ORIGINAL RESEARCH

Do liquidity and idiosyncratic risk matter? Evidence from the European mutual fund market

Javier Vidal-García · Marta Vidal · Duc Khuong Nguyen

Published online: 27 November 2014 © Springer Science+Business Media New York 2014

Abstract This paper examines the interaction of idiosyncratic risk, liquidity and return across time in determining fund performance, as well as across investment style portfolios of European mutual funds. This study utilizes a unique data set including returns for equity mutual funds registered in six European countries. Overall, using monthly data, we find that both liquidity and idiosyncratic risk are relevant in determining mutual fund returns. Our results are robust across different model specifications. We show that model specifications up to six factors are useful as these risk factors capture different aspects in the cross-section of mutual funds returns. The evidence regarding mutual funds subgroups is strongly in favor of the significance of liquidity, and idiosyncratic risk to a lesser extent, as risk factors. Even if liquidity and idiosyncratic risk are considered at the same time, one factor is not significantly decreasing the importance of the other factor.

Keywords Mutual fund performance · Idiosyncratic risk · Liquidity · Style analysis

JEL Classification G12 · G15 · G23

J. Vidal-García (🖂)

Department of Financial Economics III, Facultad de Ciencias Económicas y Empresariales, Complutense University of Madrid, Spain, Campus de Somosaguas, Pabellón de sexto, 28223 Pozuelo De Alarcón, Madrid, Spain e-mail: javiervidal7@hotmail.com

M. Vidal

Department of Business Administration, Facultad de Ciencias Económicas y Empresariales, Complutense University of Madrid, Spain, Campus de Somosaguas, 28223 Pozuelo De Alarcón, Madrid, Spain

1 Introduction

Recent academic studies have researched the role of idiosyncratic risk and liquidity in expected stock returns, which are commonly recognized as two of the most important stock market anomalies. Most studies explain that liquidity is negatively related to expected stock returns (e.g., Acharya and Pedersen 2005; Baker and Stein 2004; Hasbrouck 2005). Another stream of research documents a positive relation between idiosyncratic risk and expected returns (e.g., Campbell et al. 2001; Goyal and Santa-Clara 2003). In this paper we analyse the roles played by liquidity and idiosyncratic risk in mutual fund returns from the European perspective. To date, there is no study that associates these lines of research for the most important mutual fund countries in Europe. Our study fills this gap by using Fama–French and Carhart models to analyse whether liquidity and idiosyncratic risk are systematically priced on fund performance.

Numerous empirical studies show that liquidity is a relevant risk factor in the explanation of the cross section of asset returns. Pastor and Stambaugh (2003) incorporate a liquidity factor into the Fama-French three-factor model and show that market-wide liquidity is a state variable important for stock pricing. O'Hara (2003) points out that asset pricing models need to incorporate the transaction cost of liquidity and the risks of price discovery, which leads the author to develop an asymmetric information asset pricing model that adds these effects. Acharya and Pedersen (2005) find that a liquidity-adjusted CAPM model explains the data better than the standard CAPM. They also find weak evidence that liquidity risk is relevant above the effects of market risk and the level of liquidity. Watanabe and Watanabe (2008) discover that liquidity betas vary significantly over time, and the transition from the low to the high liquidity-beta state is predicted by a rise in trading volume. Lee (2011) tests the liquidity-adjusted capital asset pricing model of Acharya and Pedersen (2005) globally, and finds that liquidity risks are priced independently of market risk in international financial markets. Accordingly, a security's required rate of return depends on the covariance of its own liquidity with the aggregate local market liquidity, as well as on the covariance of its own liquidity with local and global market returns.

More recently, Dong et al. (2012) study the role of liquidity risk in the United States' mutual fund markets. They document that the systematic liquidity-risk exposures of mutual funds can predict their performance in the cross-section. In particular, funds with a high liquidity-risk exposure earn significantly high future returns during the 1984–2009 period. Although, only a small fraction of the outperformance of high-liquidity-beta funds relative to low-liquidity-beta funds can be explained by systematic risk factors. Thus, they suggest that the liquidity-risk exposure of a fund is correlated with its manager's ability to generate abnormal performance.

Considering market liquidity, Ho et al. (2005) show positive changes in liquidity and volatility around seasoned equity offerings in the Taiwanese stock market. They also show evidence that changes in liquidity is positively related to stock price adjustment. Hach-meister and Schiereck (2010) examine the introduction of post-trade anonymity in an order driven market, the German stock market. They find that liquidity increased significantly, they explain that informed traders change their behavior in providing liquidity more aggressively in an anonymous environment. Biktimirov and Li (2014) examine market reactions for companies that are added to or deleted from the FTSE indexes. They explain that companies promoted from a smaller-cap to a larger-cap FTSE index show an improvement in liquidity. Simirlarly, companies downgraded from a larger-cap to a smaller-cap FTSE index show a decline in liquidity. Chiu et al. (2014) explain that a high

degree of fearful market-based sentiment produce more sell orders and a reduction in market liquidity, and vice versa. They show that net buying volume and market liquidity decrease more significantly when the fearful market-based sentiment increases.

Another line of research shows that liquidity is negatively related to expected stock returns. In this sense, Chordia et al. (2001), measuring liquidity by trading activity such as volume and turnover, find that stocks with more volatile liquidity have lower expected returns. Amihud (2002) shows that asset expected returns are increasing in illiquidity. The main argument is that the stock excess return compensates for the lower liquidity of stocks compared to that of Treasury securities, and expected stock excess returns vary over time as a consequence of changes in market illiquidity. Additionally, unexpected illiquidity has a significant negative effect on stock return, and the effects of illiquidity are stronger on the returns of small stock portfolios. These findings lead the author to conclude that the stock excess return is a premium for stock illiquidity. Other authors reporting a negative relation include Acharya and Pedersen (2005), Baker and Stein (2004), and Hasbrouck (2005). The most frequent explanation given for a negative relation between stock liquidity and returns is that illiquid stocks have higher transaction costs or higher sensitivity to a liquidity risk factor (Acharya and Pedersen 2005).

There is however limited research on the joint importance of liquidity and idiosyncratic risk, although earlier research stated theoretical grounds of why idiosyncratic risk should be inversely related to a stock's overall liquidity. For instance, Ho and Stoll (1980) strategic inventory control models or Spiegel and Avanidhar (1995) competitive models lead to this relationship. Some recent papers re-examine the relation between idiosyncratic risk and liquidity. Spiegel and Wang (2005) document that there exists a theoretical negative relationship between idiosyncratic risk and liquidity. They find also that idiosyncratic risk is a much stronger predictor of returns than liquidity and often eliminates the power of liquidity to explain returns. Bali et al. (2005) find no evidence of a significant link between idiosyncratic risk and future market returns after controlling for market liquidity in a screening process which excludes the smallest, least liquid and lowest-priced stocks from their sample. Malkiel and Xu (2006) find that liquidity does not diminish the explanatory power of idiosyncratic risk. Angelidis and Andrikopoulos (2010) explore the interactions between idiosyncratic risk, return and liquidity in the London stock exchange using 20 years of daily data on trading activity, returns and volatility, while taking into account size-based portfolios. Using a VAR modelling approach, they find significant volatility spillovers from large cap stocks to small cap ones and vice versa, and also the predictive ability of illiquidity shocks on volatility shocks. They also reveal some evidence of asymmetric liquidity spillovers, from large cap stocks to small cap ones. Wagner and Winter (2013) find, from analysing 529 actively managed mutual funds with European investment focus, that liquidity and idiosyncratic risk are relevant for mutual fund performance, and that these factors provide important extensions to the well-known Fama-French (1992, 1993) and the Carhart (1997) models. Specifically, even if liquidity and idiosyncratic risk are considered at the same time, one factor does not diminish the importance of the other factor. Finally, their results suggest that mutual fund managers prefer more liquid stocks as the liquidity risk factor implies a positive return premium.

The evidence that liquidity and idiosyncratic risk are important risk factors for asset pricing motivates us to explore their contributions in explaining the performance of mutual funds in the main European markets. To the best of our knowledge, the combined importance of idiosyncratic risk and liquidity in fund performance has not been investigated in a large capitalization area like Europe. Other European-focused studies are very limited in terms of their markets coverage and time periods. Wagner and Winter (2013) only consider eight-year time period (October 2002–September 2009) and cover a small capitalization percentage of equity funds in Europe. Their funds are registered in Austria, Germany or Switzerland, the three countries together only account for 15 % of total mutual fund assets in Europe, while UK, France and Germany together accounted for 65 % of total mutual fund assets in Europe at the end of 2012 (see EFAMA 2012 annual statistics). Our research aims to provide a comprehensive and thorough study in Europe using the largest available database for fund returns and covering the largest European financial markets, which account for 90 % of market capitalization.

We find that an important number of style portfolios present significant idiosyncratic risk and liquidity factor loadings. Specifically, model specifications up to six factors are useful and that the liquidity and idiosyncratic risk effects found are even robust to such stricter models with many factors. The importance of these two risk factors is not significantly diminished by considering them at the same time in addition to valuation, market, size and momentum risk factors. Hence, these risk factors capture different aspects in the cross-section of mutual funds returns, even if they may be theoretically and empirically linked to some extent. Our model comparisons indicate that the Carhart (1997) model is only slightly superior compared to the liquidity and idiosyncratic risk augmented Fama and French (1992, 1993) models. Our results, which are also robust to several subperiods and alternative model specifications, provide clear evidence that liquidity and idiosyncratic risk factors are important for mutual fund performance.

The remainder of this paper is organized as follows. Section 2 describes our dataset and the research design. Section 3 presents our estimation procedure for liquidity and idiosyncratic risk measures. Section 4 reviews the basic models and the methodology. Section 5 reports the empirical results and provides an examination on the importance of idiosyncratic risk and liquidity in fund performance. Section 6 summarises our main findings and concludes the paper.

2 Data and research design

2.1 European mutual funds

We use data on mutual funds with a European focus. We consider the six most important European mutual fund markets, which account for almost 90 % of total mutual fund assets in Europe. The funds are registered in France, Germany, Italy, and Netherlands, Spain, and the United Kingdom.¹ All returns are in local currency.

We construct a database including the six most important mutual fund countries. We restrict our sample to domestic equity funds with at least 24 months of data. We exclude index funds, sector funds (e.g. technology or health care), equity funds that invest internationally, or funds that became one of these types in a subsequent year during the sample period. We do not include index funds as we want to examine the role of liquidity and idiosyncratic risk for actively managed funds. Our sample contains 1,233 equity mutual funds with monthly returns from January 1988 to December 2012. In each country we separate funds by investment styles to test whether this affects performance. We organize our set of mutual funds into different value-weighted mutual fund style portfolios. We use Morningstar Direct to obtain the style classification of mutual funds.

¹ See European Fund and Asset Management Association (EFAMA) 2012 annual statistics. We exclude Luxemburg as it is considered an offshore centre, as a result of fiscal advantages.

from Lipper,² and all returns include any dividend paid. Fund returns are net of any management fee and other operating expenses, and only the primary share class is included. Table 1 reports descriptive statistics of the resulting mutual fund style portfolios.

Survivorship bias is a relevant aspect for mutual fund research (see for example Elton et al. (1996)). This issue can influence our results if dead funds disappear from the sample the average performance will be overestimated. We include dead fund in the sample until they disappear. Afterwards, the portfolios are re-weighted with the surviving funds. Datastream contains data on dead funds for all countries.

Similarly to Otten and Bams (2002), we compare the mean returns of all funds (dead + surviving) with the return on surviving funds. We specify the overestimation by survivorship bias for all our European countries, and find that restricting our sample to surviving funds yields to overestimate average returns by 0.31 % (Germany), 0.24 % (Spain), 0.40 % (United Kingdom), 0.17 % (Italy), 0.33 % (France) and 0.12 % (Netherlands) per year. The percentage of dead funds during the sample period was 24 % for (Germany), 29 % (Spain), 17 % (United Kingdom), 45 % (Italy), 22 % (France) and 22 % (Netherlands).

2.2 Benchmarks

In each country, we construct a European version of the Carhart 4-factor and Fama-French models, we consider all stocks included in the Worldscope database (Thomson Financial Company) for each country. Worldscope includes over 98 % of total market capitalization per country. We restrict our selection to only primary quotes of major securities, the prices are adjusted and we also include dead and suspended stocks. The market excess return is calculated as the difference between the value-weighted average return in local currency of all stocks in each country and the local 1-month Treasury bill rate. For each country, we estimate the Fama-French factors using six value-weight portfolios formed on size and book-to-market. The SMB (Small Minus Big) factor is the average return on the three small portfolios minus the average return on the three big portfolios. The HML (High Minus Low) factor is the average return on the two value portfolios minus the average return on the two growth portfolios. We calculate the Momentum factor (MOM) using six value-weight portfolios formed on size and prior (2–12) returns. The portfolios, which are formed monthly, are the intersections of two portfolios formed on size (market equity, ME) and three portfolios formed on prior (2-12) return. The monthly size breakpoint is the median market equity in each country. The monthly prior (2-12) return breakpoints are the 30th and 70th percentiles in each country. The MOM factor is the monthly average return in local currency on the two high-prior return portfolios minus the monthly average return on the two low-prior return portfolios.

3 Estimation of liquidity and idiosyncratic risk

3.1 The liquidity measure

Using a panel of liquidity measures, Stoll (2000) shows that there is no single measure that captures all dimensions of liquidity. Amihud (2002) argues that liquidity has a number of aspects that cannot be captured in a single measure. The author states that illiquidity shows

² Source: Lipper, a Thomson Reuters company.

