8oy (swoige)0 som; slo by,

‘_',-w-b-‘- Ql-?'ﬁ

Azimi.marjan@gmail.com

re—
=
o

J " “c

03,91 1) 4185 8,90 sla F5g I35 piww b verification Gos ol © o
e lop ;s 6 pass 5 wisd oo Ol Jlo O jg0 2 o Sy (nl 0iS
oled oy SSbegl O g0 1y o iy (0 U osd o0 Ole S

—
=
o

state-based 4 action-based s g, 90 105 pnaw SO Jdos gl

WS e Ao o foe 135 @ ks Joe 5 Lo 0,50, 4o gl oo EVERUNEY

o

N

Ly

transition system T = (S, Act, —, 5, AP, L)

J’ abstraction from actions

state graph Gr
e set of nodes = state space S
e edges = transitions without action label

use standard notations
for graphs, e.g.,

Post(s) = {t€ S :s — t}
Pre(s) ={u€eS:u— s}

ath

execution fragment: sequence of consecutive transitions

" o e
50 II:'=51 L. infinite or

fe' fa' p—1 -
50 N 51 Lo s, finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

T = Sy 51 5»... infinite or T =355 ...5, finite

such that s;4+1 € Post(s;) for all i < |x|

initial: if s € 59 = set of initial states

maximal: if infinite or ending in a terminal state

; R A

ath : 1w N
path :J QEE

Ly

o o How many paths are there in T7
31 5

answer. 2, namely 551 5 51... and § %

7 S e el

trace

for TS with labeling function L : § — 24°

execution: states + actions

So —> 5| —> 5 —> ... infinite or finite

paths: sequences of states
S5 5 ... infinite or 5551 ...5, finite

traces: sequences of sets of atomic propositions
L(s0) L(51) L(s2) - -

v R A

trace : JLw

hY
nﬂncntl I‘IGI’IEI"Itg

waity nc-ncrj Fxnmtl waltg
y=1

cnt; n:::ncrit;.-] waity waltg (n::mcntl crity®
y=0 y=1 y=0
N
crit; waits walt; cnts
(y=0 y=0

set of atomic propositions AP = {crity, crit; }
traces, e.g., @@ {crit;} @@ {crit;} @ @ {crity } ...

A R A

S oo

syntactic description requirements

of Pyll. . .|| Px

specification spec,
e.g., LT property
<

- ™
state graph of

transition system T

-
[model checker J

SOS-rules abstraction
from actions

does T satisfy spec 7

) / \\ g
ye no <+ error indication

“ R A

o
=

J " “‘

An LT property over AF is a language E of infinite
words over the alphabet ¥ = 247 ie., E C (2/7)".

Satisfaction relation |= for TS and states:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE
If s is a state in T then
sEE iff Traces(s) C E

.

 trace),!

Cgrequlrementsj trace inclusion

o

° . T C 7, iff
i specification Traces(Tiy1) C Traces(T;)

desighnT; | «— T, EE
refinement
design Tiy1 | «— Ti41 © T; implies Tiyy = E

implementation /refinement relation C:

T ET; iff "“T;yy correctly implements T;”

—

competition in state
(waity wait, y=1)

resolve the nondeterminism by giving
priority to process P

A e et et

Traces(74,,,) © Traces(ZTsem) for any AP

A R A

e.g., for AP =
{Erith Eritz}

Traces(Tsem) = E implies Traces(74,,,) = E for any E

Yo

re—
=
o

J " “c

safety properties “nothing bad will happen”

liveness properties “something good will happen”

A4

—
=
o

safety properties “nothing bad will happen”

o

N

Ly

examples:

e mutual exclusion special case: invariants
e deadlock freedom “no bad state will be reached"”

e ‘“every red phase is preceded by a yellow phase”

liveness properties "something good will happen”

examples:

e ‘“each waiting process will eventually enter
its critical section”

e ‘“each philosopher will eat infinitely often”

—

re—
=
o

invariant N\
&

Ly

Let E be an LT property over AP.

