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Preface

As recently as two decades ago, the impact of hierarchical Bayesian meth-
ods outside of a small group of theoretical probabilists and statisticians
was minimal at best. Realistic models for challenging data sets were easy
enough to write down, but the computations associated with these models
required integrations over hundreds or even thousands of unknown param-
eters, far too complex for existing computing technology. Suddenly, around
1990, the \Markov chain Monte Carlo (MCMC) revolution" in Bayesian
computing took place. Methods like the Gibbs sampler and the Metropolis
algorithm, when coupled with ever-faster workstations and personal com-
puters, enabled evaluation of the integrals that had long thwarted applied
Bayesians. Almost overnight, Bayesian methods became not only feasible,
but the method of choice for almost any model involving multiple levels
incorporating random e�ects or complicated dependence structures. The
growth in applications has also been phenomenal, with a particularly in-
teresting recent example being a Bayesian program to delete spam from
your incoming email (see popfile.sourceforge.net).

Our purpose in writing this book is to describe hierarchical Bayesian
methods for one class of applications in which they can pay substantial
dividends: spatial (and spatiotemporal) statistics. While all three of us
have been working in this area for some time, our motivation for writing
the book really came from our experiences teaching courses on the subject
(two of us at the University of Minnesota, and the other at the Univer-
sity of Connecticut). In teaching we naturally began with the textbook by
Cressie (1993), long considered the standard as both text and reference
in the �eld. But we found the book somewhat uneven in its presentation,
and written at a mathematical level that is perhaps a bit high, especially
for the many epidemiologists, environmental health researchers, foresters,
computer scientists, GIS experts, and other users of spatial methods who
lacked signi�cant background in mathematical statistics. Now a decade old,
the book also lacks a current view of hierarchical modeling approaches for
spatial data.
But the problem with the traditional teaching approach went beyond the

mere need for a less formal presentation. Time and again, as we presented
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xvi PREFACE

the traditional material, we found it wanting in terms of its exibility to
deal with realistic assumptions. Traditional Gaussian kriging is obviously
the most important method of point-to-point spatial interpolation, but ex-
tending the paradigm beyond this was awkward. For areal (block-level)
data, the problem seemed even more acute: CAR models should most nat-
urally appear as priors for the parameters in a model, not as a model for
the observations themselves.
This book, then, attempts to remedy the situation by providing a fully

Bayesian treatment of spatial methods. We begin in Chapter 1 by outlining
and providing illustrative examples of the three types of spatial data: point-
level (geostatistical), areal (lattice), and spatial point process. We also pro-
vide a brief introduction to map projection and the proper calculation of
distance on the earth's surface (which, since the earth is round, can di�er
markedly from answers obtained using the familiar notion of Euclidean dis-
tance). Our statistical presentation begins in earnest in Chapter 2, where
we describe both exploratory data analysis tools and traditional model-
ing approaches for point-referenced data. Modeling approaches from tra-
ditional geostatistics (variogram �tting, kriging, and so forth) are covered
here. Chapter 3 o�ers a similar presentation for areal data models, again
starting with choropleth maps and other displays and progressing toward
more formal statistical models. This chapter also presents Brook's Lemma
and Markov random �elds, topics that underlie the conditional, intrinsic,
and simultaneous autoregressive (CAR, IAR, and SAR) models so often
used in areal data settings.
Chapter 4 provides a review of the hierarchical Bayesian approach in a

fairly generic setting, for readers previously unfamiliar with these methods
and related computing and software. (The penultimate sections of Chap-
ters 2, 3, and 4 o�er tutorials in several popular software packages.) This
chapter is not intended as a replacement for a full course in Bayesian meth-
ods (as covered, for example, by Carlin and Louis, 2000, or Gelman et al.,
2004), but should be su�cient for readers having at least some familiarity
with the ideas. In Chapter 5 then we are ready to cover hierarchical mod-
eling for univariate spatial response data, including Bayesian kriging and
lattice modeling. The issue of nonstationarity (and how to model it) also
arises here.
Chapter 6 considers the problem of spatially misaligned data. Here,

Bayesian methods are particularly well suited to sorting out complex inter-
relationships and constraints and providing a coherent answer that properly
accounts for all spatial correlation and uncertainty. Methods for handling
multivariate spatial responses (for both point- and block-level data) are
discussed in Chapter 7. Spatiotemporal models are considered in Chap-
ter 8, while Chapter 9 presents an extended application of areal unit data
modeling in the context of survival analysis methods. Chapter 10 considers
novel methodology associated with spatial process modeling, including spa-
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PREFACE xvii

tial directional derivatives, spatially varying coe�cient models, and spatial
cumulative distribution functions (SCDFs). Finally, the book also features
two useful appendices. Appendix A reviews elements of matrix theory and
important related computational techniques, while Appendix B contains
solutions to several of the exercises in each of the book's chapters.
Our book is intended as a research monograph, presenting the \state

of the art" in hierarchical modeling for spatial data, and as such we hope
readers will �nd it useful as a desk reference. However, we also hope it will
be of bene�t to instructors (or self-directed students) wishing to use it as a
textbook. Here we see several options. Students wanting an introduction to
methods for point-referenced data (traditional geostatistics and its exten-
sions) may begin with Chapter 1, Chapter 2, Chapter 4, and Section 5.1 to
Section 5.3. If areal data models are of greater interest, we suggest begin-
ning with Chapter 1, Chapter 3, Chapter 4, Section 5.4, and Section 5.5. In
addition, for students wishing to minimize the mathematical presentation,
we have also marked sections containing more advanced material with a
star (?). These sections may be skipped (at least initially) at little cost to
the intelligibility of the subsequent narrative. In our course in the Divi-
sion of Biostatistics at the University of Minnesota, we are able to cover
much of the book in a 3-credit-hour, single-semester (15-week) course. We
encourage the reader to check http://www.biostat.umn.edu/~brad/ on
the web for many of our data sets and other teaching-related information.
We owe a debt of gratitude to those who helped us make this book a

reality. Kirsty Stroud and Bob Stern took us to lunch and said encour-
aging things (and more importantly, picked up the check) whenever we
needed it. Cathy Brown, Alex Zirpoli, and Desdamona Racheli prepared
signi�cant portions of the text and �gures. Many of our current and former
graduate and postdoctoral students, including Yue Cui, Xu Guo, Murali
Haran, Xiaoping Jin, Andy Mugglin, Margaret Short, Amy Xia, and Li Zhu
at Minnesota, and Deepak Agarwal, Mark Ecker, Sujit Ghosh, Hyon-Jung
Kim, Ananda Majumdar, Alexandra Schmidt, and Shanshan Wu at the
University of Connecticut, played a big role. We are also grateful to the
Spring 2003 Spatial Biostatistics class in the School of Public Health at the
University of Minnesota for taking our draft for a serious \test drive." Col-
leagues Jarrett Barber, Nicky Best, Montserrat Fuentes, David Higdon, Jim
Hodges, Oli Schabenberger, John Silander, Jon Wake�eld, Melanie Wall,
Lance Waller, and many others provided valuable input and assistance. Fi-
nally, we thank our families, whose ongoing love and support made all of
this possible.

Sudipto Banerjee Minneapolis, Minnesota
Bradley P. Carlin Durham, North Carolina
Alan E. Gelfand October 2003
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CHAPTER 1

Overview of spatial data problems

1.1 Introduction to spatial data and models

Researchers in diverse areas such as climatology, ecology, environmental
health, and real estate marketing are increasingly faced with the task of
analyzing data that are

� highly multivariate, with many important predictors and response vari-
ables,

� geographically referenced, and often presented as maps, and

� temporally correlated, as in longitudinal or other time series structures.

For example, for an epidemiological investigation, we might wish to an-
alyze lung, breast, colorectal, and cervical cancer rates by county and year
in a particular state, with smoking, mammography, and other important
screening and staging information also available at some level. Public health
professionals who collect such data are charged not only with surveillance,
but also statistical inference tasks, such as modeling of trends and cor-
relation structures, estimation of underlying model parameters, hypothesis
testing (or comparison of competing models), and prediction of observations
at unobserved times or locations.
In this text we seek to present a practical, self-contained treatment of

hierarchical modeling and data analysis for complex spatial (and spatiotem-
poral) data sets. Spatial statistics methods have been around for some time,
with the landmark work by Cressie (1993) providing arguably the only com-
prehensive book in the area. However, recent developments in Markov chain
Monte Carlo (MCMC) computing now allow fully Bayesian analyses of so-
phisticated multilevel models for complex geographically referenced data.
This approach also o�ers full inference for non-Gaussian spatial data, mul-
tivariate spatial data, spatiotemporal data, and, for the �rst time, solutions
to problems such as geographic and temporal misalignment of spatial data
layers.
This book does not attempt to be fully comprehensive, but does attempt

to present a fairly thorough treatment of hierarchical Bayesian approaches
for handling all of these problems. The book's mathematical level is roughly
comparable to that of Carlin and Louis (2000). That is, we sometimes state
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2 OVERVIEW OF SPATIAL DATA PROBLEMS

results rather formally, but spend little time on theorems and proofs. For
more mathematical treatments of spatial statistics (at least on the geosta-
tistical side), the reader is referred to Cressie (1993), Wackernagel (1998),
Chiles and Del�ner (1999), and Stein (1999a). For more descriptive presen-
tations the reader might consult Bailey and Gattrell (1995), Fotheringham
and Rogerson (1994), or Haining (1990). Our primary focus is on the issues
of modeling (where we o�er rich, exible classes of hierarchical structures
to accommodate both static and dynamic spatial data), computing (both
in terms of MCMC algorithms and methods for handling very large matri-
ces), and data analysis (to illustrate the �rst two items in terms of inferen-
tial summaries and graphical displays). Reviews of both traditional spatial
methods (Chapters 2 and 3) and Bayesian methods (Chapter 4) attempt to
ensure that previous exposure to either of these two areas is not required
(though it will of course be helpful if available).
Following convention, we classify spatial data sets into one of three basic

types:

� point-referenced data, where Y (s) is a random vector at a location s 2 <r,
where s varies continuously over D, a �xed subset of <r that contains
an r-dimensional rectangle of positive volume;

� areal data, whereD is again a �xed subset (of regular or irregular shape),
but now partitioned into a �nite number of areal units with well-de�ned
boundaries;

� point pattern data, where now D is itself random; its index set gives the
locations of random events that are the spatial point pattern. Y (s) itself
can simply equal 1 for all s 2 D (indicating occurrence of the event), or
possibly give some additional covariate information (producing a marked

point pattern process).

The �rst case is often referred to as geocoded or geostatistical data, names
apparently arising from the long history of these types of problems in min-
ing and other geological sciences. Figure 1.1 o�ers an example of this case,
showing the locations of 114 air-pollution monitoring sites in three mid-
western U.S. states (Illinois, Indiana, and Ohio). The plotting character
indicates the 2001 annual average PM2.5 level (measured in ppb) at each
site. PM2.5 stands for particulate matter less than 2.5 microns in diame-
ter, and is a measure of the density of very small particles that can travel
through the nose and windpipe and into the lungs, potentially damaging a
person's health. Here we might be interested in a model of the geographic
distribution of these levels that account for spatial correlation and per-
haps underlying covariates (regional industrialization, tra�c density, and
the like). The use of symbols to denote the approximate level is convenient
for this black-and-white map, but the color version in Figure C.1 (located
in this book's color insert) is somewhat easier to read, since the color al-
lows the categories to be ordered more naturally, and helps sharpen the
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   < 12.9
12.9 - 13.7
13.7 - 14.6
14.6 - 15.5
15.5 - 16.4
16.4 - 17.3
17.3 - 18.1
18.1 - 19
19 - 19.9
> 19.9

Figure 1.1 Map of PM2.5 sampling sites over three midwestern U.S. states; plot-
ting character indicates range of average monitored PM2.5 level over the year
2001 (see also color insert).

contrast between the urban and rural areas. Again, traditional analysis
methods for point level data like this are described in Chapter 2, while
Chapter 5 introduces the corresponding hierarchical modeling approach.

The second case above (areal data) is often referred to as lattice data,
a term we �nd misleading since it connotes observations corresponding
to \corners" of a checkerboard-like grid. Of course, there are data sets of
this type; for example, as arising from agricultural �eld trials (where the
plots cultivated form a regular lattice) or image restoration (where the
data correspond to pixels on a screen, again in a regular lattice). However,
in practice most areal data are summaries over an irregular lattice, like
a collection of county or other regional boundaries, as in Figure 1.2 (see
also color insert Figure C.2). Here we have information on the percent
of a surveyed population with household income falling below 200% of
the federal poverty limit, for a collection of regions comprising Hennepin
County, MN. Note that we have no information on any single household
in the study area, only regional summaries for each region. Figure 1.2 is
an example of a choropleth map, meaning that it uses shades of color (or
greyscale) to classify values into a few broad classes (six in this case), like
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4 OVERVIEW OF SPATIAL DATA PROBLEMS

Figure 1.2 ArcView map of percent of surveyed population with household income
below 200% of the federal poverty limit, regional survey units in Hennepin County,
MN (see also color insert).

a histogram (bar chart) for nonspatial data. Choropleth maps are visually
appealing (and therefore, also common), but of course provide a rather
crude summary of the data, and one that can be easily altered simply by
manipulating the class cuto�s.
As with any map of the areal units, choropleth maps do show reason-

ably precise boundaries between the regions (i.e., a series of exact spatial
coordinates that when connected in the proper order will trace out each
region), and thus we also know which regions are adjacent to (touch) which
other regions. Thus the \sites" s 2 D in this case are actually the regions
(or blocks) themselves, which in this text we will denote not by si but by
Bi; i = 1; : : : ; n, to avoid confusion between points si and blocks Bi. It
may also be illuminating to think of the county centroids as forming the
vertices of an irregular lattice, with two lattice points being connected if
and only if the counties are \neighbors" in the spatial map, with physi-
cal adjacency being the most obvious (but not the only) way to de�ne a
region's neighbors.
Some spatial data sets feature both point- and areal-level data, and re-

quire their simultaneous display and analysis. Figure 1.3 (see also color in-
sert Figure C.3) o�ers an example of this case. The �rst component of this
data set is a collection of eight-hour maximum ozone levels at 10 monitor-
ing sites in the greater Atlanta, GA, area for a particular day in July 1995.
Like the observations in Figure 1.1, these were made at �xed monitoring
stations for which exact spatial coordinates (say, latitude and longitude)
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Figure 1.3 Zip code boundaries in the Atlanta metropolitan area and 8-hour max-
imum ozone levels (ppm) at 10 monitoring sites for July 15, 1995 (see also color
insert).

are known. (That is, we assume the Y (si); i = 1; : : : ; 10 are random, but
the si are not.) The second component of this data set is the number of
children in the area's zip codes (shown using the irregular subboundaries on
the map) that reported at local emergency rooms (ERs) with acute asthma
symptoms on the following day; con�dentiality of health records precludes
us from learning the precise address of any of the children. These are areal
summaries that could be indicated by shading the zip codes, as in Fig-
ure 1.2. An obvious question here is whether we can establish a connection
between high ozone and subsequent high pediatric ER asthma visits. Since
the data are misaligned (point-level ozone but block-level ER counts), a
formal statistical investigation of this question requires a preliminary re-

alignment of the data; this is the subject of Chapter 6.
The third case above (spatial point pattern data) could be exempli�ed

by residences of persons su�ering from a particular disease, or by loca-
tions of a certain species of tree in a forest. Here the response Y is often
�xed (occurrence of the event), and only the locations si are thought of
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6 OVERVIEW OF SPATIAL DATA PROBLEMS

as random. In some cases this information might be supplemented by age
or other covariate information, producing a marked point pattern). Such
data are often of interest in studies of event clustering, where the goal is
to determine whether an observed spatial point pattern is an example of a
clustered process (where points tend to be spatially close to other points),
or merely the result of a random event process operating independently
and homogeneously over space. Note that in contrast to areal data, where
no individual points in the data set could be identi�ed, here (and in point-
referenced data as well) precise locations are known, and so must often be
protected to protect the privacy of the persons in the set.
In the remainder of this initial section, we give a brief outline of the basic

models most often used for each of these three data types. Here we only
intend to give a avor of the models and techniques to be fully described
in the remainder of this book. However, in subsequent chapters we con�ne
ourselves to the case where the locations (or areal units) are �xed, and the
only randomness is in the measurements at these locations or units.
Even though our preferred inferential outlook is Bayesian, the statistical

inference tools discussed in Chapters 2 and 3 are entirely classical. While
all subsequent chapters adopt the Bayesian point of view, our objective
here is to acquaint the reader with the classical techniques �rst, since they
are more often implemented in standard software packages. Moreover, as in
other �elds of data analysis, classical methods can be easier to compute, and
produce perfectly acceptable results in relatively simple settings. Classical
methods often have interpretations as limiting cases of Bayesian methods
under increasingly vague prior assumptions. Finally, classical methods can
provide insight for formulating and �tting hiearchical models.

1.1.1 Point-level models

In the case of point-level data, the location index s varies continuously over
D, a �xed subset of <d. Suppose we assume that the covariance between
the random variables at two locations depends on the distance between the
locations. One frequently used association speci�cation is the exponential
model. Here the covariance between measurements at two locations is an
exponential function of the interlocation distance, i.e., Cov(Y (si); Y (si0)) �
C(dii0 ) = �2e��d

ii0 for i 6= i0, where dii0 is the distance between sites
si and si0 , and �2 and � are positive parameters called the partial sill

and the decay parameter, respectively (1=� is called the range parameter).
A plot of the covariance versus distance is called the covariogram. When
i = i0, dii0 is of course 0, and C(dii0 ) = V ar(Y (si)) is often expanded to
�2 + �2, where �2 > 0 is called a nugget e�ect, and �2 + �2 is called the
sill. Of course, while the exponential model is convenient and has some
desirable properties, many other parametric models are commonly used;
see Section 2.1 for further discussion of these and their relative merits.
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Adding a joint distributional model to these variance and covariance as-
sumptions then enables likelihood inference in the usual way. The most
convenient approach would be to assume a multivariate normal (or Gaus-

sian) distribution for the data. That is, suppose we are given observations
Y � fY (si)g at known locations si; i = 1; : : : ; n. We then assume that

Y j �;� � Nn(� ; �(�)) ; (1:1)

where Nn denotes the n-dimensional normal distribution, � is the (con-
stant) mean level, and (�(�))ii0 gives the covariance between Y (si) and
Y (si0). For the variance-covariance speci�cation of the previous paragraph,
we have � = (�2; �2; �)T , since the covariance matrix depends on the
nugget, sill, and range.
In fact, the simplest choices for � are those corresponding to isotropic

covariance functions, where we assume that the spatial correlation is a
function solely of the distance dii0 between si and si0 . As mentioned above,
exponential forms are particularly intuitive examples. Here,

(�(�))ii0 = �2 exp(��dii0 ) + �2I(i = i0); �2 > 0; � > 0; �2 > 0 ; (1:2)

where I denotes the indicator function (i.e., I(i = i0) = 1 if i = i0, and 0
otherwise). Many other choices are possible for Cov(Y (si); Y (si0)), includ-
ing for example the powered exponential,

(�(�))ii0 = �2 exp(��d�ii0 ) + �2I(i = i0); �2 > 0; � > 0; �2 > 0; � 2 (0; 2] ;

the spherical, the Gaussian, and the Mat�ern (see Subsection 2.1.3 for a full
discussion). In particular, while the latter requires calculation of a modi-
�ed Bessel function, Stein (1999a, p. 51) illustrates its ability to capture a
broader range of local correlation behavior despite having no more param-
eters than the powered exponential. Again, we shall say much more about
point-level spatial methods and models in Section 2.1.

1.1.2 Areal models

In models for areal data, the geographic regions or blocks (zip codes, coun-
ties, etc.) are denoted by Bi, and the data are typically sums or aver-
ages of variables over these blocks. To introduce spatial association, we
de�ne a neighborhood structure based on the arrangement of the blocks in
the map. Once the neighborhood structure is de�ned, models resembling
autoregressive time series models are considered. Two very popular mod-
els that incorporate such neighborhood information are the simultaneously

and conditionally autoregressivemodels (abbreviated SAR and CAR), origi-
nally developed by Whittle (1954) and Besag (1974), respectively. The SAR
model is computationally convenient for use with likelihood methods. By
contrast, the CAR model is computationally convenient for Gibbs sampling
used in conjunction with Bayesian model �tting, and in this regard is often
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8 OVERVIEW OF SPATIAL DATA PROBLEMS

used to incorporate spatial correlation through a vector of spatially varying
random e�ects � = (�1; : : : ; �n)

T . For example, writing Yi � Y (Bi), we

might assume Yi
ind
� N(�i; �

2), and then impose the CAR model

�ij�(�i) � N

0
@�+ nX

j=1

aij(�i � �) ; �2i

1
A ; (1:3)

where �(�i) = f�j : j 6= ig, �2i is the conditional variance, and the aij are
known or unknown constants such that aii = 0 for i = 1; : : : ; n. Letting
A = (aij) and M = Diag(�21 ; : : : ; �

2
n), by Brook's Lemma (c.f. Section 3.2),

we can show that

p(�) / expf�(�� �1)TM�1(I �A)(�� �1)=2g ; (1:4)

where 1 is an n-vector of 1's, and I is a n� n identity matrix.
A common way to construct A and M is to let A = �W and M�1 =

��2Diag(wi+). Here � is referred to as the spatial correlation parameter,
and W = (wij) is a neighborhood matrix for the areal units, which can be
de�ned as

wij =

�
1 if subregions i and j share a common boundary, i 6= j
0 otherwise

:

(1:5)
Thus Diag(wi+) is a diagonal matrix with (i; i) entry equal to wi+ =P

j wij . Letting � � (�; �2), the covariance matrix of � then becomes

C(�) = �2[Diag(wi+)��W ]�1; where the inverse exists for an appropriate
range of � values; see Subsection 3.3.1.
In the context of Bayesian hierarchical areal modeling, when choosing a

prior distribution �(�) for a vector of spatial random e�ects �, the CAR
distribution (1.3) is often used with the 0{1 weight (or adjacency) matrixW
in (1.5) and � = 1. While this results in an improper (nonintegrable) prior
distribution, this problem is remedied by imposing a sum-to-zero constraint
on the �i (which turns out to be easy to implement numerically using Gibbs
sampling). In this case the more general conditional form (1.3) is replaced
by

�i j �(�i) � N(��i ; �
2=mi) ; (1:6)

where ��i is the average of the �j 6=i that are adjacent to �i, and mi is the
number of these adjacencies (see, e.g., Besag, York, and Molli�e, 1991).

1.1.3 Point process models

In the point process model, the spatial domain D is itself random, so that
the elements of the index set D are the locations of random events that
constitute the spatial point pattern. Y (s) then normally equals the con-
stant 1 for all s 2 D (indicating occurrence of the event), but it may also
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INTRODUCTION TO SPATIAL DATA AND MODELS 9

provide additional covariate information, in which case the data constitute
a marked point process.
Questions of interest with data of this sort typically center on whether

the data are clustered more or less than would be expected if the locations
were determined completely by chance. Stochastically, such uniformity is
often described through a homogeneous Poisson process, which implies that
the expected number of occurrences in region A is �jAj, where � is the in-
tensity parameter of the process and jAj is the area of A. To investigate
this in practice, plots of the data are typically a good place to start, but
the tendency of the human eye to see clustering or other structure in vir-
tually every point pattern renders a strictly graphical approach unreliable.
Instead, statistics that measure clustering, and perhaps even associated
signi�cance tests, are often used. The most common of these is Ripley's K
function, given by

K(d) =
1

�
E[number of points within d of an arbitrary point] ; (1:7)

where again � is the intensity of the process, i.e., the mean number of points
per unit area.
The theoretical value of K is known for certain spatial point process

models. For instance, for point processes that have no spatial dependence
at all, we would have K(d) = �d2, since in this case the number of points
within d of an arbitrary point should be proportional to the area of a
circle of radius d; the K function then divides out the average intensity �.
However, if the data are clustered we might expect K(d) > �d2, while if
the points follow some regularly space pattern we would expect K(d) <
�d2. This suggests a potential inferential use for K; namely, comparing
an estimate of it from a data set to some theoretical quantities, which in
turn suggests if clustering is present, and if so, which model might be most
plausible. The usual estimator for K is given by

bK(d) = n�2jAj
XX

i6=j

p�1ij Id(dij) ; (1:8)

where n is the number of points in A, dij is the distance between points i
and j, pij is the proportion of the circle with center i and passing through
j that lies within A, and Id(dij) equals 1 if dij < d, and 0 otherwise.
A popular spatial add-on to the S+ package, S+SpatialStats, allows

computation of K for any data set, as well as approximate 95% intervals
for it so the signi�cance of departure from some theoretical model may
be judged. However, full inference likely requires use of the Splancs soft-
ware (www.maths.lancs.ac.uk/~rowlings/Splancs/), or perhaps a fully
Bayesian approach along the lines of Wake�eld and Morris (2001). Again,
in the remainder of this book we con�ne ourselves to the case of a �xed in-
dex set D, i.e., random observations at either �xed points si or areal units
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10 OVERVIEW OF SPATIAL DATA PROBLEMS

Bi. The reader may wish to consult the recent books by Diggle (2003),
Lawson and Denison (2002), and M�ller and Waagepetersen (2004) for re-
cent treatments of spatial point processes and related methods in spatial
cluster detection and modeling.

1.2 Fundamentals of cartography

In this section we provide a brief introduction to how geographers and spa-
tial statisticians understand the geometry of (and determine distances on)
the surface of the earth. This requires a bit of thought regarding cartogra-
phy (mapmaking), especially map projections, and the meaning of latitude
and longitude, which are often understood informally (but incorrectly) by
laypersons and even some spatial modelers as being equivalent to Cartesian
x and y coordinates.

1.2.1 Map projections

A map projection is a systematic representation of all or part of the surface
of the earth on a plane. This typically comprises lines delineating meridi-
ans (longitudes) and parallels (latitudes), as required by some de�nitions
of the projection. A well-known fact from topology is that it is impossible
to prepare a distortion-free at map of a surface curving in all directions.
Thus, the cartographer must choose the characteristic (or characteristics)
that are to be shown accurately in the map. In fact, it cannot be said that
there is a \best" projection for mapping. The purpose of the projection
and the application at hand lead to projections that are appropriate. Even
for a single application, there may be several appropriate projections, and
choosing the \best" projection can be subjective. Indeed there are an in�-
nite number of projections that can be devised, and several hundred have
been published.
Since the sphere cannot be attened onto a plane without distortion, the

general strategy for map projections is to use an intermediate surface that
can be attened. This intermediate surface is called a developable surface

and the sphere is �rst projected onto the this surface, which is then laid
out as a plane. The three most commonly used surfaces are the cylinder,
the cone and the plane itself. Using di�erent orientations of these surfaces
lead to di�erent classes of map projections. Some examples are given in
Figure 1.4. The points on the globe are projected onto the wrapping (or
tangential) surface, which is then laid out to form the map. These projec-
tions may be performed in several ways, giving rise to di�erent projections.
Before the availability of computers, the above orientations were used by

cartographers in the physical construction of maps. With computational
advances and digitizing of cartography, analytical formulae for projections
were desired. Here we briey outline the underlying theory for equal-area
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Figure 1.4 The geometric constructions of projections using developable surfaces.

and conformal (locally shape-preserving) maps. A much more detailed and
rigorous treatment may be found in Pearson (1990).
The basic idea behind deriving equations for map projections is to con-

sider a sphere with the geographical coordinate system (�; �) for longitude
and latitude and to construct an appropriate (rectangular or polar) coor-
dinate system (x; y) so that

x = f(�; �); y = g(�; �) ;

where f and g are appropriate functions to be determined, based upon the
properties we want our map to possess. We will study map projections us-
ing di�erential geometry concepts, looking at in�nitesimal patches on the
sphere (so that curvature may be neglected and the patches are closely
approximated by planes) and deriving a set of (partial) di�erential equa-
tions whose solution will yield f and g. Suitable initial conditions are set
to create projections with desired geometric properties.
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12 OVERVIEW OF SPATIAL DATA PROBLEMS

Thus, consider a small patch on the sphere formed by the in�nitesimal
quadrilateral, ABCD, given by the vertices,

A = (�; �); B = (�; � + d�); C = (�+ d�; �); D = (�+ d�; � + d�):

So, with R being the radius of the earth, the horizontal di�erential compo-
nent along an arc of latitude is given by jACj = (R cos�)d� and the vertical
component along a great circle of longitude is given by jABj = Rd�. Note
that since AC and AB are arcs along the latitude and longitude of the
globe, they intersect each other at right angles. Therefore, the area of the
patch ABCD is given by jACjjABj. Let A0B0C 0D0 be the (in�nitesimal)
image of the patch ABCD on the map. Then, we see that

A0 = (f(�; �); g(�; �));
C 0 = (f(�+ d�; �); g(� + d�; �));
B0 = (f(�; �+ d�); g(�; � + d�));

and D0 = (f(�+ d�; �+ d�); g(� + d�; �+ d�)) :

This in turn implies that

��!
A0C 0 =

�
@f

@�
;
@g

@�

�
d� and

��!
A0B0 =

�
@f

@�
;
@g

@�

�
d� :

If we desire an equal-area projection we need to equate the area of the
patches ABCD and A0B0C 0D0. But note that the area of A0B0C 0D0 is given

by the area of parallelogram formed by vectors
��!
A0C 0 and

��!
A0B0. Treating

them as vectors in the xy plane of an xyz system, we see that the area of
A0B0C 0D0 is the cross-product,

(
��!
A0C 0; 0)� (

��!
A0B0; 0) =

�
@f

@�

@g

@�
�
@f

@�

@g

@�

�
d�d� :

Therefore, we equate the above to jACjjABj, leading to the following partial
di�erential equation in f and g:�

@f

@�

@g

@�
�
@f

@�

@g

@�

�
= R2 cos� :

Note that this is the equation that must be satis�ed by any equal-area
projection. It is an underdetermined system, and further conditions need
to be imposed (that ensure other speci�c properties of the projection) to
arrive at f and g.

Example 1.1 Equal-area maps are used for statistical displays of areal-
referenced data. An easily derived equal-area projection is the sinusoidal
projection, shown in Figure 1.5. This is obtained by specifying @g=@� = R,
which yields equally spaced straight lines for the parallels, and results in
the following analytical expressions for f and g (with the 0 degree meridian
as the central meridian):

f(�; �) = R� cos�; g(�; �) = R�:
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Figure 1.5 The sinusoidal projection.

Another popular equal-area projection (with equally spaced straight lines
for the meridians) is the Lambert cylindrical projection given by

f(�; �) = R; g(�; �) = R sin� :

For conformal (angle-preserving) projections we set the angle 6 (AC;AB)
equal to 6 (A0C 0; A0B0). Since 6 (AC;AB) = �=2, cos( 6 (AC;AB)) = 0,
leading to

@f

@�

@f

@�
+
@g

@�

@g

@�
= 0

or, equivalently, the Cauchy-Riemann equations of complex analysis,�
@f

@�
+ i

@g

@�

��
@f

@�
� i

@g

@�

�
= 0 :

A su�cient partial di�erential equation system for conformal mappings of
the Cauchy-Riemman equations that is simpler to use is

@f

@�
=

@g

@�
cos�;

@g

@�
=
@f

@�
cos� :

Example 1.2 The Mercator projection shown in Figure 1.6 is a classical
example of a conformal projection. It has the interesting property that
rhumb lines (curves that intersect the meridians at a constant angle) are
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14 OVERVIEW OF SPATIAL DATA PROBLEMS

Figure 1.6 The Mercator projection.

shown as straight lines on the map. This is particularly useful for navigation
purposes. The Mercator projection is derived by letting @g=@� = R sec�:
After suitable integration, this leads to the analytical equations (with the
0 degree meridian as the central meridian),

f(�; �) = R�; g(�; �) = R ln tan

�
�

4
+
�

2

�
:

As is seen above, even the simplest map projections lead to complex
transcendental equations relating latitude and longitude to positions of
points on a given map. Therefore, rectangular grids have been developed
for use by surveyors. In this way, each point may be designated merely
by its distance from two perpendicular axes on a at map. The y-axis
usually coincides with a chosen central meridian, y increasing north, and
the x-axis is perpendicular to the y-axis at a latitude of origin on the
central meridian, with x increasing east. Frequently, the x and y coordinates
are called \eastings" and \northings," respectively, and to avoid negative
coordinates, may have \false eastings" and \false northings" added to them.
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Figure 1.7 Example of a UTM grid over the U.S.

The grid lines usually do not coincide with any meridians and parallels
except for the central meridian and the equator.

The National Imagery and Mapping Agency (NIMA) (formerly the De-
fense Mapping Agency) adopted a special grid for military use throughout
the world called the Universal Transverse Mercator (UTM) grid; see Fig-
ure 1.7. In this grid, the world is divided into 60 north-south zones, each
covering a strip six degrees wide in longitude. These zones are numbered
consecutively beginning with Zone 1, between 180 degrees and 174 degrees
west longitude, and progressing eastward to Zone 60, between 174 degrees
and 180 degrees east longitude. Thus, the contiguous 48 states are cov-
ered by 10 zones, from Zone 10 on the west coast through Zone 19 in New
England. In each zone, coordinates are measured north and east in meters.
The northing values are measured continuously from zero at the Equator,
in a northerly direction. To avoid negative numbers for locations south of
the Equator, NIMA's cartographers assigned the Equator an arbitrary false
northing value of 10,000,000 meters. A central meridian through the mid-
dle of each 6 degree zone is assigned an easting value of 500,000 meters.
Grid values to the west of this central meridian are less than 500,000; to
the east, more than 500,000.

To use the UTM grid, a transparent grid is overlaid on the map to sub-
divide the grid. The distances can be measured in meters at the map scale
between any map point and the nearest grid lines to the south and west.
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Figure 1.8 Finding the easting and northing of a point in a UTM projection.

The northing of the point is the value of the nearest grid line south of it
plus its distance north of that line; its easting is the value of the nearest
grid line west of it plus its distance east of that line. For example, in Fig-
ure 1.8, the grid value of line A-A is 357,000 meters east. The grid value
of line B-B is 4,276,000 meters north. Point P is 800 meters east and 750
meters north of the grid lines; therefore, the grid coordinates of point P
are north 4,276,750 and east 357,800.

Finally, since spatial modeling of point-level data often requires comput-
ing distances between points on the earth's surface, one might wonder about
a planar map projection, which would preserve distances between points.
Unfortunately, the existence of such a map is precluded by Gauss' The-
orema Eggregium in di�erential geometry (see, e.g., Guggenheimer, 1977,
pp. 240{242). Thus, while we have seen projections that preserve area and
shapes, distances are always distorted. The gnomonic projection (Snyder,
1987, pp. 164{168) gives the correct distance from a single reference point,
but is less useful for the practicing spatial analyst who needs to obtain
complete intersite distance matrices (since this would require not one but
many such maps). See Banerjee (2003) for more details.
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FUNDAMENTALS OF CARTOGRAPHY 17

1.2.2 Calculating distance on the earth's surface

As we have seen, the most common approach in spatial statistics is to
model spatial dependence between two variables as a function of the dis-
tance between them. For data sets covering relatively small spatial domains,
ordinary Euclidean distance is �ne for this purpose. However, for larger do-
mains (say, the entire continental U.S.) we must account for the curvature
of the earth when computing such distances.
Suppose we have two points on the surface of the earth, P1 = (�1; �1)

and P2 = (�2; �2). We assume both points are represented in terms of
latitude and longitude. That is, let �1 and �1 be the latitude and longitude,
respectively, of the point P1, while �2 and �2 are those for the point P2.
The main problem is to �nd the shortest distance (geodesic) between the
points. The solution is obtained via the following formulae:

D = R�

where R is the radius of the earth and � is an angle (measured in radians)
satisfying

cos� = sin �1 sin �2 + cos �1 cos �2 cos (�1 � �2) : (1:9)

These formulae are derived as follows. The geodesic is actually the arc of
the great circle joining the two points. Thus the distance will be the length
of the arc of a great circle (i.e., a circle with radius equal to the radius of
the earth). Recall that the length of the arc of a circle equals the angle
subtended by the arc at the center multiplied by the radius of the circle.
Therefore it su�ces to �nd the angle subtended by the arc; denote this
angle by �.
Let us form a three-dimensional Cartesian coordinate system (x; y; z),

with the origin at the center of the earth, the z-axis along the North and
South Poles, and the x-axis on the plane of the equator joining the center
of the earth and the Greenwich meridian. Using the left panel of Figure 1.9
as a guide, elementary trigonometry provides the following relationships
between (x; y; z) and the latitude-longitude (�; �):

x = R cos � cos�;

y = R cos � sin�;

and z = R sin � :

Now form the vectors u1 = (x1; y1; z1) and u2 = (x2; y2; z2) as the Carte-
sian coordinates corresponding to points P1 and P2. Hence � is the angle
between u1 and u2. From standard analytic geometry, the easiest way to
�nd this angle is therefore to use the following relationship between the
cosine of this angle and the dot product of u1 and u2:

cos� =
hu1;u2i
jju1jj jju2jj :
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18 OVERVIEW OF SPATIAL DATA PROBLEMS

Figure 1.9 Diagrams illustrating the geometry underlying the calculation of great
circle (geodesic) distance.

We then compute hu1;u2i as
R2 [cos �1 cos�1 cos �2 cos�2 + cos �1 sin�1 cos �2 sin�2 + sin �1 sin �2]

= R2 [cos �1 cos �2 cos (�1 � �2) + sin �1 sin �2] :

But jju1jj = jju2jj = R, so the result in (1.9) follows. Looking at the right
panel of Figure 1.9, our �nal answer is thus

D = R� = R arccos[sin �1 sin �2 + cos �1 cos �2 cos (�2 � �1)] : (1:10)

1.3 Exercises

1. What sorts of areal unit variables can you envision that could be viewed
as arising from point-referenced variables? What sorts of areal unit vari-
ables can you envision whose mean could be viewed as arising from a
point-referenced surface? What sorts of areal unit variables �t neither
of these scenarios?

2. What sorts of sensible properties should characterize association between
point-referenced measurements? What sorts of sensible properties should
characterize association between areal unit measurements?

3. Suggest some regional-level covariates that might help explain the spatial
pattern evident in Figure 1.2. (Hint: The roughly rectangular group of
regions located on the map's eastern side is the city of Minneapolis,
MN.)

4.(a) Suppose you recorded elevation and average daily temperature on a
particular day for a sample of locations in a region. If you were given
the elevation at a new location, how would you make a plausible
estimate of the average daily temperature for that location?

(b) Why might you expect spatial association between selling prices of
single-family homes in this region to be weaker than that between
the observed temperature measurements?
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5. For what sorts of point-referenced spatial data would you expect mea-
surements across time to be essentially independent? For what sorts of
point-referenced data would you expect measurements across time to be
strongly dependent?

6. For point-referenced data, suppose the means of the variables are spa-
tially associated. Would you expect the association between the variables
themselves to be weaker than, stronger than, or the same as the associ-
ation between the means?

7.(a) Write an S-plus or R function that will compute the distance between
2 points P1 and P2 on the surface of the earth. The function should
take the latitude and longitude of the Pi as input, and output the
geodesic distance D given in (1.10). Use R = 6371 km.

(b) Use your program to obtain the geodesic distance between Chicago
(87.63W, 41.88N) and Minneapolis (93.22W, 44.89N), and between
New York (73.97W, 40.78N) and New Orleans (90.25W, 29.98N).

8. A \naive Euclidean" distance may be computed between two points by
simply applying the Euclidean distance formula to the longitude-latitude
coordinates, and then multiplying by (R�=180) to convert to kilometers.
Find the naive Euclidean distance between Chicago and Minneapolis,
and between New York and New Orleans, comparing your results to the
geodesic ones in the previous problem.

9. The chordal (\burrowing through the earth") distance separating two
points is given by the Euclidean distance applied to the cartesian spher-
ical coordinate system given in Subsection 1.2.2. Find the chordal dis-
tance between Chicago and Minneapolis, and between New York and
New Orleans, comparing your results to the geodesic and naive Eu-
clidean ones above.

10. A two-dimensional projection, often used to approximate geodesic dis-
tances by applying Euclidean metrics, sets up rectangular axes along
the centroid of the observed locations, and scales the points accord-
ing to these axes. Thus, with N locations having geographical coordi-
nates (�i; �i)

N
i=1, we �rst compute the centroid

�
��; ��

�
(the mean longi-

tude and latitude). Next, two distances are computed. The �rst, dX ,
is the geodesic distance (computed using (1.10) between

�
��; �min

�
and�

��; �max

�
, where �min and �max are the minimum and maximum of the

observed latitudes. Analogously, dY is the geodesic distance computed
between

�
�min; ��

�
and

�
�max; ��

�
. These actually scale the axes in terms

of true geodesic distances. The projection is then given by

x =
�� ��

�max � �min
dX ; and y =

� � ��

�max � �min
dY :

Applying the Euclidean metric to the projected coordinates yields a
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20 OVERVIEW OF SPATIAL DATA PROBLEMS

good approximation to the intersite geodesic distances. This projection is
useful for entering coordinates in spatial statistics software packages that
require two-dimensional coordinate input and uses Euclidean metrics to
compute distances (e.g., the variogram functions in S+SpatialStats,
the spatial.exp function in WinBUGS, etc.).

(a) Compute the above projection for Chicago and Minneapolis (N = 2)
and �nd the Euclidean distance between the projected coordinates.
Compare with the geodesic distance. Repeat this exercise for New
York and New Orleans.

(b) When will the above projection fail to work?
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CHAPTER 2

Basics of point-referenced data
models

In this chapter we present the essential elements of spatial models and
classical analysis for point-referenced data. As mentioned in Chapter 1,
the fundamental concept underlying the theory is a stochastic process
fY (s) : s 2 Dg, where D is a �xed subset of r-dimensional Euclidean space.
Note that such stochastic processes have a rich presence in the time series
literature, where r = 1. In the spatial context, usually we encounter r to be
2 (say, northings and eastings) or 3 (e.g., northings, eastings, and altitude
above sea level). For situations where r > 1, the process is often referred to
as a spatial process. For example, Y (s) may represent the level of a pollu-
tant at site s. While it is conceptually sensible to assume the existence of a
pollutant level at all possible sites in the domain, in practice the data will
be a partial realization of that spatial process. That is, it will consist of
measurements at a �nite set of locations, say fs1; : : : ; sng, where there are
monitoring stations. The problem facing the statistician is inference about
the spatial process Y (s) and prediction at new locations, based upon this
partial realization.

This chapter is organized as follows. We begin with a survey of the build-
ing blocks of point-level data modeling, including stationarity, isotropy, and
variograms (and their �tting via traditional moment-matching methods).
We then add the spatial (typically Gaussian) process modeling that en-
ables likelihood (and Bayesian) inference in these settings. We also illus-
trate helpful exploratory data analysis tools, as well as more formal classical
methods, especially kriging (point-level spatial prediction). We close with
short tutorials in S+SpatialStats and geoR, two easy to use and widely
available point-level spatial statistical analysis packages.

The material we cover in this chapter is traditionally known as geostatis-
tics, and could easily �ll many more pages than we devote to it here. While
we prefer the more descriptive term \point-level spatial modeling," we will
at times still use \geostatistics" for brevity and perhaps consistency when
referencing the literature.
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22 BASICS OF POINT-REFERENCED DATA MODELS

2.1 Elements of point-referenced modeling

2.1.1 Stationarity

For our discussion we assume that our spatial process has a mean, say
� (s) = E (Y (s)), associated with it and that the variance of Y (s) exists
for all s 2 D. The process Y (s) is said to be Gaussian if, for any n � 1 and

any set of sites fs1; : : : ; sng, Y = (Y (s1) ; : : : ; Y (sn))
T has a multivariate

normal distribution. The process is said to be strictly stationary if, for any
given n � 1; any set of n sites fs1; : : : ; sng and any h 2 <r, the distribution
of (Y (s1) ; : : : ; Y (sn)) is the same as that of (Y (s1 + h) ; : : : ; Y (sn + h)).
Here D is envisioned as <r as well.
A less restrictive condition is given by weak stationarity (also called

second-order stationarity). Cressie (1993, p. 53) de�nes a spatial process
to be weakly stationary if � (s) � � (i.e., the process has a constant mean)
and Cov (Y (s) ; Y (s+ h)) = C (h) for all h 2 <r such that s and s + h

both lie within D. (We note that, strictly speaking, for stationarity as a
second-order property we will need only the second property; E(Y (s)) need
not equal E(Y (s+h)). But since we will apply the de�nition only to a mean
0 spatial residual term, this distinction is unimportant for us.) Weak sta-
tionarity implies that the covariance relationship between the values of the
process at any two locations can be summarized by a covariance function
C (h), and this function depends only on the separation vector h. Note that
with all variances assumed to exist, strong stationarity implies weak sta-
tionarity. The converse is not true in general, but it does hold for Gaussian
processes; see Exercise 2.

2.1.2 Variograms

There is a third type of stationarity called intrinsic stationarity. Here we
assume E[Y (s+ h)� Y (s)] = 0 and de�ne

E[Y (s+ h)� Y (s)]2 = V ar (Y (s+ h)� Y (s)) = 2 (h) : (2:1)

Equation (2.1) makes sense only if the left-hand side depends only on h

(so that the right-hand side can be written at all), and not the particular
choice of s. If this is the case, we say the process is intrinsically stationary.
The function 2 (h) is then called the variogram, and  (h) is called the
semivariogram. (The covariance function C(h) is sometimes referred to as
the covariogram, especially when plotted graphically.) Note that intrinsic
stationarity de�nes only the �rst and second moments of the di�erences
Y (s+h)�Y (s). It says nothing about the joint distribution of a collection
of variables Y (s1); : : : ; Y (sn), and thus provides no likelihood.

It is easy to see the relationship between the variogram and the covari-
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ance function:

2(h) = V ar (Y (s+ h)� Y (s))

= V ar(Y (s+ h)) + V ar(Y (s))� 2Cov(Y (s+ h); Y (s))

= C(0) + C(0)� 2C (h)

= 2 [C (0)� C (h)] :

Thus,

 (h) = C (0)� C (h) : (2:2)

From (2.2) we see that given C, we are able to recover  easily. But what
about the converse; in general, can we recover C from ? Here it turns out
we need to assume a bit more: if the spatial process is ergodic, then C (h)!
0 as jjhjj ! 1, where jjhjj denotes the length of the h vector. This is an
intuitively sensible condition, since it means that the covariance between
the values at two points vanishes as the points become further separated
in space. But taking the limit of both sides of (2.2) as jjhjj ! 1, we then
have that limjjhjj!1 (h) = C (0). Thus, using the dummy variable u to

avoid confusion, we have

C (h) = C(0)� (h) = limjjujj!1 (u) �  (h) : (2:3)

In general, the limit on the right-hand side need not exist, but if it does,
then the process is weakly (second-order) stationary with C (h) as given
in (2.3). We then have a way to determine the covariance function C from
the semivariogram . Thus weak stationarity implies intrinsic stationarity,
but the converse is not true; indeed, the next section o�ers examples of
processes that are intrinsically stationary but not weakly stationary.
A valid variogram necessarily satis�es a negative de�niteness condition.

In fact, for any set of locations s1; : : : ; sn and any set of constants a1; : : : ; an
such that

P
i ai = 0, if (h) is valid, thenX

i

X
j

aiaj(si � sj) � 0 : (2:4)

To see this, note thatX
i

X
j

aiaj(si � sj) =
1

2
E
X
i

X
j

aiaj(Y (si)� Y (sj))
2

= �E
X
i

X
j

aiajY (si)Y (sj)

= �E
"X

i

aiY (si)

#2
� 0 :

Note that, despite the suggestion of expression (2.2), there is no re-
lationship between this result and the positive de�niteness condition for
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c) expo;  a0 = 0.2 , a1 = 1 , phi = 2 

Figure 2.1 Theoretical semivariograms for three models: (a) linear, (b) spherical,
and (c) exponential.

covariance functions (see Subsection 2.2.2). Cressie (1993) discusses fur-
ther necessary conditions for a valid variogram. Lastly, the condition (2.4)
emerges naturally in ordinary kriging (see Section 2.4).

2.1.3 Isotropy

Another important related concept is that of isotropy (as mentioned in
Subsection 1.1.1). If the semivariogram function  (h) depends upon the
separation vector only through its length jjhjj, then we say that the process
is isotropic; if not, we say it is anisotropic. Thus for an isotropic process,
 (h) is a real-valued function of a univariate argument, and can be written
as  (jjhjj). If the process is intrinsically stationary and isotropic, it is also
called homogeneous.

Isotropic processes are popular because of their simplicity, interpretabil-
ity, and, in particular, because a number of relatively simple parametric
forms are available as candidates for the semivariogram. Denoting jjhjj by
t for notational simplicity, we now consider a few of the more important
such forms.

1. Linear:

(t) =

�
�2 + �2t if t > 0; �2 > 0; �2 > 0

0 otherwise
:

Note that  (t)!1 as t!1, and so this semivariogram does not corre-
spond to a weakly stationary process (although it is intrinsically station-
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ary). This semivariogram is plotted in Figure 2.1(a) using the parameter
values �2 = 0:2 and �2 = 0:5.

2. Spherical:

(t) =

8><>:
�2 + �2 if t � 1=�;

�2 + �2
n
3�t
2 � 1

2 (�t)
3
o

if 0 < t � 1=�;

0 otherwise

:

The spherical semivariogram is valid in r = 1; 2, or 3 dimensions, but for
r � 4 it fails to correspond to a spatial variance matrix that is positive
de�nite (as required to specify a valid joint probability distribution). The
spherical form does give rise to a stationary process and so the correspond-
ing covariance function is easily computed (see the exercises that follow).

This variogram owes its popularity largely to the fact that it o�ers clear
illustrations of the nugget, sill, and range, three characteristics traditionally
associated with variograms. Speci�cally, consider Figure 2.1(b), which plots
the spherical semivariogram using the parameter values �2 = 0:2, �2 = 1,
and � = 1. While (0) = 0 by de�nition, (0+) � limt!0+ (t) = �2; this
quantity is the nugget. Next, limt!1 (t) = �2 +�2; this asymptotic value
of the semivariogram is called the sill. (The sill minus the nugget, which is
simply �2 in this case, is called the partial sill.) Finally, the value t = 1=�
at which (t) �rst reaches its ultimate level (the sill) is called the range.
It is for this reason that many of the variogram models of this subsection
are often parametrized through R � 1=�. Confusingly, both R and � are
sometimes referred to as the range parameter, although � is often more
accurately referred to as the decay parameter.

Note that for the linear semivariogram, the nugget is �2 but the sill and
range are both in�nite. For other variograms (such as the next one we
consider), the sill is �nite, but only reached asymptotically.

3. Exponential:

(t) =

�
�2 + �2 (1� exp (��t)) if t > 0;

0 otherwise
:

The exponential has an advantage over the spherical in that it is simpler
in functional form while still being a valid variogram in all dimensions
(and without the spherical's �nite range requirement). However, note from
Figure 2.1(c), which plots this semivariogram assuming �2 = 0:2, �2 =
1, and � = 2, that the sill is only reached asymptotically, meaning that
strictly speaking, the range R = 1=� is in�nite. In cases like this, the
notion of an e�ective range if often used, i.e., the distance at which there
is essentially no lingering spatial correlation. To make this notion precise,
we must convert from  scale to C scale (possible here since limt!1 (t)
exists; the exponential is not only intrinsically but also weakly stationary).
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From (2.3) we have

C(t) = limu!1(u)� (t)

= �2 + �2 � ��2 + �2(1� exp(��t))�
= �2 exp(��t) :

Hence

C(t) =

�
�2 + �2 if t = 0

�2 exp(��t) if t > 0
: (2:5)

If the nugget �2 = 0, then this expression reveals that the correlation be-
tween two points t units apart is exp(��t); note that exp(��t) = 1� for
t = 0+ and exp(��t) = 0 for t = 1, both in concert with this interpreta-
tion.
A common de�nition of the e�ective range, t0, is the distance at which

this correlation has dropped to only 0.05. Setting exp(��t0) equal to this
value we obtain t0 � 3=�, since log(0:05) � �3. The range will be discussed
in more detail in Subsection 2.2.2.
Finally, the form of (2.5) gives a clear example of why the nugget (�2 in

this case) is often viewed as a \nonspatial e�ect variance," and the partial
sill (�2) is viewed as a \spatial e�ect variance." Along with �, a statistician
would likely view �tting this model to a spatial data set as an exercise in
estimating these three parameters. We shall return to variogram model
�tting in Subsection 2.1.4.
4. Gaussian:

(t) =

�
�2 + �2

�
1� exp

���2t2�� if t > 0
0 otherwise

: (2:6)

The Gaussian variogram is an analytic function and yields very smooth
realizations of the spatial process. We shall say much more about process
smoothness in Subsection 2.2.3.
5. Powered exponential:

(t) =

�
�2 + �2 (1� exp (� j�tjp)) if t > 0

0 otherwise
: (2:7)

Here 0 < p � 2 yields a family of valid variograms. Note that both the
Gaussian and the exponential forms are special cases of this one.
6. Rational quadratic:

(t) =

(
�2 + �2t2

(1+�t2) if t > 0

0 otherwise
:

7. Wave:

(t) =

(
�2 + �2

�
1� sin(�t)

�t

�
if t > 0

0 otherwise
:
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Model Covariance function, C(t)

Linear C(t) does not exist

Spherical C(t) =

8<:
0 if t � 1=�

�2
�
1� 3

2�t+
1
2 (�t)

3
�

if 0 < t � 1=�
�2 + �2 otherwise

Exponential C(t) =

�
�2 exp(��t) if t > 0
�2 + �2 otherwise

Powered
exponential

C(t) =

�
�2 exp(�j�tjp) if t > 0

�2 + �2 otherwise

Gaussian C(t) =

�
�2 exp(��2t2) if t > 0

�2 + �2 otherwise

Rational
quadratic

C(t) =

(
�2
�
1� t2

(1+�t2)

�
if t > 0

�2 + �2 otherwise

Wave C(t) =

(
�2 sin(�t)�t if t > 0

�2 + �2 otherwise

Power law C(t) does not exist

Mat�ern C(t) =

(
�2

2��1�(�) (2
p
�t�)

�
K�(2

p
�t�) if t > 0

�2 + �2 otherwise

Mat�ern
at � = 3=2

C(t) =

�
�2 (1 + �t) exp (��t) if t > 0

�2 + �2 otherwise

Table 2.1 Summary of covariance functions (covariograms) for common paramet-
ric isotropic models.

Note this is an example of a variogram that is not monotonically increas-
ing. The associated covariance function is C(t) = �2 sin(�t)=(�t). Bessel
functions of the �rst kind include the wave covariance function and are
discussed in detail in Subsections 2.2.2 and 5.1.3.
8. Power law

(t) =

�
�2 + �2t� of t > 0

0 otherwise
:

This generalizes the linear case and produces valid intrinsic (albeit not
weakly) stationary semivariograms provided 0 � � < 2.
9. Mat�ern : The variogram for the Mat�ern class is given by

(t) =

(
�2 + �2

h
1� (2

p
�t�)�

2��1�(�)K�(2
p
�t�)

i
if t > 0

�2 otherwise
: (2:8)

This class was originally suggested by Mat�ern (1960, 1986). Interest in it
was revived by Handcock and Stein (1993) and Handcock andWallis (1994),
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model Variogram, (t)

Linear (t) =

�
�2 + �2t if t > 0

0 otherwise

Spherical (t) =

8<:
�2 + �2 if t � 1=�

�2 + �2
�
3
2�t� 1

2 (�t)
3
�

if 0 < t � 1=�
0 otherwise

Exponential (t) =

�
�2 + �2(1� exp(��t)) if t > 0

0 otherwise
Powered
exponential

(t) =

�
�2 + �2(1� exp(�j�tjp)) if t > 0

0 otherwise

Gaussian (t) =

�
�2 + �2(1� exp(��2t2)) if t > 0

0 otherwise

Rational
quadratic

(t) =

(
�2 + �2t2

(1+�t2) if t > 0

0 otherwise

Wave (t) =

(
�2 + �2(1� sin(�t)

�t ) if t > 0

0 otherwise

Power law (t) =

�
�2 + �2t� if t > 0

0 otherwise

Mat�ern (t) =

(
�2 + �2

h
1� (2

p
�t�)�

2��1�(�)K�(2
p
�t�)

i
if t > 0

0 otherwise
Mat�ern
at � = 3=2

(t) =

�
�2 + �2 [1� (1 + �t) exp (��t)] if t > 0

0 otherwise

Table 2.2 Summary of variograms for common parametric isotropic models.

who demonstrated attractive interpretations for � as well as �. Here � > 0
is a parameter controlling the smoothness of the realized random �eld (see
Subsection 2.2.3) while � is a spatial scale parameter. The function � (�) is
the usual gamma function while K� is the modi�ed Bessel function of order
� (see, e.g., Abramowitz and Stegun, 1965, Chapter 9). Implementations
of this function are available in several C/C++ libraries and also in the R

package geoR. Note that special cases of the above are the exponential
(� = 1=2) and the Gaussian (� !1). At � = 3=2 we obtain a closed form
as well, namely (t) = �2 + �2 [1� (1 + �t) exp (��t)] for t > 0, and �2

otherwise.

The covariance functions and variograms we have described in this sub-
section are conveniently summarized in Tables 2.1 and 2.2, respectively.
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2.1.4 Variogram model �tting

Having seen a fairly large selection of models for the variogram, one might
well wonder how we choose one of them for a given data set, or whether
the data can really distinguish them (see Subsection 5.1.3 in this latter
regard). Historically, a variogram model is chosen by plotting the empir-
ical semivariogram (Matheron, 1963), a simple nonparametric estimate of
the semivariogram, and then comparing it to the various theoretical shapes
available from the choices in the previous subsection. The customary em-
pirical semivariogram is

b(t) = 1

2N(t)

X
(si;sj)2N(t)

[Y (si)� Y (sj)]
2 ; (2:9)

where N(t) is the set of pairs of points such that jjsi � sj jj = t, and jN(t)j
is the number of pairs in this set. Notice that, unless the observations fall
on a regular grid, the distances between the pairs will all be di�erent, so
this will not be a useful estimate as it stands. Instead we would \grid
up" the t-space into intervals I1 = (0; t1); I2 = (t1; t2), and so forth, up
to IK = (tK�1; tK) for some (possibly regular) grid 0 < t1 < � � � < tK .
Representing the t values in each interval by its midpoint, we then alter
our de�nition of N(t) to

N(tk) = f(si; sj) : jjsi � sj jj 2 Ikg ; k = 1; : : : ;K :

Selection of an appropriate number of intervals K and location of the up-
per endpoint tK is reminiscent of similar issues in histogram construction.
Journel and Huijbregts (1979) recommend bins wide enough to capture at
least 30 pairs per bin.
Clearly (2.9) is nothing but a method of moments (MOM) estimate, the

semivariogram analogue of the usual sample variance estimate s2. While
very natural, there is reason to doubt that this is the best estimate of the
semivariogram. Certainly it will be sensitive to outliers, and the sample av-
erage of the squared di�erences may be rather badly behaved since under
a Gaussian distributional assumption for the Y (si), the squared di�erences
will have a distribution that is a scale multiple of the heavily skewed �21
distribution. In this regard, Cressie and Hawkins (1980) proposed a robusti-

�ed estimate that uses sample averages of jY (si)� Y (sj)j1=2; this estimate
is available in several software packages (see Section 2.5.1 below). Perhaps
more uncomfortable is that (2.9) uses data di�erences, rather than the data
itself. Also of concern is the fact that the components of the sum in (2.9)
will be dependent within and across bins, and that N(tk) will vary across
bins.
In any case, an empirical semivariogram estimate can be plotted, viewed,

and an appropriately shaped theoretical variogram model can be �t to this
\data." Since any empirical estimate naturally carries with it a signi�-

© 2004 by CRC Press LLC



30 BASICS OF POINT-REFERENCED DATA MODELS

cant amount of noise in addition to its signal, this �tting of a theoretical
model has traditionally been as much art as science: in any given real data
setting, any number of di�erent models (exponential, Gaussian, spherical,
etc.) may seem equally appropriate. Indeed, �tting has historically been
done \by eye," or at best by using trial and error to choose values of
nugget, sill, and range parameters that provide a good match to the em-
pirical semivariogram (where the \goodness" can be judged visually or by
using some least squares or similar criterion); again see Section 2.5.1. More
formally, we could treat this as a statistical estimation problem, and use
nonlinear maximization routines to �nd nugget, sill, and range parameters
that minimize some goodness-of-�t criterion.
If we also have a distributional model for the data, we could use maxi-

mum likelihood (or restricted maximum likelihood, REML) to obtain sen-
sible parameter estimates; see, e.g., Smith (2001) for details in the case
of Gaussian data modeled with the various parametric variogram families
outlined in Subsection 2.1.3. In Chapter 4 and Chapter 5 we shall see that
the hierarchical Bayesian approach is broadly similar to this latter method,
although it will often be easier and more intuitive to work directly with
the covariance model C(t), rather than changing to a partial likelihood in
order to introduce the semivariogram.

2.2 Spatial process models ?

2.2.1 Formal modeling theory for spatial processes

When we write the collection of random variables fY (s) : s 2 Dg for some
region of interest D or more generally fY (s) : s 2 <rg, it is evident that
we are envisioning a stochastic process indexed by s: To capture spatial
association it is also evident that these variables will be pairwise dependent
with strength of dependence that is speci�ed by their locations.
So, in fact, we have to determine the joint distribution for an uncount-

able number of random variables. In fact, we do this through speci�cation
of arbitrary �nite dimensional distributions, i.e., for an arbitrary number
of and choice of locations. Consistency of such speci�cations in terms of
ensuring a unique joint distribution will rarely hold and will be di�cult to
establish. We avoid such technical concerns here by con�ning ourselves to
Gaussian processes or to mixtures of such processes. In this case, all that
is required is a valid correlation function, as we discuss below.
Again, to clarify the inference setting, in practice we will only observe

Y (s) at a �nite set of locations, s1; s2; : : : ; sn. Based upon fY (si); i =
1; : : : ; ng, we seek to infer about the mean, variability, and association
structure of the process. We also seek to predict Y (s) at arbitrary un-
observed locations. Since our focus is on hierarchical modeling, often the
spatial process is introduced through random e�ects at the second stage of
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the modeling speci�cation. In this case, we still have the same inferential
questions but now the process is never actually observed. It is latent and
the data, modeled at the �rst stage, helps us to learn about the process.
In this sense, we can make intuitive connections with familiar dynamic

models (e.g., West and Harrison, 1997) where there is a latent state space
model that is temporally updated. In fact, this reminds us of a critical dif-
ference between the one-dimensional time domain and the two-dimensional
spatial domain: we have full order in the former, but only partial order in
two or more dimensions.
The implications of this remark are substantial. Large sample analysis for

time series usually lets time go to 1. Asymptotics envision an increasing
time domain. By contrast, large sample analysis for spatial process data
usually envisions a �xed region with more and more points �lling in this
domain (so-called in�ll asymptotics). When applying increasing domain
asymptotic results, we can assume that, as we collect more and more data,
we can learn about temporal association at increasing distance in time.
When applying in�ll asymptotic results for a �xed domain we can learn
more and more about association as distance between points tends to 0:
However, with a maximum distance �xed by the domain we cannot learn
about association (in terms of consistent inference) at increasing distance.
The former remark indicates that we may be able to do an increasingly
better job with regard to spatial prediction at a given location. However,
we need not be doing better in terms of inferring about other features
of the process. See the work of Stein (1999a, 1999b) for a full technical
discussion regarding such asymptotic results. Here, we view such concerns
as providing encouragement for using a Bayesian framework for inference,
since then we need not rely on any asymptotic theory for inference, but
rather obtain exact inference given whatever data we have observed.
Before we turn to some technical discussion regarding covariance and cor-

relation functions, we note that the above restriction to Gaussian processes
enables several advantages. First, it allows very convenient distribution the-
ory. Joint marginal and conditional distributions are all immediately ob-
tained from standard theory once the mean and covariance structure have
been speci�ed. In fact, this is all we need to specify in order to determine all
distributions. Also, as we shall see, in the context of hierarchical modeling,
a Gaussian process assumption for spatial random e�ects introduced at the
second stage of the model is very natural in the same way that independent
random e�ects with variance components are customarily introduced in lin-
ear or generalized linear mixed models. From a technical point of view, as
noted in Subsection 2.1.1, if we work with Gaussian processes and station-
ary models, strong stationarity is equivalent to weak stationarity. We will
clarify these notions in the next subsection. Lastly, in most applications, it
is di�cult to criticize a Gaussian assumption. To argue this as simply as
possible, in the absence of replication we have Y = (Y (s1; : : : ; Y (sn)), a
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single realization from an n-dimensional distribution. With a sample size
of one, how can we criticize any multivariate distributional speci�cation
(Gaussian or otherwise)?
Strictly speaking this last assertion is not quite true with a Gaussian

process model. That is, the joint distribution is a multivariate normal with
mean say 0, and a covariance matrix that is a parametric function of the
parameters in the covariance function. When n is large enough, the e�ective
sample size will also be large. We can obtain by linear transformation a set
of approximately uncorrelated variables through which the adequacy of the
normal assumption can be studied. We omit details.

2.2.2 Covariance functions and spectra

In order to specify a stationary process we must provide a valid covariance
function. Here \valid" means that c(h) � cov(Y (s); Y (s+ h)) is such that
for any �nite set of sites s1; : : : ; sn and for any a1; : : : ; an,

V ar

"X
i

aiY (si)

#
=
X
i;j

aiajCov(Y (si); Y (sj)) =
X
i;j

aiajc(si � sj) � 0 ;

with strict inequality if not all the ai are 0: That is, we need c(h) to be a
positive de�nite function.
Verifying the positive de�niteness condition is evidently not routine. For-

tunately, we have Bochner's Theorem (see, e.g., Gikhman and Skorokhod,
1974, p. 208), which provides a necessary and su�cient condition for c(h)
to be positive de�nite. This theorem is applicable for h in arbitrary r-
dimensional Euclidean space, although our primary interest is in r = 2.
In general, for real-valued processes, Bochner's Theorem states that c(h)

is positive de�nite if and only if

c(h) =

Z
cos(wTh)G(dw) ; (2:10)

where G is a bounded, positive, symmetric about 0 measure in <r. Then
c(0) =

R
Gd(w) becomes a normalizing constant, and G(dw)=c(0) is re-

ferred to as the spectral distribution that induces c(h). If G(dw) has a
density with respect to Lebesgue measure, i.e., G(dw) = g(w)dw, then
g(w)=c(0) is referred to as the spectral density. Evidently, (2.10) can be
used to generate valid covariance functions; see (2.12) below. Of course,
the behavioral implications associated with c arising from a given G will
only be clear in special cases, and (2.10) will be integrable in closed form
only in cases that are even more special.

Since eiw
Th = cos(wTh) + i sin(wTh), we have c(h) =

R
eiw

ThG(dw).
That is, the imaginary term disappears due to the symmetry of G around
0. In other words, c(h) is a valid covariance function if and only if it is
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the characteristic function of an r-dimensional symmetric random variable
(random variable with a symmetric distribution). We note that if G is not

assumed to be symmetric about 0, c(h) =
R
eiw

ThG(dw) still provides
a valid covariance function (i.e., positive de�nite) but now for a complex-
valued random process on <r.
The Fourier transform of c(h) is

bc(w) =

Z
e�iw

Th c(h)dh : (2:11)

Applying the inversion formula, c(h) = (2�)�2
R
eiw

Thbc(w)dw, we see
that (2�)�rbc(w)=c(0) = g(w), the spectral density. Explicit computation
of (2.11) is usually not possible except in special cases. However, approxi-
mate calculation is available through the fast Fourier transform (FFT); see
Appendix A, Section A.4. Expression (2.11) can be used to check whether a
given c(h) is valid: we simply compute bc(w) and check whether it is positive
and integrable (so it is indeed a density up to normalization).

The one-to-one relationship between c(h) and g(w) enables examination
of spatial processes in the spectral domain rather than in the observational
domain. Computation of g(w) can often be expedited through fast Fourier
transforms; g can be estimated using the so-called periodogram. Likelihoods
can be obtained approximately in the spectral domain enabling inference
to be carried out in this domain. See, e.g., Guyon (1995) or Stein (1999a)
for a full development. Likelihood evaluation is much faster in the spectral
domain. However, in this book we con�ne ourselves to the observational
domain because of concerns regarding the accuracy associated with ap-
proximation in the spectral domain (e.g., the likelihood of Whittle, 1954),
and with the ad hoc creation of the periodogram (e.g., how many low fre-
quencies are ignored). We do however note that the spectral domain may
a�ord the best potential for handling computation associated with large
data sets.

Isotropic covariance functions, i.e., c(khk), where khk denotes the length
of h, are the most frequently adopted choice within the stationary class.
There are various direct methods for checking the permissibility of isotropic
covariance and variogram speci�cations. See, e.g., Armstrong and Diamond
(1984), Christakos (1984), and McBratney and Webster (1986). Again de-
noting jjhjj by t for notational simplicity, recall that Tables 2.1 and 2.2
provide the covariance function C(t) and variogram (t), respectively, for
the widely encountered parametric istropic choices that were initially pre-
sented in Subsection 2.1.3.

It is noteworthy that an isotropic covariance function that is valid in
dimension r need not be valid in dimension r + 1. The intuition may
be gleaned by considering r = 1 versus r = 2. For three points, in one-
dimensional space, given the distances separating points 1 and 2 (d12) and
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points 2 and 3 (d23), then the distance separating points 1 and 3 d13 is
either d12+ d23 or jd12� d23j. But in two-dimensional space, given d12 and
d23, d13 can take any value in <+ (subject to triangle inequality). With
increasing dimension more sets of interlocation distances are possible for a
given number of locations; it will be more di�cult for a function to satisfy
the positive de�niteness condition. Armstrong and Jabin (1981) provide an
explicit example that we defer to Exercise 3.

There are isotropic correlation functions that are valid in all dimensions.
The Gaussian correlation function, k(khk) = exp(�� khk2) is an exam-
ple. It is the characteristic function associated with r i.i.d. normal random
variables, each with variance 1=(2�) for any r. More generally, the powered
exponential, exp(�� khk�), 0 < � � 2 (and hence the exponential corre-
lation function) is valid for any r. The Cauchy correlation function is also
valid in any dimension.

Rather than seeking isotropic correlation functions that are valid in all
dimensions, we might seek all valid isotropic correlation function in a par-
ticular dimension r. Mat�ern (1960, 1986) provides the general result. The
set of c(khk) of the form

c(khk) =
Z 1

0

�
2

w khk
��

�(� + 1)J�(w khk)G(dw) ; (2:12)

where G is nondecreasing and integrable on <+; J� is the Bessel function
of the �rst kind of order �, and � = (r � 2)=2 provides all valid isotropic
correlation functions on <r.
When r = 2, v = 0 so that arbitrary correlation functions in two-

dimensional space arise as scale mixtures of Bessel functions of order 0.

In particular, J0(d) =
P1

k=0
(�1)k
(k!)2

�
d
2

�k=2
. J0 decreases from 1 at d = 0

and will oscillate above and below 0 with amplitudes and frequencies that
are diminishing as d increases (see Figure 5.1 in Section 5.1). Typically,
correlation functions that are monotonic and decreasing to 0 are chosen
but, apparently, valid correlation functions can permit negative associa-
tions with w determining the scale in distance space. Such behavior might
be appropriate in certain applications.

The form in (2.12) at � = 0 was exploited in Shapiro and Botha (1981)
and Ver Hoef and Barry (1998) to develop \nonparametric" variogram
models and \black box" kriging. It was employed in Ecker and Gelfand
(1997) to obtain exible spatial process models within which to do inference
from a Bayesian perspective (see Subsection 5.1.3).

If we con�ne ourselves to strictly monotonic isotropic covariance func-
tions then we can introduce the notion of a range. As described above, the
range is conceptualized as the distance beyond which association becomes
negligible. If the covariance function reaches 0 in a �nite distance, then
we refer to this distance as the range. However, as Table 2.1 reveals, we
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customarily work with covariance functions that attain 0 asymptotically as
khk ! 1. In this case, it is common to de�ne the range as the distance be-
yond which correlation is less than :05, and this is the de�nition we employ
in the sequel. So if � is the correlation function, then writing the range as R
we solve �(R;�) = :05, where � denotes the parameters in the correlation
function. Therefore, R is an implicit function of the parameter �.
We do note that some authors de�ne the range through the variogram,

i.e., the distance at which the variogram reaches .95 of its sill. That is,
we would solve (R) = :95(�2 + �2). Note, however, that if we rewrite
this equation in terms of the correlation function we obtain �2 + �2(1 �
�(R;�)) = :95(�2 + �2), so that �(R;�) = :05

�
�2+�2

�2

�
. Evidently, the

solution to this equation is quite di�erent from the solution to the above
equation. In fact, this latter equation may not be solvable, e.g., if �2=(�2+
�2) � :05, the case of very weak \spatial story" in the model. As such, one
might argue that a spatial model is inappropriate in this case. However,
with �2 and �2 unknown, it seems safer to work with the former de�nition.
We note that one can o�er constructive strategies to build larger classes

of correlation functions. Three approaches are mixing, products, and con-
volution. Mixing notes simply that if C1; : : : ; Cm are valid correlation func-
tions in <r and if

Pm
i=1 pi = 1, pi > 0, then C(h) =

Pm
i=1 piCi(h) is also a

valid correlation function in <r. This follows since C(h) is the characteris-
tic function associated with

P
pifi(x), where fi(x) is the symmetric about

0 density in r-dimensional space associated with Ci(h).
Using products simply notes that again if c1; : : : ; cn are valid in <r, thenQm
i=1 ci is a valid correlation function in <r. This follows since Qm

i=1 ci(n)
is the characteristic function associated with V =

Pm
i=1 Vi where the Vi

are independent with Vi having characteristic function ci(h).
Convolution simply recognizes that if c1 and c2 are valid correlation

functions in <r, then c12(h) =
R
c1(h � t)c2(t)dt is a valid correlation

function in <r. The argument here is to look at the Laplace transform of
c12(h). That is,

bc12(w) =
R
e�iw

Thc12(h)dh

=
R
e�iw

Th R c1(h� t)c2(t)dtdh
= bc1(w) � bc2(w) ;

where bci(w) is the Laplace transform of ci(h) for i = 1; 2. But then c12(h) =

(2�)�2
R
eiw

Thbc1(w)bc2(w)dw. Now bc1(w) and bc2(w) are both symmetric
about 0 since, up to a constant, they are the spectral densities associated
with c1(h) and c2(h), respectively. Hence, c12(h) =

R
coswThG(dw) where

G(dw) = (2�)�2bc1(w)2bc2(w)dw:
Thus, from (2.10), c12(h) is a valid correlation function, i.e., G is a

bounded, positive, symmetric about 0 measure on <2: In fact, if c1 and
c2 are isotropic then c12 is as well; we leave this veri�cation as Exercise 5.
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2.2.3 Smoothness of process realizations

How does one select among the various choices of correlation functions?
Usual model selection criteria will typically �nd it di�cult to distinguish,
say, among one-parameter isotropic scale choices such as the exponential,
Gaussian, or Cauchy. Ecker and Gelfand (1997) provide some graphical
illustration showing that, through suitable alignment of parameters, the
correlation curves will be very close to each other. Of course, in compar-
ing choices with parametrizations of di�ering dimensions (e.g., correlation
functions developed using results from the previous section), we will need
to employ a selection criterion that penalizes complexity and rewards par-
simony (see Section 4.2.3).

An alternative perspective is to make the selection based upon theoret-
ical considerations. This possibility arises from the powerful fact that the
choice of correlation function determines the smoothness of realizations
from the spatial process. More precisely, a process realization is viewed as
a random surface over the region. By choice of c we can ensure that these
realizations will be almost surely continuous, or mean square continuous, or
mean square di�erentiable, and so on. Of course, at best the process is only
observed at �nitely many locations. (At worst, it is never observed, e.g.,
when the spatial process is used to model random spatial e�ects.) So, it is
not possible to \see" the smoothness of the process realization. Elegant the-
ory, developed in Kent (1989), Stein (1999a) and extended in Banerjee and
Gelfand (2003), clari�es the relationship between the choice of correlation
function and such smoothness. We provide a bit of this theory below, with
further discussion in Section 10.1. For now, the key point is that, according
to the process being modeled, we may, for instance, anticipate surfaces not
be continuous (as with digital elevation models in the presence of gorges,
escarpments, or other topographic features), or to be di�erentiable (as in
studying land value gradients or temperature gradients). We can choose a
correlation function to essentially ensure such behavior.

Of particular interest in this regard is the Mat�ern class of covariance
functions. The parameter v (see Table 2.1) is, in fact, a smoothness pa-
rameter. In two-dimensional space, the greatest integer in v indicates the
number of times process realizations will be mean square di�erentiable. In
particular, since v = 1 corresponds to the Gaussian correlation function,
the implication is that use of the Gaussian correlation function results
in process realizations that are mean square analytic, which may be too
smooth to be appropriate in practice. That is, it is possible to predict Y (s)
perfectly for all s 2 <2 based upon observing Y (s) in an arbitrarily small
neighborhood. Expressed in a di�erent way, use of the Mat�ern covariance
function as a model enables the data to inform about v; we can learn about
process smoothness despite observing the process at only a �nite number
of locations.
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Hence, we follow Stein (1999a) in recommending the Mat�ern class as a
general tool for building spatial models. The computation of this function
requires evaluation of a modi�ed Bessel function. In fact, evaluation will be
done repeatedly to obtain a covariance matrix associated with n locations,
and then iteratively if a model is �t via MCMC methods. This may appear
o�-putting but, in fact, such computation can be done e�ciently using
expansions to approximate Kv(�) (Abramowitz and Stegun, p. 435), or
working through the inversion formula below (2.11), which in this case
becomes

2

�
� khk
2

��
Kv(�(khk))
�2��(v + r

2 )
=

Z
<r

eiw
Th(�2 + kwk2)�(v+r=2)dw ; (2:13)

where Kv is the modi�ed Bessel function of order �.
Computation of (2.13) is discussed further in Appendix Section A.4. In

particular, the right side of (2.13) is readily approximated using fast Fourier
transforms. Again, we revisit process smoothness in Section 10.1.

2.2.4 Directional derivative processes

The previous section o�ered discussion intended to clarify, for a spatial pro-
cess, the connection between correlation function and smoothness of process
realizations. When realizations are mean square di�erentiable, we can think
about a directional derivative process. That is, for a given direction, at each
location we can de�ne a random variable that is the directional derivative
of the original process at that location in the given direction. The entire
collection of random variables can again be shown to be a spatial process.
We o�er brief development below but note that, intuitively, such variables
would be created through limits of �nite di�erences. In other words, we
can also formalize a �nite di�erence process in a given direction. The value
of formalizing such processes lies in the possibility of assessing where, in a
region of interest, there are sharp gradients and in which directions. They
also enable us to work at di�erent scales of resolution. Application could
involve land-value gradients away from a central business district, temper-
ature gradients in a north-south direction as mentioned above, or perhaps
the maximum gradient at a location and the direction of that gradient, in
order to identify zones of rapid change (boundary analysis). Some detail
in the development of directional derivative processes appears in Subsec-
tion 10.1.2.

2.2.5 Anisotropy

Geometric anisotropy

Stationary correlation functions extend the class of correlation functions
from isotropy where association only depends upon distance to association
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that depends upon the separation vector between locations. As a result,
association depends upon direction. An illustrative example is the class of
geometric anisotropic correlation functions where we set

c(s� s0) = �2�((s� s0)TB(s� s0)) : (2:14)

In (2.14), B is positive de�nite with � a valid correlation function in <r
(say, from Table 2.1). We would omit the range/decay parameter since it
can be incorporated into B. When r = 2 we obtain a speci�cation with
three parameters rather than one. Contours of constant association arising
from c in (2.14) are elliptical. In particular, the contour corresponding to
� = :05 provides the range in each spatial direction. Ecker and Gelfand
(1997) provide the details for Bayesian modeling and inference incorporat-
ing (2.14); see also Subsection 5.1.4.
Following the discussion in Subsection 2.2.2, we can extend geometric

anisotropy to product geometric anisotropy. In the simplest case, we would
set

c(s� s0) = �2 �1((s� s0)TB1(s� s0)) �2((s� s0)TB2(s� s0)) ;

noting that c is valid since it arises as a product of valid covariance func-
tions. See Ecker and Gelfand (2003) for further details and examples.

Other notions of anisotropy

In a more general discussion, Zimmerman (1993) suggests three di�er-
ent notions of anisotropy: sill anisotropy, nugget anisotropy, and range
anisotropy. More precisely, working with a variogram (h), let h be an
arbitrary separation vector so that h= khk is a unit vector in h's direction.
Consider (ch= khk). Let c!1 and suppose limc!1 (ch= khk) depends
upon h. This situation is naturally referred to a sill anisotropy. If we work

with the usual relationship (ch= khk) = �2+�2
�
1� �

�
c h
khk

��
, then, in

some directions, � must not go to 0 as c!1. If this can be the case, then
ergodicity assumptions (i.e., convergence assumptions associated with av-
eraging) will be violated. If this can be the case, then perhaps the constant
mean assumption, implicit for the variogram, does not hold. Alternatively,
it is also possible that the constant nugget assumption fails.
Instead, let c! 0 and suppose limc!0 (ch= khk) depends upon h. This

situation is referred to as nugget anisotropy. Since, by de�nition, � must
go to 1 as c! 0: This says that the measurement errors that are assumed
uncorrelated with common variance may be correlated. More generally, a
simple white noise process model for the nonspatial errors is not appropri-
ate.
A third type of anisotropy is range anisotropy where the range depends

upon direction. Zimmerman (1993) asserts that \this is the form most often
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seen in practice." Geometric anisotropy and the more general product geo-
metric anisotropy from the previous subsections are illustrative cases. How-
ever, given the various constructive strategies o�ered in Subsection 2.2.2
to create more general stationary covariance functions, we can envision
nongeometric range anisotropy, implying general correlation function or
variogram contours in <2: However, due to the positive de�niteness restric-
tion on the correlation function, the extent of possible contour shapes is
still rather limited.
Lastly, motivated by directional variograms (see Subsection 2.3.2), some

authors propose the idea of nested models (see Zimmerman, 1993, and the
references therein). That is, for each separation vector there is an associ-
ated angle with, say, the x-axis, which by symmetry considerations can be
restricted to [0; �). Partitioning this interval into a set of angle classes, a
di�erent variogram model is assumed to operate for each class. In terms
of correlations, this would imply a di�erent covariance function is operat-
ing for each angle class. But evidently this does not de�ne a valid process
model: the resulting covariance matrix for an arbitrary set of locations need
not be positive de�nite.
This can be seen with as few as three points and two angle classes. Let

(s1; s2) belong to one angle class with (s1; s3) and (s2; s3) in the other.
With exponential isotropic correlation functions in each class by choosing
�1 and �2 appropriately we can make �(s1 � s2) � 0 while �(s1 � s3) =
�(s2�s3) � 0:8. A quick calculation shows that the resulting 3�3 covariance
(correlation) matrix is not positive de�nite. So, in terms of being able to
write proper joint distributions for the resulting data, nested models are
inappropriate; they do not provide an extension of isotropy that allows for
likelihood based inference.

2.3 Exploratory approaches for point-referenced data

2.3.1 Basic techniques

Exploratory data analysis (EDA) tools are routinely implemented in the
process of analyzing one- and two-sample data sets, regression studies,
generalized linear models, etc. (see, e.g., Chambers et al., 1983; Hoaglin,
Mosteller, and Tukey, 1983, 1985; Aiktin et al., 1989). Similarly, such tools
are appropriate for analyzing point-referenced spatial data.
For continuous data, the starting point is the so-called \�rst law of geo-

statistics." Figure 2.2 illustrates this \law" in a one-dimensional setting.
The data is partitioned into a mean term and an error term. The mean
corresponds to global (or �rst-order) behavior, while the error captures lo-
cal (or second-order) behavior through a covariance function. EDA tools
examine both �rst- and second-order behavior.
The law also clari�es that spatial association in the data, Y (s), need
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data mean

=

error

+

Figure 2.2 Illustration of the �rst law of geostatistics.

Figure 2.3 Illustrative three-dimensional \drop line" scatterplot, scallop data.

not resemble spatial association in the residuals, �(s). That is, spatial as-
sociation in the Y (s) corresponds to looking at E(Y (s) � �)(Y (s0) � �),
while spatial structure in the �(s) corresponds to looking at E(Y (s) �
�(s))(Y (s0) � �(s0)). The di�erence between the former and the latter is
(�� �(s))(�� �(s0)), which need not be negligible.
Certainly an initial exploratory display should be a simple map of the

locations themselves. We need to assess how regular the arrangement of
the points is. Next, some authors would recommend a stem-and-leaf dis-
play of the Y (s). This plot is evidently nonspatial and is customarily for
observations which are i.i.d. We expect both nonconstant mean and spatial
dependence, but such a plot may at least suggest potential outliers. Next we
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Figure 2.4 Illustrative three-dimensional surface (\perspective") plot, Stockton
real estate data.

might develop a three-dimensional \drop line" scatterplot of Y (si) versus
si, which we could convert to a three-dimensional surface plot or perhaps
a contour plot as a smoothed summary. Examples of these three plots are
shown for a sample of 120 log-transformed home selling prices in Stockton,
CA, in Figures 2.3, 2.4, and 2.5, respectively. However, as the preceding
paragraph clari�es, such displays may be deceiving. They may show spa-
tial pattern that will disappear after �(s) is �tted, or perhaps vice versa.
It seems more sensible to study spatial pattern in the residuals.

In exploring �(s) we may have two types of information at location s. One
is the purely geographic information, i.e., the geocoded location expressed
in latitude and longitude or as projected coordinates such as eastings and
northings (Subsection 1.2.1 above). The other will be features relevant for
explaining the Y (s) at s. For instance, if Y (s) is a pollution concentration,
then elevation, temperature, and wind information at s could well be useful
and important. If instead Y (s) is the selling price of a single-family home at
s, then characteristics of the home (square feet, age, number of bathrooms,
etc.) would be useful.

When the mean is described purely through geographic information, �(s)
is referred to as a trend surface. When s 2 <2, the surface is usually devel-
oped as a bivariate polynomial. For data that is roughly gridded (or can
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Figure 2.5 Illustrative contour plot, Stockton real estate data.

be assigned to row and column bins by overlaying a regular lattice on the
points), we can make row and column boxplots looking for trend. Plotting
these boxplots versus their center could clarify the existence and nature
of such trend. In fact, median polishing (see, e.g., Hoaglin, Mosteller, and
Tukey, 1985) could be used to extract row and column e�ects, and also to
see if a multiplicative trend surface term is useful; see Cressie (1983, pp.
46{48) in this regard.

Figures 2.6 and 2.7 illustrate the row and column boxplot approach for a
data set previously considered by Diggle and Ribeiro (2002). The response
variable is the surface elevation (\height") at 52 locations on a regular grid
within a 310-foot square (and where the mesh of the grid is 50 feet). The
plots reveals some evidence of spatial pattern as we move along the rows,
but not along the columns of the regular grid.

To assess small-scale behavior, some authors recommend creating the
semivariogram cloud, i.e., a plot of (Y (si)�Y (sj))2 versus jjsi�sj jj. Usually
this cloud is too \noisy" to reveal very much; see, e.g., Figure 5.2. The
empirical semivariogram (2.9) is preferable in terms of reducing some of the
noise, and can be a helpful tool in seeing the presence of spatial structure.
Again, the caveat above suggests employing it for residuals (not the data
itself) unless a constant mean is appropriate.

An empirical (nonparametric) covariance estimate, analogous to (2.9), is
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Figure 2.6 Illustrative row box plots, Diggle and Ribeiro (2002) surface elevation
data.

also available. Creating bins as in this earlier approach, de�ne

bc(tk) = 1

Nk

X
(si;sj)2N(tk)

(Y (si)� �Y )(Y (sj)� �Y ) ; (2:15)

where again N(tk) = f(si; sj) : jjsi� sj jj 2 Ikg for k = 1; : : : ;K, Ik indexes
the kth bin, and there are Nk pairs of points falling in this bin. Equation
(2.15) is a spatial generalization of a lagged autocorrelation in time series
analysis. Since bc uses a common �Y for all Y (si), it may be safer to employ
(2.15) on the residuals. Two further issues arise: �rst, what should we de�nebc(0) to be, and second, regardless of this choice, the fact that b(tk) does
not equal bc(0)�bc(tk); k = 1; : : : ;K. Details for both of these issues are left
to Exercise 6.
Again, with a regular grid or binning we can create \same-lag" scatter-

plots. These are plots of Y (si + he) versus Y (si) for a �xed h and a �xed
unit vector e. Comparisons among such plots may reveal the presence of
anisotropy and perhaps nonstationarity.
Lastly, suppose we attach a neighborhood to each point. We can then

compute the sample mean and variance for the points in the neighborhood,
and even a sample correlation coe�cient using all pairs of data in the
neighborhood. Plots of each of them versus location can be informative.
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Figure 2.7 Illustrative column box plots, Diggle and Ribeiro (2002) surface eleva-
tion data.

The �rst may give some idea regarding how the mean structure changes
across the study region. Plots of the second and third may provide evidence
of nonstationarity. Implicit in extracting useful information from these plots
is a roughly constant local mean. If �(s) is to be a trend surface, this is
plausible. But if �(s) is a function of some geographic variables at s (say,
home characteristics), then use of residuals would be preferable.

2.3.2 Assessing anisotropy

We illustrate various EDA techniques to assess anisotropy using sampling of
scallop abundance on the continental shelf o� the coastline of the northeast-
ern U.S. The data from this survey, conducted by the Northeast Fisheries
Science Center of the National Marine Fisheries Service, is available within
the S+SpatialStats package; see Subsection 2.5.1. Figure 2.8 shows the
sampling sites for 1990 and 1993.

Directional semivariograms and rose diagrams

The most common EDA technique for assessing anisotropy involves use
of directional semivariograms. Typically, one chooses angle classes �i �
�; i = 1; : : : ; L where � is the halfwidth of the angle class and L is the
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Figure 2.8 Sites sampled in the Atlantic Ocean for 1990 and 1993 scallop catch
data.

number of angle classes. For example, a common choice of angle classes
involves the four cardinal directions measured counterclockwise from the
x-axis (0�; 45�; 90�; and 135�) where � is 22.5�: Journel and Froidevaux
(1982) display directional semivariograms at angles 35�, 60�, 125�, and
150� in deducing anistropy for a tungsten deposit. While knowledge of
the underlying spatial characteristics of region D is invaluable in choosing
directions, often the choice of the number of angle classes and the directions
seems to be arbitrary.

For a given angle class, the Matheron empirical semivariogram (2.9) can
be used to provide a directional semivariogram for angle �i. Theoretically,
all types of anisotropy can be assessed from these directional semivari-
ograms; however, in practice determining whether the sill, nugget, and/or
range varies with direction can be di�cult. Figure 2.9(a) illustrates di-
rectional semivariograms for the 1990 scallop data in the four cardinal
directions. Note that the semivariogram points are connected only to aid
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Figure 2.9 Directional semivariograms (a) and a rose diagram (b) for the 1990
scallop data.

comparison. Possible conclusions are: the variability in the 45� direction
(parallel to the coastline) is signi�cantly less than in the other three di-
rections and the variability perpendicular to the coastline (135�) is very
erratic, possibly exhibiting sill anisotropy. We caution however that it is
dangerous to read too much signi�cance and interpretation into directional
variograms. No sample sizes (and thus no assessments of variability) are at-
tached to these pictures. Directional variograms from data generated under
a simple isotropic model will routinely exhibit di�erences of the magnitudes
seen in Figure 2.9(a). Furthermore, it seems di�cult to draw any conclu-
sions regarding the presence of geometric anisotropy from this �gure.

A rose diagram (Isaaks and Srivastava, 1989, pp. 151{154) can be cre-
ated from the directional semivariograms to evaluate geometric anisotropy.
At an arbitrarily selected �, for a directional semivariogram at angle �,
the distance d� at which the directional semivariogram attains � can be
interpolated. Then, the rose diagram is a plot of angle � and correspond-
ing distance d� in polar cordinates. If an elliptical contour describes the
extremities of the rose diagram reasonably well, then the process exhibits
geometric anisotropy. For instance, the rose diagram for the 1990 scallop
data is presented in Figure 2.9(b) using the � contour of 4.5. It is approx-
imately elliptical, oriented parallel to the coastline (� 45�) with a ratio of
major to minor ellipse axes of about 4.
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Empirical semivariogram contour (ESC) plots

A more informative method for assessing anisotropy is a contour plot of the
empirical semivariogram surface in <2. Such plots are mentioned informally
in Isaaks and Srivastava (1989, pp. 149{151) and in Haining (1990, pp.
284{286); the former call them contour maps of the grouped variogram
values, the latter an isarithmic plot of the semivariogram. Following Ecker
and Gelfand (1999), we formalize such a plot here calling it an empirical

semivariogram contour (ESC) plot. For each of the N(N�1)
2 pairs of sites

in <2, calculate hx and hy, the separation distances along each axis. Since
the sign of hy depends upon the arbitrary order in which the two sites
are compared, we demand that hy � 0. (We could alternatively demand
that hx � 0:) That is, we take (�hx;�hy) when hy < 0. These separation
distances are then aggregated into rectangular bins Bij where the empirical
semivariogram values for the (i; j)th bin are calculated by

�ij =
1

2NBij

X
f(k;l):(sk�sl)2Bijg

(Y (sk)� Y (sl))
2 ; (2:16)

where NBij
equals the number of sites in bin Bij . Because we force hy � 0

with hx unrestricted, we make the bin width on the y-axis half of that
for the x-axis. We also force the middle class on the x-axis to be centered
around zero. Upon labeling the center of the (i; j)th bin by (xi; yj), a three
dimensional plot of �ij versus (xi; yj) yields an empirical semivariogram
surface. Smoothing this surface using, for example, the algorithm of Akima
(1978) available in the S-plus software package (see Subsection 2.5.1) pro-
duces a contour plot that we call the ESC plot. A symmetrized version of
the ESC plot can be created by reecting the upper left quadrant to the
lower right and the upper right quadrant to the lower left.
The ESC plot can be used to assess departures from isotropy; isotropy

is depicted by circular contours while elliptical contours capture geomet-
ric anisotropy. A rose diagram traces only one arbitrarily selected contour
of this plot. A possible drawback to the ESC plot is the occurrence of
sparse counts in extreme bins. However, these bins may be trimmed be-
fore smoothing if desired. Concerned that use of geographic coordinates
could introduce arti�cial anisotropy (since 1� latitude 6= 1� longitude in
the northeastern United States), we have employed a Universal Transverse
Mercator (UTM) projection to kilometers in the E-W and N-S axes (see
Subsection 1.2.1).
Figure 2.10 is the empirical semivariogram contour plot constructed us-

ing x-axis width of 30 kilometers for the 1993 scallop data. We have overlaid
this contour plot on the bin centers with their respective counts. Note that
using empirical semivariogram values in the row of the ESC plot, where
hy � 0 provides an alternative to the usual 0� directional semivariogram.
The latter directional semivariograms are based on a polar representation
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Figure 2.10 ESC plot for the 1993 scallop data.

of the angle and distance. For a chosen direction � and tolerance �, the
area for a class fans out as distance increases (see Figure 7.1 of Isaaks and
Srivastava, 1989, p. 142). Attractively, a directional semivariogram based
on the rectangular bins associated with the empirical semivariogram in
<2 has bin area remaining constant as distance increases. In Figure 2.11,
we present the four customary directional (polar representation) semivari-
ograms for the 1993 scallop data. Clearly, the ESC plot is more informative,
particularly in suggesting evidence of geometric anisotropy.

2.4 Classical spatial prediction

In this section we describe the classical (i.e., minimum mean-squared error)
approach to spatial prediction in the point-referenced data setting. The
approach is commonly referred to as kriging, so named by Matheron (1963)
in honor of D.G. Krige, a South African mining engineer whose seminal
work on empirical methods for geostatistical data (Krige, 1951) inspired the
general approach (and indeed, inspired the convention of using the terms
\point-level spatial" and \geostatistical" interchangeably!). The problem
is one of optimal spatial prediction: given observations of a random �eld
Y = (Y (s1) ; : : : ; Y (sn))

0
, how do we predict the variable Y at a site s0

where it has not been observed? In other words, what is the best predictor
of the value of Y (s0) based upon the data y?
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Figure 2.11 Directional semivariograms for the 1993 scallop data.

A linear predictor for Y (s0) based on y would take the form
P

`iY (si)+
�0. Using squared error loss, the best linear prediction would minimize
E[Y (s0)�(

P
`iY (si)+�0)]

2 over �0 and the `i. For a constant mean process
we would take

P
`i = 1, in which case we would minimize E[Y (s0) �P

`iY (si)]
2 + �20 , and clearly �0 would be set to 0. Now letting a0 = 1

and ai = �`i we see that the criterion becomes E[
Pn

i=0 aiY (si)]
2 withP

ai = 0. But from (2.4) this expectation becomes �Pi

P
j aiaj(si �

sj), revealing how, historically, the variogram arose in kriging within the
geostatistical framework. Indeed, the optimal `'s can be obtained by solving
this constrained optimization (e.g., using Lagrange multipliers), and will be
functions of (h) (see, e.g., Cressie, 1983, Sec. 3.2). With an estimate of ,
one immediately obtains the so-called ordinary kriging estimate. Other than
the intrinsic stationarity model (Subsection 2.1.2), no further distributional
assumptions are required for the Y (s)'s.
Let us take a more formal look at kriging in the context of Gaussian

processes. Consider �rst the case where we have no covariates, but only the
responses Y (si). This is developed by means of the following model for the
observed data:

Y = �1+ �; where � � N (0;�) :

For a spatial covariance structure having no nugget e�ect, we specify � as

� = �2H (�) where (H (�))ij = � (�; dij) ;
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where dij = jjsi � sj jj, the distance between si and sj and � is a valid
correlation function on <r such as those in Table 2.1. For a model having
a nugget e�ect, we instead set

� = �2H (�) + �2I ;

where �2 is the nugget e�ect variance.
When covariate values x = (x(s1); : : : ; x(sn))

0 and x(s0) are available
for incorporation into the analysis, the procedure is often referred to as
universal kriging, though we caution that some authors (e.g., Kaluzny et
al., 1998) use the term \universal" in reference to the case where only
latitude and longitude are available as covariates. The model now takes
the more general form

Y = X� + �; where � � N (0;�) ;

with � being speci�ed as above, either with or without the nugget e�ect.
Note that ordinary kriging may be looked upon as a particular case of
universal kriging with X being the n � 1 matrix (i.e., column vector) 1,
and � the scalar �.
We now pose our prediction problem as follows: we seek the function

f (y) that minimizes the mean-squared prediction error,

E
h
(Y (s0)� f (y))

2
y
i
: (2:17)

By adding and subtracting the conditional mean E[Y (s0)jy] inside the
square, grouping terms, and squaring we obtain

E
h
(Y (s0)� f (y))

2
y
i

= E
n
(Y (s0)�E[Y (s0)jy])2 y

o
+ fE[Y (s0)jy] � f (y)g2 ;

since (as often happens in statistical derivations like this) the expectation
of the cross-product term equals zero. But since the second term on the
right-hand side is nonnegative, we have

E
h
(Y (s0)� f (y))2 y

i
� E

n
(Y (s0)�E[Y (s0)jy])2 y

o
for any function f (y). Equality holds if and only if f (y) = E[Y (s0)jy], so it
must be that the predictor f(y) that minimizes the error is the conditional
expectation of Y (s0) given the data. This result is quite intuitive from a
Bayesian point of view, since this f(y) is just the posterior mean of Y (s0),
and it is well known that the posterior mean is the Bayes rule (i.e., the
minimizer of posterior risk) under squared error loss functions of the sort
adopted in (2.17) above as our scoring rule.
Having identi�ed the form of the best predictor we now turn to its es-

timation. Consider �rst the wildly unrealistic situation in which all the
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population parameters (�; �2; �, and �2) are known. From standard multi-
variate normal theory we have the following general result: If�

Y1

Y2

�
� N

��
�1

�2

�
;

�

11 
12


21 
22

��
;

where 
21 = 
T
12, then the conditional distribution p (Y1jY2) is normal

with mean and variance:

E[Y1jY2] = �1 +
12

�1
22 (Y2 � �2) ;

V ar[Y1jY2] = 
11 �
12

�1
22 
21 :

In our framework, we have Y1 = Y (s0) and Y2 = y. It then follows that


11 = �2 + �2; 
12 = T ; and 
22 = � = �2H (�) + �2I ;

where T =
�
�2� (�; d01) ; : : : ; �

2� (�; d0n)
�
. Substituting these values into

the mean and variance formulae above, we obtain

E [Y (s0)jy] = xT0 � + T��1 (y �X�) ; (2.18)

and V ar[Y (s0)jy] = �2 + �2 � T��1 : (2.19)

We remark that this solution assumes we have actually observed the co-
variate value x0 = x (s0) at the \new" site s0; we defer the issue of missing
x0 for the time being.
Note that one could consider prediction not at a new location, but at one

of the already observed locations. In this case one can ask whether or not
the predictor in (2.18) will equal the observed value at that location. We
leave it as an exercise to verify that if �2 = 0 (i.e., the no-nugget case, or
so-called noiseless prediction) then the answer is yes, while if �2 > 0 then
the answer is no.
Next, consider how these answers are modi�ed in the more realistic sce-

nario where the model parameters are unknown and so must be estimated
from the data. Here we would modify f(y) todf (y) = xT0

b� + bT b��1 �y �Xb�� ;

where b =
�
�̂2�(�̂; d01); : : : ; �̂

2�(�̂; d0n)
�T

, b� =
�
XT b��1X��1XT b��1y,

the usual weighted least squares estimator of �, and b� = �̂2H(�̂). Thusdf (y) can be written as �Ty, where

� = b��1b + b��1X �XT b��1X��1 �x0 �XT b��1b� : (2:20)

If x0 is unobserved, we can estimate it and Y (s0) jointly by iterating be-
tween this formula and a corresponding one for x̂0, namely

x̂0 = XT� ;
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which arises simply by multiplying both sides of (2.20) by XT and sim-
plifying. This is essentially an EM (expectation-maximization) algorithm
(Dempster, Laird, and Rubin, 1977), with the calculation of x̂0 being the
E step and (2.20) being the M step.
In the classical framework a lot of energy is devoted to the determination

of the optimal estimates to plug into the above equations. Typically, re-
stricted maximum likelihood (REML) estimates are selected and shown to
have certain optimal properties. However, as we shall see in Chapter 5, how
to perform the estimation is not an issue in the Bayesian setting. There, we
instead impose prior distributions on the parameters and produce the full
posterior predictive distribution p (Y (s0)jy). Any desired point or interval
estimate (the latter to express our uncertainty in such prediction) may then
be computed with respect to this distribution.

2.5 Computer tutorials

2.5.1 EDA and variogram �tting in S+SpatialStats

In this section we outline the use of the S+SpatialStats package in per-
forming exploratory analysis on spatially referenced data. Throughout we
use a \computer tutorial" style, as follows.
First, we need to load the spatial module into the S-plus environment:

>module(spatial)

The scallops data, giving locations and scallop catches in the Atlantic wa-
ters o� the coasts of New Jersey and Long Island, New York, is preloaded
as a data frame in S-plus, and can therefore be accessed directly. For
example, a descriptive summary of the data can be obtained by typing

>summary(scallops)

In order to present graphs and maps in S-pluswe will need to open a graph-
ing device. The best such device is called trellis.device(). Here we draw
a histogram of the variable tcatch in the dataframe scallops. Note the
generic notation a$b for accessing a member b of a dataframe a. Thus the
member tcatch of dataframe scallops is accessed as scallops$tcatch.
We also print the histogram to a .ps �le:

>trellis.device()

>hist(scallops$tcatch)

>printgraph(file=``histogram.tcatch.ps'')

Noticing the data to be highly skewed, we feel the need to create a new vari-
able log(tcatch). But since tcatch contains a number of 0's, we instead
compute log(tcatch + 1). For that it is best to create our own dataframe
since it is not a good idea to \spoil" S-plus' own dataframe. As such we
assign scallops to myscallops. Then we append the variable lgcatch
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(which is actually log(tcatch+ 1)) to myscallops. We then draw the his-
togram of the variable lgcatch:

>myscallops <- scallops

>myscallops[,``lgcatch''] <- log(scallops$tcatch+1)

>summary(myscallops$lgcatch)

>hist(myscallops$lgcatch)

This histogram exhibits much more symmetry than the earlier one, sug-
gesting a normality assumption we might make later when kriging will be
easier to accept.
We next plot the locations as an ordinary line plot:

>plot(myscallops$long, myscallops$lat)

For spatial purposes, we actually need a geographic information system
(GIS) interface. This is o�ered by the S-plus library maps. We next invoke
this library and extract a map of the U.S. from it.

>library(maps)

>map(``usa'')

For our data, however, we do not need the map of the entire U.S. Looking
at the earlier summary of scallops, we note the range of the latitude and
longitude variables and decide upon the following limits. Note that xlim
sets the x-axis limits and ylim sets the y-axis limits; the c() function
creates vectors.

>map(``usa'', xlim=c(-74, -71), ylim=c(38.2, 41.5))

The observed sites may be embedded on the map, reducing their size some-
what using the cex (\character expansion") option:

>points(myscallops$long, myscallops$lat, cex=0.75)

It is often helpful to add contour lines to the plot. In order to add such
lines it is necessary to carry out an interpolation. This essentially �lls in the
gaps in the data over a regular grid (where there are no actual observerd
data) using a bivariate linear interpolation. This is done in S-plus using
the interp function. The contour lines may then be added to the plot using
the contour command:

>int.scp <- interp(myscallops$long,

myscallops$lat, myscallops$lgcatch)

>contour(int.scp, add=T)

Figure 2.12 shows the result of the last four commands, i.e., the map of the
scallop locations and log catch contours arising from the linear interpola-
tion.
Two other useful ways of looking at the data may be through image and

perspective (three-dimensional surface) plots. Remember that they will
use the interpolated object so a preexisting interpolation is also compulsory
here.
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Figure 2.12 Map of observed scallop sites and contours of (linearly interpolated)
raw log catch data, scallop data.

>image(int.scp)

>persp(int.scp)

The empirical variogram can be estimated in both the standard and \ro-
bust" (Cressie and Hawkins) way with built-in functions. We �rst demon-
strate the standard approach. After a variogram object is created, typing
that object yields the actual values of the variogram function with the
distances at which they are computed. A summary of the object may be
invoked to see information for each lag, the total number of lags, and the
maximum intersite distance.