	Total number	By current s	status				
		Live funds	Dead funds	Mean return	SD	Skewness	Kurtosis
Germany	103	79	24	0.869	1.556	0.117	3.292
Large blend	38	35	3	0.849	1.123	0.071	2.280
Large value	15	4	11	0.808	1.363	-0.025	0.781
Mid blend	13	10	3	1.024	1.792	0.005	-0.095
Mid growth	11	8	3	0.963	1.634	0.136	0.094
Small blend	15	14	1	1.033	1.701	0.206	0.104
Small growth	11	8	3	1.102	1.458	0.056	0.563
Italy	97	57	40	0.722	1.088	0.188	2.342
Large blend	13	7	6	1.117	0.669	-0.022	1.475
Large value	37	20	17	0.715	0.838	0.168	1.529
Mid blend	11	3	8	0.639	0.793	0.127	0.666
Mid value	11	7	4	0.800	1.107	0.011	0.456
Small blend	13	10	3	0.525	1.381	0.038	0.346
Small value	12	10	2	0.310	0.985	0.112	0.542
Spain	142	98	44	0.689	1.441	-0.131	4.463
Large blend	17	6	11	0.634	1.592	-0.145	2.374
Large growth	12	7	5	0.636	1.691	0.273	1.145
Large value	71	54	17	0.722	1.235	-0.095	2.953
Mid blend	11	7	4	0.721	0.635	-0.366	2.478
Mid value	17	15	2	0.704	1.477	0.098	0.936
Small value	14	9	5	0.781	1.056	-0.296	2.012
Netherlands	65	48	17	0.848	2.830	0.262	1.359
Large blend	11	8	3	0.021	1.896	0.245	1.586
Large value	18	13	5	0.842	1.942	0.011	1.072
Mid value	12	9	3	0.536	2.885	0.552	-0.096
Small blend	11	7	4	0.841	2.435	0.487	1.234
Small value	13	10	3	0.968	2.435	0.155	0.432
France	232	179	53	0.650	1.938	-0.040	2.583
Large blend	26	11	15	0.463	1.939	-0.185	1.792
Large growth	12	9	3	0.417	1.155	0.458	1.658
Large value	135	111	24	0.661	1.692	-0.035	2.024
Mid blend	11	8	3	0.515	1.923	0.093	-0.361
Mild value	21	20	1	0.561	2.134	-0.026	-0.044
Small blend	15	11	4	0.530	1.597	0.425	1.002
Small value	12	9	3	0.565	1.165	0.045	2.142
UK	594	487	107	1.043	2.084	0.206	2.997
Large blend	286	245	41	1.014	1.599	0.138	2.636
Large growth	47	39	8	0.988	1.922	0.105	1.670
Large value	78	50	28	1.053	1.818	0.094	1.999
Mid blend	55	45	10	0.981	2.124	0.155	1.009
Mid growth	22	18	4	1.170	1.617	-0.025	0.338
Mid value	20	18	2	1.013	2.076	0.027	0.907

Table 1 Summary statistics for European mutual funds

15

11

Table 1 contin	nued						
	Total number	By current s	status				
		Live funds	Dead funds	Mean return	SD	Skewness	Kurtosis
Small blend	43	37	6	1.143	2.195	0.062	0.792
Small growth	28	24	4	1.175	1.975	0.110	0.898

0.919

Table

Small value

The table reports summary statistics of the funds in the sample from January 1988 to December 2012. The return data includes reinvestment of all dividends, based on local currencies. The first column shows the total number of funds, the second and third column present the number of live and dead funds, respectively. Mean returns, standard deviation, skewness and kurtosis statistics are presented in columns fourth, fifth, sixth and seventh, respectively

4

the impact of order flow on price as a result from adverse selection costs and inventory costs.

We create a market liquidity factor for the main European capital markets. To our knowledge, there is actually no work that studies market liquidity for several European capital markets. Our approach of liquidity is in the spirit of the return-to-volume measure of Amihud (2002), which he proposes to capture the price-impact dimension of liquidity. He measures liquidity as:

$$\mathbf{I}_{i,t} = \left| \mathbf{r}_{i,t} \right| / \mathrm{Vol}_{i,t} \tag{1}$$

2.081

0.109

where $|\mathbf{r}_{i,t}|$ is the absolute return on stock *i* on day *t* and Vol_{i,t} is the reported trading volume. The average is computed over all days in the sample for which the ratio is defined. I captures the absolute return impact of a cumulative unsigned volume. The square root variant is defined as:

$$\mathbf{I}^{1/2} = \sqrt{|\mathbf{r}_{i,t}|} / \mathbf{Vol}_{\mathbf{i},\mathbf{t}} \tag{2}$$

The Amihud ratio is highly correlated to other liquidity measures which use microstructure data. However, Amihud's (2002) illiquidity ratio has two shortcomings. First, the illiquidity ratio increases when a stock price also increases, even when the liquidity is constant. Second, the Amihud illiquidity ratio could be correlated to market capitalization, as trading volume is related to the market capitalization of traded stocks. As the liquidity measure of Amihud (2002) is defined as the ratio of the daily absolute return to daily dollar (euro in this study) trading volume averaged over 1 year, if a stock's trading volume is zero in a given trading date, then its return-to-volume ratio cannot be calculated.

For these reasons, we will follow Lo and Wang (2000) using the natural log of the ratio of absolute return to turnover to reduce the effect of outliers that are common during periods of low trading activity, and to minimize the influence of market capitalization on turnover:

$$\Phi_{i,t} = \ln |\mathbf{r}_{i,t}| / \text{Turnover}_{i,t}$$
(3)

where $\Phi_{i,t}$ is a measure for the illiquidity of stocks traded, $|r_{i,t}|$ and Turnover_{i,t} are, respectively, the absolute return and turnover on month t for stock i. We first calculate the monthly liquidity measure for each individual stock and then perform an aggregation. We construct monthly value-weighted and equally-weighted liquidity measures. Lo and Wang (2000) state that the relation between market capitalization and volume comes from

0.357

Merton's (1987) model of capital market equilibrium in which investors hold only the stocks they are familiar with. This means that larger-capitalization companies might have more active trading, as they tend to have more diversified ownership. The analysis that follows refers to liquidity as measured by the Lo and Wang (2000) estimator.

We create some filters to help reduce the measurement error in the monthly illiquidity series. Stocks are included in a given month if they have a return for that month and satisfy the following conditions:

- (1) A stock's liquidity is computed only if the stock has return and volume data for at least 24 observations. This makes the calculated parameters more reliable. The monthly observations are not required to be consecutive. The stock must be listed at the end of the previous year.
- (2) The stock price at the beginning of the year is between 5 and 1,000 in local currency.³

Table 2 presents summary statistics for the liquidity measure for each of the six countries. We see that the return for Germany has underperformed the others (but not by a huge amount) and the dividend yield has been fairly consistently lower until recent years. As expected, the liquidity measure is highly negatively correlated with the turnover measure, showing that the liquidity measure well captures the trading quantity characteristic of liquidity. The equally weighted liquidity measure is higher, except for Netherlands, than that of the value-weighted since the latter measure resembles that of the largest capitalization stocks. However, the standard deviation of the less liquid markets is lower than that of the more liquid ones. Figure 1 plots the time series for each market.

3.2 Liquidity implications of portfolio theory

Recent research has addressed the importance of factors such as idiosyncratic risk, asymmetric information, transaction costs and other forms of market imperfections which could be relevant for asset pricing and trading activity. To evaluate their relevance in explaining liquidity, a new model that can take into account these factors is needed.

Asset pricing models have been used extensively in empirical investigations in the timeseries and cross-sectional characteristics of asset returns. While examining the behavior of liquidity, we aim to prove that the liquidity implication of these models is relevant for asset pricing.

Pastor and Stambaugh (2003) argue that liquidity appears to be a good candidate for a priced state variable. They point that it is often viewed as a relevant characteristic of the investment environment and the macroeconomy, and recent research studies show that fluctuations in several measures of liquidity are correlated across assets. Pastor and Stambaugh (2003) investigate whether marketwide liquidity is indeed priced, and find that expected stock returns are related cross-sectionally to the sensitivities of returns to fluctuations in aggregate liquidity. Their research focuses on systematic liquidity risk in returns and show that stocks whose returns are more exposed to marketwide liquidity fluctuations present higher expected returns.

Wagner and Winter (2013) state that mutual fund managers may actively manage their exposure towards a liquidity risk factor. They consider two assumptions. First, mutual fund managers may focus on illiquidity to benefit from positive expected returns. Second,

³ Returns on low-price stocks are influenced by the minimum tick of \$1/8 (see Harris 1994), which adds noise to the estimations. Prices are converted to euros before the introduction of the currency.

Countries	Statistic	Turnover VW	Turnover EW	Return VW	Return EW	Liquidity VW	Liquidity EW
Germany	Mean	8,165.456	7,368.703	383.339	354.759	-0.372	-0.482
	Median	487.163	469.197	139.336	125.502	-0.320	-0.436
	SD	10,893.149	9,588.273	793.206	746.093	2.592	2.646
	Skewness	6.036	6.801	4.967	4.988	0.083	0.055
	Kurtosis	66.277	89.837	36.931	37.175	0.074	0.220
Italy	Mean	44,511.372	34,826.367	734.889	656.942	-1.834	-1.847
	Median	2,949.701	2,734.198	152.413	150.852	-2.668	-2.529
	SD	200,058.471	150,118.361	2,026.397	1,620.686	2.416	2.264
	Skewness	6.488	5.554	5.275	4.576	0.064	0.105
	Kurtosis	55.309	44.004	34.061	26.677	0.759	0.633
Spain	Mean	37,929.015	31,154.457	475.588	487.757	-2.645	-2.928
	Median	4,065.644	3,529.419	237.028	238.081	-2.573	-2.901
	SD	123,277.329	97,594.797	598.441	625.632	2.519	2.424
	Skewness	4.761	4.525	2.510	2.536	0.211	0.329
	Kurtosis	26.379	23.361	8.171	8.227	-0.343	-0.094
Netherlands	Mean	22,901.520	19,944.451	1,948.017	1,533.862	-1.146	-1.085
	Median	1,115.242	1,069.927	354.780	323.393	-1.314	-1.315
	SD	62,896.058	53,615.512	7,288.761	5,661.914	3.993	3.886
	Skewness	3.673	3.575	5.533	4.698	-0.027	-0.041
	Kurtosis	15.051	14.363	42.203	33.227	-0.160	-0.194
France	Mean	5,373.980	5,057.566	1,863.508	1,308.510	0.817	0.823
	Median	219.873	359.120	187.441	179.748	0.797	0.778
	SD	25,365.027	22,553.579	34,477.211	25,652.902	3.077	3.050
	Skewness	9.447	8.944	18.188	15.049	0.180	0.172
	Kurtosis	118.824	109.197	382.017	298.195	0.462	0.265
UK	Mean	47,397.233	48,627.056	3,527.910	3,062.920	-1.977	-2.021
	Median	6,522.645	8,990.790	571.815	734.508	-2.042	-2.057
	SD	200,284.129	181,483.851	22,203.425	20,390.645	2.805	2.746
	Skewness	11.803	10.501	5.993	5.806	0.179	0.131
	Kurtosis	218.001	187.221	53.092	51.715	0.123	0.223

Table 2 Descriptive statistics for equally weighted and value-weighted liquidity measure

The table presents summary statistics for monthly value-weighted and equal-weighted turnover and return indexes from January 1988 to December 2012. Turnover shows the aggregation of number of shares traded multiplied by the closing price for each stock. Return presents the theoretical growth in value of a notional stock holding. Liquidity is the result of Eq. (3). Figures are expressed in thousands. VW and EW represent value-weighted and equal-weighted measures, respectively. Stocks included for each country are the following: Germany (675), Italy (287), Spain (145), Netherlands (143), France (689), and UK (1270)

mutual fund managers will focus on the liquidity of their funds' assets, which affect their average exposure to liquidity risk.

We will examine the implications of liquidity on mutual funds pricing. The theoretical asset pricing models serve as valuable framework for our empirical analysis. We aim to develop a more complete understanding of trading and pricing in asset markets.

Fig. 1 Liquidity measure performance. The figure reports the annual performance of the value-weighted liquidity measure for each country in a different graph. The sample period is from January 1988 to December 2012

3.3 The idiosyncratic risk measure

Following the current literature, we will use the three-factor model of Fama and French (1993). We define idiosyncratic risk as the standard deviation of the residual $\varepsilon_{i,t}$ in the regression:

$$\mathbf{R}_{i,t} = \alpha_i + \beta_{mkt,i} \mathbf{R}_{mkt,t} + \beta_{smb,i} \mathbf{R}_{smb,t} + \beta_{hml,i} \mathbf{R}_{hml,t} + \varepsilon_{i,t}$$
(4)

where $R_{i,t}$ is the time *t* excess return on fund *i*, $R_{mkt,t}$ is the market return at time *t*, with R_{smb} and R_{hml} respectively representing the returns on portfolios formed to capture the size and the book-to-market equity effect. When we refer to idiosyncratic risk, we mean idiosyncratic risk relative to the Fama–French model. A fund is included in the sample if 24 out of the 120 previous observations are available for estimation.

Volatility is time varying and exhibits an asymmetric effect. Thus, we will use a dynamic model like EGARCH (Exponential Generalized Autoregressive Conditional Heteroskedasticity) in order to capture time variation in a fund's variance. The EGARCH method is more suitable than both ARCH and GARCH methods, as it allows for an asymmetric response of volatility to stock returns. Furthermore, unlike GARCH, the

EGARCH model, specified in logarithms, does not impose the non-negativity constraints on parameters.

Standard GARCH models assume that good and bad news have a symmetrical effect on volatility. The basic advantage of EGARCH models (Nelson 1991) is that they do not hold the assumption of symmetrical result on volatility, allowing for different effects of good and bad news. The GARCH model considers volatility as an additive function of the lagged error terms, while in the EGARCH it is a multiplicative function of lagged innovations that can respond asymmetrically to good and bad news.

Spiegel and Wang (2005) and Fu (2009) explained that dynamic models like EGARCH better capture the time-varying characteristic of idiosyncratic risk. Spiegel and Wang (2005) compare the accuracy of the OLS and EGARCH idiosyncratic risk estimators, and show that the EGARCH estimates of idiosyncratic risk are superior to the ones generated by the OLS model. Similarly, Fu (2009) finds that the EGARCH model's estimates explain better the cross sectional stock returns than do those from an OLS model. The analysis that follows refers to the EGARCH measure of idiosyncratic risk. The EGARCH model estimates the changes in the conditional variance of the residuals through the following equations:

$$\varepsilon_{\mathbf{i},\mathbf{t}} = \sqrt{h_{i,t}} \times v_{\mathbf{t}} \tag{5a}$$

$$\ln(\mathbf{h}_{i,t}) = \mathbf{k}_{i} + \sum_{j=1}^{P} \theta_{i,j} \ln(\mathbf{h}_{i,t-j}) + \sum_{k=1}^{q} d_{i,k} (|v_{t-k}| - \mathbf{E}|v_{t-k}| + \mathbf{x}_{i} v_{t-k})$$
(5b)

where $h_{i,t}$ is the conditional variance of $\varepsilon_{i,t}$, *vt* is an i.i.d. error term with zero mean and unit variance. The k_i , $\Theta_{i,j}$, $d_{i,k}$ and x_i terms are estimated parameters. Equation (5b) specifies the conditional variance of the Fama–French residuals at time *t*.

