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PREFACE

By combining data mining, statistics, and computer science with computational
biology, bioinformatics, genomics, proteomics and personalized medicine, and then
adding other familiar and emerging fields wewill portray an inclusive interdisciplinary
environment in which a growing number of us enjoy working. This book is written for
students, practitioners, and researchers involved in biomedical or data mining projects
that use gene expression or protein expression data. This group includes students of
bioinformatics, data mining, computational biology, biomedical sciences, and other
related areas. In addition, this book is directed to anyone interested in efficient
methods of knowledge discovery based on data sets consisting of thousands or
millions of variables and often only dozens or hundreds of observations, whether
the data is related to biomedical research or to such other fields as market, financial,
or physical modeling.

Even experienced data miners may be surprised to learn that some well estab-
lished methods and procedures fail in such high-dimensional p� N situations.
New methods are constantly being developed, making it even more difficult for
biomedical researchers and bioinformaticians to select appropriate methods to use
for a particular project. No single method works optimally in all situations. Some
approaches are efficacious for some study goals but inappropriate for others. For
example, we should not drive biomarker discovery with unsupervised learning
methods. However, methods like clustering are so popular that they are used indis-
criminately, not only for studies seeking new taxonomic information, for which
they are a perfect choice, but also often as primary methods in situations in which
supervised approaches should be used. The confusion among biomedical researchers
is visible in the large body of papers describing experiments based on methods that
are inappropriate for particular study goals or for the data at hand. Such experiments
provide either misleading conclusions or only anecdotal evidence.

One of the primary goals of this book is to provide clear guidance on when to
use which methods and why. Such subjects as why some of the popular approaches
can lead to inferior solutions, and sometimes even to the worst possible results will
be examined. Among the topics discussed are: univariate versus multivariate
approaches, supervised versus unsupervised methods, selecting proper methods for
feature selection, regularization of biomarker discovery leading tomore stable and gen-
eralizable classifiers, ensemble-based estimation of the misclassification error rate,
identification of the Informative Set of Genes containing all information significant
for class differentiation. The book covers all aspects of gene and protein expression
analysis—technology, data preprocessing and quality assessment, basic exploratory
analysis, unsupervised and supervised learning algorithms. Special attention is
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given to multivariate biomarker discovery leading to parsimonious and generalizable
classifiers.

Students of my course on Data Mining for Genomics and Proteomics, a part of
the Central Connecticut State University (CCSU) data mining program, have diverse
backgrounds, from molecular biology PhDs to those with no biology background.
This book is written for an equally broad audience. The only assumption is that the
reader is interested in the subject. As a result, for different readers different parts of
this book may be seen as introductory and different parts as advanced. All efforts
have been made to start each subject from its basics.

The book comprises five main chapters with the sixth chapter containing
examples of hands-on analysis of real-world data sets. Chapter 1 provides an introduc-
tion to basic, mostly biological, terms. Chapter 2 focuses on microarray technology
and basic analysis of gene expression data, including low-level preprocessing
methods, probe set level preprocessing and filtering, basic exploratory analysis, and
such unsupervised learning methods as cluster analysis, principal component analysis,
and self-organizing maps.

Chapters 3 and 4 are the core of the book, covering multivariate methods for
feature selection, biomarker discovery, and identification of generalizable and inter-
pretable classifiers. Such biomarkers and classifiers can be designed and used for
early medical diagnosis, for tailoring therapy selection to prediction of individual
response to available treatment modalities, for assessing treatment progression, for
drug discovery, and in any other areas that can benefit from parsimonious multivariate
markers identified from a very large number of variables.

Chapter 3 starts with an overview of biomarker discovery and classification,
followed by the coverage of feature selection methods, and then descriptions of
selected supervised learning algorithms. Important differences between univariate
and multivariate approaches as well as between supervised and unsupervised methods
are discussed. Three learning algorithms are described in detail. Linear discriminant
analysis represents classical and still powerful parametric methods that should be in
the portfolio of any data miner and bioinformatician. Support vector machines are
newer but already well-established methods for designing both linear and non-
linear classifiers. Random forests represent recent ensemble-based approaches. In
addition, two other learning algorithms are described—k-nearest neighbors and arti-
ficial neural networks, useful in some situations, even if they are usually not the first
choice in biomarker discovery. A discussion of the bootstrap and ensemble-based
approaches culminates with defining the modified bagging schema that allows for
building ensembles of classifiers based on randomized training sets generated by
stratified sampling without replacement.

Chapter 4 defines the Informative Set of Genes as a set containing all infor-
mation significant for the differentiation of classes represented in training data,
which can be used in two complementary capacities. First, it facilitates biological
interpretation of class differences. Second, in combination with ensembles of classi-
fiers generated with the use of the modified bagging schema, it allows the identi-
fication of robust biomarkers. The method introduced in Chapter 4 allows for the
optimization of feature selection that leads to identification of parsimonious and
generalizable multivariate biomarkers with plausible biological interpretation.
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Chapter 5 addresses the analysis of protein expression data. Data mining
methods for feature selection, biomarker discovery and classification are the same
in proteomics as those described, in Chapters 3 and 4, for genomics. For that
reason, Chapter 5 focuses on proteomic technologies and on the analytical steps
that are intrinsic to proteomics. The covered technologies include protein microarrays,
two-dimensional gel electrophoresis and MALDI-TOF and SELDI-TOF mass
spectrometry. Among the discussed analytical methods are: preprocessing of mass
spectrometry data, and associating biomarker peaks with proteins.

The exercises included in Chapters 2–4 give readers an opportunity to put the
methods they have learned to practical use. To make it easier and more enjoyable,
many of these exercises are covered by studies presented in Chapter 6.

Finally, Chapter 6 provides examples of the analysis of real-world gene
expression data sets that illustrate the practical application of the methods described
in this book. The examples illustrate such tasks as designing a multi-stage classi-
fication schema, combining two gene expression data sets into one training set,
identification of the Informative Set of Genes and its primary expression patterns,
and using ensembles of classifiers built with the modified bagging schema to identify
parsimonious and generalizable biomarkers.

DARIUS M. DZIUDA

Bethany, Connecticut
June 2009
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CHA P T E R1
INTRODUCTION

Data mining for genomics and proteomics belongs to an interdisciplinary and
relatively new field of bioinformatics, which evolves so rapidly that it is difficult to
predict the extent and pace of the changes. Biology, or more generally life sciences,
can now be considered information sciences. They are changing from disciplines
that deal with relatively small data sets to research fields overwhelmed by a large
number of huge data sets. Two main triggers are the source of these changes. The
first was the Human Genome Project. As the result of research sparked by this project,
we now have a large and growing library of organisms with already sequenced
genomes. The second was a new technology—genomic microarrays—that allows
for the quick and inexpensive measurement of gene expression level for thousands
of genes simultaneously.

These and other changes have occurred during the last ten years or so. Before
then, biologists and biomedical researchers were dealing with data sets typically con-
sisting of dozens or perhaps hundreds of biological samples (patients, for example)
and dozens of variables. The number of samples was typically greater than the
number of variables. “Traditional” statistical methods were used and researchers did
not have to think about heuristic approaches to overcome the curse of dimensionality
as we do today.

Typical data sets generated with the use of current microarray technologies
include many thousands of variables and only dozens or hundreds of biological
samples. When exon arrays are more widely used or when protein chip technologies
allow for direct quantification of the protein expression level on the whole-human-
proteome scale, we may routinely analyze data sets with more than a million variables.
The traditional univariate approach—one-gene or one-protein-at-a-time—is no longer
sufficient. Different approaches are necessary and multivariate analysis has to become
a standard one. There is nothing wrong with using the univariate analysis, but if
research stops at that point, as is the case in some studies, a huge amount of generated
data may be heavily underused, and potentially important biomedical knowledge not
extracted. Here is where data miners should be involved.

Today, hardly any study involving high throughput gene or protein expression
data is performed exclusively by biologists or biomedical scientists. Although few
research groups realize the importance of including data miners in their studies, the
role of a relatively new breed of scientists called bioinformaticians is indisputable.
The bioinformaticians are not necessarily data miners, although data mining should

Data Mining for Genomics and Proteomics. By Darius M. Dziuda
Copyright # 2010 John Wiley & Sons, Inc.
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be one of their required skills. There is a small but growing population of scientists
who were majoring in bioinformatics. However, most of the experienced bioinforma-
ticians are still either biologists who learned computer science and statistics, or com-
puter scientists familiar with biology. The interdisciplinary nature of this field is
expansive and involves many other disciplines, like physiology, clinical sciences,
mathematics, physics, and chemistry.

Since this book is written for students and practitioners of data mining and
bioinformatics as well as biomedical sciences, there may be some terms that are
well known to some readers but new for others. We will start with a short explanation
of some basic, mostly biological, terms that are relevant for our data mining focus.

1.1 BASIC TERMINOLOGY

1.1.1 The Central Dogma of Molecular Biology

The central dogma of molecular biology was originally introduced by Francis Crick in
1957 at a symposium of the Society for Experimental Biology in London and then
published in 1958 (Crick 1958). The dogma1 states that once the detailed sequence
information has passed into protein it cannot be transferred to nucleid acid or protein.
Crick’s original description of the dogma (Crick 1958) was:

The Central Dogma

This states that once ‘information’ has passed into protein it cannot get out again.

In more detail, the transfer of information from nucleic acid to nucleic acid, or

from nucleic acid to protein may be possible, but transfer from protein to protein,

or from protein to nucleic acid is impossible. Information means here the precise

determination of sequence, either of bases in the nucleic acid or of amino acid

residues in the protein.

Please note the qualification that ‘information’ here means the sequential information.
Understood in its original meaning, the central dogma is still one of the fundamental
ideas of molecular biology. Although introduced as a speculative idea, the central
dogma holds true as well as there are plausible arguments that it is rather unlikely
for it to be reversed (Crick 1970; Crick 1988).

The central dogma is quite often confused with the standard pathway of infor-
mation flow from DNA to RNA to protein. To address misunderstandings about the
dogma, Crick explained it in relation to three classes of transfers of sequential infor-
mation: general transfers (ones that commonly occur), special transfers (may occur in
special situations), and unknown transfers. The central dogma is about the unknown
transfers—protein to protein, protein to DNA, and protein to RNA—and it postulates
that these transfers never occur (Crick 1970).

1Francis Crick admits in his autobiography (Crick 1988) that he was criticized for using the word dogma in
the situation where the word hypothesis would be more appropriate. Crick argues, however, that he already
used the term hypothesis in the sequence hypothesis introduced at the same time (Crick 1958) and wanted to
emphasize the more powerful and central position of the “dogma.”
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The current knowledge of information transfer is consistent with the central
dogma. The standard pathway of information flow describes the process, in which pro-
teins are synthesized based on DNA information (Fig. 1.1): DNA is transcribed into
RNA, and then RNA—or more precisely, mRNA (messenger RNA)2—is translated
into protein. These are two of the Crick’s general transfers. The third one is replication
(DNA to DNA). Special transfers are represented by reverse transcription (RNA to
DNA). There is no evidence for the unknown transfers.

In humans (and other eukaryotic3 organisms), transcription takes place in the
cell nucleus, and translation in the cytoplasm—outside the nucleus. Most human
genes contain noncoding sequences (introns), which have to be removed from
mRNA before it is translated into protein. The process that eliminates introns is
called splicing. During translation, which takes place at ribosomes, the mRNA
sequential information is translated into a string of amino acids that are used to syn-
thesize the protein. First, the mRNA sequence is divided into three-letter codons repre-
senting amino acids. Subsequently, the amino acids are linked together to create the
protein. Translation ends when one of the stop codons is encountered, and the
newly created protein leaves the ribosome.

1.1.2 Genome

The term genome can be understood either as the complete set of genetic information
or as the entire set of genetic material contained in an organism’s cell. When applied to
the human genome, this definition includes both the nuclear genome and the mito-
chondrial genome.4 Nevertheless, in the area of gene expression analysis, we often
use the term genome as referring to the nuclear genome only, that is, understood as
the complete DNA sequence of one set of the organism’s chromosomes.

Figure 1.1: The basic flow of sequential information: DNA to DNA (replication), DNA to
RNA (transcription), RNA to protein (translation), and RNA to DNA (reverse transcription).
The central dogma of molecular biology states that “once (sequential) information has passed
into protein it cannot get out again” (Crick 1970).

2Crick referred to RNA since mRNA had yet to be discovered when he formulated the dogma.
3Eukaryotic cells are cells that have a nucleus. Eukaryotes, that is, organisms with eukaryotic cells, may be
unicellular or multicellular (e.g., fungi, plants, and animals). Prokaryotes are unicellular organisms (such as
bacteria) that have no nuclei. Pro in the term means “prior to” and karyot means “nucleus”. The prefix eu
means “true” (Garrett and Grisham 2007).
4The mitochondrial genome represents organellar genomes carried by cells of most eukaryotic organisms.
Another example of organellar genomes is the chloroplast genome in plants.
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In humans, every nucleated cell (circulating mature red blood cells have no
nucleus) contains the nuclear genome organized within the nucleus into the DNA
molecules called chromosomes—22 pairs of autosomes (nonsex chromosomes) and
two heterosomes (sex chromosomes). The length of the human genome sequence is
about 3 � 109 nucleotides (base pairs).5 For two randomly selected humans, the
order of nucleotides in their genomes is about 99.9% identical (it is more than that
if the two are related). However, 0.1 percent of the three billion bases amounts to
three million places where two such genomes differ. The space for different DNA
sequences is huge, beyond huge actually (up to 43000000).6 We are different; no two
humans (with the exception of identical twins) have identical DNA.

The Human Genome Project was an international research program aimed at
obtaining a high-quality sequence of the euchromatic (i.e., gene-rich) portion of the
human genome. The project was initiated in 1990 and was officially completed in
2003. In February 2001, two draft versions of the human genome sequence were
simultaneously announced and published, one from the International Human
Genome Sequencing Consortium (International Human Genome Sequencing
Consortium 2001) and the other from Celera Genomics (Venter et al. 2001). Each
of the drafts contained over 100,000 gaps and the draft sequences were missing
about 10% of the euchromatic portion of the genome (Stein 2004). In 2003, the
‘finished’ human genome sequence was announced. It covered 99% of the euchro-
matic portion of the human genome (and about 94% of the total genome), had only
341 gaps,7 and contained only about one error per 100,000 bases (International
Human Genome Sequencing Consortium 2004).

1.1.3 Proteome

A simplified definition could state that the proteome is the complete set of protein pro-
ducts expressed by the genome (see the central dogma). However, unlike the genome
that can be considered a rather stable entity, the proteome constantly changes (mainly
due to protein–protein interactions and changes in a cell’s environmental conditions).
Furthermore, the set of proteins expressed in a cell depends on the type of cell. Thus, a
proteome can also be interpreted as a snapshot of all the proteins expressed in a cell or a
tissue at a particular point in time. This means that depending on the context, we may
refer to the single proteome of an organism (i.e., the complete proteome understood as

5This is the length of the haploid human genome, that is, the length of the DNA sequence of the 24 distinct
chromosomes, one from each pair of the 22 autosomes and the 2 heterosomes. The diploid human genome,
including the DNA sequence from all 46 chromosomes, would have about 6 � 109 nucleotides, or six giga-
bases (6 Gb). The latest technological advances allowed for sequencing the diploid genome of JamesWatson
in two months (Wheeler et al. 2008).
6This number is the upper limit of potentially significant differences since not all changes in the DNA
sequence are necessarily associated with differences in functions.
7Many of these gaps were associated with segmental duplications that could not be sequenced with available
technologies. This was also one of the reasons why The Human Genome Project did not target the hetero-
chromatic (gene-poor) regions of the human genome, which contain highly repetitive sequences. The esti-
mated size of the gaps was: about 2.8�107 bases in the euchromatic portion and about 2.0�108 bases in the
heterochromatic portion of the genome.
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the set of all protein products that can be expressed in the organism) or to many
cellular proteomes that are qualified by location and time.

The number of proteins in the human proteome is much larger than the number
of the underlying protein-coding genes. Currently, the number of protein-coding
genes in the human genome is estimated to be under 21,000 (Clamp et al. 2007).
The current estimate for the size of the complete human proteome is about one million
proteins. Why are there more proteins than genes if each protein is synthesized by
reading the sequence of a gene? This is due to such events as alternative splicing of
genes and post-translational modifications of proteins.8

TheHumanProteomeOrganisation (HUPO) plans to identify and characterize all
proteins in the complete human proteome. However, due to the scale and complexity of
this task, the goal of the first phase of the Human Proteome Project (HPP) is limited to
the identification of one representative protein for each protein-coding human gene.
After this first stage, the catalogue of human proteins will be extended to eventually
include all protein isoforms (Uhlen 2007; Pearson 2008; Service 2008).

1.1.4 DNA (Deoxyribonucleic Acid)

DNA is a nucleic acid that encodes genetic information. DNA is capable of self-
replication and synthesis of RNA. In 1944, Oswald Avery and colleagues identified
DNA as the genetic material of inheritance (Avery et al. 1944). In 1953, James
Watson and Francis Crick proposed and described a model of DNA as the double
helical structure9 (Watson and Crick 1953a, 1953b).

DNA consists of two long chains10 (strands) of nucleotides twisted into a double
helix (Fig. 1.2) and joined by hydrogen bonds between the complementary nucleotide
bases. Each of the strands has a sugar phosphate backbone, to which the bases are
covalently attached.

There are four types of nucleotides in DNA and each of them contains a different
base: adenine (A), guanine (G), cytosine (C), or thymine (T).11 The four bases are
letters of the alphabet in which genetic information is encoded. Strings of these letters
are read only in one direction. Each of the twoDNA strands has its polarity—the 50 end
and the 30 end12—and the two complementary strands are bound with the opposite

8Alternative splicing is described in Section 1.1.8. Post-translational modifications are various chemical
alterations that proteins may undergo after their synthesis. Examples of these modifications include the enzy-
matic cleavage (cutting a protein into smaller functional proteins), covalent attachment of additional bio-
chemical groups (e.g., phosphorylation, methylation, oxidation, acetylation), and forming covalent bonds
between proteins.
9Watson and Crick admitted that their work was stimulated by unpublished experimental results (X-ray crys-
tallographic data) and ideas of Rosalind Franklin and Maurice Wilkins; a part of these results was published
in the same issue of Nature as the Watson and Crick main paper (Franklin and Gosling 1953; Wilkins et al.
1953).
10The entire DNA in one human cell (in all 46 chromosomes) is about two meters long, yet fits into a cell
nucleus, which is 2–3 micrometers wide.
11Due to their chemical structure, A and G nucleotides are purines, whereas C and T are pyrimidines.
12These ends correspond to 50 and 30 carbon atoms in a ribose residue, which are not linked to another
nucleotide (Singleton 2008).
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directionality (i.e., they are antiparallel). The sequence of nucleotides determines the
genetic information. In nature, base pairs form only between A and T and between G
and C. Therefore, the sequence of bases in one strand of DNA can be deduced from the
sequence of bases in its complementary strand (which enables DNA replication).
During transcription, the sequential information contained in DNA is transferred
into the single-stranded RNA.13

The latest discoveries indicate that the majority of human DNA is transcribed
into various RNA transcripts (The ENCODE Project Consortium 2007). The messen-
ger RNA (mRNA) is the only type of these RNA transcripts that are subsequently
translated into proteins. Consequently, these discoveries indicate that there are few
unused sequences in the human genome.

1.1.5 RNA (Ribonucleic Acid)

RNA is a nucleic acid molecule similar to DNA but containing the sugar component
ribose rather than deoxyribose14 and the uracil (U) base instead of thymine (T) in
DNA. RNA is formed upon a DNA template, but is almost always single-stranded

Figure 1.2: The DNA double helix (courtesy: The U.S. Department of Energy Genome
Programs, http://genomics.energy.gov). The DNA structure includes two antiparallel
deoxyribose-phosphate helical chains, which are connected via hydrogen bonds between
complementary bases on the chains (base pairs). The base pairs “rungs of the ladder” are
spaced 0.34 nm apart. This double helix structure repeats itself every 10 base pairs, or
3.4 nm (Watson and Crick 1953a; Garrett and Grisham 2007). (See color insert.)

13The DNA strand that has the same sequence as the synthesized transcript RNA (except for the replacement
of Ts by Us) is called the sense strand. The other DNA strand is called the antisense strand (Campbell and
Farrell 2006).
14The prefix deoxy means that an oxygen atom is missing (H instead of OH) from one of the ribose
carbon atoms.
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and has a much shorter sequence of nucleotides. There are many kinds of RNA
molecules, with the three main classes of cellular RNA being: mRNA—messenger
RNA; tRNA—transfer RNA; and rRNA—ribosomal RNA. Other classes of RNAs
include microRNA (miRNA) and small interfering RNA (siRNA), both of which
can regulate gene expression during and after transcription. Since only mRNAs are
translated into proteins, some genes do not encode proteins but various RNA func-
tional products.

Uracil is very similar to thymine and they both carry the same information.
One may ask why there is thymine in DNA, but uracil in RNA. One of the
common DNA mutations is chemical degradation of cytosine that forms uracil. If
uracil was a valid base in DNA, cellular repair mechanisms could not efficiently cor-
rect such mutations. Thymine is then more appropriate for the stability of long-lived
DNA. For short-lived RNA molecules, for which quantity is more important than
long-term stability, uracil is more appropriate since it is energetically less expensive
to produce than thymine.

1.1.6 mRNA (messenger RNA)

Messenger RNA (mRNA) is the type of RNA that contains coding information for
protein synthesis. Messenger RNA is transcribed from a DNA template (a sequence
of bases on one strand of DNA), and subsequently undergoes maturation that includes
splicing. The mature mRNA is then transported from the cell nucleus to the cytoplasm
where proteins are made during the process called translation. During translation,
which takes place at the cytoplasm’s ribosomes, the mRNA information contained
in the sequence of its nucleotides is translated into amino acids. Amino acids are
the building blocks of proteins. First, the mRNA sequence is divided into three-
letter codons representing amino acids. Subsequently, the amino acids are linked
together to produce a polypeptide. Translation ends when one of the stop codons is
encountered. A functional protein is the result of properly folded polypeptide or
polypeptides.

1.1.7 Genetic Code

The four bases of mRNA—adenine (A), guanine (G), cytosine (C), and uracil (U)—
are the “letters” of the genetic code. Amino acids, which are building blocks of pro-
teins, are coded by three-letter words of this code, called codons. The genetic code
(Table 1.1) defines the relation between mRNA codons and amino acids of proteins.

With the four letters of the genetic code, there are 43 ¼ 64 possible triplets
(codons). All 64 codons are meaningful: 61 of them code for amino acids and three
(UAA, UAG, and UGA) serve as the stop codons signaling the end of the protein.
The stop codons are called nonsense codons as they do not correspond to any
amino acid. AUG codes for methionine, but is also the start codon—a part of the
initiation signal to start protein synthesis.

Since there are 61 sense codons and only 20 amino acids in proteins (see
Table 1.2), the genetic code is degenerate, which means that almost all amino acids
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(18 out of 20) are associated with more than one codon. Methionine (Met) and trypto-
phan (Trp) are exceptions—each of them is coded by only one codon.

When the third base of a codon is irrelevant, that is, four codons with the same
first and second base code for the same amino acid, we have four-fold degeneracy
(sometimes called third-base degeneracy). The four-fold degenerate families of
codons (such as UC� or CU�, where the symbol � denotes an irrelevant third base)
are marked in Table 1.1 with the gray background. Another main family of degeneracy
is two-fold degeneracy, when two codons with a different base in the third position are
associated with the same amino acid (for instance, UG[UjC], where the [UjC] notation
means the third base is either U or C).

TABLE 1.1: Genetic Code

Second Base in Codon

U C G A

F
ir
st

B
as
e
in

C
od

on

U

Phe Ser Cys Tyr U

T
hi
rd

B
as
e
in

C
od

on

Phe Ser Cys Tyr C

Leu Ser Trp Stop G

Leu Ser Stop Stop A

C

Leu Pro Arg His U

Leu Pro Arg His C

Leu Pro Arg Gln G

Leu Pro Arg Gln A

G

Val Ala Gly Asp U

Val Ala Gly Asp C

Val Ala Gly Glu G

Val Ala Gly Glu A

A

Ile Thr Ser Asn U

Ile Thr Ser Asn C

Met Thr Arg Lys G

Ile Thr Arg Lys A

The gray background denotes four-fold degeneracies—codons with irrelevant third
base. Sixty one out of 64 codons code for 20 amino acids. Three codons are the
stop codons (UAA, UAG, and UGA). The AUG is the start codon, but it also
codes for methionine. Codons that code for the same amino acid (e.g., the six
codons coding for Leu, or leucine) are called synonymous codons.
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1.1.8 Gene

For the purpose of mining gene expression data, we could use the following descrip-
tion of a gene:

A gene is the segment of DNA, which is transcribed into RNA, which may then be

translated into a protein. Human (and other eukaryotic) genes often include non-

coding sequences (introns) between coding regions (exons). Such genes encode

one or more functional products, which are proteins or RNA transcripts.15 Each

gene is associated with a promoter sequence, which initiates gene transcription

and regulates its expression.

This description is satisfactory for the analysis of gene expression microarray
data. Nevertheless, as a definition of the gene this description may be incomplete.
The same is true for other definitions of the gene that were proposed during the last
hundred years. Although it may be true that none of those definitions has been

TABLE 1.2: Amino Acids

Amino acid 3-letter code 1-letter code Number of codons Codons

Alanine Ala A 4 GC�

Arginine Arg R 6 CG�, AG[AjG]
Asparagine Asn N 2 AA[UjC]
Aspartic acid Asp D 2 GA[UjC]
Cysteine Cys C 2 UG[UjC]
Glutamic acid Glu E 2 GA[AjG]
Glutamine Gln Q 2 CA[AjG]
Glycine Gly G 4 GG�

Histidine His H 2 CA[UjC]
Isoleucine Ile I 3 AU[UjCjA]
Leucine Leu L 6 CU�, UU[AjG]
Lysine Lys K 2 AA[AjG]
Methionine Met M 1 AUG

Phenylalanine Phe F 2 UU[UjC]
Proline Pro P 4 CC�

Serine Ser S 6 UC�, AG[UjC]
Threonine Thr T 4 AC�

Tryptophan Trp W 1 UGG

Tyrosine Tyr Y 2 UA[UjC]
Valine Val V 4 GU�

Twenty amino acids that are building blocks of proteins. Amino acids are coded by one to six codons. For example,
arginine is coded by six codons, CG� and AG[AjG]. The CG� notation means four codons starting with CG, that is,
[CGU, CGC, CGG, CGA], and AG[AjG] means that the first and second bases are AG, and the third base is either A
or G, [AGA, AGG].

15A transcript is the RNA product of the gene transcription process.
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generallyaccepted (Falk1986;RheinbergerandMüller-Wille2008), someof themwere
popular enough to prevail in their time. Here are a fewexamples of the concept of a gene
as it was evolving in time (Gerstein et al. 2007; Rheinberger and Müller-Wille 2008).

† A gene as a discrete unit of heredity that determines a characteristic of an
organism as well as the heritability of this characteristic.

† A gene as a stretch of DNA that codes for one protein.

† A gene as “a DNA segment that contributes to phenotype/function. In the
absence of demonstrated function a gene may be characterized by sequence,
transcription or homology” (Wain et al. 2002; HUGO Gene Nomenclature
Committee 2008).

New discoveries have been forcing changes to the concept of a gene. The
following are just a few among such discoveries:

† Splicing—the process of removing introns from the primary RNA transcript and
using only exons to form themature mRNA (see Fig. 1.3). Splicing redefined the
gene as including a series of exons (coding sequences) separated by introns
(noncoding sequences).

† Alternative splicing—generally, combining different subsets of gene exons to
form (code for) different mRNA transcripts (see Fig. 1.4). Alternative splicing
invalidated the “one gene—one protein” paradigm.

† Nonprotein-coding genes—genes that “encode functional RNA molecules16

that are not translated into proteins” (HUGO Gene Nomenclature Committee
2008).

† Overlapping protein-coding genes—genes sharing the same DNA sequence.
New exons have been discovered far away from the previously known gene
locations, some of them within the sequence of another gene (Pennisi 2007).
It is possible for a gene to be completely contained within an intron of another
gene; it is also possible for two genes to share the same stretch of DNAwithout
sharing any exons (Gerstein et al. 2007).

† Nonprotein-coding genes sharing the same DNA sequence with protein-coding
genes (Gingeras 2007).

† Some RNA transcripts are composed from exons belonging to two genes.

† Transcribed pseudogenes. A pseudogene is a sequence of DNA that is almost
identical to a sequence of an existing and functional gene but is or appears to be
inactive, for instance, due to mutations that make it nonfunctional (Ganten and
Ruckpaul 2006; Singleton 2008). However, the Encyclopedia of DNA
Elements project (The ENCODE Project Consortium 2007) revealed recently
that some pseudogenes—although by definition lacking protein coding
potential—can produceRNA transcripts that could potentially have some regula-
tory functions (Gerstein et al. 2007; Gingeras 2007; Zheng et al. 2007).

16Some of these nonprotein-codingRNA transcripts arewell known functional RNAmolecules, for example
ribosomal RNAs (rRNA) or transfer RNAs (tRNA). Others include recently discovered microRNAs
(miRNA) and small interfering RNAs (siRNA); both of them can regulate expression of specific genes
(Gingeras 2007).
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Since the concept of a gene has been changed over and over again, we may
consider one of two options: (i) stop using this concept at all, or (ii) formulate a
gene definition in a way that is either quite general (and perhaps vague) or deliberately
verbose in an attempt to cover all possibilities. Here are two recently proposed gene
definitions:

† “A gene is a union of genomic sequences encoding a coherent set of potentially
overlapping functional products.” (Gerstein et al. 2007)

† “A gene is a discrete genomic region whose transcription is regulated by one or
more promoters and distal regulatory elements and which contains the infor-
mation for the synthesis of functional proteins or non-coding RNAs, related by
the sharing of a portion of genetic information at the level of the ultimate pro-
ducts (proteins or RNAs).” (Pesole 2008)

These two definitions provide different answers to the question “What is a
gene?” Consequently, if we were able to enumerate all the genes in the human

Figure 1.3: A human protein-coding gene: the structure, transcription, splicing, and
translation. The top row shows a schematic structure of the gene. The transcribed region consists
of exons that are interrupted by introns (on average, introns are about 20 times longer than
exons). The promoter associated with the gene is a regulatory sequence that facilitates
initiation of gene transcription and controls gene expression. Enhancers and silencers are other
gene-associated regulatory sequences that may activate or repress transcription of the gene
(they are not shown here as they are often located distantly from the transcribed region). The
gene’s exons and introns are first transcribed into a complementary RNA (called nuclear RNA,
primary RNA transcript or pre-mRNA). Then, the splicing process removes introns, joins exons,
and creates mRNA (called also mature mRNA). The mRNA travels from the nucleus to the
cytoplasm where, in ribosomes, it is translated into a protein. (See color insert.)
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genome, these definitions would also lead to different answers to the question “How
many genes are there in the human genome?” To simplify enumeration of human
genes, we may start with counting only protein-coding genes. A recently performed
analysis of the three most popular human gene databases17 suggests that there may
be fewer than 21,000 protein-coding genes in the human genome (Clamp et al. 2007).

