation to eliminate f, and solve for a_{cm-x} :

$$a_{\rm cm-x} = \frac{5}{7}g\sin\beta$$

Finally, we substitute this acceleration into Eq. (10.17) and solve for f:

$$f = \frac{2}{7}Mg\sin\beta$$

EVALUATE: The ball's acceleration is just $\frac{5}{7}$ as large as that of an object *sliding* down the slope without friction. If the ball descends a vertical distance h as it rolls down the ramp, its displacement along the ramp is $h/\sin\beta$. You can show that the speed of the ball at the bottom of the ramp is $v_{\rm cm} = \sqrt{\frac{10}{7}gh}$, the same as our result from Example 10.5 with $c = \frac{2}{5}$.

If the ball were rolling uphill without slipping, the force of friction would still be directed uphill as in Fig. 10.19b. Can you see why?

(b) Rigid sphere rolling on a deformable

10.20 Rolling down (a) a perfectly rigid surface and (b) a deformable surface. The deformation in part (b) is greatly exaggerated.

(a) Perfectly rigid sphere rolling on a perfectly rigid surface

Rolling Friction

In Example 10.5 we said that we can ignore rolling friction if both the rolling body and the surface over which it rolls are perfectly rigid. In Fig. 10.20a a perfectly rigid sphere is rolling down a perfectly rigid incline. The line of action of the normal force passes through the center of the sphere, so its torque is zero; there is no sliding at the point of contact, so the friction force does no work. Figure 10.20b shows a more realistic situation, in which the surface "piles up" in front of the sphere and the sphere rides in a shallow trench. Because of these deformations, the contact forces on the sphere no longer act along a single point, but over an area; the forces are concentrated on the front of the sphere as shown. As a result, the normal force now exerts a torque that opposes the rotation. In addition, there is some sliding of the sphere over the surface due to the deformation, causing mechanical energy to be lost. The combination of these two effects is the phenomenon of *rolling friction*. Rolling friction also occurs if the rolling body is deformable, such as an automobile tire. Often the rolling body and the surface are rigid enough that rolling friction can be ignored, as we have assumed in all the examples in this section.

Test Your Understanding of Section 10.3 Suppose the solid cylinder used as a yo-yo in Example 10.6 is replaced by a hollow cylinder of the same mass and radius. (a) Will the acceleration of the yo-yo (i) increase, (ii) decrease, or (iii) remain the same? (b) Will the string tension (i) increase, (ii) decrease, or (iii) remain the same?

MP

10.4 Work and Power in Rotational Motion

When you pedal a bicycle, you apply forces to a rotating body and do work on it. Similar things happen in many other real-life situations, such as a rotating motor shaft driving a power tool or a car engine propelling the vehicle. We can express this work in terms of torque and angular displacement.

Suppose a tangential force \vec{F}_{tan} acts at the rim of a pivoted disk—for example, a child running while pushing on a playground merry-go-round (Fig. 10.21a). The disk rotates through an infinitesimal angle $d\theta$ about a fixed axis during an

infinitesimal time interval dt (Fig. 10.21b). The work dW done by the force \vec{F}_{tan} while a point on the rim moves a distance ds is $dW = F_{tan} ds$. If $d\theta$ is measured in radians, then $ds = R d\theta$ and

$$dW = F_{tan}R \, d\theta$$

Now $F_{tan}R$ is the *torque* τ_z due to the force \vec{F}_{tan} , so

$$dW = \tau_z \, d\theta \tag{10.19}$$

The total work *W* done by the torque during an angular displacement from θ_1 to θ_2 is

$$W = \int_{\theta_1}^{\theta_2} \tau_z \, d\theta \qquad \text{(work done by a torque)} \qquad (10.20)$$

If the torque remains *constant* while the angle changes by a finite amount $\Delta \theta = \theta_2 - \theta_1$, then

$$W = \tau_z(\theta_2 - \theta_1) = \tau_z \Delta \theta$$
 (work done by a constant torque) (10.21)

The work done by a *constant* torque is the product of torque and the angular displacement. If torque is expressed in newton-meters $(\mathbf{N} \cdot \mathbf{m})$ and angular displacement in radians, the work is in joules. Equation (10.21) is the rotational analog of Eq. (6.1), W = Fs, and Eq. (10.20) is the analog of Eq. (6.7), $W = \int F_x dx$, for the work done by a force in a straight-line displacement.

If the force in Fig. 10.21 had an axial component (parallel to the rotation axis) or a radial component (directed toward or away from the axis), that component would do no work because the displacement of the point of application has only a tangential component. An axial or radial component of force would also make no contribution to the torque about the axis of rotation. So Eqs. (10.20) and (10.21) are correct for *any* force, no matter what its components.

When a torque does work on a rotating rigid body, the kinetic energy changes by an amount equal to the work done. We can prove this by using exactly the same procedure that we used in Eqs. (6.11) through (6.13) for the translational kinetic energy of a particle. Let τ_z represent the *net* torque on the body so that $\tau_z = I\alpha_z$ from Eq. (10.7), and assume that the body is rigid so that the moment of inertia *I* is constant. We then transform the integrand in Eq. (10.20) into an integrand with respect to ω_z as follows:

$$\tau_z d\theta = (I\alpha_z) d\theta = I \frac{d\omega_z}{dt} d\theta = I \frac{d\theta}{dt} d\omega_z = I\omega_z d\omega_z$$

Since τ_z is the net torque, the integral in Eq. (10.20) is the *total* work done on the rotating rigid body. This equation then becomes

$$W_{\text{tot}} = \int_{\omega_1}^{\omega_2} I \omega_z \, d\omega_z = \frac{1}{2} I \omega_2^2 - \frac{1}{2} I \omega_1^2 \tag{10.22}$$

The change in the rotational kinetic energy of a *rigid* body equals the work done by forces exerted from outside the body (Fig. 10.22). This equation is analogous to Eq. (6.13), the work–energy theorem for a particle.

What about the *power* associated with work done by a torque acting on a rotating body? When we divide both sides of Eq. (10.19) by the time interval *dt* during which the angular displacement occurs, we find

$$\frac{dW}{dt}=\tau_z\frac{d\theta}{dt}$$

10.21 A tangential force applied to a rotating body does work.

(a)

(b) Overhead view of merry-go-round

10.22 The rotational kinetic energy of an airplane propeller is equal to the total work done to set it spinning. When it is spinning at a constant rate, positive work is done on the propeller by the engine and negative work is done on it by air resistance. Hence the net work being done is zero and the kinetic energy remains constant.

But dW/dt is the rate of doing work, or *power P*, and $d\theta/dt$ is angular velocity ω_z , so

$$P = \tau_z \omega_z \tag{10.23}$$

When a torque τ_z (with respect to the axis of rotation) acts on a body that rotates with angular velocity ω_z , its power (rate of doing work) is the product of τ_z and ω_z . This is the analog of the relationship $P = \vec{F} \cdot \vec{v}$ that we developed in Section 6.4 for particle motion.

Example 10.8 Calculating power from torque

An electric motor exerts a constant $10\text{-N}\cdot\text{m}$ torque on a grindstone, which has a moment of inertia of 2.0 kg $\cdot\text{m}^2$ about its shaft. The system starts from rest. Find the work W done by the motor in 8.0 s and the grindstone kinetic energy K at this time. What average power P_{av} is delivered by the motor?

SOLUTION

IDENTIFY and SET UP: The only torque acting is that due to the motor. Since this torque is constant, the grindstone's angular acceleration α_z is constant. We'll use Eq. (10.7) to find α_z , and then use this in the kinematics equations from Section 9.2 to calculate the angle $\Delta\theta$ through which the grindstone rotates in 8.0 s and its final angular velocity ω_z . From these we'll calculate *W*, *K*, and *P*_{av}.

EXECUTE: We have $\Sigma \tau_z = 10 \text{ N} \cdot \text{m}$ and $I = 2.0 \text{ kg} \cdot \text{m}^2$, so $\Sigma \tau_z = I \alpha_z$ yields $\alpha_z = 5.0 \text{ rad/s}^2$. From Eq. (9.11),

$$\Delta \theta = \frac{1}{2} \alpha_z t^2 = \frac{1}{2} (5.0 \text{ rad/s}^2) (8.0 \text{ s})^2 = 160 \text{ rad}$$
$$W = \tau_z \Delta \theta = (10 \text{ N} \cdot \text{m}) (160 \text{ rad}) = 1600 \text{ J}$$

From Eqs. (9.7) and (9.17),

$$\omega_z = \alpha_z t = (5.0 \text{ rad/s}^2)(8.0 \text{ s}) = 40 \text{ rad/s}$$
$$K = \frac{1}{2}I\omega_z^2 = \frac{1}{2}(2.0 \text{ kg} \cdot \text{m}^2)(40 \text{ rad/s})^2 = 1600 \text{ J}$$

The average power is the work done divided by the time interval:

$$P_{\rm av} = \frac{1600 \text{ J}}{8.0 \text{ s}} = 200 \text{ J/s} = 200 \text{ W}$$

EVALUATE: The initial kinetic energy was zero, so the work done W must equal the final kinetic energy K [Eq. (10.22)]. This is just as we calculated. We can check our result $P_{av} = 200$ W by considering the *instantaneous* power $P = \tau_z \omega_z$. Because ω_z increases continuously, P increases continuously as well; its value increases from zero at t = 0 to $(10 \text{ N} \cdot \text{m})(40 \text{ rad/s}) = 400 \text{ W}$ at t = 8.0 s. Both ω_z and P increase *uniformly* with time, so the *average* power is just half this maximum value, or 200 W.

Test Your Understanding of Section 10.4 You apply equal torques to two different cylinders, one of which has a moment of inertia twice as large as the other cylinder. Each cylinder is initially at rest. After one complete rotation, which cylinder has the greater kinetic energy? (i) the cylinder with the larger moment of inertia; (ii) both cylinders have the same kinetic energy.

10.5 Angular Momentum

Every rotational quantity that we have encountered in Chapters 9 and 10 is the analog of some quantity in the translational motion of a particle. The analog of *momentum* of a particle is **angular momentum**, a vector quantity denoted as \vec{L} . Its relationship to momentum \vec{p} (which we will often call *linear momentum* for clarity) is exactly the same as the relationship of torque to force, $\vec{\tau} = \vec{r} \times \vec{F}$. For a particle with constant mass *m*, velocity \vec{v} , momentum $\vec{p} = m\vec{v}$, and position vector \vec{r} relative to the origin *O* of an inertial frame, we define angular momentum \vec{L} as

 $\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$ (angular momentum of a particle) (10.24)

The value of \vec{L} depends on the choice of origin *O*, since it involves the particle's position vector relative to *O*. The units of angular momentum are kg \cdot m²/s.

In Fig. 10.23 a particle moves in the *xy*-plane; its position vector \vec{r} and momentum $\vec{p} = m\vec{v}$ are shown. The angular momentum vector \vec{L} is perpendicular to the *xy*-plane. The right-hand rule for vector products shows that its direction is along the +z-axis, and its magnitude is

$$L = mvr\sin\phi = mvl \tag{10.25}$$

where *l* is the perpendicular distance from the line of \vec{v} to *O*. This distance plays the role of "lever arm" for the momentum vector.

When a net force \vec{F} acts on a particle, its velocity and momentum change, so its angular momentum may also change. We can show that the *rate of change* of angular momentum is equal to the torque of the net force. We take the time derivative of Eq. (10.24), using the rule for the derivative of a product:

$$\frac{d\vec{L}}{dt} = \left(\frac{d\vec{r}}{dt} \times m\vec{v}\right) + \left(\vec{r} \times m\frac{d\vec{v}}{dt}\right) = (\vec{v} \times m\vec{v}) + (\vec{r} \times m\vec{a})$$

The first term is zero because it contains the vector product of the vector $\vec{v} = d\vec{r}/dt$ with itself. In the second term we replace $m\vec{a}$ with the net force \vec{F} , obtaining

$$\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \vec{\tau} \qquad \text{(for a particle acted on by net force } \vec{F}\text{)} (10.26)$$

The rate of change of angular momentum of a particle equals the torque of the net force acting on it. Compare this result to Eq. (8.4), which states that the rate of change $d\vec{p}/dt$ of the *linear* momentum of a particle equals the net force that acts on it.

Angular Momentum of a Rigid Body

We can use Eq. (10.25) to find the total angular momentum of a *rigid body* rotating about the *z*-axis with angular speed ω . First consider a thin slice of the body lying in the *xy*-plane (Fig. 10.24). Each particle in the slice moves in a circle centered at the origin, and at each instant its velocity \vec{v}_i is perpendicular to its position vector \vec{r}_i , as shown. Hence in Eq. (10.25), $\phi = 90^\circ$ for every particle. A particle with mass m_i at a distance r_i from O has a speed v_i equal to $r_i\omega$. From Eq. (10.25) the magnitude L_i of its angular momentum is

$$L_i = m_i (r_i \omega) r_i = m_i r_i^2 \omega \tag{10.27}$$

The direction of each particle's angular momentum, as given by the right-hand rule for the vector product, is along the +z-axis.

The *total* angular momentum of the slice of the body lying in the *xy*-plane is the sum $\sum L_i$ of the angular momenta L_i of the particles. Summing Eq. (10.27), we have

$$L = \sum L_i = (\sum m_i r_i^2) \omega = I \omega$$

where *I* is the moment of inertia of the slice about the *z*-axis.

We can do this same calculation for the other slices of the body, all parallel to the xy-plane. For points that do not lie in the xy-plane, a complication arises because the \vec{r} vectors have components in the z-direction as well as the x- and y-directions; this gives the angular momentum of each particle a component perpendicular to the z-axis. But *if the z-axis is an axis of symmetry*, the perpendicular components for particles on opposite sides of this axis add up to zero (Fig. 10.25). So when a body rotates about an axis of symmetry, its angular momentum vector \vec{L} lies along the symmetry axis, and its magnitude is $L = I\omega$. **10.23** Calculating the angular momentum $\vec{L} = \vec{r} \times m\vec{v} = \vec{r} \times \vec{p}$ of a particle with mass *m* moving in the *xy*-plane.

10.24 Calculating the angular momentum of a particle of mass m_i in a rigid body rotating at angular speed ω . (Compare Fig. 10.23.)

10.25 Two particles of the same mass located symmetrically on either side of the rotation axis of a rigid body. The angular momentum vectors \vec{L}_1 and \vec{L}_2 of the two particles do not lie along the rotation axis, but their vector sum $\vec{L}_1 + \vec{L}_2$ does.

10.26 For rotation about an axis of symmetry, $\vec{\omega}$ and \vec{L} are parallel and along the axis. The directions of both vectors are given by the right-hand rule (compare Fig. 9.5).

The angular velocity vector $\vec{\omega}$ also lies along the rotation axis, as we discussed at the end of Section 9.1. Hence for a rigid body rotating around an axis of symmetry, \vec{L} and $\vec{\omega}$ are in the same direction (Fig. 10.26). So we have the *vector* relationship

 $\vec{L} = I\vec{\omega}$ (for a rigid body rotating around a symmetry axis) (10.28)

From Eq. (10.26) the rate of change of angular momentum of a particle equals the torque of the net force acting on the particle. For any system of particles (including both rigid and nonrigid bodies), the rate of change of the *total* angular momentum equals the sum of the torques of all forces acting on all the particles. The torques of the *internal* forces add to zero if these forces act along the line from one particle to another, as in Fig. 10.8, and so the sum of the torques includes only the torques of the *external* forces. (A similar cancellation occurred in our discussion of center-of-mass motion in Section 8.5.) If the total angular momentum of the system of particles is \vec{L} and the sum of the external torques is $\sum \vec{\tau}$, then

$$\sum \vec{\tau} = \frac{d\vec{L}}{dt} \qquad \text{(for any system of particles)} \qquad (10.29)$$

Finally, if the system of particles is a rigid body rotating about a symmetry axis (the *z*-axis), then $L_z = I\omega_z$ and *I* is constant. If this axis has a fixed direction in space, then the vectors \vec{L} and $\vec{\omega}$ change only in magnitude, not in direction. In that case, $dL_z/dt = I d\omega_z/dt = I\alpha_z$, or

$$\sum \tau_z = I\alpha_z$$

which is again our basic relationship for the dynamics of rigid-body rotation. If the body is *not* rigid, *I* may change, and in that case, *L* changes even when ω is constant. For a nonrigid body, Eq. (10.29) is still valid, even though Eq. (10.7) is not.

When the axis of rotation is *not* a symmetry axis, the angular momentum is in general *not* parallel to the axis (Fig. 10.27). As the body turns, the angular momentum vector \vec{L} traces out a cone around the rotation axis. Because \vec{L} changes, there must be a net external torque acting on the body even though the angular velocity magnitude ω may be constant. If the body is an unbalanced wheel on a car, this torque is provided by friction in the bearings, which causes the bearings to wear out. "Balancing" a wheel means distributing the mass so that the rotation axis is an axis of symmetry; then \vec{L} points along the rotation axis, and no net torque is required to keep the wheel turning.

In fixed-axis rotation we often use the term "angular momentum of the body" to refer to only the *component* of \vec{L} along the rotation axis of the body (the *z*-axis in Fig. 10.27), with a positive or negative sign to indicate the sense of rotation just as with angular velocity.

Example 10.9 Angular momentum and torque

A turbine fan in a jet engine has a moment of inertia of 2.5 kg \cdot m² about its axis of rotation. As the turbine starts up, its angular velocity is given by $\omega_z = (40 \text{ rad/s}^3)t^2$. (a) Find the fan's angular momentum as a function of time, and find its value at t = 3.0 s. (b) Find the net torque on the fan as a function of time, and find its value at t = 3.0 s. *z*-component L_z , which we can determine from the angular velocity ω_z . Since the direction of angular momentum is constant, the net torque likewise has only a component τ_z along the rotation axis. We'll use Eq. (10.28) to find L_z from ω_z and then use Eq. (10.29) to find τ_z .

EXECUTE: (a) From Eq. (10.28),

$$L_z = I\omega_z = (2.5 \text{ kg} \cdot \text{m}^2)(40 \text{ rad/s}^3)t^2 = (100 \text{ kg} \cdot \text{m}^2/\text{s}^3)t^2$$

IDENTIFY and SET UP: The fan rotates about its axis of symmetry (We dropped the dimensionless quantity "rad" from the final expression.) At t = 3.0 s, $L_z = 900$ kg \cdot m²/s.

10.27 If the rotation axis of a rigid body is not a symmetry axis, \vec{L} does not in general lie along the rotation axis. Even if $\vec{\omega}$ is constant, the direction of \vec{L} changes and a net torque is required to maintain rotation.

SOLUTION

(b) From Eq. (10.29),

$$\tau_z = \frac{dL_z}{dt} = (100 \text{ kg} \cdot \text{m}^2/\text{s}^3)(2t) = (200 \text{ kg} \cdot \text{m}^2/\text{s}^3)t$$
At $t = 3.0 \text{ s}$,

$$\tau_z = (200 \text{ kg} \cdot \text{m}^2/\text{s}^3)(3.0 \text{ s}) = 600 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 600 \text{ N} \cdot \text{m}$$

Test Your Understanding of Section 10.5 A ball is attached to one end of a piece of string. You hold the other end of the string and whirl the ball in a circle around your hand. (a) If the ball moves at a constant speed, is its linear momentum \vec{p} constant? Why or why not? (b) Is its angular momentum \vec{L} constant? Why or why not?

10.6 Conservation of Angular Momentum

We have just seen that angular momentum can be used for an alternative statement of the basic dynamic principle for rotational motion. It also forms the basis for the **principle of conservation of angular momentum.** Like conservation of energy and of linear momentum, this principle is a universal conservation law, valid at all scales from atomic and nuclear systems to the motions of galaxies. This principle follows directly from Eq. (10.29): $\Sigma \vec{\tau} = d\vec{L}/dt$. If $\Sigma \vec{\tau} = 0$, then $d\vec{L}/dt = 0$, and \vec{L} is constant.

When the net external torque acting on a system is zero, the total angular momentum of the system is constant (conserved).

A circus acrobat, a diver, and an ice skater pirouetting on the toe of one skate all take advantage of this principle. Suppose an acrobat has just left a swing with arms and legs extended and rotating counterclockwise about her center of mass. When she pulls her arms and legs in, her moment of inertia I_{cm} with respect to her center of mass changes from a large value I_1 to a much smaller value I_2 . The only external force acting on her is her weight, which has no torque with respect to an axis through her center of mass. So her angular momentum $L_z = I_{cm}\omega_z$ remains constant, and her angular velocity ω_z increases as I_{cm} decreases. That is,

$$I_1 \omega_{1z} = I_2 \omega_{2z}$$
 (zero net external torque) (10.30)

When a skater or ballerina spins with arms outstretched and then pulls her arms in, her angular velocity increases as her moment of inertia decreases. In each case there is conservation of angular momentum in a system in which the net external torque is zero.

When a system has several parts, the internal forces that the parts exert on one another cause changes in the angular momenta of the parts, but the *total* angular momentum doesn't change. Here's an example. Consider two bodies A and B that interact with each other but not with anything else, such as the astronauts we discussed in Section 8.2 (see Fig. 8.8). Suppose body A exerts a force $\vec{F}_{A \text{ on } B}$ on body B; the corresponding torque (with respect to whatever point we choose) is $\vec{\tau}_{A \text{ on } B}$. According to Eq. (10.29), this torque is equal to the rate of change of angular momentum of B:

$$\vec{\tau}_{A \text{ on } B} = \frac{d\vec{L}_B}{dt}$$

At the same time, body *B* exerts a force $\vec{F}_{B \text{ on } A}$ on body *A*, with a corresponding torque $\vec{\tau}_{B \text{ on } A}$, and

$$\vec{\boldsymbol{\tau}}_{B \text{ on } A} = \frac{d\vec{\boldsymbol{L}}_A}{dt}$$

EVALUATE: As a check on our expression for τ_z , note that the angular acceleration of the turbine is $\alpha_z = d\omega_z/dt = (40 \text{ rad/s}^3)(2t) = (80 \text{ rad/s}^3)t$. Hence from Eq. (10.7), the torque on the fan is $\tau_z = I\alpha_z = (2.5 \text{ kg} \cdot \text{m}^2)(80 \text{ rad/s}^3)t = (200 \text{ kg} \cdot \text{m}^2/\text{s}^3)t$, just as we calculated.

I

10.28 A falling cat twists different parts of its body in different directions so that it lands feet first. At all times during this process the angular momentum of the cat as a whole remains zero.

From Newton's third law, $\vec{F}_{B \text{ on } A} = -\vec{F}_{A \text{ on } B}$. Furthermore, if the forces act along the same line, as in Fig. 10.8, their lever arms with respect to the chosen axis are equal. Thus the *torques* of these two forces are equal and opposite, and $\vec{\tau}_{B \text{ on } A} = -\vec{\tau}_{A \text{ on } B}$. So if we add the two preceding equations, we find

$$\frac{d\vec{L}_A}{dt} + \frac{d\vec{L}_B}{dt} = \mathbf{0}$$

or, because $\vec{L}_A + \vec{L}_B$ is the *total* angular momentum \vec{L} of the system,

 $\frac{d\vec{L}}{dt} = \mathbf{0} \qquad (\text{zero net external torque}) \tag{10.31}$

That is, the total angular momentum of the system is constant. The torques of the internal forces can transfer angular momentum from one body to the other, but they can't change the *total* angular momentum of the system (Fig. 10.28).

Example 10.10 Anyone can be a ballerina

A physics professor stands at the center of a frictionless turntable with arms outstretched and a 5.0-kg dumbbell in each hand (Fig. 10.29). He is set rotating about the vertical axis, making one revolution in 2.0 s. Find his final angular velocity if he pulls the dumbbells in to his stomach. His moment of inertia (without the dumbbells) is 3.0 kg \cdot m² with arms outstretched and 2.2 kg \cdot m² with his hands at his stomach. The dumbbells are 1.0 m from the axis initially and 0.20 m at the end.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: No external torques act about the *z*-axis, so L_z is constant. We'll use Eq. (10.30) to find the final

10.29 Fun with conservation of angular momentum.

angular velocity ω_{2z} . The moment of inertia of the system is $I = I_{\text{prof}} + I_{\text{dumbbells}}$. We treat each dumbbell as a particle of mass *m* that contributes mr^2 to $I_{\text{dumbbells}}$, where *r* is the perpendicular distance from the axis to the dumbbell. Initially we have

$$I_1 = 3.0 \text{ kg} \cdot \text{m}^2 + 2(5.0 \text{ kg})(1.0 \text{ m})^2 = 13 \text{ kg} \cdot \text{m}^2$$
$$\omega_{1z} = \frac{1 \text{ rev}}{2.0 \text{ s}} = 0.50 \text{ rev/s}$$

The final moment of inertia is

$$I_2 = 2.2 \text{ kg} \cdot \text{m}^2 + 2(5.0 \text{ kg})(0.20 \text{ m})^2 = 2.6 \text{ kg} \cdot \text{m}^2$$

From Eq. (10.30), the final angular velocity is

$$\omega_{2z} = \frac{I_1}{I_2} \omega_{1z} = \frac{13 \text{ kg} \cdot \text{m}^2}{2.6 \text{ kg} \cdot \text{m}^2} (0.50 \text{ rev/s}) = 2.5 \text{ rev/s} = 5\omega_{1z}$$

Can you see why we didn't have to change "revolutions" to "radians" in this calculation?

EVALUATE: The angular momentum remained constant, but the angular velocity increased by a factor of 5, from $\omega_{1z} = (0.50 \text{ rev/s})$ $(2\pi \text{ rad/rev}) = 3.14 \text{ rad/s}$ to $\omega_{2z} = (2.5 \text{ rev/s})(2\pi \text{ rad/rev}) = 15.7 \text{ rad/s}$. The initial and final kinetic energies are then

$$K_1 = \frac{1}{2}I_1\omega_{1z}^2 = \frac{1}{2}(13 \text{ kg} \cdot \text{m}^2)(3.14 \text{ rad/s})^2 = 64 \text{ J}$$

$$K_2 = \frac{1}{2}I_2\omega_{2z}^2 = \frac{1}{2}(2.6 \text{ kg} \cdot \text{m}^2)(15.7 \text{ rad/s})^2 = 320 \text{ J}$$

The fivefold increase in kinetic energy came from the work that the professor did in pulling his arms and the dumbbells inward.

Example 10.11 A rotational "collision"

Figure 10.30 shows two disks: an engine flywheel (*A*) and a clutch plate (*B*) attached to a transmission shaft. Their moments of inertia are I_A and I_B ; initially, they are rotating with constant angular speeds ω_A and ω_B , respectively. We push the disks together with forces acting along the axis, so as not to apply any torque on either disk. The disks rub against each other and eventually reach a common angular speed ω . Derive an expression for ω .

SOLUTION

IDENTIFY, SET UP, and EXECUTE: There are no external torques, so the only torque acting on either disk is the torque applied by the other disk. Hence the total angular momentum of the system of two disks is conserved. At the end they rotate together as one body with total moment of inertia $I = I_A + I_B$ and angular speed ω .

Mastering **PHYSICS**

PhET: Torque ActivPhysics 7.14: Ball Hits Bat **10.30** When the net external torque is zero, angular momentum is conserved.

Figure 10.30 shows that all angular velocities are in the same direction, so we can regard ω_A , ω_B , and ω as components of angular velocity along the rotation axis. Conservation of angular momentum gives

$$\omega_A + I_B \omega_B = (I_A + I_B) \omega$$
 $\omega = \frac{I_A \omega_A + I_B \omega_B}{I_A + I_B}$

 I_A

EVALUATE: This "collision" is analogous to a completely inelastic collision (see Section 8.3). When two objects in translational motion along the same axis collide and stick, the linear momentum of the system is conserved. Here two objects in *rotational* motion around the same axis "collide" and stick, and the *angular* momentum of the system is conserved.

The kinetic energy of a system decreases in a completely inelastic collision. Here kinetic energy is lost because nonconservative (frictional) internal forces act while the two disks rub together. Suppose flywheel A has a mass of 2.0 kg, a radius of 0.20 m, and an initial angular speed of 50 rad/s (about 500 rpm), and clutch plate B has a mass of 4.0 kg, a radius of 0.10 m, and an initial angular speed of 200 rad/s. Can you show that the final kinetic energy is only two-thirds of the initial kinetic energy?

Example 10.12 Angular momentum in a crime bust

A door 1.00 m wide, of mass 15 kg, can rotate freely about a vertical axis through its hinges. A bullet with a mass of 10 g and a speed of 400 m/s strikes the center of the door, in a direction perpendicular to the plane of the door, and embeds itself there. Find the door's angular speed. Is kinetic energy conserved?

SOLUTION

IDENTIFY and SET UP: We consider the door and bullet as a system. There is no external torque about the hinge axis, so angular momentum about this axis is conserved. Figure 10.31 shows our sketch. The initial angular momentum is that of the bullet, as given by Eq. (10.25). The final angular momentum is that of a rigid body

10.31 Our sketch for this problem.

composed of the door and the embedded bullet. We'll equate these quantities and solve for the resulting angular speed ω of the door and bullet.

EXECUTE: From Eq. (10.25), the initial angular momentum of the bullet is

$$L = mvl = (0.010 \text{ kg})(400 \text{ m/s})(0.50 \text{ m}) = 2.0 \text{ kg} \cdot \text{m}^2/\text{s}$$

The final angular momentum is $I\omega$, where $I = I_{\text{door}} + I_{\text{bullet}}$. From Table 9.2, case (d), for a door of width d = 1.00 m,

$$I_{\text{door}} = \frac{Md^2}{3} = \frac{(15 \text{ kg})(1.00 \text{ m})^2}{3} = 5.0 \text{ kg} \cdot \text{m}^2$$

The moment of inertia of the bullet (with respect to the axis along the hinges) is

$$I_{\text{bullet}} = ml^2 = (0.010 \text{ kg})(0.50 \text{ m})^2 = 0.0025 \text{ kg} \cdot \text{m}^2$$

Conservation of angular momentum requires that $mvl = I\omega$, or

$$\omega = \frac{mvl}{I} = \frac{2.0 \text{ kg} \cdot \text{m}^2/\text{s}}{5.0 \text{ kg} \cdot \text{m}^2 + 0.0025 \text{ kg} \cdot \text{m}^2} = 0.40 \text{ rad/s}$$

The initial and final kinetic energies are

$$K_1 = \frac{1}{2}mv^2 = \frac{1}{2}(0.010 \text{ kg})(400 \text{ m/s})^2 = 800 \text{ J}$$

$$K_2 = \frac{1}{2}I\omega^2 = \frac{1}{2}(5.0025 \text{ kg} \cdot \text{m}^2)(0.40 \text{ rad/s})^2 = 0.40 \text{ J}$$

EVALUATE: The final kinetic energy is only $\frac{1}{2000}$ of the initial value! We did not expect kinetic energy to be conserved: The collision is inelastic because nonconservative friction forces act during the impact. The door's final angular speed is quite slow: At 0.40 rad/s, it takes 3.9 s to swing through 90° ($\pi/2$ radians).

10.32 A gyroscope supported at one end. The horizontal circular motion of the flywheel and axis is called precession. The angular speed of precession is Ω .

When the flywheel and its axis are stationary, they will fall to the table surface. When the flywheel spins, it and its axis "float" in the air while moving in a circle about the pivot.

10.33 (a) If the flywheel in Fig. 10.32 is initially not spinning, its initial angular momentum is zero (b) In each successive time interval dt, the torque produces a change $d\vec{L} = \vec{\tau} dt$ in the angular momentum. The flywheel acquires an angular momentum \vec{L} in the same direction as $\vec{\tau}$, and the flywheel axis falls.

(a) Nonrotating flywheel falls

When the flywheel is not rotating, its weight creates a torque around the pivot, causing it to fall along a circular path until its axis rests on the table surface.

(b) View from above as flywheel falls

In falling, the flywheel rotates about the pivot and thus acquires an angular momentum \vec{L} . The *direction* of \vec{L} stays constant.

Test Your Understanding of Section 10.6 If the polar ice caps were to completely melt due to global warming, the melted ice would redistribute itself over the earth. This change would cause the length of the day (the time needed for the earth to rotate once on its axis) to (i) increase; (ii) decrease; (iii) remain the same. (*Hint:* Use angular momentum ideas. Assume that the sun, moon, and planets exert negligibly small torques on the earth.)

10.7 Gyroscopes and Precession

In all the situations we've looked at so far in this chapter, the axis of rotation either has stayed fixed or has moved and kept the same direction (such as rolling without slipping). But a variety of new physical phenomena, some quite unexpected, can occur when the axis of rotation can change direction. For example, consider a toy gyroscope that's supported at one end (Fig. 10.32). If we hold it with the flywheel axis horizontal and let go, the free end of the axis simply drops owing to gravity—*if* the flywheel isn't spinning. But if the flywheel *is* spinning, what happens is quite different. One possible motion is a steady circular motion of the axis. This surprising, nonintuitive motion of the axis is called **precession.** Precession is found in nature as well as in rotating machines such as gyroscopes. As you read these words, the earth itself is precessing; its spin axis (through the north and south poles) slowly changes direction, going through a complete cycle of precession every 26,000 years.

To study this strange phenomenon of precession, we must remember that angular velocity, angular momentum, and torque are all *vector* quantities. In particular, we need the general relationship between the net torque $\sum \vec{\tau}$ that acts on a body and the rate of change of the body's angular momentum \vec{L} , given by Eq. (10.29), $\sum \vec{\tau} = d\vec{L}/dt$. Let's first apply this equation to the case in which the flywheel is *not* spinning (Fig. 10.33a). We take the origin *O* at the pivot and assume that the flywheel is symmetrical, with mass *M* and moment of inertia *I* about the flywheel axis. The flywheel axis is initially along the *x*-axis. The only external forces on the gyroscope are the normal force \vec{n} acting at the pivot (assumed to be frictionless) and the weight \vec{w} of the flywheel that acts at its center of mass, a distance *r* from the pivot. The normal force has zero torque with respect to the pivot, and the weight has a torque $\vec{\tau}$ in the y-direction, as shown in Fig. 10.33a. Initially, there is no rotation, and the initial angular momentum \vec{L}_i is zero. From Eq. (10.29) the *change* $d\vec{L}$ in angular momentum in a short time interval *dt* following this is

$$d\vec{L} = \vec{\tau} dt \tag{10.32}$$

This change is in the y-direction because $\vec{\tau}$ is. As each additional time interval dt elapses, the angular momentum changes by additional increments $d\vec{L}$ in the y-direction because the direction of the torque is constant (Fig. 10.33b). The steadily increasing horizontal angular momentum means that the gyroscope rotates downward faster and faster around the y-axis until it hits either the stand or the table on which it sits.

Now let's see what happens if the flywheel *is* spinning initially, so the initial angular momentum \vec{L}_i is not zero (Fig. 10.34a). Since the flywheel rotates around its symmetry axis, \vec{L}_i lies along the axis. But each change in angular momentum $d\vec{L}$ is perpendicular to the axis because the torque $\vec{\tau} = \vec{r} \times \vec{w}$ is perpendicular to the axis (Fig. 10.34b). This causes the *direction* of \vec{L} to change, but not its magnitude. The changes $d\vec{L}$ are always in the horizontal *xy*-plane, so the angular momentum vector and the flywheel axis with which it moves are always horizontal. In other words, the axis doesn't fall—it just precesses.

If this still seems mystifying to you, think about a ball attached to a string. If the ball is initially at rest and you pull the string toward you, the ball moves toward you also. But if the ball is initially moving and you continuously pull the

(a) Rotating flywheel

When the flywheel is rotating, the system starts with an angular momentum \vec{L}_i parallel to the flywheel's axis of rotation.

(b) View from above

Now the effect of the torque is to cause the angular momentum to precess around the pivot. The gyroscope circles around its pivot without falling.

string in a direction perpendicular to the ball's motion, the ball moves in a circle around your hand; it does not approach your hand at all. In the first case the ball has zero linear momentum \vec{p} to start with; when you apply a force \vec{F} toward you for a time dt, the ball acquires a momentum $d\vec{p} = \vec{F} dt$, which is also toward you. But if the ball already has linear momentum \vec{p} , a change in momentum $d\vec{p}$ that's perpendicular to \vec{p} changes the direction of motion, not the speed. Replace \vec{p} with \vec{L} and \vec{F} with $\vec{\tau}$ in this argument, and you'll see that precession is simply the rotational analog of uniform circular motion.

At the instant shown in Fig. 10.34a, the gyroscope has angular momentum \vec{L} . A short time interval dt later, the angular momentum is $\vec{L} + d\vec{L}$; the infinitesimal change in angular momentum is $d\vec{L} = \vec{\tau} dt$, which is perpendicular to \vec{L} . As the vector diagram in Fig. 10.35 shows, this means that the flywheel axis of the gyroscope has turned through a small angle $d\phi$ given by $d\phi = |d\vec{L}|/|\vec{L}|$. The rate at which the axis moves, $d\phi/dt$, is called the **precession angular speed**; denoting this quantity by Ω , we find

$$\Omega = \frac{d\phi}{dt} = \frac{|d\vec{L}|/|\vec{L}|}{dt} = \frac{\tau_z}{L_z} = \frac{wr}{I\omega}$$
(10.33)

Thus the precession angular speed is *inversely* proportional to the angular speed of spin about the axis. A rapidly spinning gyroscope precesses slowly; if friction in its bearings causes the flywheel to slow down, the precession angular speed increases! The precession angular speed of the earth is very slow (1 rev/26,000 yr)because its spin angular momentum L_z is large and the torque τ_z , due to the gravitational influences of the moon and sun, is relatively small.

As a gyroscope precesses, its center of mass moves in a circle with radius r in a horizontal plane. Its vertical component of acceleration is zero, so the upward normal force \vec{n} exerted by the pivot must be just equal in magnitude to the weight. The circular motion of the center of mass with angular speed Ω requires a force \vec{F} directed toward the center of the circle, with magnitude $F = M\Omega^2 r$. This force must also be supplied by the pivot.

One key assumption that we made in our analysis of the gyroscope was that the angular momentum vector \vec{L} is associated only with the spin of the flywheel and is purely horizontal. But there will also be a vertical component of angular momentum associated with the precessional motion of the gyroscope. By ignoring this, we've tacitly assumed that the precession is *slow*—that is, that the precession angular speed Ω is very much less than the spin angular speed ω . As Eq. (10.33) shows, a large value of ω automatically gives a small value of Ω , so this approximation is reasonable. When the precession is not slow, additional effects show up, including an up-and-down wobble or nutation of the flywheel axis that's superimposed on the precessional motion. You can see nutation occurring in a gyroscope as its spin slows down, so that Ω increases and the vertical component of \vec{L} can no longer be ignored.

10.34 (a) The flywheel is spinning initially with angular momentum L_{i} . The forces (not shown) are the same as those in Fig. 10.33a. (b) Because the initial angular momentum is not zero, each change $d\vec{L} = \vec{\tau} dt$ in angular momentum is perpendicular to \vec{L} . As a result, the magnitude of *L* remains the same but its direction changes continuously.

Example 10.13 A precessing gyroscope

Figure 10.36a shows a top view of a spinning, cylindrical gyroscope wheel. The pivot is at *O*, and the mass of the axle is negligible. (a) As seen from above, is the precession clockwise or counterclockwise? (b) If the gyroscope takes 4.0 s for one revolution of precession, what is the angular speed of the wheel?

SOLUTION

IDENTIFY and SET UP: We'll determine the direction of precession using the right-hand rule as in Fig. 10.34, which shows the same kind of gyroscope as Fig. 10.36. We'll use the relationship between precession angular speed Ω and spin angular speed ω , Eq. (10.33), to find ω .

EXECUTE: (a) The right-hand rule shows that $\vec{\omega}$ and \vec{L} are to the left in Fig. 10.36b. The weight \vec{w} points into the page in this top view and acts at the center of mass (denoted by \times in the figure). The torque $\vec{\tau} = \vec{r} \times \vec{w}$ is toward the top of the page, so $d\vec{L}/dt$ is

also toward the top of the page. Adding a small $d\vec{L}$ to the initial vector \vec{L} changes the direction of \vec{L} as shown, so the precession is clockwise as seen from above.

(b) Be careful not to confuse ω and Ω ! The precession angular speed is $\Omega = (1 \text{ rev})/(4.0 \text{ s}) = (2\pi \text{ rad})/(4.0 \text{ s}) = 1.57 \text{ rad/s}$. The weight is mg, and if the wheel is a solid, uniform cylinder, its moment of inertia about its symmetry axis is $I = \frac{1}{2}mR^2$. From Eq. (10.33),

$$\omega = \frac{wr}{I\Omega} = \frac{mgr}{(mR^2/2)\Omega} = \frac{2gr}{R^2\Omega}$$
$$= \frac{2(9.8 \text{ m/s}^2)(2.0 \times 10^{-2} \text{ m})}{(3.0 \times 10^{-2} \text{ m})^2(1.57 \text{ rad/s})} = 280 \text{ rad/s} = 2600 \text{ rev/min}$$

EVALUATE: The precession angular speed Ω is only about 0.6% of the spin angular speed ω , so this is an example of slow precession.

10.36 In which direction and at what speed does this gyroscope precess?

Test Your Understanding of Section 10.7 Suppose the mass of the flywheel in Fig. 10.34 were doubled but all other dimensions and the spin angular speed remained the same. What effect would this change have on the precession angular speed Ω ? (i) Ω would increase by a factor of 4; (ii) Ω would double; (iii) Ω would be unaffected; (iv) Ω would be one-half as much; (v) Ω would be one-quarter as much.

CHAPTER 10 SUMMARY

Torque: When a force \vec{F} acts on a body, the torque of that force with respect to a point *O* has a magnitude given by the product of the force magnitude *F* and the lever arm *l*. More generally, torque is a vector $\vec{\tau}$ equal to the vector product of \vec{r} (the position vector of the point at which the force acts) and \vec{F} . (See Example 10.1.)

Rotational dynamics: The rotational analog of Newton's second law says that the net torque acting on a body equals the product of the body's moment of inertia and its angular acceleration. (See Examples 10.2 and 10.3.)

Combined translation and rotation: If a rigid body is both moving through space and rotating, its motion can be regarded as translational motion of the center of mass plus rotational motion about an axis through the center of mass. Thus the kinetic energy is a sum of translational and rotational kinetic energies. For dynamics, Newton's second law describes the motion of the center of mass, and the rotational equivalent of Newton's second law describes rotation about the center of mass. In the case of rolling without slipping, there is a special relationship between the motion of the center of mass and the rotational motion. (See Examples 10.4–10.7.)

Work done by a torque: A torque that acts on a rigid body as it rotates does work on that body. The work can be expressed as an integral of the torque. The work– energy theorem says that the total rotational work done on a rigid body is equal to the change in rotational kinetic energy. The power, or rate at which the torque does work, is the product of the torque and the angular velocity (See Example 10.8.)

Angular momentum: The angular momentum of a particle with respect to point *O* is the vector product of the particle's position vector \vec{r} relative to *O* and its momentum $\vec{p} = m\vec{v}$. When a symmetrical body rotates about a stationary axis of symmetry, its angular momentum is the product of its moment of inertia and its angular velocity vector $\vec{\omega}$. If the body is not symmetrical or the rotation (*z*) axis is not an axis of symmetry, the component of angular momentum along the rotation axis is $I\omega_{z}$. (See Example 10.9.)

Rotational dynamics and angular momentum: The net external torque on a system is equal to the rate of change of its angular momentum. If the net external torque on a system is zero, the total angular momentum of the system is constant (conserved). (See Examples 10.10–10.13.)

$$\tau = Fl$$
$$\vec{\tau} = \vec{r} \times \vec{F}$$

7 - 7 ~ 1

 $\times \acute{F}$

$K = \frac{1}{2}Mv_{\rm cm}^2 + \frac{1}{2}I_{\rm cm}\omega^2$	(10.8)
$\sum \vec{F}_{ext} = M \vec{a}_{cm}$	(10.12)
$\sum \tau_z = I_{\rm cm} \alpha_z$	(10.13)
$v_{\rm cm} = R\omega$	(10.11)
(rolling without slipping)	

$W = \int_{\theta_1}^{\theta_2} \tau_z d\theta$ $W = \tau_z (\theta_2 - \theta_1) = \tau_z \Delta \theta$ (constant torque only) $W_{\text{tot}} = \frac{1}{2} I \omega_2^2 - \frac{1}{2} I \omega_1^2$ $P = \tau_z \omega_z$	(10.20) (10.21) (10.22) (10.23)	<i>F</i> _{tan}
$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$ (particle) $\vec{L} = I\vec{\omega}$ (rigid body rotating about axis of symmetry)	(10.24) (10.28)	

(10.29)

 $\sum \vec{\tau} = \frac{d\vec{L}}{dt}$

BRIDGING PROBLEM Billiard Physics

A cue ball (a uniform solid sphere of mass *m* and radius *R*) is at rest on a level pool table. Using a pool cue, you give the ball a sharp, horizontal hit of magnitude *F* at a height *h* above the center of the ball (Fig. 10.37). The force of the hit is much greater than the friction force *f* that the table surface exerts on the ball. The hit lasts for a short time Δt . (a) For what value of *h* will the ball roll without slipping? (b) If you hit the ball dead center (h = 0), the ball will slide across the table for a while, but eventually it will roll without slipping. What will the speed of its center of mass be then?

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution.

IDENTIFY and SET UP

- 1. Draw a free-body diagram for the ball for the situation in part (a), including your choice of coordinate axes. Note that the cue exerts both an impulsive force on the ball and an impulsive torque around the center of mass.
- 2. The cue force applied for a time Δt gives the ball's center of mass a speed $v_{\rm cm}$, and the cue torque applied for that same time gives the ball an angular speed ω . What must be the relationship between $v_{\rm cm}$ and ω for the ball to roll without slipping?

10.37

- 3. Draw two free-body diagrams for the ball in part (b): one showing the forces during the hit and the other showing the forces after the hit but before the ball is rolling without slipping.
- 4. What is the angular speed of the ball in part (b) just after the hit? While the ball is sliding, does $v_{\rm cm}$ increase or decrease? Does ω increase or decrease? What is the relationship between $v_{\rm cm}$ and ω when the ball is finally rolling without slipping?

EXECUTE

- 5. In part (a), use the impulse-momentum theorem to find the speed of the ball's center of mass immediately after the hit. Then use the rotational version of the impulse-momentum theorem to find the angular speed immediately after the hit. (*Hint:* To write down the rotational version of the impulse-momentum theorem, remember that the relationship between torque and angular momentum is the same as that between force and linear momentum.)
- 6. Use your results from step 5 to find the value of *h* that will cause the ball to roll without slipping immediately after the hit.
- 7. In part (b), again find the ball's center-of-mass speed and angular speed immediately after the hit. Then write Newton's second law for the translational motion and rotational motion of the ball as it is sliding. Use these equations to write expressions for $v_{\rm cm}$ and ω as functions of the elapsed time *t* since the hit.
- 8. Using your results from step 7, find the time t when $v_{\rm cm}$ and ω have the correct relationship for rolling without slipping. Then find the value of $v_{\rm cm}$ at this time.

EVALUATE

- 9. If you have access to a pool table, test out the results of parts (a) and (b) for yourself!
- 10. Can you show that if you used a hollow cylinder rather than a solid ball, you would have to hit the top of the cylinder to cause rolling without slipping as in part (a)?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

MP

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q10.1 When cylinder-head bolts in an automobile engine are tightened, the critical quantity is the *torque* applied to the bolts. Why is the torque more important than the actual *force* applied to the wrench handle?

Q10.2 Can a single force applied to a body change both its translational and rotational motion? Explain.

Q10.3 Suppose you could use wheels of any type in the design of a soapbox-derby racer (an unpowered, four-wheel vehicle that coasts from rest down a hill). To conform to the rules on the total weight of the vehicle and rider, should you design with large massive wheels or small light wheels? Should you use solid wheels or wheels with most of the mass at the rim? Explain.

Q10.4 A four-wheel-drive car is accelerating forward from rest. Show the direction the car's wheels turn and how this causes a friction force due to the pavement that accelerates the car forward.

Q10.5 Serious bicyclists say that if you reduce the weight of a bike, it is more effective if you do so in the wheels rather than in the frame. Why would reducing weight in the wheels make it easier on the bicyclist than reducing the same amount in the frame?

Q10.6 The harder you hit the brakes while driving forward, the more the front end of your car will move down (and the rear end move up). Why? What happens when cars accelerate forward? Why do drag racers not use front-wheel drive only?

Q10.7 When an acrobat walks on a tightrope, she extends her arms straight out from her sides. She does this to make it easier for her to catch herself if she should tip to one side or the other. Explain how this works. [*Hint:* Think about Eq. (10.7).]

Q10.8 When you turn on an electric motor, it takes longer to come up to final speed if a grinding wheel is attached to the shaft. Why? **Q10.9** Experienced cooks can tell whether an egg is raw or hardboiled by rolling it down a slope (taking care to catch it at the bottom). How is this possible? What are they looking for?

Q10.10 The work done by a force is the product of force and distance. The torque due to a force is the product of force and distance. Does this mean that torque and work are equivalent? Explain.

Q10.11 A valued client brings a treasured ball to your engineering firm, wanting to know whether the ball is solid or hollow. He has tried tapping on it, but that has given insufficient information. Design a simple, inexpensive experiment that you could perform quickly, without injuring the precious ball, to find out whether it is solid or hollow.

Q10.12 You make two versions of the same object out of the same material having uniform density. For one version, all the dimensions are exactly twice as great as for the other one. If the same torque acts on both versions, giving the smaller version angular acceleration α , what will be the angular acceleration of the larger version in terms of α ?

Q10.13 Two identical masses are attached to frictionless pulleys by very light strings wrapped around the rim of the pulley and are released from rest. Both pulleys have the same mass and same diameter, but one is solid and the other is a hoop. As the masses fall, in which case is the tension in the string greater, or is it the same in both cases? Justify your answer.

Q10.14 The force of gravity acts on the baton in Fig. 10.11, and forces produce torques that cause a body's angular velocity to change. Why, then, is the angular velocity of the baton in the figure constant?

Q10.15 A certain solid uniform ball reaches a maximum height h_0 when it rolls up a hill without slipping. What maximum height (in terms of h_0) will it reach if you (a) double its diameter, (b) double its mass, (c) double both its diameter and mass, (d) double its angular speed at the bottom of the hill?

Q10.16 A wheel is rolling without slipping on a horizontal surface. In an inertial frame of reference in which the surface is at rest, is there any point on the wheel that has a velocity that is purely vertical? Is there any point that has a horizontal velocity component opposite to the velocity of the center of mass? Explain. Do your answers change if the wheel is slipping as it rolls? Why or why not? **Q10.17** Part of the kinetic energy of a moving automobile is in the rotational motion of its wheels. When the brakes are applied hard on an icy street, the wheels "lock" and the car starts to slide. What becomes of the rotational kinetic energy?

Q10.18 A hoop, a uniform solid cylinder, a spherical shell, and a uniform solid sphere are released from rest at the top of an incline. What is the order in which they arrive at the bottom of the incline? Does it matter whether or not the masses and radii of the objects are all the same? Explain.

Q10.19 A ball is rolling along at speed v without slipping on a horizontal surface when it comes to a hill that rises at a constant angle above the horizontal. In which case will it go higher up the hill: if the hill has enough friction to prevent slipping or if the hill is perfectly smooth? Justify your answers in both cases in terms of energy conservation and in terms of Newton's second law.

Q10.20 You are standing at the center of a large horizontal turntable in a carnival funhouse. The turntable is set rotating on frictionless bearings, and it rotates freely (that is, there is no motor driving the turntable). As you walk toward the edge of the turntable, what happens to the combined angular momentum of you and the turntable? What happens to the rotation speed of the turntable? Explain your answer.

Q10.21 A certain uniform turntable of diameter D_0 has an angular momentum L_0 . If you want to redesign it so it retains the same mass but has twice as much angular momentum at the same angular velocity as before, what should be its diameter in terms of D_0 ?

Q10.22 A point particle travels in a straight line at constant speed, and the closest distance it comes to the origin of coordinates is a distance *l*. With respect to this origin, does the particle have nonzero angular momentum? As the particle moves along its straight-line path, does its angular momentum with respect to the origin change?

Q10.23 In Example 10.10 (Section 10.6) the angular speed ω changes, and this must mean that there is nonzero angular acceleration. But there is no torque about the rotation axis if the forces the professor applies to the weights are directly, radially inward. Then, by Eq. (10.7), α_z must be zero. Explain what is wrong with this reasoning that leads to this apparent contradiction.

Q10.24 In Example 10.10 (Section 10.6) the rotational kinetic energy of the professor and dumbbells increases. But since there are no external torques, no work is being done to change the rotational kinetic energy. Then, by Eq. (10.22), the kinetic energy must remain the same! Explain what is wrong with this reasoning that leads to this apparent contradiction. Where *does* the extra kinetic energy come from?

Q10.25 As discussed in Section 10.6, the angular momentum of a circus acrobat is conserved as she tumbles through the air. Is her *linear* momentum conserved? Why or why not?

Q10.26 If you stop a spinning raw egg for the shortest possible instant and then release it, the egg will start spinning again. If you do the same to a hard-boiled egg, it will remain stopped. Try it. Explain it.

Q10.27 A helicopter has a large main rotor that rotates in a horizontal plane and provides lift. There is also a small rotor on the tail that rotates in a vertical plane. What is the purpose of the tail rotor? (*Hint:* If there were no tail rotor, what would happen when the pilot changed the angular speed of the main rotor?) Some helicopters have no tail rotor, but instead have two large main rotors that rotate in a horizontal plane. Why is it important that the two main rotors rotate in opposite directions?

Q10.28 In a common design for a gyroscope, the flywheel and flywheel axis are enclosed in a light, spherical frame with the flywheel at the center of the frame. The gyroscope is then balanced on top of a pivot so that the flywheel is directly above the pivot. Does the gyroscope precess if it is released while the flywheel is spinning? Explain.

Q10.29 A gyroscope takes 3.8 s to precess 1.0 revolution about a vertical axis. Two minutes later, it takes only 1.9 s to precess 1.0 revolution. No one has touched the gyroscope. Explain.

Q10.30 A gyroscope is precessing as in Fig. 10.32. What happens if you gently add some weight to the end of the flywheel axis farthest from the pivot?

Q10.31 A bullet spins on its axis as it emerges from a rifle. Explain how this prevents the bullet from tumbling and keeps the stream-lined end pointed forward.

EXERCISES

Section 10.1 Torque

10.1 • Calculate the torque (magnitude and direction) about point *O* due to the force \vec{F} in each of the cases sketched in Fig. E10.1. In each case, the force \vec{F} and the rod both lie in the plane of the page, the rod has length 4.00 m, and the force has magnitude F = 10.0 N.

Figure E10.1

10.2 • Calculate the net torque about point O for the two forces applied as in Fig. E10.2. The rod and both forces are in the plane of the page.

Figure E10.2

10.3 •• A square metal plate 0.180 m on each side is pivoted about an axis through point *O* at its center and perpendicular to the plate (Fig. E10.3). Calculate the net torque about this axis due to the three forces shown in the figure if the magnitudes of the forces are $F_1 = 18.0$ N, $F_2 = 26.0$ N, and $F_3 = 14.0$ N. The plate and all forces are in the plane of the page.

10.4 • Three forces are applied to a wheel of radius 0.350 m, as shown in Fig. E10.4. One force is perpendicular to the rim, one is tangent to it, and the other one makes a 40.0° angle with the radius. What is the net torque on the wheel due to these three forces for an axis perpendicular to the wheel and passing through its center?

10.5 • One force acting on a machine part is $\vec{F} = (-5.00 \text{ N})\hat{i} + (4.00 \text{ N})\hat{j}$. The vector from the origin to the point where the force is applied is $\vec{r} = (-0.450 \text{ m})\hat{i} + (0.150 \text{ m})\hat{j}$. (a) In a sketch, show \vec{r}, \vec{F} , and the origin. (b) Use the right-hand rule to determine the direction of the torque. (c) Calculate the vector torque for an axis at the origin produced by this force. Verify that the direction of the torque is the same as you obtained in part (b).

10.6 • A metal bar is in the *xy*-plane with one end of the bar at the origin. A force $\vec{F} = (7.00 \text{ N})\hat{i} + (-3.00 \text{ N})\hat{j}$ is applied to the bar at the point x = 3.00 m, y = 4.00 m. (a) In terms of unit vectors \hat{i} and \hat{j} , what is the position vector \vec{r} for the point where the force is applied? (b) What are the magnitude and direction of the torque with respect to the origin produced by \vec{F} ?

10.7 • In Fig. E10.7, forces \vec{A} , \vec{B} , \vec{C} , and \vec{D} each have magnitude 50 N and act at the same point on the object. (a) What torque (magnitude and direction) does each of these forces exert on the object about point *P*? (b) What is the total torque about point *P*?

10.8 • A machinist is using a wrench to loosen a nut. The wrench is 25.0 cm long, and he exerts a 17.0-N force at the end of the handle at 37° with the handle (Fig. E10.8). (a) What torque does the machinist exert about the center of the nut? (b) What is the maximum torque he could exert with this force, and how should the force be oriented?

Figure E10.8

Figure **E10.7**

Section 10.2 Torque and Angular Acceleration for a Rigid Body

10.9 •• The flywheel of an engine has moment of inertia 2.50 kg • m² about its rotation axis. What constant torque is required to bring it up to an angular speed of 400 rev/min in 8.00 s, starting from rest?

10.10 •• A uniform disk with mass 40.0 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is stationary. The disk is initially at rest, and then a constant force F = 30.0 N is applied tangent to the rim of the disk. (a) What is the magnitude v of the tangential velocity of a point on the rim of the disk after the disk has turned through 0.200 revolution? (b) What is the magnitude a of the resultant acceleration of a point on the rim of the disk after the disk has turned through 0.200 revolution? **10.11** •• A machine part has the shape of a solid uniform sphere of mass 225 g and diameter 3.00 cm. It is spinning about a frictionless axle through its center, but at one point on its equator it is scraping against metal, resulting in a friction force of 0.0200 N at that point. (a) Find its angular acceleration. (b) How long will it take to decrease its rotational speed by 22.5 rad/s?

10.12 • A cord is wrapped around the rim of a solid uniform wheel 0.250 m in radius and of mass 9.20 kg. A steady horizontal pull of 40.0 N to the right is exerted on the cord, pulling it off tangentially from the wheel. The wheel is mounted on frictionless bearings on a horizontal axle through its center. (a) Compute the angular acceleration of the wheel and the acceleration of the part of the cord that has already been pulled off the wheel. (b) Find the magnitude and direction of the force that the axle exerts on the
wheel. (c) Which of the answers in parts (a) and (b) would change if the pull were upward instead of horizontal?

10.13 •• CP A 2.00-kg textbook rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.150 m, to a hanging book with mass 3.00 kg. The system is released from rest, and the books are observed to move 1.20 m in 0.800 s. (a) What is the tension in each part of the cord? (b) What is the moment of inertia of the pulley about its rotation axis?

10.14 •• CP A stone is suspended from the free end of a wire that is wrapped around the outer rim of a pulley, similar to what is shown in Fig. 10.10. The pulley is a uniform disk with mass 10.0 kg and radius 50.0 cm and turns on frictionless bearings. You measure that the stone travels 12.6 m in the first 3.00 s starting from rest. Find (a) the mass of the stone and (b) the tension in the wire.

10.15 • A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equal to 80.0 N is applied to the rim of the wheel. The wheel has radius 0.120 m. Starting from rest, the wheel has an angular speed of 12.0 rev/s after 2.00 s. What is the moment of inertia of the wheel?

10.16 •• CP A 15.0-kg bucket of water is suspended by a very light rope wrapped around a solid uniform cylinder 0.300 m in diameter with mass 12.0 kg. The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls 10.0 m to the water. (a) What is the tension in the rope while the bucket is falling? (b) With what speed does the bucket strike the water? (c) What is the time of fall? (d) While the bucket is falling, what is the force exerted on the cylinder by the axle?

10.17 •• A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes over a frictionless pulley (Fig. E10.17). The pulley has the shape of a uniform solid disk of mass 2.00 kg and diameter 0.500 m. After the system is released, find (a) the tension in the wire on both sides of the pulley, (b) the acceleration of the box, and (c) the horizontal and vertical components of the force that the axle exerts on the pulley.

Figure **E10.17**

Section 10.3 Rigid-Body Rotation About a Moving Axis

10.18 • **BIO Gymnastics.** We can roughly model a gymnastic tumbler as a uniform solid cylinder of mass 75 kg and diameter 1.0 m. If this tumbler rolls forward at 0.50 rev/s, (a) how much total kinetic energy does he have, and (b) what percent of his total kinetic energy is rotational?

10.19 • A 2.20-kg hoop 1.20 m in diameter is rolling to the right without slipping on a horizontal floor at a steady 3.00 rad/s. (a) How fast is its center moving? (b) What is the total kinetic energy of the hoop? (c) Find the velocity vector of each of the following points, as viewed by a person at rest on the ground: (i) the highest point on the hoop; (ii) the lowest point on the hoop; (iii) a point on the right side of the hoop, midway between the top and the bottom. (d) Find the velocity vector for each of the points in part (c), but this time as viewed by someone moving along with the same velocity as the hoop.

10.20 •• A string is wrapped several times around the rim of a small hoop with radius 8.00 cm and mass 0.180 kg. The free end of the string is held in place and the hoop is released from rest (Fig. E10.20). After the hoop has descended 75.0 cm, calculate (a) the angular speed of the rotating hoop and (b) the speed of its center.

10.21 • What fraction of the total kinetic energy is rotational for the following objects rolling without slipping on a horizontal surface? (a) a uniform solid cylinder; (b) a uniform sphere; (c) a thinwalled, hollow sphere; (d) a hollow cylinder with outer radius R and inner radius R/2.

10.22 •• A hollow, spherical shell with mass 2.00 kg rolls without slipping down a 38.0° slope. (a) Find the acceleration, the friction force, and the minimum coefficient of friction needed to prevent slipping. (b) How would your answers to part (a) change if the mass were doubled to 4.00 kg?

10.23 •• A solid ball is released from rest and slides down a hillside that slopes downward at 65.0° from the horizontal. (a) What minimum value must the coefficient of static friction between the hill and ball surfaces have for no slipping to occur? (b) Would the coefficient of friction calculated in part (a) be sufficient to prevent a hollow ball (such as a soccer ball) from slipping? Justify your answer. (c) In part (a), why did we use the coefficient of static friction and not the coefficient of kinetic friction?

10.24 •• A uniform marble rolls down a symmetrical bowl, starting from rest at the top of the left side. The top of each side is a distance h above the bottom of the bowl. The left half of the bowl is rough enough to cause the marble to roll without slipping, but the right half has no friction because it is coated with oil. (a) How far up the smooth side will the marble go, measured vertically from the bottom? (b) How high would the marble go if both sides were as rough as the left side? (c) How do you account for the fact that the marble goes *higher* with friction on the right side than without friction?

10.25 •• A 392-N wheel comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at 25.0 rad/s. The radius of the wheel is 0.600 m, and its moment of inertia about its rotation axis is $0.800MR^2$. Friction does work on the wheel as it rolls up the hill to a stop, a height *h* above the bottom of the hill; this work has absolute value 3500 J. Calculate *h*.

10.26 •• A Ball Rolling Uphill. A bowling ball rolls without slipping up a ramp that slopes upward at an angle β to the horizontal (see Example 10.7 in Section 10.3). Treat the ball as a uniform solid

sphere, ignoring the finger holes. (a) Draw the free-body diagram for the ball. Explain why the friction force must be directed *uphill*. (b) What is the acceleration of the center of mass of the ball? (c) What minimum coefficient of static friction is needed to prevent slipping? **10.27** •• A thin, light string is wrapped around the outer rim of a uniform hollow cylinder of mass

uniform hollow cylinder of mass 4.75 kg having inner and outer radii as shown in Fig. E10.27. The cylinder is then released from rest.

(a) How far must the cylinder fall before its center is moving at 6.66 m/s? (b) If you just dropped this cylinder without any string, how fast would its center be moving when it had fallen the distance in part (a)? (c) Why do you get two different answers when the cylinder falls the same distance in both cases?

10.28 •• A bicycle racer is going downhill at 11.0 m/s when, to his horror, one of his 2.25-kg wheels comes off as he is 75.0 m above the foot of the hill. We can model the wheel as a thin-walled cylinder 85.0 cm in diameter and neglect the small mass of the spokes. (a) How fast is the wheel moving when it reaches the foot of the hill if it rolled without slipping all the way down? (b) How much total kinetic energy does the wheel have when it reaches the bottom of the hill?

10.29 •• A size-5 soccer ball of diameter 22.6 cm and mass 426 g rolls up a hill without slipping, reaching a maximum height of 5.00 m above the base of the hill. We can model this ball as a thin-walled hollow sphere. (a) At what rate was it rotating at the base of the hill? (b) How much rotational kinetic energy did it have then?

Section 10.4 Work and Power in Rotational Motion

10.30 • An engine delivers 175 hp to an aircraft propeller at 2400 rev/min. (a) How much torque does the aircraft engine provide? (b) How much work does the engine do in one revolution of the propeller?

10.31 • A playground merry-go-round has radius 2.40 m and moment of inertia 2100 kg \cdot m² about a vertical axle through its center, and it turns with negligible friction. (a) A child applies an 18.0-N force tangentially to the edge of the merry-go-round for 15.0 s. If the merry-go-round is initially at rest, what is its angular speed after this 15.0-s interval? (b) How much work did the child do on the merry-go-round? (c) What is the average power supplied by the child?

10.32 •• An electric motor consumes 9.00 kJ of electrical energy in 1.00 min. If one-third of this energy goes into heat and other forms of internal energy of the motor, with the rest going to the motor output, how much torque will this engine develop if you run it at 2500 rpm? **10.33** • A 1.50-kg grinding wheel is in the form of a solid cylinder of radius 0.100 m. (a) What constant torque will bring it from rest to an angular speed of 1200 rev/min in 2.5 s? (b) Through what angle has it turned during that time? (c) Use Eq. (10.21) to calculate the work done by the torque. (d) What is the grinding wheel's kinetic energy when it is rotating at 1200 rev/min? Compare your answer to the result in part (c).

10.34 •• An airplane propeller is 2.08 m in length (from tip to tip) and has a mass of 117 kg. When the airplane's engine is first started, it applies a constant torque of 1950 N • m to the propeller, which starts from rest. (a) What is the angular acceleration of the propeller? Model the propeller as a slender rod and see Table 9.2. (b) What is the propeller's angular speed after making 5.00 revolutions? (c) How much work is done by the engine during the first 5.00 revolutions? (d) What is the average power output of the engine during the first 5.00 revolutions? (e) What is the instantaneous power output of the motor at the instant that the propeller has turned through 5.00 revolutions?

10.35 • (a) Compute the torque developed by an industrial motor whose output is 150 kW at an angular speed of 4000 rev/min. (b) A drum with negligible mass, 0.400 m in diameter, is attached to the motor shaft, and the power output of the motor is used to raise a weight hanging from a rope wrapped around the drum. How heavy a weight can the motor lift at constant speed? (c) At what constant speed will the weight rise?

Section 10.5 Angular Momentum

10.36 •• A woman with mass 50 kg is standing on the rim of a large disk that is rotating at 0.50 rev/s about an axis through its center. The disk has mass 110 kg and radius 4.0 m. Calculate the magnitude of the total angular momentum of the woman–disk system. (Assume that you can treat the woman as a point.)

10.37 • A 2.00-kg rock has a horizontal velocity of magnitude 12.0 m/s when it is at point *P* in Fig. E10.37. (a) At this instant, what are the magnitude and direction of its angular momentum relative to point *O*? (b) If the only force acting on the rock is its weight, what is the rate of change (magnitude

Figure **E10.37**

and direction) of its angular momentum at this instant?

10.38 •• (a) Calculate the magnitude of the angular momentum of the earth in a circular orbit around the sun. Is it reasonable to model it as a particle? (b) Calculate the magnitude of the angular momentum of the earth due to its rotation around an axis through the north and south poles, modeling it as a uniform sphere. Consult Appendix E and the astronomical data in Appendix F.

10.39 •• Find the magnitude of the angular momentum of the second hand on a clock about an axis through the center of the clock face. The clock hand has a length of 15.0 cm and a mass of 6.00 g. Take the second hand to be a slender rod rotating with constant angular velocity about one end.

10.40 •• **CALC** A hollow, thin-walled sphere of mass 12.0 kg and diameter 48.0 cm is rotating about an axle through its center. The angle (in radians) through which it turns as a function of time (in seconds) is given by $\theta(t) = At^2 + Bt^4$, where A has numerical value 1.50 and B has numerical value 1.10. (a) What are the units of the constants A and B? (b) At the time 3.00 s, find (i) the angular momentum of the sphere and (ii) the net torque on the sphere.

Section 10.6 Conservation of Angular Momentum

10.41 •• Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a *neutron star*. The density of a neutron star is roughly 10^{14} times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 7.0×10^5 km (comparable to our sun); its final radius is 16 km. If the original star rotated once in 30 days, find the angular speed of the neutron star.

10.42 • **CP** A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.42). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 1.75 rad/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves

Figure E10.42

to 0.150 m. Model the block as a particle. (a) Is the angular momentum of the block conserved? Why or why not? (b) What is the new angular speed? (c) Find the change in kinetic energy of the block. (d) How much work was done in pulling the cord? **10.43 •• The Spinning Figure Skater.** The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Fig. E10.43). When the skater's hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-

walled, hollow cylinder. His hands and arms have a combined mass of 8.0 kg. When outstretched, they span 1.8 m; when wrapped, they form a cylinder of radius 25 cm. The moment of inertia about the rotation axis of the remainder of his body is constant and equal to 0.40 kg \cdot m². If his original angular speed is 0.40 rev/s, what is his final angular speed?

10.44 •• A diver comes off a board with arms straight up and legs straight down, giving her a moment of inertia about her rotation axis of $18 \text{ kg} \cdot \text{m}^2$. She then tucks into a small ball, decreasing this moment of inertia to $3.6 \text{ kg} \cdot \text{m}^2$. While tucked, she makes two complete revolutions in 1.0 s. If she hadn't tucked at all, how many revolutions would she have made in the 1.5 s from board to water? **10.45** •• A large wooden turntable in the shape of a flat uniform disk has a radius of 2.00 m and a total mass of 120 kg. The turntable is initially rotating at 3.00 rad/s about a vertical axis through its center. Suddenly, a 70.0-kg parachutist makes a soft landing on the turntable after the parachutist lands. (Assume that you can treat the parachutist as a particle.) (b) Compute the kinetic energy of the system before and after the parachutist lands. Why are these kinetic energies not equal?

10.46 •• A solid wood door 1.00 m wide and 2.00 m high is hinged along one side and has a total mass of 40.0 kg. Initially open and at rest, the door is struck at its center by a handful of sticky mud with mass 0.500 kg, traveling perpendicular to the door at 12.0 m/s just before impact. Find the final angular speed of the door. Does the mud make a significant contribution to the moment of inertia?

10.47 •• A small 10.0-g bug stands at one end of a thin uniform bar that is initially at rest on a smooth horizontal table. The other end of the bar pivots about a nail driven into the table and can rotate freely, without friction. The bar has mass 50.0 g and is 100 cm in length. The bug jumps off in the horizontal direction, perpendicular to the bar, with a speed of 20.0 cm/s relative to the table. (a) What is the angular speed of the bar just after the frisky insect leaps? (b) What is the total kinetic energy of the system just after the bug leaps? (c) Where does this energy come from?

10.48 •• Asteroid Collision! Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth's mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.

10.49 •• A thin, uniform metal bar, 2.00 m long and weighing 90.0 N, is hanging vertically from the ceiling by a frictionless pivot. Suddenly it is struck 1.50 m below the ceiling by a small 3.00-kg ball, initially traveling horizontally at 10.0 m/s. The ball rebounds in the opposite direction with a speed of 6.00 m/s. (a) Find the angular speed of the bar just after the collision. (b) During the collision, why is the angular momentum conserved but not the linear momentum?

10.50 •• A thin uniform rod has a length of 0.500 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.400 rad/s and a moment of inertia about the axis of $3.00 \times 10^{-3} \text{ kg} \cdot \text{m}^2$. A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of the rod. When the bug has reached the end of the rod and sits there, its tangential speed is 0.160 m/s. The bug can be treated as a point mass. (a) What is the mass of the rod? (b) What is the mass of the bug?

10.51 •• A uniform, 4.5-kg, square, solid wooden gate 1.5 m on each side hangs vertically from a frictionless pivot at the center of its upper edge. A 1.1-kg raven flying horizontally at 5.0 m/s flies into this door at its center and bounces back at 2.0 m/s in the opposite direction. (a) What is the angular speed of the gate just after it is struck by the unfortunate raven? (b) During the collision, why is the angular momentum conserved, but not the linear momentum?

10.52 •• Sedna. In November 2003, the now-most-distant-known object in the solar system was discovered by observation with a telescope on Mt. Palomar. This object, known as Sedna, is approximately 1700 km in diameter, takes about 10,500 years to orbit our sun, and reaches a maximum speed of 4.64 km/s. Calculations of its complete path, based on several measurements of its position, indicate that its orbit is highly elliptical, varying from 76 AU to 942 AU in its distance from the sun, where AU is the astronomical unit, which is the average distance of the earth from the sun (1.50×10^8 km). (a) What is Sedna's minimum speeds occur? (c) What is the ratio of Sedna's maximum kinetic energy to its minimum kinetic energy?

Section 10.7 Gyroscopes and Precession

10.53 •• The rotor (flywheel) of a toy gyroscope has mass 0.140 kg. Its moment of inertia about its axis is 1.20×10^{-4} kg · m². The mass of the frame is 0.0250 kg. The gyroscope is supported on a single pivot (Fig. E10.53) with its center of mass a horizontal distance of 4.00 cm from the pivot. The gyroscope is precessing in a horizontal plane at the rate of one revolution in 2.20 s. (a) Find the upward force exerted by the pivot. (b) Find the angular speed with which the rotor is spinning about its axis, expressed in rev/min. (c) Copy the diagram and draw vectors to show the angular momentum of the rotor and the torque acting on it.

Figure **E10.53**

10.54 • A Gyroscope on the Moon. A certain gyroscope precesses at a rate of 0.50 rad/s when used on earth. If it were taken to a lunar base, where the acceleration due to gravity is 0.165g, what would be its precession rate?

10.55 • A gyroscope is precessing about a vertical axis. Describe what happens to the precession angular speed if the following changes in the variables are made, with all other variables remaining the same: (a) the angular speed of the spinning flywheel is doubled; (b) the total weight is doubled; (c) the moment of inertia about the axis of the spinning flywheel is doubled; (d) the distance from the

pivot to the center of gravity is doubled. (e) What happens if all four of the variables in parts (a) through (d) are doubled?

10.56 • Stabilization of the Hubble Space Telescope. The Hubble Space Telescope is stabilized to within an angle of about 2-millionths of a degree by means of a series of gyroscopes that spin at 19,200 rpm. Although the structure of these gyroscopes is actually quite complex, we can model each of the gyroscopes as a thin-walled cylinder of mass 2.0 kg and diameter 5.0 cm, spinning about its central axis. How large a torque would it take to cause these gyroscopes to precess through an angle of 1.0×10^{-6} degree during a 5.0-hour exposure of a galaxy?

PROBLEMS

10.57 •• A 50.0-kg grindstone is a solid disk 0.520 m in diameter. You press an ax down on the rim with a normal force of 160 N (Fig. P10.57). The coefficient of kinetic friction between the blade and the stone is 0.60, and there is a constant friction torque of $6.50 \text{ N} \cdot \text{m}$ between the axle of the stone and its bearings. (a) How much force must be applied tangentially at the end of a crank handle 0.500 m long to bring the stone from rest to 120 rev/min in 9.00 s? (b) After the grindstone attains an angular speed of 120 rev/min, what tangential force at the end of the handle is needed to maintain a constant angular speed of 120 rev/min? (c) How much time does it take the grindstone to come from 120 rev/min to rest if it is acted on by the axle friction alone?