At each month t, we estimate the EGARCH model using all observations since January 1988, the beginning of the sample, up to month t - 1. Funds with fewer than 60 observations available are excluded in the sample. For Eq. (5a, 5b), we allow all permutations of p and q such that $1 \le p \le 3$ and $1 \le q \le 3$. We choose the estimate generated by the model that gives the lowest Akaike Information Criterion (AIC). EGARCH (1, 1) is the best-fitting model for the most number of observations:

$$\ln(\sigma_t^2) = w_t + \beta \ln(\sigma_{t-1}^2) + a \left(|\varepsilon_{t-1}| / \sigma_{t-1} - \sqrt{2/\pi} \right) + \gamma \varepsilon_{t-1} / \sigma_{t-1}$$
(6)

In order to provide an overview of idiosyncratic risk in each market, we plot the average idiosyncratic risk calculated from the residuals of the three-factor model for the six countries in Fig. 2. Clearly there is a positive trend in idiosyncratic risk in each country, except for Germany.

4 Empirical evidence

4.1 Correlations

Inventory control models such as Merton (1987) or Brunnermeier and Pedersen (2009) state that there is a negative correlation between idiosyncratic risk and market liquidity. Brunnermeier and Pedersen (2009) create a model that links an asset's market liquidity and traders funding liquidity. They prove that, given specific conditions, market liquidity and

Fig. 2 Annual performance of idiosyncratic risk. The figure shows the annual performance of the idiosyncratic risk measure for each country, from January 1988 to December 2012

funding liquidity are mutually reinforcing, leading to liquidity spirals. They explain several empirically documented features, including that market liquidity is related to volatility, as trading more volatile assets requires higher margin payments, and market liquidity co-moves with the market since funding conditions do.

We sort fund styles by liquidity and idiosyncratic risk and examine the sort of the other variables. Panel A of Table 3 sorts fund styles by liquidity, Panel B sorts the data by idiosyncratic risk. We will examine whether or not there is a rank correlation and its robustness. As shown by previous studies, small companies present more idiosyncratic risk than large companies, and high idiosyncratic risk companies have low levels of liquidity. Which has not been stated in previous research is whether idiosyncratic risk causes lower liquidity or if it is due to idiosyncratic risk's correlation with size.

4.2 Multifactor models

Most research on mutual fund performance evaluation uses multifactor models. Grinblatt and Titman (1994) state that tests of performance are sensitive to the risk factors included in the model. As we have a range of investment styles, single-factor models can yield

Rank		Idiosyncrati	c risk	Size	
		Mean	SD	Mean	SD
Panel A: fund	ls sorted by liquidity				
	Germany				
1 (low)	Small growth	1.401	1.542	18.051	19.552
2	Large value	1.469	1.469	20.309	19.897
3	Large blend	1.237	1.237	19.989	20.332
4	Mid blend	1.898	1.898	19.273	19.395
5	Mid growth	1.618	1.618	18.781	18.273
6 (high)	Small blend	1.950	1.950	16.663	16.700
	Italy				
1 (low)	Small value	1.292	2.014	18.601	18.552
2	Large value	2.114	1.853	18.713	19.937
3	Mid blend	1.567	1.856	18.713	17.272
4	Small blend	1.793	1.954	17.793	17.313
5	Large blend	0.857	1.311	17.837	17.639
6 (high)	Mid value	1.563	2.139	17.228	16.687
	Spain				
1 (low)	Large growth	0.940	1.045	19.177	18.001
2	Mid blend	0.479	0.827	17.026	17.876
3	Large blend	1.792	1.518	17.953	17.435
4	Large value	1.637	1.708	17.921	18.115
5	Mid value	2.022	1.790	17.121	17.496
6 (high)	Small value	1.034	1.151	16.978	16.689
	Netherlands				
1 (low)	Large blend	1.789	1.985	20.034	19.124
2	Small blend	0.468	1.652	16.234	16.770
3	Large value	2.580	1.362	19.922	20.349
4	Mid value	2.345	1.855	16.915	18.552
5 (high)	Small value	1.668	2.096	19.646	19.728
(U)	France				
1 (low)	Large value	2.033	1.098	21.085	21.644
2	Large growth	0.970	1.307	19.923	16.780
3	Large blend	1.926	1.198	18.079	18.160
4	Mid value	1.896	1.103	17.529	18.094
5	Mid blend	1.917	1.186	16.901	16.582
6	Small value	1.637	1.742	16.479	15.677
7 (high)	Small blend	1.319	1.307	15.557	15.119
(ingii)	UK	1017	1.007	101007	10111)
1 (low)	Large blend	1,909	0.959	19.183	20.004
2	Large growth	0.924	0.717	19.059	10 183
- 3	Large value	1 827	1,113	19 337	19 996
1	Mid bland	1.027	1 103	18 3/1	19.990
	Mid growth	2.026	1.105	10.341	10.010
4 5	Mid blend Mid growth	1.812 2.026	1.103	18.341 19.082	18

Table 3 The relationship between idiosyncratic risk, liquidity and size

Table 3 cont	inued				
Rank		Idiosyncratic	e risk	Size	
		Mean	SD	Mean	SD
6	Mid value	1.458	1.006	18.884	19.369
7	Small blend	1.816	0.996	18.643	19.114
8	Small growth	2.120	0.985	18.357	18.708
9 (high)	Small value	1.004	1.050	18.543	19.124
Rank		Liquidity		Size	
		Mean	SD	Mean	SD
Panel B: fund	ls sorted by idiosyncratic	risk			
	Germany				
1 (low)	Small growth	0.088	0.067	18.051	18.986
2	Large blend	0.017	0.016	19.989	20.333
3	Large value	0.012	0.031	20.309	19.897
4	Mid growth	0.067	0.189	18.781	18.273
5	Mid blend	0.044	0.067	19.273	19.396
6 (high)	Small blend	0.599	0.950	16.663	16.700
-	Italy				
1 (low)	Large blend	0.200	0.014	17.837	17.639
2	Small value	0.233	0.034	16.221	17.042
3	Mid value	0.264	0.063	17.228	16.687
4	Mid blend	0.047	0.025	18.712	17.272
5	Small blend	0.098	0.042	17.793	17.312
6 (high)	Large value	0.016	0.018	18.712	19.936
-	Spain				
1 (low)	Mid blend	0.023	0.015	17.002	16.987
2	Large growth	0.112	0.067	18.678	17.998
3	Small value	0.331	0.059	16.978	16.689
4	Large value	0.119	0.016	17.922	18.115
5	Large blend	0.101	0.023	17.953	17.667
6 (high)	Mid value	0.258	0.037	17.122	17.496
	Netherlands				
1 (low)	Large blend	0.025	0.052	20.345	18.552
2	Mid value	0.024	0.034	18.345	17.431
3	Small blend	0.030	0.012	16.915	16.234
4	Small value	0.028	0.065	19.647	19.728
5 (high)	Large value	0.018	0.028	19.922	20.349
	France				
1 (low)	Large growth	0.009	0.014	19.923	13.123
2	Small blend	0.929	0.434	15.557	15.119
3	Small value	0.394	0.234	16.479	14.234
4	Mid value	0.136	0.029	17.529	18.094
5	Mid blend	0.235	0.121	16.901	16.581
6	Large blend	0.065	0.025	18.079	18.160

Rank		Liquidity		Size	
		Mean	SD	Mean	SD
7 (high)	Large value UK	0.005	0.011	21.085	21.644
1 (low)	Large growth	0.052	0.089	19.059	19.182
2	Small value	0.081	0.103	18.542	19.124
3	Mid value	0.063	0.080	18.884	19.369
4	Mid blend	0.106	0.143	18.341	18.816
5	Small blend	0.091	0.109	18.643	19.114
6	Large value	0.042	0.037	19.337	19.996
7	Large blend	0.047	0.033	19.183	20.004
8	Mid growth	0.060	0.034	19.082	19.975
9 (high)	Small growth	0.125	0.148	18.357	18.707

Table 3 continued

The table presents the time series cross sectional average and standard deviation in the columns named Mean and SD, respectively, of idiosyncratic risk, size, and liquidity for each investment style. Idiosyncratic risk and liquidity are estimated at the fund level. Size measures total net assets per fund. The statistics are calculated using monthly logarithmic data. In each month value-weighted measures are created. Sample period: January 1988 to December 2012

biased estimates of performance. The single-factor model assumes that a single market index is enough to account for the fund's investment strategies. Fama and French (1993, 1996) research on the cross-sectional variation of stock returns has showed strong evidence of the importance of two risk factors: size and book-to-market. Fama and French (1993) argue that SMB and HML are state variables in an intertemporal asset pricing model. We will focus on liquidity and idiosyncratic risk in the context of the Fama and French three-factor (1992, 1993) and Carhart (1997) models.

Previous studies have considered multifactor models including liquidity and idiosyncratic risk. Pastor and Stambaugh (2003) create a liquidity factor that has an important effect on returns. They explain that the return earned by the decile portfolio with the highest sensitivity to liquidity risk exceeds by 7.5 % per year the decile portfolio with the lowest sensitivity to their liquidity factor. Avramov and Chordia (2006) point that rational asset pricing theories have been silent about how SMB and HML are related to the underlying undiversifiable macroeconomic risks. They use the Fama–French model augmented with a proxy for the Pastor and Stambaugh (2003) liquidity factor. Their liquidity factor is the difference between value-weighted average return on stocks with high sensitivities to liquidity less the value-weighted average return on stocks with low sensitivities to liquidity. They conclude that the inclusion of the liquidity factor does not improve the model ability to explain the predictive power of equity characteristics. Furthermore, the liquidity factor does not capture the impact of turnover on the cross-section of individual stock returns.

Research on mutual fund performance has been geographically limited and mainly focused on the US and the UK markets. Developments in fund performance multi-factor models have not yet been explored in many other markets. Elton et al. (1995) stated that a country's mutual fund market shows a high degree of leverage as its net value is similar to the country's stock market. Mutual funds are normally composed by a wide class of stocks from different industries and therefore embody cross-sector trends and information from

the whole economy. Thus, knowing the factors influencing mutual funds would be beneficial for both practitioners and academics.

We contribute to the international mutual fund performance literature by providing a comprehensive analysis of the performance of European-domiciled mutual funds investing in the largely unexplored European market. Our goal is to examine whether liquidity and idiosyncratic risk can explain the performance of mutual funds. Using Fama-French and Carhart factors we consider financial market anomalies like the size effect [see Banz (1981) or Reinganum (1981)] and the explanatory power of growth and value stocks [see Fama and French (1996)]. We investigate whether a funds expected return is related to the sensitivity of its return to the innovation in liquidity, Lt, and idiosyncratic risk, It. The sensitivity is denoted for fund i by its liquidity and idiosyncratic risk beta β_{Li} , and β_{Li} , respectively, is the slope coefficient on Lt and It in a multiple regression model with other independent factors which are important for asset pricing. At the end of each year, starting with 1988, we sort funds on the basis of their investment style and form portfolios. The returns on these portfolios during the next 12 months are linked across years to create a single return series for each investment style portfolio. We regress the excess returns of these portfolios on factors that are normally used in empirical asset pricing research. When alphas differ from zero, β_{Li} and β_{Li} explain a component of expected returns not captured by the other factors.

We define $\beta_{L,i}$ and $\beta_{L,i}$ as the coefficients on $R_{L,t}$ and $R_{L,t}$ in a regression that also includes the three and four factors of Fama and French (1993) and Carhart (1997) models:

$$\mathbf{R}_{i,t} = \alpha_i + \beta_{L,i} \mathbf{R}_{L,t} + \beta_{I,i} \mathbf{R}_{I,t} + \beta_{mkt,i} \mathbf{R}_{mkt,t} + \beta_{smb,i} \mathbf{R}_{smb,t} + \beta_{hml,i} \mathbf{R}_{hml,t} + \varepsilon_{i,t}$$
(7)

$$R_{i,t} = \alpha_i + \beta_{L,i}R_{L,t} + \beta_{I,i}R_{I,t} + \beta_{mkt,i}R_{mkt,t} + \beta_{smb,i}R_{smb,t} + \beta_{hml,i}R_{hml,t} + \beta_{mom,i}R_{mom,t} + \varepsilon_{i,t}$$
(8)

where $R_{i,t}$ is the return on fund *i* in excess of the one-month T-bill return; R_{mkt} is the excess return on a value-weighted broad market index; R_{smb} , R_{hml} , and R_{mom} are returns on valueweighted, zero-investment, factor-mimicking portfolios for size, book-to-market equity, and one-year momentum in stock returns; α_i is the average return left unexplained by the benchmark models; and $\varepsilon_{i,t}$ is the regression residual. $R_{L,t}$ and $R_{I,t}$ are returns on liquidity and idiosyncratic risk captured from the fund's co-movement with aggregate liquidity and idiosyncratic risk that is distinct from its co-movement with the other commonly used factors.

For our study, we consider $R_{smb,t}$, $R_{hml,t}$, $R_{mom,t}$, $R_{L,t}$ and $R_{L,t}$ as diversified passive benchmarks returns that represent patterns in average returns during the sample period of our study. The slopes on the explanatory returns in Eqs. (7) and (8) represent a diversified portfolio of passive benchmarks that replicates the exposures of the fund on the left to common factors in returns. The regression alpha captures the average return provided by a fund in excess of the return on a comparable passive portfolio. Following Dybvig and Stephen (1985), we understand a positive expected alpha as good performance, and a negative expected alpha means bad performance.

5 Results

The results of the relationship between idiosyncratic risk and liquidity are reported in Table 3. Panel A reports funds sorted by liquidity, and panel B funds sorted by idiosyncratic risk. Each panel has several rows representing the number of fund investment styles

over which the ranking have been evaluated. The first two columns report the rank and the fund investment style for all the countries under consideration. In both panels, the measures of liquidity, idiosyncratic risk and size are the value-weighted average of the funds in each investment style.

Panel A's sort by liquidity does not show any conclusive result on idiosyncratic risk, but instead produces almost perfect sort on size, it seems that the size effect may to a large extent depend on liquidity. Previous studies and theoretical models predict that high idiosyncratic risk companies have low levels of liquidity. In this study, there is mixed evidence, thus such a conclusion cannot be stated. In the same sense, it cannot be stated that small capitalization funds have more idiosyncratic risk than the large capitalization ones, there is also mixed evidence. Panel B, which sorts the data by idiosyncratic risk, also leads to the same conclusion reached by Panel A: size and liquidity are highly correlated with each other, while idiosyncratic risk and liquidity show no correlation.

The correlation between idiosyncratic risk and liquidity might be an indicator of high redundancy. Furthermore, a correlation might be a sign that both risk factors proxy for the same underlying systematic risk. Multicollinearity could be another problem of using highly correlated factors in multifactor models. The fact that liquidity and idiosyncratic risk present no correlation makes them quite appropriate for the use in multifactor models.