Although cells of different tissues have the same genome, only a limited and
tissue-specific subset of genes is expressed in each tissue. While tissues can be
identified by general patterns of their gene expression, these patterns are not constant.
Gene expression levels in a cell change in time and in response to changes in a cell’s
environmental conditions. Changes in the expression profile (turning on or off
some genes or changing expression levels of some of the expressed genes) alter protein
production and may result in significant changes in tissue functioning; for instance, in
transforming a normal tissue into a cancerous one.

1.1.9 Gene Expression and the Gene Expression Level

Gene expression is the process that converts information encoded in a gene into func-
tional products of the cell (see the central dogma). In the context of genomic projects

Figure 1.4: A human protein-coding gene: an example of alternative splicing. During
alternative splicing of the primary RNA transcript, different subsets of exons are joined to create
two (or more) different mRNA isoforms. These mRNA isoforms are then translated into usually
distinct proteins. The majority of human protein-coding genes undergo alternative splicing
(Stamm 2006). (See color insert.)

17The three databases are: Ensembl (Flicek et al. 2008), RefSeq (Pruitt et al. 2007), and Vega (Wilming et al.
2008).
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involving gene expression microarray data, we are interested in the gene expression
level that refers to the number of copies of RNA transcripts created by transcription
of a particular gene (for the protein-coding genes, this is the number of mRNA
transcripts generated from the gene) at a given time. The genes that are expressed
include the protein-coding genes as well as the genes coding for RNA functional
products. Most often, the gene expression analysis focuses, however, on the
expression level of the protein-coding genes.

Although the same DNA is contained in every cell of an organism, cells of
different tissues are different. The differences result from different levels of gene
expressions, that is, different patterns of gene activations. If a gene is active
(expressed), the protein (or proteins) encoded by the gene is (are) synthesized in the
cell. The higher the gene expression level, the more of the protein is produced.
There may be various reasons for a gene to be over-expressed, under-expressed or
not expressed at all—hereditary factors, environmental factors, or their combinations.
The hereditary factors may mean a mutation in a single gene, simultaneous mutations
in a set of genes, chromosomal abnormalities, etc. If this prevents or significantly
influences the production of one or more important proteins, we have hereditary
diseases (such as cystic fibrosis for a single gene mutation, or Down syndrome
when there are three copies of chromosome 21). On the other hand, many diseases
are not necessarily related to genetic abnormalities, but are caused by the environ-
mental factors that are changing the expression level of otherwise “normal” genes.
This may be more complicated when such changes in the gene expression level are
still moderated by some gene mutations, which by themselves are not causing any
diseases. And here is the promise of genomics—identification of gene expression
patterns associated with a disease and linking the patterns to underlying biological
and environmental factors may lead to cure or prevention.

1.1.10 Protein

Protein is a biological macromolecule composed of one or more chains of amino
acids synthesized in the order determined by the DNA sequence of the gene
coding for the protein. Short chains of amino acids are called peptides and longer
ones polypeptides. Since there is no precise distinction between them, we can say
that the term polypeptide is used for chains longer than several dozen amino acids.
We can define protein as a molecule composed of one or more polypeptide chains
(Garrett and Grisham 2007).

A protein folds into a three-dimensional structure, which determines the func-
tion of the protein. The way the protein folds into its three-dimensional form is deter-
mined by its sequence of amino acids. Proteins are essential components of all living
cells and each of them has a unique function. Examples of proteins include enzymes,
hormones, and antibodies.

The number of proteins in the human proteome is much larger than the number
of protein-coding genes in the human genome. This is mostly due to alternative
splicing (when more than one protein is produced by different combinations of
exons of the same gene) and post-translational modifications of proteins.
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1.2 OVERLAPPING AREAS OF RESEARCH

Biomedical research based on the analysis of gene or protein expression data is
an interdisciplinary field including molecular biology, computational biology, bio-
informatics, data mining, computer science, statistics, mathematics, . . . and the list of
overlapping disciplines is far from being exhaustive. New terms are constantly coined.
Furthermore, the same term may have different meanings in some of the overlapping
areas. Here are a few terms that are important for the subject of this book.

1.2.1 Genomics

Genomics can be understood as the systematic analysis of genome-scale data in order
to expand biomedical knowledge. Genomic studies investigate structure and function
of genes and do this simultaneously for all the genes in a genome. Investigating
patterns of gene expression—one of the main themes of this book—is an important
part of functional genomics that focuses on analysis of genes and their products at
the functional level.

Although there are opinions that genomics and genetics should be combined and
considered together, it is not currently the case and genetics is still understood as the
study of genes in the context of inheritance.

1.2.2 Proteomics

Proteomics is the study of functions and structures of proteins. Proteomics is often
seen as the next stage of research after genomics, and as the area that should give us
more direct insight into biological processes (since proteins are direct players in the
cell physiology whereas genes are mostly intermediate entities). Proteomics seems
to be much more complicated than genomics, the main reason being that proteomes
are constantly changing and that different cells of the same organism may have
different proteomes.

1.2.3 Bioinformatics

One may find many definitions of bioinformatics and it is not unusual for them to
limit this field to the areas researched by the definition authors. Defining it more
generally, we may say that bioinformatics is the science of managing, analyzing,
mining, and interpreting biological data. Bioinformatics, computational biology,
and data mining are overlapping in their use of mathematical, statistical, and computer
science tools and methods to analyze large sets of biological data.

1.2.4 Transcriptomics and Other -omics . . .

Though the term genomics is already well established in biomedical sciences, the term
itself is an “unusual scientific term because its definition varies from person to
person” (Campbell and Heyer 2007). Once genomics became popular, many new
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related -omics terms were created. Whether their areas belong to genomics or not is
pretty much an open question. For example, transcriptomics is most often defined18

as the area covering analysis of gene expression data (expressed genes are called
transcripts). One could then say that the focus of this book is transcriptomics.
Nevertheless, we will use the widely recognized term genomics, which has been
used for this kind of investigations since the beginning of high-throughput gene
expression data analysis.

1.2.5 Data Mining

We define data mining as efficient ways of extracting new information or new
knowledge from large data sets or databases. Some more classical definitions limit
data mining to extraction of ‘useful information.’ However, in biomedical research
any new information reflecting underlying biological processes can be potentially
useful. Furthermore, translating the extracted new information into new biomedical
knowledge is often a nontrivial task and the data mining definition (and methods)
should be extended as well to include the information-to-knowledge stage of
investigations.

18There are other definitions of transcriptomics, one—for example—defines it as the study of transcription
process itself.
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CHA P T E R2
BASIC ANALYSIS OF
GENE EXPRESSION
MICROARRAY DATA

Microarray Technology

Analysis of gene expression microarray data:

† Preprocessing

† Exploratory data analysis

† Unsupervised learning (taxonomy-related analysis)

“The bottleneck is no longer in the generation of data, but in our ability tomake sense

of it.”

—(Seidel 2008)

2.1 INTRODUCTION

Since one of themain topics of this book is datamining of gene expression data, wewill
start with a short overview of the microarray technology and the steps leading from raw
microarray data to the gene expression matrix. One could say that higher-level prepro-
cessing, exploratory data analysis, and mining of gene expression data start after we
have the gene expression levels available in the form of a single number representing
the abundance of a gene transcript in a biological sample. However, knowing where
data come from and what methods were applied to convert the raw data into this
“starting point” expression data is very important for assessing the quality of the
data, validity of experimental design and selection of particular approaches.

Once the gene expression matrix is created as the result of low-level prepro-
cessing of the raw microarray data, we are ready for the higher-level analysis.
Although data mining methods have to be selected depending upon the goals of a

Data Mining for Genomics and Proteomics. By Darius M. Dziuda
Copyright # 2010 John Wiley & Sons, Inc.
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study, there are common preliminary tasks performed for most studies utilizing gene
expression data. Among these tasks are: higher-level preprocessing (such as scaling or
transforming the data), quality assessment of gene expression data, and filtering out
noise and the variables with unreliable measurements. Basic exploratory analysis is
commonly the first step in analyzing preprocessed and filtered gene expression data.
As this analysis is limited to the univariate approach, its main goal is not to answer
any specific questions, but to give us some initial feeling about, and understanding
of, the data at hand. Though selection of the analytical approaches (for instance,
whether to use unsupervised or supervised learning) is dictated by the data and the
goals of a study, the exploratory data analysis may provide information helpful in
deciding which of the appropriate methods to use (for example, whether to use a para-
metric or a nonparametric supervised learning algorithm).

Wewant to stress the importance of selecting the right methods for the task. This
should be obvious, but it is not necessarily the case for some biomedical studies
reported in the literature. All too often, the data at hand is analyzed with a tool that
happens to be available and popular, whether or not it is the proper tool to achieve
the goal of a study. This, unfortunately, usually leads to under-usage of the data
and the reporting of inferior results in situations where the information or knowledge
sought could have been extracted from the data had appropriate methods and tools
been used.

We will cover this subject in Chapter 3, here is just one example to think about.
Consider clustering methods—they are popular and are implemented in many software
packages. They are so popular that they are used in many studies, whether the cluster-
ing approach is appropriate for the study goals or not. Imagine a study, whose goal is
to identify a multivariate biomarker differentiating states of a disease. For this goal
clustering (or any other unsupervised method) is inappropriate—supervised data
mining methods should be used. Biomarker discovery will be one of the main subjects
of Chapter 3. The current chapter will focus on the preprocessing of gene expression
data, the basic exploratory analysis (resulting in a univariate list of significant genes),
and unsupervised learning (the taxonomy-related analysis, for which clustering is
among the primary methods to use).

2.2 MICROARRAY TECHNOLOGY

The term microarray (Schena et al. 1995) is widely used for chip-based high-
throughput technologies utilized to study biomedical samples. The most commonly
used chips are DNA microarrays. Currently, they allow for the simultaneous measure-
ment of the gene expression level on a whole-genome scale. Simultaneous quantifi-
cation of expression for a large number of genes was very important for biological
studies to evolve beyond the one-gene-at-a-time paradigm. Greatly simplified, a
microarray is a small glass slide1 with a large number of spots containing single-
stranded DNA sequences. The spots are organized in a rectangular grid, and each

1Instead of glass, it could be a silicon chip or a nylon membrane.
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cell of the grid contains DNA material (DNA, cDNA,2 or oligonucleotide3) represent-
ing one gene. Generally, these spotted gene-specific sequences are called probes.4

Once the microarray is available, the target mRNA (extracted from a biological
sample we want to investigate) is labeled with a fluorescent dye. The microarray is
then washed with a solution of the target mRNA. The mRNA molecules, which
find a spot with the complementary DNA sequence, will hybridize5 and stick to the
array. The remaining nonhybridized solution will be washed away. Since the target
is labeled with a dye, a laser scanner can be used to measure the fluorescent signal
emitted by each spot. The signal intensity of a spot is related to the abundance of
mRNA corresponding to the represented gene.

A single DNA microarray can simultaneously provide information about the
expression level of thousands of genes. By analyzing the signal intensity across mul-
tiple microarrays, multigene expression patterns characteristic of the states, diseases,
or phenotypes represented by groups of samples may be discovered.

The Affymetrix GeneChipw arrays (Affymetrix, Santa Clara, CA) and spotted
arrays (also referred to as cDNA arrays or two-color arrays6) are among the most
popular microarray platforms. The spotted arrays are more flexible since their
design may be customized for a particular study. However, this flexibility makes it
difficult to compare the results of such customized studies. In biomarker discovery
and gene expression based classification, we strive for large data sets. The standardiza-
tion offered by such platforms like the Affymetrix GeneChip allows for combining
data from different studies, or at least for using another study’s data as an independent
test set. For this reason, we focus mainly on the Affymetrix gene expression micro-
arrays. In addition, we will mention a relatively new microarray platform, bead-
based technology, which is gaining popularity.

2.2.1 Spotted Microarrays

There are two types of spotted microarrays: the in-house arrays and the pre-spotted
arrays (Elvidge 2006). The spotted arrays of the first type were usually manufactured
“in house” by research groups. Originally, relatively long cDNA sequences were
spotted onto glass slides. Later, however, cDNAs were replaced by much shorter
oligonucleotide probes (25–70 nucleotides in length), which are easier to produce.
The in-house production of spotted arrays is very flexible as the arrays can be
custom designed for each study. The experiments require, however, rather expensive

2Complementary DNA, cDNA, is DNA synthesized from a mature (fully spliced) mRNA template.
3Oligonucleotides are short sequences of nucleotides (typically 20–50 base pairs). Since they are sequences
of single-stranded DNA or RNA, they can be used as probes for detecting complementary DNA or RNA
(Ganten and Ruckpaul 2006). In the slang of the science, oligonucleotides are often referred to as oligos.
4A probe is a tethered nucleic acid with a known sequence (Phimister 1999). In GeneChip arrays, probes are
pieces of single-stranded DNA bound to small sections of the chip known as features.
5Hybridization is the process in which two complementary single-stranded nucleic acids are combined into a
single molecule.
6Spotted arrays can be used with one to four colors (one to four different samples per array), but most often
two colors are used to investigate the relative expression level between two samples labeled with different
colors.
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spotting tools. Such equipment is not necessary for the pre-spotted arrays offered
by a number of manufacturers. Though the pre-spotted arrays are less flexible, they
require only a scanner to perform experiments. However, neither of these two types
of spotted arrays can match the density and the number of features7 available on
such arrays as the Affymetrix GeneChip microarrays.

The spotted arrays are commonly used for simultaneous processing of multiple
samples on a single array. Usually, one to four samples can be processed on an array in
order to evaluate the relative levels of gene expression in the samples. In practice, most
often two samples are processed on a single array, and these multichannel arrays are
often referred to as two-color or two-channel arrays. The multichannel design allows
for decreasing the experimental variation in the data since both the case and control
samples are processed simultaneously on the same slide. Each of them would be
labeled with a different fluorescent dye [such as Cy3 (green) and Cy5 (red)] and
then each signal intensity would be read by appropriate scanners.

2.2.2 Affymetrix GeneChipw Microarrays

In the Affymetrix GeneChip microarrays, the probe sequences are synthesized in situ
on quartz surfaces (wafers). Using mask-based photolithographic technology8 (similar
to that used in manufacturing computer chips), the probe sequence is built base by
base.9 Since this technology allows for millions of features to be synthesized on a
single microarray, more than one feature can be used to detect each target transcript
(gene or exon). This redundancy allows a single gene to be represented by several
different oligo sequences (corresponding, for example, to various parts, or exons, of
the gene).

Until recently, most studies based on microarray data were focusing on the
overall expression of a gene, which means they analyzed the expressions computed
at the probe set level (see Table 2.1). A probe on an array is for one exon, so different
probes representing the same gene may represent different splice variants; it is esti-
mated that some 40–60% of human genes may have alternative splice variants
(Modrek and Lee 2003). Very few studies utilizing gene expression arrays such as
the Affymetrix GeneChip HG-U95 or HG-U133 microarrays looked into changes
in the expression of different splice variants. Studies interested in splice variants
had to use the probe-level expression and additional information on mapping
probes to exons. The situation changed with the introduction of exon arrays.
According to Affymetrix (Affymetrix 2005a), their goal for the first generation of
the exon arrays was “to interrogate each potential exon with one probe set over the
entire genome on a single array.” The exon arrays allow for the exon-level expression

7Features—in the context of microarray technology, features are single segments or grid cells that make up
the microarray. Some microarrays have millions of features, which may be as small as 5 � 5 micrometers.
A feature may contain millions of copies of the same DNA probe and is designed specifically for only one
gene or exon target in the sample.
8Other technologies can also be used to create in situ arrays. Among such commercial technologies are:
Agilent’s ink-jet method of printing 60-mer oligos on glass surfaces and Roche NimbleGen’s maskless
photolithography using small rotating mirrors (Seidel 2008).
9Affymetrix probes are usually 25-mers (25 nucleotides in length).
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analysis (thus a more straightforward analysis of different splice variants, or isoforms,
of a gene) as well as for the gene-level expression analysis (when multiple exon-level
signals are used to compute the gene-level expression).

Although Affymetrix microarrays cover genomes of many organisms, we will
focus on the arrays for the human genome. Below are descriptions of a few recent
human genome arrays. Table 2.2 shows how the genome coverage and technological
characteristics of Affymetrix microarrays have been evolving over time.

Human Genome U133 Plus 2.0 microarray

On this microarray (Affymetrix 2003), 22 different oligo sequences10 are
used to detect a single transcript. The set of 22 oligos is called a probe set.
Each probe set includes 11 sequences designed as the perfect match (PM)
to the target transcript (the target gene sequence), with the remaining 11
oligos being ‘mismatched’ by changing a single base in the middle of the cor-
responding perfect match sequence to its complementary base. Each perfect
match probe is paired with its corresponding mismatch probe (MM), and the
pair is referred to as a probe pair. Eleven probe pairs designed for a single
transcript constitute a probe set. Hybridization specific to the targeted
gene is represented by the intensity readings from the PM probes, whereas

TABLE 2.1: Basic Terms Related to Technology of Affymetrix GeneChip Arrays

Feature
A square section of a microarray, as small as 5 micrometers by 5 micrometers (as of
2008), that holds a unique type of single-stranded DNA ( probe). A feature contains
millions of copies of the same probe.

probe

A 25 base long oligonucleotide sequence (25-mer) representing a single target (a gene
or an exon) on an Affymetrix GeneChip microarray. The probes are synthesized
directly on a glass array, one layer at a time. The probe should be unique for its
target—the probe sequence is complementary to a section of the targeted gene and
should not match any other part of the genome. When the array is scanned, the probe
intensity (also called the spot intensity) corresponds to the average signal from all
copies of the probe in one feature.

probe pair

A set of two probes, one perfect match probe and one corresponding mismatch probe.
The mismatch probe is based on the same 25-mer as its perfect match probe but with
the middle base (the 13th base) changed to prevent the target gene to match it
perfectly. In the most recent Affymetrix arrays, the mismatch probes are not used, thus
these arrays do not have probe pairs.

probe set

A set of probes designed for the same target.
For example, on HG-U133 microarrays, a gene is represented by eleven probe pairs—
11 perfect match probes (with sequences complementary to sequences from eleven
different parts of the gene), and eleven mismatch probes (used to assess the non-
specific binding). On theHuman Exon 1.0 ST Array, the majority of probe sets include
four perfect match probes and no mismatch probes.

10Older generations of Affymetrix GeneChip arrays used different numbers of probe pairs dedicated to one
transcript (from 11 to 20 probe pairs, i.e., from 22 to 40 different oligos).
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nonspecific hybridization can be calculated from the MM probes. The
GeneChip Human Genome U133 Plus 2.0 microarray (released in 2003)
contains about 1.3 million features (each feature of the size 11 � 11
micrometers) and 54,000 probe sets11 (each probe set includes 11 PM/MM
probe pairs).

HT HG-U1331 PM Array Plate

The recently introduced Affymetrix Array Plate technology enables parallel
processing of multiple samples on a single plate of arrays. The GeneChip HT
HG-U133þ PM Array Plate (Affymetrix 2008a) uses the same genomic
content as the Human Genome U133 Plus 2.0 microarray, but allows for
simultaneous processing of 24 or 96 samples. There are, however, some
design differences between the plate arrays and the U133 Plus 2.0 chip.
The plate arrays include only the perfect match (PM) probes, and most of
the probe sets have only nine (rather than eleven) PM probes.

Human Exon 1.0 ST microarray

Advances in the microarray technology allowed for a decrease in feature size,
thus increasing the number of features per array. Introduced in October 2005,
the GeneChip Human Exon 1.0 ST Array (Affymetrix 2005a) allows for the
exon-level analysis on a whole genome scale. This microarray contains over
5 million features (with the feature size of 5 micrometers12) and about 1.4
million probe sets. Each probe set includes four PM probes13 and no MM
probes. With the Affymetrix’s departure from the mismatched probes, the
background signal may be evaluated by using the median signal intensity
of up to 1,000 specially designed background probes with the same GC con-
tent. The probe sets correspond to exons. The array covers about 1.4 million
exons and about one million exon clusters, which are sets of overlapping
exon variants. Therefore, probe set annotations associate each probe set
with an exon and exon cluster. Furthermore, each probe set is associated
with a transcript cluster, which roughly corresponds to a gene. The 1.4
million probe sets of the array are grouped into about 300,000 transcript clus-
ters (which means that many transcript clusters may represent one gene).
Instead of the mismatch probes specific for the perfect match probes,

the Human Exon 1.0 ST Array contains two collections of background
probes—the antigenomic collection (probes with sequences not represented
in the human genome) and the genomic collection (also called surrogated
mismatch probes; they are mismatch probes of genomic sequences that are
less likely to be expressed). Background correction of each PM probe is

11Since probe sets do not always correspond to genes, it is preferable—at least for this and older arrays—to
use the probe set term.
12As the semiconductor industry uses submicrometer lithography, we can expect further reduction in the
microarray feature size.
13According to Affymetrix (Affymetrix 2008b), about 90 percent of probe sets on the Human Exon 1.0 ST
Array have four PM probes, with the remaining about 10 percent having less than four PM probes.
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based on comparing its signal to the median signal of all the background
probes that have the same GC content as the PM probe. Since the 25-mer
probes may contain 0–25 Gs or Cs, each of the two collections of the back-
ground probes consists of 26 sets, each of the sets having about 1000 probes
with the same GC content.
The probes on the Affymetrix ST arrays are designed in the antisense

orientation. The ST in the array name means sense target since targets
in the sense orientation can hybridize to the antisense probes (Affymetrix
2008b). This is different than for earlier Affymetrix arrays (such as the
Human Genome U133 Plus 2.0microarray), which were designed for targets
in the antisense orientation. Another important novelty in the design of the
ST arrays is whole-transcript coverage, which means that the probes are dis-
tributed across the entire length of the gene (its mRNA transcript), whereas
previous designs (now called 30 based expression arrays) were biased
toward the 30 end of the gene.

Human Gene 1.0 ST microarray

At the time of this writing, the GeneChip Human Gene 1.0 ST microarray
(Affymetrix 2007) is the newest whole-transcript Affymetrix array (intro-
duced in April 2007) focusing on gene-level expressions for the human
genome. Over 28,000 “well-annotated genes” are represented. At the probe
level, there is a significant overlap between this microarray and the Human
Exon 1.0 ST microarray (about 80 percent of this array’s probes are present
on the exon array), although this gene-oriented array does not include
probes that do not correspond to well-annotated sequences. As there are
fewer probes per exon, this chip is smaller and less expensive than the exon
microarray. The Human Gene 1.0 ST microarray consists of over 760,000
perfect match probes, which are distributed across transcribed regions of the
represented genes. The number of probes per gene can vary significantly
depending on the number of exons in a gene and the gene sequence compo-
sition. The median number of probes per gene is 26. The antigenomic collec-
tion of the background probes (the same 26 sets of up to 1000 probes as on the
exon array) is used to estimate the background signal for each probe.

2.2.3 Bead-Based Microarrays

In bead-basedmicroarrays, oligonucleotides are attached tomicrobeads,which are then
deposited intowells on an array. Illumina’s BeadArray Technology (Illumina, Inc., San
Diego, California), represented by such chips as the HumanWG-6 and HumanHT-12
Expression BeadChips, is an example of this approach. The BeadArray technology
uses 50-base long oligonucleotides as gene-specific probes (capture sequences).
Each probe is coupledwith a short address sequence,14 uniquely identifying the capture
sequence of the probe. Hundreds of thousands of identical synthetic oligonucleotides
(each composed of the capture sequence and the address sequence) are covalently

14The address sequences have low similarity to human genomic sequences (Gunderson et al. 2004).
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attached to a silicamicrobead of threemicrometers in diameter. Thousands of beads are
then deposited into wells on microarray substrates, which are either bundles of optical
fibers or silicon wafers.15 However—unlike in the Affymetrix GeneChip arrays, where
the identity of each synthesized probe is predefined by its location on the array—the
beads are randomly distributed over the wells. This approach simplifies the microarray
manufacturing process and facilitates flexible andhigh density designs.While the target
mRNA hybridizes to the 50-base capture sequence of the oligonucleotide, the address
part of the oligonucleotide (unique for each bead type) is used to decode the identity of
the probe (Gunderson et al. 2004; Barnes et al. 2005; Illumina 2008a). The latest
BeadArray whole-genome expression chip, the HumanHT-12 Expression BeadChip,
provides coverage of over 25,000 sequences representing genes, gene candidates and
splice variants. There are more than 48,000 probes per sample, and a single
HumanHT-12 BeadChip consists of 12 arrays allowing for simultaneous processing
of twelve samples (Illumina 2008b).

2.3 LOW-LEVEL PREPROCESSING OF AFFYMETRIX
MICROARRAYS

When microarrays are scanned,16 the image of each array is created. For Affymetrix
microarrays, the image of a chip is stored in a DAT17 file. Probe intensities resulting
from the image analysis are stored in a CEL file. Additional information, such as the
association of probe set IDs with probes or probe pairs, is stored in a CDF library file
(specific for a particular microarray type rather than for an individual experiment).

The goal of low-level preprocessing (also called the low-level analysis or the
probe-level analysis) is to deliver the measurement of gene expression level and to
assess the reliability of this measurement. A single value representing the abundance
of the target transcript (a gene or an exon) needs to be derived from the intensities of
the probes designed specifically for this transcript. For example, for GeneChip arrays
which include the mismatch probes, the gene expression level needs to be calculated
from the intensities of the 11–20 probe pairs of the probe set designed for the
gene. The resulting expression level of the gene may be associated with the qualitative
detection call (P – present, A – absent, M – marginally present).

Low-level preprocessing of Affymetrix arrays consists of three main steps:

† background adjustment;

† normalization;

† summarization at the probe set level.

15Illumina uses fabric optic bundles in its 96-sample ArrayMatrix format. The BeadChip format uses planar
silica slides (Illumina 2008a).
16To compare two or more populations of samples we need multiple arrays. For the multichannel (multi-
color) microarrays, more than one sample is processed on a single array. For the synthesized oligonucleotide
arrays (such as Affymetrix GeneChip arrays), one array is used for one sample.
17More precisely, in a �.DAT file where � denotes the file name and DAT is the file name extension.
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Furthermore, quality assessment is a very important task at all levels of data preproc-
essing (this will be covered in the next section).

The main goals of the background adjustment step are: correction for back-
ground noise and adjustment for nonspecific binding. There are indications that the
background adjustment step has the largest effect on the preprocessing results
(Irizarry et al. 2006). Normalization aims at reducing the nonbiological variation
(both within and between arrays) and is usually performed under the assumptions
that only a relatively small number of genes are differentially expressed and that
they are equally likely to be under- or over-expressed. Once the probe-level signal
intensities are determined, the summarization step combines them into a single
expression level for a probe set.

There are many methods for the low-level preprocessing of Affymetrix arrays
and new methods are constantly reported. However, we have yet to see a single pre-
processing method that would be widely accepted as the best. “Conflicting reports
have been published comparing the more popular methods” (Irizarry et al. 2006). A
likely reason for this situation is that the advantages and disadvantages of particular

TABLE 2.3: Main Characteristics of Selected Methods for Low-Level Preprocessing of
Affymetrix Arrays

Method
Background
correction

Summarization Normalization Notes

MAS5

Subtracts spatially
adjusted background

PM–IM

Robust average
(one-step Tukey’s
biweight)

Scaling arrays
to the same
trimmed mean
value

Single array analysis

Calculates detection
calls

Limited ability to
detect small changes
between arrays

RMA

Global correction
based on a
convolution model

MM probes ignored

Robust multiarray
summarization
fitting a linear
model

Quantile
normalization

Multiple array
analysis

Global background
adjustment does not
account for probe
affinity

GCRMA

Accounts for probe
affinity using probe
sequence
information

Uses MM probes

Robust multiarray
summarization
fitting a linear
model

Quantile
normalization

Multiple array
analysis

PLIER

Accounts for probe affinity

Fits multiplicative model to PM–MM,
but also assumes that MM error is the
reciprocal of PM error

Quantile
normalization

Multiple array
analysis
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approaches are not necessarily invariable; they may depend on idiosyncrasies of the
processed data set. It is possible that the “best” method will have a collection of
approaches and will dynamically select those that are most appropriate for a particular
data set. (Not to add to the user’s confusion, the assessment of the data and the selection
of the approach should be done automatically.) Benchmarks have been developed
specifically for the comparison of algorithms for low-level preprocessing of
Affymetrix chips (Cope et al. 2004; Irizarry et al. 2006). Although they are very valu-
able, we should remember that comparisons performed for specific data sets and
specific arrays are not necessarily generalizable (Irizarry et al. 2006). Nevertheless, it
seems that achieving a balance between precision and accuracy is important in the
overall performance of an algorithm (Seo and Hoffman 2006). There are indications
that algorithms implementing a probe-specific background correction (such as
GCRMAorPLIER)provideagoodbalanceofaccuracyandprecision(Irizarryetal.2006).

The three currently most popular preprocessing methods (ordered by the time of
their introduction) are: MAS5 (Affymetrix 2001; Affymetrix 2002), RMA (Irizarry,
Hobbs et al. 2003) and GCRMA (Wu et al. 2004). The MAS5 method is the oldest
among these and seems to have gradually being phased out by PLIER (Affymetrix
2005b)—a newer method from Affymetrix. Table 2.3 summarizes the main character-
istics of these methods which are discussed in the following sections.

Some data miners (or bioinformaticians) have a tendency to treat initial pre-
processing as a “black box,” and assume that the real analysis starts when the gene
expression level for each gene has already been calculated. Although one could under-
stand this approach, in real research projects it is important to know how the gene
expressions were calculated. Improper preprocessing methods (or their assumptions
or parameters) may have a significant impact on the results of an entire study.

2.3.1 MAS5

The MAS5 algorithm (Affymetrix 2001; Affymetrix 2002) performs the background
adjustment and summarization steps independently for each array. Then all the
arrays are scaled to have the same trimmed mean expression level. The MAS5 algo-
rithm is included in the Affymetrix Expression Console software (Affymetrix 2006).

MAS5 Background Adjustment

Adjustment for Background
To estimate the background intensity, MAS5 divides each array into K equally sized
rectangular zones, withK ¼ 16 as the default number of zones. For each zone k, k ¼ 1,
. . . ,K, the mean and the standard deviation of the lowest two percent of the probe
intensities in the zone are used to estimate the zone’s mean background bk and
noise nk (the background variability). Subsequently, for each probe on the array the
weighted averages of all bk and nk values are calculated,

b(x, y) ¼
PK

k¼1 wk(x, y)bkPK
k¼1 wk(x, y)

, (2:1)
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n(x, y) ¼
PK

k¼1 wk(x, y)nkPK
k¼1 wk(x, y)

, (2:2)

where

† (x, y) defines the location of the probe on the array,

† wk(x, y), k ¼ 1, . . . , K, are the weights based on the squared Euclidean distance
d2k (x, y) between the probe location (x, y) and the center of each zone k,

wk(x, y) ¼ 1
d2k (x, y)þ 6

, (2:3)

with a smooth factor 6 (the default value is 6 ¼ 100).