Figure **P10.57**

10.58 •• An experimental bicycle wheel is placed on a test stand so that it is free to turn on its axle. If a constant net torque of 7.00 N • m is applied to the tire for 2.00 s, the angular speed of the tire increases from 0 to 100 rev/min. The external torque is then removed, and the wheel is brought to rest by friction in its bearings in 125 s. Compute (a) the moment of inertia of the wheel about the rotation axis; (b) the friction torque; (c) the total number of revolutions made by the wheel in the 125-s time interval.

10.59 ••• A grindstone in the shape of a solid disk with diameter

0.520 m and a mass of 50.0 kg is rotating at 850 rev/min. You press an ax against the rim with a normal force of 160 N (Fig. P10.57), and the grindstone comes to rest in 7.50 s. Find the coefficient of friction between the ax and the grindstone. You can ignore friction in the bearings.

10.60 ••• A uniform, 8.40-kg, spherical shell 50.0 cm in diameter has four small 2.00-kg masses attached to its outer surface and equally spaced around it. This

combination is spinning about an axis running through the center of the sphere and two of the small masses (Fig. P10.60). What friction torque is needed to reduce its angular speed from 75.0 rpm to 50.0 rpm in 30.0 s?

10.61 ••• A solid uniform cylinder with mass 8.25 kg and diameter 15.0 cm is spinning at 220 rpm on a thin, frictionless axle that passes along the cylinder axis. You design a simple friction brake to stop the cylinder by pressing the brake against the outer rim with a normal force. The coefficient of kinetic friction between the brake and rim is 0.333. What must the applied normal force be to bring the cylinder to rest after it has turned through 5.25 revolutions?

10.62 ••• A uniform hollow disk has two pieces of thin, light wire wrapped around its outer rim and is supported from the ceiling (Fig. P10.62). Suddenly one of the wires breaks, and the remaining wire does not slip as the disk rolls down. Use energy conservation to find the speed of the center of this disk after it has fallen a distance of 2.20 m. **10.63** ••• A thin, uniform, 3.80-kg bar, 80.0 cm long, has very small 2.50-kg balls glued on at either end (Fig. P10.63). It is supported horizontally by a thin, horizontal, frictionless axle passing through its center and perpendicular to the bar.

Figure **P10.62**

Suddenly the right-hand ball becomes detached and falls off, but the other ball remains glued to the bar. (a) Find the angular acceleration of the bar just after the ball falls off. (b) Will the angular acceleration remain constant as the bar continues to swing? If not, will it increase or decrease? (c) Find the angular velocity of the bar just as it swings through its vertical position.

10.64 ••• While exploring a castle, Exena the Exterminator is spotted by a dragon that chases her down a hallway. Exena runs into a room and attempts to swing the heavy door shut before the dragon gets her. The door is initially perpendicular to the wall, so it must be turned through 90° to close. The door is 3.00 m tall and 1.25 m wide, and it weighs 750 N. You can ignore the friction at the hinges. If Exena applies a force of 220 N at the edge of the door and perpendicular to it, how much time does it take her to close the door?

10.65 •• CALC You connect a light string to a point on the edge of a uniform vertical disk with radius *R* and mass *M*. The disk is free to rotate without friction about a stationary horizontal axis through its center. Initially, the disk is at rest with the string connection at the highest point on the disk. You pull the string with a constant horizontal force \vec{F} until the wheel has made exactly one-quarter revolution about a horizontal axis through its center, and then you let go. (a) Use Eq. (10.20) to find the work done by the string. (b) Use Eq. (6.14) to find the work done by the string. Do you obtain the same result as in part (a)? (c) Find the final angular speed of the disk. (d) Find the maximum tangential acceleration of a point on the disk.

10.66 ••• Balancing Act. Attached to one end of a long, thin, uniform rod of length L and mass M is a small blob of clay of the same mass M. (a) Locate the position of the center of mass of the system of rod and clay. Note this position on a drawing of the rod.

(b) You carefully balance the rod on a frictionless tabletop so that it is standing vertically, with the end without the clay touching the table. If the rod is now tipped so that it is a small angle θ away from the vertical, determine its angular acceleration at this instant. Assume that the end without the clay remains in contact with the tabletop. (Hint: See Table 9.2.) (c) You again balance the rod on the frictionless tabletop so that it is standing vertically, but now the end of the rod with the clay is touching the table. If the rod is again tipped so that it is a small angle θ away from the vertical, determine its angular acceleration at this instant. Assume that the end with the clay remains in contact with the tabletop. How does this compare to the angular acceleration in part (b)? (d) A pool cue is a tapered wooden rod that is thick at one end and thin at the other. You can easily balance a pool cue vertically on one finger if the thin end is in contact with your finger; this is quite a bit harder to do if the thick end is in contact with your finger. Explain why there is a difference.

10.67 •• Atwood's Machine. Figure P10.67 illustrates an Atwood's machine. Find the linear accelerations of blocks A and B, the angular acceleration of the wheel C, and the tension in each side of the cord if there is no slipping between the cord and the surface of the wheel. Let the masses of blocks A and B be 4.00 kg and 2.00 kg, respectively, the moment of inertia of the wheel about its axis be $0.300 \text{ kg} \cdot \text{m}^2$, and the radius of the wheel be 0.120 m.

10.68 ••• The mechanism shown in Fig. P10.68 is used to raise a crate of supplies from a ship's hold. The crate has total mass 50 kg. A rope is wrapped around a wooden

cylinder that turns on a metal axle. The cylinder has radius 0.25 m and moment of inertia $I = 2.9 \text{ kg} \cdot \text{m}^2$ about the axle. The crate is suspended from the free end of the rope. One end of the axle pivots on frictionless bearings; a crank handle is attached to the other end. When the crank is turned, the end of the handle rotates about the axle

is raised. What magnitude of the force \vec{F} applied tangentially to the rotating crank is required to raise the crate with an acceleration of

1.40 m/s²? (You can ignore the mass of the rope as well as the moments of inertia of the axle and the crank.)

10.69 • A large 16.0-kg roll of paper with radius R = 18.0 cm rests against the wall and is held in place by a bracket attached to a rod through the center of the roll (Fig. P10.69). The rod turns without friction in the bracket, and the moment of inertia of the paper and rod about the axis is $0.260 \text{ kg} \cdot \text{m}^2$. The other end of the bracket is attached by a

Figure **P10.67**

in a vertical circle of radius 0.12 m, the cylinder turns, and the crate

frictionless hinge to the wall such that the bracket makes an angle of 30.0° with the wall. The weight of the bracket is negligible. The coefficient of kinetic friction between the paper and the wall is $\mu_{\rm k} = 0.25$. A constant vertical force F = 60.0 N is applied to the paper, and the paper unrolls. (a) What is the magnitude of the force that the rod exerts on the paper as it unrolls? (b) What is the magnitude of the angular acceleration of the roll?

10.70 •• A block with mass m = 5.00 kg slides down a surface inclined 36.9° to the horizontal (Fig. P10.70). The coefficient of kinetic friction is 0.25. A string attached to the block is wrapped around a flywheel on a fixed axis at O. The flywheel has mass 25.0 kg and moment of inertia 0.500 kg \cdot m² with respect to the axis of rota-

tion. The string pulls without slipping at a perpendicular distance of 0.200 m from that axis. (a) What is the acceleration of the block down the plane? (b) What is the tension in the string?

10.71 ••• Two metal disks, one with radius $R_1 = 2.50$ cm and mass $M_1 = 0.80$ kg and the other with radius $R_2 = 5.00$ cm and mass $M_2 = 1.60$ kg, are welded together and mounted on a frictionless axis through their common center, as in Problem 9.87. (a) A light string is wrapped around the edge of the smaller disk, and a 1.50-kg block is suspended from the free end of the string. What is the magnitude of the downward acceleration of the block after it is released? (b) Repeat the calculation of part (a), this time with the string wrapped around the edge of the larger disk. In which case is the acceleration of the block greater? Does your answer make sense?

10.72 •• A lawn roller in the form of a thin-walled, hollow cylinder with mass M is pulled horizontally with a constant horizontal force F applied by a handle attached to the axle. If it rolls without slipping, find the acceleration and the friction force.

10.73 • Two weights are connected by a very light, flexible cord that passes over an 80.0-N frictionless pulley of radius 0.300 m. The pulley is a solid uniform disk and is supported by a hook connected to the ceiling (Fig. P10.73). What force does the ceiling exert on the hook?

10.74 •• A solid disk is rolling without slipping on a level surface at a constant speed of 3.60 m/s. (a) If the disk rolls up a 30.0° ramp, how far along the

ramp will it move before it stops? (b) Explain why your answer in part (a) does not depend on either the mass or the radius of the disk.

10.75 • The Yo-yo. A yo-yo is made from two uniform disks, each with mass m and radius R, connected by a light axle of radius b. A light, thin string is wound several times around the axle and then held stationary while the yo-yo is released from rest, dropping as the string unwinds. Find the linear acceleration and angular acceleration of the yo-yo and the tension in the string.

10.76 •• **CP** A thin-walled, hollow spherical shell of mass *m* and radius r starts from rest and rolls without slipping down the track shown in Fig. P10.76. Points A and B are on a circular part of the track having radius *R*. The diameter of the shell is very small compared to h_0 and *R*, and the work done by rolling friction is negligible. (a) What is the minimum height h_0 for which this shell will make a complete loop-the-loop on the circular part of the track? (b) How hard does the track push on the shell at point *B*, which is at the same level as the center of the circle? (c) Suppose that the track had no friction and the shell was released from the same height h_0 you found in part (a). Would it make a complete loopthe-loop? How do you know? (d) In part (c), how hard does the track push on the shell at point *A*, the top of the circle? How hard did it push on the shell in part (a)?

Figure **P10.76**

10.77 • Starting from rest, a constant force F = 100 N is applied to the free end of a 50-m cable wrapped around the outer rim of a uniform solid cylinder, similar to the situation shown in Fig. 10.9(a). The cylinder has mass 4.00 kg and diameter 30.0 cm and is free to turn about a fixed, frictionless axle through its center. (a) How long does it take to unwrap all the cable, and how fast is the cable moving just as the last bit comes off? (b) Now suppose that the cylinder is replaced by a uniform hoop, with all other quantities remaining unchanged. In this case, would the answers in part (a) be larger or smaller? Explain.

10.78 •• As shown in Fig. E10.20, a string is wrapped several times around the rim of a small hoop with radius 0.0800 m and mass 0.180 kg. The free end of the string is pulled upward in just the right way so that the hoop does not move vertically as the string unwinds. (a) Find the tension in the string as the string unwinds. (b) Find the angular acceleration of the hoop as the string unwinds. (c) Find the upward acceleration of the hand that pulls on the free end of the string. (d) How would your answers be different if the hoop were replaced by a solid disk of the same mass and radius?

10.79 •• A basketball (which can be closely modeled as a hollow spherical shell) rolls down a mountainside into a valley and then up the opposite side, starting from rest at a height H_0 above the bottom. In Fig. P10.79, the rough part of the terrain prevents slipping while the smooth part has no friction. (a) How high, in terms of H_0 , will the ball go up the other side? (b) Why doesn't the ball return to height H_0 ? Has it lost any of its original potential energy?

Figure **P10.79**

10.80 • **CP** A uniform marble rolls without slipping down the path shown in Fig. P10.80, starting from rest. (a) Find the minimum height h required for the marble not to fall into the pit.

(b) The moment of inertia of the marble depends on its radius. Explain why the answer to part (a) does not depend on the radius of the marble. (c) Solve part (a) for a block that slides without friction instead of the rolling marble. How does the minimum h in this case compare to the answer in part (a)?

10.81 •• Rolling Stones. A solid, uniform, spherical boulder starts from rest and rolls down a 50.0-m-high hill, as shown in Fig. P10.81. The top half of the hill is rough enough to cause the boulder to roll without slipping, but the lower half is covered with ice and there is no friction. What is the translational speed of the boulder when it reaches the bottom of the hill?

10.82 •• CP A solid uniform ball rolls without slipping up a hill, as shown in Fig. P10.82. At the top of the hill, it is moving horizontally, and then it goes over the vertical cliff. (a) How far from the foot of the cliff does the ball land, and how fast is it moving

Figure **P10.80**

Rough 50.0 m

just before it lands? (b) Notice that when the balls lands, it has a greater translational speed than when it was at the bottom of the hill. Does this mean that the ball somehow gained energy? Explain!

10.83 •• A 42.0-cm-diameter wheel, consisting of a rim and six spokes, is constructed from a thin, rigid plastic material having a linear mass density of 25.0 g/cm. This wheel is released from rest at the top of a hill 58.0 m high. (a) How fast is it rolling when it reaches the bottom of the hill? (b) How would your answer change if the linear mass density and the diameter of the wheel were each doubled?

10.84 •• A child rolls a 0.600-kg basketball up a long ramp. The basketball can be considered a thin-walled, hollow sphere. When the child releases the basketball at the bottom of the ramp, it has a speed of 8.0 m/s. When the ball returns to her after rolling up the ramp and then rolling back down, it has a speed of 4.0 m/s. Assume the work done by friction on the basketball is the same when the ball moves up or down the ramp and that the basketball rolls without slipping. Find the maximum vertical height increase of the ball as it rolls up the ramp.

10.85 •• CP In a lab experiment you let a uniform ball roll down a curved track. The ball starts from rest and rolls without slipping. While on the track, the ball descends a vertical distance h. The lower end of the track is horizontal and extends over the edge of the lab table; the ball leaves the track traveling horizontally. While free-falling after leaving the track, the ball moves a horizontal distance x and a vertical distance y. (a) Calculate x in terms of h and y, ignoring the work done by friction. (b) Would the answer to part (a) be any different on the moon? (c) Although you do the experiment very carefully, your measured value of x is consistently a bit smaller than the value calculated in part (a). Why? (d) What would x be for the same h and y as in part (a) if you let a silver dollar roll down the track? You can ignore the work done by friction.

10.86 •• A uniform drawbridge 8.00 m long is attached to the roadway by a frictionless hinge at one end, and it can be raised by a cable attached to the other end. The bridge is at rest, suspended at 60.0° above the horizontal, when the cable suddenly breaks. (a) Find the angular acceleration of the drawbridge just after the cable breaks. (Gravity behaves as though it all acts at the center of mass.) (b) Could you use the equation $\omega = \omega_0 + \alpha t$ to calculate the angular speed of the drawbridge at a later time? Explain why. (c) What is the angular speed of the drawbridge as it becomes horizontal?

10.87 • A uniform solid cylinder with mass M and radius 2R rests on a horizontal tabletop. A string is attached by a yoke to a friction-less axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the free end of the string (Fig. P10.87). The string doesn't slip over the pulley surface, and the cylinder rolls without slipping on the tabletop. Find the magnitude of the acceleration of the block after the system is released from rest.

Figure **P10.87**

10.88 ••• A uniform, 0.0300-kg rod of length 0.400 m rotates in a horizontal plane about a fixed axis through its center and perpendicular to the rod. Two small rings, each with mass 0.0200 kg, are mounted so that they can slide along the rod. They are initially held by catches at positions 0.0500 m on each side of the center of the rod, and the system is rotating at 30.0 rev/min. With no other changes in the system, the catches are released, and the rings slide outward along the rod and fly off at the ends. (a) What is the angular speed of the system at the instant when the rings reach the ends of the rod? (b) What is the angular speed of the rod after the rings leave it?

10.89 ••• A 5.00-kg ball is dropped from a height of 12.0 m above one end of a uniform bar that pivots at its center. The bar has mass 8.00 kg and is 4.00 m in length. At the other end of the bar sits another 5.00-kg ball, unattached to the bar. The dropped ball sticks to the bar after the collision. How high will the other ball go after the collision?

10.90 •• Tarzan and Jane in the 21st Century. Tarzan has foolishly gotten himself into another scrape with the animals and must be rescued once again by Jane. The 60.0-kg Jane starts from rest at a height of 5.00 m in the trees and swings down to the ground using a thin, but very rigid, 30.0-kg vine 8.00 m long. She arrives just in time to snatch the 72.0-kg Tarzan from the jaws of an angry hippopotamus. What is Jane's (and the vine's) angular speed (a) just before she grabs Tarzan and (b) just after she grabs him? (c) How high will Tarzan and Jane go on their first swing after this daring rescue?

10.91 •• A uniform rod of length L rests on a frictionless horizontal surface. The rod pivots about a fixed frictionless axis at one end. The rod is initially at rest. A bullet traveling parallel to the horizontal surface and perpendicular to the rod with speed v strikes the rod at its center and becomes embedded in it. The mass of the bullet is

one-fourth the mass of the rod. (a) What is the final angular speed of the rod? (b) What is the ratio of the kinetic energy of the system after the collision to the kinetic energy of the bullet before the collision?

10.92 •• The solid wood door of a gymnasium is 1.00 m wide and 2.00 m high, has total mass 35.0 kg, and is hinged along one side. The door is open and at rest when a stray basketball hits the center of the door head-on, applying an average force of 1500 N to the door for 8.00 ms. Find the angular speed of the door after the impact. [*Hint:* Integrating Eq. (10.29) yields $\Delta L_z = \int_{t_1}^{t_2} (\Sigma \tau_z) dt = (\Sigma \tau_z)_{av} \Delta t$. The quantity $\int_{t_1}^{t_2} (\Sigma \tau_z) dt$ is called the angular impulse.]

10.93 ••• A target in a shooting gallery consists of a vertical square wooden board, 0.250 m on a side and with mass 0.750 kg, that pivots on a horizontal axis along its top edge. The board is struck faceon at its center by a bullet with mass 1.90 g that is traveling at 360 m/s and that remains embedded in the board. (a) What is the angular speed of the board just after the bullet's impact? (b) What maximum height above the equilibrium position does the center of the board reach before starting to swing down again? (c) What minimum bullet speed would be required for the board to swing all the way over after impact?

10.94 •• Neutron Star Glitches. Occasionally, a rotating neutron star (see Exercise 10.41) undergoes a sudden and unexpected speedup called a *glitch*. One explanation is that a glitch occurs when the crust of the neutron star settles slightly, decreasing the moment of inertia about the rotation axis. A neutron star with angular speed $\omega_0 = 70.4$ rad/s underwent such a glitch in October 1975 that increased its angular speed to $\omega = \omega_0 + \Delta \omega$, where $\Delta \omega / \omega_0 = 2.01 \times 10^{-6}$. If the radius of the neutron star before the glitch was 11 km, by how much did its radius decrease in the starquake? Assume that the neutron star is a uniform sphere.

10.95 ••• A 500.0-g bird is flying horizontally at 2.25 m/s, not paying much attention, when it suddenly flies into a stationary vertical bar, hitting it 25.0 cm below the top (Fig. P10.95). The bar is uniform, 0.750 m long, has a mass of 1.50 kg, and is hinged at its base. The collision stuns the bird so that it just drops to the ground afterward (but soon

recovers to fly happily away). What is the angular velocity of the bar (a) just after it is hit by the bird and (b) just as it reaches the ground?

10.96 ••• CP A small block with mass 0.250 kg is attached to a string passing through a hole in a frictionless, horizontal surface (see Fig. E10.42). The block is originally revolving in a circle with a radius of 0.800 m about the hole with a tangential speed of 4.00 m/s. The string is then pulled slowly from below, shortening the radius of the circle in which the block revolves. The breaking strength of the string is 30.0 N. What is the radius of the circle when the string breaks?

10.97 • A horizontal plywood disk with mass 7.00 kg and diameter 1.00 m pivots on frictionless bearings about a vertical axis through its center. You attach a circular model-railroad track of negligible mass and average diameter 0.95 m to the disk. A 1.20-kg, battery-driven model train rests on the tracks. To demonstrate conservation of angular momentum, you switch on the train's engine. The train moves counterclockwise, soon attaining a constant speed

of 0.600 m/s relative to the tracks. Find the magnitude and direction of the angular velocity of the disk relative to the earth.

10.98 • A 55-kg runner runs around the edge of a horizontal turntable mounted on a vertical, frictionless axis through its center. The runner's velocity relative to the earth has magnitude 2.8 m/s. The turntable is rotating in the opposite direction with an angular velocity of magnitude 0.20 rad/s relative to the earth. The radius of the turntable is 3.0 m, and its moment of inertia about the axis of rotation is 80 kg \cdot m². Find the final angular velocity of the system if the runner comes to rest relative to the turntable. (You can model the runner as a particle.)

10.99 •• Center of Percussion. A baseball bat rests on a frictionless, horizontal surface. The bat has a length of 0.900 m, a mass of 0.800 kg, and its center of mass is 0.600 m from the handle end of the bat (Fig. P10.99). The moment of inertia of the bat about its center of mass is 0.0530 kg \cdot m². The bat is struck by a baseball traveling perpendicular to the bat. The impact applies an impulse $J = \int_{t_1}^{t_2} F dt$ at a point a distance x from the handle end of the bat. What must x be so that the handle end of the bat remains at rest as the bat begins to move? [Hint: Consider the motion of the center of mass and the rotation about the center of mass. Find x so that these two motions combine to give v = 0 for the end of the bat just after the collision. Also, note that integration of Eq. (10.29) gives $\Delta L = \int_{t_1}^{t_2} (\Sigma \tau) dt$ (see Problem 10.92).] The point on the bat you have located is called the center of percussion. Hitting a pitched ball at the center of percussion of the bat minimizes the "sting" the batter experiences on the hands.

Figure **P10.99**

CHALLENGE PROBLEMS

10.100 ••• A uniform ball of radius *R* rolls without slipping between two rails such that the horizontal distance is *d* between the two contact points of the rails to the ball. (a) In a sketch, show that at any instant $v_{\rm cm} = \omega \sqrt{R^2 - d^2/4}$. Discuss this expression in the limits d = 0 and d = 2R. (b) For a uniform ball starting from rest and descending a vertical distance *h* while rolling without slipping down a ramp, $v_{\rm cm} = \sqrt{10gh/7}$. Replacing the ramp with the two rails, show that

$$v_{\rm cm} = \sqrt{\frac{10gh}{5 + 2/(1 - d^2/4R^2)}}$$

In each case, the work done by friction has been ignored. (c) Which speed in part (b) is smaller? Why? Answer in terms of how the loss of potential energy is shared between the gain in translational and rotational kinetic energies. (d) For which value of the ratio d/R do the two expressions for the speed in part (b) differ by 5.0%? By 0.50%?

10.101 ••• When an object is rolling without slipping, the rolling friction force is much less than the friction force when the object is sliding; a silver dollar will roll on its edge much farther than it will slide on its flat side (see Section 5.3). When an object is rolling without slipping on a horizontal surface, we can approximate the friction force to be zero, so that a_x and α_z are approximately zero and v_x and ω_z are approximately constant. Rolling without slipping means $v_x = r\omega_z$ and $a_x = r\alpha_z$. If an object is set in motion on a surface without these equalities, sliding (kinetic) friction will act on the object as it slips until rolling without slipping is established. A solid cylinder with mass M and radius R, rotating with angular speed ω_0 about an axis through its center, is set on a horizontal surface for which the kinetic friction coefficient is μ_k . (a) Draw a free-body diagram for the cylinder on the surface. Think carefully about the direction of the kinetic friction force on the cylinder. Calculate the accelerations a_x of the center of mass and α_{z} of rotation about the center of mass. (b) The cylinder is initially slipping completely, so initially $\omega_z = \omega_0$ but $v_x = 0$. Rolling without slipping sets in when $v_x = R\omega_z$. Calculate the distance the cylinder rolls before slipping stops. (c) Calculate the work done by the friction force on the cylinder as it moves from where it was set down to where it begins to roll without slipping.

10.102 ••• A demonstration gyroscope wheel is constructed by removing the tire from a bicycle wheel 0.650 m in diameter, wrapping lead wire around the rim, and taping it in place. The shaft projects 0.200 m at each side of the wheel, and a woman holds the ends of the shaft in her hands. The mass of the system is 8.00 kg; its entire mass may be assumed to be located at its rim. The shaft is horizontal, and the wheel is spinning about the shaft at 5.00 rev/s. Find the magnitude and direction of the force each hand exerts on the shaft (a) when the shaft is at rest; (b) when the shaft is rotating in a horizontal plane about its center at 0.300 rev/s. (d) At what rate must the shaft rotate in order that it may be supported at one end only?

10.103 ••• CP CALC A block with mass *m* is revolving with linear speed v_1 in a circle of radius r_1 on a frictionless horizontal surface (see Fig. E10.42). The string is slowly pulled from below until the radius of the circle in which the block is revolving is reduced to r_2 . (a) Calculate the tension *T* in the string as a function of *r*, the distance of the block from the hole. Your answer will be in terms of the initial velocity v_1 and the radius r_1 . (b) Use $W = \int_{r_1}^{r_2} \vec{T}(r) \cdot d\vec{r}$ to calculate the work done by \vec{T} when *r* changes from r_1 to r_2 . (c) Compare the results of part (b) to the change in the kinetic energy of the block.

Answers

Chapter Opening Question **?**

relative to the distant stars, taking 26,000 years for a complete cycle of precession. Today the rotation axis points toward Polaris, but 5000 years ago it pointed toward Thuban, and 12,000 years from now it will point toward the bright star Vega.

Test Your Understanding Questions

10.1 Answer: (ii) The force *P* acts along a vertical line, so the lever arm is the horizontal distance from *A* to the line of action. This is the horizontal component of the distance *L*, which is $L\cos\theta$. Hence the magnitude of the torque is the product of the force magnitude *P* and the lever arm $L\cos\theta$, or $\tau = PL\cos\theta$.

10.2 Answer: (iii), (ii), (i) In order for the hanging object of mass m_2 to accelerate downward, the net force on it must be downward. Hence the magnitude m_2g of the downward weight force must be greater than the magnitude T_2 of the upward tension force. In order for the pulley to have a clockwise angular acceleration, the net torque on the pulley must be clockwise. The tension T_2 tends to rotate the pulley clockwise, while the tension T_1 tends to rotate the pulley clockwise. Both tension forces have the same lever arm R, so there is a clockwise torque T_2R and a counterclockwise torque T_1R . In order for the net torque to be clockwise, T_2 must be greater than T_1 . Hence $m_2g > T_2 > T_1$.

10.3 Answers: (a) (ii), (b) (i) If you redo the calculation of Example 10.6 with a hollow cylinder (moment of inertia $I_{\rm cm} = MR^2$) instead of a solid cylinder (moment of inertia $I_{\rm cm} = \frac{1}{2}MR^2$), you will find $a_{\rm cm-y} = \frac{1}{2}g$ and $T = \frac{1}{2}Mg$ (instead of $a_{\rm cm-y} = \frac{2}{3}g$ and $T = \frac{1}{3}Mg$ for a solid cylinder). Hence the acceleration is less but the tension is greater. You can come to the same conclusion without doing the calculation. The greater moment of inertia means that the hollow cylinder will rotate more slowly and hence will roll downward more slowly. In order to slow the downward motion, a greater upward tension force is needed to oppose the downward force of gravity.

10.4 Answer: (iii) You apply the same torque over the same angular displacement to both cylinders. Hence, by Eq. (10.21), you do the same amount of work to both cylinders and impart the same kinetic energy to both. (The one with the smaller moment of inertia ends up with a greater angular speed, but that isn't what we are asked. Compare Conceptual Example 6.5 in Section 6.2.)

10.5 Answers: (a) no, (b) yes As the ball goes around the circle, the magnitude of $\vec{p} = m\vec{v}$ remains the same (the speed is constant) but its direction changes, so the linear momentum vector isn't constant. But $\vec{L} = \vec{r} \times \vec{p}$ is constant: It has a constant magnitude (the speed and the perpendicular distance from your hand to the ball are both constant) and a constant direction (along the rotation axis, perpendicular to the plane of the ball's motion). The linear momentum changes because there is a net *force* \vec{F} on the ball (toward the center of the circle). The angular momentum remains constant because there is no net *torque;* the vector \vec{r} points from your hand to the ball and the force \vec{F} on the ball is directed toward your hand, so the vector product $\vec{\tau} = \vec{r} \times \vec{F}$ is zero.

10.6 Answer: (i) In the absence of any external torques, the earth's angular momentum $L_z = I\omega_z$ would remain constant. The melted ice would move from the poles toward the equator—that is, away from our planet's rotation axis—and the earth's moment of inertia *I* would increase slightly. Hence the angular velocity ω_z would decrease slightly and the day would be slightly longer.

10.7 Answer: (iii) Doubling the flywheel mass would double both its moment of inertia *I* and its weight *w*, so the ratio I/w would be unchanged. Equation (10.33) shows that the precession angular speed depends on this ratio, so there would be *no* effect on the value of Ω .

Bridging Problem

Answers: (a) $h = \frac{2R}{5}$

(**b**) $\frac{5}{7}$ of the speed it had just after the hit

EQUILIBRIUM AND ELASTICITY

LEARNING GOALS

By studying this chapter, you will learn:

- The conditions that must be satisfied for a body or structure to be in equilibrium.
- What is meant by the center of gravity of a body, and how it relates to the body's stability.
- How to solve problems that involve rigid bodies in equilibrium.
- How to analyze situations in which a body is deformed by tension, compression, pressure, or shear.
- What happens when a body is stretched so much that it deforms or breaks.

P This Roman aqueduct uses the principle of the arch to sustain the weight of the structure and the water it carries. Are the blocks that make up the arch being compressed, stretched, or a combination?

e've devoted a good deal of effort to understanding why and how bodies accelerate in response to the forces that act on them. But very often we're interested in making sure that bodies *don't* accelerate. Any building, from a multistory skyscraper to the humblest shed, must be designed so that it won't topple over. Similar concerns arise with a suspension bridge, a ladder leaning against a wall, or a crane hoisting a bucket full of concrete.

A body that can be modeled as a *particle* is in equilibrium whenever the vector sum of the forces acting on it is zero. But for the situations we've just described, that condition isn't enough. If forces act at different points on an extended body, an additional requirement must be satisfied to ensure that the body has no tendency to *rotate:* The sum of the *torques* about any point must be zero. This requirement is based on the principles of rotational dynamics developed in Chapter 10. We can compute the torque due to the weight of a body using the concept of center of gravity, which we introduce in this chapter.

Rigid bodies don't bend, stretch, or squash when forces act on them. But the rigid body is an idealization; all real materials are *elastic* and do deform to some extent. Elastic properties of materials are tremendously important. You want the wings of an airplane to be able to bend a little, but you'd rather not have them break off. The steel frame of an earthquake-resistant building has to be able to flex, but not too much. Many of the necessities of everyday life, from rubber bands to suspension bridges, depend on the elastic properties of materials. In this chapter we'll introduce the concepts of *stress, strain,* and *elastic modulus* and a simple principle called *Hooke's law* that helps us predict what deformations will occur when forces are applied to a real (not perfectly rigid) body.

11.1 Conditions for Equilibrium

We learned in Sections 4.2 and 5.1 that a particle is in *equilibrium*—that is, the particle does not accelerate—in an inertial frame of reference if the vector sum of all the forces acting on the particle is zero, $\sum \vec{F} = 0$. For an *extended* body, the equivalent statement is that the center of mass of the body has zero acceleration if the vector sum of all external forces acting on the body is zero, as discussed in Section 8.5. This is often called the **first condition for equilibrium**. In vector and component forms,

$$\sum \vec{F} = 0$$
(first condition

$$\sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$
(first condition
for equilibrium)
(11.1)

A second condition for an extended body to be in equilibrium is that the body must have no tendency to *rotate*. This condition is based on the dynamics of rotational motion in exactly the same way that the first condition is based on Newton's first law. A rigid body that, in an inertial frame, is not rotating about a certain point has zero angular momentum about that point. If it is not to start rotating about that point, the rate of change of angular momentum must *also* be zero. From the discussion in Section 10.5, particularly Eq. (10.29), this means that the sum of torques due to all the external forces acting on the body must be zero. A rigid body in equilibrium can't have any tendency to start rotating about *any* point, so the sum of external torques must be zero about any point. This is the **second condition for equilibrium:**

 $\sum \vec{\tau} = 0$ about any point (second condition for equilibrium) (11.2)

The sum of the torques due to all external forces acting on the body, with respect to any specified point, must be zero.

In this chapter we will apply the first and second conditions for equilibrium to situations in which a rigid body is at rest (no translation or rotation). Such a body is said to be in **static equilibrium** (Fig. 11.1). But the same conditions apply to a rigid body in uniform *translational* motion (without rotation), such as an airplane in flight with constant speed, direction, and altitude. Such a body is in equilibrium but is not static.

Test Your Understanding of Section 11.1 Which situation satisfies both the first and second conditions for equilibrium? (i) a seagull gliding at a constant angle below the horizontal and at a constant speed; (ii) an automobile crankshaft turning at an increasing angular speed in the engine of a parked car; (iii) a thrown baseball that does not rotate as it sails through the air.

11.2 Center of Gravity

In most equilibrium problems, one of the forces acting on the body is its weight. We need to be able to calculate the *torque* of this force. The weight doesn't act at a single point; it is distributed over the entire body. But we can always calculate the torque due to the body's weight by assuming that the entire force of gravity (weight) is concentrated at a point called the **center of gravity** (abbreviated "cg"). The acceleration due to gravity decreases with altitude; but if we can ignore this variation over the vertical dimension of the body, then the body's center of gravity is identical to its *center of mass* (abbreviated "cm"), which we defined in Section 8.5. We stated this result without proof in Section 10.2, and now we'll prove it.

11.1 To be in static equilibrium, a body at rest must satisfy *both* conditions for equilibrium: It can have no tendency to accelerate as a whole or to start rotating.

(a) This body is in static equilibrium.

Equilibrium conditions:

First condition satisfied:

Net force = 0, so body at rest has no tendency to start moving as a whole.

Second condition satisfied:

Net torque about the axis = 0, so body at rest has no tendency to start rotating.

Axis of rotation (perpendicular to figure)

(b) This body has no tendency to accelerate as a whole, but it has a tendency to start rotating.

First condition satisfied:

2F

Net force = 0, so body at rest has no tendency to start moving as a whole.

Second condition NOT

satisfied: There is a net clockwise torque about the axis, so body at rest will start rotating clockwise.

(c) This body has a tendency to accelerate as a whole but no tendency to start rotating.

First condition NOT

satisfied: There is a net upward force, so body at rest will start moving upward.

Second condition satisfied:

Net torque about the axis = 0, so body at rest has no tendency to start rotating.

MP

2F

First let's review the definition of the center of mass. For a collection of particles with masses m_1, m_2, \ldots and coordinates $(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots$, the coordinates x_{cm}, y_{cm} , and z_{cm} of the center of mass are given by

$$x_{\rm cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \cdots}{m_1 + m_2 + m_3 + \cdots} = \frac{\sum_i m_i x_i}{\sum_i m_i}$$
$$y_{\rm cm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \cdots}{m_1 + m_2 + m_3 + \cdots} = \frac{\sum_i m_i y_i}{\sum_i m_i} \quad \text{(center of mass)} \quad (11.3)$$
$$z_{\rm cm} = \frac{m_1 z_1 + m_2 z_2 + m_3 z_3 + \cdots}{m_1 + m_2 + m_3 + \cdots} = \frac{\sum_i m_i z_i}{\sum_i m_i}$$

Also, x_{cm} , y_{cm} , and z_{cm} are the components of the position vector \vec{r}_{cm} of the center of mass, so Eqs. (11.3) are equivalent to the vector equation

$$\vec{r}_{\rm cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3 + \cdots}{m_1 + m_2 + m_3 + \cdots} = \frac{\sum_i m_i \vec{r}_i}{\sum_i m_i}$$
(11.4)

Now consider the gravitational torque on a body of arbitrary shape (Fig. 11.2). We assume that the acceleration due to gravity \vec{g} is the same at every point in the body. Every particle in the body experiences a gravitational force, and the total weight of the body is the vector sum of a large number of parallel forces. A typical particle has mass m_i and weight $\vec{w}_i = m_i \vec{g}$. If \vec{r}_i is the position vector of this particle with respect to an arbitrary origin O, then the torque vector $\vec{\tau}_i$ of the weight \vec{w}_i with respect to O is, from Eq. (10.3),

$$\vec{\boldsymbol{\tau}}_i = \vec{\boldsymbol{r}}_i \times \vec{\boldsymbol{w}}_i = \vec{\boldsymbol{r}}_i \times m_i \vec{\boldsymbol{g}}$$

The total torque due to the gravitational forces on all the particles is

$$\vec{\tau} = \sum_{i} \vec{\tau}_{i} = \vec{r}_{1} \times m_{1} \vec{g} + \vec{r}_{2} \times m_{2} \vec{g} + \cdots$$
$$= (m_{1} \vec{r}_{1} + m_{2} \vec{r}_{2} + \cdots) \times \vec{g}$$
$$= \left(\sum_{i} m_{i} \vec{r}_{i}\right) \times \vec{g}$$

When we multiply and divide this by the total mass of the body,

$$M = m_1 + m_2 + \cdots = \sum_i m_i$$

we get

$$\vec{\tau} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \cdots}{m_1 + m_2 + \cdots} \times M \vec{g} = \frac{\sum_i m_i \vec{r}_i}{\sum_i m_i} \times M \vec{g}$$

The fraction in this equation is just the position vector \vec{r}_{cm} of the center of mass, with components x_{cm} , y_{cm} , and z_{cm} , as given by Eq. (11.4), and $M\vec{g}$ is equal to the total weight \vec{w} of the body. Thus

$$\vec{\tau} = \vec{r}_{\rm cm} \times M\vec{g} = \vec{r}_{\rm cm} \times \vec{w}$$
(11.5)

11.2 The center of gravity (cg) and center of mass (cm) of an extended body.

The net gravitational torque about *O* on the entire body can be found by assuming that all the weight acts at the cg: $\vec{\tau} = \vec{r}_{cm} \times \vec{w}$.

The total gravitational torque, given by Eq. (11.5), is the same as though the total weight \vec{w} were acting on the position \vec{r}_{cm} of the center of mass, which we also call the *center of gravity*. If \vec{g} has the same value at all points on a body, its center of gravity is identical to its center of mass. Note, however, that the center of mass is defined independently of any gravitational effect.

While the value of \vec{g} does vary somewhat with elevation, the variation is extremely slight (Fig. 11.3). Hence we will assume throughout this chapter that the center of gravity and center of mass are identical unless explicitly stated otherwise.

Finding and Using the Center of Gravity

We can often use symmetry considerations to locate the center of gravity of a body, just as we did for the center of mass. The center of gravity of a homogeneous sphere, cube, circular sheet, or rectangular plate is at its geometric center. The center of gravity of a right circular cylinder or cone is on its axis of symmetry.

For a body with a more complex shape, we can sometimes locate the center of gravity by thinking of the body as being made of symmetrical pieces. For example, we could approximate the human body as a collection of solid cylinders, with a sphere for the head. Then we can locate the center of gravity of the combination with Eqs. (11.3), letting m_1, m_2, \ldots be the masses of the individual pieces and $(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots$ be the coordinates of their centers of gravity.

When a body acted on by gravity is supported or suspended at a single point, the center of gravity is always at or directly above or below the point of suspension. If it were anywhere else, the weight would have a torque with respect to the point of suspension, and the body could not be in rotational equilibrium. Figure 11.4 shows how to use this fact to determine experimentally the location of the center of gravity of an irregular body.

Using the same reasoning, we can see that a body supported at several points must have its center of gravity somewhere within the area bounded by the supports. This explains why a car can drive on a straight but slanted road if the slant angle is relatively small (Fig. 11.5a) but will tip over if the angle is too steep (Fig. 11.5b). The truck in Fig. 11.5c has a higher center of gravity than the car and will tip over on a shallower incline. When a truck overturns on a highway and blocks traffic for hours, it's the high center of gravity that's to blame.

The lower the center of gravity and the larger the area of support, the more difficult it is to overturn a body. Four-legged animals such as deer and horses have a large area of support bounded by their legs; hence they are naturally stable and need only small feet or hooves. Animals that walk erect on two legs, such as humans and birds, need relatively large feet to give them a reasonable area of

11.5 In (a) the center of gravity is within the area bounded by the supports, and the car is in equilibrium. The car in (b) and the truck in (c) will tip over because their centers of gravity lie outside the area of support.

Center of gravity is over the area of support: car is in equilibrium.

Center of gravity is outside the area of support: vehicle tips over.

11.3 The acceleration due to gravity at the bottom of the 452-m-tall Petronas Towers in Malaysia is only 0.014% greater than at the top. The center of gravity of the towers is only about 2 cm below the center of mass.

11.4 Finding the center of gravity of an irregularly shaped body—in this case, a coffee mug.

What is the center of gravity of this mug?

(1) Suspend the mug from any point. A vertical line extending down from the point of suspension passes through the center of gravity.

(2) Now suspend the mug from a different point. A vertical line extending down from this point intersects the first line at the center of gravity (which is inside the mug). Center of gravity support. If a two-legged animal holds its body approximately horizontal, like a chicken or the dinosaur *Tyrannosaurus rex*, it must perform a delicate balancing act as it walks to keep its center of gravity over the foot that is on the ground. A chicken does this by moving its head; *T. rex* probably did it by moving its massive tail.

Example 11.1 Walking the plank

A uniform plank of length L = 6.0 m and mass M = 90 kg rests on sawhorses separated by D = 1.5 m and equidistant from the center of the plank. Cousin Throckmorton wants to stand on the right-hand end of the plank. If the plank is to remain at rest, how massive can Throckmorton be?

SOLUTION

IDENTIFY and SET UP: To just balance, Throckmorton's mass *m* must be such that the center of gravity of the plank–Throcky system is directly over the right-hand sawhorse (Fig. 11.6). We take the origin at *C*, the geometric center and center of gravity of the plank, and take the positive *x*-axis horizontally to the right. Then the centers of gravity of the plank and Throcky are at $x_P = 0$ and $x_T = L/2 = 3.0$ m, respectively, and the right-hand sawhorse is at

11.6 Our sketch for this problem.

 $x_{\rm S} = D/2$. We'll use Eqs. (11.3) to locate the center of gravity $x_{\rm cg}$ of the plank–Throcky system.

EXECUTE: From the first of Eqs. (11.3),

 $x_{\rm cg} = \frac{M(0) + m(L/2)}{M + m} = \frac{m}{M + m} \frac{L}{2}$

We set $x_{cg} = x_{S}$ and solve for *m*:

$$\frac{m}{M+m}\frac{L}{2} = \frac{D}{2}$$

mL = (M + m)D
$$m = M\frac{D}{L-D} = (90 \text{ kg})\frac{1.5 \text{ m}}{6.0 \text{ m} - 1.5 \text{ m}} = 30 \text{ kg}$$

EVALUATE: As a check, let's repeat the calculation with the origin at the right-hand sawhorse. Now $x_{\rm S} = 0$, $x_{\rm P} = -D/2$, and $x_{\rm T} = (L/2) - (D/2)$, and we require $x_{\rm cg} = x_{\rm S} = 0$:

$$x_{\rm cg} = \frac{M(-D/2) + m[(L/2) - (D/2)]}{M + m} = 0$$
$$m = \frac{MD/2}{(L/2) - (D/2)} = M\frac{D}{L - D} = 30 \text{ kg}$$

The result doesn't depend on our choice of origin.

A 60-kg adult could stand only halfway between the right-hand sawhorse and the end of the plank. Can you see why?

L

11.7 At what point will the meter stick with rock attached be in balance?

MasteringPHYSICS

ActivPhysics 7.4: Two Painters on a Beam ActivPhysics 7.5: Lecturing from a Beam **Test Your Understanding of Section 11.2** A rock is attached to the left end of a uniform meter stick that has the same mass as the rock. In order for the combination of rock and meter stick to balance atop the triangular object in Fig. 11.7, how far from the left end of the stick should the triangular object be placed? (i) less than 0.25 m; (ii) 0.25 m; (iii) between 0.25 m and 0.50 m; (iv) 0.50 m; (v) more than 0.50 m.

11.3 Solving Rigid-Body Equilibrium Problems

There are just two key conditions for rigid-body equilibrium: The vector sum of the forces on the body must be zero, and the sum of the torques about any point must be zero. To keep things simple, we'll restrict our attention to situations in which we can treat all forces as acting in a single plane, which we'll call the *xy*-plane. Then we can ignore the condition $\Sigma F_z = 0$ in Eqs. (11.1), and in Eq. (11.2) we need consider only the *z*-components of torque (perpendicular to the plane). The first and second conditions for equilibrium are then

$$\sum F_x = 0 \quad \text{and} \quad \sum F_y = 0 \quad \stackrel{\text{(Inst condition for equilibrium,}}{\text{forces in } xy-\text{plane})}$$

$$\sum \tau_z = 0 \quad \stackrel{\text{(second condition for equilibrium,}}{\text{forces in } xy-\text{plane})} \quad (11.6)$$

.1.1 .

CAUTION Choosing the reference point for calculating torques In equilibrium problems, the choice of reference point for calculating torques in $\Sigma \tau_z$ is completely arbitrary. But once you make your choice, you must use the *same* point to calculate *all* the torques on a body. Choose the point so as to simplify the calculations as much as possible.

The challenge is to apply these simple conditions to specific problems. Problem-Solving Strategy 11.1 is very similar to the suggestions given in Section 5.2 for the equilibrium of a particle. You should compare it with Problem-Solving Strategy 10.1 (Section 10.2) for rotational dynamics problems.

Problem-Solving Strategy 11.1 Equilibrium of a Rigid Body

IDENTIFY *the relevant concepts:* The first and second conditions for equilibrium ($\Sigma F_x = 0$, $\Sigma F_y = 0$, and $\Sigma \tau_z = 0$) are applicable to any rigid body that is not accelerating in space and not rotating.

SET UP *the problem* using the following steps:

- Sketch the physical situation and identify the body in equilibrium to be analyzed. Sketch the body accurately; do *not* represent it as a point. Include dimensions.
- 2. Draw a free-body diagram showing all forces acting *on* the body. Show the point on the body at which each force acts.
- 3. Choose coordinate axes and specify their direction. Specify a positive direction of rotation for torques. Represent forces in terms of their components with respect to the chosen axes.
- 4. Choose a reference point about which to compute torques. Choose wisely; you can eliminate from your torque equation any force whose line of action goes through the point you

choose. The body doesn't actually have to be pivoted about an axis through the reference point.

EXECUTE *the solution* as follows:

- 1. Write equations expressing the equilibrium conditions. Remember that $\Sigma F_x = 0$, $\Sigma F_y = 0$, and $\Sigma \tau_z = 0$ are *separate* equations. You can compute the torque of a force by finding the torque of each of its components separately, each with its appropriate lever arm and sign, and adding the results.
- To obtain as many equations as you have unknowns, you may need to compute torques with respect to two or more reference points; choose them wisely, too.

EVALUATE your answer: Check your results by writing $\Sigma \tau_z = 0$ with respect to a different reference point. You should get the same answers.

Example 11.2 Weight distribution for a car

An auto magazine reports that a certain sports car has 53% of its weight on the front wheels and 47% on its rear wheels. (That is, the total normal forces on the front and rear wheels are 0.53w and 0.47w, respectively, where *w* is the car's weight.) The distance between the axles is 2.46 m. How far in front of the rear axle is the car's center of gravity?

SOLUTION

IDENTIFY and SET UP: We can use the two conditions for equilibrium, Eqs. (11.6), for a car at rest (or traveling in a straight line at constant speed), since the net force and net torque on the car are zero. Figure 11.8 shows our sketch and a free-body diagram, including *x*- and *y*-axes and our convention that counterclockwise torques are positive. The weight *w* acts at the center of gravity. Our target variable is the distance L_{cg} , the lever arm of the weight with respect to the rear axle *R*, so it is wise to take torques with respect to *R*. The torque due to the weight is negative because it tends to cause a clockwise rotation about *R*. The torque due to the upward normal force at the front axle *F* is positive because it tends to cause a counterclockwise rotation about *R*.

EXECUTE: The first condition for equilibrium is satisfied (see Fig. 11.8b): $\sum F_x = 0$ because there are no *x*-components of force and $\sum F_y = 0$ because 0.47w + 0.53w + (-w) = 0. We write the torque equation and solve for L_{cg} :

$$\sum \tau_R = 0.47w(0) - wL_{cg} + 0.53w(2.46 \text{ m}) = 0$$

$$L_{cg} = 1.30 \text{ m}$$

11.8 Our sketches for this problem.

EVALUATE: The center of gravity is between the two supports, as it must be (see Section 11.2). You can check our result by writing the torque equation about the front axle *F*. You'll find that the center of gravity is 1.16 m behind the front axle, or (2.46 m) - (1.16 m) = 1.30 m in front of the rear axle.

Example 11.3 Will the ladder slip?

Sir Lancelot, who weighs 800 N, is assaulting a castle by climbing a uniform ladder that is 5.0 m long and weighs 180 N (Fig. 11.9a). The bottom of the ladder rests on a ledge and leans across the moat in equilibrium against a frictionless, vertical castle wall. The ladder makes an angle of 53.1° with the horizontal. Lancelot pauses onethird of the way up the ladder. (a) Find the normal and friction forces on the base of the ladder. (b) Find the minimum coefficient of static friction needed to prevent slipping at the base. (c) Find the magnitude and direction of the contact force on the base of the ladder.

SOLUTION

IDENTIFY and SET UP: The ladder–Lancelot system is stationary, so we can use the two conditions for equilibrium to solve part (a). In part (b), we need the relationship among the static friction force, the coefficient of static friction, and the normal force (see Section 5.3). In part (c), the contact force is the vector sum of the normal and friction forces acting at the base of the ladder, found in part (a). Figure 11.9b shows the free-body diagram, with *x*- and *y*-directions as shown and with counterclockwise torques taken to be positive. The ladder's center of gravity is at its geometric center. Lancelot's 800-N weight acts at a point one-third of the way up the ladder.

The wall exerts only a normal force n_1 on the top of the ladder. The forces on the base are an upward normal force n_2 and a static friction force f_s , which must point to the right to prevent slipping. The magnitudes n_2 and f_s are the target variables in part (a). From Eq. (5.6), these magnitudes are related by $f_s \leq \mu_s n_2$; the coefficient of static friction μ_s is the target variable in part (b).

EXECUTE: (a) From Eqs. (11.6), the first condition for equilibrium gives

$$\sum F_x = f_s + (-n_1) = 0$$

$$\sum F_y = n_2 + (-800 \text{ N}) + (-180 \text{ N}) = 0$$

These are two equations for the three unknowns n_1 , n_2 , and f_s . The second equation gives $n_2 = 980$ N. To obtain a third equation, we use the second condition for equilibrium. We take torques about point *B*, about which n_2 and f_s have no torque. The 53.1° angle creates a 3-4-5 right triangle, so from Fig. 11.9b the lever arm for the ladder's weight is 1.5 m, the lever arm for Lancelot's weight is 1.0 m, and the lever arm for n_1 is 4.0 m. The torque equation for point *B* is then

$$\sum \tau_B = n_1 (4.0 \text{ m}) - (180 \text{ N})(1.5 \text{ m}) - (800 \text{ N})(1.0 \text{ m}) + n_2(0) + f_s(0) = 0$$

Solving for n_1 , we get $n_1 = 268$ N. We substitute this into the $\sum F_x = 0$ equation and get $f_s = 268$ N.

(b) The static friction force f_s cannot exceed $\mu_s n_2$, so the *minimum* coefficient of static friction to prevent slipping is

$$(\mu_s)_{\min} = \frac{f_s}{n_2} = \frac{268 \text{ N}}{980 \text{ N}} = 0.27$$

(c) The components of the contact force \vec{F}_B at the base are the static friction force f_s and the normal force n_2 , so

$$\vec{F}_B = f_s \hat{i} + n_2 \hat{j} = (268 \text{ N})\hat{i} + (980 \text{ N})\hat{j}$$

The magnitude and direction of \vec{F}_B (Fig. 11.9c) are

$$F_B = \sqrt{(268 \text{ N})^2 + (980 \text{ N})^2} = 1020 \text{ N}$$
$$\theta = \arctan \frac{980 \text{ N}}{268 \text{ N}} = 75^{\circ}$$

EVALUATE: As Fig. 11.9c shows, the contact force \vec{F}_B is *not* directed along the length of the ladder. Can you show that if \vec{F}_B were directed along the ladder, there would be a net counterclockwise torque with respect to the top of the ladder, and equilibrium would be impossible?

As Lancelot climbs higher on the ladder, the lever arm and torque of his weight about *B* increase. This increases the values of n_1 , f_s , and the required friction coefficient $(\mu_s)_{\min}$, so the ladder is more and more likely to slip as he climbs (see Problem 11.10). A simple way to make slipping less likely is to use a larger ladder angle (say, 75° rather than 53.1°). This decreases the lever arms with respect to *B* of the weights of the ladder and Lancelot and increases the lever arm of n_1 , all of which decrease the required friction force.

If we had assumed friction on the wall as well as on the floor, the problem would be impossible to solve by using the equilibrium conditions alone. (Try it!) The difficulty is that it's no longer adequate to treat the body as being perfectly rigid. Another problem of this kind is a four-legged table; there's no way to use the equilibrium conditions alone to find the force on each separate leg.

11.9 (a) Sir Lancelot pauses a third of the way up the ladder, fearing it will slip. (b) Free-body diagram for the system of Sir Lancelot and the ladder. (c) The contact force at *B* is the superposition of the normal force and the static friction force.

Example 11.4 Equilibrium and pumping iron

Figure 11.10a shows a horizontal human arm lifting a dumbbell. The forearm is in equilibrium under the action of the weight \vec{w} of the dumbbell, the tension \vec{T} in the tendon connected to the biceps muscle, and the force \vec{E} exerted on the forearm by the upper arm at the elbow joint. We neglect the weight of the forearm itself. (For clarity, the point A where the tendon is attached is drawn farther from the elbow than its actual position.) Given the weight w and the angle θ between the tension force and the horizontal, find T and the two components of \vec{E} (three unknown scalar quantities in all).

SOLUTION

IDENTIFY and SET UP: The system is at rest, so we use the conditions for equilibrium. We represent \vec{T} and \vec{E} in terms of their components (Fig. 11.10b). We guess that the directions of E_x and E_y are as shown; the signs of E_x and E_y as given by our solution will tell us the actual directions. Our target variables are T, E_x , and E_y .

EXECUTE: To find *T*, we take torques about the elbow joint so that the torque equation does not contain E_x , E_y , or T_x :

$$\sum \tau_{\text{elbow}} = Lw - DT_y = 0$$

From this we find

$$T_y = \frac{Lw}{D}$$
 and $T = \frac{Lw}{D\sin\theta}$

To find E_x and E_y , we use the first conditions for equilibrium:

$$\sum F_x = T_x + (-E_x) = 0$$

$$E_x = T_x = T\cos\theta = \frac{Lw}{D\sin\theta}\cos\theta$$

$$= \frac{Lw}{D}\cot\theta = \frac{LwD}{D} = \frac{Lw}{h}$$

$$\sum F_{y} = T_{y} + E_{y} + (-w) = 0$$
$$E_{y} = w - \frac{Lw}{D} = -\frac{(L-D)w}{D}$$

The negative sign for E_y tells us that it should actually point *down* in Fig. 11.10b.

EVALUATE: We can check our results for E_x and E_y by taking torques about points A and B, about both of which T has zero torque:

$$\sum \tau_A = (L - D)w + DE_y = 0 \quad \text{so} \quad E_y = -\frac{(L - D)w}{D}$$
$$\sum \tau_B = Lw - hE_x = 0 \quad \text{so} \quad E_x = \frac{Lw}{h}$$

As a realistic example, take w = 200 N, D = 0.050 m, L = 0.30 m, and $\theta = 80^{\circ}$, so that $h = D \tan \theta = (0.050 \text{ m})(5.67) = 0.28$ m. Using our results for *T*, E_x , and E_y , we find

$$T = \frac{Lw}{D\sin\theta} = \frac{(0.30 \text{ m})(200 \text{ N})}{(0.050 \text{ m})(0.98)} = 1220 \text{ N}$$

$$E_y = -\frac{(L - D)w}{D} = -\frac{(0.30 \text{ m} - 0.050 \text{ m})(200 \text{ N})}{0.050 \text{ m}}$$

$$= -1000 \text{ N}$$

$$E_x = \frac{Lw}{h} = \frac{(0.30 \text{ m})(200 \text{ N})}{0.28 \text{ m}} = 210 \text{ N}$$

The magnitude of the force at the elbow is

$$E = \sqrt{E_x^2 + E_y^2} = 1020 \,\mathrm{N}$$

The large values of T and E suggest that it was reasonable to neglect the weight of the forearm itself, which may be 20 N or so.

11.10 (a) The situation. (b) Our free-body diagram for the forearm. The weight of the forearm is neglected, and the distance *D* is greatly exaggerated for clarity.

11.11 What are the tension in the diagonal cable and the force exerted by the hinge at *P*?

Test Your Understanding of Section 11.3 A metal advertising sign (weight *w*) for a specialty shop is suspended from the end of a horizontal rod of length *L* and negligible mass (Fig. 11.11). The rod is supported by a cable at an angle θ from the horizontal and by a hinge at point *P*. Rank the following force magnitudes in order from greatest to smallest: (i) the weight *w* of the sign; (ii) the tension in the cable; (iii) the vertical component of force exerted on the rod by the hinge at *P*.

11.4 Stress, Strain, and Elastic Moduli

The rigid body is a useful idealized model, but the stretching, squeezing, and twisting of real bodies when forces are applied are often too important to ignore. Figure 11.12 shows three examples. We want to study the relationship between the forces and deformations for each case.

For each kind of deformation we will introduce a quantity called **stress** that characterizes the strength of the forces causing the deformation, on a "force per unit area" basis. Another quantity, **strain**, describes the resulting deformation. When the stress and strain are small enough, we often find that the two are directly proportional, and we call the proportionality constant an **elastic modulus**. The harder you pull on something, the more it stretches; the more you squeeze it, the more it compresses. In equation form, this says

$\frac{\text{Stress}}{\text{Strain}} = \text{Elastic modulus} (\text{H}$	poke's law) (11.7)
---	--------------------

The proportionality of stress and strain (under certain conditions) is called **Hooke's law**, after Robert Hooke (1635–1703), a contemporary of Newton. We used one form of Hooke's law in Sections 6.3 and 7.2: The elongation of an ideal spring is proportional to the stretching force. Remember that Hooke's "law" is not really a general law; it is valid over only a limited range. The last section of this chapter discusses what this limited range is.

Tensile and Compressive Stress and Strain

The simplest elastic behavior to understand is the stretching of a bar, rod, or wire when its ends are pulled (Fig. 11.12a). Figure 11.13 shows an object that initially has uniform cross-sectional area A and length l_0 . We then apply forces of equal

11.12 Three types of stress. (a) Bridge cables under *tensile stress*, being stretched by forces acting at their ends. (b) A diver under *bulk stress*, being squeezed from all sides by forces due to water pressure. (c) A ribbon under *shear stress*, being deformed and eventually cut by forces exerted by the scissors.

magnitude F_{\perp} but opposite directions at the ends (this ensures that the object has no tendency to move left or right). We say that the object is in **tension**. We've already talked a lot about tension in ropes and strings; it's the same concept here. The subscript \perp is a reminder that the forces act perpendicular to the cross section.

We define the **tensile stress** at the cross section as the ratio of the force F_{\perp} to the cross-sectional area *A*:

Tensile stress =
$$\frac{F_{\perp}}{A}$$
 (11.8)

This is a *scalar* quantity because F_{\perp} is the *magnitude* of the force. The SI unit of stress is the **pascal** (abbreviated Pa and named for the 17th-century French scientist and philosopher Blaise Pascal). Equation (11.8) shows that 1 pascal equals 1 newton per square meter (N/m²):

$$1 \text{ pascal} = 1 \text{ Pa} = 1 \text{ N/m}^2$$

In the British system the logical unit of stress would be the pound per square foot, but the pound per square inch (lb/in.² or psi) is more commonly used. The conversion factors are

1 psi = 6895 Pa and 1 Pa =
$$1.450 \times 10^{-4}$$
 psi

The units of stress are the same as those of *pressure*, which we will encounter often in later chapters. Air pressure in automobile tires is typically around 3×10^5 Pa = 300 kPa, and steel cables are commonly required to withstand tensile stresses of the order of 10^8 Pa.

The object shown in Fig. 11.13 stretches to a length $l = l_0 + \Delta l$ when under tension. The elongation Δl does not occur only at the ends; every part of the bar stretches in the same proportion. The **tensile strain** of the object is equal to the fractional change in length, which is the ratio of the elongation Δl to the original length l_0 :

Tensile strain
$$=$$
 $\frac{l-l_0}{l_0} = \frac{\Delta l}{l_0}$ (11.9)

Tensile strain is stretch per unit length. It is a ratio of two lengths, always measured in the same units, and so is a pure (dimensionless) number with no units.

Experiment shows that for a sufficiently small tensile stress, stress and strain are proportional, as in Eq. (11.7). The corresponding elastic modulus is called **Young's modulus**, denoted by Y:

$$Y = \frac{\text{Tensile stress}}{\text{Tensile strain}} = \frac{F_{\perp}/A}{\Delta l/l_0} = \frac{F_{\perp}}{A} \frac{l_0}{\Delta l} \qquad (\text{Young's modulus}) \tag{11.10}$$

Since strain is a pure number, the units of Young's modulus are the same as those of stress: force per unit area. Some typical values are listed in Table 11.1.

Table 11.1 Approximate Elastic Moduli

Material	Young's Modulus, Y (Pa)	Bulk Modulus, B (Pa)	Shear Modulus, S (Pa)
Aluminum	$7.0 imes 10^{10}$	7.5×10^{10}	2.5×10^{10}
Brass	9.0×10^{10}	6.0×10^{10}	3.5×10^{10}
Copper	11×10^{10}	14×10^{10}	4.4×10^{10}
Crown glass	6.0×10^{10}	5.0×10^{10}	2.5×10^{10}
Iron	21×10^{10}	16×10^{10}	7.7×10^{10}
Lead	1.6×10^{10}	4.1×10^{10}	0.6×10^{10}
Nickel	21×10^{10}	17×10^{10}	7.8×10^{10}
Steel	20×10^{10}	16×10^{10}	7.5×10^{10}

Application Young's Modulus of a Tendon

The anterior tibial tendon connects your foot to the large muscle that runs along the side of your shinbone. (You can feel this tendon at the front of your ankle.) Measurements show that this tendon has a Young's modulus of 1.2×10^9 Pa, much less than for the solid materials listed in Table 11.1. Hence this tendon stretches substantially (up to 2.5% of its length) in response to the stresses experienced in walking and running.

11.14 An object in compression. The compressive stress and compressive strain are defined in the same way as tensile stress and strain (see Fig. 11.13), except that Δl now denotes the distance that the object contracts.

11.15 (a) A beam supported at both ends is under both compression and tension. (b) The cross-sectional shape of an I-beam minimizes both stress and weight.

(This table also gives values of two other elastic moduli that we will discuss later in this chapter.) A material with a large value of Y is relatively unstretchable; a large stress is required for a given strain. For example, the value of Y for cast steel $(2 \times 10^{11} \text{ Pa})$ is much larger than that for rubber $(5 \times 10^8 \text{ Pa})$.

When the forces on the ends of a bar are pushes rather than pulls – (Fig. 11.14), the bar is in **compression** and the stress is a **compressive** stress. The compressive strain of an object in compression is defined in the same way as the tensile strain, but Δl has the opposite direction. Hooke's law and Eq. (11.10) are valid for compression as well as tension if the compressive stress is not too great. For many materials, Young's modulus has the same value for both tensile and compressive stresses. Composite materials such as concrete and stone are an exception; they can withstand compressive stresses but fail under comparable tensile stresses. Stone was the primary building material used by ancient civilizations such as the Babylonians, Assyrians, and Romans, so their structures had to be designed to avoid tensile stresses. Hence they used arches in doorways and bridges, where the weight of the overlying material compresses the stones of the arch together and does not place them under tension.

In many situations, bodies can experience both tensile and compressive stresses at the same time. As an example, a horizontal beam supported at each end sags under its own weight. As a result, the top of the beam is under compression, while the bottom of the beam is under tension (Fig. 11.15a). To minimize the stress and hence the bending strain, the top and bottom of the beam are given a large crosssectional area. There is neither compression nor tension along the centerline of the beam, so this part can have a small cross section; this helps to keep the weight of the bar to a minimum and further helps to reduce the stress. The result is an I-beam of the familiar shape used in building construction (Fig. 11.15b).

The top and bottom of an I-beam are broad to minimize the compressive and tensile The beam can be narrow near its centerline, which is under neither compression nor

tension.

Example 11.5 **Tensile stress and strain**

A steel rod 2.0 m long has a cross-sectional area of 0.30 cm². It is hung by one end from a support, and a 550-kg milling machine is hung from its other end. Determine the stress on the rod and the resulting strain and elongation.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: The rod is under tension, so we can use Eq. (11.8) to find the tensile stress; Eq. (11.9), with the value of Young's modulus Y for steel from Table 11.1, to find the corresponding strain; and Eq. (11.10) to find the elongation Δl :

Tensile stress
$$= \frac{F_{\perp}}{A} = \frac{(550 \text{ kg})(9.8 \text{ m/s}^2)}{3.0 \times 10^{-5} \text{ m}^2} = 1.8 \times 10^8 \text{ Pa}$$

Strain $= \frac{\Delta l}{l_0} = \frac{\text{Stress}}{Y} = \frac{1.8 \times 10^8 \text{ Pa}}{20 \times 10^{10} \text{ Pa}} = 9.0 \times 10^{-4}$
Elongation $= \Delta l = (\text{Strain}) \times l_0$
 $= (9.0 \times 10^{-4})(2.0 \text{ m}) = 0.0018 \text{ m} = 1.8 \text{ mm}$

EVALUATE: This small elongation, resulting from a load of over half a ton, is a testament to the stiffness of steel.

Bulk Stress and Strain

When a scuba diver plunges deep into the ocean, the water exerts nearly uniform pressure everywhere on his surface and squeezes him to a slightly smaller volume (see Fig. 11.12b). This is a different situation from the tensile and compressive stresses and strains we have discussed. The stress is now a uniform pressure on all sides, and the resulting deformation is a volume change. We use the terms **bulk stress** (or **volume stress**) and **bulk strain** (or **volume strain**) to describe these quantities.

If an object is immersed in a fluid (liquid or gas) at rest, the fluid exerts a force on any part of the object's surface; this force is *perpendicular* to the surface. (If we tried to make the fluid exert a force parallel to the surface, the fluid would slip sideways to counteract the effort.) The force F_{\perp} per unit area that the fluid exerts on the surface of an immersed object is called the **pressure** *p* in the fluid:

$$p = \frac{F_{\perp}}{A}$$
 (pressure in a fluid) (11.11)

The pressure in a fluid increases with depth. For example, the pressure of the air is about 21% greater at sea level than in Denver (at an elevation of 1.6 km, or 1.0 mi). If an immersed object is relatively small, however, we can ignore pressure differences due to depth for the purpose of calculating bulk stress. Hence we will treat the pressure as having the same value at all points on an immersed object's surface.

Pressure has the same units as stress; commonly used units include 1 Pa $(=1 \text{ N/m}^2)$ and 1 lb/in.² (1 psi). Also in common use is the **atmosphere**, abbreviated atm. One atmosphere is the approximate average pressure of the earth's atmosphere at sea level:

1 atmosphere = 1 atm =
$$1.013 \times 10^5$$
 Pa = 14.7 lb/in.²

CAUTION Pressure vs. force Unlike force, pressure has no intrinsic direction: The pressure on the surface of an immersed object is the same no matter how the surface is oriented. Hence pressure is a *scalar* quantity, not a vector quantity.

Pressure plays the role of stress in a volume deformation. The corresponding strain is the fractional change in volume (Fig. 11.16)—that is, the ratio of the volume change ΔV to the original volume V_0 :

Bulk (volume) strain =
$$\frac{\Delta V}{V_0}$$
 (11.12)

Volume strain is the change in volume per unit volume. Like tensile or compressive strain, it is a pure number, without units.

When Hooke's law is obeyed, an increase in pressure (bulk stress) produces a *proportional* bulk strain (fractional change in volume). The corresponding elastic modulus (ratio of stress to strain) is called the **bulk modulus**, denoted by *B*. When the pressure on a body changes by a small amount Δp , from p_0 to $p_0 + \Delta p$, and the resulting bulk strain is $\Delta V/V_0$, Hooke's law takes the form

$$B = \frac{\text{Bulk stress}}{\text{Bulk strain}} = -\frac{\Delta p}{\Delta V/V_0} \qquad \text{(bulk modulus)} \qquad (11.13)$$

We include a minus sign in this equation because an *increase* of pressure always causes a *decrease* in volume. In other words, if Δp is positive, ΔV is negative. The bulk modulus *B* itself is a positive quantity.

For small pressure changes in a solid or a liquid, we consider *B* to be constant. The bulk modulus of a *gas*, however, depends on the initial pressure p_0 . Table 11.1 includes values of the bulk modulus for several solid materials. Its units, force per unit area, are the same as those of pressure (and of tensile or compressive stress).

Application Bulk Stress on an Anglerfish

The anglerfish (*Melanocetus johnsoni*) is found in oceans throughout the world at depths as great as 1000 m, where the pressure (that is, the bulk stress) is about 100 atmospheres. Anglerfish are able to withstand such stress because they have no internal air spaces, unlike fish found in the upper ocean where pressures are lower. The largest anglerfish are about 12 cm (5 in.) long.

11.16 An object under bulk stress. Without the stress, the cube has volume V_0 ; when the stress is applied, the cube has a smaller volume V. The volume change ΔV is exaggerated for clarity.

Table 11.2 Compressibilitiesof Liquids

	Compressibility, k		
Liquid	Pa ⁻¹	atm ⁻¹	
Carbon disulfide	93×10^{-11}	94×10^{-6}	
Ethyl alcohol	110×10^{-11}	111×10^{-6}	
Glycerine	21×10^{-11}	21×10^{-6}	
Mercury	3.7×10^{-11}	$3.8 imes 10^{-6}$	
Water	45.8×10^{-11}	46.4×10^{-6}	

The reciprocal of the bulk modulus is called the **compressibility** and is denoted by k. From Eq. (11.13),

$$k = \frac{1}{B} = -\frac{\Delta V/V_0}{\Delta p} = -\frac{1}{V_0} \frac{\Delta V}{\Delta p} \qquad \text{(compressibility)} \qquad (11.14)$$

Compressibility is the fractional decrease in volume, $-\Delta V/V_0$, per unit increase Δp in pressure. The units of compressibility are those of *reciprocal pressure*, Pa⁻¹ or atm⁻¹.

Table 11.2 lists the values of compressibility k for several liquids. For example, the compressibility of water is 46.4×10^{-6} atm⁻¹, which means that the volume of water decreases by 46.4 parts per million for each 1-atmosphere increase in pressure. Materials with small bulk modulus and large compressibility are easier to compress.

Example 11.6 Bulk stress and strain

A hydraulic press contains 0.25 m³ (250 L) of oil. Find the decrease in the volume of the oil when it is subjected to a pressure increase $\Delta p = 1.6 \times 10^7$ Pa (about 160 atm or 2300 psi). The bulk modulus of the oil is $B = 5.0 \times 10^9$ Pa (about 5.0×10^4 atm) and its compressibility is $k = 1/B = 20 \times 10^{-6}$ atm⁻¹.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: This example uses the ideas of bulk stress and strain. We are given both the bulk modulus and the compressibility, and our target variable is ΔV . Solving Eq. (11.13) for ΔV , we find

$$\Delta V = -\frac{V_0 \Delta p}{B} = -\frac{(0.25 \text{ m}^3)(1.6 \times 10^7 \text{ Pa})}{5.0 \times 10^9 \text{ Pa}}$$
$$= -8.0 \times 10^{-4} \text{ m}^3 = -0.80 \text{ L}$$

Alternatively, we can use Eq. (11.14) with the approximate unit conversions given above:

$$\Delta V = -kV_0 \Delta p = -(20 \times 10^{-6} \text{ atm}^{-1})(0.25 \text{ m}^3)(160 \text{ atm})$$

= -8.0 × 10⁻⁴ m³

EVALUATE: The negative value of ΔV means that the volume decreases when the pressure increases. Even though the 160-atm pressure increase is large, the *fractional* change in volume is very small:

$$\frac{\Delta V}{V_0} = \frac{-8.0 \times 10^{-4} \text{ m}^3}{0.25 \text{ m}^3} = -0.0032 \quad \text{or} \quad -0.32\%$$

Shear Stress and Strain

11.17 An object under shear stress. Forces are applied tangent to opposite surfaces of the object (in contrast to the situation in Fig. 11.13, in which the forces act perpendicular to the surfaces). The deformation x is exaggerated for clarity.

The third kind of stress-strain situation is called *shear*. The ribbon in Fig. 11.12c is under **shear stress:** One part of the ribbon is being pushed up while an adjacent part is being pushed down, producing a deformation of the ribbon. Figure 11.17 shows a body being deformed by a shear stress. In the figure, forces of equal magnitude but opposite direction act *tangent* to the surfaces of opposite ends of the object. We define the shear stress as the force F_{\parallel} acting tangent to the surface divided by the area *A* on which it acts:

Shear stress
$$=\frac{F_{\parallel}}{A}$$
 (11.15)

Shear stress, like the other two types of stress, is a force per unit area.

Figure 11.17 shows that one face of the object under shear stress is displaced by a distance x relative to the opposite face. We define **shear strain** as the ratio of the displacement x to the transverse dimension h:

Shear strain
$$=\frac{x}{h}$$
 (11.16)

In real-life situations, x is nearly always much smaller than h. Like all strains, shear strain is a dimensionless number; it is a ratio of two lengths.

If the forces are small enough that Hooke's law is obeyed, the shear strain is *proportional* to the shear stress. The corresponding elastic modulus (ratio of shear stress to shear strain) is called the **shear modulus**, denoted by *S*:

$$S = \frac{\text{Shear stress}}{\text{Shear strain}} = \frac{F_{\parallel}/A}{x/h} = \frac{F_{\parallel}}{A}\frac{h}{x} \qquad \text{(shear modulus)} \qquad (11.17)$$

with x and h defined as in Fig. 11.17.

Table 11.1 gives several values of shear modulus. For a given material, S is usually one-third to one-half as large as Young's modulus Y for tensile stress. Keep in mind that the concepts of shear stress, shear strain, and shear modulus apply to *solid* materials only. The reason is that *shear* refers to deforming an object that has a definite shape (see Fig. 11.17). This concept doesn't apply to gases and liquids, which do not have definite shapes.

Example 11.7 Shear stress and strain

Suppose the object in Fig. 11.17 is the brass base plate of an outdoor sculpture that experiences shear forces in an earthquake. The plate is 0.80 m square and 0.50 cm thick. What is the force exerted on each of its edges if the resulting displacement x is 0.16 mm?

SOLUTION

IDENTIFY and SET UP: This example uses the relationship among shear stress, shear strain, and shear modulus. Our target variable is the force F_{\parallel} exerted parallel to each edge, as shown in Fig. 11.17. We'll find the shear strain using Eq. (11.16), the shear stress using Eq. (11.17), and F_{\parallel} using Eq. (11.15). Table 11.1 gives the shear modulus of brass. In Fig. 11.17, *h* represents the 0.80-m length of each side of the plate. The area *A* in Eq. (11.15) is the product of the 0.80-m length and the 0.50-cm thickness.

