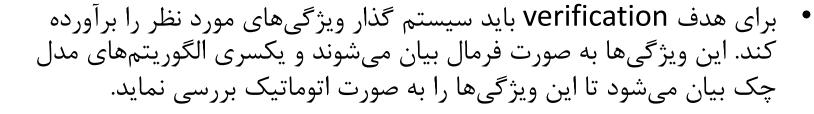
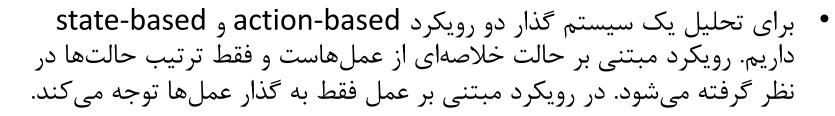
روشهای رسمی در مهندسی نرمافزار

مرجان عظیمی Azimi.marjan@gmail.com

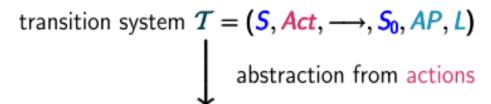
خصوصیات زمان خطی



خصوصیات زمان خطی



تبدیل سیستم گذار به گراف حالت



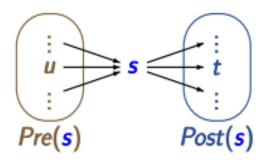
state graph G_T

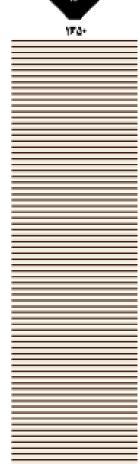
- set of nodes = state space 5
- edges = transitions without action label

use standard notations for graphs, e.g.,

$$Post(s) = \{t \in S : s \to t\}$$

 $Pre(s) = \{u \in S : u \to s\}$





path

ነቸው

execution fragment: sequence of consecutive transitions

$$s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$$
 infinite or

 $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n$ finite

path fragment: sequence of states arising from the projection of an execution fragment to the states

$$\pi = s_0 s_1 s_2...$$
 infinite or $\pi = s_0 s_1 ... s_n$ finite such that $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0 = \text{set of initial states}$

maximal: if infinite or ending in a terminal state

مثال: path

 $T: \alpha \beta$

How many paths are there in T?

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

trace

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states + actions

 $s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots$ infinite or finite

paths: sequences of states

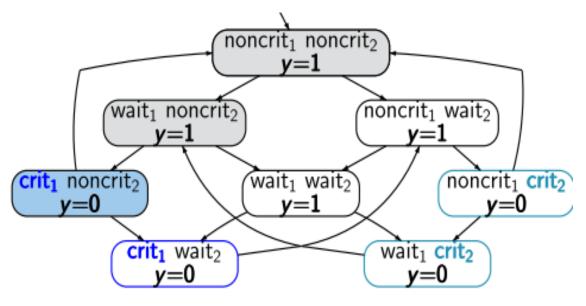
 $s_0 s_1 s_2 \dots$ infinite or $s_0 s_1 \dots s_n$ finite

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \dots$$

مثال: trace

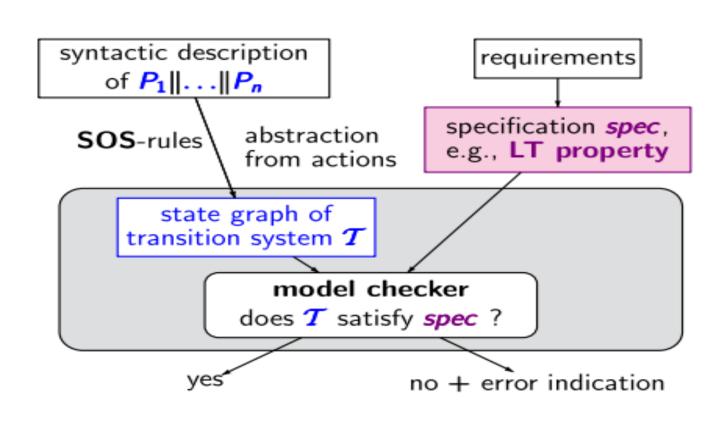
15.5



set of atomic propositions $AP = \{crit_1, crit_2\}$ traces, e.g., $\varnothing \varnothing \{crit_1\} \varnothing \varnothing \{crit_1\} \varnothing \varnothing \{crit_1\} ...$