E is called an invariant if there exists a propositional
formula © over AP such that

E={AAk..e@P) :Vi20AE)

YA

® is called the invariant condition of E.

invariant

mutual exclusion (safety):

_set of all infinite words Ag A; A>. .. s.t.
MUTEX = Vie N. crity € A, or crity & A;

invariant condition: ® = —crity V —crits

here: AP = {crity,crita, ...}

4 R A

invariant

mutual exclusion (safety):

_set of all infinite words Ag A1 A;. .. s.t.
MUTEX = VieN. crity € A; or crit € A;

invariant condition: ® = —crit; V —crity

deadlock freedom for 5 dining philosophers:

DF = set of all infinite words Ag A1 As ... s.t.
- Vie N 3Jj € {0,1,2,3,4}. wait; & A

invariant condition:
d = —waity V ~waity; V —waity V —waitz V —waity

here: AP = {wait; : 0 <j<4}uU{...}

o

invariant

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA...e(2)’ :Vi>20A o}

Let T be a TS over AP without terminal states. Then:

T = E iff trace(mw) € E for all m € Paths(T)
iff s |= ® for all states s on a path of T

iff s = @ for all states s € Reach(T)

i.e., @ holds in all initial states and
Is invariant under all transitions

Y)

Invariant check

finite transition invariant E with
system T invariant condition @

N~

model checker
does T = E hold?

yes, T 4 no, T £ E | &°F

indication

perform a graph analysis (DFS or BFS) to check
whether s |= @ for all s € Reach(T)

Y R A

safety cowoguas

state that “nothing bad will happen”

invariants: +—| "“no bad state will be reached” ‘

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties: «—| "“no bad prefix"

e German traffic lights:
every red phase is preceded by a yellow phase

e beverage machine:

the total number of entered coins is never less
than the total number of released drinks

Bad prefix

e traffic lights:

e beverage machine:

Y¥

every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {®}{®}

the total number of entered coins is never less
than the total number of released drinks

1
bad prefix, e.g., {pay} {drink} {drink}

safet

YO

Let E be a LT property over AP, ie., E C (24F)~.

E is called a safety property if for all words
o = AgA1Ay... € (2*P)\E

there exists a finite prefix Ag A;... A, of & such that
none of the words Ag A;... A, B,:1 B,.2B,:3...
belongs to E, i.e.,

En{o’ € (27F)“ : Ap... A, is a prefix of o'} = &
Such words Ag A; ... A, are called bad prefixes for E.

BadPrefe % set of bad prefixes for E

red “every red phase is

— preceded by a
[yellow !red;’yellnw] @ vellow phase”
<z hence: T = E

E = set of all infinite words Ag A; As ...
over 247 such that for all i € N:
red e A;, = i>1 and yellow € A;_;

THKEE
(red/yellow] @ . _
& - : minimal bad prefix:
L yel ow | & {r ed}

¢ R A

safet

Let E C (24F) be a safety property, T a TS over AP.

T E=E iff Traces(T)CE
iff Tracess,(T) N BadPref = @
iff Tracesgn(T) N MinBadPref = &
BadPref = set of all bad prefixes of E
MinBadPref = set of all minimal bad prefixes of E
Traces(7) = set of traces of T
Tracesg,(T) = set of finite traces of T

— { trace(w) : T is an initial, finite path fragment of ‘.T}

YV

liveness

“liveness: something good will happen.”

“event a will occur eventually”

e.g., termination for sequential programs

“event a will occur infinitely many times”

e.g., starvation freedom for dining philosophers

“whenever event b occurs then event a
will occur sometimes in the future”

e.g., every waiting process enters eventually
its critical section

A R A

Jte

e Each philosopher thinks infinitely often.

liveness

e Two philosophers next to each other never eat at
the same time.

invariant

o \Whenever a philosopher eats then he has been
thinking at some time before.

safety

o \Whenever a philosopher eats then he will think
some time afterwards,

liveness

e Between two eating phases of philosopher i lies at
least one eating phase of philosopher i+41.

safety

i e et et

liveness

Let E be an LT property over AP, i.e., E C (2““’)”.