EXECUTE: From Eq. (11.16),

Shear strain $= \frac{x}{h} = \frac{1.6 \times 10^{-4} \text{ m}}{0.80 \text{ m}} = 2.0 \times 10^{-4}$

Test Your Understanding of Section 11.4 A copper rod of crosssectional area 0.500 cm^2 and length 1.00 m is elongated by 2.00×10^{-2} mm, and a steel rod of the same cross-sectional area but 0.100 m in length is elongated by 2.00×10^{-3} mm. (a) Which rod has greater tensile *strain*? (i) the copper rod; (ii) the steel rod; (iii) the strain is the same for both. (b) Which rod is under greater tensile *stress*? (i) the copper rod; (ii) the steel rod; (iii) the stress is the same for both.

11.5 Elasticity and Plasticity

Hooke's law—the proportionality of stress and strain in elastic deformations has a limited range of validity. In the preceding section we used phrases such as "provided that the forces are small enough that Hooke's law is obeyed." Just what *are* the limitations of Hooke's law? We know that if you pull, squeeze, or twist *anything* hard enough, it will bend or break. Can we be more precise than that?

Let's look at tensile stress and strain again. Suppose we plot a graph of stress as a function of strain. If Hooke's law is obeyed, the graph is a straight line with a

From Eq. (11.17),

Shear stress = (Shear strain) × S
=
$$(2.0 \times 10^{-4})(3.5 \times 10^{10} \text{ Pa}) = 7.0 \times 10^{6} \text{ Pa}$$

Finally, from Eq. (11.15),

 $F_{\parallel} = (\text{Shear stress}) \times A$ = (7.0 × 10⁶ Pa)(0.80 m)(0.0050 m) = 2.8 × 10⁴ N

EVALUATE: The shear force supplied by the earthquake is more than 3 tons! The large shear modulus of brass makes it hard to deform. Further, the plate is relatively thick (0.50 cm), so the area *A* is relatively large and a substantial force F_{\parallel} is needed to provide the necessary stress F_{\parallel}/A .

11.18 Typical stress-strain diagram for a ductile metal under tension.

11.19 Typical stress-strain diagram for vulcanized rubber. The curves are different for increasing and decreasing stress, a phenomenon called elastic hysteresis.

Table 11.3 ApproximateBreaking Stresses

Material	Breaking Stress (Pa or N/m ²)
Aluminum	2.2×10^{8}
Brass	4.7×10^{8}
Glass	10×10^8
Iron	3.0×10^{8}
Phosphor bronze	5.6×10^8
Steel	$5-20 \times 10^{8}$

slope equal to Young's modulus. Figure 11.18 shows a typical stress-strain graph for a metal such as copper or soft iron. The strain is shown as the *percent* elongation; the horizontal scale is not uniform beyond the first portion of the curve, up to a strain of less than 1%. The first portion is a straight line, indicating Hooke's law behavior with stress directly proportional to strain. This straight-line portion ends at point *a*; the stress at this point is called the *proportional limit*.

From *a* to *b*, stress and strain are no longer proportional, and Hooke's law is *not* obeyed. If the load is gradually removed, starting at any point between O and *b*, the curve is retraced until the material returns to its original length. The deformation is *reversible*, and the forces are conservative; the energy put into the material to cause the deformation is recovered when the stress is removed. In region *Ob* we say that the material shows *elastic behavior*. Point *b*, the end of this region, is called the *yield point;* the stress at the yield point is called the *elastic limit*.

When we increase the stress beyond point b, the strain continues to increase. But now when we remove the load at some point beyond b, say c, the material does not come back to its original length. Instead, it follows the red line in Fig. 11.18. The length at zero stress is now greater than the original length; the material has undergone an irreversible deformation and has acquired what we call a *permanent set*. Further increase of load beyond c produces a large increase in strain for a relatively small increase in stress, until a point d is reached at which *fracture* takes place. The behavior of the material from b to d is called *plastic flow* or *plastic deformation*. A plastic deformation is irreversible; when the stress is removed, the material does not return to its original state.

For some materials, such as the one whose properties are graphed in Fig. 11.18, a large amount of plastic deformation takes place between the elastic limit and the fracture point. Such a material is said to be *ductile*. But if fracture occurs soon after the elastic limit is passed, the material is said to be *brittle*. A soft iron wire that can have considerable permanent stretch without breaking is ductile, while a steel piano string that breaks soon after its elastic limit is reached is brittle.

Something very curious can happen when an object is stretched and then allowed to relax. An example is shown in Fig. 11.19, which is a stress-strain curve for vulcanized rubber that has been stretched by more than seven times its original length. The stress is not proportional to the strain, but the behavior is elastic because when the load is removed, the material returns to its original length. However, the material follows *different* curves for increasing and decreasing stress. This is called *elastic hysteresis*. The work done by the material when it returns to its original shape is less than the work required to deform it; there are nonconservative forces associated with internal friction. Rubber with large elastic hysteresis is very useful for absorbing vibrations, such as in engine mounts and shock-absorber bushings for cars.

The stress required to cause actual fracture of a material is called the *breaking stress*, the *ultimate strength*, or (for tensile stress) the *tensile strength*. Two materials, such as two types of steel, may have very similar elastic constants but vastly different breaking stresses. Table 11.3 gives typical values of breaking stress for several materials in tension. The conversion factor 6.9×10^8 Pa = 100,000 psi may help put these numbers in perspective. For example, if the breaking stress of a particular steel is 6.9×10^8 Pa, then a bar with a 1-in.² cross section has a breaking strength of 100,000 lb.

Test Your Understanding of Section 11.5 While parking your car on a crowded street, you accidentally back into a steel post. You pull forward until the car no longer touches the post and then get out to inspect the damage. What does your rear bumper look like if the strain in the impact was (a) less than at the proportional limit; (b) greater than at the proportional limit, but less than at the yield point; (c) greater than at the fracture point; and (d) greater than at the fracture point?

CHAPTER 11 SUMMARY

Conditions for equilibrium: For a rigid body to be in equilibrium, two conditions must be satisfied. First, the vector sum of forces must be zero. Second, the sum of torques about any point must be zero. The torque due to the weight of a body can be found by assuming the entire weight is concentrated at the center of gravity, which is at the same point as the center of mass if \vec{g} has the same value at all points. (See Examples 11.1–11.4.)

$$\sum F_{x} = 0 \qquad \sum F_{y} = 0 \qquad \sum F_{z} = 0$$
(11.1)
$$\sum \vec{\tau} = 0 \quad \text{about any point} \qquad (11.2)$$

$$\vec{r}_{cm} = \frac{m_{1}\vec{r}_{1} + m_{2}\vec{r}_{2} + m_{3}\vec{r}_{3} + \cdots}{m_{1} + m_{2} + m_{3} + \cdots}$$
(11.4)

Stress, strain, and Hooke's law: Hooke's law states that in elastic deformations, stress (force per unit area) is proportional to strain (fractional deformation). The proportionality constant is called the elastic modulus. $\frac{\text{Stress}}{\text{Strain}} = \text{Elastic modulus}$ (11.7)

Tensile and compressive stress: Tensile stress is tensile force per unit area, F_{\perp}/A . Tensile strain is fractional change in length, $\Delta l/l_0$. The elastic modulus is called Young's modulus *Y*. Compressive stress and strain are defined in the same way. (See Example 11.5.)

$$Y = \frac{\text{Tensile stress}}{\text{Tensile strain}} = \frac{F_{\perp}/A}{\Delta l/l_0} = \frac{F_{\perp}}{A} \frac{l_0}{\Delta l}$$
(11.10)

 F_{\perp}

Volum

Bulk stress: Pressure in a fluid is force per unit area. Bulk stress is pressure change, Δp , and bulk strain is fractional volume change, $\Delta V/V_0$. The elastic modulus is called the bulk modulus, *B*. Compressibility, *k*, is the reciprocal of bulk modulus: k = 1/B. (See Example 11.6.)

modulus, S. (See Example 11.7.)

Shear stress: Shear stress is force per unit area, F_{\parallel}/A , for a force applied tangent to a surface. Shear strain is the displacement *x* of one side divided by the transverse dimension *h*. The elastic modulus is called the shear

$$p = \frac{1}{A}$$
(11.11)

$$B = \frac{\text{Bulk stress}}{\text{Bulk strain}} = -\frac{\Delta p}{\Delta V/V_0}$$
(11.13)
Pressure = p
= $p_0 + \Delta p$

 $S = \frac{\text{Shear stress}}{\text{Shear strain}} = \frac{F_{\parallel}/A}{x/h} = \frac{F_{\parallel}}{A}\frac{h}{x}$ (11.17)

The limits of Hooke's law: The proportional limit is the maximum stress for which stress and strain are proportional. Beyond the proportional limit, Hooke's law is not valid. The elastic limit is the stress beyond which irreversible deformation occurs. The breaking stress, or ultimate strength, is the stress at which the material breaks.

BRIDGING PROBLEM In Equilibrium and Under Stress

A horizontal, uniform, solid copper rod has an original length l_0 , cross-sectional area A, Young's modulus Y, bulk modulus B, shear modulus S, and mass m. It is supported by a frictionless pivot at its right end and by a cable a distance $l_0/4$ from its left end (Fig. 11.20). Both pivot and cable are attached so that they exert their forces uniformly over the rod's cross section. The cable makes an angle θ with the rod and compresses it. (a) Find the tension in the cable. (b) Find the magnitude and direction of the force exerted by the pivot on the right end of the rod. How does this magnitude compare to the cable tension? How does this angle compare to θ ? (c) Find the change in length of the rod due to the stresses exerted by the cable and pivot on the rod. (d) By what factor would your answer in part (c) increase if the solid copper rod were twice as long but had the same cross-sectional area?

SOLUTION GUIDE

See $\mathsf{MasteringPhysics}^{\circledast}$ study area for a Video Tutor solution.

IDENTIFY and SET UP

- 1. Draw a free-body diagram for the rod. Be careful to place each force in the correct location.
- Make a list of the unknown quantities, and decide which are the target variables.
- 3. What are the conditions that must be met so that the rod remains at rest? What kind of stress (and resulting strain) is involved? Use your answers to select the appropriate equations.

11.20 What are the forces on the rod? What are the stress and strain?

EXECUTE

MP

- 4. Use your equations to solve for the target variables. (*Hint:* You can make the solution easier by carefully choosing the point around which you calculate torques.)
- 5. Use your knowledge of trigonometry to decide whether the pivot force or the cable tension has the greater magnitude, as well as to decide whether the angle of the pivot force is greater than, less than, or equal to θ .

EVALUATE

6. Check whether your answers are reasonable. Which force, the cable tension or the pivot force, holds up more of the weight of the rod? Does this make sense?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q11.1 Does a rigid object in uniform rotation about a fixed axis satisfy the first and second conditions for equilibrium? Why? Does it then follow that every particle in this object is in equilibrium? Explain.

Q11.2 (a) Is it possible for an object to be in translational equilibrium (the first condition) but *not* in rotational equilibrium (the second condition)? Illustrate your answer with a simple example. (b) Can an object be in rotational equilibrium yet *not* in translational equilibrium? Justify your answer with a simple example.

Q11.3 Car tires are sometimes "balanced" on a machine that pivots the tire and wheel about the center. Weights are placed around the wheel rim until it does not tip from the horizontal plane. Discuss this procedure in terms of the center of gravity.

Q11.4 Does the center of gravity of a solid body always lie within the material of the body? If not, give a counterexample.

Q11.5 In Section 11.2 we always assumed that the value of g was the same at all points on the body. This is *not* a good approximation if the dimensions of the body are great enough, because the value of g decreases with altitude. If this is taken into account, will the center of gravity of a long, vertical rod be above, below, or at its center of mass? Explain how this can be used to keep the long

axis of an orbiting spacecraft pointed toward the earth. (This would be useful for a weather satellite that must always keep its camera lens trained on the earth.) The moon is not exactly spherical but is somewhat elongated. Explain why this same effect is responsible for keeping the same face of the moon pointed toward the earth at all times.

Q11.6 You are balancing a wrench by suspending it at a single point. Is the equilibrium stable, unstable, or neutral if the point is above, at, or below the wrench's center of gravity? In each case give the reasoning behind your answer. (For rotation, a rigid body is in *stable* equilibrium if a small rotation of the body produces a torque that tends to return the body to equilibrium; it is in *unstable* equilibrium if a small rotation produces a torque that tends to take the body farther from equilibrium; and it is in *neutral* equilibrium if a small rotation produces no torque.)

Q11.7 You can probably stand flatfooted on the floor and then rise up and balance on your tiptoes. Why are you unable do it if your toes are touching the wall of your room? (Try it!)

Q11.8 You freely pivot a horseshoe from a horizontal nail through one of its nail holes. You then hang a long string with a weight at its bottom from the same nail, so that the string hangs vertically in front of the horseshoe without touching it. How do you know that

the horseshoe's center of gravity is along the line behind the string? How can you locate the center of gravity by repeating the process at another nail hole? Will the center of gravity be within the solid material of the horseshoe?

Q11.9 An object consists of a ball of weight *W* glued to the end of a uniform bar also of weight *W*. If you release it from rest, with the bar horizontal, what will its behavior be as it falls if air resistance is negligible? Will it (a) remain horizontal; (b) rotate about its center of gravity; (c) rotate about the ball; or (d) rotate so that the ball swings downward? Explain your reasoning.

Q11.10 Suppose that the object in Question 11.9 is released from rest with the bar tilted at 60° above the horizontal with the ball at the upper end. As it is falling, will it (a) rotate about its center of gravity until it is horizontal; (b) rotate about its center of gravity until it is vertical with the ball at the bottom; (c) rotate about the ball until it is vertical with the ball at the bottom; or (d) remain at 60° above the horizontal?

Q11.11 Why must a water skier moving with constant velocity lean backward? What determines how far back she must lean? Draw a free-body diagram for the water skier to justify your answers.

Q11.12 In pioneer days, when a Conestoga wagon was stuck in the mud, people would grasp the wheel spokes and try to turn the wheels, rather than simply pushing the wagon. Why?

Q11.13 The mighty Zimbo claims to have leg muscles so strong that he can stand flat on his feet and lean forward to pick up an apple on the floor with his teeth. Should you pay to see him perform, or do you have any suspicions about his claim? Why?

Q11.14 Why is it easier to hold a 10-kg dumbbell in your hand at your side than it is to hold it with your arm extended horizontally?

Q11.15 Certain features of a person, such as height and mass, are fixed (at least over relatively long periods of time). Are the following features also fixed? (a) location of the center of gravity of the body; (b) moment of inertia of the body about an axis through the person's center of mass. Explain your reasoning.

Q11.16 During pregnancy, women often develop back pains from leaning backward while walking. Why do they have to walk this way?

Q11.17 Why is a tapered water glass with a narrow base easier to tip over than a glass with straight sides? Does it matter whether the glass is full or empty?

Q11.18 When a tall, heavy refrigerator is pushed across a rough floor, what factors determine whether it slides or tips?

Q11.19 If a metal wire has its length doubled and its diameter tripled, by what factor does its Young's modulus change?

Q11.20 Why is concrete with steel reinforcing rods embedded in it stronger than plain concrete?

Q11.21 A metal wire of diameter D stretches by 0.100 mm when supporting a weight W. If the same-length wire is used to support a weight three times as heavy, what would its diameter have to be (in terms of D) so it still stretches only 0.100 mm?

Q11.22 Compare the mechanical properties of a steel cable, made by twisting many thin wires together, with the properties of a solid steel rod of the same diameter. What advantages does each have?

Q11.23 The material in human bones and elephant bones is essentially the same, but an elephant has much thicker legs. Explain why, in terms of breaking stress.

Q11.24 There is a small but appreciable amount of elastic hysteresis in the large tendon at the back of a horse's leg. Explain how this can cause damage to the tendon if a horse runs too hard for too long a time.

Q11.25 When rubber mounting blocks are used to absorb machine vibrations through elastic hysteresis, as mentioned in Section 11.5, what becomes of the energy associated with the vibrations?

EXERCISES

Section 11.2 Center of Gravity

11.1 •• A 0.120-kg, 50.0-cm-long uniform bar has a small 0.055-kg mass glued to its left end and a small 0.110-kg mass glued to the other end. The two small masses can each be treated as point masses. You want to balance this system horizontally on a fulcrum placed just under its center of gravity. How far from the left end should the fulcrum be placed?

11.2 •• The center of gravity of a 5.00-kg irregular object is shown in Fig. E11.2. You need to move the center of gravity 2.20 cm to the left by gluing on a 1.50-kg mass, which will then be considered as part of the object. Where should the center of gravity of this additional mass be located?

11.3 • A uniform rod is 2.00 m long and has mass 1.80 kg. A 2.40-kg clamp is attached to the rod. How far should the center of gravity of the clamp be from the left-hand end of the rod in order for the center of gravity of the composite object to be 1.20 m from the left-hand end of the rod?

Section 11.3 Solving Rigid-Body Equilibrium Problems

11.4 • A uniform 300-N trapdoor in a floor is hinged at one side. Find the net upward force needed to begin to open it and the total force exerted on the door by the hinges (a) if the upward force is applied at the center and (b) if the upward force is applied at the center of the edge opposite the hinges.

11.5 •• **Raising a Ladder.** A ladder carried by a fire truck is 20.0 m long. The ladder weighs 2800 N and its center of gravity is at its center. The ladder is pivoted at one end (*A*) about a pin (Fig. E11.5); you can ignore the friction torque at the pin. The ladder is raised into position by a force applied by a hydraulic piston at *C*. Point *C* is 8.0 m from *A*, and the force \vec{F} exerted by the piston makes an angle of 40° with the ladder. What magnitude must \vec{F} have to just lift the ladder off the support bracket at *B*? Start with a free-body diagram of the ladder.

Figure **E11.5**

11.6 •• Two people are carrying a uniform wooden board that is 3.00 m long and weighs 160 N. If one person applies an upward force equal to 60 N at one end, at what point does the other person lift? Begin with a free-body diagram of the board.

11.7 •• Two people carry a heavy electric motor by placing it on a light board 2.00 m long. One person lifts at one end with a force of 400 N, and the other lifts the opposite end with a force of 600 N.

(a) What is the weight of the motor, and where along the board is its center of gravity located? (b) Suppose the board is not light but weighs 200 N, with its center of gravity at its center, and the two people each exert the same forces as before. What is the weight of the motor in this case, and where is its center of gravity located?

11.8 •• A 60.0-cm, uniform, 50.0-N shelf is supported horizontally by two vertical wires attached to the sloping ceiling (Fig. E11.8). A very small 25.0-N tool is placed on the shelf midway between the points where the wires are attached to it. Find the ten-

sion in each wire. Begin by making a free-body diagram of the shelf. **11.9** •• A 350-N, uniform, 1.50-m bar is suspended horizontally by two vertical cables at each end. Cable *A* can support a maximum tension of 500.0 N without breaking, and cable *B* can support up to 400.0 N. You want to place a small weight on this bar. (a) What is the heaviest weight you can put on without breaking either cable, and (b) where should you put this weight?

11.10 •• A uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end 3.0 m from the wall. The ladder weighs 160 N. The coefficient of static friction between the foot of the ladder and the ground is 0.40. A man weighing 740 N climbs slowly up the ladder. Start by drawing a free-body diagram of the ladder. (a) What is the maximum frictional force that the ground can exert on the ladder at its lower end? (b) What is the actual frictional force when the man has climbed 1.0 m along the ladder? (c) How far along the ladder can the man climb before the ladder starts to slip?

11.11 • A diving board 3.00 m long is supported at a point 1.00 m from the end, and a diver weighing 500 N stands at the free end (Fig. E11.11). The diving board is of uniform cross section and weighs 280 N. Find (a) the force at the support point and (b) the force at the left-hand end.

Figure **E11.11**

11.12 • A uniform aluminum beam 9.00 m long, weighing 300 N, rests symmetrically on two supports 5.00 m apart (Fig. E11.12). A boy weighing 600 N starts at point *A* and walks toward the right. (a) In the same diagram construct two graphs showing the upward forces F_A and F_B exerted on the beam at points *A* and *B*, as functions of the coordinate *x* of the boy. Let 1 cm = 100 N vertically, and 1 cm = 1.00 m horizontally. (b) From your diagram, how far beyond point *B* can the boy walk before the beam tips? (c) How far

Figure **E11.12**

from the right end of the beam should support *B* be placed so that the boy can walk just to the end of the beam without causing it to tip? **11.13** • Find the tension *T* in each cable and the magnitude and direction of the force exerted on the strut by the pivot in each of the arrangements in Fig. E11.13. In each case let *w* be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight *w*. Start each case with a free-body diagram of the strut.

11.14 • The horizontal beam in Fig. E11.14 weighs 150 N, and its center of gravity is at its center. Find (a) the tension in the cable and (b) the horizontal and vertical components of the force exerted on the beam at the wall. **11.15** •• **BIO Push-ups.** To strengthen his arm and chest muscles, an 82-kg athlete who is 2.0 m tall is doing push-ups as shown in Fig. E11.15. His center of mass is 1.15 m from the bottom of his feet, and the centers of

300 N

his palms are 30.0 cm from the top of his head. Find the force that the floor exerts on each of his feet and on each hand, assuming that both feet exert the same force and both palms do likewise. Begin with a free-body diagram of the athlete.

11.16 •• Suppose that you can lift no more than 650 N (around 150 lb) unaided. (a) How much can you lift using a 1.4-m-long wheelbarrow that weighs 80.0 N and whose center of gravity is 0.50 m from the center of the wheel (Fig. E11.16)? The center of gravity of the load carried in

Figure **E11.16**

the wheelbarrow is also 0.50 m from the center of the wheel. (b) Where does the force come from to enable you to lift more than 650 N using the wheelbarrow?

11.17 •• You take your dog Clea to the vet, and the doctor decides he must locate the little beast's center of gravity. It would be awkward to hang the pooch from the ceiling, so the vet must devise another method. He places Clea's front feet on one scale and her hind feet on another. The front scale reads 157 N, while the rear scale reads 89 N. The vet next measures Clea and finds that her rear feet are 0.95 m behind her front feet. How much does Clea weigh, and where is her center of gravity?

11.18 •• A 15,000-N crane pivots around a friction-free axle at its base and is supported by a cable making a 25° angle with the crane (Fig. E11.18). The crane is 16 m long and is not uniform, its center of gravity being 7.0 m from the axle as measured along the crane. The cable is attached 3.0 m from the upper end of the crane. When the crane is raised to 55° above the horizontal holding an

11,000-N pallet of bricks by a 2.2-m, very light cord, find (a) the tension in the cable and (b) the horizontal and vertical components of the force that the axle exerts on the crane. Start with a free-body diagram of the crane.

11.19 •• A 3.00-m-long, 240-N, uniform rod at the zoo is held in a horizontal position by two ropes at its ends (Fig. E11.19). The left rope makes an angle of 150° with the rod and the right rope makes an angle θ with the horizontal. A 90-N howler monkey (*Alouatta seniculus*) hangs motionless 0.50 m from the right end of the rod as he carefully studies you. Calculate the tensions in the two ropes and the angle θ . First make a free-body diagram of the rod.

Figure **E11.19**

11.20 •• A nonuniform beam 4.50 m long and weighing 1.00 kN makes an angle of 25.0° below the horizontal. It is held in position by a frictionless pivot at its upper right end and by a cable 3.00 m farther down the beam and perpendicular to it (Fig. E11.20). The center of gravity of the beam is 2.00 m down the beam from the pivot. Lighting equipment exerts a 5.00-kN downward force on the lower left end of the beam. Find the tension *T* in the cable and the horizontal and vertical components of the force exerted on the beam by the pivot. Start by sketching a free-body diagram of the beam.

Figure **E11.20**

11.21 • A Couple. Two forces equal in magnitude and opposite in direction, acting on an object at two different points, form what is called a *couple*. Two antiparallel forces with equal magnitudes $F_1 = F_2 = 8.00 \text{ N}$ are applied to a rod as shown in Fig. E11.21. (a) What should the distance *l* between the forces be if they are to provide a net torque of 6.40 N · m about the left end of the rod? (b) Is the sense of this torque clockwise or counterclockwise? (c) Repeat parts (a) and (b) for a pivot at the point on the rod where \vec{F}_2 is applied.

Figure **E11.21**

11.22 •• **BIO** A Good Work-

out. You are doing exercises on a Nautilus machine in a gym to strengthen your deltoid (shoulder) muscles. Your arms are raised vertically and can pivot around the shoulder joint, and you grasp the cable of the machine in your hand 64.0 cm from your shoulder joint. The deltoid muscle is attached to the humerus 15.0 cm from the shoulder joint and makes a 12.0° angle with that bone (Fig. E11.22). If you have set the tension in the cable of the machine to 36.0 N on each arm, what is the tension in each deltoid muscle if

you simply hold your outstretched arms in place? (*Hint:* Start by making a clear free-body diagram of your arm.)

11.23 •• BIO Neck Muscles. A student bends her head at 40.0° from the vertical while intently reading her physics book, pivoting the head around the upper vertebra (point *P* in Fig. E11.23). Her head has a mass of 4.50 kg (which is typical), and its center of mass is 11.0 cm from the pivot point *P*. Her neck muscles are 1.50 cm from point *P*, as measured *perpendicular* to these muscles. The neck itself and the vertebrae are held vertical. (a) Draw a freebody diagram of the student's head. (b) Find the tension in her neck muscles.

Figure **E11.23**

Section 11.4 Stress, Strain, and Elastic Moduli

11.24 • **BIO Biceps Muscle.** A relaxed biceps muscle requires a force of 25.0 N for an elongation of 3.0 cm; the same muscle under maximum tension requires a force of 500 N for the same elongation. Find Young's modulus for the muscle tissue under each of these conditions if the muscle is assumed to be a uniform cylinder with length 0.200 m and cross-sectional area 50.0 cm².

11.25 •• A circular steel wire 2.00 m long must stretch no more than 0.25 cm when a tensile force of 400 N is applied to each end of the wire. What minimum diameter is required for the wire?

11.26 •• Two circular rods, one steel and the other copper, are joined end to end. Each rod is 0.750 m long and 1.50 cm in diameter. The combination is subjected to a tensile force with magnitude 4000 N. For each rod, what are (a) the strain and (b) the elongation? **11.27** •• A metal rod that is 4.00 m long and 0.50 cm² in cross-sectional area is found to stretch 0.20 cm under a tension of 5000 N. What is Young's modulus for this metal?

11.28 •• Stress on a Mountaineer's Rope. A nylon rope used by mountaineers elongates 1.10 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for nylon?

11.29 •• In constructing a large mobile, an artist hangs an aluminum sphere of mass 6.0 kg from a vertical steel wire 0.50 m long and 2.5×10^{-3} cm² in cross-sectional area. On the bottom of the sphere he attaches a similar steel wire, from which he hangs a brass cube of mass 10.0 kg. For each wire, compute (a) the tensile strain and (b) the elongation.

11.30 •• A vertical, solid steel post 25 cm in diameter and 2.50 m long is required to support a load of 8000 kg. You can ignore the weight of the post. What are (a) the stress in the post; (b) the strain in the post; and (c) the change in the post's length when the load is applied?

11.31 •• BIO Compression of Human Bone. The bulk modulus for bone is 15 GPa. (a) If a diver-in-training is put into a pressurized suit, by how much would the pressure have to be raised (in atmospheres) above atmospheric pressure to compress her bones by 0.10% of their original volume? (b) Given that the pressure in the ocean increases by 1.0×10^4 Pa for every meter of depth below the surface, how deep would this diver have to go for her bones to compress by 0.10%? Does it seem that bone compression is a problem she needs to be concerned with when diving?

11.32 • A solid gold bar is pulled up from the hold of the sunken RMS *Titanic*. (a) What happens to its volume as it goes from the pressure at the ship to the lower pressure at the ocean's surface? (b) The pressure difference is proportional to the depth. How many times greater would the volume change have been had the ship been twice as deep? (c) The bulk modulus of lead is one-fourth that of gold. Find the ratio of the volume change of a solid lead bar to that of a gold bar of equal volume for the same pressure change.

11.33 • **BIO Downhill Hiking.** During vigorous downhill hiking, the force on the knee cartilage (the medial and lateral meniscus) can be up to eight times body weight. Depending on the angle of descent, this force can cause a large shear force on the cartilage and deform it. The cartilage has an area of about 10 cm² and a shear modulus of 12 MPa. If the hiker plus his pack have a combined mass of 110 kg (not

F $/ 12^{\circ}$ Cartilage

Figure **E11.33**

unreasonable), and if the maximum force at impact is 8 times his body weight (which, of course, includes the weight of his pack) at an angle of 12° with the cartilage (Fig. E11.33), through what angle (in degrees) will his knee cartilage be deformed? (Recall that the bone below the cartilage pushes upward with the same force as the downward force.)

11.34 •• In the Challenger Deep of the Marianas Trench, the depth of seawater is 10.9 km and the pressure is 1.16×10^8 Pa (about 1.15×10^3 atm). (a) If a cubic meter of water is taken from the surface to this depth, what is the change in its volume? (Normal atmospheric pressure is about 1.0×10^5 Pa. Assume that *k* for seawater is the same as the freshwater value given in Table 11.2.) (b) What is the density of seawater at this depth? (At the surface, seawater has a density of 1.03×10^3 kg/m³.)

11.35 • A specimen of oil having an initial volume of 600 cm³ is subjected to a pressure increase of 3.6×10^6 Pa, and the volume is found to decrease by 0.45 cm³. What is the bulk modulus of the material? The compressibility?

11.36 •• A square steel plate is 10.0 cm on a side and 0.500 cm thick. (a) Find the shear strain that results if a force of magnitude 9.0×10^5 N is applied to each of the four sides, parallel to the side. (b) Find the displacement *x* in centimeters.

11.37 •• A copper cube measures 6.00 cm on each side. The bottom face is held in place by very strong glue to a flat horizontal surface, while a horizontal force F is applied to the upper face parallel to one of the edges. (Consult Table 11.1.) (a) Show that the glue exerts a force F on the bottom face that is equal but opposite to the force on the top face. (b) How large must F be to cause the cube to deform by 0.250 mm? (c) If the same experiment were performed on a lead cube of the same size as the copper one, by what

distance would it deform for the same force as in part (b)?

11.38 • In lab tests on a 9.25cm cube of a certain material, a force of 1375 N directed at 8.50° to the cube (Fig. E11.38) causes the cube to deform through an angle of 1.24°. What is the shear modulus of the material?

Section 11.5 Elasticity and Plasticity

11.39 •• In a materials testing laboratory, a metal wire made from a new alloy is found to break when a tensile force of 90.8 N is applied perpendicular to each end. If the diameter of the wire is 1.84 mm, what is the breaking stress of the alloy?

11.40 • A 4.0-m-long steel wire has a cross-sectional area of 0.050 cm^2 . Its proportional limit has a value of 0.0016 times its Young's modulus (see Table 11.1). Its breaking stress has a value of 0.0065 times its Young's modulus. The wire is fastened at its upper end and hangs vertically. (a) How great a weight can be hung from the wire without exceeding the proportional limit?

(b) How much will the wire stretch under this load? (c) What is the maximum weight that the wire can support?

11.41 •• **CP** A steel cable with cross-sectional area 3.00 cm² has an elastic limit of 2.40×10^8 Pa. Find the maximum upward acceleration that can be given a 1200-kg elevator supported by the cable if the stress is not to exceed one-third of the elastic limit.

11.42 •• A brass wire is to withstand a tensile force of 350 N without breaking. What minimum diameter must the wire have?

PROBLEMS

11.43 ••• A box of negligible mass rests at the left end of a 2.00-m, 25.0-kg plank (Fig. P11.43). The width of the box is 75.0 cm, and sand is to be distributed uniformly throughout it. The center of gravity of the nonuniform plank is 50.0 cm from the right end. What mass of sand should be put into the box so that the plank balances horizontally on a fulcrum placed just below its midpoint?

Figure **P11.43**

11.44 ••• A door 1.00 m wide and 2.00 m high weighs 280 N and is supported by two hinges, one 0.50 m from the top and the other 0.50 m from the bottom. Each hinge supports half the total weight of the door. Assuming that the door's center of gravity is at its center, find the horizontal components of force exerted on the door by each hinge.

11.45 ••• Mountain Climbing. Mountaineers often use a rope to lower themselves down the face of a cliff (this is called rappelling). They do this with their body nearly horizontal and their feet pushing against the cliff (Fig. P11.45). Suppose that an 82.0-kg climber, who is 1.90 m tall and has a center of gravity 1.1 m from his feet, rappels down a vertical cliff with his body raised 35.0° above the horizontal. He holds the rope 1.40 m from his feet, and it makes a 25.0° angle with the cliff face. (a) What tension does his rope need to support? (b) Find the horizontal and vertical components of the force that the cliff face exerts on the climber's

izontal. He his feet, and th the cliff es his rope e horizontal f the force ne climber's

Figure **P11.45**

feet. (c) What minimum coefficient of static friction is needed to prevent the climber's feet from slipping on the cliff face if he has one foot at a time against the cliff?

11.46 • Sir Lancelot rides slowly out of the castle at Camelot and onto the 12.0-m-long drawbridge that passes over the moat (Fig. P11.46). Unbeknownst to him, his enemies have partially severed the vertical cable holding up the front end of the bridge so that it will break under a tension of 5.80×10^3 N. The bridge has mass 200 kg and its center of gravity is at its center. Lancelot, his lance, his armor, and his horse together have a combined mass of 600 kg. Will the cable break before Lancelot reaches the end of the drawbridge? If so, how far from the castle end of the

bridge will the center of gravity of the horse plus rider be when the cable breaks?

Figure **P11.46**

11.47 • Three vertical forces act on an airplane when it is flying at a constant altitude and with a constant velocity. These are the weight of the airplane, an aerodynamic force on the wing of the airplane, and an aerodynamic force on the airplane's horizontal tail. (The aerodynamic forces are exerted by the surrounding air and are reactions to the forces that the wing and tail exert on the air as the airplane flies through it.) For a particular light airplane with a weight of 6700 N, the center of gravity is 0.30 m in front of the point where the wing's vertical aerodynamic force acts and 3.66 m in front of the point where the magnitude and direction (upward or downward) of each of the two vertical aerodynamic forces.

11.48 •• A pickup truck has a wheelbase of 3.00 m. Ordinarily, 10,780 N rests on the front wheels and 8820 N on the rear wheels when the truck is parked on a level road. (a) A box weighing 3600 N is now placed on the tailgate, 1.00 m behind the rear axle. How much total weight now rests on the front wheels? On the rear wheels? (b) How much weight would need to be placed on the tailgate to make the front wheels come off the ground?

11.49 •• A uniform, 255-N rod that is 2.00 m long carries a 225-N weight at its right end and an unknown weight W toward the left end (Fig. P11.49). When W is placed 50.0 cm from the left end of the rod, the system just balances horizontally when the fulcrum is located 75.0 cm from the right end. (a) Find W. (b) If W is now moved 25.0 cm to the right, how far and in what direction must the fulcrum be moved to restore balance?

Figure **P11.49**

11.50 •• A uniform, 8.0-m, 1500-kg beam is hinged to a wall and supported by a thin cable attached 2.0 m from the free end of the beam, (Fig. P11.50). The beam is supported at an angle of 30.0° above the horizontal. (a) Draw a freebody diagram of the beam. (b) Find the tension in the cable. (c) How hard does the beam push inward on the wall?

11.51 •• You open a restaurant and hope to entice customers by hanging out a sign (Fig. P11.51). The uniform horizontal beam supporting the sign is 1.50 m long, has a mass of 12.0 kg, and is hinged to the wall. The sign itself is uniform with a mass of 28.0 kg

and overall length of 1.20 m. The two wires supporting the sign are each 32.0 cm long, are 90.0 cm apart, and are equally spaced from the middle of the sign. The cable supporting the beam is 2.00 m long. (a) What minimum tension must your cable be able to support without having your sign come crashing down? (b) What minimum vertical force must the hinge be able to support without pulling out of the wall?

Figure **P11.51**

11.52 ··· A claw hammer is used to pull a nail out of a board (Fig. P11.52). The nail is at an angle of 60° to the board, and a force \vec{F}_1 of magnitude 400 N applied to the nail is required to pull it from the board. The hammer head contacts the board at point A, which is 0.080 m from where the nail enters the board. A horizontal force \vec{F}_2 is applied to the hammer handle at a distance of 0.300 m above the board. What magnitude of force \vec{F}_2 is required to apply the required 400-N force (F_1) to the nail? (You can ignore the weight of the hammer.)

11.53 • End *A* of the bar *AB* in Fig. P11.53 rests on a frictionless horizontal surface, and end *B* is hinged. A horizontal force \vec{F} of magnitude 160 N is exerted on end *A*. You can ignore the weight of the bar. What are the horizontal and vertical components of the force exerted by the bar on the hinge at *B*?

11.54 • A museum of modern art is displaying an irregular 426-N sculpture by hanging it from two thin vertical wires, A and B, that are 1.25 m apart (Fig. P11.54). The center of gravity of this piece of art is located 48.0 cm from its extreme right tip. Find the tension in each wire.

Figure **P11.54**

11.55 •• BIO Supporting a Broken Leg. A therapist tells a 74-kg patient with a broken leg that he must have his leg in a cast suspended horizontally. For minimum discomfort, the leg should be supported by a vertical strap attached at the center of mass

Figure **P11.55**

of the leg–cast system. (Fig. P11.55). In order to comply with these instructions, the patient consults a table of typical mass distributions and finds that both upper legs (thighs) together typically account for 21.5% of body weight and the center of mass of each thigh is 18.0 cm from the hip joint. The patient also reads that the two lower legs (including the feet) are 14.0% of body weight, with a center of mass 69.0 cm from the hip joint. The cast has a mass of 5.50 kg, and its center of mass is 78.0 cm from the hip joint. How far from the hip joint should the supporting strap be attached to the cast?

11.56 • A Truck on a Drawbridge. A loaded cement mixer drives onto an old drawbridge, where it stalls with its center of gravity three-quarters of the way across the span. The truck driver radios for help, sets the handbrake, and waits. Meanwhile, a boat approaches, so the drawbridge is raised by means of a cable attached to the end opposite the hinge (Fig. P11.56). The drawbridge is 40.0 m long and has a mass of 18,000 kg; its center of gravity is at its midpoint. The cement mixer, with driver, has mass 30,000 kg. When the drawbridge has been raised to an angle of 30° above the horizontal, the cable makes an angle of 70° with the surface of the bridge. (a) What is the tension *T* in the cable when the drawbridge is held in this position? (b) What are the horizontal and vertical components of the force the hinge exerts on the span?

Figure **P11.56**

11.57 •• BIO Leg Raises.

In a simplified version of the musculature action in leg raises, the abdominal muscles pull on the femur (thigh bone) to raise the leg by pivoting it about one end (Fig. P11.57). When you are lying horizontally, these muscles make an angle of approximately 5° with the femur,

and if you raise your legs, the muscles remain approximately horizontal, so the angle θ increases. We shall assume for simplicity that these muscles attach to the femur in only one place, 10 cm from the hip joint (although, in reality, the situation is more complicated). For a certain 80-kg person having a leg 90 cm long, the mass of the leg is 15 kg and its center of mass is 44 cm from his hip joint as measured along the leg. If the person raises his leg to 60° above the horizontal, the angle between the abdominal muscles and his femur would also be about 60°. (a) With his leg raised to 60° , find the tension in the abdominal muscle on each leg. As usual, begin your solution with a free-body diagram. (b) When is the tension in this muscle greater: when the leg is raised to 60° or when the person just starts to raise it off the ground? Why? (Try this yourself to check your answer.) (c) If the abdominal muscles attached to the femur were perfectly horizontal when a person was lying down, could the person raise his leg? Why or why not?

11.58 • A nonuniform fire escape ladder is 6.0 m long when extended to the icy alley below. It is held at the top by a frictionless pivot, and there is negligible frictional force from the icy surface at the bottom. The ladder weighs 250 N, and its center of gravity is 2.0 m along the ladder from its bottom. A mother and child of total weight 750 N are on the ladder 1.5 m from the pivot. The ladder makes an angle θ with the horizontal. Find the magnitude and direction of (a) the force exerted by the icy alley on the ladder and (b) the force exerted by the ladder on the pivot. (c) Do your answers in parts (a) and (b) depend on the angle θ ?

11.59 •• A uniform strut of mass *m* makes an angle θ with the horizontal. It is supported by a frictionless pivot located at one-third its length from its lower left end and a horizontal rope at its upper right end. A cable and package of total weight *w* hang from its upper right end. (a) Find the vertical and horizontal components *V* and *H* of the pivot's force on the strut as well as the tension *T* in the rope. (b) If the maximum safe tension in the rope is 700 N and the mass of the strut is 30.0 kg, find the maximum safe weight of the cable and package when the strut makes an angle of 55.0° with the horizontal. (c) For what angle θ can no weight be safely suspended from the right end of the strut?

11.60 • You are asked to design the decorative mobile shown in Fig. P11.60. The strings and rods have negligible weight, and the rods are to hang horizontally. (a) Draw a free-body diagram for each rod. (b) Find the weights of the balls A, B, and C. Find the tensions in the strings S_1 , S_2 , and S_3 . (c) What can you say about the horizontal location of the mobile's center of gravity? Explain.

Figure **P11.60**

11.61 •• A uniform, 7.5-m-long beam weighing 5860 N is hinged to a wall and supported by a thin cable attached 1.5 m from the free end of the beam. The cable runs between the beam and the wall

and makes a 40° angle with the beam. What is the tension in the cable when the beam is at an angle of 30° above the horizontal? **11.62** •• **CP** A uniform drawbridge must be held at a 37° angle above the horizontal to allow ships to pass underneath. The drawbridge weighs 45,000 N and is 14.0 m long. A cable is connected 3.5 m from the hinge where the bridge pivots (measured along the bridge) and pulls horizontally on the bridge to hold it in place. (a) What is the tension in the cable? (b) Find the magnitude and direction of the force the hinge exerts on the bridge. (c) If the cable suddenly breaks, what is the magnitude of the angular acceleration of the drawbridge just after the cable breaks? (d) What is the angular speed of the drawbridge as it becomes horizontal?

11.63 •• BIO Tendon-Stretching Exercises. As part of an exercise program, a 75-kg person does toe raises in which he raises his entire body weight on the ball of one foot (Fig. P11.63). The Achilles tendon pulls straight upward on the heel bone of his foot. This tendon is 25 cm long and has a cross-sectional area of 78 mm² and a Young's modulus of 1470 MPa. (a) Make a free-body diagram of the person's foot (everything below the ankle joint). You can neglect the weight of the foot. (b) What force does the Achilles tendon

exert on the heel during this exercise? Express your answer in newtons and in multiples of his weight. (c) By how many millimeters does the exercise stretch his Achilles tendon?

11.64 •• (a) In Fig. P11.64 a 6.00-m-long, uniform beam is hanging from a point 1.00 m to the right of its center. The beam weighs 140 N and makes an angle of 30.0° with the vertical. At the right-hand end of the beam a 100.0-N weight is hung; an unknown weight w hangs at the left end. If the system is in equilibrium, what is w? You can ignore the thickness of the beam. (b) If the beam makes, instead, an angle of 45.0° with the vertical, what is w? 11.65 ···· A uniform, hori-

zontal flagpole 5.00 m long with a weight of 200 N is hinged to a vertical wall at one end. A 600-N stuntwoman hangs from its other end. The flagpole is supported by a guy wire running from its outer end to a point on the wall directly above the pole. (a) If the tension in this wire is not to exceed 1000 N, what is the minimum height above the pole at which it may be fastened to the wall? (b) If the flagpole remains horizontal, by how many newtons would the tension be increased if the wire were fastened 0.50 m below this point?

11.66 • A holiday decoration consists of two shiny glass spheres with masses 0.0240 kg and 0.0360 kg suspended from a uniform rod with mass 0.120 kg and length 1.00 m (Fig. P11.66). The rod is suspended from the ceiling by a vertical cord at each end, so that it is horizontal. Calculate the tension in each of the cords *A* through *F*.

Figure **P11.66**

11.67 •• BIO Downward-

Facing Dog. One yoga exercise, known as the "Downward-Facing Dog," requires stretching your hands straight out above your head and bending down to lean against the floor. This exercise is performed by a 750-N person, as shown in Fig. P11.67. When he bends his body at the hip to a 90° angle between his legs and trunk, his legs, trunk, head, and arms have the dimensions indicated. Furthermore, his legs and feet weigh a total of 277 N, and their center of mass is 41 cm from his hip, measured along his legs. The person's trunk, head, and arms weigh 473 N, and their center of gravity is 65 cm from his hip, measured along the upper body. (a) Find the normal force that the floor exerts on each foot and on each hand, assuming that the person does not favor either hand or either foot. (b) Find the friction force on each foot and on each hand, assuming that it is the same on both feet and on both hands (but not necessarily the same on the feet as on the hands). [Hint: First treat his entire body as a system; then isolate his legs (or his upper body).]

Figure **P11.67**

11.68 • When you stretch a wire, rope, or rubber band, it gets thinner as well as longer. When Hooke's law holds, the fractional decrease in width is proportional to the tensile strain. If w_0 is the original width and Δw is the change in width, then $\Delta w/w_0 = -\sigma \Delta l/l_0$, where the minus sign reminds us that width decreases when length increases. The dimensionless constant σ , different for different materials, is called *Poisson's ratio*. (a) If the steel rod of Example 11.5 (Section 11.4) has a circular cross section and a Poisson's ratio of 0.23, what is its change in diameter when the milling machine is hung from it? (b) A cylinder made of nickel (Poisson's ratio = 0.42) has radius 2.0 cm. What tensile force F_{\perp} must be applied perpendicular to each end of the cylinder to cause its radius to decrease by 0.10 mm? Assume that the breaking stress and proportional limit for the metal are extremely large and are not exceeded.

11.69 • A worker wants to turn over a uniform, 1250-N, rectangular crate by pulling at 53.0° on one of its vertical sides (Fig. P11.69).

The floor is rough enough to prevent the crate from slipping. (a) What pull is needed to just start the crate to tip? (b) How hard does the floor push upward on the crate? (c) Find the friction force on the crate.

(d) What is the minimum coefficient of static friction needed to prevent the crate from slipping on the floor?

11.70 ••• One end of a uniform meter stick is placed against a vertical wall (Fig. P11.70). The other end is held by a lightweight cord that makes an angle θ with the stick. The coefficient of static friction between the end of the meter stick and the wall is 0.40. (a) What is the maximum value the angle θ can have if the stick

is to remain in equilibrium? (b) Let the angle θ be 15°. A block of the same weight as the meter stick is suspended from the stick, as shown, at a distance *x* from the wall. What is the minimum value of *x* for which the stick will remain in equilibrium? (c) When $\theta = 15^{\circ}$, how large must the coefficient of static friction be so that the block can be attached 10 cm from the left end of the stick without causing it to slip?

11.71 •• Two friends are carrying a 200-kg crate up a flight of stairs. The crate is 1.25 m long and 0.500 m high, and its center of gravity is at its center. The stairs make a 45.0° angle with respect to the floor. The crate also is carried at a 45.0° angle, so that its bottom side is parallel to the slope of the stairs (Fig. P11.71). If the force each person applies is vertical, what is the magnitude of each of these forces? Is it better to be the person above or below on the stairs?

11.72 •• BIO Forearm. In the human arm, the forearm and hand pivot about the elbow joint. Consider a simplified model in which the biceps muscle is attached to the forearm 3.80 cm from the elbow joint. Assume that the person's hand and forearm together weigh 15.0 N and that their center of gravity is 15.0 cm from the elbow (not quite halfway to the hand). The forearm is held horizontally at a right angle to the upper arm, with the biceps muscle exerting its force perpendicular to the forearm. (a) Draw a free-body diagram for the forearm, and find the force exerted by the biceps when the hand is empty. (b) Now the person holds a 80.0-N weight in his hand, with the forearm still horizontal. Assume that the center of gravity of this weight is 33.0 cm from the elbow. Construct a free-body diagram for the forearm, and find the force now exerted by the biceps. Explain why the biceps muscle needs to be very strong. (c) Under the conditions of part (b), find the magnitude and direction of the force that the elbow joint exerts on the forearm. (d) While holding the 80.0-N weight, the person raises his forearm until it is at an angle of 53.0° above the

horizontal. If the biceps muscle continues to exert its force perpendicular to the forearm, what is this force when the forearm is in this position? Has the force increased or decreased from its value in part (b)? Explain why this is so, and test your answer by actually doing this with your own arm.

11.73 •• **BIO CALC** Refer to the discussion of holding a dumbbell in Example 11.4 (Section 11.3). The maximum weight that can be held in this way is limited by the maximum allowable tendon tension T (determined by the strength of the tendons) and by the distance D from the elbow to where the tendon attaches to the forearm. (a) Let T_{max} represent the maximum value of the tendon tension. Use the results of Example 11.4 to express w_{max} (the maximum weight that can be held) in terms of T_{max} , L, D, and h. Your expression should *not* include the angle θ . (b) The tendons of different primates are attached to the forearm at different values of D. Calculate the derivative of w_{max} with respect to D, and determine whether the derivative is positive or negative. (c) A chimpanzee tendon is attached to the forearm at a point farther from the elbow than for humans. Use this to explain why chimpanzees have stronger arms than humans. (The disadvantage is that chimpanzees have less flexible arms than do humans.)

11.74 •• A uniform, 90.0-N table is 3.6 m long, 1.0 m high, and 1.2 m wide. A 1500-N weight is placed 0.50 m from one end of the table, a distance of 0.60 m from each side of the table. Draw a freebody diagram for the table and find the force that each of the four legs exerts on the floor.

11.75 ••• Flying Buttress. (a) A symmetric building has a roof sloping upward at 35.0° above the horizontal on each side. If each side of the uniform roof weighs 10,000 N, find the horizontal force that this roof exerts at the top of the wall, which tends to push out the walls. Which type of building would be more in danger of collapsing: one with tall walls or one with short walls? Explain. (b) As you saw in part (a), tall walls are in danger of collapsing from the weight of the roof. This problem plagued the ancient builders of large structures. A solution used in the great Gothic cathedrals during the 1200s was the flying buttress, a stone support running between the walls and the ground that helped to hold in the walls. A Gothic church has a uniform roof weighing a total of 20,000 N and rising at 40° above the horizontal at each wall. The walls are 40 m tall, and a flying buttress meets each wall 10 m below the base of the roof. What horizontal force must this flying buttress apply to the wall?

11.76 •• You are trying to raise a bicycle wheel of mass m and radius R up over a curb of height h. To do this, you apply a horizontal force \vec{F} (Fig. P11.76). What is the smallest magnitude of the force \vec{F} that will succeed in raising the wheel onto the curb when the force is applied (a) at the center of the wheel and (b) at the top of the wheel? (c) In which case is less force required?

11.77 • The Farmyard Gate. A gate 4.00 m wide and 2.00 m high weighs 500 N. Its center of gravity is at its center, and it is hinged at A and B. To relieve the strain on the top hinge, a

Figure **P11.76**

Figure **P11.77**

wire CD is connected as shown in Fig. P11.77. The tension in CD is increased until the horizontal force at hinge A is zero. (a) What is the tension in the wire CD? (b) What is the magnitude of the horizontal component of the force at hinge B? (c) What is the combined vertical force exerted by hinges A and B?

11.78 • If you put a uniform block at the edge of a table, the center of the block must be over the table for the block not to fall off. (a) If you stack two identical blocks at the table edge, the center of the top block must be over the bottom block, and the center of gravity of the two blocks together must be over the table. In terms of the length L of each block, what is the maximum overhang possible (Fig. P11.78)? (b) Repeat part (a) for three identical blocks and for four identical blocks. (c) Is it possible to make a stack of blocks such that the uppermost block is not directly over the table at all? How many blocks would it take to do this? (Try this with your friends using copies of this book.)

Figure **P11.78**

11.79 ••• Two uniform, 75.0-g marbles 2.00 cm in diameter are stacked as shown in Fig. P11.79 in a container that is 3.00 cm wide. (a) Find the force that the container exerts on the marbles at the points of contact A, B, and C. (b) What force does each marble exert on the other?

11.80 •• Two identical, uniform beams weighing 260 N each are connected at one end by a frictionless hinge. A light horizontal crossbar attached at the midpoints of the beams maintains an angle of 53.0° between the beams. The beams are suspended from the ceiling by vertical wires such that they form a "V," as shown in Fig. P11.80. (a) What force does the crossbar exert on each beam?

(b) Is the crossbar under tension or compression? (c) What force (magnitude and direction) does the hinge at point A exert on each beam?

11.81 • An engineer is designing a conveyor system for loading hay bales into a wagon (Fig. P11.81). Each bale is 0.25 m wide, 0.50 m high, and 0.80 m long (the dimension perpendicular to the plane of the figure), with mass 30.0 kg. The center of

Figure **P11.80**

Figure **P11.79**

Figure **P11.81**

gravity of each bale is at its geometrical center. The coefficient of static friction between a bale and the conveyor belt is 0.60, and the belt moves with constant speed. (a) The angle β of the conveyor is slowly increased. At some critical angle a bale will tip (if it doesn't slip first), and at some different critical angle it will slip (if it doesn't tip first). Find the two critical angles and determine which happens at the smaller angle. (b) Would the outcome of part (a) be different if the coefficient of friction were 0.40?

11.82 • A weight W is supported by attaching it to a vertical uniform metal pole by a thin cord passing over a pulley having negligible mass and friction. The cord is attached to the pole 40.0 cm below the top and pulls horizontally on it (Fig. P11.82). The pole is pivoted about a hinge at its base, is 1.75 m tall, and weighs 55.0 N. A thin wire connects the top of the pole to a vertical wall. The nail that holds this wire to the wall will

pull out if an *outward* force greater than 22.0 N acts on it. (a) What is the greatest weight *W* that can be supported this way without pulling out the nail? (b) What is the *magnitude* of the force that the hinge exerts on the pole?

11.83 •• A garage door is mounted on an overhead rail (Fig. P11.83). The wheels at A and B have rusted so that they do not roll, but rather slide along the track. The coefficient of kinetic friction is 0.52. The distance between the wheels is 2.00 m, and each is 0.50 m from the vertical sides of the door. The door is uniform and

weighs 950 N. It is pushed to the left at constant speed by a horizontal force \vec{F} . (a) If the distance *h* is 1.60 m, what is the vertical component of the force exerted on each wheel by the track? (b) Find the maximum value *h* can have without causing one wheel to leave the track.

11.84 •• A horizontal boom is supported at its left end by a frictionless pivot. It is held in place by a cable attached to the righthand end of the boom. A chain and crate of total weight w hang from somewhere along the boom. The boom's weight w_b cannot be ignored and the boom may or may not be uniform. (a) Show that the tension in the cable is the same whether the cable makes an angle θ or an angle $180^\circ - \theta$ with the horizontal, and that the horizontal force component exerted on the boom by the pivot has equal magnitude but opposite direction for the two angles. (b) Show that the cable cannot be horizontal. (c) Show that the tension in the cable is a minimum when the cable is vertical, pulling upward on the right end of the boom. (d) Show that when the cable is vertical, the force exerted by the pivot on the boom is vertical.

11.85 •• Prior to being placed in its hole, a 5700-N, 9.0-m-long, uniform utility pole makes some nonzero angle with the vertical. A vertical cable attached 2.0 m below its upper end holds it in place while its lower end rests on the ground. (a) Find the tension in the cable and the magnitude and direction of the force exerted by the ground on the pole. (b) Why don't we need to know the angle the pole makes with the vertical, as long as it is not zero?

11.86 ••• Pyramid Builders. Ancient pyramid builders are balancing a uniform rectangular slab of stone tipped at an angle θ above the horizontal using a rope (Fig. P11.86). The rope is held by five workers who share the force equally. (a) If $\theta = 20.0^\circ$, what force does each worker exert on the rope? (b) As θ increases, does each worker have to exert

more or less force than in part (a), assuming they do not change the angle of the rope? Why? (c) At what angle do the workers need to exert *no force* to balance the slab? What happens if θ exceeds this value?

11.87 • You hang a floodlamp from the end of a vertical steel wire. The floodlamp stretches the wire 0.18 mm and the stress is proportional to the strain. How much would it have stretched (a) if the wire were twice as long? (b) if the wire had the same length but twice the diameter? (c) for a copper wire of the original length and diameter?

11.88 •• Hooke's Law for a Wire. A wire of length l_0 and cross-sectional area *A* supports a hanging weight *W*. (a) Show that if the wire obeys Eq. (11.7), it behaves like a spring of force constant AY/l_0 , where *Y* is Young's modulus for the material of which the wire is made. (b) What would the force constant be for a 75.0-cm length of 16-gauge (diameter = 1.291 mm) copper wire? See Table 11.1. (c) What would *W* have to be to stretch the wire in part (b) by 1.25 mm?

11.89 ••• **CP** A 12.0-kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle with a constant angular speed of 120 rev/min. The cross-sectional area of the wire is 0.014 cm². Calculate the elongation of the wire when the mass is (a) at the lowest point of the path and (b) at the highest point of its path.

11.90 • A metal wire 3.50 m long and 0.70 mm in diameter was given the following test. A load weighing 20 N was originally hung from the wire to keep it taut. The position of the lower end of the wire was read on a scale as load was added.

Added Load (N)	Scale Reading (cm)
0	3.02
10	3.07
20	3.12
30	3.17
40	3.22
50	3.27
60	3.32
70	4.27

(a) Graph these values, plotting the increase in length horizontally and the added load vertically. (b) Calculate the value of Young's modulus. (c) The proportional

limit occurred at a scale reading of 3.34 cm. What was the stress at this point?

11.91 ••• A 1.05-m-long rod of negligible weight is supported at its ends by wires A and B of equal length (Fig. P11.91). The cross-sectional area of A is

Figure **P11.91**
2.00 mm² and that of *B* is 4.00 mm². Young's modulus for wire *A* is 1.80×10^{11} Pa; that for *B* is 1.20×10^{11} Pa. At what point along the rod should a weight *w* be suspended to produce (a) equal stresses in *A* and *B* and (b) equal strains in *A* and *B*?

11.92 ••• CP An amusement park ride consists of airplane-shaped cars attached to steel rods (Fig. P11.92). Each rod has a length of 15.0 m and a cross-sectional area of 8.00 cm². (a) How much is the rod stretched when the ride is at rest? (Assume that each car plus two people seated in it has a total weight of 1900 N.) (b) When operating, the ride has a maximum angular speed of 8.0 rev/min. How much is the rod stretched then?

11.93 • A brass rod with a length of 1.40 m and a cross-sectional area of 2.00 cm² is fastened end to end to a nickel rod with length L and cross-sectional area 1.00 cm². The compound rod is subjected to equal and opposite pulls of magnitude 4.00×10^4 N at its ends. (a) Find the length L of the nickel rod if the elongations of the two rods are equal. (b) What is the stress in each rod? (c) What is the strain in each rod?

11.94 •••• CP BIO Stress on the Shin Bone. The compressive strength of our bones is important in everyday life. Young's modulus for bone is about 1.4×10^{10} Pa. Bone can take only about a 1.0% change in its length before fracturing. (a) What is the maximum force that can be applied to a bone whose minimum crosssectional area is 3.0 cm^2 ? (This is approximately the crosssectional area of a tibia, or shin bone, at its narrowest point.) (b) Estimate the maximum height from which a 70-kg man could jump and not fracture the tibia. Take the time between when he first touches the floor and when he has stopped to be 0.030 s, and assume that the stress is distributed equally between his legs.

11.95 ••• A moonshiner produces pure ethanol (ethyl alcohol) late at night and stores it in a stainless steel tank in the form of a cylinder 0.300 m in diameter with a tight-fitting piston at the top. The total volume of the tank is $250 \text{ L} (0.250 \text{ m}^3)$. In an attempt to squeeze a little more into the tank, the moonshiner piles 1420 kg of lead bricks on top of the piston. What additional volume of ethanol can the moonshiner squeeze into the tank? (Assume that the wall of the tank is perfectly rigid.)

CHALLENGE PROBLEMS

11.96 ••• Two ladders, 4.00 m and 3.00 m long, are hinged at point *A* and tied together by a horizontal rope 0.90 m above the floor (Fig. P11.96). The ladders weigh 480 N and 360 N, respectively, and the center of gravity of each is at its center. Assume that

Figure **P11.96**

the floor is freshly waxed and frictionless. (a) Find the upward force at the bottom of each ladder. (b) Find the tension in the rope. (c) Find the magnitude of the force one ladder exerts on the other at point A. (d) If an 800-N painter stands at point A, find the tension in the horizontal rope.

11.97 ••• A bookcase weighing 1500 N rests on a horizontal surface for which the coefficient of static friction is $\mu_s = 0.40$. The bookcase is 1.80 m tall and 2.00 m wide; its center of gravity is at its geometrical center. The bookcase rests on four short legs that are each 0.10 m from the edge of

the bookcase. A person pulls on a rope attached to an upper corner of the bookcase with a force \vec{F} that makes an angle θ with the bookcase (Fig. P11.97). (a) If $\theta = 90^\circ$, so \vec{F} is horizontal, show that as F is increased from zero, the bookcase will start to slide before it tips, and calculate the magnitude of \vec{F} that will start the bookcase sliding. (b) If $\theta = 0^\circ$, so \vec{F} is vertical, show that the bookcase will tip over rather than slide, and calculate the magnitude of \vec{F} that will cause the bookcase to start to tip. (c) Calculate as a function of θ the magnitude of \vec{F} that will cause the bookcase to start to slide and the magnitude that will cause it to start to tip. What is the smallest value that θ can have so that the bookcase will still start to slide before it starts to tip?

11.98 •••• Knocking Over a **Post.** One end of a post weighing 400 N and with height *h* rests on a rough horizontal surface with $\mu_s = 0.30$. The upper end is held by a rope fastened to the surface and making an angle of 36.9° with the post (Fig. P11.98). A horizontal force \vec{F} is exerted on the post as

shown. (a) If the force \vec{F} is applied at the midpoint of the post, what is the largest value it can have without causing the post to slip? (b) How large can the force be without causing the post to slip if its point of application is $\frac{6}{10}$ of the way from the ground to the top of the post? (c) Show that if the point of application of the force is too high, the post cannot be made to slip, no matter how great the force. Find the critical height for the point of application.

11.99 ••• CALC Minimizing the Tension. A heavy horizontal girder of length L has several objects suspended from it. It is supported by a frictionless pivot at its left end and a cable of negligible weight that is attached to an I-beam at a point a distance h directly above the girder's center. Where should the other end of the cable be attached to the girder so that the cable's tension is a minimum? (*Hint:* In evaluating and presenting your answer, don't forget that the maximum distance of the point of attachment from the pivot is the length L of the beam.)

11.100 ••• Bulk Modulus of an Ideal Gas. The equation of state (the equation relating pressure, volume, and temperature) for an ideal gas is pV = nRT, where *n* and *R* are constants. (a) Show that if the gas is compressed while the temperature *T* is held constant, the bulk modulus is equal to the pressure. (b) When an ideal gas is compressed without the transfer of any heat into or out of it, the pressure and volume are related by $pV^{\gamma} = \text{constant}$, where γ is a constant having different values for different gases. Show that, in this case, the bulk modulus is given by $B = \gamma p$.

11.101 ••• **CP** An angler hangs a 4.50-kg fish from a vertical steel wire 1.50 m long and 5.00×10^{-3} cm² in cross-sectional area. The upper end of the wire is securely fastened to a support. (a) Calculate the amount the wire is stretched by the hanging fish. The angler now applies a force \vec{F} to the fish, pulling it very slowly downward by 0.500 mm from its equilibrium position. For this

downward motion, calculate (b) the work done by gravity; (c) the work done by the force \vec{F} ; (d) the work done by the force the wire exerts on the fish; and (e) the change in the elastic potential energy (the potential energy associated with the tensile stress in the wire). Compare the answers in parts (d) and (e).

Answers

Chapter Opening Question **?**

Each stone in the arch is under compression, not tension. This is because the forces on the stones tend to push them inward toward the center of the arch and thus squeeze them together. Compared to a solid supporting wall, a wall with arches is just as strong yet much more economical to build.

Test Your Understanding Questions

11.1 Answer: (i) Situation (i) satisfies both equilibrium conditions because the seagull has zero acceleration (so $\Sigma \vec{F} = 0$) and no tendency to start rotating (so $\Sigma \vec{\tau} = 0$). Situation (ii) satisfies the first condition because the crankshaft as a whole does not accelerate through space, but it does not satisfy the second condition; the crankshaft has an angular acceleration, so $\Sigma \vec{\tau}$ is not zero. Situation (iii) satisfies the second condition (there is no tendency to rotate) but not the first one; the baseball accelerates in its flight (due to gravity), so $\Sigma \vec{F}$ is not zero.

11.2 Answer: (ii) In equilibrium, the center of gravity must be at the point of support. Since the rock and meter stick have the same mass and hence the same weight, the center of gravity of the system is midway between their respective centers. The center of gravity of the meter stick alone is 0.50 m from the left end (that is, at the middle of the meter stick), so the center of gravity of the combination of rock and meter stick is 0.25 m from the left end.

11.3 Answer: (ii), (i), (iii) This is the same situation described in Example 11.4, with the rod replacing the forearm, the hinge replacing the elbow, and the cable replacing the tendon. The only difference is that the cable attachment point is at the end of the rod, so the distances D and L are identical. From Example 11.4, the tension is

$$T = \frac{Lw}{L\sin\theta} = \frac{w}{\sin\theta}$$

Since $\sin \theta$ is less than 1, the tension *T* is greater than the weight *w*. The vertical component of the force exerted by the hinge is

$$E_y = -\frac{(L-L)w}{L} = 0$$

In this situation, the hinge exerts *no* vertical force. You can see this easily if you calculate torques around the right end of the horizontal rod: The only force that exerts a torque around this point is the vertical component of the hinge force, so this force component must be zero.

11.4 Answers: (a) (iii), (b) (ii) In (a), the copper rod has 10 times the elongation Δl of the steel rod, but it also has 10 times the original length l_0 . Hence the tensile strain $\Delta l/l_0$ is the same for both rods. In (b), the stress is equal to Young's modulus *Y* multiplied by the strain. From Table 11.1, steel has a larger value of *Y*, so a greater stress is required to produce the same strain.

11.5 In (a) and (b), the bumper will have sprung back to its original shape (although the paint may be scratched). In (c), the bumper will have a permanent dent or deformation. In (d), the bumper will be torn or broken.

Bridging Problem

Answers:

(a)
$$T = \frac{2mg}{3\sin\theta}$$

(b) $F = \frac{2mg}{3\sin\theta}\sqrt{\cos^2\theta + \frac{1}{4}\sin^2\theta}, \phi = \arctan\left(\frac{1}{2}\tan\theta\right)$
(c) $\Delta l = \frac{2mgl_0}{3AY\tan\theta}$ (d) 4

FLUID MECHANICS

P This shark must swim constantly to keep from sinking to the bottom of the ocean, yet the orange tropical fish can remain at the same level in the water with little effort. Why is there a difference?

Luids play a vital role in many aspects of everyday life. We drink them, breathe them, swim in them. They circulate through our bodies and control our weather. Airplanes fly through them; ships float in them. A fluid is any substance that can flow; we use the term for both liquids and gases. We usually think of a gas as easily compressed and a liquid as nearly incompressible, although there are exceptional cases.

We begin our study with **fluid statics**, the study of fluids at rest in equilibrium situations. Like other equilibrium situations, it is based on Newton's first and third laws. We will explore the key concepts of density, pressure, and buoyancy. **Fluid dynamics**, the study of fluids in motion, is much more complex; indeed, it is one of the most complex branches of mechanics. Fortunately, we can analyze many important situations using simple idealized models and familiar principles such as Newton's laws and conservation of energy. Even so, we will barely scratch the surface of this broad and interesting topic.

12.1 Density

An important property of any material is its **density**, defined as its mass per unit volume. A homogeneous material such as ice or iron has the same density throughout. We use ρ (the Greek letter rho) for density. If a mass *m* of homogeneous material has volume *V*, the density ρ is

$$\rho = \frac{m}{V}$$
 (definition of density) (12.1)

Two objects made of the same material have the same density even though they may have different masses and different volumes. That's because the *ratio* of mass to volume is the same for both objects (Fig. 12.1).

LEARNING GOALS

By studying this chapter, you will learn:

- The meaning of the density of a material and the average density of a body.
- What is meant by the pressure in a fluid, and how it is measured.
- How to calculate the buoyant force that a fluid exerts on a body immersed in it.
- The significance of laminar versus turbulent fluid flow, and how the speed of flow in a tube depends on the tube size.
- How to use Bernoulli's equation to relate pressure and flow speed at different points in certain types of flow.

12.1 Two objects with different masses and different volumes but the same density.

Material	Density (kg/m ³)*	Material	Density (kg/m ³)*
Air (1 atm, 20°C)	1.20	Iron, steel	7.8×10^{3}
Ethanol	0.81×10^{3}	Brass	8.6×10^{3}
Benzene	0.90×10^{3}	Copper	8.9×10^{3}
Ice	0.92×10^{3}	Silver	10.5×10^{3}
Water	1.00×10^{3}	Lead	11.3×10^{3}
Seawater	1.03×10^{3}	Mercury	13.6×10^{3}
Blood	1.06×10^{3}	Gold	19.3×10^{3}
Glycerine	1.26×10^{3}	Platinum	21.4×10^{3}
Concrete	2×10^{3}	White dwarf star	10^{10}
Aluminum	2.7×10^{3}	Neutron star	10 ¹⁸

 Table 12.1 Densities of Some Common Substances

*To obtain the densities in grams per cubic centimeter, simply divide by 10^3 .

The SI unit of density is the kilogram per cubic meter (1 kg/m^3) . The cgs unit, the gram per cubic centimeter (1 g/cm^3) , is also widely used:

$$1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$$

The densities of some common substances at ordinary temperatures are given in Table 12.1. Note the wide range of magnitudes. The densest material found on earth is the metal osmium ($\rho = 22,500 \text{ kg/m}^3$), but its density pales by comparison to the densities of exotic astronomical objects such as white dwarf stars and neutron stars.

The **specific gravity** of a material is the ratio of its density to the density of water at 4.0° C, 1000 kg/m^3 ; it is a pure number without units. For example, the specific gravity of aluminum is 2.7. "Specific gravity" is a poor term, since it has nothing to do with gravity; "relative density" would have been better.

The density of some materials varies from point to point within the material. One example is the material of the human body, which includes low-density fat (about 940 kg/m³) and high-density bone (from 1700 to 2500 kg/m³). Two others are the earth's atmosphere (which is less dense at high altitudes) and oceans (which are denser at greater depths). For these materials, Eq. (12.1) describes the **average density.** In general, the density of a material depends on environmental factors such as temperature and pressure.

Measuring density is an important analytical technique. For example, we can determine the charge condition of a storage battery by measuring the density of its electrolyte, a sulfuric acid solution. As the battery discharges, the sulfuric acid (H₂SO₄) combines with lead in the battery plates to form insoluble lead sulfate (PbSO₄), decreasing the concentration of the solution. The density decreases from about 1.30×10^3 kg/m³ for a fully charged battery to 1.15×10^3 kg/m³ for a discharged battery.

Another automotive example is permanent-type antifreeze, which is usually a solution of ethylene glycol ($\rho = 1.12 \times 10^3 \text{ kg/m}^3$) and water. The freezing point of the solution depends on the glycol concentration, which can be determined by measuring the specific gravity. Such measurements can be performed by using a device called a hydrometer, which we'll discuss in Section 12.3.

Example 12.1 The weight of a roomful of air

Find the mass and weight of the air at 20°C in a living room with a 4.0 m \times 5.0 m floor and a ceiling 3.0 m high, and the mass and weight of an equal volume of water.

SOLUTION

IDENTIFY and SET UP: We assume that the air density is the same throughout the room. (Air is less dense at high elevations than near

2.

sea level, but the density varies negligibly over the room's 3.0-m height; see Section 12.2.) We use Eq. (12.1) to relate the mass m_{air} to the room's volume V (which we'll calculate) and the air density ρ_{air} (given in Table 12.1).

EXECUTE: We have $V = (4.0 \text{ m})(5.0 \text{ m})(3.0 \text{ m}) = 60 \text{ m}^3$, so from Eq. (12.1),

$$m_{\text{air}} = \rho_{\text{air}}V = (1.20 \text{ kg/m}^3)(60 \text{ m}^3) = 72 \text{ kg}$$

 $w_{\text{air}} = m_{\text{air}}g = (72 \text{ kg})(9.8 \text{ m/s}^2) = 700 \text{ N} = 160 \text{ lb}$

Test Your Understanding of Section 12.1 Rank the following objects in order from highest to lowest average density: (i) mass 4.00 kg, volume 1.60×10^{-3} m³; (ii) mass 8.00 kg, volume 1.60×10^{-3} m³; (iii) mass 8.00 kg, volume 3.20×10^{-3} m³; (iv) mass 2560 kg, volume 0.640 m³; (v) mass 2560 kg, volume 1.28 m³.

12.2 Pressure in a Fluid

When a fluid (either liquid or gas) is at rest, it exerts a force perpendicular to any surface in contact with it, such as a container wall or a body immersed in the fluid. This is the force that you feel pressing on your legs when you dangle them in a swimming pool. While the fluid as a whole is at rest, the molecules that make up the fluid are in motion; the force exerted by the fluid is due to molecules colliding with their surroundings.

If we think of an imaginary surface *within* the fluid, the fluid on the two sides of the surface exerts equal and opposite forces on the surface. (Otherwise, the surface would accelerate and the fluid would not remain at rest.) Consider a small surface of area dA centered on a point in the fluid; the normal force exerted by the fluid on each side is dF_{\perp} (Fig. 12.2). We define the **pressure** *p* at that point as the normal force per unit area—that is, the ratio of dF_{\perp} to dA (Fig. 12.3):

$$p = \frac{dF_{\perp}}{dA}$$
 (definition of pressure) (12.2)

If the pressure is the same at all points of a finite plane surface with area A, then

$$p = \frac{F_{\perp}}{A} \tag{12.3}$$

where F_{\perp} is the net normal force on one side of the surface. The SI unit of pressure is the **pascal**, where

$$1 \text{ pascal} = 1 \text{ Pa} = 1 \text{ N/m}^2$$

We introduced the pascal in Chapter 11. Two related units, used principally in meteorology, are the *bar*, equal to 10^5 Pa, and the *millibar*, equal to 100 Pa.

Atmospheric pressure p_a is the pressure of the earth's atmosphere, the pressure at the bottom of this sea of air in which we live. This pressure varies with weather changes and with elevation. Normal atmospheric pressure at sea level (an average value) is 1 *atmosphere* (atm), defined to be exactly 101,325 Pa. To four significant figures,

$$(p_a)_{av} = 1 \text{ atm} = 1.013 \times 10^5 \text{ Pa}$$

= 1.013 bar = 1013 millibar = 14.70 lb/in.²

The mass and weight of an equal volume of water are

MP

$$m_{\text{water}} = \rho_{\text{water}} V = (1000 \text{ kg/m}^3)(60 \text{ m}^3) = 6.0 \times 10^4 \text{ kg}$$
$$w_{\text{water}} = m_{\text{water}} g = (6.0 \times 10^4 \text{ kg})(9.8 \text{ m/s}^2)$$
$$= 5.9 \times 10^5 \text{ N} = 1.3 \times 10^5 \text{ lb} = 66 \text{ tons}$$

EVALUATE: A roomful of air weighs about the same as an average adult. Water is nearly a thousand times denser than air, so its mass and weight are larger by the same factor. The weight of a roomful of water would collapse the floor of an ordinary house.

12.2 Forces acting on a small surface within a fluid at rest.

The surface does not accelerate, so the surrounding fluid exerts equal normal forces on both sides of it. (The fluid cannot exert any force parallel to the surface, since that would cause the surface to accelerate.)

12.3 The pressure on either side of a surface is force divided by area. Pressure is a scalar with units of newtons per square meter. By contrast, force is a vector with units of newtons.