٨

مدل چک



خصوصیات زمان خطی

TEQ:

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

Satisfaction relation \models for TS and states:

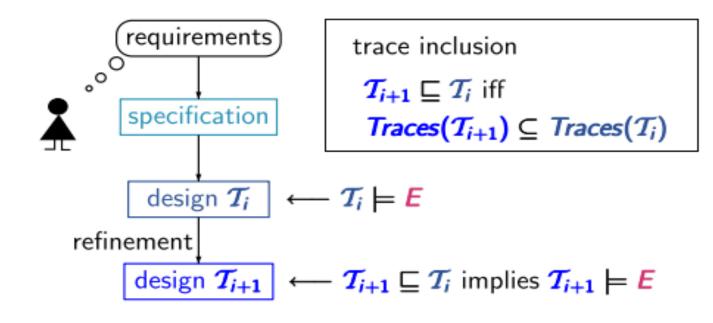
If T is a TS (without terminal states) over AP and E an LT property over AP then

$$\mathcal{T} \models \mathbf{E}$$
 iff $\mathit{Traces}(\mathcal{T}) \subseteq \mathbf{E}$

If s is a state in T then

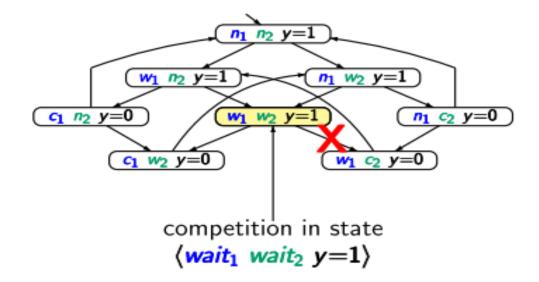
$$s \models E$$
 iff $Traces(s) \subseteq E$

همارزی trace ها



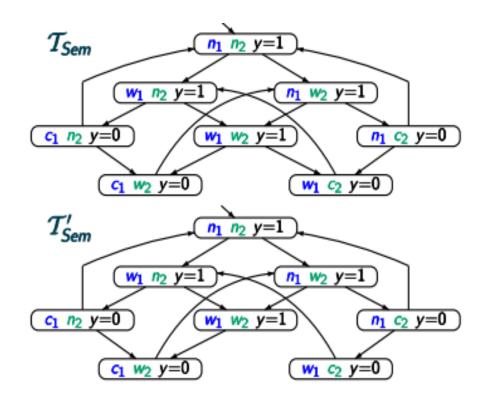
implementation/refinement relation \sqsubseteq :

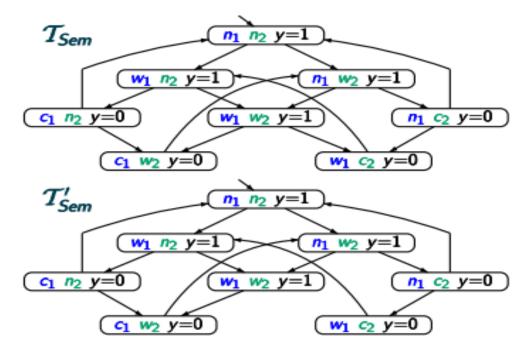
 $T_{i+1} \sqsubseteq T_i$ iff " T_{i+1} correctly implements T_i "



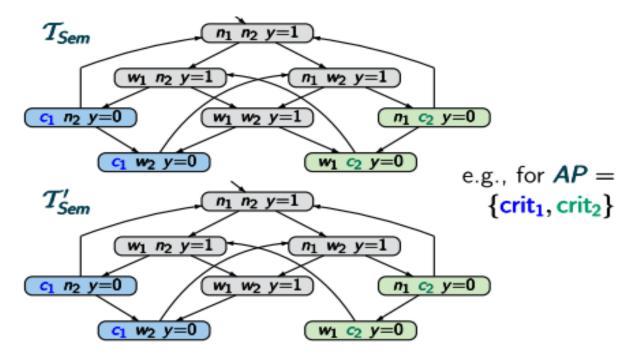
resolve the nondeterminism by giving priority to process P_1