>scallops.var <- variogram(lgcatch~loc(long,lat),

data=myscallops)

>scallops.var

>summary(scallops.var)

In scallops.var, distance corresponds to the spatial lag (h in our usual
notation), gamma is the variogram (h), and np is the number of points in
each bin. In the output of the summary command, maxdist is the largest
distance on the map, nlag is the number of lags (variogram bins), and lag

is maxdist/nlag, which is the width of each variogram bin.
By contrast, the robust method is obtained simply by specifying \robust"

in the method option:
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Figure 2.13 Ordinary (a) and robust (b) empirical variograms for the scallops
data.

>scallops.var.robust <- variogram(lgcatch~loc(long,lat),

data=myscallops, method = ``robust'')

Plotting is usually done by just calling the plot function with the variogram
object as its argument. It may be useful to compare the plots one below
the other. Setting up these plots is done as follows:

>par(mfrow=c(1,2))

>plot(scallops.var)

>plot(scallops.var.robust)

>printgraph(file=``scallops.empvario.ps'')

The output from this picture is shown in Figure 2.13.
The covariogram (a plot of an isotropic empirical covariance function

(2.15) versus distance) and correlogram (a plot of (2.15) divided by Ĉ(0)
versus distance) may be created using the covariogram and correlogram

functions. (When we are through here, we set the graphics device back to
having one plot per page using the par command.)

>scallops.cov <- covariogram(lgcatch~loc(long,lat),

data=myscallops)

>plot(scallops.cov)

>scallops.corr <- correlogram(lgcatch~loc(long,lat),

data=myscallops)

>plot(scallops.corr)

>printgraph(file=``scallops.covariograms.ps'')

> par(mfrow=c(1,1))

Theoretical variograms may also be computed and compared to the ob-
served data as follows. Invoke the model.variogram function and choose an
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initial theoretical model; say, range=0.8, sill=1.25, and nugget=0.50. Note
that the fun option speci�es the variogram type we want to work with.
Below we choose the spherical (spher.vgram); other options include ex-
ponential (exp.vgram), Gaussian (gauss.vgram), linear (linear.vgram),
and power (power.vgram).

>model.variogram(scallops.var.robust, fun=spher.vgram,

range=0.80, sill=1.25, nugget = 0.50)

We remark that this particular model provides relatively poor �t to the
data; the objective function takes a relatively high value (roughly 213).
(You are asked to �nd a better-�tting model in Exercise 7.)
Formal estimation procedures for variograms may also be carried out by

invoking the nls function on the spher.fun function that we can create:

>spher.fun <- function(gamma,distance,range,sill,nugget)f
gamma - spher.vgram(distance, range=range,

sill=sill, nugget=nugget)g
>scallops.nl1 <- nls(~spher.fun(gamma, distance, range,

sill, nugget), data = scallops.var.robust,

start=list(range=0.8, sill=1.05, nugget=0.7))

>coef(scallops.nl1)

Thus we are using nls to minimize the squared distance between the
theoretical and empirical variograms. Note there is nothing to the left of
the \~" character at the beginning of the nls statement.
Many times our interest lies in spatial residuals, or what remains after

detrending the response from the e�ects of latitude and longitude. An easy
way to do that is by using the gam function in S-plus. Here we plot the
residuals of the scallops lgcatch variable after the e�ects of latitude and
longitude have been accounted for:

>gam.scp <- gam(lgcatch~lo(long)+lo(lat), data= myscallops)

>par(mfrow=c(2,1))

>plot(gam.scp, residuals=T, rug=F)

Finally, at the end of the session we unload the spatial module, after which
we can either do other work, or quit.

>module(spatial, unload=T)

>q()

2.5.2 Kriging in S+SpatialStats

We now present a tutorial in using S+SpatialStats to do basic kriging.
At the command prompt type S-plus to start the software, and load the
spatial module into the environment:

>module(spatial)
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Recall that the scallops data is preloaded as a data frame in S-plus,
and a descriptive summary of this data set can be obtained by typing

>summary(scallops)

while the �rst row of the data may be seen by typing

>scallops[1,]

Recall from our Section 2.5.1 tutorial that the data on tcatch was highly
skewed, so we needed to create another dataframe called myscallops, which
includes the log transform of tcatch (or actually log(tcatch+1)). We called
this new variable lgcatch. We then computed both the regular empirical
variogram and the \robust" (Cressie and Hawkins) version, and compared
both to potential theoretical models using the variogram command.

>scallops.var.robust <- variogram(lgcatch~loc(long,lat),

data=myscallops, method = ``robust'')

Plotting is usually done using the plot function on the variogram object:

>trellis.device()

>plot(scallops.var.robust)

Next we recall S-plus' ability to compute theoretical variograms. We in-
voke the model.variogram function, choosing a theoretical starting model
(here, range=0.8, sill=4.05, and nugget=0.80), and using fun to specify the
variogram type.

>model.variogram(scallops.var.robust, fun=spher.vgram,

range=0.80, sill=4.05, nugget = 0.80)

>printgraph(file=``scallops.variograms.ps'')

The output from this command (robust empirical semivariogram with this
theoretical variogram overlaid) is shown in Figure 2.14. Note again the
model.variogram command allows the user to alter the theoretical model
and continually recheck the value of the objective function (where smaller
values indicate better �t of the theoretical to the empirical).
Formal estimation procedures for variograms may also be carried out by

invoking the nls function on the spher.fun function that we create:

>spher.fun <- function(gamma,distance,range,sill,nugget)f
gamma - spher.vgram(distance, range=range,

sill=sill, nugget=nugget)g
>scallops.nl1 <- nls(~spher.fun(gamma, distance, range,

sill, nugget), data = scallops.var.robust,

start=list(range=0.8, sill=4.05, nugget=0.8))

>summary(scallops.nl1)

We now call the kriging function krige on the variogram object to pro-
duce estimates of the parameters for ordinary kriging:

>scallops.krige <- krige(lgcatch~loc(long,lat),

data=myscallops, covfun=spher.cov, range=0.71,
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Figure 2.14 Robust empirical and theoretical (spherical) variograms for the scal-
lops data.

nugget=0.84, sill=4.53)

Note that the covfun option here speci�es an intrinsic spherical covari-
ance function. Now suppose we want to predict the response at a small
collection of new locations. We need to create a new text �le containing
the latitudes and longitudes for these new locations. We must label the
coordinates as lat and long, exactly matching the names in our original
dataframe myscallops. Download the �le

www.biostat.umn.edu/~brad/data/newdata.txt

from the web, and save the �le as newdata.txt. The �le contains two new
locations:

long lat

-71.00 40.0

-72.75 39.5

Here the �rst site is far from the bulk of the observed data (so the
predicted values should have high standard errors), while the second site
is near the bulk of the observed data (so the predicted values should have
low standard errors).
Next we create a data frame called newdata that reads in the new set

of sites using the read.table function in S-plus, remembering to include
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the header=T option. Having done that we may call the predict function,
specifying our newdata data frame using the newdata option:

>newdata <- read.table(``newdata.txt'', header=T)

>scallops.predicttwo <- predict(scallops.krige,

newdata=newdata)

scallops.predicttwo then contains the predictions and associated stan-
dard errors for the two new sites, the latter of which are ordered as we
anticipated.
Next, we consider the case where we wish to predict not at a few speci�c

locations, but over a �ne grid of sites, thus enabling a prediction surface.
In such a situation one can use the expand.grid function, but the interp
function seems to o�er an easier and less error-prone approach. To do this,
we �rst call the predict function without the newdata option. After check-
ing the �rst row of the scallops.predict object, we collect the coordinates
and the predicted values into three vectors x, y, and z. We then invoke the
interp and persp functions:

>scallops.predict <- predict(scallops.krige)

>scallops.predict[1,]

>x <- scallops.predict[,1]

>y <- scallops.predict[,2]

>z <- scallops.predict[,3]

>scallops.predict.interp <- interp(x,y,z)

>persp(scallops.predict.interp)

It may be useful to recall the location of the sites and the surface plot of
the raw data for comparison. We create these plots on a separate graphics
device:

>trellis.device()

>plot(myscallops$long, myscallops$lat)

>int.scp <- interp(myscallops$long, myscallops$lat,

myscallops$lgcatch)

>persp(int.scp)

Figure 2.15 shows these two perspective plots side by side for comparison.
The predicted surface on the left is smoother, as expected.
It is also useful to have a surface plot of the standard errors, since we

expect to see higher standard errors where there is less data. This is well
illustrated by the following commands:

>z.se <- scallops.predict[,4]

>scallops.predict.interp.se <- interp(x,y,z.se)

>persp(scallops.predict.interp.se)

Other plots, such as image plots for the prediction surface with added
contour lines, may be useful:

>image(scallops.predict.interp)
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Figure 2.15 Perspective plots of the kriged prediction surface (a) and interpolated
raw data (b), log scallop catch data.

>par(new=T, xaxs=``d'', yaxs=``d'')

>contour(scallops.predict.interp)

Turning to universal kriging, here we illustrate with the scallops data
using latitude and longitude as the covariates (i.e., trend surface modeling).
Our covariance matrix X is therefore n � 3 (n = 148 here) with columns
corresponding to the intercept, latitude and longitude.

>scallops.krige.universal <- krige(lgcatch~loc(long,lat)

+long+lat, data=myscallops, covfun=spher.cov,

range=0.71, nugget=0.84, sill=4.53)

Note that the scallops.krige.universal function gives point esti-
mates, but not associated standard errors. You are asked to remedy this
situation in Exercise 11.

Plots like those already seen for ordinary kriging may be done as well. It
is also useful to produce a spatial surface of the standard errors of the �t.

>scallops.predict.universal

<- predict(scallops.krige.universal)

>scallops.predict.universal[1,]

>x <- scallops.predict.universal[,1]

>y <- scallops.predict.universal[,2]

>z <- scallops.predict.universal[,3]

>scallops.predict.interp <- interp(x,y,z)

>persp(scallops.predict.interp)

>q()
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2.5.3 EDA, variograms, and kriging in geoR

R is an increasing popular freeware alternative to S-plus, available from
the web at www.r-project.org. In this subsection we describe methods
for kriging and related geostatistical operations available in geoR, a geo-
statistical data analysis package using R, which is also freely available on
the web at www.est.ufpr.br/geoR/.

Since the syntax of S-plus and R is virtually identical, we do not spend
time here repeating the material of the past subsection. Rather, we only
highlight a few di�erences in exploratory data analysis steps, before moving
on to model �tting and kriging.

Consider again the scallop data. We recall that it is often helpful to create
image plots and place contour lines on the plot. These provide a visual idea
of the realized spatial surface. In order to do these, it is necessary to �rst
carry out an interpolation. This essentially �lls up the gaps (i.e., where
there are no points) using a bivariate linear interpolation. This is done
using the interp.new function in R, located in the library akima. Then the
contour lines may be added to the plot using the contour command. The
results are shown in Figure 2.16.

>library(akima)

>int.scp interp.new(myscallops$long, myscallops$lat,

myscallops$lgcatch, extrap=T)

>image(int.scp, xlim=range(myscallops$long),

ylim=range(myscallops$lat))

>contour(int.scp, add=T)

Another useful way of looking at the data is through surface plots (or
perspective plots). This is done by invoking the persp function:

>persp(int.scp, xlim=range(myscallops$long),

ylim=range(myscallops$lat))

The empirical variogram can be estimated in the classical way and in
the robust way with in-built R functions. There are several packages in
R that perform the above computations. We illustrate the geoR package,
mainly because of its additional ability to �t Bayesian geostatistical models
as well. Nevertheless, the reader might want to check out the CRAN web-
site (http://cran.us.r-project.org/) for the latest updates and several
other spatial packages. In particular, we mention fields, gstat, sgeostat,
spatstat, and spatdep for exploratory work and some model �tting of
spatial data, and GRASS and RArcInfo for interfaces to GIS software.

Returning to the problem of empirical variogram �tting, we �rst invoke
the geoR package. We will use the function variog in this package, which
takes in a geodata object as input. To do this, we �rst create an object, obj,
with only the coordinates and the response. We then create the geodata
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Figure 2.16 An image plot of the scallops data, with contour lines super-imposed.

object using the as.geodata function, specifying the columns holding the
coordinates, and the one holding the response.

>obj cbind(myscallops$long,myscallops$lat,

myscallops$lgcatch)

>scallops.geo as.geodata(myscallops,coords.col=1:2,

data.col=3)

Now, a variogram object is created.

>scallops.var variogram(scallops.geo,

estimator.type=''classical'')

>scallops.var

The robust estimator (see Cressie, 1993, p.75) can be obtained by typing

>scallops.var.robust variogram(scallops.geo,

estimator.type=''modulus'')

A plot of the two semivariograms (by both methods, one below the other,
as in Figure 2.17) can be obtained as follows:

>par(mfrow=c(2,1))
>plot(scallops.var)
>plot(scallops.var.robust)

Covariograms and correlograms are invoked using the covariogram and
correlogram functions. The remaining syntax is the same as in S-plus.
The function variofit estimates the sill, the range, and the nugget
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Figure 2.17 Plots of the empirical semivariograms for the scallops data: (a) clas-
sical; (b) robust.

parameters under a speci�ed covariance model. A variogram object (typi-
cally an output from the variog function) is taken as input, together with
initial values for the range and sill (in ini.cov.pars), and the covari-
ance model is speci�ed through cov.model. The covariance modeling op-
tions include exponential, gaussian, spherical, circular, cubic, wave,
power, powered.exponential, cauchy, gneiting, gneiting.matern, and
pure.nugget (no spatial covariance). Also, the initial values provided in
ini.cov.pars do not include those for the nugget. It is concatenated with
the value of the nugget option only if fix.nugget=FALSE. If the latter is
TRUE, then the value in the nugget option is taken as the �xed true value.
Thus, with the exponential covariance function for the scallops data, we

can estimate the parameters (including the nugget e�ect) using

>scallops.var.fit variofit(scallops.var.robust,

ini.cov.pars = c(1.0,50.0), cov.model=''exponential'',

fix.nugget=FALSE, nugget=1.0)

The output is given below. Notice that this is the weighted least squares
approach for �tting the variogram:

variofit: model parameters estimated by WLS

(weighted least squares):

covariance model is: matern with fixed kappa = 0.5

(exponential)
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parameter estimates:

tausq sigmasq phi

0.0000 5.1289 0.2160

Likelihood model �tting

In the previous section we saw parameter estimation through weighted least
squares of variograms. Now we introduce likelihood-based and Bayesian
estimation functions in geoR.
Both maximum likelihood and REML methods are available through the

geoR function likfit. To estimate the parameters for the scallops data,
we invoke

>scallops.lik.fit likfit(scallops.geo,

ini.cov.pars=c(1.0,2.0),cov.model = ``exponential'',

trend = ``cte'', fix.nugget = FALSE, nugget = 1.0,

nospatial = TRUE, method.lik = ``ML'')

The option trend = ``cte''means a spatial regression model with con-
stant mean. This yields the following output:

> scallops.lik.fit

likfit: estimated model parameters:

beta tausq sigmasq phi

2.3748 0.0947 5.7675 0.2338

Changing method.lik = ``REML'' yields the restricted maximum likeli-
hood estimation. Note that the variance of the estimate of beta is available
by invoking scallops.lik.fit$beta.var, so calculating the con�dence
interval for the trend is easy. However, the variances of the estimates of the
covariance parameters is not easily available within geoR.

Kriging in geoR

There are two in-built functions in geoR for kriging: one is for classical or
conventional kriging, and is called krige.conv, while the other performs
Bayesian kriging and is named krige.bayes.We now briey look into these
two types of functions. The krige.bayes function is not as versatile as
WinBUGS in that it is more limited in the types of models it can handle,
and also the updating is not through MCMC methods. Nevertheless, it
is a handy tool and already improved upon the aforementioned likelihood
methods by providing posterior samples of all the model parameters, which
lead to estimation of their variability.
The krige.bayes function can be used to estimate parameters for spatial

regression models. To �t a constant mean spatial regression model for the
scallops data, without doing predictions, we invoke krige.bayes specifying
a constant trend, an exponential covariance model, a at prior for the
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constant trend level, the reciprocal prior for sigmasq (Je�rey's), and a
discrete uniform prior for tausq.

>scallops.bayes1 <- krige.bayes(scallops.geo,

locations = ``no'', borders = NULL, model =

model.control(trend.d = ``cte'',

cov.model = ``exponential''),

prior = prior.control(beta.prior = ``flat'',

sigmasq.prior = ``reciprocal'',

tausq.rel.prior = ``uniform'',

tausq.rel.discrete=seq(from=0.0,to=1.0,by=0.01)))

We next form the quantiles in the following way:

> out scallops.krige.bayes$posterior

> out out$sample

> beta.qnt quantile(out$beta, c(0.50,0.025,0.975))

> phi.qnt quantile(out$phi, c(0.50,0.025,0.975))

> sigmasq.qnt quantile(out$sigmasq, c(0.50,0.025,0.975))

> tausq.rel.qnt quantile(out$tausq.rel,

c(0.50,0.025,0.975))

> beta.qnt

50% 2.5% 97.5%

1.931822 -6.426464 7.786515

> phi.qnt

50% 2.5% 97.5%

0.5800106 0.2320042 4.9909913

sigmasq.qnt

50% 2.5% 97.5%

11.225002 4.147358 98.484722

> tausq.rel.qnt

50% 2.5% 97.5%

0.03 0.00 0.19

Note that tausq.rel refers to the ratio of the nugget variance to the
spatial variance, and is seen to be negligible here, too. This is consistent
with all the earlier analysis, showing that a purely spatial model (no nugget)
would perhaps be more suitable for the scallops data.

2.6 Exercises

1. For semivariogram models #2, 4, 5, 6, 7, and 8 in Subsection 2.1.3,

(a) identify the nugget, sill, and range (or e�ective range) for each;
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(b) �nd the covariance function C(t) corresponding to each (t), provided
it exists.

2. Prove that for Gaussian processes, strong stationarity is equivalent to
weak stationarity.

3. Consider the triangular (or \tent") covariance function,

C(khk) =
�
�2(1� khk =�) if khk � �; �2 > 0; � > 0;

0 if khk > �
:

It is valid in one dimension. (The reader can verify that it is the char-
acteristic function of the density function f(x) proportional to 1 �
cos(�x)=�x2.) Now in two dimensions, consider a 6 � 8 grid with lo-
cations sjk = (j�=

p
2; k�=

p
2); j = 1; : : : ; 6; k = 1; : : : ; 8. Assign ajk to

sjk such that ajk = 1 if j+k is even, ajk = �1 if j+k is odd. Show that
V ar[�ajkY (sjk)] < 0, and hence that the triangular covariance function
is invalid in two dimensions.

4. The turning bands method (Christakos, 1984; Stein, 1999a) is a technique
for creating stationary covariance functions on <r. Let u be a random
unit vector on <r (by random we mean that the coordinate vector that
de�nes u is randomly chosen on the surface of the unit sphere in <r).
Let c(�) be a valid stationary covariance function on <1, and let W (t)
be a process on <1 having c(�) as its covariance function. Then for any
location s 2 <r, de�ne

Y (s) =W (sTu) :

Note that we can think of the process either conditionally given u, or
marginally by integrating with respect to the uniform distribution for
u. Note also that Y (s) has the possibly undesirable property that it is
constant on planes (i.e., on sTu = k).

(a) IfW is a Gaussian process, show that, given u, Y (s) is also a Gaussian
process and is stationary.

(b) Show that marginally Y (s) is not a Gaussian process, but is isotropic.
[Hint: Show that Cov(Y (s); Y (s0)) = Euc((s� s0)Tu).]

5.(a) Based on (2.10), show that c12(h) is a valid correlation function; i.e.,
that G is a bounded, positive, symmetric about 0 measure on <2.

(b) Show further that if c1 and c2 are isotropic, then c12 is.

6.(a) What is the issue with regard to specifying bc(0) in the covariance
function estimate (2.15)?

(b) Show either algebraically or numerically that regardless of how bc(0)
is obtained, b(tk) 6= bc(0)� bc(tk) for all tk.

7. Carry out the steps outlined in Section 2.5.1 in S+SpatialStats. In
addition:
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(a) Provide a descriptive summary of the scallops data with the plots
derived from the above session.

(b) Experiment with the model.variogram function to obtain rough es-
timates of the nugget, sill, and range; your �nal objective function
should have a value less than 9.

(c) Repeat the theoretical variogram �tting with an exponential vari-
ogram, and report your results.

8. Consider the coal.ash data frame built into S+SpatialStats. This data
comes from the Pittsburgh coal seam on the Robena Mine Property in
Greene County, PA (Cressie, 1993, p. 32). This data frame contains 208
coal ash core samples (the variable coal in the data frame) collected on
a grid given by x and y planar coordinates (not latitude and longitude).

Carry out the following tasks in S-plus:

(a) Plot the sampled sites embedded on a map of the region. Add contour
lines to the plot.

(b) Provide a descriptive summary (histograms, stems, quantiles, means,
range, etc.) of the variable coal in the data frame.

(c) Plot variograms and correlograms of the response and comment on
the need for spatial analysis here.

(d) If you think that there is need for spatial analysis, use the interactive
model.variogrammethod in S-plus to arrive at your best estimates
of the range, nugget, and sill. Report your values of the objective
functions.

(e) Try to estimate the above parameters using the nls procedure in
S-plus.

Hint: You may wish to look at Section 3.2 in Kaluzny et al. (1998) for
some insight into the coal.ash data.

9. Con�rm expressions (2.18) and (2.19), and subsequently verify the form
for � given in equation (2.20).

10. Show that when using (2.18) to predict the value of the surface at one of
the existing data locations si, the predictor will equal the observed value
at that location if and only if �2 = 0. (That is, the usual Gaussian process
is a spatial interpolator only in the \noiseless prediction" scenario.)

11. It is an unfortunate feature of S+SpatialStats that there is no intrinsic
routine to automatically obtain the standard errors of the estimated
regression coe�cients in the universal kriging model. Recall that

Y = X� + �; where � � N (0;�) ;

and � = �2H (�) + �2I ; where (H (�))ij = � (�; dij) :

Thus the dispersion matrix of b� is given as V ar(b�) = �
XT��1X

��1
.
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Thus dV ar(b�) =
�
XT b��1X��1 where b� = b�2H(b�) + b�2I and X =

[1; long; lat]. Given the estimates of the sill, range, and nugget (from

the nls function), it is possible to estimate the covariance matrix b�,
and thereby get dV ar(b�). Develop an S-plus or R program to perform

this exercise to obtain estimates of standard errors for b� for the scallops
data.

Hint: �̂2 is the nugget; �̂2 is the partial sill (the sill minus the nugget).

Finally, the correlation matrix H(�̂) can be obtained from the spherical
covariance function, part of your solution to Exercise 1.

Note: It appears that S+SpatialStats uses the ordinary Euclidean (not
geodesic) metric when computing distance, so you may use this as well

when computing H(b�). However, you may also wish to experiment with
geodesic distances here, perhaps using your solution to Chapter 1, Ex-
ercise 7.
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CHAPTER 3

Basics of areal data models

We now present a development of exploratory tools and modeling ap-
proaches that are customarily applied to data collected for areal units.
We have in mind general, possibly irregular geographic units, but of course
include the special case of regular grids of cells (pixels). Indeed, the ensuing
models have been proposed for regular lattices of points and parameters,
and sometimes even for point-referenced data (see Appendix A, Section A.5
on the problem of inverting very large matrices).
In the context of areal units the general inferential issues are the follow-

ing:

(i) Is there spatial pattern? If so, how strong is it? Intuitively, \spatial
pattern" suggests measurements for areal units that are near to each
other will tend to take more similar values than those for units far from
each other. Though you might \know it when you see it," this notion is
evidently vague and in need of quanti�cation. Indeed, with independent
measurements for each unit we expect to see no pattern, i.e., a completely
random arrangement of larger and smaller values. But again, randomness
will inevitably produce some patches of similar values.

(ii) Do we want to smooth the data? If so, how much? Suppose, for example,
that the measurement for each areal unit is a count, say, a number of
cancers. Even if the counts were independent, and perhaps even after
population adjustment, there would still be extreme values, as in any
sample. Are the observed high counts more elevated than would be ex-
pected by chance? If we sought to present a surface of expected counts
we might naturally expect that the high values would tend to be pulled
down, the low values to be pushed up. This is the notion of smoothing.
No smoothing would present a display using simply the observed counts.
Maximal smoothing would result in a single common value for all units,
clearly excessive. Suitable smoothing would fall somewhere in between,
and take the spatial arrangement of the units into account.

Of course, how much smoothing is appropriate is not readily de�ned.
In particular, for model-based smoothers such as we describe below, it
is not evident what the extent of smoothing is, or how to control it.
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Speci�cation of a utility function for smoothing (as attempted in Stern
and Cressie, 1999) would help to address these questions.

(iii) For a new areal unit or set of units, how can we infer about what data
values we expect to be associated with these units? That is, if we modify
the areal units to new units, e.g., from zip codes to census block groups,
what can we say about the cancer counts we expect for the latter given
those for the former? This is the so-called modi�able areal unit problem
(MAUP), which historically (and in most GIS software packages) is han-
dled by crude areal allocation. Sections 6.2 and 6.3 propose model-based
methodology for handling this problem.

As a matter of fact, in order to facilitate interpretation and better assess
uncertainty, we will suggest model-based approaches to treat the above is-
sues, as opposed to the more descriptive or algorithmic methods that have
dominated the literature and are by now widely available in GIS software
packages. We will also introduce further exibility into these models by
examining them in the context of regression. That is, we will assume that
we have available potential covariates to explain the areal unit responses.
These covariates may be available at the same or at di�erent scales from
the responses, but, regardless, we will now question whether there remains
any spatial structure adjusted for these explanatory variables. This sug-
gests that we may not try to model the data in a spatial way directly,
but instead introduce spatial association through random e�ects. This will
lead to versions of generalized linear mixed models (Breslow and Clayton,
1993). We will often view such models in the hierarchical fashion that is
the primary theme of this text.

3.1 Exploratory approaches for areal data

We begin with the presentation of some tools that can be useful in the ini-
tial exploration of areal unit data. The primary concept here is a proxim-
ity matrix, W . Given measurements Y1; : : : ; Yn associated with areal units
1; 2; : : : ; n, the entries wij in W spatially connect units i and j in some
fashion. (Customarily wii is set to 0.) Possibilities include binary choices,
i.e., wij = 1 if i and j share some common boundary, perhaps a vertex
(as in a regular grid). Alternatively, wij could reect \distance" between
units, e.g., a decreasing function of intercentroidal distance between the
units (as in a county or other regional map). But distance can be returned
to a binary determination. For example, we could set wij = 1 for all i and j
within a speci�ed distance. Or, for a given i, we could get wij = 1 if j is one
of the K nearest (in distance) neighbors of i. The preceding choices suggest
that W would be symmetric. However, for irregular areal units, this last
example provides a setting where this need not be the case. Also, the wij 's

may be standardized by
P

j wij = wi+. If fW has entries ewij = wij=wi+,
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then evidently fW is row stochastic, i.e., fW1 = 1, but now fW need not be
symmetric.

As the notation suggests, the entries in W can be viewed as weights.
More weight will be associated with j's closer (in some sense) to i than
those farther away from i. In this exploratory context (but, as we shall
see, more generally) W provides the mechanism for introducing spatial
structure into our formal modeling.

Lastly, working with distance suggests that we can de�ne distance bins,
say, (0; d1]; (d1; d2]; (d2; d3], and so on. This enables the notion of �rst-
order neighbors of unit i, i.e., all units within distance d1 of i, second-order
neighbors, i.e., all units more than d1 but at most d2 from i, third-order
neighbors, and so on. Analogous to W we can de�ne W (1) as the proximity

matrix for �rst-order neighbors. That is, w
(1)
ij = 1 if i and j are �rst-

order neighbors, and equal to 0 otherwise. Similarly we de�ne W (2) as

the proximity matrix for second-order neighbors; w
(2)
ij = 1 if i and j are

second-order neighbors, and 0 otherwise, and so on to create W (3), W (4),
etc.

Of course, the most obvious exploratory data analysis tool for lattice data
is a map of the data values. Figure 3.1 gives the statewide average verbal
SAT scores as reported by the College Board and initially analyzed by Wall
(2004). Clearly these data exhibit strong spatial pattern, with midwestern
states and Utah performing best, and coastal states and Indiana performing
less well. Of course, before jumping to conclusions, we must realize there are
any number of spatial covariates that may help to explain this pattern; the
percentage of eligible students taking the exam, for instance (Midwestern
colleges have historically relied on the ACT, not the SAT, and only the
best and brightest students in these states would bother taking the latter
exam). Still, the map of these raw data show signi�cant spatial pattern.

3.1.1 Measures of spatial association

Two standard statistics that are used to measure strength of spatial associa-
tion among areal units are Moran's I and Geary's C (see, e.g., Ripley, 1981,
Sec. 5.4). These are spatial analogues of statistics for measuring association
in time series, the lagged autocorrelation coe�cient and the Durbin-Watson
statistic, respectively. They can also be seen to be areal unit analogues of
the empirical estimates for the correlation function and the variogram, re-
spectively. Recall that, for point-referenced data, the empirical covariance
function (2.15) and semivariogram (2.9), respectively, provide customary
nonparametric estimates of these measures of association.
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<503
504-525
526-562
>563

Figure 3.1 Choropleth map of 1999 average verbal SAT scores, lower 48 U.S.
states.

Moran's I takes the form

I =
n
P

i

P
j wij(Yi � Y )(Yj � Y )�P

i6=j wij

�P
i(Yi � Y )2

: (3:1)

I is not strictly supported on the interval [�1; 1]. It is evidently a ratio
of quadratic forms in Y that provides the idea for obtaining approximate
�rst and second moments through the delta method (see, e.g., Agresti,
2002, Ch. 14). Moran shows under the null model where the Yi are i.i.d., I
is asymptotically normally distributed with mean �1=(n� 1) and a rather
unattractive variance of the form

V ar(I) =
n2(n� 1)S1 � n(n� 1)S2 � 2S20

(n+ 1)(n� 1)2S20
: (3:2)

In (3.2), S0 =
P

i 6=j wij , S1 =
1
2

P
i6=j(wij +wji)

2, and S2 =
P

k(
P

j wkj +P
i wik)

2. We recommend the use of Moran's I as an exploratory measure
of spatial association, rather than as a \test of spatial signi�cance."

For the data mapped in Figure 3.1, we used the spatial.cor function
in S+SpatialStats (see Section 2.5) to obtain a value for Moran's I of
0.5833, a reasonably large value. The associated standard error estimate
of 0.0920 suggests very strong evidence against the null hypothesis of no
spatial correlation in these data.

© 2004 by CRC Press LLC



EXPLORATORY APPROACHES FOR AREAL DATA 73

Geary's C takes the form

C =
(n� 1)

P
i

P
j wij(Yi � Yj)

2�P
i6=j wij

�P
i(Yi � Y )2

: (3:3)

C is never negative, and has mean 1 for the null model; low values (i.e.,
between 0 and 1) indicate positive spatial association. Also, C is a ratio
of quadratic forms in Y and, like I , is asymptotically normal if the Yi
are i.i.d. We omit details of the distribution theory, recommending the
interested reader to Cli� and Ord (1973), or Ripley (1981, p. 99).

Again using the spatial.cor function on the SAT verbal data in Fig-
ure 3.1, we obtained a value of 0.3775 for Geary's C, with an associated
standard error estimate of 0.1008. Again, the marked departure from the
mean of 1 indicates strong positive spatial correlation in the data.

If one truly seeks to run a signi�cance test using (3.1) or (3.3), our
recommendation is a Monte Carlo approach. Under the null model the dis-
tribution of I (or C) is invariant to permutation of the Yi's. The exact
null distribution of I (or C) requires computing its value under all n! per-
mutation of the Yi's, infeasible for n in practice. However, a Monte Carlo
sample of say 1000 permutations, including the observed one, will position
the observed I (or C) relative to the remaining 999, to determine whether
it is extreme (perhaps via an empirical p-value). Again using spatial.cor

function on our SAT verbal data, we obtained empirical p-values of 0 using
both Moran's I and Geary's C; no random permutation achieved I or C
scores as extreme as those obtained for the actual data itself.

A further display that can be created in this spirit is the correlogram.
Working with say I , in (3.1) we can replace wij with the previously de�ned

w
(1)
ij and compute say I(1). Similarly, we can replace wij with w

(2)
ij and

obtain I(2). A plot of I(r) vs. r is called a correlogram and, if spatial
pattern is present, is expected to decline in r initially and then perhaps
vary about 0. Evidently, this display is a spatial analogue of a temporal lag
autocorrelation plot (e.g., see Carlin and Louis, 2000, p. 181). In practice,
the correlogram tends to be very erratic and its information context is often
not clear.

With large, regular grids of cells as we often obtain from remotely sensed
imagery, it may be of interest to study spatial association in a particular
direction (e.g., east-west, north-south, southwest-northeast, etc.). Now the
spatial component reduces to one dimension and we can compute lagged
autocorrelations (lagged appropriately to the size of the grid cells) in the
speci�c direction. An analogue of this was proposed for the case where
the Yi are binary responses (e.g., presence or absence of forest in the cell)
by Agarwal, Gelfand, and Silander (2002). In particular, Figure 3.2 shows
rasterized maps of binary land use classi�cations for roughly 25,000 1 km
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NORTH SOUTH

land use classification
non-forest
forest

Figure 3.2 Rasterized north and south regions (1 km � 1 km) with binary land
use classi�cation overlaid.

� 1 km pixels in eastern Madagascar; see Agarwal et al. (2002) as well as
Section 6.4 for further discussion.

While the binary map in Figure 3.2 shows spatial pattern in land use,
we develop an additional display to provide quanti�cation. For data on
a regular grid or lattice, we calculate binary analogues of the sample au-
tocovariances, using the 1 km � 1 km resolution with four illustrative
directions: East (E), Northeast (NE), North (N), and Northwest (NW).
Relative to a given pixel, we can identify all pixels in the region in a speci-
�ed direction from that pixel and associate with each a distance (Euclidean
distance centroid to centroid) from the given pixel. Pairing the response at
the given pixel (X) with the response at a directional neighbor (Y), we
obtain a correlated binary pair. Collecting all such (X,Y) pairs at a given
direction/distance combination yields a 2�2 table of counts. The resultant
log-odds ratio measures the association between pairs in that direction at
that distance. (Note that if we followed the same procedure but reversed di-
rection, e.g., changed from E to W, the corresponding log odds ratio would
be unchanged.)

In Figure 3.3, we plot log odds ratio against direction for each of the
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Figure 3.3 Land use log-odds ratio versus distance in four directions.

four directions. Note that the spatial association is quite strong, requiring
a distance of at least 40 km before it drops to essentially 0. This suggests
that we would not lose much spatial information if we work with the lower
(4 km � 4 km) resolution. In exchange we obtain a richer response variable
(17 ordered levels, indicating number of forested cells from 0 to 16) and
a substantial reduction in number of pixels (from 26,432 to 1; 652 in the
north region, from 24,544 to 1; 534 in the south region) to facilitate model
�tting.

3.1.2 Spatial smoothers

Recall from the beginning of this chapter that often a goal for, say, a
choropleth map of the Yi's is smoothing. Depending upon the number of
classes used to make the map, there is already some implicit smoothing in
such a display (although this is not spatial smoothing, of course).

The W matrix directly provides a spatial smoother; that is, we can re-
place Yi by bYi =Pj wijYj=wi+. This ensures that the value for areal unit
i \looks like" its neighbors, and that the more neighbors we use in com-
puting bYi, the more smoothing we will achieve. In fact, bYi may be viewed
as an unusual smoother in that it ignores the value actually observed for

© 2004 by CRC Press LLC



76 BASICS OF AREAL DATA MODELS

unit i. As such, we might revise the smoother tobY �i = (1� �)Yi + �bYi ; (3:4)

where � 2 (0; 1). Working in an exploratory mode, various choices may be
tried for �, but for any of these, (3.4) is a familiar shrinkage form. Thus,
under a speci�c model with a suitable loss function, an optimal � could be
sought. Finally, the form (3.4), viewed generally as a linear combination of
the Yj , is customarily referred to as a �lter in the GIS literature. In fact,
such software will typically provide choices of �lters, and even a default
�lter to automatically smooth maps.
In Section 4.1 we will present a general discussion revealing how smooth-

ing emerges as a byproduct of the hierarchical models we propose to use
to explain the Yi. In particular, when W is used in conjunction with a
stochastic model (as in Section 3.3), the bYi are updated across i and across
Monte Carlo iterations as well. So the observed Yi will a�ect the eventualbYi, and a \manual" inclusion of Yi as in (3.4) is unnecessary.

3.2 Brook's Lemma and Markov random �elds

A useful technical result for obtaining the joint distribution of the Yi in
some of the models we discuss below is Brook's Lemma (Brook, 1964). The
usefulness of this lemma is exposed in Besag's (1974) seminal paper on
conditionally autoregressive models.
It is clear that given p(y1; : : : ; yn), the so-called full conditional distribu-

tions, p(yijyj ; j 6= i), i = 1; : : : ; n, are uniquely determined. Brook's Lemma
proves the converse and, in fact, enables us to constructively retrieve the
unique joint distribution determined by these full conditionals. But �rst, it
is also clear that we cannot write down an arbitrary set of full conditional
distributions and assert that they uniquely determine the joint distribution.
To see this, let Y1jY2 � N(�0+�1Y2; �

2
1) and let Y2jY1 � N(�0+�1Y

3
1 ; �

2
2),

where N denotes the normal (Gaussian) distribution. It is apparent that

E(Y1) = E[E(Y1jY2)] = E[�0 + �1Y2] = �0 + �1E(Y2) ; (3:5)

i.e., E(Y1) is linear in E(Y2) (hence E(Y2) is linear in E(Y1)). But it must
also be the case that

E(Y2) = E[E(Y2jY1)] = E[�0 + �1Y1] = �0 + �1E(Y
3
1 ) : (3:6)

Equations (3.5) and (3.6) could simultaneously hold only in trivial cases, so
the two mean speci�cations are incompatible. Thus we can say that f(y1jy2)
and f(y2jy1) are incompatible with regard to determining p(y1; y2). We do
not propose to examine conditions for compatibility here, although there
has been considerable work in this area (see, e.g., Arnold and Strauss, 1991,
and references therein).
Another point is that p(y1 : : : ; yn) may be improper even if p(yijyj ; j 6= i)
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is proper for all i. As an elementary illustration, consider p(y1; y2) /
exp[� 1

2 (y1 � y2)
2]. Evidently p(y1jy2) is N(y2; 1) and p(y2jy1) is N(y1; 1),

but p(y1; y2) is improper. Casella and George (1992) provide a similar ex-
ample in a bivariate exponential (instead of normal) setting.

Brook's Lemma notes that

p(y1; : : : ; yn) =
p(y1jy2; : : : ; yn)
p(y10jy2; : : : ; yn) �

p(y2jy10; y3; : : : ; yn)
p(y20jy10; y3; : : : ; yn) (3.7)

� � � p(ynjy10; : : : ; yn�1;0)
p(yn0jy10; : : : ; yn�1;0) � p(y10; : : : ; yn0) ;

an identity you are asked to check in Exercise 1. Here, y0 = (y10; : : : ; yn0)
0

is any �xed point in the support of p(y1; : : : ; yn). Hence p(y1; : : : ; yn) is de-
termined by the full conditional distributions, since apart from the constant
p(y10; : : : ; yn0) they are the only objects appearing on the right-hand side
of (3.7). Hence the joint distribution is determined up to a proportionality
constant. If p(y1; : : : ; yn) is improper then this is, of course, the best we can
do; if p(y1; : : : ; yn) is proper then the fact that it integrates to 1 determines
the constant. Perhaps most important is the constructive nature of (3.7):
we can create p(y1; : : : ; yn) simply by calculating the product of ratios. For
more on this point see Exercise 2.

Usually, when the number of areal units is very large (say, a large number
of small geographic regions, or a regular grid of pixels on a screen), we do
not seek to write down the joint distribution of the Yi. Rather we prefer
to work (and model) exclusively with the n corresponding full conditional
distributions. In fact, from a spatial perspective we would think that the full
conditional distribution for Yi should really depend only upon the neighbors
of cell i. Adopting some de�nition of a neighbor structure (e.g., the one
setting Wij = 1 or 0 depending on whether i and j are adjacent or not),
let @i denote the set of neighbors of cell i.

Next suppose we specify a set of full conditional distributions for the Yi
such that

p(yijyj ; j 6= i) = p(yijyj ; j 2 @i) (3:8)

A critical question to ask is whether a speci�cation such as (3.8) uniquely
determines a joint distribution for Y1; : : : Yn. That is, we do not need to
see the explicit form of this distribution. We merely want to be assured
that if, for example, we implement a Gibbs sampler (see Subsection 4.3.1)
to simulate realizations from the joint distribution, that there is indeed a
unique stationary distribution for this sampler.

The notion of using local speci�cation to determine a joint (or global) dis-
tribution in the form (3.8) is referred to as a Markov random �eld (MRF).
There is by now a substantial literature in this area, with Besag (1974)
being a good place to start. Geman and Geman (1984) provide the next
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critical step in the evolution, while Kaiser and Cressie (2000) o�er a current
view and provide further references.

A critical de�nition in this regard is that of a clique. A clique is a set of
cells (equivalently, indices) such that each element is a neighbor of every
other element. With n cells, depending upon the de�nition of the neighbor
structure, cliques can possibly be of size 1, 2, and so on up to size n.
A potential function (or simply potential) of order k is a function of k
arguments that is exchangeable in these arguments. The arguments of the
potential would be the values taken by variables associated with the cells
for a clique of size k. For continuous Yi, a customary potential when k = 2
is YiYj if i and j are a clique of size 2. (We use the notation i � j if i is
a neighbor of j and j is a neighbor of i.) For, say, binary Yi, a potential
when k = 2 is

I(Yi = Yj) = YiYj + (1� Yi)(1� Yj) ;

where again i � j and I denotes the indicator function. Throughout this
book (and perhaps in most practical work as well), only cliques of order
less than or equal to 2 are considered.

Next, we de�ne a Gibbs distribution as follows: p(y1; : : : ; yn) is a Gibbs
distribution if it is a function of the Yi only through potentials on cliques.
That is,

p(y1; : : : ; yn) / exp

(

X
k

X
�2Mk

�(k)(y�1 ; y�2 ; : : : ; y�k)

)
: (3:9)

Here, �(k) is a potential of order k, Mk is the collection of all subsets of
size k from f1; 2; : : : ; ng, � = (�1; : : : ; �k)

0 indexes this set, and  > 0 is a
scale (or \temperature") parameter.

Informally, the Hammersley-Cli�ord Theorem (see Besag, 1974; also Clif-
ford, 1990) demonstrates that if we have an MRF, i.e., if (3.8) de�nes a
unique joint distribution, then this joint distribution is a Gibbs distribu-
tion. That is, it is of the form (3.9), with all of its \action" coming in the
form of potentials on cliques. Cressie (1993, pp. 417{18) o�ers a proof of
this theorem, and mentions that its importance for spatial modeling lies
in its limiting the complexity of the conditional distributions required, i.e.,
full conditional distributions can be speci�ed locally.

Geman and Geman (1984) provided essentially the converse of the Ham-
mersley-Cli�ord theorem. If we begin with (3.9) we have determined an
MRF. As a result, they argued that to sample a Markov random �eld, one
could sample from its associated Gibbs distribution, hence coining the term
\Gibbs sampler."

If we only use cliques of order 1, then the Yi must be independent, as is
evidenced by (3.9). For continuous data on <1, a common choice for the
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joint distribution is a pairwise di�erence form

p(y1; : : : ; yn) / exp

8<:� 1

2�2

X
i;j

(yi � yj)
2I(i � j)

9=; : (3:10)

Distributions such as (3.10) will be the focus of the next section. For the
moment, we merely note that it is a Gibbs distribution on potentials of
order 1 and 2 and that

p(yi yj ; j 6= i) = N

0@X
j2@i

yi=mi ; �
2=mi

1A ; (3:11)

where mi is the number of neighbors of cell i. The distribution in (3.11) is
clearly of the form (3.8) and shows that the mean of Yi is the average of
its neighbors.

3.3 Conditionally autoregressive (CAR) models

Although they were introduced by Besag (1974) approximately 30 years
ago, conditionally autoregressive (CAR) models have enjoyed a dramatic
increase in usage only in the past decade or so. This resurgence arises from
their convenient employment in the context of Gibbs sampling and more
general Markov chain Monte Carlo (MCMC) methods for �tting certain
classes of hierarchical spatial models (seen, e.g., in Section 5.4.3).

3.3.1 The Gaussian case

We begin with the Gaussian (or autonormal) case. Suppose we set

Yi j yj ; j 6= i � N

0@X
j

bijyj ; �
2
i

1A ; i = 1; : : : ; n : (3:12)

These full conditionals are compatible, so through Brook's Lemma we can
obtain

p(y1; : : : ; yn) / exp

�
�1

2
y0D�1(I �B)y

�
; (3:13)

where B = fbijg and D is diagonal with Dii = �2i . Expression (3.13)
suggests a joint multivariate normal distribution for Y with mean 0 and
variance matrix �y = (I �B)�1D.
But we are getting ahead of ourselves. First, we need to ensure that

D�1(I �B) is symmetric. The simple resulting conditions are

bij
�2i

=
bji
�2j

for all i; j : (3:14)
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Evidently, from (3.14), B is not symmetric. Returning to our proximity ma-
trix W (which we assume to be symmetric), suppose we set bij = wij=wi+

and �2i = �2=wi+. Then (3.14) is satis�ed and (3.12) yields p(yijyj ; j 6= i) =

N
�P

j wijyj=wi+ ; �
2=wi+

�
. Also, (3.13) becomes

p(y1; : : : ; yn) / exp

�
� 1

2�2
y0(Dw �W )y

�
; (3:15)

where Dw is diagonal with (Dw)ii = wi+.
Now a second problem is noticed. (Dw �W )1 = 0, i.e., ��1y is singular,

so that �y does not exist and the distribution in (3.15) is improper. (The

reader is encouraged to note the di�erence between the case of ��1y singular
and the case of �y singular. With the former we have a density function
but one that is not integrable; e�ectively we have too many variables and
we need a constraint on them to restore propriety. With the latter we have
no density function but a proper distribution that resides in a lower dimen-
sional space; e�ectively we have too few variables.) With a little algebra
(3.15) can be rewritten as

p(y1; : : : ; yn) / exp

8<:� 1

2�2

X
i6=j

wij(yi � yj)
2

9=; : (3:16)

This is a pairwise di�erence speci�cation slightly more general than (3.10).
But the impropriety of p(y) is also evident from (3.16) since we can add any
constant to all of the Yi and (3.16) is una�ected; the Yi are not \centered."
A constraint such as

P
i Yi = 0 would provide the needed centering. Thus

we have a more general illustration of a joint distribution that is improper,
but has all full conditionals proper. The speci�cation (3.16) is often referred
to as an intrinsically autoregressive (IAR) model.
As a result, p(y) in (3.15) cannot be used as a model for data; data could

not arise under an improper stochastic mechanism, and we cannot impose
a constant center on randomly realized measurements. Hence, the use of
an improper autonormal model must be relegated to a prior distributional
speci�cation. That is, it will be attached to random spatial e�ects intro-
duced at the second stage of a hierarchical speci�cation (again, see e.g.
Section 5.4.3).
The impropriety in (3.15) can be remedied in an obvious way. Rede-

�ne ��1y = Dw � �W and choose � to make ��1y nonsingular. This is

guaranteed if � 2 �
1=�(1); 1=�(n)

�
, where �(1) < �(2) < � � � < �(n) are

the ordered eigenvalues of D
�1=2
w WD

�1=2
w ; see Exercise 5. Moreover, since

tr(D
�1=2
w WD

�1=2
w ) = 0 =

Pn
i=1 �(i), �(1) < 0, �(n) > 0, and 0 belongs to�

1=�(1); 1=�(n)
�
.

Simpler bounds than those given above for the propriety parameter �may
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be obtained if we replace the adjacency matrix W by the scaled adjacency
matrix fW � Diag(1=wi+)W ; recall fW is not symmetric, but it will be
row stochastic (i.e., all of its rows sum to 1). ��1y can then be written as

M�1(I��fW ) whereM is diagonal. Then if j�j < 1, I��fW is nonsingular.
(See the SAR model of the next section, as well as Exercise 7.) Carlin and
Banerjee (2003) show that ��1y is diagonally dominant and symmetric.

But diagonally dominant symmetric matrices are positive de�nite (Harville,
1997), providing an alternative argument for the propriety of the joint
distribution.

Returning to the unscaled situation, � can be viewed as an additional
parameter in the CAR speci�cation, enriching this class of spatial models.
Furthermore, � = 0 has an immediate interpretation: the Yi become inde-
pendent N(0; �2=wi+). If � is not included, independence cannot emerge as
a limit of (3.15). (Incidentally, this suggests a clari�cation of the role of �2,
the variance parameter associated with the full conditional distributions:
the magnitude of �2 should not be viewed as in any way quantifying the
strength of spatial association. Indeed if all Yi are multiplied by c, �2 be-
comes c�2 but the strength of spatial association among the Yi is clearly
una�ected.) Lastly, �

P
j wijYj=wi+ can be viewed as a reaction function,

i.e., � is the expected proportional \reaction" of Yi to
P

j wijYj=wi+.

With these advantages plus the fact that p(y) (or the Bayesian posterior
distribution, if the CAR speci�cation is used to model constrained random
e�ects) is now proper, is there any reason not to introduce the � parameter?
In fact, the answer may be yes. Under ��1y = Dw � �W , the full condi-

tional p(yijyj ; j 6= i) becomes N
�
�
P

j wijyj=wi+ ; �
2=wi+

�
. Hence we are

modeling Yi not to have mean that is an average of its neighbors, but some
proportion of this average. Does this enable any sensible spatial interpre-
tation for the CAR model? Moreover, does � calibrate very well with any
familiar interpretation of \strength of spatial association?" Fixing �2 = 1
without loss of generality, we can simulate CAR realizations for a given
n;W , and �. We can also compute for these realizations a descriptive as-
sociation measure such as Moran's I or Geary's C. Here we do not present
explicit details of the range of simulations we have conducted. However,
for a 10 � 10 grid using a �rst-order neighbor system, when � = 0:8, I is
typically 0.1 to 0.15; when � = 0:9, I is typically 0.2 to 0.25; and even when
� = 0:99, I is typically at most 0.5. It thus appears that � can mislead with
regard to strength of association. Expressed in a di�erent way, within a
Bayesian framework, a prior on � that encourages a consequential amount
of spatial association would place most of its mass near 1.

A related point is that if p(y) is proper, the breadth of spatial pattern
may be too limited. In the case where a CAR model is applied to random
e�ects, an improper choice may actually enable wider scope for posterior
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spatial pattern. As a result, we do not take a position with regard to propri-
ety or impropriety in employing CAR speci�cations (though in the remain-
der of this text we do sometimes attempt to illuminate relative advantages
and disadvantages).
Referring to (3.12), we may write the entire system of random variables

as

Y = BY + � ; or equivalently, (3.17)

(I �B)Y = � : (3.18)

In particular, the distribution for Y induces a distribution for �. If p(y) is
proper then Y � N(0; (I �B)�1D) whence � � N(0; D(I �B)0), i.e., the
components of � are not independent. Also, Cov(�;Y) = D.
When p(y) is proper we can appeal to standard multivariate normal dis-

tribution theory to interpret the entries in ��1y . For example, 1=(��1y )ii =

V ar(YijYj ; j 6= i). Of course with ��1y = D�1(I � B), (��1y )ii = 1=�2i
providing immediate agreement with (3.12). But also, if (��1y )ij = 0, then
Yi and Yj are conditionally independent given Yk; k 6= i; j, a fact you are
asked to show in Exercise 8. Hence if any bij = 0, we have conditional in-
dependence for that pair of variables. Connecting bij to wij shows that the
choice of neighbor structure implies an associated collection of conditional
independences. With �rst-order neighbor structure, all we are asserting is
a spatial illustration of the local Markov property (Whittaker, 1990, p. 68).
We conclude this subsection with three remarks. First, one can directly

introduce a regression component into (3.12), e.g., a term of the form x0i�.
Conditional on �, this does not a�ect the association structure that ensues
from (3.12); it only revises the mean structure. However, we omit details
here (the interested reader can consult Besag, 1974), since we will only use
the autonormal CAR as a distribution for spatial random e�ects. These
e�ects are added onto the regression structure for the mean on some trans-
formed scale (again, see Section 5.4.3).
We also note that in suitable contexts it may be appropriate to think

of Yi as a vector of dependent areal unit measurements or, in the context
of random e�ects, as a vector of dependent random e�ects associated with
an areal unit. This leads to the speci�cation of multivariate conditionally
autoregressive (MCAR) models, which is the subject of Section 7.4. From
a somewhat di�erent perspective, Yi might arise as (Yi1; : : : ; YiT )

0 where
Yit is the measurement associated with areal unit i at time t; t = 1; : : : ; T .
Now we would of course think in terms of spatiotemporal modeling for Yit.
This is the subject of Section 8.5.
Lastly, a (proper) CAR model can in principle be used for point-level

data, taking wij to be, say, an inverse distance between points i and j.
However, unlike the spatial prediction described in Section 2.4, now spatial
prediction becomes ad hoc. That is, to predict at a new site Y0, we might
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specify the distribution of Y0 given Y1; : : : ; Yn to be a normal distribution,

such as a N
�
�
P

j w0jyj=w0+ ; �
2=w0+

�
. Note that this determines the

joint distribution of Y0; Y1; : : : ; Yn. However, this joint distribution is not
the CAR distribution that would arise by specifying the full conditionals
for Y0; Y1; : : : ; Yn and using Brook's Lemma, as in constructing (3.15).

3.3.2 The non-Gaussian case

If one seeks to model the data directly using a CAR speci�cation then
in many cases a normal distribution would not be appropriate. Binary
response data and sparse count data are two examples. In fact, one can
select any exponential family model as a �rst-stage distribution for the
data and propose

p (yijyj ; j 6= i) / exp (f (�iyi � � (�i))g ; (3:19)

where, adopting a canonical link, �i =
P

j 6=i bijyj and  is a non-negative
dispersion parameter. In fact (3.19) simpli�es to

p (yijyj ; j 6= i) / exp

0@ X
j 6=i

wijyiyj

1A : (3:20)

Since the data are being modeled directly, it may be appropriate to intro-
duce a nonautoregressive linear regression component to (3.20). That is,
we can write �i = xTi � +

P
j 6=i bijyj , for some set of covariates xi. After

obvious reparametrization (3.20) becomes

p (yijyj ; j 6= i) / exp

0@xTi  +  
X
j 6=i

bijyj

1A : (3:21)

In the case where the Yi are binary, a particular version, which has
received recent attention in the literature, is the autologistic model; see,
e.g., Heikkinen and Hogmander (1994), Hogmander and M�ller (1995), and
Hoeting et al. (2000). Here,

log
P (Yi = 1)

P (Yi = 0)
= xTi  +  

X
wijyj ; (3:22)

where wij = 1 if i � j, = 0 otherwise. Using Brook's Lemma the joint
distribution of Y1; : : : ; Yn can be shown to be

p (y1; :::; yn) / exp

0@T  X
i

yixi

!
+  

X
i;j

wijyiyj

1A : (3:23)

Expression (3.23) shows that f is indeed a Gibbs distribution and appears
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to be an attractive form. But for likelihood or Bayesian inference, the nor-
malizing constant is required, since it is a function of  and  . However,
computation of this constant requires summation over all of the 2n possi-
ble values that (Y1; Y2; :::; Yn) can take on. Even for moderate sample sizes
this will present computational challenges. Hoeting et al. (2000) propose
approximations to the likelihood using a pseudo-likelihood and a normal
approximation.
The case where Yi can take on one of several categorical values presents a

natural extension to the autologistic model. If we label the (say) L possible
outcomes as simply 1; 2; :::; L, then we can de�ne

P (Yi = l j Yj ; j 6= i) / exp

0@ X
j 6=i

wijI (Yj = l)

1A ; (3:24)

with wij as above. The distribution in (3.24) is referred to as a Potts model.
It obviously extends the binary case and encourages Yi to be like its neigh-
bors. It also su�ers from the normalization problem. It can also be employed
as a random e�ects speci�cation, as an alternative to an autonormal; see
Green and Richardson (2002) in this regard.

3.4 Simultaneous autoregressive (SAR) models

Returning to (3.17), suppose that instead of letting Y induce a distribution
for �, we let � induce a distribution for Y. Imitating usual autoregressive
time series modeling, suppose we take the �i to be independent innovations.

For a little added generality, assume that � � N
�
0; ~D

�
where ~D is diagonal

with
�
~D
�
ii
= �2i . (Note

~D has no connection with D in Section 3.3; the

B we use below may or may not be the same as the one we used in that
section.) Analogous to (3.12), now Yi =

P
j bijYj + �i; i = 1; 2; :::; n, with

�i � N
�
0; �2i

�
. Therefore, if (I �B) is full rank,

Y � N
�
0 ; (I �B)�1 ~D ((I �B)�1)0

�
: (3:25)

Also, Cov(�;Y) = ~D(I � B)�1. If ~D = �2I then (3.25) simpli�es to Y �
N
�
0 ; �2 [(I �B)(I �B)0]

�1
�
. In order that (3.25) be proper, I�B must

be full rank. Two choices are most frequently discussed in the literature
(e.g., Gri�th, 1988). The �rst assumes B = �W; where W is a so-called
contiguity matrix, i.e., W has entries that are 1 or 0 according to whether
or not unit i and unit j are direct neighbors (with wii = 0). So W is our
familiar �rst-order neighbor proximity matrix. Here � is called a spatial
autoregression parameter and, evidently, Yi = �

P
j YjI(j 2 @i) + �i, where

@i denotes the set of neighbors of i. In fact, any proximity matrix can be
used and, paralleling the discussion below (3.15), I��W will be nonsingular
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if � 2
�

1
�(1)

; 1
�(n)

�
where now �(1) < � � � < �(n) are the ordered eigenvalues

of W .
Alternatively,W can be replaced byfW where now, for each i, the ith row

has been normalized to sum to 1. That is,
�
~W
�
ij
= wij=wi+. Again, fW is

not symmetric, but it is row stochastic, i.e., fW1 = 1. If we set B = �fW ,
� is called a spatial autocorrelation parameter and, were W a contiguity
matrix, now Yi = �

P
j YiI(j 2 @i)=wi+ + �i. With a very regular grid the

wi+ will all be essentially the same and thus � will be a multiple of �. But,

perhaps more importantly, with fW row stochastic the eigenvalues of fW
are all less than or equal to 1 (i.e., max j�ij = 1). Thus I � �fW will be
nonsingular if � 2 (�1; 1), justifying referring to � as an autocorrelation
parameter; see Exercise 7.
A SAR model is customarily introduced in a regression context, i.e., the

residuals U = Y�X� are assumed to follow a SAR model, rather than Y
itself. But then, following (3.17), if U = BU+ �, we obtain the attractive
form

Y = BY + (I �B)X� + � : (3:26)

Expression (3.26) shows that Y is modeled through a component that
provides a spatial weighting of neighbors and a component that is a usual
linear regression. If B is the zero matrix we obtain an OLS regression; if
B = I we obtain a purely spatial model.
We note that from (3.26) the SAR model does not introduce any spatial

e�ects; the errors in (3.26) are independent. Expressed in a di�erent way,
if we modeled Y = X� as U+e with e independent errors, we would have
U+ e = BU+ �+ e and �+ e would result in a redundancy. As a result,
in practice a SAR speci�cation is not used in conjunction with a GLM.
To introduce U as a vector of spatial adjustments to the mean vector, a
transformed scale creates redundancy between the independent Gaussian
error in the de�nition of the Ui and the stochastic mechanism associated
with the conditionally independent Yi.
We briey note the somewhat related spatial modeling approach of Lang-

ford et al. (1999). Rather than modeling the residual vector U = BU+ �,
they propose that U = ~B� where � � N

�
0; �2I

�
, i.e., that U be modeled

as a spatially motivated linear combination of independent variables. This
induces �U = �2 ~B ~BT . Thus, the Ui and hence the Yi will be dependent
and given ~B, cov (Yi; Yi0) = �2

P
j bijbi0j . If B arises through some prox-

imity matrix W , the more similar rows i and i0 of W are, the stronger the
association between Yi and Yi0 . However, the di�erence in nature between
this speci�cation and that in (3.26) is evident. To align the two, we would

set (I �B)
�1

= ~B, i.e. B = I � ~B�1 (assuming ~B is of full rank). I � ~B�1

would not appear to have any interpretation through a proximity matrix.
Perhaps the most important point to note with respect to SAR models is
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that they are well suited to maximum likelihood estimation but not at all
for MCMC �tting of Bayesian models. That is, the log likelihood associated
with (3.26) (assuming ~D = �2I) is

1

2
log
����1 (I �B)

��� 1

2�2
(Y �X�)

T
(I �B) (I �B)

T
(Y �X�) : (3:27)

Though B will introduce a regression or autocorrelation parameter, the
quadratic form in (3.27) is quick to calculate (requiring no inverse) and the
determinant can usually be calculated rapidly using diagonally dominant,
sparse matrix approximations (see, e.g., Pace and Barry, 1997a,b). Thus
maximization of (3.27) can be done iteratively but, in general, e�ciently.
Also, note that while the form in (3.27) can certainly be extended to a

full Bayesian model through appropriate prior speci�cations, the absence
of a hierarchical form with random e�ects implies straightforward Bayesian
model �tting as well. Indeed, the general spatial slice Gibbs sampler (see
Appendix Section A.6, or Agarwal and Gelfand, 2002) can easily handle
this model. However, suppose we attempt to introduce SAR random ef-
fects in some fashion. Unlike CAR random e�ects that are de�ned through
full conditional distributions, the full conditional distributions for the SAR
e�ects have no convenient form. For large n, computation of such distribu-
tions using a form such as (3.25) will be expensive.
SAR models as in (3.26) are frequently employed in the spatial econo-

metrics literature. With point-referenced data, B is taken to be �W where
W is the matrix of interpoint distances. Likelihood-based inference can be
implemented in S+SpatialStats as well as more specialized software, such
as that from the Spatial Analysis Laboratory (sal.agecon.uiuc.edu)).
Software for large data sets is supplied there, as well as through the web-
site of Prof. Kelley Pace, www.spatial-statistics.com. An illustrative
example is provided in Exercise 10.

CAR versus SAR models

Cressie (1993, pp. 408{10) credits Brook (1964) with being the �rst to make
a distinction between the CAR and SAR models, and o�ers a comparison
of the two. To begin with, we may note from (3.13) and (3.25) that the two
forms are equivalent if and only if

(I �B)�1D = (I � ~B)�1 ~D((I � ~B)�1)0 ;

where we use the tilde to indicate matrices in the SAR model. Cressie then
shows that any SAR model can be represented as a CAR model (since
D is diagonal), but gives a counterexample to prove that the converse is
not true. For the \proper" CAR and SAR models that include spatial
correlation parameters �, Wall (2004) shows that the correlations between
neighboring regions implied by these two models can be rather di�erent;
in particular, the �rst-order neighbor correlations increase at a slower rate
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Figure 3.4 Illustration of spatiotemporal areal unit setting for STAR model.

as a function of � in the CAR model than they do for the SAR model. (As
an aside, she notes that these correlations are not even monotone for � <
0, another reason to avoid negative spatial correlation parameters.) Also,
correlations among pairs can switch in nonintuitive ways. For example,
when working with the adjacency relationships generated by the lower 48
contiguous U.S. states, she �nds that when � = :49 in the CAR model,
Corr(Alabama; F lorida) = :20 and Corr(Alabama;Georgia) = :16. But
when � increases to .975, we instead get Corr(Alabama; F lorida) = :65
and Corr(Alabama;Georgia) = :67, a slight reversal in ordering.

STAR models

In the literature SAR models have frequently been extended to handle
spatiotemporal data. The idea is that in working with proximity matrices,
we can de�ne neighbors in time as well as in space. Figure 3.4 shows a
simple illustration with 9 areal units, 3 temporal units for each areal unit
yielding i = 1; : : : ; 9, t = 1; 2; 3, labeled as indicated.
The measurements Yit are spatially associated at each �xed t. But also,

we might seek to associate, say, Yi2 with Yi1 and Yi3. Suppose we write Y
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as the 27� 1 vector with the �rst nine entries at t = 1, the second nine at
t = 2, and the last nine at t = 3. Also let WS = BlockDiag(W1;W1;W1),
where

W1 =

0BBBBBBBBBBBB@

0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0

1CCCCCCCCCCCCA
:

Then WS provides a spatial contiguity matrix for the Y 's. Similarly, let

WT =

0@ 0 W2 0
W2 0 W2

0 W2 0

1A, where W2 = I3�3. Then WT provides a tem-

poral contiguity matrix for the Y 's. But then, in our SAR model we can
de�ne B = �sWS + �tWT . In fact, we can also introduce �STWSWT into
B and note that

WSWT =

0@ 0 W1 0
W1 0 W1

0 W1 0

1A :

In this way, we introduce association across both space and time. For in-
stance Y21 and Y41 a�ect the mean of Y12 (as well as a�ecting Y11) from
WS by itself. Many more possibilities exist. Models formulated through
such more general de�nitions of B are referred to as spatiotemporal autore-
gressive (STAR) models. See Pace et al. (2000) for a full discussion and
development. The interpretation of the �'s in the above example measures
the relative importance of �rst-order spatial neighbors, �rst order temporal
neighbors, and �rst-order spatiotemporal neighbors.

3.5 Computer tutorials

In this section we outline the use of the S+SpatialStats package in con-
structing spatial neighborhood (adjacency) matrices, �tting CAR and SAR
models using traditional maximum likelihood techniques, and mapping the
results for certain classes of problems. Here we con�ne ourselves to the
modeling of Gaussian data on areal units. As in Section 2.5, we adopt a
tutorial style.

3.5.1 Adjacency matrix construction in S+SpatialStats

The most common speci�cation for a SAR model is obtained by setting
B = �W and ~D = Diag

�
�2i
�
, where W is some sort of spatial dependence
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matrix, and � measures the strength of spatial association. As such, of
fundamental importance is the structure of W , which is often taken as an
adjacency (or contiguity) matrix. It is therefore important to begin with the
speci�cation of such matrices in S+SpatialStats. Our discussion follows
that outlined in Kaluzny et al. (1998, Ch.5), and we refer the reader to
that text for further details.
One way of specifying neighborhood structures is through lists in an

ordinary text (ASCII) �le. For example,

1 2 4

2 1 3 5 6

3 2 4 5

4 1 3 6

5 2 3 7

6 2 4

7 5

is a typical text listing of adjacencies. Here we have 7 sites, where site 1 has
sites 2 and 4 as neighbors, site 2 has sites 1, 3, 5, and 6 as neighbors, and so
on. The function read.neighbor in S+SpatialStats reads such a text �le
and converts it to a spatial.neighbor object, the fundamental adjacency-
storage object in the language. Thus, if we write the above matrix to a �le
called Neighbors.txt, we may create a spatial.neighbor object (say,
ngb) as

>ngb <- read.neighbor(``Neighbors.txt'', keep=F)

By default, the spatial.neighbor object ngb is larger than required,
since the symmetry of the neighbors is not accounted for. To correct this,
the size can be reduced using the spatial.condense function:

>ngb <- spatial.condense(ngb, symmetry=T)

Another, perhaps more direct method of creating neighbor objects is by
invoking the spatial.neighbor function directly on an n � n contiguity
matrix. Note that the neighbor relations listed above are equivalent to the
(symmetric, 0-1) contiguity matrix

0 1 0 1 0 0 0
1 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 0 0 1 0
0 1 1 0 0 0 1
0 1 0 1 0 0 0
0 0 0 0 1 0 0

Suppose these relations are stored in a �le called Adjacency.txt. A
spatial.neighbor object may be created from this contiguity matrix as
follows:

>no.sites <- 7
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>ngb.mat <- matrix(scan(``Adjacency.txt''),

ncol=no.sites,byrow=T)

>ngb2 <- spatial.neighbor(neighbor.matrix=ngb.mat,

nregion=no.sites, symmetric=T)

Note that the \symmetry" above refers to the spatial dependence matrix
W , and may not always be appropriate. For example, recall that a common
speci�cation is to take W as the row-normalized adjacency matrix. In such
cases, each element is scaled by the sum of the corresponding row, and the
resulting W matrix is not symmetric. To form a row-normalized spatial
dependence matrix W , we modify the above example to

>ngb2 <- spatial.neighbor(neighbor.matrix=ngb.mat,

nregion=no.sites, weights=1/c(2,4,3,3,3,2,1))

Here, the weights are the number of neighbors (i.e., the number of ele-
ments in each row of Neighbors.txt).

3.5.2 SAR and CAR model �tting in S+SpatialStats

We next turn to �tting Gaussian linear spatial models using the slm (spa-
tial linear model) function in S+SpatialStats. A convenient illustration
is o�ered by the SIDS (sudden infant death syndrome) data, analyzed by
Cressie (1993, Sec. 6.2) and Kaluzny et al. (1998, Sec. 5.3), and already
loaded into the S+SpatialStats package. This data frame contains counts
of SIDS deaths from 1974 to 1978 along with related covariate informa-
tion for the 100 counties in the U.S. state of North Carolina. We �t two
spatial autoregressive models with the dependent variable as sid.ft (a
Freedman-Tukey transformation of the ratio of the number of SIDS cases
to the total number of births in each county). Further information about
the data frame can be obtained by typing

>help(sids)

We �rst �t a null model (no covariates). Note that sids.neighbor (built
into S+SpatialStats) is a spatial.neighbor object containing the conti-
guity structure for the 100 North Carolina counties. Speci�cally, region.id
is the variable that identi�es the way the regions are numbered, while
weights speci�es the elements of the W matrix. We follow Cressie (1993)
and assign the reciprocal of the births in the county as the weights. The
resulting model �t (without covariates) is obtained by typing

>sids.nullslm.SAR <- slm(sid.ft~1, cov.family=SAR,

data=sids, spatial.arglist=list(neighbor=sids.neighbor,

region.id=1:100, weights=1/sids$births))

>null.SAR.summary <- summary(sids.nullslm.SAR)

To �t a Gaussian spatial regression model with a regressor (say, the
ratio of non-white to total births in each county between 1974 and 1978),
we simply modify the above to
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>sids.raceslm.SAR <- slm(sid.ft~nwbirths.ft,

cov.family=SAR, data=sids, spatial.arglist

=list(neighbor=sids.neighbor, region.id=1:100,

weights=1/sids$births))

>race.SAR.summary <- summary(sids.raceslm.SAR)

The output contained in race.SAR.summary is as follows:

Call:

slm(formula = sid.ft ~ nwbirths.ft, cov.family = SAR,

data = sids, spatial.arglist = list(neighbor = sids.neighbor,

region.id = 1:100, weights = 1/sids\$births))}

Residuals:

Min 1Q Median 3Q Max

-106.9 -18.28 4.692 25.53 79.09

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 1.6729 0.2480 6.7451 0.0000

nwbirths.ft 0.0337 0.0069 4.8998 0.0000

Residual standard error: 34.4053 on 96 degrees of freedom

Variance-Covariance Matrix of Coefficients

(Intercept) nwbirths.ft

(Intercept) 0.061513912 -1.633112e-03

nwbirths.ft -0.001633112 4.728317e-05

Correlation of Coefficient Estimates

(Intercept) nwbirths.ft

(Intercept ) 1.000000 -0.957582

nwbirths.ft -0.957582 1.000000

Note that a county's non-white birth rate does appear to be signi�cantly
associated with its SIDS rate, but this covariate is strongly negatively as-
sociated with the intercept. We also remark that the slm function can also
�t a CAR (instead of SAR) model simply by specifying cov.family=CAR

above.
Next, instead of de�ning a neighborhood structure completely in terms of

spatial adjacency on the map, we may want to construct neighbors using
a distance function. For example, given centroids of the various regions,
we could identify regions as neighbors if and only if their intercentroidal
distance is below a particular threshold.
We illustrate using www.biostat.umn.edu/~brad/data/Columbus.dat,
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a data set o�ering neighborhood-level information on crime, mean home
value, mean income, and other variables for 49 neighborhoods in Columbus,
OH, during 1980. More information on these data is available from Anselin
(1988, p.189), or in Exercise 10.
We begin by creating the data frame:

>columbus <- read.table(``Columbus.dat'', header=T)

Suppose we would like to have regions with intercentroidal distances less
than 2.5 units as neighbors. We �rst form an object, columbus.coords,
that contain the centroids of the di�erent regions. The function that we
use is find.neighbor, but a required intermediate step is making a quad
tree, which is a matrix providing the most e�cient ordering for the near-
est neighbor search. This is accomplished using the quad.tree function
in S+SpatialStats. The following steps will create a spatial.neighbor

object in this way:

>columbus.coords <- cbind(columbus$X, columbus$Y)

>columbus.quad <- quad.tree(columbus.coords)

>columbus.ngb <- find.neighbor(x=columbus.coords,

quadtree=columbus.quad, max.dist=2.5)

>columbus.ngb <- spatial.neighbor(row.id=columbus.ngb[,1],

col.id=columbus.ngb[,2])

Once our neighborhood structure is created, we proceed to �t a CAR
model (having crime rate as the response and house value and income as
covariates) as follows:

>columbus.CAR <- slm(CRIME ~ HOVAL + INC, cov.family=CAR,

data=columbus, spatial.arglist=list(neighbor=

columbus.ngb, region.id=1:49))

>columbus.CAR.summary <- summary(columbus.CAR)

The output from columbus.CAR.summary, similar to that given above
for the SAR model, reveals both covariates to be signi�cant (both p-values
near .002).

3.5.3 Choropleth mapping using the maps library in S-plus

Finally, we describe the drawing of choropleth maps in S+SpatialStats.
In fact, S-plus is all we need here, thanks to the maps library originally
described by Becker and Wilks (1993). This map library, invoked using the
command,

>library(maps)

contains the geographic boundary �les for several maps, including county
boundaries for every state in the U.S. However, other important regional
boundary types (say, zip codes) and features (rivers, major roads, and
railroads) are generally not available. As such, while S-plus is not nearly as
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versatile as ArcView or other GIS packages, it does o�er a rare combination
of GIS and statistical analysis capabilities.
We will now map the actual transformed SIDS rates along with their

�tted values under the SAR model of the previous subsection. Before we
can do this, however, a special feature of the polygon boundary �le of the
S-plus North Carolina county map must be accounted for. Speci�cally,
county #27, Currituck county, is apparently comprised of not one but three
separate regions. Thus, when mapping the raw SIDS rates, Kaluzny et
al. (1998) propose the following solution: form a modi�ed vector for the
mapping variable (sid.ft), but with Currituck county appearing three
times:

>sids.map <- c(sids$sid.ft[1:26],rep(sids$sid.ft[27],3),

sids$sid.ft[28:100])

We next form a vector of the cutpoints that determine the di�erent bins
into which the rates will be classi�ed, and assign the county rates to these
bins:

>cutoff.sids <- c(0.0,2.0,3.0,3.5,7.0)

>sids.mapgrp <- cut(sids.map, breaks.sids)

We now must assign a color (or shade of gray) to each bin. An oddity in the
default postscript color speci�cation of S-plus is that color \1" is black,
and then increasingly lighter shades are given by colors 3, 2, and 4 (not 2, 3,
and 4, as you might expect). While this problemmay be overcome by careful
work with the ps.options command, here we simply use the nonintuitive
4-2-3-1 lightest to darkest grayscale ordering, which is obtained here simply
by swapping categories 1 and 4:

>sids.mapgrp[(sids.mapgrp==1)] <- 0

>sids.mapgrp[(sids.mapgrp==4)] <- 1

>sids.mapgrp[(sids.mapgrp==0)] <- 4

Now the map of the actual (transformed) SIDS rates can be obtained as

>map("county", "north carolina", fill=T, color=sids.mapgrp)

>map("county", "north carolina", add=T)

>title(main="Actual Transformed SIDS Rates")

>legend(locator(1), legend=

c("<2.0","2.0-3.0","3.0-3.5",">3.5"), fill=c(4,2,3,1))

In the �rst command, the modi�ed mapping vector sids.mapgrp is spec-
i�ed as the grouping variable for the di�erent colors. The fill=T option
automates the shading of regions, while the next command (with add=T)
adds the county boundaries. Finally, the locator(1) option within the
legend command waits for the user to click on the position where the leg-
end is desired; Figure 3.5(a) contains the result we obtained. We hasten
to add that one can automate the placing of the legend by replacing the
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a) actual transformed SIDS rates

<2.0
2.0-3.0
3.0-3.5
>3.5

b) fitted SIDS rates from SAR model

<2.0
2.0-3.0
3.0-3.5
>3.5

Figure 3.5 Unsmoothed raw (a) and spatially smoothed �tted (b) rates, North
Carolina SIDS data.

locator(1) option with actual (x; y) coordinates for the upper left corner
of the legend box.
To draw a corresponding map of the �tted values from our SAR model

(using our parameter estimates in the mean structure), we must �rst create
a modi�ed vector of the �ts (again due to the presence of Currituck county):

>sids.race.fit <- fitted(sids.raceslm.SAR)

>sids.race.fit.map <- c(sids.race.fit[1:26],

rep(sids.race.fit[27],3), sids.race.fit[28:100])

>sids.race.fit.mapgrp <- cut(sids.race.fit.map,

cutoff.sids)

where cutoff.sids is the same color cuto� vector as earlier. The map is
then drawn as follows:

>sids.race.fit.mapgrp <- cut(sids.race.fit.map,

breaks.sids)
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>sids.race.fit.mapgrp[(sids.race.fit.mapgrp==1)] <- 0

>sids.race.fit.mapgrp[(sids.race.fit.mapgrp==4)] <- 1

>sids.race.fit.mapgrp[(sids.race.fit.mapgrp==0)] <- 4

>map("county", "north carolina", fill=T,

color=sids.race.fit.mapgrp)

>map("county", "north carolina", add=T)

>title(main="Fitted SIDS Rates from SAR Model")

>legend(locator(1), legend=

c("<2.0","2.0-3.0","3.0-3.5",">3.5"), fill=c(4,2,3,1))

Figure 3.5(b) contains the result. Note that the SAR model has resulted
in signi�cant smoothing of the observed rates, and clari�ed the generally
increasing pattern as we move from west to east.
Finally, if a map of predicted (rather than �tted) values is desired, these

values can be formed as

>noise <- 1/sqrt(sids$births)*resid(sids.raceslm.SAR)

>signal <- sids$sid.ft - sids.race.fit - noise

>sids.race.pred <- signal + sids.race.fit

>sids.race.pred.map <- c(sids.race.pred[1:26],

rep(sids.race.pred[27],3), sids.race.pred[28:100])

>sids.race.pred.mapgrp <- cut(sids.race.pred.map,

cutoff.sids)

The actual drawing of the maps then proceeds exactly as before.

3.6 Exercises

1. Verify Brook's Lemma, equation (3.7).

2.(a) To appreciate how Brook's Lemma works, suppose Y1 and Y2 are both
binary variables, and that their joint distribution is de�ned through
conditional logit models. That is,

log
P (Y1 = 1jY2)
P (Y1 = 0jY2) = �0+�1Y2 and log

P (Y2 = 1jY1)
P (Y2 = 0jY1) = �0+�1Y1 :

Obtain the joint distribution of Y1 and Y2.

(b) This result can be straightforwardly extended to the case of more than
two variables, but the details become increasingly clumsy. Illustrate
this issue in the case of three binary variables, Y1, Y2, and Y3.

3. Returning to (3.13) and (3.14), let B = ((bij)) be an n� n matrix with
positive elements; that is, bij > 0,

P
j bij � 1 for all i, and

P
j bij < 1

for at least one i. Let D = Diag
�
�2i
�
be a diagonal matrix with positive

elements �2i such thatD�1 (I �B) is symmetric; that is, bij=�
2
i = bji=�

2
j ,

for all i; j. Show that D�1 (I �B) is positive de�nite.

4. Looking again at (3.13), obtain a simple su�cient condition on B such
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that the CAR prior with precision matrix D�1 (I �B) is a pairwise
di�erence prior, as in (3.16).

5. Show that ��1y = Dw� �W is nonsingular (thus resolving the impropri-

ety in (3.15)) if � 2 �1=�(1); 1=�(n)�, where �(1) < �(2) < � � � < �(n) are

the ordered eigenvalues of D
�1=2
w WD

�1=2
w .

6. Show that if all entries inW are nonnegative andDw��W is nonsingular
with � > 0, then all entries in (Dw � �W )�1 are nonnegative.

7. Recalling the SAR formulation using the scaled adjacency matrixfW just
below (3.25), prove that I � �fW will be nonsingular if � 2 (�1; 1), so
that � may be sensibly referred to as an \autocorrelation parameter."

8. In the setting of Subsection 3.3.1, if (��1y )ij = 0, then show that Yi and
Yj are conditionally independent given Yk; k 6= i; j.

9. The �le www.biostat.umn.edu/~brad/data/state-sat.dat gives the
1999 state average SAT data (part of which is mapped in Figure 3.1),
while www.biostat.umn.edu/~brad/data/contig-lower48.dat gives
the contiguity (adjacency) matrix for the lower 48 U.S. states (i.e., ex-
cluding Alaska and Hawaii, as well as the District of Columbia).

(a) Use the S+SpatialStats software to construct a spatial.neighbor

object from the contiguity �le.

(b) Use the slm function to �t the SAR model of Section 3.4, taking the
verbal SAT score as the response Y and the percent of eligible students
taking the exam in each state as the covariate X . Use row-normalized
weights based on the contiguity information in spatial.neighbor

object. Is knowing X helpful in explaining Y ?

(c) Using the maps library in S-plus, draw choropleth maps similar to
Figure 3.1 of both the �tted verbal SAT scores and the spatial residu-
als from this �t. Is there evidence of spatial correlation in the response
Y once the covariate X is accounted for?

(d) Repeat your SAR model analysis above, again using slm but now
assuming the CAR model of Section 3.3. Compare your estimates
with those from the SAR model and interpret any changes.

(e) One might imagine that the percentage of eligible students taking the
exam should perhaps a�ect the variance of our model, not just the
mean structure. To check this, re�t the SAR model replacing your
row-normalized weights with weights equal to the reciprocal of the
percentage of students taking the SAT. Is this model sensible?

10. Consider the data www.biostat.umn.edu/~brad/data/Columbus.dat,
taken from Anselin (1988, p. 189). These data record crime information
for 49 neighborhoods in Columbus, OH, during 1980. Variables mea-
sured include NEIG, the neighborhood id value (1{49); HOVAL, its mean
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housing value (in $1,000); INC, its mean household income (in $1,000);
CRIME, its number of residential burglaries and vehicle thefts per thou-
sand households; OPEN, a measure of the neighborhood's open space;
PLUMB, the percentage of housing units without plumbing; DISCBD,
the neighborhood centroid's distance from the central business district;
X, an x-coordinate for the neighborhood centroid (in arbitrary digitizing
units, not polygon coordinates); Y, the same as X for the y-coordinate;
AREA, the neighborhood's area; and PERIM, the perimeter of the poly-
gon describing the neighborhood.

(a) Use S+SpatialStats to construct spatial.neighbor objects for the
neighborhoods of Columbus based upon centroid distances less than

i. 3.0 units,
ii. 7.0 units,
iii. 15 units.

(b) For each of the four spatial neighborhoods constructed above, use
the slm function to �t SAR models with CRIME as the dependent
variable, and HOVAL, INC, OPEN, PLUMB, and DISCBD as the
covariates. Compare your results and interpret your parameter esti-
mates in each case.

(c) Repeat your analysis using Euclidean distances in the B matrix itself.
That is, in equation (3.26), set B = �W with the Wij the Euclidean
distance between location i and location j.

(d) Repeat part (b) for CAR models. Compare your estimates with those
from the SAR model and interpret them.
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CHAPTER 4

Basics of Bayesian inference

In this chapter we provide a brief review of hierarchical Bayesian model-
ing and computing for readers not already familiar with these topics. Of
course, in one chapter we can only scratch the surface of this rapidly ex-
panding �eld, and readers may well wish to consult one of the many recent
textbooks on the subject, either as preliminary work or on an as-needed
basis. It should come as little surprise that the book we most highly recom-
mend for this purpose is the one by Carlin and Louis (2000); the Bayesian
methodology and computing material below roughly follows Chapters 2
and 5, respectively, in that text.

However, a great many other good Bayesian books are available, and
we list a few of them and their characteristics. First we must mention the
texts stressing Bayesian theory, including DeGroot (1970), Berger (1985),
Bernardo and Smith (1994), and Robert (1994). These books tend to focus
on foundations and decision theory, rather than computation or data anal-
ysis. On the more methodological side, a nice introductory book is that of
Lee (1997), with O'Hagan (1994) and Gelman, Carlin, Stern, and Rubin
(2004) o�ering more general Bayesian modeling treatments.

4.1 Introduction to hierarchical modeling and Bayes' Theorem

By modeling both the observed data and any unknowns as random vari-
ables, the Bayesian approach to statistical analysis provides a cohesive
framework for combining complex data models and external knowledge
or expert opinion. In this approach, in addition to specifying the distribu-
tional model f(yj�) for the observed data y = (y1; : : : ; yn) given a vector
of unknown parameters � = (�1; : : : ; �k), we suppose that � is a random
quantity sampled from a prior distribution �(�j�), where � is a vector of
hyperparameters. For instance, yi might be the empirical mammography
rate in a sample of women aged 40 and over from county i, �i the under-
lying true mammography rate for all such women in this county, and �

a parameter controlling how these true rates vary across counties. If � is
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known, inference concerning � is based on its posterior distribution,

p(�jy;�) = p(y;�j�)
p(yj�) =

p(y;�j�)R
p(y;�j�) d� =

f(yj�)�(�j�)R
f(yj�)�(�j�) d� : (4:1)

Notice the contribution of both the data (in the form of the likelihood
f) and the external knowledge or opinion (in the form of the prior �)
to the posterior. Since, in practice, � will not be known, a second stage
(or hyperprior) distribution h(�) will often be required, and (4.1) will be
replaced with

p(�jy) = p(y;�)

p(y)
=

R
f(yj�)�(�j�)h(�) d�R
f(yj�)�(�j�)h(�) d�d� :

Alternatively, we might replace � by an estimate �̂ obtained as the max-
imizer of the marginal distribution p(yj�) = R f(yj�)�(�j�)d�, viewed as
a function of �. Inference could then proceed based on the estimated pos-
terior distribution p(�jy; �̂), obtained by plugging �̂ into equation (4.1).
This approach is referred to as empirical Bayes analysis; see Berger (1985),
Maritz and Lwin (1989), and Carlin and Louis (2000) for details regarding
empirical Bayes methodology and applications.
The Bayesian inferential paradigm o�ers potentially attractive advan-

tages over the classical, frequentist statistical approach through its more
philosophically sound foundation, its uni�ed approach to data analysis,
and its ability to formally incorporate prior opinion or external empirical
evidence into the results via the prior distribution �. Data analysts, for-
merly reluctant to adopt the Bayesian approach due to general skepticism
concerning its philosophy and a lack of necessary computational tools, are
now turning to it with increasing regularity as classical methods emerge as
both theoretically and practically inadequate. Modeling the �i as random
(instead of �xed) e�ects allows us to induce speci�c (e.g., spatial) corre-
lation structures among them, hence among the observed data yi as well.
Hierarchical Bayesian methods now enjoy broad application in the analysis
of spatial data, as the remainder of this book reveals.
A computational challenge in applying Bayesian methods is that for most

realistic problems, the integrations required to do inference under (4.1) are
generally not tractable in closed form, and thus must be approximated nu-
merically. Forms for � and h (called conjugate priors) that enable at least
partial analytic evaluation of these integrals may often be found, but in
the presense of nuisance parameters (typically unknown variances), some
intractable integrations remain. Here the emergence of inexpensive, high-
speed computing equipment and software comes to the rescue, enabling the
application of recently developed Markov chain Monte Carlo (MCMC) in-
tegration methods, such as the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman and Geman,
1984; Gelfand and Smith, 1990). This is the subject of Section 4.3.
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Illustrations of Bayes' Theorem

Equation (4.1) is a generic version of what is referred to as Bayes' Theorem
or Bayes' Rule. It is attributed to Reverend Thomas Bayes, an 18th-century
nonconformist minister and part-time mathematician; a version of the re-
sult was published (posthumously) in Bayes (1763). In this subsection we
consider a few basic examples of its use.

Example 4.1 Suppose we have observed a single normal (Gaussian) ob-
servation Y � N

�
�; �2

�
with �2 known, so that the likelihood f (yj�) =

N
�
yj�; �2

�
� 1

�
p
2�

exp(� (y��)2
2�2 ); y 2 <; � 2 <, and � > 0. If we specify

the prior distribution as � (�) = N
�
y �; �2

�
with � = (�; �2)0 �xed, then

from (4.1) we can compute the posterior as

p (�jy) =
N
�
�j�; �2

�
N
�
yj�; �2

�
p (y)

/ N
�
�j�; �2

�
N
�
yj�; �2

�
= N

�
�

�2

�2 + �2
�+

�2

�2 + �2
y ;

�2�2

�2 + �2

�
: (4.2)

That is, the posterior distribution of � given y is also normal with mean
and variance as given. The proportionality in the second row arises since
the marginal distribution p(y) does not depend on �, and is thus constant
with respect to the Bayes' Theorem calculation. The �nal equality in the
third row results from collecting like (�2 and �) terms in the exponential
and then completing the square.
Note that the posterior mean E(�jy) is a weighted average of the prior

mean � and the data value y, with the weights depending on our relative
uncertainty with respect to the prior and the likelihood. Also, the posterior
precision (reciprocal of the variance) is equal to 1=�2 + 1=�2, which is the
sum of the likelihood and prior precisions. Thus, thinking of precision as
\information," we see that in the normal/normal model, the information in
the posterior is the total of the information in the prior and the likelihood.
Suppose next that instead of a single datum we have a set of n ob-

servations y = (y1; y2; : : : ; yn)
0. From basic normal theory we know that

f(�yj�) = N(�; �2=n). Since y is su�cient for �, from (4.2) we have

p(�jy) = p (�j�y) = N

�
�

(�2=n)

(�2=n) + �2
�+

�2

(�2=n) + �2
y ;

(�2=n)�2

(�2=n) + �2

�
= N

�
�

�2

�2 + n�2
�+

n�2

�2 + n�2
y ;

�2�2

�2 + n�2

�
:

Again we obtain a posterior mean that is a weighted average of the prior
(�) and data-supported (�y) values.
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In these two examples, the prior chosen leads to a posterior distribution
for � that is available in closed form, and is a member of the same distribu-
tional family as the prior. Such a prior is referred to as a conjugate prior.
We will often use such priors in our work, since, when they are available,
conjugate families are convenient and still allow a variety of shapes wide
enough to capture our prior beliefs.

Note that setting �2 = 1 in the previous example corresponds to a
prior that is arbitrarily vague, or noninformative. This then leads to a
posterior of p (�jy) = N

�
�jy; �2=n

�
, exactly the same as the likelihood for

this problem. This arises since the limit of the conjugate (normal) prior
here is actually a uniform, or \at" prior, and thus the posterior is nothing
but the likelihood (possibly renormalized to integrate to 1 as a function of
�). Of course, the at prior is improper here, since the uniform does not
integrate to anything �nite over the entire real line; however, the posterior
is still well de�ned since the likelihood can be integrated with respect to
�. Bayesians often use at or otherwise improper noninformative priors,
since prior feelings are often rather vague relative to the information in the
likelihood, and in any case we typically want the data (and not the prior)
to dominate the determination of the posterior.

Example 4.2 (the general linear model). LetY be an n�1 data vector, X
an n�p matrix of covariates, and adopt the likelihood and prior structure,

Yj� � Nn (X�;�) ; i.e. f (Yj�) � Nn (YjX�;�) ;

� � Np (A�; V ) ; i.e. � (�) � N (�jA�; V ) :

Here � is a p�1 vector of regression coe�cients and � is a p�p covariance
matrix. Then it can be shown (now a classic result, �rst published by
Lindley and Smith, 1972), that the marginal distribution of Y is

Y � N
�
XA� ; � +XVXT

�
;

and the posterior distribution of �jY is

�jY � N (Dd; D) ;

where D�1 = XT��1X + V �1

and d = XT��1Y + V �1A� :

Thus E (�jY) = Dd provides a point estimate for �, with variability cap-
tured by the associated variance matrix D.

In particular, note that for a vague prior we may set V �1 = 0, so that
D�1 = X��1X and d = XT��1Y. In the simple case where � = �2Ip,
the posterior becomes

�jY � N
�
�̂ ; �2(X 0X)�1

�
;
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where �̂ = (X 0X)�1X 0y. Since the usual likelihood approach produces

�̂ � N
�
� ; �2(X 0X)�1

�
;

we once again we see \at prior" Bayesian results that are formally equiv-
alent to the usual likelihood approach.

4.2 Bayesian inference

While the computing associated with Bayesian methods can be daunting,
the subsequent inference is relatively straightforward, especially in the case
of estimation. This is because once we have computed (or obtained an es-
timate of) the posterior, inference comes down merely to summarizing this
distribution, since by Bayes' Rule the posterior summarizes everything we
know about the model parameters in the light of the data. In the remain-
der of this section, we shall assume for simplicity that the posterior p(�jy)
itself (and not merely an estimate of it) is available for summarization.
Bayesian methods for estimation are also reminiscent of corresponding

maximum likelihood methods. This should not be surprising, since likeli-
hoods form an important part of the Bayesian calculation; we have even
seen that a normalized (i.e., standardized) likelihood can be thought of
a posterior when this is possible. However, when we turn to hypothesis
testing, the approaches have little in common. Bayesians (and many like-
lihoodists) have a deep and abiding antipathy toward p-values, for a long
list of reasons we shall not go into here; the interested reader may consult
Berger (1985, Sec. 4.3.3), Kass and Raftery (1995, Sec. 8.2), or Carlin and
Louis (2000, Sec. 2.3.3).

4.2.1 Point estimation

To keep things simple, suppose for the moment that � is univariate. Given
the posterior p(�jy), a sensible Bayesian point estimate of � would be some
measure of centrality. Three familiar choices are the posterior mean,

�̂ = E(�jy) ;

the posterior median,

�̂ :

Z �̂

�1
p(�jy)d� = 0:5 ;

and the posterior mode,

�̂ : p(�̂jy) = sup
�

p(�jy) :

Notice that the lattermost estimate is typically easiest to compute, since it
does not require any integration: we can replace p(�jy) by its unstandard-
ized form, f(yj�)p(�), and get the same answer (since these two di�er only

© 2004 by CRC Press LLC



104 BASICS OF BAYESIAN INFERENCE

by a multiplicative factor of m(y), which does not depend on �). Indeed, if
the posterior exists under a at prior p(�) = 1, then the posterior mode is
nothing but the maximum likelihood estimate (MLE).
Note that for symmetric unimodal posteriors (e.g., a normal distribu-

tion), the posterior mean, median, and mode will all be equal. However,
for multimodal or otherwise nonnormal posteriors, the mode will often be
the poorest choice of centrality measure (consider for example the case of
a steadily decreasing, one-tailed posterior; the mode will be the very �rst
value in the support of the distribution | hardly central!). By contrast,
the posterior mean will sometimes be overly inuenced by heavy tails (just
as the sample mean �y is often nonrobust against outlying observations).
As a result, the posterior median will often be the best and safest point
estimate. It is also the most di�cult to compute (since it requires both an
integration and a root�nder), but this di�culty is somewhat mitigated for
posterior estimates computed via MCMC; see Section 4.3 below.

4.2.2 Interval estimation

The posterior allows us to make direct probability statements about not
just its median, but any quantile. For example, suppose we can �nd the
�=2- and (1� �=2)-quantiles of p(�jy), that is, the points qL and qU such
that Z qL

�1
p(�jy)d� = �=2 and

Z 1

qU

p(�jy)d� = 1� �=2 :

Then clearly P (qL < � < qU jy) = 1 � �; our con�dence that � lies in
(qL; qU ) is 100� (1� �)%. Thus this interval is a 100� (1� �)% credible
set (or simply Bayesian con�dence interval) for �. This interval is relatively
easy to compute, and enjoys a direct interpretation (\the probability that
� lies in (qL; qU ) is (1� �)") that the usual frequentist interval does not.
The interval just described is often called the equal tail credible set, for

the obvious reason that is obtained by chopping an equal amount of support
(�=2) o� the top and bottom of p(�jy). Note that for symmetric unimodal
posteriors, this equal tail interval will be symmetric about this mode (which
we recall equals the mean and median in this case). It will also be optimal
in the sense that it will have shortest length among sets C satisfying

1� � � P (Cjy) =

Z
C

p(�jy)d� : (4:3)

Note that any such set C could be thought of as a 100� (1��)% credible
set for �. For posteriors that are not symmetric and unimodal, a better
(shorter) credible set can be obtained by taking only those values of �
having posterior density greater than some cuto� k(�), where this cuto� is
chosen to be as large as possible while C still satis�es equation (4.3). This
highest posterior density (HPD) con�dence set will always be of optimal
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length, but will typically be signi�cantly more di�cult to compute. The
equal tail interval emerges as HPD in the symmetric unimodal case since
there too it captures the \most likely" values of �. Fortunately, many of
the posteriors we will be interested in will be (at least approximately)
symmetric unimodal, so the much simpler equal tail interval will often
su�ce.

4.2.3 Hypothesis testing and model choice

We have seen that Bayesian inference (point or interval) is quite straightfor-
ward given the posterior distribution, or an estimate thereof. By contrast,
hypothesis testing is less straightforward, for two reasons. First, there is less
agreement among Bayesians as to the proper approach to the problem. For
years, posterior probabilities and Bayes factors were considered the only
appropriate method. But these methods are only suitable with fully proper
priors, and for relatively low-dimensional models. With the recent prolif-
eration of very complex models with at least partly improper priors, other
methods have come to the fore. Second, solutions to hypothesis testing
questions often involve not just the posterior p(�jy), but also the marginal
distribution, m(y). Unlike the case of posterior and the predictive distri-
butions, samples from the marginal distribution do not naturally emerge
from most MCMC algorithms. Thus, the sampler must often be \tricked"
into producing the necessary samples.
Recently, an approximate yet very easy-to-use model choice tool known

as the Deviance Information Criterion (DIC) has gained popularity, as well
as implementation in the WinBUGS software package. We will limit our at-
tention in this subsection to Bayes factors, the DIC, and a related posterior
predictive criterion due to Gelfand and Ghosh (1998). The reader is referred
to Carlin and Louis (2000, Sections 2.3.3, 6.3, 6.4, and 6.5) for further tech-
niques and information.

Bayes factors

We begin by setting up the hypothesis testing problem as a model choice
problem, replacing the customary two hypotheses H0 and HA by two can-
didate parametric models M1 and M2 having respective parameter vectors
�1 and �2. Under prior densities �i(�i), i = 1; 2, the marginal distributions
of Y are found by integrating out the parameters,

p(yjMi) =

Z
f(yj�i;Mi)�i(�i)d�i ; i = 1; 2 : (4:4)

Bayes' Theorem (4.1) may then be applied to obtain the posterior prob-
abilities P (M1jy) and P (M2jy) = 1 � P (M1jy) for the two models. The
quantity commonly used to summarize these results is the Bayes factor,
BF , which is the ratio of the posterior odds ofM1 to the prior odds ofM1,
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given by Bayes' Theorem as

BF =
P (M1jy)=P (M2jy)

P (M1)=P (M2)
(4.5)

=

h
p(yjM1)P (M1)

p(y)

i
=
h
p(yjM2)P (M2)

p(y)

i
P (M1)=P (M2)

=
p(y jM1)

p(y jM2)
; (4.6)

the ratio of the observed marginal densities for the two models. Assuming
the two models are a priori equally probable (i.e., P (M1) = P (M2) = 0:5),
we have that BF = P (M1jy)=P (M2jy), the posterior odds of M1.
Consider the case where both models share the same parametrization

(i.e., �1 = �2 = �), and both hypotheses are simple (i.e., M1 : � = �(1)

and M2 : � = �(2)). Then �i(�) consists of a point mass at �
(i) for i = 1; 2,

and so from (4.4) and (4.6) we have

BF =
f(yj�(1))

f(yj�(2))
;

which is nothing but the likelihood ratio between the two models. Hence,
in the simple-versus-simple setting, the Bayes factor is precisely the odds
in favor of M1 over M2 given solely by the data.
A popular \shortcut" method is the Bayesian Information Criterion

(BIC) (also known as the Schwarz Criterion), the change in which across
the two models is given by

�BIC =W � (p2 � p1) logn ; (4:7)

where pi is the number of parameters in model Mi; i = 1; 2, and

W = �2 log

�
supM1

f(yj�)

supM2
f(yj�)

�
;

the usual likelihood ratio test statistic. Schwarz (1978) showed that for
nonhierarchical (two-stage) models and large sample sizes n, BIC approx-
imates �2 logBF . An alternative to BIC is the Akaike Information Crite-
rion (AIC), which alters (4.7) slightly to

�AIC =W � 2(p2 � p1) : (4:8)

Both AIC and BIC are penalized likelihood ratio model choice criteria, since
both have second terms that act as a penalty, correcting for di�erences in
size between the models (to see this, think of M2 as the \full" model and
M1 as the \reduced" model).
The more serious (and aforementioned) limitation in using Bayes factors

or their approximations is that they are not appropriate under noninfor-
mative priors. To see this, note that if �i(�i) is improper, then p(yjMi) =
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f(yj�i;Mi)�i(�i)d�i necessarily is as well, and so BF as given in (4.6) is

not well de�ned. While several authors (see, e.g., Berger and Pericchi, 1996;
O'Hagan, 1995) have attempted to modify the de�nition of BF to repair
this de�ciency, we suggest more informal yet general approaches described
below.

The DIC criterion

Spiegelhalter et al. (2002) propose a generalization of the AIC, whose
asymptotic justi�cation is not appropriate for hierarchical (3 or more level)
models. The generalization is based on the posterior distribution of the de-
viance statistic,

D(�) = �2 log f(yj�) + 2 logh(y) ; (4:9)

where f(yj�) is the likelihood function and h(y) is some standardizing
function of the data alone. These authors suggest summarizing the �t of a
model by the posterior expectation of the deviance, D = E�jy[D], and the
complexity of a model by the e�ective number of parameters pD (which may
well be less than the total number of model parameters, due to the bor-
rowing of strength across random e�ects). In the case of Gaussian models,
one can show that a reasonable de�nition of pD is the expected deviance
minus the deviance evaluated at the posterior expectations,

pD = E�jy[D]�D(E�jy[�]) = D �D(��) : (4:10)

The Deviance Information Criterion (DIC) is then de�ned as

DIC = D + pD = 2D �D(��) ; (4:11)

with smaller values of DIC indicating a better-�tting model. Both building
blocks of DIC and pD, E�jy[D] and D(E�jy[�]), are easily estimated via
MCMC methods (see below), enhancing the approach's appeal. Indeed,
DIC may be computed automatically for any model in WinBUGS.
While the pD portion of this expression does have meaning in its own

right as an e�ective model size, DIC itself does not, since it has no abso-
lute scale (due to the arbitrariness of the scaling constant h(y), which is
often simply set equal to zero). Thus only di�erences in DIC across models
are meaningful. Relatedly, when DIC is used to compare nested models in
standard exponential family settings, the unnormalized likelihood L(�;y)
is often used in place of the normalized form f(yj�) in (4.9), since in this
case the normalizing function m(�) =

R
L(�;y)dy will be free of � and

constant across models, hence contribute equally to the DIC scores of each
(and thus have no impact on model selection). However, in settings where
we require comparisons across di�erent likelihood distributional forms, gen-
erally one must be careful to use the properly scaled joint density f(yj�)
for each model.
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Identi�cation of what constitutes a signi�cant di�erence is also a bit awk-
ward; delta method approximations to V ar(DIC) have to date met with
little success (Zhu and Carlin, 2000). In practice one typically adopts the
informal approach of simply recomputing DIC a few times using di�erent
random number seeds, to get a rough idea of the variability in the estimates.
With a large number of independent DIC replicates fDICl; l = 1; : : : ; Ng,
one could of course estimate V ar(DIC) by its sample variance,

dV ar(DIC) = 1

N � 1

NX
l=1

(DICl �DIC)2 :

But in any case, DIC is not intended for formal identi�cation of the \cor-
rect" model, but rather merely as a method of comparing a collection of
alternative formulations (all of which may be incorrect). This informal out-
look (and DIC's approximate nature in markedly nonnormal models) sug-
gests informal measures of its variability will often be su�cient. The pD
statistic is also helpful in its own right, since how close it is to the actual
parameter count provides information about how many parameters are ac-
tually \needed" to adequately explain the data. For instance, a relatively
low pD may indicate collinear �xed e�ects or overshrunk random e�ects;
see Exercise 1.
DIC is remarkably general, and trivially computed as part of an MCMC

run without any need for extra sampling, reprogramming, or complicated
loss function determination. Moreover, experience with DIC to date sug-
gests it works remarkably well, despite the fact that no formal justi�cation
for it is yet available outside of posteriors that can be well approximated
by a Gaussian distribution (a condition that typically occurs asymptoti-
cally, but perhaps not without a moderate to large sample size for many
models). Still, DIC is by no means universally accepted by Bayesians as
a suitable all-purpose model choice tool, as the discussion to Spiegelhalter
et al. (2002) almost immediately indicates. Model comparison using DIC
is not invariant to parametrization, so (as with prior elicitation) the most
sensible parametrization must be carefully chosen beforehand. Unknown
scale parameters and other innocuous restructuring of the model can also
lead to subtle changes in the computed DIC value.
Finally, DIC will obviously depend on what part of the model speci�-

cation is considered to be part of the likelihood, and what is not. Spiegel-
halter et al. (2002) refer to this as the focus issue, i.e., determining which
parameters are of primary interest, and which should \count" in pD. For
instance, in a hierarchical model with data distribution f(yj�), prior p(�j�)
and hyperprior p(�), one might choose as the likelihood either the obvious
conditional expression f(yj�), or the marginal expression,

p(yj�) =

Z
f(yj�)p(�j�)d� : (4:12)
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We refer to the former case as \focused on �," and the latter case as
\focused on �." Spiegelhalter et al. (2002) defend the dependence of pD
and DIC on the choice of focus as perfectly natural, since while the two
foci give rise to the same marginal density m(y), the integration in (4.12)
clearly suggests a di�erent model complexity than the unintegrated version
(having been integrated out, the � parameters no longer \count" in the
total). They thus argue that it is up to the user to think carefully about
which parameters ought to be in focus before using DIC. Perhaps the one
di�culty with this advice is that, in cases where the integration in (4.12)
is not possible in closed form, the unintegrated version is really the only
feasible choice. Indeed, the DIC tool in WinBUGS always focuses on the
lowest level parameters in a model (in order to sidestep the integration
issue), even when the user intends otherwise.