The intensity I(x, y) of each probe on the array is adjusted by subtracting the
local background value b(x, y) calculated for the probe. To avoid negative intensities,
the adjusted intensity cannot be less than a fraction w of the noise value n(x, y) calcu-
lated for the probe location (with a default value of w ¼ 0.5),

Iadjusted(x, y) ¼ max [I(x, y)� b(x, y), wn(x, y)]: (2:4)

MAS5 Summarization and Detection Calls

Adjustment for Nonspecific Binding
The previous version of this tool (MAS4) operated under the assumption that most of
the signal coming from the mRNA hybridized to the PM probes will correspond to the
gene targeted by the probes, and that the amount of mRNA only partially bound to the
sequence of the PM probes (the nonspecific binding) will be represented by the
amount of mRNA bound to the MM probes. TheMAS4 algorithm (not used anymore)
calculated the signal simply as PM–MM. There was a problem with this approach—
some twenty to thirty percent of the MM signals were greater than their corresponding
PM signals resulting in data sets with negative intensities. To avoid negative intensities
at the probe set level, the MAS5 algorithm introduces the Ideal Mismatch IM, which is
never greater than PM. For each probe pair l of probe set k, the value of the ideal mis-
match signal IMkl is determined in the following way:

IMkl ¼

MMkl when MMkl , PMkl

PMkl

2SBk
when MMkl � PMkl and SBk . tc

PMkl

2
tc

1þ(tc�SBk )=ts

� � when MMkl � PMkl and SBk � tc

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(2:5)

where

† SBk is the specific background ratio representing the average ratio of the
PM signal to the MM signal for probe set k consisting of nk probe pairs l,
l ¼ 1, . . . , nk. One-step Tukey’s biweight algorithm TBW is used to calculate
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the robust average unaffected by outliers (Affymetrix 2002),

SBk ¼ TBW ( log2 PMkl � log2 MMkl, l ¼ 1, . . . , nk), (2:6)

† tc is the contrast parameter used to decide whether the SBk ratio is large enough
to use it for the IMkl calculation (the default value is tc ¼ 0.03),

† ts is the scale parameter used to assign to IMkl a value slightly less than PMkl

(the default value is ts ¼ 10).

The first case in (2.5) represents the best situation when the ideal mismatch IM is
probe-pair-specific (and equal to MM). In the second case, the IM is not specific to
the probe pair, but is based on probe set-specific information. The goal of the third
case is to set IM to a value slightly less than the PM.

Once the ideal mismatch IMkl is calculated, it is subtracted from the corre-
sponding PMkl intensity. The result represents the adjusted intensity for probe pair l
of probe set k.

Summarization
To summarize the probe pair intensities into a single expression value for probe set k,
one-step Tukey’s biweight estimator of the robust mean18 is calculated on the log2
scale,

log2 signal(k) ¼ TBW ( log2(PMkl � IMkl), l ¼ 1, . . . , nk): (2:7)

However, the expression values reported by MAS5 are in the original scale rather than
in the log2 scale.

Detection Calls
The MAS5 probe set signals are coupled with detection calls (Absent, Marginal, and
Present) based on the probability that a gene is expressed (or, more precisely, on the
probability that the target gene is expressed and its expression level can be reliably
determined). For probe set k, the Wilcoxon signed rank test is used to calculate p-
value for the following one-tailed hypothesis test (Affymetrix 2002):

H0: median(Rl � t) � 0

Ha: median(Rl � t) . 0
(2:8)

where

† Rl is the discrimination score for probe pair l of the probe set,19 calculated on the
raw intensity values as

Rl ¼ PMl �MMl

PMl þMMl
, (2:9)

18This method first calculates the median of the nk adjusted probe intensities log2(PMkl 2 IMkl). The dis-
tance of each probe intensity from the median is used to determine the probe contribution to the average.
Data points that are far from the median (potential outliers) contribute less to the average.
19Saturated probe pairs are excluded from the detection call analysis. If all probe pairs of a probe set are
saturated, the probe set is assigned the Present call and the p-value is set to zero.
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† t is the threshold parameter (the default value is t ¼ 0.015) used to prevent
false calls when PM is only slightly greater than the MM.20

To make the detection call for the probe set, the p-value calculated for the probe
set is compared to two significance levels, a1 and a2,

DetectionCall ¼
Present if p-value , a1

Marginal if a1 � p-value , a2

Absent if p-value � a2

8<
:

9=
;: (2:10)

The significance levels a1 and a2 are user-adjustable parameters with default values
reported in (Affymetrix 2002) of a1 ¼ 0.04 and a2 ¼ 0.06. In the Affymetrix
Expression Console software (Affymetrix 2006) these default values are set to a1 ¼
0.05 and a2 ¼ 0.065.

A present call (P) means that the gene is expressed. An absent call (A) means
that the gene is either not expressed or that the amount of target could not be reliably
determined.

There is no direct relation between the signal level and the detection call (if there
were, we would not need detection calls). Therefore, detection calls can be interpreted
as the probability that a gene is expressed (at any level) and also as the reliability of the
signal measurement.

MAS5 Normalization

The MAS5 normalization procedure is limited to scaling each array to the same
trimmed mean. The scaling is performed after summarization. First, the trimmed
mean xtrim(i) is calculated for each array i by excluding the lowest two percent and
highest two percent of the probe set expression values and averaging all the remaining
intensities. Then each array is scaled to the target signal T (the default value is T ¼
500) by multiplying each expression on array i by the scaling factor s(i) calculated
for the array as

s(i) ¼ T

xtrim(i)
: (2:11)

By analyzing each array independently, the MAS5 algorithm cannot take into
consideration probe-specific affinities across arrays. This reduces the algorithm’s
ability to detect small changes between arrays (and between the differentiated
phenotypes) when compared to multichip approaches. The Affymetrix Expression
Console User Guide (Affymetrix 2006) suggests that “The primary use of the MAS
5.0 algorithm is to obtain a quick report regarding the performance of the arrays
and to identify any obvious problems before submitting the final set of arrays to
one of the multichip analysis methods (RMA, PLIER).” A short description of
PLIER is in Section 2.3.4. Detection calls are, however, to the advantage of the
MAS5 algorithm since they are very useful in filtering out probe sets with unreliable
measurements.

20Probe pairs with jPM2 MMj , t are not used for the detection call analysis.
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2.3.2 RMA

The Robust Multichip Analysis (RMA) method (Bolstad et al. 2003; Irizarry, Bolstad
et al. 2003; Irizarry, Hobbs et al. 2003; Bolstad 2007, 2008), performs a background
adjustment using only the PM probe intensities, and then performs quantile normal-
ization and a robust multichip summarization.

RMA Background Adjustment

RMA background adjustment is performed under the following assumptions:

† each array has a common mean background,

† the MM mismatch probes are ignored,

† the observed perfect match intensity Y is modeled as a convolution of the
exponentially distributed signal S and the normally distributed background B,

Y ¼ Sþ B, (2:12)
where

† S and B are independent random variables,

† the S distribution is exp(a),

† the B distribution is N(m, s2), truncated at 0 to avoid negative back-
ground noise values.

The background-adjusted estimate of the true signal is given by the expected
value of S given the observed value of Y,

E(SjY ¼ y) ¼ aþ b
f

a

b

� �
� f

y� a

b

� �
F

a

b

� �
þF

y� a

b

� �
� 1

, (2:13)

where

† a ¼ y 2m2s2a

† b ¼ s

† F( ) denotes the standard normal distribution function

† f( ) denotes the standard normal density function.

According to Bolstad (Bolstad 2004, 2007), for most Affymetrix data sets, we may
assume f y�a

b

� � � 0 and F y�a
b

� � � 1, and so Equation 2.13 can be simplified to

E(SjY ¼ y) ¼ aþ b

f
a

b

 !

F
a

b

 ! : (2:14)

The RMA background adjustment procedure estimates the model parameters a,m, and
s, and replaces the probe PM intensities Y with their background-corrected values S.
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RMA Quantile Normalization

The RMA algorithm assumes that the probe-level signal intensities should be similarly
distributed over all biological samples of an experiment.21 Quantile normalization is
performed to adjust the intensities in a way that they are identically distributed for
all the arrays. Assume that we have probe-level intensity data for N microarrays and
L probes on each array. The data can be represented by an N � L matrix with N col-
umns representing biological samples and L rows representing probes. The quantile
normalization algorithm may be described in the following way:

† Independently sort each column in ascending order.

† Calculate the mean value for each row of such sorted matrix (note that after
sorting, the rows represent quantiles of the intensity distribution rather than
intensities for one probe).

† Replace all values in a row by the mean value calculated for the row.

† Re-sort each column to its original order.

This kind of quantile normalization is referred to as complete data normalization
because it uses all the experiment arrays and does not need a reference array.

RMA Robust Multiarray Summarization

Once the probe intensities are corrected for background and then normalized, they
need to be summarized to a single expression value for each probe set of each
array. The RMA summarization procedure first log2 transforms the normalized
probe intensities, and then, for each probe set, fits the following model (Irizarry,
Hobbs et al. 2003; Bolstad 2007):

yli ¼ mi þ al þ eli, (2:15)

where

† yli is the background-adjusted, normalized and log2 transformed intensity value
for probe l on array i,

† mi represents the array effect (the log2 scale expression level of the probe set for
array i),

† al represents the probe affinity effect for probe l in the probe set,

† eli is the error term (the residual for the probe l on array i).

The RMA summarization procedure uses the median polish algorithm to fit the
model (2.15) subject to the constraint imposed for identifiability,

X
l

al ¼ 0: (2:16)

For each probe set, the starting point is the matrix of yli’s with row l representing
probe l of the probe set and column i representing array i. The results are the estimates

21This assumption is not necessarily true for genes expressed at higher levels. Furthermore, forcing the dis-
tributions to be equal introduces additional noise.
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of the mi values, with each mi representing the probe set expression for array i. The
algorithm can be described in the following way:

† Repeat

† Calculate the median for each row (probe) and subtract it from the
row values.

† Calculate the median for each column (array) and subtract it from the
column values.

until all row and columnmedians are zero or the changes are small. The resulting
matrix is the matrix of residuals.22

† Subtract the residual matrix from the original matrix of yli’s. The result is the
matrix of fitted values.

† Calculate the means of the column values in the fitted matrix. The means are the
probe set expression values for the arrays represented by the columns.

† Repeat all the above steps for each probe set.

Since RMA performs the global background adjustment, it does not account for
the fact that different probes may have different susceptibility for nonspecific hybrid-
ization. This may result in underestimating the fold changes for the low expressed
probe sets. The GCRMA algorithm is a modification of RMA, which addresses this
problem.

2.3.3 GCRMA

The GCRMA low-level preprocessing method (Wu et al. 2004; Wu and Irizarry 2005)
is a version of RMA that makes use of probe sequence information (stronger bonding
of GC pairs) at the background adjustment step. The normalization and summarization
steps of GCRMA are the same as for RMA.

GCRMA Background Adjustment

The GCRMA algorithm uses both the PM and MM signals and assumes that—for any
probe pair on an array—the observed signals may be described by the followingmodel:

PM ¼ Oþ NPM þ S

MM ¼ Oþ NMM
(2:17)

where

† O represents the optical noise, which is assumed to follow the normal
distribution N(mO, s

2
O),

† NPM and NMM represent the nonspecific binding; it is assumed that log(NPM)
and log(NMM) follow a bivariate normal distribution with means mPM and
mMM, and equal variances s2

N ,

† S represents the target expression signal.

22The residuals can be used for quality control.
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To perform background adjustment, GCRMA estimates the model parameters
under the following assumptions:

† The optical noise and nonspecific binding are independent.

† s2
O 	 s2

N , thus the optical noise is approximately constant and can be estimated
by the minimum observed intensity on the array.

† log(NPM) and log(NMM) have a correlation of 0.7 across probe pairs.

The mean values mPM and mMM of the non-specific binding depend on the probe
sequence and are modeled as a smooth function of the probe affinity a, with a calcu-
lated as the sum of the position-related base effects,

a ¼
X25
k¼1

X
l[{A,C,G,T}

ml(k) 1bk¼ l, (2:18)

where

† k denotes the position along the 25-base long sequence of the probe,

† l denotes the base letter,

† bk is the base at position k,

† 1bk¼ l ¼ 1 when bk ¼ l
0 otherwise

� �
,

† ml(k) is the contribution of base l in position k to the probe affinity.

In practice, the ml(k) can be estimated from all the data of an experiment or may
be hard-coded in a particular implementation of the GCRMA algorithm (Bolstad
2008). Once the parameters of the model are estimated, the probe intensity can be
calculated as the expected value of S given the observed signals PM and MM.

2.3.4 PLIER

According to Affymetrix (Affymetrix 2005b), the Probe Logarithmic Intensity
Error (PLIER) algorithm builds upon many recently published concepts. Similar to
GCRMA, it utilizes probe specific affinity across all arrays and quantile normalization.
Like MAS5, it summarizes the weighted probe intensities. Although PLIER makes
a counter-intuitive assumption that the error term associated with the MM probe is
the reciprocal of the PM error term, it performs quite well when compared to other
algorithms (Therneau and Ballman 2008).

2.4 PUBLIC REPOSITORIES OF MICROARRAY DATA

2.4.1 Microarray Gene Expression Data Society (MGED)
Standards

The main obstacles for early studies based on gene expression microarray data were
related to the availability of large and good quality training and test data sets. As we
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are dealing with many thousands of variables (probe sets, genes, exons), a proper
sample size (in the statistical meaning), or the number of independent biological
samples in the experiment (or in each of the differentiated classes), is very important
for the statistical and scientific validity of the results. Other problems were related to
the reproducibility of experiments and reusability of their data. Different data formats
and often insufficient annotations and descriptions of experiments made it rather
difficult to verify and compare the published studies. Furthermore, finding indepen-
dent (also large enough and of good quality) test data sets was practically impossible
without direct collaboration with other groups generating such data for the same area
of biomedical research. Please note that the gene expression levels resulting from
microarray experiments are not measured in any objective units.23 Therefore,
sufficient information about the data and their processing is crucial for the inter-
pretation and comparison of results and for the integration of data from different exper-
iments (Brazma et al. 2001).

The situation started to change when the Microarray Gene Expression Data
Society (MGED, www.mged.org) initiated the development and promotion of stan-
dards for storing and sharing microarray based gene expression data and study results.
Among such standards are MIAME (Minimum Information About a Microarray
Experiment), MAGE-ML (Microarray Gene Expression Markup Language), and
the recently preferable MAGE-TAB—a spreadsheet format for MIAME-compliant
microarray experiment information. MIAME is a conceptual standard describing the
minimum information content required for proper interpretation and verification of
microarray experiments whereas MAGE-ML and MAGE-TAB are standards defining
formats of MIAME-compliant data and experiment descriptions.

MIAME

The Minimum Information About a Microarray Experiment (MIAME) stan-
dard (Brazma et al. 2001; MGED_Society 2008b) requires that the following
information be provided for publications based on microarray experiments.

1. The raw data resulting from each microarray image analysis (such as CEL
files for Affymetrix arrays).

2. The final data after preprocessing, for instance the results of MAS5 or
RMA preprocessing. This should be the gene expression matrix that is
analyzed in the study.

3. The essential information about sample annotation and experimental
factors. All information necessary for proper interpretation of the experi-
mental results and for eventual replication of the experiment.

4. The experimental design including relationships between samples, micro-
arrays, and data files.

5. A description of the microarray design (such as probe sequence infor-
mation and its database accession numbers). This is especially important

23In the future, we may have technologies measuring the number of copies of each transcript in a cell, but we
are not there yet.
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for experiments using customized arrays. For standard commercial arrays,
such as those by Affymetrix, this information is provided by the
manufacturer.

6. The experimental and data processing protocols. This is basically the
information usually provided in the Methods section of a paper. Any non-
standard protocols should be described in a way that allows an under-
standing of how the experiment has been performed and how the data
have been analyzed.

Although the MIAME standard does not require that the data be in any specific
format, it does recommend the use of either the MAGE-TAB or MAGE-ML
formats.

MAGE-ML

The Microarray Gene Expression Markup Language (MAGE-ML) is an
XML-based data format for sharingMIAME-compliant data and information
about microarray experiments (Spellman et al. 2002). MAGE-ML is the
XML representation of the microarray gene expression object model
(MAGE-OM) developed as a part of the MGED initiative. Although the
MAGE-ML format has been used by many tools and databases, it has not
been universally accepted, mainly due to its complexity (Rayner et al.
2006). The MAGE-ML format is still used (at the time of this writing), but
the newer, spreadsheet-based MAGE-TAB format is recommended as a
replacement for the MAGE-ML format.

MAGE-TAB

MAGE-TAB (MicroarrayGene Expression Tabular) is a simple spreadsheet-
based (or, more generally, tab-delimited) format for sharing MIAME-
compliant data. It does not require an understanding of XML and can be
used instead of themore complexMAGE-ML format. TheMAGE-TAB stan-
dard defines four types of files necessary to describe a microarray experiment
(Rayner et al. 2006):

† Investigation Description Format (IDF). An IDF tab-delimited text file pro-
vides general information about the experiment (such as a brief description
of the study and its protocols, contact information, and bibliography).

† ArrayDesign Format (ADF).Using a tab-delimited format, anADF text file
describes the design of an array type used in the experiment (for example,
informationabout theprobesequences, their locationson thearrayandanno-
tations). For standard commercial array types, it may simply provide a refer-
ence to array information in a public repository.

† Sample and Data Relationship Format (SDRF). An SDRF file provides all
information required by the MIAME standard, which is not included in
the other MAGE-TAB files. In particular, it describes experimental design
and relationships between samples, arrays, and data.

† Raw and preprocessed data files. The raw data should be provided as binary
or ASCII files in their native formats (for example, CEL files for

36 CHAPTER 2 BASIC ANALYSIS OF GENE EXPRESSION MICROARRAY DATA



Affymetrix arrays). The preprocessed data files may be provided either in
their native formats or as tab-delimited text files in the data matrix format.
This data matrix format is similar to our gene expression matrix described
in the next section since its rows correspond to genes and columns to bio-
logical samples. However, the columns of a MAGE-TAB data matrix have
references to objects defined in SDRF files (for example, references to CEL
files associated with the column samples).

The MAGE-TAB format is currently recommended by the MGED Society as
the best practice approach (MGED_Society 2008a).

2.4.2 Public Databases

Thanks to the MGED Society initiatives including open letters to the scientific jour-
nals (Ball et al. 2002, 2004), most scientific journals accepting papers based on
gene expression microarray data now require—as a part of the publication process—
the submission of the microarray data to one of the public repositories adhering to
the MIAME standards. The MGED Society recommends three such repositories:
ArrayExpress, Gene Expression Omnibus (GEO) and CiBEX24 (Center for Infor-
mation Biology Gene Expression Database at DNA Data Bank of Japan). The GEO
and ArrayExpress databases are rapidly growing and already include thousands of
microarray experiments.

The availability of well-annotated microarray data in standard formats allows for
the easy access, querying and sharing of data. It makes possible integration of data
from different studies into larger training sets or finding quality test sets to validate
the outcomes of new experiments.

2.4.2.1 Gene Expression Omnibus (GEO)

Gene Expression Omnibus25 (Barrett et al. 2005, 2007) is a public repository of high-
throughput genomic and proteomic data, primarily MIAME-compliant gene
expression microarray data. It was established in 2000 at the National Center for
Biotechnology Information (NCBI). Experimental data can be submitted to GEO
using either interactive web forms or batch deposit of files in such formats as
spreadsheets, text SOFT (Simple Omnibus Format in Text) files or MINiML
(MIAME Notation in Markup Language) XML files. The submission may be kept
confidential until the paper is published. The data are stored in the form of three
basic record types:

† Platform—description of the array.

† Sample—description of a biological sample and results of its hybridization
(such as probe set signal levels and detection calls).

† Series—description of the experiment performed on a group of samples.

24http://cibex.nig.ac.jp
25www.ncbi.nlm.nih.gov/geo/
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Based on the submitted experiments (series), GEO curators organize data into
higher level objects represented by the DataSet and Profile record types:

† DataSet—a collection of biologically comparable samples that were processed
on the same platform and whose measurements are the results of processing and
calculations consistent across the DataSet.

† Profile—a gene-centered view of the DataSet; expression level of a single gene
across all DataSet samples.

2.4.2.2 ArrayExpress

ArrayExpress26 (Parkinson et al. 2007, 2009) is a public database of microarray exper-
iments and gene expression profiles that was established in 2002 at European
Bioinformatics Institute (EBI). ArrayExpress has currently three components:

† ArrayExpress Repository, which is a MIAME-compliant database of micro-
array data, such as the original data supporting publications. Pre-publication
data can be submitted as private and then made publicly available as soon as
the paper is published. New experiments can be submitted to the repository
either via the online MIAMExpress tool or uploaded as spreadsheets (MAGE-
TAB is the preferred spreadsheet format). The user interface allows for efficient
browsing and querying of the repository data. The results may be filtered and
sorted. Selected raw or preprocessed data may be downloaded. For example,
to retrieve data in a form similar to our gene expression matrix, but with both
signal and detection call information (if available), we would select the
Quantitation Types options corresponding to the signal and detection calls
and then the sequence identifier under the Design Element Properties. If we
save the displayed matrix as a text file, it can be opened in Excel.

† ArrayExpress Warehouse, which is a database of gene-indexed expression pro-
files selected from the ArrayExpress repository. The selection is based on
MIAME-compliance and the quality of data annotations. The selected experi-
ments are re-annotated and curated for consistency with the warehouse environ-
ment. Users can query the warehouse profiles by gene name, accession numbers
or other annotations.

† ArrayExpress Atlas, which is a new summary database allowing for querying the
curated and ranked gene expression data across multiple experiments and con-
ditions. Search results are linked to more detailed gene and experiment infor-
mation in the Warehouse and to raw data in the Repository. Since the Atlas
database is an extension of the Warehouse of gene expression profiles, we may
expect that the two toolswill be combined into a singleArrayExpress component.

2.5 GENE EXPRESSION MATRIX

After low-level preprocessing of microarray data, gene expression data can be pre-
sented as a matrix with N columns representing samples and p rows representing

26www.ebi.ac.uk/microarray-as/ae/
www.ebi.ac.uk/microarray-as/aer/entry
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probe sets (see Table 2.4). If necessary,meta level data—such as assignment of samples
to classes—may be incorporated within the matrix or supplied as a separate file.27

Samples

Columns of the gene expressionmatrix represent biological samples. The data
for each biological sample (one column) come from one microarray. In sta-
tistics, the term samplehasawell-definedmeaning—a statistical samplewould
refer to the entire group of biological samples selected from one of the inves-
tigated populations. However, when we are using statistics in such an interdis-
ciplinary area as genomics, the term sample has a different—though also
well-defined—meaning for biomedical researchers. To communicate effi-
ciently, we will use the term sample as corresponding to a biological sample
rather than in its statistical meaning, hence sample 5 biological sample.

Variables

Rows of the gene expressionmatrix represent variables—probe sets or genes.28

Names like 1053_at, 1255_g_at or 91952_at are Affymetrix probe set IDs,
which correspond to genes (annotations for probe sets can be downloaded from
www.affymetrix.com). Table 2.5 shows an example of probe set annotations.

Classes

Classes represent different phenotypes, diseases, or—more generally—states
we want to differentiate. In statistics, they would be called populations. Take
the following examples:

† Two classes: Class 1—patients with breast cancer, Class 2—healthy women.

† Six classes: Six populations of patients with six subtypes of acute lympho-
blastic leukemia.

Class information is crucial for supervised learning, but not necessary or not
available for unsupervised learning.

Each data value (a cell in the gene expression matrix) represents the expression
level of a gene (row) in a sample (column). This single number for a probe set/
sample combination represents the abundance of the mRNA target29—in the
sample—corresponding to the gene represented by the probe set.30 The number by

27The gene expression matrix itself does not have to have this meta-data information about assignment of
samples to classes. It is common practice to include the class name (disease, state, cell line, etc.) in the
sample name. Another option is to use a separate text file with the meta-data.
28Here we are focusing on the gene-level analysis of gene expression data. When exon arrays are used to
investigate the expression of different splice variants, probe sets correspond to exons, which in turn corre-
spond to genes.
29Technically, the target of oligonucleotide arrays is cRNA, but it represents mRNA. The gene is represented
after introns are removed (you may also look upORF definition). The oligos printed on the array are selected
to be specific for the targeted gene (since the oligos are only 25-base pair long, a gene may be represented by
several different oligos for greater specificity).
30After low-level preprocessing, one expression level is calculated for all probes of a probe set. Since the
probe set represents a gene, this expression level can be called the gene’s signal.
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itself is not that important, what is important is the relative expression level of a gene
in different samples.

2.5.1 Elements of Gene Expression Microarray Data Analysis

Experienced data miners are aware of the fact that there is no automatic data mining.
Properly performed data mining projects have to include input from experts. Data

Figure 2.1: Elements of microarray gene expression data analysis—an example. Input data
can be in a raw form (e.g., the CEL files resulting from microarray image analysis) or in a
preprocessed form (e.g., probe set level expression data downloaded from a public repository).
Additional preprocessing, quality control, and filtering is usually necessary depending on the
requirements of the study. The gene expression matrix is the basic data form used for either
supervised or unsupervised analysis. Basic exploratory analysis is commonly performed to gain
some information and feeling about the data. Unsupervised learning is the main approach for
studies seeking new taxonomic information. For supervised studies, unsupervised analysis is
sometimes performed as a part of the exploratory data analysis (the dashed line from element
C to D). However, unsupervised analysis should not be used for variable selection or dimen-
sionality reduction preprocessing for supervised analysis because it will most likely result in the
discarding of important discriminatory information. The dashed line from element D to C
represents the use of unsupervised analysis to find associations between genes identified during
the supervised analysis (for instance, to cluster genes selected into the Informative Set of
Genes—see Chapter 4).
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mining enables the finding of patterns in data, but which patterns are found and what
research value they possess depends on the way we formulate the research problem
and whether we use appropriate data mining methods. Consequently, there is no
single workflow common for all studies based on gene expression data. The selection
of methods used in a study depends on its scientific goals as well as on the properties of
the available data. Some initial steps (like low-level preprocessing and gene expression
level preprocessing described below) are, however, always performed. Figure 2.1
shows the most common elements of microarray data analysis. After preprocessing
(the element A), any of the elements (or their sequences) may be performed.

2.6 ADDITIONAL PREPROCESSING, QUALITY
ASSESSMENT, AND FILTERING

“Data pre-processing does not mean that the data should be tortured until they

confess. As a general rule of thumb, the analyst should pre-process the data as little

as possible and as much as necessary.”

—(Berrar et al. 2007)

Depending on the source of our data, as well as on the methods and scope of their
low-level preprocessing, additional preprocessing at the gene (probe set) expression
level may be necessary. If the data come from our own microarray experiment, it is
likely that all of the necessary preprocessing and at least some quality control have
already been done at the low-level preprocessing step. However, if we start our
analysis at the gene expression level (e.g., after downloading the gene expression
matrix from one of the public repositories), it is a good idea to check whether the
data conform to the quality requirements of our particular study goals and methods
as well as whether any additional preprocessing is necessary. It is recommended
that data miners do not treat the gene expression matrix data as the result of some
“black box” process, but be familiar with the advantages and disadvantages of
different preprocessing approaches. Sometimes, if we use publicly available data
and the goals or approaches of our analysis are different from those originally
published, it may be better to start with the raw data (the CEL files) and perform
our own low-level preprocessing. In any case, additional preprocessing may include
normalization, cross-chip scaling, or transformation, and it should include gene
expression level quality control.

Normalization

If performed at this level, the goals of normalization are the same as for low-
level preprocessing—to reduce effects of systematic technical and exper-
imental variation.

Cross-Chip Scaling

Scaling means global linear normalization. If we use arrays from different
experiments (although with the same microarray type and the same or similar
preprocessing), we would like to scale their expressions to the same level, for
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instance to the same value of a trimmed mean. The scaling should be done
using the original expression levels rather than their log values. Often this
is done when we include an independent test data set in the experiment.

Transformation

This usually means logarithmic transformation. To transform or not to trans-
form? There have been long discussions about blanket logarithmic
transformation of microarray data. Currently, the common practice is to
log-transform the microarray data, and recently the log2 transformation is
very popular. We need to note, however, that it is unlikely that any single
approach would be optimal in all situations. Depending on the data and the
assumptions of a particular statistical model, different transformations (or
maybe even no transformation at all) may be preferable.

The primary reason for the transformation of microarray data is to stabilize
the variation across the range of signal intensities. The general tendency of
microarray data is that higher intensities are associated with higher variation.
This heteroskedasticity of the data violates the assumption of a constant var-
iance, which is made by some popular statistical models (such as analysis of
variance). A nonlinear transformation of microarray data may eliminate, or at
least reduce, the heteroskedasticity. It is, however, not clear which transfor-
mation, if any, could be universally the most appropriate. The often rec-
ommended, and widely used, logarithmic transformation stabilizes (or
approximately stabilizes) the variance at higher intensities, but it inflates
the variance at very low intensities (Durbin et al. 2002; Huang et al.
2004). Theoretically, for each study we could determine the relationship
between the measured intensity and its variance, and use this information
to identify the most appropriate transformation. A more practical approach
would be to restrict our choice to a few transformations and select the one
that minimizes some measure of the variance heterogeneity. The generalized
logarithmic transformation (Durbin et al. 2002; Huber et al. 2002; Lin et al.
2008) and Box-Cox power transformation (Box and Cox 1964) are among
the plausible candidates.

Stabilizing the variance means that multiplicative errors are converted into
additive errors.

† A multiplicative errormeans that the standard deviation increases with the
intensity and the coefficient of variation (CV) is similar at different inten-
sity levels.

† An additive error means that the standard deviation is similar for different
intensity levels, thus the CV decreases as the intensity increases.

† The coefficient of variation is defined as

CV ¼ standard deviation
mean

� 100
� 	

%: (2:19)

Many popular low-level preprocessing methods perform logarithmic
transformation and return the log-transformed probe set level intensities.
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Some methods return the intensity values in their original scale; if we want to
work with the logged ones, we would need to perform the transformation as
an additional preprocessing step.

Let us also note that the logarithmic transformation is convenient for the
interpretation of data generated by two-channel microarrays. The data points
are usually represented by the ratio of the intensities measured for the two
samples processed simultaneously on a single array. The same convenience
applies to situations where we are interested in the ratio of intensities
measured on different single-channel arrays. Logarithmic transformation
treats the ratios symmetrically, whether their values are greater or less than
one. In effect, the ratios are converted into differences. The base 2 logarithms
are most convenient when we are particularly interested in the fold changes31

that are powers of 2. For example, a fourfold change in either direction will be
represented by the distance of 2 (log2(4) ¼ 2 and log2(0.25) ¼ 22) from
the no-change state (log2(1) ¼ 0). Another reason for the popularity of the
base 2 logarithmic transformation could be related to the fact that the intensity
values are typically measured on a scale from zero to 64K 2 1 (i.e., 216 2 1).

2.6.1 Quality Assessment

Quality assessment should span all stages of microarray preprocessing—image analy-
sis, probe-level and gene expression-level preprocessing. Its main goals are to identify
(and eventually eliminate) low-quality arrays and outliers, and evaluate the quality of
the preprocessing steps. Most procedures for quality checking are based on a graphical
presentation of the data and their characteristics.

Image Analysis

Visual inspection of the scanned array images can reveal problems like increased or
decreased intensities in some regions, nonuniform background, other spatial patterns,
defective spots, dust particles, etc. Nonvisual methods also exist for the identification
of problems with spatial intensity distribution. For instance, if the low and high inten-
sity spots can be separated solely by their spatial coordinates, the array should be
eliminated (Amaratunga and Cabrera 2004). Software procedures for the automatic
assessment of individual spot quality can flag problematic spots by evaluating their
geometric properties such as shape regularity, uniformity, the ratio of signal area to
spot area, or the displacement from the expected grid location (Drăghici 2003).