E is called a liveness property if each finite word over
AP can be extended to an infinite word in E, i.e., if

pref(E) = (24P)"

Examples:

e each process will eventually enter its critical section

e each process will enter its critical section
infinitely often

e whenever a process has requested its critical section
then it will eventually enter its critical section

T R A

Jte

An LT property E over AP is called a liveness property
if pref(E) = (2°°)"

Examples for AP = {crit;: i =1, ..., n}:

e cach process will eventually enter its critical section

= set of all infinite words Ag A; As ... s.t.
Vie {1,...,n} Ik > 0. crit; € A,

™ R A

fairness

interleaving

two independent
non-communicating actions actions
processes Py ||| P of Py of P»

possible interleavings:

P1 Pz Pg Pl Pl Pl Pz Pl Pz P;_} Pz P1 Pl fair
P1 P1 Pg Pl Pl Pz Pl P1 Pz P] P]_ Pg P1 fair
P1 P1 Pl Pl Pl Pl Pl P] P]_ P] P]_ P1 P1 ... unfair

process fairness assumes an appropriate resolution
of the nondeterminism resulting from
interleaving and competitions

A R A

fairness sls5!

VY

e unconditional fairness, e.g.,

every process enters gets its turn infinitely often.

e strong fairness, e.g.,

every process that is enabled infinitely often
gets its turn infinitely often.

e weak fairness, e.g.,

every process that is continuously enabled
from a certain time instance on,
gets its turn infinitely often.

VY

fairness sls5!

Let T be a TS with action-set Act, A C Act and
g Y1 o
P =5 —5 .)

S . infinite execution fragment

we will provide conditions for
e unconditional A-fairness of p
e strong A-fairness of p
e weak A-fairness of p

using the following notations:

Act(s) = {B€Act:3¢ st. 5 &)
l:"E'I:' = ‘“there exists infinitely many ..."
¥ = “for all, but finitely many ..."

Vo

fairness sls5!

Let 7 be a TS with action-set Act, A C Act and

g ¥y X2 - g - .
p = s — 51 — 5 — ... infinite execution fragment

e p is unconditionally A-fair, if 3 i20.a,€A
1

“actions in A will be taken
infinitely many times”

fairness sls5!

A4

Let T be a TS with action-set Act, A C Act and

¥ Y1 ¥o . e .
p =5 —* 5 — 5 — ... infinite execution fragment

e p is unconditionally A-fair, if 3i>0.0; € A

e p is strongly A-fair, if
Ji>0.ANAct(s) £ @ = 3i>0.0,€A

“If infinitely many times some action in A
is enabled, then actions in A will be
taken infinitely many times.”

A%

fairness sls5!

Let 7 be a TS with action-set Act, A C Act and

xn ¥y (8 5] v e . .
pP=5 > 51 > 5o » ... infinite execution fragment

e p is unconditionally A-fair, if 3i>0.0; € A
e p is strongly A-fair, if

néni:_ru-AﬂAct{s,-);éﬁ = gizu.a;eA
e p is weakly A-fair, if

Vi>0.ANAct(s) # & = 3i>0.0,€A

“If from some moment, actions in A are
enabled, then actions in A will be
taken infinitely many times.”

Ly

Jte

T rd i Ta i
1 | noncrity Arbiter 2 | noncrits
request; enter request;
enters
enten release enters release
i
n
_ release
n T muw |
mt% I crita]
nters /
wy [crity |

YA

[(m I crit; |

<

wy | crit, |

fairness for action set A = {enter; }:

!
("1: u, ﬂ?}_}({nli u, M}_"{WI: u, Wh}—l'{f-l'ith ;: “&})
e unconditional A-fairness: yes

e strong A-fairness: yes — unconditionally fair
e weak A-fairness: yes + unconditionally fair

A R A

T: || Arbiter || 75 g .,

’*-'-*.,m %"“-—.,
Wy u ng m u Wz Hﬁ*x
: -/e;ter enter k
crity I m /S (wmuwe] (ol ity
. enter; enter :
crit; | wo ! 2 wy | crity

fairness for action-set A = {enter, }:

({m, u, m)—{ny, u, wo)—{m, I, '=:ri1|t;=-})m

e unconditional A-fairness: no
e strong A-fairness: yes <« A never enabled
e weak A-fairness: yes <« strongly A-fair

f. R A

i
T; || Arbiter || T3 m U ny foe.,

Cerity T 7)™ (Wi) mm
(crity [/ “{ent en enterz wy [crits |

fairness for action set A = {enter;, enters }:

((n, 1, may— (i, u, wo)—(my, u, critz))

e unconditional A-fairness: vyes
e strong A-fairness: yes
e weak A-fairness: yes

P R A

¥Y