Posterior predictive loss criteria

An alternative to DIC that is also easily implemented using output from
posterior simulation is the posterior predictive loss (performance) approach
of Gelfand and Ghosh (1998). Using prediction with regard to replicates of
the observed data, Y`;rep; ` = 1; : : : ; n, the selected models are those that
perform well under a so-called balanced loss function. Roughly speaking,
this loss function penalizes actions both for departure from the correspond-
ing observed value (\�t") as well as for departure from what we expect the
replicate to be (\smoothness"). The loss puts weights k and 1 on these two
components, respectively, to allow for adjustment of relative regret for the
two types of departure.
We avoid details here, but note that for squared error loss, the resulting

criterion becomes

Dk =
k

k + 1
G+ P ; (4:13)

where G =

nX
`=1

(�` � y`;obs)
2 and P =

nX
`=1

�2` :

In (4.13), �` = E(Y`;repjy) and �2` = V ar(Y`;repjy), i.e., the mean and
variance of the predictive distribution of Y`;rep given the observed data y.
The components ofDk have natural interpretations.G is a goodness-of-�t

term, while P is a penalty term. To clarify, we are seeking to penalize com-
plexity and reward parsimony, just as DIC and other penalized likelihood
criteria do. For a poor model we expect large predictive variance and poor
�t. As the model improves, we expect to do better on both terms. But as we
start to over�t, we will continue to do better with regard to goodness of �t,
but also begin to inate the variance (as we introduce multicollinearity).
Eventually the resulting increased predictive variance penalty will exceed
the gains in goodness of �t. So as with DIC, as we sort through a collection
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of models, the one with the smallest Dk is preferred. When k =1 (so that
Dk = D1 = G+P ), we will sometimes write D1 simply as D for brevity.

Two remarks are appropriate. First, we may report the �rst and second
terms (excluding k=(k+1)) on the right side of (4.13), rather than reducing
to the single numberDk. Second, in practice, ordering of models is typically
insensitive to the particular choice of k.

The quantities �` and �
2
` can be readily computed from posterior sam-

ples. If under model m we have parameters �(m), then

p(y`;repjy) =

Z
p(y`;repj�

(m)) p(�(m)jy) d�(m) : (4:14)

Hence each posterior realization (say, ��) can be used to draw a corre-

sponding y`;rep from p(y`;repj�
(m) = ��). The resulting y�`;rep has marginal

distribution p(y`;repjy). With samples from this distribution we can obtain
�` and �

2
` . Hence development of Dk requires an extra level of simulation,

one for one with the posterior samples.

More general loss functions can be used, including the so-called deviance
loss (based upon p(y`j�

(m))), again yielding two terms for Dk with corre-
sponding interpretation and predictive calculation. This enables application
to, say, binomial or Poisson likelihoods. We omit details here since in this
book, only (4.13) is used for examples that employ this criterion rather
than DIC.

We do not recommend a choice between the posterior predictive approach
of this subsection and the DIC criterion of the previous subsection. Both
involve summing a goodness-of-�t term and a complexity penalty. The fun-
damental di�erence is that the latter works in the parameter space with
the likelihood, while the former works in predictive space with posterior
predictive distributions. The latter addresses comparative explanatory per-
formance, while the former addresses comparative predictive performance.
So, if the objective is to use the model for explanation, we may prefer DIC;
if instead the objective is prediction, we may prefer Dk.

4.3 Bayesian computation

As mentioned above, in this section we provide a brief introduction to
Bayesian computing, following the development in Chapter 5 of Carlin and
Louis (2000). The explosion in Bayesian activity and computing power
of the last decade or so has caused a similar explosion in the number of
books in this area. The earliest comprehensive treatment was by Tanner
(1996), with books by Gilks et al. (1996), Gamerman (1997), and Chen
et al. (2000) o�ering updated and expanded discussions that are primarily
Bayesian in focus. Also signi�cant are the computing books by Robert and
Casella (1999) and Liu (2001), which, while not speci�cally Bayesian, still
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emphasize Markov chain Monte Carlo methods typically used in modern
Bayesian analysis.
Without doubt, the most popular computing tools in Bayesian practice

today are Markov chain Monte Carlo (MCMC) methods. This is due to
their ability (in principle) to enable inference from posterior distributions
of arbitrarily large dimension, essentially by reducing the problem to one
of recursively solving a series of lower-dimensional (often unidimensional)
problems. Like traditional Monte Carlo methods, MCMC methods work
by producing not a closed form for the posterior in (4.1), but a sample

of values f�(g); g = 1; : : : ; Gg from this distribution. While this obviously
does not carry as much information as the closed form itself, a histogram
or kernel density estimate based on such a sample is typically su�cient for
reliable inference; moreover such an estimate can be made arbitrarily accu-
rate merely by increasing the Monte Carlo sample size G. However, unlike
traditional Monte Carlo methods, MCMC algorithms produce correlated
samples from this posterior, since they arise from recursive draws from a
particular Markov chain, the stationary distribution of which is the same
as the posterior.
The convergence of the Markov chain to the correct stationary distribu-

tion can be guaranteed for an enormously broad class of posteriors, explain-
ing MCMC's popularity. But this convergence is also the source of most
of the di�culty in actually implementing MCMC procedures, for two rea-
sons. First, it forces us to make a decision about when it is safe to stop the
sampling algorithm and summarize its output, an area known in the busi-
ness as convergence diagnosis. Second, it clouds the determination of the
quality of the estimates produced (since they are based not on i.i.d. draws
from the posterior, but on correlated samples. This is sometimes called the
variance estimation problem, since a common goal here is to estimate the
Monte Carlo variances (equivalently standard errors) associated with our
MCMC-based posterior estimates.
In the remainder of this section, we introduce the two most popular

MCMC algorithms, the Gibbs sampler and the Metropolis-Hastings algo-
rithm. We then return to the convergence diagnosis and variance estimation
problems.

4.3.1 The Gibbs sampler

Suppose our model features k parameters, � = (�1; : : : ; �k)
0. To implement

the Gibbs sampler, we must assume that samples can be generated from
each of the full or complete conditional distributions fp(�i j �j 6=i;y); i =
1; : : : ; kg in the model. Such samples might be available directly (say, if the
full conditionals were familiar forms, like normals and gammas) or indi-
rectly (say, via a rejection sampling approach). In this latter case two pop-
ular alternatives are the adaptive rejection sampling (ARS) algorithm of
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Gilks and Wild (1992), and the Metropolis algorithm described in the next
subsection. In either case, under mild conditions, the collection of full con-
ditional distributions uniquely determine the joint posterior distribution,
p(�jy), and hence all marginal posterior distributions p(�ijby); i = 1; : : : ; k.

Given an arbitrary set of starting values f�
(0)
2 ; : : : ; �

(0)
k g, the algorithm

proceeds as follows:

Gibbs Sampler: For (t 2 1 : T ), repeat:

Step 1: Draw �
(t)
1 from p

�
�1 j �

(t�1)
2 ; �

(t�1)
3 ; : : : ; �

(t�1)
k ;y

�
Step 2: Draw �

(t)
2 from p

�
�2 j �

(t)
1 ; �

(t�1)
3 ; : : : ; �

(t�1)
k ;y

�
...

Step k: Draw �
(t)
k from p

�
�k j �

(t)
1 ; �

(t)
2 ; : : : ; �

(t)
k�1;y

�
Under mild regulatory conditions that are generally satisi�ed for most sta-
tistical models (see, e.g., Geman and Geman, 1984, or Roberts and Smith,

1993), one can show that the k-tuple obtained at iteration t, (�
(t)
1 ; : : : ; �

(t)
k ),

converges in distribution to a draw from the true joint posterior distribu-
tion p(�1; : : : ; �kjy). This means that for t su�ciently large (say, bigger than

t0), f�
(t); t = t0 + 1; : : : ; Tg is a (correlated) sample from the true poste-

rior, from which any posterior quantities of interest may be estimated. For

example, a histogram of the f�
(t)
i ; t = t0 + 1; : : : ; Tg themselves provides

a simulation-consistent estimator of the marginal posterior distribution for
�i; p(�i j y). We might also use a sample mean to estimate the posterior
mean, i.e., bE(�ijy) = 1

T � t0

TX
t=t0+1

�
(t)
i : (4:15)

The time from t = 0 to t = t0 is commonly known as the burn-in period;
popular methods for selection of an appropriate t0 are discussed below.
In practice, we may actually run m parallel Gibbs sampling chains, in-

stead of only 1, for some modest m (say, m = 5). We will see below that
such parallel chains may be useful in assessing sampler convergence, and
anyway can be produced with no extra time on a multiprocessor computer.
In this case, we would again discard all samples from the burn-in period,
obtaining the posterior mean estimate,

bE(�ijy) = 1

m(T � t0)

mX
j=1

TX
t=t0+1

�
(t)
i;j ; (4:16)

where now the second subscript on �i;j indicates chain number. Again we
defer comment on how the issues how to choose t0 and how to assess the
quality of (4.16) and related estimators for the moment.
As a historical footnote, we add that Geman and Geman (1984) ap-

parently chose the name \Gibbs sampler" because the distributions used
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in their context (image restoration, where the parameters were actually
the colors of pixels on a screen) were Gibbs distributions (as previously
seen in equation (3.9)). These were in turn named after J.W. Gibbs, a
19th-century American physicist and mathematician generally regarded as
one of the founders of modern thermodynamics and statistical mechanics.
While Gibbs distributions form an exponential family on potentials that
includes most standard statistical models as special cases, most Bayesian
applications do not require anywhere near this level of generality, typically
dealing solely with standard statistical distributions (normal, gamma, etc.).
Yet, despite a few attempts by some Bayesians to choose a more descriptive
name (e.g., the \successive substitution sampling" (SSS) moniker due to
Schervish and Carlin, 1992), the Gibbs sampler name has stuck. As such
the Gibbs sampler is yet another example of Stigler's Law of Eponymy,
which states that no scienti�c discovery is named for the person(s) who
actually thought of it. (Interestingly, Stigler's Law of Eponymy is not due
to Stigler (1999), meaning that it is an example of itself!)

4.3.2 The Metropolis-Hastings algorithm

The Gibbs sampler is easy to understand and implement, but requires the
ability to readily sample from each of the full conditional distributions,
p(�i j�j 6=i;y). Unfortunately, when the prior distribution p(�) and the like-
lihood f(yj�) are not a conjugate pair, one or more of these full condi-
tionals may not be available in closed form. Even in this setting, however,
p(�i j �j 6=i;y) will be available up to a proportionality constant, since it is
proportional to the portion of f(yj�)� p(�) that involves �i.

The Metropolis algorithm (or Metropolis-Hastings algorithm) is a rejec-
tion algorithm that attacks precisely this problem, since it requires only
a function proportional to the distribution to be sampled, at the cost of
requiring a rejection step from a particular candidate density. Like the
Gibbs sampler, this algorithm was not developed by statistical data ana-
lysts for this purpose, but by statistical physicists working on the Man-
hattan Project in the 1940s seeking to understand the particle movement
theory underlying the �rst atomic bomb (one of the coauthors on the origi-
nal Metropolis et al. (1953) paper was Edward Teller, who is often referred
to as \the father of the hydrogen bomb").

While as mentioned above our main interest in the algorithm is for gener-
ation from (typically univariate) full conditionals, it is most easily described
(and theoretically supported) for the full multivariate � vector. Thus, sup-
pose for now that we wish to generate from a joint posterior distribution dis-
tribution p(�jy) / h(�) � f(yj�)p(�). We begin by specifying a candidate

density q(��j�(t�1)) that is a valid density function for every possible value
of the conditioning variable �(t�1), and satis�es q(��j�(t�1)) = q(�(t�1)j��),
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i.e., q is symmetric in its arguments. Given a starting value �(0) at iteration
t = 0, the algorithm proceeds as follows:

Metropolis Algorithm: For (t 2 1 : T ), repeat:

1. Draw �� from q(�j�(t�1))

2. Compute the ratio r = h(��)=h(�(t�1)) = exp[logh(��)� logh(�(t�1))]

3. If r � 1, set �(t) = ��;

If r < 1, set �(t) =

�
�� with probability r

�(t�1) with probability 1� r
:

Then under generally the same mild conditions as those supporting the
Gibbs sampler, a draw �(t) converges in distribution to a draw from the
true posterior density p(�jy). Note however that when the Metropolis al-
gorithm (or the Metropolis-Hastings algorithm below) is used to update
within a Gibbs sampler, it never samples from the full conditional distri-
bution. Convergence using Metropolis steps, then, would be expected to be
slower than that for a regular Gibbs sampler.
Recall that the steps of the Gibbs sampler were fully determined by the

statistical model under consideration (since full conditional distributions
for well-de�ned models are unique). By contrast, the Metropolis algorithm
a�ords substantial exibility through the selection of the candidate density
q. This exibility can be a blessing and a curse: while theoretically we are
free to pick almost anything, in practice only a \good" choice will result in
su�ciently many candidate acceptances. The usual approach (after � has
been transformed to have support <k, if necessary) is to set

q(��j�(t�1)) = N(��j�(t�1); e�) ; (4:17)

since this distribution obviously satis�es the symmetry property, and is
\self correcting" (candidates are always centered around the current value

of the chain). Speci�cation of q then comes down to speci�cation of e�.
Here we might try to mimic the posterior variance by setting e� equal to an
empirical estimate of the true posterior variance, derived from a preliminary
sampling run.
The reader might well imagine an optimal choice of q would produce

an empirical acceptance ratio of 1, the same as the Gibbs sampler (and
with no apparent \waste" of candidates). However, the issue is rather more
subtle than this: accepting all or nearly all of the candidates is often the
result of an overly narrow candidate density. Such a density will \baby-
step" around the parameter space, leading to high acceptance but also high
autocorrelation in the sampled chain. An overly wide candidate density will
also struggle, proposing leaps to places far from the bulk of the posterior's
support, leading to high rejection and, again, high autocorrelation. Thus
the \folklore" here is to choose e� so that roughly 50% of the candidates are
accepted. Subsequent theoretical work (e.g., Gelman et al., 1996) indicates
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even lower acceptance rates (25 to 40%) are optimal, but this result varies
with the dimension and true posterior correlation structure of �.
As a result, choice of e� is often done adaptively. For instance, in one

dimension (setting e� = e�, and thus avoiding the issue of correlations among
the elements of �), a common trick is to simply pick some initial value ofe�, and then keep track of the empirical proportion of candidates that are
accepted. If this fraction is too high (75 to 100%), we simply increase e�; if
it is too low (0 to 20%), we decrease it. Since certain kinds of adaptation
can actually disturb the chain's convergence to its stationary distribution,
the simplest approach is to allow this adaptation only during the burn-in
period, a practice sometimes referred to as pilot adaptation. This is in fact
the approach currently used by WinBUGS, where the pilot period is �xed
at 4000 iterations. A more involved alternative is to allow adaptation at
regeneration points which, once de�ned and identi�ed, break the Markov
chain into independent sections. See, e.g., Mykland, Tierney and Yu (1995),
Mira and Sargent (2000), and Hobert et al. (2002) for discussions of the
use of regeneration in practical MCMC settings.
As mentioned above, in practice the Metropolis algorithm is often found

as a substep in a larger Gibbs sampling algorithm, used to generate from
awkward full conditionals. Such hybrid Gibbs-Metropolis applications were
once known as \Metropolis within Gibbs" or \Metropolis substeps," and
users would worry about how many such substeps should be used. Fortu-
nately, it was soon realized that a single substep was su�cient to ensure
convergence of the overall algorithm, and so this is now standard practice:
when we encounter an awkward full conditional (say, for �i), we simply
draw one Metropolis candidate, accept or reject it, and move on to �i+1.
Further discussion of convergence properties and implementation of hybrid
MCMC algorithms can be found in Tierney (1994) and Carlin and Louis
(2000, Sec. 5.4.4).
We end this subsection with the important generalization of the Metropo-

lis algorithm devised by Hastings (1970). In this variant we drop the re-
quirement that q be symmetric in its arguments, which is often useful for
bounded parameter spaces (say, � > 0) where Gaussian proposals as in
(4.17) are not natural.

Metropolis-Hastings Algorithm: In Step 2 of the Metropolis algorithm
above, replace the acceptance ratio r by

r =
h(��)q(�(t�1) j ��)

h(�(t�1))q(�� j �(t�1))
: (4:18)

Then again under mild conditions, a draw �(t) converges in distribution to
a draw from the true posterior density p(�jy) as t!1.

In practice we often set q(�� j �(t�1)) = q(��), i.e., we use a proposal
density that ignores the current value of the variable. This algorithm is
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sometimes referred to as a Hastings independence chain, so named because
the proposals (though not the �nal �(t) values) form an independent se-
quence. While easy to implement, this algorithm can be di�cult to tune
since it will converge slowly unless the chosen q is rather close to the true
posterior (which is of course unknown in advance).

4.3.3 Slice sampling

An alternative to the Metropolis-Hastings algorithm that is still quite gen-
eral is slice sampling (Neal, 2003). In its most basic form, suppose we seek to
sample a univariate � � f(�) � h(�)=

R
h(�)d�, where h(�) is known. Sup-

pose we add a so-called auxiliary variable U such that U j� � Unif(0; h(�)).
Then the joint distribution of � and U is p(�; u) / 1 � I(U < h(�)), where I
denotes the indicator function. If we run a Gibbs sampler drawing from U j�
followed by �jU at each iteration, we can obtain samples from p(�; u), and
hence from the marginal distribution of �, f(�). Sampling from �ju requires
a draw from a uniform distribution for � over the set SU = f� : U < h(�)g.
Figure 4.1 reveals why this approach is referred to as slice sampling. U

\slices" the nonnormalized density, and the resulting \footprint" on the axis
provides SU . If we can enclose SU in an interval, we can draw � uniformly
on this interval and simply retain it only if U < h(�) (i.e., if � 2 SU ). If �
is instead multivariate, SU is more complicated and now we would need a
bounding rectangle.
Note that if h(�) = h1(�)h2(�) where, say, h1 is a standard density that

is easy to sample, while h2 is nonstandard and di�cult to sample, then we
can introduce an auxiliary variable U such that U j� � U(0; h2(�)). Now
p(�; u) = h1(�)I(U < h2(�)). Again U j� is routine to sample, while to
sample �jU we would now draw � from h1(�) and retain it only if � is such
that U < h2(�).
Slice sampling incurs problems similar to rejection sampling in that we

may have to draw many �'s from h1 before we are able to retain one. On
the other hand, it has an advantage over the Metropolis-Hastings algo-
rithm in that it always samples from the exact full conditional p(�ju). As
noted above, Metropolis-Hastings does not, and thus slice sampling would
be expected to converge more rapidly. Nonetheless, overall comparison of
computation time may make one method a winner for some cases, and the
other a winner in other cases. We do remark that slice sampling is attrac-
tive for �tting a large range of point-referenced spatial data models, as we
detail in Appendix Section A.6.

4.3.4 Convergence diagnosis

As mentioned above, the most problematic part of MCMC computation is
deciding when it is safe to stop the algorithm and summarize the output.
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U

S_U S_U

Figure 4.1 Illustration of slice sampling. For this bimodal distribution, SU is the
union of two disjoint intervals.

This means we must make a guess as to the iteration t0 after which all
output may be thought of as coming from the true stationary distribution of
the Markov chain (i.e., the true posterior distribution). The most common
approach here is to run a few (say, m = 3 or 5) parallel sampling chains,
initialized at widely disparate starting locations that are overdispersed with
respect to the true posterior. These chains are then plotted on a common set
of axes, and these trace plots are then viewed to see if there is an identi�able
point t0 after which all m chains seem to be \overlapping" (traversing the
same part of �-space).

Sadly, there are obvious problems with this approach. First, since the
posterior is unknown at the outset, there is no reliable way to ensure that
the m chains are \initially overdispersed," as required for a convincing
diagnostic. We might use extreme quantiles of the prior p(�) and rely on
the fact that the support of the posterior is typically a subset of that of the
prior, but this requires a proper prior and in any event is perhaps doubtful
in high-dimensional or otherwise di�cult problems. Second, it is hard to see
how to automate such a diagnosis procedure, since it requires a subjective
judgment call by a human viewer. A great many papers have been written
on various convergence diagnostic statistics that summarize MCMC output
from one or many chains that may be useful when associated with various
stopping rules; see Cowles and Carlin (1996) and Mengersen et al. (1999)
for reviews of many such diagnostics.
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Among the most popular diagnostic is that of Gelman and Rubin (1992).
Here, we run a small number (m) of parallel chains with di�erent starting
points that are \initially overdispersed" with respect to the true poste-
rior. (Of course, since we don't know the true posterior before beginning
there is technically no way to ensure this; still, the rough location of the
bulk of the posterior may be discernible from known ranges, the support
of the (proper) prior, or perhaps a preliminary posterior mode-�nding al-
gorithm.) Running the m chains for 2N iterations each, we then try to see
whether the variation within the chains for a given parameter of interest �
approximately equals the total variation across the chains during the latter
N iterations. Speci�cally, we monitor convergence by the estimated scale
reduction factor,

p
R̂ =

s�
N � 1

N
+
m+ 1

mN

B

W

�
df

df � 2
; (4:19)

where B=N is the variance between the means from the m parallel chains,
W is the average of the m within-chain variances, and df is the degrees
of freedom of an approximating t density to the posterior distribution.
Equation (4.19) is the factor by which the scale parameter of the t density
might shrink if sampling were continued inde�nitely; the authors show it
must approach 1 as N !1.

The approach is fairly intuitive and is applicable to output from any
MCMC algorithm. However, it focuses only on detecting bias in the MCMC
estimator; no information about the accuracy of the resulting posterior es-
timate is produced. It is also an inherently univariate quantity, meaning it
must be applied to each parameter (or parametric function) of interest in
turn, although Brooks and Gelman (1998) extend the Gelman and Rubin
approach in three important ways, one of which is a multivariate gener-
alization for simultaneous convergence diagnosis of every parameter in a
model.

While the Gelman-Rubin-Brooks and other formal diagnostic approaches
remain popular, in practice very simple checks often work just as well and
may even be more robust against \pathologies" (e.g., multiple modes) in
the posterior surface that may easily fool some diagnostics. For instance,
sample autocorrelations in any of the observed chains can inform about
whether slow traversing of the posterior surface is likely to impede con-
vergence. Sample cross-correlations (i.e., correlations between two di�erent
parameters in the model) may identify ridges in the surface (say, due to
collinearity between two predictors) that will again slow convergence; such
parameters may need to be updated in multivariate blocks, or one of the
parameters dropped from the model altogether. Combined with a visual
inspection of a few sample trace plots, the user can at least get a good
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feeling for whether posterior estimates produced by the sampler are likely
to be reliable.

4.3.5 Variance estimation

An obvious criticism of Monte Carlo methods generally is that no two an-
alysts will obtain the same answer, since the components of the estimator
are random. This makes assessment of the variance of these estimators cru-
cial. Combined with a central limit theorem, the result would be an ability
to test whether two Monte Carlo estimates were signi�cantly di�erent. For
example, suppose we have a single chain of N post-burn-in samples of a
parameter of interest �, so that our basic posterior mean estimator (4.15)

becomes Ê(�jy) = �̂N = 1
N

PN
t=1 �

(t). Assuming the samples comprising
this estimator are independent, a variance estimate for it would be given
by

dV ariid(�̂N ) = s2�=N =
1

N(N � 1)

NX
t=1

(�(t) � �̂N )
2 ; (4:20)

i.e., the sample variance, s2� = 1
N�1

PN
t=1(�

(t) � �̂N )
2, divided by N . But

while this estimate is easy to compute, it would very likely be an under-
estimate due to positive autocorrelation in the MCMC samples. One can
resort to thinning, which is simply retaining only every kth sampled value,
where k is the approximate lag at which the autocorrelations in the chain
become insigni�cant. However, MacEachern and Berliner (1994) show that
such thinning from a stationary Markov chain always increases the vari-
ance of sample mean estimators, and is thus suboptimal. This is intuitively
reminiscent of Fisher's view of su�ciency: it is never a good idea to throw
away information (in this case, (k � 1)=k of our MCMC samples) just to
achieve approximate independence among those that remain.
A better alternative is to use all the samples, but in a more sophisticated

way. One such alternative uses the notion of e�ective sample size, or ESS
(Kass et al. 1998, p. 99). ESS is de�ned as

ESS = N=�(�) ;

where �(�) is the autocorrelation time for �, given by

�(�) = 1 + 2

1X
k=1

�k(�) ; (4:21)

where �k(�) is the autocorrelation at lag k for the parameter of interest �.
We may estimate �(�) using sample autocorrelations estimated from the

MCMC chain. The variance estimate for �̂N is then

dV arESS(�̂N ) = s2�=ESS(�) =
�(�)

N(N � 1)

NX
t=1

(�(t) � �̂N )
2 :
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Note that unless the �(t) are uncorrelated, �(�) > 1 and ESS(�) < N , so

that dV arESS(�̂N ) > dV ariid(�̂N ), in concert with intuition. That is, since
we have fewer than N e�ective samples, we expect some ination in the
variance of our estimate.
In practice, the autocorrelation time �(�) in (4.21) is often estimated

simply by cutting o� the summation when the magnitude of the terms
�rst drops below some \small" value (say, 0.1). This procedure is simple
but may lead to a biased estimate of �(�). Gilks et al. (1996, pp. 50{51)
recommend an initial convex sequence estimatormentioned by Geyer (1992)
which, while while still output-dependent and slightly more complicated,
actually yields a consistent (asymptotically unbiased) estimate here.
A �nal and somewhat simpler (though also more naive) method of es-

timating V ar(�̂N ) is through batching. Here we divide our single long run
of length N into m successive batches of length k (i.e., N = mk), with

batch means B1; : : : ; Bm. Clearly �̂N = �B = 1
m

Pm
i=1Bi. We then have the

variance estimate

dV arbatch(�̂N ) = 1

m(m� 1)

mX
i=1

(Bi � �̂N )
2 ; (4:22)

provided that k is large enough so that the correlation between batches
is negligible, and m is large enough to reliably estimate V ar(Bi). It is
important to verify that the batch means are indeed roughly independent,
say, by checking whether the lag 1 autocorrelation of the Bi is less than
0.1. If this is not the case, we must increase k (hence N , unless the current
m is already quite large), and repeat the procedure.
Regardless of which of the above estimates V̂ is used to approximate

V ar(�̂N ), a 95% con�dence interval for E(�jy) is then given by

�̂N � z:025

p
V̂ ;

where z:025 = 1:96, the upper .025 point of a standard normal distribution.
If the batching method is used with fewer than 30 batches, it is a good idea
to replace z:025 by tm�1;:025, the upper .025 point of a t distribution with
m � 1 degrees of freedom. WinBUGS o�ers both naive (4.20) and batched
(4.22) variance estimates; this software is (at last!) the subject of the next
section.

4.4 Computer tutorials

4.4.1 Basic Bayesian modeling in R or S-plus

In this subsection we merely point out that for simple (typically low-
dimensional) Bayesian calculations employing standard likelihoods paired
with conjugate priors, the built-in density, quantile, and plotting functions
in standard statistical packages may well o�er su�cient power; there is no
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need to use a \Bayesian" package per se. In such cases, statisticians might
naturally turn to S-plus or R (the increasingly popular freeware pack-
age that is \not unlike S") due to their broad array of special functions
(especially those o�ering summaries of standard distributions), graphics,
interactive environments, and easy extendability.
As a concrete example, suppose we are observing a data value Y from a

Bin(n; �) distribution, with density proportional to

p(yj�) / �y(1� �)n�y : (4:23)

The Beta(�; �) distribution o�ers a conjugate prior for this likelihood, since
its density is proportional to (4.23) as a function of �, namely

p(�) / ���1(1� �)��1 : (4:24)

Using Bayes' Rule (4.1), it is clear that

p(�jy) / �y+��1(1� �)n�y+��1

/ Beta(y + �; n� y + �) ; (4.25)

another Beta distribution.
Now consider a setting where n = 10 and we observe Y = yobs = 7.

Choosing � = � = 1 (i.e., a uniform prior for �), the posterior is a
Beta(yobs+1; n�yobs+1) = Beta(8; 4) distribution. In either R or S-plus
we can obtain a plot of this distribution by typing

> theta <- seq(from=0, to=1, length=101)

> yobs <- 7; n <- 10

> plot(theta, dbeta(theta, yobs+1, n-yobs+1), type="l",

ylab="posterior density",xlab="")

The posterior median may be obtained as

> qbeta(.5, yobs+1, n-yobs+1)

while the endpoints of a 95% equal-tail credible interval are

> qbeta(c(.025, .975), yobs+1, n-yobs+1)

In fact, these points may be easily added to our posterior plot (see Fig-
ure 4.2) by typing

> abline(v=qbeta(.5, yobs+1, n-yobs+1))

> abline(v=qbeta(c(.025, .975), yobs+1, n-yobs+1), lty=2)

The pbeta and rbeta functions may be used similarly to obtain prespeci�ed
posterior probabilities (say, Pr(� < 0:8jyobs)) and random draws from the
posterior, respectively.
Indeed, similar density, quantile, cumulative probability, and random

generation routines are available in R or S-plus for a wide array of stan-
dard distributional families that often emerge as posteriors (gamma, nor-
mal, multivariate normal, Dirichlet, etc.). Thus in settings where MCMC
techniques are unnecessary, these languages may o�er the most sensible
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Figure 4.2 Illustrative beta posterior, with vertical reference lines added at the
.025, .5, and .975 quantiles.

approach. They are especially useful in situations requiring code to be
wrapped around statements like those above so that repeated posterior cal-
culations may be performed. For example, when designing an experiment to
be analyzed at some later date using a Bayesian procedure, we would likely
want to simulate the procedure's performance in repeated sampling (the
Bayesian analog of a power or \sample size" calculation). Such repeated
sampling might be of the data for �xed parameters, or over both the data
and the parameters. (We hasten to add that WinBUGS can be called from
R, albeit in a special way; see www.stat.columbia.edu/~gelman/bugsR/.
Future releases of WinBUGS may be available directly within R itself.)

4.4.2 Advanced Bayesian modeling in WinBUGS

In this subsection we provide a introduction to Bayesian data analysis in
WinBUGS, the most well-developed and general Bayesian software package
available to date. WinBUGS is the Windows successor to BUGS, a UNIX pack-
age whose name originally arose as a humorous acronym for Bayesian

inference Using Gibbs Sampling. The package is freely available from
the website http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. The
sofware comes with a user manual, as well as two examples manuals that
are enormously helpful for learning the language and various strategies for
Bayesian data analysis.
We remark that for further examples of good applied Bayesian work,
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in addition to the �ne book by Gilks et al. (1996), there are the series
of \Bayesian case studies" books by Gatsonis et al. (1993, 1995, 1997,
1999, 2002, 2003), and the very recent Bayesian modeling book by Cong-
don (2001). While this lattermost text assumes a walking familiarity with
the Bayesian approach, it also includes a great many examples and corre-
sponding computer code for their implementation in WinBUGS.
WinBUGS has an interactive environment that enables the user to specify

models (hierarchical) and it actually performs Gibbs sampling to generate
posterior samples. Convergence diagnostics, model checks and comparisons,
and other helpful plots and displays are also available. We will now look at
some WinBUGS code for greater insight into its modeling language.

Example 4.3 The line example from the main WinBUGS manual will be
considered in stages, in order to both check the installation and to illustrate
the use of WinBUGS.
Consider a set of 5 (obviously arti�cial) (X;Y ) pairs: (1, 1), (2, 3), (3,

3), (4, 3), (5, 5). We shall �t a simple linear regression of Y on X using the
notation,

Yi � N
�
�i; �

2
�
;

where �i = �+ �xi :

As the WinBUGS code below illustrates, the language allows a concise ex-
pression of the model, where dnorm(a,b) denotes a normal distribution
with mean a and precision (reciprocal of the variance) b, and dgamma(c,d)

denotes a gamma distribution with mean c=d and variance c=d2. The data
means mu[i] are speci�ed using a logical link (denoted by <-), instead of
a stochastic one (denoted by �). The second logical expression allows the
standard deviation � to be estimated.

model

f
for(i in 1:N)f

Y[i] � dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

g
sigma <- 1/sqrt(tau)

alpha � dnorm(0, 1.0E-6)

beta � dnorm(0, 1.0E-6)

tau � dgamma(1.0E-3, 1.0E-3)

g

The parameters in the Gibbs sampling order here will be �, �, and �2;
note all are given proper but minimally informative prior distributions.
We next need to load in the data. The data can be represented using

S-plus or R object notation as: list(x = c(1, 2, 3, 4, 5), Y = c(1,
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3, 3, 3, 5), N = 5), or as a combination of an S-plus object and a
rectangular array with labels at the head of the columns:

list(N=5)
x[ ] Y[ ]
1 1
2 3
3 3
4 3
5 5

Implementation of this code in WinBUGS is most easily accomplished by
pointing and clicking through the menu on the Model/Specification,
Inference/Samples, and Inference/Update tools; the reader may refer to
www.statslab.cam.ac.uk/�krice/winbugsthemovie.html for an easy-
to-follow Flash introduction to these steps. WinBUGS may also be called by
R; see the functions written by Prof. Andrew Gelman for this purpose at
www.stat.columbia.edu/�gelman/bugsR/.

Example 4.4 Consider a basic kriging model of the form

Y � MVN
�
�; w2H(�) + v2I

�
;

where � = X� :

Here I is an N � N identity matrix, while � = w2H (�), an N � N cor-
relation matrix of the form H(�)ij = exp(��dij) where as usual dij is the
distance between locations i and j.
What follows is some WinBUGS code to do this problem directly, i.e., using

the multivariate normal distribution dnorm and constructing the H matrix
directly using the exponential (exp) and power (pow) functions.
model

f
for(i in 1:N) f
Y[i] � dnorm(mu[i], tauv)

mu[i] <- inprod(X[i,],beta[]) + W[i]

muW[i] <- 0

g
for(i in 1:p) fbeta[i] � dnorm(0.0, 0.0001)g
W[1:N] � dmnorm(muW[], Omega[,])

tauv � dgamma(0.001,0.001)

v <- 1/sqrt(tauv)

tauw � dgamma(0.001,0.001)

w <- 1/sqrt(tauw)

phi� dgamma(0.01,0.01)

for (i in 1:N) f
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for(j in 1:N) f
H[i,j] <- (1/tauw)*exp(-phi*pow(d[i,j],2)) g g

Omega[1:N,1:N] <- inverse(H[1:N,1:N])

g

We can also �t this model using the spatial.exp function now available
in WinBUGS releases 1.4 and later:
model

f
for(i in 1:N) f
Y[i] � dnorm(mu[i], tauv

mu[i] <- inprod(X[i,],beta[]) + W[i]

muW[i] <- 0

g
for(i in 1:p) fbeta[i] � dnorm(0.0, 0.0001)g
W[1:N] � spatial.exp(muW[], x[], y[], tauw, phi, 1)

tauv � dgamma(0.001,0.001)

v <- 1/sqrt(tauv)

tauw � dgamma(0.001,0.001)

w <- 1/sqrt(tauw)

phi � dgamma(0.01,0.01)

g
You are asked to compare the results of these two approaches using a

\toy" (N = 10) data set in Exercise 4.

4.5 Exercises

1. During her senior year in high school, Minnesota basketball sensation
Carolyn Kieger scored at least 30 points in 9 consecutive games, helping
her team win 7 of those games. The data for this remarkable streak are
shown in Table 4.1. Notice that the rest of the team combined managed
to outscore Kieger on only 2 of the 9 occasions.

A local press report on the streak concluded (apparently quite sensibly)
that Kieger was primarily responsible for the team's relatively good win-
loss record during this period. A natural statistical model for testing this
statement would be the logistic regression model,

Yi
ind
� Bernoulli(pi) ;

where logit(pi) = �0 + �1x1i + �2x2i :

Here, Yi is 1 if the team won game i and 0 if not, x1i and x2i are the corre-
sponding points scored by Kieger and the rest of the team, respectively,
and the logit transformation is de�ned as logit(pi) � log(pi=(1� pi)), so
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Points scored by
Game Kieger Rest of team Game outcome

1 31 31 W, 62{49
2 31 16 W, 47{39
3 36 35 W, 71{64
4 30 42 W, 72{48
5 32 19 L, 64{51
6 33 37 W, 70{49
7 31 29 W, 60{37
8 33 23 W, 56{45
9 32 15 L, 57{47

Table 4.1 Carolyn Kieger prep basketball data.

that

pi =
exp(�0 + �1x1i + �2x2i)

1 + exp(�0 + �1x1i + �2x2i)
:

(a) Using vague (or even at) priors for the �j ; j = 0; 1; 2, �t this model
to the data using the WinBUGS package. After downloading the pro-
gram from http://www.mrc-bsu.cam.ac.uk/bugs/ you may wish to
follow the models provided by the similar Surgical or Beetles ex-
amples (click on \Help" and pull down to \Examples Vol I" or \Ex-
amples Vol II"). Obtain posterior summaries for the �j parameters,
as well as a DIC score and e�ective number of parameters pD. Also
investigate MCMC convergence using trace plots, autocorrelations,
and crosscorrelations (the latter from the \Correlations" tool under
the \Inference" menu). Is this model acceptable, numerically or sta-
tistically?

(b) Fit an appropriate two-parameter reduction of the model in part (a).
Center the remaining covariate(s) around their own mean to reduce
crosscorrelations in the parameter space, and thus speed MCMC con-
vergence. Is this model an improvement?

(c) Fit one additional two-parameter model, namely,

logit(pi) = �0 + �1zi ;

where zi = x1i=(x1i + x2i), the proportion of points scored by Kieger
in game i. Again investigate convergence behavior, the �j posteriors,
and model �t relative to those in parts (a) and (b).

(d) For this �nal model, look at the estimated posteriors for the pi them-
selves, and interpret the striking di�erences among them. What does
this suggest might still be missing from our model?
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2. Show that (4.17) is indeed a symmetric proposal density, as required by
the conditions of the Metropolis algorithm.

3. Suppose now that � is univariate but con�ned to the range (0;1), with
density proportional to h(�).

(a) Find the Metropolis acceptance ratio r assuming a Gaussian proposal
density (4.17). Is this an e�cient generation method?

(b) Find the Metropolis acceptance ratio r assuming a Gaussian proposal
density for � � log �. (Hint: Don't forget the Jacobian of this trans-
formation!)

(c) Finally, �nd the Metropolis-Hastings acceptance ratio r assuming a
Gamma(a; b) proposal density for �.

4. Using the WinBUGS code and corresponding data set available from the
web at www.biostat.umn.edu/~brad/data/direct.bug, attempt to �t
the Bayesian kriging model in Example 4.4.

(a) Using the \direct" code (which builds the H(�) matrix explicitly).

(b) Using the intrinsic spatial.exp function in WinBUGS 1.4.

(c) Do your results in (a) and (b) agree? How do the runtimes compare?

(d) Check to see if WinBUGS can handle the N = 100 case using the sim-
ulated data set www.biostat.umn.edu/~brad/data/direct.bigdat
with a suitably modi�ed version of your code.

5. Guo and Carlin (2004) consider a joint analysis of the AIDS longitudi-
nal and survival data originally analyzed separately by Goldman et al.
(1996) and Carlin and Louis (2000, Sec. 8.1). These data compare the
e�ectiveness of two drugs, didanosine (ddI) and zalcitabine (ddC), in
both preventing death and improving the longitudinal CD4 count tra-
jectories in patients with late-stage HIV infection. The joint model used
is one due to Henderson, Diggle, and Dobson (2000), which links the two
submodels using bivariate Gaussian random e�ects. Speci�cally,

Longitudinal model: For data yi1; yi2; : : : ; yini from the ith subject at
times si1; si2; : : : ; si;ni , let

yij = �i(sij) +W1i(sij) + �ij ; (4:26)

where �i(s) = xT1i(s)�1 is the mean response, W1i(s) = dT1i(s)Ui incor-
porates subject-speci�c random e�ects (adjusting the main trajectory
for any subject), and �ij � N(0; �2� ) is a sequence of mutually indepen-
dent measurement errors. This is the classic longitudinal random e�ects
setting of Laird and Ware (1982).

Survival model: Letting ti is time to death for subject i, we assume the
parametric model,

ti �Weibull (p; �i(t)) ;
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where p > 0 and

log(�i(t)) = xT2i(t)�2 +W2i(t) :

Here, �2 is the vector of �xed e�ects corresponding to the (possibly
time-dependent) explanatory variables x2i(t) (which may have elements
in common with x1i), andW2i(t) is similar toW1i(s), including subject-
speci�c covariate e�ects and an intercept (often called a frailty).

The speci�c joint model studied by Guo and Carlin (2004) assumes

W1i(s) = U1i + U2i s ; and (4.27)

W2i(t) = 1U1i + 2U2i + 3(U1i + U2i t) + U3i ; (4.28)

where (U1i; U2i)
T iid
� N(0;�) and U3i

iid
� N(0; �23), independent of the

(U1i; U2i)
T . The 1, 2, and 3 parameters in model (4.28) measure the

association between the two submodels induced by the random inter-
cepts, slopes, and �tted longitudinal value at the event time W1i(t),
respectively.

(a) Use the code at www.biostat.umn.edu/~brad/software.html to �t
the version of this model with U3i = 0 for all i (\Model XII") in
WinBUGS, as well as the further simplied version that sets 3 = 0
(\Model XI"). Which models �ts better according to the DIC crite-
rion?

(b) For your chosen model, investigate and comment on the posterior
distributions of 1, 2, �1;3 (the relative e�ect of ddI on the overall
CD4 slope), and �2;2 (the relative e�ect of ddI on survival).

(c) For each drug group separately, estimate the posterior distribution
of the median survival time of a hypothetical patient with covariate
values corresponding to a male who is AIDS-negative and intolerant
of AZT at study entry. Do your answers change if you �t only the
survival portion of the model (i.e., ignoring the longitudinal informa-
tion)?

(d) Use the code at www.biostat.umn.edu/~brad/software.html to �t
the SAS Proc NLMIXED code (originally written by Dr. Oliver Scha-
benberger) for Models XI and XII above. Are the answers consistent
with those you obtained from WinBUGS above? How do the computer
runtimes compare? What is your overall conclusion about Bayesian
versus classical estimation in this setting?
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CHAPTER 5

Hierarchical modeling for
univariate spatial data

Having reviewed the basics of inference and computing under the hier-
archical Bayesian modeling paradigm, we now turn our attention to its
application in the setting of spatially arranged data. Many of the models
discussed in Chapter 2 and Chapter 3 will be of interest, but now they
may be introduced in either the �rst-stage speci�cation, to directly model
the data in a spatial fashion, or in the second-stage speci�cation, to model
spatial structure in the random e�ects. Parallel to the presentation in those
two chapters, we begin with models for point-level data, proceed on to areal
data models.
There is a substantial body of literature focusing on spatial prediction

from a Bayesian perspective. This includes Le and Zidek (1992), Hand-
cock and Stein (1993), Brown, Le, and Zidek (1994), Handcock and Wallis
(1994), DeOliveira, Kedem, and Short (1997), Ecker and Gelfand (1997),
Diggle, Tawn, and Moyeed (1998), and Karson et al. (1999). The work of
Woodbury (1989), Abrahamsen (1993), and Omre and colleagues (Omre,
1987; Omre, 1988; Omre and Halvorsen, 1989; Omre, Halvorsen, and Ber-
teig, 1989; and Hjort and Omre, 1994) is partially Bayesian in the sense
that prior speci�cation of the mean parameters and covariance function are
elicited; however, no distributional assumption is made for the Y (s).

5.1 Stationary spatial process models

The basic model we will work with is

Y (s) = �(s) + w(s) + �(s) ; (5:1)

where the mean structure �(s) = xT (s)�. The residual is partitioned into
two pieces, one spatial and one nonspatial. That is, the w (s) are assumed
to be realizations from a zero-centered stationary Gaussian spatial pro-
cess (see Section 2.2), capturing residual spatial association, while the � (s)
are uncorrelated pure error terms. Thus the w(s) introduce the partial sill
(�2) and range (�) parameters, while the � (s) add the nugget e�ect (�2).
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Valid correlation functions were discussed in Section 2.1. Recall that spec-
ifying the correlation function to be a function of the separation between
sites yields a stationary model. If we further specify this dependence only
through the distance jjsi � sj jj, we obtain isotropy; the most common such
forms (exponential, Mat�ern , etc.) were presented in Subsection 2.1.3 and
Tables 2.1 and 2.2.
Several interpretations can be attached to �(s) and its associated variance

�2. For instance, �(s) can be viewed as a pure error term, as opposed to
the spatial error term w(s). Correspondingly, the nugget �2 is a variance
component of Y (s), as in �2. In other words, while w(s + h) � w(s) !
0 as h ! 0 (if process realizations are continuous; see Subsection 2.2.3
and Section 10.1), [w(s + h) + �(s + h)] � [w(s) � �(s)] will not. We are
proposing residuals that are not spatially continuous, but not because the
spatial process is not smooth. Instead, it is because we envision additional
variabilty associated with Y (s). This could be viewed as measurement error
(as might be the case with data from certain monitoring devices) or more
generally as \noise" associated with replication of measurement at location
s (as might be the case with the sale of a single-family home at s, in which
case �(s) would capture the e�ect of the particular seller, buyer, realtors,
and so on).
Another view of �2 is that it represents microscale variability, i.e., vari-

ability at distances smaller than the smallest interlocation distance in the
data. In this sense �(s) could also be viewed as a spatial process, but with
very rapid decay in association and with very small range. The dependence
between the �(s) would only matter at very high resolution. In this regard,
Cressie (1993, pp. 112{113) suggests that �(s) and �2 may themselves be
partitioned into two pieces, one reecting pure error and the other reect-
ing microscale error. In practice, we rarely know much about the latter, so
in this book we employ �(s) to represent only the former.

5.1.1 Isotropic models

Suppose we have data Y (si); i = 1; : : : ; n, and letY = (Y (s1); : : : ; Y (sn))
T .

The basic Gaussian isotropic kriging models of Section 2.4 are a special case
of the general linear model, and therefore their Bayesian analysis can be
viewed as a special case of Example 4.2. The problem just boils down to
the appropriate de�nition of the � matrix. For example, in the case with
a nugget e�ect,

� = �2H (�) + �2I ;

where H is a correlation matrix with Hij = �(si � sj ;�) and � is a valid
isotropic correlation function on <2 indexed by a parameter (or parame-
ters) �. Collecting the entire collection of model parameters into a vector

� =
�
�; �2; �2; �

�T
, a Bayesian solution requires an appropriate prior distri-
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bution p (�). Parameter estimates may then be obtained from the posterior
distribution, which by (4.1) is

p (�jy) / f (yj�) p(�) ; (5:2)

where
Y j � � N

�
X� ; �2H (�) + �2I

�
: (5:3)

Typically, independent priors are chosen for the di�erent parameters, i.e.,

p(�) = p(�)p(�2)p(�2)p(�) ;

and useful candidates are multivariate normal for � and inverse gamma for
�2 and �2. Speci�cation for � of course depends upon the choice of � func-
tion; in the simple exponential case where �(si� sj;�) = exp(��jjsi� sj jj)
(and � is thus univariate), a gamma prior is often selected. As a general rule,
one may adopt relatively noninformative priors for the mean parameters,
since a proper posterior results even with p(�) at (improper uniform).
However, improper priors for the variance/covariance parameters can lead
to improper posteriors; see, e.g., Exercise 2. Since proper but very vague
priors will lead to essentially improper posteriors (i.e., posteriors that are
computationally indistinguishable from improper ones, hence MCMC con-
vergence failure), the safest strategy is to choose informative speci�cations
for �2; �2, and �.
Since we will often want to make inferential statements about the pa-

rameters separately, we will need to obtainmarginal posterior distributions.
For example, a point estimate or credible interval for � arises from

p (�jy) =

Z Z Z
p
�
�; �2; �2; �jy

�
d�2d�2d�

/ p (�)

Z Z Z
f (yj�) p(�2)p(�2)p(�)d�2d�2d� :

In principle this is simple, but in practice there will be no closed form for
the above integrations. As such, we will often resort to MCMC or other
numerical integration techniques, as described in Section 4.3.
Expression (5.3) can be recast as a hierarchical model by writing the

�rst-stage speci�cation as Y conditional not only on �, but also on the
vector of spatial random e�ects W = (w(s1); : : : ; w(sn))

T . That is,

Y j �;W � N(X� +W; �2I) : (5:4)

The Y (si) are conditionally independent given the w(si). The second-stage
speci�cation is for W, namely, Wj�2; � � N(0; �2H(�)) where H(�) is
as above. The model speci�cation is completed by adding priors for �
and �2 as well as for �2 and �, the latter two of which may be viewed
as hyperparameters. The parameter space is now augmented from � to
(�;W), and its dimension is increased by n.
Regardless, the resulting p(�jy) is the same, but we have the choice of
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using Gibbs sampling (or some other MCMC method) to �t the model ei-
ther as f(yj�)p(�), or as f(yj�;W)p(Wj�)p(�). The former is the result of
marginalizing the latter over W. Generally, we would prefer to work with
the former (see Appendix Section A.6). Apart from the conventional wis-
dom that we should do as much marginalization in closed form as possible
before implementing an MCMC algorithm (i.e., in as low a dimension as
possible), the matrix �2H(�)+�2I is typically better behaved than �2H(�).
To see this, note that if, say, si and sj are very close to each other, �

2H(�)
will be close to singular while �2H(�) + �2I will not. Determinant and
inversion calculation will also tend to be better behaved for the marginal
model form than the conditional model form.
Interest is often in the spatial surface that involvesWjy, as well as pre-

diction forW (s0)jy for various choices of s0. At �rst glance it would appear
that �tting the conditional model here would have an advantage, since re-
alizations essentially from p(Wjy) are directly produced in the process of
�tting the model. However, since p(Wjy) =

R
p(Wj�2; �)p(�2; �jy)d�2d�,

posterior realizations of W can be obtained one for one via composition
sampling using posterior realizations of �2 and �. Speci�cally, if the pairs
((�2)(g); �(g)) are draws from an MCMC algorithm with stationary distri-
bution p(�2; �jy), then corresponding drawsW(g) from p(Wj(�2)(g); �(g))
will have marginal distribution p(Wjy), as desired. Thus we need not gen-
erate the W(g) within the Gibbs sampler itself, but instead obtain them
immediately given the output of the smaller, marginal sampler. Note that
marginalization overW is only possible if the hierarchical form has a �rst-
stage Gaussian speci�cation, as in (5.4). We return to this matter in Sec-
tion 5.3.
Next we turn to prediction of the response Y at a new value s0 with asso-

ciated covariate vector x(s0); this predictive step is the Bayesian \kriging"
operation. Denoting the unknown value at that point by Y (s0) and using
the notations Y0 � Y (s0) and x0 � x(s0) for convenience, the solution in
the Bayesian framework simply amounts to �nding the predictive distribu-
tion,

p (y0jy; X;x0) =

Z
p (y0;�jy; X;x0) d�

=

Z
p (y0jy;�;x0) p (�jy; X) d� ; (5.5)

where p (y0jy;�;x0) has a conditional normal distribution arising from the
joint multivariate normal distribution of Y0 and the original data Y; see
(2.18) and (2.19).
In practice, MCMC methods may again be readily used to obtain esti-

mates of (5.5). Suppose we draw (after burn-in, etc.) our posterior sam-

ple �(1);�(2); : : : ;�(G) from the posterior distribution p (�jy; X). Then the
above predictive integral may be computed as a Monte Carlo mixture of
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the form

bp (y0jy; X;x0) = 1

G

GX
g=1

p
�
y0jy;�

(g);x0

�
: (5:6)

In practice we typically use composition sampling to draw, one for one for

each �(g), a y
(g)
0 � p

�
y0jy;�

(g);x0

�
. The collection

n
y
(1)
0 ; y

(2)
0 ; : : : ; y

(G)
0

o
is a sample from the posterior predictive density, and so can be fed into
a histogram or kernel density smoother to obtain an approximate plot of
the density, bypassing the mixture calculation (5.6). A point estimate and
credible interval for the predicted Y0 may be computed in the same manner
as in the estimation case above. This is all routinely done in S-plus, R, or
WinBUGS; see Subsection 5.1.2 for more details using the latter package.
Next suppose that we want to predict at a set of m sites, denoted,

say, by S0 = fs01; s02; : : : ; s0mg. We could individually predict at each
of these points \independently" using the above method. But joint pre-
diction may also be of interest, since it enables realizations from the same
random spatial surface. As a result it allows estimation of posterior as-
sociations among the m predictions. We may form an unobserved vector
Y0 = (Y (s01); : : : ; Y (s0m))

T with associated design matrix X0 having rows
x(s0j)

T , and compute its joint predictive density as

p (y0jy; X;X0) =

Z
p (y0jy;�; X0) p (�jy; X) d�

�
1

G

GX
g=1

p
�
y0jy;�

(g); X0

�
;

where again p
�
y0jy;�

(j); X0

�
is available from standard conditional nor-

mal formulae. We could also use composition to obtain, one for one for

each �(g), a collection of y
(g)
0 and make any inferences we like based on this

sample, either jointly or componentwise.
Often we are interested in not only the variables Y (s), but also in func-

tions of them, e.g., logY (s) (if Y (s) > 0), I(Y (s) > c), and so on. These
functions are random variables as well. More generally we might be inter-
ested in functions g(YD) where YD = fY (s) : s 2 Dg. These include, for
example, (Y (si) � Y (sj))

2, which enter into the variogram, linear trans-
formations

P
i `iY (si), which include �lters for spatial prediction at some

location, and �nite di�erences in speci�ed directions, [Y (s+hu)�Y (s)]=h,
where u is a particular unit vector (see Subsection 10.1.2).
Functions of the form g(YD) also include block averages, i.e. Y (A) =

1
jAj
R
A
g(Y (s))ds. Block averages are developed in much more detail in

Chapter 6. The case where g(YD) = I(Y (s) � c) leads to the de�nition of
the spatial CDF (SCDF) as in Section 10.3. Integration of a process or of
a function of a process yields a new random variable, i.e., the integral is
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random and is usually referred to as a stochastic integral. An obvious but
important point is that EAg(Y (s)) 6= g(EAY (s)) if g is not linear. Hence
modeling g(Y (s)) is not the same as modeling g(Y (A)). See Wake�eld and
Salway (2001) for further discussion.

5.1.2 Bayesian kriging in WinBUGS

Both the prediction techniques mentioned in the previous section (univari-
ate and joint) are automated in WinBUGS (versions 1.3.1 and later). As usual
we illustrate in the context of an example.

Example 5.1 Here we revisit the basic kriging model �rst considered in
Example 4.4. Recall in that example we showed how to specify the model in
the WinBUGS language directly, without making use of any special functions.
Unfortunately, WinBUGS' standard matrix inversion routines are too slow
for this approach to work for any but the smallest geostatistical data sets.
However, the language does o�er several special functions for Bayesian
kriging, which we now describe.
First consider the pure spatial (no nugget e�ect) model that is compatible

with WinBUGS 1.4. In this model (with corresponding computer code avail-
able at http://www.biostat.umn.edu/~brad/data2.html), Y are the ob-
served responses with covariate data X , N is the number of observed data
sites with spatial coordinates (x[],y[]),M is the number of missing data sites
with spatial coordinates (x0[],y0[]), and we seek to predict the response Y 0
given the observed covariate data X0.
In the example given at the website, the data were actually simulated

from a (purely spatial) Gaussian �eld with a univariate mean structure.
Speci�cally, the true parameter values are � = 5:0, � = 1:05, and spatial
variance �2 = 2:0.

model

f
for (i in 1:N) f mu[i] <- inprod(X[i,],beta[]) g

for (i in 1:p) fbeta[i] ~ dnorm(0.0, 0.0001)g
Y[1:N] ~ spatial.exp(mu[], x[], y[], spat.prec, phi, 1)

phi~dgamma(0.1,0.1)

spat.prec ~ dgamma(0.10, 0.10)

sigmasq <- 1/spat.prec

# Predictions Joint

Y0[1:M] ~ spatial.pred(mu0[], x0[], y0[], Y[])

for(j in 1:M) f Y0[j] <- inprod(X0[j,], beta[]) g
g
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In this code, the spatial.exp command �ts the exponential kriging model
directly to the observed data Y, meaning that we are forgoing the nugget
e�ect here. The �nal argument \1" in this command indicates an ordinary
exponential model; another option is \2," corresponding to a powered expo-
nential model where the power used is 2 (i.e., spatial dependence between
two observations varies as the square of the distance between them). The
spatial.pred command handles the joint prediction (kriging) at the new
sites X0.
The following modi�cation handles the modi�cation where we add the

nugget to the spatial model in WinBUGS1.4:

model

f
for (i in 1:N) f

Y[i] ~dnorm(mu[i], error.prec)

mu[i] <- inprod(X[i,],beta[]) + W[i]

muW[i] <- 0

g

for (i in 1:p) fbeta[i] ~dnorm(0.0, 0.0001)g
tausq <- 1/error.prec

W[1:N] ~ spatial.exp(muW[], x[], y[], spat.prec, phi, 1)

phi~dgamma(0.1,0.1)

spat.prec ~dgamma(0.10, 0.10)

sigmasq <- 1/spat.prec

# Predictions Joint

W0[1:M] ~spatial.pred(muW0[], x0[], y0[], W[])

for(j in 1:M) f
muW0[j] <- 0

Y0[j] <- inprod(X0[j,], beta[]) + W0[j]

g
g

Here, the spatial.exp command is used not with the observed data Y,
but with the random e�ects vectorW. AddingW into the mean structure
and placing an ordinary normal error structure on Y conditional on W

produces the \spatial plus nugget" error total structure we desire (see (5.3)
above).

5.1.3 More general isotropic correlation functions

From Subsection 2.2.2, a correlation function �(d; �) is valid only if it is
positive de�nite in d, �(0; �) = 1, and j�(d; �)j � 1 for all d. From Bochner's
Theorem (2.10), the characteristic function of a symmetric distribution
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Figure 5.1 A plot of J0(d) out to d = 100.

in Rr satis�es these constraints. From Khinchin's Theorem (e.g., Yaglom,
1962, p. 106) as well as (2.12), the class of all valid functions �(d; �) in <r

can be expressed as

�(d; �) =

Z 1

0


r(zd)dG�(z) ; (5:7)

where G� is nondecreasing integrable and 
r(x) =
�
2
x

� r�2
2 �

�
r
2

�
J( r�22 )(x).

Here again, J�(�) is the Bessel function of the �rst kind of order �. For r =
1;
1(x) = cos(x); for r = 2;
2(x) = J0(x); for r = 3;
3(x) = sin(x)=x;
for r = 4;
4(x) =

2
x
J1(x); and for r =1;
1(x) = exp(�x2). Speci�cally,

J0(x) =
P1

k=0
(�1)k
k!2

�
x
2

�2k
and �(d; �) =

R1
0 J0(zd)dG�(z) provides the

class of all permissible correlation functions in <2. Figure 5.1 provides a
plot of J0(x) versus x, revealing that it is not monotonic. (This must be
the case in order for �(d; �) above to capture all correlation functions in
<2.)
In practice, a convenient simple choice for G�(z) is a step function that

assigns positive mass (jumps or weights) w` at points (nodes) �`; ` = 1; :::; p

© 2004 by CRC Press LLC



STATIONARY SPATIAL PROCESS MODELS 137

yielding, with w = (w1; w2; :::; wp);

�(d; �;w) =

pX
`=1

w`
n(�`d) : (5:8)

The forms in (5.8) are referred to as nonparametric variogram models in
the literature to distinguish them from standard or parametric forms for
�(d; �), such as those given in Table 2.2. This is a separate issue from select-
ing a parametric or nonparametric methodology for parameter estimation.
Sampson and Guttorp (1992), Shapiro and Botha (1991), and Cherry, Ban-
�eld, and Quimby (1996) use a step function for G�: Barry and Ver Hoef
(1996) employ a mixture of piecewise linear variograms in R1 and piecewise-
planar models for sites in <2. Hall, Fisher, and Ho�mann (1994) transform
the problem from choosing �`'s and w`'s in (5.8) to determining a kernel
function and its associated bandwidth. Lele (1995) proposes iterative spline
smoothing of the variogram yielding a � which is not obviously of the form
(5.7). Most of these nonparametric models are �t to some version of the
empirical semivariogram (2.9).
Sampson and Guttorp (1992) �t their model, using 
1(x) in (5.8), to the

semivariogram cloud rather than to the smoothed Matheron semivariogram
estimate. Their example involves a data set with 12 sites yielding only 66
points in the semivariogram cloud, making this feasible. Application of their
method to a much larger (hence \noisier") data set would be expected to
produce a variogram mixing hundreds and perhaps thousands of Gaussian
forms. The resulting variogram will follow the semivariogram cloud too
closely to be plausible.
Working in <2, where again 
2(x) = J0(x), under the Bayesian paradigm

we can introduce (5.8) directly into the likelihood but keep p small (at most
5), allowing random w` or random �`: This o�ers a compromise between
the rather limiting standard parametric forms (Table 2.1) that specify two
or three parameters for the covariance structure, and above nonparametric
methods that are based upon a practically implausible (and potentially
over�tting) mixture of hundreds of components. Moreover, by working with
the likelihood, inference is conditioned upon the observed y, rather than
on a summary such as a smoothed version of the semivariogram cloud.
Returning to (5.7), when n = 2 we obtain

�(d; �) =

Z 1

0

1X
k=0

(�1)k

k!2

�
zd

2

�2k

dG�(z) : (5:9)

Only if z is bounded, i.e., if G� places no mass on say z > �max, can we
interchange summation and integration to obtain

�(d; �) =

Z 1

0

1X
k=0

(�1)k

k!2

�
d

2

�2k

�2k ; (5:10)
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where �2k =
R �max

0 z2kdG�(z). The simplest such choice forG� puts discrete
mass w` at a �nite set of values �` 2 (0; �max); ` = 1; :::; p resulting in a
�nite mixture of Bessels model for �(d; �), which in turn yields

(dij) = �2 + �2

 
1�

pX
`=1

w`J0(�`dij)

!
: (5:11)

Under a Bayesian framework for a given p, if the w`'s are each �xed to
be 1

p
with �`'s unknown (hence random), they are constrained by 0 < �1 <

�2 < � � � < �p < �max for identi�ability. The result is an equally weighted
mixture of random curves. If a random mixture of �xed curves is desired,
then the w`'s are random and the �`'s are systematically chosen to be �` =�

`
p+1

�
�max. We examine p = 2; 3; 4; 5 for �xed nodes and p = 1; 2; 3; 4; 5 for

�xed weights. Mixture models using random w`'s and random �`'s might
be considered but, in our limited experience, the posteriors have exhibited
weak identi�ability in the parameters and thus are not recommended.
In choosing �max, we essentially determine the maximum number of

sign changes we allow for the dampened sinusoidal Bessel correlation func-
tion over the range of d's of interest. For, say, 0 � d � dmax where dmax

is the maximum of the dij = jjsi � sj jj, the larger � is, the more sign
changes J0(�d) will have over this range. This suggests making �max very
large. However, as noted earlier in this section, we seek to avoid practically
implausible � and , which would arise from an implausible J0(�d): For
illustration, the plot in Figure 5.1 above allows several sign changes, to
show the longer term stability of its oscillation. Letting � be the value of x
where J0(x) = 0 attains its kth sign change (completes its k�1

2 period) we
set � = �maxd

max, thus determining �max. We reduce the choice of �max to
choosing the maximum number of Bessel periods allowable. For a given p,
when the �'s are random, the posterior distribution for �p will reveal how
close to �max the data encourages �p to be.

Example 5.2 We return to the 1990 log-transformed scallop data, origi-
nally presented in Subsection 2.3.2. In 1990, 148 sites were sampled in the
New York Bight region of the Atlantic Ocean, which encompasses the area
from the tip of Long Island to the mouth of the Delaware River. These
data have been analyzed by Ecker and Heltshe (1994), Ecker and Gelfand
(1997, 1999), Kaluzny et al. (1998), and others. Figure 5.2 shows the semi-
variogram cloud (panel a) together with boxplots (panel b) formed from
the cloud using the arbitrary lag � = 0:05. The 10,731 pairs of points that
produce the semivariogram cloud do not reveal any distinct pattern. In a
sense, this shows the folly of �tting a curve to this data: we have a weak
signal, and a great deal of noise.
However, the boxplots and the Matheron empirical semivariograms each

based on lag � = 0:05 (Figure 5.3) clearly exhibit spatial dependence, in
the sense that when separation distances are small, the spatial variability
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Figure 5.2 Semivariogram cloud (a) and boxplot produced from 0.05 lag (b), 1993
scallop data.

tends to be less. Here the attempt is to remove the noise to see whatever
signal there may be. Of course, the severe skewness revealed by the boxplots
(and expected from squared di�erences) raises the question of whether the
bin averages are an appropriate summary (expression (2.9)); see Ecker and
Gelfand (1997) in this regard. Clearly such displays and attempts to �t an
empirical variogram must be viewed as part of the exploratory phase of our
data analysis.

For the choice of �max in the nonparametric setup, we selected seven sign
changes, or three Bessel periods. With dmax

ij = 2:83 degrees, �max becomes
7.5. A sensitivity analysis with two Bessel mixtures (p = 2) having a �xed
weight w1 and random nodes was undertaken. Two, four, and �ve Bessel
periods revealed little di�erence in results as compared with three. However,
when one Bessel period was examined (�max = 3), the model �t poorly and
in fact �p was just smaller than 3. This is an indication that more exibility
(i.e., a larger value of �max) is required.

Several of the parametric models from Tables 2.1 and 2.2 and several
nonparametric Bessel mixtures with di�erent combinations of �xed and
random parameters were �t to the 1990 scallop data. (Our analysis here
parallels that of Ecker and Gelfand, 1997, although our results are not
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Figure 5.3 Matheron empirical semivariograms for lag � = 0:05.

identical to theirs since they worked with the 1993 version of the data set.)
Figure 5.4 shows the posterior mean of each respective semivariogram, while
Table 5.1 provides the value of model choice criteria for each model along
with the independence model, �Y = (�2 + �2)I . Here we use the Gelfand
and Ghosh (1998) model selection criterion (4.13), as described in Subsec-
tion 4.2.3. However, since we are �tting variograms, we work somewhat less
formally using Zij;obs = (Y (si) � Y (sj))

2=2. Since Zij is distributed as a
multiple of a �21 random variable, we use a loss associated with a gamma
family of distributions, obtaining a Dk;m value of

(k + 1)
X
i;j

(
log

 
�
(m)
ij + kzij;obs

k + 1

!
�
log(�

(m)
ij ) + k log(zij;obs)

k + 1

)

+
X
i;j

�
log(�

(m)
ij )�E(log(zij;rep) j y;m)

�
(5.12)

for model m, where �
(m)
ij = E(zij;rep j y;m). The concavity of the log

function ensures that both summations on the right-hand side of (5.12) are
positive. (As an aside, in theory zij;obs > 0 almost surely, but in practice
we may observe some zij = 0 as, for example, with the log counts in the
scallop data example. A correction is needed and can be achieved by adding
� to zij;obs where � is, say, one half of the smallest possible positive zij;obs.)
Setting k = 1 in (5.12), we note that of the Bessel mixtures, the �ve-

component model with �xed �'s and random weights is best according
to the D1;m statistic. Here, given �max = 7:5, the nodes are �xed to be
�1 = 1:25; �2 = 2:5; �3 = 3:75; �4 = 5:0, and �5 = 6:25. One would expect
that the �t measured by the G1;m criterion should improve with increasing
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Figure 5.4 Posterior means for various semivariogram models.

p. However, the models do not form a nested sequence in p, except in some
instances (e.g., the p = 2 model is a special case of the p = 5 model).
Thus, the apparent poorer �t of the four-component �xed � model relative
to the three-component model is indeed possible. The random � Bessel
mixture models were all very close and, as a class, these models �t as well
or better than the best parametric model. Hence, modeling mixtures of
Bessel functions appears more sensitive to the choice of �xed �'s than to
�xed weights.

5.1.4 Modeling geometric anisotropy

As mentioned in Section 2.2.5, anisotropy refers to the situation where the
spatial correlation between two observations depends upon the separation
vector between their locations, rather than merely its length (i.e., the dis-
tance between the points). Thus here we have Cov (Y (s+ h) ; Y (s)) =
� (h;�) :
Ansiotropy is generally di�cult to deal with, but there are special cases
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Model G1;m Pm D1;m

Parametric
exponential 10959 13898 24857
Gaussian 10861 13843 24704
Cauchy 10683 13811 24494
spherical 11447 13959 25406
Bessel 11044 14037 25081
independent 11578 16159 27737

Semiparametric
�xed �`, random w`:

two 11071 13968 25039
three 10588 13818 24406
four 10934 13872 24806
�ve 10567 13818 24385

random �`, �xed w`:
two 10673 13907 24580
three 10677 13959 24636
four 10636 13913 24549
�ve 10601 13891 24492

Table 5.1 Model choice for �tted variogram models, 1993 scallop data.

that are tractable yet still interesting. Among these, the most prominent in
applications is geometric anisotropy. This refers to the situation where the
coordinate space can be linearly transformed to an isotropic space. A linear
transformation may correspond to rotation or stretching of the coordinate
axes. Thus in general,

� (h;�) = �0 (jjLhjj ;�) ;

where l is a d � d matrix describing the linear transformation. Of course,
if L is the identity matrix, this reduces to the isotropic case.
We assume a second-order stationary normal model for Y, arising from

the customary model, Y (s) = �+ w(s) + �(s) as in (5.1). This yields Y �
N(�1 ; �(�)), where � = (�2; �2; B)T , B = LTL, and

�(�) = �2I + �2H((h0Bh)
1

2 ) : (5:13)

In (5.13), the matrix H has (i; j)th entry �((h0ijBhij)
1

2 ) where � is a valid
correlation function and hij = si�sj . Common forms for � would be those
in Table 2.2. In (5.13), �2 is the semiovariogram nugget and �2 + �2 is the

sill. The variogram is 2(�2; �2; (h0Bh)
1

2 ) = 2(�2 + �2(1� �((h0Bh)
1

2 )):
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Turning to <2, B is 2 � 2 and the orientation of the associated ellipse,
!, is related to B by (see, e.g., Anton, 1984, p. 691)

cot(2!) =
b11 � b22
2b12

: (5:14)

The range in the direction �, where � is the angle h makes with the x-axis
and which we denote as r� , is determined by the relationship

�(r�(eh0�Beh�) 12 ) = 0:05 ; (5:15)

where eh� = (cos �; sin �) is a unit vector in direction �.
The ratio of anisotropy (Journel and Huijbregts, 1978, pp. 178{181), also

called the ratio of a�nity (Journel and Froidevaux, 1982, p. 228), which
here we denote as �, is the ratio of the major axis of the ellipse to the minor
axis, and is related to B by

� =
r!

r(��!)
=

 eh0(��!)Beh(��!)eh0!Beh!
! 1

2

; (5:16)

where again eh� is the unit vector in direction �. Since (5.14), (5.15), and
(5.16) are functions of B, posterior samples (hence inference) for them is
straightforward given posterior samples of �.
A customary prior distribution for a positive de�nite matrix such as B

is Wishart(R; p), where

�(b) / jBj
p�n�1

2 exp

�
�
1

2
tr(pBR�1)

�
; (5:17)

so that E(B) = R and p � n is a precision parameter in the sense that

V ar(B) increases as p decreases. In <2, the matrix R =

�
R11 R12

R12 R22

�
.

Prior knowledge is used to choose R, but we choose the prior precision
parameter, p, to be as small as possible, i.e., p = 2.
A priori, it is perhaps easiest to assume that the process is isotropic,

so we set R = �I and then treat � as �xed or random. For � random, we
model p(B; �) = p(Bj�)p(�), where p(Bj�) is the Wishart density given by
(5.17) and p(�) is an inverse gamma distribution with mean obtained from
a rough estimate of the range and in�nite variance (i.e., shape paramater
equal to 2).
However, if we have prior evidence suggesting geometric anisotropy, we

could attempt to capture it using (5.14), (5.15), or (5.16) with eh0�Reh�
replacing eh0�Beh�. For example, with a prior guess for !; the angle of orien-
tation of the major axis of the ellipse, a prior guess for �, the ratio of major
to minor axis, from a rose diagram and a guess for the range in a speci�c
direction (say, from a directional semivariogram), then (5.14), (5.15), and
(5.16) provides a system of three linear equations in three unknowns to
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solve for R11, R12, and R22. Alternatively, from three previous directional
semivariograms, we might guess the range in three given directions, say, r�1 ,
r�2 , and r�3 . Now, using (5.15), we again arrive at three linear equations
with three unknowns in R11, R12, and R22. One can also use an empirical
semivariogram in <2 constructed from prior data to provide guesses for
R11, R12, and R22. By computing a 0� and 90� directional semivariogram
based on the ESC plot with rows where hy � 0 for the former and columns
where hx � 0 in the latter, we obtain guesses for R11and R22, respectively.
Finally, R12 can be estimated by examining a bin where neither hx � 0
nor hy � 0. Equating the empirical semivariogram to the theoretical semi-
variogram at the associated (xi; yj), with R11 and R22 already determined,
yields a single equation to solve for R12.

Example 5.3 Here we return again to the log-transformed sea scallop data
of Subsection 2.3.2, and reexamine it for geometric anisotropy. Previous
analyses (e.g., Ecker and Heltshe, 1994) have detected geometric anisotropy
with the major axes of the ellipse oriented parallel to the coastline (� 50�

referenced counterclockwise from the x-axis). Kaluzny et al. (1998, p. 90)
suggest that �, the ratio of major axis to minor axis, is approximately
3. The 1993 scallop catches with 147 sites were analyzed in Ecker and
Gelfand (1997) under isotropy. Referring back to the ESC plot in Fig-
ure 2.10, a geometrically anisotropic model seems reasonable. Here we fol-
low Ecker and Gelfand (1999) and illustrate with a Gaussian correlation

form, �((h0Bh)
1

2 ) = exp(�h0Bh).
We can use the 1990 scallop data to formulate isotropic and geometrically

anisotropic prior speci�cations for R, the prior mean for B. The �rst has
R = �I with �xed b� = 0:0003, i.e., a prior isotropic range of 100 km.
Another has b� = 0:000192, corresponding to a 125-km isotropic prior range
to assess the sensitivity of choice of b�, and a third has � random. Under prior
geometric anisotropy, we can use ! = 50�, � = 3, and r50� = 125 km to
obtain a guess for R. Solving (5.14), (5.15), and (5.16) gives R11 = 0:00047,
R12 = �0:00023, and R22 = 0:00039. Using the customary directional
semivariograms with the 1990 data, another prior guess for R can be built
from the three prior ranges r0� = 50 km, r45� = 125 km, and r135� = 30 km.
Via (5.15), we obtain R11 = 0:012, R12 = �0:00157, and R22 = 0:00233.
Using the ESC plot for the 1990 data, we use all bins where hx = hlong � 0
(90� semivariogram) to provideR22 = 0:0012, and bins where hy = hlat � 0
(0� semivariogram) to provide R11 = 0:00053. Finally, we pick three bins
with large bin counts (328, 285, 262) and along with the results of the 0�

and 90� ESC plot directional semivariograms, we average the estimated
R12 for each of these three bins to arrive at R12 = �0:00076.

The mean and 95% interval estimates for the isotropic prior speci�cation
with b� = 0:0003, and the three geometrically anisotropic speci�cations are
presented in Table 5.2. Little sensitivity to the prior speci�cations is ob-
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Isotropic prior Geometrically anisotropic prior

�xed b = 0:0003 !; � and r50� three ranges ESC plot

�2 1.29 1.43 1.20 1.33
(1.00, 1.64) (1.03, 1.70) (1.01, 1.61) (0.97, 1.73)

�2 2.43 2.35 2.67 2.58
(1.05, 5.94) (1.27, 5.47) (1.41, 5.37) (1.26, 5.67)

sill 3.72 3.80 3.87 3.91
(2.32, 7.17) (2.62, 6.69) (2.66, 6.76) (2.39, 7.09)

� 2.87 2.55 3.14 2.90
(2.16, 3.94) (1.73, 3.91) (2.24, 3.99) (2.14, 4.02)

! 55.3 64.4 57.2 60.7
(26.7, 80.7) (31.9, 77.6) (24.5, 70.7) (46.7, 75.2)

� 2.92 3.09 3.47 3.85
(1.59, 4.31) (1.77, 4.69) (1.92, 4.73) (2.37, 4.93)

Table 5.2 Posterior means and 95% interval estimates for a stationary Gaussian
model with Gaussian correlation structure under various prior speci�cations.

served as expected, given that we use the smallest allowable prior precision.
The posterior mean for the angle of orientation, !, is about 60� and the
ratio of the major ellipse axis to minor axis, �, has a posterior mean of
about 3 to 3.5. Furthermore, the value 1 is not in any of the three 95%
interval estimates for �, indicating that isotropy is inappropriate.

We next present posterior inference associated with the ESC plot-based
prior speci�cation. Figure 5.5 shows the posteriors for the nugget in panel
(a), sill in panel (b), angle of orientation in panel (c), and the ratio of major
axis to minor axis in panel (d). Figure 5.6 shows the mean posterior range
plotted as a function of angle with associated individual 95% intervals.
This plot is much more informative in revealing departure from isotropy
than merely examining whether the 95% interval for � contains 1. Finally,
Figure 5.7 is a plot of the contours of the posterior mean surface of the
semivariogram. Note that it agrees with the contours of the ESC plot given
in Figure 2.10 reasonably well.
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Figure 5.5 Posterior distributions under the geometrically anisotropic prior
formed from the ESC plot.

5.2 Generalized linear spatial process modeling

In some point-referenced data sets we obtain measurements Y (s) that
would not naturally be modeled using a normal distribution; indeed, they
need not even be continuous. For instance, Y (s) might be a binary variable
indicating whether or not measurable rain fell at location s in the past 24
hours, or a count variable indicating the number of insurance claims over
the past �ve years by the residents of a single-family home at location s.
In an aggregate data context examining species range and richness, Y (s)
might indicate presence or absence of a particular species at s (although
here, strictly speaking s is not a point, but really an area that is su�ciently
small to be thought of as a point within the overall study area).

Following Diggle, Tawn, and Moyeed (1998), we formulate a hierarchical
model analogous to those in Section 5.1, but with the Gaussian model for
Y (s) replaced by another suitable member of the class of exponential family
models. Assume the observations Y (si) are conditionally independent given
� and w(si) with distribution,

f(y(si)j�; w(si); ) = h(y(si); ) expf[y(si)�(si)�  (�(si))]g ; (5:18)

where g(�(si)) = xT (si)�+w(si) for some link function g, and  is a disper-
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Figure 5.6 Posterior range as a function of angle for the geometrically anisotropic
prior formed from the ESC plot.

sion parameter. We presume the w(si) to be spatial random e�ects coming
from a Gaussian process, as in Section 5.1. The second-stage speci�cation
is W � N(0; �2H(�)) as before. Were the w(si) i.i.d., we would have a
customary generalized linear mixed e�ects model (Breslow and Clayton,
1993). Hence (5.18) is still a generalized linear mixed model, but now with
spatial structure in the random e�ects.
Two remarks are appropriate here. First, although we have de�ned a

process for w(s) we have not created a process for Y (s). That is, all we
have done is to create a joint distribution f(y(s1); : : : ; y(sn)j�; �

2;�; ),
namely, Z  nY

i=1

f(y(si)j�; w(si); )

!
p(Wj�2;�)dW : (5:19)

Second, why not add a pure error term �(si) in the de�nition of g(�(si))?
This seems attractive in trying to separate a spatial e�ect from a pure error
e�ect. But, upon reection, this is not sensible, since w(si) is not a residual
nor would w(si)+�(si) be. In fact, the stochastic mechanism that is de�ned
by f in (5.19) replaces the white noise term that arises from the Gaussian
�rst-stage speci�cation in (5.4).
We also note an important consequence of modeling with spatial ran-
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Figure 5.7 Contours of the posterior mean semivariogram surface for the geomet-
rically anisotropic prior formed from the ESC plot.

dom e�ects (which incidentally is relevant for Sections 5.4 and 5.5 as well).
Introducing these e�ects in the (transformed) mean, as below (5.18), en-
courages the means of the spatial variables at proximate locations to be
close to each other (adjusted for covariates). Though marginal spatial de-
pendence is induced between, say, Y (s) and Y (s0), the observed Y (s) and
Y (s0) need not be close to each other. This would be the case even if Y (s)
and Y (s0) had the same mean. As a result, second-stage spatial modeling is
attractive when spatial explanation in the mean is of interest. Direct (�rst-
stage) spatial modeling is appropriate to encourage proximate observations
to be close.
Turning to computational issues, note that (5.19) cannot be integrated

in closed form; we cannot marginalize over W. Unlike the Gaussian case,
a MCMC algorithm will have to update W as well as �; �2;�, and . This
same di�culty occurs with simulation-based model �tting of standard gen-
eralized linear mixed models (again see, e.g., Breslow and Clayton, 1993).
In fact, the w(si) would likely be updated using a Metropolis step with a
Gaussian proposal, or through adaptive rejection sampling (since their full
conditional distributions will typically be log-concave); see Exercise 4.

Example 5.4 Non-Gaussian point-referenced spatial model. Here
we consider a real estate data set, with observations at 50 locations in
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Parameter 50% (2.5%, 97.5%)

intercept {1.096 ({4.198, 0.4305)
living area 0.659 ({0.091, 2.254)

age 0.009615 ({0.8653, 0.7235)
� 5.79 (1.236, 9.765)
�2 1.38 (0.1821, 6.889)

Table 5.3 Parameter estimates (posterior medians and upper and lower .025
points) for the binary spatial model.

Baton Rouge, LA. The response Y (s) is a binary variable, with Y (s) = 1
indicating that the price of the property at location s is \high" (above
the median price for the region), and Y (s) = 0 indicating that the price
is \low". Observed covariates include the house's age, total living area,
and other area in the property. We �t the model given in (5.18) where
Y (s) � Bernoulli(p(s)) and g is the logit link. The WinBUGS code and data
for this example are at www.biostat.umn.edu/~brad/data2.html.
Table 5.3 provides the parameter estimates and Figure 5.8 shows the

image plot with overlaid contour lines for the posterior mean surface of the
latent w(s) process. These are obtained by assuming vague priors for �,
a Uniform(0; 10) prior for �, and an Inverse Gamma(0:1; 0:1) prior for �2.
The image plot reveals negative residuals (i.e., lower prices) in the northern
region, and generally positive residuals (higher prices) in the south-central
region, although the southeast shows some lower price zones. The distribu-
tion of the contour lines indicate smooth at stretches across the central
parts, with downward slopes toward the north and southeast. The covari-
ate e�ects are generally uninteresting, though living area seems to have a
marginally signi�cant e�ect on price class.

5.3 Nonstationary spatial process models ?

Recognizing that isotropy is an assumption regarding spatial association
that will rarely hold in practice, Subsection 5.1.4 proposed classes of co-
variance functions that were still stationary but anisotropic. However, we
may wish to shed the stationarity assumption entirely and merely assume
that cov(Y (s); Y (s0)) = C(s; s0) where C(�; �) is symmetric in its arguments.
The choice of C must still be valid. Theoretical classes of valid nonstation-
ary covariance functions can be developed (Rehman and Shapiro, 1996),
but they are typically described through existence theorems, perhaps as
functions in the complex plane.
We seek classes that are exible but also o�er attractive interpretation
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Figure 5.8 Image plot of the posterior median surface of the latent spatial process
w(s), binary spatial model.

and are computationally tractable. To this end, we prefer constructive ap-
proaches. We �rst observe that nonstationarity can be immediately intro-
duced through scaling and through marginalization of stationary processes.
For the former, suppose w(s) is a mean 0, variance 1 stationary pro-

cess with correlation function �: Then v(s) = �(s)w(s) is a nonstationary
process. In fact,

var v(s) = �2(s)
and cov(v(s); v(s0)) = �(s)�(s0)�(s� s0) ; (5:20)

so v(s) could be used as a spatial error process, replacing w(s) in (5.1).
Where would �(s) come from? Since the use of v(s) implies heterogeneous
variance for Y (s) we could follow the familiar course in regression modeling
of setting �(s) = g(x(s))� where x(s) is a suitable positive covariate and g
is a strictly increasing positive function. Hence, var Y (s) increases in x(s):

Customary choices for g(�) are (�) or (�)
1

2 :
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Instead, suppose we set v(s) = w(s) + �z(s) with z(s) > 0 and with �
being random with mean 0 and variance �2� : Then v(s) is still a mean 0
process but now unconditionally, i.e., marginalizing over �;

var v(s) = �2w + z2(s)�2�
and cov(v(s); v(s0)) = �2w�(s� s0) + z(s)z(s0)�2� :

(5:21)

(There is no reason to impose �2w = 1 here.) Again, this model for v(s)
can replace that for w(s) as above. Now where would z(s) come from? One
possibility is that z(s) might be a function of the distance from s to some
externality in the study region. (For instance, in modeling land prices,
we might consider distance from the central business district.) Another
possibility is that z(s) is an explicit function of the location, e.g., of latitude
or longitude, of eastings or northings (after some projection). Of course,
we could introduce a vector � and a vector z(s) such that �T z(s) is a trend
surface and then do a trend surface marginalization. In this fashion the
spatial structure in the mean is converted to the association structure. And
since z(s) varies with s, the resultant association must be nonstationary.
In (5.20) the departure from stationarity is introduced in a multiplicative

way, while through (5.21) it arises in an additive way. Evidently, we could
create v(s) = �(s)w(s) + �z(s) yielding both types of departures from
stationarity. But it is also evident that (5.20) and (5.21) are limited.

5.3.1 Deformation

In what is regarded as a landmark paper in spatial data analysis, Sampson
and Guttorp (1992) introduced an approach to nonstationarity through
deformation. The basic idea is to transform the geographic region D to a
new region G, a region such that stationarity and, in fact, isotropy holds on
G. The mapping g from D to G is bivariate, i.e., if s = (`1; `2), g(`1; `2) =
(g1(`1; `2); g2(`1; `2)). If C denotes the isotropic covariance function on G
we have

cov(Y (s); Y (s0)) = C(kg(s)� g(s0)k) : (5:22)

Thus, from (5.22) there are two unknown functions to estimate, g and C.
The latter is assumed to be a parametric choice from a standard class of
covariance function (as in Table 2.1). To determine the former is a chal-
lenging \�tting" problem. To what class of transformations shall we restrict
ourselves? How shall we obtain the \best" member of this class? Sampson
and Guttorp (1992) employ the class of thin plate splines and optimize a
version of a two-dimensional nonmetric multidimensional scaling criterion
(see, e.g., Mardia et al., 1979), providing an algorithmic solution. The solu-
tion is generally not well behaved, in the sense that g will be bijective, often
folding over itself. Smith (1996) embedded this approach within a likelihood
setting but worked instead with the class of radial basis functions.
Damian, Sampson, and Guttorp (2001) and Schmidt and O'Hagan (2002)
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have formulated fully Bayesian approaches to implement (5.22). The for-
mer still work with thin plate splines, but place priors over an identi�able
parametrization (which depends upon the number of points, n being trans-
formed). The latter elect not to model g directly but instead model the
transformed locations. The set of n transformed locations are modeled as
n realizations from a bivariate Gaussian spatial process (see Chapter 7)
and a prior is placed on the process parameters. That is, g(s) arises as a
random realization of a bivariate process at s rather than the value at s of
a random bivariate transformation.
A fundamental limitation of the deformation approach is that implemen-

tation requires independent replications of the process in order to obtain
an estimated sample covariance matrix for the set of (Y (s); :::; Y (sn)): In
practice, we rarely obtain i.i.d. replications of a spatial process. If we obtain
repeated measurements at a particular location, they are typically collected
across time. We would prefer to incorporate a temporal aspect in the mod-
eling rather than attempting repairs (e.g., di�erencing and detrending) to
achieve approximately i.i.d. observations. This is the focus of Chapter 8.

5.3.2 Kernel mixing of process variables

Kernel mixing provides an attractive way of introducing nonstationarity
while retaining clear interpretation and permitting analytic calculation.
Here we look at two distinct approaches, one due to Higdon (e.g., Higdon,
1998b, 2002; Higdon et al., 1999) and the other to Fuentes (e.g., Fuentes
2002a,b; Fuentes and Smith, 2001, 2003).
Kernel mixing has a long tradition in the statistical literature, especially

in density estimation and regression modeling (Silverman, 1986). Kernel
mixing is often done with distributions and we will look at this idea in a
later subsection. Here, we focus on kernel mixing of random variables.
In fact, we work with bivariate kernels starting with stationary choices

of the form k(s�s0), e.g., k(s�s0) = expf� 1
2 (s�s0)TV (s�s0)g: A natural

choice for V would be diagonal with V11 and V22 providing componentwise
scaling to the separation vector s � s0. Other choices of kernel function
are available; specialization to versions based on Euclidean distance is im-
mediate; again see, e.g., Silverman (1986). First we note the following.
Let z(s) be a white noise process, i.e., E(z(s) = 0); var(z(s)) = �2 and
cov(z(s); z(s0)) = 0. Let

w(s) =

Z
<2

k(s� t)z(t)dt : (5:23)

Rigorously speaking, (5.23) is not de�ned. More formally, the convolution
should be written as w(s) =

R
k(s�t)X (dt) where X (t) is two-dimensional

Brownian motion. That is,
R
A
z(t)dt � R

A
X (dt) = X (A) � N(0; �2jAj)

and cov(X (A);X (B)) = �2jA \ Bj where j � j denotes area.
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The process w(s) is said to arise through kernel convolution. By change
of variable, (5.23) can be written as

w(s) =

Z
<2

k(u)z(s+ u)du ; (5:24)

emphasizing that w(s) arises as a kernel-weighted average of z's centered
around s. It is straightforward to show that E[w(s)] = 0, but also that

var w(s) = �2
R
<2 k

2(s� t)dt ;
and cov(w(s); w(s0)) = �2

R
<2 k(s� t)k(s0 � t)dt :

(5:25)

A simple change of variables (t! u = s0 � t), shows that

cov(w(s); w(s0)) = �2
Z
<2

k(s� s0 + u)k(u)du ; (5:26)

i.e., w(s) is stationary. In fact, (5.23) is an established way of generating
classes of stationary processes (see, e.g., Yaglom, 1962, Ch. 26).
We can extend (5.23) so that z(s) is a mean 0 stationary spatial process

with covariance function �2�(�). Again E[w(s)] = 0 but now

var w(s) = �2
R
<2

R
<2 k(s� t)k(s0 � t)�(t � t0)dtdt0

and cov(w(s); w(s0)) = �2
R
<2

R
<2 k(s� t)k(s0 � t0)�(t� t0)dtdt0 :

(5:27)
Interestingly, w(s) is still stationary. We now use the change of variables

(t! u = s0 � t, t0 ! u0 = s0 � t0) to obtain

cov(w(s); w(s0)) = �2
Z
<2

Z
<2

k(s� s0 + u)k(u0)�(u� u0)dudu0 : (5:28)

Note that w(s) can be proposed as a process having a covariance func-
tion as in (5.25) or in (5.27). We need not conceptualize or observe any
z(s)'s. The integrations in (5.26) and (5.28) will not be possible to do ex-
plicitly except in certain special cases (see, e.g., Ver Hoef and Barry, 1998).
Numerical integration across <2 for (5.26) is straightforward. Numerical
integration across <2 � <2 for (5.28) may be a bit more di�cult. Monte
Carlo integration is not so attractive here: we would have to sample from
the standardized density associated with k. But since s� s0 enters into the
argument, we would have to do a separate Monte Carlo integration for each
pair of locations (si; sj).
An alternative is to replace (5.23) with a �nite sum approximation, i.e.,

to de�ne

w(s) =

LX
j=1

k(s� tj)z(tj) (5:29)

for locations tj , j = 1; : : : ; L. In the case of a white noise assumption for
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the z's,

var w(s) = �2
PL
j=1 k

2(s� tj)

and cov(w(s); w(s0)) = �2var w(s) = �2
PL
j=1 k(s� tj)k(s

0 � tj) :

(5:30)
In the case of spatially correlated z's,

var w(s) = �2
PL
j=1

PL
j0=1 k(s� tj)k(s� tj0 )�(tj � tj0 )

and cov(w(s); w(s0)) = �2
PL
j=1

PL
j0=1 k(s� tj)k(s

0 � tj0 )�(tj � tj0) :

(5:31)
Expressions (5.30) and (5.31) can be calculated directly from (5.29) and,
in fact, can be used to provide a limiting argument for (5.25) and (5.27);
see Exercise 5.
Note that, while (5.30) and (5.31) are available explicitly, these forms

reveal that the �nite sum process in (5.29) is no longer stationary. While
nonstationary speci�cations are the objective of this section, their creation
through (5.29) is rather arti�cial as it arises from the arbitrary ftjg. We
would prefer to modify (5.23) to achieve a class of nonstationary processes.
So, instead, suppose we allow the kernel in (5.23) to vary spatially. Nota-

tionally, we can write such an object as k(s� s0; s). Illustratively, we might
take k(s� s0; s) = expf� 1

2 (s� s0)TVs(s� s0)g. As above, we might take Vs
to be diagonal with, if s = (`1; `2); (Vs)11 = V (`1) and (Vs)22 = V (`2). Hig-
don, Swall, and Kern (1999) adopt such a form with V taken to be a slowly
varying function. We can insert k(s� s0; s) into (5.23) in place of k(s� s0)
with obvious changes to (5.25), (5.26), (5.27), and (5.28). Evidently, the
process is now nonstationary. In fact, the variation in V provides insight
into the departure from stationarity. For computational reasons Higdon et
al. (1999) implement this modi�ed version of (5.23) through a �nite sum
analogous to (5.29). A particularly attractive feature of employing a �nite
sum approximation is dimension reduction. If z(s) is white noise we have
an approach for handling large data sets (see Appendix Subsection A.5).
That is, regardless of n, fw(si)g depends only on L latent variables zj ,
j = 1; : : : ; L, and these variables are independent. Rather than �tting the
model in the space of the fw(si)g we can work in the space of the z`.
Fuentes (2002a,b) o�ers a kernel mixing form that initially appears sim-

ilar to (5.23) but is fundamentally di�erent. Let

w(s) =

Z
k(s� t)z�(t)(s)dt : (5:32)

In (5.32), k(�) is as in (5.23) but z�(s) denotes a mean 0 stationary spatial
process with covariance function that is parametrized by �. For instance
C(�;�) might be �2 exp(�� k�k�), a power exponential family with � =
(�2; �; �). In (5.32) �(t) indexes an uncountable number of processes. These
processes are assumed independent across t. Note that (5.32) is mixing an
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uncountable number of stationary spatial processes each at s while (5.23)
is mixing a single process across all locations.
Formally, w(s) has mean 0 and

var(w(s)) =
R
<2 k

2(s� t)C(0;�(t))dt
and cov(w(s); w(s0)) =

R
<2 k(s� t)k(s0 � t)C(s� s0;�(t))dt :

(5:33)

Expression (5.33) reveals that (5.32) de�nes a nonstationary process. Sup-
pose k is very rapidly decreasing and �(t) varies slowly. Then w(s) �
k(0)z�(t)(s). But also, if s� s0 is small, w(s) and w(s0) will behave like ob-

servations from a stationary process with parameter �(s). Hence, Fuentes
refers to the class of models in (5.32) as a nonstationary class that exhibits
local stationarity.
In practice, one cannot work with (5.32) directly. Again, �nite sum ap-

proximation is employed. Again, a �nite set of locations t1; : : : ; tL is se-
lected and we set

w(s) =
X
j

k(s� tj)zj(s) ; (5:34)

writing �(tj) as j. Straightforwardly,

var(w(s) =
PL
j=1 k

2(s� tj)Cj(0)

and cov(w(s); w(s0) =
PL
j=1 k(s� tj)k(s

0 � tj)Cj(s� s0) :
(5:35)

In (5.34) it can happen that some s's may be far enough from each
of the tj 's so that each k(s � tj) � 0, whence w(s) � 0. Of course, this
cannot happen in (5.32) but we cannot work with this expression. A possible
remedy was proposed in Banerjee et al. (2004). Replace (5.34) with

w(s) =

LX
j=1

�(s; tj)zj(s) : (5:36)

In (5.36), the zj(s) are as above, but �(s; tj) = (s; tj)=
qPL

j=1 
2(s; tj),

where (s; t) is a decreasing function of the distance between s and t,
which may change with s, i.e., (s; t) = ks(ks� tk). (In the terminology
of Higdon et al., 1999, ks would be a spatially varying kernel function.)

As a result,
PL
j=1 �

2(s; tj) = 1, so regardless of where s is, not all of the
weights in (5.36) can be approximately 0. Other standardizations for 
are possible; we have proposed this one because if all �2j are equal, then

var(w(s)) = �2. That is, if each local process has the same variance, then
this variance should be attached to w(s). Furthermore, suppose s and s0 are
near to each other, whence (s; tj) � (s0; tj) and thus �(s; tj) � �(s0; tj).
So, if in addition all �` = �, then cov(w(s); w(s0)) � �2�(s � s0;�). So, if
the process is in fact stationary over the entire region, we obtain essentially
the second-order behavior of this process.
The alternative scaling e�(s; tj) = (s; tj)=

P
j0 (s; tj0) gives a weighted
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average of the component processes. Such weights would preserve an ar-
bitrary constant mean. However, since, in our context, we are modeling a
mean 0 process, such preservation is not a relevant feature.
Useful properties of the process in (5.36) are

E (w (s)) = 0 ;

V ar (w (s)) =

LX
j=1

�2(s; tj)�
2
j ;

and cov(w(s); w(s0)) =

LX
j=1

�(s; tj)�(s
0; tj)�

2
j �(s� s0;�j) :

We have clearly de�ned a proper spatial process through (5.36). In fact,
for arbitrary locations s1; : : : ; sn, let w

T
` = (w`(s1)); : : : ; w`(sn)), w

T =
(w(s1); : : : ; w(sn)), and let A` be diagonal with (A`)ii = �(si; t`). Then

w � N(0;
PL
`=1 �

2
`A`R(�`)A`) where (�(�`))ii0 = � (si � si0 ; �`). Note

that L = 1 is permissible in (5.36); w (s) is still a nonstationary process.
Finally, Fuentes and Smith (2003) and Banerjee et al. (2004) o�er some
discussion regarding precise number of and locations for the tj .
We conclude this subsection by noting that for a general nonstationary

spatial process there is no sensible notion of a range. However, for the class
of processes in (5.36) we can de�ne a meaningful range. Under (5.36),

corr(w(s); w(s0)) =

PL
j=1 �(s; tj)�(s

0; tj)�
2
j �(s� s0;�j)r�PL

j=1 �
2(s; tj)�2j

��PL
j=1 �

2(s0; tj)�2j

� : (5:37)

Suppose � is positive and strictly decreasing asymptotically to 0 as dis-
tance tends to 1, as is usually assumed. If � is, in fact, isotropic, let d`
be the range for the `th component process, i.e., �(d`; �`) = :05, and leted = max` d`. Then (5.37) immediately shows that, at distance ed between s
and s0, we have corr(w(s); w(s0)) � :05. So ed can be interpreted as a con-
servative range for w(s). Normalized weights are not required in this def-
inition. If � is only assumed stationary, we can similarly de�ne the range
in an arbitrary direction �. Speci�cally, if �= jj�jj denotes a unit vector
in �'s direction and if d�;` satis�es �(d�;`�= k�k ;�`) = :05, we can takeed� = max` ed�;`.
5.3.3 Mixing of process distributions

If k(s� t) is integrable and standardized to a density function and if f is
also a density function, then

fk(y) =

Z
k(y � s)f(x)dx (5:38)
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is a density function. (It is, of course, the distribution of X +Y �X where
X � f , Y � X � k, and X and Y � X are independent). In (5.38), Y
can obviously be a vector of dimension n. But recall that we have speci�ed
the distribution for a spatial process through arbitrary �nite dimensional
distributions (see Section 2.2). This suggests that we can use (5.38) to build
a process distribution.

Operating formally, let VD be the set of all V (s), s 2 D. Write VD =
V0;D+V0�V0;D where V0;D is a realization of a mean 0 stationary Gaussian
process over D, and VD�V0;D is a realization of a white noise process with
variance �2 over D: Write

fk(VD j �) =
Z

1

�
k

�
1

�
(VD � V0;D)

�
f(V0;D)dV0;D : (5:39)

Formally, fk is the distribution of the spatial process v(s). In fact, v(s)
is just the customary model for the residuals in a spatial regression, i.e.,
v(s) = w(s) + �(s) where w(s) is a spatial process and �(s) is a noise or
nugget process.

Of course, in this familiar case there is no reason to employ the form
(5.39). However it does reveal how, more generally, a spatial process can
be developed through \kernel mixing" of a process distribution. More im-
portantly, it suggests that we might introduce an alternative speci�cation
for V0;D . For example, suppose f(V0;D) is a discrete distribution, say, of
the form

P
` p`�(v

�
`;D) where p` � 0,

P
p` = 1, �(�) is the Dirac delta func-

tion, and V �
`;D is a surface over D: The sum may be �nite or in�nite. An

illustration of the latter arises when f(V0;D) is a realization from a �nite
discrete mixture (Duan and Gelfand, 2003) or from a Dirichlet process; see
Gelfand, Kottas, and MacEachern (2003) for further details in this regard.

But then given fp`g and fv�`;Dg, for any set of locations s1; : : : ; sn, if
V = (v(s1); : : : ; v(sn),

f(V) =
X
`

p`N(v�` ; �
2I) ; (5:40)

where v�` = (v�` (s1); : : : ; v
�
` (sn))

T . So v(s) is a continuous process. But also,
E[v(si)] =

P
` p`v

�
` (si) and

var v(si) =
P
` p`v

2�
` (si)� (

P
` p`v

�
` (si))

2

and cov(v(si); v(sj)) =
P
` p`v

�
` (si)v

�
` (sj)� (

P
` p`v

�
` (si))(

P
` p`v

�
` (sj)) :
(5:41)

This last expression shows that v(s) is not a stationary process. However,
a routine calculation shows that if the v�`;D are continuous surfaces, the
v(s) process is mean square continuous and almost surely continuous (see
Sections 2.2 and 10.1).
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5.4 Areal data models

5.4.1 Disease mapping

A very common area of biostatistical and epidemiological interest is that of
disease mapping. Here we typically have count data of the following sort:

Yi = observed number of cases of disease in county i; i = 1; : : : ; I

Ei = expected number of cases of disease in county i; i = 1; : : : ; I

The Yi are thought of as random variables, while the Ei are thought of
as �xed and known functions of ni, the number of persons at risk for the
disease in county i. As a simple starting point, we might assume that

Ei = ni�r � ni

�P
i yiP
i ni

�
;

i.e., �r is the overall disease rate in the entire study region. These Ei thus
correspond to a kind of \null hypothesis," where we expect a constant
disease rate in every county. This process is called internal standardization,
since it centers the data (some counties will have observed rates higher than
expected, and some less) but uses only the observed data to do so.

Internal standardization is \cheating" (or at least \empirical Bayes") in
some sense, since we are \losing a degree of freedom" by estimating the
grand rate r from our current data. An even better approach might be
to make reference to an existing standard table of age-adjusted rates for
the disease (as might be available for many types of cancer). Then after
stratifying the population by age group, the Ei emerge as

Ei =
X
j

nijrj ;

where nij is the person-years at risk in area i for age group j (i.e., the
number of persons in age group j who live in area i times the number
of years in the study), and rj is the disease rate in age group j (taken
from the standard table). This process is called external standardization.
In either case, in its simplest form a disease map is just a display (in color
or greyscale) of the raw disease rates overlaid on the areal units.

5.4.2 Traditional models and frequentist methods

If Ei is not too large (i.e, the disease is rare or the regions i are su�ciently
small), the usual model for the Yi is the Poisson model,

Yij�i � Po(Ei�i) ;
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where �i is the true relative risk of disease in region i. The maximum
likelihood estimate (MLE) of �i is readily shown to be

�̂i � SMRi =
Yi
Ei

;

the standardized morbidity (or mortality) ratio (SMR), i.e., the ratio of
observed to expected disease cases (or deaths). Note that V ar(SMRi) =

V ar(Yi)=E
2
i = �i=Ei, and so we might take dV ar(SMRi) = �̂i=Ei = Yi=E

2
i .

This in turn permits calculation of traditional con�dence intervals for �i
(although this is a bit awkward since the data are discrete), as well as
hypothesis tests.

Example 5.5 To �nd a con�dence interval for �i, one might �rst assume
that logSMRi is roughly normally distributed. Using the delta method
(Taylor series expansion), one can �nd that

V ar[log(SMRi)] � 1

SMR2
i

V ar(SMRi) =
E2
i

Y 2
i

� Yi
E2
i

=
1

Yi
:

An approximate 95% CI for log �i is thus logSMRi � 1:96=
p
Yi, and so

(transforming back) an approximate 95% CI for �i is�
SMRi exp(�1:96=

p
Yi) ; SMRi exp(1:96=

p
Yi)
�
:

Example 5.6 Suppose we wish to test whether the true relative risk in
county i is elevated or not, i.e.,

H0 : �i = 1 versus HA : �i > 1 :

Under the null hypothesis, Yi � Po(Ei), so the p-value for this test is

p = Pr(X � YijEi) = 1� Pr(X < YijEi) = 1�
Yi�1X
x=0

exp(�Ei)Exi
x!

:

This is the (one-sided) p-value; if it is less than 0.05 we would typically
reject H0 and conclude that there is a statistically signi�cant excess risk in
county i.

5.4.3 Hierarchical Bayesian methods

The methods of the previous section are �ne for detecting extra-Poisson
variability (overdispersion) in the observed rates, but what if we seek to
estimate and map the underlying relative risk surface f�i; i = 1; : : : ; Ig?
In this case we might naturally think of a random e�ects model for the
�i, since we would likely want to assume that all the true risks come from
a common underlying distribution. Random e�ects models also allow the
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a) sample of size 1000 from the G(4,4) prior
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b) sample of size 1000 from the G(31,25) posterior

Figure 5.9 Samples of size 1000 from a Gamma(4,4) prior (a) and a
Gamma(27+4, 21+4) posterior (b) for �i.

procedure to \borrow strength" across the various counties in order to come
up with an improved estimate for the relative risk in each.
The random e�ects here, however, can be high dimensional, and are

couched in a nonnormal (Poisson) likelihood. Thus, as in the previous sec-
tions of this chapter, the most natural way of handling this rather complex
model is through hierarchical Bayesian modeling, as we now describe.