CAUTION Don't confuse pressure and force In everyday language the words "pressure" and "force" mean pretty much the same thing. In fluid mechanics, however, these words describe distinct quantities with different characteristics. Fluid pressure acts perpendicular to any surface in the fluid, no matter how that surface is oriented (Fig. 12.3). Hence pressure has no intrinsic direction of its own; it's a scalar. By contrast, force is a vector with a definite direction. Remember, too, that pressure is force per unit area. As Fig. 12.3 shows, a surface with twice the area has twice as much force exerted on it by the fluid, so the pressure is the same.

Example 12.2 The force of air

In the room described in Example 12.1, what is the total downward force on the floor due to an air pressure of 1.00 atm?

SOLUTION

IDENTIFY and SET UP: This example uses the relationship among the pressure p of a fluid (air), the area A subjected to that pressure, and the resulting normal force F_{\perp} the fluid exerts. The pressure is uniform, so we use Eq. (12.3), $F_{\perp} = pA$, to determine F_{\perp} . The floor is horizontal, so F_{\perp} is vertical (downward).

EXECUTE: We have $A = (4.0 \text{ m})(5.0 \text{ m}) = 20 \text{ m}^2$, so from Eq. (12.3),

$$F_{\perp} = pA = (1.013 \times 10^5 \text{ N/m}^2)(20 \text{ m}^2)$$

= 2.0 × 10⁶ N = 4.6 × 10⁵ lb = 230 tons

EVALUATE: Unlike the water in Example 12.1, F_{\perp} will not collapse the floor here, because there is an *upward* force of equal magnitude on the floor's underside. If the house has a basement, this upward force is exerted by the air underneath the floor. In this case, if we neglect the thickness of the floor, the *net* force due to air pressure is zero.

Pressure, Depth, and Pascal's Law

12.4 The forces on an element of fluid in equilibrium.

Because the fluid is in equilibrium, the vector sum of the vertical forces on the fluid element must be zero: pA - (p + dp)A - dw = 0.

If the weight of the fluid can be neglected, the pressure in a fluid is the same throughout its volume. We used that approximation in our discussion of bulk stress and strain in Section 11.4. But often the fluid's weight is *not* negligible. Atmospheric pressure is less at high altitude than at sea level, which is why an airplane cabin has to be pressurized when flying at 35,000 feet. When you dive into deep water, your ears tell you that the pressure increases rapidly with increasing depth below the surface.

We can derive a general relationship between the pressure p at any point in a fluid at rest and the elevation y of the point. We'll assume that the density ρ has the same value throughout the fluid (that is, the density is *uniform*), as does the acceleration due to gravity g. If the fluid is in equilibrium, every volume element is in equilibrium. Consider a thin element of fluid with thickness dy (Fig. 12.4a). The bottom and top surfaces each have area A, and they are at elevations y and y + dy above some reference level where y = 0. The volume of the fluid element is dV = A dy, its mass is $dm = \rho dV = \rho A dy$, and its weight is $dw = dm g = \rho gA dy$.

What are the other forces on this fluid element (Fig 12.4b)? Let's call the pressure at the bottom surface p; then the total y-component of upward force on this surface is pA. The pressure at the top surface is p + dp, and the total y-component of (downward) force on the top surface is -(p + dp)A. The fluid element is in equilibrium, so the total y-component of force, including the weight and the forces at the bottom and top surfaces, must be zero:

$$\sum F_{y} = 0$$
 so $pA - (p + dp)A - \rho gA dy = 0$

When we divide out the area A and rearrange, we get

$$\frac{dp}{dy} = -\rho g \tag{12.4}$$

This equation shows that when y increases, p decreases; that is, as we move upward in the fluid, pressure decreases, as we expect. If p_1 and p_2 are the pressures at elevations y_1 and y_2 , respectively, and if ρ and g are constant, then

$$p_2 - p_1 = -\rho g(y_2 - y_1)$$
 (pressure in a fluid of uniform density) (12.5)

It's often convenient to express Eq. (12.5) in terms of the *depth* below the surface of a fluid (Fig. 12.5). Take point 1 at any level in the fluid and let *p* represent the pressure at this point. Take point 2 at the *surface* of the fluid, where the pressure is p_0 (subscript zero for zero depth). The depth of point 1 below the surface is $h = y_2 - y_1$, and Eq. (12.5) becomes

$$p_0 - p = -\rho g(y_2 - y_1) = -\rho gh \quad \text{or}$$

$$p = p_0 + \rho gh \quad (\text{pressure in a fluid of uniform density}) \quad (12.6)$$

The pressure p at a depth h is greater than the pressure p_0 at the surface by an amount ρgh . Note that the pressure is the same at any two points at the same level in the fluid. The *shape* of the container does not matter (Fig. 12.6).

Equation (12.6) shows that if we increase the pressure p_0 at the top surface, possibly by using a piston that fits tightly inside the container to push down on the fluid surface, the pressure p at any depth increases by exactly the same amount. This fact was recognized in 1653 by the French scientist Blaise Pascal (1623–1662) and is called *Pascal's law*.

Pascal's law: Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel.

The hydraulic lift shown schematically in Fig. 12.7 illustrates Pascal's law. A piston with small cross-sectional area A_1 exerts a force F_1 on the surface of a liquid such as oil. The applied pressure $p = F_1/A_1$ is transmitted through the connecting pipe to a larger piston of area A_2 . The applied pressure is the same in both cylinders, so

$$p = \frac{F_1}{A_1} = \frac{F_2}{A_2}$$
 and $F_2 = \frac{A_2}{A_1}F_1$ (12.7)

The hydraulic lift is a force-multiplying device with a multiplication factor equal to the ratio of the areas of the two pistons. Dentist's chairs, car lifts and jacks, many elevators, and hydraulic brakes all use this principle.

For gases the assumption that the density ρ is uniform is realistic only over short vertical distances. In a room with a ceiling height of 3.0 m filled with air of uniform density 1.2 kg/m³, the difference in pressure between floor and ceiling, given by Eq. (12.6), is

$$\rho gh = (1.2 \text{ kg/m}^3)(9.8 \text{ m/s}^2)(3.0 \text{ m}) = 35 \text{ Pa}$$

or about 0.00035 atm, a very small difference. But between sea level and the summit of Mount Everest (8882 m) the density of air changes by nearly a factor of 3, and in this case we cannot use Eq. (12.6). Liquids, by contrast, are nearly incompressible, and it is usually a very good approximation to regard their density as independent of pressure. A pressure of several hundred atmospheres will cause only a few percent increase in the density of most liquids.

Absolute Pressure and Gauge Pressure

If the pressure inside a car tire is equal to atmospheric pressure, the tire is flat. The pressure has to be *greater* than atmospheric to support the car, so the significant quantity is the *difference* between the inside and outside pressures. When we say that the pressure in a car tire is "32 pounds" (actually 32 lb/in.², equal to 220 kPa or 2.2×10^5 Pa), we mean that it is *greater* than atmospheric pressure

12.5 How pressure varies with depth in a fluid with uniform density.

Pressure difference between levels 1 and 2: $p_2 - p_1 = -\rho g(y_2 - y_1)$ The pressure is greater at the lower level.

12.6 Each fluid column has the same height, no matter what its shape.

The pressure at the top of each liquid column is atmospheric pressure, p_0 .

The pressure at the bottom of each liquid column has the same value *p*.

The difference between p and p_0 is ρgh , where h is the distance from the top to the bottom of the liquid column. Hence all columns have the same height.

12.7 The hydraulic lift is an application of Pascal's law. The size of the fluid-filled container is exaggerated for clarity.

A small force is applied to a small piston.

... a piston of larger area at the same height experiences a larger force.

 $(14.7 \text{ lb/in.}^2 \text{ or } 1.01 \times 10^5 \text{ Pa})$ by this amount. The *total* pressure in the tire is then 47 lb/in.² or 320 kPa. The excess pressure above atmospheric pressure is usually called **gauge pressure**, and the total pressure is called **absolute pressure**. Engineers use the abbreviations psig and psia for "pounds per square inch gauge" and "pounds per square inch absolute," respectively. If the pressure is *less* than atmospheric, as in a partial vacuum, the gauge pressure is negative.

Example 12.3 Finding absolute and gauge pressures

Water stands 12.0 m deep in a storage tank whose top is open to the atmosphere. What are the absolute and gauge pressures at the bottom of the tank?

SOLUTION

IDENTIFY and SET UP: Table 11.2 indicates that water is nearly incompressible, so we can treat it as having uniform density. The level of the top of the tank corresponds to point 2 in Fig. 12.5, and the level of the bottom of the tank corresponds to point 1. Our target variable is p in Eq. (12.6). We have h = 12.0 m and $p_0 = 1$ atm $= 1.01 \times 10^5$ Pa.

EXECUTE: From Eq. (12.6), the pressures are

absolute: $p = p_0 + \rho gh$ $= (1.01 \times 10^5 \text{ Pa}) + (1000 \text{ kg/m}^3)(9.80 \text{ m/s}^2)(12.0 \text{ m})$ $= 2.19 \times 10^5 \text{ Pa} = 2.16 \text{ atm} = 31.8 \text{ lb/in.}^2$ gauge: $p - p_0 = (2.19 - 1.01) \times 10^5 \text{ Pa}$

 $= 1.18 \times 10^5 \text{ Pa} = 1.16 \text{ atm} = 17.1 \text{ lb/in.}^2$

EVALUATE: A pressure gauge at the bottom of such a tank would probably be calibrated to read gauge pressure rather than absolute pressure.

Pressure Gauges

The simplest pressure gauge is the open-tube *manometer* (Fig. 12.8a). The U-shaped tube contains a liquid of density ρ , often mercury or water. The left end of the tube is connected to the container where the pressure p is to be measured, and the right end is open to the atmosphere at pressure $p_0 = p_{atm}$. The pressure at the bottom of the tube due to the fluid in the left column is $p + \rho gy_1$, and the pressure at the bottom due to the fluid in the right column is $p_{atm} + \rho gy_2$. These pressures are measured at the same level, so they must be equal:

$$p + \rho gy_1 = p_{atm} + \rho gy_2 p - p_{atm} = \rho g(y_2 - y_1) = \rho gh$$
(12.8)

In Eq. (12.8), p is the *absolute pressure*, and the difference $p - p_{\text{atm}}$ between absolute and atmospheric pressure is the gauge pressure. Thus the gauge pressure is proportional to the difference in height $h = y_2 - y_1$ of the liquid columns.

12.8 Two types of pressure gauge.

Another common pressure gauge is the **mercury barometer.** It consists of a long glass tube, closed at one end, that has been filled with mercury and then inverted in a dish of mercury (Fig. 12.8b). The space above the mercury column contains only mercury vapor; its pressure is negligibly small, so the pressure p_0 at the top of the mercury column is practically zero. From Eq. (12.6),

$$p_{\text{atm}} = p = 0 + \rho g (y_2 - y_1) = \rho g h$$
 (12.9)

Thus the mercury barometer reads the atmospheric pressure p_{atm} directly from the height of the mercury column.

Pressures are often described in terms of the height of the corresponding mercury column, as so many "inches of mercury" or "millimeters of mercury" (abbreviated mm Hg). A pressure of 1 mm Hg is called *1 torr*, after Evangelista Torricelli, inventor of the mercury barometer. But these units depend on the density of mercury, which varies with temperature, and on the value of g, which varies with location, so the pascal is the preferred unit of pressure.

Many types of pressure gauges use a flexible sealed tube (Fig. 12.9). A change in the pressure either inside or outside the tube causes a change in its dimensions. This change is detected optically, electrically, or mechanically.

Application Gauge Pressure of Blood

Blood-pressure readings, such as 130/80, give the maximum and minimum gauge pressures in the arteries, measured in mm Hg or torr. Blood pressure varies with vertical position within the body; the standard reference point is the upper arm, level with the heart.

12.9 (a) A Bourdon pressure gauge. When the pressure inside the flexible tube increases, the tube straightens out a little, deflecting the attached pointer. (b) This Bourdon-type pressure gauge is connected to a high-pressure gas line. The gauge pressure shown is just over 5 bars (1 bar = 10^5 Pa).

Example 12.4 A tale of two fluids

A manometer tube is partially filled with water. Oil (which does not mix with water) is poured into the left arm of the tube until the oil–water interface is at the midpoint of the tube as shown. Both arms of the tube are open to the air. Find a relationship between the heights $h_{\rm oil}$ and $h_{\rm water}$.

SOLUTION

IDENTIFY and SET UP: Figure 12.10 shows our sketch. The relationship between pressure and depth given by Eq. (12.6) applies only to fluids of uniform density; we have two fluids of different densities, so we must write a separate pressure–depth relationship for each. Both fluid columns have pressure p at the bottom (where they are in contact and in equilibrium) and are both at atmospheric pressure p_0 at the top (where both are in contact with and in equilibrium with the air).

EXECUTE: Writing Eq. (12.6) for each fluid gives

$$p = p_0 + \rho_{\text{water}}gh_{\text{water}}$$
$$p = p_0 + \rho_{\text{oil}}gh_{\text{oil}}$$

.

12.10 Our sketch for this problem.

Since the pressure p at the bottom of the tube is the same for both fluids, we set these two expressions equal to each other and solve for h_{oil} in terms of h_{water} . You can show that the result is

$$h_{\rm oil} = \frac{\rho_{\rm water}}{\rho_{\rm oil}} h_{\rm water}$$

EVALUATE: Water ($\rho_{water} = 1000 \text{ kg/m}^3$) is denser than oil ($\rho_{oil} \approx 850 \text{ kg/m}^3$), so h_{oil} is greater than h_{water} as Fig. 12.10 shows. It takes a greater height of low-density oil to produce the same pressure *p* at the bottom of the tube.

Test Your Understanding of Section 12.2 Mercury is less dense at high temperatures than at low temperatures. Suppose you move a mercury barometer from the cold interior of a tightly sealed refrigerator to outdoors on a hot summer day. You find that the column of mercury remains at the same height in the tube. Compared to the air pressure inside the refrigerator, is the air pressure outdoors (i) higher, (ii) lower, or (iii) the same? (Ignore the very small change in the dimensions of the glass tube due to the temperature change.)

12.3 Buoyancy

Buoyancy is a familiar phenomenon: A body immersed in water seems to weigh less than when it is in air. When the body is less dense than the fluid, it floats. The human body usually floats in water, and a helium-filled balloon floats in air.

Archimedes's principle: When a body is completely or partially immersed in a fluid, the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body.

To prove this principle, we consider an arbitrary element of fluid at rest. In Fig. 12.11a the irregular outline is the surface boundary of this element of fluid. The arrows represent the forces exerted on the boundary surface by the surrounding fluid.

The entire fluid is in equilibrium, so the sum of all the *y*-components of force on this element of fluid is zero. Hence the sum of the *y*-components of the *surface* forces must be an upward force equal in magnitude to the weight *mg* of the fluid inside the surface. Also, the sum of the torques on the element of fluid must be zero, so the line of action of the resultant *y*-component of surface force must pass through the center of gravity of this element of fluid.

Now we remove the fluid inside the surface and replace it with a solid body having exactly the same shape (Fig. 12.11b). The pressure at every point is exactly the same as before. So the total upward force exerted on the body by the fluid is also the same, again equal in magnitude to the weight *mg* of the fluid displaced to make way for the body. We call this upward force the **buoyant force** on the solid body. The line of action of the buoyant force again passes through the center of gravity of the displaced fluid (which doesn't necessarily coincide with the center of gravity of the body).

When a balloon floats in equilibrium in air, its weight (including the gas inside it) must be the same as the weight of the air displaced by the balloon. A fish's flesh is denser than water, yet a fish can float while

12.11 Archimedes's principle.

(a) Arbitrary element of fluid in equilibrium

The forces on the fluid element due to pressure must sum to a buoyant force equal in magnitude to the element's weight. (b) Fluid element replaced with solid body of the same size and shape

The forces due to pressure are the same, so the body must be acted upon by the same buoyant force as the fluid element, *regardless* of the body's weight.

submerged because it has a gas-filled cavity within its body. This makes the fish's *average* density the same as water's, so its net weight is the same as the weight of the water it displaces. A body whose average density is *less* than that of a liquid can float partially submerged at the free upper surface of the liquid. The greater the density of the liquid, the less of the body is submerged. When you swim in seawater (density 1030 kg/m³), your body floats higher than in fresh water (1000 kg/m³).

A practical example of buoyancy is the hydrometer, used to measure the density of liquids (Fig. 12.12a). The calibrated float sinks into the fluid until the weight of the fluid it displaces is exactly equal to its own weight. The hydrometer floats *higher* in denser liquids than in less dense liquids, and a scale in the top stem permits direct density readings. Figure 12.12b shows a type of hydrometer that is commonly used to measure the density of battery acid or antifreeze. The bottom of the large tube is immersed in the liquid; the bulb is squeezed to expel air and is then released, like a giant medicine dropper. The liquid rises into the outer tube, and the hydrometer floats in this sample of the liquid.

Example 12.5 Buoyancy

A 15.0-kg solid gold statue is raised from the sea bottom (Fig. 12.13a). What is the tension in the hoisting cable (assumed massless) when the statue is (a) at rest and completely underwater and (b) at rest and completely out of the water?

SOLUTION

IDENTIFY and SET UP: In both cases the statue is in equilibrium and experiences three forces: its weight, the cable tension, and a buoyant force equal in magnitude to the weight of the fluid displaced by the statue (seawater in part (a), air in part (b)). Figure 12.13b shows the free-body diagram for the statue. Our target variables are the values of the tension in seawater (T_{sw}) and in air (T_{air}) . We are given the mass m_{statue} , and we can calculate the buoyant force in seawater (B_{sw}) and in air (B_{air}) using Archimedes's principle.

EXECUTE: (a) To find B_{sw} , we first find the statue's volume V using the density of gold from Table 12.1:

$$V = \frac{m_{\text{statue}}}{\rho_{\text{gold}}} = \frac{15.0 \text{ kg}}{19.3 \times 10^3 \text{ kg/m}^3} = 7.77 \times 10^{-4} \text{ m}^3$$

The buoyant force B_{sw} equals the weight of this same volume of seawater. Using Table 12.1 again:

$$B_{sw} = w_{sw} = m_{sw}g = \rho_{sw}Vg$$

= (1.03 × 10³ kg/m³)(7.77 × 10⁻⁴ m³)(9.80 m/s²)
= 7.84 N

The statue is at rest, so the net external force acting on it is zero. From Fig. 12.13b,

$$\sum F_y = B_{sw} + T_{sw} + (-m_{statue}g) = 0$$

$$T_{sw} = m_{statue}g - B_{sw} = (15.0 \text{ kg})(9.80 \text{ m/s}^2) - 7.84 \text{ N}$$

$$= 147 \text{ N} - 7.84 \text{ N} = 139 \text{ N}$$

12.12 Measuring the density of a fluid.

(b) Using a hydrometer to measure the density of battery acid or antifreeze

12.13 What is the tension in the cable hoisting the statue?

(a) Immersed statue in equilibrium (b) Free-body diagram of statue

A spring scale attached to the upper end of the cable will indicate a tension 7.84 N less than the statue's actual weight $m_{\text{statue}}g =$ 147 N.

(b) The density of air is about 1.2 kg/m³, so the buoyant force of air on the statue is

$$B_{\rm air} = \rho_{\rm air} Vg = (1.2 \text{ kg/m}^3)(7.77 \times 10^{-4} \text{ m}^3)(9.80 \text{ m/s}^2)$$

= 9.1 × 10⁻³ N

This is negligible compared to the statue's actual weight $m_{\text{statue}}g = 147$ N. So within the precision of our data, the tension in the cable with the statue in air is $T_{\text{air}} = m_{\text{statue}}g = 147$ N.

EVALUATE: Note that the buoyant force is proportional to the density of the *fluid* in which the statue is immersed, *not* the density of

Continued

the statue. The denser the fluid, the greater the buoyant force and the smaller the cable tension. If the fluid had the same density as the statue, the buoyant force would be equal to the statue's weight and the tension would be zero (the cable would go slack). If the fluid

12.14 The surface of the water acts like a membrane under tension, allowing this water strider to literally "walk on water."

12.15 A molecule at the surface of a liquid is attracted into the bulk liquid, which tends to reduce the liquid's surface area.

Molecules in a liquid are attracted by neighboring molecules.

12.16 Surface tension makes it difficult to force water through small crevices. The required water pressure p can be reduced by using hot, soapy water, which has less surface tension.

Surface Tension

upward.

An object less dense than water, such as an air-filled beach ball, floats with part of its volume below the surface. Conversely, a paper clip can rest *atop* a water surface even though its density is several times that of water. This is an example of **surface tension:** The surface of the liquid behaves like a membrane under tension (Fig. 12.14). Surface tension arises because the molecules of the liquid exert attractive forces on each other. There is zero net force on a molecule inside the volume of the liquid, but a surface molecule is drawn into the volume (Fig. 12.15). Thus the liquid tends to minimize its surface area, just as a stretched membrane does.

were denser than the statue, the tension would be negative: The

buoyant force would be greater than the statue's weight, and a

downward force would be required to keep the statue from rising

Surface tension explains why freely falling raindrops are spherical (*not* teardropshaped): A sphere has a smaller surface area for its volume than any other shape. It also explains why hot, soapy water is used for washing. To wash clothing thoroughly, water must be forced through the tiny spaces between the fibers (Fig. 12.16). To do so requires increasing the surface area of the water, which is difficult to achieve because of surface tension. The job is made easier by increasing the temperature of the water and adding soap, both of which decrease the surface tension.

Surface tension is important for a millimeter-sized water drop, which has a relatively large surface area for its volume. (A sphere of radius *r* has surface area $4\pi r^2$ and volume $(4\pi/3)r^3$. The ratio of surface area to volume is 3/r, which increases with decreasing radius.) For large quantities of liquid, however, the ratio of surface area to volume is relatively small, and surface tension is negligible compared to pressure forces. For the remainder of this chapter, we will consider only fluids in bulk and hence will ignore the effects of surface tension.

Test Your Understanding of Section 12.3 You place a container of seawater on a scale and note the reading on the scale. You now suspend the statue of Example 12.5 in the water (Fig. 12.17). How does the scale reading change? (i) It increases by 7.84 N; (ii) it decreases by 7.84 N; (iii) it remains the same; (iv) none of these.

I

12.4 Fluid Flow

We are now ready to consider *motion* of a fluid. Fluid flow can be extremely complex, as shown by the currents in river rapids or the swirling flames of a campfire. But some situations can be represented by relatively simple idealized models. An **ideal fluid** is a fluid that is *incompressible* (that is, its density cannot change) and has no internal friction (called **viscosity**). Liquids are approximately incompressible in most situations, and we may also treat a gas as incompressible if the pressure differences from one region to another are not too great. Internal friction in a fluid causes shear stresses when two adjacent layers of fluid move relative to each other, as when fluid flows inside a tube or around an obstacle. In some cases we can neglect these shear forces in comparison with forces arising from gravitation and pressure differences.

The path of an individual particle in a moving fluid is called a **flow line**. If the overall flow pattern does not change with time, the flow is called **steady flow**. In

steady flow, every element passing through a given point follows the same flow line. In this case the "map" of the fluid velocities at various points in space remains constant, although the velocity of a particular particle may change in both magnitude and direction during its motion. A **streamline** is a curve whose tangent at any point is in the direction of the fluid velocity at that point. When the flow pattern changes with time, the streamlines do not coincide with the flow lines. We will consider only steady-flow situations, for which flow lines and streamlines are identical.

The flow lines passing through the edge of an imaginary element of area, such as the area *A* in Fig. 12.18, form a tube called a **flow tube.** From the definition of a flow line, in steady flow no fluid can cross the side walls of a flow tube; the fluids in different flow tubes cannot mix.

Figure 12.19 shows patterns of fluid flow from left to right around three different obstacles. The photographs were made by injecting dye into water flowing between two closely spaced glass plates. These patterns are typical of **laminar flow**, in which adjacent layers of fluid slide smoothly past each other and the flow is steady. (A *lamina* is a thin sheet.) At sufficiently high flow rates, or when boundary surfaces cause abrupt changes in velocity, the flow can become irregular and chaotic. This is called **turbulent flow** (Fig. 12.20). In turbulent flow there is no steady-state pattern; the flow pattern changes continuously.

The Continuity Equation

The mass of a moving fluid doesn't change as it flows. This leads to an important quantitative relationship called the **continuity equation.** Consider a portion of a flow tube between two stationary cross sections with areas A_1 and A_2 (Fig. 12.21). The fluid speeds at these sections are v_1 and v_2 , respectively. No fluid flows in or out across the sides of the tube because the fluid velocity is tangent to the wall at every point on the wall. During a small time interval dt, the fluid at A_1 moves a distance $v_1 dt$, so a cylinder of fluid with height $v_1 dt$ and volume $dV_1 = A_1v_1 dt$ flows into the tube across A_1 . During this same interval, a cylinder of volume $dV_2 = A_2v_2 dt$ flows out of the tube across A_2 .

Let's first consider the case of an incompressible fluid so that the density ρ has the same value at all points. The mass dm_1 flowing into the tube across A_1 in time dt is $dm_1 = \rho A_1 v_1 dt$. Similarly, the mass dm_2 that flows out across A_2 in the same time is $dm_2 = \rho A_2 v_2 dt$. In steady flow the total mass in the tube is constant, so $dm_1 = dm_2$ and

$$\rho A_1 v_1 dt = \rho A_2 v_2 dt$$
 or

 $A_1v_1 = A_2v_2$ (continuity equation, incompressible fluid) (12.10)

12.20 The flow of smoke rising from these incense sticks is laminar up to a certain point, and then becomes turbulent.

12.17 How does the scale reading change when the statue is immersed in water?

12.18 A flow tube bounded by flow lines. In steady flow, fluid cannot cross the walls of a flow tube.

12.21 A flow tube with changing crosssectional area. If the fluid is incompressible, the product Av has the same value at all points along the tube.

The product Av is the volume flow rate dV/dt, the rate at which volume crosses a section of the tube:

$$\frac{dV}{dt} = Av \qquad \text{(volume flow rate)} \tag{12.11}$$

The *mass* flow rate is the mass flow per unit time through a cross section. This is equal to the density ρ times the volume flow rate dV/dt.

Equation (12.10) shows that the volume flow rate has the same value at all points along any flow tube. When the cross section of a flow tube decreases, the speed increases, and vice versa. A broad, deep part of a river has larger cross section and slower current than a narrow, shallow part, but the volume flow rates are the same in both. This is the essence of the familiar maxim, "Still waters run deep." The stream of water from a faucet narrows as it gains speed during its fall, but dV/dt is the same everywhere along the stream. If a water pipe with 2-cm diameter is connected to a pipe with 1-cm diameter, the flow speed is four times as great in the 1-cm part as in the 2-cm part.

We can generalize Eq. (12.10) for the case in which the fluid is *not* incompressible. If ρ_1 and ρ_2 are the densities at sections 1 and 2, then

$$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$$
 (continuity equation, compressible fluid) (12.12)

If the fluid is denser at point 2 than at point 1 ($\rho_2 > \rho_1$), the volume flow rate at point 2 will be less than at point 1 ($A_2v_2 < A_1v_1$). We leave the details to you. If the fluid is incompressible so that ρ_1 and ρ_2 are always equal, Eq. (12.12) reduces to Eq. (12.10).

Example 12.6 Flow of an incompressible fluid

Incompressible oil of density 850 kg/m^3 is pumped through a cylindrical pipe at a rate of 9.5 liters per second. (a) The first section of the pipe has a diameter of 8.0 cm. What is the flow speed of the oil? What is the mass flow rate? (b) The second section of the pipe has a diameter of 4.0 cm. What are the flow speed and mass flow rate in that section?

SOLUTION

IDENTIFY and SET UP: Since the oil is incompressible, the volume flow rate has the *same* value (9.5 L/s) in both sections of pipe. The mass flow rate (the density times the volume flow rate) also has the same value in both sections. (This is just the statement that no fluid is lost or added anywhere along the pipe.) We use the volume flow rate equation, Eq. (12.11), to determine the speed v_1 in the 8.0-cm-diameter section and the continuity equation for incompressible flow, Eq. (12.10), to find the speed v_2 in the 4.0-cm-diameter section.

EXECUTE: (a) From Eq. (12.11) the volume flow rate in the first section is $dV/dt = A_1v_1$, where A_1 is the cross-sectional area of

the pipe of diameter 8.0 cm and radius 4.0 cm. Hence

$$v_1 = \frac{dV/dt}{A_1} = \frac{(9.5 \text{ L/s})(10^{-3} \text{ m}^3/\text{L})}{\pi (4.0 \times 10^{-2} \text{ m})^2} = 1.9 \text{ m/s}$$

The mass flow rate is $\rho \ dV/dt = (850 \text{ kg/m}^3)(9.5 \times 10^{-3} \text{ m}^3/\text{s}) = 8.1 \text{ kg/s}.$

(b) From the continuity equation, Eq. (12.10),

$$v_2 = \frac{A_1}{A_2}v_1 = \frac{\pi (4.0 \times 10^{-2} \text{ m})^2}{\pi (2.0 \times 10^{-2} \text{ m})^2} (1.9 \text{ m/s}) = 7.6 \text{ m/s} = 4v_1$$

The volume and mass flow rates are the same as in part (a).

EVALUATE: The second section of pipe has one-half the diameter and one-fourth the cross-sectional area of the first section. Hence the speed must be four times greater in the second section, which is just what our result shows.

Test Your Understanding of Section 12.4 A maintenance crew is working on a section of a three-lane highway, leaving only one lane open to traffic. The result is much slower traffic flow (a traffic jam). Do cars on a highway behave like (i) the molecules of an incompressible fluid or (ii) the molecules of a compressible fluid?

12.5 Bernoulli's Equation

According to the continuity equation, the speed of fluid flow can vary along the paths of the fluid. The pressure can also vary; it depends on height as in the static situation (see Section 12.2), and it also depends on the speed of flow. We can derive an important relationship called *Bernoulli's equation* that relates the pressure, flow speed, and height for flow of an ideal, incompressible fluid. Bernoulli's equation is an essential tool in analyzing plumbing systems, hydroelectric generating stations, and the flight of airplanes.

The dependence of pressure on speed follows from the continuity equation, Eq. (12.10). When an incompressible fluid flows along a flow tube with varying cross section, its speed *must* change, and so an element of fluid must have an acceleration. If the tube is horizontal, the force that causes this acceleration has to be applied by the surrounding fluid. This means that the pressure *must* be different in regions of different cross section; if it were the same everywhere, the net force on every fluid element would be zero. When a horizontal flow tube narrows and a fluid element speeds up, it must be moving toward a region of lower pressure in order to have a net forward force to accelerate it. If the elevation also changes, this causes an additional pressure difference.

Deriving Bernoulli's Equation

To derive Bernoulli's equation, we apply the work–energy theorem to the fluid in a section of a flow tube. In Fig. 12.22 we consider the element of fluid that at some initial time lies between the two cross sections *a* and *c*. The speeds at the lower and upper ends are v_1 and v_2 . In a small time interval *dt*, the fluid that is initially at *a* moves to *b*, a distance $ds_1 = v_1 dt$, and the fluid that is initially at *c* moves to *d*, a distance $ds_2 = v_2 dt$. The cross-sectional areas at the two ends are A_1 and A_2 , as shown. The fluid is incompressible; hence by the continuity equation, Eq. (12.10), the volume of fluid *dV* passing *any* cross section during time *dt* is the same. That is, $dV = A_1 ds_1 = A_2 ds_2$.

Let's compute the *work* done on this fluid element during *dt*. We assume that there is negligible internal friction in the fluid (i.e., no viscosity), so the only nongravitational forces that do work on the fluid element are due to the pressure of the surrounding fluid. The pressures at the two ends are p_1 and p_2 ; the force on the cross section at *a* is p_1A_1 , and the force at *c* is p_2A_2 . The net work *dW* done on the element by the surrounding fluid during this displacement is therefore

$$dW = p_1 A_1 \, ds_1 - p_2 A_2 \, ds_2 = (p_1 - p_2) dV \tag{12.13}$$

The second term has a negative sign because the force at c opposes the displacement of the fluid.

The work dW is due to forces other than the conservative force of gravity, so it equals the change in the total mechanical energy (kinetic energy plus gravitational potential energy) associated with the fluid element. The mechanical energy for the fluid between sections b and c does not change. At the beginning of dt the fluid between a and b has volume $A_1 ds_1$, mass $\rho A_1 ds_1$, and kinetic energy $\frac{1}{2}\rho(A_1 ds_1)v_1^2$. At the end of dt the fluid between c and d has kinetic energy $\frac{1}{2}\rho(A_2 ds_2)v_2^2$. The net change in kinetic energy dK during time dt is

$$dK = \frac{1}{2}\rho \, dV(v_2^2 - v_1^2) \tag{12.14}$$

What about the change in gravitational potential energy? At the beginning of dt, the potential energy for the mass between a and b is $dm gy_1 = \rho dV gy_1$. At

12.22 Deriving Bernoulli's equation. The net work done on a fluid element by the pressure of the surrounding fluid equals the change in the kinetic energy plus the change in the gravitational potential energy.

the end of dt, the potential energy for the mass between c and d is $dm gy_2 = \rho dV gy_2$. The net change in potential energy dU during dt is

$$dU = \rho \, dV \, g(y_2 - y_1) \tag{12.15}$$

Combining Eqs. (12.13), (12.14), and (12.15) in the energy equation dW = dK + dU, we obtain

$$(p_1 - p_2)dV = \frac{1}{2}\rho \, dV(v_2^2 - v_1^2) + \rho \, dV \, g(y_2 - y_1)$$

$$p_1 - p_2 = \frac{1}{2}\rho(v_2^2 - v_1^2) + \rho g(y_2 - y_1)$$
(12.16)

This is **Bernoulli's equation.** It states that the work done on a unit volume of fluid by the surrounding fluid is equal to the sum of the changes in kinetic and potential energies per unit volume that occur during the flow. We may also interpret Eq. (12.16) in terms of pressures. The first term on the right is the pressure difference associated with the change of speed of the fluid. The second term on the right is the additional pressure difference caused by the weight of the fluid and the difference in elevation of the two ends.

We can also express Eq. (12.16) in a more convenient form as

$$p_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$
 (Bernoulli's equation) (12.17)

The subscripts 1 and 2 refer to *any* two points along the flow tube, so we can also write

$$p + \rho gy + \frac{1}{2}\rho v^2 = \text{constant}$$
(12.18)

Note that when the fluid is *not* moving (so $v_1 = v_2 = 0$), Eq. (12.17) reduces to the pressure relationship we derived for a fluid at rest, Eq. (12.5).

CAUTION Bernoulli's principle applies only in certain situations We stress again that Bernoulli's equation is valid for only incompressible, steady flow of a fluid with no internal friction (no viscosity). It's a simple equation that's easy to use; don't let this tempt you to use it in situations in which it doesn't apply!

Problem-Solving Strategy 12.1 Bernoulli's Equation

Bernoulli's equation is derived from the work–energy theorem, so much of Problem-Solving Strategy 7.1 (Section 7.1) is applicable here.

IDENTIFY *the relevant concepts:* Bernoulli's equation is applicable to steady flow of an incompressible fluid that has no internal friction (see Section 12.6). It is generally applicable to flows through large pipes and to flows within bulk fluids (e.g., air flowing around an airplane or water flowing around a fish).

SET UP *the problem* using the following steps:

- 1. Identify the points 1 and 2 referred to in Bernoulli's equation, Eq. (12.17).
- 2. Define your coordinate system, particularly the level at which y = 0. Take the positive *y*-direction to be upward.

3. Make lists of the unknown and known quantities in Eq. (12.17). Decide which unknowns are the target variables.

EXECUTE *the solution* as follows: Write Bernoulli's equation and solve for the unknowns. You may need the continuity equation, Eq. (12.10), to get a relationship between the two speeds in terms of cross-sectional areas of pipes or containers. You may also need Eq. (12.11) to find the volume flow rate.

EVALUATE your answer: Verify that the results make physical sense. Check that you have used consistent units: In SI units, pressure is in pascals, density in kilograms per cubic meter, and speed in meters per second. Also note that the pressures must be either *all* absolute pressures or *all* gauge pressures.

Example 12.7 Water pressure in the home

Water enters a house (Fig. 12.23) through a pipe with an inside diameter of 2.0 cm at an absolute pressure of 4.0×10^5 Pa (about 4 atm). A 1.0-cm-diameter pipe leads to the second-floor bathroom 5.0 m above. When the flow speed at the inlet pipe is 1.5 m/s, find the flow speed, pressure, and volume flow rate in the bathroom.

SOLUTION

IDENTIFY and SET UP: We assume that the water flows at a steady rate. Water is effectively incompressible, so we can use the continuity equation. It's reasonable to ignore internal friction because the pipe has a relatively large diameter, so we can also use Bernoulli's equation. Let points 1 and 2 be at the inlet pipe and at the bathroom, respectively. We are given the pipe diameters at points 1 and 2, from which we calculate the areas A_1 and A_2 , as well as the speed $v_1 = 1.5$ m/s and pressure $p_1 = 4.0 \times 10^5$ Pa at the inlet pipe. We take $y_1 = 0$ and $y_2 = 5.0$ m. We find the speed v_2 using the continuity equation and the pressure p_2 using Bernoulli's equation. Knowing v_2 , we calculate the volume flow rate v_2A_2 .

EXECUTE: From the continuity equation, Eq. (12.10),

$$v_2 = \frac{A_1}{A_2} v_1 = \frac{\pi (1.0 \text{ cm})^2}{\pi (0.50 \text{ cm})^2} (1.5 \text{ m/s}) = 6.0 \text{ m/s}$$

From Bernoulli's equation, Eq. (12.16),

$$p_{2} = p_{1} - \frac{1}{2}\rho(v_{2}^{2} - v_{1}^{2}) - \rho g(y_{2} - y_{1})$$

= 4.0 × 10⁵ Pa
- $\frac{1}{2}(1.0 \times 10^{3} \text{ kg/m}^{3})(36 \text{ m}^{2}/\text{s}^{2} - 2.25 \text{ m}^{2}/\text{s}^{2})$
- $(1.0 \times 10^{3} \text{ kg/m}^{3})(9.8 \text{ m/s}^{2})(5.0 \text{ m})$
= 4.0 × 10⁵ Pa - 0.17 × 10⁵ Pa - 0.49 × 10⁵ Pa
= 3.3 × 10⁵ Pa = 3.3 atm = 48 \text{ lb/in.}^{2}

12.23 What is the water pressure in the second-story bathroom of this house?

The volume flow rate is

$$\frac{dV}{dt} = A_2 v_2 = \pi (0.50 \times 10^{-2} \text{ m})^2 (6.0 \text{ m/s})$$
$$= 4.7 \times 10^{-4} \text{ m}^3/\text{s} = 0.47 \text{ L/s}$$

EVALUATE: This is a reasonable flow rate for a bathroom faucet or shower. Note that if the water is turned off, v_1 and v_2 are both zero, the term $\frac{1}{2}\rho(v_2^2 - v_1^2)$ in Bernoulli's equation vanishes, and p_2 rises from 3.3×10^5 Pa to 3.5×10^5 Pa.

Example 12.8 Speed of efflux

Figure 12.24 shows a gasoline storage tank with cross-sectional area A_1 , filled to a depth h. The space above the gasoline contains air at pressure p_0 , and the gasoline flows out the bottom of the tank through a short pipe with cross-sectional area A_2 . Derive expressions for the flow speed in the pipe and the volume flow rate.

12.24 Calculating the speed of efflux for gasoline flowing out the bottom of a storage tank.

SOLUTION

IDENTIFY and SET UP: We consider the entire volume of moving liquid as a single flow tube of an incompressible fluid with negligible internal friction. Hence, we can use Bernoulli's equation. Points 1 and 2 are at the surface of the gasoline and at the exit pipe, respectively. At point 1 the pressure is p_0 , which we assume to be fixed; at point 2 it is atmospheric pressure p_{atm} . We take y = 0 at the exit pipe, so $y_1 = h$ and $y_2 = 0$. Because A_1 is very much larger than A_2 , the upper surface of the gasoline will drop very slowly and we can regard v_1 as essentially equal to zero. We find v_2 from Eq. (12.17) and the volume flow rate from Eq. (12.11).

EXECUTE: We apply Bernoulli's equation to points 1 and 2:

$$p_0 + \frac{1}{2}\rho v_1^2 + \rho gh = p_{\text{atm}} + \frac{1}{2}\rho v_2^2 + \rho g(0)$$
$$v_2^2 = v_1^2 + 2\left(\frac{p_0 - p_{\text{atm}}}{\rho}\right) + 2gh$$

Continued

Using $v_1 = 0$, we find

$$v_2 = \sqrt{2\left(\frac{p_0 - p_{\rm atm}}{\rho}\right) + 2gh}$$

From Eq. (12.11), the volume flow rate is $dV/dt = v_2A_2$.

EVALUATE: The speed v_2 , sometimes called the *speed of efflux*, depends on both the pressure difference $(p_0 - p_{\text{atm}})$ and the height *h* of the liquid level in the tank. If the top of the tank is vented to the atmosphere, $p_0 = p_{\text{atm}}$ and $p_0 - p_{\text{atm}} = 0$. Then

$$v_2 = \sqrt{2gh}$$

Example 12.9 The Venturi meter

Figure 12.25 shows a *Venturi meter*, used to measure flow speed in a pipe. Derive an expression for the flow speed v_1 in terms of the cross-sectional areas A_1 and A_2 and the difference in height *h* of the liquid levels in the two vertical tubes.

SOLUTION

IDENTIFY and SET UP: The flow is steady, and we assume the fluid is incompressible and has negligible internal friction. Hence we can use Bernoulli's equation. We apply that equation to the wide part (point 1) and narrow part (point 2, the *throat*) of the pipe. Equation (12.6) relates h to the pressure difference $p_1 - p_2$.

EXECUTE: Points 1 and 2 have the same vertical coordinate $y_1 = y_2$, so Eq. (12.17) says

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

From the continuity equation, $v_2 = (A_1/A_2)v_1$. Substituting this and rearranging, we get

$$p_1 - p_2 = \frac{1}{2}\rho v_1^2 \left[\left(\frac{A_1}{A_2} \right)^2 - 1 \right]$$

Conceptual Example 12.10 Lift on an airplane wing

Figure 12.26a shows flow lines around a cross section of an airplane wing. The flow lines crowd together above the wing, corresponding to increased flow speed and reduced pressure, just as in the Venturi throat in Example 12.9. Hence the downward force of the air on the top side of the wing is less than the upward force of the air on the underside of the wing, and there is a net upward force or *lift*. Lift is not simply due to the impulse of air striking the underside of the wing; in fact, the reduced pressure on the upper wing surface makes the greatest contribution to the lift. (This simplified discussion ignores the formation of vortices.)

We can also understand the lift force on the basis of momentum changes. The vector diagram in Fig. 12.26a shows that there is a net *downward* change in the vertical component of momentum of the air flowing past the wing, corresponding to the downward force the wing exerts on the air. The reaction force *on* the wing is *upward*, as we concluded above.

Similar flow patterns and lift forces are found in the vicinity of any humped object in a wind. A moderate wind makes an umbrella That is, the speed of efflux from an opening at a distance h below the top surface of the liquid is the *same* as the speed a body would acquire in falling freely through a height h. This result is called *Torricelli's theorem*. It is valid not only for an opening in the bottom of a container, but also for a hole in a side wall at a depth h below the surface. In this case the volume flow rate is

$$\frac{dV}{dt} = A_2 \sqrt{2gh}$$

12.25 The Venturi meter.

From Eq. (12.6), the pressure difference $p_1 - p_2$ is also equal to ρgh . Substituting this and solving for v_1 , we get

$$v_1 = \sqrt{\frac{2gh}{(A_1/A_2)^2 - 1}}$$

EVALUATE: Because A_1 is greater than A_2 , v_2 is greater than v_1 and the pressure p_2 in the throat is *less* than p_1 . Those pressure differences produce a net force to the right that makes the fluid speed up as it enters the throat, and a net force to the left that slows it as it leaves.

"float"; a strong wind can turn it inside out. At high speed, lift can reduce traction on a car's tires; a "spoiler" at the car's tail, shaped like an upside-down wing, provides a compensating downward force.

CAUTION A misconception about wings Some discussions of lift claim that air travels faster over the top of a wing because "it has farther to travel." This claim assumes that air molecules that part company at the front of the wing, one traveling over the wing and one under it, must meet again at the wing's trailing edge. Not so! Figure 12.26b shows a computer simulation of parcels of air flowing around an airplane wing. Parcels that are adjacent at the front of the wing do *not* meet at the trailing edge; the flow over the top of the wing is much faster than if the parcels had to meet. In accordance with Bernoulli's equation, this faster speed means that there is even lower pressure above the wing (and hence greater lift) than the "farther-to-travel" claim would suggest.

12.26 Flow around an airplane wing.

(a) Flow lines around an airplane wing

Flow lines are crowded together above the wing, so flow speed is higher there and pressure is lower.

Test Your Understanding of Section 12.5 Which is the most accurate statement of Bernoulli's principle? (i) Fast-moving air causes lower pressure; (ii) lower pressure causes fast-moving air; (iii) both (i) and (ii) are equally accurate.

12.6 Viscosity and Turbulence

In our discussion of fluid flow we assumed that the fluid had no internal friction and that the flow was laminar. While these assumptions are often quite valid, in many important physical situations the effects of viscosity (internal friction) and turbulence (nonlaminar flow) are extremely important. Let's take a brief look at some of these situations.

Viscosity

Viscosity is internal friction in a fluid. Viscous forces oppose the motion of one portion of a fluid relative to another. Viscosity is the reason it takes effort to paddle a canoe through calm water, but it is also the reason the paddle works. Viscous effects are important in the flow of fluids in pipes, the flow of blood, the lubrication of engine parts, and many other situations.

Fluids that flow readily, such as water or gasoline, have smaller viscosities than do "thick" liquids such as honey or motor oil. Viscosities of all fluids are strongly temperature dependent, increasing for gases and decreasing for liquids as the temperature increases (Fig. 12.27). Oils for engine lubrication must flow equally well in cold and warm conditions, and so are designed to have as *little* temperature variation of viscosity as possible.

A viscous fluid always tends to cling to a solid surface in contact with it. There is always a thin *boundary layer* of fluid near the surface, in which the fluid is nearly at rest with respect to the surface. That's why dust particles can cling to a fan blade even when it is rotating rapidly, and why you can't get all the dirt off your car by just squirting a hose at it.

Viscosity has important effects on the flow of liquids through pipes, including the flow of blood in the circulatory system. First think about a fluid with zero viscosity so that we can apply Bernoulli's equation, Eq. (12.17). If the two ends of a long cylindrical pipe are at the same height $(y_1 = y_2)$ and the flow speed is the same at both ends (so $v_1 = v_2$), Bernoulli's equation tells us that the pressure is the same at both ends of the pipe. But this result simply isn't true if we take viscosity into account. To see why, consider Fig. 12.28, which shows the flow-speed profile for laminar flow of a viscous fluid in a long cylindrical pipe. Due to viscosity, the speed is *zero* at the pipe walls (to which the fluid clings) and is greatest at the center of the pipe. The motion is like a lot of concentric tubes sliding relative to

(b) Computer simulation of air parcels flowing around a wing, showing that air moves much faster over the top than over the bottom.

12.27 Lava is an example of a viscous fluid. The viscosity decreases with increasing temperature: The hotter the lava, the more easily it can flow.

12.28 Velocity profile for a viscous fluid in a cylindrical pipe.

Application Listening for Turbulent Flow

Normal blood flow in the human aorta is laminar. but a small disturbance such as a heart pathology can cause the flow to become turbulent. Turbulence makes noise, which is why listening to blood flow with a stethoscope is a useful diagnostic technique.

one another, with the central tube moving fastest and the outermost tube at rest. Viscous forces between the tubes oppose this sliding, so to keep the flow going we must apply a greater pressure at the back of the flow than at the front. That's why you have to keep squeezing a tube of toothpaste or a packet of ketchup (both viscous fluids) to keep the fluid coming out of its container. Your fingers provide a pressure at the back of the flow that is far greater than the atmospheric pressure at the front of the flow.

The pressure difference required to sustain a given volume flow rate through a cylindrical pipe of length L and radius R turns out to be proportional to L/R^4 . If we decrease R by one-half, the required pressure increases by $2^4 = 16$; decreasing R by a factor of 0.90 (a 10% reduction) increases the required pressure difference by a factor of $(1/0.90)^4 = 1.52$ (a 52% increase). This simple relationship explains the connection between a high-cholesterol diet (which tends to narrow the arteries) and high blood pressure. Due to the R^4 dependence, even a small narrowing of the arteries can result in substantially elevated blood pressure and added strain on the heart muscle.

Turbulence

When the speed of a flowing fluid exceeds a certain critical value, the flow is no longer laminar. Instead, the flow pattern becomes extremely irregular and complex, and it changes continuously with time; there is no steady-state pattern. This irregular, chaotic flow is called turbulence. Figure 12.20 shows the contrast between laminar and turbulent flow for smoke rising in air. Bernoulli's equation is *not* applicable to regions where there is turbulence because the flow is not steady.

Whether a flow is laminar or turbulent depends in part on the fluid's viscosity. The greater the viscosity, the greater the tendency for the fluid to flow in sheets or lamina and the more likely the flow is to be laminar. (When we discussed Bernoulli's equation in Section 12.5, we assumed that the flow was laminar and that the fluid had zero viscosity. In fact, a *little* viscosity is needed to ensure that the flow is laminar.)

For a fluid of a given viscosity, flow speed is a determining factor for the onset of turbulence. A flow pattern that is stable at low speeds suddenly becomes unstable when a critical speed is reached. Irregularities in the flow pattern can be caused by roughness in the pipe wall, variations in the density of the fluid, and many other factors. At low flow speeds, these disturbances damp out; the flow pattern is *stable* and tends to maintain its laminar nature (Fig. 12.29a). When the critical speed is reached, however, the flow pattern becomes unstable. The disturbances no longer damp out but grow until they destroy the entire laminar-flow pattern (Fig. 12.29b).

12.29 The flow of water from a faucet is (a) laminar at low speeds but (b) turbulent at sufficiently high speeds.

Conceptual Example 12.11 The curve ball

Does a curve ball really curve? Yes, it certainly does, and the reason is turbulence. Figure 12.30a shows a nonspinning ball moving through the air from left to right. The flow lines show that to an observer moving with the ball, the air stream appears to move from right to left. Because of the high speeds that are ordinarily involved (near 35 m/s, or 75 mi/h), there is a region of turbulent flow behind the ball.

Figure 12.30b shows a spinning ball with "top spin." Layers of air near the ball's surface are pulled around in the direction of the spin by friction between the ball and air and by the air's internal friction (viscosity). Hence air moves relative to the ball's surface more slowly at the top of the ball than at the bottom, and turbulence occurs farther forward on the top side than on the bottom. This asymmetry causes a pressure difference; the average pressure at the top of the ball is now greater than that at the bottom. As Fig. 12.30c shows, the resulting net force deflects the ball downward. "Top spin" is used in tennis to keep a fast serve in the court (Fig. 12.30d).

In baseball, a curve ball spins about a nearly *vertical* axis and the resulting deflection is sideways. In that case, Fig. 12.30c is a top view of the situation. A curve ball thrown by a left-handed pitcher spins as shown in Fig. 12.30e and will curve toward a right-handed batter, making it harder to hit.

A similar effect occurs with golf balls, which acquire "back spin" from impact with the grooved, slanted club face. Figure 12.30f shows the backspin of a golf ball just after impact. The resulting pressure difference between the top and bottom of the ball causes a *lift* force that keeps the ball in the air longer than would be possible without spin. A well-hit drive appears, from the tee, to "float" or even curve upward during the initial portion of its flight. This is a real effect, not an illusion. The dimples on the golf ball play an essential role; the viscosity of air gives a dimpled ball a much longer trajectory than an undimpled one with the same initial velocity and spin.

12.30 (a)–(e) Analyzing the motion of a spinning ball through the air. (f) Stroboscopic photograph of a golf ball being struck by a club. The picture was taken at 1000 flashes per second. The ball rotates about once in eight pictures, corresponding to an angular speed of 125 rev/s, or 7500 rpm.

Test Your Understanding of Section 12.6 How much more thumb pressure must a nurse use to administer an injection with a hypodermic needle of inside diameter 0.30 mm compared to one with inside diameter 0.60 mm? Assume that the two needles have the same length and that the volume flow rate is the same in both cases. (i) twice as much; (ii) 4 times as much; (iii) 8 times as much; (iv) 16 times as much; (v) 32 times as much.

SUMMARY CHAPTER

Density and pressure: Density is mass per unit volume. If a mass m of homogeneous material has volume V, its density ρ is the ratio m/V. Specific gravity is the ratio of the density of a material to the density of water. (See Example 12.1.)

Pressure is normal force per unit area. Pascal's law states that pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid. Absolute pressure is the total pressure in a fluid; gauge pressure is the difference between absolute pressure and atmospheric pressure. The SI unit of pressure is the pascal (Pa): 1 Pa = 1 N/m^2 . (See Example 12.2.)

Pressures in a fluid at rest: The pressure difference between points 1 and 2 in a static fluid of uniform density ρ (an incompressible fluid) is proportional to the difference between the elevations y_1 and y_2 . If the pressure at the surface of an incompressible liquid at rest is p_0 , then the pressure at a depth h is greater by an amount ρgh . (See Examples 12.3 and 12.4.)

Buoyancy: Archimedes's principle states that when a body is immersed in a fluid, the fluid exerts an upward buoyant force on the body equal to the weight of the fluid that the body displaces. (See Example 12.5.)

$$\rho = \frac{m}{V}$$
$$p = \frac{dF_{\perp}}{dA}$$

Fluid, density

(12.5)

(12.6)

(12.10)

(12.11)

Fluid flow: An ideal fluid is incompressible and has no viscosity (no internal friction). A flow line is the path of a fluid particle; a streamline is a curve tangent at each point to the velocity vector at that point. A flow tube is a tube bounded at its sides by flow lines. In laminar flow, layers of fluid slide smoothly past each other. In turbulent flow, there is great disorder and a constantly changing flow pattern.

Conservation of mass in an incompressible fluid is expressed by the continuity equation, which relates the flow speeds v_1 and v_2 for two cross sections A_1 and A_2 in a flow tube. The product Av equals the volume flow rate, dV/dt, the rate at which volume crosses a section of the tube. (See Example 12.6.)

Bernoulli's equation relates the pressure p, flow speed v, and elevation y for any two points, assuming steady flow in an ideal fluid. (See Examples 12.7–12.10.)

 $A_1v_1 = A_2v_2$ (continuity equation, incompressible fluid)

 $p_2 - p_1 = -\rho g(y_2 - y_1)$

(pressure in a fluid

of uniform density)

(pressure in a fluid

of uniform density)

 $p = p_0 + \rho g h$

$$\frac{dV}{dt} = Av$$
(volume flow rate)

(

$$p_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

(Bernoulli's equation) (12.17)

BRIDGING PROBLEM How Long to Drain?

A large cylindrical tank with diameter D is open to the air at the top. The tank contains water to a height H. A small circular hole with diameter d, where d is very much less than D, is then opened at the bottom of the tank. Ignore any effects of viscosity. (a) Find y, the height of water in the tank a time t after the hole is opened, as a function of t. (b) How long does it take to drain the tank completely? (c) If you double the initial height of water in the tank, by what factor does the time to drain the tank increase?

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution.

IDENTIFY and **SET UP**

- 1. Draw a sketch of the situation that shows all of the relevant dimensions.
- 2. Make a list of the unknown quantities, and decide which of these are the target variables.

3. What is the speed at which water flows out of the bottom of the tank? How is this related to the volume flow rate of water out of the tank? How is the volume flow rate related to the rate of change of *y*?

EXECUTE

- 4. Use your results from step 3 to write an equation for dy/dt.
- 5. Your result from step 4 is a relatively simple differential equation. With your knowledge of calculus, you can integrate it to find *y* as a function of *t*. (*Hint:* Once you've done the integration, you'll still have to do a little algebra.)
- 6. Use your result from step 5 to find the time when the tank is empty. How does your result depend on the initial height *H*?

EVALUATE

7. Check whether your answers are reasonable. A good check is to draw a graph of y versus t. According to your graph, what is the algebraic sign of dy/dt at different times? Does this make sense?

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

MP

DISCUSSION QUESTIONS

Q12.1 A cube of oak wood with very smooth faces normally floats in water. Suppose you submerge it completely and press one face flat against the bottom of a tank so that no water is under that face. Will the block float to the surface? Is there a buoyant force on it? Explain.

Q12.2 A rubber hose is attached to a funnel, and the free end is bent around to point upward. When water is poured into the funnel, it rises in the hose to the same level as in the funnel, even though the funnel has a lot more water in it than the hose does. Why? What supports the extra weight of the water in the funnel?

Q12.3 Comparing Example 12.1 (Section 12.1) and Example 12.2 (Section 12.2), it seems that 700 N of air is exerting a downward force of 2.0×10^6 N on the floor. How is this possible?

Q12.4 Equation (12.7) shows that an area ratio of 100 to 1 can give 100 times more output force than input force. Doesn't this violate conservation of energy? Explain.

Q12.5 You have probably noticed that the lower the tire pressure, the larger the contact area between the tire and the road. Why?

Q12.6 In hot-air ballooning, a large balloon is filled with air heated by a gas burner at the bottom. Why must the air be heated? How does the balloonist control ascent and descent?

Q12.7 In describing the size of a large ship, one uses such expressions as "it displaces 20,000 tons." What does this mean? Can the weight of the ship be obtained from this information?

Q12.8 You drop a solid sphere of aluminum in a bucket of water that sits on the ground. The buoyant force equals the weight of water displaced; this is less than the weight of the sphere, so the sphere sinks to the bottom. If you take the bucket with you on an elevator that accelerates upward, the apparent weight of the water increases and the buoyant force on the sphere increases. Could the

acceleration of the elevator be great enough to make the sphere pop up out of the water? Explain.

Q12.9 A rigid, lighter-than-air dirigible filled with helium cannot continue to rise indefinitely. Why? What determines the maximum height it can attain?

Q12.10 Air pressure decreases with increasing altitude. So why is air near the surface not continuously drawn upward toward the lower-pressure regions above?

Q12.11 The purity of gold can be tested by weighing it in air and in water. How? Do you think you could get away with making a fake gold brick by gold-plating some cheaper material?

Q12.12 During the Great Mississippi Flood of 1993, the levees in St. Louis tended to rupture first at the bottom. Why?

Q12.13 A cargo ship travels from the Atlantic Ocean (salt water) to Lake Ontario (freshwater) via the St. Lawrence River. The ship rides several centimeters lower in the water in Lake Ontario than it did in the ocean. Explain why.

Q12.14 You push a piece of wood under the surface of a swimming pool. After it is completely submerged, you keep pushing it deeper and deeper. As you do this, what will happen to the buoyant force on it? Will the force keep increasing, stay the same, or decrease? Why?

Q12.15 An old question is "Which weighs more, a pound of feathers or a pound of lead?" If the weight in pounds is the gravitational force, will a pound of feathers balance a pound of lead on opposite pans of an equal-arm balance? Explain, taking into account buoyant forces.

Q12.16 Suppose the door of a room makes an airtight but frictionless fit in its frame. Do you think you could open the door if the air pressure on one side were standard atmospheric pressure and the air pressure on the other side differed from standard by 1%? Explain. **Q12.17** At a certain depth in an incompressible liquid, the absolute pressure is p. At twice this depth, will the absolute pressure be equal to 2p, greater than 2p, or less than 2p? Justify your answer.

Q12.18 A piece of iron is glued to the top of a block of wood. When the block is placed in a bucket of water with the iron on top, the block floats. The block is now turned over so that the iron is submerged beneath the wood. Does the block float or sink? Does the water level in the bucket rise, drop, or stay the same? Explain your answers.

Q12.19 You take an empty glass jar and push it into a tank of water with the open mouth of the jar downward, so that the air inside the jar is trapped and cannot get out. If you push the jar deeper into the water, does the buoyant force on the jar stay the same? If not, does it increase or decrease? Explain your answer.

Q12.20 You are floating in a canoe in the middle of a swimming pool. Your friend is at the edge of the pool, carefully noting the level of the water on the side of the pool. You have a bowling ball with you in the canoe. If you carefully drop the bowling ball over the side of the canoe and it sinks to the bottom of the pool, does the water level in the pool rise or fall?

Q12.21 You are floating in a canoe in the middle of a swimming pool. A large bird flies up and lights on your shoulder. Does the water level in the pool rise or fall?

Q12.22 At a certain depth in the incompressible ocean the gauge pressure is p_g . At three times this depth, will the gauge pressure be greater than $3p_g$, equal to $3p_g$, or less than $3p_g$? Justify your answer. **Q12.23** An ice cube floats in a glass of water. When the ice melts, will the water level in the glass rise, fall, or remain unchanged? Explain.

Q12.24 You are told, "Bernoulli's equation tells us that where there is higher fluid speed, there is lower fluid pressure, and vice versa." Is this statement always true, even for an idealized fluid? Explain.

Q12.25 If the velocity at each point in space in steady-state fluid flow is constant, how can a fluid particle accelerate?

Q12.26 In a store-window vacuum cleaner display, a table-tennis ball is suspended in midair in a jet of air blown from the outlet hose of a tank-type vacuum cleaner. The ball bounces around a little but always moves back toward the center of the jet, even if the jet is tilted from the vertical. How does this behavior illustrate Bernoulli's equation?

Q12.27 A tornado consists of a rapidly whirling air vortex. Why is the pressure always much lower in the center than at the outside? How does this condition account for the destructive power of a tornado?

Q12.28 Airports at high elevations have longer runways for takeoffs and landings than do airports at sea level. One reason is that aircraft engines develop less power in the thin air well above sea level. What is another reason?

Q12.29 When a smooth-flowing stream of water comes out of a faucet, it narrows as it falls. Explain why this happens.

Q12.30 Identical-size lead and aluminum cubes are suspended at different depths by two wires in a large vat of water (Fig. Q12.30). (a) Which cube experiences a greater buoyant force? (b) For which cube is the tension in the wire greater? (c) Which cube experiences a

greater force on its lower face? (d) For which cube is the difference in pressure between the upper and lower faces greater?

EXERCISES

Section 12.1 Density

12.1 •• On a part-time job, you are asked to bring a cylindrical iron rod of length 85.8 cm and diameter 2.85 cm from a storage room to a machinist. Will you need a cart? (To answer, calculate the weight of the rod.)

12.2 •• A cube 5.0 cm on each side is made of a metal alloy. After you drill a cylindrical hole 2.0 cm in diameter all the way through and perpendicular to one face, you find that the cube weighs 7.50 N. (a) What is the density of this metal? (b) What did the cube weigh before you drilled the hole in it?

12.3 • You purchase a rectangular piece of metal that has dimensions $5.0 \times 15.0 \times 30.0$ mm and mass 0.0158 kg. The seller tells you that the metal is gold. To check this, you compute the average density of the piece. What value do you get? Were you cheated?

12.4 •• **Gold Brick.** You win the lottery and decide to impress your friends by exhibiting a million-dollar cube of gold. At the time, gold is selling for \$426.60 per troy ounce, and 1.0000 troy ounce equals 31.1035 g. How tall would your million-dollar cube be?

12.5 •• A uniform lead sphere and a uniform aluminum sphere have the same mass. What is the ratio of the radius of the aluminum sphere to the radius of the lead sphere?

12.6 • (a) What is the average density of the sun? (b) What is the average density of a neutron star that has the same mass as the sun but a radius of only 20.0 km?

12.7 •• A hollow cylindrical copper pipe is 1.50 m long and has an outside diameter of 3.50 cm and an inside diameter of 2.50 cm. How much does it weigh?

Section 12.2 Pressure in a Fluid

12.8 •• **Black Smokers.** Black smokers are hot volcanic vents that emit smoke deep in the ocean floor. Many of them teem with exotic creatures, and some biologists think that life on earth may have begun around such vents. The vents range in depth from about 1500 m to 3200 m below the surface. What is the gauge pressure at a 3200-m deep vent, assuming that the density of water does not vary? Express your answer in pascals and atmospheres.

12.9 •• Oceans on Mars. Scientists have found evidence that Mars may once have had an ocean 0.500 km deep. The acceleration due to gravity on Mars is 3.71 m/s^2 . (a) What would be the gauge pressure at the bottom of such an ocean, assuming it was freshwater? (b) To what depth would you need to go in the earth's ocean to experience the same gauge pressure?

12.10 •• BIO (a) Calculate the difference in blood pressure between the feet and top of the head for a person who is 1.65 m tall. (b) Consider a cylindrical segment of a blood vessel 2.00 cm long and 1.50 mm in diameter. What *additional* outward force would such a vessel need to withstand in the person's feet compared to a similar vessel in her head?

12.11 • **BIO** In intravenous feeding, a needle is inserted in a vein in the patient's arm and a tube leads from the needle to a reservoir of fluid (density 1050 kg/m^3) located at height *h* above the arm. The top of the reservoir is open to the air. If the gauge pressure inside the vein is 5980 Pa, what is the minimum value of *h* that allows fluid to enter the vein? Assume the needle diameter is large enough that you can ignore the viscosity (see Section 12.6) of the fluid.

12.12 • A barrel contains a 0.120-m layer of oil floating on water that is 0.250 m deep. The density of the oil is 600 kg/m³. (a) What is the gauge pressure at the oil–water interface? (b) What is the gauge pressure at the bottom of the barrel?

12.13 • **BIO** Standing on Your Head. (a) What is the *difference* between the pressure of the blood in your brain when you stand on your head and the pressure when you stand on your feet? Assume that you are 1.85 m tall. The density of blood is 1060 kg/m^3 . (b) What effect does the increased pressure have on the blood vessels in your brain?

12.14 •• You are designing a diving bell to withstand the pressure of seawater at a depth of 250 m. (a) What is the gauge pressure at this depth? (You can ignore changes in the density of the water with depth.) (b) At this depth, what is the net force due to the water outside and the air inside the bell on a circular glass window 30.0 cm in diameter if the pressure inside the diving bell equals the pressure at the surface of the water? (You can ignore the small variation of pressure over the surface of the window.)

12.15 •• BIO Ear Damage from Diving. If the force on the tympanic membrane (eardrum) increases by about 1.5 N above the force from atmospheric pressure, the membrane can be damaged. When you go scuba diving in the ocean, below what depth could damage to your eardrum start to occur? The eardrum is typically 8.2 mm in diameter. (Consult Table 12.1.)

12.16 •• The liquid in the open-tube manometer in Fig. 12.8a is mercury, $y_1 = 3.00$ cm, and $y_2 = 7.00$ cm. Atmospheric pressure is 980 millibars. (a) What is the absolute pressure at the bottom of the U-shaped tube? (b) What is the absolute pressure in the open tube at a depth of 4.00 cm below the free surface? (c) What is the absolute pressure of the gas in the container? (d) What is the gauge pressure of the gas in pascals?

12.17 • **BIO** There is a maximum depth at which a diver can breathe through a snorkel tube (Fig. E12.17) because as the depth increases, so does the pressure difference, which tends to collapse the diver's lungs. Since the snorkel connects the air in the lungs to the atmosphere at the surface, the pressure inside the lungs is atmospheric pressure. What is the external-internal pressure difference when the diver's lungs are at a depth of 6.1 m (about 20 ft)? Assume that the diver is in freshwater. (A scuba diver breathing from compressed air tanks can operate at greater depths than can a snorkeler, since the pressure of the air inside the scuba diver's

lungs increases to match the external pressure of the water.)

12.18 •• A tall cylinder with a cross-sectional area 12.0 cm^2 is partially filled with mercury; the surface of the mercury is 5.00 cm above the bottom of the cylinder. Water is slowly poured in on top of the mercury, and the two fluids don't mix. What volume of water must be added to double the gauge pressure at the bottom of the cylinder?

12.19 •• An electrical short cuts off all power to a submersible diving vehicle when it is 30 m below the surface of the ocean. The crew must push out a hatch of area 0.75 m^2 and weight 300 N on the bottom to escape. If the pressure inside is 1.0 atm, what downward force must the crew exert on the hatch to open it?

12.20 •• A closed container is partially filled with water. Initially, the air above the water is at atmospheric pressure $(1.01 \times 10^5 \text{ Pa})$

and the gauge pressure at the bottom of the water is 2500 Pa. Then additional air is pumped in, increasing the pressure of the air above the water by 1500 Pa. (a) What is the gauge pressure at the bottom of the water? (b) By how much must the water level in the container be reduced, by drawing some water out through a valve at the bottom of the container, to return the gauge pressure at the bottom of the water to its original value of 2500 Pa? The pressure of the air above the water is maintained at 1500 Pa above atmospheric pressure.

12.21 •• A cylindrical disk of wood weighing 45.0 N and having a diameter of 30.0 cm floats on a cylinder of oil of density 0.850 g/cm^3 (Fig. E12.21). The cylinder of oil is 75.0 cm deep and has a diameter the same as that of the wood. (a) What is the gauge pressure at the top of the oil column? (b) Suppose now that someone puts a weight of 83.0 N on top of the wood, but no oil seeps around the edge of the wood. What is the change in pressure at (i) the bottom of the oil and (ii) halfway down in the oil?

12.22 •• Exploring Venus.

The surface pressure on Venus is 92 atm, and the acceleration due to gravity there is 0.894*g*. In a future exploratory mission, an upright cylindrical tank of benzene is sealed at the top but still pressurized at 92 atm just above the benzene. The tank has a diameter of 1.72 m, and the benzene column is 11.50 m tall. Ignore any effects due to the very high temperature on Venus. (a) What total force is exerted on the inside surface of the bottom of the tank? (b) What force does the Venusian atmosphere exert on the outside surface of the atmosphere exert on the vertical walls of the tank?

12.23 •• Hydraulic Lift I. For the hydraulic lift shown in Fig. 12.7, what must be the ratio of the diameter of the vessel at the car to the diameter of the vessel where the force F_1 is applied so that a 1520-kg car can be lifted with a force F_1 of just 125 N?

12.24 • Hydraulic Lift II. The piston of a hydraulic automobile lift is 0.30 m in diameter. What gauge pressure, in pascals, is required to lift a car with a mass of 1200 kg? Also express this pressure in atmospheres.

Section 12.3 Buoyancy

12.25 • A 950-kg cylindrical can buoy floats vertically in salt water. The diameter of the buoy is 0.900 m. Calculate the additional distance the buoy will sink when a 70.0-kg man stands on top of it. **12.26** • A slab of ice floats on a freshwater lake. What minimum volume must the slab have for a 45.0-kg woman to be able to stand on it without getting her feet wet?

12.27 •• An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in the cord is 11.20 N. Find the total volume and the density of the sample.

12.28 •• You are preparing some apparatus for a visit to a newly discovered planet Caasi having oceans of glycerine and a surface acceleration due to gravity of 4.15 m/s^2 . If your apparatus floats in the oceans on earth with 25.0% of its volume

Figure **E12.17**

submerged, what percentage will be submerged in the glycerine oceans of Caasi?

12.29 •• An object of average density ρ floats at the surface of a fluid of density ρ_{fluid} . (a) How must the two densities be related? (b) In view of the answer to part (a), how can steel ships float in water? (c) In terms of ρ and ρ_{fluid} , what fraction of the object is submerged and what fraction is above the fluid? Check that your answers give the correct limiting behavior as $\rho \rightarrow \rho_{\text{fluid}}$ and as $\rho \rightarrow 0$. (d) While on board your yacht, your cousin Throckmorton cuts a rectangular piece (dimensions $5.0 \times 4.0 \times 3.0$ cm) out of a life preserver and throws it into the ocean. The piece has a mass of 42 g. As it floats in the ocean, what percentage of its volume is above the surface?

12.30 • A hollow plastic sphere is held below the surface of a freshwater lake by a cord anchored to the bottom of the lake. The sphere has a volume of 0.650 m³ and the tension in the cord is 900 N. (a) Calculate the buoyant force exerted by the water on the sphere. (b) What is the mass of the sphere? (c) The cord breaks and the sphere rises to the surface. When the sphere comes to rest, what fraction of its volume will be submerged?

12.31 •• A cubical block of wood, 10.0 cm on a side, floats at the interface between oil and water with its lower surface 1.50 cm below the interface (Fig. E12.31). The density of the oil is 790 kg/m³. (a) What is the gauge pressure at the upper face of the block? (b) What is the gauge pressure at the lower face of the block? (c) What are the mass and density of the block?

12.32 • A solid aluminum ingot weighs 89 N in air. (a) What is its volume? (b) The ingot is suspended from a rope and totally immersed in water. What is the tension in the rope (the *apparent* weight of the ingot in water)?

12.33 •• A rock is suspended by a light string. When the rock is in air, the tension in the string is 39.2 N. When the rock is totally immersed in water, the tension is 28.4 N. When the rock is totally immersed in an unknown liquid, the tension is 18.6 N. What is the density of the unknown liquid?

Section 12.4 Fluid Flow

12.34 •• Water runs into a fountain, filling all the pipes, at a steady rate of $0.750 \text{ m}^3/\text{s}$. (a) How fast will it shoot out of a hole 4.50 cm in diameter? (b) At what speed will it shoot out if the diameter of the hole is three times as large?

12.35 •• A shower head has 20 circular openings, each with radius 1.0 mm. The shower head is connected to a pipe with radius 0.80 cm. If the speed of water in the pipe is 3.0 m/s, what is its speed as it exits the shower-head openings?

12.36 • Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.070 m^2 , and the magnitude of the fluid velocity is 3.50 m/s. (a) What is the fluid speed at points in the pipe where the cross-sectional area is (a) 0.105 m^2 and (b) 0.047 m^2 ? (c) Calculate the volume of water discharged from the open end of the pipe in 1.00 hour.

12.37 • Water is flowing in a pipe with a circular cross section but with varying cross-sectional area, and at all points the water completely fills the pipe. (a) At one point in the pipe the radius is 0.150 m. What is the speed of the water at this point if water is flowing into this pipe at a steady rate of $1.20 \text{ m}^3/\text{s}$? (b) At a second point in the

pipe the water speed is 3.80 m/s. What is the radius of the pipe at this point?

12.38 • Home Repair. You need to extend a 2.50-inch-diameter pipe, but you have only a 1.00-inch-diameter pipe on hand. You make a fitting to connect these pipes end to end. If the water is flowing at 6.00 cm/s in the wide pipe, how fast will it be flowing through the narrow one?

12.39 • At a point where an irrigation canal having a rectangular cross section is 18.5 m wide and 3.75 m deep, the water flows at 2.50 cm/s. At a point downstream, but on the same level, the canal is 16.5 m wide, but the water flows at 11.0 cm/s. How deep is the canal at this point?

12.40 •• BIO Artery Blockage. A medical technician is trying to determine what percentage of a patient's artery is blocked by plaque. To do this, she measures the blood pressure just before the region of blockage and finds that it is 1.20×10^4 Pa, while in the region of blockage it is 1.15×10^4 Pa. Furthermore, she knows that blood flowing through the normal artery just before the point of blockage is traveling at 30.0 cm/s, and the specific gravity of this patient's blood is 1.06. What percentage of the cross-sectional area of the patient's artery is blocked by the plaque?

Section 12.5 Bernoulli's Equation

12.41 •• A sealed tank containing seawater to a height of 11.0 m also contains air above the water at a gauge pressure of 3.00 atm. Water flows out from the bottom through a small hole. How fast is this water moving?

12.42 • A small circular hole 6.00 mm in diameter is cut in the side of a large water tank, 14.0 m below the water level in the tank. The top of the tank is open to the air. Find (a) the speed of efflux of the water and (b) the volume discharged per second.

12.43 • What gauge pressure is required in the city water mains for a stream from a fire hose connected to the mains to reach a vertical height of 15.0 m? (Assume that the mains have a much larger diameter than the fire hose.)

12.44 •• At one point in a pipeline the water's speed is 3.00 m/s and the gauge pressure is 5.00×10^4 Pa. Find the gauge pressure at a second point in the line, 11.0 m lower than the first, if the pipe diameter at the second point is twice that at the first.