TEQ:





 $Traces(T'_{Sem}) \subseteq Traces(T_{Sem})$ for any AP



 $Traces(T_{Sem}) \models E$ implies $Traces(T'_{Sem}) \models E$ for any E

1下点

safety properties "nothing bad will happen"

liveness properties "something good will happen"

خصوصیات زمان خطی

safety properties "nothing bad will happen" examples:

- mutual exclusion \ special case: invariants
- deadlock freedom \(\) "no bad state will be reached"
- "every red phase is preceded by a yellow phase"

liveness properties "something good will happen" examples:

- "each waiting process will eventually enter its critical section"
- "each philosopher will eat infinitely often"

1EG

Let \boldsymbol{E} be an LT property over \boldsymbol{AP} .

E is called an invariant if there exists a propositional formula Φ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

 Φ is called the invariant condition of E.

35.5

```
mutual exclusion (safety):
```

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{s.t.} \\ \forall i \in \mathbb{N}. \text{ } \operatorname{crit}_1 \not\in A_i \text{ or } \operatorname{crit}_2 \not\in A_i \end{cases}$$

invariant condition: $\Phi = \neg crit_1 \lor \neg crit_2$

here: $AP = \{ crit_1, crit_2, \ldots \}$

mutual exclusion (safety):

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{s.t.} \\ \forall i \in \mathbb{N}. \text{ } \operatorname{crit}_1 \not\in A_i \text{ or } \operatorname{crit}_2 \not\in A_i \end{cases}$$

invariant condition: $\phi = \neg crit_1 \lor \neg crit_2$

deadlock freedom for 5 dining philosophers:

$$DF = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N} \exists j \in \{0, 1, 2, 3, 4\}. \text{ wait}_j \notin A_i \end{cases}$$

invariant condition:

$$\Phi = \neg wait_0 \lor \neg wait_1 \lor \neg wait_2 \lor \neg wait_3 \lor \neg wait_4$$

here: $AP = \{ wait_j : 0 \le j \le 4 \} \cup \{ ... \}$

TEG+

Let E be an LT property over AP. E is called an invariant if there exists a propositional formula Φ s.t.

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

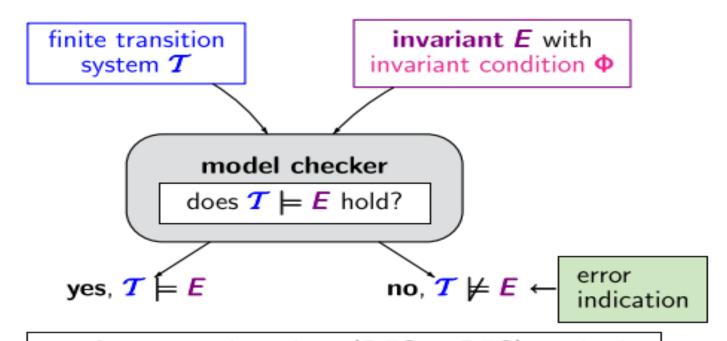
Let **T** be a TS over **AP** without terminal states. Then:

$$T \models E$$
 iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$
iff $s \models \Phi$ for all states s on a path of T
iff $s \models \Phi$ for all states $s \in Reach(T)$

i.e., • holds in all initial states and is invariant under all transitions

Invariant check

ALC:



perform a graph analysis (**DFS** or **BFS**) to check whether $s \models \Phi$ for all $s \in Reach(T)$

خصوصیت safety

11.5

state that "nothing bad will happen"

invariants:

"no bad state will be reached"

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: $never \land wait_i$ $0 \le i < n$

other safety properties:

"no bad prefix"

- German traffic lights:
 every red phase is preceded by a yellow phase
- beverage machine:
 the total number of entered coins is never less
 than the total number of released drinks