Poisson-gamma model

As a simple initial model, consider

Yi j �i ind� Po(Ei�i) ; i = 1; : : : ; I;

and �i
iid� G(a; b) ;

where G(a; b) denotes the gamma distribution with mean � = a=b and
variance �2 = a=b2; note that this is the gamma parametrization used
by the WinBUGS package. Solving these two equations for a and b we get
a = �2=�2 and b = �=�2. Suppose we set � = 1 (the \null" value) and
�2 = (0:5)2 (a fairly large variance for this scale). Figure 5.9(a) shows
a sample of size 1000 from the resulting G(4; 4) prior; note the vertical
reference line at �i = � = 1.
Inference about � = (�1; : : : ; �I)

0 is now based on the resulting pos-
terior distribution, which in the Poisson-gamma emerges in closed form
(thanks to the conjugacy of the gamma prior with the Poisson likelihood)
as
Q
i p(�ijyi), where p(�ijyi) is G(yi + a;Ei + b). Thus a suitable point
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estimate of �i might be the posterior mean,

E(�ijy) = E(�ijyi) =
yi + a

Ei + b
=

yi +
�2

�2

Ei +
�
�2

(5.42)

=
Ei

�
yi
Ei

�
Ei +

�
�2

+

�
�
�2

�
�

Ei +
�
�2

= wi SMRi + (1� wi)� ; (5.43)

where wi = Ei=[Ei + (�=�2)], so that 0 � wi � 1. Thus the Bayesian
point estimate (5.43) is a weighted average of the the data-based SMR for
region i, and the prior mean �. This estimate is approximately equal to
SMRi when wi is close to 1 (i.e., when Ei is big, so the data are strongly
informative, or when �2 is big, so the prior is weakly informative). On the
other hand, (5.43) will be approximately equal to � when wi is close to 0
(i.e., when Ei is small, so the data are sparse, or when �2 is small, so that
the prior is highly informative).
As an example, suppose in county i we observe yi = 27 disease cases,

when only Ei = 21 were expected. Under our G(4; 4) prior we obtain a
G(27 + 4; 21+ 4) = G(31; 25) posterior distribution; Figure 5.9(b) shows a
sample of size 1000 drawn from this distribution. From (5.42) this distribu-
tion has mean 31=25 = 1:24 (consistent with the �gure), indicating slightly
elevated risk (24%). However, the posterior probability that the true risk
is bigger than 1 is P (�i > 1 j yi) = :863; which we can derive exactly (say,
using 1 - pgamma(25,31) in S-plus), or estimate empirically as the pro-
portion of samples in Figure 5.9(b) that are greater than 1. In either case,
we see substantial but not overwhelming evidence of risk elevation in this
county.
If we desired a 100 � (1 � �)% con�dence interval for �i, the easiest

approach would be to simply take the upper and lower �=2-points of the

G(31; 25) posterior, since the resulting interval
�
�
(L)
i ; �

(U)
i

�
, would be such

that P
h
�i 2

�
�
(L)
i ; �

(U)
i

�
j yi
i
= 1 � �, by de�nition of the posterior dis-

tribution. This is the so-called equal-tail credible interval mentioned in

Subsection 4.2.2. In our case, taking � = :05 we obtain (�
(L)
i ; �

(U)
i ) =

(:842; 1:713), again indicating no \signi�cant" elevation in risk for this
county. (In Splus or R the appropriate commands here are qgamma(.025,
31)/25 and qgamma(.975, 31)/25.)
Finally, in a \real" data setting we would obtain not 1 but I point esti-

mates, interval estimates, and posterior distributions, one for each county.
Such estimates would often be summarized in a choropleth map, say, in
Splus or ArcView. Full posteriors are obviously di�cult to summarize spa-
tially, but posterior means, variances, or con�dence limits are easily mapped
in this way. We shall explore this issue in the next subsection.
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Poisson-lognormal models

The gamma prior of the preceding section is very convenient computation-
ally, but su�ers from a serious defect: it fails to allow for spatial correlation
among the �i. To do this we would need amultivariate version of the gamma
distribution; such structures exist but are awkward both conceptually and
computationally. Instead, the usual approach is to place some sort of mul-
tivariate normal distribution on the  i � log �i, the log-relative risks.
Thus, consider the following augmentation of our basic Poisson model:

Yi j  i ind� Po
�
Ei e

 i
�
;

where  i = x0i� + �i + �i :
(5:44)

The xi are explanatory spatial covariates, having parameter coe�cients �.
The covariates are ecological, or county (not individual) level, which may
lead to problems of ecological bias (to be discussed later). However, the
hope is that they will explain some (perhaps all) of the spatial patterns in
the Yi.
Next, the �i capture region-wide heterogeneity via an ordinary, exchange-

able normal prior,

�i
iid� N(0 ; 1=�h) ; (5:45)

where �h is a precision (reciprocal of the variance) term that controls the
magnitude of the �i. These random e�ects capture extra-Poisson variability
in the log-relative risks that varies \globally," i.e., over the entire study
region.
Finally, the �i are the parameters that make this a truly spatial model by

capturing regional clustering. That is, they model extra-Poisson variability
in the log-relative risks that varies \locally," so that nearby regions will
have more similar rates. A plausible way to attempt this might be to try
a point-referenced model on the parameters �i. For instance, writing � =
(�1; : : : ; �I)

0, we might assume that

� j �;� � NI(�;H(�)) ;

where NI denotes the I-dimensional normal distribution, � is the (station-
ary) mean level, and (H(�))ii0 gives the covariance between �i and �i0 as a
function of some hyperparameters �. The standard forms given in Table 2.1
remain natural candidates for this purpose.
While such models for the �i are very sensible, they turn out to be ar-

duous to �t even in the isotropic case, due to the large amount of matrix
inversion required. Moreover, in the areal data context, we would require a
multivariate normal distribution for �, which directly models association
between �i and �j . But then we would also require some notion of \dis-
tance" between areal units. With units of roughly equal size laid out on a
fairly regular grid, intercentroidal distance may be appropriate here. But
with very irregular spatial units, such distance may make little sense. As
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a result, it is customary in hierarchical analyses of areal data to return
to neighbor-based notions of proximity, and ultimately, to return to CAR
speci�cations for � (Section 3.3). In the present context (with the CAR
model placed on the elements of � rather than the elements of Y), we will
write

� � CAR(�c) ; (5:46)

where by this notation we mean the improper CAR (IAR) model in (3.16)
with yi replaced by �i, �

2 replaced by 1=�c, and using the 0-1 (adjacency)
weights wij . Thus �c is a precision (not variance) parameter in the CAR
prior (5.46), just as �h is a precision parameter in the heterogeneity prior
(5.45).

CAR models and their di�culties

Compared to point-level (geostatistical) models, CAR models are very con-
venient computationally, since our method of �nding the posterior of � and
� is itself a conditional algorithm, the Gibbs sampler. Recall from Subsec-
tion 4.3.1 that this algorithm operates by successively sampling from the
full conditional distribution of each parameter (i.e., the distribution of each
parameter given the data and every other parameter in the model). So for
example, the full conditional of �i is

p(�ij�j 6=i;�;�;y) / Po(yi jEiex
0

i�+�i+�i)�N(�i j ��i ; 1=(�cmi)) ; (5:47)

meaning that we do not need to work with the joint distribution of � at all.
The conditional approach also eliminates the need for any matrix inversion.
While computationally convenient, CAR models have numerous theoret-

ical and computational di�culties, some of which have already been noted
in Section 3.3, and others of which only become acute now that we are
using the CAR as a distribution for the random e�ects �, rather than the
data Y itself. We consider two of these issues.

1. Impropriety: Recall from the discussion surrounding (3.15) that the IAR
prior we selected in (5.46) above is improper, meaning that it does not
determine a legitimate probability distribution (one that integrates to 1).
That is, the matrix ��1

y = (Dw �W ) is singular, and thus its inverse does
not exist.
As mentioned in that earlier discussion, one possible �x for this situa-

tion is to include a \propriety parameter" � in the precision matrix, i.e.,
��1
y = (Dw � �W ). Taking � 2 �1=�(1); 1=�(n)�, where �(1) and �(n) are

the smallest and largest eigenvalues of D
�1=2
w WD

�1=2
w , respectively, en-

sures the existence of �y. Alternatively, using the scaled adjacency matrixfW � Diag(1=wi+)W , ��1
y can be written as M�1(I � �fW ) where M

is diagonal. One can then show (Carlin and Banerjee, 2003; Gelfand and
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Vounatsou, 2002) that if j�j < 1, then (I � �fW ) will be positive de�nite,
resolving the impropriety problem without eigenvalue calculation.
Unfortunately, a di�culty with this �x (also already mentioned near the

end of Subsection 3.3.1) is that this new prior typically does not deliver
enough spatial similarity unless � is quite close to 1, thus getting us very
close to the same problem again! Some authors (e.g., Carlin and Banerjee,
2003) recommend an informative prior that insists on larger �'s (say, a
Beta(18; 2)), but this is controversial since there will typically be little
true prior information available regarding the magnitude of �.
A second possible �x (more common in practice) is simply to ignore the

impropriety of the standard CAR model (5.46) and continue! After all, we
are only using the CAR model as a prior; the posterior will typically still
emerge as proper, so Bayesian inference may still proceed. This is the usual
approach, but it also requires some care, as follows: this improper CAR
prior is a pairwise di�erence prior (Besag et al., 1995) that is identi�ed
only up to an additive constant. Thus to identify an intercept term �0 in
the log-relative risk, we must add the constraint

PI
i=1 �i = 0. Note that in

implementing a Gibbs sampler to �t (5.44), this constraint can be imposed
numerically by recentering each sampled � vector around its own mean
following each Gibbs iteration.

2. Selection of �c and �h: Clearly the values of these two prior precision
parameters will control the amount of extra-Poisson variability allocated
to \heterogeneity" (the �i) and \clustering" (the �i). But they cannot
simply be chosen to be arbitrarily large, since then the �i and �i would be
unidenti�able: note that we see only a single Yi in each county, yet we are
attempting to estimate two random e�ects for each i! Eberly and Carlin
(2000) investigate convergence and Bayesian learning for this data set and
model, using �xed values for �h and �c.
Similarly, if we decide to place third-stage priors (hyperpriors) on �c and

�h, they also cannot be arbitrarily vague for the same reason. Still, the
gamma o�ers a conjugate family here, so we might simply take

�h � G(ah; bh) and �c � G(ac; bc) :

To make this prior \fair" (i.e., equal prior emphasis on heterogeneity and
clustering), it is tempting to simply set ah = ac and bh = bc, but this
would be incorrect for two reasons. First, the �h prior (5.45) uses the usual
marginal speci�cation, while the �c prior (5.46) is speci�ed conditionally.
Second, �c is multiplied by the number of neighbors mi before playing the
role of the (conditional) prior precision. Bernardinelli et al. (1995) note that
the prior marginal standard deviation of �i is roughly equal to the prior
conditional standard deviation divided by 0.7. Thus a scale that delivers

sd(�i) =
1p
�h
� 1

0:7
p
�m�c

� sd(�i) (5:48)
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where �m is the average number of neighbors may o�er a reasonably \fair"
speci�cation. Of course, it is fundamentally unclear how to relate the
marginal variance of a proper joint distribution with the conditional vari-
ance of an improper joint distribution.

Example 5.7 As an illustration of the Poisson-lognormal model (5.44),
consider the data displayed in Figure 5.10. These data from Clayton and
Kaldor (1987) are the observed (Yi) and expected (Ei) cases of lip cancer for
the I = 56 districts of Scotland during the period 1975{1980. One county-
level covariate xi, the percentage of the population engaged in agriculture,
�shing or forestry (AFF), is also available (and also mapped in Figure 5.10).
Modeling the log-relative risk as

 i = �0 + �1xi + �i + �i ; (5:49)

we wish to investigate a variety of vague, proper, and arguably \fair" priors
for �c and �h, �nd the estimated posterior of �1 (the AFF e�ect), and �nd
and map the �tted relative risks E( ijy).
Recall that Yi cannot inform about �i or �i, but only about their sum

�i = �i + �i. Making the reparameterization from (�;�) to (�; �), we have
the joint posterior,

p(�; �jy) / L(�;y)p(�)p(���):
This means that

p(�i j �j 6=i; �;y) / p(�i) p(�i��i j f�j��jgj 6=i) :
Since this distribution is free of the data y, the �i are Bayesianly unidenti-
�ed (and so are the �i). But this does not preclude Bayesian learning (i.e.,
prior to posterior movement) about �i. No Bayesian learning would instead
require

p(�ijy) = p(�i) ; (5:50)

in the case where both sides are proper (a condition not satis�ed by the
CAR prior). Note that (5.50) is a much stronger condition than Bayesian
unidenti�ability, since the data have no impact on the marginal (not merely
the conditional) posterior distribution.
Recall that, though they are unidenti�ed, the �i and �i are interesting

in their own right, as is

� =
sd(�)

sd(�) + sd(�)
;

where sd(�) is the empirical marginal standard deviation function. That is,
� is the proportion of the variability in the random e�ects that is due to
clustering (hence 1�� is the proportion due to unstructured heterogeneity).
Recall we need to specify vague but proper prior values �h and �c that lead
to acceptable convergence behavior, yet still allow Bayesian learning. This
prior should also be \fair," i.e., lead to � � 1=2 a priori.
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N
60 0 60 120 Miles

> 200
150 - 200
105 - 150
95 - 105
50 - 95
< 50

> 16
12 - 16
8 - 12
7 - 8
1 - 7
0 - 1

a) b)

Figure 5.10 Scotland lip cancer data: (a) crude standardized mortality ratios (ob-
served / expected � 100); (b) AFF covariate values.

Figure 5.11 contains the WinBUGS code for this problem, which is also
available at http://www.biostat.umn.edu/~brad/data2.html. Note the
use of vague priors for �c and �h as suggested by Best et al. (1999), and the
use of the sd function in WinBUGS to greatly facilitate computation of �.

The basic posterior (mean, sd) and convergence (lag 1 autocorrelation)
summaries for �; �1; �1, and �56 are given in Table 5.4. Besides the Best et
al. (1999) prior, two priors inspired by equation (5.48) are also reported;
see Carlin and P�erez (2000). The AFF covariate appears signi�cantly dif-
ferent from 0 under all 3 priors, although convergence is very slow (very
high values for l1acf). The excess variability in the data seems mostly due
to clustering (E(�jy) > :50), but the posterior distribution for � does not
seem robust to changes in the prior. Finally, convergence for the �i (reason-

© 2004 by CRC Press LLC

http://www.biostat.umn.edu


GENERAL LINEAR AREAL DATA MODELING 167

model

{

for (i in 1 : regions) {

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + beta0 + beta1*aff[i]/10

+ phi[i] + theta[i]

theta[i] ~ dnorm(0.0,tau.h)

xi[i] <- theta[i] + phi[i]

SMRhat[i] <- 100 * mu[i]/E[i]

SMRraw[i] <- 100 * O[i]/E[i]

}

phi[1:regions] ~ car.normal(adj[], weights[], num[], tau.c)

beta0 ~ dnorm(0.0, 1.0E-5) # vague prior on grand intercept

beta1 ~ dnorm(0.0, 1.0E-5) # vague prior on AFF effect

tau.h ~ dgamma(1.0E-3,1.0E-3) # ``fair'' prior from

tau.c ~ dgamma(1.0E-1,1.0E-1) # Best et al. (1999)

sd.h <- sd(theta[]) # marginal SD of heterogeneity effects

sd.c <- sd(phi[]) # marginal SD of clustering effects

alpha <- sd.c / (sd.h + sd.c)

}
Figure 5.11 WinBUGS code to �t the Poisson-normal-CAR model to the Scottish
lip cancer data.

ably well identi�ed) is rapid; convergence for the  i (not shown) is virtually
immediate.
Of course, a full analysis of these data would also involve a map of the

posterior means of the raw and estimated SMR's, which we can do directly
in GeoBUGS, the spatial statistics module supplied with WinBUGS Versions
1.4 and later. We investigate this in the context of the homework assignment
in Exercise 12.

5.5 General linear areal data modeling

By analogy with Section 5.2, the areal unit measurements Yi that we model
need not be restricted to counts, as in our disease mapping setting. They
may also be binary events (say, presence or absense of a particular facility
in region i), or continuous measurements (say, population density, i.e., a
region's total population divided by its area).
Again formulating a hierarchical model, Yi may be described using a

suitable �rst-stage member of the exponential family. Now given � and �i,
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Posterior for � Posterior for �
Priors for �c, �h mean sd l1acf mean sd l1acf
G(1.0, 1.0), G(3.2761, 1.81) .57 .058 .80 .43 .17 .94
G(.1, .1), G(.32761, .181) .65 .073 .89 .41 .14 .92
G(.1, .1), G(.001, .001) .82 .10 .98 .38 .13 .91

Posterior for �1 Posterior for �56
Priors for �c, �h mean sd l1acf mean sd l1acf
G(1.0, 1.0), G(3.2761, 1.81) .92 .40 .33 {.96 .52 .12
G(.1, .1), G(.32761, .181) .89 .36 .28 {.79 .41 .17
G(.1, .1), G(.001, .001) .90 .34 .31 {.70 .35 .21

Table 5.4 Posterior summaries for the spatial model with Gamma hyperpriors
for �c and �h, Scotland lip cancer data; \sd" denotes standard deviation while
\l1acf" denotes lag 1 sample autocorrelation.

analogous to (5.18) the Yi are conditionally independent with density,

f(yij�; �i; ) = h(yi; ) expf[yi�i �  (�i)]g ; (5:51)

where g(�i) = xTi � + �i for some link function g with  a dispersion pa-
rameter. The �i will be spatial random e�ects coming from a CAR model;
the pairwise di�erence, intrinsic (IAR) form is most commonly used. As a
result, we have a generalized linear mixed model with spatial structure in
the random e�ects.
Note that in the previous section, independent homogeneity e�ects �i

were also introduced into g(�i). If f were now normal this would clearly
make no sense: we would have introduced independent normal errors twice!
Even with a nonnormal �rst stage, as in Section 5.2, we are in a situation
where the stochastic mechanism in f replaces these independent errors.
This is why many practitioners prefer to �t models of the form (5.51)
having only a spatial random e�ect. Computation is more stable and a
\balanced" (or \fair") prior speci�cation (as mentioned in connection with
(5.48) above) is not an issue.

5.6 Comparison of point-referenced and areal data models

We conclude this chapter with a brief summary and comparison between
point-referenced data models and areal unit data models. First, the former
are de�ned with regard to an uncountable number of random variables. The
process speci�cation determines the n-dimensional joint distribution for
the Y (si); i = 1; : : : ; n. For areal units, we envision only an n-dimensional
distribution for the Yi; i = 1; : : : ; n, which we write down to begin with.
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Next, with point-referenced data, we model association directly. For
example, if Y = (Y (s1); : : : ; Y (sn))

0 we specify �Y using isotropy (or
anisotropy), stationarity (or nonstationarity), and so on. With areal data
Y = (Y1; : : : ; Yn)

0 and CAR (or SAR) speci�cations, we instead model ��1

Y
directly. For instance, with CAR models, Brook's Lemma enables us to re-
construct ��1

Y
from the conditional speci�cations; ��1

Y
provides conditional

association structure (as in Section 3.3) but says nothing about uncondi-
tional association structure. When ��1

Y
is full rank, the transformation to

�Y is very complicated, and very nonlinear. Positive conditional associa-
tion can become negative unconditional association. If the CAR is de�ned
through distance-based wij 's there need not be any corresponding distance-
based order to the unconditional associations. See Besag and Kooperberg
(1995), Conlon and Waller (1999), Hrafnkelsson and Cressie (2003), and
Wall (2004) for further discussion.

With regard to formal speci�cation, in the most commonly employed
point-level Gaussian case, the process is speci�ed through a valid covariance
function. With CAR modeling, the speci�cation is instead done through
Markov random �elds (Section 3.2) employing the Hammersley-Cli�ord
Theorem to ensure a unique joint distribution.

Explanation is a common goal of point-referenced data modeling, but
often an even more important goal is spatial prediction or interpolation
(i.e., kriging). This may be done at at new points, or for block averages
(see Section 6.1). With areal units, again a goal is explanation, but now
often supplemented by smoothing. Here the interpolation problem is to
new areal units, the so-called modi�able areal unit problem (MAUP) as
discussed in Sections 6.2 and 6.3.

Finally, with spatial processes, likelihood evaluation requires computa-
tion of a quadratic form involving ��1

Y
and the determinant of �Y . (With

spatial random e�ects, this evaluation is deferred to the second stage of the
model, but is still present.) With an increasing number of locations, such
computation becomes very expensive (computing time is greater than order
n2), and may also become unstable, due to the enormous number of oat-
ing point operations required. We refer to this situation rather informally
as a \big n" problem. Approaches for treating this problem are discussed
in Appendix Subsection A.5. On the other hand, with CAR modeling the
likelihood (or the second-stage model for the random e�ects, as the case
may be) is written down immediately, since this model parametrizes ��1

Y
(rather than �Y)). Full conditional distributions needed for MCMC sam-
pling are immediate, and there is no big n problem. Also, for SAR the
quadratic form is directly evaluated, while the determinant is usually eval-
uated e�ciently (even for very large n) using sparse matrix methods; see,
e.g., Pace and Barry (1997a,b).
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5.7 Exercises

1. Derive the forms of the full conditionals for �; �2; �2; �, and W in the
exponential kriging model (5.1) and (5.3).

2. Assuming the likelihood in (5.3), suppose that � is �xed and we adopt
the prior p(�; �2; �2) / 1=(�2�2), a rather standard noninformative prior
often chosen in nonspatial analysis settings. Show that the resulting
posterior p(�; �2; �2jy) is improper.

3. Derive the form of p(y0jy;�;x0) in (5.5) via the usual conditional normal
formulae; i.e., following Guttman (1982, pp. 69-72), ifY = (YT

1 ;Y
T
2 )
T �

N(�;�) where

� =

�
�1

�2

�
and � =

�
�11 �12

�21 �22

�
;

then Y2jY1 � N(�2:1;�2:1), where

�2:1 = �2 +�21�
�1
11 (Y1 � �1) and �2:1 = �22 ��21�

�1
11 �12 :

4. In expression (5.18), if g(�) = � and the prior on � is a proper normal
distribution,

(a) Show that the full conditional distributions for the components of �
are log-concave.

(b) Show that the full conditional distributions for the w(si) are log-
concave.

5.(a) Derive the variance and covariance relationships given in (5.25).

(b) Derive the variance and covariance relationships given in (5.27).

6. The lithology data set (see www.biostat.umn.edu/~brad/data2.html)
consists of measurements taken at 118 sample sites in the Radioactive
Waste Management Complex region of the Idaho National Engineering
and Environmental Laboratory. At each site, bore holes were drilled
and measurements taken to determine the elevation and thickness of
the various underground layers of soil and basalt. Understanding the
spatial distribution of variables like these is critical to predicting fate
and transport of groundwater and the (possibly harmful) constituents
carried therein; see Leecaster (2002) for full details.

For this problem, consider only the variables Northing, Easting, Surf

Elevation, Thickness, and A-B Elevation, and only those records
for which full information is available (i.e., extract only those data rows
without an \NA" for any variable).

(a) Produce image plots of the variables Thickness, Surf Elevation,
and A-B Elevation. Add contour lines to each plot and comment on
the descriptive topography of the region.
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(b) Taking log(Thickness) as the response and Surf Elevation and
A-B Elevation as covariates, �t a univariate Gaussian spatial model
with a nugget e�ect, using the exponential and Mat�ern covariance
functions. You may start with at priors for the covariate slopes,
Inverse Gamma(0:1; 0:1) priors for the spatial and nugget variances,
and a Gamma(0:1; 0:1) prior for the spatial range parameter. Modify
the priors and check for their sensitivity to the analysis. (Hint: You
can use WinBUGS to �t the exponential model, but you must use the
krige.bayes() function in geoR for the Mat�ern.)

(c) Perform Bayesian kriging on a suitable grid of values and create image
plots of the posterior mean residual surfaces for the spatial e�ects.
Overlay the plots with contour lines and comment on the consistency
with the plots from the raw data in part (a).

(d) Repeat the above for a purely spatial model (without a nugget) and
compare this model with the spatial+nugget model using a model
choice criterion (say, DIC).

7. The real estate data set (www.biostat.umn.edu/~brad/data2.html)
consists of information regarding 70 sales of single-family homes in Baton
Rouge, LA, during the month of June 1989. It is customary to model
log-selling price.

(a) Obtain the empirical variogram of the raw log-selling prices.

(b) Fit an ordinary least squares regression to log-selling price using liv-
ing area, age, other area, and number of bathrooms as explanatory
variables. Such a model is usually referred to as a hedonic model.

(c) Obtain the empirical variogram of the residuals to the least squares
�t.

(d) Using an exponential spatial correlation function, attempt to �t the
model Y (s) = xT (s)� +W (s) + �(s) as in equation (5.1) to the log-
selling prices, obtaining estimates using geoR or S+SpatialStats.

(e) Predict the actual selling price for a home at location (longitude,
latitude) = ({91.1174, 30.506) that has characteristics LivingArea =
938 sqft, OtherArea = 332sqft, Age = 25yrs, Bedrooms = 3, Baths
= 1, and HalfBaths = 0. (Reasonability check: The actual log selling
price for this location turned out to be 10.448.)

(f) Use geoR (grid-based integration routines) or WinBUGS (MCMC) to
�t the above model in a Bayesian framework. Begin with the fol-
lowing prior speci�cation: a at prior for �, IG(0.1,0.1) (WinBUGS
parametrization) priors for 1=�2 and 1=�2, and a Uniform(0,10) prior
for �. Also investigate prior robustness by experimenting with other
choices.

(g) Obtain samples from the predictive distribution for log-selling price
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and selling price for the particular location mentioned above. Sum-
marize this predictive distribution.

(h) Compare the classical and Bayesian inferences.

(i) (advanced): Hold out the �rst 20 observations in the data �le, and �t
the nonspatial (i.e., without the W (s) term) and spatial models to
the observations that remain. For both models, compute

� P20
j=1(Y (s0j)� Ŷ (s0j))

2

� P20
j=1 V ar(Y (s0j)jy)

� the proportion of predictive intervals for Y (s0) that are correct
� the proportion of predictions that are within 10% of the true value
� the proportion of predictions that are within 20% of the true value

Discuss the di�erences in predictive performance.

8. Suppose Zi = Yi=ni is the observed disease rate in each county, and we

adopt the model Zi
ind� N(�i; �

2) and �i
iid� N(�; �2), i = 1; : : : ; I . Find

E(�ijyi), and express it as a weighted average of Zi and �. Interpret
your result as the weights vary.

9. In �tting model (5.44) with priors for the �i and �i given in (5.45)
and (5.46), suppose we adopt the hyperpriors �h � G(ah; bh) and �c �
G(ac; bc). Find closed form expressions for the full conditional distribu-
tions for these two parameters.

10. The full conditional (5.47) does not emerge in closed form, since the
CAR (normal) prior is not conjugate with the Poisson likelihood. How-
ever, prove that this full conditional is log-concave, meaning that the
necessary samples can be generated using the adaptive rejection sam-
pling (ARS) algorithm of Gilks and Wild (1992).

11. Con�rm algebraically that, taken together, the expressions

�ij�j 6=i � N(�i j ��i ; 1=(�cmi)) ; i = 1; : : : ; I

are equivalent to the (improper) joint speci�cation

p(�1; : : : ; �I ) / exp

8<:��c2 X
i adj j

(�i � �j)
2

9=; ;

i.e., the version of (3.16) corresponding to the usual, adjacency-based
CAR model (5.46).

12. The Minnesota Department of Health is charged with investigating the
possibility of geographical clustering of the rates for the late detection
of colorectal cancer in the state's 87 counties. For each county, the late
detection rate is simply the number of regional or distant case detections
divided by the total cases observed in that county.

Information on several potentially helpful covariates is also available.
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The most helpful is the county-level estimated proportions of persons
who have been screened for colorectal cancer, as estimated from tele-
phone interviews available biannually between 1993 and 1999 as part of
the nationwide Behavioral Risk Factor Surveillance System (BRFSS).

(a) Use WinBUGS to model the log-relative risk using (5.49), �tting the
heterogeneity plus clustering (CAR) model to these data. You will
�nd the observed late detections Yi, expected late detections Ei and
screening covariates xi in WinBUGS format in the �le colorecbugs.dat
on the webpage www.biostat.umn.edu/~brad/data2.html/. Find
and summarize the posterior distributions of � (the proportion of ex-
cess variability due to clustering) and �1 (the screening e�ect). Does
MCMC convergence appear adequate in this problem?

(b) Use the poly.S function (see the webpage again) in S-plus to obtain
a boundary �le for the counties of the state of Minnesota. Do this in
S-plus by typing

� source(``poly.S'')

� mkpoly(``minnesota'')

The result should be a �le called minnesota.txt. Now open this �le
in WinBUGS, and pull down to Import Splus on the Map menu. Kill
and restart WinBUGS, and then pull down to Adjacency Tool again
from the Map menu; \minnesota" should now be one of the options!
Click on adj map to see the adjacency map, adj matrix to print out
the adjacency matrix, and show region to �nd any given region of
interest.

(c) To use GeoBUGS to map the raw and �tted SMR's, pull down to
Mapping Tool on the Map menu. Customize your maps by playing
with cuts and colors. (Remember you will have to have saved those
Gibbs samples during your WinBUGS run in order to summarize them!)

(d) Save your maps as .odc �les, and then (if possible) as .ps �les by
selecting the \print to �le" option within WinBUGS. (Your PC must
have installed on it a printer driver that is speci�cally designated
for a postscript printer.) Though the resulting �le might not have a
".ps" extension, what ultimately gets saved to disk should indeed be
a postscript �le.

(e) Since the screening covariate was estimated from the BRFSS survey,
we should really account for survey measurement error, since this
may be substantial for rural counties having few respondents. To do
this, replace the observed covariate xi in the log-relative risk model
(5.49) by Ti, the true (unobserved) rate of colorectal screening in
county i. Following Xia and Carlin (1998), we then further augment
our hierarchical model with

Ti
iid� N(�0; 1=�) and xijTi ind� N(Ti; 1=�) ;
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That is, xi is acknowledged as an imperfect (albeit unbiased) measure
of the true screening rate Ti. Treat the measurement error precision
� and prior precision � either as known \tuning parameters," or else
assign them gamma hyperprior distributions, and recompute the pos-
terior for �1. Observe and interpret any changes.

(f) A more realistic errors-in-covariates model might assume that the
precision of xi given Ti should be proportional to the survey sample
size ri in each county. Write down (but do not �t) a hierarchical model
that would address this problem.
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CHAPTER 6

Spatial misalignment

In this chapter we tackle the problem of spatial misalignment. By this we
mean the summary or analysis of spatial data at a di�erent level of spatial
resolution than it was originally collected. For example, we might wish to
obtain the spatial distribution of some variable at the county level, even
though it was originally collected at the census tract level. We might have
a very low-resolution global climate model for weather prediction, and seek
to predict more locally (i.e., at higher resolution). For areal unit data, our
purpose might be simply to understand the variable's distribution at a new
level of spatial aggregation (the so-called modi�able areal unit problem, or
MAUP), or perhaps so we can relate it to another variable that is already
available at this level (say, a demographic census variable collected over
the tracts). For data modeled through a spatial process we would envision
block averaging at di�erent spatial scales, (the so-called change of support
problem, or COSP), again possibly for connection with another variable
observed at a particular scale. For either type of data, our goal in the �rst
case is typically one of spatial interpolation, while in the second it is one
of spatial regression.
In addition to our presentation here, we also encourage the reader to

look at the excellent review paper by Gotway and Young (2002). These
authors give nice discussions of (as well as both traditional and Bayesian
approaches for) the MAUP and COSP, spatial regression, and the ecological
fallacy. This last term refers to the fact that relationships observed between
variables measured at the ecological (aggregate) level may not accurately
reect (and will often overstate) the relationship between these same vari-
ables measured at the individual level. Discussion of this problem dates at
least to Robinson (1950); see Wake�eld (2001, 2003, 2004) for more modern
treatments of this di�cult subject.
As in previous sections, we group our discussion according to whether

the data is suitably modeled using a spatial process as opposed to a CAR or
SAR model. Here the former assumption leads to more general modeling,
since point-level data may be naturally aggregated to block level, but the
reverse procedure may or may not be possible; e.g., if the areal data are
counts or proportions, what would the point-level variables be? However,
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since block-level summary data are quite frequent in practice (often due to
con�dentiality restrictions), methods associated with such data are also of
great importance. We thus consider point-level and block-level modeling.

6.1 Point-level modeling

6.1.1 Gaussian process models

Consider a univariate variable that is modeled through a spatial process.
In particular, assume that it is observed either at points in space, or over
areal units (e.g., counties or zip codes), which we will refer to as block data.
The change of support problem is concerned with inference about the values
of the variable at points or blocks di�erent from those at which it has been
observed.

Motivating data set

A solution to the change of support problem is required in many health
science applications, particularly spatial and environmental epidemiology.
To illustrate, consider again the data set of ozone levels in the Atlanta, GA
metropolitan area, originally reported by Tolbert et al. (2000). Ozone mea-
sures are available at between 8 and 10 �xed monitoring sites during the
92 summer days (June 1 through August 31) of 1995. Similar to Figure 1.3
(which shows 8-hour maximum ozone levels), Figure 6.1 shows the 1-hour
daily maximum ozone measures at the 10 monitoring sites on July 15, 1995,
along with the boundaries of the 162 zip codes in the Atlanta metropolitan
area. Here we might be interested in predicting the ozone level at di�erent
points on the map (say, the two points marked A and B, which lie on op-
posite sides of a single city zip), or the average ozone level over a particular
zip (say, one of the 36 zips falling within the city of Atlanta, the collec-
tion of which are encircled by the dark boundary on the map). The latter
problem is of special interest, since in this case relevant health outcome
data are available only at the zip level. In particular, for each day and zip,
we have the number of pediatric ER visits for asthma, as well as the total
number of pediatric ER visits. Thus an investigation of the relationship
between ozone exposure and pediatric asthma cannot be undertaken until
the mismatch in the support of the two variables is resolved. Situations
like this are relatively common in health outcome settings, since personal
privacy concerns often limit statisticians' access to data other than at the
areal or block level.
In many earth science and population ecology contexts, presence/absence

is typically recorded at essentially point-referenced sites while relevant cli-
mate layers are often downscaled to grid cells at some resolution. A previous
study of the Atlanta ozone data by Carlin et al. (1999) realigned the point-
level ozone measures to the zip level by using an ARC/INFO universal kriging
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Figure 6.1 Zip code boundaries in the Atlanta metropolitan area and 1-hour daily
maximum ozone levels at the 10 monitoring sites for July 15, 1995.

procedure to �t a smooth ozone exposure surface, and subsequently took
the kriged value at each zip centroid as the ozone value for that zip. But
this approach uses a single centroid value to represent the ozone level in the
entire zip, and fails to properly capture variability and spatial association
by treating these kriged estimates as observed values.

Model Assumptions and Analytic Goals

Let Y (s) denote the spatial process (e.g., ozone level) measured at location
s, for s in some region of interest D. In our applications D � <2 but our
development works in arbitrary dimensions. A realization of the process is
a surface over D. For point-referenced data the realization is observed at
a �nite set of sites, say, si; i = 1; 2; : : : ; I . For block data we assume the
observations arise as block averages. That is, for a block B � D,

Y (B) = jBj�1
Z
B

Y (s)ds ; (6:1)
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where jBj denotes the area of B (see, e.g., Cressie, 1993). The integration
in (6.1) is an average of random variables, hence a random or stochas-
tic integral. Thus, the assumption of an underlying spatial process is only
appropriate for block data that can be sensibly viewed as an averaging
over point data; examples of this would include rainfall, pollutant level,
temperature, and elevation. It would be inappropriate for, say, population,
since there is no \population" at a particular point. It would also be inap-
propriate for most proportions. For instance, if Y (B) is the proportion of
college-educated persons in B, then Y (B) is continuous but even were we
to conceptualize an individual at every point, Y (s) would be binary.
In general, we envision four possibilities. First, starting with point data

Y (s1); : : : ; Y (sI), we seek to predict at new locations, i.e., to infer about
Y (s01); : : : ; Y (s

0
K) (points to points). Second, starting with point data, we

seek to predict at blocks, i.e., to infer about Y (B1); : : : ; Y (BK) (points
to blocks). Third, starting with block data Y (B1); :::; Y (BI ), we seek to
predict at a set of locations, i.e., to infer about Y (s01); : : : ; Y (s

0
K) (blocks to

points). Finally, starting with block data, we seek to predict at new blocks,
i.e., to infer about Y (B0

1); : : : ; Y (B
0
K) (blocks to blocks).

All of this prediction may be collected under the umbrella of kriging,
as in Sections 2.4 and 5.1. Our kriging here will be implemented within
the Bayesian framework enabling full inference (a posterior predictive dis-
tribution for every prediction of interest, joint distributions for all pairs
of predictions, etc.) and avoiding asymptotics. We will however use rather
noninformative priors, so that our results will roughly resemble those of a
likelihood analysis.
Inference about blocks through averages as in (6.1) is not only formally

attractive but demonstrably preferable to ad hoc approaches. One such ap-
proach would be to average over the observed Y (si) in B. But this presumes
there is at least one observation in anyB, and ignores the information about
the spatial process in the observations outside of B. Another ad hoc ap-
proach would be to simply predict the value at some central point of B.
But this value has larger variability than (and may be biased for) the block
average.
In the next section, we develop the methodology for spatial data at a

single time point; the general spatiotemporal case is similar and described
in Section 8.2. Example 6.1 then applies our approaches to the Atlanta
ozone data pictured in Figure 6.1.

6.1.2 Methodology for the point-level realignment

We start with a stationary Gaussian process speci�cation for Y (s) having
mean function �(s;�) and covariance function c(s�s0;�) = �2�(s�s0;�), so
that � = (�2;�)T . Here � is a trend surface with coe�cient vector �, while
�2 is the process variance and � denotes the parameters associated with

© 2004 by CRC Press LLC



POINT-LEVEL MODELING 179

the stationary correlation function �. Beginning with point data observed
at sites s1; :::; sI , let Y

T
s = (Y (s1); : : : ; Y (sI)). Then

Ys j �;� � N(�s(�); �
2Hs(�)) ; (6:2)

where �s(�)i = �(si;�) and (Hs(�))ii0 = �(si � si0 ;�).
Given a prior on �; �2, and �, models such as (6.2) are straightforwardly

�t using simulation methods as described in Section 5.1, yielding posterior
samples (��g ;�

�
g); g = 1; : : : ; G from f(�;� j Ys).

Then for prediction at a set of new locations YT
s0 = (Y (s01); :::; Y (s

0
K)),

we require only the predictive distribution,

f(Ys0 j Ys) =

Z
f(Ys0 j Ys;�;�)f(�;� j Ys)d�d� : (6:3)

By drawing Y�
s0;g � f(Ys0 j Ys;�

�
g ;�

�
g) we obtain a sample from (6.3)

via composition which provides any desired inference about Ys0 and its
components.
Under a Gaussian process,

f

��
Ys

Ys0

������;�� = N

��
�s(�)
�s0(�)

�
; �2

�
Hs(�) Hs;s0(�)
HT
s;s0(�) Hs0(�)

��
; (6:4)

with entries de�ned as in (6.2). Hence, Ys0 jYs;�;� is distributed as

N
�
�s0(�) +HT

s;s0(�)H
�1
s (�)(Ys � �s(�)) ;

�2[Hs0(�)�HT
s;s0(�)H

�1
s (�)Hs;s0(�)]

�
:

(6:5)

Sampling from (6.5) requires the inversion of Hs(�
�
g), which will already

have been done in sampling ��g , and then the square root of the K � K
covariance matrix in (6.5).
Turning next to prediction for YT

B = (Y (B1); :::; Y (BK)), the vector of
averages over blocks B1; :::; BK , we again require the predictive distribu-
tion, which is now

f(YB j Ys) =

Z
f(YB j Ys;�;�)f(�;� j Ys)d�d� : (6:6)

Under a Gaussian process, we now have

f

��
Ys

YB

������;�� = N

��
�s(�)
�B(�)

�
; �2

�
Hs(�) Hs;B(�)
HT
s;B(�) HB(�)

��
; (6:7)

where

(�B(�))k = E(Y (Bk) j �) = jBkj�1
Z
Bk

�(s;�)ds ;

(HB(�))kk0 = jBkj�1 jBk0 j�1
Z
Bk

Z
Bk0

�(s� s0;�)ds0ds ;

and (Hs;B(�))ik = jBkj�1
Z
Bk

�(si � s0;�)ds0 :

© 2004 by CRC Press LLC



180 SPATIAL MISALIGNMENT

Analogously to (6.5), YB jYs;�;� is distributed as

N
�
�B(�) +HT

s;B(�)H
�1
s (�)(Ys � �s(�)) ;

�2
�
HB(�)�HT

s;B(�)H
�1
s (�)Hs;B(�)

��
:

(6:8)

The major di�erence between (6.5) and (6.8) is that in (6.5), given (��g ;�
�
g),

numerical values for all of the entries in �s0(�); Hs0(�), andHs;s0(�) are im-
mediately obtained. In (6.8) every analogous entry requires an integration
as above. Anticipating irregularly shaped Bk's, Riemann approximation to
integrate over these regions may be awkward. Instead, noting that each
such integration is an expectation with respect to a uniform distribution,
we propose Monte Carlo integration. In particular, for each Bk we propose
to draw a set of locations sk;`, ` = 1; 2; :::; Lk, distributed independently
and uniformly over Bk. Here Lk can vary with k to allow for very unequal
jBkj.
Hence, we replace (�B(�))k, (HB(�))kk0 , and (Hs;B(�))ik with

(b�B(�))k = L�1
k

X
`

�(sk;`;�) ;

( bHB(�))kk0 = L�1
k L�1

k0

X
`

X
`0

�(sk` � sk0`0 ;�) ; (6.9)

and ( bHs;B(�))ik = L�1
k

X
`

�(si � sk`;�) :

In our notation, the \hat" denotes a Monte Carlo integration that can be
made arbitrarily accurate and has nothing to do with the data Ys: Note
also that the same set of sk`'s can be used for each integration and with
each (��g ;�

�
g); we need only obtain this set once. In obvious notation we

replace (6.7) with the (I+K)-dimensional multivariate normal distributionbf �(Ys;YB)
T �;�

�
.

It is useful to note that if we de�ne bY (Bk) = L�1
k

P
` Y (sk`), then

bY (Bk)
is a Monte Carlo integration for Y (Bk) as given in (6.1). With an obvious

de�nition for bYB ; it is apparent thatbf �(Ys;YB)
T j �;�� = f

�
(Ys; bYB)

T j �;�
�

(6:10)

where (6.10) is interpreted to mean that the approximate joint distribution

of (Ys;YB) is the exact joint distribution of Ys; bYB : In practice, we will

work with bf , converting to bf(YB j Ys;�;�) to sample YB rather than

sampling the bY (Bk)'s through the Y (sk`)'s. But, evidently, we are samplingbYB rather than YB .

As a technical point, we might ask when bYB
P! YB . An obvious suf-

�cient condition is that realizations of the Y (s) process are almost surely
continuous. In the stationary case, Kent (1989) provides su�cient condi-
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tions on c(s� t;�) to ensure this. Alternatively, Stein (1999a) de�nes Y (s)
to be mean square continuous if limh!0E(Y (s+h)� Y (s))2 = 0 for all s.

But then Y (s+ h)
P! Y (s) as h! 0, which is su�cient to guarantee thatbYB

P! YB . Stein notes that if Y (s) is stationary, we only require c(� ; �)
continuous at 0 for mean square continuity. (See Subsection 2.2.3 and Sec-
tion 10.1 for further discussion of smoothness of process realizations.)
Finally, starting with block data YT

B = (Y (B1); : : : ; Y (BI )), analogous
to (6.2) the likelihood is well de�ned as

f(YB j �;�) = N(�B(�) ; �
2HB(�)): (6:11)

Hence, given a prior on � and �, the Bayesian model is completely speci�ed.
As above, evaluation of the likelihood requires integrations. So, we replace
(6.11) with bf(YB j �;�) = N(b�B(�) ; �2 bHB(�)): (6:12)

Simulation-based �tting is now straightforward, as below (6.2), albeit some-

what more time consuming due to the need to calculate b�B(�) and bHB(�).
To predict for Ys0 we require f(Ys0 j YB). As above, we only require

f(YB ;Ys0 j �;�), which has been given in (6.7). Using (6.10) we now obtainbf(Ys0 j YB ;�;�) to sample Ys0 . Note that bf is used in (6.12) to obtain the
posterior samples and again to obtain the predictive samples. Equivalently,
the foregoing discussion shows that we can replace YB with bYB through-
out. To predict for new blocks B0

1; :::; B
0
K , let Y

T
B0 = (Y (B0

1); :::; Y (B
0
K)).

Now we require f(YB0 j YB), which in turn requires f (YB ;YB0 j �;�).
The approximate distribution bf (YB ;YB0 j�;�) employs Monte Carlo inte-

grations over the B0
k's as well as the Bi's, and yields bf(YB0 j YB ;�;�) to

sample YB0 . Again bf is used to obtain both the posterior and predictive
samples.
Note that in all four prediction cases, we can con�ne ourselves to an

(I +K)-dimensional multivariate normal. Moreover, we have only an I � I
matrix to invert repeatedly in the model �tting, and a K�K matrix whose
square root is required for the predictive sampling.
For the modi�able areal unit problem (i.e., prediction at new blocks using

data for a given set of blocks), suppose we take as our point estimate for a
generic new set B0 the posterior mean,

E(Y (B0) j YB) = Ef�(B0;�) +HT
B;B0

(�)H�1
B (�)(YB � �B(�)) j YBg ;

whereHB;B0(�) is I�1 with ith entry equal to cov(Y (Bi); Y (B0) j �)=�2. If
�(s;�) � �i for s 2 Bi, then �(B0;�) = jB0j�1P

i jBi \B0j�i. But E(�i j
YB) � Y (Bi) to a �rst-order approximation, so in this case E(Y (B0) j
YB) � jB0j�1P

i jBi \ B0jY (Bi), the areally weighted estimate.

Example 6.1 We now use the foregoing approach to perform point-point
and point-block inference for the Atlanta ozone data pictured in Figure 6.1.
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Recall that the target points are those marked A and B on the map, while
the target blocks are the 36 Atlanta city zips. The di�ering block sizes
suggest use of a di�erent Lk for each k in equation (6.9). Conveniently, our
GIS (ARC/INFO) can generate random points over the whole study area,
and then allocate them to each zip. Thus Lk is proportional to the area of
the zip, jBkj. Illustratively, our procedure produced 3743 randomly chosen
locations distributed over the 36 city zips, an average Lk of nearly 104.
Suppose that log-ozone exposure Y (s) follows a second-order stationary

spatial Gaussian process, using the exponential covariance function c(si �
si0 ;�) = �2e��ksi�si0k. A preliminary exploratory analysis of our data
set suggested that a constant mean function �(si;�) = � is adequate for
our data set. We place the customary at prior on �, and assume that
�2 � IG(a; b) and � � G(c; d). We chose a = 3; b = 0:5; c = 0:03,
and d = 100, corresponding to fairly vague priors. We then �t this three-
parameter model using an MCMC implementation, which ran 3 parallel
sampling chains for 1000 iterations each, sampling � and �2 via Gibbs steps
and � through Metropolis-Hastings steps with a G(3; 1) candidate density.
Convergence of the sampling chains was virtually immediate. We obtained
the following posterior medians and 95% equal-tail credible intervals for the
three parameters: for �, 0.111 and (0.072, 0.167); for �2, 1.37 and (1.18,
2.11); and for �, 1.62 and (0.28, 4.13).
Figure 6.2 maps summaries of the posterior samples for the 36 target

blocks (city zips) and the 2 target points (A and B); speci�cally, the pos-
terior medians, q:50, upper and lower .025 points, q:975 and q:025, and the
lengths of the 95% equal-tail credible intervals, q:975 � q:025. The zip-level
medians show a clear spatial pattern, with the highest predicted block av-
erages occurring in the southeastern part of the city near the two high
observed readings (0.144 and 0.136), and the lower predictions in the north
apparently the result of smoothing toward the low observed value in this
direction (0.076). The interval lengths reect spatial variability, with lower
values occurring in larger areas (which require more averaging) or in areas
nearer to observed monitoring stations (e.g., those near the southeastern,
northeastern, and western city boundaries). Finally, note that our approach
allows sensibly di�ering predicted medians for points A and B, with A be-
ing higher due to the slope of the �tted surface. Previous centroid-based
analyses (like that of Carlin et al., 1999) would instead implausibly impute
the same �tted value to both points, since both lie within the same zip.

6.2 Nested block-level modeling

We now turn to the case of variables available (and easily de�nable) only
as block-level summaries. For example, it might be that disease data are
known at the county level, but hypotheses of interest pertain to sociode-
mographically depressed census tracts. We refer to regions on which data
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Figure 6.2 Posterior point-point and point-block summaries, static spatial model,
Atlanta ozone data for July 15, 1995.

are available as \source" zones and regions for which data are needed as
\target" zones.
As mentioned earlier, the block-block interpolation problem has a rich

literature and is often referred to as the modi�able areal unit problem (see,
e.g., Cressie, 1996). In the case of an extensive variable (i.e., one whose
value for a block can be viewed as a sum of sub-block values, as in the
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case of population, disease counts, productivity, or wealth), areal weighting
o�ers a simple imputation strategy. While rather naive, such allocation
proportional to area has a long history and is routinely available in GIS
software.

The validity of simple areal interpolation obviously depends on the spa-
tial variable in question being more or less evenly distributed across each
region. For instance, Tobler (1979) introduced the so-called pycnophylactic
approach. He assumed population density to be a continuous function of
location, and proposed a simple \volume preserving" (with regard to the
observed areal data) estimator of that function. This method is appropriate
for continuous outcome variables but is harder to justify for count data, es-
pecially counts of human populations, since people do not generally spread
out continuously over an areal unit; they tend to cluster.

Flowerdew and Green (1989) presented an approach wherein the variable
of interest is count data and which uses information about the distribution
of a binary covariate in the target zone to help estimate the counts. Their
approach applies Poisson regression iteratively, using the EM algorithm,
to estimate target zone characteristics. While subsequent work (Flowerdew
and Green, 1992) extended this EM approach to continuous (typically nor-
mally distributed) outcome variables, neither of these papers reects a fully
inferential approach to the population interpolation problem.

In this section we follow Mugglin and Carlin (1998), and focus on the
setting where the target zonation of the spatial domain D is a re�nement of
the source zonation, a situation we term nested misalignment. In the data
setting we describe below, the source zones are U.S. census tracts, while
the target zones (and the zones on which covariate data are available) are
U.S. census block groups.

Methodology for nested block-level realignment

Consider the diagram in Figure 6.3. Assume that a particular rectangular
tract of land is divided into two regions (I and II), and spatial variables (say,
disease counts) y1 and y2 are known for these regions (the source zones).
But suppose that the quantity of interest is Y3, the unknown corresponding
count in Region III (the target zone), which is comprised of subsections
(IIIa and IIIb) of Regions I and II.

As already mentioned, a crude way to approach the problem is to assume
that disease counts are distributed evenly throughout Regions I and II, and
so the number of a�ected individuals in Region III is just

y1

�
area(IIIa)

area(I)

�
+ y2

�
area(IIIb)

area(II)

�
: (6:13)

This simple areal interpolation approach is available within many GIS's.
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Figure 6.3 Regional map for motivating example.

However, (6.13) is based on an assumption that is likely to be unviable,
and also o�ers no associated estimate of uncertainty.
Let us now assume that the entire tract can be partitioned into smaller

subsections, where on each subsection we can measure some other variable
that is correlated with the disease count for that region. For instance, if we
are looking at a particular tract of land, in each subsection we might record
whether the land is predominantly rural or urban in character. We do this
in the belief that this variable a�ects the likelihood of disease. Continuous
covariates could also be used (say, the median household income in the
subsection). Note that the subsections could arise simply as a re�nement
of the original scale of aggregation (e.g., if disease counts were available only
by census tract, but covariate information arose at the census block group
level), or as the result of overlaying a completely new set of boundaries (say,
a zip code map) onto our original map. The statistical model is easier to
formulate in the former case, but the latter case is of course more general,
and is the one motivated by modern GIS technology (and to which we
return in Section 6.3.
To facilitate our discussion in the former case, we consider a data set

on the incidence of leukemia in Tompkins County, New York, that was
originally presented and analyzed by Waller et al. (1994), and available on
the web at www.biostat.umn.edu/~brad/data/tompkins.dat. As seen in
Figure 6.4, Tompkins County, located in west-central New York state, is
roughly centered around the city of Ithaca, NY. The county is divided
into 23 census tracts, with each tract further subdivided into between 1
and 5 block groups, for a total of 51 such subregions. We have leukemia
counts available at the tract level, and we wish to predict them at the block
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Figure 6.4 Map of Tompkins County, NY.

group level with the help of population counts and covariate information
available on this more re�ned scale. In this illustration, the two covariates
we consider are whether the block group is coded as \rural" or \urban,"
and whether or not the block group centroid is located within 2 kilometers
of a hazardous chemical waste site. There are two waste sites in the county,
one in the northeast corner and the other in downtown Ithaca, near the
county's center. (For this data set, we in fact have leukemia counts at the
block group level, but we use only the tract totals in the model-�tting
process, reserving the re�ned information to assess the accuracy of our
results.) In this example, the unequal population totals in the block groups
will play the weighting role that unequal areas would have played in (6.13).
Figure 6.5 shows a census tract-level disease map produced by the GIS

MapInfo. The data record the block group-level population counts nij and
covariate values uij and wij , where uij is 1 if block group j of census tract
i is classi�ed as urban, 0 if rural, and wij is 1 if the block group centroid
is within 2 km of a waste site, 0 if not. Typical of GIS software, MapInfo
permits allocation of the census tract totals to the various block groups
proportional to block group area or population. We use our hierarchical
Bayesian method to incorporate the covariate information, as well as to
obtain variance estimates to accompany the block group-level point esti-
mates.
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Figure 6.5 GIS map of disease counts by census tract, Tompkins County, NY.

As in our earlier disease mapping discussion (Subsection 5.4.1), we in-
troduce a �rst-stage Poisson model for the disease counts,

Yij jmk(i;j)
ind� Po(Eijmk(i;j)); i = 1; : : : ; I; j = 1; : : : ; Ji ;

where I = 23, Ji varies from 1 to 5, Yij is the disease count in block group
j of census tract i, and Eij is the corresponding \expected" disease count,
computed as Eij = nij� where nij is the population count in the cell and
� is the overall probability of contracting the disease. This \background"
probability could be estimated from our data; here we take � = 5:597 �
10�4, the crude leukemia rate for the 8-county region studied by Waller
et al. (1994), an area that includes Tompkins County. Hence, mk(i;j) is
the relative risk of contracting leukemia in block group (i; j), and k =
k(i; j) = 1; 2; 3, or 4 depending on the covariate status of the block group.
Speci�cally, we let

k(i; j) =

8>><>>:
1 ; if (i; j) is rural, not near a waste site
2 ; if (i; j) is urban, not near a waste site
3 ; if (i; j) is rural, near a waste site
4 ; if (i; j) is urban, near a waste site

:

De�ning m = (m1;m2;m3;m4) and again adopting independent and min-
imally informative gamma priors for these four parameters, we seek esti-
mates of p(mkjy), where y = (y1:; : : : ; yI:), and yi: =

PJi
j=1 yij , the census

tract disease count totals. We also wish to obtain block group-speci�c mean
and variance estimates E[Yij jy] and V ar[Yij jy], to be plotted in a disease
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map at the block group (rather than census tract) level. Finally, we may
also wish to estimate the distribution of the total disease count in some con-
glomeration of block groups (say, corresponding to some village or city).

By the conditional independence of the block group counts we have

Yi:jm ind� Po(
P4
k=1 skmk), i = 1; : : : ; I , where sk =

P
j:k(i;j)=k Eij , the

sum of the expected cases in block groups j of region i corresponding to
covariate pattern k; k = 1; : : : ; 4. The likelihood L(m;y) is then the prod-
uct of the resulting I = 23 Poisson kernels. After multiplying this by the
prior distribution term

Q4
k=1 p(mk), we can obtain forms proportional to

the four full conditional distributions p(mkjml6=k;y), and sample these se-
quentially via univariate Metropolis steps.

Once again it is helpful to reparameterize to �k = log(mk); k = 1; : : : ; 4,
and perform the Metropolis sampling on the log scale. We specify reason-
ably vague Gamma(a; b) priors for the mk by taking a = 2 and b = 10
(similar results were obtained with even less informative Gamma priors
unless a was quite close to 0, in which case convergence was unacceptably
poor). For this \base prior," convergence obtains after 200 iterations, and
the remaining 1800 iterations in 5 parallel MCMC chains are retained as
posterior samples from p(mjy).
A second reparametrization aids in interpreting our results. Suppose we

write

�k(i;j) = �0 + �1uij + �2wij + �3uijwij ; (6:14)

so that �0 is an intercept, �1 is the e�ect of living in an urban area, �2
is the e�ect of living near a waste site, and �3 is the urban/waste site
interaction. This reparametrization expresses the log-relative risk of disease
as a linear model, a common approach in spatial disease mapping (Besag
et al., 1991; Waller et al., 1997). A simple 1-1 transformation converts our

(m
(g)
1 ;m

(g)
2 ;m

(g)
3 ;m

(g)
4 ) samples to (�

(g)
0 ; �

(g)
1 ; �

(g)
2 ; �

(g)
3 ) samples on the new

scale, which in turn allows direct investigation of the main e�ects of urban
area and waste site proximity, as well as the e�ect of interaction between
these two. Figure 6.6 shows the histograms of the posterior samples for
�i; i = 0; 1; 2; 3. We note that �0, �1, and �3 are not signi�cantly di�erent
from 0 as judged by the 95% BCI, while �2 is \marginally signi�cant" (in a
Bayesian sense) at this level. This suggests a moderately harmful e�ect of
residing within 2 km of a waste site, but no e�ect of merely residing in an
urban area (in this case, the city of Ithaca). The preponderance of negative

�
(g)
3 samples is somewhat surprising; we might have expected living near an
urban waste site to be associated with an increased (rather than decreased)
risk of leukemia. This is apparently the result of the high leukemia rate in a
few rural block groups not near a waste site (block groups 1 and 2 of tract
7, and block group 2 of tract 20), forcing �3 to adjust for the relatively
lower overall rate near the Ithaca waste site.
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Figure 6.6 Posterior histograms of sampled log-relative risk parameters, Tompkins
County, NY, data set.

Individual block group estimation

To create the block group-level estimated disease map, for those census
tracts having Ji > 1, we obtain a conditional binomial distribution for Yij
given the parameters m and the census tract totals y, so that

E(Yij jy) = E[E(Yij jm;y)] � yi:
G

GX
g=1

p
(g)
ij ; (6:15)

where pij is the appropriate binomial probability arising from conditioning
a Poisson random variable on the sum of itself and a second, independent

Poisson variable. For example, for p
(g)
11 we have

p
(g)
11 =

1617m
(g)
1

(1617 + 702)m
(g)
1 + (1526 + 1368)m

(g)
3

;

as determined by the covariate patterns in the �rst four rows of the data
set. Note that when Ji = 1 the block group total equals the known census
tract total, hence no estimation is necessary.
The resulting collection of estimated block group means E(Yij jy) are
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included in the data set on our webpage, along with the actual case counts
yij . (The occasional noninteger values of yij in the data are not errors,
but arise from a few cases in which the precise block group of occurrence
is unknown, resulting in fractional counts being allocated to several block
groups.) Note that, like other interpolation methods, the sum of the esti-
mated cases in each census tract is the same as the corresponding sum for
the actual case counts. The GIS maps of the E(Yij jy) and the actual yij
shown in Figure 6.7 reveal two pockets of elevated disease counts (in the
villages of Cayuga Heights and Groton).

To get an idea of the variability inherent in the posterior surface, we
might consider mapping the estimated posterior variances of our interpo-
lated counts. Since the block group-level variances do not involve aggre-
gation across census tracts, these variances may be easily estimated as
V ar(Yij jy) = E(Y 2

ij jy)� [E(Yij jy)]2, where the E(Yij jy) are the estimated
means (already calculated), and

E(Y 2
ij jy) = E[E(Y 2

ij jm;y)] = E[yi:pij(1� pij) + y2i:(pij)
2]

� 1

G

GX
g=1

h
yi:p

(g)
ij (1� p

(g)
ij ) + y2i:(p

(g)
ij )

2
i
; (6.16)

where pij is again the appropriate binomial probability for block group
(i; j); see Mugglin and Carlin (1998) for more details.

We remark that most of the census tracts are composed of homogeneous
block groups (e.g., all rural with no waste site nearby); in these instances
the resulting binomial probability for each block group is free ofm. In such
cases, posterior means and variances are readily available without any need
for mixing over the Metropolis samples, as in equations (6.15) and (6.16).

Aggregate estimation: Block groups near the Ithaca, NY, waste site

In order to assess the number of leukemia cases we expect in those block
groups within 2 km of the Ithaca waste site, we can sample the predictive
distributions for these blocks, sum the results, and draw a histogram of
these sums. Twelve block groups in �ve census tracts fall within these
2-km radii: all of the block groups in census tracts 11, 12, and 13, plus
two of the three (block groups 2 and 3) in tract 6 and three of the four
(block groups 2, 3, and 4) in tract 10. Since the totals in census tracts
11, 12, and 13 are known to our analysis, we need only sample from two
binomial distributions, one each for the conglomerations of near-waste site
block groups within tracts 6 and 10. De�ning the sum over the twelve block
groups as Z, we have

Z(g) = Y
(g)
6;(2;3) + Y

(g)
10;(2;3;4) + y11;: + y12;: + y13;: :

© 2004 by CRC Press LLC



NESTED BLOCK-LEVEL MODELING 191

Figure 6.7 GIS maps of interpolated (a) and actual (b) block group disease counts,
Tompkins County, NY.

A histogram of these values is shown in Figure 6.8. The estimated median
value of 10 happens to be exactly equal to the true value of 10 cases in
this area. The sample mean, 9.43, is also an excellent estimate. Note that
the minimum and maximum values in Figure 6.8, Z = 7 and Z = 11, are
imposed by the data structure: there must be at least as many cases as the
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Figure 6.8 Histogram of sampled disease counts, total of all block groups having
centroid within 2 km of the Ithaca, NY, waste site.

total known to have occurred in census tracts 11, 12, and 13 (which is 7),
and there can be no more than the total number known to have occurred
in tracts 6, 10, 11, 12, and 13 (which is 11).
Finally, we may again compare our results to those produced by a GIS

under either area-based or population-based interpolation. The former pro-
duces a mean estimate of 9.28, while the latter gives 9.59. These are close
to the Bayesian mean 9.43, but neither approach produces an associated
con�dence interval, much less a full graphical display of the sort given in
Figure 6.8.

6.3 Nonnested block-level modeling

The approach of the previous section (see also Mugglin and Carlin, 1998,
and Mugglin et al., 1999) o�ered a hierarchical Bayesian method for inter-
polation and smoothing of Poisson responses with covariates in the nested
case. In the remainder of this section we develop a framework for hierar-
chical Bayesian interpolation, estimation, and spatial smoothing over non-
nested misaligned data grids. In Subsection 6.3.1 we summarize a data set
collected in response to possible contamination resulting from the former
Feed Materials Production Center (FMPC) in southwestern Ohio with the
foregoing analytic goals. In Subsection 6.3.2 we develop the theory of our
modeling approach in a general framework, as well as our MCMC approach
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and a particular challenge that arises in its implementation for the FMPC
data. Finally in Example 6.2 we set forth the conclusions resulting from
our analysis of the FMPC data.

6.3.1 Motivating data set

Risk-based decision making is often used for prioritizing cleanup e�orts
at U.S. Superfund sites. Often these decisions will be based on estimates
of the past, present, and future potential health impacts. These impact
assessments usually rely on estimation of the number of outcomes, and the
accuracy of these estimates will depend heavily on the ability to estimate
the number of individuals at risk. Our motivating data set is connected
with just this sort of risk assessment.
In the years 1951{1988 near the town of Ross in southwestern Ohio, the

former Feed Materials Production Center (FMPC) processed uranium for
weapons production. Draft results of the Fernald Dosimetry Reconstruc-
tion Project, sponsored by the Centers for Disease Control and Preven-
tion (CDC), indicated that during production years the FMPC released
radioactive materials (primarily radon and its decay products and, to a
lesser extent, uranium and thorium) from the site. Although radioactive
liquid wastes were released, the primary exposure to residents of the sur-
rounding community resulted from breathing radon decay products. The
potential for increased risk of lung cancer is thus the focus of intense local
public interest and ongoing public health studies (see Devine et al., 1998).
Estimating the number of adverse health outcomes in the population

(or in subsets thereof) requires estimation of the number of individuals at
risk. Population counts, broken down by age and sex, are available from
the U.S. Census Bureau according to federal census block groups, while
the areas of exposure interest are dictated by both direction and distance
from the plant. Rogers and Killough (1997) construct an exposure \wind-
rose," which consists of 10 concentric circular bands at 1-kilometer radial
increments divided into 16 compass sectors (N, NNW, NW, WNW, W,
etc.). Through the overlay of such a windrose onto U.S. Geological Survey
(USGS) maps, they provide counts of the numbers of \structures" (residen-
tial buildings, o�ce buildings, industrial building complexes, warehouses,
barns, and garages) within each subdivision (cell) of the windrose.
Figure 6.9 shows the windrose centered at the FMPC. We assign num-

bers to the windrose cells, with 1 to 10 indexing the cells starting at the
plant and running due north, then 11 to 20 running from the plant to the
north-northwest, and so on. Structure counts are known for each cell; the
hatching pattern in the �gure indicates the areal density (structures per
square kilometer) in each cell.
Also shown in Figure 6.9 are the boundaries of 39 Census Bureau block

groups, for which 1990 population counts are known. These are the source
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Figure 6.9 Census block groups and 10-km windrose near the FMPC site, with
1990 population density by block group and 1980 structure density by cell (both
in counts per km2).

zones for our interpolation problem. Shading intensity indicates the pop-
ulation density (persons per square kilometer) for each block group. The
intersection of the two (nonnested) zonation systems results in 389 regions
we call atoms, which can be aggregated appropriately to form either cells
or block groups.

The plant was in operation for 38 years, raising concern about the poten-
tial health risks it has caused, a question that has been under active inves-
tigation by the CDC for some time. Present e�orts to assess the impact of
the FMPC on cancer morbidity and mortality require the analysis of this
misaligned data set; in particular, it is necessary to interpolate gender- and
age group-speci�c population counts to the windrose exposure cells. These
numbers of persons at risk could then be combined with cell-speci�c dose
estimates obtained by Killough et al. (1996) and estimates of the cancer
risk per unit dose to obtain expected numbers of excess cancer cases by
cell.

In fact, such an expected death calculation was made by Devine et al.
(1998), using traditional life table methods operating on the Rogers and
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Killough (1997) cell-level population estimates (which were in turn derived
simply as proportional to the structure counts). However, these estimates
were only for the total population in each cell; sex- and age group-speci�c
counts were obtained by \breaking out" the totals into subcategories using
a standard table (i.e., the same table in each cell, regardless of its true
demographic makeup). In addition, the uncertainty associated with the
cell-speci�c population estimates was quanti�ed in a rather ad hoc way.

6.3.2 Methodology for nonnested block-level realignment

We con�ne our model development to the case of two misaligned spatial
grids. Given this development, the extension to more than two grids will
be conceptually apparent. The additional computational complexity and
bookkeeping detail will also be evident.
Let the �rst grid have regions indexed by i = 1; :::; I , denoted by Bi,

and let SB =
S
iBi. Similarly, for the second grid we have regions Cj ;

j = 1; :::; J with SC =
S
j Cj : In some applications SB = SC ; i.e., the B-

cells and the C-cells o�er di�erent partitions of a common region. Nested
misalignment (e.g., where each Cj is contained entirely in one and only one
Bi) is evidently a special case. Another possibility is that one data grid
contains the other; say, SB � SC . In this case, there will exist some C cells
for which a portion lies outside of SB . In the most general case, there is no
containment and there will exist B-cells for which a portion lies outside of
SC and C-cells for which a portion lies outside of SB : Figure 6.10 illustrates
this most general situation.
Atoms are created by intersecting the two grids. For a given Bi; each C-

cell which intersects Bi creates an atom (which possibly could be a union
of disjoint regions). There may also be a portion of Bi which does not
intersect with any Cj : We refer to this portion as the edge atom associated
with Bi; i.e., a B-edge atom. In Figure 6.10, atoms B11 and B21 are B-
edge atoms. Similarly, for a given Cj , each B-cell which intersects with
Cj creates an atom, and we analogously determine C-edge atoms (atoms
C11 and C22 in Figure 6.10). It is crucial to note that each nonedge atom
can be referenced relative to an appropriate B-cell, say Bi, and denoted
as Bik: It also can be referenced relative to an appropriate C cell, say Cj ,
and denoted by Cj`. Hence, there is a one-to-one mapping within SB

T
SC

between the set of ik's and the set of j`'s, as shown in Figure 6.10 (which
also illustrates our convention of indexing atoms by area, in descending
order). Formally we can de�ne the function c on nonedge B-atoms such that
c(Bik) = Cj`, and the inverse function b on C-atoms such that b(Cj`) =
Bik. For computational purposes we suggest creation of \look-up" tables
to specify these functions. (Note that the possible presence of both types
of edge cell precludes a single \ij" atom numbering system, since such a
system could index cells on either SB or SC , but not their union.)
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Figure 6.10 Illustrative representation of areal data misalignment.

Without loss of generality we refer to the �rst grid as the response grid,
that is, at each Bi we observe a response Yi: We seek to explain Yi using
a variety of covariates. Some of these covariates may, in fact, be observed
on the response grid; we denote the value of this vector for Bi by Wi. But
also, some covariates are observed on the second or explanatory grid. We
denote the value of this vector for Cj by Xj .

We seek to explain the observed Y 's through both X and W. The mis-
alignment between the X's and Y 's is the obstacle to standard regression
methods. What levels of X should be assigned to Yi? We propose a fully
model-based approach in the case where the Y 's and X 's are aggregated
measurements. The advantage of a model-based approach implemented
within a Bayesian framework is full inference both with regard to esti-
mation of model parameters and prediction using the model.

The assumption that the Y 's are aggregated measurements means Yi can
be envisioned as

P
k Yik , where the Yik are unobserved or latent and the

summation is over all atoms (including perhaps an edge atom) associated
with Bi: To simplify, we assume that the X 's are also scalar aggregated
measurements, i.e.,Xj =

P
`Xj` where the summation is over all atoms as-

sociated with Cj : As for theW's, we assume that each component is either
an aggregated measurement or an inheritable measurement. For compo-

nent r, in the former case W
(r)
i =

P
kW

(r)
ik as with Yi; in the latter case

W
(r)
ik =W

(r)
i .

In addition to (or perhaps in place of) the Wi we will introduce B-cell
random e�ects �i; i = 1; :::; I . These e�ects are employed to capture spatial

© 2004 by CRC Press LLC



NONNESTED BLOCK-LEVEL MODELING 197

association among the Yi's. The �i can be given a spatial prior speci�cation.
A Markov random �eld form (Besag, 1974; Bernardinelli and Montomoli,
1992), as described below, is convenient. Similarly we will introduce C-cell
random e�ects !j ; j = 1; :::; J to capture spatial association among the
Xj 's. It is assumed that the latent Yik inherit the e�ect �i and that the
latent Xj` inherit the e�ect !j :

For aggregated measurements that are counts, we assume the latent vari-
ables are conditionally independent Poissons. As a result, the observed
measurements are Poissons as well and the conditional distribution of the
latent variables given the observed is a product multinomial. We note that
it is not required that the Y 's be count data. For instance, with aggregated
measurements that are continuous, a convenient distributional assumption
is conditionally independent gammas, in which case the latent variables
would be rescaled to product Dirichlet. An alternative choice is the nor-
mal, whereupon the latent variables would have a distribution that is a
product of conditional multivariate normals. In this section we detail the
Poisson case.

As mentioned above, area naturally plays an important role in allocation
of spatial measurements. Letting jAj denote the area of regionA, if we apply
the standard assumption of allocation proportional to area to the Xj` in a
stochastic fashion, we would obtain

Xj` j !j � Po(e!j jCj`j) ; (6:17)

assumed independent for ` = 1; 2; :::; Lj: Then Xj j !j � Po(e!j jCj j)
and (Xj1; Xj2; :::; Xj;Lj j Xj ; !j) � Mult(Xj; qj1; :::; qj;Lj ) where qj` =
jCj`j=jCj j:
Such strictly area-based modeling cannot be applied to the Yik 's since

it fails to connect the Y 's with the X 's (as well as the W's). To do so we
again begin at the atom level. For nonedge atoms we use the previously
mentioned look-up table to �nd the Xj` to associate with a given Yik. It is
convenient to denote this Xj` as X

0
ik: Ignoring the Wi for the moment, we

assume

Yik j �i; �ik � Po (e�i jBikj h(X 0
ik=jBikj ; �ik)) ; (6:18)

independent for k = 1; : : : ;Ki. Here h is a preselected parametric function,
the part of the model speci�cation that adjusts an expected proportional-
to-area allocation according toX 0

ik. Since (6.17) models expectation forXj`

proportional to jCj`j; it is natural to use the standardized form X 0
ik=jBikj

in (6.18). Particular choices of h include h(z ; �ik) = z yielding Yik j �i �
Po(e�iX 0

ik), which would be appropriate if we choose not to use jBikj ex-
plicitly in modeling E(Yik). In our FMPC implementation, we actually
select h(z ; �ik) = z + �ik where �ik = �=(KijBikj) and � > 0; see equation
(6.23) below and the associated discussion.
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If Bi has no associated edge atom, then

Yi j �i;�; fXj`g � Po

 
e�i
X
k

jBik j h(X 0
ik=jBikj ; �ik)

!
: (6:19)

If Bi has an edge atom, sayBiE , since there is no corresponding Cj`, there is
no correspondingX 0

iE . Hence, we introduce a latentX
0
iE whose distribution

is determined by the nonedge atoms that are neighbors of BiE . Paralleling
equation (6.17), we model X 0

iE as

X 0
iE j !�i � Po(e!

�

i jBiE j) ; (6:20)

thus adding a new set of random e�ects f!�i g to the existing set f!jg. These
two sets together are assumed to have a single CAR speci�cation. An alter-

native is to model X 0
iE � Po

�
jBiE j

�P
N(BiE)

X 0
t=
P
N(BiE)

jBtj
��

, where

N(BiE) is the set of neighbors of BiE and t indexes this set. E�ectively,
we multiply jBiE j by the overall count per unit area in the neighboring
nonedge atoms. While this model is somewhat more data-dependent than
the (more model-dependent) one given in (6.20), we remark that it can ac-
tually lead to better MCMC convergence due to the improved identi�ability
in its parameter space: the spatial similarity of the structures in the edge
zones is being modeled directly, rather than indirectly via the similarity of
the !�i and the !j .
Now, with an X 0

ik for all ik, (6.18) is extended to all B-atoms and
the conditional distribution of Yi is determined for all i as in (6.19). But
also Yi1; :::; Yiki jYi; �i; �ik is distributed Multinomial(Yi; qi1; :::; qiki), where
qik = jBik jh(X 0

ik= jBikj ; �ik)=
P
k jBikjh(X 0

ik= jBik j ; �ik).
To capture the spatial nature of the Bi we may adopt an IAR model for

the �i, i.e.,

p(�i j �i0;i0 6=i) = N

 X
i0

wii0�i0=wi: ; 1=(��wi:)

!
(6:21)

where wii = 0, wii0 = wi0i and wi: =
P
i0 wii0 . Below, we set wii0 = 1 for

Bi0 a neighbor of Bi and wii0 = 0 otherwise, the standard \0-1 adjacency"
form.
Similarly we assume that

f(!j j !j0;j0 6=j) = N

0@X
j0

vjj0!j0=vj: ; 1=(�!vj:)

1A :

We adopt a proper Gamma prior for �� and also for �! . When � is present
we require a prior that we denote by f(�). The choice of f(�) will likely be
vague but its form depends upon the adopted parametric form of h:
The entire speci�cation can be given a representation as a graphical

model, as in Figure 6.11. In this model the arrow from fXj`g ! fX 0
ikg
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Figure 6.11 Graphical version of the model, with variables as described in the
text. Boxes indicate data nodes, while circles indicate unknowns.

indicates the inversion of the fXjlg to fX 0
ikg, augmented by any required

edge atom values X 0
iE . The f!�i g would be generated if the X 0

iE are mod-
eled using (6.20). Since the fYikg are not observed, but are distributed as
multinomial given the �xed block group totals fYig, this is a predictive
step in our model, as indicated by the arrow from fYig to fYikg in the
�gure. In fact, as mentioned above the further predictive step to impute
Y 0
j , the Y total associated with Xj in the jth target zone, is of key interest.

If there are edge atoms CjE , this will require a model for the associated
Y 0
jE . Since there is no corresponding B-atom for CjE a speci�cation such

as (6.18) is not appropriate. Rather, we can imitate the above modeling for
X 0
iE using (6.20) by introducing f��jg, which along with the �i follow the

prior in (6.21). The f��jg and fY 0
jEg would add two consecutive nodes to

the right side of Figure 6.11, connecting from �� to fY 0
j g.

The entire distributional speci�cation overlaid on this graphical model
has been supplied in the foregoing discussion and (in the absence of CjE
edge atoms, as in Figure 6.9) takes the formQ

i f(Yi1; :::; Yiki j Yi;�)
Q
i f(Yi j �i;�; fX 0

ikg) f(fX 0
ikg j !�i ; fXj`g)

� Qj f(Xj1; :::; XjLj j Xj)
Q
j f(Xj j !j)

� f(f�ig j ��) f(��) f(f!jg; f!�i g j �!) f(�!) f(�) :
(6:22)

Bringing in the Wi merely revises the exponential term in (6.18) from
exp(�i) to exp(�i+W

T
ik�). Again, for an inherited component of Wi, say,

W
(r)
i , the resulting W

(r)
ik = W

(r)
i : For an aggregated component of Wi,

again, say, W
(r)
i , we imitate (6.17) assuming W

(r)
ik j �(r)i � Po(e�

(r)

i jBik j),
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independent for k = 1; :::;Ki: A spatial prior on the �
(r)
i and a Gaussian

(or perhaps at) prior on � completes the model speci�cation.
Finally, on the response grid, for each Bi rather than observing a single

Yi we may observe Yim, where m = 1; 2; :::;M indexes levels of factors such
as sex, race, or age group. Here we seek to use these factors, in an ANOVA
fashion, along with the Xj (and Wi) to explain the Yim. IgnoringWi, the
resultant change in (6.18) is that Yikm will be Poisson with �i replaced
by �im, where �im has an appropriate ANOVA form. For example, in the
case of sex and age classes, we might have a sex main e�ect, an age main
e�ect, and a sex-age interaction e�ect. In our application these e�ects are
not nested within i; we include only a spatial overall mean e�ect indexed
by i.
Regarding the MCMC implementation of our model, besides the usual

concerns about appropriate choice of Metropolis-Hastings candidate densi-
ties and acceptability of the resulting convergence rate, one issue deserves
special attention. Adopting the identity function for h in (6.18) produces
the model Yik � Po (e�i (X 0

ik)), which in turn implies Yi: � Po (e�i(X 0
i:)).

Suppose however that Yi� > 0 for a particular block group i, but in some
MCMC iteration no structures are allocated to any of the atoms of the
block group. The result is a awed probabilistic speci�cation. To ensure
h > 0 even when z = 0, we revised our model to h(z ; �ik) = z+ �ik where
�ik = �=(KijBik j) with � > 0, resulting in

Yik � Po

�
e�i
�
X 0
ik +

�

Ki

��
: (6:23)

This adjustment eliminates the possibility of a zero-valued Poisson param-
eter, but does allow for the possibility of a nonzero population count in a
region where there are no structures observed. When conditioned on Yi�,
we �nd (Yi1; : : : ; YiKi

j Yi:) � Mult(Yi� ; pi1; : : : ; piKi
), where

pik =
X 0
ik + �=Ki

X 0
i� + �

and Yi� � Po (e�i(X 0
i� + �)) : (6:24)

Our basic model then consists of (6.23) to (6.24) together with

�i
iid� N (��; 1=��) ; Xjl � Po (e!j jCjlj)) Xj� � Po (e!j jCj j) ;

(Xj1; : : : ; XjLj jXj�) �Mult(Xj� ; qj1; : : : ; qjLj ); where qjl = jCjlj=jCj j;
X 0
iE � Po

�
e!

�

i jBiE j
�
; and (!j ; !

�
i ) � CAR(�!) ;

(6:25)
where X 0

iE and !�i refer to edge atom structure counts and log relative risk
parameters, respectively. While � could be estimated from the data, in our
implementation we simply set � = 1; Mugglin et al. (2000, Sec. 6) discuss
the impact of alternate selections.

Example 6.2 (FMPC data analysis). We turn now to the particulars of
the FMPC data analysis, examining two di�erent models in the context of
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the misaligned data as described in Section ������ In the �rst case we take
up the problem of total population interpolation� while in the second we
consider age� and sex�speci�c population interpolation�

Total population interpolation model

We begin by taking �� � ��� and �� � ��	 in 
���	�� The choice of mean
value reects the work of Rogers and Killough 
������ who found population
per household 
PPH� estimates for four of the seven townships in which
the windrose lies� Their estimates ranged in value from ��� to ���� hence
our choice of �� � ��� � log
��� The value �� � ��	 is su�ciently small to
make the prior for �i large enough to support all feasible values of �i 
two
prior standard deviations in either direction would enable PPH values of
���� to 	�����

For � � f�j � ��i g we adopted a CAR prior and �xed �� � ��� We did
not impose any centering of the elements of � around �� allowing them to
determine their own mean level in the MCMC algorithm� Since most cells
have four neighbors� the value �� � �� translates into a conditional prior
standard deviation for the ��s of

p
��
�� � �� � ��	�� hence a marginal prior

standard deviation of roughly ��	���� � ��� 
Bernardinelli et al�� ���	�� In
any case� we found �� � �� too vague to allow MCMC convergence� Typical
posterior medians for the ��s ranged from ��� to ��� for the windrose �j �s
and from ��� to ��	 for the edge ��i s�

Running 	 parallel sampling chains� acceptable convergence obtains for
all parameters within ��	�� iterations� We discarded this initial sample and
then continued the chains for an additional 	���� iterations each� obtaining
a �nal posterior sample of size �	����� From the resulting samples� we can
examine the posterior distributions of any parameters we wish� It is in�
structive �rst to examine the distributions of the imputed structure counts
Xjl� For example� consider Figure ����� which shows the posterior distri�
butions of the structure counts in cell ��� 
the sixth one from the windrose
center in the SE direction�� for which Lj � �� The known cell total X�����
is 		� Note that the structure values indicated in the histograms are inte�
gers� The vertical bars in each histogram indicate how the 		 structures
would be allocated if imputed proportionally to area� In this cell we ob�
serve good general agreement between these naively imputed values and
our histograms� but the advantage of assessing variability from the full
distributional estimates is immediately apparent�

Population estimates per cell for cells ��	 through ��� 
again in the SE
direction� from the middle to outer edge of the windrose� are indicated in
Figure ����� Vertical bars here represent estimates calculated by multiply�
ing the number of structures in the cell by a �xed 
map�wide� constant
representing population per household 
PPH�� a method roughly equiva�
lent to that employed by Rogers and Killough 
������ who as mentioned
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Figure ���� Posterior distributions of structure estimates for the four atoms of
cell ��� �SE��� Vertical bars represent structure values if imputed proportionally
to area� Here and in the next �gure� �median	 denotes posterior median� and
�
�� BCI	 denotes the equaltail Bayesian con�dence interval�

above actually used four di�erent PPH values� Our reference lines use a
constant value of � 
the analogue of our prior mean�� While cells ��	 and
��� indicate good general agreement in these estimates� cells ��� through
��� display markedly di�erent population estimates� where our estimates
are substantially higher than the constant�PPH estimates� This is typical
of cells toward the outer edge of the southeast portion of the windrose�
since the suburbs of Cincinnati encroach on this region� We have popula�
tion data only 
no structures� in the southeastern edge atoms� so our model
must estimate both the structures and the population in these regions� The
resulting PPH is higher than a mapwide value of � 
one would expect sub�
urban PPH to be greater than rural PPH� and so the CAR model placed on
the f�j � ��i g parameters induces a spatial similarity that can be observed
in Figure �����

We next implement the fYi�g � fYikg step� From the resulting fYikg
come the fY �

j�g cell totals by appropriate reaggregation� Figure ���� shows
the population densities by atom 
Yik�jBikj�� calculated by taking the pos�
terior medians of the population distributions for each atom and dividing
by atom area in square kilometers� This �gure clearly shows the encroach�
ment by suburban Cincinnati on the southeast side of our map� with some
spatial smoothing between the edge cells and the outer windrose cells� Fi�
nally� Figure ���	 shows population densities by cell 
Y �

j��jCj j�� where the
atom�level populations have been aggregated to cells before calculating den�
sities� Posterior standard deviations� though not shown� are also available
for each cell� While this �gure� by de�nition� provides less detail than Fig�
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Figure ���� Posterior distributions of populations in cells ��� to ���� Vertical
bars represent estimates formed by multiplying structures per cell by a constant
population per household �PPH� of ����

ure ����� it provides information at the scale appropriate for combination
with the exposure values of Killough et al� 
������ Moreover� the scale of
aggregation is still �ne enough to permit identi�cation of the locations of
Cincinnati suburban sprawl� as well as the communities of Ross 
contained
in cells ENE ��	 and NE ��� Shandon 
NW ��	�� New Haven 
WSW 	����
and New Baltimore 
SSE ��	��

Age and sex e�ects

Recall from Section ����� that we seek population counts not only by cell
but also by sex and age group� This is because the dose resulting from a
given exposure will likely di�er depending on gender and age� and because
the risk resulting from that dose can also be a�ected by these factors� Again
we provide results only for the year ����� the extension to other timepoints
would of course be similar� Population counts at the block group level by
sex and age group are provided by the U�S� Census Bureau� Speci�cally�
age is recorded as counts in �� quinquennial 
	�year� intervals� ���� 	���
� � � � ������ and �	�� We consider an additive extension of our basic model

������
���	� to the sex� and age group�speci�c case� see Mugglin et al�
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Figure ���� Imputed population densities �persons�km�� by atom for the FMPC
region�


����� for results from a slightly more complex additive�plus�interaction
model�

We start with the assumption that the population counts in atom k of
block group i for gender g at age group a is Poisson�distributed as

Yikga � Po

�
e�iga

�
X �
ik �

	

Ki

��
� where 
iga � �i � g� �

��X
a��

�aIa �

g�� for males and � for females� and Ia is a ��� indicator for age group a

a � � for ages 	��� a � � for ������ etc��� The �i are block group�speci�c
baselines 
in our parametrization� they are the logs of the �tted numbers of
males in the ��� age bracket�� and � and the f�ag function as main e�ects
for sex and age group� respectively� Note the � and f�ag parameters are
not speci�c to any one block group� but rather apply to all �� block groups
in the map�

With each �i now corresponding only to the number of baby boys 
not
the whole population� in block group i� we expect its value to be decreased
accordingly� Because there are �� age�sex divisions� we modi�ed the prior
mean �� to ���	 � log 
������ We placed vague independent N
�� ����
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Figure ���� Imputed population densities �persons�km�� by cell for the FMPC
windrose�

priors on � and the �s� and kept all other prior values the same as in
Section ���� Convergence of the MCMC algorithm obtains in about ��	��
iterations� 
The slowest parameters to converge are those pertaining to the
edge atoms� where we have no structure data� Some parameters converge
much faster� the � and �a parameters� for example� converge by about 	��
iterations�� We then ran 	���� iterations for each of 	 chains� resulting in
a �nal sample of �	�����

Population interpolation results are quite similar to those outlined in
Section ���� except that population distributions are available for each cell
at any combination of age and sex� While we do not show these results here�
we do include a summary of the main e�ects for age and sex� Table ���
shows the posterior medians and ��	� and ���	� quantiles for the � and
�a parameters� Among the �a parameters� we see a signi�cant negative
value of �� 
ages ������� reecting a relatively small group of college�aged
residents in this area� After a slight increase in the age distribution for ages
������ we observe increasingly negative values as a increases� indicating the
expected decrease in population with advancing age�
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E�ect Parameter Median ��	� ���	�

Gender � ����	 ������ �����
Ages 	�� �� ����� ����� �����
Ages ����� �� ����� ����� �����
Ages �	��� �� ������ ������ �����
Ages ����� �� ������ ������ ������
Ages �	��� �� ������ ������ �����
Ages ����� �� ����� ����	 �����
Ages �	��� �� ����� ����� �����
Ages ����� �	 ����� ����� �����
Ages �	��� �
 ������ ������ ������
Ages 	��	� ��� ������ ������ ����	�
Ages 		�	� ��� ���		� ������ ���	��
Ages ����� ��� ������ ������ ���	��
Ages �	��� ��� ������ ����	� ������
Ages ����� ��� ������ ������ ����		
Ages �	��� ��� ������ ������ ������
Ages ����� ��� ������ ������ ������
Ages �	� ��� ������ ������ ������

Table ��� Quantiles and signi�cance of gender and age e�ects for the agesex
additive model�

��� Misaligned regression modeling

The methods of the preceding sections allow us to realign spatially mis�
aligned data� The results of such methods may be interesting in and of
themselves� but in many cases our real interest in data realignment will be
as a precursor to �tting regression models relating the 
newly realigned�
variables�

For instance� Agarwal� Gelfand� and Silander 
����� apply the ideas of
Section ��� in a rasterized data setting� Such data are common in remote
sensing� where satellites can collect data 
say� land use� over a pixelized
surface� which is often �ne enough so that town or other geopolitical bound�
aries can be 
approximately� taken as the union of a collection of pixels�

The focal area for the Agarwal et al� 
����� study is the tropical rainfor�
est biome within Toamasina 
or Tamatave� Province of Madagascar� This
province is located along the east coast of Madagascar� and includes the
greatest extent of tropical rainforest in the island nation� The aerial extent
of Toamasina Province is roughly �	���� square km� Four georeferenced
GIS coverages were constructed for the province� town boundaries with
associated ���� population census data� elevation� slope� and land cover�
Ultimately� the total number of towns was �	�� and the total number of
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Figure ���� Northern and southern regions within the Madagascar study region�
with population overlaid �see also color insert��

pixels was ������� For analysis at a lower resolution� the above ��km raster
layers are aggregated into ��km pixels�

Figure ���� 
see also color insert Figure C��� shows the town�level map
for the �	� towns in the Madagascar study region� In fact� there is an
escarpment in the western portion where the climate di�ers from the rest
of the region� It is a seasonally dry grassland�savanna mosaic� Also� the
northern part is expected to di�er from the southern part� since the north
has fewer population areas with large forest patches� while the south has
more villages with many smaller forest patches and more extensive road
development� including commercial routes to the national capital west of
the study region� The north and south regions with a transition zone were
created as shown in Figure �����

The joint distribution of land use and population count is modeled at
the pixel level� Let Lij denote the land use value for the jth pixel in the
ith town and let Pij denote the population count for the jth pixel in the
ith town� Again� the Lij are observed but only Pi� �

P
j Pij are observed
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at the town level� Collect the Lij and Pij into town�level vectors Li and
Pi� and overall vectors L and P�

Covariates observed at each pixel include an elevation� Eij � and a slope�
Sij � To capture spatial association between the Lij � pixel�level spatial ef�
fects ij are introduced� to capture spatial association between the Pi��
town�level spatial e�ects 
i are introduced� That is� the spatial process
governing land use may di�er from that for population�

The joint distribution� p
L�Pj fEijg � fSijg � fijg � f
ig� is speci�ed by
factoring it as

p
P j fEijg � fSijg � f
ig� p
L jP� fEijg � fSijg � fijg� � 
�����

Conditioning is done in this fashion in order to explain the e�ect of pop�
ulation on land use� Causality is not asserted� the conditioning could be
reversed� 
Also� implicit in 
����� is a marginal speci�cation for L and a
conditional speci�cation for P j L��

Turning to the �rst term in 
������ the Pij are assumed conditionally in�
dependent given the E�s� S�s� and 
�s� In fact� we assume Pij �Poisson
�ij��
where

log�ij � �� � ��Eij � ��Sij � 
i � 
�����

Thus Pi� � Poisson
�i��� where log�i� � log
P

j �ij � log
P

j exp
�� �
��Eij � ��Sij � 
i�� In other words� the Pij inherit the spatial e�ect as�
sociated with Pi�� Also� fPijg jPi� � Multinomial
Pi�� f�ijg�� where �ij �
�ij��i��

In the second term in 
������ conditional independence of the Lij given
the P �s� E�s� S�s� and �s is assumed� To facilitate computation� we ag�
gregate to � km � � km resolution� 
The discussion regarding Figure ���
in Subsection ����� supports this�� Since Lij lies between � and ��� it is
assumed that Lij �Binomial
��� qij�� i�e�� that the sixteen � km � � km
pixels that comprise a given � km � � km pixel are i�i�d� Bernoulli random
variables with qij such that

log

�
qij

�� qij

�
� �� � ��Eij � ��Sij � ��Pij � ij � 
�����

For the town�level spatial e�ects� a conditionally autoregressive 
CAR�
prior is assumed using only the adjacent towns for the mean structure� with
variance ��� � and similarly for the pixel e�ects using only adjacent pixels�
with variance ����

To complete the hierarchical model speci�cation� priors for ���� ��� � and
��� 
when the ij are included� are required� Under a binomial� with proper
priors for ��� and ���� a at prior for � and � will yield a proper posterior�
For ��� and ���� inverse Gamma priors may be adopted� Figure ���� o�ers a
graphical representation of the full model�

We now present a brief summary of the data analysis� At the � km x
� km pixel scale� two versions of the model in 
����� were �t� one with
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Figure ���	 Graphical representation of the land usepopulation model�

the ij 
Model �� and one without them 
Model ��� Models � and � were
�tted separately for the northern and southern regions� The results are
summarized in Table ���� point 
posterior median� and interval 
�	� equal
tail� estimate� The population�count model results are little a�ected by the
inclusion of the ij � For the land�use model this is not the case� Interval
estimates for the �xed e�ects coe�cients are much wider when the ij are
included� This is not surprising from the form in 
������ Though the Pij
are modeled and are constrained by summation over j and though the �ij
are modeled dependently through the CAR speci�cation� since neither is
observed� strong collinearity between the Pij and �ij is expected� inating
the variability of the ��s�

Speci�cally� for the population count model in 
������ in all cases the
elevation coe�cient is signi�cantly negative� higher elevation yields smaller
expected population� Interestingly� the elevation coe�cient is more nega�
tive in the north� The slope variable is intended to provide a measure of
the di�erential in elevation between a pixel and its neighbors� However� a
crude algorithm is used within the ARC�INFO software for its calculation�
diminishing its value as a covariate� Indeed� higher slope would typically
encourage lower expected population� While this is roughly true for the
south under either model� the opposite emerges for the north� The infer�
ence for the town�level spatial variance component ��� is consistent across
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Model� M� M�

Region� North South North South

Population model parameters�
�� ��	�� ����	 ��	�� �����


elev� 
������������ 
������������ 
��������	��� 
�����������

�� ���	 ����� ���� �����

slope� 
���������� 
���������	� 
���������� 
��������	��

��� ���� ���� ���� ����

���������� 
���������� 
���������� 
����������

Land use model parameters�
�� ���� ����� ���� ����


elev� 
���������� 
���������	�� 
�������	�� 
�����������

�� ���	 ��	� ���� �����

slope� 
����������� 
���������� 
����	������ 
���	�������

�� �	��� ����� ����� �����

������ 
�	���������� 
������������ 
������������ 
������������

��� � � ���� 	��	

���	����	� 
	������	��

Table ��� Parameter estimation �point and interval estimates� for Models � and
� for the northern and southern regions�

all models� Homogeneity of spatial variance for the population model is
acceptable�

Turning to 
������ in all cases the coe�cient for population is signi�cantly
negative� There is a strong relationship between land use and population
size� increased population increases the chance of deforestation� in support
of the primary hypothesis for this analysis� The elevation coe�cients are
mixed with regard to signi�cance� However� for both Models � and �� the
coe�cient is always at least ��� larger in the north� Elevation more strongly
encourages forest cover in the north than in the south� This is consistent
with the discussion of the preceding paragraph but� apparently� the ef�
fect is weaker in the presence of the population e�ect� Again� the slope
covariate provides inconsistent results� but is insigni�cant in the presence
of spatial e�ects� Inference for the pixel�level spatial variance component
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����� �����

��	�
����	����
�	�������	�
��	�����	����
���	��������	����
���	��������	����
���	��������	���
�������

Figure ���
 Imputed population �on the square root scale� at the pixel level for
north and south regions�

does not criticize homogeneity across regions� Note that ��� is signi�cantly
larger than ��� � Again� this is expected� With a model having four popula�
tion parameters to explain ���� q�ijs as opposed to a model having three
population parameters to explain ��	 ��is� we would expect much more
variability in the �ijs than in the 
�is � Finally� Figure ���� shows the
imputed population at the � km � � km pixel level�

The approach of Section ��� will be di�cult to implement with more
than two mutually misaligned areal data layers� due mostly to the multi�
ple labeling of atoms and the needed higher�way look�up table� However�
the approach of this section suggests a simpler strategy for handling this
situation� First� rasterize all data layers to a common scale of resolution�
Then� build a suitable latent regression model at that scale� with condi�
tional distributions for the response and explanatory variables constrained
by the observed aggregated measurements for the respective layers�

Zhu� Carlin� and Gelfand 
����� consider regression in the point�block
misalignment setting� illustrating with the Atlanta ozone data pictured in
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Figure ���� Recall that in this setting the problem is to relate several air
quality indicators 
ozone� particulate matter� nitrogen oxides� etc�� and a
range of sociodemographic variables 
age� gender� race� and a socioeco�
nomic status surrogate� to the response� pediatric emergency room 
ER�
visit counts for asthma in Atlanta� GA� Here the air quality data is collected
at �xed monitoring stations 
point locations� while the sociodemographic
covariates and response variable is collected by zip code 
areal summaries��
In fact� the air quality data is available as daily averages at each mon�
itoring station� and the response is available as daily counts of visits in
each zip code� Zhu et al� 
����� use the methods of Section ��� to realign
the data� and then �t a Poisson regression model on this scale� Since the
data also involves a temporal component� we defer further details until
Subsection ��	���

��� Exercises

�� Suppose we estimate the average value of some areal variable Y 
B� over
a block B by the predicted value Y 
s��� where s� is some central point
of B 
say� the population�weighted centroid�� Prove that V ar
Y 
s��� �
V ar
Y 
B�� for any s� in B� Is this result still true if Y 
s� is nonstation�
ary�

�� Derive the form for HB
�� given below 
����� 
Hint� This may be easiest
to do by gridding the Bk�s� or through a limiting Monte Carlo integration
argument��

�� Suppose g is a di�erentiable function on ��� and suppose Y 
s� is a mean�
zero stationary process� Let Z
s� � g
Y 
s�� and Z
B� � �

jBj
R
B
Z
s�ds�

Approximate V ar
Z
B�� and Cov
Z
B�� Z
B���� 
Hint� Try the delta
method here��

�� De�ne a process 
for convenience� on ��� such that bY 
B� de�ned as
above 
����� does not converge almost surely to Y 
B��

	� Consider the subset of the ���� scallop data sites formed by the rectangle
having opposite vertices 
����W� ���	N� and 
���	W� ����N� 
refer to
Figure ���� as well as Figure ������ This rectangle includes �� locations�
the full scallop data are provided both in S�SpatialStats and also
at www�biostat�umn�edu��brad�data�myscallops�dat 
the latter has
the advantage of including our transformed variable� log�tcatch�����


a� Krige the block average of log�tcatch��� for this region by simu�
lating from the posterior predictive distribution given all of the ����
data� Adopt the model and prior structure in Example ���� and use
equation 
���� implemented through 
����� to carry out the genera�
tion�
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Figure ���� �

� scallop data� with rectangle over which a block average is desired�


b� Noting the caveats regarding vague priors mentioned just below equa�
tion 
	���� change to a more informative prior speci�cation on the spa�
tial variance components� Are your �ndings robust to this change�

�� Suppose that Figure ���� gives a 
nested� subdivision of the region in
Figure ���� where we assume the disease count in each subsection is
Poisson�distributed with parameter m� or m�� depending on which value

� or �� a subregional binary measurement assumes� Suppose further
that these Poisson variables are independent given the covariate� Let
the observed disease counts in Region I and Region II be y� � ��� and
y� � ���� respectively� and adopt independent Gamma
a� b� priors for
m� and m� with a � ��	 and b � ���� so that the priors have mean 	�

roughly the average observed count per subregion� and variance 	����


a� Derive the full conditional distributions for m� and m�� and ob�
tain estimates of their marginal posterior densities using MCMC or
some other approach� 
Hint� To improve the numerical stability of
your algorithm� you may wish to transform to the log scale� That is�
reparametrize to 
� � log
m�� and 
� � log
m��� remembering to
multiply by the Jacobian 
exp

i�� i � �� �� for each transformation��
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Figure ���� Subregional map for motivating example�


b� Find an estimate of E
Y�jy�� the predictive mean of Y�� the total
disease count in the shaded region� 
Hint� First estimate E
Y�ajy�
and E
Y�bjy�� where Y�a and Y�b are the subtotals in the left 
Region
I� and right 
Region II� portions of Region III��


c� Obtain a sample from the posterior predictive distribution of Y��
p
y�jy�� Is your answer consistent with the naive one obtained from
equation 
������

�� For the Tompkins County data� available on our website at address
www�biostat�umn�edu��brad�data�tompkins�dat and with support�
ing information on StatLib at lib�stat�cmu�edu�datasets�csb�� ob�
tain smoothed estimates of the underlying block group�level relative risks
of disease by modifying the log�relative risk model 
����� to


k�i�j � 	� � 	�uij � 	�wij � 	�uijwij � �k �

where we assume


a� �k
iid� N
�� ���� 
global smoothing�� and


b� � � CAR
��� i�e�� �k j �k� ��k � N
�

��k �
�

�nk

�

local smoothing��

Do your estimates signi�cantly di�er� How do they change as you change
��
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�� For the FMPC data and model in Section ����


a� Write an explicit expression for the full Bayesian model� given in
shorthand notation in equation 
������


b� For the full conditionals for �i� Xji� and X �
iE � show that the Gaus�

sian� multinomial� and Poisson 
respectively� are sensible choices as
Metropolis�Hastings proposal densities� and give the rejection ratio

����� in each case�
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CHAPTER �

Multivariate spatial modeling

In this chapter we take up the problem of multivariate spatial modeling� A
conditioning approach� along the lines of the way misalignment was treated
in Chapter � 
e�g�� X followed by Y jX� o�ers one possibility 
see Subsec�
tion ������� However� a broader objective is the provision of joint spatial
modeling for multivariate measurements at point�referenced locations or
over areal units�

Spatial data collected at point locations is often multivariate� For ex�
ample� at a particular environmental monitoring station� levels of several
pollutants would typically be measured 
e�g�� ozone� nitric oxide� carbon
monoxide� PM���� etc��� In atmospheric modeling� at a given site we may
observe surface temperature� precipitation� and wind speed� In examining
commercial real estate markets� for an individual property we may observe
both selling price and total rental income� In each of these illustrations� we
anticipate both dependence between measurements at a particular location�
and association between measurements across locations�

To add generality� one could envision a latent multivariate spatial pro�
cess de�ned over locations in a region� For instance� for a given tree in a
stand� we might be interested in the amount of energy devoted to owering�
to total seed production� and to amount of photosynthate produced� None
of the foregoing quantities can be directly observed� though we anticipate
the foregoing sort of dependence structure� In fact� as we illustrate in Sec�
tion ����� in certain modeling settings we can attach to each location a
vector of random e�ects� e�g�� a vector of spatially varying regression coef�
�cients� Just as one could expect dependence among the components of an
estimated vector of regression coe�cients b�� one could expect a spatially
varying coe�cient vector �
s� to exhibit both within and between location
dependence�

Using the generic notation Y
s� to denote a p � � vector of random
variables at location s� we seek exible� interpretable� and computationally
tractable models to describe the process fY
s� � s � Dg� As earlier� such
processes are described through �nite dimensional distributions� i�e�� by
providing p
Y� where Y � 
Y
si�� ����Y
sn���

The crucial object is the cross�covariance C
s� s�� 	 cov
Y
s��Y
s���� a
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p� p matrix that need not be symmetric 
i�e�� cov
Yj
s�� Yj� 
s
��� need not

equal cov
Yj� 
s�� Yj
s
���� Hence� there is no notion of positive de�nitiveness

associated with C
s� s�� except in a limiting sense� That is� as ks� s�k � ��
C
s� s� is the covariance matrix associated with the vector Y
s�� We have

weak� stationarity if C depends upon s and s� only through the separation
vector s � s�� we have isotropy if C depends upon s and s� through the
distance ks� s�k� Again� since our primary focus in this text is Gaussian
process models 
or mixtures of such processes�� speci�cation of C
s� s�� is
all we need to provide all �nite dimensional distributions�

As in the univariate case� it is evident that not every matrix C
s� s��
which we might propose will be valid� Indeed� validity for a cross�covariance
matrix is clearly more demanding than for a covariance function 
see Sec�
tion ������� We require that for an arbitrary number of and choice of loca�
tions� the resulting np� np covariance matrix for Y must be positive de��
nite� Formal mathematical investigation of this problem 
e�g�� existence the�
orems� su�cient conditions� results for general Hermitian forms� have some
history in the literature� see� e�g�� Rehman and Shapiro 
������ Consistent
with our objective of using multivariate spatial process models in an applied
context� we prefer constructive approaches for such cross�covariance func�
tions� The next three sections describe approaches based upon separability�
coregionalization� moving averages� and convolution� Nonstationarity can
be introduced following the univariate approaches in Section 	��� however�
no details are presented here 
see� e�g�� Gelfand� Schmidt� and Sirmans�
����� Sec� ��� Finally� Section ��� describes multivariate CAR models for
areal data� As usual� our analytic and computational approaches for these
high�dimensional models will be predominantly hierarchical Bayesian�

��� Separable models

Perhaps the most obvious speci�cation of a valid cross�covariance function
for a p�dimensional Y
s� is to let � be a valid correlation function for a
univariate spatial process� let T be a p� p positive de�nite matrix� and let

C
s� s�� � �
s� s�� � T � 
����

In 
����� T 	 
Tij� is interpreted as the covariance matrix associated with
Y
s�� and � attenuates association as s and s� become farther apart� The
covariance matrix for Y resulting from 
���� is easily shown to be

�Y � H 
 T � 
����

where 
H�ij � �
si� sj� and 
 denotes the Kronecker product� �Y is ev�
idently positive de�nite since H and T are� In fact� �Y is convenient to

work with since
���Y�� � jH jp jT jn and ���

Y
� H��
T��� This means that

updating �Y requires working with a p � p and an n � n matrix� rather

than an np � np one� Moreover� if we permute the rows of Y to eY where
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eYT � 
Y�
s��� � � � � Y�
sn�� Y�
s��� � � � � Y�
sn�� � � � � Yp
s��� � � � � Yp
sn��� then
� eY � T 
H�

In fact� working in the fully Bayesian setting� additional advantages ac�
crue to 
����� With � and T a priori independent and an inverse Wishart
prior for T � the full conditional distribution for T � that is� p
T jW���� is
again an inverse Wishart 
e�g�� Banerjee� Gelfand� and Polasek� ������ If
the Bayesian model is to be �tted using a Gibbs sampler� updating T re�
quires a draw of a p� p matrix from a Wishart distribution� substantially
faster than updating the np� np matrix �Y �

What limitations are associated with 
����� Clearly C
s� s�� is symmetric�
i�e�� cov
Y�
si�� Y��
si��� � cov
Y��
si�� Y�
si��� for all i� i�� �� and ��� More�
over� it is easy to check that if � is stationary� the generalized correlation�
also referred to as the coherence in the time series literature 
see� e�g�� Wei�
������ is such that

cov
Y�
s�� Y��
s � h��p
cov
Y�
s�� Y�
s � h��cov
Y��
s�� Y��
s � h��

�
T���p
T��T����

� 
����

regardless of s and h� Also� if � is isotropic and strictly decreasing� then the
spatial range 
see Section ������ is identical for each component of Y
s��
This must be the case since only one correlation function is introduced in

����� This seems the most unsatisfying restriction� since if� e�g�� Y
s� is
a vector of levels of di�erent pollutants at s� then why should the range
for all pollutants be the same� In any event� some preliminary marginal
examination of the Y�
si� for each �� � � �� � � � � p� might help to clarify the
feasibility of a common range�

Additionally� 
���� implies that� for each component of Y
s�� correla�
tion between measurements tends to � as distance between measurements
tends to �� For some variables� including those in our illustration� such
an assumption is appropriate� For others it may not be� in which case
microscale variability 
captured through a nugget� is a possible solution�
Formally� suppose independent �
s� � N

�
�� Diag
� ��

�
� where Diag
� ��

is a p � p diagonal matrix with 
i� i� entry ��i � are included in the model�
ing� That is� we write Y
s� � V
s� � �
s� where V
s� has the covariance
structure in 
����� An increased computational burden results� since the
full conditional distribution for T is no longer an inverse Wishart� and
likelihood evaluation requires working with an np� np matrix�

In a sequence of papers by Le and Zidek and colleagues 
mentioned in the
next subsection�� it was proposed that �Y be taken as a random covariance
matrix drawn from an inverse Wishart distribution centered around 
�����
In other words� an extra hierarchical level is added to the modeling for Y�
In this fashion� we are not specifying a spatial process for Y
s�� rather�
we are creating a joint distribution for Y with a exible covariance matrix�
Indeed� the resulting �Y will be nonstationary� In fact� the entries will have
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no connection to the respective si and sj � This may be unsatisfactory since
we expect to obtain many inconsistencies with regard to distance between
points and corresponding association across components� We may be able
to obtain the posterior distribution of� say� Corr
Y�
si�� Y�
sj��� but there
will be no notion of a range�

The form in 
���� was presented in Mardia and Goodall 
����� who
used it in conjunction with maximum likelihood estimation� Banerjee and
Gelfand 
����� discuss its implementation in a fully Bayesian context� as
we outline in the next subsection�

����� Spatial prediction� interpolation� and regression

Multivariate spatial process modeling is required when we are analyzing
several point�referenced data layers� when we seek to explain or predict
for one layer given the others� or when the layers are not all collected at
the same locations� The last of these is a type of spatial misalignment
that can also be viewed as a missing data problem� in the sense that we
are missing observations to completely align all of the data layers� For
instance� in monitoring pollution levels� we may observe some pollutants
at one set of monitoring sites� and other pollutants at a di�ferent set of
sites� Alternatively� we might have data on temperature� elevation� and
wind speed� but all at di�erent locations�

More formally� suppose we have a conceptual response Z 
s� along with
a conceptual vector of covariates x 
s� at each location s� However� in the
sampling� the response and the covariates are observed at possibly di�er�
ent locations� To set some notation� let us partition our set of sites into
three mutually disjoint groups� let SZ be the sites where only the response
Z 
s� has been observed� SX the set of sites where only the covariates have
been observed� SZX the set where both Z 
s� and the covariates have been
observed� and �nally SU the set of sites where no observations have been
taken�

In this context we can formalize three types of inference questions� One
concerns Y 
s� when s � SX � which we call interpolation� The second con�
cerns Y 
s� for s belonging to SU � which we call prediction� Evidently� pre�
diction and interpolation are similar but interval estimates will be at least
as tight for the latter compared with the former� The last concerns the
functional relationship between X
s� and Y 
s� at an arbitrary site s� along
with other covariate information at s� say U 
s�� We capture this through
E�Y 
s�jX
s��U
s� � and refer to it as spatial regression� Figure ��� o�ers a
graphical clari�cation of the foregoing de�nitions�

In the usual stochastic regressors setting one is interested in the relation�
ship between Y 
s� and X
s� where the pairs 
X
si�� Y 
si��� i � �� � � � � n

suppressing U
si�� are independent� For us� they are dependent with the
dependence captured through a spatial characterization� Still� one may be
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SX

X, Y´

SXY

X, Y

SY

X´, Y

SU

Figure 	�� A graphical representation of the S sets� Interpolation applies to lo
cations in SX� prediction applies to locations in SU � and regression applies to all
locations� Xaug � �X�X��� Yaug � �Y�Y���

interested in the regression of Y 
s� on X
s� at an arbitrary s� Note that
there is no conditional spatial process� Y 
s� j X 
s�� associated with the
bivariate spatial process 
X
s�� Y 
s��� how would one de�ne the joint dis�
tribution of Y 
si� j X 
si� and Y 
si�� j X 
si���

We also note that our modeling structure here di�ers considerably from
that of Diggle� Tawn� and Moyeed 
������ These authors specify a univari�
ate spatial process in order to introduce unobserved spatial e�ects 
say�
V
s�� into the modeling� after which the Y 
s��s are conditionally indepen�
dent given the V 
s��s� In other words� the V 
s��s are intended to capture
spatial association in the means of the Y
s��s� For us� the X 
s��s are also
modeled through a spatial process� but they are observed and introduced
as an explanatory variable with a regression coe�cient� Hence� along with
the Y 
s��s� we require a bivariate spatial process�

Here we provide a fully Bayesian examination of the foregoing questions�
In Subsection ����� we study the case where Y 
s� is Gaussian� but in Sub�
section ����� we allow the response to be binary�

The Gaussian interpolation problem is addressed from an empirical Bayes
perspective in a series of papers by Zidek and coworkers� For instance� Le
and Zidek 
����� and Brown� Le� and Zidek 
����� develop a Bayesian
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interpolation theory 
both spatial and temporal� for multivariate random
spatial data� Le� Sun� and Zidek 
����� extend this methodology to account
for misalignment� i�e�� where possibly not all monitored sites measured the
same set of pollutants 
data missing by design�� Their method produces
the joint predictive distribution for several locations and di�erent time
points using all available data� thus allowing for simultaneous temporal and
spatial interpolation without assuming the random �eld to be stationary�
Their approach provides a �rst�stage multivariate normal distribution for
the observed data� However� this distribution does not arise from a spatial
Gaussian process�

Framing multivariate spatial prediction 
often referred to as cokriging�
in the context of linear regression dates at least to Corsten 
����� and
Stein and Corsten 
������ In this work� the objective is to carry out predic�
tions for a possible future observation� Stein and Corsten 
����� advocate
looking at the prediction problem under a regression setup� They propose
trend surface modeling of the point source response using polynomials in
the coordinates� Typically in trend surface analysis 
Cressie� ������ spa�
tial structure is modeled through the mean but observations are assumed
to be independent� Instead� Stein and Corsten 
����� retain familiar spa�
tial dependence structure but assume the resultant covariances and cross�
covariances 
and hence the dispersion matrix� are known� In this context�
Stein et al� 
����� use restricted maximum likelihood to estimate unknown
spatial dependence structure parameters�

����� Regression in the Gaussian case

Assume for the moment a single covariate with no misalignment� and let
X � 
X
s��� � � � � X
sn��T and Y � 
Y 
s��� � � � � Y 
sn��T � be the measure�
ments on the covariates and the response� respectively� Supposing that X
s�
is continuous and that is it meaningful to model it in a spatial fashion� our
approach is to envision 
perhaps after a suitable transformation� a bivariate
Gaussian spatial process�

W 
s� �

�
X 
s�
Y 
s�

�
� N 
� 
s� � T � � 
����

which generates the data� We assume W
s� is distributed as in 
�����
With misalignment� let X be the vector of observed X
s��s at the sites

in SXY � RX � while Y will be the vector of Y 
s��s the sites in SXY � SY �
If we let X� denote the vector of missing X observations in SY and Y� the
vector of missing Y observations in SX � then in the preceding discussion
we can replace X and Y by the augmented vectors Xaug � 
X�X�� and
Yaug � 
Y�Y��� see Figure ��� for clari�cation� After permutation to line
up the X �s and Y �s� they can be collected into a vector Waug � In the
Bayesian model speci�cation� X� and Y� are viewed as latent 
unobserved�
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vectors� In implementing a Gibbs sampler for model��tting� we update the
model parameters given X� and Y� 
i�e�� given Waug�� and then update

X��Y�� given X� Y� and the model parameters� The latter updating is
routine since the associated full conditional distributions are normal� Such
augmentation proves computationally easier with regard to bookkeeping
since we retain the convenient Kronecker form for �W� That is� it is easier
to marginalize overX� and Y� after simulation than before� For convenience
of notation� we suppress the augmentation in the sequel�

In what we have called the prediction problem� it is desired to predict
the outcome of the response variable at some unobserved site� Thus we are
interested in the posterior predictive distribution p
y
s��jy�x�� We note
that x
s�� is also not observed here� On the other hand� the interpolation
problem may be regarded as a method of imputing missing data� Here
the covariate x
s�� is observed but the response is !missing�" Thus our
attention shifts to the posterior predictive distribution For the regression
problem� the distribution of interest is p
E�Y 
s��jx
s�� j x
s���y�x��

For simplicity� suppose �
s� � 
��� ���
T � independent of the site co�

ordinates� 
With additional �xed site�level covariates for Y 
s�� say U
s��
we would replace �� with ��
s� � �TU
s��� Then� from 
����� for the
pair 
X
s�� Y 
s��� p
y
s�jx
s�� ��� ��� �

�� is N
�
�� � ��x
s�� ��

�
� That is�

E�Y 
s�jx
s� � �� � ��x
s�� where

�� � �� � T��
T��

��� �� �
T��
T��

� and �� � T�� � T �
��

T��
� 
��	�

So� given samples from the joint posterior distribution of 
��� ��� T���� we
directly have samples from the posterior distributions for the parameters
in 
��	�� and thus from the posterior distribution of E�Y 
s�jx
s� �

Rearrangement of the components of W as below 
���� yields�
X

Y

�
� N

��
���
���

�
� T 
H 
��

�
� 
����

which simpli�es calculation of the conditional distribution of Y given X�

Assuming a Wishart prior for T � completing the Bayesian speci�cation
requires a prior for ��� ��� and �� For 
��� ���� for convenience we would
take a vague but proper bivariate normal prior� A suitable prior for � de�
pends upon the choice of � 
h���� Then we use a Gibbs sampler to simulate
the necessary posterior distributions� The full conditionals for �� and ��
are in fact Gaussian distributions� while that of the T matrix is inverted
Wishart as already mentioned� The full conditional for the � parameter
�nds � arising in the entries in H � and so is not available in closed form�
A Metropolis or slice sampling step can be employed for its updating�

Under the above framework� interpolation presents no new problems� Let
s� be a new site at which we would like to predict the variable of interest�
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We �rst modify the H 
�� matrix forming the new matrix H� as follows�

H� 
�� �

�
H 
�� h 
��

h 
��
T

�
�� ��

�
� 
����

where h 
�� is the vector with components �
s� � sj ���� j � �� �� � � � � n� It
then follows that

W� 	 
W 
s�� � � � � �W
sn��T � N

�
�n�� 


�
��
��

�
� H� 
��
 T

�
�


����
Once again a simple rearrangement of the above vector enables us to ar�
rive at the conditional distribution p
y
s��jx
s���y�x��� T��� as a Gaus�
sian distribution� The predictive distribution for the interpolation problem�
p
y
s��jy�x�� can now be obtained by marginalizing over the parameters�
i�e��

p
y
s��jy�x� �

Z
p
y
s��jx
s���y�x��� T��� p
�� T��jx
s���y�x� � 
����

For prediction� we do not have x
s��� But this does not create any new
problems� as it may be treated as a latent variable and incorporated into
x�� This only results in an additional draw within each Gibbs iteration� and
is a trivial addition to the computational task�

����� Avoiding the symmetry of the cross�covariance matrix

In the spirit of Le and Zidek 
������ we can avoid the symmetry in �W
noted above 
����� Instead of directly modeling �W as H 
��
 T � we can
add a further hierarchical level� with p
�Wj�� T � following an inverted
Wishart distribution with mean H 
��
T � All other speci�cations remain
as before� Note that the marginal model 
i�e�� marginalizing over �W� is no
longer Gaussian� However� using standard calculations� the resulting cross�
covariance matrix is a function of � 
s� s����� retaining desirable spatial
interpretation� Once again we resort to the Gibbs sampler to arrive at the
posteriors� although in this extended model the number of parameters has
increased substantially� since the elements of �W are being introduced as
new parameters�

The full conditionals for the means �� and �� are still Gaussian and it is
easily seen that the full conditional for �W is inverted Wishart� The full
conditional distribution for � is now proportional to p
�Wj�� T �p
��� a
Metropolis step may be employed for its updating� Also� the full conditional
for T is no longer inverted Wishart and a Metropolis step with an inverted
Wishart proposal is used to sample the T matrix� All told� this is indeed
a much more computationally demanding proposition since we now have
to deal with the �n � �n matrix �W with regard to sampling� inversion�
determinants� etc�
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����	 Regression in a probit model

Now suppose we have binary response from a point�source spatial dataset�
At each site� Z 
s� equals � or � according to whether we observed !failure"
or !success" at that particular site� Thus� a realization of the process can
be partitioned into two disjoint subregions� one for which Z
s� � �� the
other Z
s� � �� and is called a binary map 
DeOliveira� ������ Again� the
process is only observed at a �nite number of locations� Along with this
binary response we have a set of covariates observed at each site� We follow
the latent variable approach for probit modeling as in� e�g�� DeOliveira�

������ Let Y 
s� be a latent spatial process associated with the sites and
let X 
s� be a process that generates the values of a particular covariate� in
particular� one that is misaligned with Z
s� and is sensible to model in a
spatial fashion� For the present we assume X
s� is univariate but extension
to the multivariate case is apparent� Let Z
s� � � if and only if Y 
s� � ��
We envision our bivariate process W
s� � 
X
s�� Y 
s��T distributed as in

����� but where now �
s� � 
��� �� � �TU 
s��T � with U
s� regarded as
a p � � vector of �xed covariates� Note that the conditional variance of
Y 
s� given X
s� is not identi�able� Thus� without loss of generality� we set
T�� � �� so that the T matrix has only two parameters�

Now� we formulate a probit regression model as follows�

P 
Z
s� � � j x
s��U
s���� ��� ��� T��� T���

� #

��
�� � ��X 
s� ��TU 
s�

�
�
q

�� T �
��

T��

�
�


�����

Here� as in 
��	�� �� � �� � 
T���T������ and �� � T���T���
The posterior of interest is p
��� ����� T��� T�����y j x� z�� where z �


z
s��� � � � � z
sn��T is a vector of ��s and ��s� The �tting again uses MCMC�
Here� X � 
X
s��� � � � � X
sn��T and Y � 
Y 
s��� � � � � Y 
sn��T as in Sub�
section ������ except that Y is now unobserved� and introduced only for
computational convenience� Analogous to 
������

X

Y

�
� N

��
���

����U�

�
� T 
H 
��

�
� 
�����

where U � 
U
s��� � � � � U
sn��T �
From 
������ the full conditional distribution for each latent Y 
si� is a

univariate normal truncated to a set of the form fY 
si� � �g or fY 
si� �
�g� The full conditionals for �� and �� are both univariate normal� while
that of � is multivariate normal with the appropriate dimension� For the
elements of the T matrix� we may simulate �rst from a Wishart distribution

as mentioned in Subsection ������ and then proceed to scale it by T��� or we
may proceed individually for T�� and T�� using Metropolis�Hastings over
a restricted convex subset of a hypercube 
Chib and Greenberg� ������
Finally� � can be simulated using a Metropolis step� as in Subsection ������
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Misalignment is also treated as in Subsection ������ introducing appropriate
latent X� and Y��

With posterior samples from p
��� ����� T��� T���� j x� z�� we immedi�
ately obtain samples from the posterior distributions for �� and ��� Also�
given x
s��� 
����� shows how to obtain samples from the posterior for a par�
ticular probability� such as p
P 
Z
s�� � � jx
s���U
s����� ��� ��� T��� T���
j x
s���x� z� at an unobserved site s�� clarifying the regression structure�
Were x
s�� not observed� we could still consider the chance that Z
s��
equals �� This probability� P 
Z
s�� � � jU
s����� ��� ��� T��� T���� arises
by averaging over X
s��� i�e��Z

P 
Z
s�� � � j x
s���U
s����� ��� ��� T��� T��� p
x
s��j��� T��� dx
s�� �


�����
In practice� we would replace the integration in 
����� by a Monte Carlo
integration� Then� plugging into this Monte Carlo integration� the foregoing
posterior samples would yield essentially posterior realizations of 
������

Both the prediction problem and the interpolation problem may be
viewed as examples of indicator kriging 
e�g�� Solow� ����� DeOliveira�
������ For the prediction case we seek p
z
s��jx� z�� realizations from this
distribution arise if we can obtain realizations from p
y
s��jx� z�� But

p
y
s�� j x� z� �

Z
p
y
s�� j x�y� p
yjx� z�d y � 
�����

Since the �rst distribution under the integral in 
����� is a univariate nor�
mal� as in Subsection ������ the posterior samples of Y immediately provide
samples of Y 
s��� For the interpolation case we seek p
z
s�� j x
s���x� z��
Again we only need realizations from p
y
s�� j x
s���x� z�� but

p
y
s�� j x
s���x� z� �

Z
p
y
s�� j x
s���x�y� p
y j x
s���x� z�d y � 
�����

As with 
������ the �rst distribution under the integral in 
����� is a uni�
variate normal�

Example ��� 
Gaussian model�� Our examples are based upon an ecolog�
ical dataset collected over a west�facing watershed in the Negev Desert in
Israel� The species under study is called an isopod� and builds its residence
by making burrows� Some of these burrows thrive through the span of a
generation while others do not� We study the following variables at each
of ���� sites� The variable !dew" measures time in minutes 
from � a�m��
to evaporation of the morning dew� The variables !shrub" and !rock" den�
sity are percentages 
the remainder is sand� characterizing the environment
around the burrows� In our �rst example we try to explain shrub density

Y� through dew duration 
X�� In our second example we try to explain
burrow survival 
Z� through shrub density� rock density� and dew duration�
treating only the last one as random and spatial� We illustrate the Gaussian
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Figure 	�� Spatial locations of the isopod burrows data� The axes represent the
eastings and the northings on a UTM projection�

case for the �rst example with ��� of the sites o�ering both measurements�
��� sites providing only the shrub density� and ��� containing only the dew
measurements�

The spatial locations are displayed in Figure ��� using rescaled planar
coordinates after UTM projection� The rectangle in Figure ��� is roughly
��� km by �	� km� Hence the vector X consists of ��� � ��� � ��	 mea�
surements� while the vector Y consists of ��� � ��� � ��� measurements�
For these examples we take the exponential correlation function� �
h��� �
e��h� We assign a vague inverse gamma speci�cation for the parameter
�� namely an IG
�� ������� This prior has in�nite variance and suggests a
range 
���� of ��	 km� which is roughly half the maximum pairwise dis�
tance in our region� We found little inference sensitivity to the mean of this
prior� The remaining prior speci�cations are all rather noninformative� i�e��
a N

�
�� Diag
���� ����

�
prior for 
��� ��� and an IW 
�� Diag
������ �������

for T � That is� E
T��� � E
T��� � ������ E
T��� � �� and the variances of
the Tij �s do not exist�

Table ��� provides the �	� credible intervals for the regression param�
eters and the decay parameter �� The signi�cant negative association be�
tween dew duration and shrub density is unexpected but is evident on a
scatterplot of the ��� sites having both measurements� The intercept �� is
signi�cantly high� while the slope �� is negative� The maximum distance
in the sample is approximately ����� km� so the spatial range� computed
from the point estimate of ��� from Table ���� is approximately ���� km�
or about ��� of the maximum distance�
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��	 MULTIVARIATE SPATIAL MODELING

Quantiles
Parameter ��	� 	�� ���	�

�� ������ �����	 �����	
�� 	���� 	���� 	�	��
T�� �	���	 ��	���� �������
T�� ����	� ������ ���	��
T�� 	�	�� ����� �����
� 
correlation coef�� ������ �����	 ������
�� 
intercept� 	���� ����� �����
�� 
slope� ������ ������ �����	
�� 	�	�� ����	 �����
� ������ ������ ������

Table 	�� Posterior quantiles for the shrub density�dew duration example�
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Figure 	�� Posterior distributions for inference at the location s�� denoted by ��	
in the previous �gure� Line legend� dotted line denotes p �EY �s��jx�s��� j x�y�
�regression�� solid line denotes p �y�s�� j x�s���x�y� �prediction�� and dashed line
denotes p �y�s�� j x�y� �interpolation��

In Figure ���
a� we show the relative performances 
using posterior den�
sity estimates� of prediction� interpolation� and regression at a somewhat
central location s�� indicated by an !�" in Figure ���� The associated X
s��
has the value ����� minutes� Regression 
dotted line�� since it models the
means rather than predicting a variable� has substantially smaller vari�
ability than prediction 
solid line� or interpolation 
dashed line�� In Fig�
ure ���
b�� we !zoom in" on the latter pair� As expected� interpolation has
less variability due to the speci�cation of x
s��� It turns out that in all
cases� the observed value falls within the associated intervals� Finally� in
Figure ��� we present a three�dimensional surface plot of E
Y 
s�jx�y� over
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Figure 	�� For the Gaussian analysis case� a threedimensional surface plot of
E �Y �s�jx�y� over the isopod burrows regional domain�

the region� This plot reveals the spatial pattern in shrub density over the
watershed� Higher measurements are expected in the eastern and particu�
larly the southeastern part of the region� while relatively fewer shrubs are
found in the northern and western parts�

Example ��� 
Probit model�� Our second example uses a smaller data set�
from the same region as Figure ���� which has ��� burrows of which �� do
not provide the dew measurements� Here the response is binary� governed
by the success 
Y � �� or failure 
Y � �� of a burrow at a particular site�
The explanatory variables 
dew duration� shrub density� and rock density�
relate� in some fashion� to water retention� Dew measurements are taken
as the X �s in our modeling with shrub and rock density being U� and U��
respectively� The prior speci�cations leading to the probit modeling again
have vague bivariate normal priors for 
��� ��� and also for �� which is two�
dimensional in this example� For � we again assign a noninformative inverse
gamma speci�cation� the IG
�� ������� We generate T�� and T�� through
scaling a Wishart distribution for T with prior IW 
�� Diag
������ ��������

In Table ���� we present the �	� credible intervals for the parameters
in the model� The positive coe�cient for dew is expected� It is interesting
to note that shrub and rock density seem to have a negative impact on
the success of the burrows� This leads us to believe that although high
shrub and rock density may encourage the hydrology� it is perhaps not
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Quantiles
Parameter ��	� 	�� ���	�

�� �	���	 �����	 ������
�� ��	�� ����� �����
T�� �����	 ������ �������
T�� ����� ����� ���	�
� ������ ������ ������
�� 
intercept� ����� ���	� �����
�� 
dew slope� ����� ����� ����	
�� 
shrub� �����	� ������� �������
�� 
rock� �������� ������	� ��������

Table 	�� Posterior quantiles for the burrow survival example�

conducive to the growth of food materials for the isopods� or encourages
predation of the isopods� The spatial range parameter again explains about
��� of the maximum distance� Figure ��	 presents the density estimates
for the posteriors p 
P 
Z
s�� � � j x
s���U
s����� ��� ��� j x
s���x� z� and
p 
P 
Z
s�� � � jU
s����� ��� ��� T��� T��� j x� z�� with s� being a central lo�
cation and x
s�� � ���� minutes 
after � a�m��� to compare performance of
interpolation and prediction� As expected� interpolation provides a slightly
tighter posterior distribution�

��� Coregionalization models �

����� Coregionalization models and their properties

We now consider a constructive modeling strategy to add exibility to

���� while retaining interpretability and computational tractability� Our
approach is through the linear model of coregionalization 
LMC�� as for
example in Grzebyk and Wackernagel 
����� and Wackernagel 
������ The
term !coregionalization" is intended to denote a model for measurements
that covary jointly over a region�

The most basic coregionalization model� the so�called intrinsic speci�
�cation� dates at least to Matheron 
������ It arises as Y
s� � Aw
s�
where the components of w
s� are i�i�d� spatial processes� If the wj
s�
have mean � and are stationary with variance � and correlation function
�
h�� then E
Y
s�� is � and the cross�covariance matrix� �Y�s�Y�s� 	
C
s � s�� � �
s � s��AAT � Letting AAT � T this immediately reveals
the equivalence between this simple intrinsic speci�cation and the separa�
ble covariance speci�cation as in Section ��� above� As in Subsection ������

© 2004 by CRC Press LLC



COREGIONALIZATION MODELS � ���

0.38 0.40 0.42 0.44 0.46 0.48 0.50

0
5

1
0

1
5

2
0

0.38 0.40 0.42 0.44 0.46 0.48 0.50

0
5

1
0

1
5

2
0

Figure 	�� Estimated posterior densities for the probit data analysis� solid
line indicates P �Z�s�� � � jX�s���U�s��� �� ��� ���� while dashed line indicates
P �Z�s�� � � jU�s��� �� ��� ��� T��� T����

the term !intrinsic" is taken to mean that the speci�cation only requires
the �rst and second moments of di�erences in measurement vectors and
that the �rst moment di�erence is � and the second moments depend
on the locations only through the separation vector s � s�� In fact here
E
Y
s� � Y
s��� � � and �

��Y�s�Y�s� � G
s � s�� where G
h� �

C
���C
h� � T��
s�s��T � �
s�s��T where � is a valid variogram� Of
course� as in the p � � case� we need not begin with a covariance function
but rather just specify the process through � and T� A more insightful
interpretation of !intrinsic" is that given in equation 
����� We assume A
is full rank and� for future reference� we note that A can be assumed to be
lower triangular� No additional richness accrues to a more general A�

A more general LMC arises if again Y
s� � Aw
s� but now the wj
s�
are independent but no longer identically distributed� In fact� let the wj
s�
process have mean �j � variance �� and correlation function �j
h�� Then
E
Y
s�� � A� where �T � 
��� � � � � �p� and the cross�covariance matrix
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associated with Y
s� is now

�Y�s�Y�s� 	 C
s� s�� �

pX
j��

�j
s� s��Tj � 
���	�

where Tj � aja
T
j with aj the jth column of A� Note that

P
j Tj � T�

More importantly� we note that such linear combination produces station�
ary spatial processes� We return to this point in Section ������

The one�to�one relationship between T and lower triangular A is stan�
dard� For future use� when p � � we have a�� �

p
T��� a�� � T��p

T��
and

a�� �
q
T�� � T �

��

T��
� When p � � we add a�� � T��p

T��
� a�� � T��T���T��T��p

T��T���T �
��

p
T��

and a�� �

r
T�� � T �

��

T��
� �T��T���T��T���

T���T��T���T �
��

�

Lastly� if we introduce monotonic isotropic correlation functions� we will
be interested in the range associated with Yj
s�� An advantage to 
���	�
is that each Yj
s� has its own range� In particular� for p � � the range
for Y�
s� solves ��
d� � ���	� while the range for Y�
s� solves the weighted
average correlation�

a�����
d� � a�����
d�

a��� � a���
� ���	 � 
�����

Since �� and �� are monotonic the left side of 
����� is decreasing in d�
Hence� solving 
����� is routine� If we have p � �� we need in addition the
range for Y�
s�� We require the solution of

a�����
d� � a�����
d� � a�����
d�

a��� � a��� � a���
� ���	 � 
�����

The left side of 
����� is again decreasing in d� The form for general p is
clear�

In practice� the �j are parametric classes of functions� Hence the range d
is a parametric function that is not available explicitly� However� within a
Bayesian context� when models are �tted using simulation�based methods�
we obtain posterior samples of the parameters in the �j �s� as well as A�
Each sample� when inserted into the left side of 
����� or 
������ enables
solution for a corresponding d� In this way� we obtain posterior samples of
each of the ranges� one�for�one with the posterior parameter samples�

Extending in a di�erent fashion� we can de�ne a process having a general
nested covariance model 
see� e�g�� Wackernagel� ����� as

Y
s� �
X

Y�u
s� �

rX
u��

A�uw�u
s� � 
�����

where the Y�u are independent intrinsic LMC speci�cations with the com�
ponents ofw�u having correlation function �u� The cross�covariance matrix
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associated with 
����� takes the form

C
s� s�� �

rX
u��

�u
s� s��T�u � 
�����

with T�u � A�u
A�u�T � The T�u are full rank and are referred to as
coregionalization matrices� Expression 
����� can be compared to 
���	��
Note that r need not be equal to p� but �Y�s �

P
uT

�u� Also� recent

work of Vargas�Guzm$an et al� 
����� allows the w�u
s�� hence the Y�u
s�
in 
������ to be dependent�

Returning to the more general LMC� in applications we introduce 
���	�
as a spatial random e�ects component of a general multivariate spatial
model for the data� That is� we assume

Y
s� � �
s� � v
s� � �
s� � 
�����

where �
s� is a white noise vector� i�e�� �
s� � N
��D� where D is a p� p
diagonal matrix with 
D�jj � ��j � In 
������ v
s� � Aw
s� following 
���	�
as above� but further assuming that the wj
s� are mean�zero Gaussian
processes� Lastly �
s� arises from �j
s� � XT

j 
s��j � Each component can
have its own set of covariates with its own coe�cient vector�

As in Section 	��� 
����� can be viewed as a hierarchical model� At the
�rst stage� given f�j � j � �� � � � � pg and fv
si�g� the Y
si�� i � �� � � � � n are
conditionally independent with Y
si� � N
�
si��v
si��D�� At the second

stage� the joint distribution of v 	 
v
s��� � � � �v
sn��
T

is N
��
Pp

j��Hj 

Tj�� where Hj is n�n with 
Hj�ii� � �j
si�si��� Concatenating the Y
si�
into an np � � vector Y 
and similarly �
si� into ��� we can marginalize
over v to obtain

p
Y j f�jg�D� f�jg�T� � N

	

� �

pX
j��


Hj 
Tj� � In�n 
D

�
A � 
�����

Prior distributions on f�jg� f��j g� T� and the parameters of the �j complete
the Bayesian hierarchical model speci�cation�

����� Unconditional and conditional Bayesian speci�cations

Equivalence of likelihoods

The LMC of the previous section can be developed through a conditional
approach rather than a joint modeling approach� This idea has been elab�
orated in� e�g�� Royle and Berliner 
����� and Berliner 
������ who refer to
it as a hierarchical modeling approach to multivariate spatial modeling and
prediction� In the context of say v
s� � Aw
s� where the wj
s� are mean�
zero Gaussian processes� by taking A to be lower triangular the equivalence
and associated reparametrization are easy to see� Upon permutation of the
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components of v
s� we can� without loss of generality� write p
v
s�� �
p
v�
s��p
v�
s�jv�
s�� � � � p
vp
s�jv�
s�� � � � � vp��
s��� In the case of p � ��
p
v�
s�� is clearly N
��T���� i�e� v�
s� �

p
T��w�
s� � a��w�
s�� a�� �

�� But p
v�
s�jv�
s�� � N
�
T��v��s

T��
� T�� � T �

��

T��

�
� i�e� N

�
a��
a��

v�
s�� a���

�
� In

fact� from the previous section we have �v �
Pp

j��Hj 
 Tj � If we per�

mute the rows of v to %v �
�
v���v��

�T
� where v�l � 
vl
s��� � � � � vl
sn��T

for l � �� �� then �v �
Pp

j��Tj 
Hj � Again with p � � we can calcu�

late E
v��jv��� � a��
a��
v�� and �v���jv��� � a���H�� But this is exactly

the mean and covariance structure associated with variables fv�
si�g given
fv�
si�g� i�e�� with v�
si� � a��

a��
v�
si� � a��w�
si�� Note that as in Subsec�

tion ������ there is no notion of a conditional process here� Again there is
only a joint distribution for v���v�� given any n and any s�� � � � � sn� hence
a conditional distribution for v�� given v���

Suppose we write v�
s� � ��w�
s� where �� � � and w�
s� is a mean �
spatial process with variance � and correlation function �� and we write
v�
s�jv�
s� � �v�
s� ���w�
s� where �� � � and w�
s� is a mean � spatial
process with variance � and correlation function ��� The parametrization

�� ��� ��� is obviously equivalent to 
a��� a��� a���� i�e�� a�� � ��� a�� �
���� a�� � �� and hence to T� i�e�� to 
T��� T��� T���� that is� T�� � ��� �
T�� � ���� � T�� � ����� � ��� �

Extension to general p is straightforward but notationally messy� We
record the transformations for p � � for future use� First� v�
s� � ��w�
s��
v�
s�jv�
s� � ���j�v�
s� � ��w�
s� and v�
s�jv�
s�� v�
s� � ���j�v�
s� �
���j�v�
s� � ��w�
s�� Then a�� � ��� a�� � ���j���� a�� � ��� a�� �
���j���� a�� � ���j��� and a�� � ��� But also a�� �

p
T��� a�� �

T��p
T��

� a�� �
q
T�� � T �

��

T��
� a�� � T��p

T��
� a�� �

q
T��T���T��T��
T���T��T���T �

��
� and a�� �r

T�� � T �
��

T��
� �T��T���T��T���

T���T��T���T �
��

�

Advantages to working with the conditional form of the model are cer�
tainly computational and possibly mechanistic or interpretive� For the for�
mer� with the !�� �" parametrization� the likelihood factors and thus� with
a matching prior factorization� models can be �tted componentwise� Rather
than the pn�pn covariance matrix involved in working with v we obtain p
covariance matrices each of dimension n�n� one for v��� one for v��jv���
etc� Since likelihood evaluation with spatial processes is more than an order
n� calculation� there can be substantial computational savings in using the
conditional model� If there is some natural chronology or perhaps causality
in events� then this would determine a natural order for conditioning and
hence suggest natural conditional speci�cations� For example� in the illus�
trative commercial real estate setting of Example ���� we have the income

I� generated by an apartment block and the selling price 
P � for the block�
A natural modeling order here is I � then P given I �
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Equivalence of prior speci�cations

Working in a Bayesian context� it is appropriate to ask about choice of
parametrization with regard to prior speci�cation� Suppose we let �j be

the parameters associated with the correlation function �j � Let �T �

��� � � � ��p�� Then the distribution of v depends upon T and �� Sup�
pose we assume a priori that p
T��� � p
T�p
�� � p
T�

Q
j p
�j�� Then

reparametrization� using obvious notation� to the 
���� space results on a
prior p
������ � p
����

Q
j p
�j��

Standard prior speci�cation for T would of course be an inverse Wishart�
while standard modeling for 
����� would be a product inverse gamma by
normal form� In the present situation� when will they agree� We present the
details for the p � � case� The Jacobian from T � 
��� ��� �� is jJj � ��� �
hence in the reverse direction it is ��T��� Also jTj � T��T�� � T �

�� � ����
�
�

and

T�� �
�

T��T�� � T �
��

�
T�� �T��
�T�� T��

�
�

�

����
�
�

�
����� � ��� �����
����� ���

�
�

After some manipulation we have the following result�

Result �� T � IW�
�� 
��D����� that is�

p
T� � jTj� ���
� exp

�
��

�
tr
��DT���


�

where D � Diag
d�� d�� and �� � � � � if and only if

��� � IG

�
� � �

�
�
d�
�

�
� ��� � IG

�
� � �

�
�
d�
�

�
� and �j��� � N

�
��
���
d�

�
�

Note also that the prior in 
���� space factors into p
����p
��� � �� to match
the likelihood factorization�

This result is obviously order dependent� If we condition in the reverse
order� ��� � ��� � and � no longer have the same meanings� In fact� writing this
parametrization as 
%��� � %��� � %��� we obtain equivalence to the above inverse
Wishart prior for T if and only if %��� � IG

�
	��
� � d��

�
� %��� � IG

�
	��
� � d��

�
�

and %�j%��� � N
�

��
�
��
d�

�
�

The result can be extended to p � � but the expressions become messy�
However� if p � � we have�

Result �� T � IW�
�� 
��D���� that is�

p
T� � jTj� ���
� exp

�
��

�
tr
��DT���


�

where now where D � Diag
d�� d�� d�� and �� � ����� if and only if ��� �
IG
�
	��
� � d��

�
� ��� � IG

�
	
� �

d�
�

�
� ��� � IG

�
	��
� � d��

�
� ���j�j��� � N

�
��


��
d�

�
�
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���j�j��� � N
�

��

��
d�

�
� and ���j�j��� � N

�
��


��
d�

�
� Though there is a one�

to�one transformation from T�space to 
�����space� a Wishart prior with
nondiagonal D implies a nonstandard prior on 
�����space� Moreover� it
implies that the prior in 
�����space will not factor to match the likelihood
factorization�

Returning to the model in 
������ the presence of white noise in 
�����
causes di�culties with the attractive factorization of the likelihood under
conditioning� Consider again the p � � case� If

Y�
s� � XT
� 
s��� � v�
s� � ��
s�

and Y�
s� � XT
� 
s��� � v�
s� � ��
s� �


�����

then the conditional form of the model writes

Y�
s� � XT
� 
s��� � ��w�
s� � ��u�
s�

and Y�
s�jY�
s� � XT
� 
s��� � �Y�
s� � ��w�
s� � ��u�
s� �


�����

In 
������ w�
s� and w�
s� are as above with u�
s�� u�
s� � N
�� ��� in�
dependent of each other and the wl
s�� But then� unconditionally� Y�
s�
equals

XT
� 
s�e�� � �

�
XT

� 
s��� � ��w�
s� � ��u�
s�
�

� ��w�
s� � ��u�
s�

� XT
� 
s�e�� �XT

� 
s���� � ���w�
s� � ��w�
s� � ���u�
s�� � ��u�
s� �

�����

In attempting to align 
����� with 
����� we require X�
s� � X�
s�� whence

�� � e������� We also see that v�
s� � ���w�
s����w�
s�� But� perhaps
most importantly� ��
s� � ���u�
s� � ��u�
s�� Hence ��
s� and ��
s� are
not independent� violating the white noise modeling assumption associated
with 
������ If we have a white noise component in the model for Y�
s�
and also in the conditional model for Y�
s�jY�
s� we do not have a white
noise component in the unconditional model speci�cation� Obviously� the
converse is true as well�

If u�
s� � �� i�e�� the Y�
s� process is purely spatial� then� again with
X�
s� � X�
s�� the conditional and marginal speci�cations agree up to
reparametrization� More precisely� the parameters for the unconditional
model are ��� ��� �

�
� with T��� T��� T��� ��� and ��� For the conditional

model we have ��� ��� �
�
� with ��� ��� �� ��� and ��� We can appeal to

the equivalence of 
T��� T��� T��� and 
��� ��� �� as above� Also note that
if we extend 
����� to p � �� in order to enable conditional and marginal
speci�cations to agree� we will require a common covariate vector and that
u�
s� � u�
s� � � � � � up��
s� � �� i�e�� that all but one of the processes is
purely spatial�
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����� Spatially varying coregionalization models

A possible extension of the LMC would replace A by A
s� and thus de�ne

Y
s� � A
s�w
s� � 
���	�

We refer to the model in 
���	� as a spatially varying LMC� Following the
notation in Section ������ let T
s� � A
s�A
s�T � Again A
s� can be taken
to be lower triangular for convenience� Now C
s� s�� is such that

C
s� s�� �
X

�j
s� s��aj
s�aj
s�� � 
�����

with aj
s� the jth column of A
s�� Letting Tj
s� � aj
s�a
T
j 
s�� again�P

Tj
s� � T
s�� We see from 
����� that Y
s� is no longer stationary� Ex�
tending the intrinsic speci�cation for Y
s�� C
s� s�� � �
s� s��T
s�� which
is a multivariate version of the case of a spatial process with a spatially
varying variance�

This motivates natural de�nition of A
s� through its one�to�one corre�
spondence with T
s� 
again from Section ������ since T
s� is the covariance
matrix for Y
s�� In the univariate case choices for ��
s� include ��
s� 	��
i�e�� a parametric function of location� ��
x
s�� � g
x
s���� where x
s� is
some covariate used to explain Y
s� and g
�� � � 
then g
x
s�� is typically
x
s� or x�
s��� or ��
s� is itself a spatial process 
e�g�� log��
s� might be
a Gaussian process�� In practice� T
s� � g
x
s��T will likely be easiest to
work with�

Note that all of the discussion in Section ����� regarding the relationship
between conditional and unconditional speci�cations is applicable here�
Particularly� if p � � and T
s� � g
x
s��T then 
T��� T��� T��� is equiv�
alent to 
��� ��� ��� and we have a��
s� �

p
g
x
s���� a��
s� �

p
g
x
s����

and a�� �
p
g
x
s�����

����	 Model��tting issues

This subsection starts by discussing the computational issues in �tting the
joint multivariate model presented in Subsection ������ It will be shown that
it is a challenging task to �t this joint model� On the other hand� making
use of the equivalence of the joint and conditional models� as discussed in
Section ������ we demonstrate that it is much simpler to �t the latter�

Fitting the joint model

Di�erent from previous approaches that have employed the coregionaliza�
tion model� our intent is to follow the Bayesian paradigm� For this purpose�
the model speci�cation is complete only after assigning prior distributions
to all unknown quantities in the model� The posterior distribution of the
set of parameters is obtained after combining the information about them
in the likelihood 
see equation 
������ with their prior distributions�
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Observing equation 
������ we see that the parameter vector de�ned as
	 consists of f�jg�D� f�jg�T� j � �� � � � � p� Adopting a prior that assumes
independence across j we take p
	� �

Q
j p
�j� p
�j� p
��j � p
T�� Hence

p
	jy� is given by

p
	jy� � p
y j f�jg�D� f�jg�T� p
	� �

For the elements of �j � a normal mean�zero prior distribution with large
variance can be assigned� resulting in a full conditional distribution that
will also be normal� Inverse gamma distributions can be assigned to the
elements of D� the variances of the p white noise processes� If there is
no information about such variances� the means of these inverse gammas
could be based on the least squares estimates of the independent models
with large variances� Assigning inverse gamma distributions to ��j will result
in inverse gamma full conditionals� The parameters of concern are the ele�
ments of �j and T� Regardless of what prior distributions we assign� the full
conditional distributions will not have a standard form� For example� if we
assume that �j is the exponential correlation function� �j
h� � exp
��jh��
a gamma prior distribution can be assigned to the �j �s� In order to obtain
samples of the �j �s we can use the Metropolis�Hastings algorithm with� for
instance� log�normal proposals centered at the current log�j �

We now consider how to sample T� the covariance matrix among the
responses at each location s� Due to the one�to�one relationship between T
and the lower triangular A� one can either assign a prior to the elements of
A� or set a prior on the matrixT� The latter seems to be more natural� since
T is interpreted as the covariance matrix of the elements of Y
s�� As T
must be positive de�nite� we use an inverse Wishart prior distribution with
� degrees of freedom and meanD�� i�e�� the scale matrix is 
��p���
D�����
If there is no information about the prior mean structure of T� rough
estimates of the elements of the diagonal of D� can be obtained using
ordinary least squares estimates based on the independent spatial models
for each Yj
s�� j � �� � � � � p� A small value of �
� p� �� would be assigned
to provide high uncertainty in the resulting prior distribution�

To sample from the full conditional for T� Metropolis�Hastings updates
are a place to start� In our experience� random walk Wishart proposals
do not work well� and importance sampled Wishart proposals have also
proven problematic� Instead� we recommend updating the elements of T
individually� In fact� it is easier to work in the unconstrained space of the
components of A� so we would reparametrize the full conditional from T to
A� Random walk normal proposals for the a�s with suitably tuned variances
will mix well� at least for p � � or �� For larger p� repeated decomposition
of T to A may prove too costly�
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Fitting the conditional model

Section ����� showed the equivalence of conditional and unconditional spec�
i�cations in terms of v
s�� Here we write the multivariate model for Y
s�
in its conditional parametrization and see that the inference procedure is
simpler than for the multivariate parametrization� Following the discussion
in Section ������ for a general p� the conditional parametrization is

Y�
s� � XT
� 
s��� � ��w�
s�

Y�
s� j Y�
s� � XT
� 
s��� � ��j�Y�
s� � ��w�
s�

��� 
�����

Yp
s� j Y�
s�� � � � � Yp
s� � XT
p 
s��p � �pj�Y�
s�

� � � �� �pjp��Yp��
s� � �pwp
s� �

In 
������ the set of parameters to be estimated is 	c � f��������g� where
�T � 
��j�� ��j�� ��j�� � � � � �pjp���� �T � 
��� � � � ��p�� �� � 
��� � � � � � ��p��
and � is as de�ned in Subsection ������ The likelihood is given by

fc 
Yj	c� � f
Y�j	c�� f
Y�jY��	c�� � � � f
YpjY�� � � � �Yp���	cp� �

If �
	c� is taken to be
Qp

j�� �
	cj � then this equation implies that the con�
ditioning yields a factorization into p models each of which can be �tted
separately� Prior speci�cation of the parameters was discussed in Subsec�
tion ������ With those forms� standard univariate spatial models that can
be �t using the GeoBUGS package arise�

Example ��� 
Commercial real estate example�� The selling price of com�
mercial real estate� for example an apartment property� is theoretically
the expected income capitalized at some 
risk�adjusted� discount rate� 
See
Kinnard� ����� and Lusht� ����� for general discussions of the basics of
commercial property valuation theory and practice�� Here we consider a
data set consisting of �� apartment buildings� with �� additional trans�
actions held out for prediction of the selling price based on four di�erent
models� The locations of these buildings are shown in Figure ���� The aim
here is to �t a joint model for selling price and net income and obtain a
spatial surface associated with the risk� which� for any transaction� is given
by net income�price� For this purpose we �t a model using the following co�
variates� average square feet of a unit within the building 
sqft�� the age of
the building 
age�� the number of units within the building 
unit�� the sell�
ing price of the transaction 
P �� and the net income 
I�� Figure ��� shows
the histograms of these variables on the log scale� Using the conditional
parametrization� the model is

I
s� � sqft
s��I� � age
s��I� � unit
s��I� � ��w�
s�

P 
s�jI
s� � sqft
s��P� � age
s��P� � unit
s��P� 
�����

�I
s����j� � ��w�
s� � �
s� �
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Figure 	�� Locations of the �� sites �x� used to �t the �price� income� model� and
the �� sites used for prediction �p��

Notice that I
s� is considered to be purely spatial since� adjusted for build�
ing characteristics� we do not anticipate a microscale variability component�
The need for white noise in the price component results from the fact that
two identical properties at essentially the same location need not sell for
the same price due to the motivation of the seller� the buyer� the brokerage
process� etc� 
If a white noise component for I
s� were desired� we would �t
the joint model as described near the beginning of Subsection ������� The
model in 
����� is in accordance with the conditional parametrization in
Subsection ������ The prior distributions were assigned as follows� For all
the coe�cients of the covariates� including ���j�� we assigned a normal �
mean distribution with large variance� For ��� and ��� we used inverse gam�
mas with in�nite variance� We use exponential correlation functions and
the decay parameters �j � j � �� � have a gamma prior distribution arising
from a mean range of one half the maximum interlocation distance� with in�
�nite variance� Finally� ��� � the variance of �
��� has an inverse gamma prior
centered at the ordinary least squares variance estimate obtained from an
independent model for log selling price given log net income�

Table ��� presents the posterior summaries of the parameters of the
model� For the income model the age coe�cient is signi�cantly negative� the
coe�cient for number of units is signi�cantly positive� Notice further that
the correlation between net income and price is very close to �� Nevertheless�
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Figure 	�	 Histograms of the logarithm of the variables�

for the conditional price model age is still signi�cant� Also we see that price
shows a bigger range than net income� Figure ��� 
see also color insert Fig�
ure C�	� shows the spatial surfaces associated with the three processes� net
income� price� and risk� It is straightforward to show that the logarithm of
the spatial surface for risk is obtained through 
�����j����w�
s����w�
s��
Therefore� based on the posterior samples of ���j�� w�
s�� ��� ��� and
w�
s� we are able to obtain samples for the spatial surface for risk� From
Figure ���
c�� we note that the spatial risk surface tends to have smaller
values than the other surfaces� Since logR
s� � log I
s� � logP 
s� with
R
s� denoting the risk at location s� the strong association between I
s�
and P 
s� appears to result in some cancellation of spatial e�ect for log risk�
Actually� we can obtain the posterior distribution of the variance of the spa�
tial process for logR
s�� It is 
�����j���������� � The posterior mean of this
variance is ����� and the �	� credible interval is given by 
������� �������
with median equal ������ The posterior variance of the noise term is given
by ��� � which is in Table ���� If we compare the medians of the posteriors
of the variance of the spatial process of the risk and the variance of the
white noise� we see that the spatial process presents a smaller variance�

© 2004 by CRC Press LLC



��� MULTIVARIATE SPATIAL MODELING

Parameter Mean ��	�� Median ���	��

�I� ���	� ������ ���	� ����	
�I� ������ ������ ������ ������
�I� ����� ��	�� ����� �����
�P� ����	 ����� ����� �����
�P� ������ ����	� ������ ������
�P� ����	� ������ ����	� �����

���j� ���	� ����� ���	� �����
��� ��	�� ����� ����� �����
��� ����� ����� ����� ����	
��� ���	� ����� ���	� �����
�I ����� ����� ��	�� �����
�P ����� ����� ����� �����

rangeI ����� ����� ����� �����
rangeP ������ ��		� ����� �����

corr
I� P � ����� ����� ����� ����	
TII ��	�� ����� ����� �����
TIP ����	 ���	� ����� �����
TPP ����� ����� ����� �����

Table 	�� Posterior summaries� joint model of price and income�

Model
P��

j�� e
�
j

P��
j�� V ar
P 
sj�jy�

Independent� nonspatial ����� �����
Independent� spatial ����� �����
Conditional� nonspatial ����� �����
Conditional� spatial ����� �����

Table 	�� Squared error and sum of the variances of the predictions for the ��
sites left out in the �tting of the model�

the variability of the risk process is being more explained by the residual
component�

In order to examine the comparative performance of the model proposed
above we decided to run four di�erent models for the selling price using each
one to predict at the locations marked with p in Figure ���� For all these
models we used the same covariates as described before� Model � comprises
an independent model for price� i�e�� without a spatial component or net
income� Model � has a spatial component and is not conditioned on net
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Figure 	�
 Image plots of the spatial processes of �a� net income� �b� price� and
�c� risk� see also color insert�

income� In Model � the selling price is conditioned on the net income but
without a spatial component� and Model � has net income as a covariate
and also a spatial component� Table ��� shows both

P��
j�� e

�
j � where ej �

P 
sj� � E
P 
sj�jy�model� and P 
sj� is the observed log selling price for

the jth transaction� and
P��

j�� V ar 
P 
sj�jy�model�� Recall from equation

����� that the former is a measurement of predictive goodness of �t� while
the latter is a measure of predictive variability� It is clear from the table
that the model conditioned on net income and with a spatial component is
best� both in terms of �t and predictive variability�

��� Other constructive approaches �

Here we consider two additional constructive strategies for building valid
cross�covariance functions� The �rst is referred to as a moving average
approach in Ver Hoef and Barry 
������ It is a multivariate version of the
kernel convolution development of Subsection 	���� that convolves process
variables to produce a new process� The second approach convolves valid
covariance functions to produce a valid cross�covariance function�

For the �rst approach� expressions 
	���� and 
	���� suggest several ways
to achieve multivariate extension� Again with Y
s� � 
Y�
s�� � � � � Yp
s��

T �
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de�ne

Y�
s� �

Z
��

k�
u�Z
s� u�du � � � �� � � � � p� 
�����

In this expression� k� is a kernel associated with the �th component of
Y
s�� In practice� k�
u� would be parametric� i�e�� k�
u�	��� The resulting
cross�covariance matrix for Y
s� has entries

C����
s� s
�� � ��

Z
��

Z
��

k�
s� s� � u�k��
u
���
u� u��dudu� � 
�����

This cross�covariance matrix is necessarily valid� It is stationary and� as
may be easily veri�ed� is symmetric� i�e� cov
Y�
s�� Y��
s

��� � C���
s� s�� �
C���
s� s�� � cov
Y��
s�� Y�
s

���� Since the integration in 
����� will not be
possible to do explicitly except in certain special cases� �nite sum approx�
imation of 
������ analogous to 
	����� is an alternative�

An alternative extension to 
	���� introduces lags h�� de�ning

Y�
s� �

Z
��

k
u�Z
s� h� � u�du � � � �� � � � � p�

Now

C����
s� s
�� � ��

Z
��

Z
��

k
s� s� � u�k
u���
h� � h�� � u� u��dudu�

Again the resulting cross�covariance matrix is valid� again the process is
stationary� However now it is easy to verify that the cross�covariance ma�
trix is not symmetric� Whether a lagged relationship between the variables
is appropriate in a purely spatial speci�cation would depend upon the ap�
plication� However� in practice the h� would be unknown and would be con�
sidered as model parameters� A fully Bayesian treatment of such a model
has not yet been discussed in the literature�

For the second approach� suppose C�
s�� � � �� ���� p are each squared
integrable stationary covariance functions valid in two�dimensional space�
We now argue that

C��
s� �

Z
R�

C�
s� t�C�
t�dt �

the convolution of C� with itself� is again a valid covariance function� Writ�

ing bC�
w� �
R
e�iw

ThC�
h�dh� by inversion� C�
s� �
R
eiw

Ts bC��w
���� dw�

But also� from 
������ bC��
w� 	 R
e�iw

T sC��
s�ds �
R
e�is

Ts R C�
s �
t�C�
t�dtds �

R R
eiw

T �s�tC�
s � t�eiw
T tC�
t�dtds � 
 bC�
w���� Self�

convolution of C� produces the square of the Fourier transform� However�
since C�
�� is valid� Bochner�s Theorem 
Subsection ������ tells us thatbC�
w��
����C
�� is a spectral density symmetric about �� But then due to

the squared integrability assumption� up to proportionality� so is 
 bC�
w����
and thus C��
�� is valid�
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The same argument ensures that

C���
s� �

Z
R�

C�
s� t�C��
t�dt 
�����

is also a valid stationary covariance function� cross�convolution provides a
valid covariance function� 
Now bC���
w� � bC�
w� bC�� 
w��� Moreover� it can
be shown that C
s � s�� de�ned by 
C
s � s������ � C���
s � s�� is a valid
p � p cross�covariance function 
see Majumdar and Gelfand� ������ It is
also the case that if each C� is isotropic� then so is C
s � s��� To see this�
suppose kh�k � kh�k� We need only show that C���
h�� � C���
h��� But
h� � Ph� where P is orthogonal� Hence� C���
h�� �

R
C�
h��t�C��
t�dt �R

C�
P 
h� � t��C��
P t�dt �
R
C�
h� � et�C��
et�det � C���
h���

We note that the range associated with C�� is not the same as that for
C� but that if the C��s have distinct ranges then so will the components�
Y�
s�� Computational issues associated with using C
s�s�� in model��tting
are also discussed in Majumdar and Gelfand 
������ We note that 
�����
can in most cases be conveniently computed by transformation to polar
coordinates and then using Monte Carlo integration�

��� Multivariate models for areal data

In this section we explore the extension of univariate CAR methodology

Sections ��� and 	����� to the multivariate setting� Such models can be em�
ployed to introduce multiple� dependent spatial random e�ects associated
with areal units 
as standard CAR models do for a single set of random
e�ects�� In this regard� Kim et al� 
����� presented a !twofold CAR" model
to model counts for two di�erent types of disease over each areal unit� Sim�
ilarly� Knorr�Held and Best 
����� have developed a !shared component"
model for the above purpose� but their methodology too seems speci�c to
the bivariate situation� Knorr�Held and Rue 
����� illustrate sophisticated
MCMC blocking approaches in a model placing three conditionally inde�
pendent CAR priors on three sets of spatial random e�ects in a shared
component model setting�

Multivariate CAR models can also provide coe�cients in a multiple re�
gression setting that are dependent and spatially varying at the areal unit
level� For example� Gamerman et al� 
����� investigate a Gaussian Markov
random �eld 
GMRF� model 
a multivariate generalization of the pairwise
di�erence IAR model� and compare various MCMC blocking schemes for
sampling from the posterior that results under a Gaussian multiple linear
regression likelihood� They also investigate a !pinned down" version of this
model that resolves the impropriety problem by centering the �i vectors
around some mean location� These authors also place the spatial structure
on the spatial regression coe�cients themselves� instead of on extra inter�
cept terms 
that is� in 
	���� we would drop the �i� and replace �� by ��i�
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which would now be assumed to have a CAR structure�� Assun&c%ao et al�

����� refer to these models as space�varying coecient models� and illus�
trate in the case of estimating fertility schedules� Assun&c%ao 
����� o�ers
a nice review of the work to date in this area� Also working with areal
units� Sain and Cressie 
����� o�er multivariate GMRF models� proposing
a generalization that permits asymmetry in the spatial cross�correlation
matrix� They use this approach to jointly model the counts of white and
minority persons residing in the census block groups of St� James Parish�
LA� a region containing several hazardous waste sites�

In the remainder of this section� we present a general� CAR�based ap�
proach for multivariate spatial random variables at areal unit level that is
applicable to either problem�

��	�� Motivating data set

Child growth is usually monitored using anthropometric indicators such
as height adjusted for age 
HAZ�� weight adjusted for height 
WHZ�� and
weight adjusted for age 
WAZ�� Independent analysis of each of these in�
dicators is normally carried out to identify factors inuencing growth that
may range from genetic and environmental factors 
e�g�� altitude� seasonal�
ity� to di�erences in nutrition and social deprivation� Substantial variation
in growth is common within as well as between populations� Recently� geo�
graphical variation in child growth has been thoroughly investigated for the
country of Papua New Guinea in Mueller et al� 
������ Independent spatial
analyses for each of the anthropometric growth indicators identi�ed com�
plex geographical patterns of child growth �nding areas where children are
taller but skinnier than average� others where they are heavier but shorter�
and areas where they are both short and light� These geographical patterns
could be linked to di�erences in diet and subsistence agriculture� leading to
the analysis presented here� see Gelfand and Vounatsou 
����� for further
discussion�

The data for our illustration comes from the ��������� Papua New
Guinea National Nutrition Survey 
NNS� 
Heywood et al�� ������ The
survey includes anthropometric measures 
age� height� weight� of approx�
imately ������ children under 	 years of age� as well as dietary� socioe�
conomic� and demographic data about those children and their families�
Dietary data include the type of food that respondents had eaten the pre�
vious day� Subsequently� the data were coded to �� important staples and
sources of protein� Each child was assigned to a village and each village
was assigned to one of �	�� environmental zones 
resource mapping units�
or RMUs� into which Papua New Guinea has been divided for agriculture
planning purposes� A detailed description of the data is given in Mueller
et al� 
������

The nutritional scores� height adjusted for age 
HAZ�� and weight ad�
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justed for age 
WAZ� that describe the nutritional status of a child were
obtained using the method of Cole and Green 
������ which yields age�
adjusted standard normal deviate Z�scores� The data set was collected at
	�� RMUs� To overcome sparseness and to facilitate computation� we col�
lapsed to �	� spatial units� In the absence of digitized boundaries� Delaunay
tessellations were used to create the neighboring structure in the spatial
units�

Because of the complex� multidimensional nature of human growth� a
bivariate model that considers di�erences in height and weight jointly might
be more appropriate for analyzing child growth data in general and to
identify geographical patterns of growth in particular� We propose the use of
Bayesian hierarchical spatial models and with multivariate CAR 
MCAR�
speci�cations to analyze the bivariate pairs of indicators� HAZ and WAZ�
of child growth� Our modeling reveals bivariate spatial random e�ects at
RMU level� justifying the MCAR speci�cation�

��	�� Multivariate CAR 
MCAR� theory

In this section we broadly follow the notation and approach of Gelfand and
Vounatsou 
������ the approach of Carlin and Banerjee 
����� is similar�

For a vector of univariate variables � � 
��� ��� � � � � �n�� zero�centered
CAR speci�cations were detailed in Section ���� For the MCAR model we
instead let �T � 
������ � � � ��n� where each �i is a p��� Following Mardia

������ the zero�centered MCAR sets

�i j �j ��i��i � N

	

X

j

Bij�j � �i

�
A � i � �� � � � � n � 
�����

where each Bij is p � p� as is each �i� As in the univariate case� Brook�s
lemma 
���� yields a joint density for � of the form

p
� j f�ig� � exp

�
��

�
�T'��
I � %B��


�

where ' is block diagonal with blocks �i and %B is an np� np with 
i� j�th
block Bij �

As in the univariate case� symmetry of '��
I � %B� is required� A con�
venient special case sets Bij � bijIp�p� yielding the symmetry condi�
tion bij�j � bji�i� analogous to 
������ If as in Subsection ����� we take
bij � wij�wi� and �i � w��

i� �� then the symmetry condition is satis�ed�

Kronecker product notation simpli�es the form of '��
I � %B�� That is�
setting %B � B 
 I with B as in 
����� and ' � D��

W 
 � so

'��
I � %B� � 
DW 
����
I �B 
 I� � 
DW �W �
��� �

Again� the singularity of DW �W implies that '��
I �B� is singular� We
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denote this distribution by MCAR
����� As in Chapter � and Chapter 	�
in practice we work with the proper full conditional distributions in 
������
imposing p linear constraints�

To consider remedies to the impropriety� analogous to the univariate case�
we rewrite 
����� in the general form

E
�i j �j ��i�'� � Ri

X
j

Bij�j �

Now '��
I � %B� is revised to '��
I � %BR� where %BR has 
i� j�th block
RiBij � In general� then� the symmetry condition becomes 
���

i RiBij�
T �

���
j RjBji� or �jB

T
ijR

T
i � RjBji�i 
see Mardia� ����� expression 
���� in

this regard��
If Bij � bijIp�p and bij � wij�wi�� the symmetry condition simpli�es

to
wj��jR

T
i � wi�Rj�i �

Finally� if in addition we take �i � w��
i� �� we obtain �RT

i � Rj�� which
reveals that we must have Ri � Rj � R� and thus

�RT � R� � 
�����

For any arbitrary positive de�nite �� a generic solution to 
����� is R � ��t�
Hence� regardless of t� 
����� introduces a total of

�
p��
�

�
� � parameters�

Thus� without loss of generality� we can set t � �� hence R � �I � Calculation
as above yields

���
�

� '��
I � %BR� � 
DW � �W �
 ���� 
�����

Hence� under the same restriction to � as in the univariate case� a nonsin�
gular covariance matrix results� We denote this model by MCAR
�����

If � is constrained to be diagonal with elements ��l � R can be diagonal
with elements �l� yielding the case of p independent CAR speci�cations�
Routine calculations show that each �l must therefore satisfy the same
restrictions as above to ensure a nonsingular covariance matrix� This mod�
eling introduces �p parameters and is conceptually less satisfying than al�
lowing a more general �� However� only if all �l � � is this a special version
of the general � case� since a diagonal R with a general � does not satisfy

������

Lastly� following Gelfand and Vounatsou 
������ we provide a gener�
alization of the MCAR
���� model that permits the introduction of a
spatial autoregression coe�cient for each component of �i� i�e�� a vector
�T � 
��� ��� � � � � �p�� First� suppose we rearrange the rows of the np � �
vector � to block by components� rather than by units� That is� we write
� � 
���� ���� � � � � �n�� ���� � � � � �n�� � � � � ��p� � � � � �np�

T � so that �T � P�
where P is orthogonal� But also from 
������

���
�

� � ��� 
 
DW � �W � � 
���	�
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Let D
����
W WD

����
W � Q(QT where ( is diagonal with entries �i� which

are the eigenvalues of D
����
W WD

����
W � and Q is orthogonal� Then� if Tj �

DW ��jW � it is evident that Tj � D
���
W Q)jQ

TD
���
W � where )j is diagonal

with 
)j�ii � ���j�i� Also� Tj � AjA
T
j where Aj � D

���
W Q)

���
j QT � Note

that A��
j exists if )

����
j exists� But if �j satis�es our earlier restrictions

i�e�� �j � 
���min� �
��
max�� then � � �j�i � � for each i so )

����
j exists�

Next let Gj � A�A
��
j � j � �� � � � � p� and let G be block diagonal with

blocks G�� � � � � Gp� G is evidently full rank provided each �j satis�es the
foregoing eigenvalue condition� Then straightforward calculation reveals
that G��
��� 
 T��
G���T equals	

BBB

���
�� T� ���

�� A�A
T
� � � � ���

�p A�A
T
p

���
�� A�A

T
� ���

�� T� � � � ���
�p A�A

T
p

���
��� � � �

���
���
p� ApA

T
� ���

p� ApA
T
� � � � ���

pp Tp

�
CCCA � 
�����

The matrix in 
����� is immediately positive de�nite and can be viewed
as the inverse covariance matrix associated with 
T � G�T � where � has
the inverse covariance matrix in 
���	� at � � ��� Finally� the distribution

of 
 � 

 �� � � � �
n� where 
 i is p � �� with 
 � P T

�

� P TG�
�

�
P TGP� provides a new multivariate CAR speci�cation� which we denote
by MCAR
����� Note that the linear transformation relating 
 and � is
parametric� i�e�� it involves the unknown �� This class of models has

�
p��
�

�
�

p parameters� and reduces to MCAR
����� when �j � ��� j � �� � � � � p�
Also note the interpretation of the diagonal blocks in 
������ ���

jj Tj is the

inverse of the conditional covariance matrix of 
 �
j given 
 �

l for l � �� � � � � p
and l � j� Hence if �j � �� then ���

jj Tj � ���
jj DW � i�e� f*�j �*�j � � � � �*njg

are conditionally independent given all of the other 
 �� This is analogous
to the interpretation of � � � in the univariate !proper CAR" model from
Exercise 	� Such conditional independence is the anticipated conclusion�
since we are modeling through the inverse covariance matrix�

As a �nal comment� we clarify a distinction between these MCAR models
and the twofold CAR model 
for the case p � �� of Kim� Sun� and Tsu�
takawa 
������ Rather than specifying the joint distribution through the
conditional distributions p
�i j �j ��i as we 
and Mardia� ����� do� they in�
stead specify the 
univariate� full conditional distributions� p
�il j ���il��
where ���il denotes all of the remaining ��s in ��

��	�� Modeling issues

The MCAR speci�cations of the previous section are employed in models
for spatial random e�ects arising in a hierarchical model� For instance�
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suppose we have a linear model with continuous data Yik � i � �� � � � � n� k �
�� � � � �mi� where Yik is a p � � vector denoting the kth response at the
ith areal unit� The mean of the Yik is �ik where �ikj � 
Xik�j�

�j �
�ij � j � �� � � � � p� Here Xik is a p�s matrix with covariates associated with

Yik having jth row 
Xik�j � �
�j is an s � � coe�cient vector associated

with the jth component of the Yik �s� and �ij is the jth component of

the p� � vector �i� Given
n
��j

o
� f�ig and V � the Yik are conditionally

independent N
�ik� V � variables� Adding a prior for
n
��j

o
and V and one

of the MCAR models from Subsection ����� for the �i completes the second
stage of the speci�cation� Finally� a hyperprior on the MCAR parameters
completes the model�

Alternatively� we might change the �rst stage to a multinomial� Here k
disappears and Yi is assumed to follow a multinomial distribution with
sample size ni and with 
p � ��� � probability vector �i� Working on the

logit scale� using cell p � � as the baseline� we could set log
�

�ij
�i�p��

�
�

XT
i �

�j � �ij � j � �� � � � � p� with X�s� ��s and ��s interpreted as in the
previous paragraph� Many other multivariate �rst stages could also be used�
such as other multivariate exponential family models�

Regardless� model��tting is most easily implemented using a Gibbs sam�
pler with Metropolis updates where needed� The full conditionals for the ��s
will typically be normal 
under a normal �rst�stage model� or else require
Metropolis� slice� or adaptive rejection sampling 
Gilks and Wild� ������
For the MCAR
���� and MCAR
���� models� the full conditionals for
the �i�s will be likelihood�adjusted versions of the conditional distributions
that de�ne the MCAR� and are updated as a block� For the MCAR
����
model� we can work with either the � or the  parametrization� With a
non�Gaussian �rst stage� it will be awkward to pull the transformed e�ects
out of the likelihood in order to do the updating� However� with a Gaussian
�rst stage� it may well be more e�cient to work on the transformed scale�
Under the Gaussian �rst stage� the full conditional for V will be seen to
follow an inverse Wishart� as will �� The ��s do not follow standard distri�
butions� in fact� discretization expedites computation� avoiding Metropolis
steps�

We have chosen an illustrative prior for � in the ensuing example fol�
lowing three criteria� First� we insist that � � � to ensure propriety but
allow � � ����� Second� we do not allow � � � since this would vio�
late the similarity of spatial neighbors that we seek� Third� since even
moderate spatial dependence requires values of � near � 
recall the dis�
cussion in Subsection ������ we place prior mass that favors the upper
range of �� In particular� we put equal mass on the following �� values�
�� ���	� ���� � � � � ���� ����� ����� � � � � ����� ����� ����� � � � � �����

Finally� model choice arises here only in selecting among MCAR speci��
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cations. That is, we do not alter the mean vector in these investigations; our
interest here lies solely in comparing the spatial explanations. Multivariate
versions of the Gelfand and Ghosh (1998) criterion (4.13) for multivariate
Gaussian data are employed.

Example 7.4 (Analysis of the child growth data). Recalling the discussion
of Subsection 7.4.2, it may be helpful to provide explicit expressions, with
obvious notation, for the modeling and the resulting association structure.
We have, for the jth child in the ith RMU,

Yij =

�
(HAZ)ij
(WAZ)ij

�
= XT

ij

 
�(H)

�(W )

!
+

 
�
(H)
i

�
(W )
i

!
+

 
�
(H)
ij

�
(W )
ij

!
:

In this setting, under say the MCAR(�;�) model,

cov((HAZ)ij ; (HAZ)i0 j0 j �(H);�(W ); �;�; V )

= cov(�
(H)
i ; �

(H)

i0
) + V11Ii=i0 ;j=j0 ;

cov((WAZ)ij ; (WAZ)i0 j0 j �(H);�(W ); �;�; V )

= cov(�
(W )
i ; �

(W )

i0
) + V22Ii=i0 ;j=j0 ;

and cov((HAZ)ij ; (WAZ)i0 j0 j �(H);�(W ); �;�; V )

= cov(�
(H)
i ; �

(W )

i0
) + V12Ii=i0 ;j=j0 ;

where cov(�
(H)
i ; �

(H)

i0
) = (DW � �W )ii0�11, cov(�

(W )
i ; �

(W )

i0
) = (DW �

�W )ii0�22, and cov(�
(H)
i ; �

(W )

i0
) = (DW ��W )ii0�12. The interpretation of

the components of � and V (particularly �12 and V12) is now clari�ed.

We adopted noninformative uniform prior speci�cations on �(H) and
�(W ). For � and V we use inverse Wishart priors, i.e., ��1 � W (
1; c1),
V �1 �W (
2; c2) where 
1;
2 are p� p matrices and c1; c2 are shape pa-
rameters. Since we have no prior knowledge regarding the nature or extent
of dependence, we choose 
1 and 
2 diagonal; the data will inform about
the dependence a posteriori. Since the Yij 's are centered and scaled on
each dimension, setting 
1 = 
2 = I seems appropriate. Finally, we set
c1 = c2 = 4 to provide low precision for these priors. We adopted for �1 and
�2 the prior discussed in the previous section. Simulation from the full con-
ditional distributions of the �'s and the  i; i = 1; : : : ; n is straightforward
as they are standard normal distributions. Similarly, the full conditionals
for V �1 and ��1 are Wishart distributions. We implemented the Gibbs
sampler with 10 parallel chains.
Table 7.5 o�ers a comparison of three MCAR models using (4.13), the

Gelfand and Ghosh (1998) criterion. The most complex model is preferred,
o�ering su�cient improvement in goodness of �t to o�set the increased
complexity penalty. Summaries of the posterior quantities under this model
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Model G P D1

MCAR(1;�) 34300.69 33013.10 67313.79
MCAR(�;�) 34251.25 33202.86 67454.11
MCAR(�;�) 34014.46 33271.97 67286.43

Table 7.5 Model comparison for child growth data.

Height (HAZ) Weight (WAZ)

Covariate 2.5% 50% 97.5% 2.5% 50% 97.5%

Global mean {0.35 {0.16 {0.01 {0.48 {0.25 {0.15

Coconut 0.13 0.20 0.29 0.04 0.14 0.24

Sago {0.16 {0.07 {0.00 {0.07 0.03 0.12

Sweet potato {0.11 {0.03 0.05 {0.08 0.01 0.12

Taro {0.09 0.01 0.10 {0.19 {0.09 0.00

Yams {0.16 {0.04 0.07 {0.19 {0.05 0.08

Rice 0.30 0.40 0.51 0.26 0.38 0.49

Tinned �sh 0.00 0.12 0.24 0.04 0.17 0.29

Fresh �sh 0.13 0.23 0.32 0.08 0.18 0.28

Vegetables {0.08 0.08 0.25 0.02 0.19 0.35

V11, V22 0.85 0.87 0.88 0.85 0.87 0.88

V12 0.60 0.61 0.63

�11, �22 0.30 0.37 0.47 0.30 0.39 0.52

�12 0.19 0.25 0.35

�1, �2 0.95 0.97 0.97 0.10 0.80 0.97

Table 7.6 Posterior summaries of the dietary covariate coe�cients, covariance
components, and autoregression parameters for the child growth data using the
most complex MCAR model.

are shown in Table 7.6. These were obtained from a posterior sample of
size 1,000, obtained after running a 10-chain Gibbs sampler for 30,000
iterations with a burn-in of 5,000 iterations and a thinning interval of 30
iterations. Among the dietary factors, high consumption of sago and taro
are correlated with lighter and shorter children, while high consumption
of rice, fresh �sh, and coconut are associated with both heavier and taller
children. Children from villages with high consumption of vegetables or
tinned �sh are heavier.
The posterior for the correlation associated with �, �12=

p
�11�22, has

mean 0:67 with 95% credible interval (0:57; 0:75), while the posterior for
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the correlation associated with V , V12=
p
V11V22, has mean 0.71 with 95%

credible interval (0:70; 0:72). In addition, �1 and �2 di�er.

7.5 Exercises

1. Compute the coherence (generalized correlation) in (7.3):

(a) for the cross-covariance in (7.15), and

(b) for the cross-covariance in (7.19).

2. Let Y (s) = (Y1 (s) ; Y2 (s))
T
be a bivariate process with a stationary

cross-covariance matrix function

C (s� s0) =

�
c11 (s� s0) c12 (s� s0)
c12 (s

0 � s) c22 (s� s0)

�
;

and a set of covariates x (s). Let y =
�
yT1 ;y

T
2

�T
be the 2n�1 data vector,

with y1 = (y1 (s1) ; : : : ; y1 (sn))
T
and y2 = (y2 (s1) ; : : : ; y2 (sn))

T
.

(a) Show that the cokriging predictor has the form

E [Y1 (s0) jy] = xT (s0)� + T��1 (y �X�) ;

i.e., as in (2.18), but with appropriate de�nitions of  and �.

(b) Show further that if sk is a site where yl (sk) is observed, then for
l = 1; 2, E [Yl (sk) jy] = yl (sk) if and only if �2l = 0.

3. Suppose Y(s) is a bivariate spatial process as in Exercise 2. In fact,
suppose Y(s) is a Gaussian process. Let Z1(s) = I(Y1(s) > 0), and
Z2(s) = I(Y2(s) > 0). Approximate the cross-covariance matrix of
Z(s) = (Z1(s); Z2(s))

T .

4. The data in www.biostat.umn.edu/~brad/data/ColoradoLMC.dat re-
cord maximum temperature (in tenths of a degree Celsius) and precipi-
tation (in cm) during the month of January 1997 at 50 locations in the
U.S. state of Colorado.

(a) Let X denote temperature and Y denote precipitation. Following the
model of Example 7.3, �t an LMC model to these data using the
conditional approach, �tting X and then Y jX .

(b) Repeat this analysis, but this time �tting Y and then X jY . Show
that your new results agree with those from part (a) up to simulation
variability.

5. If Cl and Cl0 are isotropic, obtain Cll0(s) in (7.31) by transformation to
polar coordinates.
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6. The usual and generalized (but still proper) MCAR models may be
constructed using linear transformations of some nonspatially corre-
lated variables. Consider a vector blocked by components, say � =�
�T1 ;�

T
2

�T
, where each �i is n� 1, n being the number of areal units.

Suppose we look upon these vectors as arising from linear transforma-
tions

�1 = A1v1 and �2 = A2v2 ;

where A1 and A2 are any n � n matrices, v1 = (v11; : : : ; v1n)
T
and

v2 = (v21; : : : ; v2n)
T

with covariance structure

Cov (v1i; v1j) = �11I[i=j]; Cov (v1i; v2j) = �12I[i=j];
and Cov (v2i; v2j) = �22I[i=j] ;

where I[i=j] = 1 if i = j and 0 otherwise. Thus, although v1 and v2 are
associated, their nature of association is nonspatial in that covariances
remain same for every areal unit, and there is no association between
variables in di�erent units.

(a) Show that the dispersion matrix �(v1;v2) equals � 
 I , where � =
(�ij)i;j=1;2.

(b) Show that setting A1 = A2 = A yields a separable covariance struc-
ture for �. What choice of A would render a separable MCAR model,
analogous to (7.34)?

(c) Show that appropriate (di�erent) choices of A1 and A2 yield the gen-
eralized MCAR model, as in (7.36).
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CHAPTER 8

Spatiotemporal modeling

In both theoretical and applied work, spatiotemporal modeling has received
dramatically increased attention in the past few years. This reason behind
this increase is easy to see: the proliferation of data sets that are both
spatially and temporally indexed, and the attendant need to understand
them. For example, in studies of air pollution, we are interested not only
in the spatial nature of a pollutant surface, but also in how this surface
changes over time. Customarily, temporal measurements (e.g., hourly, daily,
three-day average, etc.) are collected at monitoring sites over several years.
Similarly, with climate data we may be interested in spatial patterns of
temperature or precipitation at a given time, but also in dynamic pat-
terns in weather. With real estate markets, we might be interested in how
the single-family home sales market changes on a quarterly or annual ba-
sis. Here an additional wrinkle arises in that we do not observe the same
locations for each time period; the data are cross-sectional, rather than
longitudinal.
Applications with areal unit data are also commonplace. For instance,

we may look at annual lung cancer rates by county for a given state over
a number of years to judge the e�ectiveness of a cancer control program.
Or we might consider daily asthma hospitalization rates by zip code, over
a period of several months.
From a methodological point of view, the introduction of time into spatial

modeling brings a substantial increase in the scope of our work, as we must
make separate decisions regarding spatial correlation, temporal correlation,
and how space and time interact in our data. Such modeling will also carry
an obvious associated increase in notational and computational complexity.
As in previous chapters, we make a distinction between the cases where

the geographical aspect of the data is point level versus areal unit level.
Again the former case is typically handled via Gaussian process models,
while the latter often uses CAR speci�cations. A parallel distinction could
be drawn for the temporal scale: is time viewed as continuous (say, over
<+ or some subinterval thereof) or discrete (daily, quarterly, etc.)? In the
former case there is a conceptual measurement at each moment t. But
in the latter case, we must determine whether each measurement should
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be interpreted as a block average over some time interval (analogous to
block averaging in space), or whether it should be viewed merely as a
measurement, e.g., a count attached to an associated time interval (and
thus analogous to an areal unit measurement). Relatedly, when time is
discretized, are we observing a time series of spatial data, e.g., the same
points or areal units in each time period (as would be the case in our climate
and pollution examples)? Or are we observing cross-sectional data, where
the locations change with time period (as in our real estate setting)? In the
case of time series, we could regard the data as a multivariate measurement
vector at each location or areal unit. We could then employ multivariate
spatial data models as in the previous chapter. With short series, this would
be reasonable; with longer series, we would likely want to introduce aspects
of usual time series modeling.
The nature and location of missing data is another issue that we have

faced before, yet becomes doubly complicated in the spatiotemporal set-
ting. The major goal of traditional kriging methods is to impute missing
values at locations for which no data have been observed. Now we may
encounter time points for which we lack spatial information, locations for
which information is lacking for certain (possibly future) time points, or
combinations thereof. Some of these combinations will be extrapolations
(e.g., predicting future values at locations for which no data have been
observed) that are statistically riskier than others (e.g., �lling in missing
values at locations for which we have data at some times but not others).
Here the Bayesian hierarchical approach is particularly useful, since it not
only helps organize our thinking about the model, but also fully accounts
for all sources of uncertainty, and properly delivers wider con�dence inter-
vals for predictions that are \farther" from the observed data (in either
space or time).
Our Atlanta data set (Figure 6.1) illustrates the sort of misalignment

problem we face in many spatiotemporal settings. Here the number of ozone
monitoring stations is small (just 8 or 10), but the amount of data collected
from these stations over time (92 summer days for each of three years) is
substantial. In this case, under suitable modeling assumptions, we may not
only learn about the temporal nature of the data, but also enhance our un-
derstanding of the spatial process. Moreover, the additional computational
burden to analyze the much larger data set within the Bayesian framework
still turns out to be manageable.
In the next few sections we consider the case of point-level spatial data,

so that point-point and point-block realignment can be contemplated as
in Section 6.1. We initially focus on relatively simple separable forms for
the space-time correlation, but also consider more complex forms that do
not impose the separable models' rather severe restrictions on space-time
interaction. We subsequently move on to spatiotemporal modeling for data
where the spatial component can only be thought of as areal (block) level.
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8.1 General modeling formulation

8.1.1 Preliminary analysis

Before embarking on a general spatiotemporal modeling formulation, con-
sider the case of point-referenced data where time is discretized to custom-
ary integer-spaced intervals. We may look at a spatiotemporally indexed
datum Y (s; t) in two ways. Writing Y (s; t) = Ys(t), it is evident that we
have a spatially varying time series model. Writing Y (s; t) = Yt(s), we
instead have a temporally varying spatial model.
In fact, with locations si; i = 1; : : : ; n and time points t = 1; : : : ; T ,

we can collect the data into Y , an n � T matrix. Column averages of Y
produce a time-averaged spatial process, while row averages yield a domain-
averaged time series. In fact, suppose we center each column of Y by the
vector of row averages and call the resulting matrix eYrows. Then clearlyeYrows1T = 0, but also 1

T
eYrowseY T

rows is an n� n matrix that is the sample
spatial covariance matrix. Similarly, suppose we center each row of Y by
the vector of column averages and call the resulting matrix eYcols. Now
1Tn
eYrows = 0 and 1

n
eY T
rows

eY T
rows is the T �T sample autocorrelation matrix.

One could also center Y by the grand mean of the Y (s; t). Indeed, to ex-
amine residual spatiotemporal structure, adjusted for the mean, one could
�t a suitable OLS regression to the Y (s; t) and examine bE, the matrix of

residuals be(s; t). As above, 1
T
bE bET is the residual spatial covariance matrix

while 1
n
bET bE is the residual autocorrelation matrix.

We can create the singular value decomposition (Harville, 1997) for any
of the foregoing matrices. Say for Y , assuming T < n for illustration, we
can write

Y = UDV T =

TX
l=1

dlulv
T
l ; (8:1)

where U is an n � n orthogonal matrix with columns ul, V is a T � T
orthogonal matrix with columns vl, and D is an n� T matrix of the form�
�
0

�
where � is T � T diagonal with diagonal entries dl; l = 1; : : : ; T .

Without loss of generality, we can assume the dl's are arranged in decreasing
order of their absolute values. Then ulv

T
l is referred to as the lth empirical

orthogonal function (EOF).
Thinking of ul = (ul(s1); : : : ; ul(sn))

T and vl = (vl(1); : : : ; vl(T ))
T , the

expression in (8.1) represents the observed data as a sum of products of
spatial and temporal variables, i.e., Y (si; t) =

P
dlul(si)vl(t). Evidently,

the expansion in (8.1) introduces redundant variables; there are already
nT variables in u1; : : : ;uT . Suppose we approximate Y by its �rst EOF,
that is, Y � d1u1v

T
1 . Then we are saying that Y (si; t) � d1u1(si)v1(t),

i.e., the spatiotemporal process can be approximated by a product of a
spatial process and a temporal process. Note this does not imply a separable
covariance function for Y (s; t) (see (8.18)) since the u1 process and the
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v1 process need not be independent. However, it does yield a reduction
in dimension, introducing n+ T variables to represent Y , rather than nT .
Adding the second EOF yields the approximation Y (si; t) � d1u1(si)v1(t)+
d2u2(si)v2(t), a representation involving only 2(n+T ) variables, and so on.

Note that

Y Y T = UDDTUT = U

�
�2 0
0 0

�
UT =

TX
l=1

d2l ulu
T
l ;

clarifying the interpretation of the dl's. (Of course, Y Y
T = V TDTDV =

V T�2V as well.) For instance, applied to the residual spatial covariance

matrix, 1
T
bE bET , suppose the �rst two terms of the expansion explain most

of the spatial covariance structure. This suggests that the �rst two EOFs
provide a good explanation of bE.
If T > n we would just exchange T and n in the foregoing. Regardless,

EOFs provide an exploratory tool for learning about spatial structure and
suggesting models, in the spirit of the tools described in Section 2.3. For
full inference, however, we require a full spatiotemporal model speci�cation,
the subject to which we now turn.

8.1.2 Model formulation

Modeling for spatiotemporal data can be given a fairly general formulation
that naturally extends that of Chapter 5. Consider point-referenced loca-
tions and continuous time. Let Y (s; t) denote the measurement at location
s at time t. Extending (5.1), for continuous data that we can assume to be
roughly normally distributed, we can write the general form

Y (s; t) = �(s; t) + e(s; t) ; (8:2)

where �(s; t) denotes the mean structure and e(s; t) denotes the residual.
If x(s; t) is a vector of covariates associated with Y (s; t) then we can set
�(s; t) = x(s; t)T�(s; t). Note that this form allows spatiotemporally vary-
ing coe�cients, which is likely to be more generality than we would need
or want; �(s; t) = � is frequently adopted. If t is discretized, �(s; t) = �(t)
might be appropriate if there were enough time points to suggest a tempo-
ral change in the coe�cient vector. Similarly, setting �(s; t) = �(s) yields
spatially varying coe�cients, the topic of Section 10.2. Finally, e(s; t) would
typically be rewritten as w(s; t) + �(s; t), where �(s; t) is a Gaussian white
noise process and w(s; t) is a mean-zero spatiotemporal process.

We can therefore view (8.2) as a hierarchical model with a condition-
ally independent �rst stage given f�(s; t)g and fw(s; t)g. But then, in
the spirit of Section 5.2, we can replace the Gaussian �rst stage with
another �rst-stage model (say, an exponential family model) and write
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Y (s; t) � f(y(s; t) j �(s; t); w(s; t)), where
f(y(s; t) j �(s; t); w(s; t)) = h(y(s; t)) expf[�(s; t)y(s; t)� �(�(s; t))]g ;

(8:3)
where  is a positive dispersion parameter. In (8.3), g(�(s; t)) = �(s; t) +
w(s; t) for some link function g.
For areal unit data with discrete time, let Yit denote the measurement

for unit i at time period t. (In some cases we might obtain replications at
i or t, e.g., the jth cancer case in county i, or the the jth property sold in
school district i.) Analogous to (8.2) we can write

Yit = �it + eit : (8:4)

Now �it = xTit�t (or perhaps just �), and eit = wit + �it where the �it
are unstructured heterogeneity terms and the wit are spatiotemporal ran-
dom e�ects, typically associated with a spatiotemporal CAR speci�cation.
Choices for this latter part of the model will be presented in Section 8.5.
Since areal unit data are often non-Gaussian (e.g., sparse counts), again

we would view (8.4) as a hierarchical model and replace the �rst stage
Gaussian speci�cation with, say, a Poisson model. We could then write
Yit � f(yitj�it; wit), where

f(yit j �it; wit) = h(yit) expf[�ityit � �(�it)]g ; (8:5)

with  again a dispersion parameter, and g(�it) = �it+wit for some suitable
link function g. With replications, we obtain Yijt hence xijt; �ijt, and �ijt.
Now we can write g(�ijt) = �ijt+wijt+ �ijt, enabling separation of spatial
and heterogeneity e�ects.
Returning to the point-referenced data model (8.2), spatiotemporal rich-

ness is captured by extending e(s; t) beyond a white noise process. Be-
low, �'s denote temporal e�ects and w's denote spatial e�ects. Following
Gelfand, Ecker, Knight, and Sirmans (2003), with t discretized, consider
the following partitions for the error e(s; t):

e(s; t) = �(t) + w(s) + �(s; t) ; (8.6)

e(s; t) = �s(t) + �(s; t) ; (8.7)

and e(s; t) = wt(s) + �(s; t) : (8.8)

The given forms avoid speci�cation of space-time interactions. In each of
(8.6), (8.7), and (8.8), the �(s; t) are i.i.d. N(0; �2� ) and independent of the
other processes. This pure error is viewed as a residual adjustment to the

spatiotemporal explanation. (One could allow V ar(�(s; t)) = �
2(t)
� , i.e., an

error variance that changes with time. Modi�cation to the details below is
straightforward.)
Expression (8.6) provides an additive form in temporal and spatial ef-

fects (multiplicative on the original scale if the Y (s; t) are on the log scale).
Expression (8.7) provides temporal evolution at each site; temporal e�ects
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are nested within sites. Expression (8.8) provides spatial evolution over
time; spatial e�ects are nested within time. Spatiotemporal modeling be-
yond (8.6), (8.7), and (8.8) (particularly if t is continuous) necessitates the
choice of a speci�cation to connect the space and time scales; this is the
topic of Section 8.2.
Next, we consider the components in (8.6), (8.7), and (8.8) in more detail.

In (8.6), if t were continuous we could model �(t) as a one-dimensional
stationary Gaussian process. In particular, for the set of actual sale times,
ft1; t2; :::; tmg; � = (�(t1); :::; �(tm))

0 � N(0; �2��(�)) where (�(�))rs =
Corr(�(tr); �(ts)) = �(j tr�ts j;�) for � a valid one-dimensional correlation
function. Typical choices for � include the exponential, exp(�� j tr � ts j),
and Gaussian, exp(��(tr � ts)

2), forms, analogous to the spatial forms in
Table 2.1.
With t con�ned to an indexing set, t = 1; 2; : : : T , we can simply view

�(1); :::; �(T ) as the coe�cients associated with a set of time dummy vari-
ables. With this assumption for the �(t)'s, if in (8.6), w(s) is set to zero,
�(t) is assumed constant over time and X(s; t) is assumed constant over
t, then upon di�erencing we obtain the seminal model for repeat property
sales given in Bailey, Muth, and Nourse (1963). Also within these assump-
tions but restoring � to �(t), we obtain the extension of Knight, Dombrow,
and Sirmans (1995). Alternatively, we might set �(t + 1) = ��(t) + �(t)
where �(t) are i.i.d. N(0; �2�). If � < 1 we have the familiar stationary
AR(1) time series, a special case of the continuous time model of the previ-
ous paragraph. If � = 1 the �(t) follow a random walk. With a �nite set of
times, time-dependent coe�cients are handled analogously to the survival
analysis setting (see, e.g., Cox and Oakes, 1984, Ch. 8).
The autoregressive and random walk speci�cations are naturally ex-

tended to provide a model for the �s(t) in (8.7). That is, we assume
�s(t + 1) = ��s(t) + �s(t) where again the �s(t) are all i.i.d. Thus, there
is no spatial modeling, only independent conceptual time series at each lo-
cation. With spatial time series we can �t this model. With cross-sectional
data, there is no information in the data about � so the likelihood can only
identify the stationary variance �2�=(1��2) but not �2� or �. The case � < 1
with �(t) constant over time provides the models proposed in Hill, Knight,
and Sirmans (1997) and in Hill, Sirmans, and Knight (1999). If � = 1 with
�(t) and X(s; t) constant over time, upon di�erencing we obtain the widely
used model of Case and Shiller (1989). In application, it will be di�cult
to learn about the �s processes with typically one or at most two obser-
vations for each s. The w(s) are modeled as a Gaussian process following
Section 2.2.
For wt(s) in (8.8), assuming t restricted to an index set, we can view

the wt(s) as a collection of independent spatial processes. That is, rather
than de�ning a dummy variable at each t, we conceptualize a separate
spatial dummy process at each t. The components of wt correspond to the
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sites at which measurements were observed in the time interval denoted
by t: Thus, we capture the dynamics of location in a very general fashion.
In particular, comparison of the respective process parameters reveals the
nature of spatial evolution over time.
With a single time dummy variable at each t, assessment of temporal

e�ects would be provided through inference associated with these variables.
For example, a plot of the point estimates against time would clarify size
and trend for the e�ects. With distinct spatial processes, how can we see
such temporal patterns? A convenient reduction of each spatial process to
a univariate random variable is the block average (see expression (6.1)).
To shed the independence assumption for the wt(s), we could instead

assume that wt(s) =
Pt

j=1 vj(s) where the vj(s) are i.i.d. processes, again of
one of the foregoing forms. Now, for t < t�; wt and wt� are not independent
but wt and wt� �wt are. This leads us to dynamic spatiotemporal models
that are the focus of Section 8.4.

8.1.3 Associated distributional results

We begin by developing the likelihood under model (8.2) using (8.6), (8.7),
or (8.8). Assuming t�f1; 2; :::; Tg; it is convenient to �rst obtain the joint
distribution for Y0 = (Y0

1; :::;Y
0
T ) where Y

0
t = (Y (s1; t); :::; Y (sn; t)). That

is, eachYt is n�1 andY is Tn�1. This joint distribution will be multivari-
ate normal. Thus, the joint distribution for the Y (s; t), which are actually
observed, requires only pulling o� the appropriate entries from the mean
vector and appropriate rows and columns from the covariance matrix. This
simpli�es the computational bookkeeping, though care is still required.
In the constant � case, associate with Yt the matrix Xt whose ith row

is X(si; t)
0. Let �t = Xt� and �0 = (�01; :::; �

0
T ): In the time-dependent

parameter case we merely set �t = Xt�(t):
Under (8.6), let �0 = (�(1); : : : ; �(T )), w0 = (w(s1); : : : ;w(sn)) and �

0

= (�(s1; 1), �(s1; 2), :::; �(sn; T ): Then,

Y = �+�
 1n�1 + 1T�1 
w + � (8:9)

where 
 denotes the Kronecker product. Hence, given � along with the
temporal and spatial e�ects,

Y j �;�;w; �2� � N(�+�
 1n�1 + 1T�1 
w; �2� ITn�Tn): (8:10)

Let w � N(0; �2wH(�)). Suppose the �(t) follow an AR(1) model, so that
� � N(0; �2�A(�)) where (A(�))ij = �ji�jj=(1� �2): Hence, if �;w and �
are independent, marginalizing over � and w, i.e., integrating (8.10) with
regard to the prior distribution of � and w, we obtain

Y j �; �2� ; �2�; �; �2w; �
� N

�
�; �2�A(�)
 1n�11

0
n�1 + �2w1T�11

0
T�1 
H(�) + �2� ITn�Tn

�
:

(8:11)
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If the �(t) are coe�cients associated with dummy variables (now � does
not contain an intercept) we only marginalize over w to obtain

Y j �;�; �2� ; �2w ; �
� N

�
�+�
 1n�1 ; �

2
w1T�11

0
T�1 
H(�) + �2� ITn�Tn

�
:

(8:12)

The likelihood resulting from (8.10) arises as a product of independent
normal densities by virtue of the conditional independence. This can fa-
cilitate model �tting but at the expense of a very high-dimensional poste-
rior distribution. Marginalizing to (8.11) or (8.12) results in a much lower-
dimensional posterior. Note, however, that while the distributions in (8.11)
and (8.12) can be determined, evaluating the likelihood (joint density) re-
quires a high-dimensional quadratic form and determinant calculation.

Turning to (8.7), if �0(t) = (�s1(t); :::; �sn(t)) and now we also de�ne
�0 = (�0(1); : : : ;�0(T )) with � as above, then

Y = �+�+ � :

Now

Y j �;�; �2� � N
�
�+� ; �2� ITn�Tn

�
:

If the �si(t) follow an AR(1) model independently across i, then marginal-
izing over �,

Y j �; �2� ; �2�; � � N(�; A(�)
 ITn�Tn + �2� ITn�Tn): (8:13)

For (8.8), let w0
t = (wt(s1); : : : ; wt(sn)) and w0 = (w0

1; : : : ;w
0
T ). Then

with � as above,

Y = �+w + � (8:14)

and

Y j �;w; �2� � N
�
�+w ; �2� ITn�Tn

�
: (8:15)

If wt � N(0; �
2(t)
w H(�(t))) independently for t = 1; : : : ; T , then, marginal-

izing over w,

Y j �; �2� ;�2
w; � � N(� ; D(�2

w; �) + �2� ITn�Tn) ; (8:16)

where �20
w = (�

2(1)
w ; :::; �

2(T )
w ); �0 = (�(1); : : : ; �(T )), and D(�2

w; �) is block

diagonal with the tth block being �
2(t)
w (H(�(t))): Because D is block diago-

nal, likelihood evaluation associated with (8.16) is less of an issue than for
(8.11) and (8.12).

We note that with either (8.7) or (8.8), e(s; t) is comprised of two sources
of error that the data cannot directly separate. However, by incorporating
a stochastic assumption on the �s(t) or on the wt(s), we can learn about
the processes that guide the error components, as (8.13) and (8.16) reveal.
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8.1.4 Prediction and forecasting

We now turn to forecasting under (8.2) with models (8.6), (8.7), or (8.8).
Such forecasting involves prediction at location s0 and time t0; i.e., of
Y (s0; t0): Here s0 may correspond to an already observed location, perhaps
to a new location. However, typically t0 > T is of interest. Such prediction
requires speci�cation of an associated vector of characteristics X(s0; t0):
Also, prediction for t0 > T is available in the �xed coe�cients case. For the
time-varying coe�cients case, we would need to specify a temporal model
for �(t).
In general, within the Bayesian framework, prediction at (s0; t0) follows

from the posterior predictive distribution of f(Y (s0; t0) j Y) where Y de-
notes the observed vector of log selling prices. Assuming s0 and t0 are new,
and for illustration, taking U(s; t) as in (8.6),

f(Y (s0; t0) j Y) =
R
(f(Y (s0; t0) j �; �2� ; �(t0); w(s0))

�f(�;�;w; �2� ; �2�; �; �2w; �; �(t0); w(s0) j Y)):
(8:17)

Using (8.17), given a random draw (��; �2�� ; �(t0)
�; w(s0)

�) from the poste-
rior f(�; �2� ; �(t0); w(s0) j Y), if we draw Y �(s0; t0) from N(X 0(s0; t0)�

�+
�(t0)

� + w(s0)
�; �2�e ); marginally, Y �(s0; t0) � f(Y (s0; t0) j Y):

Using sampling-based model �tting and working with (8.10), we obtain
samples (��; �2�� ; �

2�
� ; �

�; �2�w ; �
�;��;w�) from the posterior distribution,

p(�; �2� ; �
2
�; �; �

2
w; �;�;w j Y). But f(�; �2� ; �

2
�; �; �

2
w; �;�;w; �(t0); w(s0) j

Y) = f(�(t0) j �; �2�; �)�f(w(s0) j w; �2w; �)�f(�; �2� ; �2�; �; �2w; �;�;w j Y):
If, e.g., t0 = T+1; and �(t) is modeled as a time series, f(�(T+1) j �; �2�; �)
is N(��(T ); �2�): If the �(t) are coe�cients associated with dummy vari-
ables, setting �(T +1) = �(T ) is, arguably, the best one can do. The joint
distribution of w and w(s0) is a multivariate normal from which f(w(s0) j
w; �2w; �) is a univariate normal. So if �(t0)

� � f(�(t0) j ��; �2�� ; ��) and
w(s0)

� � f(w(s0) j w�; �2�w ; �
�); along with �� and �2�� we obtain a draw

from f(�; �2� ; �(t0), w(s0) j Y): (If t0�f1; 2; :::; Tg; �(t0) is a component
of �, then �(t0)

� is a component of ��: If s0 is one of the s1; s2; :::; sn,
w�(s0) is a component of w�:) Alternatively, one can work with (8.13).
Now, having marginalized over � and w; Y (s; t) and Y are no longer
independent. They have a multivariate normal distribution from which
f(Y (s; t) j Y;�; �2� ; �2�; �; �2w; �) must be obtained. Note that for multi-
ple predictions, w(s0) is replaced by a vector, say w0. Now f(w0jw; �2w ; �)
is a multivariate normal distribution. No additional complications arise.

Example 8.1 (Baton Rouge home sales).We present a portion of the data
analysis developed in Gelfand et al. (2003) for sales of single-family homes
drawn from two regions in the city of Baton Rouge, LA. The two areas
are known as Sherwood Forest and Highland Road. These regions are ap-
proximately the same size and have similar levels of transaction activity;
they di�er chiey in the range of neighborhood characteristics and house
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Highland Sherwood

Year Repeat Single Repeat Single

1985 25 40 32 29
1986 20 35 32 39
1987 27 32 27 37
1988 16 26 20 34
1989 21 25 24 35
1990 42 29 27 37
1991 29 30 25 31
1992 33 38 39 27
1993 24 40 31 40
1994 26 35 20 34
1995 26 35 21 32

Total 289 365 298 375

Table 8.1 Sample size by region, type of sale, and year.

amenities found within. Sherwood Forest is a large, fairly homogeneous
neighborhood located east, southeast of downtown Baton Rouge. High-
land Road, on the other hand, is a major thoroughfare connecting down-
town with the residential area to the southeast. Rather than being one
homogeneous neighborhood, the Highland Road area consists, instead, of
heterogeneous subdivisions. Employing two regions makes a local isotropy
assumption more comfortable and allows investigation of possibly di�ering
time e�ects and location dynamics.

For these regions, a subsample of all homes sold only once during the pe-
riod 1985 through 1995 (single-sale transactions) and a second subsample
of homes sold more than once (repeat-sale transactions) were drawn. These
two samples can be studied separately to assess whether the population of
single-sale houses di�ers from that of repeat-sale houses. The sample sizes
are provided by year in Table 8.1. The location of each property is de�ned
by its latitude and longitude coordinates, rescaled to UTM projection. In
addition, a variety of house characteristics, to control for physical di�er-
ences among the properties, are recorded at the time of sale. We use age,
living area, other area (e.g., patios, garages, and carports) and number of
bathrooms as covariates in our analysis. Summary statistics for these at-
tributes appear in Table 8.2. We see that the homes in the Highland Road
area are somewhat newer and slightly larger than those in the Sherwood
area. The greater heterogeneity of the Highland Road homes is borne out
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Highland Sherwood

Variable Repeat Single Repeat Single

Age 11.10 12.49 14.21 14.75
(8.15) (11.37) (8.32) (10.16)

Bathrooms 2.18 2.16 2.05 2.02
(0.46) (0.56) (0.36) (0.40)

Living area 2265.4 2075.8 1996.0 1941.5
(642.9) (718.9) (566.8) (616.2)

Other area 815.1 706.0 726.0 670.6
(337.7) (363.6) (258.1) (289.2)

Table 8.2 Mean (standard deviation) for house characteristics by region and type
of sale.

by the almost uniformly higher standard deviations for each covariate. In
fact, we have more than 20 house characteristics in our data set, but elabo-
rating the mean with additional features provides little improvement in R2

and introduces multicollinearity problems. So, we con�ne ourselves to the
four explanatory variables above and turn to spatial modeling to explain a
portion of the remaining variability. Empirical semivariograms (2.9) o�er
evidence of spatial association, after adjusting for house characteristics.

We describe the results of �tting the model with mean �(s) = x(s)T�
and the error structure in (8.8). This is also the preferred model using the
predictive model choice approach of Gelfand and Ghosh (4.13); we omit
details. Fixed coe�cients were justi�ed by the shortness of the observation
period. Again, an exponential isotropic correlation function was adopted.