Box Plots

Box plots (graphical presentations of quartiles, the interquartile range, the range of
values, and outliers; see Figs 2.2 and 2.3) are popular for comparing array intensity
distributions before and after a preprocessing step. They are especially useful for
the evaluation of normalization results. Scatterplots may also be useful if we need

31Using fold change as the only criterion for filtering genes is strongly discouraged. For more information on
filtering refer to Section 2.6.2.
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to focus on the intensities of a specific array before and after a preprocessing step or to
compare two arrays at the same step.

Box plots are also a convenient way to visually compare the distributions of
various parameters used for the array quality assessment (such as RLE or NUSE
described later in this section). Besides the evaluation of individual arrays,
box plots may be used to detect systematic technical problems with the experiment.
By coloring boxes (representing arrays) according to experiment or sample conditions,
we may be able to identify trends or quality problems associated with such properties
like the hybridization date and time, specific groupings of samples, different sample
handling, different lab sites, etc. (Brettschneider et al. 2008).

Histograms

Histograms (with bars) or smoothed histograms (with bars and a density trace approxi-
mating the empirical density function) can be used to visualize the distribution of gene
intensities (across all samples or across the samples of a class) or the distribution of the
array intensities (across all genes). Histograms enable the evaluation of assumptions

Figure 2.2: Anatomy of a box plot. The box plot is based on the five-number summary of a
data set: Smallest value (Min), First quartile (Q1), Second quartile (Median), Third quartile
(Q3), and Largest value (Max). Since the box is drawn from the first to the third quartile, it
contains the middle 50 percent of the data. The interquartile range IQR is defined as the
difference between the third and first quartiles. The upper and lower limits are located 1.5 IQR
above Q3 and below Q1 respectively. The dashed lines (whiskers) connect the box with the
largest and smallest data values that are within the limits. The data values above the upper limit
or below the lower limit are considered outliers.
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about a particular intensity distribution or for evaluation of changes in the distribution
shape after normalization (see Fig. 2.4).

MA Plots

MA plots can visualize the relationship between the relative log2 intensity and the
mean log2 intensity (Dudoit et al. 2002). The plots may be used at various stages of
preprocessing to detect nonbiological variability, to assess the necessity for normali-
zation or to evaluate the results of normalization. Assume that we want to visualize the
relationship between the probe set level intensities of two arrays ai, i ¼ 1, 2 with the p
probe sets on each of them. Let the intensities of each array be represented by a p-
dimensional vector xi with elements xki, k ¼ 1, . . . , p,

xi ¼

x1i
x2i

..

.

x pi

2
6664

3
7775: (2:20)

The MA plot is a scatterplot of the p probe set-associated points. The vertical axis
M represents the difference between the log2 intensities (or log2 of the ratio of the orig-
inal scale intensities), and the horizontal axis A represents the mean value of the two
log2 intensities. Thus, probe set k, k ¼ 1, . . . , p, is represented by the point with

Figure 2.3: An example of box plot. The box plot of expression values of 176 genes of the
Informative Set of Genes for 24 MLL samples of the training set combining two data sets (for
more information about this experiment, see Section 6.6 of Chapter 6).
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coordinates (Mk, Ak), where

Mk ¼ log2(xk1)� log2(xk2)

¼ log2
xk1
xk2

� 	
,

Ak ¼ 1
2
[ log2(xk1)þ log2(xk2)]

¼ log2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk1 
 xk2p

:

(2:21)

For experiments with many arrays, i ¼ 1, . . . ,N, such pairwise comparisons of
the arrays may be impractical. Instead, we may compare each vector xi (each array) to
the vector x* of the median values calculated over all N arrays (a virtual reference
array). The coordinates of the point representing probe set k on such an MA plot for
array i are:

Mk ¼ log2(xki)� log2(xk�),

Ak ¼ 1
2
[log2(xki)þ log2(xk�)]:

(2:22)

Figure 2.4: An example of histograms showing the distribution of log2 transformed intensi-
ties of four genes across the samples of a training data set. The horizontal axis represents the log2
transformed expression level of a gene. The vertical axis, the height of each bar, shows the
frequency—the number of training samples with the gene expression level falling into a
particular bin (the interval of expression values represented by the bin).
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Assuming that only a small number of probe sets have significantly different
expressions and that a similar number of them are over- and under-expressed, the
“cloud” on the MA plot should be centered around the M ¼ 0 horizontal line (see
Fig. 2.5). A common practice is to show smooth lines on the MA plots representing
the quartiles of the M values (Q1, the median, and Q3) over the range of the A
values. The lines allow for the quick visual evaluation of the distribution of the log2
intensities as a function of the A values.

Figure 2.5: An example of MA plots for the same two microarrays selected from the data set
preprocessed with three low-level preprocessing methods: MAS5, RMA, and PLIER.
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Relative Log Expression (RLE)

The relative log expression (RLE) compares the expression level of a probe set on a
particular array to the median expression level for this probe set over all arrays. The
RLE values correspond to the M values on the MA plot. The box plots representing
the distribution of the RLE values on an array can be used to identify low quality
arrays—those whose RLE values have a large interquartile range or are not centered
around zero (Bolstad 2007).

Normalized Unscaled Standard Error (NUSE)

For preprocessing methods that produce a matrix of residuals (such as the RMA algo-
rithm described in Section 2.3.2), we may use the residuals for quality assessment.
The normalized unscaled standard error (NUSE) can be calculated for each probe set
by normalizing the standard error of the probe set intensities across arrays to a median
value equal to one. The distribution of NUSE values on an array can be used for array
quality assessment. The box plots of NUSE values that have a higher median (and a
larger interquartile range) indicate lesser quality arrays (Brettschneider et al. 2008).

Clustering Samples (or PCA Visualization)

Quality assessment based on clustering samples may be used to check whether the
samples group together by their biological characteristics. As with colored box
plots, the points representing biological samples may be assigned different colors
depending upon conditions of sample processing. Serious quality problems may be
indicated when the samples are clustered predominantly by factors other than their bio-
logical characteristics (for instance, when they cluster by the time of their hybridi-
zation). Similar results may be achieved by visualizing the samples in 2D or 3D
space using the first two or three principal components. For more information on clus-
tering and principal component analysis refer to Section 2.8 of this chapter.

2.6.2 Filtering32

Once we are satisfied with the quality and the representation of the preprocessed
expression data, we usually eliminate some probe sets. The gene expression matrix
may include tens of thousands of probe sets. Not all of these data are useful.
Although criteria for filtering out some probe sets may differ from study to study,
the goals of such filtering are similar—to eliminate the probe sets (i.e., the rows of
the gene expression matrix) whose expression measurements are not reliable or rep-
resent experimental noise. Many genes in a tissue are not expressed at biologically sig-
nificant levels. The rows of the gene expression matrix associated with such genes can
be treated as experimental noise and a potential source of false positives. They should
be identified and removed before further analysis.

32Note that this kind of filtering is not related to univariate filtering by the significance level of differential
expression. It is also not related to filter methods for feature selection. The filtering here aims at removing
unreliable variables from the data set.
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Some preprocessing methods associate the expression values with indicators of
the measurement reliability (for instance, the detection calls of the MAS5 algorithm).
Such indicators can be used directly to filter out unreliable probe sets. In the lack of
such indicators, filtering by the expression level may be performed. Examples of
filtering criteria may include the following:

† Filtering by the fraction of Present calls33 in a class.

The genes that have at least the predetermined fraction of Present calls in at least
one of the classes are retained. This is equivalent to removing the genes for
which the percent of Present calls in each class is less than the threshold fraction.
The threshold should not exceed 50 percent of the class size; otherwise impor-
tant discriminatory information could be removed. This criterion requires that in
order to keep the gene in the analysis, it should be reliably expressed in at least
one of the differentiated phenotypic classes (i.e., it should have at least the
threshold fraction of Present calls in at least one class). Hence, potentially
important discriminatory genes that are expressed in only one class will be pre-
served. For supervised analysis, this criterion is preferable over criteria based on
the fraction or the number of Present calls across all classes because such criteria
are not necessarily associated with the biologically defined groups of samples.
Obviously, this criterion cannot be applied to unsupervised analysis for which
we do not have class information.

† Filtering by the number of Present calls across all the samples (and across the
classes in the case of supervised analysis).

The genes with fewer than the predetermined threshold number of Present calls
across all the samples are removed. Simple and common criteria for this filtering
approach are: to eliminate all probe sets that have no Present calls, or to eliminate
probe sets with all Absent calls. If we have the class information, then thresholds
that use a nonzero number of Present calls should be determined in relation to
the size of the smallest class. The threshold number should not be greater
than half of the smallest class size. Otherwise genes important for discrimination
could be removed.

† Filtering by the average expression level in a class.

Usually, some more or less arbitrary level of experimental noise is used to define
the filtering threshold. Genes that do not have an average expression level greater
than the threshold in any of the classes are eliminated.

† Filtering by the maximal expression level.

Genes with all expression values (across all the samples) below the experimental
noise threshold are eliminated.

† Filtering by the range of expression values.

Genes with an amplitude of expression (max–min) less than the specified exper-
imental noise thresholdwill be removed.At the same threshold level, this criterion

33Details on MAS5 detection calls (Present, Absent, and Marginal) can be found in Section 2.3.1.
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will eliminate all the low-expressed genes that would be filtered out by themaxi-
mal expression level criterion. However, it will also eliminate genes expressed at
any level for which the range of their expression values is below the noise
threshold (the very low variance genes).

† Filtering by the fold change.

Using this criterion as the only filtering criterion is not recommended. The
probe sets with unreliable expression measurements at low expression levels can
generate large fold changes that have no biological meaning. If we want to use
the fold change as one of the filtering criteria, it should be done after unreliable
variables are removed, preferably with the fraction of Present calls criterion.

As could be expected, filtering by detection calls provides better results than
filtering by the expressionvalue.McClintick andEdenberg performed acomprehensive
comparison of these two filtering approacheswhen applied toMAS5 andRMAprepro-
cessed data (McClintick and Edenberg 2006). Their results indicate that filtering by the
fraction of Present calls in a class is efficient in removing unreliable variables when
applied to MAS5 preprocessed data as well as when applied to data preprocessed by
other algorithms. It is superior to filtering by the average expression level (whether
the expressions are calculated by the MAS5 or RMA algorithms). Though the
Absent detection calls are more likely to be assigned to low level expressions than to
high level ones, filtering by the expression level removes the low expressed genes
whether their measurements are reliable or not. On the other hand, filtering by the frac-
tion of Present calls targets unreliable variables and does not affect the genes with rela-
tively lowbut reliable expressionmeasurements.McClintick andEdenberg suggest that
the threshold fraction of Present calls be associated with the number of samples per
class. For smaller experiments, the filtering should be more aggressive, with the
threshold as large as 25 percent or even 50 percent. For large experiments, it may be suf-
ficient to remove only those probe sets that have no Present calls.

Since probe sets with all (or almost all) Absent calls as well as probe sets
expressed at very low levels are very likely to represent experimental noise, it may
be preferable to filter expression data using more than one criterion—for instance,
filtering by the fraction of Present calls in a class and filtering by the maximal
expression level34 (which specifically targets genes with consistently low expression).
If our preferred preprocessing method does not provide detection calls, it may be
advantageous to also preprocess the data with the MAS5 algorithm and use its
detection calls for filtering our otherwise preprocessed data.

2.7 BASIC EXPLORATORY DATA ANALYSIS

The preprocessing and filtering steps result in the gene expression data ready
for analysis (see Fig. 2.6). Although not always necessary (for instance, for
biomarker discovery, we could jump directly to multivariate analysis), it is common
practice to start the analysis of gene expression data with univariate exploratory

34In practice, there is often a large overlap in the subsets of probe sets removed by these two criteria.
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data analysis. Since univariate analysis is performed under the assumption that vari-
ables are independent (which is definitely not true for gene expression data), it could
rarely answer any serious scientific questions. Usually then, this analysis does not have
any specific research goals; it is used for researchers to get familiar with the data,
maybe to learn about some structures in the data, and to check whether the data is con-
sistent with the study expectations. Different univariate statistical tests may be utilized,
but the most common are the t test and the ANOVA F test, or their derivatives such as
the ones used in SAM (Significance Analysis of Microarrays—basically, a two-sample
t test with the multiplicity adjustment using the false discovery rate) or in Limma (a
moderated t test or ANOVA F test using empirical Bayes methods to “borrow infor-
mation between genes” for experiments with only a few samples) (see Fig. 2.7).

Univariate analysis results in an ordered list of probe sets with an assigned
significance of differential expression between the compared classes. The statistical
significance of each gene (probe set) should be adjusted for multiple testing.
Additional calculations for each probe set may be performed at this step (such as
the mean expression for each class or the N-fold). All these results may give us
some feeling about the data.

Figure 2.6: The preprocessing, quality control, and filtering of gene expression data—an
example. The methods named in the top boxes represent selected examples rather than an
exhaustive list of methods.
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A few basic terms:

p-value—the probability of getting a particular or more extreme value of the test
statistic under the assumption that the null hypothesis is true. A smaller
p-value gives us stronger evidence against the null hypothesis. We reject the
null hypothesis if the p-value is less than the predetermined significance
level a of the test. Sometimes, we may prefer to report only the p-value
(rather than the decision about rejecting or not rejecting the null hypothesis)
since it does not require determination of the significance level in advance.

Significance level a (also known as the significance of the test)—the probability of
rejecting the null hypothesis when in fact this hypothesis is true. This is the
same as the probability of making a Type I error. By selecting awe are stating
our tolerance for making a Type I error. If the sample-based probability of
making a Type I error ( p-value) is less than our tolerance for making a
Type I error (a), we reject the null hypothesis. We do not know if our decision
(of rejecting the null hypothesis) is correct, but we do know the a priori prob-
ability that it is incorrect is not greater than a.

Type I error—rejecting the true null hypothesis.

Type II error—failing to reject the false null hypothesis.

2.7.1 t Test

One of the classical t tests may be used to identify differentially expressed genes
in two-class experiments. Depending on whether we can or cannot assume equal

Figure 2.7: Basic exploratory analysis of gene expression data—an example.

54 CHAPTER 2 BASIC ANALYSIS OF GENE EXPRESSION MICROARRAY DATA



variances of gene expression in both differentiated populations, we will use either the t
test for equal variances or the t test for unequal variances.

2.7.1.1 t Test for Equal Variances

This t test makes the normality and homoscedasticity assumptions, that is, that the data
in both populations (represented by the biological samples in the two classes of the
training data set) is normally and independently distributed and that the population
variances are equal (or similar). It evaluates the difference in the mean expression
level of a particular gene between the two populations,35

H0: m1 ¼ m2

Ha: m1 =m2

(2:23)

using the following test statistic

t ¼ x1 � x2

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1
n2

r , (2:24)

where

† x1 and x2 are the mean expression values of the gene in each class of the training
data,

† sp is the pooled estimate of the standard deviation of the gene expression,

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n1 � 1)s21 þ (n2 � 1)s22

n1 þ n2 � 2

s
, (2:25)

† n1 and n2 represent the number of biological samples in each class,

† s21 and s22 are the observed variances of gene expression in each class.

The test statistic (2.24) follows a t distribution with n1 þ n2 2 2 degrees of freedom.

2.7.1.2 t Test for Unequal Variances

Often we cannot make the homoscedasticity assumption. For data with unequal popu-
lation variances we will use the following test statistic

t ¼ x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1
þ s22
n2

s : (2:26)

35A two-tail test is appropriate since we do not make any a priori assumptions about the nature of a
difference between the two means.
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This test statistic follows the t distribution with df degrees of freedom, where

df ¼
s21
n1
þ s22
n2

� 	2

1
n1 � 1

s21
n1

� 	2

þ 1
n2 � 1

s22
n2

� 	2 : (2:27)

If the study included only a single gene, the p-value of either of the t tests would rep-
resent the observation based or posterior probability of making a Type I error (i.e., the
observation based probability of rejecting the null hypothesis when in fact this hypoth-
esis is true). The gene would be declared differentially expressed, if the p-value is less
than a, the significance level of the test. However, in gene expression studies we per-
form asmany tests as the number of genes in the training data set. Therefore, this “raw”
p-value has to be adjusted for multiple testing (see Section 2.7.5).

2.7.2 ANOVA F Test

Analysis of variance (ANOVA) can be used in a univariate way to test whether the
mean expression levels of a particular gene differ significantly between the J popu-
lations, where J. 2. The ANOVA makes the following assumptions:

† the biological samples are independent,

† the gene expression is normally distributed with the same variance in each
population.

The ANOVA F test statistic is based on the ratio of the variance between classes to
the variance within classes36 and is used to decide whether we can reject the null
hypothesis of no difference between the J population means,

H0: m1 ¼ m2 ¼ 
 
 
 ¼ mJ

Ha: Not all population means are equal
(2:28)

Assuming that we compare J populations with nj biological samples in each class j,
j ¼ 1, . . . , J, with the total number of biological samples N ¼P J

j¼1 nj, the F test
statistic is calculated as

F ¼ MSTR

MSE
, (2:29)

where

† MSTR is the mean square due to treatment,

MSTR ¼
XJ

j¼1 nj(xj � x)2

J � 1
, (2:30)

36If the null hypothesis is true, this ratio should be near 1. We reject the null hypothesis if the ratio is
significantly greater than 1.
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† MSE is the mean square due to error,

MSE ¼
XJ

j¼1 (nj � 1)s2j

N � J
, (2:31)

† xj is the mean expression of the gene in class j,

† x is the overall mean expression of the gene (across all classes),

† s2j represents the variance of gene expression in class j.

UnderH0, the test statistic (2.29) follows an F distribution with J 2 1 degrees of
freedom in the numerator andN 2 J degrees of freedom in the denominator. As for the
t tests, the overall p-value of the F tests has to be adjusted for multiple comparisons.

2.7.3 SAM t Statistic

The Significance Analysis of Microarrays (SAM) software (Tusher et al. 2001;
Chu et al. 2007) is a popular tool37 for the univariate analysis of differential
expression. To identify genes differentially expressed in a two-class experiment, it
implements a modified t test statistic defined for a particular gene as the relative
difference d,

d ¼ x1 � x2

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1
n2

r
þ s0

: (2:32)

It differs from (2.24), the statistic for the equal variances t test, only by the con-
stant s0 (called an exchangeability factor or fudge factor) added to the denominator.
Note that the statistic (2.24) can be interpreted as the ratio of expression difference
to variability, or more generally as the ratio of signal to noise. As some microarray
experiments are still performed with very small sample sizes, their estimation of the
standard deviation may be unreliable. Underestimation of the variability inflates the
value of the statistic and may result in an increased number of false positives. The
fudge factor s0 reduces the correlation between the value of the d statistic and the
estimated expression variability represented by sp. The value of s0 is expressed as a
percentile of the pooled standard deviation values (sp values) of all the genes. It is
chosen for each data set as the percentile that minimizes the coefficient of variation
of d, calculated as a function of sp.

With the added fudge factor, the null distribution of the d statistic no longer
follows a t distribution. To assign significance to d values calculated for genes,
SAM estimates the empirical distribution of the d statistic by permuting class

37SAM software is free for academic use. It can be downloaded as an Excel add-in from http://www-stat.
stanford.edu/~tibs/SAM/
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labels. For each permutation,38 a new d statistic value, say dp, is calculated for
each gene and the values are ranked. Then, the expected relative difference dE
is calculated for each rank as the mean of the dp values for the rank over all
permutations. A scatterplot of the observed relative differences d (ranked by their
values) versus the expected relative difference dE is used to identify differentially
expressed genes (see Fig. 2.8). The genes represented by the points whose distance
from the identity line d ¼ dE is greater than some threshold distance D are called
significant. The values of the threshold D are associated with estimates of the false
discovery rate (FDR) and the user selects D based on the FDR level appropriate for
the experiment.

To associate the threshold D with an estimated FDR, SAM uses the already
available permutation data. First, the minimum positive d value (dmax) and the
maximum negative d value (dmin) associated with the genes deemed significant are
found (the horizontal cutoffs in Fig. 2.8). For each permutation, SAM determines
the number of false positive genes by counting the genes with dp values outside the

Δ

Δ

Figure 2.8: A scatterplot of the observed relative difference d versus the expected
relative difference dE. The dashed lines are at a threshold D distance from the d ¼ dE identity
line. The genes represented by the points that are outside of these threshold lines are deemed
differentially expressed at the threshold level D. Depending on the sign of their relative
difference d, SAM calls them either “significant positive genes” or “significant negative genes.”
(See color insert.)

38Note that for very small experiments there are not enough distinct permutations to treat permutation-based
estimates as reliable. An acceptable number of permutations should be at least 1000, preferably about 10,000
(Drăghici 2003).
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(dmin, dmax) range. To estimate FDR for the threshold D, the median (or the 90th
percentile)39 of the number of false positive genes40 across all permutations is divided
by the number of genes deemed significant in the original data. For each gene called
significant, SAM reports a q-value that represents the lowest FDR at which this
particular gene would be called significant. For multiclass comparisons, SAM
implements a similar approach based on an F-like test statistic with a fudge factor
added to the denominator.

2.7.4 Limma

The Linear Models for Microarray Data (Limma) package (Smyth 2004) uses a modi-
fied t statistic to reduce the significance of genes with underestimated variance.
The idea is similar to the SAM approach, but unlike SAM, Limma fits a linear
model for each gene and then calculates a moderated t statistic by using the empirical
Bayes approach. The variance for each gene is moderated by replacing it with
the weighted average of the gene-specific variance and the estimated global variance
(calculated by pooling all genes). This borrowing of information from other genes
makes the analysis more stable, especially for experiments with a small number of
biological samples. The moderated t statistic follows a t distribution with degrees of
freedom estimated from the data. The p-value for each gene can be calculated and
then adjusted for multiple testing. This approach can be extended to more than two
classes, by using a similarly moderated F statistic. Limma is implemented as a part
of the Bioconductor project (www.bioconductor.org).

2.7.5 Adjustment for Multiple Comparisons

A typical microarray study generates a gene expression matrix with tens of thousands
of rows—probe sets representing genes. Assume we have 10,000 genes and we are
performing 10,000 univariate tests. If the significance level a ¼ 0.05 is used, then
for each of these tests we allow a five percent chance of making a Type I error.
This means that we expect five percent of the 10,000 genes to be deemed significant
(significantly differentially expressed) just by chance alone—amounting to 500
false positives. To control the overall probability of a Type I error, we have to apply
a correction for multiple testing. Whether we are repeatedly performing a t test, an
ANOVA F test, or any other (univariate or multivariate) test resulting in a p-value,
we have to adjust the individual raw p-values for multiplicity in order to control the
overall posterior false positive rate.

39SAM calculates both the median and the 90th percentile FDR and presents them on the Delta Table that
can be used to select an appropriate threshold D. On the list of significant genes, the reported q-value corre-
sponds to the median FDR.
40After calculating the “raw” median (and the 90th percentile) of the number of false positive genes, it is
multiplied byp0, the estimated proportion of genes that are truly not differentially expressed. SAM estimates
p0 from the permutation data and reports the median (and the 90th percentile) after this adjustment (Chu
et al. 2007).
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Exercise

If the reader is not convinced about the need for a multiplicity adjustment
and is inclined to assume that a gene with consistently different expression
levels in the two classes should be deemed differentially expressed regardless
of whether the gene is tested as the only variable or in parallel with thousands
of other genes, we suggest performing the following simple but enlightening
Excel exercise described by Drăghici (Drăghici 2003):

† Using the RAND function in Excel, generate a random number for each
cell in a spreadsheet with 10,000 rows (genes) and 20 columns (samples).

† Copy all the data and “Paste Special” as “Values” to another spreadsheet.

† Assume that the first ten columns represent Class A (say, Disease), and the
last ten columns represent Class B (Control).

† In the 21st column, use Excel’s TTEST function to calculate p-value for
each gene (row).

† Sort the data in ascending order of the p-values.

† Check whether approximately 500 top genes have the p-value below 0.05.

† Recall that the data is randomly generated noise.

When performing multiple tests, rather than considering the significance level a
of individual tests, we should use a procedure that controls one of the Type I error rates
defined for testing multiple null hypotheses. Among the commonly used Type I error
rates are the family-wise error rate (FWER) and the false discovery rate (FDR).

Family-wise error rate (FWER)

The family-wise error rate is defined as the probability of at least one Type I
error (i.e., at least one false positive) over all tests. This probability for a
single test is equal to the significance level a of the test. However, if we per-
form M independent tests, this probability is equal to 1 2 (12 a)M, which
for large M is close to 1.

False discovery rate (FDR)

The false discovery rate is the expected proportion of false positives among
the rejected null hypotheses (i.e., among all genes reported as differentially
expressed). When all null hypotheses are true (i.e., none of the tested
genes is differentially expressed), FDR is equal to FWER, but otherwise is
smaller (Benjamini and Hochberg 1995).

Generally, procedures controlling the FWER are more conservative than those
controlling FDR (Dudoit and van der Laan 2008). The best known among the
FWER-controlling procedures are: the classical single-step Bonferroni adjustment,
the single-step Sidak procedure, and the step-downHolm procedure. The most popular
among the FDR-controlling procedures is the step-up Benjamini and Hochberg
procedure. The single-step procedures apply the same multiplicity adjustment to
each individual a or raw p-value whereas adjustments made by the stepwise
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approaches depend on the rank of the gene among all tested genes and on the outcomes
of the tests for other genes (Ge et al. 2003).

To avoid confusion with p used in this section for p-value, assume—for this
section only—that M denotes the number of variables in the gene expression matrix
as well as the number of multiple univariate tests. Thus, each gene and each test
can be indexed by m ¼ 1, . . . ,M. Assume also the following notation:

† a—the significance level for each of the M tests,

† p(m)—the unadjusted (raw) p-value calculated for test m, m ¼ 1, . . . ,M,

† a�—the modified significance level,

† p�(m)—the adjusted p-value for test m.

2.7.5.1 Single-Step Bonferroni Procedure

This classical procedure (introduced by Bonferroni in 1936) compares the unadjusted
p-value of each test, p(m), with the modified significance level a� defined as

a� ¼ a

M
: (2:33)

This is equivalent to comparing the adjusted p-value p�(m),

p�(m) ¼ min{p(m)M, 1}, (2:34)

to the original significance level a. Therefore, gene m is considered differentially
expressed if p�(m) , a or equivalently if p(m) , a�.

2.7.5.2 Single-Step Sidak Procedure

The Sidak procedure (Sidak 1967) defines the modified significance level a� as

a� ¼ 1� (1� a)
1
M: (2:35)

Instead of comparing each p-value p(m) to a�, the adjusted p-value may be
calculated as

p�(m) ¼ 1� [1� p(m)]M : (2:36)

The adjustments made by the Sidak procedure are similar, though slightly less
conservative, than the Bonferroni adjustments. Here conservatismmeans that if a gene
is called differentially expressed by a conservative procedure, then its expression is
more likely truly different between the classes (Drăghici 2003). However, the price
to pay for this is an inflated level of false negatives.

2.7.5.3 Step-Down Holm Procedure

The step-down Holm adjustment (Holm 1979), also known as the step-down
Bonferroni or sequential Bonferroni adjustment, is less conservative than the classical
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Bonferroni adjustment. After the raw p-values are calculated, the data are sorted in
ascending order of these p-values. Then we start with the smallest p-value and multi-
ply it by the total number of genes M. For the subsequent p-values, we are less con-
servative and multiply them by M 2 1, M 2 2, and so on. The last (and the largest)
p-value is multiplied by 1. However, there is an additional constraint requiring that
each subsequently adjusted p-value cannot be less than the one preceding it in the
ordered list (this guarantees the monotonicity of the adjusted p-values). Therefore,
finding the first gene that is not differentially expressed (i.e., having the adjusted p-
value greater than or equal to a) means that all the genes below this one on the
sorted list are deemed also not differentially expressed.41 To describe this procedure
more formally, assume the following notation:

† m, m ¼ 1, . . . ,M is the index for the original gene order,

† k, k ¼ 1, . . . ,M is the index for the sorted unadjusted p-values,

† O(k) is the function translating the rank of a gene, that is, its position k on
the sorted list, into its original position m, thus O(k) ¼ m,

† p(O(k)) represents sorted unadjusted p-values, thus p(O(1)) �
p(O(2)) �. . . � p(O(M )).

Adding the obvious constraint that no p-value may be greater than 1, the
adjusted p-values are calculated using the following formula (Dudoit and van der
Laan 2008):

p�(O(k)) ¼ max
l¼1,...,k

{min [ p(O(l )) 
 (M � lþ 1), 1]}, k ¼ 1, . . . , M: (2:37)

The same result is achieved by comparing the unadjusted p-values p(O(k)) to modified
significance levels a�(k), where

a�(k) ¼ a

M � k þ 1
, k ¼ 1, . . . ,M: (2:38)

Starting from the top of the sorted list, the comparisons are made until the first gene
with p(O(k)) � a�(k) is found. This gene and all the genes below this one on the
sorted list are reported as not differentially expressed.

2.7.5.4 Step-Up Benjamini and Hochberg Procedure

For microarray data sets it is not unusual for the FWER-controlling adjustments
(especially the most conservative Bonferroni adjustment) to report zero or very few
differentially expressed genes. Generally, these adjustments may result in too many
false negatives when the number of tested hypotheses M is large. Instead of focusing
on the number of false positives, the Benjamini and Hochberg procedure (Benjamini
and Hochberg 1995) controls the proportion of false positives among the genes called
differentially expressed (i.e., FDR). In general, the FDR-controlling approaches are

41In particular, this means that a gene with a given raw p-value cannot be called differentially expressed if
there is a gene with a smaller raw p-value that is deemed not differentially expressed.
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less stringent and may be more appropriate for some data sets with very large numbers
of genes.

Similar to the Holm procedure, the Benjamini and Hochberg procedure starts
with calculating the raw p-values and sorting the data in ascending order of these
p-values. Then, we start at the bottom of the sorted list, that is, with the largest
p-value. This p-value is multiplied by 1, or M/M. The second p-value from the
bottom of the list is multiplied by M/(M 2 1), the third by M/(M 2 2) and so on.
However, none of the adjusted p-values may be greater than the adjusted p-value
below it. This means that when the first differentially expressed gene is identified,
all the genes above this one on the sorted list are also called differentially expressed.
Using the notation introduced in the subsection on the Holm procedure, the adjusted
p-value of the Benjamini and Hochberg procedure is calculated in the following
way (Dudoit and van der Laan 2008):

p�(O(k)) ¼ min
l¼k,...,M

min p(O(l )) 
M
l
, 1

� �� �
, k ¼ 1, . . . , M: (2:39)

Instead of adjusting the p-values, we may compare the sorted unadjusted p-values
p(O(k)) to modified significance levels a�(k) calculated as

a�(k) ¼ k
a

M
, k ¼ 1, . . . , M: (2:40)

Again, the first gene from the bottom of the sorted list, for which p(O(k)) , a�(k) will
make all the genes above it reported as differentially expressed.

2.7.5.5 Permutation Based Multiplicity Adjustment

The permutation (or bootstrap) approach to evaluate statistical significance for mul-
tiple comparisons has recently become quite popular. This approach is based on gen-
erating the empirical null distribution of the test statistic by using permutations of the
data. There are many possible scenarios (Westfall and Young 1993; Dudoit et al. 2002;
Ge et al. 2003; Dudoit and van der Laan 2008). Some of them use permutations to esti-
mate the unadjusted p-values and then calculate the adjusted ones using one of the
multiplicity procedures. Some apply the permutation approach to estimate both the
unadjusted and adjusted p-values. Still others first approximate the unadjusted p-
values and then use permutations to find the adjusted ones.