Results of Fama and French and Carhart models augmented with different liquidity and idiosyncratic risk are reported in Tables 4, 5, 6, 7, 8, 9. For each country, we create value-weighted portfolios containing all funds within a specific investment style. We also form a portfolio consisting of all funds within a particular country. We estimate these different multifactor models via OLS regressions, covering the time period January 1988 to December 2012. We use the covariance matrix of Newey and West (1987) for the estimation of standard errors in order to take into account heteroskedasticity and autocorrelation. The number of statistically significant investment style portfolios is given with respect to the 10, 5 and 1 % levels.

Tables 4, 5 and 6 present idiosyncratic risk and liquidity augmented Fama and French models. On average, the per annum alphas, in the multifactor regressions are quite significantly negative with respect to all models. Most investment style portfolios for the six countries show a significant positive exposure to the market excess return, most investment style portfolios are also significantly positive for the size factor, except for Italy and Netherlands, where the majority of portfolios are not significant. The results with regard to valuation present mixed evidence, while most portfolios are significantly positive, prefer value over growth, two countries present negative exposure. These results are quite stable in all multifactor models. Furthermore, in Table 4, 22 out of the 45 portfolios significantly load on the idiosyncratic risk factor. More portfolios positively load on idiosyncratic risk, mainly Spain and Netherlands, while in the UK, all portfolios are significantly negative. In Table 5, 36 portfolios significantly load on the liquidity factor. France, Netherlands and UK present a significantly negative liquidity factor, while it is significantly positive for Spain and Germany. Thus, over the whole observation period, there are a larger number of funds significantly loading on liquidity than on idiosyncratic risk. Table 6 includes both idiosyncratic risk and liquidity in a Fama and French model, the amount of significant fund portfolios for the liquidity factor do not change, but the idiosyncratic risk factor shows a significant exposure for 24 funds. Thus, although the results regarding liquidity and idiosyncratic risk are quite stable when considering both factors together, idiosyncratic risk significance slightly changes when liquidity is included. This is consistent with the results of Malkiel and Xu (2006) which document that the explanatory power of idiosyncratic risk is not taken away by controlling for liquidity. It is of interest the evidence regarding

	αi	Id. risk	Mk. Ex. Re.	Size	Value	Adj. R ²	F-stat.
Germany	-0.351***	-0.041	0.543***	0.204***	0.011	0.851	132.960
Large blend	-0.323***	-0.071	0.747***	-0.016*	0.120***	0.798	498.535
Large value	-0.522***	0.281	0.708***	-0.033**	0.071***	0.808	345.859
Mid blend	-0.720***	-0.041	0.647***	0.217***	0.091***	0.810	207.468
Mid growth	-0.803***	0.075	0.406***	0.089***	0.072*	0.861	69.524
Small blend	-1.027***	-0.021	0.242***	0.130***	0.077***	0.885	124.996
Small growth	-0.459***	-0.275	0.591***	0.322***	0.110**	0.786	104.293
Italy	-0.056***	0.051**	0.301***	0.016**	-0.127***	0.819	121.520
Large blend	-0.022***	0.203*	0.306**	-0.007	-0.149***	0.877	45.971
Large value	-0.110^{***}	0.097***	0.417***	0.023**	-0.132***	0.794	104.237
Mid blend	-1.227***	-0.030	0.215***	0.055**	-0.164***	0.841	72.128
Mid value	-0.264***	-0.020	0.455***	-0.005	-0.137***	0.934	88.510
Small blend	-1.172***	-0.058	0.403***	0.014	-0.029	0.902	157.965
Small value	-1.093***	-0.244	0.233**	-0.012	-0.390***	0.803	36.389
Spain	-0.730***	0.258***	0.516***	0.010***	0.041***	0.915	527.017
Large blend	-0.431***	0.284***	0.499***	0.011***	-0.003	0.851	414.846
Large growth	-0.933***	0.286***	0.465***	0.010	-0.089***	0.848	217.704
Large value	-1.059***	0.271***	0.570***	0.010***	0.037***	0.782	559.266
Mid blend	-0.768***	-0.008	0.230***	0.004	0.146***	0.892	265.089
Mid value	-1.221***	0.163***	0.400***	0.009***	0.099***	0.863	438.960
Small value	-0.178***	0.037	0.155***	0.022	0.104***	0.823	307.768
Netherlands	-0.225***	0.201***	0.447***	0.012***	0.088***	0.812	245.514
Large blend	-1.079	0.128	0.079**	-0.010	0.021	0.916	21.552
Large value	-1.086^{***}	0.141***	0.480***	0.011***	0.089***	0.856	276.605
Mid value	-0.962***	0.274	0.611***	0.015	0.226***	0.840	96.069
Small blend	-1.138***	0.271***	0.395***	0.015	0.081	0.905	135.807
Small value	-0.348***	0.360***	0.253***	0.015	0.041***	0.802	61.188
France	-0.695***	-0.001	0.485***	0.018***	-0.045***	0.865	295.938
Large blend	-0.629***	-0.032	0.486***	0.018***	-0.005^{***}	0.904	228.929
Large growth	-1.848***	0.024	0.495***	0.026**	-0.015*	0.803	116.184
Large value	-0.544 ***	0.003	0.523***	0.017***	-0.025^{***}	0.801	315.911
Mid blend	-1.128***	-0.022	0.375***	0.021***	-0.001 **	0.844	174.441
Mid value	-1.204 ***	0.009	0.365***	0.023***	-0.006^{***}	0.834	234.471
Small blend	-0.359***	0.013	0.132***	0.050**	-0.000	0.855	212.563
Small value	-0.331***	0.069*	0.163***	0.065**	-0.004	0.867	185.220
UK	-0.175^{***}	-0.034***	0.529***	0.016***	0.047***	0.856	378.517
Large blend	-0.307 ***	-0.029***	0.551***	0.066***	0.049***	0.902	420.726
Large growth	-0.959 ***	-0.023*	0.577***	0.006***	0.027***	0.877	392.061
Large value	-0.303***	-0.029***	0.509***	0.016***	0.059***	0.820	359.398
Mid blend	-0.410^{***}	-0.038***	0.479***	0.003***	0.043***	0.923	328.051
Mid growth	-0.736***	-0.033*	0.433***	0.004***	0.038***	0.834	314.738
Mid value	-0.177 ***	-0.006	0.541***	0.000***	0.072***	0.704	318.595
Small blend	-1.328***	-0.053***	0.475***	0.085***	0.044***	0.733	284.010

Table 4 Fama-French regression augmented by idiosyncratic risk

	αi	Id. risk	Mk. Ex. Re.	Size	Value	Adj. R ²	F-stat.
Small growth	-1.688***	-0.089***	0.556***	0.077**	0.028*	0.834	261.077
Small value	-0.411^{***}	-0.064*	0.443***	0.043	0.059**	0.844	186.574

Table 4 continued

The table reports regression coefficients on value-weighted portfolios grouped by investment style for the idiosyncratic risk augmented Fama–French model. Significance at the 1, 5, 10 % level is denoted by ***, **, and *, respectively. Regressions are performed considering the covariance matrix of Newey and West (1987). Sample period: January 1988 to December 2012. All alphas in the Table are annualised. Fund italicized indicate significant idiosyncratic risk factor at the 10 % level

liquidity, which is rather recent in performance evaluation, and is not less significant than the valuation or size factors which are part of most standard performance models.

Tables 7, 8 and 9 report idiosyncratic risk and liquidity augmented Carhart models. As in the Fama and French model, alphas are significantly negative in all variation of the Carhart model. This means that, on average, the investor loses money when investing in these mutual funds after consideration of risk. The results for the market excess return, valuation and size factor exposures are quite similar to the Fama and French models mentioned above for every augmented Carhart model. A considerably large amount of funds significantly positively loads on momentum, which means that fund managers try to find past winners, 31 out of 45 portfolios show a significant momentum factor when idiosyncratic risk is included in a Carhart model, 36 portfolios significantly load on momentum when liquidity is included, while only 32 portfolios present a significantly positive momentum factor when both idiosyncratic risk and liquidity are included in the Carhart model. Thus, the inclusion of idiosyncratic risk into the Carhart model reduces the number of portfolios loading on momentum. In models with momentum, funds show a positive exposure towards valuation, that is prefer value over growth, in Germany, Spain and the UK, and a negative exposure towards valuation, preferring growth over value, in Italy and France. Table 7 reports that 17 portfolios significantly load on idiosyncratic risk factor, which is a smaller amount than in the previous Fama and French models. While in Table 8 the amount of investment style portfolios which significantly load on liquidity are the same as in the Fama and French models. Thus, the inclusion of a momentum factor into a multifactor model reduces the average loading on idiosyncratic risk factor. In Table 9 both idiosyncratic risk and liquidity are included into an augmented Carhart model, as in the Fama and French model, the amount of significant fund portfolios for the liquidity factor do not change, but the idiosyncratic risk factor shows a significant exposure for 14 fund portfolios, a small change in idiosyncratic risk significance compared to Table 7. As in the previous Fama and French models considered, we could also state that the explanatory power of idiosyncratic risk is not taken away by controlling for liquidity, and the liquidity factor is not less significant than the most standard valuation or size factors.

Our results which show that alphas after costs are negative are similar to the results of other previous U.S. performance studies, like Jensen (1968), Grinblatt and Titman (1989a), or Gruber (1996). It is important to consider that we cover the time period of the burst of the technology bubble and the financial crisis. Our results are consistent with Gruenbichler and Pleschiutschnig (1999) who also report a negative risk-adjusted performance with respect to the Carhart model for specific fund categories. However, our results are in contrast to Otten and Bams (2002), who find that European mutual funds present positive risk-adjusted performance after costs.

	αi	Liquidity	Mk. Ex. Re.	Size	Value	Adj. R ²	F-stat.
Germany	-0.521***	0.887***	0.410***	0.140***	-0.004	0.803	213.838
Large blend	-0.312***	0.222***	0.749***	-0.014	0.118***	0.838	527.299
Large value	-0.301***	0.181***	0.713***	-0.024	0.067***	0.848	365.161
Mid blend	-0.131***	0.369***	0.651***	0.170***	0.088***	0.930	211.668
Mid growth	-0.314***	0.463**	0.408***	0.103***	0.065	0.851	71.629
Small blend	-1.012***	0.483***	0.228***	0.033***	0.077***	0.775	123.618
Small growth	-0.321***	0.403	0.557***	0.093***	0.108**	0.886	91.109
Italy	-0.073***	0.244***	0.328***	0.038***	-0.129***	0.904	122.841
Large blend	-0.326***	0.007	0.423**	-0.009	-0.158***	0.855	95.933
Large value	-0.213***	0.288***	0.412***	0.031***	-0.138***	0.845	105.271
Mid blend	-0.767 ***	0.278	0.332***	0.026	-0.164***	0.845	73.019
Mid value	-0.312***	0.183	0.289***	-0.006	-0.138***	0.839	89.462
Small blend	-0.622^{***}	0.171	0.245***	0.058*	-0.029	0.844	159.293
Small value	-0.613***	-0.441	-0.014 **	0.044**	-0.383^{***}	0.806	36.409
Spain	-0.523 ***	2.919***	0.552***	0.113***	0.066***	0.944	530.322
Large blend	-0.522^{***}	2.728***	0.529***	0.104***	0.013	0.867	397.380
Large growth	-0.722***	2.822***	0.500***	0.108***	-0.079^{***}	0.895	200.200
Large value	-0.642^{***}	2.804***	0.591***	0.089***	0.061***	0.855	565.683
Mid blend	-0.432***	3.720***	0.350***	0.177***	0.180***	0.933	250.950
Mid value	-1.053***	3.244***	0.489***	0.195***	0.134***	0.945	460.049
Small value	-0.321***	2.509***	0.200***	0.190***	0.112***	0.899	249.111
Netherlands	-0.321***	-2.176***	0.434***	0.013***	0.091***	0.875	260.937
Large blend	-1.222	0.396	0.086**	-0.008	0.015	0.888	22.443
Large value	-0.821 ***	-1.823***	0.467***	0.012***	0.091***	0.866	291.211
Mid value	-0.200 ***	-2.267***	0.588***	0.016	0.234***	0.904	101.521
Small blend	-0.426^{***}	-2.552***	0.246***	0.017	0.038	0.903	64.242
Small value	-0.899 ***	-2.886***	0.389***	0.026**	0.085***	0.789	146.245
France	-0.533***	-0.778***	0.512***	0.019***	-0.001^{***}	0.923	315.913
Large blend	-0.149***	-0.769***	0.514***	0.021***	-0.005^{***}	0.845	244.641
Large growth	-1.511^{***}	-0.765*	0.525***	0.028**	-0.045 **	0.902	125.749
Large value	-0.311^{***}	-0.727***	0.550***	0.018***	-0.013^{***}	0.883	339.359
Mid blend	-1.338***	-0.926***	0.401***	0.024***	-0.007 **	0.834	182.137
Mid value	-1.104^{***}	-0.809***	0.393***	0.026***	-0.011^{***}	0.888	245.061
Small blend	-0.255 ***	-0.029	0.143***	0.060**	-0.000	0.802	210.931
Small value	-0.612^{***}	-0.369	0.177***	0.066***	-0.006	0.788	184.999
UK	-0.234 ***	-1.013^{***}	0.539***	0.006***	0.040***	0.933	396.474
Large blend	-0.234 ***	-0.992***	0.560***	0.002***	0.042***	0.877	442.537
Large growth	-0.612^{***}	-1.035***	0.585***	0.016***	0.019**	0.803	413.164
Large value	-0.610^{***}	-0.979 ***	0.518***	0.033***	0.051***	0.773	376.449
Mid blend	-0.345^{***}	-1.066***	0.493***	0.005***	0.036***	0.789	342.041
Mid growth	-0.566^{***}	-0.899***	0.444***	0.008***	0.030**	0.844	326.879
Mid value	-0.323 ***	-1.003***	0.545***	0.007***	0.066***	0.893	332.872
Small blend	-1.052***	-1.045***	0.483***	0.073***	0.038***	0.802	293.838

Table 5 Fama-French regression augmented by liquidity

nificant liquidity factor at the 10 % level

Table 5 continued

	αi	Liquidity	Mk. Ex. Re.	Size	Value	Adj. R ²	F-stat.
Small growth	-0.845***	-1.163***	0.566***	0.076***	0.025	0.823	271.977
Small value	-0.843 ***	-1.115***	0.449***	0.086**	0.055**	0.964	194.288

The table reports regression coefficients on value-weighted portfolios grouped by investment style for the liquidity augmented Fama–French model. Significance at the 1, 5, 10 level is denoted by ***, **, and *, respectively. Regressions are performed considering the covariance matrix of Newey and West (1987). Sample period: January 1988 to December 2012. All alphas are annualised. Fund italicized indicate sig-

The factor loadings for both models (Fama and French, and Carhart) show significant positive size factor for most fund portfolios, which means that fund returns are driven by smaller stocks. The valuation factor is also significantly positive, except for Italy and France, indicating that funds follow a more value oriented style. The momentum factor is significantly positive in most cases, indicating that mutual fund managers focus more on past winners. There is also a small tendency that mutual fund managers focus more on stock with a negative exposure towards market liquidity and a positive one towards idiosyncratic risk. The preferences of mutual fund managers in our study resembles the results of Otten and Bams (2002), their research based on the five most important European countries find that European funds prefer smaller stocks and stocks with high book-to market ratios (value). Mutual fund managers may look for small, eventually undervalued stocks which are overseen by the investors. This is part of the selection component of active investing. The focus on such a strategy is profitable, as it is known that over certain periods of time smaller stocks provide for abnormal returns.