12.45 • At a certain point in a horizontal pipeline, the water's speed is 2.50 m/s and the gauge pressure is 1.80×10^4 Pa. Find the gauge pressure at a second point in the line if the cross-sectional area at the second point is twice that at the first.

12.46 • A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill 220 0.355-L cans per minute. At point 2 in the pipe, the gauge pressure is 152 kPa and the cross-sectional area is 8.00 cm^2 . At point 1, 1.35 m above point 2, the cross-sectional area is 2.00 cm^2 . Find the (a) mass flow rate; (b) volume flow rate; (c) flow speeds at points 1 and 2; (d) gauge pressure at point 1.

12.47 •• A golf course sprinkler system discharges water from a horizontal pipe at the rate of 7200 cm³/s. At one point in the pipe, where the radius is 4.00 cm, the water's absolute pressure is 2.40×10^5 Pa. At a second point in the pipe, the water passes through a constriction where the radius is 2.00 cm. What is the water's absolute pressure as it flows through this constriction?

Section 12.6 Viscosity and Turbulence

12.48 • A pressure difference of 6.00×10^4 Pa is required to maintain a volume flow rate of 0.800 m³/s for a viscous fluid flowing through a section of cylindrical pipe that has radius 0.210 m.

What pressure difference is required to maintain the same volume flow rate if the radius of the pipe is decreased to 0.0700 m?

12.49 •• BIO Clogged Artery. Viscous blood is flowing through an artery partially clogged by cholesterol. A surgeon wants to remove enough of the cholesterol to double the flow rate of blood through this artery. If the original diameter of the artery is *D*, what should be the new diameter (in terms of *D*) to accomplish this for the same pressure gradient?

PROBLEMS

12.50 •• CP The deepest point known in any of the earth's oceans is in the Marianas Trench, 10.92 km deep. (a) Assuming water is incompressible, what is the pressure at this depth? Use the density of seawater. (b) The actual pressure is 1.16×10^8 Pa; your calculated value will be less because the density actually varies with depth. Using the compressibility of water and the actual pressure, find the density of the water at the bottom of the Marianas Trench. What is the percent change in the density of the water?

12.51 ••• In a lecture demonstration, a professor pulls apart two hemispherical steel shells (diameter D) with ease using their attached handles. She then places them together, pumps out the air to an absolute pressure of p, and hands them to a bodybuilder in the back row to pull apart. (a) If atmospheric pressure is p_0 , how much force must the bodybuilder exert on each shell? (b) Evaluate your answer for the case p = 0.025 atm, D = 10.0 cm.

12.52 •• BIO Fish Navigation. (a) As you can tell by watching them in an aquarium, fish are able to remain at any depth in water with no effort. What does this ability tell you about their density? (b) Fish are able to inflate themselves using a sac (called the *swim bladder*) located under their spinal column. These sacs can be filled with an oxygen–nitrogen mixture that comes from the blood. If a 2.75-kg fish in freshwater inflates itself and increases its volume by 10%, find the *net* force that the *water* exerts on it. (c) What is the net *external* force on it? Does the fish go up or down when it inflates itself?

12.53 ••• CALC A swimming pool is 5.0 m long, 4.0 m wide, and 3.0 m deep. Compute the force exerted by the water against (a) the bottom and (b) either end. (*Hint:* Calculate the force on a thin, horizontal strip at a depth h, and integrate this over the end of the pool.) Do not include the force due to air pressure.

12.54 ••• CP CALC The upper edge of a gate in a dam runs along the water surface. The gate is 2.00 m high and 4.00 m wide and is hinged along a horizontal line through its center (Fig. P12.54). Calculate the torque about the hinge arising from the force due to the water.

(*Hint:* Use a procedure similar to that used in Problem 12.53; calculate the torque on a thin, horizontal strip at a depth h and integrate this over the gate.)

12.55 ••• CP CALC Force and Torque on a Dam. A dam has the shape of a rectangular solid. The side facing the lake has area *A* and height *H*. The surface of the freshwater lake behind the dam is at the top of the dam. (a) Show that the net horizontal force exerted by the water on the dam equals $\frac{1}{2}\rho gHA$ —that is, the average gauge pressure across the face of the dam times the area (see Problem 12.53). (b) Show that the torque exerted by the water about an axis along the bottom of the dam is $\rho gH^2A/6$. (c) How do the force and torque depend on the size of the lake?

12.56 •• Ballooning on Mars. It has been proposed that we could explore Mars using inflated balloons to hover just above the surface. The buoyancy of the atmosphere would keep the balloon aloft. The density of the Martian atmosphere is 0.0154 kg/m^3 (although this varies with temperature). Suppose we construct these balloons of a thin but tough plastic having a density such that each square meter has a mass of 5.00 g. We inflate them with a very light gas whose mass we can neglect. (a) What should be the radius and mass of these balloons so they just hover above the surface of Mars? (b) If we released one of the balloons from part (a) on earth, where the atmospheric density is 1.20 kg/m^3 , what would be its initial acceleration assuming it was the same size as on Mars? Would it go up or down? (c) If on Mars these balloons have five times the radius found in part (a), how heavy an instrument package could they carry?

12.57 •• A 0.180-kg cube of ice (frozen water) is floating in glycerine. The gylcerine is in a tall cylinder that has inside radius 3.50 cm. The level of the glycerine is well below the top of the cylinder. If the ice completely melts, by what distance does the height of liquid in the cylinder change? Does the level of liquid rise or fall? That is, is the surface of the water above or below the original level of the gylcerine before the ice melted?

12.58 •• A narrow, U-shaped glass tube with open ends is filled with 25.0 cm of oil (of specific gravity 0.80) and 25.0 cm of water on opposite sides, with a barrier separating the liquids (Fig. P12.58). (a) Assume that the two liquids do not mix, and find the final heights of the columns of liquid in each side of the tube after the barrier is removed. (b) For the following cases, arrive at your answer by simple physical reasoning,

not by calculations: (i) What would be the height on each side if the oil and water had equal densities? (ii) What would the heights be if the oil's density were much less than that of water?

12.59 • A U-shaped tube open to the air at both ends contains some mercury. A quantity of water is carefully poured into the left arm of the U-shaped tube until the vertical height of the water column is 15.0 cm (Fig. P12.59). (a) What is the gauge pressure at the watermercury interface? (b) Calculate the vertical distance h from the top of the mercury in the right-

hand arm of the tube to the top of the water in the left-hand arm.

12.60 •• **CALC** The Great Molasses Flood. On the afternoon of January 15, 1919, an unusually warm day in Boston, a 17.7-mhigh, 27.4-m-diameter cylindrical metal tank used for storing molasses ruptured. Molasses flooded into the streets in a 5-mdeep stream, killing pedestrians and horses and knocking down buildings. The molasses had a density of 1600 kg/m³. If the tank was full before the accident, what was the total outward force the molasses exerted on its sides? (*Hint:* Consider the outward force on a circular ring of the tank wall of width dy and at a depth y below the surface. Integrate to find the total outward force. Assume that before the tank ruptured, the pressure at the surface of the molasses was equal to the air pressure outside the tank.) **12.61** • An open barge has the dimensions shown in Fig. P12.61. If the barge is made out of 4.0-cm-thick steel plate on each of its four sides and its bottom, what mass of coal can the barge carry in freshwater without sink-

Figure **P12.61**

ing? Is there enough room in the barge to hold this amount of coal? (The density of coal is about 1500 kg/m^3 .)

12.62 ••• A hot-air balloon has a volume of 2200 m³. The balloon fabric (the envelope) weighs 900 N. The basket with gear and full propane tanks weighs 1700 N. If the balloon can barely lift an additional 3200 N of passengers, breakfast, and champagne when the outside air density is 1.23 kg/m^3 , what is the average density of the heated gases in the envelope?

12.63 •• Advertisements for a certain small car claim that it floats in water. (a) If the car's mass is 900 kg and its interior volume is 3.0 m³, what fraction of the car is immersed when it floats? You can ignore the volume of steel and other materials. (b) Water gradually leaks in and displaces the air in the car. What fraction of the interior volume is filled with water when the car sinks?

12.64 • A single ice cube with mass 9.70 g floats in a glass completely full of 420 cm³ of water. You can ignore the water's surface tension and its variation in density with temperature (as long as it remains a liquid). (a) What volume of water does the ice cube displace? (b) When the ice cube has completely melted, has any water overflowed? If so, how much? If not, explain why this is so. (c) Suppose the water in the glass had been very salty water of density 1050 kg/m³. What volume of salt water would the 9.70-g ice cube displace? (d) Redo part (b) for the freshwater ice cube in the salty water.

12.65 ••• A piece of wood is 0.600 m long, 0.250 m wide, and 0.080 m thick. Its density is 700 kg/m³. What volume of lead must be fastened underneath it to sink the wood in calm water so that its top is just even with the water level? What is the mass of this volume of lead?

12.66 •• A hydrometer consists of a spherical bulb and a cylindrical stem with a cross-sectional area of 0.400 cm^2 (see Fig. 12.12a). The total volume of bulb and stem is 13.2 cm^3 . When immersed in water, the hydrometer floats with 8.00 cm of the stem above the water surface. When the hydrometer is immersed in an organic fluid, 3.20 cm of the stem is above the surface. Find the density of the organic fluid. (*Note:* This illustrates the precision of such a hydrometer. Relatively small density differences give rise to relatively large differences in hydrometer readings.)

12.67 •• The densities of air, helium, and hydrogen (at p = 1.0 atm and $T = 20^{\circ}$ C) are 1.20 kg/m^3 , 0.166 kg/m^3 , and 0.0899 kg/m^3 , respectively. (a) What is the volume in cubic meters displaced by a hydrogen-filled airship that has a total "lift" of 90.0 kN? (The "lift" is the amount by which the buoyant force exceeds the weight of the gas that fills the airship.) (b) What would be the "lift" if helium were used instead of hydrogen? In view of your answer, why is helium used in modern airships like advertising blimps?

12.68 •• When an open-faced boat has a mass of 5750 kg, including its cargo and passengers, it floats with the water just up to the top of its gunwales (sides) on a freshwater lake. (a) What is the volume of this boat? (b) The captain decides that it is too dangerous to float with his boat on the verge of sinking, so he decides to throw some cargo overboard so that 20% of the boat's volume will be above water. How much mass should he throw out?

12.69 •• CP An open cylindrical tank of acid rests at the edge of a table 1.4 m above the floor of the chemistry lab. If this tank springs a small hole in the side at its base, how far from the foot of the table will the acid hit the floor if the acid in the tank is 75 cm deep? **12.70 •• CP** A firehose must be able to shoot water to the top of a building 28.0 m tall when aimed straight up. Water enters this hose at a steady rate of 0.500 m³/s and shoots out of a round nozzle. (a) What is the maximum diameter this nozzle can have? (b) If the only nozzle available has a diameter twice as great, what is the highest point the water can reach?

12.71 •• **CP** You drill a small hole in the side of a vertical cylindrical water tank that is standing on the ground with its top open to the air. (a) If the water level has a height H, at what height above the base should you drill the hole for the water to reach its greatest distance from the base of the cylinder when it hits the ground? (b) What is the greatest distance the water will reach?

12.72 ••• CALC A closed and elevated vertical cylindrical tank with diameter 2.00 m contains water to a depth of 0.800 m. A worker accidently pokes a circular hole with diameter 0.0200 m in the bottom of the tank. As the water drains from the tank, compressed air above the water in the tank maintains a gauge pressure of 5.00×10^3 Pa at the surface of the water. Ignore any effects of viscosity. (a) Just after the hole is made, what is the speed of the water as it emerges from the hole? What is the ratio of this speed to the efflux speed if the top of the tank is open to the air? (b) How much time does it take for all the water to drain from the tank? What is the ratio of the tank is open to the air?

12.73 •• A block of balsa wood placed in one scale pan of an equalarm balance is exactly balanced by a 0.115-kg brass mass in the other scale pan. Find the true mass of the balsa wood if its density is 150 kg/m³. Explain why it is accurate to ignore the buoyancy in air of the brass but *not* the buoyancy in air of the balsa wood.

12.74 •• Block *A* in Fig. P12.74 hangs by a cord from spring balance *D* and is submerged in a liquid *C* contained in beaker *B*. The mass of the beaker is 1.00 kg; the mass of the liquid is 1.80 kg. Balance *D* reads 3.50 kg, and balance *E* reads 7.50 kg. The volume of block *A* is 3.80×10^{-3} m³. (a) What is the density of the liquid? (b) What will each balance read if block *A* is pulled up out of the liquid?

12.75 •• A hunk of aluminum is completely covered with a gold shell to form an ingot of weight

45.0 N. When you suspend the ingot from a spring balance and submerge the ingot in water, the balance reads 39.0 N. What is the weight of the gold in the shell?

12.76 •• A plastic ball has radius 12.0 cm and floats in water with 24.0% of its volume submerged. (a) What force must you apply to the ball to hold it at rest totally below the surface of the water? (b) If you let go of the ball, what is its acceleration the instant you release it?

12.77 •• The weight of a king's solid crown is w. When the crown is suspended by a light rope and completely immersed in water, the tension in the rope (the crown's apparent weight) is fw. (a) Prove that the crown's relative density (specific gravity) is 1/(1 - f). Discuss the meaning of the limits as f approaches 0 and 1. (b) If the crown is solid gold and weighs 12.9 N in air, what is its apparent

weight when completely immersed in water? (c) Repeat part (b) if the crown is solid lead with a very thin gold plating, but still has a weight in air of 12.9 N.

12.78 •• A piece of steel has a weight *w*, an apparent weight (see Problem 12.77) w_{water} when completely immersed in water, and an apparent weight w_{fluid} when completely immersed in an unknown fluid. (a) Prove that the fluid's density relative to water (specific gravity) is $(w - w_{fluid})/(w - w_{water})$. (b) Is this result reasonable for the three cases of w_{fluid} greater than, equal to, or less than w_{water} ? (c) The apparent weight of the piece of steel in water of density 1000 kg/m³ is 87.2% of its weight. What percentage of its weight will its apparent weight be in formic acid (density 1220 kg/m³)?

12.79 ••• You cast some metal of density $\rho_{\rm m}$ in a mold, but you are worried that there might be cavities within the casting. You measure the weight of the casting to be *w*, and the buoyant force when it is completely surrounded by water to be *B*. (a) Show that $V_0 = B/(\rho_{\rm water}g) - w/(\rho_{\rm m}g)$ is the total volume of any enclosed cavities. (b) If your metal is copper, the casting's weight is 156 N, and the buoyant force is 20 N, what is the total volume of any enclosed cavities in your casting? What fraction is this of the total volume of the casting?

12.80 • A cubical block of wood 0.100 m on a side and with a density of 550 kg/m³ floats in a jar of water. Oil with a density of 750 kg/m³ is poured on the water until the top of the oil layer is 0.035 m below the top of the block. (a) How deep is the oil layer? (b) What is the gauge pressure at the block's lower face?

12.81 •• **Dropping Anchor.** An iron anchor with mass 35.0 kg and density 7860 kg/m³ lies on the deck of a small barge that has vertical sides and floats in a freshwater river. The area of the bottom of the barge is 8.00 m^2 . The anchor is thrown overboard but is suspended above the bottom of the river by a rope; the mass and volume of the rope are small enough to ignore. After the anchor is overboard and the barge has finally stopped bobbing up and down, has the barge risen or sunk down in the water? By what vertical distance?

12.82 •• Assume that crude oil from a supertanker has density 750 kg/m³. The tanker runs aground on a sandbar. To refloat the tanker, its oil cargo is pumped out into steel barrels, each of which has a mass of 15.0 kg when empty and holds 0.120 m^3 of oil. You can ignore the volume occupied by the steel from which the barrel is made. (a) If a salvage worker accidentally drops a filled, sealed barrel overboard, will it float or sink in the seawater? (b) If the barrel floats, what fraction of its volume will be above the water surface? If it sinks, what minimum tension would have to be exerted by a rope to haul the barrel up from the ocean floor? (c) Repeat parts (a) and (b) if the density of the oil is 910 kg/m³ and the mass of each empty barrel is 32.0 kg.

12.83 ••• A cubical block of density $\rho_{\rm B}$ and with sides of length *L* floats in a liquid of greater density $\rho_{\rm L}$. (a) What fraction of the block's volume is above the surface of the liquid? (b) The liquid is denser than water (density $\rho_{\rm W}$) and does not mix with it. If water is poured on the surface of the liquid, how deep must the water layer be so that the water surface just rises to the top of the block? Express your answer in terms of *L*, $\rho_{\rm B}$, $\rho_{\rm L}$, and $\rho_{\rm W}$. (c) Find the depth of the water layer in part (b) if the liquid is mercury, the block is made of iron, and the side length is 10.0 cm.

12.84 •• A barge is in a rectangular lock on a freshwater river. The lock is 60.0 m long and 20.0 m wide, and the steel doors on each end are closed. With the barge floating in the lock, a 2.50×10^6 N load of scrap metal is put onto the barge. The metal has density 9000 kg/m³. (a) When the load of scrap metal, initially on the

bank, is placed onto the barge, what vertical distance does the water in the lock rise? (b) The scrap metal is now pushed overboard into the water. Does the water level in the lock rise, fall, or remain the same? If it rises or falls, by what vertical distance does it change?

Figure **P12.85**

12.85 • **CP CALC** A U-shaped tube with a horizontal portion of length l (Fig. P12.85) contains a liquid. What is the difference in height between the liquid columns in the vertical arms (a) if the tube has an acceleration a toward the right and (b) if the tube is mounted on a horizontal

turntable rotating with an angular speed ω with one of the vertical arms on the axis of rotation? (c) Explain why the difference in height does not depend on the density of the liquid or on the cross-sectional area of the tube. Would it be the same if the vertical tubes did not have equal cross-sectional areas? Would it be the same if the horizontal portion were tapered from one end to the other? Explain.

12.86 • **CP CALC** A cylindrical container of an incompressible liquid with density ρ rotates with constant angular speed ω about its axis of symmetry, which we take to be the *y*-axis (Fig. P12.86). (a) Show that the pressure at a given height within the fluid increases in the radial direction (outward from the axis of rotation) according to $\partial p/\partial r = \rho \omega^2 r$. (b) Integrate this partial differential equation to find the pressure as a

function of distance from the axis of rotation along a horizontal line at y = 0. (c) Combine the result of part (b) with Eq. (12.5) to show that the surface of the rotating liquid has a *parabolic* shape; that is, the height of the liquid is given by $h(r) = \omega^2 r^2/2g$. (This technique is used for making parabolic telescope mirrors; liquid glass is rotated and allowed to solidify while rotating.)

12.87 •• CP CALC An incompressible fluid with density ρ is in a horizontal test tube of inner cross-sectional area A. The test tube spins in a horizontal circle in an ultracentrifuge at an angular speed ω . Gravitational forces are negligible. Consider a volume element of the fluid of area A and thickness dr' a distance r' from the rotation axis. The pressure on its inner surface is p and on its outer surface is p + dp. (a) Apply Newton's second law to the volume element to show that $dp = \rho \omega^2 r' dr'$. (b) If the surface of the fluid is at a radius r_0 where the pressure is p_0 , show that the pressure p at a distance $r \ge r_0$ is $p = p_0 + \rho \omega^2 (r^2 - r_0^2)/2$. (c) An object of volume V and density ρ_{ob} has its center of mass at a distance R_{cmob} from the axis. Show that the net horizontal force on the object is $\rho V \omega^2 R_{\rm cm}$, where $R_{\rm cm}$ is the distance from the axis to the center of mass of the displaced fluid. (d) Explain why the object will move inward if $\rho R_{\rm cm} > \rho_{\rm ob} R_{\rm cmob}$ and outward if $\rho R_{\rm cm} < \rho_{\rm ob} R_{\rm cmob}$. (e) For small objects of uniform density, $R_{\rm cm} = R_{\rm cmob}$. What happens to a mixture of small objects of this kind with different densities in an ultracentrifuge?

12.88 ••• CALC Untethered helium balloons, floating in a car that has all the windows rolled up and outside air vents closed, move in the direction of the car's acceleration, but loose balloons filled with air move in the opposite direction. To show why, consider only the horizontal forces acting on the balloons. Let a be the magnitude of the car's forward acceleration. Consider a horizontal tube of air with a cross-sectional area A that extends from the

windshield, where x = 0 and $p = p_0$, back along the *x*-axis. Now consider a volume element of thickness dx in this tube. The pressure on its front surface is p and the pressure on its rear surface is p + dp. Assume the air has a constant density ρ . (a) Apply Newton's second law to the volume element to show that $dp = \rho a \, dx$. (b) Integrate the result of part (a) to find the pressure at the front surface in terms of a and x. (c) To show that considering ρ constant is reasonable, calculate the pressure difference in atm for a distance as long as 2.5 m and a large acceleration of 5.0 m/s². (d) Show that the net horizontal force on a balloon of volume V is ρVa . (e) For negligible friction forces, show that the acceleration relative to the car is $a_{rel} = [(\rho/\rho_{bal}) - 1]a$. (f) Use the expression for a_{rel} in part (e) to explain the movement of the balloons.

12.89 • **CP** Water stands at a depth H in a large, open tank whose side walls are vertical (Fig. P12.89). A hole is made in one of the walls at a depth h below the water surface. (a) At what distance R from the foot of the wall does the emerging stream strike the floor? (b) How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole?

Figure **P12.89**

12.90 ••• A cylindrical bucket, open at the top, is 25.0 cm high and 10.0 cm in diameter. A circular hole with a cross-sectional area 1.50 cm² is cut in the center of the bottom of the bucket. Water flows into the bucket from a tube above it at the rate of 2.40×10^{-4} m³/s. How high will the water in the bucket rise?

12.91 • Water flows steadily from an open tank as in Fig. P12.91. The elevation of point 1 is 10.0 m, and the elevation of points 2 and 3 is 2.00 m. The cross-sectional area at point 2 is 0.0480 m^2 ; at point 3 it is 0.0160 m^2 . The area of the tank is very large compared with the cross-sectional area of the pipe. Assuming that Bernoulli's equation applies, compute (a) the discharge rate in cubic meters per second and (b) the gauge pressure at point 2.

Figure **P12.91**

12.92 •• **CP** In 1993 the radius of Hurricane Emily was about 350 km. The wind speed near the center ("eye") of the hurricane, whose radius was about 30 km, reached about 200 km/h. As air swirled in from the rim of the hurricane toward the eye, its angular

momentum remained roughly constant. (a) Estimate the wind speed at the rim of the hurricane. (b) Estimate the pressure difference at the earth's surface between the eye and the rim. (*Hint:* See Table 12.1.) Where is the pressure greater? (c) If the kinetic energy of the swirling air in the eye could be converted completely to gravitational potential energy, how high would the air go? (d) In fact, the air in the eye is lifted to heights of several kilometers. How can you reconcile this with your answer to part (c)?

12.93 •• Two very large open tanks *A* and *F* (Fig. P12.93) contain the same liquid. A horizontal pipe *BCD*, having a constriction at *C* and open to the air at *D*, leads out of the bottom of tank *A*, and a vertical pipe *E* opens into the constriction at *C* and dips into the liquid in tank *F*. Assume streamline flow and no viscosity. If the cross-sectional area at *C* is one-half the area at *D* and if *D* is a distance h_1 below the level of the liquid in *A*, to what height h_2 will liquid rise in pipe *E*? Express your answer in terms of h_1 .

Figure **P12.93**

12.94 •• The horizontal pipe shown in Fig. P12.94 has a cross-sectional area of 40.0 cm² at the wider portions and 10.0 cm² at the constriction. Water is flowing in the pipe, and the discharge from the pipe is 6.00×10^{-3} m³/s (6.00 L/s). Find (a) the flow speeds at the wide and the nar-

row portions; (b) the pressure difference between these portions; (c) the difference in height between the mercury columns in the U-shaped tube.

12.95 • A liquid flowing from a vertical pipe has a definite shape as it flows from the pipe. To get the equation for this shape, assume that the liquid is in free fall once it leaves the pipe. Just as it leaves the pipe, the liquid has speed v_0 and the radius of the stream of liquid is r_0 . (a) Find an equation for the speed of the liquid as a function of the distance y it has fallen. Combining this with the equation of continuity, find an expression for the radius of the stream as a function of y. (b) If water flows out of a vertical pipe at a speed of 1.20 m/s, how far below the outlet will the radius be one-half the original radius of the stream?

Challenge Problems

12.96 ••• A rock with mass m = 3.00 kg is suspended from the roof of an elevator by a light cord. The rock is totally immersed in a bucket of water that sits on the floor of the elevator, but the rock doesn't touch the bottom or sides of the bucket. (a) When the elevator is at rest, the tension in the cord is 21.0 N. Calculate the volume of the rock. (b) Derive an expression for the tension in the cord when the elevator is accelerating *upward* with an acceleration of magnitude *a*. Calculate the tension when $a = 2.50 \text{ m/s}^2$

upward. (c) Derive an expression for the tension in the cord when the elevator is accelerating *downward* with an acceleration of magnitude *a*. Calculate the tension when $a = 2.50 \text{ m/s}^2$ downward. (d) What is the tension when the elevator is in free fall with a downward acceleration equal to g?

12.97 ••• CALC Suppose a piece of styrofoam, $\rho = 180 \text{ kg/m}^3$, is held completely submerged in water (Fig. P12.97). (a) What is the tension in the cord? Find this using Archimedes's principle. (b) Use $p = p_0 + \rho g h$ to calculate directly the force exerted by the water on the two sloped sides and the bottom of the styrofoam; then show that the vector sum of these forces is the buoyant force.

Figure **P12.97**

Answers

Chapter Opening Question

The flesh of both the shark and the tropical fish is denser than seawater, so left to themselves they would sink. However, a tropical fish has a gas-filled body cavity called a swimbladder, so that the *average* density of the fish's body is the same as that of seawater and the fish neither sinks nor rises. Sharks have no such cavity. Hence they must swim constantly to keep from sinking, using their pectoral fins to provide lift much like the wings of an airplane (see Section 12.5).

Test Your Understanding Questions

12.1 Answer: (ii), (iv), (i) and (iii) (tie), (v) In each case the average density equals the mass divided by the volume. Hence we have (i) $\rho = (4.00 \text{ kg})/(1.60 \times 10^{-3} \text{ m}^3) = 2.50 \times 10^3 \text{ kg/m}^3$; (ii) $\rho = (8.00 \text{ kg})/(1.60 \times 10^{-3} \text{ m}^3) = 5.00 \times 10^3 \text{ kg/m}^3$; (iii) $\rho = (8.00 \text{ kg})/(3.20 \times 10^{-3} \text{ m}^3) = 2.50 \times 10^3 \text{ kg/m}^3$; (iv) $\rho = (2560 \text{ kg})/(0.640 \text{ m}^3) = 4.00 \times 10^3 \text{ kg/m}^3$; (v) $\rho = (2560 \text{ kg})/(1.28 \text{ m}^3) = 2.00 \times 10^3 \text{ kg/m}^3$. Note that compared to object (i), object (ii) has double the mass but the same volume and so has double the average density. Object (iii) has double the mass and double the volume of object (i), so (i) and (iii)

have the same average density. Finally, object (v) has the same mass as object (iv) but double the volume, so (v) has half the average density of (iv).

12.2 Answer: (ii) From Eq. (12.9), the pressure outside the barometer is equal to the product ρgh . When the barometer is taken out of the refrigerator, the density ρ decreases while the height *h* of the mercury column remains the same. Hence the air pressure must be lower outdoors than inside the refrigerator.

12.3 Answer: (i) Consider the water, the statue, and the container together as a system; the total weight of the system does not depend on whether the statue is immersed. The total supporting force, including the tension T and the upward force F of the scale

12.98 ••• A *siphon*, as shown in Fig. P12.98, is a convenient device for removing liquids from containers. To establish the flow, the tube must be initially filled with fluid. Let the fluid have density ρ , and let the atmospheric pressure be p_{atm} . Assume that the cross-sectional area of the tube is the same at all points along it. (a) If the lower end of the siphon is at a distance *h* below the surface of the liquid in the container, what is the speed of the fluid as it flows out the lower end of the siphon? (Assume that the container has a very large diameter, and ignore any effects of viscosity.) (b) A curious feature of a siphon is that the fluid initially flows "uphill." What is the greatest height *H* that the high point of the tube can have if flow is still to occur?

Figure **P12.98**

on the container (equal to the scale reading), is the same in both cases. But we saw in Example 12.5 that T decreases by 7.84 N when the statue is immersed, so the scale reading F must *increase* by 7.84 N. An alternative viewpoint is that the water exerts an upward buoyant force of 7.84 N on the statue, so the statue must exert an equal downward force on the water, making the scale reading 7.84 N greater than the weight of water and container.

12.4 Answer: (ii) A highway that narrows from three lanes to one is like a pipe whose cross-sectional area narrows to one-third of its value. If cars behaved like the molecules of an incompress-ible fluid, then as the cars encountered the one-lane section, the spacing between cars (the "density") would stay the same but the cars would triple their speed. This would keep the "volume flow rate" (number of cars per second passing a point on the highway) the same. In real life cars behave like the molecules of a *compressible* fluid: They end up packed closer (the "density" increases) and fewer cars per second pass a point on the highway (the "volume flow rate" decreases).

12.5 Answer: (ii) Newton's second law tells us that a body accelerates (its velocity changes) in response to a net force. In fluid flow, a pressure difference between two points means that fluid particles moving between those two points experience a force, and this force causes the fluid particles to accelerate and change speed.

12.6 Answer: (iv) The required pressure is proportional to $1/R^4$, where *R* is the inside radius of the needle (half the inside diameter). With the smaller-diameter needle, the pressure is greater by a factor of $[(0.60 \text{ mm})/(0.30 \text{ mm})]^4 = 2^4 = 16$.

Bridging Problem

Answers: (a)
$$y = H - \left(\frac{d}{D}\right)^2 \sqrt{2gH} t + \left(\frac{d}{D}\right)^4 \frac{gt^2}{2}$$

(b) $T = \sqrt{\frac{2H}{g}} \left(\frac{D}{d}\right)^2$ (c) $\sqrt{2}$

13 GRAVITATION

LEARNING GOALS

By studying this chapter, you will learn:

- How to calculate the gravitational forces that any two bodies exert on each other.
- How to relate the weight of an object to the general expression for gravitational force.
- How to use and interpret the generalized expression for gravitational potential energy.
- How to relate the speed, orbital period, and mechanical energy of a satellite in a circular orbit.
- The laws that describe the motions of planets, and how to work with these laws.
- What black holes are, how to calculate their properties, and how they are discovered.

P The rings of Saturn are made of countless individual orbiting particles. Do all the ring particles orbit at the same speed, or do the inner particles orbit faster or slower than the outer ones?

Some of the earliest investigations in physical science started with questions that people asked about the night sky. Why doesn't the moon fall to earth? Why do the planets move across the sky? Why doesn't the earth fly off into space rather than remaining in orbit around the sun? The study of gravitation provides the answers to these and many related questions.

As we remarked in Chapter 5, gravitation is one of the four classes of interactions found in nature, and it was the earliest of the four to be studied extensively. Newton discovered in the 17th century that the same interaction that makes an apple fall out of a tree also keeps the planets in their orbits around the sun. This was the beginning of *celestial mechanics*, the study of the dynamics of objects in space. Today, our knowledge of celestial mechanics allows us to determine how to put a satellite into any desired orbit around the earth or to choose just the right trajectory to send a spacecraft to another planet.

In this chapter you will learn the basic law that governs gravitational interactions. This law is *universal:* Gravity acts in the same fundamental way between the earth and your body, between the sun and a planet, and between a planet and one of its moons. We'll apply the law of gravitation to phenomena such as the variation of weight with altitude, the orbits of satellites around the earth, and the orbits of planets around the sun.

13.1 Newton's Law of Gravitation

The example of gravitational attraction that's probably most familiar to you is your *weight*, the force that attracts you toward the earth. During his study of the motions of the planets and of the moon, Newton discovered the fundamental character of the gravitational attraction between *any* two bodies. Along with his

three laws of motion, Newton published the **law of gravitation** in 1687. It may be stated as follows:

Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them.

Translating this into an equation, we have

$$F_{\rm g} = \frac{Gm_1m_2}{r^2} \qquad (\text{law of gravitation}) \tag{13.1}$$

where F_g is the magnitude of the gravitational force on either particle, m_1 and m_2 are their masses, r is the distance between them (Fig. 13.1), and G is a fundamental physical constant called the **gravitational constant.** The numerical value of G depends on the system of units used.

Equation (13.1) tells us that the gravitational force between two particles decreases with increasing distance r: If the distance is doubled, the force is only one-fourth as great, and so on. Although many of the stars in the night sky are far more massive than the sun, they are so far away that their gravitational force on the earth is negligibly small.

CAUTION Don't confuse g and G Because the symbols g and G are so similar, it's common to confuse the two very different gravitational quantities that these symbols represent. Lowercase g is the acceleration due to gravity, which relates the weight w of a body to its mass m: w = mg. The value of g is different at different locations on the earth's surface and on the surfaces of different planets. By contrast, capital G relates the gravitational force between any two bodies to their masses and the distance between them. We call G a *universal* constant because it has the same value for any two bodies, no matter where in space they are located. In the next section we'll see how the values of g and G are related.

Gravitational forces always act along the line joining the two particles, and they form an action–reaction pair. Even when the masses of the particles are different, the two interaction forces have equal magnitude (Fig. 13.1). The attractive force that your body exerts on the earth has the same magnitude as the force that the earth exerts on you. When you fall from a diving board into a swimming pool, the entire earth rises up to meet you! (You don't notice this because the earth's mass is greater than yours by a factor of about 10^{23} . Hence the earth's acceleration is only 10^{-23} as great as yours.)

Gravitation and Spherically Symmetric Bodies

We have stated the law of gravitation in terms of the interaction between two *particles*. It turns out that the gravitational interaction of any two bodies having *spherically symmetric* mass distributions (such as solid spheres or spherical shells) is the same as though we concentrated all the mass of each at its center, as in Fig. 13.2. Thus, if we model the earth as a spherically symmetric body with mass $m_{\rm E}$, the force it exerts on a particle or a spherically symmetric body with mass m, at a distance r between centers, is

$$F_{\rm g} = \frac{Gm_{\rm E}m}{r^2} \tag{13.2}$$

provided that the body lies outside the earth. A force of the same magnitude is exerted *on* the earth by the body. (We will prove these statements in Section 13.6.)

At points *inside* the earth the situation is different. If we could drill a hole to the center of the earth and measure the gravitational force on a body at various depths, we would find that toward the center of the earth the force *decreases*,

13.2 The gravitational effect *outside* any spherically symmetric mass distribution is the same as though all of the mass were concentrated at its center.

(a) The gravitational force between two spherically symmetric masses m_1 and m_2 ...

(b) ... is the same as if we concentrated all the mass of each sphere at the sphere's center.

13.3 Spherical and nonspherical bodies: the planet Jupiter and one of Jupiter's small moons, Amalthea.

Jupiter's mass is very large $(1.90 \times 10^{27} \text{ kg})$, so the mutual gravitational attraction of its parts has pulled it into a nearly spherical shape.

Amalthea, one of Jupiter's small moons, has a relatively tiny mass $(7.17 \times 10^{18} \text{ kg}, \text{ only about} 3.8 \times 10^{-9}$ the mass of Jupiter) and weak mutual gravitation, so it has an irregular shape.

rather than increasing as $1/r^2$. As the body enters the interior of the earth (or other spherical body), some of the earth's mass is on the side of the body opposite from the center and pulls in the opposite direction. Exactly at the center, the earth's gravitational force on the body is zero.

Spherically symmetric bodies are an important case because moons, planets, and stars all tend to be spherical. Since all particles in a body gravitationally attract each other, the particles tend to move to minimize the distance between them. As a result, the body naturally tends to assume a spherical shape, just as a lump of clay forms into a sphere if you squeeze it with equal forces on all sides. This effect is greatly reduced in celestial bodies of low mass, since the gravitational attraction is less, and these bodies tend *not* to be spherical (Fig. 13.3).

Determining the Value of G

To determine the value of the gravitational constant G, we have to *measure* the gravitational force between two bodies of known masses m_1 and m_2 at a known distance r. The force is extremely small for bodies that are small enough to be brought into the laboratory, but it can be measured with an instrument called a *torsion balance*, which Sir Henry Cavendish used in 1798 to determine G.

Figure 13.4 shows a modern version of the Cavendish torsion balance. A light, rigid rod shaped like an inverted T is supported by a very thin, vertical quartz fiber. Two small spheres, each of mass m_1 , are mounted at the ends of the horizontal arms of the T. When we bring two large spheres, each of mass m_2 , to the positions shown, the attractive gravitational forces twist the T through a small angle. To measure this angle, we shine a beam of light on a mirror fastened to the T. The reflected beam strikes a scale, and as the T twists, the reflected beam moves along the scale.

After calibrating the Cavendish balance, we can measure gravitational forces and thus determine *G*. The presently accepted value is

$$G = 6.67428(67) \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2}$$

To three significant figures, $G = 6.67 \times 10^{-11} \,\text{N} \cdot \text{m}^2/\text{kg}^2$. Because $1 \,\text{N} = 1 \,\text{kg} \cdot \text{m/s}^2$, the units of G can also be expressed as $\text{m}^3/(\text{kg} \cdot \text{s}^2)$.

Gravitational forces combine vectorially. If each of two masses exerts a force on a third, the *total* force on the third mass is the vector sum of the individual forces of the first two. Example 13.3 makes use of this property, which is often called *superposition of forces*.

13.4 The principle of the Cavendish balance, used for determining the value of *G*. The angle of deflection has been exaggerated here for clarity.

Example 13.1 Calculating gravitational force

The mass m_1 of one of the small spheres of a Cavendish balance is 0.0100 kg, the mass m_2 of the nearest large sphere is 0.500 kg, and the center-to-center distance between them is 0.0500 m. Find the gravitational force F_g on each sphere due to the other.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Because the spheres are spherically symmetric, we can calculate F_g by treating them as *particles* separated by 0.0500 m, as in Fig. 13.2. Each sphere experiences the same magnitude of force from the other sphere. We use Newton's

law of gravitation, Eq. (13.1), to determine F_g :

$$F_{\rm g} = \frac{(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(0.0100 \,\mathrm{kg})(0.500 \,\mathrm{kg})}{(0.0500 \,\mathrm{m})^2}$$
$$= 1.33 \times 10^{-10} \,\mathrm{N}$$

EVALUATE: It's remarkable that such a small force could be measured—or even detected—more than 200 years ago. Only a very massive object such as the earth exerts a gravitational force we can feel.

Example 13.2 Acceleration due to gravitational attraction

Suppose the two spheres in Example 13.1 are placed with their centers 0.0500 m apart at a point in space far removed from all other bodies. What is the magnitude of the acceleration of each, relative to an inertial system?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Each sphere exerts on the other a gravitational force of the same magnitude F_g , which we found in Example 13.1. We can neglect any other forces. The *acceleration* magnitudes a_1 and a_2 are different because the masses are different.

$$a_1 = \frac{F_g}{m_1} = \frac{1.33 \times 10^{-10} \text{ N}}{0.0100 \text{ kg}} = 1.33 \times 10^{-8} \text{ m/s}^2$$
$$a_2 = \frac{F_g}{m_2} = \frac{1.33 \times 10^{-10} \text{ N}}{0.500 \text{ kg}} = 2.66 \times 10^{-10} \text{ m/s}^2$$

EVALUATE: The larger sphere has 50 times the mass of the smaller one and hence has $\frac{1}{50}$ the acceleration. These accelerations are *not* constant; the gravitational forces increase as the spheres move toward each other.

Example 13.3 Superposition of gravitational forces

Many stars belong to *systems* of two or more stars held together by their mutual gravitational attraction. Figure 13.5 shows a three-star system at an instant when the stars are at the vertices of a 45° right triangle. Find the total gravitational force exerted on the small star by the two large ones.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We use the principle of superposition: The total force \vec{F} on the small star is the vector sum of the forces \vec{F}_1 and \vec{F}_2 due to each large star, as Fig. 13.5 shows. We assume that the stars are spheres as in Fig. 13.2. We first calculate the magnitudes F_1 and F_2 using Eq. (13.1) and then compute the vector sum using components:

$$F_{1} = \frac{\left[\begin{array}{c} (6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^{2}/\mathrm{kg}^{2}) \\ \times (8.00 \times 10^{30} \,\mathrm{kg})(1.00 \times 10^{30} \,\mathrm{kg}) \right]}{(2.00 \times 10^{12} \,\mathrm{m})^{2} + (2.00 \times 10^{12} \,\mathrm{m})^{2}}$$
$$= 6.67 \times 10^{25} \,\mathrm{N}$$
$$F_{2} = \frac{\left[\begin{array}{c} (6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^{2}/\mathrm{kg}^{2}) \\ \times (8.00 \times 10^{30} \,\mathrm{kg})(1.00 \times 10^{30} \,\mathrm{kg}) \right]}{(2.00 \times 10^{12} \,\mathrm{m})^{2}}$$
$$= 1.33 \times 10^{26} \,\mathrm{N}$$

13.5 The total gravitational force on the small star (at *O*) is the vector sum of the forces exerted on it by the two larger stars. (For comparison, the mass of the sun—a rather ordinary star—is 1.99×10^{30} kg and the earth–sun distance is 1.50×10^{11} m.)

The x- and y-components of these forces are

$$F_{1x} = (6.67 \times 10^{25} \text{ N})(\cos 45^{\circ}) = 4.72 \times 10^{25} \text{ N}$$

$$F_{1y} = (6.67 \times 10^{25} \text{ N})(\sin 45^{\circ}) = 4.72 \times 10^{25} \text{ N}$$

$$F_{2x} = 1.33 \times 10^{26} \text{ N}$$

$$F_{2y} = 0$$

Continued

The components of the total force \vec{F} on the small star are

$$F_x = F_{1x} + F_{2x} = 1.81 \times 10^{26} \text{ N}$$

 $F_y = F_{1y} + F_{2y} = 4.72 \times 10^{25} \text{ N}$

The magnitude of \vec{F} and its angle θ (see Fig. 13.5) are

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(1.81 \times 10^{26} \text{ N})^2 + (4.72 \times 10^{25} \text{ N})^2}$$

= 1.87 × 10²⁶ N
$$\theta = \arctan \frac{F_y}{F_x} = \arctan \frac{4.72 \times 10^{25} \text{ N}}{1.81 \times 10^{26} \text{ N}} = 14.6^{\circ}$$

EVALUATE: While the force magnitude F is tremendous, the magnitude of the resulting acceleration is not: a = F/m = $(1.87 \times 10^{26} \text{ N})/(1.00 \times 10^{30} \text{ kg}) = 1.87 \times 10^{-4} \text{ m/s}^2$. Furthermore, the force \vec{F} is *not* directed toward the center of mass of the two large stars.

Why Gravitational Forces Are Important

13.6 Our solar system is part of a spiral Comparing Examples 13.1 and 13.3 shows that gravitational forces are negligible between ordinary household-sized objects, but very substantial between objects that roughly 10¹¹ stars as well as gas, dust, and are the size of stars. Indeed, gravitation is *the* most important force on the scale of planets, stars, and galaxies (Fig. 13.6). It is responsible for holding our earth together and for keeping the planets in orbit about the sun. The mutual gravitational attraction between different parts of the sun compresses material at the sun's core to very high densities and temperatures, making it possible for nuclear reactions to take place there. These reactions generate the sun's energy output, which makes it possible for life to exist on earth and for you to read these words.

> The gravitational force is so important on the cosmic scale because it acts at a *distance*, without any direct contact between bodies. Electric and magnetic forces have this same remarkable property, but they are less important on astronomical scales because large accumulations of matter are electrically neutral; that is, they contain equal amounts of positive and negative charge. As a result, the electric and magnetic forces between stars or planets are very small or zero. The strong and weak interactions that we discussed in Section 5.5 also act at a distance, but their influence is negligible at distances much greater than the diameter of an atomic nucleus (about 10^{-14} m).

> A useful way to describe forces that act at a distance is in terms of a *field*. One body sets up a disturbance or field at all points in space, and the force that acts on a second body at a particular point is its response to the first body's field at that point. There is a field associated with each force that acts at a distance, and so we refer to gravitational fields, electric fields, magnetic fields, and so on. We won't need the field concept for our study of gravitation in this chapter, so we won't discuss it further here. But in later chapters we'll find that the field concept is an extraordinarily powerful tool for describing electric and magnetic interactions.

> **Test Your Understanding of Section 13.1** The planet Saturn has about 100 times the mass of the earth and is about 10 times farther from the sun than the earth is. Compared to the acceleration of the earth caused by the sun's gravitational pull, how great is the acceleration of Saturn due to the sun's gravitation? (i) 100 times greater; (ii) 10 times greater; (iii) the same; (iv) $\frac{1}{10}$ as great; (v) $\frac{1}{100}$ as great.

13.2 Weight

We defined the *weight* of a body in Section 4.4 as the attractive gravitational force exerted on it by the earth. We can now broaden our definition:

The weight of a body is the total gravitational force exerted on the body by all other bodies in the universe.

galaxy like this one, which contains

When the body is near the surface of the earth, we can neglect all other gravitational forces and consider the weight as just the earth's gravitational attraction. At the surface of the *moon* we consider a body's weight to be the gravitational attraction of the moon, and so on.

If we again model the earth as a spherically symmetric body with radius $R_{\rm E}$ and mass $m_{\rm E}$, the weight w of a small body of mass m at the earth's surface (a distance $R_{\rm E}$ from its center) is

$$w = F_{\rm g} = \frac{Gm_{\rm E}m}{R_{\rm E}^2}$$
 (weight of a body of mass *m*
at the earth's surface) (13.3)

But we also know from Section 4.4 that the weight w of a body is the force that causes the acceleration g of free fall, so by Newton's second law, w = mg. Equating this with Eq. (13.3) and dividing by m, we find

$$g = \frac{Gm_{\rm E}}{R_{\rm E}^2}$$
 (acceleration due to gravity at the earth's surface) (13.4)

The acceleration due to gravity g is independent of the mass m of the body because m doesn't appear in this equation. We already knew that, but we can now see how it follows from the law of gravitation.

We can *measure* all the quantities in Eq. (13.4) except for m_E , so this relationship allows us to compute the mass of the earth. Solving Eq. (13.4) for m_E and using $R_E = 6380$ km = 6.38×10^6 m and g = 9.80 m/s², we find

$$m_{\rm E} = \frac{gR_{\rm E}^2}{G} = 5.98 \times 10^{24} \, \rm kg$$

This is very close to the currently accepted value of 5.974×10^{24} kg. Once Cavendish had measured G, he computed the mass of the earth in just this way.

At a point above the earth's surface a distance r from the center of the earth (a distance $r - R_E$ above the surface), the weight of a body is given by Eq. (13.3) with R_E replaced by r:

$$w = F_{\rm g} = \frac{Gm_{\rm E}m}{r^2} \tag{13.5}$$

The weight of a body decreases inversely with the square of its distance from the earth's center (Fig. 13.7). Figure 13.8 shows how the weight varies with height above the earth for an astronaut who weighs 700 N at the earth's surface.

The *apparent* weight of a body on earth differs slightly from the earth's gravitational force because the earth rotates and is therefore not precisely an inertial frame of reference. We have ignored this effect in our earlier discussion and have assumed that the earth *is* an inertial system. We will return to the effect of the earth's rotation in Section 13.7.

While the earth is an approximately spherically symmetric distribution of mass, it is *not* uniform throughout its volume. To demonstrate this, let's first calculate the average *density*, or mass per unit volume, of the earth. If we assume a spherical earth, the volume is

$$V_{\rm E} = \frac{4}{3}\pi R_{\rm E}^{3} = \frac{4}{3}\pi (6.38 \times 10^{6} \,{\rm m})^{3} = 1.09 \times 10^{21} \,{\rm m}^{3}$$

Application Walking and Running on the Moon

You automatically transition from a walk to a run when the vertical force you exert on the ground—which, by Newton's third law, equals the vertical force the ground exerts on you exceeds your weight. This transition from walking to running happens at much lower speeds on the moon, where objects weigh only 17% as much as on earth. Hence, the Apollo astronauts found themselves running even when moving relatively slowly during their moon "walks."

13.7 In an airliner at high altitude, you are farther from the center of the earth than when on the ground and hence weigh slightly less. Can you show that at an altitude of 10 km above the surface, you weigh 0.3% less than you do on the ground?

13.8 An astronaut who weighs 700 N at the earth's surface experiences less gravitational attraction when above the surface. The relevant distance r is from the astronaut to the *center* of the earth (*not* from the astronaut to the earth's surface).

The average density ρ (the Greek letter rho) of the earth is the total mass divided by the total volume:

$$\rho = \frac{m_{\rm E}}{V_{\rm E}} = \frac{5.97 \times 10^{24} \,\rm kg}{1.09 \times 10^{21} \,\rm m^3}$$
$$= 5500 \,\rm kg/m^3 = 5.5 \,\rm g/cm^3$$

(For comparison, the density of water is $1000 \text{ kg/m}^3 = 1.00 \text{ g/cm}^3$.) If the earth were uniform, we would expect rocks near the earth's surface to have this same density. In fact, the density of surface rocks is substantially lower, ranging from about 2000 kg/m³ for sedimentary rocks to about 3300 kg/m³ for basalt. So the earth *cannot* be uniform, and the interior of the earth must be much more dense than the surface in order that the *average* density be 5500 kg/m³. According to geophysical models of the earth's interior, the maximum density at the center is about 13,000 kg/m³. Figure 13.9 is a graph of density as a function of distance from the center.

13.9 The density of the earth decreases with increasing distance from its center.

Example 13.4 Gravity on Mars

A robotic lander with an earth weight of 3430 N is sent to Mars, which has radius $R_{\rm M} = 3.40 \times 10^6$ m and mass $m_{\rm M} = 6.42 \times 10^{23}$ kg (see Appendix F). Find the weight $F_{\rm g}$ of the lander on the Martian surface and the acceleration there due to gravity, $g_{\rm M}$.

SOLUTION

IDENTIFY and SET UP: To find F_g we use Eq. (13.3), replacing m_E and R_E with m_M and R_M . We determine the lander mass *m* from the lander's earth weight *w* and then find g_M from $F_g = mg_M$.

EXECUTE: The lander's earth weight is w = mg, so

1

$$m = \frac{w}{g} = \frac{3430 \text{ N}}{9.80 \text{ m/s}^2} = 350 \text{ kg}$$

The mass is the same no matter where the lander is. From Eq. (13.3), the lander's weight on Mars is

$$F_{\rm g} = \frac{Gm_{\rm M}m}{R_{\rm M}^2}$$

= $\frac{(6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2)(6.42 \times 10^{23} \,\mathrm{kg})(350 \,\mathrm{kg})}{(3.40 \times 10^6 \,\mathrm{m})^2}$
= $1.30 \times 10^3 \,\mathrm{N}$

$$g_{\rm M} = \frac{F_{\rm g}}{m} = \frac{1.30 \times 10^3 \,\rm N}{350 \,\rm kg} = 3.7 \,\rm m/s^2$$

EVALUATE: Even though Mars has just 11% of the earth's mass $(6.42 \times 10^{23} \text{ kg versus } 5.98 \times 10^{24} \text{ kg})$, the acceleration due to

Test Your Understanding of Section 13.2 Rank the following hypothetical planets in order from highest to lowest value of g at the surface: (i) mass = 2 times the mass of the earth, radius = 2 times the radius of the earth; (ii) mass = 4 times the mass of the earth, radius = 4 times the radius of the earth; (iii) mass = 4 times the mass of the earth, radius = 2 times the radius of the earth; (iv) mass = 2 times the mass of the earth, radius = 4 times the radius of the earth;

13.3 Gravitational Potential Energy

When we first introduced gravitational potential energy in Section 7.1, we assumed that the gravitational force on a body is constant in magnitude and direction. This led to the expression U = mgy. But the earth's gravitational force on a body of mass *m* at any point outside the earth is given more generally by Eq. (13.2), $F_g = Gm_Em/r^2$, where m_E is the mass of the earth and *r* is the distance of the body from the earth's center. For problems in which *r* changes enough that the gravitational force can't be considered constant, we need a more general expression for gravitational potential energy.

To find this expression, we follow the same steps as in Section 7.1. We consider a body of mass *m* outside the earth, and first compute the work W_{grav} done by the gravitational force when the body moves directly away from or toward the center of the earth from $r = r_1$ to $r = r_2$, as in Fig. 13.10. This work is given by

$$W_{\rm grav} = \int_{r_1}^{r_2} F_r \, dr$$
 (13.6)

where F_r is the radial component of the gravitational force \vec{F} —that is, the component in the direction *outward* from the center of the earth. Because \vec{F} points directly *inward* toward the center of the earth, F_r is negative. It differs from Eq. (13.2), the magnitude of the gravitational force, by a minus sign:

$$F_r = -\frac{Gm_{\rm E}m}{r^2} \tag{13.7}$$

Substituting Eq. (13.7) into Eq. (13.6), we see that W_{grav} is given by

$$W_{\rm grav} = -Gm_{\rm E}m \int_{r_1}^{r_2} \frac{dr}{r^2} = \frac{Gm_{\rm E}m}{r_2} - \frac{Gm_{\rm E}m}{r_1}$$
(13.8)

The path doesn't have to be a straight line; it could also be a curve like the one in Fig. 13.10. By an argument similar to that in Section 7.1, this work depends only on the initial and final values of *r*, not on the path taken. This also proves that the gravitational force is always *conservative*.

We now define the corresponding potential energy U so that $W_{\text{grav}} = U_1 - U_2$, as in Eq. (7.3). Comparing this with Eq. (13.8), we see that the appropriate definition for **gravitational potential energy** is

$$U = -\frac{Gm_{\rm E}m}{r}$$
 (gravitational potential energy) (13.9)

gravity $g_{\rm M}$ (and hence an object's weight $F_{\rm g}$) is roughly 40% as large as on earth. That's because $g_{\rm M}$ is also inversely proportional to the square of the planet's radius, and Mars has only 53% the radius of earth (3.40 × 10⁶ m versus 6.38 × 10⁶ m).

You can check our result for g_M by using Eq. (13.4), with appropriate replacements. Do you get the same answer?

13.10 Calculating the work done on a body by the gravitational force as the body moves from radial coordinate r_1 to r_2 .

(MP)

13.11 A graph of the gravitational potential energy U for the system of the earth (mass m_E) and an astronaut (mass m) versus the astronaut's distance r from the center of the earth.

Figure 13.11 shows how the gravitational potential energy depends on the distance r between the body of mass m and the center of the earth. When the body moves away from the earth, r increases, the gravitational force does negative work, and U increases (i.e., becomes less negative). When the body "falls" toward earth, r decreases, the gravitational work is positive, and the potential energy decreases (i.e., becomes more negative).

You may be troubled by Eq. (13.9) because it states that gravitational potential energy is always negative. But in fact you've seen negative values of U before. In using the formula U = mgy in Section 7.1, we found that U was negative whenever the body of mass m was at a value of y below the arbitrary height we chose to be y = 0—that is, whenever the body and the earth were closer together than some certain arbitrary distance. (See, for instance, Example 7.2 in Section 7.1.) In defining U by Eq. (13.9), we have chosen U to be zero when the body of mass m is infinitely far from the earth $(r = \infty)$. As the body moves toward the earth, gravitational potential energy decreases and so becomes negative.

If we wanted, we could make U = 0 at the surface of the earth, where $r = R_{\rm E}$, by simply adding the quantity $Gm_{\rm E}m/R_{\rm E}$ to Eq. (13.9). This would make *U* positive when $r > R_{\rm E}$. We won't do this for two reasons: One, it would make the expression for *U* more complicated; and two, the added term would not affect the *difference* in potential energy between any two points, which is the only physically significant quantity.

CAUTION Gravitational force vs. gravitational potential energy Be careful not to confuse the expressions for gravitational force, Eq. (13.7), and gravitational potential energy, Eq. (13.9). The force F_r is proportional to $1/r^2$, while potential energy U is proportional to 1/r.

Armed with Eq. (13.9), we can now use general energy relationships for problems in which the $1/r^2$ behavior of the earth's gravitational force has to be included. If the gravitational force on the body is the only force that does work, the total mechanical energy of the system is constant, or *conserved*. In the following example we'll use this principle to calculate **escape speed**, the speed required for a body to escape completely from a planet.

Example 13.5 "From the earth to the moon"

In Jules Verne's 1865 story with this title, three men went to the moon in a shell fired from a giant cannon sunk in the earth in Florida. (a) Find the minimum muzzle speed needed to shoot a shell straight up to a height above the earth equal to the earth's radius $R_{\rm E}$. (b) Find the minimum muzzle speed that would allow a shell to escape from the earth completely (the *escape speed*). Neglect air resistance, the earth's rotation, and the gravitational pull of the moon. The earth's radius and mass are $R_{\rm E} = 6.38 \times 10^6$ m and $m_{\rm E} = 5.97 \times 10^{24}$ kg.

SOLUTION

IDENTIFY and SET UP: Once the shell leaves the cannon muzzle, only the (conservative) gravitational force does work. Hence we can use conservation of mechanical energy to find the speed at which the shell must leave the muzzle so as to come to a halt (a) at two earth radii from the earth's center and (b) at an infinite distance from earth. The energy-conservation equation is $K_1 + U_1 = K_2 + U_2$, with U given by Eq. (13.9).

Figure 13.12 shows our sketches. Point 1 is at $r_1 = R_E$, where the shell leaves the cannon with speed v_1 (the target variable). Point 2 is where the shell reaches its maximum height; in part

13.12 Our sketches for this problem.

(a) $r_2 = 2R_E$ (Fig. 13.12a), and in part (b) $r_2 = \infty$ (Fig 13.12b). In both cases $v_2 = 0$ and $K_2 = 0$. Let *m* be the mass of the shell (with passengers).

EXECUTE: (a) We solve the energy-conservation equation for v_1 :

$$K_{1} + U_{1} = K_{2} + U_{2}$$

$$\frac{1}{2}mv_{1}^{2} + \left(-\frac{Gm_{E}m}{R_{E}}\right) = 0 + \left(-\frac{Gm_{E}m}{2R_{E}}\right)$$

$$v_{1} = \sqrt{\frac{Gm_{E}}{R_{E}}} = \sqrt{\frac{(6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^{2}/\mathrm{kg}^{2})(5.97 \times 10^{24} \,\mathrm{kg})}{6.38 \times 10^{6} \,\mathrm{m}}}$$

$$= 7900 \,\mathrm{m/s} \,(= 28,400 \,\mathrm{km/h} = 17,700 \,\mathrm{mi/h})$$

(b) Now $r_2 = \infty$ so $U_2 = 0$ (see Fig. 13.11). Since $K_2 = 0$, the total mechanical energy $K_2 + U_2$ is zero in this case. Again we solve the energy-conservation equation for v_1 :

$$\frac{1}{2}mv_1^2 + \left(-\frac{Gm_Em}{R_E}\right) = 0 + 0$$
$$v_1 = \sqrt{\frac{2Gm_E}{R_E}}$$

More on Gravitational Potential Energy

As a final note, let's show that when we are close to the earth's surface, Eq. (13.9) reduces to the familiar U = mgy from Chapter 7. We first rewrite Eq. (13.8) as

$$W_{\rm grav} = Gm_{\rm E}m\frac{r_1 - r_2}{r_1 r_2}$$

If the body stays close to the earth, then in the denominator we may replace r_1 and r_2 by R_E , the earth's radius, so

$$W_{\rm grav} = Gm_{\rm E}m\frac{r_1 - r_2}{R_{\rm E}^2}$$

According to Eq. (13.4), $g = Gm_E/R_E^2$, so

$$W_{\rm grav} = mg(r_1 - r_2)$$

If we replace the *r*'s by *y*'s, this is just Eq. (7.1) for the work done by a constant gravitational force. In Section 7.1 we used this equation to derive Eq. (7.2), U = mgy, so we may consider Eq. (7.2) for gravitational potential energy to be a special case of the more general Eq. (13.9).

Test Your Understanding of Section 13.3 Is it possible for a planet to have the same surface gravity as the earth (that is, the same value of g at the surface) and yet have a greater escape speed?

13.4 The Motion of Satellites

Artificial satellites orbiting the earth are a familiar part of modern technology (Fig. 13.13). But how do they stay in orbit, and what determines the properties of their orbits? We can use Newton's laws and the law of gravitation to provide the answers. We'll see in the next section that the motion of planets can be analyzed in the same way.

To begin, think back to the discussion of projectile motion in Section 3.3. In Example 3.6 a motorcycle rider rides horizontally off the edge of a cliff, launching himself into a parabolic path that ends on the flat ground at the base of the cliff. If he survives and repeats the experiment with increased launch speed, he will land farther from the starting point. We can imagine him launching himself with great enough speed that the earth's curvature becomes significant. As he falls, the earth curves away beneath him. If he is going fast enough, and if his

13.13 With a length of 13.2 m and a mass of 11,000 kg, the Hubble Space Telescope is among the largest satellites placed in orbit.

 $= \sqrt{\frac{2(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(5.97 \times 10^{24} \,\mathrm{kg})}{6.38 \times 10^6 \,\mathrm{m}}}$ = 1.12 × 10⁴ m/s (= 40,200 km/h = 25,000 mi/h)

EVALUATE: Our result in part (b) doesn't depend on the mass of the shell or the direction of launch. A modern spacecraft launched from Florida must attain essentially the speed found in part (b) to escape the earth; however, before launch it's already moving at 410 m/s to the east because of the earth's rotation. Launching to the east takes advantage of this "free" contribution toward escape speed.

To generalize, the initial speed v_1 needed for a body to escape from the surface of a spherical body of mass M and radius R (ignoring air resistance) is $v_1 = \sqrt{2GM/R}$ (escape speed). This equation yields escape speeds of 5.02×10^3 m/s for Mars, 5.95×10^4 m/s for Jupiter, and 6.18×10^5 m/s for the sun.

13.14 Trajectories of a projectile launched from a great height (ignoring air resistance). Orbits 1 and 2 would be completed as shown if the earth were a point mass at *C*. (This illustration is based on one in Isaac Newton's *Principia*.)

Mastering **PHYSICS**

PhET: My Solar System ActivPhysics 4.6: Satellites Orbit

13.15 The force \vec{F}_g due to the earth's gravitational attraction provides the centripetal acceleration that keeps a satellite in orbit. Compare to Fig. 5.28.

The satellite is in a circular orbit: Its acceleration \vec{a} is always perpendicular to its velocity \vec{v} , so its speed v is constant.

A projectile is launched from *A* toward *B*. Trajectories 1 through 7 show the effect of increasing initial speed.

launch point is high enough that he clears the mountaintops, he may be able to go right on around the earth without ever landing.

Figure 13.14 shows a variation on this theme. We launch a projectile from point A in the direction AB, tangent to the earth's surface. Trajectories 1 through 7 show the effect of increasing the initial speed. In trajectories 3 through 5 the projectile misses the earth and becomes a satellite. If there is no retarding force, the projectile's speed when it returns to point A is the same as its initial speed and it repeats its motion indefinitely.

Trajectories 1 through 5 close on themselves and are called **closed orbits.** All closed orbits are ellipses or segments of ellipses; trajectory 4 is a circle, a special case of an ellipse. (We'll discuss the properties of an ellipse in Section 13.5.) Trajectories 6 and 7 are **open orbits.** For these paths the projectile never returns to its starting point but travels ever farther away from the earth.

Satellites: Circular Orbits

A *circular* orbit, like trajectory 4 in Fig. 13.14, is the simplest case. It is also an important case, since many artificial satellites have nearly circular orbits and the orbits of the planets around the sun are also fairly circular. The only force acting on a satellite in circular orbit around the earth is the earth's gravitational attraction, which is directed toward the center of the earth and hence toward the center of the orbit (Fig. 13.15). As we discussed in Section 5.4, this means that the satellite is in *uniform* circular motion and its speed is constant. The satellite isn't falling *toward* the earth; rather, it's constantly falling *around* the earth. In a circular orbit the speed is just right to keep the distance from the satellite to the center of the earth constant.

Let's see how to find the constant speed v of a satellite in a circular orbit. The radius of the orbit is r, measured from the *center* of the earth; the acceleration of the satellite has magnitude $a_{rad} = v^2/r$ and is always directed toward the center of the circle. By the law of gravitation, the net force (gravitational force) on the satellite of mass m has magnitude $F_g = Gm_Em/r^2$ and is in the same direction as the acceleration. Newton's second law $(\Sigma \vec{F} = m\vec{a})$ then tells us that

$$\frac{Gm_{\rm E}m}{r^2} = \frac{mv^2}{r}$$

Solving this for v, we find

$$v = \sqrt{\frac{Gm_{\rm E}}{r}}$$
 (circular orbit) (13.10)

This relationship shows that we can't choose the orbit radius r and the speed v independently; for a given radius r, the speed v for a circular orbit is determined.

13.16 These space shuttle astronauts are in a state of apparent weightlessness.

Which are right side up and which are

The satellite's mass *m* doesn't appear in Eq. (13.10), which shows that the motion of a satellite does not depend on its mass. If we could cut a satellite in half without changing its speed, each half would continue on with the original motion. An astronaut on board a space shuttle is herself a satellite of the earth, held by the earth's gravitational attraction in the same orbit as the shuttle. The astronaut has the same velocity and acceleration as the shuttle, so nothing is pushing her against the floor or walls of the shuttle. She is in a state of *apparent weightlessness*, as in a freely falling elevator; see the discussion following Example 5.9 in Section 5.2. (*True* weightlessness, so that the gravitational force on her would be zero.) Indeed, every part of her body is apparently weightless; she feels nothing pushing her stomach against her intestines or her head against her shoulders (Fig. 13.16).

Apparent weightlessness is not just a feature of circular orbits; it occurs whenever gravity is the only force acting on a spacecraft. Hence it occurs for orbits of any shape, including open orbits such as trajectories 6 and 7 in Fig. 13.14.

We can derive a relationship between the radius r of a circular orbit and the period T, the time for one revolution. The speed v is the distance $2\pi r$ traveled in one revolution, divided by the period:

$$v = \frac{2\pi r}{T} \tag{13.11}$$

To get an expression for T, we solve Eq. (13.11) for T and substitute v from Eq. (13.10):

$$T = \frac{2\pi r}{v} = 2\pi r \sqrt{\frac{r}{Gm_{\rm E}}} = \frac{2\pi r^{3/2}}{\sqrt{Gm_{\rm E}}} \qquad \text{(circular orbit)} \tag{13.12}$$

Equations (13.10) and (13.12) show that larger orbits correspond to slower speeds and longer periods. As an example, the International Space Station orbits 6800 km from the center of the earth (400 km above the earth's surface) with an orbital speed of 7.7 km/s and an orbital period of 93 minutes. The moon orbits the earth in a much larger orbit of radius 384,000 km, and so has a much slower orbital speed (1.0 km/s) and a much longer orbital period (27.3 days).

It's interesting to compare Eq. (13.10) to the calculation of escape speed in Example 13.5. We see that the escape speed from a spherical body with radius R is $\sqrt{2}$ times greater than the speed of a satellite in a circular orbit at that radius. If our spacecraft is in circular orbit around *any* planet, we have to multiply our speed by a factor of $\sqrt{2}$ to escape to infinity, regardless of the planet's mass.

Since the speed v in a circular orbit is determined by Eq. (13.10) for a given orbit radius r, the total mechanical energy E = K + U is determined as well. Using Eqs. (13.9) and (13.10), we have

$$E = K + U = \frac{1}{2}mv^{2} + \left(-\frac{Gm_{\rm E}m}{r}\right) = \frac{1}{2}m\left(\frac{Gm_{\rm E}}{r}\right) - \frac{Gm_{\rm E}m}{r}$$
$$= -\frac{Gm_{\rm E}m}{2r} \qquad \text{(circular orbit)} \tag{13.13}$$

The total mechanical energy in a circular orbit is negative and equal to one-half the potential energy. Increasing the orbit radius r means increasing the mechanical energy (that is, making E less negative). If the satellite is in a relatively low orbit that encounters the outer fringes of earth's atmosphere, mechanical energy decreases due to negative work done by the force of air resistance; as a result, the orbit radius decreases until the satellite hits the ground or burns up in the atmosphere.

We have talked mostly about earth satellites, but we can apply the same analysis to the circular motion of *any* body under its gravitational attraction to a stationary body. Other examples include the earth's moon and the moons of other worlds (Fig. 13.17). **13.17** The two small satellites of the minor planet Pluto were discovered in 2005. In accordance with Eqs. (13.10) and (13.12), the satellite in the larger orbit has a slower orbital speed and a longer orbital period than the satellite in the smaller orbit.

Example 13.6 A satellite orbit

You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. (a) What speed, period, and radial acceleration will it have? (b) How much work must be done to the satellite to put it in orbit? (c) How much additional work would have to be done to make the satellite escape the earth? The earth's radius and mass are given in Example 13.5 (Section 13.3).

SOLUTION

IDENTIFY and SET UP: The satellite is in a circular orbit, so we can use the equations derived in this section. In part (a), we first find the radius r of the satellite's orbit from its altitude. We then calculate the speed v and period T using Eqs. (13.10) and (13.12) and the acceleration from $a_{\rm rad} = v^2/r$. In parts (b) and (c), the work required is the difference between the initial and final mechanical energy, which for a circular orbit is given by Eq. (13.13).

EXECUTE: (a) The radius of the satellite's orbit is $r = 6380 \text{ km} + 300 \text{ km} = 6680 \text{ km} = 6.68 \times 10^6 \text{ m}$. From Eq. (13.10), the orbital speed is

$$v = \sqrt{\frac{Gm_{\rm E}}{r}} = \sqrt{\frac{(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(5.97 \times 10^{24} \,\mathrm{kg})}{6.68 \times 10^6 \,\mathrm{m}}}$$

= 7720 m/s

We find the orbital period from Eq. (13.12):

$$T = \frac{2\pi r}{v} = \frac{2\pi (6.68 \times 10^6 \,\mathrm{m})}{7720 \,\mathrm{m/s}} = 5440 \,\mathrm{s} = 90.6 \,\mathrm{min}$$

Finally, the radial acceleration is

$$a_{\rm rad} = \frac{v^2}{r} = \frac{(7720 \text{ m/s})^2}{6.68 \times 10^6 \text{ m}} = 8.92 \text{ m/s}^2$$

This is the value of g at a height of 300 km above the earth's surface; it is about 10% less than the value of g at the surface.

(b) The work required is the difference between E_2 , the total mechanical energy when the satellite is in orbit, and E_1 , the total mechanical energy when the satellite was at rest on the launch pad. From Eq. (13.13), the energy in orbit is

$$E_2 = -\frac{Gm_Em}{2r}$$

= $-\frac{(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(5.97 \times 10^{24} \,\mathrm{kg})(1000 \,\mathrm{kg})}{2(6.68 \times 10^6 \,\mathrm{m})}$
= $-2.98 \times 10^{10} \,\mathrm{J}$

The satellite's kinetic energy is zero on the launch pad $(r = R_E)$, so

$$E_1 = K_1 + U_1 = 0 + \left(-\frac{Gm_Em}{R_E}\right)$$
$$= -\frac{(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(5.97 \times 10^{24} \,\mathrm{kg})(1000 \,\mathrm{kg})}{6.38 \times 10^6 \,\mathrm{m}}$$
$$= -6.24 \times 10^{10} \,\mathrm{J}$$

Hence the work required is

$$W_{\text{required}} = E_2 - E_1 = (-2.98 \times 10^{10} \text{ J}) - (-6.24 \times 10^{10} \text{ J})$$

= 3.26 × 10¹⁰ J

10

10

(c) We saw in part (b) of Example 13.5 that the minimum total mechanical energy for a satellite to escape to infinity is zero. Here, the total mechanical energy in the circular orbit is $E_2 = -2.98 \times 10^{10}$ J; to increase this to zero, an amount of work equal to 2.98×10^{10} J would have to be done on the satellite, presumably by rocket engines attached to it.

EVALUATE: In part (b) we ignored the satellite's initial kinetic energy (while it was still on the launch pad) due to the rotation of the earth. How much difference does this make? (See Example 13.5 for useful data.)

Test Your Understanding of Section 13.4 Your personal spacecraft is in a low-altitude circular orbit around the earth. Air resistance from the outer regions of the atmosphere does negative work on the spacecraft, causing the orbital radius to decrease slightly. Does the speed of the spacecraft (i) remain the same, (ii) increase, or (iii) decrease?

13.5 Kepler's Laws and the Motion of Planets

The name *planet* comes from a Greek word meaning "wanderer," and indeed the planets continuously change their positions in the sky relative to the background of stars. One of the great intellectual accomplishments of the 16th and 17th centuries was the threefold realization that the earth is also a planet, that all planets orbit the sun, and that the apparent motions of the planets as seen from the earth can be used to precisely determine their orbits.

The first and second of these ideas were published by Nicolaus Copernicus in Poland in 1543. The nature of planetary orbits was deduced between 1601 and 1619 by the German astronomer and mathematician Johannes Kepler, using a voluminous set of precise data on apparent planetary motions compiled by his mentor, the Danish astronomer Tycho Brahe. By trial and error, Kepler discovered three empirical laws that accurately described the motions of the planets:

- 1. Each planet moves in an elliptical orbit, with the sun at one focus of the ellipse.
- 2. A line from the sun to a given planet sweeps out equal areas in equal times.
- 3. The periods of the planets are proportional to the $\frac{3}{2}$ powers of the major axis lengths of their orbits.

Kepler did not know *why* the planets moved in this way. Three generations later, when Newton turned his attention to the motion of the planets, he discovered that each of Kepler's laws can be *derived;* they are consequences of Newton's laws of motion and the law of gravitation. Let's see how each of Kepler's laws arises.

Kepler's First Law

First consider the elliptical orbits described in Kepler's first law. Figure 13.18 shows the geometry of an ellipse. The longest dimension is the *major axis*, with half-length *a*; this half-length is called the **semi-major axis**. The sum of the distances from *S* to *P* and from *S'* to *P* is the same for all points on the curve. *S* and *S'* are the *foci* (plural of *focus*). The sun is at *S*, and the planet is at *P*; we think of them both as points because the size of each is very small in comparison to the distance between them. There is nothing at the other focus *S'*.

The distance of each focus from the center of the ellipse is ea, where e is a dimensionless number between 0 and 1 called the **eccentricity.** If e = 0, the ellipse is a circle. The actual orbits of the planets are fairly circular; their eccentricities range from 0.007 for Venus to 0.206 for Mercury. (The earth's orbit has e = 0.017.) The point in the planet's orbit closest to the sun is the *perihelion*, and the point most distant from the sun is the *aphelion*.

Newton was able to show that for a body acted on by an attractive force proportional to $1/r^2$, the only possible closed orbits are a circle or an ellipse; he also showed that open orbits (trajectories 6 and 7 in Fig. 13.14) must be parabolas or hyperbolas. These results can be derived by a straightforward application of Newton's laws and the law of gravitation, together with a lot more differential equations than we're ready for.

Kepler's Second Law

Figure 13.19 shows Kepler's second law. In a small time interval dt, the line from the sun S to the planet P turns through an angle $d\theta$. The area swept out is the colored triangle with height r, base length $r d\theta$, and area $dA = \frac{1}{2}r^2 d\theta$ in Fig. 13.19b. The rate at which area is swept out, dA/dt, is called the *sector velocity:*

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt}$$
(13.14)

The essence of Kepler's second law is that the sector velocity has the same value at all points in the orbit. When the planet is close to the sun, *r* is small and $d\theta/dt$ is large; when the planet is far from the sun, *r* is large and $d\theta/dt$ is small.