Let us consider a basic permutation scenario. Assume that we use the t statistic
(2.26) for a data set with M genes and N biological samples assigned to two
differentiated classes (J ¼ 2). Permuting the class labels (equivalent to permuting
the columns of the gene expression matrix) generates a new data set with the
random assignment of the biological samples to classes, but preserves the size of
each class and at least some relations between gene expression levels. For each permu-
tation b ¼ 1, . . . , B, we use (2.26) to calculate the value of the t statistic tb(m) for each
gene m, m ¼ 1, . . . ,M. The permutation-based unadjusted p-value p̂(m) for gene m is
then calculated as the proportion of the permutations for which the absolute value of
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the original test statistic jt(m)j of the gene (for not permuted data) is less than jtb(m)j,

p̂(m) ¼ 1
B

XB
b¼1

1j t(m)j, j tb(m) j, m ¼ 1, . . . ,M, (2:41)

where

1j t(m) j, j tb(m) j ¼ 1 when jt(m)j , jtb(m)j
0 otherwise

� �
:

By replacing p(m) with p̂(m) in one of the previously described multiplicity
adjustment procedures, we can calculate the adjusted p-value p�(m) for each gene m.
Note that for reliable estimates, we should perform thousands of permutations. Note
also that instead of permutations we may use bootstrap-based resampling, in which
randomized data sets are generated by sampling with replacement.

Univariate analysis results in an ordered list of genes sorted by the significance
of their differential expression. As the univariate approach neglects correlations
between genes, such results are not very informative. A more advanced, multivariate
analysis should follow. There are, however, studies reported in the literature that stop
here. Often, they are studies with very few samples per class (which adds to doubts
about their statistical validity and biomedical relevance). Nonetheless, whether our
results are univariate lists of genes, clusters of genes with similar expression, or multi-
variate biomarkers (small sets of genes significantly differentiating the classes—more
on this in Chapter 3), the next step is to look for the biological interpretation of the
results. We will just mention here that biological interpretation of a univariate list
of genes is usually done by first assigning annotations to each gene (or probe set;
for the Affymetrix microarrays, extensive annotations of probe sets can be down-
loaded from www.affymetrix.com or from other sources like http://genecruiser.
broadinstitute.org), and then by analyzing annotations such as the Gene Ontology
(GO) terms (www.geneontology.org) or metabolic pathways in order to identify
functional categories or pathways that are significantly affected by the expression
changes of the genes from the list.

2.8 UNSUPERVISED LEARNING (TAXONOMY-RELATED
ANALYSIS)42

Unsupervised learning methods, such as clustering, organize data into structures that
may be useful for developing taxonomies. Clustering can be done on genes (probe
sets), samples, or on both genes and samples simultaneously (two-way clustering).

42In the (domain-free) data mining language, methods such as clustering or principal component analysis are
called unsupervised learning. This naming is based on how the methods work. Though this naming scheme
is appropriate also in specific domains, in some domains it may be more convenient to name the methods
according to the major scientific results they can provide. Such results for genomics and proteomics
would be new taxonomic knowledge. For example, assume we know five leukemia subtypes; we cluster a
large leukemia data set and results point to a possibility of having six well defined clusters. If five of
them align with known five subtypes, the sixth may indicate a new unknown subtype.
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Clustering samples may reveal new subtypes of a disease. Clustering genes may
aim at identifying groups of genes performing similar functions or belonging to the
same genetic pathway. The goal of two-way clustering (performing clustering
simultaneously for genes and samples) is to identify subsets of genes that exhibit dis-
tinct expression patterns over only a subset of samples. Principal component analysis
and self-organizing maps represent popular methods that can be used to reduce the
dimensionality and visualize data in order to gain some information about grouping
of samples or genes (see Fig. 2.9).

2.8.1 Cluster Analysis

Cluster analysis groups objects into categories, or clusters, based on some definition of
object similarity. Objects assigned to a cluster should be more similar to each other
than to objects in other clusters. Although clustering is sometimes presented as a
way of finding “natural” groupings in the data, there is rarely a single way of grouping
objects of a particular data set. Due to various possible similarity measures and various
grouping algorithms, clustering may lead to very different results and is most often a
tool to generate hypotheses about data structure rather than a tool to test such hypoth-
eses (Fielding 2007). This is especially true for data sets with many variables.

A common mistake in early gene expression studies was to use clustering as a
preprocessing step for the supervised analysis. The reasoning behind this approach
was that grouping variables (genes) by their similarity and then selecting only some
of them to represent the groups should be a valid approach to reducing the dimen-
sionality of the supervised analysis. A serious problem with this approach is that we
usually have no way of knowing whether a particular similarity among variables in

Figure 2.9: Unsupervised (taxonomy-related) analysis of gene expression data—an example.
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the unsupervised environment can be translated to their similarity in supervised analy-
sis. In other words, by the very definition of unsupervised learning, we do not know
whether genes assigned to the same cluster carry similar discriminatory information
that would be important in the differentiation of a particular set of phenotypic classes
using supervised analysis.

Consider, for example, a gene expression matrix with biological samples repre-
senting patients assigned to a few subtypes of a disease. If the goal of a study was
to build a classification system, but we did not know how to perform the supervised
analysis with thousands of variables, it could seem tempting to cluster genes and
use much fewer variables—only the ones selected to represent clusters. However,
the genes of a cluster are very rarely perfectly or very highly correlated. Their
common variation may be relatively small, often even 50 percent or less. May we
assume that they represent similar discriminatory information for classification of a
particular set of phenotypic classes under supervised analysis? May we choose one
or a few of them to represent each cluster and discard the rest? If we are not convinced
yet that we would be most likely discarding important discriminatory information,
let us look at our supervised study. For the same data, we can define different sets
of phenotypic classes to differentiate. For example, one supervised goal may be to
build a classifier assigning new patients to one of the disease subtypes, another
may be to identify a biomarker predicting relapse, and so on. Consequently, the
same group of patients may be split differently into different phenotypic classes.
Different goals of such supervised studies are associated with different discriminatory
information carried by the same set of variables. With which set of phenotypic classes
is our clustering of genes associated? Conceivably with none, since clustering does not
take into account any metadata information assigning the patients to classes. Please
read Section 3.2.3 of Chapter 3 for more on this subject. However, please also visit
Chapter 4 to read about using cluster analysis in a supervised setting—at the stage
when we do know that our variables are associated with the discrimination of a particu-
lar set of classes.

One may argue that if we have specific information about the genes clustered
together, for example, that they belong to the same genetic pathway involved in
differentiation of phenotypic classes we are interested in, then we should be able to
use the clustering results to reduce the number of these genes. Yes, we can use biologi-
cal knowledge about a specific supervised problem. However, this refers to the super-
vised environment of the study. Clustering (or any unsupervised analysis) by itself
cannot supply such knowledge. One gene may belong to several pathways whose
activities may be different for different conditions. Furthermore, if our goal is classi-
fication or biomarker discovery, it would be much better to incorporate this biological
knowledge into supervised multivariate feature selection rather than use it with any
unsupervised method.

For studies with unsupervised (taxonomy-related) goals, cluster analysis is the
primary, and a very useful, tool with many excellent software implementations.
Among methods used for clustering gene expression data are K-means clustering,
hierarchical clustering and two-way clustering. The K-means clustering represents a
partitioning approach, which divides a set of objects into a predetermined number
of clusters. Hierarchical clustering provides a sequence of nested clusters. Because
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objects to be clustered (either genes or biological samples) are grouped by their
similarity, a measure of similarity is crucial for cluster analysis.

2.8.1.1 Measures of Similarity or Distance

Manymetrics (or measures) can be defined to describe similarity between two objects.
Sometimes it may be more convenient to define them in terms of distance or dissim-
ilarity since the increase in the distance between objects corresponds to their decreased
similarity. Assume that we have n objects to cluster and each of them is represented by
a v-dimensional vector of measurements. If we cluster genes, then n ¼ p and v ¼ N,
where p represents the number of rows (genes) and N the number of columns (biologi-
cal samples) in the gene expression matrix. If we cluster samples, then n ¼ N and v ¼
p. Denote the distance between two objects represented by v-dimensional vectors ai
and aj, ai, aj [ <v, i, j ¼ 1, . . . , n,

ai ¼

a1i
a2i

..

.

avi

2
6664

3
7775, aj ¼

a1j
a2j

..

.

avj

2
6664

3
7775, (2:42)

as d(ai, aj).
A well designed distance measure should satisfy most or preferably all of the

following conditions.43

1. The distance in always non-negative,

d(ai, aj) � 0 (2:43)

2. The distance can be equal to zero only when the two objects are identical, that is,
represented by the same vector,

d(ai, aj) ¼ 0 if and only if ai ¼ aj (2:44)

3. The distance measure is symmetric,

d(ai, aj) ¼ d(aj, ai) (2:45)

4. The distances between any three objects ai, aj, ag, i, j, g ¼1, . . . , n follow the
triangle inequality,

d(ai, aj) � d(ai, ag)þ d(ag, aj) (2:46)

43These four conditions are properties of a metric: non-negativity, reflexivity, symmetry, and the triangle
inequality. Although the termsmeasure andmetric are sometimes used interchangeably, a distance measure
is a metric only when it has all these four properties (Duda et al. 2001). For example, the Euclidean distance
is a metric, but the correlation distance is not.
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The following measures are among the most commonly used by clustering algorithms
to determine distance (dissimilarity) or similarity between objects.

Euclidean Distance

The Euclidean distance (or dissimilarity measure) between two objects is
defined as the geometric distance between the two points representing the
objects in the v-dimensional space of their attributes,

d(ai, aj) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXv
k¼1

(aki � akj)2
s

: (2:47)

Squared Euclidean Distance

The squared Euclidean distance,

d(ai, aj) ¼
Xv
k¼1

(aki � akj)
2, (2:48)

is sometimes used by the clustering algorithms that minimize the within-
cluster sum of squares. However, if the data is not normalized, this distance
measure tends to overemphasize the variables with large variances.

Manhattan Distance

The Manhattan (or city block) distance is the sum of absolute values of the
geometric distances along each of the v dimensions,

d(ai, aj) ¼
Xv
k¼1

aki � akj
: (2:49)

Minkowski Distance

The Minkowski distance44 generalizes both the Euclidean and Manhattan
distances and is defined as

d(ai, aj) ¼
Xv
k¼1

aki � akj
m" #1

m

: (2:50)

When m ¼ 1, the Minkowski distance is equivalent to the Manhattan
distance, and when m ¼ 2, it is equivalent to the Euclidean one.

44TheMinkowski distance d(ai, aj) is also known as the Lm norm, Lm (ai, aj). The Euclidean distance is then
the L2 norm, and the Manhattan distance the L1 norm (Duda et al. 2001).
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Chebyshev Distance

The Chebyshev distance is equal to the largest distance along any single
dimension,

d(ai, aj) ¼ max
k
jaki � akjj: (2:51)

Mahalanobis Distance

If the variation in the data differs significantly between dimensions, the
Euclidean or Manhattan distances may not constitute appropriate metrics
of objects’ similarity. The Mahalanobis distance takes into account the
variations by defining the distance as

d(ai, aj) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ai � aj)TS�1(ai � aj)

q
, (2:52)

where S is the variance-covariance matrix,45 S21 denotes the inverted matrix
S, and the superscript T denotes transposition.46 If S is the identity matrix, the
Mahalanobis distance is equivalent to the Euclidean distance.

Correlation Distance

Pearson’s correlation distance can be defined as

d(ai, aj) ¼ 1� r(ai, aj)
2

, (2:53)

where

† r (ai, aj) is the Pearson correlation coefficient between the vectors ai and aj,

r(ai, aj) ¼ raiaj ¼
saiaj
sai saj

¼
Xv

k¼1(aki � ai)(akj � aj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXv

k¼1(aki � ai)2
Xv

k¼1 (akj � aj)2
q (2:54)

† saiaj is the covariance between ai and aj,

† sai and saj are the standard deviations of ai and aj respectively,

† ai and aj are the mean values of ai and aj,

ai ¼ 1
v

Xv
k¼1

aki, aj ¼ 1
v

Xv
k¼1

akj:

45Diagonal elements of the matrix S represent the variances of the v variables, whereas the off-diagonal
elements of S are covariances between the variables.
46The operation of transposing the column vector (ai 2 aj) to the row vector (ai 2 aj)

T.
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Note that the correlation coefficient r(ai, aj) can be used as a measure of
similarity between two objects whereas the distance (2.53) is a related
measure of dissimilarity. As r(ai, aj) assumes values between 21 and þ1,
the values of the correlation distance defined by (2.53) are between 0 and
1. The zero correlation distance corresponds to the perfect positive linear cor-
relation between the two vectors, and the largest distance of one to perfect
negative linear correlation. If we prefer to neglect the direction of the corre-
lation and cluster objects according to the strength of their linear correlation
only, we can replace the distance measure (2.53) with

d(ai, aj) ¼ 1� jr(ai, aj)j: (2:55)

Each of these correlation distances is associated with the pattern of changes in
the gene expression measurements (similar variation) rather than the magni-
tude of the expression values. Thus, the distance measures (2.53) and (2.55)
are equal to zero not only for identical objects, but also for objects that are
perfectly correlated. This is a departure from condition (2.44). However,
this may be advantageous in clustering gene expression data since it leads
to clustering genes that are co-expressed but have different expression
levels together (Amaratunga and Cabrera 2004). For standardized vectors
ai and aj, the correlation distance (2.53) is proportional to the squared
Euclidean distance between the vectors.

Cosine Similarity

The cosine measure of similarity is associated with the angle between two
v-dimensional vectors and is defined as

cos(\aiaj) ¼
Xv

k¼1 akiakjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXv

k¼1 a
2
ki

Xv

k¼1 a
2
kj

q : (2:56)

Note that for normalized data with zero means, the cosine similarity is
equivalent to the correlation similarity r(ai, aj). The distance measures
based on the cosine similarity can be defined analogically to the correlation
distances (2.53) or (2.55).

2.8.1.2 K-Means Clustering

The K-means clustering algorithm (Lloyd 1957; MacQueen 1967) is one of the sim-
plest and most popular partitioning methods.47 It starts with the random selection of K
cluster centers, where K is the input parameter. These centers may be random points in
v-dimensional space of v variables or randomly selected objects of the data. Using a
similarity (or distance) measure between objects and the cluster centers, each object

47In the area of signal processing, K-means is known as vector quantization.
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is assigned to the cluster with the closest center. Then, the cluster centers are redefined,
usually by finding the mean vector of all points assigned to each cluster.48 Objects are
re-assigned according to their distance to these new class centers. This iterative pro-
cess continues until there are no changes in the assignment of objects to clusters.49

When using the K-means algorithm with squared Euclidean distances, the within-
cluster variation will be minimized.50 However, it can be a local minimum (Hastie
et al. 2001). Since different starting points can result in a different partitioning of
objects, it may be advisable to run the algorithm several times and select the
solution with the smallest within-cluster variation.

The main disadvantage of the K-means method is the necessity to decide on the
number of clusters. Although an additional loop of iterations can be added for different
values of the parameter K (and, for example, the K value offering the smallest within-
cluster variation selected), the solution is always a set of K clusters with not much
information about the relation between clusters or between objects.

2.8.1.3 Hierarchical Clustering

Hierarchical clustering requires neither upfront determination of the number of clus-
ters nor selection of the initial cluster centers. It, however, requires a measure of simi-
larity (or a measure of distance) defined not only between objects, but also between
groups of objects. Hierarchical clustering algorithms generate a tree-like diagram,
called a dendrogram, representing a hierarchy of objects and clusters. All levels of
nested clusters are represented simultaneously. This may be very valuable in gene
expression studies interested in small clusters of similar genes (or samples) as well
as in a few large groups of them. Commonly, the height of the dendrogram branches
(the vertical lines in Fig. 2.10) joining two clusters is proportional to the distance
between the clusters. To select a specific number of clusters, we may cut the dendro-
gram with a horizontal line crossing that particular number of branches. Sometimes,
however, more customized cluster selection may be preferable that does not corre-
spond to a single horizontal line (Chipman et al. 2003). Please note that the horizontal
proximity of objects depends on their ordering within clusters and does not necessarily
correspond to their similarity.

A dendrogram can be created using one of the two basic approaches:
divisive (top-down) and agglomerative (bottom-up). The divisive strategy starts
with a single cluster including all objects, splits it first into two clusters and then at
each step splits recursively one of the clusters into two until each object is in its
own cluster. The agglomerative strategy starts with n clusters (where n is the
number of objects to be clustered), with each of them including one object. At each
step, the two most similar clusters are joined into one, and this binary merging con-
tinues until all objects form a single cluster. Both strategies produce a hierarchy

48The K-medoids method is similar to K-means except that each cluster center has to be one of the cluster
objects (the one with the smallest average distance to other objects of the cluster).
49Or, more generally, until some stopping criterion is achieved.
50For other distance measures the algorithm does not necessarily converge to this minimum (Theodoridis
and Koutroumbas 2006).
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with n 21 levels. Each of the levels has a different number of clusters with the assign-
ment of objects to clusters representing a “snapshot” of the ordered sequence of nested
groupings.

By using a color scheme to code the expression values, we can create a heat map
representation of the resulting gene expression matrix. This approach of coupling hier-
archical clustering, and eventually two-way clustering, with heat map visualization of
the results has become very popular in the area of gene expression analysis since
Eisen’s paper (Eisen et al. 1998). See Figure 2.11 for an example of a heat map show-
ing the results of independent hierarchical clustering of genes and samples.

2.8.1.3.1 Agglomerative Clustering
Algorithms implementing agglomerative (or bottom-up) clustering51 start with n clus-
ters, with each of the n data set objects representing a separate cluster. At each step, the
two closest clusters are identified and joined. To find out which clusters are closest, a
measure of distance (or a measure of similarity) between any two clusters has to be
defined. Assume we want to measure the distance d(A, B) between clusters A and B,
and that:

† objects aa, a ¼ 1, . . . , nA belong to the cluster A,

† objects ab, b ¼ 1, . . . , nB belong to the cluster B,

† nA represents the number of objects in the cluster A,

† nB represents the number of objects in the cluster B.

Commonly used distance measures are: single linkage, complete linkage, average
linkage and centroid linkage.

Figure 2.10: An example of a dendrogram resulting from clustering gene expression data
with biological samples belonging to three classes (A, B, and C). The vertical lines represent
distances (or dissimilarities) between samples or clusters. Please note that “rotating” the
cluster including all samples of class C and all but two samples of class B would preserve
all distances between samples or clusters; however, the two leftmost samples that belong to
class B (samples B-2 and B-12) would be pictured next to other samples of class B.

51Also known as agglomerative nesting.
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Figure 2.11: An example of a heat map showing the results of independent hierarchical
clustering of genes (the dendrogram down the side of the image) and biological samples (the
dendrogram across the top of the image). The expression levels are represented as color
intensities or as shades of gray. When colors are used, red corresponds to higher expression
levels and green to lower ones. When shades of gray are used, brighter spots represent higher
expression levels. (See color insert.)
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Single Linkage

The single linkage distance between two clusters A and B is defined as the
distance between the nearest neighbors (see Fig. 2.12),

d(A, B) ¼ min
a¼1,...,nA
b¼1,...,nB

d(aa, ab): (2:57)

Since only one pair of points with a small distance is required for the distance
between clusters to be declared small, the single linkage method has a ten-
dency of “chaining”—combining long strings of clusters linked by a series
of intermediate objects. This may result in only a few clusters that are quite
heterogeneous. Furthermore, if the size of a cluster is defined by the largest
distance between its objects, then single linkage tends to identify very large
clusters (Hastie et al. 2001).

Complete Linkage

The complete linkage distance between two clusters A and B is defined as the
distance between the furthest neighbors (see Fig. 2.13),

d(A, B) ¼ max
a¼1,...,nA
b¼1,...,nB

d(aa, ab): (2:58)

The complete linkage approach tries to minimize the size of clusters, which
usually results in many compact clusters. However, it may produce clusters
that are so close to each other that some objects are closer to objects in
another cluster than to some objects in its own cluster.

Figure 2.12: The single linkage (nearest neighbor) distance.

Figure 2.13: The complete linkage (furthest neighbor) distance.

74 CHAPTER 2 BASIC ANALYSIS OF GENE EXPRESSION MICROARRAY DATA



Average Linkage

The average linkage method uses the following formula to calculate the
distance between clusters A and B (see Fig. 2.14),

d(A, B) ¼ 1
nAnB

XnA
a¼1

XnB
b¼1

d(aa, ab): (2:59)

The average linkage distance between two clusters is the arithmetic mean of
distances between all pairs of objects in different clusters. This distance is
also known as UPGMA—the Unweighted Pair-Group Method using
Arithmetic mean.

Centroid Linkage

The centroid linkage distance is the distance between the centers of clusters A
and B represented by their mean vectors (see Fig. 2.15),

d(A, B) ¼ d(cA, cB), (2:60)

where

cA ¼ 1
nA

XnA
a¼1

aa, cB ¼ 1
nB

XnB
b¼1

ab: (2:61)

Figure 2.14: The average linkage is based on all pairwise distances between
objects of the two clusters. Only distances from one of the Cluster B objects to all
objects of Cluster A are shown.

Figure 2.15: The centroid linkage distance between clusters.
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The centroid linkage distance is also called UPGMC—the Unweighted
Pair-Group Method using Centroids. Both centroid and average linkages
are compromises between the extreme approaches of single and complete
linkages.

Agglomerative clustering starts with calculating the distances between all
possible pairs of the n initial clusters (objects ai, i ¼ 1, . . . , n) using one of the
previously defined distance or similarity metrics. These distances can be repre-
sented by an n � n distance matrix D with the individual distances d(ai, aj), i,
j ¼ 1, . . . , n between the initial n single-object clusters in the upper diagonal part
of the matrix,

D ¼

0 d(a1, a2) d(a1, a3) 
 
 
 d(a1, an�1) d(a1, an)

0 d(a2, a3) 
 
 
 d(a2, an�1) d(a2, an)

0 
 
 
 d(a3, an�1) d(a3, an)

. .
. ..

. ..
.

0 d(an�1, an)

0

2
666666666664

3
777777777775
: (2:62)

At each consecutive step, the two clusters with the smallest distance in the
distance matrix D are identified and merged. The distances between the newly
created cluster and all remaining ones are calculated. The two rows and columns repre-
senting the two merged clusters are replaced in the matrix with one column and one
row of the distances calculated for the new cluster. Thus, at each step, a new distance
matrix D is created and this process continues until all objects are assigned to a single
cluster. Note that for each new (and smaller) distance matrix, we need to calculate
distances only for the newly created cluster; all other distances remain the same.
Furthermore, we do not need to use the original object data to calculate the distances
for new clusters. At each stage, the current version of the distance matrix includes all
distance information necessary for calculating these new distances. Assume that we
are merging clusters A and B into a new cluster AB. The distance between the cluster
AB and another cluster, say C, can be calculated using the distances d(A, C ) and
d(B, C ) from the current matrix D. For example, this distance d(AB, C ) can be
calculated (Kaufman and Rousseeuw 1990):

† for the average linkage method as:

d(AB, C) ¼ nA
nAB

d(A, C)þ nB
nAB

d(B, C) (2:63)

† for the single linkage method as:

d(AB, C) ¼ 1
2
[d(A, C)þ d(B, C)]� 1

2
jd(A, C)� d(B, C)j (2:64)
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† for the complete linkage method as:

d(AB, C) ¼ 1
2
[d(A, C)þ d(B, C)]þ 1

2
jd(A, C)� d(B, C)j (2:65)

A hierarchy created by agglomerative clustering is monotone,52 which means
that the consecutive merging of clusters increases the distance between merged
clusters.

2.8.1.3.2 Divisive Clustering
The divisive (or top-down) approach to hierarchical clustering is less often used for
clustering gene expression data. However, if we are interested in the identification
of a few large clusters, the divisive approach can provide better results than the
agglomerative one. Top-down methods start with all objects assigned to a single clus-
ter. The cluster is then partitioned into two clusters. At each consecutive step, one of
the currently defined clusters is split into two. The process ends either when each clus-
ter includes only one object or when a stopping criterion—such as a specified number
of clusters—is achieved. To split a cluster into two child clusters, an iterative method
such as the K-means method (with K ¼ 2) is often used. However, if the K-means
method is used, results will depend on the starting points selected at each step.
Different runs may produce different results. Other approaches are, of course, possible.
For example, to split a cluster, the object with the largest average distance from all
other objects may be identified and used as the seed for the second cluster. Then,
one by one, objects that are currently more similar to the second cluster than to
their original one are moved. The process ends when there are no more such objects
(MacNaughton-Smith et al. 1964).

2.8.1.3.3 Hybrid Hierarchical Clustering
Both agglomerative and divisive approaches to hierarchical clustering have their
strengths and weaknesses. By the very nature of the hierarchical approach, mistakes
made early in the clustering process cannot be corrected and their accumulation
may lead to inferior results at later steps of the process. Therefore, agglomerative
(bottom-up) clustering is recommended when we are interested in small clusters,
but it is not particularly good at identifying large ones. On the other hand, the strength
of the divisive (top-down) approach is in finding a few large clusters rather than many
small ones. Chipman and Tibshirani proposed a hybrid hierarchical clustering that
combines the strengths of these two methods (Chipman and Tibshirani 2006). They
introduced the concept of mutual clusters as the central idea of the hybrid method.
A mutual cluster is a group of objects that are closer to each other than to any
object not in the group. This means that the maximal distance between objects of
the mutual cluster is smaller than the minimal distance between any of these objects
and any object outside the mutual cluster. Objects of the mutual cluster should
never be separated. To accomplish this, the hybrid method starts with the identification
of mutual clusters by performing preliminary agglomerative clustering using the

52There are exceptions. A hierarchy created with centroid linkage may sometimes be nonmonotone.
However, software implementations usually correct this by adjusting branch heights (Chipman et al. 2003).
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average linkage method,53 and then uses this information in divisive clustering. The
weakness of divisive clustering is in its tendency to break apart mutual clusters. To
avoid this, the identified mutual clusters are replaced with their centroids and treated
by divisive clustering as single objects. Once this top-down clustering of such modi-
fied data is completed, the mutual clusters are reinstated and further divided by per-
forming either top-down or bottom-up clustering within each of them. By using
divisive clustering to split the data into a few large clusters and agglomerative cluster-
ing to identify small mutual clusters, the hybrid method can produce effective cluster-
ing at both ends of the cluster size spectrum (Chipman and Tibshirani 2008).

2.8.1.4 Two-Way Clustering and Related Methods

By performing clustering simultaneously for genes and samples (rows and columns of
the gene expression matrix), we may be able to identify subsets of genes with distinct
expression patterns over only a subset of samples. Such blocks of coherent expression
patterns may be important for pointing to biological processes associated with specific
groups of genes and samples. This approach is called two-way clustering or bicluster-
ing and was described in Hartigan 1972. The direct clustering algorithm due to
Hartigan—currently known as block clustering—reorders the rows and columns of
the gene expression matrix in the search of blocks with homogeneous expression. It
starts by treating the gene expression matrix as a single block. At consecutive steps,
it splits one of the existing blocks (either by row or column) into two blocks in a
way that results in the largest decrease in the total within-block variation. However,
not all splits are allowed—only ones that result in hierarchical tree structures of
both sample and gene clusters. The original Hartigan algorithm stops when the
reduction in the total within-block variation is not greater than that expected by
chance. A modified version of this algorithm (Tibshirani et al. 1999) implements a
permutation-based estimation of the optimal number of blocks. Splitting continues
until a large number of blocks is identified. Then pruning and permutation exper-
iments are performed. A gap function, defined as the difference between the permu-
tation-based estimation and the observed value of the within-block variation is
calculated for each considered cardinality. Clustering based on the number of
blocks that maximizes the gap function is deemed optimal.54

The preferred visualization of the results of this and similar two-way clustering
methods is in the form of a heat map coupled with two dendrograms, one for samples
and one for genes. Sometimes genes and samples are clustered separately and the
results are shown together on the heat map in a way similar to that of two-way cluster-
ing (Eisen et al. 1998; Alizadeh et al. 2000).

Two-way clustering results in a single ordering of samples for all genes. Some
methods investigate the possibility of more informative presentations allowing for the
different ordering of samples for different subsets of genes or for overlapping clusters.

53Agglomerative clustering using the average, single, or complete linkage methods does not break mutual
clusters (Chipman and Tibshirani 2006).
54Maximizing this gap function means minimizing the within-block variation when compared to the one
expected by chance.
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The plaid model (Lazzeroni and Owen 2002) can be seen as a method merging
two-way clustering with analysis of variance (ANOVA). It identifies rectangular
layers, each of them corresponding to a subset of genes with similar expression pat-
terns over a subset of samples. The layers are similar to blocks in block clustering,
but they may overlap. Furthermore, a gene may belong to many layers or it may
belong to none of them.

Gene shaving (Tibshirani et al. 1999; Hastie et al. 2000) is another method
related to two-way clustering. It looks usually for small clusters of highly correlated
genes whose average expression has large variation across the samples. The gene
shaving algorithm implements principal component analysis (refer to Section 2.8.2)
to identify the direction of the most variation in the p-dimensional space of p genes.
It starts with the entire gene expression matrix and finds the largest principal
component, which can be called an eigengene (for it is a linear combination of the
genes along the direction of the most variation in the data). Then genes are sorted
according to their correlations with the eigengene and a fraction (for instance, 10 per-
cent) of the least correlated genes is removed, or shaved-off. The procedure is then
repeated in subsequent steps for gene expression submatrices including fewer and
fewer genes, until only one gene remains. The result is a sequence of nested subsets
of genes. Selection of one of these subsets is based on permutation experiments and
the percent of variance explained by the vector of average expressions of the subset
genes. The subset that maximizes the gap function—defined here as the difference
between the observed variance and the variance expected by chance55—is selected
as the first cluster of genes. The vector of the average expressions of the cluster
genes is called a supergene. To identify the second and then subsequent optimal
clusters of genes, the gene expression matrix is orthogonalized with respect to the
identified supergene, that is, from each row of the matrix (representing a gene) the
component correlated with the supergene is removed. The entire process is then
repeated until the predefined number of optimal clusters is identified.

There are many biclustering algorithms (Madeira and Oliveira 2004) and
new ones are being developed. Promising extensions include clustering 3D gene
expression data (the gene expression matrix with the added temporal dimension).
The gene-sample-time, or GST, microarray data may be used to identify clusters of
genes with similar expression patterns over a subset of samples and across the
series of time points (Zhang 2006).

A word of warning: given a large number of variables, two-way clustering
(as well as independent clustering of genes and samples) will always find some
patterns in data, even when the data is randomly generated noise. On a heat map,
the patterns in the random data may even look as interesting as ones based on real
gene expression data. Which of the gene data patterns are biologically relevant?
This cannot be answered by cluster analysis. As Drăghici noted “Contrary to the
popular belief, clustering is not a goal in itself and, by itself, is seldom convincing.”
(Drăghici 2003). Biological knowledge has to drive the interpretation of clustering
results by formulating hypotheses to be subsequently tested by approaches external

55By maximizing the gap function as defined, the cluster of genes for which the observed variance across
samples most exceeds the one expected by chance is selected.
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to cluster analysis. Furthermore, when interpreting a heat map we have to keep in mind
that changes in the clustering algorithm or the distance measure may produce different
results.

2.8.2 Principal Component Analysis

“Principal components are a sequence of projections of the data, mutually

uncorrelated and ordered in variance.”