To complete the Bayesian speci�cation, we adopt rather noninformative
priors in order to resemble a likelihood/least squares analysis. In particular,
we assume a at prior on the regression parameter � and inverse gamma

(a; b) priors for �2� , �
2(t)
w and �(t), t = 1; : : : T . The shape parameter for these

inverse gamma priors was �xed at two, implying an in�nite prior variance.
We choose the inverse gamma scale parameter for all �(t)'s to be equal, i.e.,

b�(1) = b�(2) = : : : = b�(T ) = b�, say, and likewise for �
2(t)
w . Furthermore, we

set b�� = b�2w reecting uncertain prior contribution from the nugget to the
sill. Finally, the exact values of b�� , b�2w and b� vary between region and
type of sale reecting di�erent prior beliefs about these characteristics.
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Variable Repeat Single

Highland region:
intercept (�0) 11.63 (11.59, 11.66) 11.45 (11.40, 11.50)
age (�1) {0.04 ({0.07, {0.02) {0.08 ({0.11, {0.06)
bathrooms (�2) 0.02 ({0.01, 0.04) 0.02 ({0.01, 0.05)
living area (�3) 0.28 (0.25, 0.31) 0.33 (0.29, 0.37)
other area (�4) 0.08 (0.06, 0.11) 0.07 (0.04, 0.09)

Sherwood region:
intercept (�0) 11.33 (11.30, 11.36) 11.30 (11.27, 11.34)
age (�1) {0.06 ({0.07, {0.04) {0.05 ({0.07, {0.03)
bathrooms (�2) 0.05 (0.03, 0.07) 0.00 ({0.02, 0.02)
living area (�3) 0.19 (0.17, 0.21) 0.22 (0.19, 0.24)
other area (�4) 0.02 (0.01, 0.04) 0.06 (0.04, 0.08)

Table 8.3 Parameter estimates (median and 95% interval estimates) for house
characteristics.

Inference for the house characteristic coe�cients is provided in Table 8.3
(point and 95% interval estimates). Age, living area, and other area are
signi�cant in all cases; number of bathrooms is signi�cant only in Sher-
wood repeat sales. Signi�cance of living area is much stronger in Highland
than in Sherwood. The Highland sample is composed of homes from sev-
eral heterogeneous neighborhoods. As such, living area not only measures
di�erences in house size, but may also serve as a partial proxy for con-
struction quality and for neighborhood location within the sample. The
greater homogeneity of homes in Sherwood implies less variability in living
area (as seen in Table 8.2) and reduces the importance of these variables
in explaining house price.

Turning to the error structure, the parameters of interest for each region

are the �
2(t)
w ; the �(t), and �2e . The sill at time t is V ar(Y (s; t)) = �

2(t)
w +�2e .

Figure 8.1 plots the posterior medians of these sills. We see considerable
di�erence in variability over the groups and over time, providing support for
distinct spatial models at each t: Variability is highest for Highland single
sales, lowest for Sherwood repeats. The additional insight is the e�ect of
time. Variability is generally increasing over time.

We can obtain posterior median and interval estimates for �
2(t)
w =(�2e +

�
2(t)
w ); the proportion of spatial variance to total. The strength of the spatial
story is considerable; 40 to 80% of the variability is spatial.

In Figure 8.2 we provide point and interval estimates for the range. The
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Figure 8.1 Posterior median sill by year.

ranges for the repeat sales are quite similar for the two regions, showing
some tendency to increase in the later years of observation. By contrast,
the range for the Highland single sales is much di�erent from that for
Sherwood. It is typically greater and much more variable. The latter again is
a refection of the high variability in the single-sale home prices in Highland.
The resulting posteriors are more dispersed.
Finally, in Figure 8.3, we present the posterior distribution of the block

averages, mentioned at the end of Subsection 8.1.2, for each of the four
analyses. Again, these block averages are viewed as analogues of more fa-
miliar time dummy variables. Time e�ects are evident. In all cases, we
witness somewhat of a decline in magnitude in the 1980s and an increasing
trend in the 1990s.

8.2 Point-level modeling with continuous time

Suppose now that s 2 <2 and t 2 <+ and we seek to de�ne a spatiotem-
poral process Y (s; t). As in Subsection 2.2.1 we have to provide a joint
distribution for an uncountable number of random variables. Again, we do
this through arbitrary �nite dimensional distributions. Con�ning ourselves
to the Gaussian case, we only need to specify a valid spatiotemporal co-
variance function. Here, \valid" means that for any set of locations and
any set of time points, the covariance matrix for the resulting set of ran-
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Figure 8.2 Posterior median and 95% interval estimates for the range by year for
(a) Highland repeat sales, (b) Highland single sales, (c) Sherwood repeat sales, and
(d) Sherwood single sales.

dom variables is positive de�nite. An important point here is that it is not
sensible to combine s and t and propose a valid correlation function on <3.
This is because distance in space has nothing to do with \distance" on the
time scale.
As a result, a stationary spatiotemporal covariance speci�cation is as-

sumed to take the form cov(Y (s; t); Y (s0; t0)) = c(s�s0; t� t0). An isotropic
form sets cov(Y (s; t); Y (s0; t0)) = c(jjs � s0jj; jt � t0j). A frequently used
choice is the separable form

cov(Y (s; t); Y (s0; t0)) = �2�(1)(s� s0;�) �(2)(t� t0; ) ; (8:18)

where �(1) is a valid two-dimensional correlation function and �(2) is a
valid one-dimensional correlation function. Expression (8.18) shows that
dependence attenuates in a multiplicative manner across space and time.
Forms such as (8.18) have a history in spatiotemporal modeling; see, e.g.,
Mardia and Goodall (1993) and references therein.
Why is (8.18) valid? For locations s1; : : : ; sI and times t1; : : : ; tJ , col-

lecting the variables a vector YT
s = (YT (s1); : : : ;Y

T (sI)) where Y(si) =
(Y (si; t1); : : : ; Y (si; tJ))

T , the covariance matrix of Ys is

�Ys
(�2;�; ) = �2Hs(�)
Ht( ) ; (8:19)

where \
" again denotes the Kronecker product. In (8.19), Hs(�) is I � I
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Figure 8.3 Posterior median and 95% interval estimates for the block averages by
year for (a) Highland repeat sales, (b) Highland single sales, (c) Sherwood repeat
sales, and (d) Sherwood single sales.

with (Hs(�))ii0 = �(1)(si � s0i;�), and Ht( ) is J � J with (Ht( ))jj0 =
�(2)(tj � tj0 ; ). Expression (8.19) clari�es that �Ys

is positive de�nite,
following the argument below (7.2). So, Ys will be IJ-dimensional multi-
variate normal with, in obvious notation, mean vector �s(�) and covariance
matrix (8.19).
Given a prior for �; �2;�, and  , the Bayesian model is completely

speci�ed. Simulation-based model �tting can be carried out similarly to
the static spatial case by noting the following. The log-likelihood arising
from Ys is

� 1
2 log

���2Hs(�)
Ht( )
��

� 1
2�2 (Ys � �s(�))T (Hs(�)
Ht( ))

�1(Ys � �s(�)) :
But in fact

���2Hs(�)
Ht( )
�� = (�2)IJ jHs(�)jJ jHt( )jI and (Hs(�) 


Ht( ))
�1 = H�1

s (�) 
 H�1
t ( ) by properties of Kronecker products. In

other words, even though (8.19) is IJ � IJ , we need only the determinant
and inverse for an I�I and a J�J matrix, expediting likelihood evaluation
and hence Gibbs sampling.
With regard to prediction, �rst consider new locations s01; :::; s

0
k with in-

terest in inference for Y (s0k; tj). As with the observed data, we collect the
Y (s0k; tj) into vectorsY(s0k), and the Y(s0k) into a singleKJ�1 vectorYs0 .
Even though we may not necessarily be interested in every component of
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Ys0 , the simplifying forms that follow suggest that, with regard to pro-
gramming, it may be easiest to simulate draws from the entire predictive
distribution f(Ys0 j Ys) and then retain only the desired components.
Since f(Ys0 jYs) has a form analogous to (6.3), given posterior samples

(��g ; �
2�
g ;�

�
g ; 

�
g), we draw Y�

s0;g from f(Ys0 j Ys;�
�
g ; �

2�
g ;�

�
g ; 

�
g), g =

1; : : : ; G. Analogous to (6.4),

f

��
Ys

Ys0

������; �2;�; � = N

��
�s(�)
�s0(�)

�
; �Ys;Ys0

�
(8:20)

where

�Ys;Ys0
= �2

�
Hs(�)
Ht( ) Hs;s0(�)
Ht( )
HT
s;s0(�)
Ht( ) Hs0(�)
Ht( )

�
;

with obvious de�nitions for Hs0(�) and Hs;s0(�). But then the conditional
distribution Ys0 j Ys;�; �

2;�; is also normal, with mean

�s0(�) + (HT
s;s0(�)
Ht(�))(Hs(�)
Ht( ))

�1(Ys � �s(�))
= �s0(�) + (HT

s;s0(�)H
�1
s (�)
 IJ�J )(Ys � �s(�)) ; (8:21)

and covariance matrix

Hs0(�)
Ht( )
�(HT

s;s0 
Ht( ))(Hs(�)
Ht( ))
�1(Hs;s0(�)
Ht( ))

= (Hs0 (�)�HT
s;s0(�)H

�1
s (�)Hs;s(�))
Ht( ) ;

(8:22)

using standard properties of Kronecker products. In (8.21), time disappears
apart from �s0(�), while in (8.22), time \factors out" of the conditioning.
Sampling from this normal distribution usually employs the inverse square
root of the conditional covariance matrix, but conveniently, this is

(Hs0 (�)�HT
s;s0(�)H

�1
s (�)Hs;s0(�))

� 1
2 
H

� 1
2

t ( ) ;

so the only work required beyond that in (6.5) is obtaining H
� 1

2
t ( ), since

H�1
t ( ) will already have been obtained in evaluating the likelihood, fol-

lowing the discussion above.
For prediction not for points but for areal units (blocks) B1; : : : ; BK , we

would set YT (Bk) = (Y (Bk; t1); : : : ; Y (Bk; tJ )) and then further set Y
T
B =

(YT (B1); : : : ;Y
T (BK)). Analogous to (6.6) we seek to sample f(YB j Ys),

so we require f(YB j Ys;�; �
2;�; ). Analogous to (8.20), this can be

derived from the joint distribution f((Ys;YB)
T j �; �2;�; ), which is

N

��
�s(�)
�B(�)

�
; �2

�
Hs(�)
Ht( ) Hs;B(�)
Ht( )
HT
s;B(�)
Ht( ) HB(�)
Ht( )

��
;

with �B(�), HB(�), and Hs;B(�) de�ned as in Section 6.1.2. Thus the
distribution f(YB jYs;�; �

2;�; ) is again normal with mean and covari-
ance matrix as given in (8.21) and (8.22), but with �B(�) replacing �s0(�),
HB(�) replacing Hs0(�), and Hs;B(�) replacing Hs;s0(�). Using the same
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Figure 8.4 Observed 1-hour maximum ozone measurement by day, July 1995, 10
Atlanta monitoring sites.

Monte Carlo integrations as proposed in Section 6.1.2 leads to sampling
the resultant bf(YB j Ys;�; �

2;�; ), and the same technical justi�cation
applies.
If we started with block data, Y (Bi; tj), then following (6.11) and (8.19),

f(YB j �; �2;�; ) = N(�B(�) ; �
2(HB(�)
Ht( )) : (8:23)

Given (8.23), the path for prediction at new points or at new blocks is
clear, following the above and the end of Section 6.1.2; we omit the details.
Note that the association structure in (8.18) allows forecasting of the

spatial process at time tJ+1. This can be done at observed or unobserved
points or blocks following the foregoing development. To retain the above
simplifying forms, we would �rst simulate the variables at tJ+1 associated
with observed points or blocks (with no change of support). We would then
revise Ht(�) to be (J + 1)� (J + 1) before proceeding as above.

Example 8.2 To illustrate the methods above, we use a spatiotemporal
version of the Atlanta ozone data set. As mentioned in Section 6.1, we ac-
tually have ozone measurements at the 10 �xed monitoring stations shown
in Figure 1.3 over the 92 summer days in 1995. Figure 8.4 shows the daily
1-hour maximum ozone reading for the sites during July of this same year.
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Spatial only Spatiotemporal
Point 95% Interval Point 95% Interval

Point A .125 (.040, .334) .139 (.111, .169)
Point B .116 (.031, .393) .131 (.098, .169)
Zip 30317 (east-central) .130 (.055, .270) .138 (.121, .155)
Zip 30344 (south-central) .123 (.055, .270) .135 (.112, .161)
Zip 30350 (north) .112 (.040, .283) .109 (.084, .140)

Table 8.4 Posterior medians and 95% equal-tail credible intervals for ozone levels
at two points, and for average ozone levels over three blocks (zip codes), purely
spatial model versus spatiotemporal model, Atlanta ozone data for July 15, 1995.

There are several sharp peaks, but little evidence of a weekly (7-day) pe-
riod in the data. The mean structure appears reasonably constant in space,
with the ordering of the site measurements changing dramatically for dif-
ferent days. Moreover, with only 10 \design points" in the metro area, any
spatial trend surface we �t would be quite speculative over much of the
study region (e.g., the northwest and southwest metro; see Figure 1.3).
The temporal evolution of the series is not inconsistent with a constant
mean autoregressive error model; indeed, the lag 1 sample autocorrelation
varies between .27 and .73 over the 10 sites, strongly suggesting the need
for a model accounting for both spatial and temporal correlations.

We thus �t our spatiotemporal model with mean �(s; t;�) = �, but with
spatial and temporal correlation functions �(1)(si�si0 ;�) = e��ksi�si0k and
�(2)(tj � tj0 ; ) =  jj�j

0j=(1�  2). Hence our model has four parameters:
we use a at prior for �, an IG(3; 0:5) prior for �2, a G(0:003; 100) prior
for �, and a U(0; 1) prior for  (thus eliminating the implausible possibility
of negative autocorrelation in our data, but favoring no positive value over
any other). To facilitate our Gibbs-Metropolis approach, we transform to
� = log� and � = log( =(1� )), and subsequently use Gaussian proposals
on these transformed parameters.

Running 3 parallel chains of 10,000 iterations each, sample traces (not
shown) again indicate virtually immediate convergence of our algorithm.
Posterior medians and 95% equal-tail credible intervals for the four pa-
rameters are as follows: for �, 0.068 and (0.057, 0.080); for �2, 0.11 and
(0.08, 0.17); for �, 0.06 and (0.03, 0.08); and for  , 0.42 and (0.31, 0.52).
The rather large value of  con�rms the strong temporal autocorrelation
suspected in the daily ozone readings.

Comparison of the posteriors for �2 and � with those obtained for the
static spatial model in Example 6.1 is not sensible, since these parameters
have di�erent meanings in the two models. Instead, we make this com-
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Figure 8.5 Posterior predictive distributions for ozone concentration at point A
and the block average over zip 30350, purely spatial model versus spatiotemporal
model, Atlanta ozone data for July 15, 1995.

parison in the context of point-point and point-block prediction. Table 8.4
provides posterior predictive summaries for the ozone concentrations for
July 15, 1995, at points A and B (see Figure 1.3), as well as for the block
averages over 3 selected Atlanta city zips: 30317, an east-central city zip
very near to two monitoring sites; 30344, the south-central zip containing
the points A and B; and 30350, the northernmost city zip. Results are
shown for both the spatiotemporal model of this subsection and for the
static spatial model previously �t in Example 6.1. Note that all the pos-
terior medians are a bit higher under the spatiotemporal model, except
for that for the northern zip, which remains low. Also note the signi�cant
increase in precision a�orded by this model, which makes use of the data
from all 31 days in July 1995, instead of only that from July 15. Figure 8.5
shows the estimated posteriors giving rise to the �rst and last rows in Ta-
ble 8.4 (i.e., corresponding to the the July 15, 1995, ozone levels at point A
and the block average over the northernmost city zip, 30350). The Bayesian
approach's ability to reect di�ering amounts of predictive uncertainty for
the two models is clearly evident.
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Figure 8.6 Posterior medians and upper and lower .025 quantiles for the predicted
1-hour maximum ozone concentration by day, July 1995; solid lines, point A;
dotted lines, block average over zip 30350 (northernmost Atlanta city zip).

Finally, Figure 8.6 plots the posterior medians and upper and lower .025
quantiles produced by the spatiotemporal model by day for the ozone con-
centration at point A, as well as those for the block average in zip 30350.
Note that the overall temporal pattern is quite similar to that for the data
shown in Figure 8.4. Since point A is rather nearer to several data observa-
tion points, the con�dence bands associated with it are often a bit narrower
than those for the northern zip, but this pattern is not perfectly consistent
over time. Also note that the relative positions of the bands for July 15
are consistent with the data pattern for this day seen in Figure 1.3, when
downtown ozone exposures were higher than those in the northern metro.
Finally, the day-to-day variability in the predicted series is substantially
larger than the predictive variability associated with any given day.

8.3 Nonseparable spatiotemporal models ?

The separable form for the spatiotemporal covariance function in (8.18) is
convenient for computation and o�ers attractive interpretation. However,
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its form limits the nature of space-time interaction. Additive forms, arising
from w(s; t) = w(s) + �(t) with w(s) and �(t) independent may be even
more unsatisfying.
A simple way to extend (8.18) is through mixing. For instance, suppose

w(s; t) = w1(s; t) + w2(s; t) with w1 and w2 independent processes, each
with a separable spatiotemporal covariance function, say c`(s� s0; t� t) =
�2` �

(1)
` (s� s0)�

(2)
` (t � t0); ` = 1; 2. Then the covariance function for w(s; t)

is evidently the sum and is not separable. Building covariance functions
in this way is easy to interpret but yields an explosion of parameters with
�nite mixing. Continuous parametric mixing, e.g.,

c(s� s0; t� t) = �2
Z
�(1)(s� s0;�)�(2)(t� t0; )G (d�; d ) ; (8:24)

yields a function that depends only on �2 and . Such forms have not
received much attention in the literature to date.
Cressie and Huang (1999) introduce a exible class of nonseparable sta-

tionary covariance functions that allow for space-time interaction. How-
ever, they work in the spectral domain and require that c(s � s0; t � t0)
can be computed explicitly, i.e., the Fourier inversion can be obtained in
closed-form. Unfortunately this occurs only in very special cases. Recent
work by Gneiting (2002) adopts a similar approach but obtains very gen-
eral classes of valid space-time models that do not rely on closed form
Fourier inversions. One simple example is the class c(s � s0; t � t0) =
�2(jt � t0j + 1)�1 exp(�jjs� s0jj(jt � t0j + 1)��=2). Here, � is a space-time
interaction parameter; � = 0 provides a separable speci�cation.
Stein (2003) also works in the spectral domain, providing a class of spec-

tral densities whose resulting spatiotemporal covariance function is non-
separable with exible analytic behavior. These spectral densities extend
the Mat�ern form; see (2.13) or the discussion below equation (A.4) in Ap-
pendix A. In particular, the spectral density is

bc(w; v) / [c1(�
2
1 + jjwjj2)�1 + c2(�2 + v2)�2 ]�v :

Unfortunately, the associated covariance function cannot be computed ex-
plicitly; fast Fourier transforms (see Appendix Section A.4) o�er the best
computational prospects. Also, unlike Gneiting's class, separability does
not arise as a special or limiting case. We also mention related work using
\blurring" discussed in Brown, K�aresen, Roberts, and Tonellato (2000).

8.4 Dynamic spatiotemporal models ?

In this section we follow the approach taken in Banerjee, Gamerman, and
Gelfand, (2003), viewing the data as arising from a time series of spatial
processes. In particular, we work in the setting of dynamic models (West
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and Harrison, 1997), describing the temporal evolution in a latent space.
We achieve a class of dynamic models for spatiotemporal data.

Here, there is a growing literature. Non-Bayesian approaches include
Huang and Cressie (1996), Wikle and Cressie (1999), and Mardia et al.
(1998). Bayesian approaches include Tonellato (1997), Sanso and Guenni
(1999), Stroud et al. (2001), and Huerta et al. (2003). The paper by Stroud
et al. is attractive in being applicable to any data set that is continuous in
space and discrete in time and allows straightforward computation using
Kalman �ltering.

8.4.1 Brief review of dynamic linear models

Dynamic linear models, often referred to as state-space models in the time-
series literature, o�er a versatile framework for �tting several time-varying
models (West and Harrison, 1997). We briey outline the general dynamic
linear modeling framework. Thus, let Yt be am�1 vector of observables at
time t. Yt is related to a p�1 vector, �t, called the state vector, through a
measurement equation. In general, the elements of �t are not observable, but
are generated by a �rst-order Markovian process, resulting in a transition
equation. Therefore, we can describe the above framework as

Yt = Ft�t + �t; �t � N (0;��
t) :

�t = Gt�t�1 + �t; �t � N (0;��
t ) ;

where Ft and Gt are m�p and p�p matrices, respectively. The �rst equa-
tion is the measurement equation, where �t is a m � 1 vector of serially
uncorrelated Gaussian variables with mean 0 and an m � m covariance
matrix, ��

t. The second equation is the transition equation with �t being
a p� 1 vector of serially uncorrelated zero-centered Gaussian disturbances
and ��

t the corresponding p� p covariance matrix. Note that under (8.25),
the association structure can be computed explicitly across time, e.g.,
Cov (�t;�t�1) = GtV ar (�t�1) and Cov (Yt;Yt�1) = FtGtV ar (�t�1)F

T
t :

Ft (in the measurement equation) and Gt (in the transition equation) are
referred to as system matrices that may change over time. Ft and Gt may
involve unknown parameters but, given the parameters, temporal evolution
is in a predetermined manner. The matrix Ft is usually speci�ed by the
design of the problem at hand, while Gt is speci�ed through modeling
assumptions; for example, Gt = Ip, the p�p identity matrix would provide
a random walk for �t. Regardless, the system is linear, and for any time
point t, Yt can be expressed as a linear combination of the present �t and
the present and past �t's.
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8.4.2 Formulation for spatiotemporal models

In this section we adapt the above dynamic modeling framework to uni-
variate spatiotemporal models with spatially varying coe�cients. For this
we consider a collection of sites S = fs1; :::; sNs

g, and time-points T =
ft1; :::; tNt

g, yielding observations Y (s; t), and covariate vectors x (s; t), for
every (s; t) 2 S � T:

The response, Y (s; t), is �rst modeled through a measurement equa-
tion, which incorporates the measurement error, � (s; t) ; as serially and
spatially uncorrelated zero-centered Gaussian disturbances. The transition
equation now involves the regression parameters (slopes) of the covariates.
The slope vector, say ~� (s; t), is decomposed into a purely temporal compo-
nent, �t, and a spatiotemporal component, � (s; t). Both these are gener-
ated through transition equations, capturing their Markovian dependence
in time. While the transition equation of the purely temporal component
is as in usual state-space modeling, the spatiotemporal component is gen-
erated by a multivariate Gaussian spatial process. Thus, we may write the
spatiotemporal modeling framework as

Y (s; t) = � (s; t) + � (s; t) ; � (s; t)
ind� N

�
0; �2

�
; (8.25)

� (s; t) = xT (s; t) ~� (s; t) ;
~� (s; t) = �t + � (s; t) ; (8.26)

�t = �t�1 + �t; �t
ind� Np

�
0;��

�
;

and � (s; t) = � (s; t� 1) +w (s; t) :

In (8.26), we introduce a linear model of coregionalization (Section 7.2)

for w(s; t), i.e., w (s; t) = Av (s; t), with v (s; t) = (v1 (s; t) ; :::; vp (s; t))
T
.

The vl (s; t) are serially independent replications of a Gaussian process
with unit variance and correlation function �l (� ;�l), henceforth denoted
byGP (0; �l (� ;�l)), for l = 1; : : : ; p and independent across l. In the current
context, we assume that A does not depend upon (s; t). Nevertheless, this
still allows exible modeling for the spatial covariance structure, as we
discuss below.

Moreover, allowing a spatially varying coe�cient � (s; t) to be associated
with x (s; t) provides an arbitrarily rich explanatory relationship for the x's
with regard to the Y 's (see Section 10.2 in this regard). By comparison,
in Stroud et al. (2001), at a given t, a locally weighted mixture of linear
regressions is proposed and only the purely temporal component of ~� (s; t)
is used. Such a speci�cation requires both number of basis functions and
number of mixture components.

Returning to our speci�cation, note that if vl (�; t) ind� GP (0; � (�;�)), we
have the intrinsic or separable model for w(s; t). Allowing di�erent cor-
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relation functions and decay parameters for the vl (s; t), i.e., vl (�; t) ind�
GP (0; �l (�;�l)) yields the linear model of coregionalization (Section 7.2).
Following Subsection 8.4.1, we can compute the general association struc-

ture for the Y 's under (8.25) and (8.26). For instance, we have the re-
sult that Cov (Y (s; t) ; Y (s0; t� 1)) = xT (s; t) � ~�(s;t); ~�(s0;t�1)

x (s; t� 1),

where � ~�(s;t); ~�(s0;t�1)
= (t� 1)

�
�� +

Pp
l=1 �l (s� s0;�l) ala

T
l

�
. Further-

more, var (Y (s; t)) = xT (s; t) t
�
�� +AAT

�
x (s; t), with the result that

Corr (Y (s; t) ; Y (s0; t� 1)) is O (1) as t!1.
A Bayesian hierarchical model for (8.25) and (8.26) may be completed

by prior speci�cations such as

�0 � N (m0; C0) and � (�; 0) � 0: (8.27)

�� � IW
�
a� ; B�

�
; �w � IW (aw; Bw) and �2� � IG (a�; b�) ;

m0 � N (0;�0) ; �0 = 105 � Ip ;

where B� and Bw are p � p precision (hyperparameter) matrices for the
inverted Wishart distribution.
Consider now data, in the form (Y (si; tj)) with i = 1; 2; :::; Ns and

j = 1; 2; :::; Nt: Let us collect, for each time point, the observations on
all the sites. That is, we form, Yt = (Y (s1; t) ; :::; Y (sNs

; t))
T
and the

Ns �Nsp block diagonal matrix Ft =
�
xT (s1; t) ;x

T (s2; t) ; :::;x
T (sN ; t)

�
for t = t1; :::; tNt

. T . Analogously we form the Nsp � 1 vector �t = 1Ns



�t + �
�
t , where �

�
t = (� (s1; t) ; ldots;� (sNs

; t))
T
, �t = �t�1 + �t; �t

ind�
Np

�
0;��

�
; and, with wt =

�
wT (s1; t) ; : : : ;w

T (sNs
; t)
�T
,

��t = �
�
t�1 +wt; wt

ind� N

 
0;

pX
l=1

(Rl (�l)
�w;l)

!
:

We then write the data equation for a dynamic spatial model as

Yt = Ft�t + �t; t = 1; : : : ; Nt; �t � N
�
0; �2� INs

�
:

With the prior speci�cations in (8.27), we can design a Gibbs sampler
with Gaussian full conditionals for the temporal coe�cients f�tg, the spa-
tiotemporal coe�cients f��t g, inverted Wishart for �� , and Metropolis
steps for � and the elements of �w;l.
Updating of �w =

Pp
l=1 �w;l is most e�ciently done by reparametrizing

the model in terms of the matrix square root of �w, say A, and updating
the elements of the lower triangular matrix A. To be precise, consider the
full conditional distribution,

f (�wj; �1; �2) / f (�wja ; B)
1

jPp

l=1
Rl(�l)
�w;lj

� exp
�
� 1

2�
�T
�
J�1 
 (

Pp
l=1 Rl (�l)
�w;l)

�1
�
��
�
:

The one-to-one relationship between elements of �w and the Cholesky
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square root A is well known (see, e.g., Harville, 1997, p. 235). So, we
reparametrize the above full conditional as

f (Aj; �1; �2) / f (h (A) ja ; B)
��� @h@aij

��� 1

jPp

l=1
Rl(�l)
(alaTl )j

� exp
�
� 1

2�
�T
�
J�1 
 �Pp

l=1Rl (�l)

�
ala

T
l

���1�
��
�
:

Here, h is the function taking the elements of A, say aij , to those of the
symmetric positive de�nite matrix �w. In the 2� 2 case we have

h (a11; a21; a22) =
�
a211; a11a21; a

2
21 + a222

�
;

and the Jacobian is 4a211a22. Now, the elements of A are updated with
univariate random-walk Metropolis proposals: lognormal or gamma for a11
and a22, and normal for a21. Additional computational burden is created,
since now the likelihood needs to be computed for each of the three up-
dates, but the chains are much better tuned (by controlling the scale of the
univariate proposals) to move around the parameter space, thereby leading
to better convergence behavior.

Example 8.3 (Modeling temperature given precipitation). Our spatial do-
main, shown in Figure 8.7 (see also color insert Figure C.6) along with
elevation contours (in 100-m units), provides a sample of 50 locations (in-
dicated by \+") in the state of Colorado. Each site provides information on
monthly maximum temperature, and monthly mean precipitation. We de-
note the temperature summary in location s at time t, by Y (s; t), and the
precipitation by x (s; t). Forming a covariate vector xT (s; t) = (1; x (s; t)),
we analyze the data using a coregionalized dynamic model, as outlined in
Subsection 8.4.2. As a result, we have an intercept process ~�0 (s; t) and a
slope process ~�1 (s; t), and the two processes are dependent.
Figure 8.8 displays the time-varying intercepts and slopes (coe�cient of

precipitation). As expected, the intercept is higher in the summer months
and lower in the winter months, highest in July, lowest in December. In fact,
the gradual increase from January to July, and the subsequent decrease
toward December is evident from the plot. Precipitation seems to have a
negative impact on temperature, although this seems to be signi�cant only
in the months of January, March, May, June, November, and December,
i.e., seasonal pattern is retrieved although no such structure is imposed.
Table 8.5 displays the credible intervals for elements of the �� matrix.

Rows 1 and 2 show the medians and credible intervals for the respective
variances; while Row 3 shows the correlation. The corresponding results for
the elements of �w are given in Table 8.6. A signi�cant negative correlation
is seen between the intercept and the slope processes, justifying our use of
dependent processes. Next, in Table 8.7, we provide the measurement error
variances for temperature along with the estimates of the spatial correla-
tion parameters for the intercept and slope process. Also presented are the
ranges implied by �1 and �2 for the marginal intercept process, w1 (s), and
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Figure 8.7 Map of the region in Colorado that forms the spatial domain (see also
color insert). The data for the illustrations come from 50 locations, marked by
\+" signs in this region.

�� Median (2.5%, 97.5%)

�� [1; 1] 0.296 (0.130, 0.621)
�� [2; 2] 0.786 (0.198, 1.952)

�� [1; 2]=
p
�� [1; 1]�� [2; 2] -0.562 (-0.807, -0.137)

Table 8.5 Estimates of the variances and correlation from ��, dynamic spa-
tiotemporal modeling example.

the marginal slope process, w2 (s). The �rst range is computed by solving
for the distance d, �1 (�1; d) = 0:05, while the second range is obtained by
solving

�
a221 exp (��1d) + a222 exp (��2d)

�
=
�
a221 + a222

�
= 0:05: The ranges

are presented in units of 100 km with the maximum observed distance
between our sites being approximately 742 km.
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Figure 8.8 Posterior distributions for the time-varying parameters in the tem-
perature given precipitation example. The top graph corresponds to the intercept,
while the lower one is the coe�cient of precipitation. Solid lines represent the
medians while the dashed lines correspond to the upper and lower credible inter-
vals.

�w Median (2.5%, 97.5%)

�w [1; 1] 0.017 (0.016, 0.019)
�w [2; 2] 0.026 (0.0065, 0.108)

�w [1; 2]=
p
�w [1; 1]�w [2; 2] -0.704 (-0.843, -0.545)

Table 8.6 Estimates of the variances and correlation from �w, dynamic spa-
tiotemporal modeling example.

Finally, Figure 8.9 (see also color insert Figure C.7) displays the time-
sliced image-contour plots for the slope process; similar �gures can be drawn
for the intercept process. For both processes, the spatial variation is better
captured in the central and western edges of the domain. In Figure 8.9, all
the months display broadly similar spatial patterns, with denser contour
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Parameters Median (2.5%, 97.5%)

�2� 0.134 (0.106, 0.185)
�1 1.09 (0.58, 2.04)
�2 0.58 (0.37, 1.97)

Range for intercept process 2.75 (1.47, 5.17)
Range for slope process 4.68 (1.60, 6.21)

Table 8.7 Nugget e�ects and spatial correlation parameters, dynamic spatiotem-
poral modeling example.

variations toward the west than the east. However, the spatial pattern does
seem to be more pronounced in the months with more extreme weather,
namely in the winter months of November through January and the summer
months of June through August.

8.5 Block-level modeling

We now return to spatiotemporal modeling for areal unit data, following
the discussion of equations (8.4) and (8.5) in Section 8.1.

8.5.1 Aligned data

In the aligned data case, matters are relatively straightforward. Consider
for example the spatiotemporal extension of the standard disease mapping
setting described in Section 5.4.1. Here we would have Yi`t and Ei`t, the ob-
served and expected disease counts in county i and demographic subgroup
` (race, gender, etc.) during time period t (without loss of generality we
let t correspond to years in what follows). Again the issue of whether the
Ei`t are internally or externally standardized arises; in the more common
former case we would use ni`t, the number of persons at risk in county i
during year t, to compute Ei`t = ni`t(

P
i`t Yi`t=

P
i`t ni`t). That is, Ei`t is

the number of cases we would expect if the grand disease rate (all regions,
subgroups, and years) were in operation throughout. The extension of the
basic Section 5.4.1 Poisson regression model is then

Yi`t j �i`t ind� Po (Ei`t e
�i`t) ;

where �i`t is the log-relative risk of disease for region i, subgroup `, and
year t.
It now remains to specify the main e�ect and interaction components

of �i`t, and corresponding prior distributions. First the main e�ect for the
demographic subgroups can be taken to have ordinary linear regression
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Figure 8.9 Time-sliced image-contour plots displaying the posterior mean surface
of the spatial residuals corresponding to the slope process in the temperature given
precipitation model (see also color insert).

structure, i.e., "` = x0`�, with a at prior for �. Next, the main e�ects for
time (say, �t) can be assigned at priors (if we wish them to behave as
�xed e�ects, i.e., temporal dummy variables), or an AR(1) speci�cation (if
we wish them to reect temporal autocorrelation). In some cases an even
simpler structure (say, �t = t) may be appropriate.
Finally, the main e�ects for space are similar to those assumed in the

nontemporal case. Speci�cally, we might let

 i = z0i! + �i + �i ;

where ! has a at prior, the �i capture heterogeneity among the regions
via the i.i.d. speci�cation,

�i
iid� N(0 ; 1=�) ;
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and the �i capture regional clustering via the CAR prior,

�i j �j 6=i � N(��i ; 1=(�mi)) :

As usual, mi is the number of neighbors of region i, and ��i = m�1
i �j2@i �j .

Turning to spatiotemporal interactions, suppose for the moment that
demographic e�ects are not a�ected by region and year. Consider then the
nested model,

�it
iid� N(0 ; 1=�t) and �it � CAR(�t) ; (8:28)

where �t
iid� G(a; b) and �t

iid� G(c; d). Provided these hyperpriors are not
too informative, this allows \shrinkage" of the year-speci�c e�ects toward
their grand mean, and in a way that allows the data to determine the
amount of shrinkage.
Thus our most general model for �i`t is

�i`t = x0`� + �t + z0i! + �it + �it ;

with corresponding joint posterior distribution proportional to

L(�; �;!;�;�;y)p(�)p(�j�)p(�j�)p(�)p(�) :
Computation via univariate Metropolis and Gibbs updating steps is rela-
tively straightforward (and readily available in this aligned data setting in
the WinBUGS language). However, convergence can be rather slow due to
the weak identi�ability of the joint parameter space. As a possible rem-
edy, consider the the simple space-only case again for a moment. We may
transform from (�;�) to (�;�) where �i = �i + �i. Then p(�;�jy) /
L(�;y)p(�)p(���); so that

p(�i j �j 6=i;�;y) / L(�i; yi) p(�i��i j f�j��jgj 6=i)
and

p(�i j �j 6=i;�;y) / p(�i) p(�i��i j f�j��jgj 6=i) :
This simple transformation improves matters since each �i full conditional
is now well identi�ed by the data point Yi, while the weakly identi�ed
(indeed, \Bayesianly unidenti�ed") �i now emerges in closed form as a
normal distribution (since the nonconjugate Poisson likelihood no longer
appears).

Example 8.4 The study of the trend of risk for a given disease in space
and time may provide important clues in exploring underlying causes of the
disease and helping to develop environmental health policy. Waller, Carlin,
Xia, and Gelfand (1997) consider the following data set on lung cancer
mortality in Ohio. Here Yijkt is the number of lung cancer deaths in county
i during year t for gender j and race k in the state of Ohio. The data are
recorded for J = 2 genders (male and female, indexed by sj) and K = 2
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Demographic Contribution Fitted
subgroup to "jk relative risk

White males 0 1
White females � 0.34
Nonwhite males � 1.02
Nonwhite females �+ � + � 0.28

Table 8.8 Fitted relative risks, four sociodemographic subgroups in the Ohio lung
cancer data.

races (white and nonwhite, indexed by rk) for each of the I = 88 Ohio
counties over T = 21 years (1968{1988).
We adopt the model,

�ijkt = sj�+ rk� + sjrk� + �it + �it ; (8:29)

where sj = 1 if j = 2 (female) and 0 otherwise, and rk = 1 if k = 2
(nonwhite) and 0 otherwise. That is, there is one subgroup (white males)
for which there is no contribution to the mean structure (8.38). For our
prior speci�cation, we select

�it
ind� N

�
0 ; 1

�t

�
and �it � CAR(�t) ;

�; �; � � at ;

�t
iid� G(1; 100) and �t

iid� G(1; 7) ;

where the relative sizes of the hyperparameters in these two gamma dis-
tributions were selected following guidance given in Bernardinelli et al.
(1995); see also Best et al. (1999) and Eberly and Carlin (2000).
Regarding implementation, �ve parallel, initially overdispersed MCMC

chains were run for 500 iterations. Graphical monitoring of the chains for a
representative subset of the parameters, along with sample autocorrelations
and Gelman and Rubin (1992) diagnostics, indicated an acceptable degree
of convergence by around the 100th iteration.
Histograms of the sampled values showed �it distributions centered near

0 in most cases, but �it distributions typically removed from 0, suggesting
that the heterogeneity e�ects are not really needed in this model. Plots
of E(�tjy) and E(�tjy) versus t suggest increasing clustering and slightly
increasing heterogeneity over time. The former might be the result of ight
from the cities to suburban \collar counties" over time, while the latter
is likely due to the elevated mean levels over time (for the Poisson, the
variance increases with the mean).
Fitted relative risks obtained by Waller et al. (1997) for the four main

demographic subgroups are shown in Table 8.8. The counterintuitively pos-
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Demographic Contribution Fitted log- Fitted
subgroup to "jk relative risk relative risk

White males 0 0 1
White females � {1.06 0.35
Nonwhite males � 0.18 1.20
Nonwhite females �+ � + � {1.07 0.34

Table 8.9 Fitted relative risks, four sociodemographic subgroups in the Ohio lung
cancer data

itive �tted value for nonwhite females may be an artifact of the failure of
this analysis to age-standardize the rates prior to modeling (or at least to
incorporate age group as another demographic component in the model).
To remedy this, consider the following revised and enhanced model, de-
scribed by Xia and Carlin (1998), where we assume that

Y �
ijkt � Poisson(Eijkt exp(�ijkt)) ; (8:30)

where again Y �
ijkt denotes the observed age-adjusted deaths in county i for

sex j, race k, and year t, and Eijkt are the expected death counts. We
also incorporate an ecological level smoking behavior covariate into our
log-relative risk model, namely,

�ijkt = �+ sj�+ rk� + sjrk� + pi�+ t+ �it ; (8:31)

where pi is the true smoking proportion in county i,  represents the
�xed time e�ect, and the �it capture the random spatial e�ects over time,
wherein clustering e�ects are nested within time. That is, writing �t =

(�1t; : : : ; �It)
0, we let �t � CAR(�t) where �t

iid� G(c; d). We assume that
the sociodemographic covariates (sex and race) do not interact with time
or space. Following the approach of Bernardinelli, Pascutto et al. (1997),
we introduce both sampling error and spatial correlation into the smoking
covariate. Let

qi j pi � N(pi; �
2
q ); i = 1; : : : ; I; and (8:32)

p � CAR(�p) () pi j pj 6=i � N(�pi ; �
2
pi); i = 1; : : : ; I ; (8:33)

where qi is the current smoking proportion observed in a sample survey of
county i (an imperfect measurement of pi), �pi =

P
j 6=i wijpj=

P
j 6=i wij ,

and �2pi = (�p
P

j 6=i wij)
�1. Note that the amount of smoothing in the two

CAR priors above may di�er, since the smoothing is controlled by di�erent
parameters �� and �p. Like ��, �p is also assigned a gamma hyperprior,
namely, a G(e; f).
We ran 5 independent chains using our Gibbs-Metropolis algorithm for
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2200 iterations each; plots suggested discarding the �rst 200 samples as
an adequate burn-in period. We obtained the 95% posterior credible sets
[{1.14, {0.98], [0.07, 0.28], and [{0.37, {0.01] for �; �, and �, respectively.
Note that all 3 �xed e�ects are signi�cantly di�erent from 0, in contrast
to our Table 8.8 results, which failed to uncover a main e�ect for race.
The corresponding point estimates are translated into the �tted relative
risks for the four sociodemographic subgroups in Table 8.9. Nonwhite males
experience the highest risk, followed by white males, with females of both
races having much lower risks.

8.5.2 Misalignment across years

In this subsection we develop a spatiotemporal model to accommodate the
situation of Figure 8.10, wherein the response variable and the covariate
are spatially aligned within any given timepoint, but not across timepoints
(due to periodic changes in the regional grid). Assuming that the observed
disease count Yit for zip i in year t is conditionally independent of the other
zip-level disease counts given the covariate values, we have the model,

Yit j �it ind� Po(Eit exp(�it)); i = 1; : : : ; It; t = 1; : : : ; T;

where the expected count for zip i in year t, Eit, is proportional to the
population count. In our case, we set Eit = Rnit, where nit is the pop-
ulation count in zip i at year t and R = (

P
it Yit)=(

P
it nit), the grand

asthma hospitalization rate (i.e., the expected counts assume homogeneity
of disease rates across all zips and years). The log-relative risk is modeled
as

�it = xit�t + �t + �it + �it; (8:34)

where xit is the zip-level exposure covariate (tra�c density) depicted for
1983 in Figure 8.10, �t is the correspondingmain e�ect, �t is an overall inter-
cept for year t, and �it and �it are zip- and year-speci�c heterogeneity and
clustering random e�ects, analogous to those described in Section 8.5.1. The
changes in the zip grid over time cloud the interpretation of these random
e�ects (e.g., a particular region may be indexed by di�erent i in di�erent
years), but this does not a�ect the interpretation of the main e�ects �t and
�t; it is simply the analogue of unbalanced data in a longitudinal setting.
In the spatiotemporal case, the distributions on these e�ects become

�t
ind� N

�
0;

1

�t
I

�
and �t

ind� CAR(�t) ; (8:35)

where �t = (�1; : : : ; �It)
0, �t = (�1; : : : ; �It)

0, and we encourage similarity

among these e�ects across years by assuming �t
iid� G(a; b) and �t

iid� G(c; d),
where G again denotes the gamma distribution. Placing at (uniform) pri-
ors on the main e�ects �t and �t completes the model speci�cation. Note
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Figure 8.10 Tra�c density (average vehicles per km of major roadway) in thou-
sands by zip code for 1983, San Diego County.

that the constraints
P

i �it = 0; t = 1; : : : ; T must be added to identify the
year e�ects �t, due to the location invariance of the CAR prior.

Example 8.5 Asthma is the most common chronic disease diagnosis for
children in the U.S. (National Center for Environmental Health, 1996). A
large number of studies have shown a correlation between known prod-
ucts and byproducts of auto exhaust (such as ozone, nitrogen dioxide, and
particulate matter) and pediatric asthma ER visits or hospitalizations. Sev-
eral recent studies (e.g., Tolbert et al., 2000; Zidek et al., 1998; Best et al.,
2000) have used hierarchical Bayesian methods in such investigations. An
approach taken by some authors is to use proximity to major roadways
(or some more re�ned measure of closeness to automobile tra�c) as an
omnibus measure of exposure to various asthma-inducing pollutants. We
too adopt this approach and use the phrase \exposure" in what follows,
even though in fact our tra�c measures are really surrogates for the true
exposure.

Our data set arises from San Diego County, CA, the region pictured
in Figure 8.10. The city of San Diego is located near the southwestern
corner of the map; the map's western boundary is the Paci�c Ocean, while
Mexico forms its southern boundary. The subregions pictured are the zip
codes as de�ned in 1983; as mentioned earlier this grid changes over time.

© 2004 by CRC Press LLC



BLOCK-LEVEL MODELING 289

Speci�cally, during the course of our 8-year (1983{1990) study period, the
zip code boundaries changed four times: in 1984, 1987, 1988, and 1990.

The components of our data set are as follows. First, for a given year, we
have the number of discharges from hospitalizations due to asthma for chil-
dren aged 14 and younger by zip code (California O�ce of Statewide Health
Planning and Development, 1997). The primary diagnosis was asthma
based on the International Classi�cation of Diseases, code 493 (U.S. De-
partment of Health and Human Services, 1989). Assuming that patient
records accurately report the correct zip code of residence, these data can
be thought of as error-free.

Second, we have zip-level population estimates (numbers of residents
aged 14 and younger) for each of these years, as computed by Scalf and
English (1996). These estimates were obtained in ARC/INFO using the fol-
lowing process. First, a land-use covariate was used to assist in a linear
interpolation between the 1980 and 1990 U.S. Census �gures, to obtain
estimates at the census block group level. Digitized hard-copy U.S. Postal
Service maps or suitably modi�ed street network �les provided by the San
Diego Association of Governments (SANDAG) were then used to reallocate
these counts to the zip code grid for the year in question. To do this, the
GIS �rst created a subregional grid by intersecting the block group and
zip code grids. The block group population totals were allocated to the
subregions per a combination of subregional area and population density
(the latter again based on the land-use covariate). Finally, these imputed
subregional counts were reaggregated to the zip grid. While there are sev-
eral possible sources of uncertainty in these calculations, we ignore them
in our initial round of modeling, assuming these population counts to be
�xed and known.

Finally, for each of the major roads in San Diego County, we have mean
yearly tra�c counts on each road segment in our map. Here \major" roads
are de�ned by SANDAG to include interstate highways or equivalent, major
highways, access or minor highways, and arterial or collector routes. The
sum of these numbers within a given zip divided by the total length of its
major roads provides an aggregate measure of tra�c exposure for the zip.
These zip-level tra�c densities are plotted for 1983 in Figure 8.10; this is
the exposure measure we use in the following text.

We set a = 1; b = 10 (i.e., the �t have prior mean and standard deviation
both equal to 10) and c = 0:1; d = 10 (i.e., the �t have prior mean 1, stan-
dard deviation

p
10). These are fairly vague priors designed to let the data

dominate the allocation of excess spatial variability to heterogeneity and
clustering. (As mentioned near equation (5.48), simply setting these two
priors equal to each other would not achieve this, since the prior for the �it
is speci�ed marginally, while that for the �it is speci�ed conditionally given
the neighboring �jt.) Our MCMC implementation ran 3 parallel sampling
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chains for 5000 iterations each, and discarded the �rst 500 iterations as
preconvergence \burn-in."

Plots of the posterior medians and 95% equal-tail Bayesian con�dence
intervals for �t (not shown) makes clear that, with the exception of that
for 1986, all of the �t's are signi�cantly greater than 0. Hence, the tra�c
exposure covariate in Figure 8.10 is positively associated with increased pe-
diatric asthma hospitalization in seven of the eight years of our study. To
interpret these posterior summaries, recall that their values are on the log-
relative risk scale. Thus a zip having a 1983 tra�c density of 10 thousand
cars per km of roadway would have median relative risk e10(:065) = 1:92
times higher than a zip with essentially no tra�c exposure, with a cor-
responding 95% con�dence interval of (e10(:000); e10(:120)) = (1:00; 3:32).
There also appears to be a slight weakening of the tra�c-asthma associa-
tion over time.

Figure 8.11 provides ARC/INFO maps of the crude and �tted asthma
rates (per thousand) in each of the zips for 1983. The crude rates are of
course given by rit = Yit=nit, while the �tted rates are given by R exp(�̂it),
where R is again the grand asthma rate across all zips and years and �̂it
is obtained by plugging in the estimated posterior means for the various
components in equation (8.34). The �gure clearly shows the characteristic
Bayesian shrinkage of the crude rates toward the grand rate. In particular,
no zip is now assigned a rate of exactly zero, and the rather high rates
in the thinly populated eastern part of the map have been substantially
reduced. However, the high observed rates in urban San Diego continue to
be high, as the method properly recognizes the much higher sample sizes in
these zips. There also appears to be some tendency for clusters of similar
crude rates to be preserved, the probable outcome of the CAR portion of
our model.

8.5.3 Nested misalignment both within and across years

In this subsection we extend our spatiotemporal model to accommodate the
situation of Figure 8.12, wherein the covariate is available on a grid that
is a re�nement of the grid for which the response variable is available (i.e.,
nested misalignment within years, as well as misalignment across years).
Letting the subscript j index the subregions (which we also refer to as
atoms) of zip i, our model now becomes

Yijt j �ijt � Po(Eijt exp(�ijt)); i = 1; : : : ; It; j = 1; : : : ; Jit; t = 1; : : : ; T;

where the expected counts Eijt are now Rnijt, with the grand rate R as
before. The population of atom ijt is not known, and so we determine it
by areal interpolation as nijt = nit(area of atom ijt)=(area of zip it). The
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Figure 8.11 Pediatric asthma hospitalization rate (per thousand children) by zip
code for 1983, San Diego County: (a) crude rate, (b) temporally misaligned model
�tted rate.

log-relative risk in atom ijt is then modeled as

�ijt = xijt�t + �t + �it + �it; (8:36)

where xijt is now the atom-level exposure covariate (depicted for 1983 in
Figure 8.12), but �t, �t, �it and �it are as before. Thus our prior speci�ca-
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Figure 8.12 Adjusted tra�c density (average vehicles per km of major roadway)
in thousands by zip code subregion for 1983, San Diego County.

tion is exactly that of the previous subsection; priors for the �t and �t as
given in equation (8.35), exchangeable gamma hyperpriors for the �t and
�t with a = 1; b = 10; c = 0:1, and d = 10, and at priors for the main
e�ects �t and �t.
Since only the zip-level hospitalization totals Yit (and not the atom-level

totals Yijt) are observed, we use the additivity of conditionally independent
Poisson distributions to obtain

Yit j �t; �t; �it; �it � Po

0@ JitX
j=1

Eijt exp(�ijt)

1A ; i = 1; : : : ; It; t = 1; : : : ; T:

(8:37)
Using expression (8.37), we can obtain the full Bayesian model speci�cation
for the observed data as"

TY
t=1

ItY
i=1

p (yitj�t; �t; �it; �it)
#"

TY
t=1

p(�tj�t)p(�tj�t)p(�t)p(�t)
#

(8:38)

As in the previous section, only the �t and �t parameters may be updated
via ordinary Gibbs steps, with Metropolis steps required for the rest.
Note that model speci�cation (8.38) makes use of the atom-level covariate

values xijt, but only the zip-level hospitalization counts Yit. Of course, we
might well be interested in imputing the values of the missing subregional
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counts Yijt, whose full conditional distribution is multinomial, namely,

(Yi1t; : : : ; YiJit) j Yit; �t; �t; �it; �it �Mult(Yit; fqijtg) ; (8:39)

where qijt =
Eijte

�ijtPJit
j=1 Eijte�ijt

:

Since this is a purely predictive calculation, Yijt values need not be drawn as
part of the MCMC sampling order, but instead at the very end, conditional
on the post-convergence samples.
Zhu, Carlin, English, and Scalf (2000) use Figure 8.12 to re�ne the def-

inition of exposure used in Example 8.5 by subdividing each zip into sub-
regions based on whether or not they are closer than 500 m to a major
road. This process involves creating \bu�ers" around each road and subse-
quently overlaying them in a GIS, and has been previously used in several
studies of vehicle emissions. This de�nition leads to some urban zips be-
coming \entirely exposed," as they contain no point further than 500 m
from a major road; these are roughly the zips with the darkest shading
in Figure 8.10 (i.e., those having tra�c densities greater than 10,000 cars
per year per km of major roadway). Analogously, many zips in the thinly
populated eastern part of the county contained at most one major road,
suggestive of little or no tra�c exposure. As a result, we (somewhat arbi-
trarily) de�ned those zips in the two lightest shadings (i.e., those having
tra�c densities less than 2,000 cars per year per km of roadway) as being
\entirely unexposed." This typically left slightly less than half the zips (47
for the year shown, 1983) in the middle range, having some exposed and
some unexposed subregions, as determined by the intersection of the road
proximity bu�ers. These subregions are apparent as the lightly shaded re-
gions in Figure 8.12; the \entirely exposed" regions continue to be those
with the darkest shading, while the \entirely unexposed" regions have no
shading.
The �tted rates obtained by Zhu et al. (2000) provide a similar overall

impression as those in Figure 8.11, except that the newer map is able to
show subtle di�erences within several \partially exposed" regions. These
authors also illustrate the interpolation of missing subregional counts Yijt
using equation (8.39). Analogous to the block-block FMPC imputation in
Subsection 6.2, the sampling-based hierarchical Bayesian method produces
more realistic estimates of the subregional hospitalization counts, with as-
sociated con�dence limits emerging as an automatic byproduct.

8.5.4 Nonnested misalignment and regression

In this subsection we consider spatiotemporal regression in the misaligned
data setting motivated by our Atlanta ozone data set. Recall that the �rst
component of this data set provides ozone measurements Xitr at between
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8 and 10 �xed monitoring sites i for day t of year r, where t = 1; : : : ; 92
(the summer days from June 1 through August 31) and r = 1; 2; 3, cor-
responding to years 1993, 1994, and 1995 For example, Figure 1.3 shows
the 8-hour daily maximum ozone measurements (in parts per million) at
the 10 monitoring sites for a particular day (July 15, 1995), along with the
boundaries of the 162 zip codes in the Atlanta metropolitan area.
A second component of this data set (about which we so far have said

far less) provides relevant health outcomes, but only at the zip code level.
Speci�cally, for each zip l, day t, and year r, we have the number of pe-
diatric emergency room (ER) visits for asthma, Yltr , as well as the total
number of pediatric ER visits, nltr. These data come from a historical
records-based investigation of pediatric asthma emergency room visits to
seven major emergency care centers in the Atlanta metropolitan statisti-
cal area during the same three summers. Our main substantive goal is an
investigation of the relationship between ozone and pediatric ER visits for
asthma in Atlanta, controlling for a range of sociodemographic covariates.
Potential covariates (available only as zip-level summaries in our data set)
include average age, percent male, percent black, and percent using Medi-
caid for payment (a crude surrogate for socioeconomic status). Clearly an
investigation of the relationship between ozone exposure and pediatric ER
visit count cannot be undertaken until the mismatch in the support of the
(point-level) predictor and (zip-level) response variables is resolved.
A naive approach would be to average the ozone measurements belonging

to a speci�c zip code, then relate this average ozone measurement to the
pediatric asthma ER visit count in this zip. In fact, there are few monitoring
sites relative to the number of zip codes; Figure 1.3 shows most of the zip
codes contain no sites at all, so that most of the zip-level ER visit count
data would be discarded. An alternative would be to aggregate the ER
visits over the entire area and model them as a function of the average of
the ozone measurements (that is, eliminate the spatial aspect of the data
and �t a temporal-only model). Using this idea in a Poisson regression,
we obtained a coe�cient for ozone of 2.48 with asymptotic standard error
0.71 (i.e., signi�cant positive e�ect of high ozone on ER visit rates). While
this result is generally consistent with our �ndings, precise comparison is
impossible for a number of reasons. First, this approach requires use of data
from the entire Atlanta metro area (due to the widely dispersed locations
of the monitoring stations), not data from the city only as our approach
allows. Second, it does not permit use of available covariates (such as race
and SES) that were spatially but not temporally resolved in our data set.
Third, standardizing using expected counts Ei (as in equation (8.40) below)
must be done only over days (not regions), so the e�ect of including them
is now merely to adjust the model's intercept.
We now describe the disease component of our model, and subsequently

assemble the full Bayesian hierarchical modeling speci�cation for our spa-
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tially misaligned regression. Similar to the model of Subsection 8.5.3, we
assume the zip-level asthma ER visit counts, Yltr for zip l during day t of
summer r, follow a Poisson distribution,

Yltr � Poisson (Eltr exp(�ltr)) ; (8:40)

where the Eltr are expected asthma visit counts, determined via internal
standardization as Eltr = nltr(

P
ltr Yltr=

P
ltr nltr), where nltr is the total

number of pediatric ER visits in zip code l on day t of year r. Thus Eltr is
the number of pediatric ER asthma visits we would expect from the given
zip and day if the proportion of such visits relative to the total pediatric
ER visit rate was homogeneous across all zips, days, and years. Hence �ltr
in (8.40) can be interpreted as a log-relative risk of asthma among those
children visiting the ER in group ltr. Our study design is thus a proportional
admissions model (Breslow and Day, 1987, pp. 153{155).
We do not take nltr equal to the total number of children residing in zip

l on day t of year r, since this standardization would implicitly presume a
constant usage of the ER for pediatric asthma management across all zips,
which seems unlikely (children from more a�uent zips are more likely to
have the help of family doctors or specialists in managing their asthma,
and so would not need to rely on the ER; see Congdon and Best, 2000, for
a solution to the related problem of adjusting for patient referral practices).
Note however that this in turn means that our disease (pediatric asthma
visits) is not particularly \rare" relative to the total (all pediatric visits). As
such, our use of the Poisson distribution in (8.40) should not be thought of
as an approximation to a binomial distribution for a rare event, but merely
as a convenient and sensible model for a discrete variable.
For the log-relative risks in group ltr, we begin with the model,

�ltr = �0 + �1Xl;t�1;r +

CX
c=1

�cZcl +

DX
d=1

�dWdt + �l : (8:41)

Here, �0 is an intercept term, and �1 denotes the e�ect of ozone exposure
Xl;t�1;r in zip l during day t � 1 of year r. Note that we model pediatric
asthma ER visit counts as a function of the ozone level on the previous day,
in keeping with the most common practice in the epidemiological literature
(see, e.g., Tolbert et al., 2000). This facilitates next-day predictions for pe-
diatric ER visits given the current day's ozone level, with our Bayesian
approach permitting full posterior inference (e.g., 95% prediction limits).
However, it also means we have only (J�1)�3 = 273 days worth of usable
data in our sample. Also, Zl = (Z1l; : : : ; ZCl)

T is a vector of C zip-level
(but not time-varying) sociodemographic covariates with corresponding co-
e�cient vector � = (�1; : : : ; �C)

T , and Wt = (W1t; : : : ;WDt)
T is a vector

of D day-level (but not spatially varying) temporal covariates with corre-
sponding coe�cient vector � = (�1; : : : ; �D)

T . Finally, �l is a zip-speci�c
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random e�ect designed to capture extra-Poisson variability in the observed
ER visitation rates. These random e�ects may simply be assumed to be
exchangeable draws from a N(0; 1=�) distribution (thus modeling overall
heterogeneity), or may instead be assumed to vary spatially using a condi-
tionally autoregressive (CAR) speci�cation.

Of course, model (8.40){(8.41) is not �ttable as stated, since the zip-level
previous-day ozone values Xl;t�1;r are not observed. Fortunately, we may
use the methods of Section 6.1 to perform the necessary point-block realign-
ment. To connect our equation (8.41) notation with that used in Section 6.1,
let us write XB;r � fXl;t�1;r; l = 1; : : : ; L; t = 2; : : : ; Jg for the unobserved
block-level data from year r, and Xs;r � fXitr; i = 1; : : : ; I; t = 1; : : : ; Jg
for the observed site-level data from year r. Then, from equations (8.21)
and (8.22) and assuming no missing ozone station data for the moment, we
can �nd the conditional predictive distribution f(XB;rjXs;r;r; �

2
r ;�r;�r)

for year r. However, for these data some components of the Xs;r will be

missing, and thus replaced with imputed values X
(m)
s;r ; m = 1; : : : ;M , for

some modest number of imputations M (say, M = 3). (In a slight abuse of

notation here, we assume that any observed component of X
(m)
s;r is simply

set equal to that observed value for all m.)

Thus, the full Bayesian hierarchical model speci�cation is given by

[
Q

r

Q
t

Q
l f(Yltrj�;�; �;�; Xl;t�1;r)] p(�;�; �;�)

�
hQ

r f(XB;rjX(m)
s;r ;r; �

2
r ;�r;�r)

�f(X(m)
s;r jr; �2r ;�r;�r)p(r; �2r ;�r;�r)

i
;

(8:42)

where � = (�0; �1)
T , and r; �

2
r ;�r and �r are year-speci�c versions of the

parameters in (6.6). Note that there is a posterior distribution for each of
the M imputations. Model (8.42) assumes the asthma-ozone relationship
does not depend on year; the misalignment parameters are year-speci�c
only to permit year-by-year realignment.

Zhu, Carlin, and Gelfand (2003) o�er a reanalysis of the Atlanta ozone
and asthma data by �tting a version of model (8.41), namely,

�ltr = �0 + �1X
�(m;v)
l;t�1;r + �1Z1l + �2Z2l + �1W1t + �2W2t + �3W3t + �4W4t ;

(8:43)

where X
�(m;v)
l;t�1;r denotes the (m; v)th imputed value for the zip-level esti-

mate of the 8-hour daily maximum ozone measurement on the previous
day (t � 1). Our zip-speci�c covariates are Z1l and Z2l, the percent high
socioeconomic status and percent black race of those pediatric asthma ER
visitors from zip l, respectively. Of the day-speci�c covariates,W1t indexes
day of summer (W1t = t mod 91) and W2t = W 2

1t, while W3t and W4t are
indicator variables for days in 1994 and 1995, respectively (so that 1993 is
taken as the reference year). We include both linear and quadratic terms
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Posterior 95% Posterior Fitted
Parameter E�ect median credible set relative risk

�0 intercept {0.4815 ({0.5761, {0.3813) |
�1 ozone 0.7860 ({0.7921, 2.3867) 1.016y
�1 high SES {0.5754 ({0.9839, {0.1644) 0.562
�2 black 0.5682 (0.3093, 0.8243) 1.765
�1 day {0.0131 ({0.0190, {0.0078) |
�2 day2 0.00017 (0.0001, 0.0002) |
�3 year 1994 0.1352 (0.0081, 0.2478) 1.145
�4 year 1995 0.4969 (0.3932, 0.5962) 1.644

Table 8.10 Fitted relative risks for the parameters of interest in the Atlanta pe-
diatric asthma ER visit data, full model. (yThis is the posterior median relative
risk predicted to arise from a .02 ppm increase in ozone.)

for day of summer in order to capture the rough U-shape in pediatric ER
asthma visits, with June and August higher than July.

The analysis of Zhu et al. (2003) is only approximate, in that they run
separate MCMC algorithms on the portions of the model corresponding
to the two lines of model (8.42). In the spirit of the multiple imputation
approach to the missing (point-level) ozone observations, they also retain
V = 3 post-convergence draws from each of our M = 3 imputed data
sets, resulting in MV = 9 zip-level approximately imputed ozone vectors

X
�(m;v)
B;r .

The results of this approach are shown in Table 8.10. The posterior
median of �1 (.7860) is positive, as expected. An increase of .02 ppm in
8-hour maximum ozone concentration (a relatively modest increase, as seen
from Figure 1.3) thus corresponds to a �tted relative risk of exp(:7860�
:02) � 1:016, or a 1.6% increase in relative risk of a pediatric asthma ER
visit. However, the 95% credible set for �1 does include 0, meaning that this
positive association between ozone level and ER visits is not \Bayesianly
signi�cant" at the 0.05 level. Using a more naive approach but data from
all 162 zips in the Atlanta metro area, Carlin et al. (1999) estimate the
above relative risk as 1.026, marginally signi�cant at the .05 level (that is,
the lower limit of the 95% credible set for �1 was precisely 0).

Regarding the demographic variables, the e�ects of both percent high
SES and percent black emerge as signi�cantly di�erent from 0. The relative
risk for a zip made entirely of high SES residents would be slightly more
than half that of a comparable all-low SES zip, while a zip with a 100%
black population would have a relative risk nearly 1.8 times that of a 100%
nonblack zip. As for the temporal variables, day of summer is signi�cantly
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negative and its square is signi�cantly positive, con�rming the U-shape of
asthma relative risks over a given summer. Both year 1994 and year 1995
show higher relative risk compared with year 1993, with estimated increases
in relative risk of about 15% and 64%, respectively.

8.6 Exercises

1. Suppose V ar(�(s; t)) in (8.6), (8.7), and (8.8) is revised to �
2(t)
� .

(a) Revise expressions (8.11), (8.13), and (8.16), respectively.

(b) How would these changes a�ect simulation-based model �tting?

2. The data www.biostat.umn.edu/~brad/data/ColoradoS-T.dat con-
tain the maximum monthly temperatures (in tenths of a degree Celcius)
for 50 locations over 12 months in 1997. The elevation at each of the 50
sites is also given.

(a) Treating month as the discrete time unit, temperature as the de-
pendendent variable, and elevation as a covariate, �t the additive
space-time model (8.6) to this data. Provide posterior estimates of
the important model parameters, and draw image-contour plots for
each month.

(Hint:Modify the WinBUGS code in Example 5.1 to �t a simple, nested
spatiotemporal model. That is, use either the \direct" approach or the
spatial.exp command to build an exponential kriging model for the
data for a given month t with a range parameter �t, and then assume
these parameters are in turn i.i.d. from (say) a U(0; 10) distribution.)

(b) Compare a few sensible models (changing the prior for the �t, includ-
ing/excluding the covariate, etc.) using the DIC tool in WinBUGS. How
does DIC seem to perform in this setting?

(c) Repeat part (a) assuming the error structures (8.7) and (8.8). Can
these models still be �t in WinBUGS, or must you now resort to your
own C, Fortran, or R code?

3. Suppose Y (si; tj), i = 1; : : : ; n; j = 1; : : : ;m arise from a mean-zero sta-
tionary spatiotemporal process. Let aii0 =

Pm
j=1 Y (si; tj)Y (si0 ; tj)=m,

let bjj0 =
Pn

i=1 Y (si; tj)Y (si; tj0)=n, and let cii0;jj0 = Y (si; tj)Y (si0 ; tj0 ).

(a) Obtain E(aii0 ), E(bjj0 ), and E(cii0;jj0 ).

(b) Argue that if we plot cii0;jj0 versus aii0 � bjj0 , under a separable covari-
ance structure, we can expect the plotted points to roughly lie along
a straight line. (As a result, we might call this a separability plot.)
What is the slope of this theoretical line?

(c) Create a separability plot for the data in Exercise 2. Was the separa-
bility assumption there justi�ed?
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4. Consider again the data and model of Example 8.4, the former located at
www.biostat.umn.edu/~brad/data2.html. Fit the Poisson spatiotem-
poral disease mapping model (8.30), but where we discard the smoking
covariate, and also reverse the gender scores (sj = 1 if male, 0 if female)
so that the log-relative risk (8.31) is reparametrized as

�ijkt = �+ sj�+ rk� + sjrk(� � �� �) + t+ �it :

Under this model, � now unequivocally captures the di�erence in log-
relative risk between white and nonwhite females.

(a) Use either WinBUGS or your own R, C++, or Fortran code to �nd
point and 95% interval estimates of �. Is there any real di�erence
between the two female groups?

(b) Use either the mapping tool within WinBUGS or your own ArcView or
other GIS code to map the �tted median nonwhite female lung cancer
death rates per 1000 population for the years 1968, 1978, and 1988.
Interpret your results. Is a temporal trend apparent?

5. In the following, let C1 be a valid two-dimensional isotropic covariance
function and let C2 be a valid one-dimensional isotropic covariance func-
tion. Let CA(s; t) = C1(s) + C2(t) and CM (s; t) = C1(s)C2(t). CA is re-
ferred to as an additive (or linear) space-time covariance function, while
CM is referred to as a multiplicative space-time covariance function.

(a) Why are CA and CM valid?

(b) Comment on the behavior of CA and CM as jjs� s0; t� t0jj ! 0 (local
limit), and as jjs� s0; t� t0jj ! 1 (global limit).

© 2004 by CRC Press LLC

http://www.biostat.umn.edu


CHAPTER 9

Spatial survival models

The use of survival models involving a random e�ect or \frailty" term
is becoming more common. Usually the random e�ects are assumed to
represent di�erent clusters, and clusters are assumed to be independent.
In this chapter, we consider random e�ects corresponding to clusters that
are spatially arranged, such as clinical sites or geographical regions. That
is, we might suspect that random e�ects corresponding to strata in closer
proximity to each other might also be similar in magnitude.
Survival models have a long history in the biostatistical and medical

literature (see, e.g., Cox and Oakes, 1984). Very often, time-to-event data
will be grouped into strata (or clusters), such as clinical sites, geographic
regions, and so on. In this setting, a hierarchical modeling approach using
stratum-speci�c parameters called frailties is often appropriate. Introduced
by Vaupel, Manton, and Stallard (1979), this is a mixed model with random
e�ects (the frailties) that correspond to a stratum's overall health status.
To illustrate, let tij be the time to death or censoring for subject j

in stratum i, j = 1; : : : ; ni, i = 1; : : : ; I . Let xij be a vector of individual-
speci�c covariates. The usual assumption of proportional hazards h(tij ;xij)
enables models of the form

h(tij ;xij) = h0(tij) exp(�
Txij) ; (9:1)

where h0 is the baseline hazard, which is a�ected only multiplicatively by
the exponential term involving the covariates. In the frailty setting, model
(9.1) is extended to

h(tij ;xij) = h0(tij) !i exp(�
Txij)

= h0(tij) exp(�
T
xij +Wi) ; (9.2)

where Wi � log!i is the stratum-speci�c frailty term, designed to capture
di�erences among the strata. Typically a simple i.i.d. speci�cation for the
Wi is assumed, e.g.,

Wi
iid� N(0; �2) : (9:3)

With the advent of MCMC computational methods, the Bayesian ap-
proach to �tting hierarchical frailty models such as these has become in-
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creasingly popular (see, e.g., Carlin and Louis, 2000, Sec. 7.6). Perhaps the
simplest approach is to assume a parametric form for the baseline hazard
h0. While a variety of choices (gamma, lognormal, etc.) have been explored
in the literature, in Section 9.1 we adopt the Weibull, which seems to repre-
sent a good tradeo� between simplicity and exibility. This then produces

h(tij ;xij) = �t��1ij exp(�Txij +Wi) : (9:4)

Now, placing prior distributions on �;�, and �2 completes the Bayesian
model speci�cation. Such models are by now a standard part of the lit-
erature, and easily �t (at least in the univariate case) using WinBUGS.
Carlin and Hodges (1999) consider further extending model (9.4) to al-
low stratum-speci�c baseline hazards, i.e., by replacing � by �i. MCMC
�tting is again routine given a distribution for these new random e�ects,

say, �i
iid� Gamma(�; 1=�), so that the �i have mean 1 (corresponding to a

constant hazard over time) but variance 1=�.

A richer but somewhat more complex alternative is to model the baseline
hazard nonparametrically. In this case, letting ij be a death indicator (0
if alive, 1 if dead) for patient ij, we may write the likelihood for our model
L (�;W; t;x;) generically as

IY
i=1

niY
j=1

fh (tij ;xij)gij exp
n
�H0i (tij) exp

�
�Txij +Wi

�o
;

where H0i (t) =
R t
0
h0i (u) du, the integrated baseline hazard. A frailty dis-

tribution parametrized by �, p (Wj�), coupled with prior distributions for
�; �, and the hazard function h complete the hierarchical Bayesian model
speci�cation.

In this chapter we consider both parametric and semiparametric hierar-
chical survival models for data sets that are spatially arranged. Such models
might be appropriate anytime we suspect that frailties Wi corresponding
to strata in closer proximity to each other might also be similar in magni-
tude. This could arise if, say, the strata corresponded to hospitals in a given
region, to counties in a given state, and so on. The basic assumption here
is that \expected" survival times (or hazard rates) will be more similar in
proximate regions, due to underlying factors (access to care, willingness of
the population to seek care, etc.) that vary spatially. We hasten to remind
the reader that this does not imply that the observed survival times from
subjects in proximate regions must be similar, since they include an extra
level of randomness arising from their variability around their (spatially
correlated) underlying model quantities.
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9.1 Parametric models

9.1.1 Univariate spatial frailty modeling

While it is possible to identify centroids of geographic regions and employ
spatial process modeling for these locations, the e�ects in our examples are
more naturally associated with areal units. As such we work exclusively
with CAR models for these e�ects, i.e., we assume that

W j � � CAR(�) : (9:5)

Also, we note that the resulting model for, say, (9.2) is an extended example
of a generalized linear model for areal spatial data (Section 5.5). That is,
(9.2) implies that

f(tij j�; xij ;Wi) = h0(tij)e
�Txij+Wie�H0(tij ) exp(�

Txij+Wi) : (9:6)

In other words, Uij = H0(tij) � Exponential
�
exp[�(�Txij +Wi)]

�
so

� logEH0(tij) = �Txij +Wi. The analogy with (5.51) and g(�i) is clear.
The critical di�erence is that in Section 5.5 the link g is assumed known;
here the link to the linear scale requires h0, which is unknown (and will be
modeled parametrically or nonparametrically).
Finally, we remark that it would certainly be possible to include both

spatial and nonspatial frailties, which as already seen (Subsection 5.4.3) is
now common practice in areal data modeling. Here, this would mean sup-
plementing our spatial frailties Wi with a collection of nonspatial frailties,

say, Vi
iid� N(0; 1=�). The main problem with this approach is again that

the frailties now become identi�ed only by the prior, and so the proper
choice of priors for � and � (or �) becomes problematic. Another problem
is the resultant decrease in algorithm performance wrought by the addition
of so many additional, weakly identi�ed parameters.

Bayesian implementation

As already mentioned, the models outlined above are straightforwardly
implemented in a Bayesian framework using MCMC methods. In the para-
metric case, say (9.4), the joint posterior distribution of interest is

p (�;W; �; � j t;x;) / L (�;W; � ; t;x;) p (Wj�) p(�)p (�) p(�) ; (9:7)
where the �rst term on the right-hand side is the Weibull likelihood, the
second is the CAR distribution of the random frailties, and the remaining
terms are prior distributions. In (9.7), t = ftijg denotes the collection of
times to death, x = fxijg the collection of covariate vectors, and  = fijg
the collection of death indicators for all subjects in all strata.
For our investigations, we retain the parametric form of the baseline
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hazard given in (9.4). Thus L (�;W; � ; t;x;) is proportional to

IY
i=1

niY
j=1

n
�t��1ij exp

�
�Txij +Wi

�oij
exp

n
�t�ij exp

�
�Txij +Wi

�o
:

(9:8)
The model speci�cation in the Bayesian setup is completed by assigning
prior distributions for �; �, and �. Typically, a at (improper uniform)
prior is chosen for �, while vague but proper priors are chosen for � and
�, such as a G(�; 1=�) prior for � and a G(a; b) prior for �. Hence the only
extension beyond the disease mapping illustrations of Section 5.4 is the
need to update �.

Example 9.1 (Application to Minnesota infant mortality data). We apply
the methodology above to the analysis of infant mortality in Minnesota,
originally considered by Banerjee, Wall, and Carlin (2003). The data were
obtained from the linked birth-death records data registry kept by the
Minnesota Department of Health. The data comprise 267,646 live births
occurring during the years 1992{1996 followed through the �rst year of
life, together with relevant covariate information such as birth weight, sex,
race, mother's age, and the mother's total number of previous births. Be-
cause of the careful linkage connecting infant death certi�cates with birth
certi�cates (even when the death occurs in a separate state), we assume
that each baby in the data set that is not linked with a death must have
been alive at the end of one year. Of the live births, only 1,547 babies died
before the end of their �rst year. The number of days they lived is treated as
the response tij in our models, while the remaining survivors were treated
as \censored," or in other words, alive at the end of the study period. In ad-
dition to this information, the mother's Minnesota county of residence prior
to the birth is provided. We implement the areal frailty model (9.5), the
nonspatial frailty model (9.3), and a simple nonhierarchical (\no-frailty")
model that sets Wi = 0 for all i.
For all of our models, we adopt a at prior for �, and aG(�; 1=�) prior for

�, setting � = 0:01. Metropolis random walk steps with Gaussian proposals
were used for sampling from the full conditionals for �, while Hastings
independence steps with gamma proposals were used for updating �. As
for �, in our case we are fortunate to have a data set that is large relative
to the number of random e�ects to be estimated. As such, we simply select
a vague (mean 1, variance 1000) gamma speci�cation for �, and rely on the
data to overwhelm the priors.
Table 9.1 compares our three models in terms of two of the criteria

discussed in Subsection 4.2.3, DIC and e�ective model size pD. For the
no-frailty model, we see a pD of 8.72, very close to the actual number
of parameters, 9 (8 components of � plus the Weibull parameter �). The
random e�ects models have substantially larger pD values, though much
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Model pD DIC

No-frailty 8.72 511
Nonspatial frailty 39.35 392
CAR frailty 34.52 371

Table 9.1 DIC and e�ective number of parameters pD for competing parametric
survival models.

Covariate 2:5% 50% 97:5%

Intercept �2:135 �2:024 �1:976
Sex (boys = 0)

girls �0:271 �0:189 �0:105
Race (white = 0)

black �0:209 �0:104 �0:003
Native American 0:457 0:776 1:004
unknown 0:303 0:871 1:381

Mother's age �0:005 �0:003 �0:001
Birth weight in kg �1:820 �1:731 �1:640
Total births 0:064 0:121 0:184
� 0:411 0:431 0:480
� 0.083 0.175 0.298

Table 9.2 Posterior summaries for the nonspatial frailty model.

smaller than their actual parameter counts (which would include the 87
random frailties Wi); apparently there is substantial shrinkage of the frail-
ties toward their grand mean. The DIC values suggest that each of these
models is substantially better than the no-frailty model, despite their in-
creased size. Though the spatial frailty model has the best DIC value, plots
of the full estimated posterior deviance distributions (not shown) suggest
substantial overlap. On the whole we seem to have modest support for the
spatial frailty model over the ordinary frailty model.
Tables 9.2 and 9.3 provide 2.5, 50, and 97.5 posterior percentiles for the

main e�ects in our two frailty models. In both cases, all of the predictors
are signi�cant at the .05 level. Since the reference group for the sex variable
is boys, we see that girls have a lower hazard of death during the �rst year
of life. The reference group for the race variables is white; the Native Amer-
ican beta coe�cient is rather striking. In the CAR model, this covariate
increases the posterior median hazard rate by a factor of e0:782 = 2:19. The
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Covariate 2:5% 50% 97:5%

Intercept �2:585 �2:461 �2:405
Sex (boys = 0)

girls �0:224 �0:183 �0:096
Race (white = 0)

black �0:219 �0:105 �0:007
Native American 0:455 0:782 0:975
unknown 0:351 0:831 1:165

Mother's age �0:005 �0:004 �0:003
Birth weight in kg �1:953 �1:932 �1:898
Total births 0:088 0:119 0:151
� 0:470 0:484 0:497
� 12:62 46:07 100:4

Table 9.3 Posterior summaries for the CAR frailty model.

e�ect of \unknown" race is also signi�cant, but more di�cult to interpret:
in this group, the race of the infant was not recorded on the birth certi�-
cate. Separate terms for Hispanics, Asians, and Paci�c Islanders were also
originally included in the model, but were eliminated after emerging as not
signi�cantly di�erent from zero. Note that the estimate of � is quite similar
across models, and suggests a decreasing baseline hazard over time. This is
consistent with the fact that a high proportion (495, or 32%) of the infant
deaths in our data set occurred in the �rst day of life: the force of mortal-
ity (hazard rate) is very high initially, but drops quickly and continues to
decrease throughout the �rst year.

A bene�t of �tting the spatial CAR structure is seen in the reduction
of the length of the 95% credible intervals for the covariates in the spatial
models compared to the i.i.d. model. As we might expect, there are modest
e�ciency gains when the model that better speci�es the covariance struc-
ture of its random e�ects is used. That is, since the spatial dependence
priors for the frailties are in better agreement with the likelihood than is
the independence prior, the prior-to-posterior learning a�orded by Bayes'
Rule leads to smaller posterior variances in the former cases. Most notably,
the 95% credible set for the e�ect of \unknown" race is (0.303, 1.381) under
the nonspatial frailty model (Table 9.2), but (0.351, 1.165) under the CAR
frailty model (Table 9.3), a reduction in length of roughly 25%.

Figures 9.1 and 9.2 (see also color insert Figures C.8 and C.9) map the
posterior medians of the Wi under the nonspatial (i.i.d. frailties) and CAR
models, respectively, where the models include all of the covariates listed
in Tables 9.2 and 9.3. As expected, no clear spatial pattern is evident in
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Figure 9.1 Posterior median frailties, i.i.d. model with covariates, Minnesota
county-level infant mortality data (see also color insert).

the i.i.d. map, but from the CAR map we are able to identify two clusters
of counties having somewhat higher hazards (in the southwest following
the Minnesota River, and in the northeast \arrowhead" region), and two
clusters with somewhat lower hazards (in the northwest, and the southeast-
ern corner). Thus, despite the signi�cance of the covariates now in these
models, Figure 9.2 suggests the presence of some still-missing, spatially
varying covariate(s) relevant for infant mortality. Such covariates might in-
clude location of birth (home or hospital), overall quality of available health
or hospital care, mother's economic status, and mother's number of prior
abortions or miscarriages.

In addition to the improved appearance and epidemiological interpreta-
tion of Figure 9.2, another reason to prefer the CAR model is provided in
Figure 9.3, which shows boxplots of the posterior median frailties for the
two cases corresponding to Figures 9.1 and 9.2, plus two preliminary models
in which no covariates x are included. The tightness of the full CAR box-
plot suggests this model is best at reducing the need for the frailty terms.
This is as it should be, since these terms are essentially spatial residuals,
and represent lingering lack of �t in our spatial model (although they may
well also account for some excess nonspatial variability, since our current
models do not include nonspatial frailty terms). Note that all of the full
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Figure 9.2 Posterior median frailties, CAR model with covariates, Minnesota
county-level infant mortality data (see also color insert).

CAR residuals are in the range ({0.15, 0.10), or (0.86, 1.11) on the haz-
ard scale, suggesting that missing spatially varying covariates have only a
modest (10 to 15%) impact on the hazard; from a practical standpoint, this
model �ts quite well.

9.1.2 Spatial frailty versus logistic regression models

In many contexts (say, a clinical trial enrolling and following patients at
spatially proximate clinical centers), a spatial survival model like ours may
be the only appropriate model. However, since the Minnesota infant mor-
tality data does not have any babies censored because of loss to followup,
competing risks, or any reason other than the end of the study, there is
no ambiguity in de�ning a binary survival outcome for use in a random
e�ects logistic regression model. That is, we replace the event time data tij
with an indicator of whether the subject did (Yij = 0) or did not (Yij = 1)
survive the �rst year. Letting pij = Pr(Yij = 1), our model is then

logit(pij) = e�Txij +fWi ; (9:9)
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Figure 9.3 Boxplots of posterior median frailties, i.i.d. and CAR models with and
without covariates.

with the usual at prior for e� and an i.i.d. or CAR prior for the fWi. As a
result, (9.9) is exactly an example of a generalized linear model for areal
spatial data.

Other authors (Doksum and Gasko, 1990; Ingram and Kleinman, 1989)
have shown that in this case of no censoring before followup (and even
in cases of equal censoring across groups), it is possible to get results for

the e� parameters in the logistic regression model very similar to those
obtained in the proportional hazards model (9.1), except of course for the
di�ering interpretations (log odds versus log relative risk, respectively).
Moreover when the probability of death is very small, as it is in the case
of infant mortality, the log odds and log relative risk become even more
similar. Since it uses more information (i.e., time to death rather than just
a survival indicator), intuitively, the proportional hazards model should
make gains over the logistic model in terms of power to detect signi�cant
covariate e�ects. Yet, consistent with the simulation studies performed by
Ingram and Kleinman (1989), our experience with the infant mortality data
indicate that only a marginal increase in e�ciency (decrease in variance)
is exhibited by the posterior distributions of the parameters.

On the other hand, we did �nd some di�erence in terms of the estimated
random e�ects in the logistic model compared to the proportional hazards
model. Figure 9.4 shows a scatterplot of the estimated posterior medians of
Wi versus fWi for each county obtained from the models where there were

© 2004 by CRC Press LLC



310 SPATIAL SURVIVAL MODELS

-0.2 -0.1 0.0 0.1 0.2 0.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

1

2

3

4

5

6

7

8

9

10

1112

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28 29
30

31

32

33

34

35

36

37
38

39
40 41

42

43

44

45
46 47

48

49

50

51

52

53

54

55 56

57

58

59 60

61

62

63

64

65

66

67

68

69

70 71

72
73

74

75

76

77

78

79

80

81

82

83

84

85
86

87

Figure 9.4 Posterior medians of the frailties Wi (horizontal axis) versus posterior

medians of the logistic random e�ects fWi (vertical axis). Plotting character is
county number; signi�cance of circled counties is described in the text.

no covariates, and the random e�ects were assumed to i.i.d. The sample
correlation of these estimated random e�ects is 0.81, clearly indicating that
they are quite similar. Yet there are still some particular counties that result
in rather di�erent values under the two models. One way to explain this
di�erence is that the hazard functions are not exactly proportional across
the 87 counties of Minnesota. A close examination of the counties that had
di�ering fWi versusWi shows that they had di�erent average times at death
compared to other counties with similar overall death rates. Consider for
example County 70, an outlier circled in Figure 9.4, and its comparison to
circled Counties 73, 55, and 2, which have similar death rates (and hence
roughly the same horizontal position in Figure 9.4). We �nd County 70 has
the smallest mean age at death, implying that it has more early deaths,
explaining its smaller frailty estimate. Conversely, County 14 has a higher
average time at death but overall death rates similar to Counties 82, 48,
and 5 (again note the horizontal alignment in Figure 9.4), and as a result
has higher estimated frailty. A lack of proportionality in the baseline hazard
rates across counties thus appears to manifest as a departure from linearity
in Figure 9.4.
We conclude this subsection by noting that previous work by Carlin and

Hodges (1999) suggests a generalization of our basic model (9.4) to

h(tij ;xij) = �it
�i�1
ij exp(�Txij +Wi) :

© 2004 by CRC Press LLC



SEMIPARAMETRIC MODELS 311

That is, we allow two sets of random e�ects: the existing frailty parameters
Wi, and a new set of shape parameters �i. This then allows both the overall
level and the shape of the hazard function over time to vary from county
to county. Either i.i.d. or CAR priors could be assigned to these two sets
of random e�ects, which could themselves be correlated within county. In
the latter case, this might be �t using the MCAR model of Section 7.4; see
Jin and Carlin (2003), as well as Section 9.4.

9.2 Semiparametric models

While parametric models are easily interpretable and often a�ord a sur-
prisingly good �t to survival data, many practitioners continue to prefer
the additional richness of the nonparametric baseline hazard o�ered by the
celebrated Cox model. In this section we turn to nonparametric models for
the baseline hazard. Such models are often referred to as semiparametric,
since we continue to assume proportional hazards of the form (9.1) in which
the covariate e�ects are still modeled parametrically, While Li and Ryan
(2002) address this problem from a classical perspective, in this section we
follow the hierarchical Bayesian approach of Banerjee and Carlin (2002).
Within the Bayesian framework, several authors have proposed treat-

ing the Cox partial likelihood as a full likelihood, to obtain a posterior
distribution for the treatment e�ect. However, this approach does not al-
low fully hierarchical modeling of stratum-speci�c baseline hazards (with
stratum-speci�c frailties) because the baseline hazard is implicit in the par-
tial likelihood computation. In the remainder of this section, we describe
two possible methodological approaches to modeling the baseline hazard
in Cox regression, which thus lead to two semiparametric spatial frailty
techniques. We subsequently revisit the Minnesota infant mortality data.

9.2.1 Beta mixture approach

Our �rst approach uses an idea of Gelfand and Mallick (1995) that exibly
models the integrated baseline hazard as a mixture of monotone functions.
In particular, these authors use a simple transformation to map the inte-
grated baseline hazard onto the interval [0; 1], and subsequently approxi-
mate this function by a weighted mixture of incomplete beta functions. Im-
plementation issues are discussed in detail by Gelfand and Mallick (1995)
and also by Carlin and Hodges (1999) for stratum-speci�c baseline hazards.
The likelihood and Bayesian hierarchical setup remain exactly as above.
Thus, we let h0i (t) be the baseline hazard in the ith region and H0i (t)

be the corresponding integrated baseline hazard, and de�ne

J0i (t) = a0H0i (t) = [a0H0i (t) + b0] ;

which conveniently takes values in [0; 1]. We discuss below the choice of a0
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and b0 but note that this is not as much a modeling issue as a computational
one, important only to ensure appropriate coverage of the interval [0; 1]. We
next model J0i (t) as a mixture of Beta(rl; sl) cdfs, for l = 1; : : : ;m. The
rl and sl are chosen so that the beta cdfs have evenly spaced means and
are centered around fJ0(t), a suitable function transforming the time scale
to [0; 1]. We thus have

J0i (t) =

mX
l=1

vil IB
�fJ0(t); rl; sl� ;

where
Pm

l=1 vil = 1 for all i, and IB(� ; a; b) denotes the incomplete beta
function (i.e., the cdf of a Beta (a; b) distribution). Since any distribution
function on [0; 1] can be approximated arbitrarily well by a �nite mixture
of beta cdfs, the same is true for J0i, an increasing function that maps [0; 1]
onto itself. Thus, working backward, we �nd the following expression for
the cumulative hazard in terms of the above parameters:

H0i (t) =
b0
Pm

l=1 vil IB
�fJ0(t); rl; sl�

a0

n
1�Pm

l=1 vil IB
�fJ0(t); rl; sl�o :

Taking derivatives, we have for the hazard function,

h0i (t) =
b0

@
@t
fJ0(t)Pm

l=1 vilBeta
�fJ0(t); rl; sl�

a0

n
1�Pm

l=1 vil IB
�fJ0(t); rl; sl�o2 :

Typically m, the number of mixands of the beta cdfs, is �xed, as are the
f(rl; sl)gml=1, so chosen that the resulting beta densities cover the interval
[0; 1]. For example, we might �x m = 5, frlg = (1; 2; 3; 4; 5) and fslg =
(5; 4; 3; 2; 1), producing �ve evenly-spaced beta cdfs.

Regarding the choice of a0 and b0, we note that it is intuitive to specifyfJ0(t) to represent a plausible central function around which the J0i's are
distributed. Thus, if we consider the cumulative hazard function of an ex-
ponential distribution to specify fJ0(t), then we get fJ0(t) = a0t=(a0t+ b0).
In our Minnesota infant mortality data set, since the survival times ranged
between 1 day and 365 days, we found a0 = 5 and b0 = 100 lead to val-
ues for fJ0(t) that largely cover the interval [0; 1], and so �xed them as
such. The likelihood is thus a function of the regression coe�cients �, the
stratum-speci�c weight vectors vi = (vi1; :::; vim)

T
, and the spatial e�ects

Wi. It is natural to model the vi's as draws from a Dirichlet(�1; : : : ; �m)
distribution, where for simplicity we often take �1 = � � � = �m = �.
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9.2.2 Counting process approach

The second nonparametric baseline hazard modeling approach we investi-
gate is that of Clayton (1991, 1994). While the method is less transparent
theoretically, it is gaining popularity among Bayesian practitioners due to
its ready availability within WinBUGS. Here we give only the essential ideas,
referring the reader to Andersen and Gill (1982) or Clayton (1991) for a
more complete treatment. The underlying idea is that the number of fail-
ures up to time t is assumed to arise from a counting process N(t). The
corresponding intensity process is de�ned as

I (t) dt = E (dN (t) jFt�) ;
where dN(t) is the increment of N over the time interval [t; t + dt), and
Ft� represents the available data up to time t. For each individual, dN (t)
therefore takes the value 1 if the subject fails in that interval, and 0 oth-
erwise. Thus dN (t) may be thought of as the \death indicator process,"
analogous to  in the model of the previous subsection. For the jth subject
in the ith region, under the proportional hazards assumption, the intensity
process (analogous to our hazard function h (tij ;xij)) is modeled as

Iij(t) = Yij(t)�0 (t) exp
�
�Txij +Wi

�
;

where �0 (t) is the baseline hazard function and Yij (t) is an indicator pro-
cess taking the value 1 or 0 according to whether or not subject i is observed
at time t: Under the above formulation and keeping the same notation as
above for W and x; a Bayesian hierarchical model may be formulated as:

dNij (t) � Poisson (Iij (t) dt) ;

Iij (t) dt = Yij(t) exp
�
�Txij +Wi

�
d�0 (t) ;

d�0 (t) � Gamma (c d��0 (t) ; c) :

As before, priors p (Wj�), p (�), and p(�) are required to completely specify
the Bayesian hierarchical model. Here, d�0 (t) = �0 (t) dt may be looked
upon as the increment or jump in the integrated baseline hazard function
occurring during the time interval [t; t+ dt): Since the conjugate prior for
the Poisson mean is the gamma distribution, �0 (t) is conveniently modeled
as a process whose increments d�0 (t) are distributed according to gamma
distributions. The parameter c in the above setup represents the degree of
con�dence in our prior guess for d�0 (t), given by d��0 (t). Typically, the
prior guess d��0 (t) is modeled as r dt, where r is a guess at the failure rate
per unit time. The LeukFr example in the WinBUGS examples manual o�ers
an illustration of how to code the above formulation.

Example 9.2 (Application to Minnesota infant mortality data, contin-
ued). We now apply the methodology above to the reanalysis of our Min-
nesota infant mortality data set. For both the CAR and nonspatial models
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Model pD DIC

No-frailty 6.82 507
Nonspatial frailty 27.46 391
CAR frailty 32.52 367

Table 9.4 DIC and e�ective number of parameters pD for competing nonpara-
metric survival models.

we implemented the Cox model with the two semiparametric approaches
outlined above. We found very similar results, and so in our subsequent
analysis we present only the results with the beta mixture approach (Sub-
section 9.2.1). For all of our models, we adopt vague Gaussian priors for �.
Since the full conditionals for each component of � are log-concave, adap-
tive rejection sampling was used for sampling from the � full conditionals.
As in Section 9.1, we again simply select a vague G(0:001; 1000) (mean 1,
variance 1000) speci�cation for CAR smoothness parameter �, though we
maintain more informative priors on the other variance components.
Table 9.4 compares our three models in terms of DIC and e�ective model

size pD. For the no-frailty model, we see a pD of 6.82, reasonably close to
the actual number of parameters, 8 (the components of �). The other two
models have substantially larger pD values, though much smaller than their
actual parameter counts (which would include the 87 random frailties Wi);
apparently there is substantial shrinkage of the frailties toward their grand
mean. The DIC values suggest that both of these models are substantially
better than the no-frailty model, despite their increased size. As in Ta-
ble 9.1, the spatial frailty model has the best DIC value.
Tables 9.5 and 9.6 provide 2.5, 50, and 97.5 posterior percentiles for

the main e�ects in our two frailty models, respectively. In both tables, all
of the predictors are signi�cant at the .05 level. Overall, the results are
broadly similar to those from our earlier parametric analysis in Tables 9.2
and 9.3. For instance, the e�ect of being in the Native American group
is again noteworthy. Under the CAR model, this covariate increases the
posterior median hazard rate by a factor of e0:599 = 1:82. The bene�t of
�tting the spatial CAR structure is also seen again in the reduction of the
length of the 95% credible intervals for the spatial model compared to the
i.i.d. model. Most notably, the 95% credible set for the e�ect of \mother's
age" is (�0:054;�0:014) under the nonspatial frailty model (Table 9.5),
but (�0:042;�0:013) under the CAR frailty model (Table 9.6), a reduction
in length of roughly 28%. Thus overall, adding spatial structure to the
frailty terms appears to be reasonable and bene�cial. Maps analogous to
Figures 9.1 and 9.2 (not shown) reveal a very similar story.
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Covariate 2:5% 50% 97:5%

Intercept �2:524 �1:673 �0:832
Sex (boys = 0)

girls �0:274 �0:189 �0:104
Race (white = 0)

black �0:365 �0:186 �0:012
Native American 0:427 0:737 1:034
unknown 0:295 0:841 1:381

Mother's age �0:054 �0:035 �0:014
Birth weight in kg �1:324 �1:301 �1:280
Total births 0:064 0:121 0:184

Table 9.5 Posterior summaries for the nonspatial semiparametric frailty model.

Covariate 2:5% 50% 97:5%

Intercept �1:961 �1:532 �0:845
Sex (boys = 0)

girls �0:351 �0:290 �0:217
Race (white = 0)

black �0:359 �0:217 �0:014
Native American 0:324 0:599 0:919
unknown 0:365 0:863 1:316

Mother's age �0:042 �0:026 �0:013
Birth weight in kg �1:325 �1:301 �1:283
Total births 0:088 0:135 0:193

Table 9.6 Posterior summaries for the CAR semiparametric frailty model.

9.3 Spatiotemporal models

In this section we follow Banerjee and Carlin (2003) to develop a semipara-
metric (Cox) hierarchical Bayesian frailty model for capturing spatiotem-
poral heterogeneity in survival data. We then use these models to describe
the pattern of breast cancer in the 99 counties of Iowa while accounting for
important covariates, spatially correlated di�erences in the hazards among
the counties, and possible space-time interactions.

We begin by extending the framework of the preceding section to incor-
porate temporal dependence. Here we have tijk as the response (time to
death) for the jth subject residing in the ith county who was diagnosed
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in the kth year, while the individual-speci�c vector of covariates is now
denoted by xijk , for i = 1; 2; :::; I , k = 1; : : : ;K, and j = 1; 2; :::; nik. We
note that \time" is now being used in two ways. The measurement or re-
sponse is a survival time, but these responses are themselves observed at
di�erent areal units and di�erent times (years). Furthermore, the spatial
random e�ects Wi in the preceding section are now modi�ed to Wik , to
represent spatiotemporal frailties corresponding to the ith county for the
kth diagnosis year. Our spatial frailty speci�cation in (9.1) now becomes

h (tijk ;xijk) = h0i (tijk) exp
�
�Txijk +Wik

�
: (9:10)

Our CAR prior would now have conditional representationWik jW(i0 6=i)k �
N(W ik; 1=(�kmi)):
Note that we can account for temporal correlation in the frailties by as-

suming that the �k are themselves identically distributed from a common
hyperprior (Subsection 8.5.1). A gamma prior (usually vague but proper)
is often selected here, since this is particularly convenient for MCMC im-
plementation. A at prior for � is typically chosen, since this still admits a
proper posterior distribution. Adaptive rejection (Gilks and Wild, 1992) or
Metropolis-Hastings sampling are usually required to update the Wk and
� parameters in a hybrid Gibbs sampler.
We remark that it would certainly be possible to include both spatial and

nonspatial frailties, as mentioned in Subsection 9.1.1. This would mean sup-
plementing our spatial frailtiesWik with a collection of nonspatial frailties,

say Vik
iid� N(0; 1=�k). We summarize our full hierarchical model as follows:

L (�;W; t;x; ) /
KY
k=1

IY
i=1

nikY
j=1

fh0i (tijk ;xijk)gijk

� exp
n
�H0i (tijk) exp

�
�Txijk +Wik + Vik

�o
;

where p(Wkj�k) � CAR(�k) p (Vkj�k) � NI (0; �kI)

and �k � G (a; b) ; �k � G (c; d) for k = 1; 2; :::;K :

In the sequel we adopt the beta mixture approach of Subsection 9.2.1 to
model the baseline hazard functions H0i(tijk) nonparametrically.

Example 9.3 (Analysis of Iowa SEER breast cancer data). The National
Cancer Institute's SEER program (seer.cancer.gov) is the most author-
itative source of cancer data in the U.S., o�ering county-level summaries
on a yearly basis for several states in various parts of the country. In par-
ticular, the database provides a cohort of 15,375 women in Iowa who were
diagnosed with breast cancer starting in 1973, and have been undergoing
treatment and have been progressively monitored since. Only those who
have been identi�ed as having died from metastasis of cancerous nodes
in the breast are considered to have failed, while the rest (including those
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Covariate 2:5% 50% 97:5%

Age at diagnosis 0.0135 0.0148 0.0163
Number of primaries {0.43 {0.40 {0.36
Race (white = 0)

black {0.14 0.21 0.53
other {2.25 {0.30 0.97

Stage (local = 0)
regional 0.30 0.34 0.38
distant 1.45 1.51 1.58

Table 9.7 Posterior summaries for the spatiotemporal frailty model.

who might have died from metastasis of other types of cancer, or from other
causes of death) are considered censored. By the end of 1998, 11,912 of the
patients had died of breast cancer while the remaining were censored, either
because they survived until the end of the study period, dropped out of the
study, or died of causes other than breast cancer. For each individual, the
data set records the time in months (1 to 312) that the patient survived,
and her county of residence at diagnosis. Several individual-level covariates
are also available, including race (black, white, or other), age at diagnosis,
number of primaries (i.e., the number of other types of cancer diagnosed
for this patient), and the stage of the disease (local, regional, or distant).

Results for the full model

We begin by summarizing our results for the spatiotemporal frailty model
described above, i.e., the full model having both spatial frailties Wik and
nonspatial frailties Vik . We chose vague G(0:01; 0:01) hyperpriors for the
�k and �k (having mean 1 but variance 100) in order to allow maximum
exibility in the partitioning of the frailties into spatial and nonspatial
components. Best et al. (1999) suggest that a higher variance prior for the
�k (say, a G(0:001; 0:001)) may lead to better prior \balance" between the
spatial and nonspatial random e�ects, but there is controversy on this point
and so we do not pursue it here. While overly di�use priors (as measured
for example as in Weiss, 1996) may result in weak identi�ability of these
parameters, their posteriors remain proper, and the impact of these priors
on the posterior for the well-identi�ed subset of parameters (including �
and the log-relative hazards themselves) should be minimal (Daniels and
Kass, 1999; Eberly and Carlin, 2000).
Table 9.7 provides 2.5, 50, and 97.5 posterior percentiles for the main

e�ects (components of �) in our model. All of the predictors except those
having to do with race are signi�cant at the .05 level. Since the reference
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Figure 9.5 Fitted spatiotemporal frailties, Iowa counties, 1986 (see also color in-
sert).

group for the stage variable is local, we see that women with regional and
distant (metastasized) diagnoses have higher and much higher hazard of
death, respectively; the posterior median hazard rate increases by a factor
of e1:51 = 4:53 for the latter group. Higher age at diagnosis also increases
the hazard, but a larger number of primaries (the number of other types
of cancer a patient is be su�ering from) actually leads to a lower hazard,
presumably due to the competing risk of dying from one of these other
cancers.

Figure 9.5 (see also color insert Figure C.10) maps the posterior medians
of the frailtiesWik+Vik for the representative year 1986. We see clusters of
counties with lower median frailties in the north-central and south-central
parts of the state, and also clusters of counties with higher median frailties
in the central, northeastern, and southeastern parts of the state.

Maps for other representative years showed very similar patterns, as well
as an overall decreasing pattern in the frailties over time (see Banerjee and
Carlin, 2003, for details). Figure 9.6 clari�es this pattern by showing box-
plots of the posterior medians of the Wik over time (recall our full model
does not have year-speci�c intercepts; the average of the Wik for year k
plays this role). We see an essentially horizontal trend during roughly the
�rst half of our observation period, followed by a decreasing trend that
seems to be accelerating. Overall the total decrease in median log hazard
is about 0.7 units, or about a 50% reduction in hazard over the observa-
tion period. A cancer epidemiologist would likely be unsurprised by this
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Figure 9.6 Boxplots of posterior medians for the spatial frailties Wik over the
Iowa counties for each year, k=1973, : : : , 1998.

decline, since it coincides with the recent rise in the use of mammography
by American women.

Bayesian model choice

For model choice, we again turn to the DIC criterion. The �rst six lines
of Table 9.8 provide pD and DIC values for our full model and several
simplications thereof. Note the full model (sixth line) is estimated to have
only just over 150 e�ective parameters, a substantial reduction (recall there
are 2 � 99 � 26 = 5148 random frailty parameters alone). Removing the
spatial frailtiesWik from the log-relative hazard has little impact on pD, but
substantial negative impact on the DIC score. By contrast, removing the
nonspatial frailties Vik reduces (i.e., improves) both pD and DIC, consistent
with our �ndings in the previous subsection. Further simplifying the model
to having a single set of spatial frailties Wi that do not vary with time
(but now also reinserting year-speci�c intercepts �k) has little e�ect on pD
but does improve DIC a bit more (though this improvement appears only
slightly larger than the order of Monte Carlo error in our calculations).
Even more drastic simpli�cations (eliminating the Wi, and perhaps even
the �k) lead to further drops in pD, but at the cost of unacceptably large
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Baseline hazard Log-relative hazard pD DIC

Semiparametric mixture �Txijk 6.17 780

Semiparametric mixture �Txijk + �k 33.16 743

Semiparametric mixture �Txijk + �k +Wi 80.02 187

Semiparametric mixture �Txijk +Wik 81.13 208

Semiparametric mixture �Txijk + Vik 149.45 732

Semiparametric mixture �Txijk +Wik + Vik 151.62 280

Weibull �Txijk + �k +Wi 79.22 221

Weibull �Txijk +Wik 80.75 239

Weibull �Txijk +Wik + Vik 141.67 315

Table 9.8 DIC and e�ective number of parameters pD for the competing models.

increases in DIC. Thus our county-level breast cancer survival data seem to
have strong spatial structure that is still unaccounted for by the covariates
in Table 9.7, but structure that is fairly similar for all diagnosis years.

The last three lines of Table 9.8 reconsider the best three log-relative
hazard models above, but where we now replace the semiparametric mix-
ture baseline hazard with a Weibull hazard having region-speci�c base-
line hazards h0i(tijk ; �i) = �it

�i�1
ijk (note the spatial frailties play the role

of the second parameter customarily associated with the Weibull model).
These fully parametric models o�er small advantages in terms of parsimony
(smaller pD), but these gains are apparently more than outweighed by a
corresponding degradation in �t (much larger DIC score).

