Course: Power Electronic
Advanced Technology
Name:
Question1: For a power diode, the reverse recovery time is $3.9 \mu s$ and the rate of diode-current decay is $50 \frac{A}{\mu s}$. For a softness factor of 0.3 , calculate the peak inverse current and the storage charge.

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
t_{r r}=t_{a}+t_{b}=3.9 \mu \mathrm{~s} \\
S . F .=\frac{t_{b}}{t_{a}}=0.3
\end{array} \Rightarrow t_{a}=3 \mu \mathrm{~s}\right.
\end{array}\right\} \begin{aligned}
& I_{R R}=t_{a} \frac{d i}{d t}=3 \times 50=150 \mathrm{~A}
\end{aligned} Q_{R R}=\frac{1}{2} I_{R R} t_{R R}=\frac{1}{2} \times 150 \times 3.9=292.50
$$

Question2: The waveforms of the transistor switch are shown in the figure 1. The parameteres are $V_{C C}=250 \mathrm{~V}, V_{B E(\text { sat })}=3 \mathrm{~V}, I_{B}=8 A, V_{C E(\text { sat })}=2 \mathrm{~V}, I_{C S}=$ $100 A, t_{d}=0.5 \mu s, t_{r}=1 \mu s, t_{s}=5 \mu s, t_{f}=3 \mu s$ and $f_{s}=10 \mathrm{kHz}$. The duty cycle is $k=50 \%$. The collector to emitter leakage current is $I_{\text {CEO }}=3 \mathrm{~mA}$. Determine the power loss due to collector current (a) during turn-on $t_{o n}=t_{d}+t_{r}$, (b) during conduction period t_{n} (c) during turn off $t_{o f f}=t_{s}+t_{f}$, (d) during off time t_{o}, (e) total average power losses P_{T}.

Figure 1: Question 2

$$
\begin{aligned}
& T=\frac{1}{f_{s}}=100 \mu s . k=0.5, k T=t_{d}+t_{r}+t_{n}=50 \mu s \Rightarrow t_{n}=50-0.5-1=48.5 \mu \mathrm{~s} . \\
& \quad(1-k) T=t_{s}+t_{f}+t_{o}=50 \mu s \Rightarrow t_{o}=50-5-3=42 \mu \mathrm{~s} .
\end{aligned}
$$

(a) During delay time, $0 \leq t \leq t_{d}$:

$$
i_{c}(t)=I_{C E O}, v_{C E}=V_{C C}, P_{c}(t)=i_{c} v_{C E}=I_{C E O} V_{C C}=3 \times 10^{-3} \times 250=0.75 \mathrm{~W}
$$

$$
P_{d}=\frac{1}{T} \int_{0}^{t_{d}} P_{c}(t) d t=I_{C E O} V_{C C} t_{d} f_{s}=3 \times 10^{-3} \times 250 \times 0.5 \times 10^{-6} \times 10 \times 10^{3}=3.75 \mathrm{~mW}
$$

During rise time, $0 \leq t \leq t_{r}: i_{c}(t)=\frac{I_{C S}}{t_{r}} t, v_{C E}=V_{C C}+\left(V_{C E(s a t)}-V_{C C}\right) \frac{t}{t_{r}}$

$$
\begin{aligned}
& P_{c}(t)=i_{c} v_{C E}=I_{C S} \frac{t}{t_{r}}\left[V_{C C}+\left(V_{C E(s a t)}-V_{C C}\right) \frac{t}{t_{r}}\right] \\
P_{r}= & \frac{1}{T} \int_{0}^{t_{r}} P_{c}(t) d t=t_{r} I_{C S}\left[\frac{V_{C C}}{2}+\frac{\left.V_{C E(s a t)-V_{C C}}^{3}\right] f_{s}=1 \times 10^{-6} \times 100 \times 42.33 \times 10 \times 10^{3}}{}=42.33 \mathrm{~W}\right.
\end{aligned}
$$

$$
P_{o n}=P_{d}+P_{r}=42.33+3.75 \times 10^{-3}=42.33 \mathrm{~W}
$$

(b) The conduction period, $0 \leq t \leq t_{n}: i_{c}(t)=I_{C S}, v_{C E}(t)=V_{C E(s a t)}$

$$
P_{c}(t)=i_{c} v_{C E}=I_{C S} V_{C E(s a t)}=2 \times 100=200 \mathrm{~W}
$$

$$
P_{n}=\frac{1}{T} \int_{0}^{t_{n}} P_{c}(t) d t=I_{C S} V_{C E(s a t)} t_{n} f_{s}=2 \times 100 \times 48.5 \times 10^{-6} \times 10 \times 10^{3}=97 \mathrm{~W}
$$

(c) The storage period, $0 \leq t \leq t_{s}: i_{c}(t)=I_{C S}, v_{C E}(t)=V_{C E(s a t)}$

$$
\begin{aligned}
& P_{c}(t)=i_{c} v_{C E}=I_{C S} V_{C E(s a t)}=2 \times 100=200 \mathrm{~W} \\
& P_{s}=\frac{1}{T} \int_{0}^{t_{s}} P_{c}(t) d t=I_{C S} V_{C E(s a t)} t_{s} f_{s}=2 \times 100 \times 5 \times 10^{-6} \times 10 \times 10^{3}=10 \mathrm{~W}
\end{aligned}
$$