The average adjusted R-squared in all models is around 54 %, which implies that a considerable part of the performance of the mutual funds can be explained by the different multifactor models. The adjusted R-squared is slightly increased by including both liquidity and idiosyncratic risk in the multifactor models. Moreover, all F-statistics are in favor of the joint significance of the multiple risk factors for each fund portfolio. It is interesting to point that when investing in a large number of assets, which are linked to the market, the market excess return can normally not be actively managed. Thus mutual funds cannot hedge market risk, as it is difficult for mutual fund managers to avoid exposure to the market excess return.

5.1 Robustness analysis

We use the cross-sectional time-series procedure developed by Fama and MacBeth (1973) to provide a more complete analysis in our regression analysis. We want to examine whether our results from the multifactor models are statistically and qualitatively similar to those of the Fama–MacBeth methodology.

We estimate the relation between mutual fund performance and our liquidity and idiosyncratic risk factors using the Fama–MacBeth two-step approach to account for cross correlation in returns. First, we regress returns against the explanatory variables in the cross section for each period and then take a time series average of the cross-sectional estimates.

Table 10 shows the Fama–MacBeth regression results. We indeed run a cross-sectional regression of fund returns averaged across all months of the year, on our fund variables measured at the beginning of the year, we do the same every year. Our results confirm the

risk
idiosyncratic
and
liquidity
by
augmented
regression
-French
Fama
9
Table

	,							
	αi	Liquidity	Id. Risk	Mk. Ex. Re.	Size	Value	Adj. R ²	F-stat.
Germany	-0.599***	0.898***	-0.007	0.411^{***}	0.171^{***}	0.004	0.833	313.078
Large blend	-0.003^{***}	0.226***	-0.006	0.748^{***}	-0.010	0.119^{***}	0.847	486.506
Large value	-0.113^{***}	0.179^{***}	0.000	0.708^{***}	-0.027	0.071^{***}	0.866	326.989
Mid blend	-0.034^{***}	0.334^{***}	-0.005	0.649^{***}	0.228^{***}	0.088^{***}	0.900	188.418
Mid growth	-0.123^{***}	0.553 **	0.134	0.413^{***}	0.108^{***}	0.066	0.844	80.703
Small blend	-0.426^{***}	0.470^{***}	-0.015	0.245^{***}	0.138^{***}	0.073***	0.755	113.871
Small growth	-0.322^{***}	0.351	-0.00	0.597^{***}	0.332^{***}	0.106^{**}	0.816	87.651
Italy	-0.033^{**}	0.238^{***}	$0.05I^{**}$	0.438^{***}	0.018^{**}	-0.128^{***}	0.913	119.856
Large blend	-0.032^{**}	-0.012	0.204*	0.423^{***}	-0.007	-0.149^{***}	0.823	40.176
Large value	-0.210^{***}	0.279^{***}	0.097***	0.328^{***}	0.010^{***}	-0.134^{***}	0.873	102.001
Mid blend	-0.233^{***}	0.274	-0.029	0.476^{***}	0.017^{**}	-0.165^{***}	0.912	64.203
Mid value	-0.033^{***}	0.176	-0.020	0.527^{***}	-0.006	-0.138^{***}	0.844	81.170
Small blend	-0.443^{***}	0.159	-0.056	0.212^{***}	0.018*	-0.030	0.822	145.854
Small value	-0.332^{***}	-0.462	-0.249	-0.114^{**}	0.022^{**}	-0.389^{***}	0.811	30.353
Spain	-0.837^{***}	2.855***	0.164^{***}	0.549^{***}	0.113^{***}	0.062^{***}	0.955	530.852
Large blend	-0.213^{***}	2.654***	0.206^{***}	0.528^{***}	0.104^{***}	0.007	0.915	384.773
Large growth	-0.453^{***}	2.771***	0.245^{***}	0.498^{***}	0.105^{***}	-0.086***	0.910	178.281
Large value	-0.359^{***}	2.741***	$0.15I^{***}$	0.588 * * *	0.088^{***}	0.057***	0.920	562.688
Mid blend	-0.386^{***}	3.706***	0.119*	0.352^{***}	0.178^{***}	0.178^{***}	0.948	220.693
Mid value	-0.031^{***}	3.191***	0.147^{***}	0.488^{***}	0.194^{***}	0.129^{***}	0.960	442.801
Small value	-0.233 * * *	2.765***	0.144^{**}	0.205^{***}	0.151***	0.108^{***}	0.910	219.981
Netherlands	-0.342^{***}	-2.205^{***}	0.043	0.439^{***}	0.013^{***}	0.087***	0.833	252.148
Large blend	-0.213	0.766	0.228	0.101^{**}	-0.010	0.015	0.740	18.321
Large value	-0.545^{***}	-1.894^{***}	0.007	0.471^{***}	0.012^{***}	0.087***	0.855	277.313
Mid value	-0.126^{***}	-2.237***	0.096	0.596***	0.016	0.229***	0.877	83.792