9.4 Multivariate models ?

In this section we extend to multivariate spatial frailty modeling, using the
MCAR model introduced in Subsection 7.4. In particular, we use a semi-
parametric model, and consider MCAR structure on both residual (spatial
frailty) and regression (space-varying coe�cient) terms. We also extend to
the spatiotemporal case by including temporally correlated cohort e�ects
(say, one for each year of initial disease diagnosis) that can be summarized
and plotted over time. Example 9.4 illustrates the utility of our approach in
an analysis of survival times of patients su�ering from one or more types of
cancer. We obtain posterior estimates of key �xed e�ects, smoothed maps of
both frailties and spatially varying coe�cients, and compare models using
the DIC criterion.
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Static spatial survival data with multiple causes of death

Consider the following multivariate survival setting. Let tijk denote the
time to death or censoring for the kth patient having the jth type of
primary cancer living in the ith county, i = 1; : : : ; n, j = 1; : : : ; p, k =
1; : : : ; sij , and let ijk be the corresponding death indicator. Let us write
xijk as the vector of covariates for the above individual, and let zijk de-
note the vector of cancer indicators for this individual. That is, zijk =

(zijk1; zijk2; :::; zijkp)
T where zijkl = 1 if patient ijk su�ers from cancer

type l, and 0 otherwise (note that zijkj = 1 by de�nition). Then we can
write the likelihood of our proportional hazards model L (�;�;�; t;x;)
as Qn

i=1

Qp
j=1

Qsij
k=1 fh (tijk ;xijk ; zijk)gijk

� exp
n
�H0i (tijk) exp

�
xTijk� + zTijk� + �ij

�o
;

(9:11)

where

h (tijk ;xijk ; zijk) = h0i (tijk) exp
�
xTijk� + zTijk� + �ij

�
: (9:12)

Here, H0i (tijk) =
R tijk
0

h0i (u) du, �i = (�i1; �i2; :::; �in)
T , � and � are

given at priors, and

� �
�
�T1 ; : : : ;�

T
n

�T
�MCAR (�;�) ;

using the notation of Subsection 7.4.2. The region-speci�c baseline hazard
functions h0i (tijk) are modeled using the beta mixture approach (Subsec-
tion 9.2.1) in such a way that the intercept in � remains estimable. We
note that we could extend to a county and cancer-speci�c baseline hazard
h0ij ; however, preliminary exploratory analyses of our data suggest such
generality is not needed here.
Several alternatives to model formulation (9.12) immediately present

themselves. For example, we could convert to a space-varying coe�cients
model (Assun�c~ao, 2003), replacing the log-relative hazard xTijk�+z

T
ijk�+�ij

in (9.12) with

xTijk� + zTijk�i ; (9:13)

where � again has a at prior, but � �
�
�T1 ; : : : ;�

T
n

�T
� MCAR (�;�).

In Example 9.4 we apply this method to our cancer data set; we defer
mention of still other log-relative hazard modeling possibilities until after
this illustration.

MCAR speci�cation, simpli�cation, and computing

To e�ciently implement the MCAR (�;�) as a prior distribution for our
spatial process, suppose that we are using the usual 0-1 adjacency weights
in W . Then recall from equation (7.34) that we may express the MCAR
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precision matrix B � ��1

�
in terms of the n� n adjacency matrix W as

B = (Diag(mi)� �W )
 � ;

where we have added a propriety parameter �. Note that this is a Kronecker
product of an n�n and a p� p matrix, thereby rendering B as np�np as
required. In fact, B may be looked upon as the Kronecker product of two
partial precision matrices: one for the spatial components, (Diag(mi)��W )
(depending upon their adjacency structure and number of neighbors), and
another for the variation across diseases, given by �. We thus alter our
notation slightly to MCAR (�;�).

Also as a consequence of this form, a su�cient condition for positive de�-
niteness of the dispersion matrix for this MCAR model becomes j�j < 1 (as
in the univariate case). Negative smoothness parameters are not desirable,
so we typically take 0 < � < 1. We can now complete the Bayesian hierar-
chical formulation by placing appropriate priors on � (say, a Unif (0; 1) or
Beta(18; 2)) and � (say, a Wishart (�;�0)).

The Gibbs sampler is the MCMC method of choice here, particularly
because, as in the univariate case, it takes advantage of the MCAR's con-
ditional speci�cation. Adaptive rejection sampling may be used to sample
the regression coe�cients � and �, while Metropolis steps with (possibly
multivariate) Gaussian proposals may be employed for the spatial e�ects
�. The full conditional for � is nicely suited for slice sampling (see Subsec-
tion 4.3.3), given its bounded support. Finally, the full conditional for ��1

emerges in closed form as an inverted Wishart distribution.

We conclude this subsection by recalling that our model can be gen-
eralized to admit di�erent propriety parameters �j for di�erent diseases
(c.f. the discussion surrounding equation (7.35)). We notate this model as
MCAR (�;�), where � = (�1; : : : ; �p)

T .

Spatiotemporal survival data

Here we extend our model to allow for cohort e�ects. Let r index the year
in which patient ijk entered the study (i.e., the year in which the patient's
primary cancer was diagnosed). Extending model (9.12) we obtain the log-
relative hazard,

xTijkr� + zTijkr� + �ijr ; (9:14)

with the obvious corresponding modi�cations to the likelihood (9.11). Here,

�ir = (�i1r; �i2r ; :::; �ipr)
T
and �r =

�
�T1r; : : : ;�

T
nr

�T
ind� MCAR (�r;�r).

This permits addition of an exchangeable prior structure,

�r
iid� Beta(a; b) and �r

iid� Wishart(�;�0) ;

© 2004 by CRC Press LLC



MULTIVARIATE MODELS ? 323

where we may choose �xed values for a; b; �, and �0, or place hyperpriors
on them and estimate them from the data. Note also the obvious extension
to disease-speci�c �jr, as mentioned at the end of the previous subsection.

Example 9.4 (Application to Iowa SEER multiple cancer survival data).
We illustrate the approach with an analysis of SEER data on 17,146 pa-
tients from the 99 counties of the state of Iowa who have been diagnosed
with cancer between 1992 and 1998, and who have a well-identi�ed pri-
mary cancer. Our covariate vector xijk consists of a constant (intercept), a
gender indicator, the age of the patient, indicators for race with \white" as
the baseline, indicators for the stage of the primary cancer with \local" as
the baseline, and indicators for year of primary cancer diagnosis (cohort)
with the �rst year (1992) as the baseline. The vector zijk comprises the
indicators of which cancers the patient has; the corresponding parameters
will thus capture the e�ect of these cancers on the hazards regardless of
whether they emerge as primary or secondary.

With regard to modeling details, we used �ve separate (cancer-speci�c)
propriety parameters �j having an exchangeable Beta(18; 2) prior, and a
vague Wishart (� = 5;�0 = Diag(:01; :01; :01; :01; :01)) for �. (Results for
�;�, and � under a U(0; 1) prior for the �j were broadly similar.) Ta-
ble 9.9 gives posterior summaries for the main e�ects � and �; note that
� is estimable despite the presence of the intercept since many individuals
have more than one cancer. No race or cohort e�ects emerged as signi�-
cantly di�erent from zero, so they have been deleted; all remaining e�ects
are shown here. All of these e�ects are signi�cant and in the directions
one would expect. In particular, the �ve cancer e�ects are consistent with
results of previous modeling of this and similar data sets, with pancreatic
cancer emerging as the most deadly (posterior median log relative hazard
1.701) and colorectal and small intestinal cancer relatively less so (.252 and
.287, respectively).

Table 9.10 gives posterior variance and correlation summaries for the
frailties �ij among the �ve cancers for two representative counties, Dallas
(urban; Des Moines area) and Clay (rural northwest). Note that the cor-
relations are as high as 0.528 (pancreas and stomach in Dallas County),
suggesting the need for the multivariate structure inherent in our MCAR
frailty model. Note also that summarizing the posterior distribution of ��1

would be inappropriate here, since despite the Kronecker structure here (as
in (7.35)), ��1 cannot be directly interpreted as a primary cancer covari-
ance matrix across counties.

Turning to geographic summaries, Figure 9.7 (see also color insert Fig-
ure C.11) shows ArcView maps of the posterior means of the MCAR spa-
tial frailties �ij . Recall that in this model, the �ij play the role of spatial
residuals, capturing any spatial variation not already accounted for by the
spatial main e�ects � and �. The lack of spatial pattern in these maps
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Variable 2.5% 50% 97.5%

Intercept 0.102 0.265 0.421
Sex (female = 0) 0.097 0.136 0.182
Age 0.028 0.029 0.030

Stage of primary cancer (local = 0)
regional 0.322 0.373 0.421
distant 1.527 1.580 1.654

Type of primary cancer
colorectal 0.112 0.252 0.453
gallbladder 1.074 1.201 1.330
pancreas 1.603 1.701 1.807
small intestine 0.128 0.287 0.445
stomach 1.005 1.072 1.141

Table 9.9 Posterior quantiles for the �xed e�ects in the MCAR frailty model.

suggest there is little additional spatial \story" in the data beyond what
is already being told by the �xed e�ects. However, the map scales reveal
that one cancer (gallbladder) is markedly di�erent from the others, both
in terms of total range of the mean frailties (rather broad) and their center
(negative; the other four are centered near 0).
Next, we change from the MCAR spatial frailty model to the MCAR

spatially varying coe�cients model (9.13). This model required a longer
burn-in period (20,000 instead of 10,000), but otherwise our prior and
MCMC control parameters remain unchanged. Figure 9.8 (see also color
insert Figure C.12) shows ArcView maps of the resulting posterior means
of the spatially varying coe�cients �ij . Unlike the �ij in the previous model,
these parameters are not \residuals," but the e�ects of the presence of the
primary cancer indicated on the death rate in each county. Clearly these
maps show a strong spatial pattern, with (for example) southwestern Iowa
counties having relatively high �tted values for pancreatic and stomach
cancer, while southeastern counties fare relatively poorly with respect to
colorectal and small intestinal cancer. The overall levels for each cancer are
consistent with those given for the corresponding �xed e�ects � in Table 9.9
for the spatial frailty model.
Table 9.11 gives the e�ective model sizes pD and DIC scores for a vari-

ety of spatial survival models. The �rst two listed (�xed e�ects only and
standard CAR frailty) have few e�ective parameters, but also poor (large)
DIC scores. The MCAR spatial frailty models (which place the MCAR on
�) fare better, especially when we add the disease-speci�c �j (the model
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Colo- Gall- Small
Dallas County rectal bladder Pancreas intestine Stomach

Colorectal 0.852 0.262 0.294 0.413 0.464
Gallbladder 1.151 0.314 0.187 0.175
Pancreas 0.846 0.454 0.528
Small intestine 1.47 0.413
Stomach 0.908

Colo- Gall- Small
Clay County rectal bladder Pancreas intestine Stomach

Colorectal 0.903 0.215 0.273 0.342 0.352
Gallbladder 1.196 0.274 0.128 0.150
Pancreas 0.852 0.322 0.402
Small intestine 1.515 0.371
Stomach 1.068

Table 9.10 Posterior variances and correlation summaries, Dallas and Clay
Counties, MCAR spatial frailty model. Diagonal elements are estimated vari-
ances, while o�-diagonal elements are estimated correlations.

Log-relative hazard model pD DIC

xTijk� + zTijk� 10.97 642

xTijk� + zTijk� + �i; � � CAR(�; �) 103.95 358

xTijk� + zTijk� + �ij ; � �MCAR(� = 1;�) 172.75 247

xTijk� + zTijk� + �ij ; � �MCAR(�;�) 172.40 246

xTijk� + zTijk� + �ij ; � �MCAR(�1; : : : ; �5;�) 175.71 237

xTijk� + zTijk� + �ij + �ij ; � �MCAR(�1; : : : ; �5;�), 177.25 255

�ij
iid� N(0; �2)

xTijk� + zTijk�i, � �MCAR(�;�) 169.42 235

xTijk� + zTijk�i, � �MCAR(�1; : : : ; �5;�) 171.46 229

Table 9.11 DIC comparison, spatial survival models for the Iowa cancer data.

summarized in Table 9.9, Table 9.10, and Figure 9.7). However, adding
heterogeneity e�ects �ij to this model adds essentially no extra e�ective
parameters, and is actually harmful to the overall DIC score (since we are
adding complexity for little or no bene�t in terms of �t). Finally, the two
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Colorectal Cancer

-0.95 - -0.51
-0.51 - -0.19
-0.19 - -0.04
-0.04 - 0.10
0.10 - 0.24
0.24 - 0.55
0.55 - 1.15

Gallbladder Cancer

-3.35 - -2.94
-2.94 - -0.80
-0.80 - -0.33
-0.33 - 0.06
0.06 - 0.47
0.47 - 0.94
0.94 - 2.00

Pancreas Cancer

-0.81 - -0.62
-0.62 - -0.39
-0.39 - -0.13
-0.13 - 0.05
0.05 - 0.20
0.20 - 0.48
0.48 - 0.80

Small Intestine Cancer

-0.59 - -0.41
-0.41 - -0.15
-0.15 - -0.02
-0.02 - 0.07
0.07 - 0.18
0.18 - 0.28
0.28 - 0.58

Stomach Cancer

-1.71- -1.11
-1.11 - -0.49
-0.49 - -0.18
-0.18 - 0.07
0.07 - 0.27
0.27 - 0.54
0.54 - 0.96

Figure 9.7 Posterior mean spatial frailties, Iowa cancer data, static spatial
MCAR model (see also color insert).

spatially varying coe�cients models enjoy the best (smallest) DIC scores,
but only by a small margin over the best spatial frailty model.

Finally, we �t the spatiotemporal extension (9.14) of our MCAR frailty
model to the data where the cohort e�ect (year of study entry r) is taken
into account. Year-by-year boxplots of the posterior median frailties (Fig-
ure 9.9) reveal the expected steadily decreasing trend for all �ve cancers,
though it is not clear how much of this decrease is simply an artifact of
the censoring of survival times for patients in more recent cohorts. The
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Colorectal Cancer
0.15 - 0.20
0.20 - 0.25
0.25 - 0.30
0.30 - 0.35
0.35-0.40
0.40 - 0.45
0.45 - 0.50

Gallbladder Cancer
0.90 - 0.95
0.95 - 1.00
1.00 - 1.05
1.05 - 1.10
1.10 - 1.15
1.15 - 1.20
1.20 - 1.25

Pancreas Cancer
1.55 - 1.60
1.60 - 1.65
1.65 - 1.70
1.70 - 1.75
1.75 - 1.80
1.80 - 1.85
1.85 - 1.90

Small Intestine Cancer
0.20 - 0.25
0.25 - 0.30
0.30 - 0.35
0.35 - 0.40
0.40 - 0.45
0.45 - 0.50
0.50 - 0.55

Stomach Cancer

1.0 - 1.05
1.05 - 1.10
1.10 - 1.15
1.15 - 1.20
1.20 - 1.25
1.25 - 1.30
1.30 - 1.35

Figure 9.8 Posterior mean spatially varying coe�cients, Iowa cancer data, static
spatial MCAR model (see also color insert).

spatiotemporal extension of the spatially varying coe�cients model (9.13)
(i.e., xTijkr�+z

T
ijkr�ir) might well produce results that are temporally more

interesting in this case. Incorporating change points, cancer start date mea-
surement errors, and other model enhancements (say, interval censoring)
might also be practically important model enhancements here.
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Figure 9.9 Boxplots of posterior medians for the spatial frailties �ijr over the 99
Iowa counties for each year, r = 1973; : : : ; 1998.

9.5 Spatial cure rate models ?

In Section 9.1 we investigated spatially correlated frailties in traditional
parametric survival models, choosing a random e�ects distribution to reect
the spatial structure in the problem. Sections 9.2 and 9.3 extended this
approach to spatial and spatiotemporal settings within a semiparametric
model.
In this section our ultimate goal is the proper analysis of a geograph-

ically referenced smoking cessation study, in which we observe subjects
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periodically through time to check for relapse following an initial quit at-
tempt. Each patient is observed once each year for �ve consecutive years,
whereupon the current average number of cigarettes smoked at each visit
is recorded, along with the zip code of residence and several other poten-
tial explanatory variables. This data set requires us to extend the work
of Carlin and Hodges (1999) in a number of ways. The primary extension
involves the incorporation of a cure fraction in our models. In investigating
the e�ectiveness of quitting programs, data typically reveal many former
smokers having successfully given up smoking, and as such may be thought
of as \cured" of the deleterious habit. Incorporating such cure fractions in
survival models leads to cure rate models, which are often applied in sur-
vival settings where the endpoint is a particular disease (say, breast cancer)
which the subject may never reexperience. These models have a long his-
tory in the biostatistical literature, with the most popular perhaps being
that of Berkson and Gage (1952). This model has been extensively stud-
ied in the statistical literature by a number of authors, including Farewell
(1982, 1986), Goldman (1984), and Ewell and Ibrahim (1997). Recently,
cure rates have been studied in somewhat more general settings by Chen,
Ibrahim, and Sinha (1999) following earlier work by Yakovlev and Tsodikov
(1996).
In addition, while this design can be analyzed as an ordinary right-

censored survival model (with relapse to smoking as the endpoint), the data
are perhaps more accurately viewed as interval-censored, since we actually
observe only approximately annual intervals within which a failed quitter
resumed smoking. We will consider both right- and interval-censored mod-
els, where in the former case we simply approximate the time of relapse by
the midpoint of the corresponding time interval. Finally, we capture spa-
tial variation through zip code-speci�c spatial random e�ects in the cure
fraction or the hazard function, which in either case may act as spatial
frailties. We �nd that incorporating the covariates and frailties into the
hazard function is most natural (both intuitively and methodologically),
especially after adopting a Weibull form for the baseline hazard.

9.5.1 Models for right- and interval-censored data

Right-censored data

Our cure rate models are based on those of Chen et al. (1999) and derived
assuming that some latent biological process is generating the observed
data. Suppose there are I regions and ni patients in the ith region. We
denote by Tij the random variable for time to event (relapse, in our case)
of the jth person in the ith region, where j = 1; 2; :::; ni and i = 1; 2; :::; I .
(While acknowledging the presence of the regions in our notation, we post-
pone explicit spatial modeling to the next section.) Suppose that the (i; j)th
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individual hasNij potential latent (unobserved) risk factors, the presence of
any of which (i.e., Nij � 1) will ultimately lead to the event. For example,
in cancer settings these factors may correspond to metastasis-competent
tumor cells within the individual. Typically, there will be a number of sub-
jects who do not undergo the event during the observation period, and are
therefore considered censored. Thus, letting Uijk ; k = 1; 2; :::; Nij be the
time to an event arising from the kth latent factor for the (i; j)th individ-
ual, the observed time to event for an uncensored individual is generated by
Tij = min fUijk; k = 1; 2; :::; Nijg. If the (i; j)th individual is right-censored
at time tij , none of the latent factors have led to an event by that time,
and clearly Tij > tij (and in fact Tij =1 if Nij = 0).

Given Nij ; the Uijk 's are independent with survival function S (tj	ij)
and corresponding density function f (tj	ij). The parameter 	ij is a col-
lection of all the parameters (including possible regression parameters) that
may be involved in a parametric speci�cation for the survival function S. In
this section we will work with a two-parameter Weibull distribution speci-
�cation for the density function f (tj	ij), where we allow the Weibull scale
parameter � to vary across the regions, and �, which may serve as a link
to covariates in a regression setup, to vary across individuals. Therefore
f (tj�i; �ij) = �it

�i�1 exp (�ij � t�i exp (�ij)).

In terms of the hazard function h, f (tj�i; �ij) = h (tj�i; �ij)S (tj�i; �ij),
with h (t; �i; �ij) = �it

�i�1 exp (�ij) and S (tj�i; �ij) = exp (�t�i exp (�ij)).
Note we implicitly assume proportional hazards, with baseline hazard func-
tion h0 (tj�i) = �it

�i�1: Thus an individual ij who is censored at time

tij before undergoing the event contributes (S (tij j�i; �ij))Nij to the likeli-
hood, while an individual who experiences the event at time tij contributes

Nij (S (tij j�i; �ij))Nij�1 f (tij j�i; �ij). The latter expression follows from the
fact that the event is experienced when any one of the latent factors occurs.
Letting �ij be the observed event indicator for individual ij, this person
contributes

L (tij jNij ; �i; �ij ; �ij)

= (S (tij j�i; �ij))Nij(1��ij )
�
NijS (tij j�i; �ij)Nij�1 f (tij j�i; �ij)

��ij
;

and the joint likelihood for all the patients can now be expressed as

L (ftijg j fNijg ; f�ig; f�ijg ; f�ijg)
=
QI

i=1

Qni
j=1 L (tij jNij ; �i; �ij ; �ij)

=
QI

i=1

Qni
j=1 (S (tij j�i; �ij))Nij(1��ij)

�
�
NijS (tij�i; �ij)

Nij�1 f (tij j�i; �ij)
��ij

=
QI

i=1

Qni
j=1 (S (tij j�i; �ij))Nij��ij (Nijf (tij j�i; �ij))�ij :
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This expression can be rewritten in terms of the hazard function as

IY
i=1

niY
j=1

(S (tij j�i; �ij))Nij (Nijh (tij j�i; �ij))�ij : (9:15)

A Bayesian hierarchical formulation is completed by introducing prior
distributions on the parameters. We will specify independent prior distribu-
tions p (Nij j�ij), p (�ij �) and p (�ij j �) for fNijg, f�ig, and f�ijg, respec-
tively. Here,  �,  �, and f�ijg are appropriate hyperparameters. Assigning
independent hyperpriors p (�ij j �) for f�ijg and assuming the hyperpa-
rameters  = ( �;  �;  �) to be �xed, the posterior distribution for the
parameters, p (f�ijg ; f�ijg ; fNijg ; f�ig j ftijg ; f�ijg), is easily found (up
to a proportionality constant) using (9.15) asQI

i=1

n
p (�ij �)

Qni
j=1 [S (tij j�i; �ij)]Nij [Nijh (tij j�i; �ij)]�ij

�p (Nij j�ij) p (�ij j �) p (�ij j �)g :
Chen et al. (1999) assume that the Nij are distributed as independent

Poisson random variables with mean �ij , i.e., p (Nij j�ij) is Poisson (�ij). In
this setting it is easily seen that the survival distribution for the (i; j)th pa-
tient, P (Tij � tij j�i; �ij), is given by exp f��ij (1� S (tij j�i; �ij))g. Since
S (tij j�i; �ij) is a proper survival function (corresponding to the latent fac-
tor times Uijk), as tij ! 1, P (Tij � tij j�i; �ij) ! exp (��ij) > 0. Thus
we have a subdistribution for Tij with a cure fraction given by exp (��ij).
Here a hyperprior on the �ij 's would have support on the positive real line.
While there could certainly be multiple latent factors that increase the

risk of smoking relapse (age started smoking, occupation, amount of time
spent driving, tendency toward addictive behavior, etc.), this is rather spec-
ulative and certainly not as justi�able as in the cancer setting for which
the multiple factor approach was developed (where Nij > 1 is biologically
motivated). As such, we instead form our model using a single, omnibus,
\propensity for relapse" latent factor. In this case, we think of Nij as a bi-
nary variable, and specify p (Nij j�ij) as Bernoulli (1� �ij). In this setting
it is easier to look at the survival distribution after marginalizing out the
Nij . In particular, note that

P (Tij � tij j�i; �ij ; Nij) =

�
S (tij j�i; �ij) ; Nij = 1

1 ; Nij = 0
:

That is, if the latent factor is absent, the subject is cured (does not ex-
perience the event). Marginalizing over the Bernoulli distribution for Nij ,
we obtain for the (i; j)th patient the survival function S� (tij j�ij ; �i; �ij) �
P (Tij � tij j�i; �ij) = �ij +(1� �ij)S (tij j�i; �ij), which is the classic cure-
rate model attributed to Berkson and Gage (1952) with cure fraction �ij .
Now we can write the likelihood function for the data marginalized over
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fNijg, L (ftijg j f�ig; f�ijg; f�ijg ; f�ijg), asQI

i=1

Qni
j=1 [S

� (tij j�ij ; �i; �ij)]1��ij
�
� d
dtij

S� (tij j�ij ; �i; �ij)
��ij

=
QI

i=1

Qni
j=1 [S

� (tij j�ij ; �i; �ij)]1��ij [(1� �ij) f (tij j�i; �ij)]�ij ;

which in terms of the hazard function becomes

IY
i=1

niY
j=1

[S� (tij j�ij ; �i; �ij)]1��ij [(1� �ij)S (tij j�i; �ij)h (tij j�i; �ij)]�ij ;

(9:16)
where the hyperprior for �ij has support on (0; 1). Now the posterior dis-
tribution of the parameters is proportional to

L (ftijg j f�ig; f�ijg; f�ijg ; f�ijg)
IY
i=1

8<:p (�ij �)
niY
j=1

p (�ij j �) p (�ij j �)
9=; :

(9:17)

Turning to the issue of incorporating covariates, in the general setting
with Nij assumed to be distributed Poisson, Chen et al. (1999) propose
their introduction in the cure fraction through a suitable link function g,

so that �ij = g
�
xTij
e��, where g maps the entire real line to the positive axis.

This is sensible when we believe that the risk factors a�ect the probability
of an individual being cured. Proper posteriors arise for the regression
coe�cients e� even under improper priors. Unfortunately, this is no longer
true when Nij is Bernoulli (i.e., in the Berkson and Gage model). Vague
but proper priors may still be used, but this makes the parameters di�cult
to interpret, and can often lead to poor MCMC convergence.

Since a binary Nij seems most natural in our setting, we instead intro-
duce covariates into S (tij j�i; �ij) through the Weibull link �ij , i.e., we let
�ij = xTij�. This seems intuitively more reasonable anyway, since now the
covariates inuence the underlying factor that brings about the smoking
relapse (and thus the rapidity of this event). Also, proper posteriors arise
here for � under improper posteriors even though Nij is binary. As such,
henceforth we will only consider the situation where the covariates enter
the model in this way (through the Weibull link function). This means we
are unable to separately estimate the e�ect of the covariates on both the
rate of relapse and the ultimate level of relapse, but \fair" estimation here
(i.e., allocating the proper proportions of the covariates' e�ects to each
component) is not clear anyway since at priors could be selected for �,

but not for e�. Finally, all of our subsequent models also assume a constant
cure fraction for the entire population (i.e., we set �ij = � for all i; j).

Note that the posterior distribution in (9.17) is easily modi�ed to incor-
porate covariates. For example, with �ij = xTij�, we replace

Q
ij p (�ij j �)
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in (9.17) with p (�j �), with  � as a �xed hyperparameter. Typically a at
or vague Gaussian prior may be taken for p (�j �).

Interval-censored data

The formulation above assumes that our observed data are right-censored.
This means that we are able to observe the actual relapse time tij when it
occurs prior to the �nal o�ce visit. In reality, our study (like many others
of its kind) is only able to determine patient status at the o�ce visits
themselves, meaning we observe only a time interval (tijL; tijU ) within
which the event (in our case, smoking relapse) is known to have occurred.
For patients who did not resume smoking prior to the end of the study
we have tijU = 1, returning us to the case of right-censoring at time
point tijL. Thus we now set �ij = 1 if subject ij is interval-censored (i.e.,
experienced the event), and �ij = 0 if the subject is right-censored.
Following Finkelstein (1986), the general interval-censored cure rate like-

lihood, L (f(tijL; tijU )g j fNijg ; f�ig; f�ijg ; f�ijg), is given by

IY
i=1

niY
j=1

[S (tijLj�i; �ij)]Nij��ij fNij [S (tijLj�i; �ij)� S (tijU j�i; �ij)]g�ij

=

IY
i=1

niY
j=1

[S (tijLj�i; �ij)]Nij

�
Nij

�
1� S (tijU j�i; �ij)

S (tijLj�i; �ij)
���ij

:

As in the previous section, in the Bernoulli setup after marginalizing out
the fNijg the foregoing becomes L (f(tijL; tijU )g j f�ig; f�ijg; f�ijg ; f�ijg),
and can be written as

IY
i=1

niY
j=1

S� (tijLj�ij ; �i; �ij)
�
1� S� (tijU j�ij ; �i; �ij)

S� (tijLj�ij ; �i; �ij)
��ij

: (9:18)

We omit details (similar to those in the previous section) arising from
the Weibull parametrization and subsequent incorporation of covariates
through the link function �ij .

9.5.2 Spatial frailties in cure rate models

The development of the hierarchical framework in the preceding section
acknowledged the data as coming from I di�erent geographical regions
(clusters). Such clustered data are common in survival analysis and often
modeled using cluster-speci�c frailties �i. As with the covariates, we will
introduce the frailties �i through the Weibull link as intercept terms in the
log-relative risk; that is, we set �ij = xTij� + �i.
Here we allow the �i to be spatially correlated across the regions; simi-

larly we would like to permit the Weibull baseline hazard parameters, �i,
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to be spatially correlated. A natural approach in both cases is to use a
univariate CAR prior. While one may certainly employ separate, indepen-
dent CAR priors on � and � � flog �ig, another option is to allow these
two spatial priors to themselves be correlated. In other words, we may
want a bivariate spatial model for the �i = (�i; �i)

T = (�i; log �i)
T . As

mentioned in Sections 7.4 and 9.4, we may use the MCAR distribution
for this purpose. In our setting, the MCAR distribution on the concate-
nated vector � = (�T ; �T )T is Gaussian with mean 0 and precision matrix
��1
(Diag (mi)� �W ), where � is a 2�2 symmetric and positive de�nite
matrix, � 2 (0; 1), and mi and W remain as above. In the current context,
we may also wish to allow di�erent smoothness parameters (say, �1 and �2)
for � and �, respectively, as in Section 9.4. Henceforth, in this section we
will denote the proper MCAR with a common smoothness parameter by
MCAR (�;�), and the multiple smoothness parameter generalized MCAR
byMCAR (�1; �2;�). Combined with independent (univariate) CAR mod-
els for � and �, these o�er a broad range of potential spatial models.

9.5.3 Model comparison

Suppose we let 
 denote the set of all model parameters, so that the de-
viance statistic (4.9) becomes

D(
) = �2 log f(yj
) + 2 logh(y) : (9:19)

When DIC is used to compare nested models in standard exponential family
settings, the unnormalized likelihood L(
;y) is often used in place of the
normalized form f(yj
) in (9.19), since in this case the normalizing function
m(
) =

R
L(
;y)dy will be free of 
 and constant across models, hence

contribute equally to the DIC scores of each (and thus have no impact on
model selection). However, in settings where we require comparisons across
di�erent likelihood distributional forms, it appears one must be careful to
use the properly scaled joint density f(yj
) for each model.
We argue that use of the usual proportional hazards likelihood (which of

course is not a joint density function) is in fact appropriate for DIC com-
putation here, provided we make a fairly standard assumption regarding
the relationship between the survival and censoring mechanisms generat-
ing the data. Speci�cally, suppose the distribution of the censoring times is
independent of that of the survival times and does not depend upon the sur-
vival model parameters (i.e., independent, noninformative censoring). Let
g (tij) denote the density of the censoring time for the ijth individual, with
corresponding survival (1-cdf) function R (tij). Then the right-censored
likelihood (9.16) can be extended to the joint likelihood speci�cation,QI

i=1

Qni
j=1 [S

� (tij j�ij ; �i; �ij)]1��ij
� [(1� �ij)S (tij j�i; �ij)h (tij j�i; �ij)]�ij [R (tij)]

�ij [g (tij)]
1��ij ;
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as for example in Le (1997, pp. 69{70).While not a joint probability density,
this likelihood is still an everywhere nonnegative and integrable function
of the survival model parameters 
, and thus suitable for use with the
Kullback-Leibler divergences that underlie DIC (Spiegelhalter et al., 2002,
p. 586). But by assumption, R (t) and g (t) do not depend upon 
. Thus,
like an m(
) that is free of 
, they may be safely ignored in both the pD
and DIC calculations. Note this same argument implies that we can use
the unnormalized likelihood (9.16) when comparing not only nonnested
parametric survival models (say, Weibull versus gamma), but even para-
metric and semiparametric models (say, Weibull versus Cox) provided our
de�nition of \likelihood" is comparable across models.
Note also that here our \focus" (in the nomenclature of Spiegelhalter et

al., 2002) is solely on 
. An alternative would be instead to use a missing
data formulation, where we include the likelihood contribution of fsijg, the
collection of latent survival times for the right-censored individuals. Values
for both 
 and the fsijg could then be imputed along the lines given by
Cox and Oakes (1984, pp. 165{166) for the EM algorithm or Spiegelhalter
et al. (1995b, the \mice" example) for the Gibbs sampler. This would alter
our focus from 
 to (
; fsijg), and pD would reect the correspondingly
larger e�ective parameter count.
Turning to the interval censored case, here matters are only a bit more

complicated. Converting the interval-censored likelihood (9.18) to a joint
likelihood speci�cation yields

IY
i=1

niY
j=1

S� (tijLj�ij ; �i; �ij)
�
1� S� (tijU j�ij ; �i; �ij)

S� (tijLj�ij ; �i; �ij)
��ij

� [R (tijL)]
�ij

�
1� R (tijU )

R (tijL)

��ij
[g (tijL)]

1��ij :

Now [R (tijL)]
�ij (1�R (tijU ) =R (tijL))

�ij [g (tijL)]
1��ij is the function ab-

sorbed into m(
), and is again free of 
. Thus again, use of the usual form
of the interval-censored likelihood presents no problems when comparing
models within the interval-censored framework (including nonnested para-
metric models, or even parametric and semiparametric models).
Note that it does not make sense to compare a particular right-censored

model with a particular interval-censored model. The form of the available
data is di�erent; model comparison is only appropriate to a given data set.

Example 9.5 (Smoking cessation data). We illustrate our methods using
the aforementioned study of smoking cessation, a subject of particular in-
terest in studies of lung health and primary cancer control. Described more
fully by Murray et al. (1998), the data consist of 223 subjects who reside
in 53 zip codes in the southeastern corner of Minnesota. The subjects,
all of whom were smokers at study entry, were randomized into either a
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Figure 9.10 Map showing missingness pattern for the smoking cessation data:
lightly shaded regions are those having no responses.

smoking intervention (SI) group, or a usual care (UC) group that received
no special antismoking intervention. Each subject's smoking habits were
monitored at roughly annual visits for �ve consecutive years. The subjects
we analyze are actually the subset who are known to have quit smoking
at least once during these �ve years, and our event of interest is whether
they relapse (resume smoking) or not. Covariate information available for
each subject includes sex, years as a smoker, and the average number of
cigarettes smoked per day just prior to the quit attempt.

To simplify matters somewhat, we actually �t our spatial cure rate mod-
els over the 81 contiguous zip codes shown in Figure 9.10, of which only
the 54 dark-shaded regions are those contributing patients to our data set.
This enables our models to produce spatial predictions even for the 27
unshaded regions in which no study patients actually resided. All of our
MCMC algorithms ran 5 initially overdispersed sampling chains, each for
20,000 iterations. Convergence was assessed using correlation plots, sample
trace plots, and Gelman-Rubin (1992) statistics. In every case a burn-in
period of 15,000 iterations appeared satisfactory. Retaining the remaining
5,000 samples from each chain yielded a �nal sample of 25,000 for posterior
summarization.

Table 9.12 provides the DIC scores for a variety of random e�ects cure
rate models in the interval-censored case. Models 1 and 2 have only random
frailty terms �i with i.i.d. and CAR priors, respectively. Models 3 and 4 add
random Weibull shape parameters �i = log �i, again with i.i.d. and CAR
priors, respectively, independent of the priors for the �i. Finally, Models
5 and 6 consider the full MCAR structure for the (�i; �i) pairs, assuming
common and distinct spatial smoothing parameters, respectively. The DIC
scores do not suggest that the more complex models are signi�cantly better;
apparently the data encourage a high degree of shrinkage in the random
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Model Log-relative risk pD DIC

1 xTij� + �i; �i
iid� N (0; ��) ; �i = � 8 i 10.3 438

2 xTij� + �i; f�ig � CAR (��) ; �i = � 8 i 9.4 435

3 xTij� + �i; �i
iid� N (0; ��) ; �i

iid� N (0; ��) 13.1 440
4 xTij� + �i; f�ig � CAR (��) ; f�ig � CAR (��) 10.4 439
5 xTij� + �i; (f�ig ; f�ig) �MCAR (�;�) 7.9 434
6 xTij� + �i; (f�ig ; f�ig) �MCAR (��; �� ;�) 8.2 434

Table 9.12 DIC and pD values for various competing interval-censored models.

Parameter Median (2.5%, 97.5%)

Intercept {2.720 ({4.803, {0.648)
Sex (male = 0) 0.291 ({0.173, 0.754)
Duration as smoker {0.025 ({0.059, 0.009)
SI/UC (usual care = 0) {0.355 ({0.856, 0.146)
Cigarettes smoked per day 0.010 ({0.010, 0.030)

� (cure fraction) 0.694 (0.602, 0.782)

�� 0.912 (0.869, 0.988)
�� 0.927 (0.906, 0.982)
�11 (spatial variance component, �i) 0.005 (0.001, 0.029)
�22 (spatial variance component, �i) 0.007 (0.002, 0.043)
�12=

p
�11�22 0.323 ({0.746, 0.905)

Table 9.13 Posterior quantiles, full model, interval-censored case.

e�ects (note the low pD scores). In what follows we present results for
the \full" model (Model 6) in order to preserve complete generality, but
emphasize that any of the models in Table 9.12 could be used with equal
con�dence.

Table 9.13 presents estimated posterior quantiles (medians, and upper
and lower .025 points) for the �xed e�ects �, cure fraction �, and hyper-
parameters in the interval-censored case. The smoking intervention does
appear to produce a decrease in the log relative risk of relapse, as expected.
Patient sex is also marginally signi�cant, with women more likely to relapse
than men, a result often attributed to the (real or perceived) risk of weight
gain following smoking cessation. The number of cigarettes smoked per day
does not seem important, but duration as a smoker is signi�cant, and in
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RR
R R

a)
-0.30 - -0.20
-0.20 - -0.10
-0.10 - -0.02
-0.02 - 0.02
0.02 - 0.10
0.10 - 0.20
0.20 - 0.37

RR
R R

b)
0.95 - 0.98
0.98 - 0.99
0.99 - 1.01
1.01 - 1.03
1.03 - 1.05
1.05 - 1.08
1.08 - 1.19

Figure 9.11 Maps of posterior means for the �i (a) and the �i (b) in the full
spatial MCAR model, assuming the data to be interval-censored (see also color
insert).

a possibly counterintuitive direction: shorter-term smokers relapse sooner.
This may be due to the fact that people are better able to quit smoking as
they age (and are thus confronted more clearly with their own mortality).
The estimated cure fraction in Table 9.13 is roughly .70, indicating that

roughly 70% of smokers in this study who attempted to quit have in fact
been \cured." The spatial smoothness parameters �� and �� are both close
to 1, again suggesting we would lose little by simply setting them both
equal to 1 (as in the standard CAR model). Finally, the last lines of both
tables indicate only a moderate correlation between the two random e�ects,
again consistent with the rather weak case for including them in the model
at all.
We compared our results to those obtained from the R function survreg

using a Weibull link, and also to Weibull regression models �t in a Bayesian
fashion using the WinBUGS package. While neither of these alternatives fea-
tured a cure rate (and only the WinBUGS analysis included spatial random
e�ects), both produced �xed e�ect estimates quite consistent with those in
Table 9.13.
Turning to graphical summaries, Figure 9.11 (see also color insert Fig-

ure C.13) maps the posterior medians of the frailty (�i) and shape (�i)
parameters in the full spatial MCAR (Model 6) case. The maps reveal
some interesting spatial patterns, though the magnitudes of the di�erences
appear relatively small across zip codes. The south-central region seems to
be of some concern, with its high values for both �i (high overall relapse
rate) and �i (increasing baseline hazard over time). By contrast, the four
zip codes comprising the city of Rochester, MN (home of the Mayo Clinic,
and marked with an \R" in each map) suggest slightly better than average
cessation behavior. Note that a nonspatial model cannot impute anything
other than the \null values" (�i = 0 and �i = 1) for any zip code con-
tributing no data (all of the unshaded regions in Figure 9.10). Our spatial
model however is able to impute nonnull values here, in accordance with
the observed values in neighboring regions.
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Unit Drug Time Unit Drug Time Unit Drug Time

A 1 74+ E 1 214 H 1 74+
A 2 248 E 2 228+ H 1 88+
A 1 272+ E 2 262 H 1 148+
A 2 344 H 2 162

F 1 6
B 2 4+ F 2 16+ I 2 8
B 1 156+ F 1 76 I 2 16+

F 2 80 I 2 40
C 2 100+ F 2 202 I 1 120+

F 1 258+ I 1 168+
D 2 20+ F 1 268+ I 2 174+
D 2 64 F 2 368+ I 1 268+
D 2 88 F 1 380+ I 2 276
D 2 148+ F 1 424+ I 1 286+
D 1 162+ F 2 428+ I 1 366
D 1 184+ F 2 436+ I 2 396+
D 1 188+ I 2 466+
D 1 198+ G 2 32+ I 1 468+
D 1 382+ G 1 64+
D 1 436+ G 1 102 J 1 18+

G 2 162+ J 1 36+
E 1 50+ G 2 182+ J 2 160+
E 2 64+ G 1 364+ J 2 254
E 2 82
E 1 186+ H 2 22+ K 1 28+
E 1 214+ H 1 22+ K 1 70+

K 2 106+

Table 9.14 Survival times (in half-days) from the MAC treatment trial, from
Carlin and Hodges (1999). Here, \+" indicates a censored observation.

9.6 Exercises

1. The data located at www.biostat.umn.edu/~brad/data/MAC.dat, and
also shown in Table 9.14, summarize a clinical trial comparing two treat-
ments for Mycobacterium avium complex (MAC), a disease common in
late-stage HIV-infected persons. Eleven clinical centers (\units") have
enrolled a total of 69 patients in the trial, 18 of which have died; see
Cohn et al. (1999) and Carlin and Hodges (1999) for full details regard-
ing this trial.
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As in Section 9.1, let tij be the time to death or censoring and xij
be the treatment indicator for subject j in stratum i (j = 1; : : : ; ni,
i = 1; : : : ; k). With proportional hazards and a Weibull baseline hazard,
stratum i's hazard is then

h(tij ;xij) = h0(tij)!i exp(�0 + �1xij)

= �it
�i�1
ij exp(�0 + �1xij +Wi) ;

where �i > 0, � = (�0; �1)
0 2 <2, and Wi = log!i is a clinic-speci�c

frailty term.

(a) Assume i.i.d. speci�cations for these random e�ects, i.e.,

Wi
iid� N(0; 1=�) and �i

iid� G(�; �) :

Then as in the mice example (WinBUGS Examples Vol 1),

�ij = exp(�0 + �1xij +Wi) ;

so that tij �Weibull(�i; �ij) : Use WinBUGS to obtain posterior sum-
maries for the main and random e�ects in this model. Use vague
priors on �0 and �1, a moderately informative G(1; 1) prior on � , and
set � = 10. (You might also recode the drug covariate from (1,2)
to ({1,1), in order to ease collinearity between the slope �1 and the
intercept �0.)

(b) From Table 9.15, we can obtain the lattitude and longitude of each
of the 11 sites, hence the distance dij between each pair. These dis-
tances are included in www.biostat.umn.edu/~brad/data/MAC.dat;
note they have been scaled so that the largest (New York-San Fran-
cisco) equals 1. (Note that since sites F and H are virtually coinci-
dent (both in Detroit, MI), we have recoded them as a single clinic
(#6) and now think of this as a 10-site model.) Re�t the model in
WinBUGS assuming the frailties to have spatial correlation following
the isotropic exponential kriging model,

W � Nk(0; H); where Hij = �2 exp(��dij) ;
where as usual �2 = 1=� , and where we place a G(3; 0:1) (mean 30)
prior on �.

2. The �le www.biostat.umn.edu/~brad/data/smoking.dat contains the
southeastern Minnesota smoking cessation data discussed in Section 9.5.
At each of up to �ve o�ce visits, the smoking status of persons who had
recently quit smoking was assessed. We de�ne relapse to smoking as the
endpoint, and denote the failure or censoring time of person j in county
i by tij . The data set (already in WinBUGS format) also contains the
adjacency matrix for the counties in question.
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Unit Number City

A 1 Harlem (New York City), NY
B 2 New Orleans, LA
C 3 Washington, DC
D 4 San Francisco, CA
E 5 Portland, OR
F 6a Detroit, MI (Henry Ford Hospital)
G 7 Atlanta, GA
H 6b Detroit, MI (Wayne State University)
I 8 Richmond, VA
J 9 Camden, NJ
K 10 Albuquerque, NM

Table 9.15 Locations of the clinical sites in the MAC treatment data set.

(a) Assuming that smoking relapses occurred on the day of the o�ce visit
when they were detected, build a hierarchical spatial frailty model to
analyze these data. Code your model in WinBUGS, run it, and summa-
rize your results. Use the DIC tool to compare a few competing prior
or likelihood speci�cations.

(b) When we observe a subject who has resumed smoking, all we really
know is that his failure (relapse) point occurred somewhere between
his last o�ce visit and this one. As such, improve your model from
part (a) by building an interval-censored version.

3. Consider the extension of the Section 9.4 model in the single endpoint,
multiple cause case to the multiple endpoint, multiple cause case | say,
for analyzing times until diagnosis of each cancer (if any), rather than
merely a single time until death. Write down a model, likelihood, and
prior speci�cation (including an appropriately speci�ed MCAR distri-
bution) to handle this case.
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CHAPTER 10

Special topics in spatial process
modeling

Earlier chapters have developed the basic theory and the general hierarchi-
cal Bayesian modeling approach for handling spatial and spatiotemporal
point-referenced data. In this chapter, we consider some special topics that
are of interest in the context of such models.

The �rst returns to the notion of smoothness of process realizations,
as initially discussed in Subsection 2.2.3. In Section 10.1 we rigorize the
ideas of mean square continuity and di�erentiability. In particular, mean
square di�erentiability suggests the de�nitions of �nite di�erence processes
and directional derivative processes. Such processes are useful in learning
about gradients in spatial surfaces.

The second idea returns to our discussion of multivariate spatial pro-
cesses (Chapter 7). However, we now think of their use not for modeling
multivariate spatial data, but for generalizing the linear regression relation-
ship between a response Y (s) and an explanatory variable X(s). In fact,
with a model for Y (s) that includes an intercept, the spatial random e�ect
(w(s) in equation (5.1)) could be viewed as a spatially varying adjustment
to the intercept. This suggests that we might also incorporate a spatially
varying adjustment to the slope associated with X(s). Since the slope and
intercept would be anticipated to be dependent, we would need a bivariate
spatial process to jointly model these adjustments. This idea came up pre-
viously in the context of spatial frailty modeling in Section 9.4 and will be
explored much more fully in Section 10.2.

The third idea considers a spatial process version of the familiar cumula-
tive distribution function (CDF). Imagine a random realization of a spatial
process restricted to locations in a region D having �nite area. If the sur-
face is then sliced by a horizontal plane at a speci�ed height, there will be
a portion of D where the surface will lie below this plane; for the remainder
of D, the surface will lie above it. As the height is increased, the proportion
of the surface lying below the plane will approach 1. This motivates the
idea of a spatial CDF (SCDF). We consider properties of and inference for
the SCDF in Section 10.3.
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10.1 Process smoothness revisited ?

10.1.1 Smoothness of a univariate spatial process

We con�ne ourselves to smoothness properties of a univariate spatial pro-
cess, say, fY (s); s 2 <dg; for a discussion of multivariate processes, see
Banerjee and Gelfand (2003). In our investigation of smoothness proper-
ties we look at two types of continuity, continuity in the L2 sense and
continuity in the sense of process realizations. Unless otherwise noted, we
assume the processes to have 0 mean and �nite second-order moments.

De�nition 10.1 A process fY (s) ; s 2 <dg is L2 continuous at s0 if and
only if lims!s0 E[Y (s) � Y (s0)]

2 = 0. Continuity in the L2 sense is also

referred to as mean square continuity, and will be denoted by Y (s)
L2�!

Y (s0).

De�nition 10.2 A process fY (s) ; s 2 <dg is almost surely continuous
at s0 if Y (s) �! Y (s0) a:s: as s �! s0: If the process is almost surely
continuous for every s0 2 <d then the process is said to have continuous
realizations.

In general, one form of continuity does not imply the other since one form
of convergence does not imply the other. However, if Y (s) is a bounded
process then a.s. continuity implies L2 continuity. Of course, each implies

that Y (s)
P�! Y (s0).

Example 10.1 Almost sure continuity does not imply mean square con-
tinuity. To see this, let t 2 [0; 1] with ! � U (0; 1) and de�ne

Y (t;!) =

( �
t� 1

2

��1
I( 12 ;t)

(!) if t 2 � 12 ; 1�
0 if t 2 �0; 12� :

Then Y (t;!) �! 0 a:s: as t �! 1
2 : But E[Y

2 (t;!)] �! 1 as t �! 1
2 if

t 2 � 12 ; 1� and E
�
Y 2 (t;!)

�
= 0 if t 2 �0; 12� : Thus the process does not

converge in L2 although it does so almost surely.

Example 10.2 Mean square continuity does not imply almost sure con-
tinuity. To see this, construct a process over t 2 <+ de�ned through
! � U (0; 1) as follows. Let Y

�
1
t
;!
�
= 0; if t is not a positive inte-

ger, Y (1;!) = I(0; 12 )
(!) ; Y

�
1
2 ;!

�
= I( 12 ;1)

(!), Y
�
1
3 ;!

�
= I(0; 13 )

(!) ;

Y
�
1
4 ;!

�
= I( 13 ;

2
3 )
(!) ; Y

�
1
5 ;!

�
= I( 23 ;1)

(!) ; and so on. That is, we con-

struct the process as a sequence of moving indicators on successively �ner
arithmetic divisions of the unit interval. We see here that E

�
Y 2
�
1
t
;!
�� �!

0 as t �! 0, so that Y
�
1
t
;!
� L2�! 0: However the process is not continuous

almost surely since Y
�
1
t
;!
�
is equal to one in�nitely often.

The above de�nitions apply to any stochastic process (possibly nonsta-
tionary). Cram�er and Leadbetter (1967) and Hoel, Port, and Stone (1972)
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outline conditions on the covariance function for mean square continuity
for processes on the real line. For a process on <d; we denote the covariance
function C (s; s0) = cov (Y (s) ; Y (s0)), so that the de�nition of mean square
continuity is equivalent to lims0!s [C (s0; s0)� 2C(s0; s) + C (s; s)] = 0. It
follows that continuity in s and s0 serve as su�cient conditions for mean
square continuity. For a (weakly) stationary process, mean square conti-
nuity is equivalent to the covariance function C (s) being continuous at 0.

This follows easily since E [Y (s0)� Y (s)]
2
= 2(C (0) � C (s0 � s)) for a

weakly stationary process and enables a simple practical check for mean
square continuity.

Kent (1989) investigates continuous process realizations through a Taylor
expansion of the covariance function. Let fY (s) ; s 2 <dg be a real-valued
stationary spatial process on <d. Kent proves that if C (s) is d-times con-
tinuously di�erentiable and Cd (s) = C (s) � Pd (s) ; where Pd (s) is the
Taylor polynomial of degree d for C (s) about 0, satis�es the condition,

jCd (s)j = O
�
jjsjjd+�

�
for some � > 0, then there exists a version of the spatial process fY (s) ; s 2
<dg with continuous realizations. If C (s) is d-times continuously di�er-
entiable then it is of course continuous at 0 and so, from the previous
paragraph, the process is mean square continuous.

Let us suppose that f : L2 �! <1 (L2 is the usual Hilbert space of
random variables induced by the L2 metric) is a continuous function. Let
fY (s) ; s 2 <dg be a process that is continuous almost surely. Then the
process Z (s) = f (Y (s)) is almost surely continuous, being the composi-
tion of two continuous functions. The validity of this statement is direct
and does not require checking Kent's conditions. Indeed, the process Z(s)
need not be stationary even if Y (s) is. However the existence of the covari-
ance function C (s; s0) = E [f (Y (s)) f (Y (s0))], via the Cauchy-Schwartz
inequality, requires Ef2 (Y (s)) <1.

While almost sure continuity of the new process Z (s) follows routinely,
the mean square continuity of Z (s) is not immediate. However, from the
remark below De�nition 10.2, if f : <1 �! <1 is a continuous function
that is bounded and Y (s) is a process that is continuous almost surely, then
the process Y (s) = f (Z (s)) (a process on <d) is mean square continuous.

More generally suppose f is a continuous function that is Lipschitz of
order 1, and fY (s) ; s 2 <dg is a process which is mean square continuous.
Then the process Z (s) = f (Y (s)) is mean square continuous. To see this,
note that since f is Lipschitz of order 1 we have jf (Y (s+ h))� f (Y (s))j �
K jY (s+ h)� Y (s)j for some constantK. It follows that E[f (Y (s+ h))�
f (Y (s))]2 � K2E[Y (s+ h) � Y (s)]2; and the mean square continuity of
Z (s) follows directly from the mean square continuity of Y (s).
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We next formalize the notion of a mean square di�erentiable process. Our
de�nition is motivated by the analogous de�nition of total di�erentiability
of a function of <d in a nonstochastic setting. In particular, Y (s) is mean
square di�erentiable at s0 if there exists a vector rY (s0), such that, for
any scalar h and any unit vector u,

Y (s0 + hu) = Y (s0) + huTrY (s0) + r (s0; hu) ; (10:1)

where r (s0; hu)! 0 in the L2 sense as h! 0: That is, we require for any
unit vector u,

lim
h!0

E

�
Y (s0 + hu)� Y (s0)� huTrY (s0)

h

�2

= 0 : (10:2)

The �rst-order linearity condition for the process is required to ensure
that mean square di�erentiable processes are mean square continuous. A
counterexample when this condition does not hold is given in Banerjee and
Gelfand (2003).

10.1.2 Directional �nite di�erence and derivative processes

The focus of this subsection is to address the problem of the rate of change
of a spatial surface at a given point in a given direction. Such slopes or gra-
dients are of interest in so-called digital terrain models for exploring surface
roughness. They would also arise in meteorology to recognize temperature
or rainfall gradients or in environmental monitoring to understand pollu-
tion gradients. With spatial computer models, where the process generating
the Y (s) is essentially a black box and realizations are costly to obtain, in-
ference regarding local rates of change becomes important. The application
we study here considers rates of change for unobservable or latent spatial
processes. For instance, in understanding real estate markets for single-
family homes, spatial modeling of residuals provides adjustment to reect
desirability of location, controlling for the characteristics of the home and
property. Suppose we consider the rate of change of the residual surface
in a given direction at, say, the central business district. Transportation
costs to the central business district vary with direction. Increased costs
are expected to reduce the price of housing. Since transportation cost in-
formation is not included in the mean, directional gradients to the residual
surface can clarify this issue.
Spatial gradients are customarily de�ned as �nite di�erences (see, e.g.,

Greenwood, 1984, and Meyer, Ericksson, and Maggio, 2001). Evidently the
scale of resolution will a�ect the nature of the resulting gradient (as we
illustrate in Example 10.2). To characterize local rates of change without
having to specify a scale, in�nitesimal gradients may be considered. Ul-
timately, the nature of the data collection and the scienti�c questions of
interest would determine preference for an in�nitesimal or a �nite gradient.
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For the former, gradients (derivatives) are quantities of basic importance
in geometry and physics. Researchers in the physical sciences (e.g., geo-
physics, meteorology, oceanography) often formulate relationships in terms
of gradients. For the latter, di�erences, viewed as discrete approximations
to gradients, may initially seem less attractive. However, in applications
involving spatial data, scale is usually a critical question (e.g., in envi-
ronmental, ecological, or demographic settings). In�nitesimal local rates of
change may be of less interest than �nite di�erences at the scale of a map
of interpoint distances.
Following the discussion of Subsection 10.1.1, with u a unit vector, let

Yu;h (s) =
Y (s+ hu)� Y (s)

h
(10:3)

be the �nite di�erence at s in direction u at scale h. Clearly, for a �xed
u and h; Yu;h (s) is a well-de�ned process on <d, which we refer to as the
�nite di�erence process at scale h in direction u:
Next, let DuY (s) = limh!0 Yu;h (s) if the limit exists. We see that if

Y (s) is a mean square di�erentiable process in <d, i.e., (10.2) holds for
every s0 in <d, then for each u,

DuY (s) = lim
h!0

Y (s+ hu)� Y (s)

h

= lim
h!0

huTrY (s) + r (s; hu)

h
= uTrY (s) :

So DuY (s) is a well-de�ned process on <d, which we refer to as the direc-
tional derivative process in the direction u.
Note that if the unit vectors e1; e2; :::; ed form an orthonormal basis set

for <d, any unit vector u in <d can be written as u =
Pd

i=1 wiei with

wi = uTei and
Pd

i=1 w
2
i = 1. But then,

DuY (s) = uTrY (s) =
dX
i=1

wie
T
i rY (s) =

dX
i=1

wiDeiY (s) : (10:4)

Hence, to study directional derivative processes in arbitrary directions
we need only work with a basis set of directional derivative processes.
Also from (10.4) it is clear that D�uY (s) = �DuY (s). Applying the
Cauchy-Schwarz inequality to (10.4), for every unit vector u, D2

uY (s) �Pd
i=1D

2
eiY (s). Hence,

Pd
i=1D

2
eiY (s) is the maximum over all directions

of D2
uY (s). At location s, this maximum is achieved in the direction

u = rY (s) = jjrY (s)jj, and the maximizing value is jjrY (s)jj. In the
following text we work with the customary orthonormal basis de�ned by
the coordinate axes so that ei is a d�1 vector with all 0's except for a 1 in
the ith row. In fact, with this basis, rY (s) = (De1Y (s) ; :::; DedY (s))T .
The result in (10.4) is a limiting result as h! 0. From (10.4), the presence
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of h shows that to study �nite di�erence processes at scale h in arbitrary
directions we have no reduction to a basis set.
Formally, �nite di�erence processes require less assumption for their exis-

tence. To compute di�erences we need not worry about a numerical degree
of smoothness for the realized spatial surface. However, issues of numerical
stability can arise if h is too small. Also, with directional derivatives in,
say, two-dimensional space, following the discussion below (10.4), we only
need work with north and east directional derivatives processes in order to
study directional derivatives in arbitrary directions.

10.1.3 Distribution theory

If E (Y (s)) = 0 for all s 2 <d then E (Yu;h (s)) = 0 and E (DuY (s)) = 0.

Let C
(h)
u (s; s0) and Cu (s; s

0) denote the covariance functions associated
with the process Yu;h (s) and DuY (s), respectively. If � = s � s0 and
Y (s) is (weakly) stationary we immediately have

C
(h)
u (s; s0) =

(2C (�)� C (�+ hu)� C (�� hu))

h2
; (10:5)

whence V ar (Yu;h (s)) = 2 (C (0)� C (hu)) =h2. If Y (s) is isotropic and we

replace C(s; s0) by eC(jjs� s0jj), we obtain

C
(h)
u (s; s0) =

�
2 eC (jj�jj)� eC (jj�+ hujj)� eC (jj�� hujj)

�
h2

: (10:6)

Expression (10.6) shows that even if Y (s) is isotropic, Yu;h (s) is only

stationary. Also V ar (Yu;h (s)) = 2
� eC (0)� eC (h)

�
=h2 =  (h) =h2 where

 (h) is the familiar variogram of the Y (s) process (Subsection 2.1.2).
Similarly, if Y (s) is stationary we may show that if all second-order

partial and mixed derivatives of C exist and are continuous, the limit of
(10.5) as h! 0 is

Cu (s; s0) = �uT
 (�)u ; (10:7)

where (
 (�))ij = @2C (�) =@�i@�j . By construction, (10.7) is a valid

covariance function on <d for any u. Also, V ar (DuY (s)) = �uT
 (0)u:
If Y (s) is isotropic, using standard chain rule calculations we obtain

Cu (s; s
0) = �

( 
1� (uT�)2

jj�jj2
! eC 0 (jj�jj)

jj�jj +

�
uT�

�2
jj�jj2

eC 00 (jj�jj)) :

(10:8)
Again, if Y (s) is isotropic, DuY (s) is only stationary. In addition, we

have V ar (DuY (s)) = � eC 00 (0) which also shows that, provided eC is twice

di�erentiable at 0, limh!0  (h) =h
2 = � eC 00 (0) ; i.e.,  (h) = O

�
h2
�
for h

small.
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For Y (s) stationary we can also calculate

cov (Y (s) ; Yu;h (s
0)) = (C (�� hu)� C (�)) =h ;

from which cov (Y (s) ; Yu;h (s)) = (C (hu)� C (0)) =h: But then,

cov (Y (s) ; DuY (s0)) = lim
h!0

(C (�� hu)� C (�)) =h

= �DuC (�) = DuC (��) ;

since C (�) = C (��). In particular, we have that cov (Y (s) ; DuY (s)) =
limh!0 (C (hu)� C (0) ) =h = DuC (0). The existence of the directional
derivative process ensures the existence ofDuC (0). Moreover, since C (hu)
= C (�hu), C (hu) (viewed as a function of h) is even, so DuC (0) =
0. Thus, Y (s) and DuY (s) are uncorrelated. Intuitively, this is sensible.
The level of the process at a particular location is uncorrelated with the
directional derivative in any direction at that location. This is not true for
directional di�erences. Also, in general, cov (Y (s) ; DuY (s0)) will not be 0:
Under isotropy,

cov (Y (s) ; Yu;h (s
0)) =

eC (jj�� hujj)� eC (jj�jj)
h

:

Now cov (Y (s) ; Yu;h (s)) =
� eC (h)� eC (0)

�
=h =  (h) =2h, so this means

cov (Y (s) ; DuY (s)) = eC 0 (0) = limh!0  (h) =2h = 0 since, as above, ifeC 00 (0) exists,  (h) = O
�
h2
�
:

Suppose we consider the bivariate process Z
(h)
u (s) = (Y (s) ; Yu;h (s))

T .
It is clear that this process has mean 0 and, if Y (s) is stationary, cross-
covariance matrix Vu;h (�) given by 

C(�) C(��hu)�C(�)
h

C(�+hu)�C(�)
h

2C(�)�C(�+hu)�C(��hu)
h2

!
: (10:9)

Since Z
(h)
u (s) arises by linear transformation of Y (s), (10.9) is a valid

cross-covariance matrix in <d: But since this is true for every h, letting
h! 0,

Vu (�) =

�
C (�) �DuC (�)

DuC (�) �uT
 (�)u

�
(10:10)

is a valid cross-covariance matrix in <d: In fact, Vu is the cross-covariance

matrix for the bivariate process Zu (s) =

�
Y (s)

DuY (s)

�
.

If, in addition, we assume that Y (s) is a stationary Gaussian process it
is clear, again by linearity, that Zhu (s) is a stationary bivariate Gaussian
process. But then, by a standard limiting moment generating function ar-
gument, Zu (s) is a stationary bivariate Gaussian process and thusDuY (s)
is a stationary univariate Gaussian process. As an aside, we note that for
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a given s, D rY (s)
jjrY (s)jj

Y (s) is not normally distributed, and in fact the set

fD rY (s)
jjrY (s)jj

Y (s) : s 2 <dg is not a spatial process.
Extension to a pair of directions with associated unit vectors u1 and u2

results in a trivariate Gaussian process Z(s) = (Y (s); Du1Y (s); Du2Y (s))
T

with associated cross-covariance matrix VZ (�) given by�
C(�) �(rC(�))T

rC(�) �
(�)

�
: (10:11)

At � = 0, (10.11) becomes a diagonal matrix.
We conclude this subsection with a useful example. Recall the power

exponential family of isotropic covariance functions of the previous subsec-
tion, eC (jj�jj) = � exp (�� jj�jj�) ; 0 < � � 2: It is apparent that eC 00 (0)
exists only for � = 2: The Gaussian covariance function is the only mem-
ber of the class for which directional derivative processes can be de�ned.
However, as we have noted in Subsection 2.2.3, the Gaussian covariance
function produces process realizations that are too smooth to be attractive
for practical modeling.
Turning to the Mat�ern class, eC (jj�jj) = � (� jj�jj)� K� (� jj�jj), � is

a smoothness parameter controlling the extent of mean square di�erentia-
bility of process realizations (Stein, 1999a). At � = 3=2, eC (jj�jj) takes
the closed form eC (jj�jj) = �2(1 + � jj�jj) exp (�� jj�jj) where �2 is the
process variance. This function is exactly twice di�erentiable at 0. We have
a (once but not twice) mean square di�erentiable process, which there-
fore does not su�er the excessive smoothness implicit with the Gaussian
covariance function.
For this choice one can show that r eC (jj�jj) = ��2�2 exp (�� jj�jj)�,

that
�
HeC (jj�jj)

�
ii
= ��2�2 exp (�� jj�jj) �1� ��2

i = jj�jj
�
, and also that�

HeC (jj�jj)
�
ij
= �2�2 exp (�� jj�jj)�i�j= jj�jj. In particular, Vu (0) =

�2BlockDiag(1; �2I).

10.1.4 Directional derivative processes in modeling

We work in d = 2-dimensional space and can envision the following types
of modeling settings in which directional derivative processes would be
of interest. For Y (s) purely spatial with constant mean, we would seek
DuY (s). In the customary formulation Y (s) = �(s)+W (s)+�(s) we would
instead want DuW (s). In the case of a spatially varying coe�cient model
Y (s) = �0(s)+�1(s)X(s)+ �(s) such as in Section 10.2, we would examine
Du�0(s), Du�1(s), and DuEY (s) with EY (s) = �0(s) + �1(s)X(s).
Consider the constant mean purely spatial process for illustration, where

we have Y (s) a stationary process with mean � and covariance function
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C (�) = �2� (�) where � is a valid two-dimensional correlation function.
For illustration we work with the general Mat�ern class parametrized by
� and �, constraining � > 1 to ensure the (mean square) existence of
the directional derivative processes. Letting � =

�
�; �2; �; �

�
; for locations

s1; s2; :::; sn, the likelihood L (�;Y) is proportional to

�
�2
��n=2 jR (�; �)j�1=2 exp

�
� 1

2�2
(Y � �1)

T
R�1 (�; �) (Y � �1)

�
:

(10:12)

In (10.12), YT = (Y (s1); : : : ; Y (sn))
T
and (R (�; �))ij = � (si � sj ;�; �).

In practice we would usually propose fairly noninformative priors for
�; �2; � and �; e.g., vague normal (perhaps at), vague inverse gamma,
vague gamma, and U (1; 2), respectively. With regard to the prior on �,
we follow the suggestion of Stein (1999a) and others, who observe that, in
practice, it will be very di�cult to distinguish � = 2 from � > 2. Fitting
of this low-dimensional model is easiest using slice sampling (Appendix
Section A.6).

A contour or a grey-scale plot of the posterior mean surface is of pri-
mary interest in providing a smoothed display of spatial pattern and of
areas where the process is elevated or depressed. To handle �nite di�er-
ences at scale h, in the sequel we work with the vector of eight compass
directions, N;NE;E; : : :. At si, we denote this vector by Yh (si) and let
Yh = fYh (si) ; i = 1; 2; :::; ng : With directional derivatives we only need

D (si)
T

= (D10 (si) ; D01 (si)) and let D = fD (si) ; i = 1; 2; :::; ng : We
seek samples from the predictive distribution f (YhjY) and f (DjY). In
Yh (si), Y (si) is observed, hence �xed in the predictive distribution. So
we can replace Yu;h (si) with Y (si + hu) ; posterior predictive samples of
Y (si + hu) are immediately converted to posterior predictive samples of
Yu;h (si) by linear transformation. Hence, the directional �nite di�erences
problem is merely a large Bayesian kriging problem requiring spatial predic-
tion at the set of 8n locations fY (si + hur) ; i = 1; 2; :::; n; r = 1; 2; :::; 8g :
Denoting this set by eYh; we require samples from f

�eYhjY
�
: From the

relationship, f
�eYhjY

�
=
R
f
�eYhjY;�

�
f (�jY) d� this can be done one

for one with the ��l 's by drawing eY�
h;l from the multivariate normal dis-

tribution f
�eYhjY;��l

�
, as detailed in Section 5.1. Similarly f (DjY) =R

f (DjY;�) f (�jY) d�. The cross-covariance function in (10.11) allows us
to immediately write down the joint multivariate normal distribution of Y
andD given � and thus, at ��l ; the conditional multivariate normal distribu-
tion f (DjY;��l ). At a speci�ed new location s0, with �nite directional dif-
ferences we need to add spatial prediction at the nine new locations, Y (s0)
and Y (s0 + hur) ; r = 1; 2; :::; 8:With directional derivatives, we again can
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use (10.9) to obtain the joint distribution of Y; D; Y (s0) and D (s0) given
� and thus the conditional distribution f (D; Y (s0) ;D (s0) jY;�) :
Turning to the random spatial e�ects model we now assume that

Y (s) = xT (s)� + w (s) + � (s) : (10:13)

In (10.13), x (s) is a vector of location characteristics, w (s) is a mean
0 stationary Gaussian spatial process with parameters �2, �, and � as
above, and � (s) is a Gaussian white noise process with variance �2, intended
to capture measurement error or microscale variability. Such a model is
appropriate for the real estate example mentioned in Subsection 10.1.2,
where Y (s) is the log selling price and x (s) denotes associated house and
property characteristics. Here w (s) measures the spatial adjustment to log
selling price at location s reecting relative desirability of the location.
� (s) is needed to capture microscale variability. Here such variability arises
because two identical houses arbitrarily close to each other need not sell for
essentially the same price due to unobserved di�erences in buyers, sellers,
and brokers across transactions.

For locations s1; s2; :::; sn; with � =
�
�; �2; �2; �; �

�
the model in (10.13)

produces a marginal likelihood L (�;Y ) (integrating over fw (si)g) propor-
tional to

���2R (�; �) + �2I
���1=2 e� 1

2 (Y�X�)
T
(�2R(�;�)+�2I)

�1

(Y�X�): Pri-
ors for �; �2; �2; � and � are similar to the �rst illustration, vague choices
that are normal, inverse gamma, inverse gamma, gamma, and uniform,
respectively. Again slice sampling provides an e�cient �tting algorithm.
Further inference with regard to (10.13) focuses on the spatial process

itself. That is, we would be interested in the posterior spatial e�ect surface
and in rates of change associated with this surface. The former is usually
handled with samples of the set of w (si) given Y along with, perhaps, a
grey-scaling or contouring routine. The latter would likely be examined at
new locations. For instance in the real estate example, spatial gradients
would be of interest at the central business district or at other externalities
such as major roadway intersections, shopping malls, airports, or waste
disposal sites but not likely at the locations of the individual houses.

As below (10.12) with WT = (w (s1) ; : : : ; w (sn)), we sample f (WjY )
one for one with the ��l 's using f (WjY) =

R
f (WjY;�) f (�jY) d�, as

described in Section 5.1. But also, given �, the joint distribution of W
and V (s0) where V (s0) is eitherWh (s0) or D (s0) is multivariate normal.
For instance, with D (s0), the joint normal distribution can be obtained
using (10.11) and as a result so can the conditional normal distribution
f (V (s0) jW;�). Lastly, since

f (V (s0) jY) =

Z
f (V (s0) jW;�) f (Wj�;Y) f (�jY) d�dW ;

we can also obtain samples from f (V (s0) jY) one for one with the ��l 's.
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Figure 10.1 Locations of the 100 sites where simulated draws from the random
�eld have been observed.

Example 10.3 We illustrate with a simulated example. We generate from
a Gaussian random �eld with constant mean � and a covariance struc-
ture speci�ed through the Mat�ern (� = 3=2) covariance function, �2(1 +
�d) exp(��d). The �eld is observed on a randomly sampled set of points
within a 10�10 square. That is, the x and y coordinates lie between 0 and
10. For illustration, we set � = 0, �2 = 1:0 and � = 1:05. Our data consists
of n = 100 observations at the randomly selected sites shown in Figure 10.1.
The maximum observed distance in our generated �eld is approximately
13.25 units. The value of � = 1:05 provides an e�ective isotropic range of
about 4.5 units. We also perform a Bayesian kriging on the data to develop
a predicted �eld. Figure 10.2 shows a grey-scale plot with contour lines
displaying the topography of the \kriged" �eld. We will see below that our
predictions of the spatial gradients at selected points are consistent with
the topography around those points, as depicted in Figure 10.2.

Adopting a at prior for �; an IG(2; 0:1) (mean = 10, in�nite variance)
prior for �2, a G (2; 0:1) prior (mean = 20, variance = 200) for �, and a
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Figure 10.2 Grey-scale plot with contour lines showing the topography of the ran-
dom �eld in the simulated example.

Parameter 50% (2.5%, 97.5%)

� {0.39 ({0.91, 0.10)
�2 0.74 (0.50, 1.46)
� 1.12 (0.85, 1.41)
� 1.50 (1.24, 1.77)

Table 10.1 Posterior estimates for model parameters, simulated example.

uniform on (1; 2) for �, we obtain the posterior estimates for our parameters
shown in Table 10.1, in good agreement with the true values.

We next examine the directional derivatives and directional �nite di�er-
ences for the unit vectors corresponding to angles of 0, 45, 90, 135, 180,
225, 270, and 315 degrees with the horizontal axis in a counterclockwise
direction at the point. For the �nite di�erences we consider h = 1:0 and
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Angle DuY (s) (h = 0) h = 1:0 h = 0:1

0 {0.06 ({1.12,1.09) 0.51 ({0.82,1.81) {0.08 ({1.23,1.20)
45 {1.49 ({2.81,{0.34) {0.01 ({1.29,1.32) {1.55 ({2.93,{0.56)
90 {2.07 ({3.44,{0.66) {0.46 ({1.71,0.84) {2.13 ({3.40,{0.70)
135 {1.42 ({2.68,{0.23) {0.43 ({1.69,0.82) {1.44 ({2.64,{0.23)
180 0.06 ({1.09,1.12) {0.48 ({1.74,0.80) 0.08 ({1.19,1.23)
225 1.49 (0.34,2.81) 0.16 ({1.05,1.41) 1.61 (0.52,3.03)
270 2.07 (0.66,3.44) 0.48 ({0.91,1.73) 2.12 (0.68,3.43)
315 1.42 (0.23,2.68) 1.12 ({0.09,2.41) 1.44 (0.24,2.68)

Table 10.2 Posterior medians and (2.5%, 97.5%) predictive intervals for direc-
tional derivatives and �nite di�erences at point (3.5, 3.5).

0:1. Recall that D�uY (s) = �DuY (s). Table 10.2 presents the resulting
posterior predictive inference for the point (3:5; 3:5) in Figure 10.2.

We see that (3.5, 3.5) seems to be in an interesting portion of the surface,
with many contour lines nearby. It is clear from the contour lines that there
is a negative northern gradient (downhill) and a positive southern gradi-
ent (uphill) around the point (3.5, 3.5). On the other hand, there does not
seem to be any signi�cant E-W gradient around that point as seen from the
contour lines through that point running E-W. This is brought out very
clearly in column 1 of Table 10.2. The angles of 0 and 180 degrees that
correspond to the E-W gradients are not at all signi�cant. The N-S gra-
dients are indeed pronounced as seen by the 90 and 270 degree gradients.
The directional derivatives along the diagonals also indicate the presence of
a gradient. There are signi�cant downhill gradients toward the northeast,
north, and northwest, and (therefore) signi�cant uphill gradients toward
the southwest, south, and southeast. Hence the directional derivative pro-
cess provides inferential quanti�cation consistent with features that are
captured descriptively and visually in Figure 10.2. Note further that while
the results for h = 0:1 are very close to those for h = 0, at the scale h = 1:0
the gradients disappear.

As an aside, we look at the point (5, 5) in Figure 10.2, which is located
in an essentially \at" or featureless portion of the region. Here we would
expect the directional derivative to be insigni�cantly di�erent from 0 in all
directions because of the constant level, revealed by the constant shade and
the lack of contour lines in the region. Indeed, this is what emerges from
Table 10.3.
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Angle 50% (2.5%, 97.5%) angle 50% (2.5%, 97.5%)

0 0.12 ({1.45, 1.80) 180 {0.12 ({1.80, 1.45)
45 {0.05 ({1.70, 1.51) 225 0.05 ({1.51, 1.70)
90 {0.18 ({1.66, 1.34) 270 0.18 ({1.34, 1.66)
135 {0.24 ({1.72, 1.18) 315 0.24 ({1.18, 1.72)

Table 10.3 Posterior medians and (2.5%, 97.5%) predictive intervals for direc-
tional derivatives at point (5, 5).

10.2 Spatially varying coe�cient models

In Section 8.1 we introduced a spatially varying coe�cient process in the
evolution equation of the spatiotemporal dynamic model. Similarly, in Sec-
tion 9.4 we considered multiple spatial frailty models with regression co-
e�cients that were allowed to vary spatially. We return to this topic here
to amplify the scope of possibilities for such modeling. In particular, in
the spatial-only case, we denote the value of the coe�cient at location s
by �(s). This coe�cient can be resolved at either areal unit or point level.
With the former, the �(s) surface consists of \tiles" at various heights, one
tile per areal unit. For the latter, we achieve a more exible spatial surface.

Using tiles, concern arises regarding the arbitrariness of the scale of res-
olution, the lack of smoothness of the surface, and the inability to inter-
polate the value of the surface to individual locations. When working with
point-referenced data it will be more attractive to allow the coe�cients to
vary by location, to envision for a particular coe�cient, a spatial surface.
For instance, in our example below we also model the (log) selling price
of single-family houses. Customary explanatory variables include the age
of the house, the square feet of living area, the square feet of other area,
and the number of bathrooms. If the region of interest is a city or greater
metropolitan area, it is evident that the capitalization rate (e.g., for age)
will vary across the region. In some parts of the region older houses will
be more valued than in other parts. By allowing the coe�cient of age to
vary with location, we can remedy the foregoing concerns. With practical
interest in mind (say, real estate appraisal), we can predict the coe�cient
for arbitrary properties, not just for those that sold during the period of
investigation. Similar issues arise in modeling environmental exposure to a
particular pollutant where covariates might include temperature and pre-
cipitation.

One possible approach would be to model the spatial surface for the
coe�cient parametrically. In the simplest case this would require the rather
arbitrary speci�cation of a polynomial surface function; a range of surfaces

© 2004 by CRC Press LLC



SPATIALLY VARYING COEFFICIENT MODELS 357

too limited or inexible might result. More exibility could be introduced
using a spline surface over two- dimensional space; see, e.g., Luo and Wahba
(1998) and references therein. However, this requires selection of a spline
function and determination of the number of and locations of the knots in
the space. Also, with multiple coe�cients, a multivariate speci�cation of a
spline surface is required. The approach we adopt here is arguably more
natural and at least as exible. We model the spatially varying coe�cient
surface as a realization from a spatial process. For multiple coe�cients we
employ a multivariate spatial process model.
To clarify interpretation and implementations, we �rst develop our gen-

eral approach in the case of a single covariate, hence two spatially varying
coe�cient processes, one for \intercept" and one for \slope." We then turn
to the case of multiple covariates. Since even in the basic multiple regres-
sion setting, coe�cient estimates typically reveal some strong correlations,
it is expected that the collection of spatially varying coe�cient processes
will be dependent. Hence, we employ a multivariate process model. Indeed
we present a further generalization to build a spatial analogue of a multi-
level regression model (see, e.g., Goldstein, 1995). We also consider exible
spatiotemporal possibilities. The previously mentioned real estate setting
provides site level covariates whose coe�cients are of considerable practi-
cal interest and a data set of single-family home sales from Baton Rouge,
LA, enables illustration. Except for regions exhibiting special topography,
we anticipate that a spatially varying coe�cient model will prove more
useful than, for instance, a trend surface model. That is, incorporating a
polynomial in latitude and longitude into the mean structure would not
be expected to serve as a surrogate for allowing the variability across the
region of a coe�cient for, say, age or living area of a house.

10.2.1 Approach for a single covariate

Recall the usual Gaussian stationary spatial process model as in (5.1),

Y (s) = � (s) + w (s) + � (s) ; (10:14)

where �(s) = x(s)T� and �(s) is a white noise process, i.e., E(�(s)) = 0,
Var(�(s)) = �2, cov(� (s) ; �(s0)) = 0; and w(s) is a second-order stationary
mean-zero process independent of the white noise process, i.e., E(w(s)) = 0;
Var(w(s)) = �2; cov(w(s); w(s0)) = �2�(s; s0;�), where � is a valid two-
dimensional correlation function.
Letting �(s) = �0 + �1x(s), write w(s) = �0(s) and de�ne ~�0(s) =

�0 + �0(s). Then �0(s) can be interpreted as a random spatial adjustment
at location s to the overall intercept �0. Equivalently, ~�0(s) can be viewed
as a random intercept process. For an observed set of locations s1; s2; : : : ; sn
given �0; �1; f�0(si)g and �2, the Y (si) = �0 + �1x(si) + �0(si) + �(si); i =
1; : : : ; n; are conditionally independent. Then L(�0; �1; f�0(si)g; �2;y), the
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�rst-stage likelihood, is

(�2)�
n
2 exp

�
� 1

2�2

X
(Y (si)� (�0 + �1x(si) + �0(si))

2

�
: (10:15)

In obvious notation, the distribution of B0 = (�0(s1); : : : ; �0(sn))
T is

f(B0 j �02; �0) = N(0; �0
2H0(�0)) ; (10:16)

where (H0(�0))ij = �0(si � sj ;�0). For all of the discussion and examples
below, we adopt the Mat�ern correlation function, (2.8). With a prior on
�0; �1; �

2; �20 , and �0, speci�cation of the Bayesian hierarchical model is
completed. Under (10.15) and (10.16), we can integrate over B0, obtaining
L(�0; �1; �

2; �0
2; �0;y), the marginal likelihood, as

j�02H0(�0) + �2I j� 1

2 ef�
1

2 (y��01��1x)
T (�20H0(�0)+�

2I)�1(y��01��1x)g ;
(10:17)

where x = (x(s1); : : : ; x(sn))
T .

We note analogies with standard Gaussian random e�ects models, where

Yij = �0 + �1xij + �i + eij with �i
iid� N(0; ��

2) and �ij
iid� N(0; ��

2).
In this case, replications are needed to identify (separate) the variance
components. Because of the dependence between the �0(si), replications
are not needed in the spatial case, as (10.17) reveals. Also, (10.14) can
be interpreted as partitioning the total error in the regression model into
\intercept process" error and \pure" error.
The foregoing development immediately suggests how to formulate a

spatially varying coe�cient model. Suppose we write

Y (s) = �0 + �1x(s) + �1(s)x(s) + �(s) : (10:18)

In (10.18), �1(s) is a second-order stationary mean-zero Gaussian pro-
cess with variance �21 and correlation function �1(�;�1). Also, let ~�1(s) =
�1 + �1(s). Now �1(s) can be interpreted as a random spatial adjustment
at location s to the overall slope �1. Equivalently, ~�1(s) can be viewed as a
random slope process. In e�ect, we are employing an uncountable dimen-
sional function to explain the relationship between x(s) and Y (s).
Expression (10.18) yields obvious modi�cation of (10.15) and (10.16). In

particular, the resulting marginalized likelihood becomes

L(�0; �1; �
2; �1

2; �1;y) = j�12DxH1(�1)Dx + �2I j� 1

2

�ef� 1

2
(y��01��1x)T (�12DxH1(�1)Dx+�

2I)�1(y��01��1x)g ;
(10:19)

where Dx is diagonal with (Dx)ii = x(si). With B1 = (�1(s1); : : : ; �1(sn))
T

we can sample f(B1jy) and f(�1(snew)jy) via composition.
Note that (10.18) provides a heterogeneous, nonstationary process for the

data regardless of the choice of covariance function for the �1 (s) process,
since Var(Y (s) j �0; �1; �2; �12; �1) = x2(s)�1

2 + �2 and cov(Y (s); Y (s0) j
�0; �1; �

2; �1
2; �1) = �1

2x(s)x(s0)�1(s�s0;�1). As a result, we observe that
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in practice, (10.18) is sensible only if we have x(s) > 0. In fact, centering
and scaling, which is usually advocated for better behaved model �tting, is
inappropriate here. With centered x(s)'s we would �nd the likely untenable
behavior that Var(Y (s)) decreases and then increases in x(s). Worse, for
an essentially central x(s) we would �nd Y (s) essentially independent of
Y (s0) for any s0. Also, scaling the x(s)'s accomplishes nothing. �1(s) would
be inversely rescaled since the model only identi�es �1(s)x(s).
This leads to concerns regarding possible approximate collinearity of x,

the vector of x(si)'s, with the vector 1. Expression (10.19) shows that a
badly behaved likelihood will arise if x � c1. But, we can reparametrize
(10.18) to Y (s) = �0

0+�1
0~x(s)+�1(s)x(s)+�(s) where ~x(s) is centered and

scaled with obvious de�nitions for �0
0 and �1

0. Now ~�1(s) = �01=sx + �1(s)
where sx is the sample standard deviation of the x(s)'s.
As below (10.17), we can draw an analogy with standard longitudinal

linear growth curve modeling, where Yij = �0 + �1xij + �1ixij + �ij ; i.e., a
random slope for each individual. Also, U(s), the total error in the regres-
sion model (10.18) is now partitioned into \slope process" error and \pure"
error.
The general speci�cation incorporating both �0(s) and �1(s) would be

Y (s) = �0 + �1x(s) + �0(s) + �1(s)x(s) + �(s): (10:20)

Expression (10.20) parallels the usual linear growth curve modeling by in-
troducing both an intercept process and a slope process. The model in
(10.20) requires a bivariate process speci�cation in order to determine the
joint distribution of B0 and B1. It also partitions the total error into in-
tercept process error, slope error, and pure error.

10.2.2 Multivariate spatially varying coe�cient models

For the case of a p � 1 multivariate covariate vector X(s) at location s

where, for convenience, X(s) includes a 1 as its �rst entry to accommodate
an intercept, we generalize (10.20) to

Y (s) = XT (s)~�(s) + �(s) ; (10:21)

where ~�(s) is assumed to follow a p-variate spatial process model. With
observed locations s1; s2; : : : ; sn, let X be n� np block diagonal having as
block for the ith row XT (si). Then we can write Y = XT ~B + � where ~B
is np� 1, the concatenated vector of the ~�(s), and � � N(0; �2I).
In practice, to assume that the component processes of ~� (s) are inde-

pendent is likely inappropriate. That is, in the simpler case of simple linear
regression, negative association between slope and intercept is usually seen.
(This is intuitive if one envisions overlaying random lines that are likely
relative to a �xed scattergram of data points.) The dramatic improvement
in model performance when dependence is incorporated is shown in Exam-
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ple 10.4. To formulate a multivariate Gaussian process for ~�(s) we require
the mean and the cross-covariance function. For the former, following Sub-
section 10.2.1, we take this to be �� = (�1; : : : ; �p)

T . For the latter we
require a valid p-variate choice. In the following paragraphs we work with
a separable form (Section 7.1), yielding

~B � N(1n�1 
 �� ; H(�)
 T ) : (10:22)

If if ~B = B+ 1n�1 
 �� , then we can write (10.21) as

Y (s) = XT (s)�� +XT (s)�(s) + �(s) : (10:23)

In (10.23) the total error in the regression model is partitioned into p+ 1
pieces, each with an obvious interpretation. Following Subsection 10.2.1,
using (10.21) and (10.22) we can integrate over � to obtain

L(�� ; �
2; T; �;y) = jX(H(�)
 T )XT + �2I j� 1

2

�ef� 1

2
(y�X(1
��))

T (X(H(�)
T )XT+�2I)�1(y�X(1
��))g :
(10:24)

This apparently daunting form still involves only n� n matrices.
The Bayesian model is completed with a prior p

�
�� ; �

2; T; �
�
, which

we assume to take the product form p(��)p(�
2)p(T )p(�). Below, these

components will be normal, inverse gamma, inverse Wishart, and gamma,
respectively.
With regard to prediction, p( ~Bjy) can be sampled one for one with the

posterior samples from f
�
�� ; �

2; T; �jy� using f �~Bj�� ; �2; T; �; y�, which
is N (Aa; A) where A = (XTX=�2+H�1 (�)
T�1)�1 and a = XTy=�2+�
H�1 (�)
 T�1

� �
1
 ��

�
. Here A is np� np but, for sampling ~�, only a

Cholesky decomposition of A is needed, and only for the retained posterior
samples. Prediction at a new location, say, snew, requires samples from

f
�
~� (snew) j ~B;��; �2; T; �

�
. De�ning hnew (�) to be the n� 1 vector with

ith row entry � (si � snew;�), this distribution is normal with mean

�� +
�
hTnew (�) 
 T

� �
H�1 (�)
 T�1

� �
~B� 1nx1 
 ��

�
= �� +

�
hTnew (�)H�1 (�)
 I

� �
~B� 1nx1 
 ��

�
;

and covariance matrix T ��hTnew (�)
 T
� �
H�1 (�) 
 T�1

�
(hnew (�) 
 T )

=
�
I � hTnew (�)H�1 (�)hnew (�)

�
T . Finally, the predictive distribution

for Y (snew), namely f (Y (snew) j y), is sampled by composition, as usual.
We conclude this subsection by noting an extension of (10.21) when we

have repeated measurements at location s. That is, suppose we have

Y (s; l) = XT (s; l)� (s) + �(s; l) ; (10:25)

where l = 1; : : : ; Ls with Ls the number of measurements at s and the
� (s; l) still white noise. As an illustration, in the real estate context, smight
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denote the location for an apartment block and l might index apartments
in this block that have sold, with the lth apartment having characteristics
X (s; l). Suppose further that Z (s) denotes an r � 1 vector of site-level
characteristics. For an apartment block, these characteristics might include
amenities provided or distance to the central business district. Then (10.25)
can be extended to a multilevel model in the sense of Goldstein (1995) or
Raudenbush and Bryk (2002). In particular we can write

� (s) =

0B@ ZT (s)1
...

ZT (s)p

1CA+w (s) : (10:26)

In (10.26), j ; j = 1; : : : ; p, is an r � 1 vector associated with ~�j (s), and
w (s) is a mean-zero multivariate Gaussian spatial process, for example,
as above. In (10.26), if the w (s) were independent we would have a usual
multilevel model speci�cation. In the case where Z (s) is a scalar capturing
just an intercept, we return to the initial model of this subsection.

10.2.3 Spatiotemporal data

A natural extension of the modeling of the previous sections is to the case
where we have data correlated at spatial locations across time. If, as in
Section 8.2, we assume that time is discretized to a �nite set of equally
spaced points on a scale, we can conceptualize a time series of spatial
processes that are observed only at the spatial locations s1; : : : ; sn.
Adopting a general notation that parallels (10.20), let

Y (s; t) = XT (s; t) ~� (s; t) + � (s; t) ; t = 1; 2; : : : ;M : (10:27)

That is, we introduce spatiotemporally varying intercepts and spatiotem-
porally varying slopes. Alternatively, if we write ~� (s; t) = � (s; t) + �� ;
we are partitioning the total error into p + 1 spatiotemporal intercept
pieces including � (s; t) ; each with an obvious interpretation. So we con-

tinue to assume that � (s; t)
iid� N

�
0; �2

�
, but need to specify a model for

~� (s; t). Regardless, (10.27) de�nes a nonstationary process having moments
E(Y (s; t)) = XT (s; t)~�(s; t), V ar(Y (s; t)) = XT (s; t)� ~�(;t)

X(s; t)+�2, and

Cov(Y (s; t); Y (s0; t0)) = XT (s; t)�~�(s;t);~�(s0;t0)X(s0; t0).

Section 8.4 handled (10.27) using a dynamic model. Here we consider four
alternative speci�cations for � (s; t). Paralleling the customary assumption
from longitudinal data modeling (where the time series are usually short),
we could set

� Model 1: �(s; t) = �(s), where �(s) is modeled as in the previous
sections. This model can be viewed as a local linear growth curve model.

� Model 2: �(s; t) = �(s) + �(t), where �(s) is again as in Model 1. In
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modeling � (t), two possibilities are (i) treat the �k (t) as time dummy
variables, taking this set of pM variables to be a priori independent and
identically distributed; and (ii) model the � (t) as a random walk or
autoregressive process. The components could be assumed independent
across k, but for greater generality, we take them to be dependent, us-
ing a separable form that replaces s with t and takes � to be a valid
correlation function in just one dimension.

� Model 3: �(s; t) = �(t)(s), i.e., we have spatially varying coe�cient pro-
cesses nested within time. This model is an analogue of the nested e�ects
areal unit speci�cation in Waller et al. (1997); see also Gelfand, Ecker et
al. (2003). The processes are assumed independent across t (essentially
dummy time processes) and permit temporal evolution of the coe�-

cient process. Following Subsection 10.2.2, the process �(t)(s) would be
mean-zero, second-order stationary Gaussian with cross-covariance spec-

i�cation at time t, C(t) (s; s0) where
�
C(t) (s; s0)

�
lm

= �
�
s� s0;�(t)

�
�
(t)
lm :

We have speci�ed Model 3 with a common �� across time. This enables
some comparability with the other models we have proposed. However,

we can increase exibility by replacing �� with �
(t)
� .

� Model 4: For �(1) a valid two-dimensional correlation function, �(2) a
valid one-dimensional choice, and T positive de�nite symmetric, �(s; t)
such that �[�(s;t);�(s0;t0)] = �(1) (s� s0;�) �(2) (t� t0; )T . This model

proposes a separable covariance speci�cation in space and time, as in
Section 8.2. Here �(1) obtains spatial association as in earlier subsec-
tions that is attenuated across time by �(2). The resulting covariance
matrix for the full vector �, blocked by site and time within site has the
convenient form H2 ()
H1 (�)
 T .

In each of the above models we can marginalize over �(s; t) as we did
earlier in this section. Depending upon the model it may be more compu-
tationally convenient to block the data by site or by time. We omit the
details and notice only that, with n sites and T time points, the resulting
likelihood will involve the determinant and inverse of an nT � nT matrix
(typically a large matrix; see Appendix Section A.6).
Note that all of the foregoing modeling can be applied to the case of

cross-sectional data where the set of observed locations varies with t. This
is the case, for instance, with our real estate data. We only observe a selling
price at the time of a transaction. With nt locations in year t, the likelihood
for all but Model 3 will involve a

P
nt �

P
nt matrix.

Example 10.4 (Baton Rouge housing prices). We analyze a sample from
a database of real estate transactions in Baton Rouge, LA, during the eight-
year period 1985{1992. In particular, we focus on modeling the log selling
price of single-family homes. In real estate modeling it is customary to work
with log selling price in order to achieve better approximate normality.
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Figure 10.3 Locations sampled within the parish of Baton Rouge for the static
spatial models.

A range of house characteristics are available. We use four of the most
common choices: age of house, square feet of living area, square feet of
other area (e.g., garages, carports, storage), and number of bathrooms. For
the static spatial case, a sample of 237 transactions was drawn from 1992.
Figure 10.3 shows the parish of Baton Rouge and the locations contained
in an encompassing rectangle within the parish.
We �t a variety of models, where in all cases the correlation function is

from the Mat�ern class. We used priors that are fairly noninformative and
comparable across models as sensible. First, we started with a spatially
varying intercept and one spatially varying slope coe�cient (the remaining
coe�cients do not vary), requiring a bivariate process model. There are four
such models, and using DK , the Gelfand and Ghosh (1998) criterion (4.13),
the model with a spatially varying living area coe�cient emerges as best.
Next, we introduced two spatially varying slope coe�cient processes along
with a spatially varying intercept, requiring a trivariate process model.
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Model Fit Variance penalty DK

Five-dimensional 42.21 36.01 78.22
Three-dimensional (best) 61.38 47.83 109.21
Two-dimensional (best) 69.87 46.24 116.11
Independent process 94.36 59.34 153.70

Table 10.4 Values of posterior predictive model choice criterion (over all models).

There are six models here; the one with spatially varying age and living
area is best. Finally, we allowed �ve spatially varying processes: an inter-
cept and all four coe�cients, using a �ve-dimensional process model. We
also �t a model with �ve independent processes. From Table 10.4 the �ve-
dimensional dependent process model is far superior and the independent
process model is a dismal last, supporting our earlier intuition.
The prior speci�cation used for the �ve-dimensional dependent process

model is as follows. We take vagueN
�
0; 105I

�
for �� , a �ve-dimensional in-

verse Wishart, IW (5; Diag (0:001)), for T , and an inverse gamma IG (2; 1)
for �2 (mean 1, in�nite variance). For the Mat�ern correlation function pa-
rameters � and � we assume gamma priorsG (2; 0:1) (mean 20 and variance
200). For all the models three parallel chains were run to assess convergence.
Satisfactory mixing was obtained within 3000 iterations for all the models;
2000 further samples were generated and retained for posterior inference.

The resulting posterior inference summary is provided in Table 10.5. We
note a signi�cant negative overall age coe�cient with signi�cant positive
overall coe�cients for the other three covariates, as expected. The contri-
bution to spatial variability from the components of � is captured through
the diagonal elements of the T matrix scaled by the corresponding covari-
ates following the discussion at the end of Subsection 10.2.1. We see that
the spatial intercept process contributes most to the error variability with,
perhaps surprisingly, the \bathrooms" process second. Clearly spatial vari-
ability overwhelms the pure error variability �2, showing the importance
of the spatial model. The dependence between the processes is evident in
the posterior correlation between the components. We �nd the anticipated
negative association between the intercept process and the slope processes
(apart from that with the \other area" process). Under the Mat�ern corre-
lation function, by inverting � (�;�) = 0:05 for a given value of the decay
parameter  and the smoothing parameter �, we obtain the range, i.e.,
the distance beyond which spatial association becomes negligible. Poste-
rior samples of (; �) produce posterior samples for the range. The resulting
posterior median is roughly 4 km over a somewhat sprawling parish that
is roughly 22 km � 33 km. The smoothness parameter suggests processes
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Parameter 2.5% 50% 97.5%

�0 (intercept) 9.908 9.917 9.928
�1 (age) {0.008 {0.005 {0.002
�2 (living area) 0.283 0.341 0.401
�3 (other area) 0.133 0.313 0.497
�4 (bathrooms) 0.183 0.292 0.401
T11 0.167 0.322 0.514
x21T22 0.029 0.046 0.063
x22T33 0.013 0.028 0.047
x23T44 0.034 0.045 0.066
x24T55 0.151 0.183 0.232
T12=

p
T11T22 {0.219 {0.203 {0.184

T13=
p
T11T33 {0.205 {0.186 {0.167

T14=
p
T11T44 0.213 0.234 0.257

T15=
p
T11T55 {0.647 {0.583 {0.534

T23=
p
T22T33 {0.008 0.011 0.030

T24=
p
T22T44 0.061 0.077 0.098

T25=
p
T22T55 {0.013 0.018 0.054

T34=
p
T33T44 {0.885 {0.839 {0.789

T35=
p
T33T55 {0.614 {0.560 {0.507

T45=
p
T44T55 0.173 0.232 0.301

� (decay) 0.51 1.14 2.32
� (smoothness) 0.91 1.47 2.87
range (in km) 2.05 4.17 9.32
�2 0.033 0.049 0.077

Table 10.5 Inference summary for the �ve-dimensional multivariate spatially
varying coe�cients model.

with mean square di�erentiable realizations (� > 1). Contour plots of the
posterior mean spatial surfaces for each of the processes (not shown) are
quite di�erent.
Turning to the dynamic models proposed in Subsection 10.2.3, from the

Baton Rouge database we drew a sample of 120 transactions at distinct
spatial locations for the years 1989, 1990, 1991, and 1992. We compare
Models 1{4. In particular, we have two versions of Model 2; 2a has the
�(t) as four i.i.d. time dummies, while 2b uses the multivariate temporal
process model for � (t) : We also have two versions of Model 3; 3a has a

common �� across t, while 3b uses �
(t)
� : In all cases the �ve-dimensional

spatially varying coe�cient model for �'s was employed. Table 10.6 shows
the results. Model 3, where space is nested within time, turns out to be the
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Independent process Dependent process
Model G P D1 G P D1

1 88.58 56.15 144.73 54.54 29.11 83.65
2a 77.79 50.65 128.44 47.92 26.95 74.87
2b 74.68 50.38 125.06 43.38 29.10 72.48
3a 59.46 48.55 108.01 43.74 20.63 64.37
3b 57.09 48.41 105.50 42.35 21.04 63.39
4 53.55 52.98 106.53 37.84 26.47 64.31

Table 10.6 Model choice criteria for various spatiotemporal process models.

best with Model 4 following closely behind. We omit the posterior inference

summary for Model 3b, noting only that the overall coe�cients
�
�
(t)
�

�
do

not change much over time. However, there is some indication that spatial
range is changing over time.

10.2.4 Generalized linear model setting

We briey consider a generalized linear model version of (10.21), replacing
the Gaussian �rst stage with

f (y (si) j � (si)) = h (y (si)) exp (� (si) y (si)� b (� (si))) ; (10:28)

where, using a canonical link, � (si) = XT (si) ~� (si). In (10.28) we could
include a dispersion parameter with little additional complication.
The resulting �rst-stage likelihood becomes

L
�
~�;y

�
= exp

nX
y (si)X

T (si) ~� (si)� b
�
XT (si) ~� (si)

�o
: (10:29)

Taking the prior on ~� in (10.22), the Bayesian model is completely speci�ed
with a prior on on �, T and ��.
This model can be �t using a conceptually straightforward Gibbs sam-

pling algorithm, which updates the components of �� and ~� using adaptive

rejection sampling. With an inverse Wishart prior on T , the resulting full
conditional of T is again inverse Wishart. Updating � is usually very awk-
ward because it enters in the Kronecker form in (10.22). Slice sampling
is not available here since we cannot marginalize over the spatial e�ects;
Metropolis updates are di�cult to design but o�er perhaps the best possi-
bility. Also problematic is the repeated componentwise updating of ~�. This
hierarchically centered parametrization (Gelfand, Sahu, and Carlin, 1995,
1996) is preferable to working with �� and �, but in our experience the

algorithm still exhibits serious autocorrelation problems.
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10.3 Spatial CDFs

In this section, we review the essentials of spatial cumulative distribution
functions (SCDFs), including a hierarchical modeling approach for infer-
ence. We then extend the basic de�nition to allow covariate weighting of
the SCDF estimate, as well as versions arising under a bivariate random
process.

10.3.1 Basic de�nitions and motivating data sets

Suppose that X(s) is the log-ozone concentration at location s over a par-
ticular time period. Thinking of X(s); s 2 D as a spatial process, we might
wish to �nd the proportion of area in D that has ozone concentration be-
low some level w (say, a level above which exposure is considered to be
unhealthful). This proportion is the random variable,

F (w) = Pr [s 2 D : X(s) � w] =
1

jDj
Z
D

Zw(s)ds ; (10:30)

where jDj is the area of D, and Zw(s) = 1 if X(s) � w, and 0 otherwise.
Since X(s); s 2 D is random, (10.30) is a random function of w 2 < that
increases from 0 to 1 and is right-continuous. Thus while F (w) is not the
usual cumulative distribution function (CDF) of X at s (which would be
given by Pr[X(s) � x], and is not random), it does have all the properties
of a CDF, and so is referred to as the spatial cumulative distribution func-
tion, or SCDF. For a constant mean stationary process, all X(s) have the
same marginal distribution, whence E[F (w)] = Pr (X(s) � w). It is also
easy to show that V ar[F (w)] = 1

jDj2

R
D

R
D
Pr (X(s) � w;X(s0) � w) dsds0

�[Pr (X(s) � w)]2. Overton (1989) introduced the idea of an SCDF, and
used it to analyze data from the National Surface Water Surveys. Lahiri
et al. (1999) developed a subsampling method that provides (among other
things) large-sample prediction bands for the SCDF, which they show to
be useful in assessing the foliage condition of red maple trees in the state
of Maine.
The empirical SCDF based upon data Xs = (X(s1); : : : ; X(sI))

0 at w
is the proportion of the X(si) that take values less than or equal to w.
Large-sample investigation of the behavior of the empirical SCDF requires
care to de�ne the appropriate asymptotics; see Lahiri et al. (1999) and Zhu,
Lahiri, and Cressie (2002) for details. When I is not large, as is the case in
our applications, the empirical SCDF may become less attractive. Stronger
inference can be achieved if one is willing to make stronger distributional
assumptions regarding the processX(s). For instance, if X(s) is assumed to
be a Gaussian process, the joint distribution of Xs is multivariate normal.
Given a suitable prior speci�cation, a Bayesian framework provides the
predictive distribution of F (w) given X(s).
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Though (10.30) can be studied analytically, it is di�cult to work with in
practice. However, approximation of (10.30) via Monte Carlo integration is
natural (and may be more convenient than creating a grid of points over
D), i.e., replacing F (w) by

bF (w) = 1

L

LX
`=1

Zw(~s`) ; (10:31)

where the ~s` are chosen randomly in D, and Zw(~s`) = 1 if X(~s`) � w,

and 0 otherwise. Suppose we seek a realization of bF (w) from the predictive

distribution of bF (w) givenXs. In Section 6.1 we showed how to sample from
the predictive distribution p(X~s j Xs) for X~s arising from new locations

~s = (~s1; : : : ;~sL)
0. In fact, samples fX(g)

~s ; g = 1; : : : ; Gg from the posterior
predictive distribution,

p(X~s j Xs) =

Z
p(X~s j Xs;�;�)p(�;� j Xs)d�d� ;

may be obtained one for one from posterior samples by composition.
The predictive distribution of (10.30) can be sampled at a given w by

obtaining X(~s`) using the above algorithm, hence Zw(~s`), and then cal-

culating bF (w) using (10.31). Since interest is in the entire function F (w),

we would seek realizations of the approximate function bF (w). These are
most easily obtained, up to an interpolation, using a grid of w values
fw1 < � � � < wk < � � � < wKg, whence each (�(g);�(g)) gives a realiza-
tion at grid point wk,

bF (g)(wk) =
1

L

LX
`=1

Z(g)
wk

(~s`) ; (10:32)

where now Z
(g)
wk

(~s`) = 1 if X(g)(~s`) � wk , and 0 otherwise. Handcock (1999)
describes a similar Monte Carlo Bayesian approach to estimating SCDFs
in his discussion of Lahiri et al. (1999).

Expression (10.32) suggests placing all of our bF (g)(wk) values in a K �
G matrix for easy summarization. For example, a histogram of all thebF (g)(wk) in a particular row (i.e., for a given grid point wk) provides an

estimate of the predictive distribution of bF (wk). On the other hand, each
column (i.e., for a given Gibbs draw g) provides (again up to, say, linear
interpolation) an approximate draw from the predictive distribution of the
SCDF. Hence, averaging these columns provides, with interpolation, essen-
tially the posterior predictive mean for F and can be taken as an estimated
SCDF. But also, each draw from the predictive distribution of the SCDF
can be inverted to obtain any quantile of interest (e.g., the median exposure

d
(g)
:50). A histogram of these inverted values in turn provides an estimate of
the posterior distribution of this quantile (in this case, bp(d:50jXs)). While
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this algorithm provides general inference for SCDFs, for most data sets it
will be computationally very demanding, since a large L will be required
to make (10.32) su�ciently accurate.