11 / 17

Bad prefix

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g., ... $\{\bullet\}$

• beverage machine:

the total number of entered coins is never less than the total number of released drinks

bad prefix, e.g., {pay} {drink} {drink}

safety

(F)

Let E be a LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

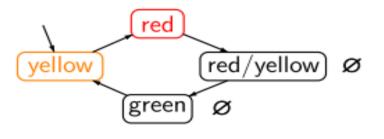
there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=} set of bad prefixes for E$

15.5



"every red phase is preceded by a yellow phase"

hence: $T \models E$

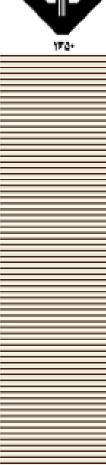
 $E = \text{ set of all infinite words } A_0 A_1 A_2 ...$ over 2^{AP} such that for all $i \in \mathbb{N}$: $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

safety

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

```
T \models E iff Traces(T) \subseteq E iff Traces_{fin}(T) \cap BadPref = \emptyset iff Traces_{fin}(T) \cap MinBadPref = \emptyset
```

```
BadPref=set of all bad prefixes of EMinBadPref=set of all minimal bad prefixes of ETraces(T)=set of traces of TTraces<sub>fin</sub>(T)=set of finite traces of T={ trace(\hat{\pi}) : \hat{\pi} is an initial, finite path fragment of T
```



liveness

100

"liveness: something good will happen."

"event a will occur eventually"

e.g., termination for sequential programs

"event a will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

e.g., every waiting process enters eventually its critical section

Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
 invariant
- Whenever a philosopher eats then he has been thinking at some time before.

 safety
- Whenever a philosopher eats then he will think some time afterwards.

 liveness
- Between two eating phases of philosopher i lies at least one eating phase of philosopher i+1.

safety

liveness

Let E be an LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

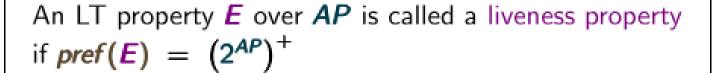
E is called a liveness property if each finite word over **AP** can be extended to an infinite word in **E**, i.e., if

$$pref(E) = (2^{AP})^+$$

Examples:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
- whenever a process has requested its critical section then it will eventually enter its critical section

11.5



Examples for $AP = \{crit_i : i = 1, ..., n\}$:

• each process will eventually enter its critical section

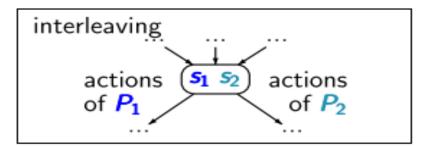
 $E = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$

$$\forall i \in \{1, \ldots, n\} \ \exists k \geq 0. \ crit_i \in A_k$$

fairness

35.5

two independent non-communicating processes $P_1 \mid \mid P_2$



possible interleavings:

 $P_1 \ P_2 \ P_2 \ P_1 \ P_1 \ P_2 \ P_1 \ P_2 \ P_2 \ P_2 \ P_2 \ P_1 \ P_1 \dots$ fair $P_1 \ P_1 \ P_2 \ P_1 \ P_1 \ P_2 \ P_1 \ P_1 \ P_2 \ P_1 \dots$ fair $P_1 \ P_1 \dots$ unfair

of the nondeterminism resulting from interleaving and competitions

68 / 189

- unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.
- strong fairness, e.g.,
 every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness, e.g.,
 every process that is continuously enabled from a certain time instance on, gets its turn infinitely often.

Let T be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment we will provide conditions for

- unconditional A-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ
 using the following notations:

$$Act(s_i) = \{\beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s'\}$$

$$\stackrel{\infty}{\exists} \widehat{=} \text{ "there exists infinitely many ..."}$$

$$\stackrel{\infty}{\forall} \widehat{=} \text{ "for all, but finitely many ..."}$$

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

• ρ is unconditionally A-fair, if $\exists i \geq 0. \alpha_i \in A$

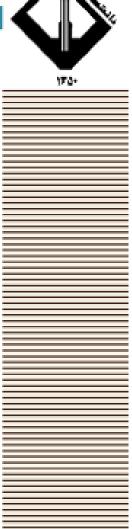
"actions in **A** will be taken infinitely many times"

Let T be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly A-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

"If infinitely many times some action in A is enabled, then actions in A will be taken infinitely many times."