<u> </u>
പ
-
=
•=
+
_
5
~~~
0
10
~
ື
_
-
_00
_
<u> </u>

	ai	Liquidity	Id. Risk	Mk. Ex. Re.	Size	Value	Adj. R ²	F-stat.
Small blend	$-0.345^{***}$	$-2.356^{***}$	0.245*	$0.260^{***}$	0.047*	0.035	0.912	55.700
Small value	$-0.677^{***}$	$-2.909^{***}$	0.077	$0.398^{***}$	$0.036^{**}$	$0.081^{***}$	0.810	131.659
France	$-0.034^{***}$	$-1.109^{***}$	$0.032^{***}$	0.522 * * *	$0.022^{***}$	$-0.005^{***}$	0.933	311.690
Large blend	$-0.234^{***}$	-1.123***	-0.005	$0.521^{***}$	$0.023^{***}$	$-0.004^{***}$	0.811	233.101
Large growth	$-0.765^{***}$	-1.117**	0.055	$0.538^{***}$	$0.031^{***}$	$-0.002^{**}$	0.915	106.885
Large value	$-0.067^{***}$	$-1.065^{***}$	$0.038^{***}$	0.559***	$0.021^{***}$	$-0.003^{***}$	0.920	334.874
Mid blend	$-0.633^{***}$	$-1.242^{***}$	0.006	0.412***	$0.026^{***}$	$-0.061^{**}$	0.811	167.025
Mid value	$-0.867^{***}$	$-1.094^{***}$	0.041*	0.402***	$0.028^{***}$	$-0.012^{***}$	0.897	231.748
Small blend	$-0.633^{***}$	-0.050	0.028	$0.145^{***}$	$0.071^{**}$	-0.000	0.786	178.785
Small value	$-0.213^{***}$	-0.488	$0.092^{**}$	$0.183^{***}$	$0.067^{***}$	-0.000	0.813	157.849
UK	$-0.023^{***}$	$-1.024^{***}$	$-0.035^{***}$	0.537***	$0.000^{***}$	$0.043^{***}$	0.965	386.797
Large blend	$-0.003^{***}$	$-1.001^{***}$	$-0.030^{***}$	0.559***	$0.011^{***}$	0.045***	0.897	430.234
Large growth	$-0.125^{***}$	$-1.043^{***}$	-0.023*	$0.584^{***}$	$0.014^{***}$	$0.022^{**}$	0.945	394.829
Large value	$-0.122^{***}$	$-0.987^{***}$	$-0.029^{***}$	$0.516^{***}$	$0.071^{***}$	0.055***	0.845	363.861
Mid blend	$-0.245^{***}$	$-1.074^{***}$	$-0.04I^{***}$	0.489***	$0.009^{***}$	$0.037^{***}$	0.978	329.674
Mid growth	-0.277 ***	$-0.928^{***}$	$-0.038^{**}$	0.443***	$0.003^{***}$	$0.032^{**}$	0.940	306.868
Mid value	$-0.344^{***}$	$-1.033^{***}$	-0.007	$0.546^{***}$	$0.007^{***}$	0.069***	0.910	313.092
Small blend	$-0.889^{***}$	$-1.079^{***}$	$-0.055^{***}$	0.483***	$0.046^{***}$	$0.039^{***}$	0.899	283.029
Small growth	$-0.773^{***}$	$-1.162^{***}$	$-0.089^{***}$	$0.562^{***}$	$0.082^{***}$	0.022	0.867	258.369
Small value	$-0.745^{***}$	$-1.114^{***}$	$-0.065^{**}$	$0.448^{***}$	0.093*	$0.054^{**}$	0.953	177.713
The table reports ro Significance at the Sample period: Jan	egression coefficient 1, 5, 10 % level is uary 1988 to Decen	is on value-weighted denoted by ***, **, nber 2012. All alpha	portfolios grouped b and *, respectively. s are annualised. Fu	by investment style f Regressions are peri nd italicized indicate	or the liquidity and ic ormed considering the significant liquidity and	liosyncratic risk aug ne covariance matrix and idiosyncratic risl	mented Fama-Fi t of Newey and ' k factor at the 10	rench model. West (1987). % level

idiosyncratic risk
by
augmented
regression
Carhart
Table 7

	αi	Id. risk	Mk. Ex. Re.	Size	Value	Momentum	Adj. R ²	F-stat.
Germany	$-1.004^{***}$	-0.000	0.456***	$0.202^{***}$	0.023	0.051***	0.934	310.670
Large blend	$-0.553^{**}$	-0.000	0.748***	-0.016	$0.122^{***}$	$0.021^{***}$	0.922	489.048
Large value	$-0.054^{***}$	0.003	0.708***	-0.032	$0.073^{***}$	$0.019^{***}$	0.821	329.810
Mid blend	$-0.069^{***}$	-0.005	0.647***	$0.218^{***}$	$0.096^{***}$	$0.035^{***}$	0.845	188.806
Mid growth	$-0.817^{***}$	0.080	$0.408^{***}$	$0.093^{***}$	$0.083^{**}$	$0.054^{***}$	0.873	61.361
Small blend	$-0.319^{***}$	-0.004	0.242***	$0.129^{***}$	$0.081^{***}$	0.012	0.890	112.697
Small growth	$-0.608^{***}$	-0.015	$0.591^{***}$	$0.319^{***}$	$0.116^{**}$	0.025	0.814	87.083
Italy	$-0.663^{***}$	-0.019	0.345***	$0.017^{**}$	$-0.124^{***}$	$0.145^{***}$	0.910	122.658
Large blend	$-1.021^{***}$	0.109	$0.337^{***}$	-0.008	$-0.143^{***}$	$0.198^{***}$	0.856	142.162
Large value	$-0.676^{***}$	0.021	$0.328^{***}$	$0.009^{**}$	$-0.129^{***}$	$0.160^{***}$	0.740	104.868
Mid blend	$-1.383^{***}$	-0.106	$0.434^{***}$	$0.016^{**}$	$-0.161^{***}$	$0.158^{***}$	0.745	65.992
Mid value	$-1.516^{***}$	-0.098	$0.222^{***}$	-0.006	$-0.134^{***}$	$0.157^{***}$	0.903	83.503
Small blend	$-0.220^{***}$	-0.076	0.329***	$0.022^{**}$	-0.029	0.036	0.924	146.007
Small value	$-0.528^{***}$	-0.351	$0.114^{**}$	-0.037	$-0.389^{***}$	$0.236^{**}$	0.803	31.598
Spain	$-1.024^{***}$	0.257***	$0.516^{***}$	$0.011^{***}$	$0.042^{***}$	0.001	0.945	522.573
Large blend	$-1.008^{***}$	$0.285^{***}$	$0.499^{***}$	$0.011^{***}$	-0.004	-0.001	0.899	395.905
Large growth	$-0.923^{***}$	$0.317^{***}$	$0.464^{***}$	0.014	$-0.082^{***}$	-0.051	0.856	191.088
Large value	$-1.328^{***}$	$0.279^{***}$	0.569***	$0.017^{***}$	$0.039^{***}$	-0.009	0.790	551.957
Mid blend	$-0.264^{***}$	-0.047	$0.230^{***}$	0.013	$0.139^{***}$	0.056**	0.923	233.799
Mid value	$-0.322^{***}$	$0.140^{***}$	$0.401^{***}$	$0.009^{***}$	$0.094^{***}$	$0.033^{***}$	0.867	419.870
Small value	$-0.322^{***}$	0.012	$0.155^{***}$	$0.043^{**}$	$0.098^{***}$	0.038*	0.788	270.397
Netherlands	-0.786***	0.198***	$0.448^{***}$	$0.013^{***}$	$0.088^{***}$	0.002	0.910	237.811
Large blend	-1.744	-0.002	0.075*	-0.010	0.010	0.080	0.736	18.312
Large value	$-0.721^{***}$	0.121***	$0.479^{***}$	$0.012^{***}$	$0.088^{***}$	0.017	0.884	264.717
Mid value	-0.659***	0.303	$0.614^{***}$	0.015	0.229***	-0.023	0.840	79.824
Small blend	$-0.630^{***}$	$0.408^{***}$	0.256***	0.025***	0.046	-0.049	0.933	52.710

J. Vidal-García et al.

continued
1
le
ą
Ë

	ßi	Id. risk	Mk. Ex. Re.	Size	Value	Momentum	Adj. R ²	F-stat.
Small value	$-0.653^{***}$	$0.309^{***}$	$0.398^{***}$	$0.019^{**}$	$0.085^{***}$	-0.036	0.866	122.464
France	$-0.633^{***}$	$-0.017^{**}$	$0.495^{***}$	$0.017^{***}$	$-0.008^{***}$	$0.114^{***}$	0.888	298.968
Large blend	$-0.631^{***}$	$-0.047^{**}$	0.495***	$0.018^{***}$	$-0.003^{***}$	$0.118^{***}$	0.913	224.503
Large growth	$-1.343^{***}$	0.012	$0.502^{***}$	$0.026^{**}$	-0.019*	0.087*	0.845	100.359
Large value	$-1.234^{***}$	-0.012	$0.532^{***}$	$0.016^{***}$	$-0.005^{***}$	$0.116^{***}$	0.878	318.562
Mid blend	$-0.343^{***}$	-0.037	$0.384^{***}$	$0.021^{***}$	-0.000*	$0.102^{***}$	0.888	164.011
Mid value	$-0.416^{***}$	-0.007	$0.373^{***}$	$0.023^{***}$	$-0.001^{***}$	$0.100^{***}$	0.887	228.353
Small blend	$-0.678^{***}$	0.011	$0.133^{***}$	0.040*	-0.047	0.020	0.866	185.971
Small value	$-0.002^{***}$	0.012	$0.155^{***}$	$0.063^{**}$	0.098	$0.038^{***}$	0.855	270.397
UK	$-0.567^{***}$	-0.022 ***	$0.532^{***}$	0.006***	$0.046^{***}$	$0.042^{***}$	0.889	379.963
Large blend	$-1.007^{***}$	$-0.019^{***}$	$0.553^{***}$	$0.016^{***}$	$0.048^{***}$	$0.038^{***}$	0.945	421.188
Large growth	$-0.456^{***}$	-0.013	$0.579^{***}$	0.006***	$0.026^{***}$	$0.039^{***}$	0.898	385.774
Large value	$-0.456^{***}$	-0.016*	$0.513^{***}$	$0.076^{***}$	0.057***	$0.049^{***}$	0.834	357.678
Mid blend	$-0.678^{***}$	-0.026 ***	$0.483^{***}$	$0.003^{***}$	0.042***	$0.040^{**}$	0.966	324.118
Mid growth	$-0.678^{***}$	-0.023	0.435***	$0.007^{***}$	0.037***	$0.030^{***}$	0.822	303.272
Mid value	$-0.678^{***}$	0.010	$0.544^{***}$	$0.036^{***}$	$0.071^{***}$	$0.058^{***}$	0.756	308.814
Small blend	$-1.003^{***}$	-0.035 **	$0.478^{***}$	$0.086^{***}$	0.042***	$0.054^{***}$	0.798	280.398
Small growth	$-0.345^{***}$	-0.075 ***	$0.559^{***}$	$0.081^{**}$	0.026	$0.050^{***}$	0.911	254.534
Small value	$-0.234^{***}$	-0.040	$0.448^{***}$	0.074	$0.056^{***}$	$0.071^{***}$	0.876	177.120
The table presents re- estimated from an EC considering the coval significant idiosyncra	gression coefficients iARCH model on Fariance matrix of Nev tience the factor at the	on value-weighted _I ma-French 3-factor wey and West (1987 10 % level	ontfolios grouped by i model. Significance at 7). The sample period	nvestment style for t the 1, 5, 10 % level i is January 1988 to 1	he idiosyncratic risk s denoted by ***, **, December 2012. All	augmented Carhart r and *, respectively. alphas are annualise	nodel. Idiosyncrat Regressions are pe d. Fund italicized	ic risk is erformed indicate

Table 8 Carhart re	gression augmented	1 by liquidity						
	αi	Liquidity	Mk. Ex. Re.	Size	Value	Momentum	Adj. R ²	F-stat.
Germany	-0.733***	0.855***	$0.416^{***}$	$0.143^{***}$	0.006	$0.046^{***}$	0.848	314.389
Large blend	$-0.783^{***}$	$0.207^{***}$	$0.749^{***}$	-0.014	$0.120^{***}$	$0.018^{***}$	0.902	516.725
Large value	$-0.533^{***}$	$0.167^{***}$	$0.712^{***}$	-0.024	$0.069^{***}$	$0.018^{***}$	0.855	347.950
Mid blend	$-0.234^{***}$	0.342***	$0.652^{***}$	0.177 ***	$0.091^{***}$	$0.034^{***}$	0.956	192.548
Mid growth	-1.004*	0.425**	$0.409^{***}$	$0.106^{***}$	0.076*	$0.051^{**}$	0.876	62.969
Small blend	$-0.045^{***}$	0.475***	$0.228^{***}$	$0.033^{***}$	$0.081^{***}$	$0.014^{***}$	0.854	111.543
Small growth	$-0.543^{***}$	0.381	$0.556^{***}$	$0.091^{***}$	$0.116^{**}$	0.030	0.803	76.227
Italy	$-1.056^{***}$	$0.25I^{***}$	$0.375^{***}$	$0.008^{***}$	$-0.125^{***}$	$0.141^{***}$	0.912	124.012
Large blend	$-1.768^{**}$	-0.028	$0.434^{***}$	-0.038	$-0.148^{***}$	$0.207^{***}$	0.799	42.448
Large value	$-0.101^{***}$	$0.276^{***}$	$0.356^{***}$	$0.010^{***}$	$-0.131^{***}$	$0.159^{***}$	0.878	106.075
Mid blend	$-1.045^{***}$	0.299	$0.449^{***}$	0.056**	$-0.159^{***}$	$0.146^{***}$	0.912	66.623
Mid value	$-0.045^{***}$	0.205	$0.334^{***}$	-0.006	$-0.132^{***}$	$0.146^{***}$	0.922	84.183
Small blend	$-0.567^{***}$	0.188	$0.429^{***}$	$0.051^{**}$	-0.028	0.029	0.912	147.159
Small value	$-0.895^{***}$	-0.409	$-0.008^{**}$	0.072*	$-0.379^{***}$	$0.201^{**}$	0.934	31.267
Spain	$-0.345^{***}$	$2.904^{***}$	0.552***	$0.114^{***}$	$0.061^{***}$	$0.027^{***}$	0.933	526.691
Large blend	$-0.123^{***}$	2.711***	$0.530^{***}$	$0.105^{***}$	0.007	0.033**	0.823	380.107
Large growth	$-0.045^{***}$	2.821***	0.500 * * *	$0.108^{***}$	$-0.079^{***}$	0.003	0.910	174.942
Large value	$-0.022^{***}$	2.796***	$0.591^{***}$	0.089***	$0.058^{***}$	$0.013^{**}$	0.930	558.416
Mid blend	$-0.039^{***}$	3.691***	$0.348^{***}$	$0.176^{***}$	$0.164^{***}$	$0.086^{***}$	0.845	224.056
Mid value	$-0.343^{***}$	3.212***	$0.488^{***}$	0.195***	$0.123^{***}$	0.059***	0.932	442.715
Small value	0.003*	2.736***	$0.204^{***}$	$0.174^{***}$	0.099***	0.073***	0.910	221.957
Netherlands	$-0.374^{***}$	-2.174***	$0.434^{***}$	$0.013^{***}$	$0.091^{***}$	0.001	0.920	252.749
Large blend	0.056	0.671	$0.090^{**}$	-0.009	0.000	*660.0	0.847	19.532
Large value	$-0.217^{***}$	$-1.798^{***}$	$0.467^{***}$	0.012***	0.090 ***	0.011	0.923	278.595
Mid value	$-0.423^{***}$	$-2.309^{***}$	$0.588^{***}$	0.016*	$0.236^{***}$	-0.018	0.912	84.332
Small blend	$-0.567^{***}$	-2.597***	$0.246^{***}$	0.027 **	0.041	-0.028	0.913	55.095

D Springer

continued
×
Table

riduuuly	MK. EX. Ke.	SIZE	V ALUC	TIMITATIAT	Auj. K	r-stat.
-2.957***	$0.390^{***}$	0.036**	$0.089^{***}$	-0.032	0.809	131.824
$-0.794^{***}$	$0.521^{***}$	$0.019^{***}$	-0.005 ***	$0.110^{***}$	0.903	318.951
$-0.798^{***}$	0.523 * * *	$0.021^{***}$	$-0.006^{***}$	$0.108^{***}$	0.876	239.309
-0.799*	$0.532^{***}$	$0.028^{**}$	$-0.001^{**}$	0.088*	0.911	108.682
$-0.738^{***}$	0.559***	$0.018^{***}$	$-0.002^{***}$	$0.111^{***}$	0.914	341.927
-0.953 * * *	$0.411^{***}$	$0.024^{***}$	$-0.013^{**}$	$0.102^{***}$	0.884	171.275
$-0.834^{***}$	$0.402^{***}$	0.025***	-0.000***	$0.102^{***}$	0.911	238.871
-0.017	$0.144^{***}$	0.050*	-0.003	0.022	0.842	184.586
-0.317	$0.182^{***}$	0.065**	-0.015	0.097***	0.828	165.2492
$-I.004^{***}$	$0.539^{***}$	$0.006^{***}$	$0.039^{***}$	$0.011^{***}$	0.945	396.471
$-0.984^{***}$	$0.561^{***}$	$0.016^{***}$	$0.041^{***}$	0.009***	0.899	441.613
$-1.026^{***}$	$0.586^{***}$	0.005***	0.018*	$0.011^{***}$	0.814	405.339
$-0.971^{***}$	$0.519^{***}$	$0.017^{***}$	0.050 ***	$0.010^{***}$	0.810	372.497
$-1.058^{***}$	0.495***	0.033 * * *	0.035***	$0.013^{***}$	0.834	336.852
-0.895 * * *	$0.446^{***}$	$0.027^{***}$	$0.029^{**}$	0.012**	0.910	314.408
$-0.991^{***}$	$0.546^{***}$	0.007 ***	0.065***	$0.014^{***}$	0.870	320.364
$-1.037^{***}$	$0.484^{***}$	$0.034^{***}$	0.037***	$0.014^{***}$	0.826	288.317
-1.153 * * *	$0.567^{***}$	$0.066^{***}$	0.024	$0.013^{***}$	0.841	264.149
$-1.103^{***}$	$0.451^{***}$	$0.053^{**}$	0.052**	$0.021^{***}$	0.960	182.936
on value-weighted ma-French 3-facto wey and West (19)	I portfolios grouped l r model. Significance 87). The sample per	by investment style fits at the 1, 5, 10 % lev to 1988 iod is January 1988	or the idiosyncratic r el is denoted by ***, to December 2012.	isk augmented Carh **, and *, respectiv All alphas are annu	art model. Idiosy ely. Regressions alised. Fund itali	ncratic risk is are performed cized indicate