The fall times, $0 \leq t \leq t_{f}: i_{c}(t)=I_{C S}\left(1-\frac{t}{t_{f}}\right), v_{C E}(t)=\frac{V_{C C}}{t_{f}} t$

$$
\begin{aligned}
& P_{c}(t)=i_{c} v_{C E}=V_{C C} I_{C S}\left[\left(1-\frac{t}{t_{f}}\right) \frac{t}{t_{f}}\right] \\
& P_{f}=\frac{1}{T} \int_{0}^{t_{f}} P_{c}(t) d t=\frac{V_{C C} I_{C S} t_{f} f_{s}}{6}=\frac{250 \times 100 \times 3 \times 10^{-6} \times 10 \times 10^{3}}{6}=125 \mathrm{~W}
\end{aligned}
$$

Course: Power Electronic
Advanced Technology
Name:

$$
P_{o f f}=P_{s}+P_{f}=10+125=135 \mathrm{~W}
$$

(d) Off-period, $0 \leq t \leq t_{o}: i_{c}(t)=I_{C E O}, v_{C E}(t)=V_{C C}$

$$
P_{c}(t)=i_{c} v_{C E}=I_{C E O} V_{C C}=3 \times 10^{-3} \times 250=0.75 \mathrm{~W}
$$

$$
P_{o}=\frac{1}{T} \int_{0}^{t_{o}} P_{c}(t) d t=I_{C E O} V_{C C} t_{o} f_{s}=3 \times 10^{-3} \times 250 \times 42 \times 10^{-6} \times 10 \times 10^{3}=0.315 \mathrm{~W}
$$

(e) The total power loss in th transistor due to collector current is:

$$
P_{T}=P_{o n}+P_{o f f}+P_{o}=42.33+97+135+0.315==274.65 \mathrm{~W}
$$

Question 3: The maximum junction tempreture of a transistor is $T_{J}=125^{\circ} \mathrm{C}$ and the ambient temperature is $T_{A}=25^{\circ} \mathrm{C}$. If the thermal impedances are $R_{J C}=$ $0.4^{\circ} \frac{C}{W}, R_{C S}=0.1^{\circ} \frac{C}{W}, R_{S A}=0.5^{\circ} \frac{C}{W}$. Calculate (a) the maximum power dissipation and (b) the case temperature.
(a)

$$
\begin{aligned}
& T_{J}-T_{A}=P_{T}\left(R_{J C}+R_{C S}+R_{S A}\right)=P_{T} R_{J A}, R_{J A}=0.4+0.1+0.5=1 \\
& 125-25=1 P_{T} \Rightarrow P_{T}=100 \mathrm{~W}
\end{aligned}
$$

(b)

$$
T_{C}=T_{j}-P_{T} R_{J C}=125-100 \times 0.4=85^{\circ} \mathrm{C}
$$

Question4: The beta (β) of the transistor in Figure 2 varies from 10 to 60 . The load resistance is $R_{C}=5 \Omega$. The dc supply voltage is $V_{C C}=100 \mathrm{~V}$ and the input voltage to the base circuit is $V_{B}=8 \mathrm{~V}$. If $V_{C E(\text { sat })}=2.5 \mathrm{~V}$ and $V_{B E(\text { sat })}=1.75 \mathrm{~V}$. Find (a) the value of R_{B} that will result in saturation with an overdrive factor of 20 , (b) the forced β, and (c) the power loss in the transistor P_{T}.

Figure 2: Question 4

$$
I_{C S}=\frac{V_{C C}-V_{C E(s a t)}}{R_{C}}=\frac{100-2.5}{5}=19.5 \mathrm{~A}
$$

$$
I_{B S}=\frac{I_{C S}}{\beta_{\min }}=\frac{19.5}{10}=1.95 \mathrm{~A} \Rightarrow I_{B}=I_{B S} \times(\text { overdrivefactor })=20 \times 1.95=39 \mathrm{~A}
$$

(a)

$$
R_{B}=\frac{V_{B}-V_{B E(s a t)}}{I_{B}}=\frac{8-1.75}{39}=0.1602 \Omega
$$

(b)

$$
\beta_{f}=\frac{I_{C S}}{I_{B}}=\frac{19.5}{33}=0.59
$$

(c)

$$
P_{T}=V_{B E(s a t)} \times I_{B}+V_{C E(s a t)} \times I_{C S}=1.75 \times 39+2.5 \times 19.5=117 \mathrm{~W}
$$

Quesion5: A power transistor has its switching waveforms as shown in Figure 3. If the average power loss in the transistor is limited to 300 W . Find the switching frequency at which this transistor can be operated.

Figure 3: Question 5
Energy loss during turn on
$=\int_{0}^{t_{o n}} i_{C} v_{C E} d t=\int_{0}^{t_{o n}}\left(\frac{I_{C S}}{50} \times 10^{6} t\right)\left(V_{C C}-\frac{V_{C C}}{40} \times 10^{6} t\right) d t=\int_{0}^{t_{o n}}\left(2 \times 10^{6} t\right)\left(200-5 \times 10^{6} t\right) d t$

In The Name Of God
Spring Term 2016
Quchan University
Of
Date: 1395/02/05
Course: Power Electronic
Advanced Technology
Name:

$$
=0.1067 W-s e c
$$

Energy loss during turn off

$$
=\int_{0}^{t_{o f f}}\left(100-\frac{100}{60} \times 10^{6} t\right)\left(\frac{200}{75} \times 10^{6} t\right) d t=0.1603 \mathrm{~W}-s e c
$$

Total energy loss in one cycle

$$
0.1067+0.1603=0.267 W-s e c
$$

Average power loss in transistor $=$ switching frequency \times energy loss in one cycle Allowable switching frequency :

$$
f=\frac{300}{0.267}=1123.6 \mathrm{~Hz}
$$