—(Hastie et al. 2009)

Principal component analysis (PCA) is a technique allowing the reduction of the data
dimensionality in such a way that the resulting lower-dimensional representation of
the data preserves as much of its variation as possible. The technique dates back to
Pearson and then Hotelling (Pearson 1901; Hotelling 1933) with some even earlier
work on singular value decomposition, a related method.

As in cluster analysis, either genes or samples can be treated here as dimensions
(variables). Let us choose one of these options and treat samples as objects and
genes as variables. Therefore, our goal is to transform the p-dimensional space defined
by p genes into a low dimensional space in order to facilitate the visualization of
samples that may reveal their groupings. A data set of N biological samples and p
variables can be represented by a p-dimensional cloud of N points. If we approximate
the cloud by a p-dimensional hyperellipsoid, the directions of the principal com-
ponents will be aligned with the axes of the hyperellipsoid.56 Another interesting
geometric interpretation of PCA has been given by Flury and Riedwyl (1988). If
we enclose our N data points in a p-dimensional hypersphere (centered at the multi-
variate mean of the cloud of N points), then the principal components will correspond
to such a set of orthogonal directions that successively minimize the Mahalanobis
distance57 between the data cloud and the hypersphere (and move across the origin
of the hypersphere).

The first principal component (PC) identifies the direction with the most
variation in the data. The second PC is orthogonal to the first and captures the direction
in the data having the greatest remaining variation. The third PC is orthogonal to the
first two PCs and corresponds to the direction with the greatest still remaining
variation, and so on. Although up to p principal components can be defined, we
hope that the first m of them, where m	 p will account for almost all of the variation
in the p original variables (Jolliffe 2002). Usually, by transforming the original
p-dimensional space into a space defined by the first few PCs, we can retain a signifi-
cant portion of the total variation in the data. To facilitate visualization, it is preferable
to use only the first two or three principal components. Since principal components are

56This geometric interpretation is statistically correct only if we assume that the original variables follow a
multivariate normal distribution. However, the multivariate normality assumption is not necessary if we use
the PCA technique as a descriptive tool rather than for statistical inference. Jolliffe notes that PCA “can pro-
vide valuable descriptive information for a wide variety of data, whether the variables are continuous and
normally distributed or not.” (Jolliffe 2002).
57Mahalanobis distance has been defined in Section 2.8.1.
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orthogonal to each other, they define a set of uncorrelated variables, each being a linear
combination of the original variables (genes) (see Fig. 2.16).

To calculate principal components we can use either correlations or covariances.
There are arguments for and against each of these approaches58 and generally neither
has a clear advantage over the other. For microarray data where all the gene expression
variables are measured in the same units, it is more common to use the covariance
matrix. Assuming, as before, that we treat our N biological samples as objects and
the p genes as variables, each of the samples is represented by a p-dimensional
vector xi [ <p,

xi ¼

x1i
x2i

..

.

x pi

2
6664

3
7775, i ¼ 1, . . . , N: (2:66)

The general idea of PCA is to find the characteristic vectors of the covariance
matrix, which are solutions to the following eigenproblem:

Se ¼ le (2:67)

where

Figure 2.16: An illustration of principal component directions. The first principal component
PC1 identifies the direction of the most variation in the data. In this toy example, the original
space is defined by only two variables. Hence, the second principal component PC2, orthogonal
to the first one, captures the remaining data variation. Each of the principal components can be
represented by a linear function of original variables x1 and x2.

58For example, if a covariance matrix is used when the original variables are of different types, with different
units of measurement and very different variances, the first few PCs may be strongly influenced by the rela-
tive sizes of the variances, hardly giving us any new information.
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† S is the [statistical] sample covariance matrix,59

S ¼ 1
N � 1

XN
i¼1

(xi � x)T (xi � x): (2:68)

The p � p covariance matrix S is also called the variance-covariance matrix
since its diagonal elements skk ¼ s2k represent the variances of variables xk,
k ¼ 1, . . . , p, and its off-diagonal elements skl are the covariances between vari-
ables xk and xl, k= l and k, l ¼ 1, . . . , p. Since skl ¼ slk for any k, l ¼ 1, . . . , p,
the matrix S is always symmetric,

S ¼

s11 s12 . . . s1p
s12 s22 
 
 
 s2p

..

. ..
. . .

. ..
.

s1p s2p 
 
 
 s pp

0
BBB@

1
CCCA, (2:69)

† x is the mean vector of the N sample points

x ¼ 1
N

XN
i¼1

xi (2:70)

† e is a normalized eigenvector of the matrix S and l is its corresponding eigen-
value.60 There are p eigenvalue-eigenvector pairs that are the solutions to (2.67).
For small p, the eigenvalues can be found by expanding the characteristic
equation61

detjS� lIj ¼ 0 (2:71)

and solving the resulting pth degree polynomial in l whose roots are the eigen-
values (Anderson 2003). However, for a large number of variables p, this
method would be computationally intensive. Due to the fact that the covariance
matrix S is always symmetric, singular value decomposition (SVD), a very
efficient numerical method, can be used in such situations to find eigenvalues
and eigenvectors of the matrix S (Press et al. 2007).

59S is an estimate of the unknown population covariance matrix S.
60Texts that discuss both population principal components and sample principal components usually use l
to denote population eigenvalues and l for sample eigenvalues. Here we discuss only the sample principal
components, and l is used to denote the sample eigenvalues.
61det jAj denotes the determinant of matrix A, and I is the p � p identity matrix with 1s on the diagonal and
0s off the diagonal.
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Solving the eigenproblem (2.67) gives us a set of p ordered eigenvalues lk,
k ¼ 1, . . . , p,

l1 � l2 � 
 
 
 � lp � 0 (2:72)

and, paired with them, p normalized eigenvectors

ek ¼

e1k
e2k

..

.

e pk

2
6664

3
7775, k ¼ 1, . . . , p: (2:73)

Each eigenvalue-eigenvector pair (lk, ek) is associated with a principal component.
The eigenvector ek defines the direction of the kth principal component (PCk) whereas
the eigenvalue lk represents the amount of data variance along this principal
component direction. Each principal component can be described as a linear
combination of the original p variables,

PCk ¼ e1kx1 þ e2kx2 þ 
 
 
 þ epkxp

¼ eTk x (2:74)

with the elements of the eigenvector ek representing the weights (or loadings) of the
original variables. The proportion of the total variance explained by the kth principal
component can be calculated as

gk ¼
lkXp

l¼1 ll
, k ¼ 1, . . . , p (2:75)

and the cumulative proportion of total variance explained by the first m principal
components, m � p, as

Gm ¼
Xm
h¼1

gh

¼
Xm

h¼1 lhXp

l¼1 ll
: (2:76)

The denominators of (2.75) and (2.76) represent the total variance in the data set,
which is equal to the sum of all p eigenvalues, and also to the sum of the diagonal
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elements of the variance-covariance matrix S,

Total variance ¼
Xp
k¼1

lk

¼
Xp
k¼1

skk: (2:77)

Please note that if the original variables are standardized to a mean of zero and
standard deviation of one, then the total data variance will be equal to the number
of variables p,

Total variance (standardized) ¼
Xp
k¼1

skk

¼
Xp
k¼1

s2k

¼
Xp
k¼1

1

¼ p: (2:78)

If, as stated earlier, our main goal for performing PCA is visualization
of samples (or genes), then we would like to retain only two or three principal com-
ponents. From (2.76) we can find out how much of the total data variance would be
represented by either of these visualizations. This would give us some information
on the validity of conclusions about sample grouping based on such visualizations.
If we wanted to go beyond visualization, a valid question after identifying the PCs
could concern the number of principal components to retain. The simplest way
would be to decide what proportion of the explained variance is satisfactory for our
particular study,62 and use (2.76) to drive the selection. If, however, wewant to discard
only the uninformative PCs, we need to define some cut-off for their informativeness.
One possible way to do this is called the broken stick model (Jolliffe 2002). Consider a
unit length stick. If we break the stick, at random, into p pieces, then the expected
length of the kth longest piece can be calculated as

g�k ¼
1
p

Xp
l¼k

1
l
: (2:79)

We can compare the proportion of the variance explained by each principal
component (2.75) with that expected by chance (2.79) and retain only the principal

62Often the cut-off is in the range of 0.7–0.9. It depends, however, on the data set and goals of the study. The
number of PCs selected for different cut-off values may also be taken into account.
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components for which the following inequality is true,

gk . g�k , k ¼ 1, . . . , p: (2:80)

To project samples represented by the p-dimensional vectors xi, i ¼ 1, . . . ,N,
in the original space of p genes onto the space defined by the first m principal
components, we will use the first m eigenvectors and for each sample will calculate
the vector wi of its new coordinates,

wi ¼
w1i

..

.

wmi

2
64

3
75 (2:81)

as

wi ¼ ET
mxi, (2:82)

where Em is a p � mmatrix whosem columns are the eigenvectors associated with the
first m principal components,

Em ¼

e11 
 
 
 e1m
e21 
 
 
 e2m

..

. . .
. ..

.

e p1 
 
 
 epm

2
6664

3
7775: (2:83)

We have to remember that PCA is an unsupervised technique that identifies
the directions of the most data variation. These directions do not need to be in
any way related to the discriminatory directions sought after by supervised classi-
fication problems. In particular, this means that principal component analysis
should not be used as a preprocessing step for the supervised analysis. To read
more on this subject, refer to Chapter 3.

2.8.3 Self-Organizing Maps

The self-organizing map (SOM), also known as Kohonen network, is the unsuper-
vised artificial neural network (ANN) learning algorithm introduced by Teuvo
Kohonen (Kohonen 1982a, 1982b). The algorithm is considered “one of the most
realistic models of the biological brain function” (Kohonen 2001). It projects high-
dimensional data usually onto a two-dimensional grid,63 or map, in a way that
preserves the topological relations between data objects and groups of these objects.
The SOM is a clustering method (and a visualization tool) that groups objects into
a predetermined rectangular K1 � K2 grid of clusters. As the neighboring clusters

63One- or three-dimensional maps are also used as well as two-dimensional maps with topologies different
from rectangular, for example, hexagonal ones.
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are more similar to each other than to clusters that are farther away on the grid, the
SOM clustering is more informative than K-means or even hierarchical clustering.64

As with other clustering methods, we can use SOM to cluster either genes or biological
samples. However, in gene expression analysis, we usually use this method to group
genes into clusters of similar expression profiles.

Assume then that we treat the p genes of the gene expression matrix as
objects and its N samples as variables. Therefore, each of the genes can be repre-
sented by an N-dimensional vector xg [ <N of the gene expression values for the
N samples,

xg ¼

x1g
x2g

..

.

xNg

2
6664

3
7775, g ¼ 1, . . . , p: (2:84)

The self-organizing map is a neural network (NN) with the input layer of N inputs
representing the original N variables (here, biological samples), no hidden layers,
and the output layer being a K1 � K2 grid of neurons corresponding to cluster
prototypes (Fig. 2.17).

Each input is connected to each neuron. Each of theseN � K1 � K2 connections
is characterized by a weight (Fig. 2.18), which is equivalent to saying that each neuron
hk, k ¼ 1, . . . , K, where K ¼ K1 � K2, has assigned to it an N-dimensional vector of
weights wk [ <N,

wk ¼

w1k

w2k

..

.

wNk

2
6664

3
7775, k ¼ 1, . . . ,K: (2:85)

The weight vectors wk represent the cluster prototypes and are initialized to random
values from the range of gene expression values in the data.65 During the learning
process, the network is presented with the p gene expression patterns as inputs, one
at a time, preferably in a random order.

The neurons compete in the sense that the one whose weight vector wk is most
similar (according to the similarity or distance measure used) to the current input
pattern xg is declared the winner and its weights are adjusted towards the values
of the vector xg. The magnitude of the adjustment depends on the learning rate a.
Although this competitive learning is called the winner-takes-all-approach, the
approach is complemented by the network plasticity characteristic resulting in

64K-means clustering may be misleading about relations between objects; it is quite possible that objects
close to each other in the original space are assigned to different clusters and appear far from each other.
Although hierarchical clustering is more informative, the horizontal dendrogram distances between objects
of different clusters do not necessarily reflect their similarity (Drăghici 2003).
65Preferably using an appropriate distribution of the gene expression data.
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the propagation of learning to a local neighborhood of the winning neuron. Thus, the
“excitement” of thewinner is shared with its neighbors; their weights are also adjusted,
though to a lesser extent. To determine the winner’s local neighborhood and the mag-
nitude of each neighbor’s weights adjustment, we define a neighborhood
function h(hk, hl), k, l ¼ 1, . . . , K whose value decreases with the increase in the

hh

Figure 2.17: An example of the self-organizing map. The input layer has N nodes
corresponding to N variables. When we cluster genes, each gene is represented by an
N-dimensional vector of its expression values for the N samples of the data set. The output
layer is a rectangular grid of K1 � K2 neurons; in the example K1 ¼ K2 ¼ 3. Each input
node is connected to each neuron.

h

Figure 2.18: There are N connections to each neuron hk, each with its own weight. Hence, an
N-dimensional vector of weights, whose values are adjusted during the learning process, is
associated with each neuron. The vector of weights wk is a prototype of the gene expression
profile for the cluster of genes assigned to the neuron hk.
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distance66 between neurons hk and hl. The first iteration
67 of the learning algorithm

ends when all p genes are presented to the network. The learning rate a as well as
the size of the local neighborhood are then reduced and the second iteration started.
The process continues until convergence or until a specified number of iterations
has been performed. When the learning process ends, each neuron is associated
with the cluster prototype—the expression profile represented by its weight vector.
Each gene is assigned to the neuron (cluster) with the most similar expression profile
(Fig. 2.19).

Example of the SOM Algorithm

1. For the selected K1 � K2 rectangular topology of the neural network:

† Initialize the weight vectors of all K ¼ K1 � K2 neurons to random values

wk(t), k ¼ 1, . . . ,K, (2:86)

where t is the index of learning steps; it starts with t ¼ 1 and then is increased
after each consecutive step of weights adjustment.

Figure 2.19: An example of graphical presentation of clustering genes by similarity of their
expression profiles. Self-organizing map with 3 � 3 rectangular topology and correlation
distance have been used. The image was obtained with MultiExperiment Viewer software
(Saeed et al. 2003). (See color insert.)

66Note that we use two distancemeasures. One is the distance between neurons on the two-dimensional grid;
this distance is used to define the local neighborhood. The other is the distance between two vectors in the
N-dimensional space of the original variables; one vector represents the gene expression pattern of a data
point, the other is the cluster prototype represented by the neuron’s weight vector.
67In neural network terminology, the iteration—or a single pass through all input vectors—is called
an epoch.
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† Initialize the learning rate a.

† Initialize the neighborhood function

h(hk, hl), k, l ¼ 1, . . . ,K: (2:87)

The value of the neighborhood function equals 1 if k ¼ l, is between 0 and 1
for neurons hl that are in the local neighborhood of the neuronhk, and is zero
otherwise.

† Specify the maximum number of iterations (epochs).

2. Repeat until convergence or until the maximum number of iterations is
performed:

a) Loop over the data set of the p gene expression patterns. The steps are
indexed by the consecutive values of t:

† present a single input pattern xg(t) to the network,

† using the selected distance measure d(xg, wk), identify the neuron most
similar to xg(t) and call it the winning neuron hc(t),

hc(t): c ¼ argmin
k

d(xg(t), wk(t)), (2:88)

† assign the input gene expression pattern xg(t) to the cluster represented by
the winning neuron,

† adjust the weights of the winning neuron hc(t) and all neurons in its local
neighborhood

wk(t þ 1) ¼ wk(t)þ a 
 h(hc(t), hk)[xg(t)� wk(t)], for k ¼ 1, . . . ,K:

(2:89)

The neighborhood function h(hc(t), hk) assumes the following values:

h(hc(t), hk) ¼ 1 for the winning neuron hk ¼ hc(t),

0 , h(hc(t), hk) , 1 for neurons in the current
neighborhood of the neuron hc(t),

h(hc(t), hk) ¼ 0 otherwise:

b) Decrease the value of the learning rate a.

c) Decrease the size of the local neighborhood by redefining the neighbor-
hood function h(hk, hl).

When neurons are initialized to random weights68 (selected from the range of
expression values represented in the data), it is possible that some neurons will

68Instead of using randomly selected weights, we may initialize neurons to the vectors representing points
lying on the two-dimensional plane defined by the first two principal components of the data. This would
allow for an interesting geometric interpretation of the learning process (Hastie et al. 2001).
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never win, and the clusters associated with them will be empty. To avoid such
situations, we may initialize the cluster prototypes to equal the gene expression vectors
randomly selected from the data set. The neighborhood function should be initialized
in such a way that defines a large local neighborhood that may even include the entire
network.69 This way initial learning is widely propagated to allow for the correct
global mapping of the topological relationships between groups of expression pat-
terns. Then the size of the local neighborhood is gradually decreased until it includes
only the winner. This allows focusing on the local spatial resolution after the global
relationships have been mapped. A simple definition of the neighborhood may be
based on the Euclidean distance between the neurons on the grid. Note that if the initial
local neighborhood is too small and includes only the winning neuron, then the spatial
relations between clusters cannot be mapped and the SOM algorithm is reduced to
K-means clustering.

As with the local neighborhood, the learning rate gradually decreases. The high
initial rate results in crude clusters, which are then fine-tuned when the learning
rate decreases. Commonly, either the Euclidean or the correlation distance is used
to identify the neuron most similar to the presented pattern.

Although both SOM and PCA project data onto a low-dimensional space,
the SOM algorithm—unlike PCA—allows for nonlinear projections. In that sense,
SOM can be regarded as a nonlinear generalization of PCA (Oja et al. 2006).70

Running the SOM algorithm with different topologies of the network, different
initializations of cluster prototypes, different learning rates and local neighborhood
functions, different orders of presenting data points, and different distance measures
may lead to different results. Consider, for example, the measure of distance between
gene vectors and cluster prototype vectors. The Euclidean distance may tend to group
together genes with similar expression levels whereas the correlation distance will
group genes with similar shapes of their expression patterns across the samples.
Sometimes the Chebyshev distance may provide even better separation of profiles
by both the shape and the expression level (Drăghici 2003). To decide on the network
topology, we may explore maps with different numbers of neurons. If we start with
only a few neurons, the resulting clusters will most likely have a large within-cluster
variation. Then, we may keep adding nodes until distinctive clusters with low variation
are identified (Tamayo et al. 1999).

EXERCISES

2.1 Search public repositories for at least five gene expression data sets related to cancer or
central nervous system (CNS) diseases. Limit your search to the Homo sapiens species,
Affymetrix gene expression microarrays, and experiments submitted during the last five
years. Do not consider experiments with the total number of biological samples

69Although, if the local neighborhood is too large for a given grid resolution, the cluster prototypes tend to be
updated in blocks (Ripley 1996).
70Principal surfaces also generalize PCA. Thus, SOM can be seen as a discrete version of principal surfaces
(Hastie et al. 2001).
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less than twenty. Your selection should include experiments with two classes, three
classes, and at least one with more than four classes. For each data set, report:

† accession number (e.g., GSE13425),

† year of submission,

† microarray type (e.g., HG-U133 2.0 Plus),

† total number of biological samples,

† number and names of the differentiated classes,

† number of biological samples in each class,

† brief description of main goals of the original study.

2.2 From ArrayExpress or Gene Expression Omnibus, select a gene expression data set with
two differentiated classes. It has to include detection call information (Present, Absent,
and Marginal). Furthermore, raw data (CEL files) should also be available.

a) Download the gene expression and detection call data.

b) In Excel, perform gene expression level quality assessment. Perform also any
additional preprocessing that you determine necessary.

c) Using Excel, filter the data by the detection calls and by the range of expression values.
Decide on filtering criteria that are appropriate for the selected data set.

d) Describe all steps of your experiment. Present and comment on the results. Include the
Excel file showing the steps of your experiment.

Note:
When downloading data from ArrayExpress, select fields corresponding to gene
expression signal, detection call and probe set name. This will give you a data
matrix with a single probe set column and with two columns (signal and detection
call) for each biological sample. Save the exported data as a .txt file and then open it
in Excel. Commonly, class names are included in sample names. Alternatively, you
may download a separate sample annotation file.

2.3 Perform basic exploratory analysis of the data set prepared in Exercise 2.2.

a) Download the Significance Analysis of Microarrays (SAM) software http://
www-stat-class.stanford.edu/~tibs/clickwrap/sam.html (free for academic use).

b) Familiarize yourself with the software, implemented methods, and input parameters.

c) Analyze the data set prepared in Exercise 2.2 and identify a list of differentially
expressed genes. Remember about appropriate selection of parameters resulting in a
reasonable FDR rate.

d) Using the TTEST function in Excel, perform an ordinary t test for the same data set.
Remember about adjusting for multiple testing—apply the following corrections:

† the single-step Bonferroni procedure,

† the step-down Holm procedure,

† the step-up Benjamini and Hochberg procedure.
e) Compare the results of the three methods of correction for multiple comparisons. Then,

compare them with the SAM results. Present the results and their comparison in the
form of Excel worksheets of the same Excel file.

f) Describe your experiments (including discussion of the selected values of SAM
parameters), observations and conclusions.
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2.4 Perform all steps of Exercises 2.2 and 2.3 for a gene expression data set with three differ-
entiated classes. In addition, explain why “significant negative genes” are not reported
for the Multiclass SAM experiment.

Note: Since there are more than two classes, the ANOVA F test (instead of the t test)
should be performed. Unfortunately, Excel does not have a cell function for the
ANOVA F test. Although it can be done using a one-cell formula, it would be more
instructive if you add four columns to the spreadsheet and—for each probe set
(row)—calculate:

† variance between classes (MSTR),

† variance within classes (MSE),

† the value of the F statistic (the ratio of these two variances),

† the p-value (using Excel’s FDIST function).

2.5 Perform low-level preprocessing of raw expression data using the Affymetrix Expression
Console software:

a) Download the raw expression data (CEL files) corresponding to the data set used in
Exercise 2.2 (or 2.4). If necessary, download additional annotation information
(assignment of samples to classes).

b) From the Affymetrix website, download and install Expression Console software.

c) Familiarize yourself with the software and configure it for your experiment:

† download the library and annotation files appropriate for the microarray type
used in the experiment,

† create a new study and configure MAS5 algorithm to use the same target inten-
sity value as the one used in the original gene expression data set.

d) Run the low-level analysis of the raw data. Export the resulting probe set
level expression data and compare them with the data downloaded for Exercise 2.2
(or 2.4).

2.6 Repeat the experiments performed in Exercise 2.5 using the other low-level preprocessing
algorithms implemented in the Expression Console software—RMA and PLIER.
Compare results and discuss their differences. For example, visualize the relationship
between expression levels of a selected pair of arrays using MA plots. Discuss the differ-
ences in the MA plots for the data preprocessed with the three algorithms.

2.7 Using the self-organizing map (SOM) algorithm, group genes into clusters of similar
expression patterns:

a) Use a data set including differentially expressed genes identified by one of the
univariate methods used in Exercise 2.2 (or 2.4).

b) Use any software package that implements the self-organizing map algorithm
(e.g., MultiExperiment Viewer).

c) Depending on capabilities of the selected SOM implementation, perform experiments
with different settings of SOM parameters. Parameters to consider include:

† topology of the neural network,

† distance metric,

† neighborhood definition,
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† learning rate,

† initialization of the weight vectors,

† number of iterations.
d) Compare results of SOM clustering performed with several different sets of

parameters.
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CHA P T E R3
BIOMARKER DISCOVERY
AND CLASSIFICATION

Supervised analysis of gene expression microarray data:

† Biomarker discovery

† Feature selection

† Classification

“The field of Statistics is constantly challenged by the problems that science and

industry brings to its door”.

—(Hastie et al. 2001)

3.1 OVERVIEW

Basic exploratory analysis and unsupervised (taxonomy-related) analysis of gene
expression data (covered in Chapter 2) are well represented and usually well imple-
mented in many software packages and programs. Generally, the implementation
and use of unsupervised methods of data mining can be considered quite mature in
the area of biomedical research. Unfortunately, the same cannot be said about super-
vised methods, especially for biomarker discovery. In this chapter, we will focus
on this area (shown on Fig. 3.1 as Element D). Although many well established or
newer methods (such as Discriminant Analysis, Support Vector Machines, Logistic
Regression, or Decision Trees) are implemented and used, many publications and
software applications seem to neglect or underplay the crucial step of feature selection.
Figure 3.2 shows main elements of biomarker discovery, which include:

† feature selection,

† building classification model (depending on the feature selection approach,
the first two steps can be separated or coupled together),

† model validation (preferably on an independent test set),

Data Mining for Genomics and Proteomics. By Darius M. Dziuda
Copyright # 2010 John Wiley & Sons, Inc.
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† implementation of the classification model (preferably including visualization
of the discriminatory space),

† elucidation of biological processes underlying the class differentiation.

The sequence of the biomarker discovery steps shown in Figure 3.2 is only an
example and simplification of the process. Although biomarker discovery can be per-
formed in such a simple sequential way (e.g., in situations where discriminated classes
are easily separable), usually the process includes iterations of some elements or their
combinations. In this chapter, we will look at the elements of the biomarker discovery
process and discuss their interactions. In Chapter 4, we will describe how to identify
the Informative Set of Genes facilitating biological interpretation of class differences,
and then show how to use this set in the biomarker discovery process for additional
optimization that may lead to robust multivariate biomarkers with plausible biological
interpretation.

Identification of biological processes associated with the class discrimination is
sometimes considered a ‘follow-up’ step for the main goals of biomarker discovery.
One may argue that positive validation of a biomarker on a large and independent
test set is enough for its deployment, even if we do not understand the biology

Figure 3.1: Elements of microarray gene expression data analysis—an example. The focus of
this chapter is on the element D: Biomarker discovery and classification.
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underlying the differentiation (Baker 2005). This opinion is easier to accept for some
types of biomarkers, for example, diagnostic ones. However, for some other types,
such as biomarkers predicting drug efficacy, it seems to be crucial to understand the
relationship between the biomarker and the mechanisms of disease. Especially valu-
able are study outcomes, in which a new biomarker leads to new knowledge about
the biology of the disease.

The main goals of biomarker discovery are:

† to identify small subsets of variables that can be used for the efficient classifi-
cation of new samples,

† to provide fast and cost-effective classifiers that can be easily implemented into
clinical practice,

Figure 3.2: Elements of biomarker discovery. Please note that this is a simplification of the
biomarker discovery process. Often, biomarker discovery includes various iterations and
combinations of these elements. In Chapter 4, we will describe how to combine these
elements into a process allowing the identification of robust and interpretable multivariate
biomarkers.
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† to link the identified biomarkers and the class differences with underlying
biological processes,

† to facilitate visualization of the discriminatory space and classification results.

3.1.1 Gene Expression Matrix . . .Again

We will again start with the data—this time preprocessed, scaled, quality-controlled,
and noise-filtered gene expression matrix (Table 3.1). As before, its N columns
represent biological samples and p rows represent genes (probe sets, variables).
The minimum meta-data information includes assignment of samples to classes.

Although the data is said to be quality-controlled, it is a good practice (espe-
cially if this is our first encounter with a particular data set) to evaluate (or re-evaluate)
the quality of the data and experimental design before using the data as a training set
for supervised learning. One should remember the GIGO (garbage-in garbage-out)
rule and re-examine such elements of the data quality as:

† Quality of the individual measurements.

† Quality of the assignment of samples to classes.

Note:

If you are involved in data mining projects for genomics or proteomics, you may
be approached by a researcher with a problem like this:

I have interesting data and want to find markers differentiating these two (or more)

diseases (or phenotypes). However, I do not have all the diagnoses (or the certainty of

the diagnoses is questionable). Can I cluster my samples first and then, once I have

the classes identified, build the classification system?

What would be your response? Try to answer this question before reading the
footnote.1

† Number of samples in each class (is it sufficient for statistical reasoning?).

† Homogeneity (or reasonable heterogeneity) of the classes.

† Randomness of sample selection and independence of the samples.

† How well do the samples represent populations we want to differentiate? This is
very important for the results to be generalizable—applicable to the investigated
populations rather than only to the training set.

1The answer is NO. Unsupervised methods may not be used to generate high-dimensional training data sets.
Even if clustering results would align with our tentative diagnoses or phenotypes, the clustering may be
driven by variables that are not related to the classes we want to differentiate. For high-dimensional data,
interpretation of clustering results is difficult and far from the quality level required for good training
data. Generally, selection of the unsupervised or supervised approach depends on the goal of a study. If
the goal is to expand taxonomic knowledge (e.g., to identify a new subtype of a disease), unsupervised
methods should be used. If, however, the goal is to build a classification model or to identify a biomarker
significantly differentiating known classes, then we need supervised learning—if we do not have good qual-
ity training data, we are risking researching factors that have nothing to do with what we are looking for.
Refer to the Section 3.2.3 for more on this topic.
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3.1.2 Biomarker Discovery

In the context of gene expression analysis, biomarker discovery means identification
of an optimal subset of variables that significantly differentiates the classes2 and can
be used for accurate prediction of the class membership. Although it may happen that a
biomarker consists of just one variable, most often finding a good biomarker means
searching for a set of variables, which together—as a set—can separate the classes.3

A heuristic process or algorithm leading to such an optimal subset of variables is called
feature selection.

In the context of supervised gene expression analysis, we introduce the follow-
ing definitions:

Feature 5 variable

We will use the term feature as a synonym of original input variable (for
instance, a probe set representing a gene and associated with a row in the
gene expression matrix). More generally, the term could refer to original
variables, to their combinations, or to variables constructed from the original
variables. In the realm of biomedical applications it is, however, advan-
tageous to create classifiers that directly use some of the original variables.
When original variables are defining the dimensions of the discriminatory
space, more straightforward biological interpretation of classification results
is possible. Therefore, by feature selection we will mean selection of an
optimal subset of the original variables.

Sample 5 biological sample

Since bioinformatics is an interdisciplinary area of research, we may—or
sometimes have to—decide on which naming conventions to use when
they are different in the overlapping areas included in bioinformatics. We
will use the term sample as corresponding to a biological sample rather
than in its statistical meaning. Statistical sample will then correspond to a
group of biological samples selected from and representing—in a training
data set—one of the populations we are to investigate.

Training Data—data representing biological samples (e.g., patients, tissues,
objects, observations) characterized by the measured expression level of
some number of variables (probe sets, genes,4 exons) and with known, con-
firmed and considered highly accurate assignments to phenotypic classes
(diseases, disease states, prognoses, responses to treatment, etc.). After

2Phenotypes, or more generally response variables, may be quantitative or qualitative. We are focusing here
on qualitative phenotypes—discrimination between a set of classes, or categories (classification rather than
regression). The main reason for this focus is the fact that in biomedical research common response variables
are—or may be considered as—categorical (such as a set of differentiated diagnoses, a set of possible out-
comes, a set of considered treatment protocols, etc.).
3In the context of data mining, the term biomarker is often used as a synonym for multivariate biomarker
(a possibly small set of variables with possibly large joint discriminatory power).
4In this chapter, we focus on gene expression studies. However, all considerations of this chapter are equally
applicable to protein expression studies, where variables represent expression level of proteins.
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low-level preprocessing of the gene expression data, the training data set is
represented by a gene expression matrix.

Test Data—data that is independent from the training data (or at least not used
for training the system), and is used to estimate efficiency of the classification
system, in particular the level of compromise between overfitting and
generalization.