	-2.957*** -0.794*** -0.798*** -0.799* -0.738*** -0.953*** -0.953*** -0.953*** -0.953*** -0.953*** -0.953*** -0.953*** -0.953*** -1.026*** -1.026*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037*** -1.037***	-2.957 * * * $0.300 * * * * * * * * * * * * * * * * * *$	-2.957*** $0.390***$ $0.036**$ $-0.794***$ $0.521***$ $0.019***$ $-0.798***$ $0.523***$ $0.019***$ $-0.798***$ $0.523***$ $0.019***$ $-0.798***$ $0.523***$ $0.019***$ $-0.798***$ $0.523***$ $0.018***$ $-0.738***$ $0.532***$ $0.018***$ $-0.738***$ $0.532***$ $0.018***$ $-0.337$ $0.402***$ $0.024***$ $-0.317$ $0.402***$ $0.026**$ $-0.317$ $0.144***$ $0.056**$ $-0.317$ $0.182***$ $0.006***$ $-0.317$ $0.182***$ $0.005***$ $-0.317$ $0.182***$ $0.005***$ $-0.317$ $0.122***$ $0.005***$ $-0.317$ $0.122***$ $0.005***$ $-1.004**$ $0.561***$ $0.005***$ $-0.984**$ $0.561***$ $0.005***$ $-0.984**$ $0.561***$ $0.005***$ $-1.026***$ $0.561***$ $0.007***$ $-1.028***$ $0.274***$ $0.072***$ <	-2.957 * * $0.390 * * $ $0.036 * $ $0.089 * * $ $-0.794 * * $ $0.521 * * $ $0.019 * * $ $-0.005 * * $ $-0.799 * $ $0.521 * * $ $0.001 * * $ $-0.006 * * $ $-0.799 * $ $0.523 * * $ $0.021 * * $ $-0.001 * $ $-0.799 * $ $0.532 * * $ $0.021 * * $ $-0.001 * $ $-0.738 * * $ $0.559 * * $ $0.018 * * $ $-0.001 * $ $-0.738 * * $ $0.523 * * $ $0.013 * * $ $-0.001 * $ $-0.738 * * $ $0.523 * * $ $0.018 * * $ $-0.013 * * $ $-0.738 * * $ $0.411 * * $ $0.024 * * $ $-0.013 * * $ $-0.738 * * $ $0.411 * * $ $0.024 * * $ $-0.013 * * $ $-0.733 * * $ $0.411 * * $ $0.025 * * $ $-0.013 * * $ $-0.317 * 0.144 * * $ $0.056 * * $ $-0.013 * * $ $-0.018 * * $ $-0.317 * 0.144 * * $ $0.056 * * $ $0.018 * * $ $-0.018 * * $ $-0.317 * 0.317 * * $ $0.144 * * $ $0.056 * * $ $0.018 * * $ $-0.984 * * $ $0.561 * *$	$-2.957^{***}$ $0.390^{***}$ $0.036^{**}$ $0.089^{***}$ $-0.032$ $-0.794^{***}$ $0.521^{***}$ $0.019^{***}$ $-0.006^{***}$ $0.110^{***}$ $-0.798^{***}$ $0.521^{***}$ $0.021^{***}$ $0.018^{***}$ $0.108^{***}$ $-0.798^{***}$ $0.523^{***}$ $0.021^{***}$ $0.008^{***}$ $0.108^{***}$ $-0.738^{***}$ $0.533^{***}$ $0.021^{***}$ $0.008^{***}$ $0.108^{***}$ $-0.738^{***}$ $0.533^{***}$ $0.021^{***}$ $0.001^{***}$ $0.101^{***}$ $-0.738^{***}$ $0.411^{***}$ $0.023^{***}$ $0.011^{***}$ $0.102^{***}$ $-0.738^{***}$ $0.411^{***}$ $0.023^{***}$ $0.013^{***}$ $0.102^{***}$ $-0.738^{***}$ $0.013^{***}$ $0.003^{***}$ $0.003^{***}$ $0.102^{***}$ $-0.017$ $0.144^{***}$ $0.026^{***}$ $0.013^{***}$ $0.003^{***}$ $0.012^{***}$ $-0.017$ $0.144^{***}$ $0.056^{***}$ $0.013^{***}$ $0.011^{***}$ $-0.017$ $0.18^{***}$ $0.016^{***}$ $0.013^{***}$ $0.011^{***}$ $-0.017$ $0.18^{***}$ $0.005^{***}$ $0.011^{***}$ $0.011^{***}$ $-0.017$ $0.18^{***}$ $0.024^{***}$ $0.011^{***}$ $-0.017$ $0.018^{***}$ $0.018^{***}$ $0.011^{***}$ $-0.017$ $0.016^{****}$ $0.018^{***}$ $0.011^{***}$ $-0.017$ $0.018^{****}$ $0.018^{****}$ $0.011^{***}$ $-0.028^{***}$ $0.018^{*****}$ $0.018^{*******}$ $0.011^{***************************$	$-2.957^{***}$ $0.390^{***}$ $0.036^{**}$ $0.032^{***}$ $0.032^{**}$ $0.032^{***}$ $0.032^{***}$ $0.0110^{****}$ $0.032^{***}$ $0.0110^{****}$ $0.032^{***}$ $0.0110^{****}$ $0.032^{***}$ $0.0110^{****}$ $0.032^{***}$ $0.0111^{****}$ $0.032^{***}$ $0.0111^{****}$ $0.031^{***}$ $0.0111^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{*****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{****}$ $0.011^{*****}$ $0.011^{*****}$ $0.011^{******}$ $0.011^{*****}$ $0.011$

significant liquidity factor at the 10 % level

Table 9 Carhart	regression augme	nted by liquidity a	and idiosyncratic r	isk					
	αi	Liquidity	Id. risk	Mk. Ex. Re.	Size	Value	Momentum	Adj. R ²	F-stat.
Germany	$-0.234^{***}$	0.862***	-0.015	0.502***	$0.168^{***}$	0.015	$0.049^{***}$	0.843	413.719
Large blend	$-0.678^{***}$	$0.210^{***}$	-0.004	$0.747^{***}$	-0.009	$0.121^{***}$	$0.018^{***}$	0.866	477.079
Large value	$-0.678^{***}$	$0.164^{***}$	0.000	$0.708^{***}$	-0.026	0.072***	$0.018^{***}$	0.890	312.388
Mid blend	$-0.833^{***}$	$0.308^{***}$	-0.001	$0.648^{***}$	$0.228^{***}$	0.092***	0.032***	0.912	172.904
Mid growth	$-1.238^{***}$	0.516**	0.139	$0.414^{***}$	$0.111^{***}$	0.077*	0.052**	0.867	54.578
Small blend	$-1.077^{***}$	$0.464^{***}$	-0.005	0.245***	$0.137^{***}$	0.076***	0.011	0.810	103.676
Small growth	$-0.443^{***}$	0.336	-0.014	$0.596^{***}$	$0.329^{***}$	$0.112^{**}$	0.025	0.800	75.251
Italy	-1.225 ***	0.237***	-0.019	0.434***	$0.058^{***}$	$-0.124^{***}$	$0.145^{***}$	0.920	121.002
Large blend	$-1.027^{***}$	-0.055	0.109	$0.256^{***}$	-0.067	$-0.143^{***}$	$0.198^{***}$	0.811	37.435
Large value	$-0.686^{***}$	0.259***	0.019	$0.367^{***}$	$0.090^{***}$	$-0.129^{***}$	$0.159^{***}$	0.910	102.639
Mid blend	$-0.678^{***}$	0.289	-0.106	0.422***	$0.057^{***}$	$-0.162^{***}$	$0.158^{***}$	0.850	59.488
Mid value	$-1.106^{***}$	0.189	-0.097	$0.351^{***}$	-0.006	$-0.135^{***}$	$0.157^{***}$	0.864	77.124
Small blend	$-0.733^{***}$	0.176	-0.075	0.223 * * *	$0.112^{***}$	-0.029	0.038	0.834	135.637
Small value	$-0.222^{***}$	-0.435	-0.354	$0.156^{**}$	$0.133^{***}$	$-0.388^{***}$	$0.236^{**}$	0.855	27.095
Spain	$-0.834^{***}$	2.854***	0.159***	$0.549^{***}$	$0.113^{***}$	$0.061^{***}$	0.006	0.958	526.443
Large blend	$-1.009^{***}$	2.652 ***	$0.200^{***}$	$0.528^{***}$	$0.104^{***}$	0.006	0.007	0.936	367.988
Large growth	$-1.753^{***}$	2.772 ***	$0.268^{***}$	$0.497^{***}$	$0.103^{***}$	$-0.081^{***}$	-0.030	0.935	158.519
Large value	$-1.559^{***}$	2.743***	0.159***	$0.589^{***}$	$0.088^{***}$	$0.058^{***}$	-0.00	0.934	555.426
Mid blend	$-0.221^{***}$	3.685***	0.055	$0.348^{***}$	$0.177^{***}$	$0.164^{***}$	0.079***	0.930	199.138
Mid value	$-0.567^{***}$	$3.180^{***}$	$0.111^{***}$	$0.487^{***}$	$0.194^{***}$	$0.122^{***}$	0.044 * * *	0.954	425.211
Small value	$-0.124^{***}$	2.859***	0.102*	$0.206^{***}$	$0.191^{***}$	0.099***	0.064***	0.946	198.031
Netherlands	$-0.003^{***}$	$-2.208^{***}$	0.049	0.439***	$0.013^{***}$	$0.087^{***}$	-0.005	0.879	244.489
Large blend	0.117	0.772	0.098	$0.097^{**}$	-0.009	0.004	0.081	0.790	16.016
Large value	$-0.356^{***}$	$-1.888^{***}$	-0.006	$0.469^{***}$	$0.013^{***}$	$0.086^{***}$	0.011	0.894	265.784
Mid value	-0.779***	$-2.26I^{***}$	0.137	0.599***	0.015	$0.233^{***}$	-0.034	0.870	71.688
Small blend	-0.688 ***	$-2.388^{***}$	$0.30I^{**}$	$0.263^{***}$	$0.046^{**}$	0.041	-0.055	0.956	49.046

continued
6
le
Tab

	ßi	Liquidity	Id. risk	Mk. Ex. Re.	Size	Value	Momentum	Adj. $\mathbb{R}^2$	F-stat.
Small value	$-0.889^{***}$	-2.941***	0.128	$0.401^{***}$	0.053***	$0.086^{***}$	$-0.046^{*}$	0.802	120.105
France	$-1.067^{***}$	$-1.137^{***}$	0.010	$0.530^{***}$	$0.022^{***}$	$-0.005^{***}$	$0.122^{***}$	0.948	315.681
Large blend	$-1.022^{***}$	-1.172 ***	-0.026	$0.530^{***}$	$0.022^{***}$	$-0.003^{***}$	$0.129^{***}$	0.856	229.638
Large growth	$-0.876^{***}$	$-1.165^{***}$	0.038	0.545***	$0.031^{***}$	$-0.004^{**}$	$0.098^{**}$	0.920	94.541
Large value	$-0.606^{***}$	-1.087 * * *	0.017*	$0.567^{***}$	$0.020^{***}$	$-0.006^{***}$	$0.121^{***}$	0.956	338.334
Mid blend	$-0.499^{***}$	-1.287***	-0.015	0.422***	$0.026^{***}$	$-0.004^{**}$	$0.117^{***}$	0.833	158.498
Mid value	$-0.688^{***}$	$-1.135^{***}$	0.021	$0.412^{***}$	$0.027^{***}$	$-0.001^{***}$	$0.113^{***}$	0.910	226.802
Small blend	$-0.998^{***}$	-0.035	0.024	$0.146^{***}$	$0.091^{**}$	-0.009	0.024	0.810	158.979
Small value	$-0.188^{***}$	-0.436	0.078*	$0.186^{***}$	$0.116^{***}$	-0.006	$0.089^{***}$	0.910	142.689
UK	$-1.056^{***}$	-1.092 ***	-0.019 * * *	$0.540^{***}$	$0.006^{***}$	$0.040^{***}$	0.059***	0.955	389.836
Large blend	$-1.440^{***}$	$-1.06I^{***}$	$-0.016^{***}$	$0.561^{***}$	$0.012^{***}$	$0.043^{***}$	0.055***	0.910	432.429
Large growth	-1.233***	-1.099***	-0.008	0.585***	$0.006^{***}$	$0.020^{**}$	0.056***	0.966	390.166
Large value	$-0.586^{***}$	-1.058***	-0.012	$0.520^{***}$	$0.007^{***}$	$0.053^{***}$	0.066***	0.910	363.941
Mid blend	-0.844***	$-1.156^{***}$	-0.025 **	$0.494^{***}$	$0.015^{***}$	$0.035^{***}$	$0.058^{***}$	0.980	327.211
Mid growth	-0.644	-1.011 ***	-0.024	0.447***	0.025***	$0.030^{**}$	$0.044^{***}$	0.966	297.101
Mid value	$-0.598^{***}$	-1.105 ***	0.014	$0.549^{***}$	$0.008^{***}$	$0.067^{***}$	0.073***	0.955	305.356
Small blend	$-0.665^{***}$	-1.177***	-0.033 * *	$0.488^{***}$	$0.033^{***}$	$0.036^{***}$	0.069***	0.910	280.655
Small growth	$-0.468^{***}$	-1.235***	$-0.070^{***}$	0.566***	$0.036^{***}$	0.019	0.066***	0.890	252.943
Small value	$-0.687^{**}$	-1.233***	-0.037	0.455***	$0.041^{*}$	0.049*	$0.086^{***}$	0.967	170.111
The table presen Idiosvncratic risk	ts regression coel is estimated from	ficients on value- an EGARCH mod	weighted portfolio el on Fama-Frencl	s grouped by inve 1 3-factor model. Si	stment style for the lignificance at the 1	he idiosyncratic ri %, 5 %, 10 % lev	sk and liquidity a el is denoted by *:	nugmented Car **. **. and *. r	hart model. espectively.

Regressions are performed considering the covariance matrix of Newey and West (1987). The sample period is January 1988 to December 2012. All alphas are annualised. Fund italicized indicate significant idiosyncratic risk and liquidity factor at the 10 % level

Table 10 Fama-	MacBeth regressiv	on augmented by l	liquidity and idiosy	yncratic risk					
	oi	Liquidity	Id. risk	Mk. Ex. Re.	Size	Valuation	Momentum	Adj. R ²	F-stat.
Germany	$-0.198^{***}$	0.701 **	-0.089	$0.016^{**}$	$-0.207^{***}$	0.045*	0.058***	0.083	27.004
Large blend	$-0.456^{***}$	0.311 * * *	-0.069	$0.501^{**}$	-0.018	$0.178^{**}$	$0.024^{**}$	0.511	323.124
Large value	$-0.412^{***}$	0.101 * * *	0.055	$0.400^{***}$	-0.034*	$0.099^{***}$	$0.034^{***}$	0.422	298.123
Mid blend	-0.655 ***	0.522 **	-0.053	$0.389^{**}$	$0.189^{***}$	$0.173^{**}$	$0.041^{***}$	0.533	283.611
Mid growth	$-0.988^{***}$	$0.324^{***}$	0.160	$0.333^{**}$	$0.156^{**}$	$0.111^{**}$	$0.060^{**}$	0.323	87.112
Small blend	$-0.877^{***}$	0.322 * * *	-0.022	$0.401^{***}$	$0.187^{***}$	$0.098^{***}$	0.023	0.567	213.301
Small growth	$-0.298^{***}$	0.280	-0.026	$0.309^{***}$	0.245***	$0.143^{**}$	0.031	0.498	89.345
Italy	$-0.876^{***}$	$0.189^{***}$	-0.037	$0.034^{***}$	$-0.078^{***}$	$-0.087^{***}$	$0.154^{***}$	0.298	312.023
Large blend	$-0.856^{***}$	-0.123	0.145	$0.031^{**}$	-0.087	-0.109**	0.215**	0.345	59.610
Large value	-0.555 **	$0.334^{**}$	0.034	$0.024^{**}$	$-0.089^{***}$	$-0.100^{**}$	$0.167^{***}$	0.398	123.456
Mid blend	$-0.832^{***}$	0.388 * * *	-0.122	$0.033^{***}$	$-0.023^{**}$	$-0.175^{**}$	$0.178^{**}$	0.355	87.223
Mid value	$-0.765^{***}$	0.267	-0.024	$0.030^{**}$	-0.021*	$-0.138^{***}$	$0.168^{***}$	0.311	87.345
Small blend	$-0.511^{***}$	0.244	-0.067	$0.024^{**}$	0.043	-0.032	0.054	0.398	198.112
Small value	-0.099**	-0.607	-0.145	-0.017	0.034	$-0.365^{***}$	$0.289^{**}$	0.374	67.345
Spain	$-0.654^{***}$	1.765***	$0.104^{***}$	$0.322^{***}$	$0.145^{***}$	$0.068^{***}$	0.014	0.534	345.333
Large blend	$-0.855^{***}$	1.554**	0.177 * *	$0.211^{**}$	$0.122^{***}$	0.012	0.015**	0.433	277.078
Large growth	$-1.002^{**}$	I.723 * * *	$0.089^{***}$	$0.270^{**}$	$0.115^{**}$	$-0.097^{***}$	-0.039*	0.498	177.433
Large value	$-0.560^{**}$	2.945**	$0.214^{***}$	$0.311^{***}$	$0.124^{***}$	$0.063^{**}$	-0.022	0.541	589.236
Mid blend	$-0.078^{***}$	2.625***	0.007	$0.271^{***}$	$0.186^{**}$	$0.178^{***}$	0.098***	0.674	214.135
Mid value	-0.377 * * *	2.040 * * *	$0.389^{***}$	$0.503^{***}$	$0.220^{***}$	$0.129^{**}$	$0.049^{***}$	0.546	342.009
Small value	$-0.078^{***}$	1.755***	0.078*	$0.104^{***}$	$0.134^{**}$	$0.074^{***}$	$0.071^{***}$	0.534	213.231
Netherlands	-0.023 * * *	$-I.008^{***}$	0.127	$0.280^{***}$	$0.044^{***}$	$0.082^{***}$	-0.017	0.612	287.145
Large blend	0.178*	$0.956^{**}$	0.144	$0.110^{**}$	-0.012	$0.023^{**}$	0.098**	0.315	56.345
Large value	$-0.187^{***}$	$-1.234^{***}$	-0.089	$0.304^{**}$	$0.029^{***}$	$0.080^{***}$	0.019*	0.436	314.144
Mid value	$-0.533^{***}$	$-1.887^{***}$	$0.189^{**}$	$0.654^{**}$	0.033	$0.230^{***}$	-0.017	0.589	98.123
Small blend	-0.456***	-2.009 ***	0.201**	$0.310^{***}$	0.025	0.034*	-0.028**	0.387	61.654

continued	
10	
Table	

	si.	Liquidity	Id. risk	Mk. Ex. Re.	Size	Valuation	Momentum	Adj. R ²	F-stat.
Small value	-0.423***	-1.678***	0.078**	0.323***	0.055*	$0.081^{***}$	-0.067*	0.344	167.234
France	$-0.756^{***}$	-1.345***	0.089	0.345***	$0.010^{***}$	-0.025 ***	$0.138^{***}$	0.621	289.332
Large blend	-0.677 * * *	$-1.345^{***}$	-0.099	$0.324^{**}$	0.020 **	$-0.015^{***}$	$0.156^{***}$	0.432	241.334
Large growth	-0.595*	-1.223 ***	0.120	$0.382^{***}$	$0.028^{***}$	$-0.033^{**}$	$0.123^{**}$	0.411	145.334
Large value	$-0.488^{***}$	-1.342 ***	0.080*	$0.218^{**}$	$0.016^{**}$	$-0.026^{***}$	$0.156^{**}$	0.409	277.087
Mid blend	$-0.377^{***}$	$-0.987^{***}$	-0.089	0.255***	$0.024^{***}$	$-0.025^{**}$	$0.123^{**}$	0.324	210.144
Mid value	$-0.570^{***}$	-1.535***	0.066*	$0.510^{**}$	$0.022^{**}$	$-0.011^{**}$	$0.145^{***}$	0.378	301.456
Small blend	$-0.745^{***}$	-0.188	0.089	$0.234^{***}$	$0.026^{**}$	-0.035	0.032*	0.459	134.066
Small value	$-0.034^{***}$	-0.543 **	0.120*	$0.301^{***}$	0.035***	-0.023	$0.117^{***}$	0.510	187.678
UK	$-0.755^{***}$	$-0.876^{***}$	$-0.078^{***}$	$0.378^{***}$	$0.019^{**}$	$0.046^{***}$	$0.068^{***}$	0.678	278.567
Large blend	$-0.978^{***}$	-1.234 **	$-0.110^{**}$	$0.416^{**}$	$0.022^{***}$	$0.054^{**}$	$0.069^{***}$	0.562	344.300
Large growth	$-0.877^{***}$	$-1.334^{***}$	-0.026	$0.415^{***}$	0.023 * * *	$0.029^{**}$	$0.080^{***}$	0.543	323.678
Large value	$-0.613^{***}$	-0.855 ***	-0.034	$0.332^{**}$	0.015**	0.051***	$0.076^{***}$	0.498	311.621
Mid blend	-0.633 * * *	$-0.765^{***}$	-0.081*	$0.311^{***}$	$0.017^{***}$	0.042***	$0.059^{***}$	0.444	278.004
Mid growth	$-0.401^{***}$	-1.233 ***	-0.067*	$0.328^{***}$	$0.012^{**}$	$0.038^{**}$	$0.068^{**}$	0.476	234.345
Mid value	$-0.345^{***}$	$-8.678^{***}$	0.056	$0.610^{**}$	$0.017^{***}$	0.075**	$0.088^{***}$	0.540	255.233
Small blend	$-0.433^{***}$	$-0.678^{***}$	$0.008^{**}$	$0.327^{***}$	$0.011^{***}$	$0.039^{***}$	0.073***	0.439	223.245