Our interest in this methodology is motivated by two environmental data
sets; we describe both here but only present the inference for the second.
The �rst is the Atlanta eight-hour maximum ozone data, which exempli�es
the case of an air pollution variable measured at points, with a demographic
covariate measured at a block level. Recall that its �rst component is a
collection of ambient ozone levels in the Atlanta, GA, metropolitan area, as
reported by Tolbert et al. (2000). Ozone measurements Xitr are available
at between 8 and 10 �xed monitoring sites i for day t of year r, where
t = 1; : : : ; 92 (the summer days from June 1 through August 31) and r =
1; 2; 3, corresponding to years 1993, 1994, and 1995. The reader may wish
to ip back to Figure 1.3, which shows the 8-hour daily maximum ozone
measurements in parts per million at the 10 monitoring sites for one of
the days (July 15, 1995). This �gure also shows the boundaries of the
162 zip codes in the Atlanta metropolitan area, with the 36 zips falling
within the city of Atlanta encircled by the darker boundary on the map. An
environmental justice assessment of exposure to potentially harmful levels
of ozone would be clari�ed by examination of the predictive distribution
of a weighted SCDF that uses the racial makeups of these city zips as
the weights. This requires generalizing our SCDF simulation in (10.32) to
accommodate covariate weighting in the presence of misalignment between
the response variable (at point-referenced level) and the covariate (at areal-
unit level).

SCDFs adjusted with point-level covariates present similar challenges.
Consider the spatial data setting of Figure 10.4, recently presented and an-
alyzed by Gelfand, Schmidt, and Sirmans (2002). These are the locations of
several air pollutant monitoring sites in central and southern California, all
of which measure ozone, carbon monoxide, nitric oxide (NO), and nitrogen
dioxide (NO2). For a given day, suppose we wish to compute an SCDF for
the log of the daily median NO exposure adjusted for the log of the daily
median NO2 level (since the health e�ects of exposure to high levels of
one pollutant may be exacerbated by further exposure to high levels of the
other). Here the data are all point level, so that Bayesian kriging methods
of the sort described above may be used. However, we must still tackle the
problem of bivariate kriging (for both NO and NO2) in a computationally
demanding setting (say, to the L = 500 randomly selected points shown as
dots in Figure 10.4). In some settings, we must also resolve the misalign-
ment in the data itself, which arises when NO or NO2 values are missing
at some of the source sites.
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Figure 10.4 Locations of 67 NO and NO2 monitoring sites, California air quality
data; 500 randomly selected target locations are also shown as dots.

10.3.2 Derived-process spatial CDFs

Point- versus block-level spatial CDFs

The spatial CDF in (10.30) is customarily referred to as the SCDF as-
sociated with the spatial process X(s). In fact, we can formulate many
other useful SCDFs under this process. We proceed to elaborate choices of
possible interest.
Suppose for instance that our data arrive at areal unit level, i.e., we

observe X(Bj); j = 1; : : : ; J such that the Bj are disjoint with union D,
the entire study region. Let Zw(Bj) = 1 if X(Bj) � w, and 0 otherwise.
Then eF (w) = 1

jDj
JX
j=1

jBj j Zw(Bj) (10:33)

again has the properties of a CDF and thus can also be interpreted as a
spatial CDF. In fact, this CDF is a step function recording the propor-
tion of the area of D that (at block-level resolution) lies below w. Suppose
in fact that the X(Bj) can be viewed as block averages of the process
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X(s), i.e., X(Bj) =
1

jBj j

R
Bj

X(s)ds. Then (10.30) and (10.33) can be com-

pared: write (10.30) as 1
jDj

P
j jBj j

h
1

jBj j

R
Bj

I(X(s) � w)ds
i
and (10.33)

as 1
jDj

P
j jBj j I

h�
1

jBjj

R
Bj

X(s)ds
�
� w

i
. Interpreting s to have a uniform

distribution on Bj , the former is
1
jDj

P
j jBj j EBj

[I(X(s) � w)] while the

latter is 1
jDj

P
j jBj j I

�
EBj

(X(s)) � w
�
. In fact, if X(s) is stationary, while

E[F (w)] = P (X(s) � w), E[ eF (w)] = 1
jDj

P
j jBj j P (X(Bj) � w). For a

Gaussian process, under weak conditions X(Bj) is normally distributed

with mean E[X(s)] and variance 1
jBj j2

R
Bj

R
Bj

c(s� s0;�)dsds0, so E[ eF (w)]
can be obtained explicitly. Note also that since 1

jBjj

R
Bj

I(X(s) � w)ds is

the customary spatial CDF for region Bj , then by the alternate expression
for (10.30) above, F (w) is an areally weighted average of local SCDFs.
Thus (10.30) and (10.33) di�er, but (10.33) should neither be viewed as

\incorrect" nor as an approximation to (10.30). Rather, it is an alternative
SCDF derived under the X(s) process. Moreover, if only the X(Bj) have
been observed, it is arguably the most sensible empirical choice. Indeed,
the Multiscale Advanced Raster Map (MARMAP) analysis system project
(www.stat.psu.edu/~gpp/marmap_system_partnership.htm) is designed
to work with \empirical cell intensity surfaces" (i.e., the tiled surface of
the X(Bj)'s over D) and calculates the \upper level surfaces" (variants of
(10.33)) for description and inference regarding multicategorical maps and
cellular surfaces.
Next we seek to introduce covariate weights to the spatial CDF, as mo-

tivated in Subsection 10.3.1. For a nonnegative function r(s) that is inte-
grable over D, de�ne the SCDF associated with X(s) weighted by r as

Fr(w) =

R
D r(s)Zw(s)dsR

D r(s)ds
: (10:34)

Evidently (10.34) satis�es the properties of a CDF and generalizes (10.30)
(i.e., (10.30) is restored by taking r(s) � 1). But as (10.30) suggests ex-
pectation with respect to a uniform density for s over D, (10.34) suggests
expectation with respect to the density r(s)=

R
D
r(s)ds. Under a stationary

process, E[F (w)] = P (X(s) � w) and V ar[F (w)] is

1

(
R
D
r(s)ds)2

R
D

R
D
r(s)r(s0)P (X(s) � w;X(s0) � w)dsds0

�[P (X(s) � w)]2 :

There is an empirical SCDF associated with (10.34) that extends the
empirical SCDF in Subsection 10.3.1 using weights r(si)=

P
i r(si) rather

than 1=I . This random variable is mentioned in Lahiri et al. (1999, p.
87). Following Subsection 10.3.1, we adopt a Bayesian approach and seek
a predictive distribution for Fr(w) given Xs. This is facilitated by Monte
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Carlo integration of (10.34), i.e.,

bFr(w) = PL
`=1 r(s`)Zw(s`)PL

`=1 r(s`)
: (10:35)

Covariate weighted SCDFs for misaligned data

In the environmental justice application described in Subsection 10.3.1, the
covariate is only available (indeed, only meaningful) at an areal level, i.e.,
we observe only the population density associated with Bj . How can we
construct a covariate weighted SCDF in this case? Suppose we make the
assignment r(s) = rj for all s 2 Bj , i.e., that the density surface is constant
over the areal unit (so that rj jBj j is the observed population density for
Bj). Inserting this into (10.34) we obtain

F �
r (w) =

PJ
j=1 rj jBj j

h
1

jBj j

R
Bj

Zw(s)ds
i

PJ
j=1 rj jBj j

: (10:36)

As a special case of (10.34), (10.36) again satis�es the properties of a CDF
and again has mean P (X(s) � w). Moreover, as below (10.33), the brack-
eted expression in (10.36) is the spatial CDF associated withX(s) restricted
to Bj . Monte Carlo integration applied to (10.36) can use the same set of
s`'s chosen randomly over D as in Subsection 10.3.1 or as in (10.35). In
fact (10.35) becomes

bFr(w) =
PJ

j=1 rjLj

h
1
Lj

P
s`2Bj

Zw(s`)
i

PJ
j=1 rjLj

; (10:37)

where Lj is the number of s` falling in Bj . Equation (10.36) suggests the
alternative expression,

bF �
r (w) =

PJ
j=1 rj jBj j

h
1
Lj

P
s`2Bj

Zw(s`)
i

PJ
j=1 rj jBj j

: (10:38)

Expression (10.38) may be preferable to (10.37), since it uses the exact jBj j
rather than the random Lj .

10.3.3 Randomly weighted SCDFs

If we work solely with the rj 's, we can view (10.35){(10.38) as conditional
on the rj 's. However if we work with r(s)'s, then we will need a probability
model for r(s) in order to interpolate to r(s`) in (10.35). Since r(s) andX(s)
are expected to be associated, we may conceptualize them as arising from
a spatial process, and develop, say, a bivariate Gaussian spatial process
model for both X(s) and h(r(s)), where h maps the weights onto <1.
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Let Y(s) = (X(s); h(r(s))T and Y = (Y(s1); : : : ;Y(sn))
T . Analogous

to the univariate situation in Subsection 10.3.1, we need to draw sam-

ples Y
(g)
~s from p(Y~s j Y;�(g);�(g); T (g)). Again this is routinely done via

composition from posterior samples. Since the Y
(g)
~s samples have marginal

distribution p(Y~s j Y), we may use them to obtain predictive realizations
of the SCDF, using either the unweighted form (10.32) or the weighted
form (10.35).
The bivariate structure also allows for the de�nition of a bivariate SCDF,

FU;V (wu; wv) =
1

jDj
Z
D

I(U(s) � wu; V (s) � wv)ds ; (10:39)

which gives Pr [s 2 D : U(s) � wu; V (s) � wv ], the proportion of the re-
gion having values below the given thresholds for, say, two pollutants. Fi-
nally, a sensible conditional SCDF might be

FUjV (wujwv) =

R
D I(U(s) � wu; V (s) � wv)dsR

D
I(V (s) � wv)ds

=

R
D I(U(s) � wu)I(V (s) � wv)dsR

D I(V (s) � wv)ds
: (10.40)

This expression gives Pr [s 2 D : U(s) � wu j V (s) � wv ], the proportion
of the region having second pollutant values below the threshold wv that
also has �rst pollutant values below the threshold wu. Note that (10.40) is
again a weighted SCDF, with r(s) = I(V (s) � wv). Note further that we
could easily alter (10.40) by changing the directions of either or both of its
inequalities, if conditional statements involving high (instead of low) levels
of either pollutant were of interest.

Example 10.5 (California air quality data). We illustrate in the case of
a bivariate Gaussian process using data collected by the California Air Re-
sources Board, available at www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm.
The particular subset we consider are the mean NO and NO2 values for
July 6, 1999, as observed at the 67 monitoring sites shown as solid dots in
Figure 10.4. Recall that in our notation, U corresponds to log(mean NO)
while V corresponds to log(mean NO2). A WSCDF based on these two
variables is of interest since persons already at high NO risk may be es-
pecially vulnerable to elevated NO2 levels. Figure 10.5 shows interpolated
perspective, image, and contour plots of the raw data. Association of the
pollutant levels is apparent; in fact, the sample correlation coe�cient over
the 67 pairs is 0.74.
We �t a separable, Gaussian bivariate model using the simple exponen-

tial spatial covariance structure �(dii0 ;�) = exp(��dii0 ), so that � � �;
no �2 parameter is required (nor identi�able) here due to the multiplica-
tive presence of the T matrix. For prior distributions, we �rst assumed
T�1 �W ((�R)�1; �) where � = 2 and R = 4I . This is a reasonably vague
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Figure 10.5 Interpolated perspective, image, and contour plots of the raw log-NO
(�rst row) and log-NO2 (second row), California air quality data, July 6, 1999.

speci�cation, both in its small degrees of freedom � and in the relative size of
R (roughly the prior mean of T ), since the entire range of the data (for both
log-NO and log-NO2) is only about 3 units. Next, we assume � � G(a; b),
with the parameters chosen so that the e�ective spatial range is half the
maximum diagonal distance M in Figure 10.4 (i.e., 3=E(�) = :5M), and
the standard deviation is one half of this mean. Finally, we assume constant
means �U (s;�) = �U and �V (s;�) = �V , and let �U and �V have vague
normal priors (mean 0, variance 1000).

Our initial Gibbs algorithm sampled over �, T�1, and �. The �rst two
of these may be sampled from closed-form full conditionals (normal and
inverse Wishart, respectively) while � is sampled using Hastings indepen-
dence chains with G( 23 ;

3
2 ) proposals. We used 3 parallel chains to check

convergence, followed by a \production run" of 2000 samples from a single
chain for posterior summarization. Histograms (not shown) of the poste-
rior samples for the bivariate kriging model are generally well behaved and
consistent with the results in Figure 10.5.

Figure 10.6 shows perspective plots of raw and kriged log-NO and log-
NO2 surfaces, where the plots in the �rst column are the (interpolated) raw
data (as in the �rst column of Figure 10.5), those in the second column are
based on a single Gibbs sample, and those in the third column represent
the average over 2000 post-convergence Gibbs samples. The plots in this

© 2004 by CRC Press LLC



SPATIAL CDFS 375

-122
-120

-118
-116

Longitude34

36

38

Latitude

-6
.5

-6
-5

.5
-5

-4
.5

-4
-3

.5
Lo

g(
N

O
)

a) NO (raw data)

-122
-120

-118
-116

Longitude

32

34

36

38

40

Latitude

-8
-7

-6
-5

-4
-3

-2
-1

Lo
g(

N
O

)

b) One Gibbs sample
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Figure 10.6 Perspective plots of kriged log-NO and log-NO2 surfaces, California
air quality data. First column, raw data; second column, based on a single Gibbs
sample; third column, average over 2000 post-convergence Gibbs samples.

�nal column are generally consistent with those in the �rst, except that
they exhibit the spatial smoothness we expect of our posterior means.

Figure 10.7 shows several SCDFs arising from samples from our bivariate
kriging algorithm. First, the solid line shows the ordinary SCDF (10.32)
for log-NO. Next, we computed the weighted SCDF for two choices of
weight function in (10.35). In particular, we weight log-NO exposure U by
h�1(V ) using h�1(V ) = exp(V ) and h�1(V ) = exp(V )=(exp(V ) + 1) (the
exponential and inverse logit functions). Since V is log-NO2 exposure, this
amounts to weighting by NO2 itself, and by NO2/(NO2+1). The results
from these two h�1 functions turn out to be visually indistinguishable, and
are shown as the dotted line in Figure 10.7. This line is shifted to the right
from the unweighted version, indicating higher harmful exposure when the
second (positively correlated) pollutant is accounted for.

Also shown as dashed lines in Figure 10.7 are several WSCDFs that
result from using a particular indicator of whether log-NO2 remains be-
low a certain threshold. These WSCDFs are thus also conditional SCDFs,
as in equation (10.40). Existing EPA guidelines and expertise could be
used to inform the choice of clinically meaningful thresholds; here we sim-
ply demonstrate the procedure's behavior for a few illustrative thresholds.
For example, when the threshold is set to {3.0 (a rather high value for
this pollutant on the log scale), nearly all of the weights equal 1, and the
WSCDF di�ers little from the unweighted SCDF. However, as this thresh-
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Figure 10.7 Weighted SCDFs for the California air quality data: solid line, ordi-
nary SCDF for log-NO; dotted line, weighted SCDF for log-NO using NO2 as the
weight; dashed lines, weighted SCDF for log-NO using various indicator functions
of log-NO2 as the weights.

old moves lower (to {4.0 and {5.0), the WSCDF moves further to the left
of its unweighted counterpart. This movement is understandable, since our
indicator functions are decreasing functions of log-NO2; movement to the
right could be obtained simply by reversing the indicator inequality.
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APPENDIX A

Matrix theory and spatial
computing methods

In this appendix we discuss matrix theory and computing issues that are
essential in the Bayesian implementation of the spatial and spatiotemporal
process models described in this text. Speci�cally, repeated likelihood eval-
uation in MCMC implementation of hierarchical spatial models necessitates
repeated matrix inversion and determinant evaluation.

Linear algebra lies at the core of the applied sciences, and matrix com-
putations arise in a wide array of scenarios in engineering, applied mathe-
matics, statistical computing, and many other scienti�c �elds. As a result,
the subject of numerical linear algebra has grown at a tremendous pace
over the past three decades, bringing about new algorithms and techniques
to e�ciently perform matrix computations.

This brief appendix only skims the surface of this vast and very important
subject. There are several excellent books on matrix computation; we would
particularly recommend the book by Golub and van Loan (1996) for a
more thorough and rigorous study. Our initial focus will be on matrix
inversions, determinant computations, and Cholesky decompositions. Since
the most e�cient matrix inversion algorithms actually solve linear systems
of equations, we start with this topic. After our matrix theory discussion,
we present sections on special algorithms for point-referenced and areal
data models. The former employs slice sampling (Neal, 2003), while the
latter relies on structured MCMC (Sargent et al., 2000).

A.1 Gaussian elimination and LU decomposition

In this section we consider the solution to the linear system Ax = b, where
A is an n�n nonsingular matrix and b is a known vector. For illustration,
let us start with n = 3, so that

A =

0@ a11 a12 a13
a21 a22 a23
a31 a32 a33

1A and b =

0@ b1
b2
b3

1A : (A:1)
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The most popular method of solving a system as above is using a series of
elementary (also called echelon) transformations that involve only multi-
plying a row (or column) by a constant, or adding one row (or column) to
another. This approach allows us to reduce A to an upper triangular matrix
U , thereby reducing a general system to an upper triangular system that
is far easier to solve (using backsubstitution).
Speci�cally, we �rst sweep out the �rst column of A by premultiplying

with an elementary matrix E1, to obtain

E1A =

0B@ a11 a12 a13

0 a
(1)
22 a

(1)
23

0 a
(1)
32 a

(1)
33

1CA : (A:2)

The matrix E1 is easily seen to be

E1 =

0@ 1 0 0
�a21=a11 1 0
�a31=a11 0 1

1A = I � � 1eT1 ;

where � 1 = (0; a21=a11; a31=a11)
T and e1 = (1; 0; 0)T . With a second ele-

mentary transformation, E2, we proceed to sweep out the elements below
the diagonal in the second column. This yields

E2E1A =

0B@ a11 a12 a13

0 a
(1)
22 a

(1)
23

0 0 a
(2)
33

1CA ;

which is in upper triangular form U , as desired. The matrix E2 is seen to
be

E2 =

0@ 1 0 0
0 1 0

0 �a(1)23 =a
(1)
22 1

1A = I � � 2eT2 ;

where � 1 = (0; 0; a
(1)
23 =a

(1)
22 )

T and e2 = (0; 1; 0)T . We therefore have that
E2E1A = U , so that A = E�1

1 E�1
2 U . Note however that (I � � ieTi )(I +

� ie
T
i ) = I�� i

�
eTi � i

�
eTi = I for i = 1; 2, since eTi � i = 0 for i = 1; 2. Thus,

E�1
1 = (I + � 1e

T
1 ) and E�1

2 = (I + � 2e
T
2 ): Clearly both E�1

1 and E�1
2 are

unit lower triangular (lower triangular matrices with diagonals as unity),
and so L = E�1

1 E�1
2 is a unit lower triangular matrix. Thus, this sweeping

strategy, known as Gaussian elimination, leads us to the LU decomposition
of a nonsingular square matrix A as A = LU:
In the case of a general n, the same argument eventually results in

A = E�1
1 E�1

2 � � �E�1
n�1U ;

where Ek = I � � ke
T
k : Again ek is the coordinate vector with a 1 in

the kth place and 0's elsewhere, �T1 = (0; a21=a11; :::; an1=a11), and �Tk =
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0; :::; 0; a

(k�1)
k+1;k=a

(k�1)
kk ; :::; a

(k�1)
nk =a

(k�1)
kk

�
for k = 2; : : : ; n� 1. The impor-

tant feature to note here is that � k has a 0 in its kth position, rendering it
orthogonal to ek, so that E

�1
k is still I + � ke

T
k . Thus,

L =
n�1Y
k=1

�
I + � ke

T
k

�
= I +

n�1X
k=1

� ke
T
k ;

and we have a nice closed-form expression for the unit lower triangular
matrix. The above simpli�cation follows easily since eTi � j = 0 whenever
j � i:
Returning to the system Ax = b, we now rewrite our system as LUx = b:

We now solve the system in two stages. Stage 1 solves a lower triangular
system, recursively solved rowwise from the �rst row. Stage 2 solves an
upper triangular system, again solved recursively starting with the last
row. That is,

Stage 1 : Solve for y in Ly = b;

Stage 2 : Solve for x in Ux = y:

An alternative way of formulating the LU decomposition is to in fact
assume the existence of an LU decomposition (with a unit lower triangular
L), and actually solve for the other elements of L and U . Here we present
Crout's algorithm (see, e.g., Wilkinson, 1965), wherein we being by writing
A = (aij) as0BBB@

1 0 � � � 0
l21 1 � � � 0
...

...
. . .

...
ln1 ln2 � � � 1

1CCCA
0BBB@

u11 u12 � � � u1n
0 u22 � � � u2n
...

...
. . .

...
0 0 � � � unn

1CCCA :

Crout's algorithm proceeds by solving for the elements of L and U in the
right order. We �rst consider the �rst row of the U matrix, u1j = a1j for j =
1; 2; : : : ; n. Next we look at the �rst column of the L matrix, obtaining
li1 = ai1=u11 for i = 2; 3; : : : ; n. We then return to the rows; considering
the second row of the U matrix, we have l21u1j+u2j = a2j ; j = 2; 3; : : : ; n,
so that u2j = a2j � l21u1j ; j = 2; 3; : : : ; n. The next step would be to
consider the second column of L, and so on. In general, Crout's algorithm
takes the following form: for i = 1; 2; : : : ; n,

uij = aij �
i�1X
k=1

likukj ; j = i; i+ 1; : : : ; n;

lji =
aji �

Pi�1
k=1 ljkuki
uii

; j = i+ 1; : : : ; n:

In all of the above steps, lii = 1 for i = 1; 2; : : : ; n.
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Crout's algorithm demonstrates an e�cient way to compute the LU de-
composition and also shows (through the equations) that the decomposition
is unique. That is, if A = L1U1 = L2U2; then it must be that L1 = L2 and
U1 = U2: Also note that Crout's algorithm will be able to detect when A is
near singular and in such a situation can be designed to return an appro-
priate error message (or exception class in an object-oriented framework).

Gaussian elimination and Crout's algorithm di�er only in the ordering
of operations. Both algorithms are theoretically and numerically equiva-
lent with complexity O

�
n3
�
(actually, the number of operations is approx-

imately n3=3, where an operation is de�ned as one multiplication and one
addition). Also note that the LU decomposition may be converted to an
LDU decomposition with both L and U being unit triangular matrices by
taking D to be Diag (u11; : : : ; unn).

We hasten to add a few remarks concerning the important concept of
pivoting for the above algorithms. Pivots are the scaling constants involved
in the Gaussian elimination process. For example, in our preceding discus-

sion, a11 and a
(1)
22 . Pivoting is discussed at length in Golub and van Loan

(1996) and deals with permuting the rows of matrix A by premultiplica-
tion with a permutation matrix P . Pivoting is vital for numerical stability
and proper termination of the program. Pivoting generally results in the
decomposition PA = LU .

We illustrate the importance of pivoting with a simple ill-conditioned ex-

ample. Consider the matrix A =

�
0 1
1 0

�
. A direct application of Crout's

algorithm will clearly fail, since the leading diagonal element is 0. How-
ever, we can use pivoting by premultiplying by the permutation matrix

P =

�
0 1
1 0

�
, obtaining PA =

�
1 0
0 1

�
. Now, Crout's algorithm is

applied to the permuted matrix to produce PA = LU . Once the linear sys-
tem is solved, if one needs to recover the original order (as, e.g., in getting
A�1), it is just a matter of permuting back the �nal result; that is, premul-
tiplying by P�1 � P T (since permutation matrices are orthogonal). This

is easily veri�ed here, with our �nal result being A�1 =

�
0 1
1 0

�
. This

admittedly pathological example shows that robust matrix LU algorithms

must allow for pivoting. In practice, matrices such as

�
� 1
1 0

�
, where the

leading diagonal � is extremely small, lead to numerical instability. Golub
and van Loan (1996, pp. 110{121) provide a comprehensive review of di�er-
ent pivoting strategies, showing that even with seemingly well-conditioned
problems, pivoting often leads to even more accurate algorithms.

© 2004 by CRC Press LLC



INVERSES AND DETERMINANTS 383

A.2 Inverses and determinants

Among the advantages of Gaussian elimination and LU decomposition is
the fact that the most numerically stable matrix inversion formulations are
based upon them. Furthermore the determinant of a general square matrix
is readily available from the LU decomposition. We have, since det (L) = 1;

det (A) = det (LU) = det (L) det (U) = det (U) =

nY
i=1

uii:

Turning to the matrix inversion problem, we note that matrix inversion is
equivalent to solving a set of linear systems of equations. That is, we need
to solve for a matrix X such that AX = I . But writing X = [x1;x2; :::;xn]
and I = [e1; e2; :::; en], this is equivalent to solving for xj such that

Axj = ej ; j = 1; 2; : : : ; n :

Notice that we need to decompose the matrix just once and obtain the in-
verse columnwise. Therefore this matrix system can be solved as an O

�
n3
�

operation using Gaussian elimination or LU decomposition followed by
backsubstitution. When applied to the inversion problem, Gaussian elimi-
nation is known as the Gauss-Jordan algorithm.
The LU (or LDU) decomposition technique is invaluable to us because

a single decomposition allows us to obtain the determinant and the inverse
of the matrix. We will see in the next section that further e�ciency and
savings can be accrued in situations where the matrix is symmetric and
positive de�nite. This is what we will encounter since we will work with
correlation matrices.
We conclude this section with a brief discussion about improving preci-

sion of matrix inverses. Since inverses are computed based upon simulated
parameter values and have a crucial role to play in the proper movement of
the Markov Chain, stability and numerical accuracy of the inversion pro-
cess is vital. In certain cases, an iterative improvement to the initial result
obtained is obtained.
Thus, suppose Axj = ej has been solved via the above method using

t-digit precision arithmetic. We �rst compute rj = ej � Ax̂j in 2t-digit
(double precision) arithmetic, where x̂j is the initial solution. We then
perform the following steps:

Solve for y : Ly = rj ;

Solve for z : Uz = y;

Set : xj(new) = x̂j + z :

This process is known as mixed-precision iterative improvement (MPIS).
The motivation for the above scheme is immediately seen through the �xed
point system (in exact arithmetic) Axj(new) = Ax̂j+Az = ej�rj+rj = ej :
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Notice that the process is relatively cheap, requiring O
�
n2
�
operations,

compared to the O
�
n3
�
operations in the original decomposition.

It is important to note that the above method is sensitive to the accuracy
of rj 's. The above double-precision computing strategy often works well.
In fact, Skeel (1980) has performed an error analysis deriving su�cient
conditions when MPIS is e�ective. Another drawback of this approach is
that the implementation is somewhat machine-dependent, and therefore
not widely used in distributed software.

A.3 Cholesky decomposition

In most statistical applications we need to work with covariance matrices.
These matrices are symmetric and positive de�nite. Such matrices enjoy
excellent stability properties and have a special decomposition, called the
Cholesky decomposition, given by A = GTG. Here G is upper triangular
and is called the \square root" of the matrix A: The existence of such
a matrix is immediately seen by applying the LDU decomposition to A:
Since A is symmetric, we in fact obtain A = LDLT , where L is unit lower
triangular and D is a diagonal matrix with all entries positive. Thus we
may write GT = LD1=2 to obtain the Cholesky square root. Also, if A is
real, so is its square root.
Note that, for general matrices, the algorithms discussed in Section A.2

can fail if no pivot selection is carried out, i.e. if we naively take the di-
agonal elements in order as pivots. This is not the case with symmetric
positive de�nite matrices. For these matrices we are assured of obtaining a
positive diagonal element in order, thereby yielding a nonzero pivot. It is
also numerically stable to use these pivots. This means that the subtleties
associated with pivoting in Crout's algorithm can be avoided, thus yielding
a simpler and faster algorithm.
Crout's method, when applied to symmetric positive de�nite matrices

yield the following set of equations: for i = 1; 2; : : : ; n,

gii =

 
aii �

i�1X
k=1

g2ik

!1=2

;

gji =
aij �

Pi�1
k=1 gjkgik
gii

; j = i+ 1; :::; n :

These steps form what is commonly referred to as the Cholesky algorithm.
Applying the above equations, one can easily see that the g's are easily
determined by the time they are really needed. Also, only components
of A in the upper triangle (i.e. aij 's with j � i) are referenced. Since
A is symmetric, these hold all the information that will be needed. The
operation count of this algorithm is n3=6, which is a reduction from the
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general LU decomposition by a factor of two. The Cholesky decomposition
is still a O(n3) algorithm.

A.4 Fast Fourier transforms

The Fast Fourier Transform (FFT) constitutes one of the major break-
throughs in computational mathematics. The FFT can be looked upon as
a fast algorithm to compute the Discrete Fourier Transform (DFT), which
enjoys wide applications in physics, engineering, and the mathematical sci-
ences. The DFT implements discrete Fourier analysis and is used in time
series and periodogram analysis. Here we briey discuss the computational
framework for DFTs; further details may be found in Monahan (2001, pp.
386{400) or Press et al. (1992, pp. 496{532).
For computational purposes, we develop the DFT in terms of a matrix

transformation of a vector. For this discussion we let all indices range from
0 toN�1 (as in the C programming language). Thus if x = (x0; : : : ; xN�1)

T

is a vector representing a sequence of order N , then the DFT of x is given
by

yj =

N�1X
k=0

exp (�2�ijk=N)xk ; (A:3)

where i =
p�1, and j and k are indices. Let w = exp (�2�i=N) (the

Nth root of unity) and let W be the N �N matrix with (j; k)th element
given by wjk . Then the relationship in (A.3) can be represented as the
linear tranformation y = Wx, with y = (y0; : : : ; yN�1)

T . The matrix of
the inverse transformation is given byW�1, whose (j; k)th element is easily
veri�ed to be w�jk .
Direct computation of this linear transformation involves O(N2) arith-

metic operations (additions, multiplications and complex exponentiations).
The FFT (Cooley and Tukey, 1965) is a modi�ed algorithm that computes
the above in only O(N logN) operations. Note that the di�erence in these
complexities can be immense in terms of CPU time. Press et al. (1992)
report that with N = 106, this di�erence can be between 2 weeks and 30
seconds of CPU time on a microsecond-cycle computer.
To illustrate the above modi�cation, let us consider a composite N =

N1N2, where N1 and N2 are integers. Using the remainder theorem, we
write the indices j = q1N1 + r1 and k = q2N2 + r2 with q1; r2 2 [0; N2 � 1]
and q2; r1 2 [0; N1 � 1]. It then follows that

yj =

N�1X
k=0

wjkxj =

N�1X
k=0

w(q1N1+r1)kxk

=

N1�1X
q2=0

N2�1X
r2=0

w(q1N1+r1)(q2N2+r2)xq2N2+r2
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=

N2�1X
r2

w(q1N1+r1)r2

N1�1X
q2=0

(wN2)q2r1xq2N2+r2

=

N2�1X
r2

(wN1)q1r2

 
wr1r2

N1�1X
q2=0

(wN2)q2r1xq2N2+r2

!
;

where the equality in the third line arises from the fact that wN1N2q1q2 = 1.
This shows that each inner sum is a DFT of length N1, while each of the
N2 outer sums is a DFT of length N2. Therefore, to compute the above,
we perform a DFT of length N = N1N2 by �rst performing N2 DFTs of
length N1 to obtain the inner sum, and then N1 DFTs of length N2 to
obtain the outer sum. E�ectively, the new algorithm involves N2O(N1) +
N1O(N2) arithmetic operations, which, when N is a power of 2, boils down
to an O(N log2N) algorithm. The details of this setting may be found in
Monahan (2001).
In spatial statistics, the FFT is often used for computing covariance func-

tions and their spectral densities (Stein, 1999a). Recall that valid correla-
tion functions are related to probability densities via Bochner's theorem.
Restricting our attention to isotropic functions on <1, we have

f(u) =
1

2�

Z 1

�1

exp(�itu)C(t)dt ; (A:4)

where f(u) is the spectral density obtained by a Fourier transform of the
correlation function, C(t). For example, the Mat�ern correlation function
arises as a transform of the spectral density f(u) = (�2 + juj2)�(�+r=2), up
to a proportionality constant; see also equation (2.13).
To take advantage of the FFT in computing the Mat�ern correlation func-

tion, we �rst replace the continuous version of Bochner's integral in (A.4)
by a �nite sum over an evenly spaced grid of points between �T and T ,
with T large enough so that

f(u) � �t

2�

N�1X
j=0

exp(�itju)C(tj) ; (A:5)

where tj = j�t. Note that we have used the fact that C is an even function,
so �t = 2T=N . Next, we select evenly spaced evaluation points for the
spectral density f(u), and rewrite equation (A.5) as

f(uk) � �t

2�

N�1X
j=0

exp(�itjuk)K(tj) :

This, in fact, is a DFT and is cast in the matrix equation, y = Wx,
with y = (f(u0); :::; f(uM�1))

T , x = (C(t0); :::; C(tN�1))
T , and W is the

matrix of the transformation with (j; k)th element given by exp(�itjuk).
Now this DFT is made \fast" (into an FFT) by appropriate choice of the
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evaluation points for f and C. Let �u denote the spacings of u. The FFT
implementation is obtained by ensuring the product of the two spacings
to equal 2�=N . That is, we ensure that �t�u = 2�=N . This results in
Wjk = exp(�ijk2�=N), which is the exactly the FFT matrix.
The FFT enables fast conversion between the spectral domain and the

frequency domain. Since the Mat�ern function has an easily computed spec-
tral density, the inverse FFT is used to approximate C(t) from f(t), using
W�1. Note that W�1

jk = exp(ijk2�=N), which enables a direct e�cient

computation of the inverse, instead of the usual O(n3) inversion algorithms.

A.5 Strategies for large spatial and spatiotemporal data sets

Implementing Gibbs sampling or other MCMC algorithms requires re-
peated evaluation of various full conditional density functions. In the case
of hierarchical models built from random e�ects using Gaussian processes,
this requires repeated evaluation of the likelihood and/or joint or condi-
tional densities arising under the Gaussian process; see Section A.6. In par-
ticular, such computation requires evaluation of quadratic forms involving
the inverse of covariance matrix and also the determinant of that matrix.
Strictly speaking, we do not have to obtain the inverse in order to compute
the quadratic form. Letting zTA�1z denote a general object of this sort,
if we obtain A

1

2 and solve z = A
1

2 v for v, then vT v = zTA�1z. Still, with
large n, computation associated with resulting n � n matrices can be un-
stable, and repeated computation (as for simulation-based model �tting)
can be very slow, perhaps infeasible. We refer to this situation informally
as \the big n problem."
Extension to multivariate models with, say, p measurements at a location

leads to np � np matrices (see Section 7.2). Extension to spatiotemporal
models (say, spatial time series at T time points) leads to nT�nT matrices
(see Section 8.2). Of course, there may be modeling strategies that will
simplify to, say, T n � n matrices or an n � n and a T � T matrix, but
the problem will still persist if n is large. The objective of this section is
thus to o�er some suggestions and approaches for handling spatial process
models in this case.

A.5.1 Subsampling

As a �rst approach, one could employ a subsample of the sampled loca-
tions, resulting in a computationally more tractable n. Though it may be
unattractive to ignore some of the available data, it may be argued that
the incremental inferential gain with regard to the process unknowns given,
say, 4n points may be small. The issue is that we have dependent measure-
ments. In the case of independent data, quadrupling sample size doubles
precision. In the spatial setting, if we add a location very close to an existing
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location, the data from the new location may help with regard to learning
about the noise or measurement error component, but will not add much to
the inference about the spatial model. Indeed, with a purely spatial model,
including such a new location may make the associated covariance ma-
trix nearly singular, obviously leading to possible stability problems. With
increasing sample size this will surely be the case eventually.
These remarks apply to prediction as well. Prediction at a new spa-

tial location will improve very slowly with increasing sample size. To see
this, consider the simplest kriging situation, i.e., ordinary kriging (con-
stant mean, no pure error). Then, given process parameters, the conditional
variance of Y (s0) for a new s0 given data Y will be, in obvious notation,
�2(1�RT

Y0;Y
R�1
Y RY0;Y ). The quadratic form will initially grow quickly in n,

but will then increase very slowly in n toward its asymptote of 1. Further,
as in the previous paragraph, instability with regard to R�1

Y will eventually
arise.
This subsampling strategy can be formalized into a model-�tting ap-

proach following the ideas of Pardo-Ig�uzquiza and Dowd (1997). Speci�-
cally, for observations Y (si) arising from a Gaussian process with parame-
ters �, they propose replacing the joint density ofY = (Y (s1); : : : ; Y (sn))

T ,
f(yj�), by

nY
i=1

f(y(si) j y(sj); sj 2 @si) ; (A:6)

where @si de�nes some neighborhood of si. For instance, it might be all
sj within some speci�ed distance of si, or perhaps the m sj 's closest to si
for some integer m. Pardo-Ig�uzquiza and Dowd (1997) suggest the latter,
propose m = 10 to 15, and check for stability of the inference about �.
The justi�cation for approximating f(yj�) by (A.6) is essentially that

above, but a more formal argument is given by Vecchia (1988). Regardless,
evaluation of (A.6) will involve n m �m matrices, rather than one n � n
matrix.

A.5.2 Spectral methods

Another option is to work in the spectral domain (as advocated by Stein,
1999a, and Fuentes, 2002a). The idea is to transform to the space of fre-
quencies, develop a periodogram (an estimate of the spectral density), and
utilize the Whittle likelihood (Whittle, 1954; Guyon, 1995) in the spectral
domain as an approximation to the data likelihood in the original space.
The Whittle likelihood requires no matrix inversion so, as a result, com-
putation is very rapid. In principle, inversion back to the original space is
straightforward.
The practical concerns here are the following. First, there is discretization

to implement a fast Fourier transform (see Section A.4). Then, there is
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a certain arbitrariness to the development of a periodogram. Empirical
experience is employed to suggest how many low frequencies should be
discarded. Also, there is concern regarding the performance of the Whittle
likelihood as an approximation to the exact likelihood. Some empirical
investigation suggests that this approximation is reasonably well centered,
but does a less than satisfactory job in the tails (thus leading to poor
estimation of model variances). Lastly, with non-Gaussian �rst stages, we
will be doing all of this with random spatial e�ects that are never observed,
making the implementation impossible. In summary, use of the spectral
domain with regard to handling large n is limited in its application, and
requires considerable familiarity with spectral analysis (discussed briey in
Subsection 2.2.2).

A.5.3 Lattice methods

Though Gaussian Markov random �elds have received a great deal of recent
attention for modeling areal unit data, they were originally introduced
for points on a regular lattice. In fact, using inverse distance to create a
proximity matrix, we can immediately supply a joint spatial distribution
for variables at an arbitrary set of locations. As in Section 3.2, this joint
distribution will be de�ned through its full conditional distribution. The
joint density is recaptured using Brook's Lemma (3.7). The inverse of the
covariance matrix is directly available, and the joint distribution can be
made proper through the inclusion of an autocorrelation parameter. Other
than the need to sample a large number of full conditional distributions,
there is no big n problem. Indeed, many practitioners immediately adopt
Gaussian Markov random �eld models as the spatial speci�cation due to
the computational convenience.
The disadvantages arising with the use of Gaussian Markov random �elds

should by now be familiar. First, and perhaps most importantly, we do not
model association directly, which precludes the speci�cation of models ex-
hibiting certain correlation behavior. The joint distribution of the variables
at two locations depends not only on their joint distribution given the rest
of the variables, but also on the joint distribution of the rest of the vari-
ables. In fact, the relationship between entries in the inverse covariance
matrix and the actual covariance matrix is very complex and highly non-
linear. Besag and Kooperberg (1995) showed, using a fairly small n that
entries in the covariance matrix resulting from a Gaussian Markov random
�eld speci�cation need not behave as desired. They need not be positive
nor decay with distance. With large n, the implicit transformation from
inverse covariance matrix to covariance matrix is even more ill behaved
(Conlon and Waller, 1999; Wall, 2003).
In addition, with a Gaussian Markov random �eld there is no notion of a

stochastic process, i.e., a collection of variables at all locations in the region
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of interest with joint distributions determined through �nite dimensional
distributions. In particular, we cannot write down the distribution of the
variable at a selected location in the region. Rather, the best we can do
is determine a conditional distribution for this variable given the variables
at some prespeci�ed number of and set of locations. Also, introduction
of nonspatial error is confusing. The conditional variance in the Gaussian
Markov random �eld cannot be aligned in magnitude with the marginal
variance associated with a white noise process.
Some authors have proposed approximating a Gaussian process with

a Gaussian Markov random �eld. More precisely, a given set of spatial
locations s1; :::; sn along with a choice of correlation function yields an
n � n covariance matrix �1. How might we specify a Gaussian Markov
random �eld with full rank inverse matrix ��12 such that �2 � �1? That
is, unlike the previous paragraph where we start with a Gaussian Markov
random �eld, here we start with the Gaussian spatial process.
A natural metric in this setting is Kullback-Liebler distance (see Besag

and Kooperberg, 1995). If f1 � N(0;�1) and f2 � N(0;�2), the Kullback-
Leibler distance of f2 from f1 is

KL(f1; f2) =

Z
f1 log(f1=f2) = �1

2
log
����12 �1

��+ 1

2
tr(��12 �1� I): (A:7)

Hence, we only need �1 and ��12 to compute (A.7). Using an algorithm
originally proposed by Dempster (1972), Besag and Kooperberg provide ap-
proximation based upon making (A.7) small. Rue and Tjelmeland (2002)
note that this approach does not well approximate the correlation function
of the Gaussian process. In particular, it will not do well when spatial asso-
ciation decays slowly. Rue and Tjelmeland propose a \matched correlation"
criterion that accommodates both local and global behavior.

A.5.4 Dimension reduction

Another strategy is to employ a dimension reduction approach. For in-
stance, recall the idea of kernel convolution (see Subsection 5.3.2) where
we represent the process Y (s) by

Y (s) =

Z
k(s� s0)z(s0)ds0 ; (A:8)

where k is a kernel function (which might be parametric, and might be
spatially varying) and z(s) is a stationary spatial process (which might be
white noise, that is,

R
A
z(s)ds � N(0; �2A) and cov(

R
A
z(s)ds;

R
B
z(s)ds) =

�2jA \Bj). Finite approximation to (A.8) yields

Y (s) =

JX
j=1

k(s� s�j )z(s
�
j ) : (A:9)
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Expression (A.9) shows that given k, every variable in the region is ex-
pressible as a linear combination of the set fz(s); j = 1; :::; Jg: Hence, no
matter how large n is, working with the z's, we never have to handle more
than a J � J matrix. The richness associated with the class in (A.8) sug-
gests reasonably good richness associated with (A.9). Versions of (A.9) to
accommodate multivariate processes and spatiotemporal processes can be
readily envisioned.
Concerns regarding the use of (A.9) involve two issues. First, how does

one determine the number of and choice of the s�j 's? How sensitive will
inference be to these choices? Also, the joint distribution of fY (si); i =
1; :::; ng will be singular for n > J . While this does not mean that Y (si)
and Y (s0i) are perfectly associated, it does mean that specifying Y (�) at J
distinct locations determines the value of the process at all other locations.
As a result, such modeling may be more attractive for spatial random e�ects
than for the data itself.
A variant of this strategy is a conditioning idea. Suppose we partition the

region of interest into M subregions so that we have the total of n points
partitioned into nm in subregionm with

PM
m=1 nm = n. Suppose we assume

that Y (s) and Y (s0) are conditionally independent given s lies in subregion
m and s0 lies in subregion m0. However, suppose we assign random e�ects
(s�1); :::; (s

�
M ) with (s�m) assigned to subregion m. Suppose the s�M 's

are \centers" of the subregions (using an appropriate de�nition) and that
the (s�M ) follows a spatial process that we can envision as a hyperspatial
process. There are obviously many ways to build such multilevel spatial
structures, achieving a variety of spatial association behaviors. We do not
elaborate here but note that matrices will now be nm � nm and M �M
rather than n� n.

A.5.5 Coarse-�ne coupling

Lastly, particularly for hierarchical models with a non-Gaussian �rst stage,
a version of the coarse-�ne idea as in Higdon, Lee, and Holloman (2003)
may be successful. The idea here is, with a non-Gaussian �rst stage, if
spatial random e�ects (say, �(s1); : : : ; �(sn)) are introduced at the second
stage, then, as in Subsection 5.2, the set of �(si) will have to be updated
at each iteration of a Gibbs sampling algorithm.
Suppose n is large and that the \�ne" chain does such updating. This

chain will proceed very slowly. But now suppose that concurrently we run
a \coarse" chain using a much smaller subset n0 of the si's. The coarse
chain will update very rapidly. Since the process for �(�) is the same in
both chains it will be the case that the coarse one will explore the posterior
more rapidly. However, we need realizations from the �ne chain to �t the
model using all of the data.
The coupling idea is to let both the �ne and coarse chains run, and after
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a speci�ed number of updates of the �ne chain (and many more updates of
the coarse chain, of course) we attempt a \swap;" i.e., we propose to swap
the current value of the �ne chain with that of the coarse chain. The swap
attempt ensures that the equilibrium distributions for both chains are not
compromised (see Higdon, Lee, and Holloman, 2003). For instance, given
the values of the �'s for the �ne iteration, we might just use the subset of
�'s at the locations for the coarse chain. Given the values of the �'s for the
coarse chain, we might do an appropriate kriging to obtain the �'s for the
�ne chain. Such coupling strategies have yet to be thoroughly investigated.

A.6 Slice Gibbs sampling for spatial process model �tting

Auxiliary variable methods are receiving increased attention among those
who use MCMC algorithms to simulate from complex nonnormalized mul-
tivariate densities. Recent work in the statistical literature includes Tanner
and Wong (1987), Besag and Green (1993), Besag et al. (1995), and Higdon
(1998). The particular version we focus on here introduces a single auxiliary
variable to \knock out" or \slice" the likelihood. Employed in the context
of spatial modeling for georeferenced data using a Bayesian formulation
with commonly used proper priors, in this section we show that convenient
Gibbs sampling algorithms result. Our approach thus �nds itself as a spe-
cial case of recent work by Damien, Wake�eld, and Walker (1999), who
view methods based on multiple auxiliary variables as a general approach
to constructing Markov chain samplers for Bayesian inference problems.
We are also close in spirit to recent work of Neal (2003), who also employs
a single auxiliary variable, but prefers to slice the entire nonnormalized
joint density and then do a single multivariate updating of all the vari-
ables. Such updating requires sampling from a possibly high-dimensional
uniform distribution with support over a very irregular region. Usually, a
bounding rectangle is created and then rejection sampling is used. As a
result, a single updating step will often be ine�cient in practice.
Currently, with the wide availability of cheap computing power, Bayesian

spatial model �tting typically turns to MCMC methods. However, most of
these algorithms are hard to automate since they involve tuning tailored to
each application. In this section we demonstrate that a slice Gibbs sampler,
done by knocking out the likelihood and implemented with a Gibbs updat-
ing, enables essentially an automatic MCMC algorithm for �tting Gaussian
spatial process models. Additional advantages over other simulation-based
model �tting schemes accrue, as we explain below. In this regard, we could
instead slice the product of the likelihood and the prior, yielding uniform
draws to implement the Gibbs updates. However, the support for these con-
ditional uniform updates changes with iteration. The conditional interval
arises through matrix inverse and determinant functions of model param-
eters with matrices of dimension equal to the sample size. Slicing only the
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likelihood and doing Gibbs updates using draws from the prior along with
rejection sampling is truly \o� the shelf," requiring no tuning at all. Ap-
proaches that require �rst and second derivatives of the log likelihood or
likelihood times prior, e.g., the MLE approach of Mardia and Marshall
(1984) or Metropolis-Hastings proposal approaches within Gibbs samplers
will be very di�cult to compute, particularly with correlation functions
such as those in the Mat�ern class.
Formally, if L(�;Y ) denotes the likelihood and �(�) is a proper prior,

we introduce the single auxiliary variable U , which, given � and Y , is
distributed uniformly on (0; L(�;Y )). Hence the joint posterior distribution
of � and U is given by

p(�; U jY ) / �(�) I(U < L(�;Y )) ; (A:10)

where I denotes the indicator function. The Gibbs sampler updates U ac-
cording to its full conditional distribution, which is the above uniform. A
component �i of � is updated by drawing from its prior subject to the
indicator restriction given the other �'s and U . A standard distribution is
sampled and only L needs to be evaluated. Notice that, if hyperparameters
are introduced into the model, i.e., �(�) is replaced with �(�j�)�(�), the
foregoing still applies and � is updated without restriction. Though our
emphasis here is spatial model �tting, it is evident that slice Gibbs sam-
pling algorithms are more broadly applicable. With regard to computation,
for large data sets often evaluation of L(�;Y ) will produce an underow,
preventing sampling from the uniform distribution for U given � and Y .
However, logL(�;Y ) will typically not be a problem to compute. So, if
V = � logU , given � and Y , V + logL(�;Y ) � Exp(mean = 1:0), and we
can transform (A.10) to p(�; V jY ) / exp(�V ) I(� logL(�;Y ) < V <1).
In fact, in some cases we can implement a more e�cient slice sampling

algorithm than the slice Gibbs sampler. We need only impose constrained
sampling on a subset of the components of �. In particular, suppose we
write � = (�1;�2) and suppose that the full conditional distribution for
�1, p(�1j�2;Y ) / L(�1;�2;Y )�(�1j�2), is a standard distribution. Then
consider the following iterative updating scheme: sample U given �1 and
�2 as above; then, update �2 given �1 and U with a draw from �(�2j�1)
subject to the constraint U < L(�1;�2;Y ); �nally, update �1 with an un-
conditional draw from p(�1j�2;Y ). Formally, this scheme is not a Gibbs
sampler. Suppressing Y , we are updating p(U j�1;�2), then p(�2j�1; U),
and �nally p(�1j�2). However, the �rst and third distribution uniquely
determine p(U;�1j�2) and, this, combined with the second, uniquely de-
termine the joint distribution. The Markov chain iterated in this fashion
still has p(�; U jY ) as its stationary distribution. In fact, if p(�1j�2;Y ) is
a standard distribution, this implies that we can marginalize over �1 and
run the slice Gibbs sampler on �2 with U . Given posterior draws of �2,
we can sample �1 one for one from its posterior using p(�1j�2;Y ) and the
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fact that p(�1jY ) =
R
p(�1j�2;Y )p(�2jY ). Moreover, if p(�1j�2;Y ) is not

a standard distribution, we can add Metropolis updating of �1 either in its
entirety or through its components (we can also use Gibbs updating here).
We employ these modi�ed schemes for di�erent choices of (�1;�2) in the
remainder of this section.
We note that the performance of the algorithm depends critically on the

distribution of the number of draws needed from �(�2j�1) to update �2
given �1 and U subject to the constraint U < L(�1;�2;Y ). Henceforth,
this will be referred to as \getting a point in the slice." A naive rejection
sampling scheme (repeatedly sample from �(�2j�1) until we get to a point
in the slice) may not always give good results. An algorithm that shrinks
the support of �(�2j�1) so that it gives a better approximation to the slice
whenever there is a rejection is more appropriate.
We propose one such scheme called \shrinkage sampling" described in

Neal (2003). In this context, it results in the following algorithm. For sim-

plicity, let us assume �2 is one-dimensional. If a point �̂2 drawn from
�(�2j�1) is not in the slice and is larger (smaller) than the current value
�2 (which is of course in the slice), the next draw is made from �(�2j�1)
truncated with the upper (lower) bound being �̂2. The truncated interval
keeps shrinking with each rejection until a point in the slice is found. The
multidimensional case works by shrinking hyperrectangles. As mentioned
in Neal (2003), this ensures that the expected number of points drawn will
not be too large, making it a more appropriate method for general use.
However, intuitively it might result in higher autocorrelations compared
to the simple rejection sampling scheme. In our experience, the shrinkage
sampling scheme has performed better than the naive version in most cases.
Suppresing Y in our notation, we summarize the main steps in our slice

Gibbs sampling algorithm as follows:

(a) Partition � = (�1;�2) so that samples from p(�1j�2) are easy to obtain;
(b) Draw V = � logL(�) + Z, where Z � Exp(mean = 1);

(c) Draw �2 from p(�2j�1; V ) I(� logL(�) < V <1) using shrinkage sam-
pling;

(d) Draw �1 from p(�1j�2);
(e) Iterate (b) through (d) until we get the appropriate number of MCMC

samples.

The spatial models on which we focus arise through the speci�cation of
a Gaussian process for the data. With, for example, an isotropic covariance
function, proposals for simulating the range parameter for, say, an expo-
nential choice, or the range and smoothness parameters for a Mat�ern choice
can be di�cult to develop. That is, these parameters appear in the covari-
ance matrix for Y in a nonstructured way (unless the spatial locations
are on a regular grid). They enter the likelihood through the determinant
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and inverse of this matrix. And, for large n, the fewer matrix inversion
and determinant computations, the better. As a result, for a noniterative
sampling algorithm, it is very di�cult to develop an e�ective importance
sampling distribution for all of the model parameters. Moreover, as over-
all model dimension increases, resampling typically yields a very \spiked"
discrete distribution.
Alternative Metropolis algorithms require e�ective proposal densities

with careful tuning. Again, these densities are di�cult to obtain for pa-
rameters in the correlation function. Morover, in general, such algorithms
will su�er slower convergence than the Gibbs samplers we suggest, since
full conditional distributions are not sampled. Furthermore, in our expe-
rience, with customary proposal distributions we often encounter serious
autocorrelation problems. When thinning to obtain a sample of roughly
uncorrelated values, high autocorrelation necessitates an increased num-
ber of iterations. Additional iterations require additional matrix inversion
and determinant calculation and can substantially increase run times. Dis-
cretizing the parameter spaces has been proposed to expedite computation
in this regard, but it too has problems. The support set is arbitrary, which
may be unsatisfying, and the support will almost certainly be adaptive
across iterations, diminishing any computational advantage.

A.6.1 Constant mean process with nugget

Suppose Y (s1); : : : ; Y (sn) are observations from a constant mean spatial
process over s 2 D with a nugget. That is,

Y (si) = �+ w(si) + �(si) ; (A:11)

where the �(si) are realizations of a white noise process with mean 0 and
variance �2. In (A.11), the w(si) are realizations from a second-order sta-
tionary Gaussian process with covariance function �2C(h;�) where C is
a valid two-dimensional correlation function with parameters � and sepa-
ration vector h. Below we work with the Mat�ern class (2.8), so that � =
(�; �). Thus (A.11) becomes a �ve-parameter model: � = (�; �2; �2; �; �)T .
Note that though the Y (si) are conditionally independent given the

w(si), a Gibbs sampler that also updates the latent w(si)'s will be sampling
an (n+5)-dimensional posterior density. However, it is possible to marginal-
ize explicitly over the w(si)'s (see Section 5.1), and it is almost always
preferable to implement iterative simulation with a lower-dimensional dis-
tribution. The marginal likelihood associated with Y = (Y (s1); : : : ; Y (sn))
is

L(�; �2; �2; �; �;Y ) =j �2H(�) + �2I j� 1

2

� expf�(Y � �1)T (�2H(�) + �2I)�1(Y � �1)=2g ; (A:12)

where (H(�))ij = �2C(dij ;�) (dij being the distance between si and sj).
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Suppose we adopt a prior of the form �1(�)�2(�
2)�3(�

2)�4(�)�5(�). Then
(A.10) becomes �1(�)�2(�

2)�3(�
2)�4(�)�5(�) I(U < L(�; �2; �2; �; �;Y )).

The Gibbs sampler is most easily implemented if, given � and �, we di-
agonalize H(�), i.e., H(�) = P (�)D(�)(P (�))T where P (�) is orthogonal
with the columns of P (�) giving the eigenvectors of H(�) and D(�) is a
diagonal matrix with diagonal elements �i, the eigenvalues of H(�). Then
(A.12) simpli�es to

nY
i=1

(�2�i+�
2))�

1

2 expf�1

2
(Y ��1)TP (�)(�2D(�)+�2I)�1P T (�)(Y ��1)g:

As a result, the constrained updating of �2 and �2 at a given iteration
does not require repeated calculation of a matrix inverse and determinant.
To minimize the number of diagonalizations of H(�) we update � and
� together. If there is interest in the w(si), their posteriors can be sam-
pled straightforwardly after the marginalized model is �tted. For instance,
p(w(si)jY ) =

R
p(w(si)j�;Y )p(�jY )d� so each posterior sample �?, us-

ing a draw from p(w(si)j�?;Y ) (which is a normal distribution), yields a
sample from the posterior for w(si).
We remark that (A.11) can also include a parametric transformation

of Y (s). For instance, we could employ a power transformation to �nd a
scale on which the Gaussian process assumption is comfortable. This only
requires replacing Y (s) with Y p(s) and adds one more parameter to the
likelihood in (A.12). Lastly, we note that other dependence structures for
Y can be handled in this fashion, e.g., equicorrelated forms, Toeplitz forms,
and circulants.

A.6.2 Mean structure process with no pure error component

Now suppose Y (s1); : : : ; Y (sn) are observations from a spatial process over
s 2 D such that

Y (si) =XT (si)� + w(si) : (A:13)

Again, the w(si) are realizations from a second-order stationary Gaussian
process with covariance parameters �2 and �. In (A.13), X(si) could arise
as a vector of site level covariates or XT (si)� could be a trend surface
speci�cation as in the illustration below. To complete the Bayesian spec-
i�cation we adopt a prior of the form �1(�)�2(�

2)�3(�) where �1(�) is
N(�� ;��) with �� and �� known.
This model is not hierarchical in the sense of our earlier forms, but we

can marginalize explicitly over �, obtaining

L(�2;�;Y ) =j �2H(�) +X��X
T j� 1

2

� expf�(Y �X��)
T (�2H(�) +X��X

T )�1(Y �X��)=2g ;
(A:14)
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where the rows of X are the XT (si): Here, H(�) is positive de�nite while
X��X

T is symmetric positive semide�nite. Hence, there exists a nonsin-

gular matrix Q(�) such that (Q�1(�))TQ�1(�) = H(�) and also satisfying
(Q�1(�))T
Q�1(�) = X��X

T , where 
 is diagonal with diagonal ele-

ments that are eigenvalues of X��X
TH�1(�). Therefore, (A.14) simpli�es

to

jQ(�)j Qn
i=1(�

2 + �i))
� 1

2

� exp
n
� 1

2 (Y �X��)
TQ(�)T (�2I +
)�1Q(�)(Y �X��)

o
:

As in the previous section, we run a Gibbs sampler to update U given
�2;�, and Y , then �2 given �; U , and Y , and �nally � given �2; U , and
Y . Then, given posterior samples f�2�l ;��l ; l = 1; : : : ; Lg we can obtain
posterior samples for � one for one given �2�l and ��l by drawing ��l from
a N(Aa; A) distribution, where

A�1 = 1
�2�
l

XTH�1(��l )X +��
and a = 1

�2�
l

XTH�1(��l )Y +��1
�
�� :

(A:15)

In fact, using standard identities (see, e.g., Rao, 1973, p. 29),�
1

�2
XTH�1(�)X +��1

�

��1
= �����X

TQ(�)(�2I+
)�1QT (�)X�� ;

facilitating sampling from (A.15). Finally, if �� and �� were viewed as un-

known we could introduce hyperparameters. In this case �� would typically

be diagonal and �� might be �01, but the simultaneous diagonalization

would still simplify the implementation of the slice Gibbs sampler.
We note an alternate strategy that does not marginalize over � and

does not require simultaneous diagonalization. The likelihood of (�; �2;�)
is given by

L(�; �2;�;Y ) / j�2H(�)j� 1

2 exp
��(Y �X�)TH(�)�1(Y �X�)=2�2

	
:

(A:16)
Letting �1 = (�; �2) and �2 = � with normal and inverse gamma priors on
� and �2, respectively, we can update � and �2 componentwise conditional
on �2;Y , since �j�2;�2;Y is normal while �2j�;�2;Y is inverse gamma.
�2j�1; U;Y is updated using the slice Gibbs sampler with shrinkage as
described earlier.

A.6.3 Mean structure process with nugget

Extending (A.11) and (A.13) we now assume that Y (s1); : : : ; Y (sn) are
observations from a spatial process over s 2 D such that

Y (si) =XT (si)� + w(si) + �(si) : (A:17)
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As above, we adopt a prior of the form �1(�)�2(�
2)�3(�

2)�4(�), where
�1(�) is N(�� ;��). Note that we could again marginalize over � and
the w(si) as in the previous section, but the resulting marginal covariance
matrix is of the form �2H(�)+X��X

T + �2I . The simultaneous diagonal-
ization trick does not help here sinceQ(�) is not orthogonal. Instead we just
marginalize over the w(si), obtaining the joint posterior p(�; �

2; �2;�; U jY )
proportional to

�1(�)�2(�
2)�3(�

2)�4(�) I
�
U < j�2H(�) + �2I j� 1

2

� expf�(Y �X�)T (�2H(�) + �2I)�1(Y �X�)=2g� :
We employ the modi�ed scheme suggested below (A.10) taking �1 = � and
�2 = (�2; �2;�). The required full conditional distribution p(�j�2; �2;�;Y )
is N(Aa; A), where

A�1 = XT (�2H(�) + �2I)�1X +��1
�

and a = XT (�2H(�) + �2I)�1Y +��1
�
�� :

A.7 Structured MCMC sampling for areal model �tting

Structured Markov chain Monte Carlo (SMCMC) was introduced by Sar-
gent, Hodges, Carlin (2000) as a general method for Bayesian computing
in richly parameterized models. Here, \richly parameterized" refers to hier-
archical and other multilevel models. SMCMC (pronounced \smick-mick")
provides a simple, general, and exible framework for accelerating conver-
gence in an MCMC sampler by providing a systematic way to update groups
of similar parameters in blocks while taking full advantage of the posterior
correlation structure induced by the model and data. Sargent (2000) apply
SMCMC to several di�erent models, including a hierarchical linear model
with normal errors and a hierarchical Cox proportional hazards model.
Blocking, i.e., simultaneously updating multivariate blocks of (typically

highly correlated) parameters, is a general approach to accelerating MCMC
convergence. Liu (1994) and Liu et al. (1994) con�rm its good performance
for a broad class of models, though Liu et al. (1994, Sec. 5) and Roberts and
Sahu (1997, Sec. 2.4) give examples where blocking slows a sampler's con-
vergence. In this section, we show that spatial models of the kind proposed
by Besag, York, and Moll�ie (1991) using nonstationary \intrinsic autore-
gressions" are richly parameterized and lend themselves to the SMCMC
algorithm. Bayesian inference via MCMC for these models has generally
used single-parameter updating algorithms with often poor convergence
and mixing properties. There have been some recent attempts to use block-
ing schemes for similar models. Cowles (2002, 2003) uses SMCMC blocking
strategies for geostatistical and areal data models with normal likelihoods,
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while Knorr-Held and Rue (2002) implement blocking schemes using al-
gorithms that exploit the sparse matrices that arise out of the areal data
model.
We study several strategies for block-sampling parameters in the poste-

rior distribution when the likelihood is Poisson. Among the SMCMC strate-
gies we consider here are blocking using di�erent-sized blocks (grouping
by geographical region), updating jointly with and without model hyper-
parameters, \oversampling" some of the model parameters, reparameter-
ization via hierarchical centering and \pilot adaptation" of the transition
kernel. Our results suggest that our techniques will generally be far more
accurate (produce less correlated samples) and often more e�cient (produce
more e�ective samples per second) than univariate sampling procedures.

SMCMC algorithm basics

Following Hodges (1998), we consider a hierarchical model expressed in the
general form, 266664

y

0

M

377775 =

266664
X1 0

H1 H2

G1 G2

377775
24 �1

�2

35+
266664

�

�

�

377775 : (A:18)

The �rst row of this layout is actually a collection of rows corresponding to
the \data cases," or the terms in the joint posterior into which the response,
the data y, enters directly. The terms in the second row (corresponding to
the Hi) are called \constraint cases" since they place stochastic constraints
on possible values of �1 and �2. The terms in the third row, the \prior cases"
for the model parameters, have known (speci�ed) error variances for these
parameters. Equation (A.18) can be expressed as Y = X� + E, where
X and Y are known, � is unknown, and E is an error term with block
diagonal covariance matrix � = Diag(Cov(�);Cov(�);Cov(�)). If the error
structure for the data is normal, i.e., if the � vector in the constraint case
formulation (A.18) is normally distributed, then the conditional posterior
density of � is

�jY;� � N((XT��1X)�1(XT��1Y ) ; (XT��1X)�1) : (A:19)

The basic SMCMC algorithm is then nothing but the following two-block
Gibbs sampler :

(a) Sample � as a single block from the above normal distribution, using
the current value of �.

(b) Update � using the conditional distribution of the variance components,
using the current value of �.
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In our spatial model setting, the errors are not normally distributed, so
the normal density described above is not the correct conditional posterior
distribution for �. Still, a SMCMC algorithm with a Metropolis-Hastings
implementation can be used, with the normal density in (A.19) taken as
the candidate density.

A.7.1 Applying structured MCMC to areal data

Consider again the Poisson-CAR model of Subsection 5.4.3, with no co-
variates so that �i = �i + �i; i = 1; : : : ; N; where N is the total number of
regions, and f�1; ::; �Ng; f�1; ::; �Ng are vectors of random e�ects. The �i's
are independent and identically distributed Gaussian normal variables with
precision parameter �h, while the �i's are assumed to follow a CAR(�c) dis-
tribution. We place conjugate gamma hyperpriors on the precision parame-
ters, namely �h � G(�h; �h) and �c � G(�c; �c) with �h = 1:0, �h = 100:0,
�c = 1:0 and �c = 50:0 (these hyperpriors have means of 100 and 50,
and standard deviations of 10,000 and 2,500, respectively, a speci�cation
recommended by Bernardinelli et al., 1995).
There is a total of 2N + 2 model parameters: f�i : i = 1; : : :Ng,

f�i : i = 1; : : :Ng, �h and �c. The SMCMC algorithm requires that we
transform the Yi data points to �̂i = log(Yi=Ei), which can be conveniently
thought of as the response since they should be roughly linear in the model
parameters (the �i's and �i's). For the constraint case formulation, the dif-
ferent levels of the model are written down case by case. The data cases
are �̂i; i = 1; : : : ; N . The constraint cases for the �i's are �i � N(0; 1=�h),
i = 1; : : : ; N . For the constraint cases involving the �i's, the di�erences
between the neighboring �i's can be used to get an unconditional distribu-
tion for the �i's using pairwise di�erences (Besag et al., 1995). Thus the
constraint cases can be written as

(�i � �j)j�c � N(0; 1=�c) (A:20)

for each pair of adjacent regions (i; j).
To obtain an estimate of �, we need estimates of the variance-covariance

matrix corresponding to the �̂i's (the data cases) and initial estimates of
the variance-covariance matrix for the constraint cases (the rows corre-
sponding to the �i's and �i's). Using the delta method, we can obtain an
approximation as follows: assume Yi � N(Eie

�i ; Eie
�i) (roughly), so in-

voking the delta method we can see that Var(log(Yi=Ei)) is approximately
1/Yi. A reasonably good starting value is particularly important here since
we never update these variance estimates (the data variance section of �
stays the same throughout the algorithm). For initial estimates of the vari-
ance components corresponding to the �i's and the �i's, we can use the
mean of the hyperprior densities on �h and �c, and substitute these values
into �.
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As a result, the SMCMC candidate generating distribution is thus of the
form (A.19), with the Yi's replaced by �̂. To compute the Hastings ratio,
the distribution of the �i's is rewritten in the joint pairwise di�erence form
with the appropriate exponent for �c (Hodges, Carlin, and Fan, 2003):

p(�1; �2; :::; �N j�c) / � (N�1)=2c exp

8<
:��c

2

X
i�j

(�i � �j)
2

9=
; ; (A:21)

where i � j if i and j are neighboring regions. Finally, the joint distribution
of the �i's is given by

p(�1; �2; :::; �N j�h) / �
N=2
h exp

(
��h
2

NX
i=1

�2i

)
: (A:22)

As above, the response vector is �̂T = flog(Y1=E1); : : : ; log(YN=EN )g. The
(2N + C)� 2N design matrix for the spatial model is de�ned by

X =

2
66664

IN�N IN�N

�IN�N 0N�N

0C�N AC�N

3
77775 : (A:23)

The design matrix is divided into two halves, the left half corresponding to
the N �i's and the right half referring to the N �i's. The top section of this
design matrix is an N � 2N matrix relating �̂i to the model parameters
�i and �i. In the ith row, a 1 appears in the ith and (N + i)th columns
while 0's appear elsewhere. Thus the ith row corresponds to �i = �i + �i.
The middle section of the design matrix is an N � 2N matrix that imposes
a stochastic constraint on each �i separately (�i's are i.i.d normal). The
bottom section of the design matrix is a C � 2N matrix with each row
having a �1 and 1 in the (N + k)th and (N + l)th columns, respectively,
corresponding to a stochastic constraint being imposed on �l � �k (using
the pairwise di�erence form of the prior on the �i's as described in (A.20)
with regions l and k being neighbors). The variance-covariance matrix � is
a diagonal matrix with the top left section corresponding to the variances of
the data cases, i.e., the �̂i's. Using the variance approximations described
above, the (2N +C)� (2N +C) block diagonal variance-covariance matrix
is

� =

2
66664
Diag(1=Y1; 1=Y2; : : : ; 1=YN) 0N�N 0N�C

0N�N
1
�h
IN�N 0N�C

0C�N 0C�N
1
�c
IC�C

3
77775 : (A:24)
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Note that the exponent on �c in (A.21) would actually be C=2 (instead
of (N � 1)=2) if obtained by taking the product of the terms in (A.20).
Thus, (A.20) is merely a form we use to describe the distribution of the
�is for our constraint case speci�cation. The formal way to incorporate the
distribution of the �is in the constraint case formulation is by using an
alternate speci�cation of the joint distribution of the �i's, as described in
Besag and Kooperberg (1995). This form is a N�N Gaussian density with
precision matrix, Q,

p(�1; �2; :::; �N j�c) / exp
�
��c
2
�TQ�

�
; where �T = (�1; �2; :::; �N );

(A:25)
and

Qij =

8<
:

c if i = j where c = number of neighbors of region i
0 if i is not adjacent to j

�1 if i is not adjacent to j
:

However, it is possible to show that this alternate formulation (using the
corresponding design and � matrices) results in the same SMCMC candi-
date mean and covariance matrix for� given �h and �c as the one described
in (A.19); see Haran, Hodges, and Carlin (2003) for details.

A.7.2 Algorithmic schemes

Univariate MCMC (UMCMC): For the purpose of comparing the
di�erent blocking schemes, one might begin with a univariate (updating
one variable at a time) sampler. This can be done by sampling �h and
�c from their gamma full conditional distributions, and then, for each i,
sampling each �i and �i from its full conditional distribution, the latter
using a Metropolis step with univariate Gaussian random walk proposals.
Reparameterized Univariate MCMC (RUMCMC): One can also

reparameterize from (�1; : : : ; �N ; �1; : : : ; �N ) to (�1; : : : ; �N ; �1; : : : ; �N ),
where �i = �i+�i. The (new) model parameters and the precision parame-
ters can be sampled in a similar manner as for UMCMC. This \hierarchical
centering" was suggested by (Besag et al. (1995) and Waller et al. (1997)
for the spatial model, and discussed in general by Gelfand et al. (1995,
1996).
Structured MCMC (SMCMC): A �rst step here is pilot adaptation,

which involves sampling (�h, �c) from their gamma full conditionals, updat-
ing the � matrix using the averaged (�h, �c) sampled so far, updating the
SMCMC candidate covariance matrix and mean vector using the � matrix,
and then sampling (�;�) using the SMCMC candidate in a Metropolis-
Hastings step. We may run the above steps for a \tuning" period, after
which we �x the SMCMC candidate mean and covariance, sampled (�h, �c)
as before, and use the Metropolis-Hastings to sample (�;�) using SMCMC
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proposals. Some related strategies include adaptation of the � matrix more
or less frequently, adaptation over shorter and longer periods of time, and
pilot adaptation while blocking on groups of regions.
Our experience with pilot adaptation schemes indicates that a single

proposal, regardless of adaptation period length, will probably be unable to
provide a reasonable acceptance rate for the many di�erent values of (�h; �c)
that will be drawn in realistic problems. As such, we typically turn to
oversampling� relative to (�h; �c); that is, the SMCMC proposal is always
based on the current (�h; �c) value. In this algorithm, we sample �h and �c
from their gamma full conditionals, then compute the SMCMC proposal
based on the � matrix using the generated �h and �c. For each (�h; �c) pair,
we run a Hastings independence subchain by sampling a sequence of length
100 (say) of �'s using the SMCMC proposal. Further implementational
details for this algorithm are given in Haran (2003).
Reparameterized Structured MCMC (RSMCMC): This �nal al-

gorithm is the SMCMC analogue of the reparametrized univariate algo-
rithm (RUMCMC). It follows exactly the same steps as the SMCMC algo-
rithm, with the only di�erence being that � is now (�;�) instead of (�;�),
and the proposal distribution is adjusted according to the new parameter-
ization.
Haran, Hodges, and Carlin (2003) compare these schemes in the context

of two areal data examples, using the notion of e�ective sample size, or
ESS (Kass et al., 1998). ESS is de�ned for each parameter as the number of
MCMC samples drawn divided by the parameter's so-called autocorrelation
time, � = 1 + 2

P1

k=1 �(k), where �(k) is the autocorrelation at lag k.
One can estimate � from the MCMC chain, using the initial monotone
positive sequence estimator as given by Geyer (1992). Haran et al. (2003)
�nd UMCMC to perform poorly, though the reparameterized univariate
algorithm (RUMCMC) does provide a signi�cant improvement in this case.
However, SMCMC and RSMCMC still perform better than both univariate
algorithms. Even when accounting for the amount of time taken by the
SMCMC algorithm (in terms of e�ective samples per second), the SMCMC
scheme results in a far more e�cient sampler than the univariate algorithm;
for some parameters, SMCMC produced as much as 64 times more e�ective
samples per second.
Overall, experience with applying several SMCMC blocking schemes to

real data sets suggests that SMCMC provides a standard, systematic tech-
nique for producing samplers with far superior mixing properties than sim-
ple univariate Metropolis-Hastings samplers. The SMCMC and RSMCMC
schemes appear to be reliable ways of producing good ESSs, irrespective
of the data sets and parameterizations. In many cases, the SMCMC algo-
rithms are also competitive in terms of ES/s. In addition since the blocked
SMCMC algorithms mix better, their convergence should be easier to di-
agnose and thus lead to �nal parameter estimates that are less biased.
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These estimates should also have smaller associated Monte Carlo variance
estimates.
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APPENDIX B

Answers to selected exercises

Chapter 1

3. As hinted in the problem statement, level of urbanicity might well ex-
plain the poverty pattern evident in Figure 1.2. Other regional spatially
oriented covariates to consider might include percent of minority resi-
dents, percent with high school diploma, unemployment rate, and aver-
age age of the housing stock. The point here is that spatial patterns can
often be explained by patterns in existing covariate data. Accounting for
such covariates in a statistical model may result in residuals that show
little or no spatial pattern, thus obviating the need for formal spatial
modeling.

7.(a) The appropriate R code is as follows:

# R program to compute geodesic distance

# see also www.auslig.gov.au/geodesy/datums/distance.htm

# input: point1=(long,lat) and point2=(long,lat)

in degrees

# output: distance in km between the two points

# example:

point1_c(87.65,41.90) # Chicago (downtown)

point2_c(87.90,41.98) # Chicago (O'Hare airport)

point3_c(93.22,44.88) # Minneapolis (airport)

# geodesic(point1,point3) returns 558.6867

geodesic <- function(point1, point2){

R <- 6371

point1 <- point1 * pi/180

point2 <- point2 * pi/180

d <- sin(point1[2]) * sin(point2[2]) +

cos(point1[2]) * cos(point2[2]) *

cos(abs(point1[1] - point2[1]))

R*acos(d)

}
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(b) Chicago to Minneapolis, 562 km; New York to New Orleans, 1897.2
km.

8. Chicago to Minneapolis, 706 km; New York to New Orleans, 2172.4 km.
This overestimation is expected since the approach stretches the meri-
dians and parallels, or equivalently, presses the curved domain onto a
plane, thereby stretching the domain (and hence the distances). As the
geodesic distance increases, the quality of the naive estimates deterio-
rates.

9. Chicago to Minneapolis, 561.8 km; New York to New Orleans, 1890.2 km.
Here, the slight underestimation is expected, since it �nds the straight
line by penetrating (burrowing through) the spatial domain. Still, this
approximation seems quite good even for distances close to 2000 km
(e.g., New York to New Orleans).

10.(a) Chicago to Minneapolis, 562.2 km; New York to New Orleans, 1901.5
km.

(b) Whenever all of the points are located along a parallel or a meridian,
this projection will not be de�ned.

Chapter 2

4.(a) Conditional on u, �nite realizations of Y are clearly Gaussian since
(Y (si))

n
i=1 = (W (xi))

n
i=1, where xi = sTi u, and W is Gaussian.

The covariance function is given by Cov (Y (s) ; Y (s+ h)) = c
�
hTu

�
,

where c is the (stationary) covariance function of W .

(b) For the marginal process, we need to take expectation over the dis-
tribution of u, which is uniform over the n-dimensional sphere. Note
that

Cov (Y (s) ; Y (s+ h)) = Eu

h
Cov

�
W
�
sTu

�
;W

�
(s+ h)T u

��i
= Eu

�
c
�
hTu

��
:

Then, we need to show that Eu
�
c
�
hTu

��
is a function of jjhjj. Now,

hTu = jjhjj cos �, so Eu
�
c
�
hTu

��
= E� [c (jjhjj cos �)]. But �, being

the angle made by a uniformly distributed random vector u, has a
distribution that is invariant over the choice of h. Thus, the marginal
process Y (s) has isotropic covariance functionK (r) = E� [c (r cos �)].

Note: The above covariance function (in <n) can be computed using
spherical integrals as

K (r) =
2� (n=2)p

�� ((n� 1) =2)

Z 1

0

c (r�)
�
1� �2

�(n�3)=2
d�:

10. If �2 = 0, then � = �2H (�). If s0 = sk, where sk is a monitored site,
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we have T = �2 [H (�)]k�, the kth row of �2H (�). Thus, eTkH (�) =�
1=�2

�
T , where ek = (0; : : : ; 1; : : : ; 0)

T
is the kth coordinate vector.

So eTk =
�
1=�2

�
TH�1 (�). Substituting this into equation (2.18), we

get

E [Y (sk) jy] = xTk � + eTk (y �X�) = xTk � + y (sk)� xTk � = y (sk) :

When �2 > 0, � = �2H (�) + �2I , so the ��1 in equation (2.18) does
not simplify, and we do not have the above result.

Chapter 3

1. Brook's Lemma, equation (3.7), is easily veri�ed as follows: Starting with
the extreme right-hand side, observe that

p(y10; : : : ; yn0)

p(yn0jy10; : : : ; yn�1;0) = p(y10; : : : ; yn�1;0) :

Now observe that

p(ynjy10; : : : ; yn�1;0)p(y10; : : : ; yn�1;0) = p(y10; : : : ; yn�1;0; yn) :

The result follows by simply repeating these two steps, steadily moving
leftward through (3.7).

3. We provide two di�erent approaches to solving the problem. The �rst
approach is a direct manipulative approach, relying upon elementary
algebraic simpli�cations, and might seem a bit tedious. The second ap-
proach relies upon some relatively advanced concepts in matrix analysis,
yet does away with most of the manipulations of the �rst approach.

Method 1: In the �rst method we derive the following identity:

uTD�1(I �B)u =

nX
i=1

u2i
�2i

0
@1� nX

j=1

bij

1
A+

X
i<j

bij
�2i

(ui � uj)
2
; (B:1)

where u = (u1; :::; un)
T
. Note that if this identity is indeed true, the

right-hand side must be strictly positive; all the terms in the r.h.s. are
strictly positive by virtue of the conditions on the elements of the B
matrix unless u = 0. This would imply the required positive de�niteness.

We may derive the above identity either by starting with the l.h.s. and
eventually obtaining the r.h.s., or vice versa. We adopt the former. So,

uTD�1(I �B)u =
X
i

u2i
�2i

�
X
i

X
j

bij
�2i

uiuj

=
X
i

u2i
�2i

�
X
i

bii
�2i
u2i �

X
i

X
j 6=i

bij
�2i

uiuj
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=
X
i

u2i
�2i

(1� bii)�
X
i

X
j 6=i

bij
�2i

uiuj :

Adding and subtracting
P

i

P
j 6=i

�
u2i =�

2
i

�
bij to the last line of the r.h.s.,

we write

uTD�1(I �B)u =
X
i

u2i
�2i

0
@1�X

j

bij

1
A+

X
i

X
j 6=i

u2i
�2i
bij

�
X
i

X
j 6=i

bij
�2i

uiuj

=
X
i

u2i
�2i

0
@1�X

j

bij

1
A+

X
i

X
j 6=i

bij
�2i

�
u2i � uiuj

�

=
X
i

u2i
�2i

0
@1�X

j

bij

1
A+

X
i<j

bij
�2i

(ui � uj)
2
:

To explain the last manipulation,X
i

X
j 6=i

bij
�2i

�
u2i � uiuj

�
=
X
i<j

bij
�2i

(ui � uj)
2 ; (B:2)

note that the sum on the l.h.s. of (B.2) extends over the 2 � �n2� (un-
ordered) pairs of (i; j). Consider any particular pair, say, (k; l) with
k < l, and its \reection" (l; k). Using the symmetry condition, bkl=�

2
k =

blk=�
2
l , we may combine the two terms from this pair as

bkl
�2k

�
u2k � ukul

�
+
blk
�2l

�
u2l � uluk

�
=
bkl
�2k

(uk � ul)
2
:

Performing the above trick for each of the
�
n
2

�
pairs, immediately results

in (B.2).

Method 2: The algebra above may be skipped using the following argu-
ment, based on eigenanalysis. First, note that, with the given conditions
on B, the matrix D�1 (I �B) is (weakly) diagonally dominant. This
means that, if A = D�1 (I �B) ; and Ri (A) =

P
j 6=i jaij j (the sum of

the absolute values of the ith row less that of the diagonal element),
then jaiij � Ri (A), for all i, with strict inequality for at least one i.
Now, using the Gershgorin Circle Theorem (see, e.g., Theorem 7.2.1 in
Golub and Van Loan, p. 320), we immediately see that 0 cannot be an
interior point of Gershgorin circle. Therefore, all the eigenvalues of A
must be nonnegative. But note that all the elements of B are strictly
positive. This means that all the elements of A are nonzero, which means
that 0 cannot be a boundary point of the Gershgorin circle. Therefore, 0
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must be an exterior point of the circle, proving that all the eigenvalues
of A must be strictly positive. So A, being symmetric, must be positive
de�nite.

Note: It is important that the matrix D be chosen so as to ensure
D�1 (I �B) is symmetric. To see that this condition cannot be relaxed,

consider the following example. Let us take B =

�
0:3 0:5
0:1 0:9

�
. Clearly

the matrix satis�es the conditions laid down in the problem statement.
If we are allowed to choose an arbitrary D, we may take D = I2, the

2� 2 identity matrix, and so D�1 (I �B) =

�
0:7 �0:5
�0:1 0:1

�
. But this

is not positive de�nite, as is easily seen by noting that with uT = (1; 2),
we obtain uTD�1 (I �B)u = �0:1 < 0:

4. Using the identity in (B.1), it is immediately seen that, taking B to be
the scaled proximity matrix (as in the text just above equation (3.15)),
we have

Pn
j=1 bij = 1, for each i. This shows that the �rst term on the

r.h.s. of (B.1) vanishes, leading to the second term, which is a pairwise
di�erence prior.

Chapter 4

1. The complete WinBUGS code to �t this model is given below. Recall \#"
is a comment in WinBUGS, so this version actually corresponds model for
part (c).

model

{

for (i in 1:N) {

y[i] ~ dbern(p[i])

# logit(p[i]) <- b0 + b1*kieger[i] + b2*team[i]

# logit(p[i]) <- b0 + b2*(team[i]-mean(team[]))

logit(p[i]) <- b0 + b1*(pct[i]-mean(pct[]))

pct[i] <- kieger[i]/(kieger[i]+team[i])

}

b0 ~ dnorm(0, 1.E-3)

b1 ~ dnorm(0, 1.E-3)

b2 ~ dnorm(0, 1.E-3)

}

HERE ARE INITS:

list(b0=0, b1=0, b2=0)
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95% Credible intervals
Model �1 �2 DIC pD

(a) ({3.68, 1.21) (.152, 2.61) 8.82 1.69
(b) | (.108, 1.93) 9.08 1.61
(c) ({70.8, {3.65) | 8.07 1.59

Table B.1 Posterior summaries, Carolyn Kieger prep basketball logit model.

HERE ARE THE DATA:

list(N = 9, # number of observations

y = c(1,1,1,1,0,1,1,1,0), # team win/loss

kieger = c(31,31,36,30,32,33,31,33,32), # Kieger points

team = c(31,16,35,42,19,37,29,23,15)) # team points

Running a single Gibbs sampling chain for 20,000 iterations after a 1,000-
iteration burn-in period, Table B.1 gives the resulting 95% equal tail
posterior credible intervals for �1 and �2 for each model, as well as the
corresponding DIC and pD scores.

(a) Running this model produces MCMC chains with slowly moving sam-
ple traces and very high autocorrelations and cross-correlations (espe-
cially between �0 and �1, since Kieger's uncentered scores are nearly
identical). The 95% equal-tail con�dence interval for �1 includes 0,
suggesting Kieger's score is not a signi�cant predictor of game out-
come; the pD score of just 1.69 also suggests there are not 3 \e�ective"
parameters in the model (although none of these posterior summaries
are very trustworthy due to the high autocorrelations, hence low ef-
fective sample MCMC sample size). Thus, the model is not acceptable
either numerically (poor convergence; unstable estimates due to low
e�ective sample size) or statistically (model is overparametrized).

(b) Since \kieger" was not a signi�cant predictor in part (a), we delete
it, and center the remaining covariate (\team") around its own mean.
This helps matters immensely: numerically, convergence is much bet-
ter and parameter and other estimates are much more stable. Statis-
tically, the DIC score is not improved (slightly higher), but the pD is
virtually unchanged at 1.6 (so both of the remaining parameters in
the model are needed), and �2 is more precisely estimated.

(c) Again convergence is improved, and now the DIC score is also better.
�1 is signi�cant and negative, since the higher the proportion of points
scored by Kieger (i.e., the lower the output by the rest of the team),
the less likely a victory becomes.
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(d) The pi themselves have posteriors implied by the �j posteriors and
reveal that the team was virtually certain to win Games 1, 3, 4, 6,
and 7 (where Kieger scored a lower percentage of the points), but
could well have lost the others, especially Games 2 and 9 (the former
of which the team was fortunate to win anyway). This implies that
the only thing that might still be missing from our model is some
measure of how few points the opponent scores, which is of course
governed by how well Kieger and the other team members play on
defense. But �tting such a model would obviously require defensive
statistics (blocked shots, etc.) that we currently lack.

5.(a) In our implementation of WinBUGS, we obtained a slightly better DIC
score with Model XI (7548.3, versus 7625.2 for Model XII), suggesting
that the full time-varying complexity is not required in the survival
model. The fact that the 95% posterior credible interval for 3, ({0.43,
.26), includes 0 supports this conclusion.

(b) We obtained point and 95% interval estimates of {0.20 and ({0.25,
{0.14) for 1, and {1.61 and ({2.13, {1.08) for 2.

(c) Figure B.1 plots the estimated posteriors (smoothed histograms of
WinBUGS output). In both the separate (panel a) and joint (panel b)
analyses, this patient's survival is clearly better if he receives ddC
instead of ddI. However, the joint analysis increases the estimated
median survival times by roughly 50% in both groups.

(d) Estimation of the random e�ects in NLMIXED is via empirical Bayes,
with associated standard errors obtained by the delta method. Ap-
proximate 95% prediction intervals can then be obtained by assum-
ing asymptotic normality. We obtained point and interval estimates
in rough agreement with the above WinBUGS results, and for broadly
comparable computer runtimes (if anything, our NLMIXED code ran
slower). However, the asymmetry of some of the posteriors in Fig-
ure B.1 (recall they are truncated at 0) suggests traditional con�-
dence intervals based on asymptotic normality and approximate stan-
dard errors will not be very accurate. Only the fully Bayesian-MCMC
(WinBUGS) approach can produce exact results and corresponding full
posterior inference.

Chapter 5

1. The calculations for the full conditionals for � and W follow from the
results of the general linear model given in Example 4.2. Thus, with a
N (A�; V ) prior on �, (i.e., p (�) = N (A�; V )) the full conditional for
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� is N (Dd; D), where

D�1 =

�
1

�2
XTX + V �1

��1

and d =
1

�2
XT (Y �W) + V �1A�:

Note that with a at prior on �, we set V �1 = 0 to get

�jY;W; X; �2 � N
��
XTX

��1
XT (Y �W) ; �2

�
XTX

��1�
:

Similarly for W, since p (W) = N
�
0; �2H (�)

�
, the full conditional

distribution is again of the form N (Dd; D), but where this time

D�1 =

�
1

�2
I +

1

�2
H�1 (�)

��1

and d =
1

�2
(Y �X�) :

Next, with p
�
�2
�
= IG (a� ; b� ), we compute the full conditional distri-

bution for �2, p
�
�2jY; X;�;W

�
, as proportional to

1
(�2)a�+1

exp
��b�=�2�

� 1
(�2)n=2

exp
�
� 1

2�2 (Y �X� �W)T (Y �X� �W)
�

/ 1
(�2)a�+n=2

exp
�
� 1
�2

�
b� +

1
2 (Y �X� �W)

T
(Y �X� �W)

��
;

where n is the number of sites. Thus we have the conjugate distribution

IG

�
a� +

n

2
; b� +

1

2
(Y �X� �W)

T
(Y �X� �W)

�
:

Similar calculations for the spatial variance parameter, �2, yield a con-
jugate full conditional when p

�
�2
�
= IG (a�; b�), namely

�2 jW; � � IG

�
a� +

n

2
; b� +

1

2
WTH�1 (�)W

�
:

Finally, for the spatial correlation function parameter �, no closed form
solution is available, and one must resort to Metropolis-Hastings or slice
sampling for updating. Here we would need to compute

p
�
�jW; �2

� / p (�)� exp

�
� 1

2�2
WTH�1 (�)W

�
:

Typically the prior p (�) is taken to be uniform or gamma.

5.(a) These relationships follow directly from the de�nition of w (s) in equa-
tion (5.23):

Cov (w (s) ; w (s0))
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= Cov

�Z
<2

k (s� t) z (t) dt ;

Z
<2

k (s0 � t) z (t) dt

�

= �2
Z
<2

k (s� t) k (s0 � t) dt :

and

var (w (s)) = �2
Z
R2

k2 (s� t) dt;

obtained by setting s = s0 above.

(b) This follows exactly as above, except that we adjust for the covariance
in the stationary z(t) process:

Cov (w (s) ; w (s0)) =

Z
<2

Z
<2

k (s� t) k (s0 � t)

� Cov (z (t) ; z (t0)) dtdt0

= �2
Z
<2

Z
<2

k (s� t) k (s0 � t) � (t� t0) dtdt0

and var (w (s)) = �2
Z
<2

Z
<2

k (s� t) k (s� t0) � (t� t0) dtdt0;

obtained by setting s = s0 above.

10. From (5.47), the full conditional p(�ij�j 6=i;�;�;y) is proportional to the
product of a Poisson and a normal density. On the log scale we have

log p(�ij�j 6=i;�;�;y) / �Eie
x0i�+�i+�i + �iyi � �cmi

2
(�i � ��i)

2 :

Taking two derivatives of this expression, it is easy to show that in
fact (@2=@�2i ) log p(�ij�j 6=i;�;�;y) < 0, meaning that the log of the full
conditional is a concave function, as required for ARS sampling.

Chapter 6

6.(a) Denoting the likelihood by L, the prior by p, and writing y = (y1; y2),
the joint posterior distribution of m1 and m2 is given as

p(m1;m2jy) / L(m1;m2;y)p(m1;m2)

/ (7m1 + 5m2)
y1e�(7m1+5m2)

�(6m1 + 2m2)
y2e�(6m1+2m2)

�ma�1
1 e�m1=bma�1

2 e�m2=b ;

so that the resulting full conditional distributions for m1 and m2 are

p(m1jm2;y) / (7m1 + 5m2)
y1(6m1 + 2m2)

y2ma�1
1 e�m1(13+b

�1);

p(m2jm1;y) / (7m1 + 5m2)
y1(6m1 + 2m2)

y2ma�1
2 e�m2(7+b

�1) :
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We see immediately that conjugacy is absent; these two expressions
are not proportional to any standard distributional form. As such,
one might think of univariate Metropolis updating to obtain samples
from the joint posterior distribution p(m1;m2jy), though since this
is a very low-dimensional problem, the use of MCMC methods here
probably constitutes overkill!

Drawing our Metropolis candidates from Gaussian distributions with
means equal to the current chain value and variances (0:3)2 and (0:1)2

for �1 and �2, respectively, for each parameter we ran �ve indepen-
dent sampling chains with starting points overdispersed with respect
to the suspected target distribution for 2000 iterations. The observed
Metropolis acceptance rates were 45.4% and 46.4%, respectively, near
the 50% rate suggested by Gelman et al. (1996) as well as years of
Metropolis \folklore." The vagueness of the prior distributions cou-
pled with the paucity of the data in this simple example (in which we
are estimating two parameters from just two data points, y1 and y2)
leads to substantial autocorrelation in the observed chains. However,
plots of the observed chains as well as the convergence diagnostic of
Gelman and Rubin (1992) suggested that a suitable degree of algo-
rithm convergence obtains after 500 iterations. The histograms of the
remaining 5 � 1500 = 7500 iterations shown in Figures B.2(a) and
(b) provide estimates of the marginal posterior distributions p(m1jy)
and p(m2jy). We see that point estimates for m1 and m2 are 18.5
and 100.4, respectively, implying best guesses for 7m1 + 5m2 and
6m1+2m2 of 631.5 and 311.8, respectively, quite consistent with the
observed data values y1 = 632 and y2 = 311. Also shown are 95%
Bayesian credible intervals (denoted \95% BCI" in the �gure leg-
ends), available simply as the 2.5 and 97.5 empirical percentiles in
the ordered samples.

(b) By the Law of Iterated Expectation, E(Y3ajy) = E[E(Y3ajm;y)].
Now we need the following well-known result from distribution theory:

Lemma: If X1 � Po(�1), X2 � Po(�2), and X1 and X2 are inde-
pendent, then

X1 j (X1 +X2 = n) � Bin

�
n ;

�1
�1 + �2

�
:

We apply this lemma in our setting with Y3a playing the role of X1,
y1 playing the role of n, and the calculation conditional on m. The
result is

E(Y3ajy) = E[E(Y3ajm;y)] = E[E(Y3ajm1; y1)]

= E

�
y1

�
2m1 + 2m2

7m1 + 5m2

�
y1

�
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� y1
G

GX
g=1

2m
(g)
1 + 2m

(g)
2

7m
(g)
1 + 5m

(g)
2

� Ê(Y3ajy) ; (B.3)

where f(m(g)
1 ;m

(g)
2 ); g = 1; : : : ; Gg are the Metropolis samples drawn

above. A similar calculation produces a Monte Carlo estimate of
E(Y3bjy), so that our �nal estimate of E(Y3jy) is the sum of these
two quantities. In our problem this turns out to be Ê(Y3jy) = 357:0.

(c) Again using Monte Carlo integration, we write

p(y3jy) =

Z
p(y3jm;y)p(mjy)dm � 1

G

GX
g=1

p(y3jm(g);y) :

Using the lemma again, p(y3jm;y) is the convolution of two indepen-
dent binomials,

Y3ajm;y � Bin

�
y1 ;

2m1 + 2m2

7m1 + 5m2

�
; (B.4)

and Y3bjm;y � Bin

�
y2 ;

m1 +m2

6m1 + 2m2

�
: (B.5)

Since these two binomials do not have equal success probabilities,
this convolution is a complicated (though straightforward) calcula-
tion that unfortunately will not emerge as another binomial distri-
bution. However, we may perform the sampling analog of this cal-

culation simply by drawing Y
(g)
3a from p(y3ajm(g); y1) in (B.4), Y

(g)
3b

from p(y3bjm(g); y2) in (B.5), and de�ning Y
(g)
3 = Y

(g)
3a + Y

(g)
3b . The

resulting pairs f(Y (g)
3 ;m(g)); g = 1; : : : ; Gg are distributed according

to the joint posterior distribution p(y3;mjy), so that marginally, the
fY (g)

3 ; g = 1; : : : ; Gg values have the desired distribution, p(y3jy).

In our setting, we actually drew 25 Y
(g)
3a and Y

(g)
3b samples for each

m(g) value, resulting in 25(7500) = 187,500 Y
(g)
3 draws from the con-

volution distribution. A histogram of these values (and a correspond-
ing kernel density estimate) is shown in Figure B.3. The mean of
these samples is 357.2, which agrees quite well with our earlier mean
estimate of 357.0 calculated just below equation (B.3).

Chapter 7

2.(a) This setup closely follows that below equation (2.17), so we imitate
this argument in the case of a bivariate process, where now Y1 =
Y1 (s0) and Y2 = y. Then, as in equation (2.18),

E [Y1 (s0) jy] = xT (s0)� + T��1 (y �X�) ;
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parameter 2.5% 50% 97.5%

�1 -0.437 -0.326 -0.216
�1 3.851 5.394 6.406
�2 -2.169 2.641 7.518
�1 0.449 0.593 2.553
�2 0.101 1.530 6.545
�1 0.167 0.651 0.980
�2 0.008 0.087 0.276
� 4.135 5.640 7.176

Table B.2 Posterior quantiles for the conditional LMC model.

where T =
�
T1 ;

T
2

�
, where T1 = (c11 (s0 � s1) ; : : : ; c11 (s0 � sn))

and T2 = (c12 (s0 � s1) ; : : : ; c12 (s0 � sn)). Also,

�2n�2n =

�
C11 C12

CT
12 C22

�
+

�
�21 In 0
0 �22 In

�
;

with Clm = (clm (si � sj))i;j=1;:::;n with l;m = 1; 2.

(b) The approach in this part is analogous to that of Chapter 2, Exer-
cise 10. Observe that with s0 = sk,

�
eTk : 0

�
� = T if and only if

�21 = 0, where eTk = (0; : : : ; 1; : : : ; 0) is the n-dimensional kth co-
ordinate vector. This immediately leads to E [Y1 (sk) jy] = y1 (sk);
E [Y2 (sk) jy] = y2 (sk) is shown analogously.

4.(a) Let Y1(s) be the temperature at location s, Y2(s) be the precipitation
at location s, and X(s) be the elevation at location s. We then �t the
following conditional LMC, as in equation (7.28):

Y1 (s) = �1X (s) + �1w1 (s)

Y2 (s) jY1 (s) = �1X (s) + �2Y1 (s) + �2w2 (s) + � (s) ;

where �(s) � N(0; �2), wi(s) � GP (0; � (�; �i)), for i = 1; 2.

The �le www.biostat.umn.edu/~brad/data/ColoradoLMCa.bug on
the web contains the WinBUGS code for this problem. Table B.2 gives
a brief summary of the results. The results are more or less as ex-
pected: temperature is negatively associated with elevation, while pre-
cipitation is positively associated. Temperature and precipitation do
not seem to be signi�cantly associated with each other. The spatial
smoothing parameters �1 and �2 were both assigned U(0; 1) priors
for this analysis, but it would likely be worth investigating alternate
choices in order to check prior robustness.

(b) These results can be obtained simply by switching Y1 and Y2 in the
data labels for the model and computer code of part (a).
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6.(a) This follows directly by noting var (v1) = �11In, var (v2) = �22In,
and cov (v1;v2) = �12I .

(b) Note that var (�1) = �11A1A
T
1 , var (�2) = �22A2A

T
2 , and also that

cov (�1;�2) = �12A1A
T
2 . So with A1 = A2, the dispersion of � is

given by

�(�) =

�
�11AA

T �12AA
T

�12A
TA �12AA

T

�
= �
AAT :

Taking A as the square root of (DW � �W )
�1

yields �(�) = � 

(DW � �W )

�1
: Note that the order of the Kronecker product is dif-

ferent from equation (7.34), since we have blocked the � vector by
components rather than by areal units.

(c) In general, with A1 6= A2, we have

�(�) =

�
�11A1A

T
1 �12A1A

T
2

�12A2A
T
1 �12A2A

T
2

�
= A (�
 I)AT ;

where A = BlockDiag (A1; A2). For the generalized MCAR, with
di�erent spatial smoothness parameters �1 and �2 for the di�erent
components, take Ai as the Cholesky square root of (DW � �iW )

�1

for i = 1; 2.

Chapter 8

2. The code in www.biostat.umn.edu/~brad/data/ColoradoS-T1.bug

�ts model (8.6), the additive space-time model. This is a \direct" solu-
tion, where we explicitly construct the temporal process. By contrast,
the �le www.biostat.umn.edu/~brad/data/ColoradoS-T2.bug uses
the spatial.exp function, tricking it to handle temporal correlations
by setting the y-coordinates to 0.

4.(a) Running �ve chains of an MCMC algorithm, we obtained point and
95% interval estimates of {0.01 and [{0.20, 0.18] for �; using the
same reparametrization under the chosen model (10) in Waller et al.
(1997), the point and interval estimates instead are {0.20 and [{0.26,
{0.15]. Thus, using this reparametrization shows that age adjusting
has eliminated the statistical signi�cance of the di�erence between
the two female groups.

(b) Figure B.4 shows the �tted age-adjusted lung cancer death rates per
1000 population for nonwhite females for the years 1968, 1978, and
1988. The scales of the three �gures show that lung cancer death rates
are increasing over time. For 1968, we see a strong spatial pattern of
increasing rates as we move from northwest to southeast, perhaps the
result of an unmeasured occupational covariate (farming versus min-
ing). Except for persistent low rates in the northwest corner, however,
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node (unit) Mean sd MC error 2.5% Median 97.5%

W1 (A) {0.0491 0.835 0.0210 {1.775 {0.0460 1.639
W3 (C) {0.183 0.9173 0.0178 {2.2 {0.136 1.52
W5 (E) {0.0320 0.8107 0.0319 {1.682 {0.0265 1.572
W6 (F) 0.417 0.8277 0.0407 {1.066 0.359 2.227
W9 (I) 0.255 0.7969 0.0369 {1.241 0.216 1.968
W11 (K) {0.195 0.9093 0.0209 {2.139 {0.164 1.502

�1 (A) 1.086 0.1922 0.0072 0.7044 1.083 1.474
�3 (C) 0.901 0.2487 0.0063 0.4663 0.882 1.431
�5 (E) 1.14 0.1887 0.0096 0.7904 1.139 1.521
�6 (F) 0.935 0.1597 0.0084 0.6321 0.931 1.265
�9 (I) 0.979 0.1683 0.0087 0.6652 0.971 1.339
�11 (K) 0.881 0.2392 0.0103 0.4558 0.861 1.394

� 1.73 1.181 0.0372 0.3042 1.468 4.819
�0 {7.11 0.689 0.0447 {8.552 {7.073 {5.874
�1 0.596 0.2964 0.0105 0.0610 0.578 1.245
RR 3.98 2.951 0.1122 1.13 3.179 12.05

Table B.3 Posterior summaries, MAC survival model (10,000 samples, after a
burn-in of 1,000).

this trend largely disappears over time, perhaps due to increased mix-
ing of the population or improved access to quality health care and
health education.

Chapter 9

1.(a) Table B.3 summarizes the results from the nonspatial model, which
are based on 10,000 posterior samples obtained from a single MCMC
chain after a burn-in of 1,000 iterations. Looking at this table and the
raw data in Table 9.14, basic conclusions are as follows:

� Units A and E have moderate overall risk (Wi � 0) but increasing
hazards (� > 1): few deaths, but they occur late.

� Units F and I have high overall risk (Wi > 0) but decreasing haz-
ards (� < 1): several early deaths, many long-term survivors.

� Units C and K have low overall risk (Wi < 0) and decreasing
hazards (� < 1): no deaths at all; a few survivors.

� The two drugs di�er signi�cantly: CI for �1 (RR) excludes 0 (1).
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2.(b) The appropriate interval censored WinBUGS code is as follows:

model

{

for (i in 1:N) {

TimeSmoking[i] <- Age[i] - AgeStart[i]

RelapseT[i] ~ dweib(rho[i],mu[i])I(censored.time1[i],

censored.time2[i])

log(mu[i]) <- beta0 + beta[1]*TimeSmoking[i]

+ beta[2]*SexF[i] + beta[3]*SIUC[i]

+ beta[4]*F10Cigs[i] + W[County[i]]

rho[i] <- exp(lrho[County[i]])

}

# for (i in 1:regions) {W[i] ~ dnorm(0.0, tau_W)}

# for (i in 1:regions) {lrho[i] ~ dnorm(0.0, tau_rho)}

for (i in 1:sumnum) {weights[i] <- 1}

W[1:regions] ~ car.normal(adj[], weights[], num[], tau_W)

lrho[1:regions] ~ car.normal(adj[], weights[], num[],

tau_rho)

for (i in 1:4) { beta[i] ~ dnorm(0.0, 0.0001)}

beta0 ~ dnorm(0.0,0.0001)

tau_W ~ dgamma(0.1,0.1)

tau_rho ~ dgamma(0.1,0.1)

}
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(a) Separate analysis
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(b) Joint analysis

Figure B.1 Median survival time for a hypothetical patient (male, negative AIDS
diagnosis at study entry, intolerant of AZT): (a) estimated posterior density of
median survival time of the patient from separate analysis; (b) estimated posterior
density of median survival time of the patient from joint analysis.
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a) posterior for m_1
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b) posterior for m_2

Figure B.2 Posterior histograms of sampled m values, motivating example.
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Figure B.3 Posterior histogram and kernel density estimate, sampled Y3 values,
motivating example.
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1968 1978 1988

 rate < 0.0103
[0.0103, 0.0111]
[0.0111, 0.0119]
[0.0119, 0.0127]
[0.0127, 0.0135]
[0.0135, 0.0143]
 rate > 0.0143

rate < 0.0150
[0.0150, 0.0154]
[0.0154, 0.0158]
[0.0158, 0.0162]
[0.0162, 0.0166]
[0.0166, 0.0170]
rate > 0.0170

rate < 0.0185
[0.0185, 0.0193]
[0.0193, 0.0201]
[0.0201, 0.0209]
[0.0209, 0.0217]
[0.0217, 0.0225]
rate > 0.0225

Figure B.4 Fitted median lung cancer death rates per 1000 population, nonwhite
females.
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