Overfitting—the ability of the classification system to perfectly or near
perfectly classify training samples (by the means of reclassification or
internal cross-validation) whereas performing poorly when classifying new
samples.

Generalization—the ability of the classification system to correctly classify
samples that were not included in the training data set. Generalization can
be estimated best by evaluating performance of the classification system
measured on an independent test data.

Biomarker (more general definition)—a biochemical characteristic that can
be used to diagnose a disease, predict outcome, select treatment, assess effi-
cacy or toxicity of a drug candidate, or—more generally—to predict class
membership.

Multivariate biomarker (more context-specific definition)—a set of genes (or
variables representing genes) with satisfactory discriminatory power that
can significantly separate the differentiated classes and can be used to
create a classification system of high sensitivity and high specificity. In
other words, it is a set of genes whose joint expression pattern is predictive
of class membership (is capable of highly accurate assignment of unknown
samples to their true classes).

Optimal multivariate biomarker—a parsimonious multivariate biomarker
that provides the best compromise between overfitting and generalization.
As gene expression analysis deals with thousands of variables, the exhaustive
search for the best subset of genes is intractable. Heuristic methods need to be
used to identify the optimal biomarker—a possibly small set of genes with
satisfactory and possibly large discriminatory power.

Classification versus prediction

Similarly as with the term sample, the terms prediction and classification are
often used in biomedical research differently than in statistics. In statistics,
they are associated with different types of response variables, continuous
for prediction and categorical for classification. In biomedical research,
they are often used interchangeably. For instance, assigning a biological
sample to one of differentiated classes may be called outcome prediction;
an estimate of generalization of a classification system may be called predic-
tive accuracy of the classification system.

A commonmisconception in early biomarker discovery studies was the assump-
tion that each gene selected into a multivariate biomarker has to be individually
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correlated with the disease or phenotype. Some of the researchers used to the one-
gene-at-a-time approach attempted to project this univariate bias onto studies trying
to identify a biomarker consisting of a set of genes. We hope that confusing a union
of univariately identified variables for a truly multivariate biomarker is now a relic
of the past. For a long time, the multivariate approach has been successfully applied
in the fields of machine learning and artificial intelligence. Though propagated for
many years by some bioinformatics researchers, the multivariate paradigm has only
recently become a mainstream and leading approach in biomedical studies based
on gene or protein expression data.

As biomarker discovery is applied to a rapidly increasing number of research
areas, there is no clear taxonomy of biomarkers. The following are just a few examples
of biomarker types:

† Diagnostic biomarkers—indicate the presence of a disease or the presence of a
specific state or subtype of the disease.

† Prognostic biomarkers—indicate the probability of specific outcomes of a
treatment.

† Biomarkers for personalized medicine (for instance, biomarkers for therapy
selection or for minimizing the risk of adverse drug reactions)—indicate the
probability of a specific outcome for the considered therapy options or
medications.

† Toxicity biomarkers—indicate the level of a drug toxicity (often used during the
drug discovery process and during clinical trials).

† Efficacy biomarkers—used in drug discovery to select most promising
compounds.

† Pharmacodynamic and pharmacogenomic biomarkers—indicate the relation-
ship between response to the drug and its dose; used to determine the dose
associated with an optimal response.

Genomic, proteomic, and metabolomic biomarkers have a great potential for
supporting personalized medicine. We will mention just two goals of biomarker dis-
covery for personalized biomedicine—therapy selection and minimizing the risk of
adverse drug reactions. Tailoring therapy to the condition of a patient is important
in many disease areas, but especially in cancer treatment. Over-treatment of patients
that have a low risk of relapse may cause therapy-induced conditions, such as leuke-
mia. Although the outcomes for at least some types of cancer improved with currently
available therapies, there are still significant challenges in predicting which of
available treatment options will be most appropriate for a particular patient and
which patient would benefit from less invasive or less toxic treatment (Carroll et al.
2003). Selection of the treatment protocol that is most appropriate for a patient may
be improved by the identification of characteristic expression patterns associated
with different responses to a variety of treatments. To identify such patterns, large
repositories of expression data for patients with known diagnosis, treatment, and out-
come parameters are necessary. Multivariate feature selection algorithms can be used
to identify genomic or proteomic biomarkers with high classification efficiency.
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A small size of multivariate biomarkers is important for their easy clinical implemen-
tations that may utilize such techniques as RT-PCR (Dziuda and Czar 2006).
Biomarker discovery can also target minimizing the risk of adverse drug reactions.
It is estimated that adverse drug reactions are causing, or contributing to, about
100,000 deaths annually in the United States (Ingelman-Sundberg 2008). Some of
these adverse drug reactions (such as errors in drug administration) are preventable,
but others are considered unpreventable by the current state of biomedical knowledge.
It is estimated, that the latter are the fourth to sixth leading cause of death in the United
States (Bates 1998). It is quite possible that data mining of genomic, proteomic, or
metabolomic expression data may lead to the identification of predictors of currently
nonpreventable adverse drug reactions. When identified, such predictors could be
incorporated into diagnostic test profiles along with other types of predictors, such
as genotyping markers (based on gene variant associations). It would be advisable
to focus first on the most perilous adverse reactions, such as those related to antibiotics
and allergic responses. Many lives would be saved if we could identify expression pro-
files of patients that are likely to develop adverse reactions to the most commonly
administered antibiotics. Furthermore, it is conceivable that biological processes
underlying particular reactions are common for groups of medications; it would be
very important to identify profiles predicting such reactions (Dziuda and Czar 2006).

Typical (quality-controlled and noise-filtered) gene expression data sets include
5000–20,000 variables. Due to such a large number of variables, p, an exhaustive
search thatwould guarantee finding the best subset of variables cannot be implemented,
as the order of the search space is O(2p). Generally, many problems related to feature
selection have been shown to be NP-hard (Amaldi and Kann 1998). Due to these diffi-
culties, known since Bellman (Bellman 1961) as the curse of dimensionality, many
studies reported in the literature pretty much neglect the feature selection step and
apply more or less arbitrary selection of features that are subsequently used to build
classification models. The usual approach is to find an ordered list of variables
(using simple univariate methods like t-test, ANOVA F-test or their derivatives) and
then use some number of the variables from the top of the list. Such a univariate
approach not only neglects correlations between variables but also usually results in
removing from consideration important discriminatory information. In some studies,
the multivariate approach is applied to some number of genes from the top of a
univariately-identified list. Although better than the univariate-only approach, multi-
variate methods are applied here after the harm was (most likely) already done.5 Due
to their limitations, both approaches (the univariate one and the multivariate approach
with a strong univariate bias) should be avoided whenever possible.

A more sophisticated, truly multivariate approach to feature selection is
necessary. The feature selection process is essentially a heuristic search, which—for

5Consider the following example. Assume that multivariate analysis is applied to 100 genes from the top of
the univariate list (for instance, ANOVA F-test results sorted in ascending order of p-values). This top rank-
ing sublist may be dominated by one or a few sets of highly correlated (highly redundant) genes. In an
extreme (but not unrealistic) situation, most or all of the 100 genes may belong to two groups of highly cor-
related genes (one group with high expression in one class and low in the other, and the other group with
expression low and high, respectively), thus each of these groups may provide about the same amount of
discriminatory information as a single most discriminatory gene in the group. See also Section 3.2.2.

3.1 OVERVIEW 103



very large numbers of variables—may implement either sequential or random search
methods. The sequential searches may implement forward or backward stepwise
selection, or combine both of them in a hybrid selection. For example, the sequential
hybrid selection may start with an empty set and then at each step may add or remove
one or more variables to maximize some predefined metric of discriminatory power.
The metric (or the goodness of the current subset) may be based on a measure of class
separation, on information content of the subset, on the amount of explained variation,
on an estimate of misclassification error of the classification system, etc. A random
search starts with a randomly selected variable and then either follows the sequential
search (more common) or generates the next subset also in a random manner.

Evaluating subsets with a well-defined metric of discriminatory power (such
as the Lawley-Hotelling trace criterion) is preferable. Evaluating them exclusively
on the basis of statistical significance of class separation is not recommended. A
very small p-value associated with a set of variables tells us that the set differentiates
the classes at a level unlikely to occur by chance, but this level of discrimination
may still be far from satisfactory for efficient classification. However, assigning the
significance to calculated values of discriminatory power is recommended. As dis-
tributions of some metrics may be unknown, the statistical significance is calculated
for them either from distributions approximating the unknown ones, or with the use
of bootstrap or permutation-based estimation of the unknown distributions.

The search continues until a stopping criterion (or one of multiple stopping
criteria) is satisfied. Examples of stopping criteria include:

† a predetermined level of discriminatory power is achieved,

† a cut-off size of the marker (number of included variables) is reached,

† maximum number of iterations has been performed,

† incremental increase of the discriminatory power is below the specified epsilon
level.

The feature selection process may be independent of the learning algorithm of the
classification system (filter model), or may be related to the learning algorithm (wrap-
per and embedded models). The latter tends to provide more accurate classification
systems as the selected subset of features is usually better suited to the predetermined
classification algorithm (Liu and Yu 2005).

After the feature selection process ends, we are presented with one or more
potential biomarkers (some algorithms report all the best subsets identified for each
considered cardinality). Generally, large biomarkers tend to overfit the training data
(they perfectly, or near perfectly, classify the training samples but perform poorly
in classifying novel data). On the other hand, too small subsets may not have
enough discriminatory power at all (and would perform poorly on both training and
novel cases). The biomarker and model selection should be based on a compromise
between the model’s overfitting and generalization (the ability to properly classify
new samples from the targeted populations). In other words, the model should be
selected in such a way that it is “not so simple that it cannot explain the differences
between the categories, yet not so complex as to give poor classification of novel
patterns” (Duda et al. 2001).
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Preferable Size of a Biomarker

Truly multivariate biomarkers should preferably consist of no more than ten
variables. If differentiated classes are known to be heterogeneous, more vari-
ables may be necessary to construct a biomarker (assuming that an efficient
biomarker can be identified in spite of the heterogeneity). In any case, if the
resulting biomarker includes more than 20 variables, quality of the training
data set, homogeneity of the classes (or reasonable heterogeneity), exper-
imental design, and assumptions of the study need to be re-evaluated. As a
rule of thumb, a red flag should be raised if a study reports a multivariate
biomarker with more than 30 variables; most likely there are problems
with the approaches applied.

The search for a multivariate biomarker can be seen as an optimization problem
in a high-dimensional space. The selected biomarker may be associated with a local
maximum (or optimum) in this space. A local maximum that is also the global
one may seem preferable, though due to the mentioned curse of dimensionality we
have no tractable method of verification. We can, however, check whether we are
not trapped in a particularly inefficient local maximum by performing multiple
repetitions of the feature selection process using subsamples of the training set and
eventually with additional randomness introduced into the process itself. Another
face of the curse of dimensionality is the sparsity of data points in a high-dimensional
space. This means that good separation of the classes may be found even for the data
that is simply random noise (especially for the data with a small number of samples).
Therefore multiple searches and analysis of their results may be necessary for identi-
fication of a potentially stable biomarker. Furthermore, it is extremely important to
properly validate the biomarker, preferably on an independent test data set.

3.1.3 Classification Systems

A classification system, or classifier, is the result of applying a machine learning algo-
rithm to identify the relationship between patterns of variables and classes represented
in the training data set. The classes correspond to populations we want to differentiate.
Parameters of the classifier are learned from the training data, but the goal is to design
a generalizable classifier—one capable of accurate prediction of class membership
for new data points.

The following methods are among commonly used learning algorithms:

† Discriminant Analysis,

† Support Vector Machines,

† Random Forests and other tree-based classifiers,

† k-Nearest Neighbors,

† Artificial Neural Networks.

Some of them are classical, well-established methods (like Fisher’s Linear
Discriminant Analysis) and some represent the newest and promising trends (like
Random Forests or other ensemble-based classifiers). Some of the classical methods,
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especially discriminant analysis (LDA—linear, or QDA—quadratic) have a very good
record of accomplishment. Hastie et al. describe this as follows: “Both LDA and
QDA perform well on an amazingly large and diverse set of classification tasks.”
They recommend that discriminant analysis should always be available in spite of
“whatever exotic tools are the rage of the day” (Hastie et al. 2009). We need to
realize, however, that feature selection is usually more important than the selection
of classification algorithm. This is especially true for training sets with thousands
of variables and much fewer biological samples. Once a good quality (and hopefully
parsimonious) biomarker is identified, many classification methods may yield simi-
larly good classification results.

Later in this chapter, three learning algorithms will be described in detail—
linear discriminant analysis, support vector machines and random forests. Linear dis-
criminant analysis represents classical parametric methods that should be in the port-
folio of any data miner and bioinformatician. Support vector machines are newer
but already well-established nonparametric methods for designing both linear and
nonlinear classifiers. Random forests represent recent ensemble-based approaches.
In addition, two other learning algorithms will be described—k-nearest neighbors
and artificial neural networks, useful in some situations, even if they are usually not
our first choice in biomarker discovery.

3.1.3.1 Parametric and Nonparametric Learning Algorithms

Learning algorithms may be parametric or nonparametric. Parametric methods make
some assumptions about the distribution of variables in the differentiated populations,
about relations between some parameters of the populations, about independence of
biological samples, etc. For example, the assumptions under which the linear
discriminant analysis is performed include independence, multivariate normality,
and equality of class covariance matrices. Nonparametric methods make no such
assumptions. Random forests and other decision-tree-based algorithms are examples
of nonparametric methods. As usual, there are advantages and disadvantages associ-
ated with either approach. Good performance of linear discriminant analysis may be
due to the fact that the data often can only support simple boundaries between classes
(linear decision boundaries that are the result of the equal covariance matrices assump-
tion) or the fact that the estimates based on the normality assumption are stable (Hastie
et al. 2009). On the other hand, some ensemble classifiers—such as random forests—
can get away with sampling from the training set with replacement because they
make no assumptions about independence of biological samples or about the form
of underlying distributions. This may result in a relatively large pool of out-of-bag
samples whose classification yields a good estimation of the classifier generalization
(see Section 3.5 on random forests and 3.6 on ensemble classifiers).

3.1.3.2 Terms Associated with Common Assumptions Underlying
Parametric Learning Algorithms

Multivariate Normal Distribution
Measurable biological variables are often normally distributed. As they can be con-
sidered the sum of many independent random effects, the central limit theorem
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leads to their normal distribution (Anderson 2003). The probability density function
of the univariate normal distribution with the population mean m and standard
deviation s is

f (x) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps 2
p e�

1
2

x�m
s

� �2
(3:1)

Multivariate and parametric learning algorithms often require the assumption that
the p variables selected for consideration follow a multivariate normal distribution.
This assumption is based on the direct generalization of the central limit theorem to
multidimensional inputs (Morrison 2005). The multivariate normal distribution of p
variables ( p � 2) has the following density function

f (x) ¼ 1
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where

† x is a vector of values of p variables xk, k ¼ 1, . . . , p representing a biological
sample,
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† S is a p � p variance–covariance matrix,
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whose diagonal elements skk ¼ s 2
k represent the variances of the variables xk

whereas the off-diagonal elements skl are the covariances between variables
xk and xl, k= l and k, l ¼ 1, . . . , p. Since skl ¼ slk for any k, l ¼ 1, . . . , p, the
matrix S is always symmetric (Srivastava 2002),

† jSj denotes determinant of the matrix S,

† S21 is the inverse of matrix S,

† (x2 m)T denotes the transpose of x2 m,

† m is the p-dimensional vector of mean values of the p variables in the population,

m ¼

m1
m2

..

.
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2
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7775: (3:5)
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Note that

x� m

s

� �2
¼ (x� m)(s 2)�1(x� m) (3:6)

in the exponent of (3.1) represents the squared distance between x and m measured in
standard deviation units. In (3.2), the term

(x� m)TS�1(x� m) (3:7)

represents analogical distance between vectors x and m in the p-dimensional space
(Johnson and Wichern 2007). As probabilities in the univariate case are represented
by areas under the univariate normal density curve, probabilities in the multivariate
case are represented by volumes under the surface defined by (3.2) (see Fig. 3.3).
The assumption of multivariate normality means that:

† each of the p variables is normally distributed,

† all linear combinations of the variables are normally distributed,

† contours of constant density for the multivariate normal distribution are
ellipsoids.

With thousands of variables in a typical gene expression data set, it would be
quite impractical to test for the normality of all their combinations. There are multi-
variate normality tests described in the literature (see for example Mardia 1970;
Cox and Small 1978; Smith and Jain 1988; Srivastava 2002; Szekely and Rizzo
2005). One of better known tests uses Mardia’s statistic (Mardia 1970) based on
multivariate measures of skewness and kurtosis. However, “it has proved difficult to
construct a ‘good’ overall test of joint normality in more than two dimensions because
of the large number of things that can go wrong” (Johnson andWichern 2007). This is

Figure 3.3: Bivariate ( p ¼ 2) normal density function—the simplest example of the multi-
variate normal distribution.
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especially true for data sets with thousands of variables. Common approaches are then
limited to some of the following:

† testing for the univariate normality of each variable,

† testing for the bivariate normality of a few pairs of variables (elliptical scatter
plots are expected),

† testing for gross outliers,

† preprocessing and/or transforming the data in a way that should increase
chances for multivariate normality.

One may ask, “What are advantages of making the multivariate normality assumption
if we cannot test it in practice?” And additionally, “What is the value of a statistical
procedure when the data may violate its assumption(s)?” To answer these questions,
let us indicate the following:

(i) Multivariate methods based on normal distribution allow for exact mathe-
matical solutions, usually based on standard linear algebra operations. As a
result of this, many test statistics have a known distribution or one that can
be approximated by a known distribution (Anderson 2003).

(ii) Most of these methods are relatively robust to violations of the normality
assumption (unless departures from the multivariate normality are extensive
and severe).

(iii) For gene expression data sets with a reasonable number of biological samples
per class, univariate and bivariate normality tests are usually sufficient for
unraveling serious violations of multivariate normality.

The univariate normal distribution of each variable is the necessary, but not
satisfactory, condition of multivariate normality. However, normality of all p variables
increases the likelihood of their multivariate normal distribution (Tabachnick and
Fidell 2007). Screening for univariate normality may involve statistical or graphical
methods. For example, skewness and kurtosis measures, reported by statistical
packages, near zero indicate normally distributed variables.6 Skewness measures
the symmetry, or the lack thereof, of a distribution. A variable is skewed when its
mean value is not in the center of the distribution. Negative skewness means that
the left tail of the density function is more pronounced than the right tail (and the
reverse is true for positive skewness). Kurtosis measures the degree of peakedness
of a distribution. Positive kurtosis corresponds to a distribution with a high peak,
and negative kurtosis to a flat-topped one. Among the graphical methods commonly
used to assess univariate normality are normal probability and quantile–quantile
plots. They rank order values of the variable and plot the observed scores against
expected scores calculated from the normal distribution. For normally distributed
variables, all the points of the plot are close to the diagonal straight line between
(0, 0) and (1, 1).

6Statistical packages report excess kurtosis, which equals to proper kurtosis minus 3. Proper kurtosis
(defined as the normalized fourth central moment of a distribution) is equal to 3 for a normal distribution.
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Linearity
The linearity assumption means that the relationship between two variables can be
approximated by a straight line. Many multivariate methods make this assumption.
These are often algorithms that utilize the Pearson correlation in their statistical analy-
sis. The Pearson correlation coefficient r assesses the strength and direction of the
linear relationship between two variables. As such, r is incapable of capturing the non-
linear element of a relationship. Bivariate scatterplots can be used to test for a linear
relationship. When both variables are normally distributed and linearly related, the
scatterplots are ellipsoidal. This assessment is, however, unreliable for data sets
with small number of biological samples, and impractical for large number of vari-
ables (Tabachnick and Fidell 2007).

Homoscedasticity
In the case of multivariate differentiation of J classes, homoscedasticity means
homogeneity of the J variance–covariance matrices Sj, j ¼ 1, . . . , J,

S1 ¼ S2 ¼ 
 
 
 ¼ SJ : (3:8)

This implies that the variances s 2
k of p variables xk as well as the covariances skl for all

possible pairs of variables xk and xl, where k, l ¼ 1, . . . , p, k= l, are equal across the
J classes. Box’sM test (Morrison 2005) or Bartlett’s test (Tabachnick and Fidell 2007)
may be used to screen for violations of the homogeneity of variance–covariance
matrices. With a small number of biological samples, it may be preferable to perform
Box’s M test using a higher than conventional alpha level, for example a ¼ 0.10
(Warner 2008).

Multicollinearity and Singularity
Multicollinearity and singularity refer to the degree of variable redundancy.
Multicollinearity exists when two or more variables are highly correlated, and singu-
larity when the variables are totally redundant. With singularity, correlation or
variance–covariance matrices cannot be inverted; with multicollinearity, results of
the matrix inversion are unstable. Many software packages screen for singularity
and multicollinearity by calculating the squared multiple correlation R2 between
each individual variable and all other variables taken together. The R2 coefficient
can be interpreted as the proportion of total variation in the individual variable
explained by the rest of variables.

Outliers
Some parametric learning algorithms are very sensitive to outliers. Identification of
multivariate outliers is a challenging task, especially for the data with more than
two classes. One of the methods of screening for multivariate outliers is to calculate
Mahalanobis distance (3.37) between each biological sample in the training data set
and the centroid of the sample’s class. A test statistic with a x2 distribution can be
used to determine the probability of the sample being a typical member of the class
(Huberty and Olejnik 2006).

3.1.3.3 Visualization of Classification Results

Well-implemented classification models should include visualization of the discrimi-
natory space and classification results. A model based on a multivariate biomarker of
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m variables may perform classification in the m-dimensional space defined by the
selected variables. For m . 3, direct visualization of classification results is not
possible, and we need to apply some dimension reduction techniques. For example,
in linear discriminant analysis, the m-dimensional hyperspace can be transformed to
a space with J2 1 dimensions, where J is the number of differentiated classes. This
means that for experiments comparing simultaneously less than five classes, the entire
discriminatory information can be graphically presented in three or fewer dimensions.

3.1.4 Validation of the Classification Model

The search for the optimal biomarker and design of a classifier cannot be deemed com-
plete until we estimate the prediction error of the classification model. The main
utilitarian goal of biomarker discovery is a generalizable classification model—
one that would have a low misclassification error rate when applied to new samples
from the discriminated populations. We will discuss the following validation and
cross-validation methods used in data mining, although not all of them are recom-
mended for studies based on typical gene expression data.

† Reclassification

† Leave-One-Out cross-validation

† K-Fold cross-validation

† Holdout method of validation

† Validation based on classification of out-of-bag samples

† Validation on an independent test data set.

3.1.4.1 Reclassification

Reclassification means estimating the misclassification error rate of a classifier by clas-
sifying the very samples that were used to train the classifier. Although there are indi-
cations that for data mining projects based on training sets with largeN/p ratios (where
N is the number of cases and p the number of variables), reclassification may yield
quite reliable results (Huberty and Olejnik 2006), reclassification should never be
used with typical gene expression data sets that have relatively small numbers of
biological samples and large numbers of variables.

3.1.4.2 Leave-One-Out and K-Fold Cross-Validation

The Leave-One-Out andK-Fold schemas are classical cross-validation methods utiliz-
ing the training data to estimate predictive ability of the classification model. In fact,
the Leave-One-Out method is a special case of K-Fold cross-validation, but usually
they are performed and reported independently.

Leave-One-Out Cross-Validation
The Leave-One-Out cross-validation method (also known as jackknifed classification)
sets aside one sample from the training data set ofN samples and builds a classification
model based on the remaining N 2 1 samples. The singled-out sample is then classi-
fied by this new model. This process is repeated N times, each time a different sample
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is taken out. This way each sample is classified by a model trained without this sample.
The Leave-One-Out classification efficiency of the model is usually reported as the
proportion of correctly classified samples.

K-Fold Cross-Validation
The K-Fold cross-validation method randomly divides the training set into K non-
overlapping subsets of approximately equal size. A classification model is trained
on K 2 1 subsets and then used to classify samples from the remaining subset. This
process is repeated K times, so each sample is classified by a model built without
this sample. Commonly used values of K are 5 or 10. When K ¼ N, we have the
Leave-One-Out cross-validation.

3.1.4.3 External and Internal Cross-Validation

The Leave-One-Out and K-Fold schemas can be implemented as an external or
internal cross-validation (Ambroise and McLachlan 2002). The difference is illus-
trated below.

† Internal cross-validation deals with a single biomarker identified from the
entire training data set. After the feature selection process gives us an optimal
biomarker, we split the training set by applying either the Leave-One-Out or
K-Fold schema. We then build a number of classifiers (N for Leave-One-Out
or K for K-Fold); each of them is trained on a current subset of training samples
and then used to classify the remaining samples. However, each classifier uses
the same set of variables—the optimal biomarker already having been identified
from the entire training data set.

† For external cross-validation, we use the schemas independently of the main
feature selection process. This can be done either before or after our optimal
biomarker is identified. As with the internal cross-validation, we are splitting
the training set, but now we use each of the N or K training subsets to perform
independent feature selection, and identify a biomarker for each of them. Then
we use each biomarker to build a classification system and classify the samples
not included in the training subset used for the biomarker identification.

In internal cross-validation, each of theN orK classifiers is built from a subset of
variables identified using the entire training data set. Therefore the left-out samples
classified at the cross-validation step cannot be treated as an independent test set.
In external cross-validation, the left-out samples are never “seen” either by each of
N or K feature selection processes or by the resulting classifiers. Thus they can
much better emulate an independent test set.

In business data mining, where we deal with small numbers of variables and
huge numbers of cases, p	 N, there may be plausible arguments for using either
of these approaches. However, internal cross-validation should not be used for
gene expression data sets with large numbers of variables and relatively small num-
bers of biological samples ( p� N ). For such data, there could be many subsets of
variables that yield excellent internal cross-validation results (zero or near zero mis-
classification error rates) but at the same time overfit the training data and be of

112 CHAPTER 3 BIOMARKER DISCOVERY AND CLASSIFICATION



little use in the classification of new samples. We have to be vigilant when reading
publications or software documentations; the term cross-validation is quite often
used without clear indication as to whether it refers to external or internal cross-
validation. If the feature selection step is not performed independently for each of
the N or K training subsets, we should not assign a lot of weight to the reported results
and should treat them as overly optimistic. In the p� N situations, the internal cross-
validation may report very low (or even zero) misclassification error rates even for the
data that are random noise.

3.1.4.4 Holdout Method of Validation

If an independent test data set is not available, we may withhold from the analysis a
number of randomly selected samples, train the model on the remaining data, and
use the withheld data as a test set to validate the classification model. This approach
(or a similar one where the data is split into three parts—training, test, and validation
sets) is known as the holdout method and is popular and very useful in data mining
domains generating data sets with a large number of cases and a small number of
variables. When applied to typical gene expression data, this approach has, however,
the following disadvantages (Theodoridis and Koutroumbas 2006; Huberty and
Olejnik 2006).

† A basic requirement of the holdout method is the large number of biological
samples in each class.

† Our training set would be smaller and—unless we have a very large number of
samples—the quality of the identified biomarker and classification model would
be worse than when developed from the whole training set.

† The model that is validated is not the one that would be used in practice, that is,
the one based on the entire training set.

† A decision on the size of the withheld test set is problematic: if the test set is
relatively large, the estimation of the classification error will be better, but the
model itself is likely to be poor; selecting a small test set will result in a
better quality model, but the estimation of its generalization will be highly
variable.

Furthermore, such a holdout test set—even if not used in the biomarker discovery
process before the validation step—is not as independent as test data generated in a
different lab, a different institution, and maybe a different country.

3.1.4.5 Ensemble-Based Validation (Using Out-of-Bag Samples)

One of the recent trends in model validation is to utilize ensemble classifiers. Even if
we are not interested in the practical use of an ensemble classifier (for it usually does
not implement a parsimonious biomarker, which is one of the main goals and require-
ments of biomarker discovery), we may use its out-of-bag samples for validation pur-
poses. Consider, for example, a study based on a relatively small training data set, say,
a couple of dozen biological samples per class. As this training set is too small for the
holdout method of validation, we utilize the entire training set to perform biomarker
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discovery. Assume that we identified a promising biomarker and used it to build a
classification model. How can we validate that model if we do not have an independent
test data set? We can sample the training set to create a number of derivative training
sets. Depending on the learning algorithm we use, the sampling may be with or with-
out replacement. Assume for simplicity that we use a nonparametric learning algo-
rithm and sample with replacement. Applying the bagging (bootstrap aggregating)
approach, we generate many bootstrap training sets and use them to build an ensemble
of classifiers. Please note that, like in external cross-validation, feature selection has
to be performed independently for each of the bootstrap training sets. Each of these
training sets leaves out a number of samples that are not used during feature selection
and training a classifier. These out-of-bag samples can be used to estimate the mis-
classification error rate of a particular classifier. Although sets of variables used by
the ensemble’s classifiers are most likely different from our biomarker, averaging
the out-of-bag misclassification error rate of all ensemble classifiers can serve as a
reasonable estimate of the predictive ability of our original classifier. Even as such
estimate is only an indirect indication of the generalization ability of our optimal
biomarker (built from the entire training data set), it may often be the best estimate
we can get for a typical gene expression study when we do not have an independent
test set. For more information on bagging and ensemble classifiers, see Sections 3.5
and 3.6. Please note that ensembles of classifiers built on randomized or perturbed
versions of training data may be used beyond validation. In Chapter 4, a method
utilizing the distribution of genes among a large number of classifiers for optimization
of the biomarker discovery process will be presented.

3.1.4.6 Validation on an Independent Data Set

We should remember that the ultimate estimation of the model generalization (its pre-
dictive ability for the correct assignment of new samples from the populations targeted
by the classification model) is its validation on a possibly large and independent test
data set. We should always try to find an independent data set to validate our final
multivariate biomarker. If such a set is not available, we recommend using the
ensemble-based validation (and eventually the external K-Fold cross-validation if,
for whatever reason, the ensemble-based validation cannot be performed).

3.1.5 Reporting Validation Results

To report the estimated efficiency of the classification system we may calculate its
accuracy as the proportion of test samples that are classified correctly into their true
classes. Subtracting this proportion from one will result in the misclassification rate.
However, these measures are sufficient only when the differentiated classes are of
similar size (a priori probabilities are similar) and when the gravity of misclassifi-
cation is similar for each class. Consider a simple situation when we differentiate
two subtypes of a disease D, denoting the subtypes d1 and d2. If only one percent
of the population of patients with the disease D suffer from the subtype d2, then a
dummy “classifier” that is always assigning patients to class d1 will have the accuracy
of 0.99, or 99 percent (and a misclassification error rate of 0.01, or 1 percent).
However, such a classification system will misclassify 100 percent of the subtype
d2 patients. Proper evaluation of the classifier would have to take into account the
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costs of different kinds of misclassifications. To present validation results in a more
informative way, more detailed measures of the estimated classification efficiency
are often reported. They are usually based on the presentation of the validation results
in the form of a contingency table, or confusion matrix. Cells of the confusion matrix
represent combinations of the predicted and actual classes. Each of them can be associ-
ated with the cost or benefit of making that particular decision, which allows for
the estimation of the overall loss (Hand et al. 2001) or for selection of the optimal
model (Larose 2006).