Small growth	$-0.297^{***}$	$-0.876^{***}$	$-0.030^{***}$	$0.320^{***}$	$0.026^{***}$	0.024	$0.043^{***}$	0.587	310.343
Small value	$-0.455^{**}$	$-0.807^{***}$	-0.078	$0.518^{***}$	0.018*	0.056*	$0.094^{***}$	0.321	213.411
The table presents risk and liquidity denoted by ***, * December 2012. /	s time-series avera augmented Carhar **, and *, respecti All alphas are ann	ge regression coef rt model. Idiosynci ively. Regressions ualised. Fund itali	ficients from cross- ratic risk is estimat are performed cor cized indicate sign	sectional regressio ed from an EGAR isidering the covar ificant idiosyncrati	ns on value-weight CH model on Fama iance matrix of Nc ic risk and liquidit	ted portfolios grou a-French 3-factor n swey and West (19 y factor at the 10	ped by investment nodel. Significance 387). The sample % level	style for the i e at the 1, 5, 1 period is Janu	diosyncratic 0 % level is ary 1988 to

previous findings using multifactor models since the amount of significant fund portfolios for the liquidity and idiosyncratic risk factors are very similar to the augmented Carhart model. As in the previous models considered, we could also state that the explanatory power of idiosyncratic risk is not taken away by controlling for liquidity, and the liquidity factor is not less significant than the most standard valuation or size factors.

We also examine different subperiods. We divide the period of our study in two halves, one from 1988 to December 1999, and the other one from January 2000 to December 2010. The first half includes the spike of the stock market in the late 90s, while the second half covers the burst of the technology bubble, a short upturn and the crash of the financial crisis. The results of the Carhart factors are similar regarding both subperiods (we have omitted the tables for brevity). However, in the first subperiod idiosyncratic risk is more significant than in the second one or compared to the whole observation period. Furthermore, the size factor is more important during the second than during the first subperiod, which indicates that fund returns are more driven by smaller stocks. Thus, we can conclude that mutual fund managers change their preferences towards different risk factors over time.

#### 5.2 Management fees

So far we have only considered mutual fund returns net of costs, management fees were already deducted from the funds return. Some mutual funds might present a positive performance before fees. Although, if they charge high fees compared to other funds, this reduces the risk-adjusted performance after fees. Sharpe (1966) was the first to analyze the impact of mutual fund fees on the performance results.

US evidence finds that fund under-perform the market by the amount of fees they charge the investor when management fees are deducted. To analyze the influence of fees on European mutual fund performance we obtain current monthly percentage charges for each mutual fund in our data set, for some of our mutual funds there are no monthly percentage charges available, in this case we use information on maximum monthly percentage charges. We present average alphas after costs for every investment style portfolio in all countries, and then we add back management fees to fund returns in order to test their performance.

The average annual fees of the investigated mutual funds are 1.6 % with a minimum of zero annual fees and a maximum of 4.66 %. We examine risk-adjusted performance with respect to the liquidity and idiosyncratic risk augmented Carhart model. We find that, before fees, the average risk-adjusted performance is still negative, although in all portfolios is better than the monthly performance after fees (we have omitted the table for brevity). Overall, the results show that even before costs most mutual funds do not provide for a positive risk-adjusted performance. Five out of six countries under-perform at the 5 % level. This means that European funds, similar to US funds, are not successful in finding and implementing new information to offset their fees, and therefore add value for the investor. The only exception is Spanish funds, which out-perform significantly after and before fees. We also analyze the relationship between alphas and the monthly percentage charges. We find mixed evidence and thus we cannot establish that mutual fund managers that charge higher fees provide better performance.

# 6 Conclusion

Studies on the performance of European mutual funds are relatively scarce, compared to the vast literature on US mutual fund performance. Examples of US performance studies include Grinblatt and Titman (1989a, b), Malkiel (1995), Gruber (1996), Carhart (1997). There is an increasing flow of funds received by the mutual fund industry in Europe, as the growing private retirement provisions acts as substitute for the decreasing ability of the government retirement systems, which are negatively influenced by the demographic change. Moreover, regulatory differences in the European financial services industry have decreased in the recent years. This fosters the study of cross-country performance of European mutual funds.

Our study contributes to the mutual fund literature by providing new models and empirical findings on long-term risk-adjusted fund performance using a wide European data set. Our findings do not support the idea that liquidity and idiosyncratic risk are closely intertwined variables. However, our analysis confirms that liquidity and idiosyncratic risk are relevant for mutual fund performance. Liquidity and idiosyncratic risk are useful and important risk factors for quite large fund style subgroups of mutual funds. We show that model specifications up to six factors are useful and that the liquidity and idiosyncratic risk effects found are even robust to such stricter models with many factors. The importance of these two risk factors is not significantly diminished by considering them at the same time in addition to valuation, market, size and momentum risk factors. Hence, these risk factors capture different aspects in the cross-section of mutual funds returns, even if they may be theoretically and empirically linked to some extent.

Our model comparisons indicate that the Carhart (1997) is slightly superior compared to the liquidity and idiosyncratic risk augmented Fama and French (1992, 1993) models. Our results have been backtested with respect to several subperiods and taking into account different model specifications. In different countries, the evidence regarding mutual funds subgroups is strongly in favor of the significance of liquidity, and idiosyncratic risk to a lesser extent, as risk factors. The liquidity factor is as relevant as size, valuation and momentum, but still market excess return is the most important factor in mutual fund performance. Even if liquidity and idiosyncratic risk are considered at the same time, one factor is not significantly decreasing the importance of the other factor. Thus, these factors capture different characteristics.

Our evidence leads us to conclude that liquidity and idiosyncratic risk factors are important for mutual fund performance. Analyzing fund style subgroups, both the wellknown Fama and French and Carhart models are significantly complemented by liquidity and idiosyncratic risk.

#### References

Acharya V, Pedersen LH (2005) Asset pricing with liquidity risk. J Financ Econ 77:375-410

Baker M, Stein J (2004) Market liquidity as a sentiment indicator. J Financ Mark 7:271–299

Bali T, Nusret C, Xuemin Y, Zhe Z (2005) Does idiosyncratic risk really matter? J Financ 60:905-929

Amihud Y (2002) Illiquidity and stock returns: cross-section and time-series effects. J Financ Mark 5:31–56 Angelidis T, Andrikopoulos A (2010) Idiosyncratic risk, returns and liquidity in the London Stock Exchange: a spillover approach. Int Rev Financ Anal 19:214–221

Avramov D, Chordia T (2006) Asset pricing models and financial market anomalies. Rev Financ Stud 19:1001–1040

- Banz RW (1981) The relative efficiency of various portfolios: some further evidence: discussion. J Financ 32:663–682
- Biktimirov E, Li B (2014) Asymmetric stock price and liquidity responses to changes in the FTSE Small Cap index. Rev Quant Financ Acc 42:95–122
- Brunnermeier MK, Pedersen LH (2009) Market liquidity and funding liquidity. Rev Financ Stud 22:2201–2238
- Campbell JY, Martin L, Malkiel BG, Xu Y (2001) Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk. J Financ 56:1–43
- Carhart M (1997) On persistence in mutual fund performance. J Financ 52:57-82
- Chiu J, Chung H, Ho K (2014) Fear sentiment, liquidity, and trading behavior: evidence from the index ETF market. Rev Pac Basin Financ Mark Polic 17:1–25
- Chordia T, Subrahmanyam A, Anshuman VR (2001) Trading activity and expected stock returns. J Financ Econ 59:3–32
- Dong X, Feng S, Sadka R (2012) Does liquidity beta predict mutual-fund alpha? Working Paper
- Dybvig PH, Stephen AR (1985) The analytics of performance measurement using a security market line. J Financ 40:401–416
- Elton E, Gruber M, Blake C (1995) Fundamental economic variables, APT, and bond fund performance. J Financ 50:1229–1256
- Elton EJ, Gruber MJ, Blake CR (1996) The persistence of risk-adjusted mutual fund performance. J Bus 69:133–157
- Fama EF, French K (1992) The cross-section of expected stock returns. J Financ 47:427-465
- Fama EF, French K (1993) Common risk factors in the return on stocks and bonds. J Financ Econ 33:3-56
- Fama EF, French K (1996) Multifactor explanations of asset pricing anomalies. J Financ 51:55-84
- Fama E, MacBeth J (1973) Risk, return, and equilibrium: empirical tests. J Polit Econ 81:607-636
- Fu F (2009) Idiosyncratic risk and the cross-section of expected stock returns. J Financ Econ 91:24-37
- Goyal A, Santa-Clara P (2003) Idiosyncratic risk matters! J Financ 58:975-1008
- Grinblatt M, Titman S (1989a) Mutual fund performance: an analysis of quarterly portfolio holding. J Bus 62:393–416
- Grinblatt M, Titman S (1989b) Portfolio performance evaluation: old issues and new insights. Rev Financ Stud 2:393–421
- Grinblatt M, Titman S (1994) A study of mutual fund returns and performance evaluation techniques. J Financ Quant Anal 29:419–444
- Gruber MJ (1996) Another puzzle: the growth in actively managed mutual funds. J Financ 51:783-810
- Gruenbichler A, Pleschiutschnig U (1999) Performance persistence: evidence for the European mutual funds market. Working Paper, University of St. Gallen
- Hachmeister A, Schiereck D (2010) Dancing in the dark: post-trade anonymity, liquidity and informed trading. Rev Quant Financ Acc 34:145–177
- Harris LE (1994) Minimum price variation, discrete bid–ask spreads, and quotation sizes. Rev Financ Stud 7:149–178
- Hasbrouck J (2005) Trading costs and returns for US equities: the evidence from daily data. J Financ 64:1445–1477
- Ho T, Stoll H (1980) On dealer markets under competition. J Financ 35:259-267
- Ho C, Lee C, Lin C, Wang E (2005) Liquidity, volatility and stock price adjustment: evidence from seasoned equity offerings in an emerging market. Rev Pac Basin Financ Mark Polic 8:31–51
- Jensen MC (1968) The performance of mutual funds in the period 1945–1964. J Financ 23:389–416
- Lee K (2011) The world price of liquidity risk. J Financ Econ 99:136-161
- Lo A, Wang J (2000) Trading volume: definitions, data analysis, and implications of portfolio theory. Rev Financ Stud 13:257–300
- Malkiel BG (1995) Returns from investing in equity mutual funds 1971-1991. J Financ 50:549-572
- Malkiel BG, Xu Y (2006) Idiosyncratic risk and security returns. Working Paper, University of Texas at Dallas
- Merton R (1987) A simple model of capital market equilibrium with incomplete information. J Financ 42:483–510
- Newey W, West K (1987) A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703–708
- Nelson DB (1991) Conditional heteroskedasticity in asset returns: new approach. Econometrica 59:347–370 O'Hara M (2003) Presidential address: liquidity and price discovery. J Financ 58:1335–1354
- Otten R, Bams D (2002) European mutual fund performance. Eur Financ Manag 8:75-101
- Reinganum M (1981) A misspecification of capital asset pricing: empirical anomalies based on earnings' yields and market values. J Financ Econ 9:19–46

Pastor L, Stambaugh R (2003) Liquidity risk and expected stock returns. J Polit Econ 111:642–685 Sharpe W (1966) Mutual fund performance. J Bus 39:119–138

Spiegel MI, Avanidhar S (1995) On intraday risk premia. J Financ 50:319-339

Spiegel MI, Wang X (2005) Cross-sectional variation in stock returns: liquidity and idiosyncratic risk. Yale ICF Working Paper No. 05-13

Stoll H (2000) Presidential address: friction. J Financ 55:1479-1514

- Wagner NF, Winter E (2013) A new family of equity style indices and mutual fund performance: do liquidity and idiosyncratic risk matter? J Empir Financ 21:69–85
- Watanabe A, Watanabe M (2008) Time-varying liquidity risk and the cross section of stock returns. Rev Financ Stud 21:2449–2486