To see how Kepler's second law follows from Newton's laws, we express dA/dt in terms of the velocity vector \vec{v} of the planet *P*. The component of \vec{v} perpendicular to the radial line is $v_{\perp} = v \sin \phi$. From Fig. 13.19b the displacement along the direction of v_{\perp} during time dt is $r d\theta$, so we also have $v_{\perp} = r d\theta/dt$. Using this relationship in Eq. (13.14), we find

$$\frac{dA}{dt} = \frac{1}{2}rv\sin\phi \qquad (\text{sector velocity}) \qquad (13.15)$$

13.18 Geometry of an ellipse. The sum of the distances SP and S'P is the same for every point on the curve. The sizes of the sun (*S*) and planet (*P*) are exaggerated for clarity.

A planet P follows an elliptical orbit.

13.19 (a) The planet (*P*) moves about the sun (*S*) in an elliptical orbit. (b) In a time *dt* the line *SP* sweeps out an area $dA = \frac{1}{2}(r d\theta)r = \frac{1}{2}r^2 d\theta$. (c) The planet's speed varies so that the line *SP* sweeps out the same area *A* in a given time *t* regardless of the planet's position in its orbit.

Application Biological Hazards of Interplanetary Travel

A spacecraft sent from earth to another planet spends most of its journey coasting along an elliptical orbit with the sun at one focus. Rockets are used only at the start and end of the journey, and even the trip to a nearby planet like Mars takes several months. During its journey, the spacecraft is exposed to cosmic rays—radiation that emanates from elsewhere in our galaxy. (On earth we're shielded from this radiation by our planet's magnetic field, as we'll describe in Chapter 27.) This poses no problem for a robotic spacecraft, but would be a severe medical hazard for astronauts undertaking such a voyage.

Now $rv \sin \phi$ is the magnitude of the vector product $\vec{r} \times \vec{v}$, which in turn is 1/m times the angular momentum $\vec{L} = \vec{r} \times m\vec{v}$ of the planet with respect to the sun. So we have

$$\frac{dA}{dt} = \frac{1}{2m} \left| \vec{r} \times m \vec{v} \right| = \frac{L}{2m}$$
(13.16)

Thus Kepler's second law—that sector velocity is constant—means that angular momentum is constant!

It is easy to see why the angular momentum of the planet *must* be constant. According to Eq. (10.26), the rate of change of \vec{L} equals the torque of the gravitational force \vec{F} acting on the planet:

$$\frac{d\vec{L}}{dt} = \vec{\tau} = \vec{r} \times \vec{F}$$

In our situation, \vec{r} is the vector from the sun to the planet, and the force \vec{F} is directed from the planet to the sun. So these vectors always lie along the same line, and their vector product $\vec{r} \times \vec{F}$ is zero. Hence $d\vec{L}/dt = 0$. This conclusion does not depend on the $1/r^2$ behavior of the force; angular momentum is conserved for *any* force that acts always along the line joining the particle to a fixed point. Such a force is called a *central force*. (Kepler's first and third laws are valid *only* for a $1/r^2$ force.)

Conservation of angular momentum also explains why the orbit lies in a plane. The vector $\vec{L} = \vec{r} \times m\vec{v}$ is always perpendicular to the plane of the vectors \vec{r} and \vec{v} ; since \vec{L} is constant in magnitude *and* direction, \vec{r} and \vec{v} always lie in the same plane, which is just the plane of the planet's orbit.

Kepler's Third Law

We have already derived Kepler's third law for the particular case of circular orbits. Equation (13.12) shows that the period of a satellite or planet in a circular orbit is proportional to the $\frac{3}{2}$ power of the orbit radius. Newton was able to show that this same relationship holds for an *elliptical* orbit, with the orbit radius *r* replaced by the semi-major axis *a*:

$$T = \frac{2\pi a^{3/2}}{\sqrt{Gm_{\rm S}}} \qquad \text{(elliptical orbit around the sun)} \tag{13.17}$$

Since the planet orbits the sun, not the earth, we have replaced the earth's mass $m_{\rm E}$ in Eq. (13.12) with the sun's mass $m_{\rm S}$. Note that the period does not depend on the eccentricity *e*. An asteroid in an elongated elliptical orbit with semi-major axis *a* will have the same orbital period as a planet in a circular orbit of radius *a*. The key difference is that the asteroid moves at different speeds at different points in its elliptical orbit (Fig. 13.19c), while the planet's speed is constant around its circular orbit.

Conceptual Example 13.7 Orbital speeds

At what point in an elliptical orbit (see Fig. 13.19) does a planet move the fastest? The slowest?

SOLUTION

Mechanical energy is conserved as a planet moves in its orbit. The planet's kinetic energy $K = \frac{1}{2}mv^2$ is maximum when the potential energy $U = -Gm_Sm/r$ is minimum (that is, most negative; see

Fig. 13.11), which occurs when the sun-planet distance r is a minimum. Hence the speed v is greatest at perihelion. Similarly, K is minimum when r is maximum, so the speed is slowest at aphelion.

Your intuition about falling bodies is helpful here. As the planet falls inward toward the sun, it picks up speed, and its speed is maximum when closest to the sun. The planet slows down as it moves away from the sun, and its speed is minimum at aphelion.

Example 13.8 Kepler's third law

The asteroid Pallas has an orbital period of 4.62 years and an orbital eccentricity of 0.233. Find the semi-major axis of its orbit.

SOLUTION

IDENTIFY and SET UP: This example uses Kepler's third law, which relates the period *T* and the semi-major axis *a* for an orbiting object (such as an asteroid). We use Eq. (13.17) to determine *a*; from Appendix F we have $m_{\rm S} = 1.99 \times 10^{30}$ kg, and a conversion factor from Appendix E gives $T = (4.62 \text{ yr})(3.156 \times 10^7 \text{ s/yr}) = 1.46 \times 10^8$ s. Note that we don't need the value of the eccentricity.

Example 13.9 Comet Halley

Comet Halley moves in an elongated elliptical orbit around the sun (Fig. 13.20). Its distances from the sun at perihelion and aphelion are 8.75×10^7 km and 5.26×10^9 km, respectively. Find the orbital semi-major axis, eccentricity, and period.

SOLUTION

IDENTIFY and SET UP: We are to find the semi-major axis a, eccentricity e, and orbital period T. We can use Fig. 13.18 to find a and e from the given perihelion and aphelion distances. Knowing a, we can find T from Kepler's third law, Eq. (13.17).

EXECUTE: From Fig. 13.18, the length 2a of the major axis equals the sum of the comet–sun distance at perihelion and the comet–sun distance at aphelion. Hence

$$a = \frac{(8.75 \times 10^{7} \text{ km}) + (5.26 \times 10^{9} \text{ km})}{2} = 2.67 \times 10^{9} \text{ km}$$

EXECUTE: From Eq. (13.17), $a^{3/2} = [(Gm_S)^{1/2}T]/2\pi$. To solve for *a*, we raise both sides of this expression to the $\frac{2}{3}$ power and then substitute the values of *G*, *m*_S, and *T*:

$$a = \left(\frac{Gm_{\rm S}T^2}{4\pi^2}\right)^{1/3} = 4.15 \times 10^{11} \,\mathrm{m}$$

(Plug in the numbers yourself to check.)

EVALUATE: Our result is intermediate between the semi-major axes of Mars and Jupiter (see Appendix F). Most known asteroids orbit in an "asteroid belt" between the orbits of these two planets.

Figure 13.19 also shows that the comet–sun distance at perihelion is a - ea = a(1 - e). This distance is 8.75×10^7 km, so

$$e = 1 - \frac{8.75 \times 10^7 \text{ km}}{a} = 1 - \frac{8.75 \times 10^7 \text{ km}}{2.67 \times 10^9 \text{ km}} = 0.967$$

From Eq. (13.17), the period is

$$T = \frac{2\pi a^{3/2}}{\sqrt{Gm_{\rm S}}} = \frac{2\pi (2.67 \times 10^{12} \,\mathrm{m})^{3/2}}{\sqrt{(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(1.99 \times 10^{30} \,\mathrm{kg})}}$$

= 2.38 × 10⁹ s = 75.5 years

EVALUATE: The eccentricity is close to 1, so the orbit is very elongated (see Fig. 13.20a). Comet Halley was at perihelion in early 1986 (Fig. 13.20b); it will next reach perihelion one period later, in 2061.

13.20 (a) The orbit of Comet Halley. (b) Comet Halley as it appeared in 1986. At the heart of the comet is an icy body, called the nucleus, that is about 10 km across. When the comet's orbit carries it close to the sun, the heat of sunlight causes the nucleus to partially evaporate. The evaporated material forms the tail, which can be tens of millions of kilometers long.

Planetary Motions and the Center of Mass

We have assumed that as a planet or comet orbits the sun, the sun remains absolutely stationary. Of course, this can't be correct; because the sun exerts a **13.21** A star and its planet both orbit about their common center of mass.

The planet and star are always on opposite sides of the center of mass.

13.22 Calculating the gravitational potential energy of interaction between a point mass *m* outside a spherical shell and a ring on the surface of the shell.

(b) The distance s is the hypotenuse of a right triangle with sides $(r - R \cos \phi)$ and $R \sin \phi$.

gravitational force on the planet, the planet exerts a gravitational force on the sun of the same magnitude but opposite direction. In fact, *both* the sun and the planet orbit around their common center of mass (Fig. 13.21). We've made only a small error by ignoring this effect, however; the sun's mass is about 750 times the total mass of all the planets combined, so the center of mass of the solar system is not far from the center of the sun. Remarkably, astronomers have used this effect to detect the presence of planets orbiting other stars. Sensitive telescopes are able to detect the apparent "wobble" of a star as it orbits the common center of mass of the star and an unseen companion planet. (The planets are too faint to observe directly.) By analyzing these "wobbles," astronomers have discovered planets in orbit around hundreds of other stars.

Newton's analysis of planetary motions is used on a daily basis by modernday astronomers. But the most remarkable result of Newton's work is that the motions of bodies in the heavens obey the *same* laws of motion as do bodies on the earth. This *Newtonian synthesis*, as it has come to be called, is one of the great unifying principles of science. It has had profound effects on the way that humanity looks at the universe—not as a realm of impenetrable mystery, but as a direct extension of our everyday world, subject to scientific study and calculation.

MP 1

Test Your Understanding of Section 13.5 The orbit of Comet X has a semi-major axis that is four times longer than the semi-major axis of Comet Y. What is the ratio of the orbital period of X to the orbital period of Y? (i) 2; (ii) 4; (iii) 8; (iv) 16; (v) 32; (vi) 64.

13.6 Spherical Mass Distributions

We have stated without proof that the gravitational interaction between two spherically symmetric mass distributions is the same as though all the mass of each were concentrated at its center. Now we're ready to prove this statement. Newton searched for a proof for several years, and he delayed publication of the law of gravitation until he found one.

Here's our program. Rather than starting with two spherically symmetric masses, we'll tackle the simpler problem of a point mass m interacting with a thin spherical shell with total mass M. We will show that when m is outside the sphere, the *potential energy* associated with this gravitational interaction is the same as though M were all concentrated at the center of the sphere. We learned in Section 7.4 that the force is the negative derivative of the potential energy, so the *force* on m is also the same as for a point mass M. Any spherically symmetric mass distribution can be thought of as being made up of many concentric spherical shells, so our result will also hold for *any* spherically symmetric M.

A Point Mass Outside a Spherical Shell

We start by considering a ring on the surface of the shell (Fig. 13.22a), centered on the line from the center of the shell to *m*. We do this because all of the particles that make up the ring are the same distance *s* from the point mass *m*. From Eq. (13.9) the potential energy of interaction between the earth (mass m_E) and a point mass *m*, separated by a distance *r*, is $U = -Gm_Em/r$. By changing notation in this expression, we see that the potential energy of interaction between the point mass *m* and a particle of mass m_i within the ring is given by

$$U_i = -\frac{Gmm_i}{s}$$

To find the potential energy of interaction between *m* and the entire ring of mass $dM = \sum_i m_i$, we sum this expression for U_i over all particles in the ring. Calling this potential energy dU, we find

$$dU = \sum_{i} U_{i} = \sum_{i} \left(-\frac{Gmm_{i}}{s} \right) = -\frac{Gm}{s} \sum_{i} m_{i} = -\frac{Gm}{s} \frac{dM}{s} \quad (13.18)$$

To proceed, we need to know the mass dM of the ring. We can find this with the aid of a little geometry. The radius of the shell is R, so in terms of the angle ϕ shown in the figure, the radius of the ring is $R \sin \phi$, and its circumference is $2\pi R \sin \phi$. The width of the ring is $R d\phi$, and its area dA is approximately equal to its width times its circumference:

$$dA = 2\pi R^2 \sin \phi \, d\phi$$

The ratio of the ring mass dM to the total mass M of the shell is equal to the ratio of the area dA of the ring to the total area $A = 4\pi R^2$ of the shell:

$$\frac{dM}{M} = \frac{2\pi R^2 \sin \phi \, d\phi}{4\pi R^2} = \frac{1}{2} \sin \phi \, d\phi \tag{13.19}$$

Now we solve Eq. (13.19) for dM and substitute the result into Eq. (13.18) to find the potential energy of interaction between the point mass m and the ring:

$$dU = -\frac{GMm\sin\phi \, d\phi}{2s} \tag{13.20}$$

The total potential energy of interaction between the point mass and the *shell* is the integral of Eq. (13.20) over the whole sphere as ϕ varies from 0 to π (*not* 2π !) and *s* varies from r - R to r + R. To carry out the integration, we have to express the integrand in terms of a single variable; we choose *s*. To express ϕ and $d\phi$ in terms of *s*, we have to do a little more geometry. Figure 13.22b shows that *s* is the hypotenuse of a right triangle with sides $(r - R\cos\phi)$ and $R\sin\phi$, so the Pythagorean theorem gives

$$s^{2} = (r - R\cos\phi)^{2} + (R\sin\phi)^{2}$$

= $r^{2} - 2rR\cos\phi + R^{2}$ (13.21)

We take differentials of both sides:

$$2s \, ds = 2rR \sin \phi \, d\phi$$

Next we divide this by 2rR and substitute the result into Eq. (13.20):

$$dU = -\frac{GMm}{2s}\frac{s\,ds}{rR} = -\frac{GMm}{2rR}\,ds \tag{13.22}$$

We can now integrate Eq. (13.22), recalling that s varies from r - R to r + R:

$$U = -\frac{GMm}{2rR} \int_{r-R}^{r+R} ds = -\frac{GMm}{2rR} [(r+R) - (r-R)] \quad (13.23)$$

Finally, we have

$$U = -\frac{GMm}{r}$$
 (point mass *m* outside spherical shell *M*) (13.24)

This is equal to the potential energy of two point masses m and M at a distance r. So we have proved that the gravitational potential energy of the spherical shell M and the point mass m at any distance r is the same as though they were point masses. Because the force is given by $F_r = -dU/dr$, the force is also the same. **13.23** When a point mass *m* is *inside* a uniform spherical shell of mass *M*, the potential energy is the same no matter where inside the shell the point mass is located. The force from the masses' mutual gravitational interaction is zero.

The Gravitational Force Between Spherical Mass Distributions

Any spherically symmetric mass distribution can be thought of as a combination of concentric spherical shells. Because of the principle of superposition of forces, what is true of one shell is also true of the combination. So we have proved half of what we set out to prove: that the gravitational interaction between any spherically symmetric mass distribution and a point mass is the same as though all the mass of the spherically symmetric distribution were concentrated at its center.

The other half is to prove that *two* spherically symmetric mass distributions interact as though they were both points. That's easier. In Fig. 13.22a the forces the two bodies exert on each other are an action-reaction pair, and they obey Newton's third law. So we have also proved that the force that m exerts on the sphere M is the same as though M were a point. But now if we replace m with a spherically symmetric mass distribution centered at m's location, the resulting gravitational force on any part of M is the same as before, and so is the total force. This completes our proof.

A Point Mass Inside a Spherical Shell

We assumed at the beginning that the point mass m was outside the spherical shell, so our proof is valid only when m is outside a spherically symmetric mass distribution. When m is *inside* a spherical shell, the geometry is as shown in Fig. 13.23. The entire analysis goes just as before; Eqs. (13.18) through (13.22) are still valid. But when we get to Eq. (13.23), the limits of integration have to be changed to R - r and R + r. We then have

$$U = -\frac{GMm}{2rR} \int_{R-r}^{R+r} ds = -\frac{GMm}{2rR} [(R+r) - (R-r)] \quad (13.25)$$

and the final result is

$$U = -\frac{GMm}{R}$$
 (point mass *m* inside spherical shell *M*) (13.26)

Compare this result to Eq. (13.24): Instead of having r, the distance between m and the center of M, in the denominator, we have R, the radius of the shell. This means that U in Eq. (13.26) doesn't depend on r and thus has the same value everywhere inside the shell. When m moves around inside the shell, no work is done on it, so the force on m at any point inside the shell must be zero.

More generally, at any point in the interior of any spherically symmetric mass distribution (not necessarily a shell), at a distance r from its center, the gravitational force on a point mass m is the same as though we removed all the mass at points farther than r from the center and concentrated all the remaining mass at the center.

Example 13.10 "Journey to the center of the earth"

Imagine that we drill a hole through the earth along a diameter and drop a mail pouch down the hole. Derive an expression for the gravitational force F_g on the pouch as a function of its distance from the earth's center. Assume that the earth's density is uniform (not a very realistic model; see Fig. 13.9).

SOLUTION

IDENTIFY and SET UP: From the discussion immediately above, the value of F_g at a distance r from the earth's center is determined only by the mass M within a spherical region of radius r

(Fig. 13.24). Hence F_g is the same as if all the mass within radius r were concentrated at the center of the earth. The mass of a uniform sphere is proportional to the volume of the sphere, which is $\frac{4}{3}\pi r^3$ for a sphere of arbitrary radius r and $\frac{4}{3}\pi R_E^3$ for the entire earth.

EXECUTE: The ratio of the mass M of the sphere of radius r to the mass m_E of the earth is

$$\frac{M}{m_{\rm E}} = \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R_{\rm E}^3} = \frac{r^3}{R_{\rm E}^3} \qquad \text{so} \qquad M = m_{\rm E} \frac{r^3}{R_{\rm E}^3}$$

The magnitude of the gravitational force on m is then

$$F_{\rm g} = \frac{GMm}{r^2} = \frac{Gm}{r^2} \left(m_{\rm E} \frac{r^3}{R_{\rm E}^3} \right) = \frac{Gm_{\rm E}m}{R_{\rm E}^3} r$$

EVALUATE: Inside this uniform-density sphere, F_g is *directly proportional* to the distance *r* from the center, rather than to $1/r^2$ as it is outside the sphere. At the surface $r = R_E$, we have $F_g = Gm_E m/R_E^2$, as we should. In the next chapter we'll learn how to compute the time it would take for the mail pouch to emerge on the other side of the earth.

13.24 A hole through the center of the earth (assumed to be uniform). When an object is a distance r from the center, only the mass inside a sphere of radius r exerts a net gravitational force on it.

Test Your Understanding of Section 13.6 In the classic 1913 science-fiction novel *At the Earth's Core* by Edgar Rice Burroughs, explorers discover that the earth is a hollow sphere and that an entire civilization lives on the inside of the sphere. Would it be possible to stand and walk on the inner surface of a hollow, nonrotating planet?

13.7 Apparent Weight and the Earth's Rotation

Because the earth rotates on its axis, it is not precisely an inertial frame of reference. For this reason the apparent weight of a body on earth is not precisely equal to the earth's gravitational attraction, which we will call the **true weight** \vec{w}_0 of the body. Figure 13.25 is a cutaway view of the earth, showing three observers. Each one holds a spring scale with a body of mass *m* hanging from it. Each scale applies a tension force \vec{F} to the body hanging from it, and the reading on each scale is the magnitude *F* of this force. If the observers are unaware of the earth's

13.25 Except at the poles, the reading for an object being weighed on a scale (the *apparent weight*) is less than the gravitational force of attraction on the object (the *true weight*). The reason is that a net force is needed to provide a centripetal acceleration as the object rotates with the earth. For clarity, the illustration greatly exaggerates the angle β between the true and apparent weight vectors.

rotation, each one *thinks* that the scale reading equals the weight of the body because he thinks the body on his spring scale is in equilibrium. So each observer thinks that the tension \vec{F} must be opposed by an equal and opposite force \vec{w} , which we call the **apparent weight**. But if the bodies are rotating with the earth, they are *not* precisely in equilibrium. Our problem is to find the relationship between the apparent weight \vec{w} and the true weight \vec{w}_0 .

If we assume that the earth is spherically symmetric, then the true weight \vec{w}_0 has magnitude Gm_Em/R_E^2 , where m_E and R_E are the mass and radius of the earth. This value is the same for all points on the earth's surface. If the center of the earth can be taken as the origin of an inertial coordinate system, then the body at the north pole really *is* in equilibrium in an inertial system, and the reading on that observer's spring scale is equal to w_0 . But the body at the equator is moving in a circle of radius R_E with speed v, and there must be a net inward force equal to the mass times the centripetal acceleration:

$$w_0 - F = \frac{mv^2}{R_{\rm F}}$$

So the magnitude of the apparent weight (equal to the magnitude of F) is

$$w = w_0 - \frac{mv^2}{R_{\rm E}} \qquad \text{(at the equator)} \tag{13.27}$$

If the earth were not rotating, the body when released would have a free-fall acceleration $g_0 = w_0/m$. Since the earth *is* rotating, the falling body's actual acceleration relative to the observer at the equator is g = w/m. Dividing Eq. (13.27) by *m* and using these relationships, we find

$$g = g_0 - \frac{v^2}{R_{\rm E}}$$
 (at the equator)

To evaluate $v^2/R_{\rm E}$, we note that in 86,164 s a point on the equator moves a distance equal to the earth's circumference, $2\pi R_{\rm E} = 2\pi (6.38 \times 10^6 \,\mathrm{m})$. (The solar day, 86,400 s, is $\frac{1}{365}$ longer than this because in one day the earth also completes $\frac{1}{365}$ of its orbit around the sun.) Thus we find

$$v = \frac{2\pi (6.38 \times 10^6 \text{ m})}{86,164 \text{ s}} = 465 \text{ m/s}$$
$$\frac{v^2}{R_{\rm F}} = \frac{(465 \text{ m/s})^2}{6.38 \times 10^6 \text{ m}} = 0.0339 \text{ m/s}^2$$

So for a spherically symmetric earth the acceleration due to gravity should be about 0.03 m/s^2 less at the equator than at the poles.

At locations intermediate between the equator and the poles, the true weight \vec{w}_0 and the centripetal acceleration are not along the same line, and we need to write a vector equation corresponding to Eq. (13.27). From Fig. 13.25 we see that the appropriate equation is

$$\vec{w} = \vec{w}_0 - m\vec{a}_{rad} = m\vec{g}_0 - m\vec{a}_{rad}$$
 (13.28)

The difference in the magnitudes of g and g_0 lies between zero and 0.0339 m/s². As shown in Fig. 13.25, the *direction* of the apparent weight differs from the direction toward the center of the earth by a small angle β , which is 0.1° or less.

Table 13.1 gives the values of g at several locations, showing variations with latitude. There are also small additional variations due to the lack of perfect spherical symmetry of the earth, local variations in density, and differences in elevation.

Table 13.1Variations of g withLatitude and Elevation

Station	North Latitude	Elevation (m)	$g(m/s^2)$
Canal Zone	09°	0	9.78243
Jamaica	18°	0	9.78591
Bermuda	32°	0	9.79806
Denver, CO	40°	1638	9.79609
Pittsburgh, PA	40.5°	235	9.80118
Cambridge, MA	42°	0	9.80398
Greenland	70°	0	9 82534

Test Your Understanding of Section 13.7 Imagine a planet that has the same mass and radius as the earth, but that makes 10 rotations during the time the earth makes one rotation. What would be the difference between the acceleration due to gravity at the planet's equator and the acceleration due to gravity at its poles? (i) 0.00339 m/s^2 ; (ii) 0.0339 m/s^2 ; (iii) 0.339 m/s^2 ; (iv) 3.39 m/s^2 .

13.8 Black Holes

The concept of a black hole is one of the most interesting and startling products of modern gravitational theory, yet the basic idea can be understood on the basis of Newtonian principles.

The Escape Speed from a Star

Think first about the properties of our own sun. Its mass $M = 1.99 \times 10^{30}$ kg and radius $R = 6.96 \times 10^8$ m are much larger than those of any planet, but compared to other stars, our sun is not exceptionally massive. You can find the sun's average density ρ in the same way we found the average density of the earth in Section 13.2:

$$\rho = \frac{M}{V} = \frac{M}{\frac{4}{3}\pi R^3} = \frac{1.99 \times 10^{30} \text{ kg}}{\frac{4}{3}\pi (6.96 \times 10^8 \text{ m})^3} = 1410 \text{ kg/m}^3$$

The sun's temperatures range from 5800 K (about 5500°C or 10,000°F) at the surface up to 1.5×10^7 K (about 2.7×10^{70} F) in the interior, so it surely contains no solids or liquids. Yet gravitational attraction pulls the sun's gas atoms together until the sun is, on average, 41% denser than water and about 1200 times as dense as the air we breathe.

Now think about the escape speed for a body at the surface of the sun. In Example 13.5 (Section 13.3) we found that the escape speed from the surface of a spherical mass *M* with radius *R* is $v = \sqrt{2GM/R}$. We can relate this to the average density. Substituting $M = \rho V = \rho(\frac{4}{3}\pi R^3)$ into the expression for escape speed gives

$$v = \sqrt{\frac{2GM}{R}} = \sqrt{\frac{8\pi G\rho}{3}}R$$
(13.29)

Using either form of this equation, you can show that the escape speed for a body at the surface of our sun is $v = 6.18 \times 10^5$ m/s (about 2.2 million km/h, or 1.4 million mi/h). This value, roughly $\frac{1}{500}$ the speed of light, is independent of the mass of the escaping body; it depends on only the mass and radius (or average density and radius) of the sun.

Now consider various stars with the same average density ρ and different radii *R*. Equation (13.29) shows that for a given value of density ρ , the escape speed v is directly proportional to *R*. In 1783 the Rev. John Mitchell, an amateur astronomer, noted that if a body with the same average density as the sun had about 500 times the radius of the sun, its escape speed would be greater than the speed of light *c*. With his statement that "all light emitted from such a body would be made to return toward it," Mitchell became the first person to suggest the existence of what we now call a **black hole**—an object that exerts a gravitational force on other bodies but cannot emit any light of its own.

Black Holes, the Schwarzschild Radius, and the Event Horizon

The first expression for escape speed in Eq. (13.29) suggests that a body of mass M will act as a black hole if its radius R is less than or equal to a certain critical radius. How can we determine this critical radius? You might think that you can find the answer by simply setting v = c in Eq. (13.29). As a matter of fact, this does give the correct result, but only because of two compensating errors.

13.26 (a) A body with a radius R greater than the Schwarzschild radius R_S . (b) If the body collapses to a radius smaller than R_S , it is a black hole with an escape speed greater than the speed of light. The surface of the sphere of radius R_S is called the event horizon of the black hole.

(a) When the radius R of a body is greater than the Schwarzschild radius R_S , light can escape from the surface of the body.

Gravity acting on the escaping light "red shifts" it to longer wavelengths.

(b) If all the mass of the body lies inside radius $R_{\rm S}$, the body is a black hole: No light can escape from it.

The kinetic energy of light is *not* $mc^2/2$, and the gravitational potential energy near a black hole is *not* given by Eq. (13.9). In 1916, Karl Schwarzschild used Einstein's general theory of relativity (in part a generalization and extension of Newtonian gravitation theory) to derive an expression for the critical radius R_S , now called the **Schwarzschild radius.** The result turns out to be the same as though we had set v = c in Eq. (13.29), so

$$c = \sqrt{\frac{2GM}{R_{\rm S}}}$$

Solving for the Schwarzschild radius $R_{\rm S}$, we find

$$R_{\rm S} = \frac{2GM}{c^2}$$
 (Schwarzschild radius) (13.30)

If a spherical, nonrotating body with mass M has a radius less than R_S , then *nothing* (not even light) can escape from the surface of the body, and the body is a black hole (Fig. 13.26). In this case, any other body within a distance R_S of the center of the black hole is trapped by the gravitational attraction of the black hole and cannot escape from it.

The surface of the sphere with radius R_S surrounding a black hole is called the **event horizon:** Since light can't escape from within that sphere, we can't see events occurring inside. All that an observer outside the event horizon can know about a black hole is its mass (from its gravitational effects on other bodies), its electric charge (from the electric forces it exerts on other charged bodies), and its angular momentum (because a rotating black hole tends to drag space—and everything in that space—around with it). All other information about the body is irretrievably lost when it collapses inside its event horizon.

Example 13.11 Black hole calculations

Astrophysical theory suggests that a burned-out star whose mass is at least three solar masses will collapse under its own gravity to form a black hole. If it does, what is the radius of its event horizon?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: The radius in question is the Schwarzschild radius. We use Eq. (13.30) with a value of *M*

equal to three solar masses, or $M = 3(1.99 \times 10^{30} \text{ kg}) = 6.0 \times 10^{30} \text{ kg}$:

$$R_{\rm S} = \frac{2GM}{c^2} = \frac{2(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(6.0 \times 10^{30} \,\mathrm{kg})}{(3.00 \times 10^8 \,\mathrm{m/s})^2}$$

$$= 8.9 \times 10^3 \text{ m} = 8.9 \text{ km} = 5.5 \text{ mi}$$

EVALUATE: The average density of such an object is

$$\rho = \frac{M}{\frac{4}{3}\pi R^3} = \frac{6.0 \times 10^{30} \,\text{kg}}{\frac{4}{3}\pi (8.9 \times 10^3 \,\text{m})^3} = 2.0 \times 10^{18} \,\text{kg/m}^3$$

This is about 10^{15} times as great as the density of familiar matter on earth and is comparable to the densities of atomic nuclei.

A Visit to a Black Hole

At points far from a black hole, its gravitational effects are the same as those of any normal body with the same mass. If the sun collapsed to form a black hole, the orbits of the planets would be unaffected. But things get dramatically different close to the black hole. If you decided to become a martyr for science and jump into a black hole, the friends you left behind would notice several odd effects as you moved toward the event horizon, most of them associated with effects of general relativity.

If you carried a radio transmitter to send back your comments on what was happening, your friends would have to retune their receiver continuously to lower and lower frequencies, an effect called the *gravitational red shift*. Consistent with this shift, they would observe that your clocks (electronic or biological) would appear to run more and more slowly, an effect called *time dilation*. In fact, during their lifetimes they would never see you make it to the event horizon.

In your frame of reference, you would make it to the event horizon in a rather short time but in a rather disquieting way. As you fell feet first into the black hole, the gravitational pull on your feet would be greater than that on your head, which would be slightly farther away from the black hole. The *differences* in gravitational force on different parts of your body would be great enough to stretch you along the direction toward the black hole and compress you perpendicular to it. These effects (called *tidal forces*) would rip you to atoms, and then rip your atoms apart, before you reached the event horizon.

Detecting Black Holes

If light cannot escape from a black hole and if black holes are as small as Example 13.11 suggests, how can we know that such things exist? The answer is that any gas or dust near the black hole tends to be pulled into an *accretion disk* that swirls around and into the black hole, rather like a whirlpool (Fig. 13.27). Friction within the accretion disk's material causes it to lose mechanical energy

13.27 A binary star system in which an ordinary star and a black hole orbit each other. The black hole itself cannot be seen, but the x rays from its accretion disk can be detected.

In fact, once the body collapses to a radius of R_S , nothing can prevent it from collapsing further. All of the mass ends up being crushed down to a single point called a *singularity* at the center of the event horizon. This point has zero volume and so has *infinite* density.

13.28 This false-color image shows the motions of stars at the center of our galaxy over a 13-year period. Analyzing these orbits using Kepler's third law indicates that the stars are moving about an unseen object that is some 4.1×10^6 times the mass of the sun. The scale bar indicates a length of 10^{14} m (670 times the distance from the earth to the sun) at the distance of the galactic center.

and spiral into the black hole; as it moves inward, it is compressed together. This causes heating of the material, just as air compressed in a bicycle pump gets hotter. Temperatures in excess of 10^6 K can occur in the accretion disk, so hot that the disk emits not just visible light (as do bodies that are "red-hot" or "whitehot") but x rays. Astronomers look for these x rays (emitted by the material *before* it crosses the event horizon) to signal the presence of a black hole. Several promising candidates have been found, and astronomers now express considerable confidence in the existence of black holes.

Black holes in binary star systems like the one depicted in Fig. 13.27 have masses a few times greater than the sun's mass. There is also mounting evidence for the existence of much larger *supermassive black holes*. One example is thought to lie at the center of our Milky Way galaxy, some 26,000 light-years from earth in the direction of the constellation Sagittarius. High-resolution images of the galactic center reveal stars moving at speeds greater than 1500 km/s about an unseen object that lies at the position of a source of radio waves called Sgr A* (Fig. 13.28). By analyzing these motions, astronomers can infer the period *T* and semi-major axis *a* of each star's orbit. The mass m_X of the unseen object can then be calculated using Kepler's third law in the form given in Eq. (13.17), with the mass of the sun m_S replaced by m_X :

$$T = \frac{2\pi a^{3/2}}{\sqrt{Gm_X}} \qquad \text{so} \qquad m_X = \frac{4\pi^2 a^3}{GT^2}$$

The conclusion is that the mysterious dark object at the galactic center has a mass of 8.2×10^{36} kg, or 4.1 *million* times the mass of the sun. Yet observations with radio telescopes show that it has a radius no more than 4.4×10^{10} m, about one-third of the distance from the earth to the sun. These observations suggest that this massive, compact object is a black hole with a Schwarzschild radius of 1.1×10^{10} m. Astronomers hope to improve the resolution of their observations so that they can actually see the event horizon of this black hole.

Other lines of research suggest that even larger black holes, in excess of 10^9 times the mass of the sun, lie at the centers of other galaxies. Observational and theoretical studies of black holes of all sizes continue to be an exciting area of research in both physics and astronomy.

Test Your Understanding of Section 13.8 If the sun somehow collapsed to form a black hole, what effect would this event have on the orbit of the earth? (i) The orbit would shrink; (ii) the orbit would expand; (iii) the orbit would remain the same size.

SUMMARY CHAPTER

Newton's law of gravitation: Any two bodies with masses m_1 and m_2 , a distance r apart, attract each other with forces inversely proportional to r^2 . These forces form an action-reaction pair and obey Newton's third law. When two or more bodies exert gravitational forces on a particular body, the total gravitational force on that individual body is the vector sum of the forces exerted by the other bodies. The gravitational interaction between spherical mass distributions, such as planets or stars, is the same as if all the mass of each distribution were concentrated at the center. (See Examples 13.1-13.3 and 13.10.)

$$=\frac{Gm_1m_2}{r^2}$$

 $F_{\rm g}$

Gravitational force, weight, and gravitational potential

energy: The weight *w* of a body is the total gravitational force exerted on it by all other bodies in the universe. Near the surface of the earth (mass $m_{\rm E}$ and radius $R_{\rm E}$), the weight is essentially equal to the gravitational force of the earth alone. The gravitational potential energy Uof two masses m and m_E separated by a distance r is inversely proportional to r. The potential energy is never positive; it is zero only when the two bodies are infinitely far apart. (See Examples 13.4 and 13.5.)

Orbits: When a satellite moves in a circular orbit, the centripetal acceleration is provided by the gravitational attraction of the earth. Kepler's three laws describe the more general case: an elliptical orbit of a planet around the sun or a satellite around a planet. (See Examples 13.6-13.9.)

$$w = F_{g} = \frac{Gm_{E}m}{R_{E}^{2}}$$
(13.3)
(weight at earth's surface)

$$g = \frac{Gm_{E}}{R_{E}^{2}}$$
(13.4)
(acceleration due to
gravity at earth's surface)

$$U = -\frac{Gm_{E}m}{r}$$
(13.9)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.3)
(13.4)
(13.4)
(13.4)
(13.4)
(13.4)
(13.5)

(13.30)

(13.1)

$$v = \sqrt{\frac{Gm_{\rm E}}{r}}$$

Gm_m

(speed in circular orbit) (13.10)

$$T = \frac{2\pi r}{v} = 2\pi r \sqrt{\frac{r}{Gm_{\rm E}}} = \frac{2\pi r^{3/2}}{\sqrt{Gm_{\rm E}}}$$
period in circular orbit)
(13.12)

10⁶ m)

Black holes: If a nonrotating spherical mass distribution with total mass M has a radius less than its Schwarzschild radius R_S , it is called a black hole. The gravitational interaction prevents anything, including light, from escaping from within a sphere with radius $R_{\rm S}$. (See Example 13.11.)

$$R_{\rm S} = \frac{2GM}{c^2}$$
(Schwarzschild radius)

If all of the body is inside its Schwarzschild radius $R_{\rm S} = 2GM/c^2$, the body is a black hole.

BRIDGING PROBLEM Speeds in a

Speeds in an Elliptical Orbit

A comet orbits the sun (mass m_S) in an elliptical orbit of semimajor axis *a* and eccentricity *e*. (a) Find expressions for the speeds of the comet at perihelion and aphelion. (b) Evaluate these expressions for Comet Halley (see Example 13.9).

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP

- 1. Sketch the situation; show all relevant dimensions. Label the perihelion and aphelion.
- 2. List the unknown quantities, and identify the target variables.
- 3. Just as for a satellite orbiting the earth, the mechanical energy is conserved for a comet orbiting the sun. (Why?) What other quantity is conserved as the comet moves in its orbit? (*Hint:* See Section 13.5.)

EXECUTE

- 4. You'll need at least two equations that involve the two unknown speeds, and you'll need expressions for the sun–comet distances at perihelion and aphelion. (*Hint:* See Fig. 13.18.)
- 5. Solve the equations for your target variables. Compare your expressions: Which speed is lower? Does this make sense?
- 6. Use your expressions from step 5 to find the perihelion and aphelion speeds for Comet Halley. (*Hint:* See Appendix F.)

EVALUATE

7. Check whether your results make sense for the special case of a circular orbit (e = 0).

Problems

For instructor-assigned homework, go to www.masteringphysics.com

•, ••, •••: Problems of increasing difficulty. **CP**: Cumulative problems incorporating material from earlier chapters. **CALC**: Problems requiring calculus. **BIO**: Biosciences problems.

DISCUSSION QUESTIONS

Q13.1 A student wrote: "The only reason an apple falls downward to meet the earth instead of the earth rising upward to meet the apple is that the earth is much more massive and so exerts a much greater pull." Please comment.

Q13.2 A planet makes a circular orbit with period *T* around a star. If it were to orbit, at the same distance, a star with three times the mass of the original star, would the new period (in terms of *T*) be (a) 3T, (b) $T\sqrt{3}$, (c) *T*, (d) $T/\sqrt{3}$, or (e) T/3?

Q13.3 If all planets had the same average density, how would the acceleration due to gravity at the surface of a planet depend on its radius?

Q13.4 Is a pound of butter on the earth the same amount as a pound of butter on Mars? What about a kilogram of butter? Explain.

Q13.5 Example 13.2 (Section 13.1) shows that the acceleration of each sphere caused by the gravitational force is inversely proportional to the mass of that sphere. So why does the force of gravity give all masses the same acceleration when they are dropped near the surface of the earth?

Q13.6 When will you attract the sun more: today at noon, or tonight at midnight? Explain.

Q13.7 Since the moon is constantly attracted toward the earth by the gravitational interaction, why doesn't it crash into the earth?

Q13.8 A planet makes a circular orbit with period *T* around a star. If the planet were to orbit at the same distance around this star, but had three times as much mass, what would the new period (in terms of *T*) be: (a) 3T, (b) $T\sqrt{3}$, (c) *T*, (d) $T/\sqrt{3}$, or (e) T/3?

Q13.9 The sun pulls on the moon with a force that is more than twice the magnitude of the force with which the earth attracts the moon. Why, then, doesn't the sun take the moon away from the earth?

Q13.10 As defined in Chapter 7, gravitational potential energy is U = mgy and is positive for a body of mass *m* above the earth's surface (which is at y = 0). But in this chapter, gravitational potential energy is $U = -Gm_Em/r$, which is *negative* for a body of mass *m* above the earth's surface (which is at $r = R_E$). How can you reconcile these seemingly incompatible descriptions of gravitational potential energy?

Q13.11 A planet is moving at constant speed in a circular orbit around a star. In one complete orbit, what is the net amount of work done on the planet by the star's gravitational force: positive, negative, or zero? What if the planet's orbit is an ellipse, so that the speed is not constant? Explain your answers.

Q13.12 Does the escape speed for an object at the earth's surface depend on the direction in which it is launched? Explain. Does your answer depend on whether or not you include the effects of air resistance?

Q13.13 If a projectile is fired straight up from the earth's surface, what would happen if the total mechanical energy (kinetic plus potential) is (a) less than zero, and (b) greater than zero? In each case, ignore air resistance and the gravitational effects of the sun, the moon, and the other planets.

Q13.14 Discuss whether this statement is correct: "In the absence of air resistance, the trajectory of a projectile thrown near the earth's surface is an *ellipse*, not a parabola."

Q13.15 The earth is closer to the sun in November than in May. In which of these months does it move faster in its orbit? Explain why.

Q13.16 A communications firm wants to place a satellite in orbit so that it is always directly above the earth's 45th parallel (latitude 45° north). This means that the plane of the orbit will not pass through the center of the earth. Is such an orbit possible? Why or why not?

Q13.17 At what point in an elliptical orbit is the acceleration maximum? At what point is it minimum? Justify your answers.

Q13.18 Which takes more fuel: a voyage from the earth to the moon or from the moon to the earth? Explain.

Q13.19 What would Kepler's third law be for circular orbits if an amendment to Newton's law of gravitation made the gravitational force inversely proportional to r^{3} ? Would this change affect Kepler's other two laws? Explain.

Q13.20 In the elliptical orbit of Comet Halley shown in Fig. 13.20a, the sun's gravity is responsible for making the comet fall inward from aphelion to perihelion. But what is responsible for making the comet move from perihelion back outward to aphelion?

Q13.21 Many people believe that orbiting astronauts feel weightless because they are "beyond the pull of the earth's gravity." How far from the earth would a spacecraft have to travel to be truly beyond the earth's gravitational influence? If a spacecraft were really unaffected by the earth's gravity, would it remain in orbit? Explain. What is the real reason astronauts in orbit feel weightless? **Q13.22** As part of their training before going into orbit, astronauts ride in an airliner that is flown along the same parabolic trajectory as a freely falling projectile. Explain why this gives the same experience of apparent weightlessness as being in orbit.

EXERCISES

Section 13.1 Newton's Law of Gravitation

13.1 • What is the ratio of the gravitational pull of the sun on the moon to that of the earth on the moon? (Assume the distance of the moon from the sun can be approximated by the distance of the earth from the sun.) Use the data in Appendix F. Is it more accurate to say that the moon orbits the earth, or that the moon orbits the sun?

13.2 •• **CP** Cavendish Experiment. In the Cavendish balance apparatus shown in Fig. 13.4, suppose that $m_1 = 1.10 \text{ kg}, m_2 = 25.0 \text{ kg}$, and the rod connecting the m_1 pairs is 30.0 cm long. If, in each pair, m_1 and m_2 are 12.0 cm apart center to center, find (a) the net force and (b) the net torque (about the rotation axis) on the rotating part of the apparatus. (c) Does it seem that the torque in part (b) would be enough to easily rotate the rod? Suggest some ways to improve the sensitivity of this experiment.

13.3 • **Rendezvous in Space!** A couple of astronauts agree to rendezvous in space after hours. Their plan is to let gravity bring them together. One of them has a mass of 65 kg and the other a mass of 72 kg, and they start from rest 20.0 m apart. (a) Make a free-body diagram of each astronaut, and use it to find his or her initial acceleration. As a rough approximation, we can model the astronauts as uniform spheres. (b) If the astronauts' acceleration remained constant, how many days would they have to wait before reaching each other? (Careful! They *both* have acceleration toward each other.) (c) Would their acceleration, in fact, remain constant? If not, would it increase or decrease? Why?

13.4 •• Two uniform spheres, each with mass M and radius R, touch each other. What is the magnitude of their gravitational force of attraction?

13.5 • Two uniform spheres, each of mass 0.260 kg, are fixed at points *A* and *B* (Fig. E13.5). Find the magnitude and direction of the initial acceleration of a uniform sphere with mass 0.010 kg if released from rest at

point *P* and acted on only by forces of gravitational attraction of the spheres at *A* and *B*.

13.6 •• Find the magnitude and direction of the net gravitational force on mass *A* due to masses *B* and *C* in Fig. E13.6. Each mass is 2.00 kg.

13.7 • A typical adult human has a mass of about 70 kg. (a) What force does a full moon exert on such a human when it is directly overhead with its center 378,000 km away? (b) Compare this force with the force exerted on the human by the earth.

13.8 •• An 8.00-kg point mass and a 15.0-kg point mass are held in place 50.0 cm apart. A particle of mass m is released from a point between the two masses 20.0 cm from the 8.00-kg mass along the line connecting the two fixed masses. Find the magnitude and direction of the acceleration of the particle.

13.9 •• A particle of mass 3m is located 1.00 m from a particle of mass m. (a) Where should you put a third mass M so that the net gravitational force on M due to the two masses is exactly zero? (b) Is the equilibrium of M at this point stable or unstable (i) for points along the line connecting m and 3m, and (ii) for points along the line passing through M and perpendicular to the line connecting m and 3m?

13.10 •• The point masses *m* and 2m lie along the *x*-axis, with *m* at the origin and 2m at x = L. A third point mass *M* is moved along the *x*-axis. (a) At what point is the net gravitational force on *M* due to the other two masses equal to zero? (b) Sketch the *x*-component of the net force on *M* due to *m* and 2m, taking quantities to the right as positive. Include the regions x < 0, 0 < x < L, and x > L. Be especially careful to show the behavior of the graph on either side of x = 0 and x = L.

Section 13.2 Weight

13.11 •• At what distance above the surface of the earth is the acceleration due to the earth's gravity 0.980 m/s^2 if the acceleration due to gravity at the surface has magnitude 9.80 m/s²?

13.12 • The mass of Venus is 81.5% that of the earth, and its radius is 94.9% that of the earth. (a) Compute the acceleration due to gravity on the surface of Venus from these data. (b) If a rock weighs 75.0 N on earth, what would it weigh at the surface of Venus?

13.13 • Titania, the largest moon of the planet Uranus, has $\frac{1}{8}$ the radius of the earth and $\frac{1}{1700}$ the mass of the earth. (a) What is the acceleration due to gravity at the surface of Titania? (b) What is the average density of Titania? (This is less than the density of rock, which is one piece of evidence that Titania is made primarily of ice.)

13.14 • Rhea, one of Saturn's moons, has a radius of 765 km and an acceleration due to gravity of 0.278 m/s^2 at its surface. Calculate its mass and average density.

13.15 •• Calculate the earth's gravity force on a 75-kg astronaut who is repairing the Hubble Space Telescope 600 km above the earth's surface, and then compare this value with his weight at the

earth's surface. In view of your result, explain why we say astronauts are weightless when they orbit the earth in a satellite such as a space shuttle. Is it because the gravitational pull of the earth is negligibly small?

Section 13.3 Gravitational Potential Energy

13.16 •• Volcanoes on Io. Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 km (or even higher) above the surface. Io has a mass of 8.94×10^{22} kg and a radius of 1815 km. Ignore any variation in gravity over the 500-km range of the debris. How high would this material go on earth if it were ejected with the same speed as on Io?

13.17 • Use the results of Example 13.5 (Section 13.3) to calculate the escape speed for a spacecraft (a) from the surface of Mars and (b) from the surface of Jupiter. Use the data in Appendix F. (c) Why is the escape speed for a spacecraft independent of the spacecraft's mass?

13.18 •• Ten days after it was launched toward Mars in December 1998, the *Mars Climate Orbiter* spacecraft (mass 629 kg) was 2.87×10^6 km from the earth and traveling at 1.20×10^4 km/h relative to the earth. At this time, what were (a) the spacecraft's kinetic energy relative to the earth and (b) the potential energy of the earth-spacecraft system?

Section 13.4 The Motion of Satellites

13.19 • For a satellite to be in a circular orbit 780 km above the surface of the earth, (a) what orbital speed must it be given, and (b) what is the period of the orbit (in hours)?

13.20 •• Aura Mission. On July 15, 2004, NASA launched the Aura spacecraft to study the earth's climate and atmosphere. This satellite was injected into an orbit 705 km above the earth's surface. Assume a circular orbit. (a) How many hours does it take this satellite to make one orbit? (b) How fast (in km/s) is the Aura spacecraft moving?

13.21 •• Two satellites are in circular orbits around a planet that has radius 9.00×10^6 m. One satellite has mass 68.0 kg, orbital radius 5.00×10^7 m, and orbital speed 4800 m/s. The second satellite has mass 84.0 kg and orbital radius 3.00×10^7 m. What is the orbital speed of this second satellite?

13.22 •• International Space Station. The International Space Station makes 15.65 revolutions per day in its orbit around the earth. Assuming a circular orbit, how high is this satellite above the surface of the earth?

13.23 • Deimos, a moon of Mars, is about 12 km in diameter with mass 2.0×10^{15} kg. Suppose you are stranded alone on Deimos and want to play a one-person game of baseball. You would be the pitcher, and you would be the batter! (a) With what speed would you have to throw a baseball so that it would go into a circular orbit just above the surface and return to you so you could hit it? Do you think you could actually throw it at this speed? (b) How long (in hours) after throwing the ball should you be ready to hit it? Would this be an action-packed baseball game?

Section 13.5 Kepler's Laws and the Motion of Planets

13.24 •• Planet Vulcan. Suppose that a planet were discovered between the sun and Mercury, with a circular orbit of radius equal to $\frac{2}{3}$ of the average orbit radius of Mercury. What would be the orbital period of such a planet? (Such a planet was once postulated, in part to explain the precession of Mercury's orbit. It was even given the name Vulcan, although we now have no evidence that it actually exists. Mercury's precession has been explained by general relativity.)

13.25 •• The star Rho^1 Cancri is 57 light-years from the earth and has a mass 0.85 times that of our sun. A planet has been detected in a circular orbit around Rho^1 Cancri with an orbital radius equal to 0.11 times the radius of the earth's orbit around the sun. What are (a) the orbital speed and (b) the orbital period of the planet of Rho^1 Cancri?

13.26 •• In March 2006, two small satellites were discovered orbiting Pluto, one at a distance of 48,000 km and the other at 64,000 km. Pluto already was known to have a large satellite Charon, orbiting at 19,600 km with an orbital period of 6.39 days. Assuming that the satellites do not affect each other, find the orbital periods of the two small satellites *without* using the mass of Pluto.

13.27 • (a) Use Fig. 13.18 to show that the sun-planet distance at perihelion is (1 - e)a, the sun-planet distance at aphelion is (1 + e)a, and therefore the sum of these two distances is 2a. (b) When the dwarf planet Pluto was at perihelion in 1989, it was almost 100 million km closer to the sun than Neptune. The semi-major axes of the orbits of Pluto and Neptune are 5.92×10^{12} m and 4.50×10^{12} m, respectively, and the eccentricities are 0.248 and 0.010. Find Pluto's closest distance and Neptune's farthest distance from the sun. (c) How many years after being at perihelion in 1989 will Pluto again be at perihelion?

13.28 •• Hot Jupiters. In 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting very close to the star HD 179949 (hence the term "hot Jupiter"). The orbit was just $\frac{1}{9}$ the distance of Mercury from our sun, and it takes the planet only 3.09 days to make one orbit (assumed to be circular). (a) What is the mass of the star? Express your answer in kilograms and as a multiple of our sun's mass. (b) How fast (in km/s) is this planet moving?

13.29 •• **Planets Beyond the Solar System.** On October 15, 2001, a planet was discovered orbiting around the star HD 68988. Its orbital distance was measured to be 10.5 million kilometers from the center of the star, and its orbital period was estimated at 6.3 days. What is the mass of HD 68988? Express your answer in kilograms and in terms of our sun's mass. (Consult Appendix F.)

Section 13.6 Spherical Mass Distributions

13.30 • A uniform, spherical, 1000.0-kg shell has a radius of 5.00 m. (a) Find the gravitational force this shell exerts on a 2.00-kg point mass placed at the following distances from the center of the shell: (i) 5.01 m, (ii) 4.99 m, (iii) 2.72 m. (b) Sketch a qualitative graph of the magnitude of the gravitational force this sphere exerts on a point mass *m* as a function of the distance *r* of *m* from the center of the sphere. Include the region from r = 0 to $r \rightarrow \infty$.

13.31 •• A uniform, solid, 1000.0-kg sphere has a radius of 5.00 m. (a) Find the gravitational force this sphere exerts on a 2.00-kg point mass placed at the following distances from the center of the sphere: (i) 5.01 m, (ii) 2.50 m. (b) Sketch a qualitative graph of the magnitude of the gravitational force this sphere exerts on a point mass *m* as a function of the distance *r* of *m* from the center of the sphere. Include the region from r = 0 to $r \rightarrow \infty$.

13.32 • CALC A thin, uniform rod has length L and mass M. A small uniform sphere of mass m is placed a distance x from one end of the rod, along the axis of the rod (Fig. E13.32). (a) Calculate

Figure **E13.32**

the gravitational potential energy of the rod-sphere system. Take the potential energy to be zero when the rod and sphere are infinitely far apart. Show that your answer reduces to the expected result when x is much larger than L. (*Hint:* Use the power series expansion for $\ln(1 + x)$ given in Appendix B.) (b) Use $F_x = -dU/dx$ to find the magnitude and direction of the gravitational force exerted on the sphere by the rod (see Section 7.4). Show that your answer reduces to the expected result when x is much larger than L.

13.33 • **CALC** Consider the ring-shaped body of Fig. E13.33. A particle with mass *m* is placed a distance *x* from the center of the ring, along the line through the center of the ring and perpendicular to its plane. (a) Calculate the gravitational potential energy *U* of this system. Take the potential energy to be zero when the two objects are far apart. (b) Show that your answer to part (a) reduces to the expected result when *x* is much larger than the radius *a* of the ring. (c) Use $F_x = -dU/dx$ to find the magnitude and direction of the force on the particle (see Section 7.4). (d) Show that your answer to part (c) reduces to the expected result when *x* is much larger than *x* is much larger than *a*. (e) What are the values of *U* and F_x when x = 0? Explain why these results make sense.

Figure **E13.33**

Section 13.7 Apparent Weight and the Earth's Rotation

13.34 •• A Visit to Santa. You decide to visit Santa Claus at the north pole to put in a good word about your splendid behavior throughout the year. While there, you notice that the elf Sneezy, when hanging from a rope, produces a tension of 475.0 N in the rope. If Sneezy hangs from a similar rope while delivering presents at the earth's equator, what will the tension in it be? (Recall that the earth is rotating about an axis through its north and south poles.) Consult Appendix F and start with a free-body diagram of Sneezy at the equator.

13.35 • The acceleration due to gravity at the north pole of Neptune is approximately 10.7 m/s^2 . Neptune has mass 1.0×10^{26} kg and radius 2.5×10^4 km and rotates once around its axis in about 16 h. (a) What is the gravitational force on a 5.0-kg object at the north pole of Neptune? (b) What is the apparent weight of this same object at Neptune's equator? (Note that Neptune's "surface" is gaseous, not solid, so it is impossible to stand on it.)

Section 13.8 Black Holes

13.36 •• Mini Black Holes. Cosmologists have speculated that black holes the size of a proton could have formed during the early days of the Big Bang when the universe began. If we take the diameter of a proton to be 1.0×10^{-15} m, what would be the mass of a mini black hole?

13.37 •• At the Galaxy's Core. Astronomers have observed a small, massive object at the center of our Milky Way galaxy (see Section 13.8). A ring of material orbits this massive object; the ring has a diameter of about 15 light-years and an orbital speed of about 200 km/s. (a) Determine the mass of the object at the center of the Milky Way galaxy. Give your answer both in kilograms and in solar masses (one solar mass is the mass of the sun). (b) Observations of stars, as well as theories of the structure of stars, suggest that it

is impossible for a single star to have a mass of more than about 50 solar masses. Can this massive object be a single, ordinary star? (c) Many astronomers believe that the massive object at the center of the Milky Way galaxy is a black hole. If so, what must the Schwarzschild radius of this black hole be? Would a black hole of this size fit inside the earth's orbit around the sun?

13.38 • (a) Show that a black hole attracts an object of mass *m* with a force of $mc^2 R_{\rm S}/(2r^2)$, where *r* is the distance between the object and the center of the black hole. (b) Calculate the magnitude of the gravitational force exerted by a black hole of Schwarzschild radius 14.0 mm on a 5.00-kg mass 3000 km from it. (c) What is the mass of this black hole?

13.39 • In 2005 astronomers announced the discovery of a large black hole in the galaxy Markarian 766 having clumps of matter orbiting around once every 27 hours and moving at 30,000 km/s. (a) How far are these clumps from the center of the black hole? (b) What is the mass of this black hole, assuming circular orbits? Express your answer in kilograms and as a multiple of our sun's mass. (c) What is the radius of its event horizon?

PROBLEMS

13.40 ••• Four identical masses of 800 kg each are placed at the corners of a square whose side length is 10.0 cm. What is the net gravitational force (magnitude and direction) on one of the masses, due to the other three?

13.41 ••• Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but have a *much* smaller diameter. If you weigh 675 N on the earth, what would you weigh at the surface of a neutron star that has the same mass as our sun and a diameter of 20 km?

13.42 ••• CP Exploring Europa. There is strong evidence that Europa, a satellite of Jupiter, has a liquid ocean beneath its icy surface. Many scientists think we should land a vehicle there to search for life. Before launching it, we would want to test such a lander under the gravity conditions at the surface of Europa. One way to do this is to put the lander at the end of a rotating arm in an orbiting earth satellite. If the arm is 4.25 m long and pivots about one end, at what angular speed (in rpm) should it spin so that the acceleration of the lander is the same as the acceleration due to gravity at the surface of Europa? The mass of Europa is 4.8×10^{22} kg and its diameter is 3138 km.

13.43 • Three uniform spheres are fixed at the positions shown in Fig. P13.43. (a) What are the magnitude and direction of the force on a 0.0150-kg particle placed at *P*? (b) If the spheres are in deep outer space and a 0.0150-kg particle is released from rest 300 m from the origin along a line 45° below the

Figure **P13.43**

-x-axis, what will the particle's speed be when it reaches the origin?

13.44 •• A uniform sphere with mass 60.0 kg is held with its center at the origin, and a second uniform sphere with mass 80.0 kg is held with its center at the point x = 0, y = 3.00 m. (a) What are the magnitude and direction of the net gravitational force due to these objects on a third uniform sphere with mass 0.500 kg placed at the point x = 4.00 m, y = 0? (b) Where, other than infinitely far away, could the third sphere be placed such that the net gravitational force acting on it from the other two spheres is equal to zero?

13.45 •• CP BIO Hip Wear on the Moon. (a) Use data from Appendix F to calculate the acceleration due to gravity on the moon. (b) Calculate the friction force on a walking 65-kg astronaut carrying a 43-kg instrument pack on the moon if the coefficient of kinetic friction at her hip joint is 0.0050. (c) What would be the friction force on earth for this astronaut?

13.46 •• **Mission to Titan.** On December 25, 2004, the *Huygens* probe separated from the *Cassini* spacecraft orbiting Saturn and began a 22-day journey to Saturn's giant moon Titan, on whose surface it landed. Besides the data in Appendix F, it is useful to know that Titan is 1.22×10^6 km from the center of Saturn and has a mass of 1.35×10^{23} kg and a diameter of 5150 km. At what distance from Titan should the gravitational pull of Titan just balance the gravitational pull of Saturn?

13.47 •• The asteroid Toro has a radius of about 5.0 km. Consult Appendix F as necessary. (a) Assuming that the density of Toro is the same as that of the earth (5.5 g/cm^3) , find its total mass and find the acceleration due to gravity at its surface. (b) Suppose an object is to be placed in a circular orbit around Toro, with a radius just slightly larger than the asteroid's radius. What is the speed of the object? Could you launch yourself into orbit around Toro by running?

13.48 ••• At a certain instant, the earth, the moon, and a stationary 1250-kg spacecraft lie at the vertices of an equilateral triangle whose sides are 3.84×10^5 km in length. (a) Find the magnitude and direction of the net gravitational force exerted on the spacecraft by the earth and moon. State the direction as an angle measured from a line connecting the earth and the spacecraft. In a sketch, show the earth, the moon, the spacecraft, and the force vector. (b) What is the minimum amount of work that you would have to do to move the spacecraft to a point far from the earth and moon? You can ignore any gravitational effects due to the other planets or the sun.

13.49 ••• CP An experiment is performed in deep space with two uniform spheres, one with mass 50.0 kg and the other with mass 100.0 kg. They have equal radii, r = 0.20 m.The spheres are released from rest with their centers 40.0 m apart. They accelerate toward each other because of their mutual gravitational attraction. You can ignore all gravitational forces other than that between the two spheres. (a) Explain why linear momentum is conserved. (b) When their centers are 20.0 m apart, find (i) the speed of each sphere and (ii) the magnitude of the relative velocity with which one sphere is approaching the other. (c) How far from the initial position of the center of the 50.0-kg sphere do the surfaces of the two spheres collide?

13.50 •• CP Submarines on Europa. Some scientists are eager to send a remote-controlled submarine to Jupiter's moon Europa to search for life in its oceans below an icy crust. Europa's mass has been measured to be 4.8×10^{22} kg, its diameter is 3138 km, and it has no appreciable atmosphere. Assume that the layer of ice at the surface is not thick enough to exert substantial force on the water. If the windows of the submarine you are designing are 25.0 cm square and can stand a maximum inward force of 9750 N per window, what is the greatest depth to which this submarine can safely dive?

13.51 • Geosynchronous Satellites. Many satellites are moving in a circle in the earth's equatorial plane. They are at such a height above the earth's surface that they always remain above the same point. (a) Find the altitude of these satellites above the earth's surface. (Such an orbit is said to be *geosynchronous*.) (b) Explain, with a sketch, why the radio signals from these satellites cannot directly reach receivers on earth that are north of 81.3° N latitude.

13.52 ••• A landing craft with mass 12,500 kg is in a circular orbit 5.75×10^5 m above the surface of a planet. The period of the orbit is 5800 s. The astronauts in the lander measure the diameter of the planet to be 9.60×10^6 m. The lander sets down at the north pole of the planet. What is the weight of an 85.6-kg astronaut as he steps out onto the planet's surface?

13.53 ••• What is the escape speed from a 300-km-diameter asteroid with a density of 2500 kg/m^3 ?

13.54 •• (a) Asteroids have average densities of about 2500 kg/m^3 and radii from 470 km down to less than a kilometer. Assuming that the asteroid has a spherically symmetric mass distribution, estimate the radius of the largest asteroid from which you could escape simply by jumping off. (*Hint:* You can estimate your jump speed by relating it to the maximum height that you can jump on earth.) (b) Europa, one of Jupiter's four large moons, has a radius of 1570 km. The acceleration due to gravity at its surface is 1.33 m/s^2 . Calculate its average density.

13.55 ••• (a) Suppose you are at the earth's equator and observe a satellite passing directly overhead and moving from west to east in the sky. Exactly 12.0 hours later, you again observe this satellite to be directly overhead. How far above the earth's surface is the satellite's orbit? (b) You observe another satellite directly overhead and traveling east to west. This satellite is again overhead in 12.0 hours. How far is this satellite's orbit above the surface of the earth?

13.56 •• Planet X rotates in the same manner as the earth, around an axis through its north and south poles, and is perfectly spherical. An astronaut who weighs 943.0 N on the earth weighs 915.0 N at the north pole of Planet X and only 850.0 N at its equator. The distance from the north pole to the equator is 18,850 km, measured along the surface of Planet X. (a) How long is the day on Planet X? (b) If a 45,000-kg satellite is placed in a circular orbit 2000 km above the surface of Planet X, what will be its orbital period?

13.57 •• There are two equations from which a change in the gravitational potential energy U of the system of a mass m and the earth can be calculated. One is U = mgy (Eq. 7.2). The other is $U = -Gm_{\rm E}m/r$ (Eq. 13.9). As shown in Section 13.3, the first equation is correct only if the gravitational force is a constant over the change in height Δy . The second is always correct. Actually, the gravitational force is never exactly constant over any change in height, but if the variation is small, we can ignore it. Consider the difference in U between a mass at the earth's surface and a distance h above it using both equations, and find the value of h for which Eq. (7.2) is in error by 1%. Express this value of h as a fraction of the earth's radius, and also obtain a numerical value for it.

13.58 ••• CP Your starship, the *Aimless Wanderer*, lands on the mysterious planet Mongo. As chief scientist-engineer, you make the following measurements: A 2.50-kg stone thrown upward from the ground at 12.0 m/s returns to the ground in 6.00 s; the circumference of Mongo at the equator is 2.00×10^5 km; and there is no appreciable atmosphere on Mongo. The starship commander, Captain Confusion, asks for the following information: (a) What is the mass of Mongo? (b) If the *Aimless Wanderer* goes into a circular orbit 30,000 km above the surface of Mongo, how many hours will it take the ship to complete one orbit?

13.59 •• CP An astronaut, whose mission is to go where no one has gone before, lands on a spherical planet in a distant galaxy. As she stands on the surface of the planet, she releases a small rock from rest and finds that it takes the rock 0.480 s to fall 1.90 m. If the radius of the planet is 8.60×10^7 m, what is the mass of the planet?

13.60 •• In Example 13.5 (Section 13.3) we ignored the gravitational effects of the moon on a spacecraft en route from the earth to the moon. In fact, we must include the gravitational potential energy due to the moon as well. For this problem, you can ignore the motion of the earth and moon. (a) If the moon has radius $R_{\rm M}$ and the distance between the centers of the earth and the moon is $R_{\rm EM}$, find the total gravitational potential energy of the particleearth and particle-moon systems when a particle with mass m is between the earth and the moon, and a distance r from the center of the earth. Take the gravitational potential energy to be zero when the objects are far from each other. (b) There is a point along a line between the earth and the moon where the net gravitational force is zero. Use the expression derived in part (a) and numerical values from Appendix F to find the distance of this point from the center of the earth. With what speed must a spacecraft be launched from the surface of the earth just barely to reach this point? (c) If a spacecraft were launched from the earth's surface toward the moon with an initial speed of 11.2 km/s, with what speed would it impact the moon?

13.61 •• Calculate the percent difference between your weight in Sacramento, near sea level, and at the top of Mount Everest, which is 8800 m above sea level.

13.62 •• The 0.100-kg sphere in Fig. P13.62 is released from rest at the position shown in the sketch, with its center 0.400 m from the center of the 5.00-kg mass. Assume that the only forces on the 0.100-kg sphere are the gravitational forces exerted by the other two spheres and that the 5.00-kg and 10.0-kg spheres are held in place at their initial positions. What is the speed of the 0.100-kg sphere when it has moved 0.400 m to the right from its initial position?

Figure **P13.62**

13.63 ••• An unmanned spacecraft is in a circular orbit around the moon, observing the lunar surface from an altitude of 50.0 km (see Appendix F). To the dismay of scientists on earth, an electrical fault causes an on-board thruster to fire, decreasing the speed of the spacecraft by 20.0 m/s. If nothing is done to correct its orbit, with what speed (in km/h) will the spacecraft crash into the lunar surface?

13.64 ••• Mass of a Comet. On July 4, 2005, the NASA spacecraft Deep Impact fired a projectile onto the surface of Comet Tempel 1. This comet is about 9.0 km across. Observations of surface debris released by the impact showed that dust with a speed as low as 1.0 m/s was able to escape the comet. (a) Assuming a spherical shape, what is the mass of this comet? (*Hint:* See Example 13.5 in Section 13.3.) (b) How far from the comet's center will this debris be when it has lost (i) 90.0% of its initial kinetic energy at the surface?

13.65 • Falling Hammer. A hammer with mass *m* is dropped from rest from a height *h* above the earth's surface. This height is not necessarily small compared with the radius $R_{\rm E}$ of the earth. If you ignore air resistance, derive an expression for the speed *v* of the hammer when it reaches the surface of the earth. Your expression should involve *h*, $R_{\rm E}$, and $m_{\rm E}$, the mass of the earth.

13.66 • (a) Calculate how much work is required to launch a spacecraft of mass *m* from the surface of the earth (mass m_E , radius R_E) and place it in a circular *low earth orbit*—that is, an orbit whose altitude above the earth's surface is much less than R_E . (As an example, the International Space Station is in low earth orbit at an altitude of about 400 km, much less than $R_E = 6380$ km.) You can ignore the kinetic energy that the spacecraft has on the ground due to the earth's rotation. (b) Calculate the minimum amount of additional work required to move the spacecraft from low earth orbit to a very great distance from the earth. You can ignore the statement: "In terms of energy, low earth orbit is halfway to the edge of the universe."

13.67 • A spacecraft is to be launched from the surface of the earth so that it will escape from the solar system altogether. (a) Find the speed relative to the center of the earth with which the spacecraft must be launched. Take into consideration the gravitational effects of both the earth and the sun, and include the

effects of the earth's orbital speed, but ignore air resistance. (b) The rotation of the earth can help this spacecraft achieve escape speed. Find the speed that the spacecraft must have relative to the earth's *surface* if the spacecraft is launched from Florida at the point shown in Fig. P13.67. The rotation and orbital motions of the earth are in the same direction. The launch facilities in Florida are 28.5° north of the equator. (c) The European Space Agency (ESA) uses launch facilities in French Guiana (immediately north of Brazil), 5.15° north of the equator. What speed relative to the earth's surface would a spacecraft need to escape the solar system if launched from French Guiana?

13.68 • **Gravity Inside the Earth.** Find the gravitational force that the earth exerts on a 10.0-kg mass if it is placed at the following locations. Consult Fig. 13.9, and assume a constant density through each of the interior regions (mantle, outer core, inner core), but *not* the same density in each of these regions. Use the graph to estimate the average density for each region: (a) at the surface of the earth; (b) at the outer surface of the molten outer core; (c) at the surface of the solid inner core; (d) at the center of the earth.

13.69 • Kirkwood Gaps. Hundreds of thousands of asteroids orbit the sun within the asteroid belt, which extends from about 3×10^8 km to about 5×10^8 km from the sun. (a) Find the orbital period (in years) of (i) an asteroid at the inside of the belt and (ii) an asteroid at the outside of the belt. Assume circular orbits. (b) In 1867 the American astronomer Daniel Kirkwood pointed out that several gaps exist in the asteroid belt where relatively few asteroids are found. It is now understood that these Kirkwood gaps are caused by the gravitational attraction of Jupiter, the largest planet, which orbits the sun once every 11.86 years. As an example, if an asteroid has an orbital period half that of Jupiter, or 5.93 years, on every other orbit this asteroid would be at its closest to Jupiter and feel a strong attraction toward the planet. This attraction, acting over and over on successive orbits, could sweep asteroids out of the Kirkwood gap. Use this hypothesis to determine the orbital radius for this Kirkwood gap. (c) One of several other Kirkwood gaps appears at a distance from the sun where the orbital period is 0.400 that of Jupiter. Explain why this happens, and find the orbital radius for this Kirkwood gap.

13.70 ••• If a satellite is in a sufficiently low orbit, it will encounter air drag from the earth's atmosphere. Since air drag does negative work (the force of air drag is directed opposite the motion), the mechanical energy will decrease. According to Eq. (13.13), if E decreases (becomes more negative), the radius r of the orbit will decrease. If air drag is relatively small, the satellite can be considered to be in a circular orbit of continually decreasing radius. (a) According to Eq. (13.10), if the radius of a satellite's circular orbit decreases, the satellite's orbital speed v increases. How can you reconcile this with the statement that the mechanical energy decreases? (Hint: Is air drag the only force that does work on the satellite as the orbital radius decreases?) (b) Due to air drag, the radius of a satellite's circular orbit decreases from r to $r - \Delta r$, where the positive quantity Δr is much less than r. The mass of the satellite is m. Show that the increase in orbital speed is $\Delta v = +(\Delta r/2) \sqrt{Gm_{\rm E}/r^3}$; that the change in kinetic energy is $\Delta K = +(Gm_E m/2r^2) \Delta r$; that the change in gravitational potential energy is $\Delta U = -2 \Delta K =$ $-(Gm_{\rm E}m/r^2) \Delta r$; and that the amount of work done by the force of air drag is $W = -(Gm_E m/2r^2) \Delta r$. Interpret these results in light of your comments in part (a). (c) A satellite with mass 3000 kg is initially in a circular orbit 300 km above the earth's surface. Due to air drag, the satellite's altitude decreases to 250 km. Calculate the initial orbital speed; the increase in orbital speed; the initial mechanical energy; the change in kinetic energy; the change in gravitational potential energy; the change in mechanical energy; and the work done by the force of air drag. (d) Eventually a satellite will descend to a low enough altitude in the atmosphere that the satellite burns up and the debris falls to the earth. What becomes of the initial mechanical energy?

13.71 • **Binary Star—Equal Masses.** Two identical stars with mass *M* orbit around their center of mass. Each orbit is circular and has radius *R*, so that the two stars are always on opposite sides of the circle. (a) Find the gravitational force of one star on the other. (b) Find the orbital speed of each star and the period of the orbit. (c) How much energy would be required to separate the two stars to infinity?

13.72 •• CP Binary Star—Different Masses. Two stars, with masses M_1 and M_2 , are in circular orbits around their center of mass. The star with mass M_1 has an orbit of radius R_1 ; the star with mass M_2 has an orbit of radius R_2 . (a) Show that the ratio of the orbital radii of the two stars equals the reciprocal of the ratio of their masses—that is, $R_1/R_2 = M_2/M_1$. (b) Explain why the two stars have the same orbital period, and show that the period Tis given by $T = 2\pi (R_1 + R_2)^{3/2} / \sqrt{G(M_1 + M_2)}$. (c) The two stars in a certain binary star system move in circular orbits. The first star, Alpha, has an orbital speed of 36.0 km/s. The second star, Beta, has an orbital speed of 12.0 km/s. The orbital period is 137 d. What are the masses of each of the two stars? (d) One of the best candidates for a black hole is found in the binary system called A0620-0090. The two objects in the binary system are an orange star, V616 Monocerotis, and a compact object believed to be a black hole (see Fig. 13.27). The orbital period of A0620-0090 is 7.75 hours, the mass of V616 Monocerotis is estimated to be 0.67 times the mass of the sun, and the mass of the black hole is estimated to be 3.8 times the mass of the sun. Assuming that the orbits are circular, find the radius of each object's orbit and the orbital speed of each object. Compare these answers to the orbital radius and orbital speed of the earth in its orbit around the sun.

13.73 ••• Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.0×10^4 m/s when at a distance of 2.5×10^{11} m from the center of the sun, what is its speed when at a distance of 5.0×10^{10} m?

13.74 •• CP An astronaut is standing at the north pole of a newly discovered, spherically symmetric planet of radius R. In his hands he holds a container full of a liquid with mass m and volume V. At the surface of the liquid, the pressure is p_0 ; at a depth d below the surface, the pressure has a greater value p. From this information, determine the mass of the planet.

13.75 •• CALC The earth does not have a uniform density; it is most dense at its center and least dense at its surface. An approximation of its density is $\rho(r) = A - Br$, where $A = 12,700 \text{ kg/m}^3$ and $B = 1.50 \times 10^{-3} \text{ kg/m}^4$. Use $R = 6.37 \times 10^6 \text{ m}$ for the radius of the earth approximated as a sphere. (a) Geological evidence indicates that the densities are 13,100 kg/m³ and 2400 kg/m³ at the earth's center and surface, respectively. What values does the linear approximation model give for the densities at these two locations? (b) Imagine dividing the earth into concentric, spherical shells. Each shell has radius r, thickness dr, volume $dV = 4\pi r^2 dr$, and mass $dm = \rho(r)dV$. By integrating from r = 0 to r = R, show that the mass of the earth in this model is $M = \frac{4}{3}\pi R^3 (A - \frac{3}{4}BR)$. (c) Show that the given values of A and B give the correct mass of the earth to within 0.4%. (d) We saw in Section 13.6 that a uniform spherical shell gives no contribution to g inside it. Show that $g(r) = \frac{4}{3}\pi Gr(A - \frac{3}{4}Br)$ inside the earth in this model. (e) Verify that the expression of part (d) gives g = 0 at the center of the earth and $g = 9.85 \text{ m/s}^2$ at the surface. (f) Show that in this model g does not decrease uniformly with depth but rather has a maximum of $4\pi GA^2/9B = 10.01 \text{ m/s}^2$ at r = 2A/3B = 5640 km.