TF 2

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

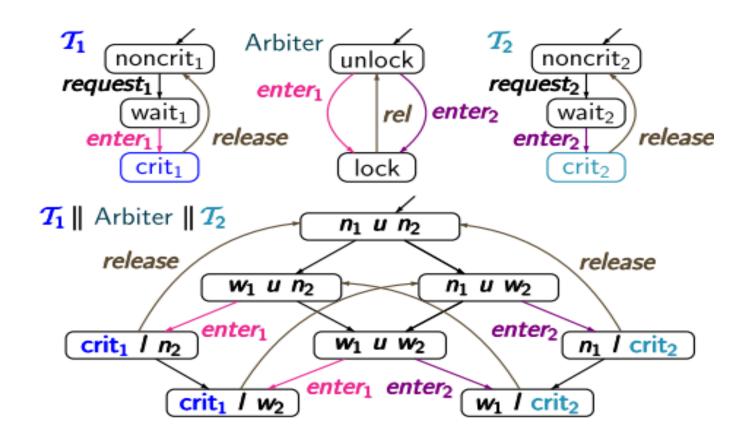
- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly A-fair, if

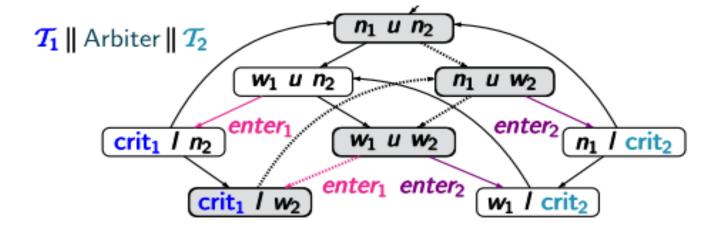
$$\exists i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \exists i \geq 0. \alpha_i \in A$$

ρ is weakly A-fair, if

$$\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \varnothing \implies \overset{\widetilde{\Xi}}{\exists} i \geq 0. \alpha_i \in A$$

"If from some moment, actions in A are enabled, then actions in A will be taken infinitely many times."



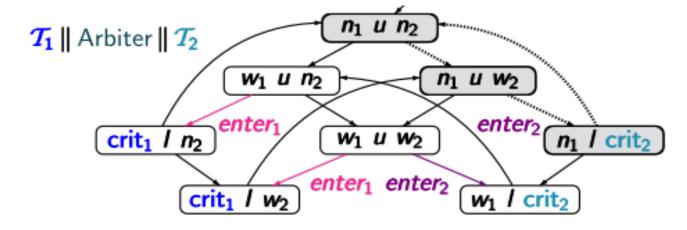


fairness for action set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle \text{crit}_1, I, w_2 \rangle \right)^{\omega}$$

- unconditional A-fairness: yes
- strong A-fairness: yes ← unconditionally fair
- weak A-fairness: yes ← unconditionally fair

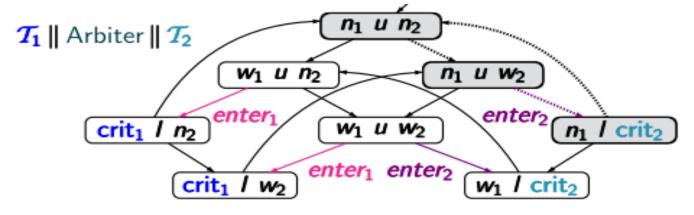
TE



fairness for action-set $A = \{enter_1\}$:

$$(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, I, \text{crit}_2 \rangle)^{\omega}$$

- unconditional A-fairness: no
- strong A-fairness: yes ← A never enabled
- weak A-fairness: yes ← strongly A-fair



fairness for action set $A = \{enter_1, enter_2\}$:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, u, \frac{crit_2}{2} \rangle\right)^{\omega}$$

- unconditional A-fairness: yes
- strong A-fairness: yes
- weak A-fairness: yes