13.76 •• CP CALC In Example 13.10 (Section 13.6) we saw that inside a planet of uniform density (not a realistic assumption for the earth) the acceleration due to gravity increases uniformly with distance from the center of the planet. That is, $g(r) = g_s r/R$, where g_s is the acceleration due to gravity at the surface, r is the distance from the center of the planet, and R is the radius of the planet. The interior of the planet can be treated approximately as an incompressible fluid of density ρ . (a) Replace the height y in Eq. (12.4) with the radial coordinate r and integrate to find the pressure inside a uniform planet as a function of r. Let the pressure at the surface be zero. (This means ignoring the pressure of the planet's atmosphere.) (b) Using this model, calculate the pressure at the center of the earth. (Use a value of ρ equal to the average density of the earth, calculated from the mass and radius given in Appendix F.) (c) Geologists estimate the pressure at the center of the earth to be approximately 4×10^{11} Pa. Does this agree with your calculation for the pressure at r = 0? What might account for any differences?

13.77 ••• CP Consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee, of its orbit, it is 400 km above the earth's surface; at the high point, or apogee, it is 4000 km above the earth's surface. (a) What is the period of the spacecraft's orbit? (b) Using conservation of angular momentum, find the ratio of the spacecraft's speed at perigee to its speed at apogee. (c) Using conservation of energy, find the space at perigee and the speed at apogee. (d) It is necessary to have the spacecraft escape from the earth completely. If the spacecraft's rockets are fired at perigee, by how much would the speed have to be increased to achieve this? What if the rockets were fired at apogee? Which point in the orbit is more efficient to use?

13.78 • The planet Uranus has a radius of 25,560 km and a surface acceleration due to gravity of 11.1 m/s^2 at its poles. Its moon Miranda (discovered by Kuiper in 1948) is in a circular orbit about Uranus at an altitude of 104,000 km above the planet's surface. Miranda has a mass of 6.6×10^{19} kg and a radius of 235 km. (a) Calculate the mass of Uranus from the given data. (b) Calculate

the magnitude of Miranda's acceleration due to its orbital motion about Uranus. (c) Calculate the acceleration due to Miranda's gravity at the surface of Miranda. (d) Do the answers to parts (b) and (c) mean that an object released 1 m above Miranda's surface on the side toward Uranus will fall *up* relative to Miranda? Explain.

13.79 ••• A 5000-kg spacecraft is in a circular orbit 2000 km above the surface of Mars. How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4000 km above the surface?

13.80 •• One of the brightest comets of the 20th century was Comet Hyakutake, which passed close to the sun in early 1996. The orbital period of this comet is estimated to be about 30,000 years. Find the semi-major axis of this comet's orbit. Compare it to the average sun–Pluto distance and to the distance to Alpha Centauri, the nearest star to the sun, which is 4.3 light-years distant.

13.81 ••• **CALC** Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface. Model a spherically symmetric planet, with the same radius as the earth, as having a density that decreases linearly with distance from the center. Let the density be $15.0 \times 10^3 \text{ kg/m}^3$ at the center and $2.0 \times 10^3 \text{ kg/m}^3$ at the surface. What is the acceleration due to gravity at the surface of this planet?

13.82 •• **CALC** A uniform wire with mass M and length L is bent into a semicircle. Find the magnitude and direction of the gravitational force this wire exerts on a point with mass m placed at the center of curvature of the semicircle.

13.83 ••• **CALC** An object in the shape of a thin ring has radius a and mass M. A uniform sphere with mass m and radius R is placed with its center at a distance x to the right of the center of the ring, along a line through the center of the ring, and perpendicular to its plane (see Fig. E13.33). What is the gravitational force that the sphere exerts on the ring-shaped object? Show that your result reduces to the expected result when x is much larger than a.

13.84 ••• **CALC** A thin, uniform rod has length L and mass M. Calculate the magnitude of the gravitational force the rod exerts on a particle with mass m that is at a point along the axis of the rod a distance x from one end (see Fig. E13.32). Show that your result reduces to the expected result when x is much larger than L.

13.85 • **CALC** A shaft is drilled from the surface to the center of the earth (see Fig. 13.24). As in Example 13.10 (Section 13.6), make the unrealistic assumption that the density of the earth is uniform. With this approximation, the gravitational force on an object with mass *m*, that is inside the earth at a distance *r* from the center, has magnitude $F_g = Gm_E mr/R_E^3$ (as shown in Example 13.10) and points toward the center of the earth. (a) Derive an expression for the gravitational potential energy U(r) of the object–earth system as a function of the object's distance from the center of the earth. Take the potential energy to be zero when the object is at the center of the earth. (b) If an object is released in the shaft at the earth's surface, what speed will it have when it reaches the center of the earth?

CHALLENGE PROBLEMS

13.86 ••• (a) When an object is in a circular orbit of radius r around the earth (mass $m_{\rm E}$), the period of the orbit is T, given by Eq. (13.12), and the orbital speed is v, given by Eq. (13.10). Show that when the object is moved into a circular orbit of slightly larger radius $r + \Delta r$, where $\Delta r \ll r$, its new period is $T + \Delta T$ and its new orbital speed is $v - \Delta v$, where Δr , ΔT , and Δv are all positive quantities and

$$\Delta T = \frac{3\pi\,\Delta r}{v}$$
 and $\Delta v = \frac{\pi\,\Delta r}{T}$

[*Hint*: Use the expression $(1 + x)^n \approx 1 + nx$, valid for $|x| \ll 1$.] (b) The International Space Station (ISS) is in a nearly circular orbit at an altitude of 398.00 km above the surface of the earth. A maintenance crew is about to arrive on the space shuttle that is also in a circular orbit in the same orbital plane as the ISS, but with an altitude of 398.10 km. The crew has come to remove a faulty 125-m electrical cable, one end of which is attached to the ISS and the other end of which is floating free in space. The plan is for the shuttle to snag the free end just at the moment that the shuttle, the ISS, and the center of the earth all lie along the same line. The cable will then break free from the ISS when it becomes taut. How long after the free end is caught by the space shuttle will it detach from the ISS? Give your answer in minutes. (c) If the shuttle misses catching the cable, show that the crew must wait a time $t \approx T^2/\Delta T$ before they have a second chance. Find the numerical value of t and explain whether it would be worth the wait.

13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the departure planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a oneway trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the earth, the launch must be timed so that Mars will be at the right spot when the spacecraft reaches Mars's orbit around the sun. At launch, what must the angle between a sun-Mars line and a sun-earth line be? Use data from Appendix F.

13.88 ••• CP Tidal Forces near a Black Hole. An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030-kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer. (a) What is the tension between her ears? Would the astronaut find it difficult to keep from being torn apart by the gravitational forces? (Since her whole body orbits with the same angular velocity, one ear is moving too slowly for the radius of its orbit and the other is moving too fast. Hence her head must exert forces on her

ears to keep them in their orbits.) (b) Is the center of gravity of her head at the same point as the center of mass? Explain.

13.89 ••• CALC Mass M is distributed uniformly over a disk of radius a. Find the gravitational force (magnitude and direction) between this disk-shaped mass and a particle with mass m located a distance x above the center of the disk (Fig. P13.89). Does your result reduce to the correct expression as x becomes very large? (*Hint:* Divide the disk into infinitesimally thin concentric rings, use

the expression derived in Exercise 13.33 for the gravitational force due to each ring, and integrate to find the total force.)

13.90 ••• CALC Mass M is distributed uniformly along a line of length 2L. A particle with mass m is at a point that is a distance a above the center of the line on its perpendicular bisector (point P in Fig. P13.90). For the gravitational force that the line exerts on the particle, cal-

culate the components perpendicular and parallel to the line. Does your result reduce to the correct expression as *a* becomes very large?

Answers

Chapter Opening Question

The smaller the orbital radius r of a satellite, the faster its orbital speed v [see Eq. (13.10)]. Hence a particle near the inner edge of Saturn's rings has a faster speed than a particle near the outer edge of the rings.

Test Your Understanding Questions

13.1 Answer: (v) From Eq. (13.1), the gravitational force of the sun (mass m_1) on a planet (mass m_2) a distance r away has magnitude $F_g = Gm_1m_2/r^2$. Compared to the earth, Saturn has a value of r^2 that is $10^2 = 100$ times greater and a value of m_2 that is also 100 times greater. Hence the *force* that the sun exerts on Saturn has the same magnitude as the force that the sun exerts on earth. The *acceleration* of a planet equals the net force divided by the planet's mass: Since Saturn has 100 times more mass than the earth, its acceleration is $\frac{1}{100}$ as great as that of the earth.

13.2 Answer: (iii), (i), (ii), (iv) From Eq. (13.4), the acceleration due to gravity at the surface of a planet of mass m_P and radius R_P is $g_P = Gm_P/R_P^2$. That is, g_P is directly proportional to the planet's mass and inversely proportional to the square of its radius. It follows that compared to the value of g at the earth's surface, the value of g_P on each planet is (i) $2/2^2 = \frac{1}{2}$ as great; (ii) $4/4^2 = \frac{1}{4}$ as great; (iii) $4/2^2 = 1$ time as great—that is, the same as on earth; and (iv) $2/4^2 = \frac{1}{8}$ as great.

13.3 Answer: yes This is possible because surface gravity and escape speed depend in different ways on the planet's mass m_P and radius R_P : The value of g at the surface is Gm_P/R_P^2 , while the escape speed is $\sqrt{2Gm_P/R_P}$. For the planet Saturn, for example, m_P is about 100 times the earth's mass and R_P is about 10 times the earth's radius. The value of g is different than on earth by a factor of $(100)/(10)^2 = 1$ (i.e., it is the same as on earth), while the escape speed is greater by a factor of $\sqrt{100/10} = 3.2$. It may help to remember that the surface gravity tells you about conditions right next to the planet's surface, while the escape speed (which tells you how fast you must travel to escape to infinity) depends on conditions at *all* points between the planet's surface and infinity.

13.4 Answer: (ii) Equation (13.10) shows that in a smallerradius orbit, the spacecraft has a faster speed. The negative work done by air resistance decreases the *total* mechanical energy E = K + U; the kinetic energy K increases (becomes more positive), but the gravitational potential energy U decreases (becomes more negative) by a greater amount.

13.5 Answer: (iii) Equation (13.17) shows that the orbital period *T* is proportional to the $\frac{3}{2}$ power of the semi-major axis *a*. Hence the orbital period of Comet X is longer than that of Comet Y by a factor of $4^{3/2} = 8$.

13.6 Answer: no Our analysis shows that there is *zero* gravitational force inside a hollow spherical shell. Hence visitors to the interior of a hollow planet would find themselves weightless, and they could not stand or walk on the planet's inner surface.

13.7 Answer: (iv) The discussion following Eq. (13.27) shows that the difference between the acceleration due to gravity at the equator and at the poles is v^2/R_E . Since this planet has the same radius and hence the same circumference as the earth, the speed v at its equator must be 10 times the speed of the earth's equator. Hence v^2/R_E is $10^2 = 100$ times greater than for the earth, or $100(0.0339 \text{ m/s}^2) = 3.39 \text{ m/s}^2$. The acceleration due to gravity at the poles is $9.80 \text{ m/s}^2 - 3.39 \text{ m/s}^2$. The acceleration due to gravity less, $9.80 \text{ m/s}^2 - 3.39 \text{ m/s}^2 = 6.41 \text{ m/s}^2$. You can show that if this planet were to rotate 17.0 times faster than the earth, the acceleration due to gravity at the equator would be *zero* and loose objects would fly off the equator's surface!

13.8 Answer: (iii) If the sun collapsed into a black hole (which, according to our understanding of stars, it cannot do), the sun would have the same mass but a much smaller radius. Because the gravitational attraction of the sun on the earth does not depend on the sun's radius, the earth's orbit would be unaffected.

Bridging Problem

Answers:	(a)	Perihelion: $v_{\rm P} = \sqrt{\frac{Gm_{\rm S}}{a} \frac{(1+e)}{(1-e)}}$
		aphelion: $v_{\rm A} = \sqrt{\frac{Gm_{\rm S}}{a} \frac{(1-e)}{(1+e)}}$
	(b)	$v_{\rm P} = 54.4 \text{ km/s}, v_{\rm A} = 0.913 \text{ km/s}$

14

PERIODIC MOTION

P Dogs walk with much quicker strides than do humans. Is this primarily because dogs' legs are shorter than human legs, less massive than human legs, or both?

any kinds of motion repeat themselves over and over: the vibration of a quartz crystal in a watch, the swinging pendulum of a grandfather clock, the sound vibrations produced by a clarinet or an organ pipe, and the back-and-forth motion of the pistons in a car engine. This kind of motion, called **periodic motion** or **oscillation**, is the subject of this chapter. Understanding periodic motion will be essential for our later study of waves, sound, alternating electric currents, and light.

A body that undergoes periodic motion always has a stable equilibrium position. When it is moved away from this position and released, a force or torque comes into play to pull it back toward equilibrium. But by the time it gets there, it has picked up some kinetic energy, so it overshoots, stopping somewhere on the other side, and is again pulled back toward equilibrium. Picture a ball rolling back and forth in a round bowl or a pendulum that swings back and forth past its straight-down position.

In this chapter we will concentrate on two simple examples of systems that can undergo periodic motions: spring-mass systems and pendulums. We will also study why oscillations often tend to die out with time and why some oscillations can build up to greater and greater displacements from equilibrium when periodically varying forces act.

14.1 Describing Oscillation

Figure 14.1 shows one of the simplest systems that can have periodic motion. A body with mass *m* rests on a frictionless horizontal guide system, such as a linear air track, so it can move only along the *x*-axis. The body is attached to a spring of negligible mass that can be either stretched or compressed. The left end of the spring is held fixed and the right end is attached to the body. The spring force is the only horizontal force acting on the body; the vertical normal and gravitational forces always add to zero.

LEARNING GOALS

By studying this chapter, you will learn:

- How to describe oscillations in terms of amplitude, period, frequency, and angular frequency.
- How to do calculations with simple harmonic motion, an important type of oscillation.
- How to use energy concepts to analyze simple harmonic motion.
- How to apply the ideas of simple harmonic motion to different physical situations.
- How to analyze the motions of a simple pendulum.
- What a physical pendulum is, and how to calculate the properties of its motion.
- What determines how rapidly an oscillation dies out.
- How a driving force applied to an oscillator at the right frequency can cause a very large response, or resonance.

14.2 Model for periodic motion. When the body is displaced from its equilibrium position at x = 0, the spring exerts a restoring force back toward the equilibrium position.

Application Wing Frequencies

The ruby-throated hummingbird (*Archilochus colubris*) normally flaps its wings at about 50 Hz, producing the characteristic sound that gives hummingbirds their name. Insects can flap their wings at even faster rates, from 330 Hz for a house fly and 600 Hz for a mosquito to an amazing 1040 Hz for the tiny biting midge.

It's simplest to define our coordinate system so that the origin *O* is at the equilibrium position, where the spring is neither stretched nor compressed. Then *x* is the *x*-component of the **displacement** of the body from equilibrium and is also the change in the length of the spring. The *x*-component of the force that the spring exerts on the body is F_x , and the *x*-component of acceleration a_x is given by $a_x = F_x/m$.

Figure 14.2 shows the body for three different displacements of the spring. Whenever the body is displaced from its equilibrium position, the spring force tends to restore it to the equilibrium position. We call a force with this character a **restoring force.** Oscillation can occur only when there is a restoring force tending to return the system to equilibrium.

Let's analyze how oscillation occurs in this system. If we displace the body to the right to x = A and then let go, the net force and the acceleration are to the left (Fig. 14.2a). The speed increases as the body approaches the equilibrium position O. When the body is at O, the net force acting on it is zero (Fig. 14.2b), but because of its motion it *overshoots* the equilibrium position. On the other side of the equilibrium position are to the right (Fig. 14.2c); hence the speed decreases until the body comes to a stop. We will show later that with an ideal spring, the stopping point is at x = -A. The body then accelerates to the right, overshoots equilibrium again, and stops at the starting point x = A, ready to repeat the whole process. The body is oscillating! If there is no friction or other force to remove mechanical energy from the system, this motion repeats forever; the restoring force perpetually draws the body back toward the equilibrium position, only to have the body overshoot time after time.

In different situations the force may depend on the displacement x from equilibrium in different ways. But oscillation *always* occurs if the force is a *restoring* force that tends to return the system to equilibrium.

Amplitude, Period, Frequency, and Angular Frequency

Here are some terms that we'll use in discussing periodic motions of all kinds:

The **amplitude** of the motion, denoted by A, is the maximum magnitude of displacement from equilibrium—that is, the maximum value of |x|. It is always positive. If the spring in Fig. 14.2 is an ideal one, the total overall range of the motion is 2A. The SI unit of A is the meter. A complete vibration, or **cycle**, is one complete round trip—say, from A to -A and back to A, or from O to A, back through O to -A, and back to O. Note that motion from one side to the other (say, -A to A) is a half-cycle, not a whole cycle.

The **period**, *T*, is the time for one cycle. It is always positive. The SI unit is the second, but it is sometimes expressed as "seconds per cycle."

The **frequency**, f, is the number of cycles in a unit of time. It is always positive. The SI unit of frequency is the hertz:

This unit is named in honor of the German physicist Heinrich Hertz (1857–1894), a pioneer in investigating electromagnetic waves.

The **angular frequency**, ω , is 2π times the frequency:

$$\omega = 2\pi f$$

We'll learn shortly why ω is a useful quantity. It represents the rate of change of an angular quantity (not necessarily related to a rotational motion) that is always measured in radians, so its units are rad/s. Since *f* is in cycle/s, we may regard the number 2π as having units rad/cycle.

From the definitions of period T and frequency f we see that each is the reciprocal of the other:

$$f = \frac{1}{T}$$
 $T = \frac{1}{f}$ (relationships between frequency and period) (14.1)

Also, from the definition of ω ,

$$\omega = 2\pi f = \frac{2\pi}{T}$$
 (angular frequency) (14.2)

Example 14.1 Period, frequency, and angular frequency

An ultrasonic transducer used for medical diagnosis oscillates at 6.7 MHz = 6.7×10^6 Hz. How long does each oscillation take, and what is the angular frequency?

SOLUTION

IDENTIFY and SET UP: The target variables are the period T and the angular frequency ω . We can find these using the given frequency f in Eqs. (14.1) and (14.2).

Test Your Understanding of Section 14.1 A body like that shown in Fig. 14.2 oscillates back and forth. For each of the following values of the body's *x*-velocity v_x and *x*-acceleration a_x , state whether its displacement *x* is positive, negative, or zero. (a) $v_x > 0$ and $a_x > 0$; (b) $v_x > 0$ and $a_x < 0$; (c) $v_x < 0$ and $a_x > 0$; (d) $v_x < 0$ and $a_x < 0$; (e) $v_x = 0$ and $a_x < 0$; (f) $v_x > 0$ and $a_x = 0$.

14.2 Simple Harmonic Motion

The simplest kind of oscillation occurs when the restoring force F_x is *directly* proportional to the displacement from equilibrium x. This happens if the spring in Figs. 14.1 and 14.2 is an ideal one that obeys Hooke's law. The constant of proportionality between F_x and x is the force constant k. (You may want to review Hooke's law and the definition of the force constant in Section 6.3.) On either side of the equilibrium position, F_x and x always have opposite signs. In Section 6.3 we represented the force acting on a stretched ideal spring as $F_x = kx$. The x-component of force the spring exerts on the body is the negative of this, so the x-component of force F_x on the body is

$$F_x = -kx$$
 (restoring force exerted by an ideal spring) (14.3)

This equation gives the correct magnitude and sign of the force, whether *x* is positive, negative, or zero (Fig. 14.3). The force constant *k* is always positive and has units of N/m (a useful alternative set of units is kg/s^2). We are assuming that there is no friction, so Eq. (14.3) gives the *net* force on the body.

When the restoring force is directly proportional to the displacement from equilibrium, as given by Eq. (14.3), the oscillation is called **simple harmonic** motion, abbreviated SHM. The acceleration $a_x = d^2x/dt^2 = F_x/m$ of a body in SHM is given by

$$a_x = \frac{d^2x}{dt^2} = -\frac{k}{m}x$$
 (simple harmonic motion) (14.4)

The minus sign means the acceleration and displacement always have opposite signs. This acceleration is *not* constant, so don't even think of using the constant-acceleration equations from Chapter 2. We'll see shortly how to solve this equation to find the displacement x as a function of time. A body that undergoes simple harmonic motion is called a **harmonic oscillator**.

EXECUTE: From Eqs. (14.1) and (14.2),

$$T = \frac{1}{f} = \frac{1}{6.7 \times 10^{6} \text{ Hz}} = 1.5 \times 10^{-7} \text{ s} = 0.15 \,\mu\text{s}$$

$$\omega = 2\pi f = 2\pi (6.7 \times 10^{6} \text{ Hz})$$

$$= (2\pi \text{ rad/cycle})(6.7 \times 10^{6} \text{ cycle/s})$$

$$= 4.2 \times 10^{7} \text{ rad/s}$$

EVALUATE: This is a very rapid vibration, with large f and ω and small T. A slow vibration has small f and ω and large T.

14.3 An idealized spring exerts a restoring force that obeys Hooke's law, $F_x = -kx$. Oscillation with such a restoring force is called simple harmonic motion.

Restoring force F_x

The restoring force exerted by an idealized spring is directly proportional to the displacement (Hooke's law, $F_x = -kx$): the graph of F_x versus x is a straight line.

14.4 In most real oscillations Hooke's law applies provided the body doesn't move too far from equilibrium. In such a case small-amplitude oscillations are approximately simple harmonic.

Ideal case: The restoring force obeys Hooke's law ($F_x = -kx$), so the graph of F_x versus x is a straight line.

Why is simple harmonic motion important? Keep in mind that not all periodic motions are simple harmonic; in periodic motion in general, the restoring force depends on displacement in a more complicated way than in Eq. (14.3). But in many systems the restoring force is *approximately* proportional to displacement if the displacement is sufficiently small (Fig. 14.4). That is, if the amplitude is small enough, the oscillations of such systems are approximately simple harmonic and therefore approximately described by Eq. (14.4). Thus we can use SHM as an approximate model for many different periodic motions, such as the vibration of the quartz crystal in a watch, the motion of a tuning fork, the electric current in an alternating-current circuit, and the oscillations of atoms in molecules and solids.

Circular Motion and the Equations of SHM

To explore the properties of simple harmonic motion, we must express the displacement *x* of the oscillating body as a function of time, x(t). The second derivative of this function, d^2x/dt^2 , must be equal to (-k/m) times the function itself, as required by Eq. (14.4). As we mentioned, the formulas for constant acceleration from Section 2.4 are no help because the acceleration changes constantly as the displacement *x* changes. Instead, we'll find x(t) by noticing a striking similarity between SHM and another form of motion that we've already studied.

Figure 14.5a shows a top view of a horizontal disk of radius A with a ball attached to its rim at point Q. The disk rotates with constant angular speed ω (measured in rad/s), so the ball moves in uniform circular motion. A horizontal light beam shines on the rotating disk and casts a shadow of the ball on a screen. The shadow at point P oscillates back and forth as the ball moves in a circle. We then arrange a body attached to an ideal spring, like the combination shown in Figs. 14.1 and 14.2, so that the body oscillates parallel to the shadow. We will prove that the motion of the body and the motion of the ball's shadow are *identical* if the amplitude of the body's oscillation is equal to the disk radius A, and if the angular frequency $2\pi f$ of the oscillating body is equal to the angular speed ω of the rotating disk. That is, *simple harmonic motion is the projection of uniform circular motion onto a diameter*.

We can verify this remarkable statement by finding the acceleration of the shadow at P and comparing it to the acceleration of a body undergoing SHM, given by Eq. (14.4). The circle in which the ball moves so that its projection matches the motion of the oscillating body is called the **reference circle**; we will call the point Q the *reference point*. We take the reference circle to lie in the

14.5 (a) Relating uniform circular motion and simple harmonic motion. (b) The ball's shadow moves exactly like a body oscillating on an ideal spring.

xy-plane, with the origin *O* at the center of the circle (Fig. 14.5b). At time *t* the vector *OQ* from the origin to the reference point *Q* makes an angle θ with the positive *x*-axis. As the point *Q* moves around the reference circle with constant angular speed ω , the vector *OQ* rotates with the same angular speed. Such a rotating vector is called a **phasor**. (This term was in use long before the invention of the Star Trek stun gun with a similar name. The phasor method for analyzing oscillations is useful in many areas of physics. We'll use phasors when we study alternating-current circuits in Chapter 31 and the interference of light in Chapters 35 and 36.)

The *x*-component of the phasor at time *t* is just the *x*-coordinate of the point *Q*:

$$x = A\cos\theta \tag{14.5}$$

This is also the *x*-coordinate of the shadow *P*, which is the *projection* of *Q* onto the *x*-axis. Hence the *x*-velocity of the shadow *P* along the *x*-axis is equal to the *x*-component of the velocity vector of point *Q* (Fig. 14.6a), and the *x*-acceleration of *P* is equal to the *x*-component of the acceleration vector of *Q* (Fig. 14.6b). Since point *Q* is in uniform circular motion, its acceleration vector \vec{a}_Q is always directed toward *O*. Furthermore, the magnitude of \vec{a}_Q is constant and given by the angular speed squared times the radius of the circle (see Section 9.3):

$$a_O = \omega^2 A \tag{14.6}$$

Figure 14.6b shows that the *x*-component of \vec{a}_Q is $a_x = -a_Q \cos\theta$. Combining this with Eqs. (14.5) and (14.6), we get that the acceleration of point *P* is

$$a_x = -a_Q \cos\theta = -\omega^2 A \cos\theta$$
 or (14.7)

$$a_x = -\omega^2 x \tag{14.8}$$

The acceleration of point P is directly proportional to the displacement x and always has the opposite sign. These are precisely the hallmarks of simple harmonic motion.

Equation (14.8) is *exactly* the same as Eq. (14.4) for the acceleration of a harmonic oscillator, provided that the angular speed ω of the reference point Q is related to the force constant k and mass m of the oscillating body by

$$\omega^2 = \frac{k}{m}$$
 or $\omega = \sqrt{\frac{k}{m}}$ (14.9)

We have been using the same symbol ω for the angular *speed* of the reference point Q and the angular *frequency* of the oscillating point P. The reason is that these quantities are equal! If point Q makes one complete revolution in time T, then point P goes through one complete cycle of oscillation in the same time; hence T is the period of the oscillation. During time T the point Q moves through 2π radians, so its angular speed is $\omega = 2\pi/T$. But this is just the same as Eq. (14.2) for the angular frequency of the point P, which verifies our statement about the two interpretations of ω . This is why we introduced angular frequency in Section 14.1; this quantity makes the connection between oscillation and circular motion. So we reinterpret Eq. (14.9) as an expression for the angular frequency of simple harmonic motion for a body of mass m, acted on by a restoring force with force constant k:

$$\omega = \sqrt{\frac{k}{m}}$$
 (simple harmonic motion) (14.10)

When you start a body oscillating in SHM, the value of ω is not yours to choose; it is predetermined by the values of k and m. The units of k are N/m or kg/s², so k/m is in $(kg/s^2)/kg = s^{-2}$. When we take the square root in Eq. (14.10), we get s^{-1} , or more properly rad/s because this is an *angular* frequency (recall that a radian is not a true unit).

14.6 The (a) *x*-velocity and (b) *x*-acceleration of the ball's shadow *P* (see Fig. 14.5) are the *x*-components of the velocity and acceleration vectors, respectively, of the ball *Q*.

(a) Using the reference circle to determine the *x*-velocity of point *P*

(b) Using the reference circle to determine the *x*-acceleration of point *P*

According to Eqs. (14.1) and (14.2), the frequency f and period T are

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad \text{(simple harmonic motion)} \quad (14.11)$$
$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}} \quad \text{(simple harmonic motion)} \quad (14.12)$$

We see from Eq. (14.12) that a larger mass *m*, with its greater inertia, will have less acceleration, move more slowly, and take a longer time for a complete cycle (Fig. 14.7). In contrast, a stiffer spring (one with a larger force constant *k*) exerts a greater force at a given deformation *x*, causing greater acceleration, higher speeds, and a shorter time *T* per cycle.

CAUTION Don't confuse frequency and angular frequency You can run into trouble if you don't make the distinction between frequency f and angular frequency $\omega = 2\pi f$. Frequency tells you how many cycles of oscillation occur per second, while angular frequency tells you how many radians per second this corresponds to on the reference circle. In solving problems, pay careful attention to whether the goal is to find f or ω .

Period and Amplitude in SHM

Equations (14.11) and (14.12) show that the period and frequency of simple harmonic motion are completely determined by the mass *m* and the force constant *k*. In simple harmonic motion the period and frequency do not depend on the amplitude *A*. For given values of *m* and *k*, the time of one complete oscillation is the same whether the amplitude is large or small. Equation (14.3) shows why we should expect this. Larger *A* means that the body reaches larger values of |x| and is subjected to larger restoring forces. This increases the average speed of the body over a complete cycle; this exactly compensates for having to travel a larger distance, so the same total time is involved.

The oscillations of a tuning fork are essentially simple harmonic motion, which means that it always vibrates with the same frequency, independent of amplitude. This is why a tuning fork can be used as a standard for musical pitch. If it were not for this characteristic of simple harmonic motion, it would be impossible to make familiar types of mechanical and electronic clocks run accurately or to play most musical instruments in tune. If you encounter an oscillating body with a period that *does* depend on the amplitude, the oscillation is *not* simple harmonic motion.

Example 14.2 Angular frequency, frequency, and period in SHM

A spring is mounted horizontally, with its left end fixed. A spring balance attached to the free end and pulled toward the right (Fig. 14.8a) indicates that the stretching force is proportional to the displacement, and a force of 6.0 N causes a displacement of 0.030 m. We replace the spring balance with a 0.50-kg glider, pull it 0.020 m to the right along a frictionless air track, and release it from rest (Fig. 14.8b). (a) Find the force constant *k* of the spring. (b) Find the angular frequency ω , frequency *f*, and period *T* of the resulting oscillation.

SOLUTION

IDENTIFY and SET UP: Because the spring force (equal in magnitude to the stretching force) is proportional to the displacement, the motion is simple harmonic. We find k using Hooke's law, Eq. (14.3), and ω , f, and T using Eqs. (14.10), (14.11), and (14.12), respectively.

14.8 (a) The force exerted *on* the spring (shown by the vector *F*) has *x*-component $F_x = +6.0$ N. The force exerted *by* the spring has *x*-component $F_x = -6.0$ N. (b) A glider is attached to the same spring and allowed to oscillate.

14.7 The greater the mass *m* in a tuning fork's tines, the lower the frequency of oscillation $f = (1/2\pi)\sqrt{k/m}$ and the lower the pitch of the sound that the tuning fork produces.

Tines with large mass *m*: low frequency f = 128 Hz

Tines with small mass m:⁷ high frequency f = 4096 Hz
EXECUTE: (a) When x = 0.030 m, the force the spring exerts on the spring balance is $F_x = -6.0$ N. From Eq. (14.3),

$$k = -\frac{F_x}{x} = -\frac{-6.0 \text{ N}}{0.030 \text{ m}} = 200 \text{ N/m} = 200 \text{ kg/s}^2$$

(b) From Eq. (14.10), with m = 0.50 kg,

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{200 \text{ kg/s}^2}{0.50 \text{ kg}}} = 20 \text{ rad/s}$$
$$f = \frac{\omega}{2\pi} = \frac{20 \text{ rad/s}}{2\pi \text{ rad/cycle}} = 3.2 \text{ cycle/s} = 3.2 \text{ Hz}$$
$$T = \frac{1}{f} = \frac{1}{3.2 \text{ cycle/s}} = 0.31 \text{ s}$$

EVALUATE: The amplitude of the oscillation is 0.020 m, the distance that we pulled the glider before releasing it. In SHM the angular frequency, frequency, and period are all independent of the amplitude. Note that a period is usually stated in "seconds" rather than "seconds per cycle."

Mastering **PHYSICS**

ActivPhysics 9.1: Position Graphs and

ActivPhysics 9.2: Describing Vibrational

ActivPhysics 9.5: Age Drops Tarzan

PhET: Motion in 2D

Equations

Motion

Displacement, Velocity, and Acceleration in SHM

We still need to find the displacement *x* as a function of time for a harmonic oscillator. Equation (14.4) for a body in simple harmonic motion along the *x*-axis is identical to Eq. (14.8) for the *x*-coordinate of the reference point in uniform circular motion with constant angular speed $\omega = \sqrt{k/m}$. Hence Eq. (14.5), $x = A \cos \theta$, describes the *x*-coordinate for both of these situations. If at t = 0 the phasor *OQ* makes an angle ϕ (the Greek letter phi) with the positive *x*-axis, then at any later time *t* this angle is $\theta = \omega t + \phi$. We substitute this into Eq. (14.5) to obtain

 $x = A\cos(\omega t + \phi)$ (displacement in SHM) (14.13)

where $\omega = \sqrt{k/m}$. Figure 14.9 shows a graph of Eq. (14.13) for the particular case $\phi = 0$. The displacement x is a periodic function of time, as expected for SHM. We could also have written Eq. (14.13) in terms of a sine function rather than a cosine by using the identity $\cos \alpha = \sin(\alpha + \pi/2)$. In simple harmonic motion the position is a periodic, sinusoidal function of time. There are many other periodic functions, but none so simple as a sine or cosine function.

The value of the cosine function is always between -1 and 1, so in Eq. (14.13), *x* is always between -A and *A*. This confirms that *A* is the amplitude of the motion.

The period *T* is the time for one complete cycle of oscillation, as Fig. 14.9 shows. The cosine function repeats itself whenever the quantity in parentheses in Eq. (14.13) increases by 2π radians. Thus, if we start at time t = 0, the time *T* to complete one cycle is given by

$$\omega T = \sqrt{\frac{k}{m}}T = 2\pi$$
 or $T = 2\pi\sqrt{\frac{m}{k}}$

which is just Eq. (14.12). Changing either m or k changes the period of oscillation, as shown in Figs. 14.10a and 14.10b. The period does not depend on the amplitude A (Fig. 14.10c).

14.10 Variations of simple harmonic motion. All cases shown have $\phi = 0$ [see Eq. (14.13)].

(c) Increasing A; same k and m
Amplitude A increases from curve 1 to 2 to 3. Changing A alone has x no effect on the period.

14.9 Graph of *x* versus *t* [see Eq. (14.13)] for simple harmonic motion. The case shown has $\phi = 0$.

14.11 Variations of SHM: displacement versus time for the same harmonic oscillator with different phase angles ϕ .

These three curves show SHM with the same period *T* and amplitude *A* but with different phase angles ϕ .

14.12 Graphs of (a) *x* versus *t*, (b) v_x versus *t*, and (c) a_x versus *t* for a body in SHM. For the motion depicted in these graphs, $\phi = \pi/3$.

(a) Displacement x as a function of time t

MP

(b) Velocity v_x as a function of time t

(c) Acceleration a_x as a function of time t

The a_x -t graph is shifted by $\frac{1}{4}$ cycle from the v_x -t graph and by $\frac{1}{2}$ cycle from the *x*-t graph.

The constant ϕ in Eq. (14.13) is called the **phase angle.** It tells us at what point in the cycle the motion was at t = 0 (equivalent to where around the circle the point Q was at t = 0). We denote the position at t = 0 by x_0 . Putting t = 0 and $x = x_0$ in Eq. (14.13), we get

$$x_0 = A\cos\phi \tag{14.14}$$

If $\phi = 0$, then $x_0 = A \cos 0 = A$, and the body starts at its maximum positive displacement. If $\phi = \pi$, then $x_0 = A \cos \pi = -A$, and the particle starts at its maximum *negative* displacement. If $\phi = \pi/2$, then $x_0 = A \cos(\pi/2) = 0$, and the particle is initially at the origin. Figure 14.11 shows the displacement *x* versus time for three different phase angles.

We find the velocity v_x and acceleration a_x as functions of time for a harmonic oscillator by taking derivatives of Eq. (14.13) with respect to time:

$$v_x = \frac{dx}{dt} = -\omega A \sin(\omega t + \phi)$$
 (velocity in SHM) (14.15)

$$a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2} = -\omega^2 A\cos(\omega t + \phi) \qquad \text{(acceleration in SHM)} \quad (14.16)$$

The velocity v_x oscillates between $v_{\text{max}} = +\omega A$ and $-v_{\text{max}} = -\omega A$, and the acceleration a_x oscillates between $a_{\text{max}} = +\omega^2 A$ and $-a_{\text{max}} = -\omega^2 A$ (Fig. 14.12). Comparing Eq. (14.16) with Eq. (14.13) and recalling that $\omega^2 = k/m$ from Eq. (14.9), we see that

$$a_x = -\omega^2 x = -\frac{k}{m} x$$

which is just Eq. (14.4) for simple harmonic motion. This confirms that Eq. (14.13) for x as a function of time is correct.

We actually derived Eq. (14.16) earlier in a geometrical way by taking the *x*-component of the acceleration vector of the reference point Q. This was done in Fig. 14.6b and Eq. (14.7) (recall that $\theta = \omega t + \phi$). In the same way, we could have derived Eq. (14.15) by taking the *x*-component of the velocity vector of Q, as shown in Fig. 14.6b. We'll leave the details for you to work out.

Note that the sinusoidal graph of displacement versus time (Fig. 14.12a) is shifted by one-quarter period from the graph of velocity versus time (Fig. 14.12b) and by one-half period from the graph of acceleration versus time (Fig. 14.12c). Figure 14.13 shows why this is so. When the body is passing through the equilibrium position so that the displacement is zero, the velocity equals either v_{max} or $-v_{\text{max}}$ (depending on which way the body is moving) and the acceleration is zero. When the body is at either its maximum positive displacement, x = +A, or its maximum negative displacement, x = -A, the velocity is zero and the body is instantaneously at rest. At these points, the restoring force $F_x = -kx$ and the acceleration of the body have their maximum magnitudes. At x = +A the acceleration is negative and equal to $-a_{\text{max}}$. At x = -A the acceleration is positive: $a_x = +a_{\text{max}}$.

If we are given the initial position x_0 and initial velocity v_{0x} for the oscillating body, we can determine the amplitude *A* and the phase angle ϕ . Here's how to do it. The initial velocity v_{0x} is the velocity at time t = 0; putting $v_x = v_{0x}$ and t = 0 in Eq. (14.15), we find

$$v_{0x} = -\omega A \sin \phi \tag{14.17}$$

To find ϕ , we divide Eq. (14.17) by Eq. (14.14). This eliminates A and gives an equation that we can solve for ϕ :

$$\frac{v_{0x}}{x_0} = \frac{-\omega A \sin \phi}{A \cos \phi} = -\omega \tan \phi$$

$$\phi = \arctan\left(-\frac{v_{0x}}{\omega x_0}\right) \qquad \text{(phase angle in SHM)} \qquad (14.18)$$

It is also easy to find the amplitude A if we are given x_0 and v_{0x} . We'll sketch the derivation, and you can fill in the details. Square Eq. (14.14); then divide Eq. (14.17) by ω , square it, and add to the square of Eq. (14.14). The right side will be $A^2(\sin^2 \phi + \cos^2 \phi)$, which is equal to A^2 . The final result is

$$A = \sqrt{x_0^2 + \frac{v_{0x}^2}{\omega^2}} \qquad \text{(amplitude in SHM)} \tag{14.19}$$

Note that when the body has both an initial displacement x_0 and a nonzero initial velocity v_{0x} , the amplitude A is *not* equal to the initial displacement. That's reasonable; if you start the body at a positive x_0 but give it a positive velocity v_{0x} , it will go *farther* than x_0 before it turns and comes back.

14.13 How *x*-velocity v_x and *x*-acceleration a_x vary during one cycle of SHM.

Problem-Solving Strategy 14.1 Simple Harmonic Motion I: Describing Motion

IDENTIFY *the relevant concepts:* An oscillating system undergoes simple harmonic motion (SHM) *only* if the restoring force is directly proportional to the displacement.

SET UP *the problem* using the following steps:

- 1. Identify the known and unknown quantities, and determine which are the target variables.
- 2. Distinguish between two kinds of quantities. *Properties of the system* include the mass *m*, the force constant *k*, and quantities derived from *m* and *k*, such as the period *T*, frequency *f*, and angular frequency ω . These are independent of *properties of the motion*, which describe how the system behaves when it is set into motion in a particular way; they include the amplitude *A*, maximum velocity v_{max} , and phase angle ϕ , and values of *x*, v_x , and a_x at particular times.
- 3. If necessary, define an *x*-axis as in Fig. 14.13, with the equilibrium position at x = 0.

EXECUTE *the solution* as follows:

- 1. Use the equations given in Sections 14.1 and 14.2 to solve for the target variables.
- 2. To find the values of *x*, v_x , and a_x at particular times, use Eqs. (14.13), (14.15), and (14.16), respectively. If the initial position x_0 and initial velocity v_{0x} are both given, determine ϕ and *A* from Eqs. (14.18) and (14.19). If the body has an initial positive displacement x_0 but zero initial velocity ($v_{0x} = 0$), then the amplitude is $A = x_0$ and the phase angle is $\phi = 0$. If it has an initial positive velocity v_{0x} but no initial displacement ($x_0 = 0$), the amplitude is $A = v_{0x}/\omega$ and the phase angle is $\phi = -\pi/2$. Express all phase angles in *radians*.

EVALUATE *your answer:* Make sure that your results are consistent. For example, suppose you used x_0 and v_{0x} to find general expressions for *x* and v_x at time *t*. If you substitute t = 0 into these expressions, you should get back the given values of x_0 and v_{0x} .

Example 14.3 Describing SHM

We give the glider of Example 14.2 an initial displacement $x_0 = +0.015$ m and an initial velocity $v_{0x} = +0.40$ m/s. (a) Find the period, amplitude, and phase angle of the resulting motion. (b) Write equations for the displacement, velocity, and acceleration as functions of time.

SOLUTION

IDENTIFY and SET UP: As in Example 14.2, the oscillations are SHM. We use equations from this section and the given values k = 200 N/m, m = 0.50 kg, x_0 , and v_{0x} to calculate the target variables A and ϕ and to obtain expressions for x, v_x , and a_x .

Continued

MP

EXECUTE: (a) In SHM the period and angular frequency are *properties of the system* that depend only on k and m, not on the amplitude, and so are the same as in Example 14.2 (T = 0.31 s and $\omega = 20$ rad/s). From Eq. (14.19), the amplitude is

$$A = \sqrt{x_0^2 + \frac{v_{0x}^2}{\omega^2}} = \sqrt{(0.015 \text{ m})^2 + \frac{(0.40 \text{ m/s})^2}{(20 \text{ rad/s})^2}} = 0.025 \text{ m}$$

We use Eq. (14.18) to find the phase angle:

$$\phi = \arctan\left(-\frac{v_{0x}}{\omega x_0}\right)$$

= $\arctan\left(-\frac{0.40 \text{ m/s}}{(20 \text{ rad/s})(0.015 \text{ m})}\right) = -53^\circ = -0.93 \text{ rad}$

(b) The displacement, velocity, and acceleration at any time are given by Eqs. (14.13), (14.15), and (14.16), respectively. We substitute the values of A, ω , and ϕ into these equations:

$$x = (0.025 \text{ m}) \cos[(20 \text{ rad/s})t - 0.93 \text{ rad}]$$

$$v_x = -(0.50 \text{ m/s}) \sin[(20 \text{ rad/s})t - 0.93 \text{ rad}]$$

$$a_x = -(10 \text{ m/s}^2) \cos[(20 \text{ rad/s})t - 0.93 \text{ rad}]$$

EVALUATE: You can check the expressions for x and v_x by confirming that if you substitute t = 0, they yield $x = x_0 = 0.015$ m and $v_x = v_{0x} = 0.40$ m/s.

Test Your Understanding of Section 14.2 A glider is attached to a spring as shown in Fig. 14.13. If the glider is moved to x = 0.10 m and released from rest at time t = 0, it will oscillate with amplitude A = 0.10 m and phase angle $\phi = 0$. (a) Suppose instead that at t = 0 the glider is at x = 0.10 m and is moving to the right in Fig. 14.13. In this situation is the amplitude greater than, less than, or equal to 2ero? (b) Suppose instead that at t = 0 the glider is at x = 0.10 m. How some set at the amplitude greater than, less than, or equal to 2ero? (b) Suppose instead that at t = 0 the glider is at x = 0.10 m and is moving to the left in Fig. 14.13. In this situation is the amplitude greater than, less than, or equal to 0.10 m? Is the phase angle greater than, less than or equal to 0.10 m? Is t

MasteringPHYSICS

PhET: Masses & Springs ActivPhysics 9.3: Vibrational Energy ActivPhysics 9.4: Two Ways to Weigh Young Tarzan ActivPhysics 9.6: Releasing a Vibrating Skier I ActivPhysics 9.7: Releasing a Vibrating Skier II ActivPhysics 9.8: One- and Two-Spring Vibrating Systems ActivPhysics 9.9: Vibro-Ride

14.3 Energy in Simple Harmonic Motion

We can learn even more about simple harmonic motion by using energy considerations. Take another look at the body oscillating on the end of a spring in Figs. 14.2 and 14.13. We've already noted that the spring force is the only horizontal force on the body. The force exerted by an ideal spring is a conservative force, and the vertical forces do no work, so the total mechanical energy of the system is *conserved*. We also assume that the mass of the spring itself is negligible.

The kinetic energy of the body is $K = \frac{1}{2}mv^2$ and the potential energy of the spring is $U = \frac{1}{2}kx^2$, just as in Section 7.2. (You'll find it helpful to review that section.) There are no nonconservative forces that do work, so the total mechanical energy E = K + U is conserved:

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \text{constant}$$
(14.20)

(Since the motion is one-dimensional, $v^2 = v_x^2$.)

The total mechanical energy *E* is also directly related to the amplitude *A* of the motion. When the body reaches the point x = A, its maximum displacement from equilibrium, it momentarily stops as it turns back toward the equilibrium position. That is, when x = A (or -A), $v_x = 0$. At this point the energy is entirely potential, and $E = \frac{1}{2}kA^2$. Because *E* is constant, it is equal to $\frac{1}{2}kA^2$ at any other point. Combining this expression with Eq. (14.20), we get

 $E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \text{constant} \qquad \begin{array}{c} \text{(total mechanical} \\ \text{energy in SHM)} \end{array} \tag{14.21}$

We can verify this equation by substituting x and v_x from Eqs. (14.13) and (14.15) and using $\omega^2 = k/m$ from Eq. (14.9):

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}m[-\omega A\sin(\omega t + \phi)]^2 + \frac{1}{2}k[A\cos(\omega t + \phi)]^2$$

= $\frac{1}{2}kA^2\sin^2(\omega t + \phi) + \frac{1}{2}kA^2\cos^2(\omega t + \phi)$
= $\frac{1}{2}kA^2$

14.14 Graphs of *E*, *K*, and *U* versus displacement in SHM. The velocity of the body is *not* constant, so these images of the body at equally spaced positions are *not* equally spaced in time.

(Recall that $\sin^2 \alpha + \cos^2 \alpha = 1$.) Hence our expressions for displacement and velocity in SHM are consistent with energy conservation, as they must be.

We can use Eq. (14.21) to solve for the velocity v_x of the body at a given displacement *x*:

$$v_x = \pm \sqrt{\frac{k}{m}} \sqrt{A^2 - x^2}$$
 (14.22)

The \pm sign means that at a given value of x the body can be moving in either direction. For example, when $x = \pm A/2$,

$$v_x = \pm \sqrt{\frac{k}{m}} \sqrt{A^2 - \left(\pm \frac{A}{2}\right)^2} = \pm \sqrt{\frac{3}{4}} \sqrt{\frac{k}{m}} A$$

Equation (14.22) also shows that the *maximum* speed v_{max} occurs at x = 0. Using Eq. (14.10), $\omega = \sqrt{k/m}$, we find that

$$v_{\max} = \sqrt{\frac{k}{m}}A = \omega A \tag{14.23}$$

This agrees with Eq. (14.15): v_x oscillates between $-\omega A$ and $+\omega A$.

Interpreting E, K, and U in SHM

Figure 14.14 shows the energy quantities *E*, *K*, and *U* at x = 0, $x = \pm A/2$, and $x = \pm A$. Figure 14.15 is a graphical display of Eq. (14.21); energy (kinetic, potential, and total) is plotted vertically and the coordinate *x* is plotted horizontally.

(a) The potential energy U and total mechanical energy E for a body in SHM as a function of displacement x

(b) The same graph as in (a), showing kinetic energy *K* as well

kinetic and half potential.

14.15 Kinetic energy *K*, potential energy *U*, and total mechanical energy *E* as functions of position for SHM. At each value of *x* the sum of the values of *K* and *U* equals the constant value of *E*. Can you show that the energy is half kinetic and half potential at $x = \pm \sqrt{\frac{1}{2}}A$?

The parabolic curve in Fig. 14.15a represents the potential energy $U = \frac{1}{2}kx^2$. The horizontal line represents the total mechanical energy *E*, which is constant and does not vary with *x*. At any value of *x* between -A and *A*, the vertical distance from the *x*-axis to the parabola is *U*; since E = K + U, the remaining vertical distance up to the horizontal line is *K*. Figure 14.15b shows both *K* and *U* as functions of *x*. The horizontal line for *E* intersects the potential-energy curve at x = -A and x = A, so at these points the energy is entirely potential, the kinetic energy is zero, and the body comes momentarily to rest before reversing direction. As the body oscillates between -A and *A*, the energy is continuously transformed from potential to kinetic and back again.

Figure 14.15a shows the connection between the amplitude *A* and the corresponding total mechanical energy $E = \frac{1}{2}kA^2$. If we tried to make *x* greater than *A* (or less than -A), *U* would be greater than *E*, and *K* would have to be negative. But *K* can never be negative, so *x* can't be greater than *A* or less than -A.

Problem-Solving Strategy 14.2 Simple Harmonic Motion II: Energy

The SHM energy equation, Eq. (14.21), is a useful relationship among velocity, position, and total mechanical energy. If the problem requires you to relate position, velocity, and acceleration without reference to time, consider using Eq. (14.4) (from Newton's second law) or Eq. (14.21) (from energy conservation). Because Eq. (14.21) involves x^2 and v_x^2 , you must infer the *signs* of x and v_x from the situation. For instance, if the body is moving from the equilibrium position toward the point of greatest positive displacement, then x is positive and v_x is positive.

MP

Example 14.4 Velocity, acceleration, and energy in SHM

(a) Find the maximum and minimum velocities attained by the oscillating glider of Example 14.2. (b) Find the maximum and minimum accelerations. (c) Find the velocity v_x and acceleration a_x when the glider is halfway from its initial position to the equilibrium position x = 0. (d) Find the total energy, potential energy, and kinetic energy at this position.

SOLUTION

IDENTIFY and SET UP: The problem concerns properties of the motion at specified *positions*, not at specified *times*, so we can use the energy relationships of this section. Figure 14.13 shows our choice of x-axis. The maximum displacement from equilibrium is A = 0.020 m. We use Eqs. (14.22) and (14.4) to find v_x and a_x for a given x. We then use Eq. (14.21) for given x and v_x to find the total, potential, and kinetic energies E, U, and K.

EXECUTE: (a) From Eq. (14.22), the velocity v_x at any displacement *x* is

$$v_x = \pm \sqrt{\frac{k}{m}} \sqrt{A^2 - x^2}$$

The glider's maximum *speed* occurs when it is moving through x = 0:

$$v_{\text{max}} = \sqrt{\frac{k}{m}} A = \sqrt{\frac{200 \text{ N/m}}{0.50 \text{ kg}}} (0.020 \text{ m}) = 0.40 \text{ m/s}$$

Its maximum and minimum (most negative) velocities are +0.40 m/s and -0.40 m/s, which occur when it is moving through x = 0 to the right and left, respectively.

(b) From Eq. (14.4), $a_x = -(k/m)x$. The glider's maximum (most positive) acceleration occurs at the most negative value of x, x = -A:

$$a_{\text{max}} = -\frac{k}{m}(-A) = -\frac{200 \text{ N/m}}{0.50 \text{ kg}}(-0.020 \text{ m}) = 8.0 \text{ m/s}^2$$

The minimum (most negative) acceleration is $a_{\min} = -8.0 \text{ m/s}^2$, which occurs at x = +A = +0.020 m.

(c) The point halfway from $x = x_0 = A$ to x = 0 is x = A/2 = 0.010 m. From Eq. (14.22), at this point

$$v_x = -\sqrt{\frac{200 \text{ N/m}}{0.50 \text{ kg}}} \sqrt{(0.020 \text{ m})^2 - (0.010 \text{ m})^2} = -0.35 \text{ m/s}$$

We choose the negative square root because the glider is moving from x = A toward x = 0. From Eq. (14.4),

$$a_x = -\frac{200 \text{ N/m}}{0.50 \text{ kg}}(0.010 \text{ m}) = -4.0 \text{ m/s}^2$$

Figure 14.14 shows the conditions at $x = 0, \pm A/2$, and $\pm A$. (d) The energies are

$$E = \frac{1}{2}kA^2 = \frac{1}{2}(200 \text{ N/m})(0.020 \text{ m})^2 = 0.040 \text{ J}$$
$$U = \frac{1}{2}kx^2 = \frac{1}{2}(200 \text{ N/m})(0.010 \text{ m})^2 = 0.010 \text{ J}$$
$$K = \frac{1}{2}mv_x^2 = \frac{1}{2}(0.50 \text{ kg})(-0.35 \text{ m/s})^2 = 0.030 \text{ J}$$

EVALUATE: At x = A/2, the total energy is one-fourth potential energy and three-fourths kinetic energy. You can confirm this by inspecting Fig. 14.15b.

Example 14.5 Energy and momentum in SHM

A block of mass M attached to a horizontal spring with force constant k is moving in SHM with amplitude A_1 . As the block passes through its equilibrium position, a lump of putty of mass m is dropped from a small height and sticks to it. (a) Find the new amplitude and period of the motion. (b) Repeat part (a) if the putty is dropped onto the block when it is at one end of its path.

SOLUTION

IDENTIFY and SET UP: The problem involves the motion at a given position, not a given time, so we can use energy methods. Figure 14.16 shows our sketches. Before the putty falls, the mechanical energy of the block–spring system is constant. In part (a), the putty–block collision is completely inelastic: The horizontal component of momentum is conserved, kinetic energy decreases, and the amount of mass that's oscillating increases. After the collision, the mechanical energy remains constant at its new value. In part (b) the oscillating mass also increases, but the block isn't moving when the putty is added; there is effectively no collision at all, and no mechanical energy of the system using Eq. (14.21) and conservation of momentum. The period T_2 after the collision is a *property of the system*, so it is the same in both parts (a) and (b); we find it using Eq. (14.12).

EXECUTE: (a) Before the collision the total mechanical energy of the block and spring is $E_1 = \frac{1}{2}kA_1^2$. The block is at x = 0, so U = 0 and the energy is purely kinetic (Fig. 14.16a). If we let v_1 be the speed of the block at this point, then $E_1 = \frac{1}{2}kA_1^2 = \frac{1}{2}Mv_1^2$ and

$$v_1 = \sqrt{\frac{k}{M}} A_1$$

During the collision the *x*-component of momentum of the block-putty system is conserved. (Why?) Just before the collision this component is the sum of Mv_1 (for the block) and zero (for the putty). Just after the collision the block and putty move together with speed v_2 , so their combined *x*-component of momentum is $(M + m)v_2$. From conservation of momentum,

$$Mv_1 + 0 = (M + m)v_2$$
 so $v_2 = \frac{M}{M + m}v_1$

We assume that the collision lasts a very short time, so that the block and putty are still at the equilibrium position just after the collision. The energy is still purely kinetic but is *less* than before the collision:

$$E_{2} = \frac{1}{2}(M+m)v_{2}^{2} = \frac{1}{2}\frac{M^{2}}{M+m}v_{1}^{2}$$
$$= \frac{M}{M+m}\left(\frac{1}{2}Mv_{1}^{2}\right) = \left(\frac{M}{M+m}\right)E_{1}$$

14.16 Our sketches for this problem.

Since $E_2 = \frac{1}{2}kA_2^2$, where A_2 is the amplitude after the collision, we have

$$\frac{1}{2}kA_2^2 = \left(\frac{M}{M+m}\right)\frac{1}{2}kA_1^2$$
$$A_2 = A_1\sqrt{\frac{M}{M+m}}$$

From Eq. (14.12), the period of oscillation after the collision is

$$T_2 = 2\pi \sqrt{\frac{M+m}{k}}$$

(b) When the putty falls, the block is instantaneously at rest (Fig. 14.16b). The *x*-component of momentum is zero both before and after the collision. The block and putty have zero kinetic energy just before and just after the collision. The energy is all potential energy stored in the spring, so adding the putty has *no effect* on the mechanical energy. That is, $E_2 = E_1 = \frac{1}{2}kA_1^2$, and the amplitude is unchanged: $A_2 = A_1$. The period is again $T_2 = 2\pi \sqrt{(M+m)/k}$.

EVALUATE: Energy is lost in part (a) because the putty slides against the moving block during the collision, and energy is dissipated by kinetic friction. No energy is lost in part (b), because there is no sliding during the collision.

MP

Test Your Understanding of Section 14.3 (a) To double the total energy for a mass-spring system oscillating in SHM, by what factor must the amplitude increase? (i) 4; (ii) 2; (iii) $\sqrt{2} = 1.414$; (iv) $\sqrt[4]{2} = 1.189$. (b) By what factor will the frequency change due to this amplitude increase? (i) 4; (ii) 2; (iii) $\sqrt{2} = 1.414$; (iv) $\sqrt[4]{2} = 1.189$; (v) it does not change.

14.4 Applications of Simple Harmonic Motion

So far, we've looked at a grand total of *one* situation in which simple harmonic motion (SHM) occurs: a body attached to an ideal horizontal spring. But SHM can occur in any system in which there is a restoring force that is directly proportional to the displacement from equilibrium, as given by Eq. (14.3), $F_x = -kx$. The restoring force will originate in different ways in different situations, so the force constant *k* has to be found for each case by examining the net force on the system. Once this is done, it's straightforward to find the angular frequency ω , frequency *f*, and period *T*; we just substitute the value of *k* into Eqs. (14.10), (14.11), and (14.12), respectively. Let's use these ideas to examine several examples of simple harmonic motion.

Vertical SHM

Suppose we hang a spring with force constant k (Fig. 14.17a) and suspend from it a body with mass m. Oscillations will now be vertical; will they still be SHM? In Fig. 14.17b the body hangs at rest, in equilibrium. In this position the spring is stretched an amount Δl just great enough that the spring's upward vertical force $k \Delta l$ on the body balances its weight mg:

$$k \Delta l = mg$$

Take x = 0 to be this equilibrium position and take the positive x-direction to be upward. When the body is a distance x above its equilibrium position (Fig. 14.17c), the extension of the spring is $\Delta l - x$. The upward force it exerts on the body is then $k(\Delta l - x)$, and the net x-component of force on the body is

$$F_{\text{net}} = k(\Delta l - x) + (-mg) = -kx$$

that is, a net downward force of magnitude *kx*. Similarly, when the body is *below* the equilibrium position, there is a net upward force with magnitude *kx*. In either case there is a restoring force with magnitude *kx*. If the body is set in vertical motion, it oscillates in SHM with the same angular frequency as though it were horizontal, $\omega = \sqrt{k/m}$. So vertical SHM doesn't differ in any essential way from horizontal SHM. The only real change is that the equilibrium position x = 0 no longer corresponds to the point at which the spring is unstretched. The same ideas hold if a body with weight *mg* is placed atop a compressible spring (Fig. 14.18) and compresses it a distance Δl .

Example 14.6 Vertical SHM in an old car

The shock absorbers in an old car with mass 1000 kg are completely worn out. When a 980-N person climbs slowly into the car at its center of gravity, the car sinks 2.8 cm. The car (with the person aboard) hits a bump, and the car starts oscillating up and down in SHM. Model the car and person as a single body on a single spring, and find the period and frequency of the oscillation.

SOLUTION

IDENTIFY and SET UP: The situation is like that shown in Fig. 14.18. The compression of the spring when the person's weight is added tells us the force constant, which we can use to find the period and frequency (the target variables).

EXECUTE: When the force increases by 980 N, the spring compresses an additional 0.028 m, and the *x*-coordinate of the car

Angular SHM

A mechanical watch keeps time based on the oscillations of a balance wheel (Fig. 14.19). The wheel has a moment of inertia *I* about its axis. A coil spring exerts a restoring torque τ_z that is proportional to the angular displacement θ from the equilibrium position. We write $\tau_z = -\kappa\theta$, where κ (the Greek letter kappa) is a constant called the *torsion constant*. Using the rotational analog of Newton's second law for a rigid body, $\Sigma \tau_z = I\alpha_z = I d^2\theta/dt^2$, we can find the equation of motion:

$$-\kappa\theta = I\alpha$$
 or $\frac{d^2\theta}{dt^2} = -\frac{\kappa}{I}\theta$

The form of this equation is exactly the same as Eq. (14.4) for the acceleration in simple harmonic motion, with *x* replaced by θ and k/m replaced by κ/I . So we are dealing with a form of *angular* simple harmonic motion. The angular frequency ω and frequency *f* are given by Eqs. (14.10) and (14.11), respectively, with the same replacement:

$$\omega = \sqrt{\frac{\kappa}{I}}$$
 and $f = \frac{1}{2\pi}\sqrt{\frac{\kappa}{I}}$ (angular SHM) (14.24)

The motion is described by the function

$$\theta = \Theta \cos(\omega t + \phi)$$

where Θ (the Greek letter theta) plays the role of an angular amplitude.

It's a good thing that the motion of a balance wheel *is* simple harmonic. If it weren't, the frequency might depend on the amplitude, and the watch would run too fast or too slow as the spring ran down.

Vibrations of Molecules

The following discussion of the vibrations of molecules uses the binomial theorem. If you aren't familiar with this theorem, you should read about it in the appropriate section of a math textbook.

When two atoms are separated from each other by a few atomic diameters, they can exert attractive forces on each other. But if the atoms are so close to each other that their electron shells overlap, the forces between the atoms are repulsive. Between these limits, there can be an equilibrium separation distance at which two atoms form a *molecule*. If these atoms are displaced slightly from equilibrium, they will oscillate.

changes by -0.028 m. Hence the effective force constant (including the effect of the entire suspension) is

$$k = -\frac{F_x}{x} = -\frac{980 \text{ N}}{-0.028 \text{ m}} = 3.5 \times 10^4 \text{ kg/s}^2$$

The person's mass is $w/g = (980 \text{ N})/(9.8 \text{ m/s}^2) = 100 \text{ kg}$. The *total* oscillating mass is m = 1000 kg + 100 kg = 1100 kg. The period T is

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{1100 \text{ kg}}{3.5 \times 10^4 \text{ kg/s}^2}} = 1.11 \text{ s}$$

The frequency is f = 1/T = 1/(1.11 s) = 0.90 Hz.

EVALUATE: A persistent oscillation with a period of about 1 second makes for a very unpleasant ride. The purpose of shock absorbers is to make such oscillations die out (see Section 14.7).

14.18 If the weight *mg* compresses the spring a distance Δl , the force constant is $k = mg/\Delta l$ and the angular frequency for vertical SHM is $\omega = \sqrt{k/m}$ —the same as if the body were suspended from the spring (see Fig. 14.17).

A body is placed atop the spring. It is in equilibrium when the upward force exerted by the compressed spring equals the body's weight.

14.19 The balance wheel of a mechanical watch. The spring exerts a restoring torque that is proportional to the angular displacement θ , so the motion is angular SHM.

The spring torque τ_z opposes the angular displacement θ .

14.20 (a) Two atoms with centers separated by r. (b) Potential energy U in the van der Waals interaction as a function of r. (c) Force F_r on the right-hand atom as a function of r.

As an example, we'll consider one type of interaction between atoms called the *van der Waals interaction*. Our immediate task here is to study oscillations, so we won't go into the details of how this interaction arises. Let the center of one atom be at the origin and let the center of the other atom be a distance *r* away (Fig. 14.20a); the equilibrium distance between centers is $r = R_0$. Experiment shows that the van der Waals interaction can be described by the potential-energy function

$$U = U_0 \left[\left(\frac{R_0}{r} \right)^{12} - 2 \left(\frac{R_0}{r} \right)^6 \right]$$
(14.25)

where U_0 is a positive constant with units of joules. When the two atoms are very far apart, U = 0; when they are separated by the equilibrium distance $r = R_0$, $U = -U_0$. The force on the second atom is the negative derivative of Eq. (14.25):

$$F_r = -\frac{dU}{dr} = U_0 \left[\frac{12R_0^{12}}{r^{13}} - 2\frac{6R_0^6}{r^7} \right] = 12\frac{U_0}{R_0} \left[\left(\frac{R_0}{r}\right)^{13} - \left(\frac{R_0}{r}\right)^7 \right]$$
(14.26)

Figures 14.20b and 14.20c plot the potential energy and force, respectively. The force is positive for $r < R_0$ and negative for $r > R_0$, so it is a *restoring* force.

Let's examine the restoring force F_r in Eq. (14.26). We let *x* represent the displacement from equilibrium:

$$x = r - R_0 \qquad \text{so} \qquad r = R_0 + x$$

In terms of x, the force F_r in Eq. (14.26) becomes

$$F_r = 12 \frac{U_0}{R_0} \left[\left(\frac{R_0}{R_0 + x} \right)^{13} - \left(\frac{R_0}{R_0 + x} \right)^7 \right]$$

= $12 \frac{U_0}{R_0} \left[\frac{1}{(1 + x/R_0)^{13}} - \frac{1}{(1 + x/R_0)^7} \right]$ (14.27)

This looks nothing like Hooke's law, $F_x = -kx$, so we might be tempted to conclude that molecular oscillations cannot be SHM. But let us restrict ourselves to *small-amplitude* oscillations so that the absolute value of the displacement x is small in comparison to R_0 and the absolute value of the ratio x/R_0 is much less than 1. We can then simplify Eq. (14.27) by using the *binomial theorem:*

$$(1+u)^n = 1 + nu + \frac{n(n-1)}{2!}u^2 + \frac{n(n-1)(n-2)}{3!}u^3 + \cdots$$
 (14.28)

If |u| is much less than 1, each successive term in Eq. (14.28) is much smaller than the one it follows, and we can safely approximate $(1 + u)^n$ by just the first two terms. In Eq. (14.27), u is replaced by x/R_0 and n equals -13 or -7, so

$$\frac{1}{(1+x/R_0)^{13}} = (1+x/R_0)^{-13} \approx 1 + (-13)\frac{x}{R_0}$$
$$\frac{1}{(1+x/R_0)^7} = (1+x/R_0)^{-7} \approx 1 + (-7)\frac{x}{R_0}$$
$$F_r \approx 12\frac{U_0}{R_0} \bigg[\bigg(1 + (-13)\frac{x}{R_0} \bigg) - \bigg(1 + (-7)\frac{x}{R_0} \bigg) \bigg] = -\bigg(\frac{72U_0}{R_0^2}\bigg) x \quad (14.29)$$

This is just Hooke's law, with force constant $k = 72U_0/R_0^2$. (Note that *k* has the correct units, J/m^2 or N/m.) So oscillations of molecules bound by the van der Waals interaction can be simple harmonic motion, provided that the amplitude is small in comparison to R_0 so that the approximation $|x/R_0| \ll 1$ used in the derivation of Eq. (14.29) is valid.

You can also use the binomial theorem to show that the potential energy U in Eq. (14.25) can be written as $U \approx \frac{1}{2}kx^2 + C$, where $C = -U_0$ and k is again equal to $72U_0/R_0^2$. Adding a constant to the potential energy has no effect on the physics, so the system of two atoms is fundamentally no different from a mass attached to a horizontal spring for which $U = \frac{1}{2}kx^2$.

Example 14.7 Molecular vibration

Two argon atoms form the molecule Ar₂ as a result of a van der Waals interaction with $U_0 = 1.68 \times 10^{-21}$ J and $R_0 = 3.82 \times 10^{-10}$ m. Find the frequency of small oscillations of one Ar atom about its equilibrium position.

SOLUTION

IDENTIFY and SET UP This is just the situation shown in Fig. 14.20. Because the oscillations are small, we can use Eq. (14.29) to find the force constant *k* and Eq. (14.11) to find the frequency *f* of SHM.

EXECUTE: From Eq. (14.29),

$$k = \frac{72U_0}{R_0^2} = \frac{72(1.68 \times 10^{-21} \text{ J})}{(3.82 \times 10^{-10} \text{ m})^2} = 0.829 \text{ J/m}^2 = 0.829 \text{ N/m}$$

(This force constant is comparable to that of a loose toy spring like a SlinkyTM.) From Appendix D, the average atomic mass of argon is $(39.948 \text{ u})(1.66 \times 10^{-27} \text{ kg}/1 \text{ u}) = 6.63 \times 10^{-26} \text{ kg}.$

Test Your Understanding of Section 14.4 A block attached to a hanging ideal spring oscillates up and down with a period of 10 s on earth. If you take the block and spring to Mars, where the acceleration due to gravity is only about 40% as large as on earth, what will be the new period of oscillation? (i) 10 s; (ii) more than 10 s; (iii) less than 10 s.

14.5 The Simple Pendulum

A **simple pendulum** is an idealized model consisting of a point mass suspended by a massless, unstretchable string. When the point mass is pulled to one side of its straight-down equilibrium position and released, it oscillates about the equilibrium position. Familiar situations such as a wrecking ball on a crane's cable or a person on a swing (Fig. 14.21a) can be modeled as simple pendulums.

From Eq. (14.11), if one atom is fixed and the other oscillates,

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{0.829 \text{ N/m}}{6.63 \times 10^{-26} \text{ kg}}} = 5.63 \times 10^{11} \text{ Hz}$$

EVALUATE: Our answer for f isn't quite right. If no net external force acts on the molecule, its center of mass (halfway between the atoms) doesn't accelerate, so *both* atoms must oscillate with the same amplitude in opposite directions. It turns out that we can account for this by replacing m with m/2 in our expression for f. This makes f larger by a factor of $\sqrt{2}$, so the correct frequency is $f = \sqrt{2}(5.63 \times 10^{11} \text{ Hz}) = 7.96 \times 10^{11} \text{ Hz}$. What's more, on the atomic scale we must use *quantum mechanics* rather than Newtonian mechanics to describe motion; happily, quantum mechanics also yields $f = 7.96 \times 10^{11} \text{ Hz}$.

MP

I

Mastering **PHYSICS**

PhET: Pendulum Lab ActivPhysics 9.10: Pendulum Frequency ActivPhysics 9.11: Risky Pendulum Walk ActivPhysics 9.12: Physical Pendulum **14.21** The dynamics of a simple pendulum.

(a) A real pendulum

(b) An idealized simple pendulum

14.22 For small angular displacements θ , the restoring force $F_{\theta} = -mg\sin\theta$ on a simple pendulum is approximately equal to $-mg\theta$; that is, it is approximately proportional to the displacement θ . Hence for small angles the oscillations are simple harmonic.

The path of the point mass (sometimes called a pendulum bob) is not a straight line but the arc of a circle with radius *L* equal to the length of the string (Fig. 14.21b). We use as our coordinate the distance *x* measured along the arc. If the motion is simple harmonic, the restoring force must be directly proportional to *x* or (because $x = L\theta$) to θ . Is it?

In Fig. 14.21b we represent the forces on the mass in terms of tangential and radial components. The restoring force F_{θ} is the tangential component of the net force:

$$F_{\theta} = -mg\sin\theta \tag{14.30}$$

The restoring force is provided by gravity; the tension *T* merely acts to make the point mass move in an arc. The restoring force is proportional *not* to θ but to $\sin \theta$, so the motion is *not* simple harmonic. However, if the angle θ is *small*, $\sin \theta$ is very nearly equal to θ in radians (Fig. 14.22). For example, when $\theta = 0.1$ rad (about 6°), $\sin \theta = 0.0998$, a difference of only 0.2%. With this approximation, Eq. (14.30) becomes

$$F_{\theta} = -mg\theta = -mg\frac{x}{L}$$
 or
 $F_{\theta} = -\frac{mg}{L}x$ (14.31)

The restoring force is then proportional to the coordinate for small displacements, and the force constant is k = mg/L. From Eq. (14.10) the angular frequency ω of a simple pendulum with small amplitude is

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{mg/L}{m}} = \sqrt{\frac{g}{L}}$$
 (simple pendulum,
small amplitude) (14.32)

The corresponding frequency and period relationships are

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$$
 (simple pendulum, small amplitude) (14.33)

$$T = \frac{2\pi}{\omega} = \frac{1}{f} = 2\pi \sqrt{\frac{L}{g}}$$
 (simple pendulum, small amplitude) (14.34)

Note that these expressions do not involve the *mass* of the particle. This is because the restoring force, a component of the particle's weight, is proportional to *m*. Thus the mass appears on *both* sides of $\Sigma \vec{F} = m\vec{a}$ and cancels out. (This is the same physics that explains why bodies of different masses fall with the same acceleration in a vacuum.) For small oscillations, the period of a pendulum for a given value of g is determined entirely by its length.

The dependence on L and g in Eqs. (14.32) through (14.34) is just what we should expect. A long pendulum has a longer period than a shorter one. Increasing g increases the restoring force, causing the frequency to increase and the period to decrease.

We emphasize again that the motion of a pendulum is only *approximately* simple harmonic. When the amplitude is not small, the departures from simple harmonic motion can be substantial. But how small is "small"? The period can be expressed by an infinite series; when the maximum angular displacement is Θ , the period *T* is given by

$$T = 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{1^2}{2^2} \sin^2 \frac{\Theta}{2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} \sin^4 \frac{\Theta}{2} + \cdots \right)$$
(14.35)

We can compute the period to any desired degree of precision by taking enough terms in the series. We invite you to check that when $\Theta = 15^{\circ}$ (on either side of

the central position), the true period is longer than that given by the approximate Eq. (14.34) by less than 0.5%.

The usefulness of the pendulum as a timekeeper depends on the period being *very nearly* independent of amplitude, provided that the amplitude is small. Thus, as a pendulum clock runs down and the amplitude of the swings decreases a little, the clock still keeps very nearly correct time.

Example 14.8 A simple pendulum

Find the period and frequency of a simple pendulum 1.000 m long at a location where $g = 9.800 \text{ m/s}^2$.

SOLUTION

IDENTIFY and SET UP: This is a simple pendulum, so we can use the ideas of this section. We use Eq. (14.34) to determine the pendulum's period *T* from its length, and Eq. (14.1) to find the frequency *f* from *T*.

I

$$T = 2\pi \sqrt{\frac{L}{g}} = 2\pi \sqrt{\frac{1.000 \text{ m}}{9.800 \text{ m/s}^2}} = 2.007 \text{ s}$$
$$f = \frac{1}{T} = \frac{1}{2.007 \text{ s}} = 0.4983 \text{ Hz}$$

EVALUATE: The period is almost exactly 2 s. When the metric system was established, the second was *defined* as half the period of a 1-m simple pendulum. This was a poor standard, however, because the value of g varies from place to place. We discussed more modern time standards in Section 1.3.

Test Your Understanding of Section 14.5 When a body oscillating on a horizontal spring passes through its equilibrium position, its acceleration is zero (see Fig. 14.2b). When the bob of an oscillating simple pendulum passes through its equilibrium position, is its acceleration zero?

14.6 The Physical Pendulum

A **physical pendulum** is any *real* pendulum that uses an extended body, as contrasted to the idealized model of the *simple* pendulum with all the mass concentrated at a single point. For small oscillations, analyzing the motion of a real, physical pendulum is almost as easy as for a simple pendulum. Figure 14.23 shows a body of irregular shape pivoted so that it can turn without friction about an axis through point O. In the equilibrium position the center of gravity is directly below the pivot; in the position shown in the figure, the body is displaced from equilibrium by an angle θ , which we use as a coordinate for the system. The distance from O to the center of gravity is d, the moment of inertia of the body about the axis of rotation through O is I, and the total mass is m. When the body is displaced as shown, the weight mg causes a restoring torque

$$\tau_z = -(mg)(d\sin\theta) \tag{14.36}$$

The negative sign shows that the restoring torque is clockwise when the displacement is counterclockwise, and vice versa.

When the body is released, it oscillates about its equilibrium position. The motion is not simple harmonic because the torque τ_z is proportional to $\sin\theta$ rather than to θ itself. However, if θ is small, we can approximate $\sin\theta$ by θ in radians, just as we did in analyzing the simple pendulum. Then the motion is *approximately* simple harmonic. With this approximation,

$$r_z = -(mgd)\theta$$

The equation of motion is $\Sigma \tau_z = I \alpha_z$, so

$$-(mgd)\theta = I\alpha_z = I\frac{d^2\theta}{dt^2}$$
$$\frac{d^2\theta}{dt^2} = -\frac{mgd}{I}\theta$$

14.23 Dynamics of a physical pendulum.

Comparing this with Eq. (14.4), we see that the role of (k/m) for the spring-mass system is played here by the quantity (mgd/I). Thus the angular frequency is

$$\omega = \sqrt{\frac{mgd}{I}}$$
 (physical pendulum, small amplitude) (14.38)

The frequency f is $1/2\pi$ times this, and the period T is

$$T = 2\pi \sqrt{\frac{I}{mgd}}$$
 (physical pendulum, small amplitude) (14.39)

Equation (14.39) is the basis of a common method for experimentally determining the moment of inertia of a body with a complicated shape. First locate the center of gravity of the body by balancing. Then suspend the body so that it is free to oscillate about an axis, and measure the period T of small-amplitude oscillations. Finally, use Eq. (14.39) to calculate the moment of inertia I of the body about this axis from T, the body's mass m, and the distance d from the axis to the center of gravity (see Exercise 14.53). Biomechanics researchers use this method to find the moments of inertia of an animal's limbs. This information is important for analyzing how an animal walks, as we'll see in the second of the two following examples.

Example 14.9 Physical pendulum versus simple pendulum

If the body in Fig. 14.23 is a uniform rod with length L, pivoted at one end, what is the period of its motion as a pendulum?

SOLUTION

IDENTIFY and SET UP: Our target variable is the oscillation period T of a rod that acts as a physical pendulum. We find the rod's moment of inertia in Table 9.2, and then determine T using Eq. (14.39).

EXECUTE: The moment of inertia of a uniform rod about an axis through one end is $I = \frac{1}{3}ML^2$. The distance from the pivot to the rod's center of gravity is d = L/2. Then from Eq. (14.39),

$$T = 2\pi \sqrt{\frac{I}{mgd}} = 2\pi \sqrt{\frac{\frac{1}{3}ML^2}{MgL/2}} = 2\pi \sqrt{\frac{2L}{3g}}$$

EVALUATE: If the rod is a meter stick (L = 1.00 m) and $g = 9.80 \text{ m/s}^2$, then

$$T = 2\pi \sqrt{\frac{2(1.00 \text{ m})}{3(9.80 \text{ m/s}^2)}} = 1.64 \text{ s}$$

The period is smaller by a factor of $\sqrt{\frac{2}{3}} = 0.816$ than that of a simple pendulum of the same length (see Example 14.8). The rod's moment of inertia around one end, $I = \frac{1}{3}ML^2$, is one-third that of the simple pendulum, and the rod's cg is half as far from the pivot as that of the simple pendulum. You can show that, taken together in Eq. (14.39), these two differences account for the factor $\sqrt{\frac{2}{3}}$ by which the periods differ.

Example 14.10 Tyrannosaurus rex and the physical pendulum

pace—a number of steps per minute that is more comfortable than from leg length L and stride length S. a faster or slower pace. Suppose that this pace corresponds to the oscillation of the leg as a physical pendulum. (a) How does this pace depend on the length L of the leg from hip to foot? Treat the leg as a uniform rod pivoted at the hip joint. (b) Fossil evidence shows that T. rex, a two-legged dinosaur that lived about 65 million years ago, had a leg length L = 3.1 m and a stride length S = 4.0 m (the distance from one footprint to the next print of the same foot; see Fig. 14.24). Estimate the walking speed of T. rex.

SOLUTION

IDENTIFY and SET UP: Our target variables are (a) the relationship between walking pace and leg length L and (b) the walking speed of T. rex. We treat the leg as a physical pendulum, with a period of

All walking animals, including humans, have a natural walking 14.24 The walking speed of Tyrannosaurus rex can be estimated

oscillation as found in Example 14.9. We can find the walking speed from the period and the stride length.

EXECUTE: (a) From Example 14.9 the period of oscillation of the leg is $T = 2\pi \sqrt{2L/3g}$, which is proportional to \sqrt{L} . Each step takes one-half a period, so the walking pace (in steps per second) is twice the oscillation frequency f = 1/T, which is proportional to $1/\sqrt{L}$. The greater the leg length *L*, the slower the walking pace.

(b) According to our model, *T. rex* traveled one stride length *S* in a time

$$T = 2\pi \sqrt{\frac{2L}{3g}} = 2\pi \sqrt{\frac{2(3.1 \text{ m})}{3(9.8 \text{ m/s}^2)}} = 2.9 \text{ s}$$

Test Your Understanding of Section 14.6 The center of gravity of a simple pendulum of mass m and length L is located at the position of the pendulum bob, a distance L from the pivot point. The center of gravity of a uniform rod of the same mass m and length 2L pivoted at one end is also a distance L from the pivot point. How does the period of this uniform rod compare to the period of the simple pendulum? (i) The rod has a longer period; (ii) the rod has a shorter period; (iii) the rod has the same period.

14.7 Damped Oscillations

The idealized oscillating systems we have discussed so far are frictionless. There are no nonconservative forces, the total mechanical energy is constant, and a system set into motion continues oscillating forever with no decrease in amplitude.

Real-world systems always have some dissipative forces, however, and oscillations die out with time unless we replace the dissipated mechanical energy (Fig. 14.25). A mechanical pendulum clock continues to run because potential energy stored in the spring or a hanging weight system replaces the mechanical energy lost due to friction in the pivot and the gears. But eventually the spring runs down or the weights reach the bottom of their travel. Then no more energy is available, and the pendulum swings decrease in amplitude and stop.

The decrease in amplitude caused by dissipative forces is called **damping**, and the corresponding motion is called **damped oscillation**. The simplest case to analyze in detail is a simple harmonic oscillator with a frictional damping force that is directly proportional to the *velocity* of the oscillating body. This behavior occurs in friction involving viscous fluid flow, such as in shock absorbers or sliding between oil-lubricated surfaces. We then have an additional force on the body due to friction, $F_x = -bv_x$, where $v_x = dx/dt$ is the velocity and b is a constant that describes the strength of the damping force. The negative sign shows that the force is always opposite in direction to the velocity. The *net* force on the body is then

$$\sum F_x = -kx - bv_x \tag{14.40}$$

and Newton's second law for the system is

$$-kx - bv_x = ma_x$$
 or $-kx - b\frac{dx}{dt} = m\frac{d^2x}{dt^2}$ (14.41)

Equation (14.41) is a differential equation for x; it would be the same as Eq. (14.4), the equation for the acceleration in SHM, except for the added term -bdx/dt. Solving this equation is a straightforward problem in differential equations, but we won't go into the details here. If the damping force is relatively small, the motion is described by

 $x = Ae^{-(b/2m)t}\cos(\omega't + \phi)$ (oscillator with little damping) (14.42)

so its walking speed was

$$v = \frac{S}{T} = \frac{4.0 \text{ m}}{2.9 \text{ s}} = 1.4 \text{ m/s} = 5.0 \text{ km/h} = 3.1 \text{ mi/h}$$

This is roughly the walking speed of an adult human.

EVALUATE: A uniform rod isn't a very good model for a leg. The legs of many animals, including both *T. rex* and humans, are tapered; there is more mass between hip and knee than between knee and foot. The center of mass is therefore less than L/2 from the hip; a reasonable guess would be about L/4. The moment of inertia is therefore *considerably* less than $ML^2/3$ —say, $ML^2/15$. Use the analysis of Example 14.9 with these corrections; you'll get a shorter oscillation period and an even greater walking speed for *T. rex*.

14.25 A swinging bell left to itself will eventually stop oscillating due to damping forces (air resistance and friction at the point of suspension).

14.26 Graph of displacement versus time for an oscillator with little damping [see Eq. (14.42)] and with phase angle $\phi = 0$. The curves are for two values of the damping constant *b*.

The angular frequency of oscillation ω' is given by

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$
 (oscillator with little damping) (14.43)

You can verify that Eq. (14.42) is a solution of Eq. (14.41) by calculating the first and second derivatives of *x*, substituting them into Eq. (14.41), and checking whether the left and right sides are equal. This is a straightforward but slightly tedious procedure.

The motion described by Eq. (14.42) differs from the undamped case in two ways. First, the amplitude $Ae^{-(b/2m)t}$ is not constant but decreases with time because of the decreasing exponential factor $e^{-(b/2m)t}$. Figure 14.26 is a graph of Eq. (14.42) for the case $\phi = 0$; it shows that the larger the value of *b*, the more quickly the amplitude decreases.

Second, the angular frequency ω' , given by Eq. (14.43), is no longer equal to $\omega = \sqrt{k/m}$ but is somewhat smaller. It becomes zero when b becomes so large that

$$\frac{k}{m} - \frac{b^2}{4m^2} = 0$$
 or $b = 2\sqrt{km}$ (14.44)

When Eq. (14.44) is satisfied, the condition is called **critical damping.** The system no longer oscillates but returns to its equilibrium position without oscillation when it is displaced and released.

If *b* is greater than $2\sqrt{km}$, the condition is called **overdamping.** Again there is no oscillation, but the system returns to equilibrium more slowly than with critical damping. For the overdamped case the solutions of Eq. (14.41) have the form

$$x = C_1 e^{-a_1 t} + C_2 e^{-a_2}$$

where C_1 and C_2 are constants that depend on the initial conditions and a_1 and a_2 are constants determined by m, k, and b.

When b is less than the critical value, as in Eq. (14.42), the condition is called **underdamping.** The system oscillates with steadily decreasing amplitude.

In a vibrating tuning fork or guitar string, it is usually desirable to have as little damping as possible. By contrast, damping plays a beneficial role in the oscillations of an automobile's suspension system. The shock absorbers provide a velocity-dependent damping force so that when the car goes over a bump, it doesn't continue bouncing forever (Fig. 14.27). For optimal passenger comfort, the system should be critically damped or slightly underdamped. Too much damping would be counter-productive; if the suspension is overdamped and the car hits a second bump just after the first one, the springs in the suspension will still be compressed somewhat from the first bump and will not be able to fully absorb the impact.

Energy in Damped Oscillations

In damped oscillations the damping force is nonconservative; the mechanical energy of the system is not constant but decreases continuously, approaching zero after a long time. To derive an expression for the rate of change of energy, we first write an expression for the total mechanical energy E at any instant:

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2$$

To find the rate of change of this quantity, we take its time derivative:

$$\frac{dE}{dt} = mv_x \frac{dv_x}{dt} + kx \frac{dx}{dt}$$

But $dv_x/dt = a_x$ and $dx/dt = v_x$, so

$$\frac{dE}{dt} = v_x(ma_x + kx)$$

Pushed down

I

From Eq. (14.41), $ma_x + kx = -bdx/dt = -bv_x$, so

$$\frac{dE}{dt} = v_x(-bv_x) = -bv_x^2 \quad \text{(damped oscillations)} \quad (14.45)$$

The right side of Eq. (14.45) is **negative** whenever the oscillating body is in motion, whether the *x*-velocity v_x is positive or negative. This shows that as the body moves, the energy decreases, though not at a uniform rate. The term $-bv_x^2 = (-bv_x)v_x$ (force times velocity) is the rate at which the damping force does (negative) work on the system (that is, the damping *power*). This equals the rate of change of the total mechanical energy of the system.

Similar behavior occurs in electric circuits containing inductance, capacitance, and resistance. There is a natural frequency of oscillation, and the resistance plays the role of the damping constant b. We will study these circuits in detail in Chapters 30 and 31.

Test Your Understanding of Section 14.7 An airplane is flying in a straight line at a constant altitude. If a wind gust strikes and raises the nose of the airplane, the nose will bob up and down until the airplane eventually returns to its original attitude. Are these oscillations (i) undamped, (ii) underdamped, (iii) critically damped, or (iv) overdamped?

14.8 Forced Oscillations and Resonance

A damped oscillator left to itself will eventually stop moving altogether. But we can maintain a constant-amplitude oscillation by applying a force that varies with time in a periodic or cyclic way, with a definite period and frequency. As an example, consider your cousin Throckmorton on a playground swing. You can keep him swinging with constant amplitude by giving him a little push once each cycle. We call this additional force a **driving force**.

Damped Oscillation with a Periodic Driving Force

If we apply a periodically varying driving force with angular frequency ω_d to a damped harmonic oscillator, the motion that results is called a **forced oscillation** or a *driven oscillation*. It is different from the motion that occurs when the system is simply displaced from equilibrium and then left alone, in which case the system oscillates with a **natural angular frequency** ω' determined by *m*, *k*, and *b*, as in Eq. (14.43). In a forced oscillation, however, the angular frequency with which the mass oscillates is equal to the driving angular frequency ω_d . This does *not* have to be equal to the angular frequency ω' with which the system would oscillate without a driving force. If you grab the ropes of Throckmorton's swing, you can force the swing to oscillate with any frequency you like.

Suppose we force the oscillator to vibrate with an angular frequency ω_d that is nearly *equal* to the angular frequency ω' it would have with no driving force. What happens? The oscillator is naturally disposed to oscillate at $\omega = \omega'$, so we expect the amplitude of the resulting oscillation to be larger than when the two frequencies are very different. Detailed analysis and experiment show that this is just what happens. The easiest case to analyze is a *sinusoidally* varying force say, $F(t) = F_{\text{max}} \cos \omega_d t$. If we vary the frequency ω_d of the driving force, the amplitude of the resulting forced oscillation varies in an interesting way (Fig. 14.28). When there is very little damping (small *b*), the amplitude goes through a sharp peak as the driving angular frequency ω_d nears the natural oscillation angular frequency ω' . When the damping is increased (larger *b*), the peak becomes broader and smaller in height and shifts toward lower frequencies.

We could work out an expression that shows how the amplitude A of the forced oscillation depends on the frequency of a sinusoidal driving force, with

14.28 Graph of the amplitude *A* of forced oscillation as a function of the angular frequency ω_d of the driving force. The horizontal axis shows the ratio of ω_d to the angular frequency $\omega = \sqrt{k/m}$ of an undamped oscillator. Each curve has a different value of the damping constant *b*.

Application Canine Resonance

Unlike humans, dogs have no sweat glands and so must pant in order to cool down. The frequency at which a dog pants is very close to the resonant frequency of its respiratory system. This causes the maximum amount of air to move in and out of the dog and so minimizes the effort that the dog must exert to cool itself.

Each curve shows the amplitude A for an oscillator subjected to a driving force at various angular frequencies ω_d . Successive curves from blue to gold represent successively greater damping.

Driving frequency ω_d equals natural angular frequency ω of an undamped oscillator.

maximum value F_{max} . That would involve more differential equations than we're ready for, but here is the result:

$$A = \frac{F_{\text{max}}}{\sqrt{(k - m\omega_d^2)^2 + b^2 \omega_d^2}} \quad \text{(amplitude of a driven oscillator)} \quad (14.46)$$

When $k - m\omega_d^2 = 0$, the first term under the radical is zero, so A has a maximum near $\omega_d = \sqrt{k/m}$. The height of the curve at this point is proportional to 1/b; the less damping, the higher the peak. At the low-frequency extreme, when $\omega_d = 0$, we get $A = F_{\text{max}}/k$. This corresponds to a *constant* force F_{max} and a constant displacement $A = F_{\text{max}}/k$ from equilibrium, as we might expect.

Resonance and Its Consequences

The fact that there is an amplitude peak at driving frequencies close to the natural frequency of the system is called **resonance**. Physics is full of examples of resonance; building up the oscillations of a child on a swing by pushing with a frequency equal to the swing's natural frequency is one. A vibrating rattle in a car that occurs only at a certain engine speed or wheel-rotation speed is an all-too-familiar example. Inexpensive loudspeakers often have an annoying boom or buzz when a musical note happens to coincide with the resonant frequency of the speaker cone or the speaker housing. In Chapter 16 we will study other examples of resonance that involve sound. Resonance also occurs in electric circuits, as we will see in Chapter 31; a tuned circuit in a radio or television receiver responds strongly to waves having frequencies near its resonant frequency, and this fact is used to select a particular station and reject the others.

Resonance in mechanical systems can be destructive. A company of soldiers once destroyed a bridge by marching across it in step; the frequency of their steps was close to a natural vibration frequency of the bridge, and the resulting oscillation had large enough amplitude to tear the bridge apart. Ever since, marching soldiers have been ordered to break step before crossing a bridge. Some years ago, vibrations of the engines of a particular airplane had just the right frequency to resonate with the natural frequencies of its wings. Large oscillations built up, and occasionally the wings fell off.

Test Your Understanding of Section 14.8 When driven at a frequency near its natural frequency, an oscillator with very little damping has a much greater response than the same oscillator with more damping. When driven at a frequency that is much higher or lower than the natural frequency, which oscillator will have the greater response: (i) the one with very little damping or (ii) the one with more damping?

SUMMARY CHAPTER

Periodic motion: Periodic motion is motion that repeats itself in a definite cycle. It occurs whenever a body has a stable equilibrium position and a restoring force that acts when it is displaced from equilibrium. Period T is the time for one cycle. Frequency f is the number of cycles per unit time. Angular frequency ω is 2π times the frequency. (See Example 14.1.)

Simple harmonic motion: If the restoring force F_x in periodic motion is directly proportional to the displacement *x*, the motion is called simple harmonic motion (SHM). In many cases this condition is satisfied if the displacement from equilibrium is small. The angular frequency, frequency, and period in SHM do not de on the amplitude, but only on the mass *m* and force stant k. The displacement, velocity, and acceleration SHM are sinusoidal functions of time; the amplitud and phase angle ϕ of the oscillation are determined the initial position and velocity of the body. (See Ex ples 14.2, 14.3, 14.6, and 14.7.)

Energy in simple harmonic motion: Energy is conser in SHM. The total energy can be expressed in terms the force constant k and amplitude A. (See Example 14.4 and 14.5.)

Angular simple harmonic motion: In angular SHM, the frequency and angular frequency are related to the moment of inertia I and the torsion constant κ .

 $\omega = \sqrt{\frac{\kappa}{I}}$ and $f = \frac{1}{2\pi}\sqrt{\frac{\kappa}{I}}$

Balance wheel Spring Spring torque τ_z opposes angular displacement θ .

 $mg \sin \theta$

E = K + U

 $mg \cos \theta$

Simple pendulum: A simple pendulum consists of a point mass m at the end of a massless string of length L. Its motion is approximately simple harmonic for sufficiently small amplitude; the angular frequency, frequency, and period then depend only on g and L, not on the mass or amplitude. (See Example 14.8.)

Physical pendulum: A physical pendulum is any body suspended from an axis of rotation. The angular frequency and period for small-amplitude oscillations are independent of amplitude, but depend on the mass m, distance d from the axis of rotation to the center of grav ity, and moment of inertia I about the axis. (See Examples 14.9 and 14.10.)

$$\omega = \sqrt{\frac{mgd}{I}}$$
(14.38)
$$T = 2\pi \sqrt{\frac{I}{mgd}}$$
(14.39)
$$d \sin \theta$$
$$d g \sin \theta$$
$$mg \sin \theta$$

$$\omega = \sqrt{\frac{k}{m}} \qquad (14.10)$$

$$\int \frac{1}{2\pi} \frac{1}{2\pi} \sqrt{\frac{k}{m}} \qquad (14.10)$$

$$\int \frac{1}{2\pi} \frac{1}{2\pi} \sqrt{\frac{k}{m}} \qquad (14.11)$$

$$\int \frac{1}{2\pi} \frac{1}{2\pi} \sqrt{\frac{m}{k}} \qquad (14.12)$$

$$x = A\cos(\omega t + \phi) \qquad (14.13)$$

$$\int \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \sqrt{\frac{m}{k}} \qquad (14.12)$$

$$\int \frac{1}{2\pi} \frac{1}{2\pi} \sqrt{\frac{m}{k}} \qquad (14.12)$$

$$\int \frac{1}{2\pi} \frac{1}{2\pi} \sqrt{\frac{m}{k}} \qquad (14.12)$$

$$\int \frac{1}{2\pi} \frac{1}{2\pi} \sqrt{\frac{m}{k}} \qquad (14.21)$$

 $f = \frac{1}{T} \qquad T = \frac{1}{f}$

 $\omega = 2\pi f = \frac{2\pi}{T}$

 $F_{\rm r} = -kx$

 $\omega = \sqrt{\frac{g}{L}}$

 $f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$

 $T = \frac{2\pi}{\omega} = \frac{1}{f} = 2\pi \sqrt{\frac{L}{\rho}}$

 $a_x = \frac{F_x}{m} = -\frac{k}{m}x$

(14.3)A (14.4)

(14.24)

(14.32)

(14.33)

(14.34)

Damped oscillations: When a force $F_x = -bv_x$ proportional to velocity is added to a simple harmonic oscillator, the motion is called a damped oscillation. If $b < 2\sqrt{km}$ (called underdamping), the system oscillates with a decaying amplitude and an angular frequency ω' that is lower than it would be without damping. If $b = 2\sqrt{km}$ (called critical damping) or $b > 2\sqrt{km}$ (called overdamping), when the system is displaced it returns to equilibrium without oscillating.

Driven oscillations and resonance: When a sinusoidally varying driving force is added to a damped harmonic oscillator, the resulting motion is called a forced oscillation. The amplitude is a function of the driving frequency ω_d and reaches a peak at a driving frequency close to the natural frequency of the system. This behavior is called resonance.

$$x = Ae^{-(b/2m)t}\cos(\omega' t + \phi) \quad (14.42)$$
$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} \quad (14.43)$$

$$A = \frac{Ae^{-(b/2m)t}}{0}$$

$$O = \frac{Ae^{-(b/2m)t}}{10}$$

$$O = \frac{Ae^{-(b/2m)t}}$$

$$A = \frac{F_{\max}}{\sqrt{(k - m\omega_{d}^{2})^{2} + b^{2}\omega_{d}^{2}}} \quad (14.46)$$

$$F_{max}/k = b = 0.2\sqrt{km}$$

$$F_{max}/k = b = 0.4\sqrt{km}$$

$$F_{max}/k = b = 0.7\sqrt{km}$$

$$b = 0.7\sqrt{km}$$

$$b = 1.0\sqrt{km}$$

$$b = 1.0\sqrt{km}$$

$$b = 0.2\sqrt{km}$$

5

4

BRIDGING PROBLEM

Oscillating and Rolling

Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest on a horizontal tabletop (Fig. 14.29). A frictionless ring at the center of the rod is attached to a spring with force constant k; the other end of the spring is fixed. The cylinders are pulled to the left a distance x, stretching the spring, and then released from rest. Due to friction between the tabletop and the cylinders, the cylinders roll without slipping as they oscillate. Show that the motion of the center of mass of the cylinders is simple harmonic, and find its period.

SOLUTION GUIDE

See MasteringPhysics[®] study area for a Video Tutor solution.

IDENTIFY and **SET UP**

- 1. What condition must be satisfied for the motion of the center of mass of the cylinders to be simple harmonic? (*Hint:* See Section 14.2.)
- 2. Which equations should you use to describe the translational and rotational motions of the cylinders? Which equation should you use to describe the condition that the cylinders roll without slipping? (*Hint:* See Section 10.3.)
- 3. Sketch the situation and choose a coordinate system. Make a list of the unknown quantities and decide which is the target variable.

EXECUTE

14.29

- 4. Draw a free-body diagram for the cylinders when they are displaced a distance *x* from equilibrium.
- 5. Solve the equations to find an expression for the acceleration of the center of mass of the cylinders. What does this expression tell you?
- 6. Use your result from step 5 to find the period of oscillation of the center of mass of the cylinders.

EVALUATE

7. What would be the period of oscillation if there were no friction and the cylinders didn't roll? Is this period larger or smaller than your result from step 6? Is this reasonable?

(MP

Problems

•, ••, •••: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems requiring calculus. BIO: Biosciences problems.

DISCUSSION QUESTIONS

Q14.1 An object is moving with SHM of amplitude *A* on the end of a spring. If the amplitude is doubled, what happens to the total distance the object travels in one period? What happens to the period? What happens to the maximum speed of the object? Discuss how these answers are related.

Q14.2 Think of several examples in everyday life of motions that are, at least approximately, simple harmonic. In what respects does each differ from SHM?

Q14.3 Does a tuning fork or similar tuning instrument undergo SHM? Why is this a crucial question for musicians?

Q14.4 A box containing a pebble is attached to an ideal horizontal spring and is oscillating on a friction-free air table. When the box has reached its maximum distance from the equilibrium point, the pebble is suddenly lifted out vertically without disturbing the box. Will the following characteristics of the motion increase, decrease, or remain the same in the subsequent motion of the box? Justify each answer. (a) frequency; (b) period; (c) amplitude; (d) the maximum kinetic energy of the box; (e) the maximum speed of the box.

Q14.5 If a uniform spring is cut in half, what is the force constant of each half? Justify your answer. How would the frequency of SHM using a half-spring differ from the frequency using the same mass and the entire spring?

Q14.6 The analysis of SHM in this chapter ignored the mass of the spring. How does the spring's mass change the characteristics of the motion?

Q14.7 Two identical gliders on an air track are connected by an ideal spring. Could such a system undergo SHM? Explain. How would the period compare with that of a single glider attached to a spring whose other end is rigidly attached to a stationary object? Explain.

Q14.8 You are captured by Martians, taken into their ship, and put to sleep. You awake some time later and find yourself locked in a small room with no windows. All the Martians have left you with is your digital watch, your school ring, and your long silver-chain necklace. Explain how you can determine whether you are still on earth or have been transported to Mars.

Q14.9 The system shown in Fig. 14.17 is mounted in an elevator. What happens to the period of the motion (does it increase, decrease, or remain the same) if the elevator (a) accelerates upward at 5.0 m/s^2 ; (b) moves upward at a steady 5.0 m/s; (c) accelerates downward at 5.0 m/s^2 ? Justify your answers.

Q14.10 If a pendulum has a period of 2.5 s on earth, what would be its period in a space station orbiting the earth? If a mass hung from a vertical spring has a period of 5.0 s on earth, what would its period be in the space station? Justify each of your answers.

Q14.11 A simple pendulum is mounted in an elevator. What happens to the period of the pendulum (does it increase, decrease, or remain the same) if the elevator (a) accelerates upward at 5.0 m/s²; (b) moves upward at a steady 5.0 m/s; (c) accelerates downward at 5.0 m/s²; (d) accelerates downward at 9.8 m/s²? Justify your answers.

Q14.12 What should you do to the length of the string of a simple pendulum to (a) double its frequency; (b) double its period; (c) double its angular frequency?

Q14.13 If a pendulum clock is taken to a mountaintop, does it gain or lose time, assuming it is correct at a lower elevation? Explain your answer.

Q14.14 When the amplitude of a simple pendulum increases, should its period increase or decrease? Give a qualitative argument; do not rely on Eq. (14.35). Is your argument also valid for a physical pendulum?

Q14.15 Why do short dogs (like Chihuahuas) walk with quicker strides than do tall dogs (like Great Danes)?

Q14.16 At what point in the motion of a simple pendulum is the string tension greatest? Least? In each case give the reasoning behind your answer.

Q14.17 Could a standard of time be based on the period of a certain standard pendulum? What advantages and disadvantages would such a standard have compared to the actual present-day standard discussed in Section 1.3?

Q14.18 For a simple pendulum, clearly distinguish between ω (the angular velocity) and ω (the angular frequency). Which is constant and which is variable?

Q14.19 A glider is attached to a fixed ideal spring and oscillates on a horizontal, friction-free air track. A coin is atop the glider and oscillating with it. At what points in the motion is the friction force on the coin greatest? At what points is it least? Justify your answers.

Q14.20 In designing structures in an earthquake-prone region, how should the natural frequencies of oscillation of a structure relate to typical earthquake frequencies? Why? Should the structure have a large or small amount of damping?

EXERCISES

Section 14.1 Describing Oscillation

14.1 • **BIO** (a) **Music.** When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note that is sung. If someone sings the note B flat, which has a frequency of 466 Hz, how much time does it take the person's vocal cords to vibrate through one complete cycle, and what is the angular frequency of the cords? (b) Hearing. When sound waves strike the eardrum, this membrane vibrates with the same frequency as the sound. The highest pitch that typical humans can hear has a period of 50.0 μ s. What are the frequency and angular frequency of the vibrating eardrum for this sound? (c) Vision. When light having vibrations with angular frequency ranging from 2.7×10^{15} rad/s to 4.7×10^{15} rad/s strikes the retina of the eye, it stimulates the receptor cells there and is perceived as visible light. What are the limits of the period and frequency of this light? (d) Ultrasound. High-frequency sound waves (ultrasound) are used to probe the interior of the body, much as x rays do. To detect small objects such as tumors, a frequency of around 5.0 MHz is used. What are the period and angular frequency of the molecular vibrations caused by this pulse of sound?

14.2 • If an object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its equilibrium position and released with zero initial speed, then after 0.800 s its displacement is found to be

0.120 m on the opposite side, and it has passed the equilibrium position once during this interval. Find (a) the amplitude; (b) the period; (c) the frequency.

14.3 • The tip of a tuning fork goes through 440 complete vibrations in 0.500 s. Find the angular frequency and the period of the motion.

14.4 • The displacement of an oscillating object as a function of time is shown in Fig. E14.4. What are (a) the frequency; (b) the amplitude; (c) the period; (d) the angular frequency of this motion?

Figure E14.4

14.5 •• A machine part is undergoing SHM with a frequency of 5.00 Hz and amplitude 1.80 cm. How long does it take the part to go from x = 0 to x = -1.80 cm?

Section 14.2 Simple Harmonic Motion

14.6 •• In a physics lab, you attach a 0.200-kg air-track glider to the end of an ideal spring of negligible mass and start it oscillating. The elapsed time from when the glider first moves through the equilibrium point to the second time it moves through that point is 2.60 s. Find the spring's force constant.

14.7 • When a body of unknown mass is attached to an ideal spring with force constant 120 N/m, it is found to vibrate with a frequency of 6.00 Hz. Find (a) the period of the motion; (b) the angular frequency; (c) the mass of the body.

14.8 • When a 0.750-kg mass oscillates on an ideal spring, the frequency is 1.33 Hz. What will the frequency be if 0.220 kg are (a) added to the original mass and (b) subtracted from the original mass? Try to solve this problem *without* finding the force constant of the spring.

14.9 •• An object is undergoing SHM with period 0.900 s and amplitude 0.320 m. At t = 0 the object is at x = 0.320 m and is instantaneously at rest. Calculate the time it takes the object to go (a) from x = 0.320 m to x = 0.160 m and (b) from x = 0.160 m to x = 0.

14.10 • A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the block is at x = 0.280 m, the acceleration of the block is -5.30 m/s². What is the frequency of the motion?

14.11 • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At t = 0 the spring is neither stretched nor compressed and the block is moving in the negative direction at 12.0 m/s. Find (a) the amplitude and (b) the phase angle. (c) Write an equation for the position as a function of time.

14.12 •• Repeat Exercise 14.11, but assume that at t = 0 the block has velocity -4.00 m/s and displacement +0.200 m.

14.13 • The point of the needle of a sewing machine moves in SHM along the *x*-axis with a frequency of 2.5 Hz. At t = 0 its position and velocity components are +1.1 cm and -15 cm/s, respectively. (a) Find the acceleration component of the needle at t = 0. (b) Write equations giving the position, velocity, and acceleration components of the point as a function of time.

14.14 •• A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the ampli-

tude of the motion is 0.090 m, it takes the block 2.70 s to travel from x = 0.090 m to x = -0.090 m. If the amplitude is doubled, to 0.180 m, how long does it take the block to travel (a) from x = 0.180 m to x = -0.180 m and (b) from x = 0.090 m to x = -0.090 m?

14.15 • **BIO** Weighing Astronauts. This procedure has actually been used to "weigh" astronauts in space. A 42.5-kg chair is attached to a spring and allowed to oscillate. When it is empty, the chair takes 1.30 s to make one complete vibration. But with an astronaut sitting in it, with her feet off the floor, the chair takes 2.54 s for one cycle. What is the mass of the astronaut?

14.16 • A 0.400-kg object undergoing SHM has $a_x = -2.70 \text{ m/s}^2$ when x = 0.300 m. What is the time for one oscillation?

14.17 • On a frictionless, horizontal air track, a glider oscillates at the end of an ideal spring of force constant 2.50 N/cm. The graph in Fig. E14.17 shows the acceleration of the glider as a function of time. Find (a) the mass of the glider; (b) the maximum displacement of the glider from the equilibrium point; (c) the maximum force the spring exerts on the glider.

Figure **E14.17**

14.18 • A 0.500-kg mass on a spring has velocity as a function of time given by $v_x(t) = -(3.60 \text{ cm/s}) \sin[(4.71 \text{ s}^{-1})t - \pi/2]$. What are (a) the period; (b) the amplitude; (c) the maximum acceleration of the mass; (d) the force constant of the spring?

14.19 • A 1.50-kg mass on a spring has displacement as a function of time given by the equation

$$x(t) = (7.40 \text{ cm}) \cos[(4.16 \text{ s}^{-1})t - 2.42]$$

Find (a) the time for one complete vibration; (b) the force constant of the spring; (c) the maximum speed of the mass; (d) the maximum force on the mass; (e) the position, speed, and acceleration of the mass at t = 1.00 s; (f) the force on the mass at that time.

14.20 • **BIO** Weighing a Virus. In February 2004, scientists at Purdue University used a highly sensitive technique to measure the mass of a vaccinia virus (the kind used in smallpox vaccine). The procedure involved measuring the frequency of oscillation of a tiny sliver of silicon (just 30 nm long) with a laser, first without the virus and then after the virus had attached itself to the silicon. The difference in mass caused a change in the frequency. We can model such a process as a mass on a spring. (a) Show that the ratio of the frequency with the virus attached (f_{S+V}) to the frequency without

the virus $(f_{\rm S})$ is given by the formula $\frac{f_{\rm S+V}}{f_{\rm S}} = \frac{1}{\sqrt{1 + (m_{\rm V}/m_{\rm S})}}$

where m_V is the mass of the virus and m_S is the mass of the silicon sliver. Notice that it is *not* necessary to know or measure the force constant of the spring. (b) In some data, the silicon sliver has a mass of 2.10×10^{-16} g and a frequency of 2.00×10^{15} Hz without the virus and 2.87×10^{14} Hz with the virus. What is the mass of the virus, in grams and in femtograms?

14.21 •• CALC Jerk. A guitar string vibrates at a frequency of 440 Hz. A point at its center moves in SHM with an amplitude of

3.0 mm and a phase angle of zero. (a) Write an equation for the position of the center of the string as a function of time. (b) What are the maximum values of the magnitudes of the velocity and acceleration of the center of the string? (c) The derivative of the acceleration with respect to time is a quantity called the *jerk*. Write an equation for the jerk of the center of the string as a function of time, and find the maximum value of the magnitude of the jerk.

Section 14.3 Energy in Simple Harmonic Motion

14.22 •• For the oscillating object in Fig. E14.4, what are (a) its maximum speed and (b) its maximum acceleration?

14.23 • A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. The amplitude of the motion is 0.120 m. The maximum speed of the block is 3.90 m/s. What is the maximum magnitude of the acceleration of the block?

14.24 • A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. The amplitude of the motion is 0.250 m and the period is 3.20 s. What are the speed and acceleration of the block when x = 0.160 m?

14.25 •• A tuning fork labeled 392 Hz has the tip of each of its two prongs vibrating with an amplitude of 0.600 mm. (a) What is the maximum speed of the tip of a prong? (b) A housefly (*Musca domestica*) with mass 0.0270 g is holding onto the tip of one of the prongs. As the prong vibrates, what is the fly's maximum kinetic energy? Assume that the fly's mass has a negligible effect on the frequency of oscillation.

14.26 •• A harmonic oscillator has angular frequency ω and amplitude A. (a) What are the magnitudes of the displacement and velocity when the elastic potential energy is equal to the kinetic energy? (Assume that U = 0 at equilibrium.) (b) How often does this occur in each cycle? What is the time between occurrences? (c) At an instant when the displacement is equal to A/2, what fraction of the total energy of the system is kinetic and what fraction is potential?

14.27 • A 0.500-kg glider, attached to the end of an ideal spring with force constant k = 450 N/m, undergoes SHM with an amplitude of 0.040 m. Compute (a) the maximum speed of the glider; (b) the speed of the glider when it is at x = -0.015 m; (c) the magnitude of the maximum acceleration of the glider; (d) the acceleration of the glider at x = -0.015 m; (e) the total mechanical energy of the glider at any point in its motion.

14.28 •• A cheerleader waves her pom-pom in SHM with an amplitude of 18.0 cm and a frequency of 0.850 Hz. Find (a) the maximum magnitude of the acceleration and of the velocity; (b) the acceleration and speed when the pom-pom's coordinate is x = +9.0 cm; (c) the time required to move from the equilibrium position directly to a point 12.0 cm away. (d) Which of the quantities asked for in parts (a), (b), and (c) can be found using the energy approach used in Section 14.3, and which cannot? Explain. **14.29** • **CP** For the situation described in part (a) of Example 14.5, what should be the value of the putty mass *m* so that the amplitude after the collision is one-half the original amplitude? For this value of *m*, what fraction of the original mechanical energy is converted into heat?

14.30 • A 0.150-kg toy is undergoing SHM on the end of a horizontal spring with force constant k = 300 N/m. When the object is 0.0120 m from its equilibrium position, it is observed to have a speed of 0.300 m/s. What are (a) the total energy of the object at any point of its motion; (b) the amplitude of the motion; (c) the maximum speed attained by the object during its motion?

14.31 •• You are watching an object that is moving in SHM. When the object is displaced 0.600 m to the right of its equilibrium position, it has a velocity of 2.20 m/s to the right and an acceleration of 8.40 m/s² to the left. How much farther from this point will the object move before it stops momentarily and then starts to move back to the left?

14.32 •• On a horizontal, frictionless table, an open-topped 5.20-kg box is attached to an ideal horizontal spring having force constant 375 N/m. Inside the box is a 3.44-kg stone. The system is oscillating with an amplitude of 7.50 cm. When the box has reached its maximum speed, the stone is suddenly plucked vertically out of the box without touching the box. Find (a) the period and (b) the amplitude of the resulting motion of the box. (c) Without doing any calculations, is the new period greater or smaller than the original period? How do you know?

14.33 •• A mass is oscillating with amplitude A at the end of a spring. How far (in terms of A) is this mass from the equilibrium position of the spring when the elastic potential energy equals the kinetic energy?

14.34 •• A mass *m* is attached to a spring of force constant 75 N/m and allowed to oscillate. Figure E14.34 shows a graph of its velocity v_x as a function of time *t*. Find (a) the period, (b) the frequency, and (c) the angular frequency of this motion. (d) What is the amplitude (in cm), and at what times does the mass reach this position? (e) Find the maximum acceleration of the mass and the times at which it occurs. (f) What is the mass *m*?

Figure **E14.34**

14.35 • Inside a NASA test vehicle, a 3.50-kg ball is pulled along by a horizontal ideal spring fixed to a friction-free table. The force constant of the spring is 225 N/m. The vehicle has a steady acceleration of 5.00 m/s^2 , and the ball is not oscillating. Suddenly, when the vehicle's speed has reached 45.0 m/s, its engines turn off, thus eliminating its acceleration but not its velocity. Find (a) the amplitude and (b) the frequency of the resulting oscillations of the ball. (c) What will be the ball's maximum speed relative to the vehicle?

Section 14.4 Applications of Simple Harmonic Motion

14.36 • A proud deep-sea fisherman hangs a 65.0-kg fish from an ideal spring having negligible mass. The fish stretches the spring 0.120 m. (a) Find the force constant of the spring. The fish is now pulled down 5.00 cm and released. (b) What is the period of oscillation of the fish? (c) What is the maximum speed it will reach?

14.37 • A 175-g glider on a horizontal, frictionless air track is attached to a fixed ideal spring with force constant 155 N/m. At the instant you make measurements on the glider, it is moving at 0.815 m/s and is 3.00 cm from its equilibrium point. Use *energy conservation* to find (a) the amplitude of the motion and (b) the maximum speed of the glider. (c) What is the angular frequency of the oscillations?

14.38 • A thrill-seeking cat with mass 4.00 kg is attached by a harness to an ideal spring of negligible mass and oscillates vertically in SHM. The amplitude is 0.050 m, and at the highest point

of the motion the spring has its natural unstretched length. Calculate the elastic potential energy of the spring (take it to be zero for the unstretched spring), the kinetic energy of the cat, the gravitational potential energy of the system relative to the lowest point of the motion, and the sum of these three energies when the cat is (a) at its highest point; (b) at its lowest point; (c) at its equilibrium position.

14.39 •• A 1.50-kg ball and a 2.00-kg ball are glued together with the lighter one below the heavier one. The upper ball is attached to a vertical ideal spring of force constant 165 N/m, and the system is vibrating vertically with amplitude 15.0 cm. The glue connecting the balls is old and weak, and it suddenly comes loose when the balls are at the lowest position in their motion. (a) Why is the glue more likely to fail at the *lowest* point than at any other point in the motion? (b) Find the amplitude and frequency of the vibrations after the lower ball has come loose.

14.40 •• A uniform, solid metal disk of mass 6.50 kg and diameter 24.0 cm hangs in a horizontal plane, supported at its center by a vertical metal wire. You find that it requires a horizontal force of 4.23 N tangent to the rim of the disk to turn it by 3.34° , thus twisting the wire. You now remove this force and release the disk from rest. (a) What is the torsion constant for the metal wire? (b) What are the frequency and period of the torsional oscillations of the disk? (c) Write the equation of motion for $\theta(t)$ for the disk.

14.41 •• A certain alarm clock ticks four times each second, with each tick representing half a period. The balance wheel consists of a thin rim with radius 0.55 cm, connected to the balance staff by thin spokes of negligible mass. The total mass of the balance wheel is 0.90 g. (a) What is the moment of inertia of the balance wheel about its shaft? (b) What is the torsion constant of the coil spring (Fig. 14.19)?

14.42 • A thin metal disk with mass 2.00×10^{-3} kg and radius 2.20 cm is attached at its center to a long fiber (Fig. E14.42). The disk, when twisted and released, oscillates with a period of 1.00 s. Find the torsion constant of the fiber.

14.43 •• You want to find the moment of inertia of a compli-

cated machine part about an axis through its center of mass. You suspend it from a wire along this axis. The wire has a torsion constant of 0.450 N \cdot m/rad. You twist the part a small amount about this axis and let it go, timing 125 oscillations in 265 s. What is the moment of inertia you want to find?

14.44 •• **CALC** The balance wheel of a watch vibrates with an angular amplitude Θ , angular frequency ω , and phase angle $\phi = 0$. (a) Find expressions for the angular velocity $d\theta/dt$ and angular acceleration $d^2\theta/dt^2$ as functions of time. (b) Find the balance wheel's angular velocity and angular acceleration when its angular displacement is Θ , and when its angular displacement is $\Theta/2$ and θ is decreasing. (*Hint:* Sketch a graph of θ versus *t*.)

Section 14.5 The Simple Pendulum

14.45 •• You pull a simple pendulum 0.240 m long to the side through an angle of 3.50° and release it. (a) How much time does it take the pendulum bob to reach its highest speed? (b) How much time does it take if the pendulum is released at an angle of 1.75° instead of 3.50° ?

14.46 • An 85.0-kg mountain climber plans to swing down, starting from rest, from a ledge using a light rope 6.50 m long. He holds

one end of the rope, and the other end is tied higher up on a rock face. Since the ledge is not very far from the rock face, the rope makes a small angle with the vertical. At the lowest point of his swing, he plans to let go and drop a short distance to the ground. (a) How long after he begins his swing will the climber first reach his lowest point? (b) If he missed the first chance to drop off, how long after first beginning his swing will the climber reach his lowest point for the second time?

14.47 • A building in San Francisco has light fixtures consisting of small 2.35-kg bulbs with shades hanging from the ceiling at the end of light, thin cords 1.50 m long. If a minor earthquake occurs, how many swings per second will these fixtures make?

14.48 • A Pendulum on Mars. A certain simple pendulum has a period on the earth of 1.60 s. What is its period on the surface of Mars, where $g = 3.71 \text{ m/s}^2$?

14.49 • After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 50.0 cm. She finds that the pendulum makes 100 complete swings in 136 s. What is the value of g on this planet?

14.50 •• A small sphere with mass *m* is attached to a massless rod of length *L* that is pivoted at the top, forming a simple pendulum. The pendulum is pulled to one side so that the rod is at an angle Θ from the vertical, and released from rest. (a) In a diagram, show the pendulum just after it is released. Draw vectors representing the *forces* acting on the small sphere and the *acceleration* of the sphere. Accuracy counts! At this point, what is the linear acceleration of the sphere? (b) Repeat part (a) for the instant when the pendulum rod is at an angle $\Theta/2$ from the vertical. At this point, what is the linear acceleration is the linear acceleration of the instant when the pendulum rod is vertical. At this point, what is the linear speed of the sphere?

14.51 • A simple pendulum 2.00 m long swings through a maximum angle of 30.0° with the vertical. Calculate its period (a) assuming a small amplitude, and (b) using the first three terms of Eq. (14.35). (c) Which of the answers in parts (a) and (b) is more accurate? For the one that is less accurate, by what percent is it in error from the more accurate answer?

Section 14.6 The Physical Pendulum

14.52 •• We want to hang a thin hoop on a horizontal nail and have the hoop make one complete small-angle oscillation each 2.0 s. What must the hoop's radius be?

14.53 • A 1.80-kg connecting rod from a car engine is pivoted about a horizontal knife edge as shown in Fig. E14.53. The center of gravity of the rod was located by balancing and is 0.200 m from the pivot. When the rod is set into small-amplitude oscillation, it makes 100 complete swings in 120 s. Calculate the moment of inertia of the rod about the rotation axis through the pivot.

Figure **E14.53**

14.54 •• A 1.80-kg monkey wrench is pivoted 0.250 m from its center of mass and allowed to swing as a physical pendulum. The period for small-angle oscillations is 0.940 s. (a) What is the moment of inertia of the wrench about an axis through the pivot? (b) If the wrench is initially displaced 0.400 rad from its equilibrium position, what is the angular speed of the wrench as it passes through the equilibrium position?

14.55 • Two pendulums have the same dimensions (length L) and total mass (m). Pendulum A is a very small ball swinging at the end of a uniform massless bar. In pendulum B, half the mass is in the ball and half is in the uniform bar. Find the period of each pendulum for small oscillations. Which one takes longer for a swing? **14.56** •• **CP** A holiday ornament in the shape of a hollow sphere with mass M = 0.015 kg and radius R = 0.050 m is hung from a tree limb by a small loop of wire attached to the surface of the sphere. If the ornament is displaced a small distance and released, it swings back and forth as a physical pendulum with negligible friction. Calculate its period. (*Hint:* Use the parallel-axis theorem to find the moment of inertia of the sphere about the pivot at the tree limb.)

14.57 •• The two pendulums shown in Fig. E14.57 each consist of a uniform solid ball of mass M supported by a rigid massless rod, but the ball for pendulum A is very tiny while the ball for pendulum B is much larger. Find the period of each pendulum for small displacements. Which ball takes longer to complete a swing?

Figure **E14.57**

Section 14.7 Damped Oscillations

14.58 • A 2.50-kg rock is attached at the end of a thin, very light rope 1.45 m long. You start it swinging by releasing it when the rope makes an 11° angle with the vertical. You record the observation that it rises only to an angle of 4.5° with the vertical after $10\frac{1}{2}$ swings. (a) How much energy has this system lost during that time? (b) What happened to the "lost" energy? Explain *how* it could have been "lost."

14.59 • An unhappy 0.300-kg rodent, moving on the end of a spring with force constant k = 2.50 N/m, is acted on by a damping force $F_x = -bv_x$. (a) If the constant *b* has the value 0.900 kg/s, what is the frequency of oscillation of the rodent? (b) For what value of the constant *b* will the motion be critically damped?

14.60 •• A 50.0-g hard-boiled egg moves on the end of a spring with force constant k = 25.0 N/m. Its initial displacement is 0.300 m. A damping force $F_x = -bv_x$ acts on the egg, and the amplitude of the motion decreases to 0.100 m in 5.00 s. Calculate the magnitude of the damping constant *b*.

14.61 •• **CALC** The motion of an underdamped oscillator is described by Eq. (14.42). Let the phase angle ϕ be zero. (a) According to this equation, what is the value of x at t = 0? (b) What are the magnitude and direction of the velocity at t = 0? What does the result tell you about the slope of the graph of x versus t near t = 0? (c) Obtain an expression for the acceleration a_x at t = 0. For what value or range of values of the damping constant b (in terms of k and m) is the acceleration at t = 0 negative, zero, and positive? Discuss each case in terms of the shape of the graph of x versus t near t = 0.

14.62 •• A mass is vibrating at the end of a spring of force constant 225 N/m. Figure E14.62 shows a graph of its position *x* as a function of time *t*. (a) At what times is the mass not moving? (b) How much energy did this system originally contain? (c) How much energy did the system lose between t = 1.0 s and t = 4.0 s? Where did this energy go?

Figure **E14.62**

Section 14.8 Forced Oscillations and Resonance

14.63 • A sinusoidally varying driving force is applied to a damped harmonic oscillator. (a) What are the units of the damping constant b? (b) Show that the quantity \sqrt{km} has the same units as b. (c) In terms of F_{max} and k, what is the amplitude for $\omega_{\text{d}} = \sqrt{k/m}$ when (i) $b = 0.2 \sqrt{km}$ and (ii) $b = 0.4 \sqrt{km}$? Compare your results to Fig. 14.28.

14.64 • A sinusoidally varying driving force is applied to a damped harmonic oscillator of force constant k and mass m. If the damping constant has a value b_1 , the amplitude is A_1 when the driving angular frequency equals $\sqrt{k/m}$. In terms of A_1 , what is the amplitude for the same driving frequency and the same driving force amplitude F_{max} , if the damping constant is (a) $3b_1$ and (b) $b_1/2$?

PROBLEMS

14.65 •• An object is undergoing SHM with period 1.200 s and amplitude 0.600 m. At t = 0 the object is at x = 0 and is moving in the negative *x*-direction. How far is the object from the equilibrium position when t = 0.480 s?

14.66 ••• An object is undergoing SHM with period 0.300 s and amplitude 6.00 cm. At t = 0 the object is instantaneously at rest at x = 6.00 cm. Calculate the time it takes the object to go from x = 6.00 cm to x = -1.50 cm.

14.67 • **CP** SHM in a Car Engine. The motion of the piston of an automobile engine is approximately simple harmonic. (a) If the stroke of an engine (twice the amplitude) is 0.100 m and the engine runs at 4500 rev/min, compute the acceleration of the piston at the endpoint of its stroke. (b) If the piston has mass 0.450 kg, what net force must be exerted on it at this point? (c) What are the speed and kinetic energy of the piston at the midpoint of its stroke? (d) What average power is required to accelerate the piston from rest to the speed found in part (c)? (e) If the engine runs at 7000 rev/min, what are the answers to parts (b), (c), and (d)? **14.68** • Four passengers with combined mass 250 kg compress the springs of a car with worn-out shock absorbers by 4.00 cm when they get in. Model the car and passengers as a single body on a single ideal spring. If the loaded car has a period of vibration of 1.92 s, what is the period of vibration of the empty car?

14.69 • A glider is oscillating in SHM on an air track with an amplitude A_1 . You slow it so that its amplitude is halved. What happens to its (a) period, frequency, and angular frequency;

(b) total mechanical energy; (c) maximum speed; (d) speed at $x = \pm A_1/4$; (e) potential and kinetic energies at $x = \pm A_1/4$?

14.70 ••• CP A child with poor table manners is sliding his 250-g dinner plate back and forth in SHM with an amplitude of 0.100 m on a horizontal surface. At a point 0.060 m away from equilibrium, the speed of the plate is 0.400 m/s. (a) What is the period? (b) What is the displacement when the speed is 0.160 m/s? (c) In the center of the dinner plate is a 10.0-g carrot slice. If the carrot slice is just on the verge of slipping at the endpoint of the path, what is the coefficient of static friction between the carrot slice and the plate?

14.71 ••• A 1.50-kg, horizontal, uniform tray is attached to a vertical ideal spring of force constant 185 N/m and a 275-g metal ball is in the tray. The spring is below the tray, so it can oscillate up and down. The tray is then pushed down to point A, which is 15.0 cm below the equilibrium point, and released from rest. (a) How high above point A will the tray be when the metal ball leaves the tray? (*Hint:* This does *not* occur when the ball and tray reach their maximum speeds.) (b) How much time elapses between releasing the system at point A and the ball leaving the tray? (c) How fast is the ball moving just as it leaves the tray?

14.72 •• **CP** A block with mass *M* rests on a frictionless surface and is connected to a horizontal spring of force constant *k*. The other end of the spring is attached to a wall (Fig. P14.72). A second block with mass *m* rests on top of the first block. The coefficient of static friction between the blocks is μ_s . Find the *maximum* amplitude of oscillation such that the top block will not slip on the bottom block.

Figure **P14.72**

14.73 • **CP** A 10.0-kg mass is traveling to the right with a speed of 2.00 m/s on a smooth horizontal surface when it collides with and sticks to a second 10.0-kg mass that is initially at rest but is attached to a light spring with force constant 110.0 N/m. (a) Find the frequency, amplitude, and period of the subsequent oscillations. (b) How long does it take the system to return the first time to the position it had immediately after the collision?

14.74 • **CP** A rocket is accelerating upward at 4.00 m/s^2 from the launchpad on the earth. Inside a small, 1.50-kg ball hangs from the ceiling by a light, 1.10-m wire. If the ball is displaced 8.50° from the vertical and released, find the amplitude and period of the resulting swings of this pendulum.

14.75 ••• An apple weighs 1.00 N. When you hang it from the end of a long spring of force constant 1.50 N/m and negligible mass, it bounces up and down in SHM. If you stop the bouncing and let the apple swing from side to side through a small angle, the frequency of this simple pendulum is half the bounce frequency. (Because the angle is small, the back-and-forth swings do not cause any appreciable change in the length of the spring.) What is the unstretched length of the spring (with the apple removed)?

14.76 ••• **CP SHM** of a Floating Object. An object with height *h*, mass *M*, and a uniform cross-sectional area *A* floats

upright in a liquid with density ρ . (a) Calculate the vertical distance from the surface of the liquid to the bottom of the floating object at equilibrium. (b) A downward force with magnitude *F* is applied to the top of the object. At the new equilibrium position, how much farther below the surface of the liquid is the bottom of the object than it was in part (a)? (Assume that some of the object remains above the surface of the liquid.) (c) Your result in part (b) shows that if the force is suddenly removed, the object will oscillate up and down in SHM. Calculate the period of this motion in terms of the density ρ of the liquid, the mass *M*, and the crosssectional area *A* of the object. You can ignore the damping due to fluid friction (see Section 14.7).

14.77 •• CP A 950-kg, cylindrical can buoy floats vertically in salt water. The diameter of the buoy is 0.900 m. (a) Calculate the additional distance the buoy will sink when a 70.0-kg man stands on top of it. (Use the expression derived in part (b) of Problem 14.76.) (b) Calculate the period of the resulting vertical SHM when the man dives off. (Use the expression derived in part (c) of Problem 14.76, and as in that problem, you can ignore the damping due to fluid friction.)

14.78 ••• **CP Tarzan to the Rescue!** Tarzan spies a 35-kg chimpanzee in severe danger, so he swings to the rescue. He adjusts his strong, but very light, vine so that he will first come to rest 4.0 s after beginning his swing, at which time his vine makes a 12° angle with the vertical. (a) How long is Tarzan's vine, assuming that he swings at the bottom end of it? (b) What are the frequency and amplitude (in degrees) of Tarzan's swing? (c) Just as he passes through the lowest point in his swing, Tarzan nabs the chimp from the ground and sweeps him out of the jaws of danger. If Tarzan's mass is 65 kg, find the frequency and amplitude (in degrees) of the swing with Tarzan holding onto the grateful chimp.

14.79 •• **CP** A square object of mass m is constructed of four identical uniform thin sticks, each of length L, attached together. This object is hung on a hook at its upper corner (Fig. P14.79). If it is rotated slightly to the left and then released, at what frequency will it swing back and forth?

14.80 •••• An object with mass 0.200 kg is acted on by an elas-

tic restoring force with force constant 10.0 N/m. (a) Graph elastic potential energy U as a function of displacement x over a range of x from -0.300 m to +0.300 m. On your graph, let 1 cm = 0.05 J vertically and 1 cm = 0.05 m horizontally. The object is set into oscillation with an initial potential energy of 0.140 J and an initial kinetic energy of 0.060 J. Answer the following questions by referring to the graph. (b) What is the amplitude of oscillation? (c) What is the potential energy when the displacement is onehalf the amplitude? (d) At what displacement are the kinetic and potential energies equal? (e) What is the value of the phase angle ϕ if the initial velocity is positive and the initial displacement is negative?

14.81 • **CALC** A 2.00-kg bucket containing 10.0 kg of water is hanging from a vertical ideal spring of force constant 125 N/m and oscillating up and down with an amplitude of 3.00 cm. Suddenly the bucket springs a leak in the bottom such that water drops out at a steady rate of 2.00 g/s. When the bucket is half full, find

(a) the period of oscillation and (b) the rate at which the period is changing with respect to time. Is the period getting longer or shorter? (c) What is the shortest period this system can have?

14.82 •• **CP** A hanging wire is 1.80 m long. When a 60.0-kg steel ball is suspended from the wire, the wire stretches by 2.00 mm. If the ball is pulled down a small additional distance and released, at what frequency will it vibrate? Assume that the stress on the wire is less than the proportional limit (see Section 11.5).

14.83 •• A 5.00-kg partridge is suspended from a pear tree by an ideal spring of negligible mass. When the partridge is pulled down 0.100 m below its equilibrium position and released, it vibrates with a period of 4.20 s. (a) What is its speed as it passes through the equilibrium position? (b) What is its acceleration when it is 0.050 m above the equilibrium position? (c) When it is moving upward, how much time is required for it to move from a point 0.050 m below its equilibrium position to a point 0.050 m above it? (d) The motion of the partridge is stopped, and then it is removed from the spring. How much does the spring shorten?

14.84 •• A 0.0200-kg bolt moves with SHM that has an amplitude of 0.240 m and a period of 1.500 s. The displacement of the bolt is +0.240 m when t = 0. Compute (a) the displacement of the bolt when t = 0.500 s; (b) the magnitude and direction of the force acting on the bolt when t = 0.500 s; (c) the minimum time required for the bolt to move from its initial position to the point where x = -0.180 m; (d) the speed of the bolt when x = -0.180 m.

14.85 •• **CP** SHM of a Butcher's Scale. A spring of negligible mass and force constant k = 400 N/m is hung vertically, and a 0.200-kg pan is suspended from its lower end. A butcher drops a 2.2-kg steak onto the pan from a height of 0.40 m. The steak makes a totally inelastic collision with the pan and sets the system into vertical SHM. What are (a) the speed of the pan and steak immediately after the collision; (b) the amplitude of the subsequent motion; (c) the period of that motion?

14.86 •• A uniform beam is suspended horizontally by two identical vertical springs that are attached between the ceiling and each end of the beam. The beam has mass 225 kg, and a 175-kg sack of gravel sits on the middle of it. The beam is oscillating in SHM, with an amplitude of 40.0 cm and a frequency of 0.600 cycle/s. (a) The sack of gravel falls off the beam when the beam has its maximum upward displacement. What are the frequency and amplitude of the subsequent SHM of the beam? (b) If the gravel instead falls off when the beam has its maximum speed, what are the frequency and amplitude of the subsequent SHM of the beam?

14.87 ••• **CP** On the planet Newtonia, a simple pendulum having a bob with mass 1.25 kg and a length of 185.0 cm takes 1.42 s, when released from rest, to swing through an angle of 12.5° , where it again has zero speed. The circumference of Newtonia is measured to be 51,400 km. What is the mass of the planet Newtonia?

14.88 •• A 40.0-N force stretches a vertical spring 0.250 m. (a) What mass must be suspended from the spring so that the system will oscillate with a period of 1.00 s? (b) If the amplitude of the motion is 0.050 m and the period is that specified in part (a), where is the object and in what direction is it moving 0.35 s after it has passed the equilibrium position, moving downward? (c) What force (magnitude and direction) does the spring exert on the object when it is 0.030 m below the equilibrium position, moving upward?

14.89 •• **Don't Miss the Boat.** While on a visit to Minnesota ("Land of 10,000 Lakes"), you sign up to take an excursion around one of the larger lakes. When you go to the dock where the 1500-kg boat is tied, you find that the boat is bobbing up and down in the waves, executing simple harmonic motion with amplitude 20 cm. The boat takes 3.5 s to make one complete up-and-down cycle.

When the boat is at its highest point, its deck is at the same height as the stationary dock. As you watch the boat bob up and down, you (mass 60 kg) begin to feel a bit woozy, due in part to the previous night's dinner of lutefisk. As a result, you refuse to board the boat unless the level of the boat's deck is within 10 cm of the dock level. How much time do you have to board the boat comfortably during each cycle of up-and-down motion?

14.90 • **CP** An interesting, though highly impractical example of oscillation is the motion of an object dropped down a hole that extends from one side of the earth, through its center, to the other side. With the assumption (not realistic) that the earth is a sphere of uniform density, prove that the motion is simple harmonic and find the period. [*Note:* The gravitational force on the object as a function of the object's distance r from the center of the earth was derived in Example 13.10 (Section 13.6). The motion is simple harmonic if the acceleration a_x and the displacement from equilibrium x are related by Eq. (14.8), and the period is then $T = 2\pi/\omega$.]

14.91 •••• **CP** A rifle bullet with mass 8.00 g and initial horizontal velocity 280 m/s strikes and embeds itself in a block with mass 0.992 kg that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is attached to the wall. The impact compresses the spring a maximum distance of 18.0 cm. After the impact, the block moves in SHM. Calculate the period of this motion.

14.92 •• **CP CALC** For a certain oscillator the net force on the body with mass *m* is given by $F_x = -cx^3$. (a) What is the potential energy function for this oscillator if we take U = 0 at x = 0? (b) One-quarter of a period is the time for the body to move from x = 0 to x = A. Calculate this time and hence the period. [*Hint:* Begin with Eq. (14.20), modified to include the potential-energy function you found in part (a), and solve for the velocity v_x as a function of *x*. Then replace v_x with dx/dt. Separate the variable by writing all factors containing *x* on one side and all factors containing *t* on the other side so that each side can be integrated. In the *x*-integral make the change of variable u = x/A. The resulting integral can be evaluated by numerical methods on a computer and has the value $\int_0^1 du/\sqrt{1 - u^4} = 1.31$.] (c) According to the result you obtained in part (b), does the period depend on the amplitude *A* of the motion? Are the oscillations simple harmonic?

14.93 • CP CALC An approximation for the potential energy of a KCl molecule is $U = A[(R_0^{7}/8r^8) - 1/r]$, where $R_0 = 2.67 \times 10^{-10}$ m, $A = 2.31 \times 10^{-28}$ J·m, and *r* is the distance between the two atoms. Using this approximation: (a) Show that the radial component of the force on each atom is $F_r = A[(R_0^{7}/r^9) - 1/r^2]$. (b) Show that R_0 is the equilibrium separation. (c) Find the minimum potential energy. (d) Use $r = R_0 + x$ and the first two terms of the binomial theorem (Eq. 14.28) to show that $F_r \approx -(7A/R_0^3)x$, so that the molecule's force constant is $k = 7A/R_0^3$. (e) With both the K and Cl atoms vibrating in opposite directions on opposite sides of the molecule's center of mass, $m_1m_2/(m_1 + m_2) = 3.06 \times 10^{-26}$ kg is the mass to use in calculating the frequency. Calculate the frequency of small-amplitude vibrations.

14.94 ••• **CP** Two uniform solid spheres, each with mass M = 0.800 kg and radius R = 0.0800 m, are connected by a short, light rod that is along a diameter of each sphere and are at rest on a horizontal tabletop. A spring with force constant k = 160 N/m has one end attached to the wall and the other end attached to a frictionless ring that passes over the rod at the center of mass of the spheres, which is midway between the centers of the two spheres. The spheres are each pulled the same distance from the wall, stretching the spring, and released. There is sufficient friction

between the tabletop and the spheres for the spheres to roll without slipping as they move back and forth on the end of the spring. Show that the motion of the center of mass of the spheres is simple harmonic and calculate the period.

14.95 • **CP** In Fig. P14.95 the upper ball is released from rest, collides with the stationary lower ball, and sticks to it. The strings are both 50.0 cm long. The upper ball has mass 2.00 kg, and it is initially 10.0 cm higher than the lower ball, which has mass 3.00 kg. Find the frequency and maximum angular displacement of the motion after the collision.

14.96 •• **CP BIO** *T. rex.* Model the leg of the *T. rex* in Example

14.10 (Section 14.6) as two uniform rods, each 1.55 m long, joined rigidly end to end. Let the lower rod have mass M and the upper rod mass 2M. The composite object is pivoted about the top of the upper rod. Compute the oscillation period of this object for small-amplitude oscillations. Compare your result to that of Example 14.10.

Figure **P14.97**

14.97 •• CALC A slender, uniform, metal rod with mass M is pivoted without friction about an axis through its midpoint and perpendicular to the rod. A horizontal spring with force constant k is attached to the lower end of the rod, with the other end of the spring attached to a rigid support. If the rod is displaced by a small angle Θ from the vertical (Fig. P14.97) and released, show that it moves in angular SHM

and calculate the period. (*Hint:* Assume that the angle Θ is small enough for the approximations $\sin \Theta \approx \Theta$ and $\cos \Theta \approx 1$ to be valid. The motion is simple harmonic if $d^2\theta/dt^2 = -\omega^2\theta$, and the period is then $T = 2\pi/\omega$.)

14.98 •• The Silently Ringing Bell Problem. A large bell is hung from a wooden beam so it can swing back and forth with negligible friction. The center of mass of the bell is 0.60 m below the pivot, the bell has mass 34.0 kg, and the moment of inertia of the bell about an axis at the pivot is $18.0 \text{ kg} \cdot \text{m}^2$. The clapper is a small, 1.8-kg mass attached to one end of a slender rod that has length *L* and negligible mass. The other end of the rod is attached to the inside of the bell so it can swing freely about the same axis as the bell. What should be the length *L* of the clapper rod for the bell to ring silently—that is, for the period of oscillation for the bell to equal that for the clapper?

14.99 ••• Two identical thin rods, each with mass m and length L, are joined at right angles to form an L-shaped object. This object is balanced on top of a sharp edge (Fig. P14.99). If the L-shaped object is deflected slightly, it oscillates. Find the frequency of oscillation.

14.100 • **CP CALC** A uniform rod of length *L* oscillates through small angles about a point a distance *x* from its center. (a) Prove that its angular frequency is $\sqrt{gx/[(L^2/12) + x^2]}$. (b) Show that its maximum angular frequency occurs when $x = L/\sqrt{12}$. (c) What is the length of the rod if the maximum angular frequency is 2π rad/s?

CHALLENGE PROBLEMS

14.101 ••• The Effective Force Constant of Two Springs. Two springs with the same unstretched length but different force constants k_1 and k_2 are attached to a block with mass m on a level, frictionless surface. Calculate the effective force constant $k_{\rm eff}$ in each of the three cases (a), (b), and (c) depicted in Fig. P14.101. (The effective force constant is defined by $\sum F_{x} =$ $-k_{\rm eff}x$.) (d) An object with mass *m*, suspended from a uniform spring with a force constant k, vibrates with a frequency f_1 . When the spring is cut in half and the same object is suspended from one of the halves, the frequency is f_2 . What is the ratio f_2/f_1 ?

Figure **P14.101**

14.102 ••• Two springs, each with unstretched length 0.200 m but with different force constants k_1 and k_2 , are attached to opposite ends of a block with mass *m* on a level, frictionless surface. The outer ends of the springs are now attached to two pins P_1 and P_2 , 0.100 m from the original positions of the ends of the springs (Fig. P14.102). Let $k_1 = 2.00$ N/m, $k_2 = 6.00$ N/m, and m = 0.100 kg. (a) Find the length of each spring have been attached to the pins. (b) Find the period of vibration of the block if it is slightly displaced from its new equilibrium position and released.

Figure **P14.102**

14.103 ••• CALC A Spring with Mass. The preceding problems in this chapter have assumed that the springs had negligible mass. But of course no spring is completely massless. To find the effect of the spring's mass, consider a spring with mass M, equilibrium length L_0 , and spring constant k. When stretched or compressed to a length L, the potential energy is $\frac{1}{2}kx^2$, where $x = L - L_0$. (a) Consider a spring, as described above, that has one end fixed and the other end moving with speed v. Assume that the speed of points along the length of the spring varies linearly with distance l from the fixed end. Assume also that the mass M of the spring is distributed uniformly along the length of the spring. Calculate the kinetic energy of the spring in terms of M and v. (*Hint:* Divide the spring into pieces of length dl; find the speed of each piece in

terms of l, v, and L; find the mass of each piece in terms of dl, M, and L; and integrate from 0 to L. The result is not $\frac{1}{2}Mv^2$, since not all of the spring moves with the same speed.) (b) Take the time derivative of the conservation of energy equation, Eq. (14.21), for a mass m moving on the end of a massless spring. By comparing

Answers

Chapter Opening Question

The length of the leg is more important. The back-and-forth motion of a leg during walking is like a physical pendulum, for which the oscillation period is $T = 2\pi \sqrt{I/mgd}$ [see Eq. (14.39)]. In this expression *I* is the moment of inertia of the pendulum, *m* is its mass, and *d* is the distance from the rotation axis to the pendulum center of mass. The moment of inertia *I* is proportional to the mass *m*, so the mass cancels out of this expression for the period *T*. Hence only the dimensions of the leg matter. (See Examples 14.9 and 14.10.)

Test Your Understanding Questions

14.1 Answers: (a) x < 0, (b) x > 0, (c) x < 0, (d) x > 0, (e) x > 0, (f) x = 0 Figure 14.2 shows that the net *x*-component of force F_x and the *x*-acceleration a_x are both positive when x < 0 (so the body is displaced to the left and the spring is compressed), while F_x and a_x are both negative when x > 0 (so the body is displaced to the right and the spring is stretched). Hence x and a_x always have *opposite* signs. This is true whether the object is moving to the right ($v_x > 0$), to the left ($v_x < 0$), or not at all ($v_x = 0$), since the force exerted by the spring depends only on whether it is compressed or stretched and by what distance. This explains the answers to (a) through (e). If the acceleration is zero as in (f), the net force must also be zero and so the spring must be relaxed; hence x = 0.

14.2 Answers: (a) A > 0.10 m, $\phi < 0$; (b) A > 0.10 m, $\phi > 0$ In both situations the initial (t = 0) *x*-velocity v_{0x} is nonzero, so from Eq. (14.19) the amplitude $A = \sqrt{x_0^2 + (v_{0x}^2/\omega^2)}$ is greater than the initial *x*-coordinate $x_0 = 0.10$ m. From Eq. (14.18) the phase angle is $\phi = \arctan(-v_{0x}/\omega x_0)$, which is positive if the quantity $-v_{0x}/\omega x_0$ (the argument of the arctangent function) is positive and negative if $-v_{0x}/\omega x_0$ is negative. In part (a) x_0 and v_{0x} are both positive, so $-v_{0x}/\omega x_0 < 0$ and $\phi < 0$. In part (b) x_0 is positive and v_{0x} is negative, so $-v_{0x}/\omega x_0 > 0$ and $\phi > 0$.

14.3 Answers: (a) (iii), (b) (v) To increase the total energy $E = \frac{1}{2}kA^2$ by a factor of 2, the amplitude A must increase by a factor of $\sqrt{2}$. Because the motion is SHM, changing the amplitude has no effect on the frequency.

14.4 Answer: (i) The oscillation period of a body of mass m attached to a hanging spring of force constant k is given by

your results to Eq. (14.8), which defines ω , show that the angular frequency of oscillation is $\omega = \sqrt{k/m}$. (c) Apply the procedure of part (b) to obtain the angular frequency of oscillation ω of the spring considered in part (a). If the *effective mass M'* of the spring is defined by $\omega = \sqrt{k/M'}$, what is *M'* in terms of *M*?

 $T = 2\pi \sqrt{m/k}$, the same expression as for a body attached to a horizontal spring. Neither *m* nor *k* changes when the apparatus is taken to Mars, so the period is unchanged. The only difference is that in equilibrium, the spring will stretch a shorter distance on Mars than on earth due to the weaker gravity.

14.5 Answer: no Just as for an object oscillating on a spring, at the equilibrium position the *speed* of the pendulum bob is instantaneously not changing (this is where the speed is maximum, so its derivative at this time is zero). But the *direction* of motion is changing because the pendulum bob follows a circular path. Hence the bob must have a component of acceleration perpendicular to the path and toward the center of the circle (see Section 3.4). To cause this acceleration at the equilibrium position when the string is vertical, the upward tension force at this position must be greater than the weight of the bob. This causes a net upward force on the bob and an upward acceleration toward the center of the circular path.

14.6 Answer: (i) The period of a physical pendulum is given by Eq. (14.39), $T = 2\pi \sqrt{I/mgd}$. The distance d = L from the pivot to the center of gravity is the same for both the rod and the simple pendulum, as is the mass *m*. This means that for any displacement angle θ the same restoring torque acts on both the rod and the simple pendulum. However, the rod has a greater moment of inertia: $I_{\rm rod} = \frac{1}{3}m(2L)^2 = \frac{4}{3}mL^2$ and $I_{\rm simple} = mL^2$ (all the mass of the pendulum is a distance *L* from the pivot). Hence the rod has a longer period.

14.7 Answer: (ii) The oscillations are underdamped with a decreasing amplitude on each cycle of oscillation, like those graphed in Fig. 14.26. If the oscillations were undamped, they would continue indefinitely with the same amplitude. If they were critically damped or overdamped, the nose would not bob up and down but would return smoothly to the original equilibrium attitude without overshooting.

14.8 Answer: (i) Figure 14.28 shows that the curve of amplitude versus driving frequency moves upward at *all* frequencies as the value of the damping constant b is decreased. Hence for fixed values of k and m, the oscillator with the least damping (smallest value of b) will have the greatest response at any driving frequency.

Bridging Problem

Answer:
$$T = 2\pi \sqrt{3M/2k}$$