3.1.5.1 Binary Classifiers

Let us consider first the simplest, but quite frequent, situation of differentiating only
two classes. Outcomes of such a binary classification may be (more or less arbitrarily)
labeled as positive or negative. For instance, if we differentiate the disease class versus
the nondisease class, each classified patient will be diagnosed as either disease-
positive or disease-negative (assuming that the classes are mutually exclusive and
no other outcomes are possible). Validation results can be presented in the 2 � 2
confusion matrix (see Table 3.2),

where

True Positive (TP)—the number of positive test cases that are correctly classi-
fied as positive (also known as hits).

True Negative (TN)—the number of negative test cases that are correctly classi-
fied as negative (correct rejections).

False Positive (FP)—the number of negative test cases that are incorrectly
classified as positive (false alarms).

False Negative (FN)—the number of positive test cases that are incorrectly
classified as negative (misses).

Denote the number of positive cases in the test data set as P ¼ TP þ FN, and
the number of negative cases in the test data set as N ¼ TN þ FP. Based on the

TABLE 3.2: Confusion Matrix for a Binary Classifier

Predicted Class

Disease
(positive)

No Disease
(negative)

True Class

Disease
(positive)

True Positive
(TP)

False Negative
(FN)

No Disease
(negative)

False Positive
(FP)

True Negative
(TN)

The rows represent true classes of the test cases. The columns represent classes
predicted for them by the classifier.
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confusion matrix, we can define the following partial measures of performance of a
binary classifier:

Sensitivity—the proportion of positive test cases that are correctly classified as
positive (the probability of predicting disease when the actual class is disease;
sensitivity is also called true positive rate—TPR, or hit rate),

Sensitivity ¼ TPR ¼ TP

TPþ FN
¼ TP

P
(3:9)

Specificity—the proportion of negative test cases that are correctly classified
as negative (the probability of predicting “no disease” when the actual
class is “no disease,” specificity is also called true negative rate—TNR),

Specificity ¼ TNR ¼ TN

TN þ FP
¼ TN

N
(3:10)

False Positive Rate (FPR)—the proportion of negative test cases that are
incorrectly classified as positive,

FPR ¼ FP

FPþ TN
¼ FP

N

¼ 1� Specificity

(3:11)

False Negative Rate (FNR)—the proportion of positive test cases that are
incorrectly classified as negative,

FNR ¼ FN

FN þ TP
¼ FN

P

¼ 1� Sensitivity

(3:12)

False Discovery Rate (FDR)—the proportion of test cases classified as positive
that are false positive,

FDR ¼ FP

FPþ TP
(3:13)

Accuracy—the proportion of all test cases that are correctly classified,

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
¼ TPþ TN

Pþ N
(3:14)

Misclassification Rate—the proportion of all test cases that are incorrectly
classified,

Misclassification Rate ¼ FPþ FN

TPþ TN þ FPþ FN
¼ FPþ FN

Pþ N

¼ 1� Accuracy: (3:15)
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In addition, we can define the following two measures of predictive value of
the particular classification result:

Positive Predictive Value (PPV)—the proportion of test cases classified as
positive that are true positive (for instance, the PPV can be interpreted
as the probability of disease given that the patient was classified into the
disease-positive class),

PPV ¼ Precision ¼ TP

TPþ FP

¼ 1� FDR (3:16)

Negative Predictive Value (NPV)—the proportion of test cases classified as
negative that are true negative (for instance, 12 NPV can be interpreted
as the probability of disease given that the patient was classified into the
disease-negative class),

NPV ¼ TN

TN þ FN
: (3:17)

Let us revisit our example of the dummy classifier, which by assigning every
case to the subtype d1 had been achieving 99 percent accuracy. If we choose to
label the subtype d1 of the disease D as the negative outcome and the subtype d2 as
the positive one, the dummy classifier will have specificity of 100 percent and sensi-
tivity of 0 percent—clearly unacceptable (especially when the subtype d2 of the dis-
ease is much more dangerous than d1). Proper evaluation of a classifier should take
into account the possibly different costs of different misclassification errors. These
costs may also be incorporated into the training process, either by assigning weights
to training cases or by generating a training set with a different proportion of class
sizes (Witten and Frank 2005). Generally, we are searching for the tradeoff between
sensitivity and specificity that is most appropriate for our study. To visually assess
this tradeoff for different values of the parameters of a binary classifier, we may use
the Receiver Operator Characteristic (ROC) curve,7 which usually plots sensitivity
versus (1 – specificity). The area under the ROC curve (AUC)may be used to compare
different classification models.

3.1.5.2 Multiclass Classifiers

For multiclass classifiers, the confusion matrix is of size J � J, where J is the number
of differentiated classes (Table 3.3). The cells along the main diagonal of the con-
fusion matrix represent correct classifications, the cells off the diagonal—
misclassifications.

Assuming the following notation,

† Cij —number of test cases with the true class i that are classified into the class
j, where i, j ¼ 1, . . . , J.

7The name of the ROC method reflects its origin in signal detection theory.
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† Ni —number of test cases in class i (i.e., whose true class is i); this is the row
i total,

Ni ¼
XJ
j¼1

Cij

† Pj —number of test cases classified into class j; this is the column j total,

Pj ¼
XJ
i¼1

Cij

† N —total number of cases in the test set,

N ¼
XJ
i¼1

Ni ¼
XJ
j¼1

Pj ¼
XJ
i¼1

XJ
j¼1

Cij,

we will define sensitivity and specificity for each of the differentiated classes:

Sensitivity for the Class k—the proportion of test cases in class k that are
correctly classified into the class k, where k ¼ 1, . . . , J,

Sensitivity(k) ¼ Ckk

Nk
(3:18)

Specificity for the Class k—the proportion of test cases not in class k (i.e., whose
true class is different from k) that are classified into a non-k class,

Specificity(k) ¼ N � Pk

N � Nk
: (3:19)

TABLE 3.3: Confusion Matrix for a Multiclass Classifier

Predicted Class

Class 1 Class 2 . . . Class J

True Class

Class 1 C11 C12 . . . C1J

Class 2 C21 C22 . . . C2J

. . . . . . . . . . . . . . .

Class J CJ1 CJ2 . . . CJJ

The rows of the confusion matrix represent true classes. The columns represent the
predicted classes.
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We can also calculate the overall accuracy and misclassification rate of the multiclass
classifier:

Accuracy ¼
XJ

k¼1Ckk

N
, (3:20)

Misclassification Rate ¼ 1� Accuracy: (3:21)

3.1.6 Identifying Biological Processes Underlying
the Class Differentiation

There are many possible approaches to this task. The most common one (though with
arguably inferior ability to perform the task), frequently reported in the literature is
based on an ordered univariate list of features cut by either some statistical significance
level (hopefully adjusted for the number of variables) or including just some number
of features from the top of the list. When it results in new biological knowledge or bio-
logically valid and verifiable conclusions, shortcomings of the process are not impor-
tant. Often, however, that is not the case. Other approaches combine several (usually
also univariate) methods generating independent lists of genes, and then look at
their overlapping set. This method has a better chance of finding some relevant
links to biological processes. Recent and most promising approaches start from the
multivariate biomarker and extend the small set of variables represented in the
marker (using either correlation-based or other multivariate methods) into a larger
informative set. After either a list of genes or the informative set of genes is identified,
available gene annotation information (such as the Gene Ontology or metabolic
pathway annotations) is used to link the class differentiation with underlying
biological processes.

3.2 FEATURE SELECTION

“The features selected matter more than the classifier used.”

—(Guyon et al. 2002)

3.2.1 Introduction

The human brain is well adapted to the processes of instant feature selection and
classification when they are related to perceptual problems, such as recognizing a
face in a crowd. From a large amount of visual information, we can efficiently
remove irrelevant and redundant information. Focusing on a few important
characteristics, we can easily and instantly recognize a face or person we know.
Unfortunately, these abilities do not extend to problems with many numerical
variables, whose visualization would require a multidimensional representation
with the number of dimensions being greater than three. Michio Kaku provides an
admirable explanation of this “accident of evolution” by pointing out that “Lions
and tigers do not lunge at us through the fourth dimension” (Kaku 1994).
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Nevertheless, a lesson from the evolution of our brain’s perceptual abilities is that for
efficient classification it is crucial to know how to select this small set of few important
features. Understanding that “less is more” (Liu and Motoda 2007b) is the essence of
feature selection.

For typical gene expression microarray data sets, the number of variables that
pass the quality control assessment is in the thousands. Simple calculations can
reveal that the exhaustive search for the best multivariate marker (the global optimum)
consisting of a few, say up to 10, genes would require inordinate amount of time.8 This
is why one may easily find examples of gene expression studies that are limited to a
univariate approach, or to multivariate analysis dealing only with a more or less arbi-
trarily selected group of genes (for example, the ones with top univariate scores). Both
approaches may seriously limit the ability to find efficient biomarkers as they leave out
genes that do not have high univariate significance, but may carry important discrimi-
natory information. Furthermore, a multivariate approach without a clear definition of
the discriminatory power of a set of genes may lead to unnecessarily large and subop-
timal markers and to overfitting.

The goal of feature selection is to find a small subset of variables9 that can
significantly separate the differentiated populations (represented by the classes of
samples in the training data set). The small size of a biomarker is very important
for its fast and cost-effective clinical validation and implementation. Therefore, we
are looking for a set with as few variables as possible and with as high discriminatory
power as possible. To find such a parsimonious biomarker, we need efficient heuristic
methods for

(i) the removal of irrelevant and redundant variables,

(ii) finding an optimal set of variables, with the optimization meaning minimizing
the size of the set and maximizing its discriminatory power.

Heuristic searches result in local optima, which may or may not lead to efficient
classifiers. However, there are indications that heuristic searches are less prone to over-
fitting than the exhaustive search, especially for data sets with a small number of
samples (Liu and Motoda 2007b). Hence, even if we had computational abilities to
find the global optimum, there might be no reason to do so.

Applying a single search method with a single starting point (for example,
the starting point for a heuristic forward search would be the variable selected into
a set first) would result in a single set of variables being deemed as optimal. This
could be a sufficiently good result for typical business data sets with many more
records than variables. For gene or protein expression data—which may have thou-
sands of variables and only dozens of biological samples—this may lead to overfitting

8For example, the exhaustive search of all subsets of 10 variables out of only 1000 variables would require
the processing of 2.6 � 1023 subsets. Assuming an optimistic processing time of only 1026 seconds per
subset, it would still take 2.6 � 1017 seconds, which is comparable to the age of the Universe.
9As mentioned before, the term feature selection can be, generally, understood as the search for a subset of
original variables or as the search for a subset of features that are combinations of the original variables.
However, for biomedical studies, the former is preferable since biomarkers consisting of original variables
have the advantage of more straightforward biological interpretation.
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and the identification of a biomarker that perfectly separates classes of training
samples but cannot be generalized to the populations represented by those samples.
Validating the biomarker on an independent test data set may yield a more realistic
estimate of its generalization. If the biomarker is positively validated, we may end
up with a good quality classification system, but if the biomarker cannot efficiently
classify independent data, we end up with nothing.

Another approach, gaining popularity, is to perform many searches with
different starting points and, eventually, with different algorithms. Sometimes, even
different versions of the training data set are used (for instance, the same raw data
can be processed with different methods at such stages as low-level preprocessing,
normalization, or noise filtering). As a result of such parallel searches, a number of
potential biomarkers (often dozens or even hundreds of them) would be identified.
There could be many possible ways of analyzing or combining these biomarkers in
order to build an efficient classification system. One could, for example, select one
of these biomarkers based on the results of its validation on an independent data
set. Such selection may indicate improved generalization, but the resulting classifier
may not necessarily provide a satisfactory level of efficient classification of unknown
samples from the researched populations. This is because of an increased risk of over-
fitting both the training and test data sets (unless we could validate each potential bio-
marker on a different test set, which would, however, be extremely unrealistic and
wasteful). Better generalization and more stable solutions can usually be achieved
when one builds an ensemble classifier. Either all or a subset of the identified bio-
markers are used to classify new samples and the classification results are based on
a voting schema. Some algorithms can achieve good generalization as well as good
classification efficiency even in the situation where individual biomarkers are rather
weak (see bagging, boosting, and random forests in Section 3.5). However, there is
a disadvantage to this approach—ensemble classifiers use many (often hundreds or
even thousands of) variables, which seriously limit their clinical applications. Our
goal of finding a parsimonious multivariate biomarker is rarely achieved with this
approach. A more promising way of utilizing the identified potential biomarkers is
to use the ensemble’s classifiers to vote for features (rather than for classes). For
instance, we may select a small set of features based on the classifiers’ performance
and the frequency of the variables used. This approach may have many flavors and
should, at least potentially, lead to better and more stable solutions. A novel method
that uses an intermediate set of genes called The Informative Set of Genes will be
introduced in Chapter 4.

3.2.2 Univariate Versus Multivariate Approaches

“A variable useless by itself can be useful together with others.”

—(Guyon and Elisseeff 2003)

The main difference between the two approaches is that the univariate approach
does not take into account the correlations and interactions between variables and
the multivariate one does. The univariate approach evaluates each variable
independently of the other variables (for instance, it takes one gene at a time and
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determines how the gene expression discriminates the researched classes) and the
result is a list of variables ordered according to some univariate measure of class sep-
aration. As such, the univariate approach is appropriate only when either the variables
are uncorrelated or we—for whatever reason—are interested in researching individual
genes in isolation from others. Neither of these situations applies to biomarker discov-
ery based on gene or protein expression data. Co-regulations and interactions among
genes (or proteins) are important and should not be neglected. Genes that are far from
the top of a univariately ordered list of genes and whose p-value (or other metric of
statistical significance) makes them univariately insignificant, may carry important
discriminatory information when their expression pattern is combined with expression
patterns of some other genes. Removing them from biomarker discovery consid-
erations may seriously limit the study’s prospects for identification of efficient
biomarkers. Furthermore, such an approach may fail to discover new biomedical
knowledge that could be extracted from the training data had the multivariate approach
been applied. Let us look at the following toy example (Fig. 3.4).

There are only two variables in the example and neither of them can significantly
separate the two classes. But their combination results in a perfect class separation.
That is easy to spot in a graphical presentation of such simple two-dimensional
data. However, when we have thousands of variables, perhaps more than two classes
to separate and a very likely possibility that a good separation may be achieved by
combining more than two variables, identification of such variable combinations
is not only a nontrivial task, but definitely one that could not be achieved by the uni-
variate approach. Another disadvantage of limiting a study to some number of genes
from the top of their univariately ranked list is that the group of selected genes may be

Figure 3.4: A data set with two classes of samples. There are only two variables. Neither
of them is univariately significant for the class discrimination. However, as a set of two variables
they can perfectly separate the classes. (See color insert.)
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redundant or even highly redundant. Consider another simple—but not unrealistic—
example. A group of 100 genes from the top of a univariate list (ordered by their
p-values representing their significance of two class discrimination) may be dominated
by two subgroups—one with genes over-expressed in one class and under-expressed
in the other, and the other with genes under-expressed and over-expressed in the
respective classes. Eachof such subgroupsmay represent about the samediscriminatory
information as a single most discriminatory gene in the subgroup, and the entire
selection of the top genes may have insufficient discriminatory power for signifi-
cant class separation. One may argue that it may happen that a univariately identi-
fied group of genes results in an efficient biomarker and a good classification system.
Yes, it may happen. Any method can be justified if the goal of a study is achieved
and the results have sound biological interpretation. It may happen that a randomly
selected single gene is all that is needed. However, what are the chances of such
an event? Taking chances is not what we recommend here for biomarker discovery
studies.

It may be a marginal note for this section, but it is worth mentioning that
correlation between two variables does not necessarily mean they cannot be selected
together to an efficient biomarker. Only perfectly correlated variables carry exactly
the same discriminatory information. Variables that are less than perfectly correlated
may share a lot of common variance, but it is still possible (and happening in practice)
that one of them is the best complement to a set of variables already including the
other, which means that it could increase discriminatory power of the set by more
than any other variable that could be added to the set. However, identification and
evaluation of such complementarity is possible only with the use of multivariate
approaches.

As stated, multivariate approaches evaluate sets of variables, take into account
interactions between variables and are capable of finding a small set of variables
with high discriminatory power (assuming such a set exists). Although properly
designed multivariate methods tend to select into a multivariate biomarker variables
that are quasi-orthogonal, neither the orthogonality nor, more generally, correlations
between variables are criteria for making selections. The primary criterion is to
increase discriminatory power of the set of variables. That is why the inclusion of
the two correlated variables described earlier is entirely possible as long as the addition
of an even more highly correlated variable maximizes the class separation ability of
the set. A multivariate biomarker consists of a set of variables, which complement
themselves in a way that maximizes their joint discriminatory power. Usually, some
of the variables in the set are univariately significant and some are not.

3.2.3 Supervised Versus Unsupervised Methods

Some studies try to overcome the curse of dimensionality by preceding biomarker
discovery with unsupervised methods in order to reduce the number of features
(with features meaning either original variables or their combinations). Generally,
this approach yields inferior results and in extreme situations may lead to the worst
possible solutions (Hand et al. 2001). The goal of supervised feature selection is to
find a subset of the variables that maximizes some criterion of class separation, for
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instance the ratio of the variation between classes to the variation within classes, or
the margin of a separating hyperplane. The goal of such unsupervised methods like
principal component analysis (PCA) is to identify linear combinations of the original
variables that explain most of the variation in the data. These goals, and the selection
criteria associated with them, are very different. Consider another toy example pre-
sented in Figure 3.5. With only two variables ( p ¼ 2), we can easily visualize the
variable space. Linear discriminant analysis10—a supervised learning algorithm—
would identify DA as the direction best separating the two classes (J ¼ 2) of samples.
DA is the direction that maximizes the ratio of the variation between classes to the
variation within classes.11 PCA finds the direction PC1. This would be the best
single dimension to project the data if we were interested in preserving most of the
variation in the data rather than in class separation. The DA and PC1 directions are
very different. If we use PCA to decrease dimensionality of the variable space,
almost all of the discriminatory information would be removed from the data
represented in the one-dimensional space of PC1.

Figure 3.5: A data set with two classes of samples. The direction of the first principal
component, PC1, is aligned with the direction of the most variation in the data. This direction
is very different from the direction of DA, which best separates the classes (and can be found
by supervised methods such as discriminant analysis). As this is a toy example with only
two dimensions, adding the second principal component, PC2, will preserve the entire variation
in the data. However, this would neither decrease the dimensionality nor identify the most
discriminatory direction. (See color insert.)

10Linear discriminant analysis is presented in Section 3.3.
11For this example, DA would also be the direction of the orientation vector orthogonal to the optimal
separating hyperplane of a support vector machine—another supervised learning algorithm, described in
Section 3.4.

124 CHAPTER 3 BIOMARKER DISCOVERY AND CLASSIFICATION



In the realm of unsupervised analysis of typical gene expression data with thou-
sands of variables there is no way to know how much, or how little, of discriminatory
information is preserved in a space defined by the first few principal components. It
is even possible that class separation can be aligned with directions of the last few prin-
cipal components (Jolliffe 2002). To be sure we are not discarding important discrimi-
natory information, we would need to use all principal components with nonzero
eigenvalues. This generally results in no dimensionality reduction. Therefore, using
PCA as a preprocessing step for biomarker discovery is not recommended.

Nevertheless, assume for a moment that we have strong indications that, for a
particular data set, the first few principal components are aligned in the directions
of good class separation. As principal components are orthogonal to each other,
using a few of them would simplify the analysis and decrease dimensionality. Or,
would it really? Remember that each of the principal components is a linear combi-
nation of all p original variables. This means that no progress would have been
made towards identification of a parsimonious biomarker consisting of a few original
(and biologically interpretable) variables.

Another approach to unsupervised preprocessing is to cluster variables by simi-
larity of their expression patterns, and then limit biomarker discovery to variables
chosen to represent the clusters (either original variables or new features representing
cluster centroids). For instance, each cluster may be represented by the variable closest
to its center. This may sound plausible, but the question is whether the clustering
results would have anything to do with differentiating the classes. Genes are selected
to a cluster on the basis of their expression similarity. Even with moderately sized
data sets (e.g., with the length of the gene expression vectors of fifty or so), it may
be hard to find many genes with near perfect or very high correlation between their
expression patterns. Therefore, clusters often include genes whose expressions have
a relatively small amount of common variance (even as small as 50 percent or less).
Whether such genes carry similar discriminatory information is anybody’s guess,
and it cannot be determined within the unsupervised approach.

Consider the following intuitive explanation. Assume we have a data set of N
samples. Assume further that this data set can be used as a training set in different
studies. The studies may be interested in the classification of very different sets of
phenotypic classes to which the N samples may be assigned. For example, one
study may differentiate between disease states represented in the data, another study
may split the N samples into classes representing different responses to radiation
and aim at predicting radiation-sensitive patients, yet another study may be interested
in differentiation between groups with different risks of relapse, and so on. What
would be the reason to assume that the clustering results are aligned with a particular
classification problem? Would expression similarities of genes within a cluster have
anything to do with the differentiation of a particular set of phenotypes? Which of
them, if any? By its very definition, unsupervised learning does not take into account
the metadata information assigning samples to phenotypic classes. Similar to pre-
processing with PCA, the problem with this clustering-based feature selection is
that we do not know how much of the important discriminatory information this
approach removes from the data. In conclusion, it is generally recommended that
the feature selection process be kept within the realm of supervised analysis.
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3.2.4 Taxonomy of Feature Selection Methods

Though the feature selection problem has been a domain of artificial intelligence
and data mining, latest technological advances in biomedical research resulting in
data sets with huge number of variables and small number of biological samples—a
challenging combination rarely encountered in typical business data mining appli-
cations—has given rise to a new wave of data mining as well as bioinformatics
publications and reviews on feature selection approaches and algorithms (Guyon
and Elisseeff 2003; Liu and Yu 2005; Guyon et al. 2006; Liu and Motoda 2007a;
Saeys et al. 2007).

Common taxonomy of feature selection methods divides them according to
several criteria:

† search models defined by the relationship (or the lack thereof) between the fea-
ture selection search and the classification algorithm (filter, wrapper, hybrid, and
embedded models),

† learning approach (supervised and unsupervised methods),

† whether interactions between variables are taken into account (univariate and
multivariate methods),

† search strategy (exhaustive, complete, sequential, random, and hybrid searches).

As explained in the previous two sections, some of these categories—univariate and
unsupervised methods—are inappropriate for biomarker discovery based on gene or
protein expression data. We will exclude them from the scope of the feature selection
term used in this book.

In addition to the above criteria, each feature selection search may be character-
ized by:

† subset evaluation criteria,

† search stopping criteria,

† methods of validation of search results.

3.2.4.1 Filters, Wrappers, Hybrid, and Embedded Models

The term filter is somewhat misleading for it implies univariate filtering, whereas
filter models can be either univariate or multivariate (Saeys et al. 2007). We will
classify the univariate models as belonging to variable filtering methods (described
in Chapter 2) rather than to variable or feature selection methods. In the context of
biomarker discovery we will consider only multivariate feature selection models.

3.2.4.1.1 Filter Models
Filter models are defined as the ones that perform feature selection independently of
any classification algorithm. Their selection is based on the intrinsic characteristics of
the training data and they evaluate each of the subsets under consideration using a
metric independent of the algorithm that will be used to build a classification
system (Fig. 3.6).
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Multivariate filter models may be further classified either as truly multivariate
or as single-variable-centered multivariate models, which take into account inter-
actions between variables only to some degree. Examples of single-variable-centered
multivariate filter models include Shrunken Centroid filters, Correlation-Based
Feature Selection and the Fast Correlation-Based Filter. Although they include
elements of the multivariate approach, the relevance of each variable is determined
univariately, by individual evaluation of the variable’s prediction ability or its corre-
lation to the class variable. Another example of a multivariate filter model is the
Markov Blanket Filter. Though multivariate by itself, it is often preceded by univariate
filtering making the combination univariately-biased. In practice, gene expression
microarray studies limited to filter models of feature selection often report biomarkers
consisting of dozens or even more than a hundred variables, which is not what we
are looking for in biomarker discovery. An example of a truly multivariate filter
model could be a heuristic sequential search, which evaluates subsets of variables
using some metric of class separation that does not suffer from a univariate bias.
It may be used independently or as the first stage of a hybrid feature selection
(described later).

Figure 3.6: Filter model of feature selection.
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Shrunken Centroid Filters The Shrunken Centroid filter method (Tibshirani
et al. 2002) starts by calculating average gene expression vectors for training samples
assigned to each class (class centroids) and for all training samples (the global cen-
troid). Elements of these vectors correspond to the average expression of a gene for
each class (gene class centroids) and for all the samples (the gene global centroid).
Class centroids are then shrunk toward the global centroid. Genes whose new class
centroids are not significantly different from their global centroid are deemed irrele-
vant and removed from the analysis. The significance of the difference is evaluated
by a t-test like statistic. The amount of shrinkage (and corresponding number of elimi-
nated genes) is determined by minimizing the K-Fold cross-validation error. Note that
filtering of genes is based on the individual evaluation of each gene. Genes retained
after shrinkage have at least one of their class centroids significantly different from
their global centroid. They are considered relevant for classification. An extension
of the shrunken centroid filter, the Uncorrelated Shrunken Centroid method has
been proposed (Yeung and Bumgarner 2003). It adds a step that evaluates the corre-
lations between the relevant genes and removes highly correlated ones. The correlation
is calculated for each pair of genes included in the set of relevant genes. If the corre-
lation coefficient is greater than some threshold value, one of the genes is removed (the
one with the smaller relative difference between its class centroids and its global cen-
troid). For this version of the shrunken centroid method, both parameters (the amount
of shrinkage and the correlation threshold) are selected by minimizing the cross-
validation error.

Correlation-Based Feature Selection (CFS) The Correlation-based Feature
Selection is based on the claim that “A good feature subset is one that contains features
highly correlated with (predictive of) the class, yet uncorrelated with (not predictive
of) each other” (Hall 1999). The CFS filter method performs a heuristic search in
the feature space. It usually starts with the empty set and at each step adds the variable
that has the highest correlation with the class but is not highly correlated with the vari-
ables already included in the set (Witten and Frank 2005). Formally, this forward
search is driven by the maximization of the “merit” criterion defined for a set X of
p features as

Merit(X) ¼ p�rcxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ p( p� 1)�rxx
p , (3:22)

where �rcx is the average value of correlations between individual features included
in the set and the class variable C, and �rxx is the average feature to feature correlation
(Hall and Smith 1999; Wang et al. 2005). To calculate the correlation between
numeric features and labels of a nominal class variable, the features may first be
discretized by splitting their ranges of values in a way that minimizes the class infor-
mation entropy of the resulting intervals (Hall 1999). Focusing on variables with
individual predictive ability, the CFS filter may miss variables that by themselves
are not highly correlated with classes but are important for discrimination as
complements to other features. Therefore, although multivariate in nature (evaluation
of a set of variables), this method has a univariate bias.
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Markov Blanket Filter (MBF) Markov Blanket Filter (Koller and Sahami
1996) is a method of eliminating redundant features from a set of features. The filtering
process may start from either the set of all features or (more often) from a set including
only features deemed as relevant, for example, ones individually correlated with the
class variable. Similar to the CFS filter, feature relevance for class prediction may
be measured by an entropy-based information gain (Xing et al. 2001; Xing 2003).
For classification problems, class labels are values of a nominal class variable C.
For each feature Xk included in a set of features X ¼ (X1, . . . , Xp), a Markov blanket
M is defined (Koller and Sahami 1996) as a subset of X such that:

† M does not include Xk,

† the class variable C is conditionally independent of the feature Xk given M,

† M includes information that the feature Xk has about C,

† M includes information that the feature Xk has about all other features.

The MBF method performs backward elimination whereby a feature for which a
Markov blanket exists within the remaining set of features is removed at each step.
When applied to the set of all features, it should remove both irrelevant and redundant
features. This sounds good intuitively. However, in practice it may be hard to find
a Markov blanket for a feature. Furthermore, usually not many features have a
Markov blanket of a limited size. Often then, a set of features highly correlated
with the feature Xk is used as a surrogate of its Markov blanket (Koller and Sahami
1996; Xing et al. 2001). The original idea for using the MBF method was as a
preprocessing step to reduce the feature space for a learning algorithm or for a
wrapper method of feature selection (Koller and Sahami 1996). A variation of MBF
is implemented in the Fast Correlation-Based Filter.

Fast Correlation-Based Filter (FCBF) The Fast Correlation-Based Filter
method (Yu and Liu 2004) defines an approximateMarkov blanket in terms of the infor-
mation gain-based correlation between two variables. Assuming the following notation,

† corr(Xk, C) – correlation between variable Xk and the class variable C,

† corr(Xk, Xl) – correlation between variables Xk and Xl, where Xk, Xl [ X, k = l,

Xk forms a single-variable approximate Markov blanket for Xl if and only if
corr(Xk, C ) � corr(Xl, C ) and corr(Xk, Xl) � corr(Xl, C ). The FCBF algorithm first
selects a subset of relevant features based on their individual correlations with
the class variable C. Then it processes the relevant features in descending order of
their correlations with C. Each feature whose correlation with C is not greater than
its correlation with the current feature is removed (i.e., the current feature forms an
approximate Markov blanket for the feature to be removed).

3.2.4.1.2 Wrapper Models
Wrapper models (John et al. 1994) use a predetermined classification algorithm to
evaluate relative usefulness of subsets of features. The process of searching for an
optimal subset is wrapped around the classifier. By incorporating classifiers into the
feature selection process (thus tailoring the selection to the classification learning
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algorithm), wrapper models tend to provide more accurate classification systems,
though they are usually more computationally expensive than filter models (Fig. 3.7).

As typical wrapper models utilize internal cross-validation for subset evaluation
(more precisely, to estimate the performance of the classifier built on the evaluated
subset of variables), they may be prone to overfitting when applied to data sets with
a large number of variables.

3.2.4.1.3 Hybrid Models
Hybrid models try to combine the advantages of filter and wrapper models (Das 2001;
Xing et al. 2001; Liu and Yu 2005). Usually, they split the process of feature selection
into two stages. At the first stage, a classifier-independent metric is used to identify the
optimal subset for each of the considered cardinalities (subset sizes). At the second
stage, the cross-validation performance of classifiers based on optimal subsets of
different sizes is used to select one of these subsets.

3.2.4.1.4 Embedded Models
Embedded feature selection models (Fig. 3.8) have some similarity to wrappers in that
the feature selection is associated with the learning algorithm. However, unlike in
wrappers, the feature selection is embedded within the learning algorithm and is a
part of the training process.

Figure 3.7: Wrapper model of feature selection.
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Embedded models can be implemented as extensions of learning algorithms.
They usually calculate a weight or some other measure of multivariate importance
for each variable in a subset. The variable with the least multivariate importance is
eliminated and the classifier rebuilt on a smaller subset. The weights are then recalcu-
lated and the process repeated until optimal classifier performance and biomarker size
is achieved. Sometimes, for computational reasons, more than one feature may be
eliminated at a time. Examples of embedded models include random forest feature
selection and Recursive Feature Elimination of Support Vector Machines (described
in Sections 3.4 and 3.5 of this chapter).

3.2.4.2 Strategy: Exhaustive, Complete, Sequential, Random, and Hybrid
Searches

An exhaustive search evaluates all possible subsets of variables and selects the
subset that is the best according to some criteria. For a data set with p variables, the
order of the search space is O(2p). This makes the exhaustive search infeasible for
data sets with a number of variables much larger than 40 (Hastie et al. 2009). A
complete search guarantees to find the best subset (according to the applied evaluation
criteria) without evaluating all possible subsets. An example of a complete search is
the branch and bound search with a monotonic criterion function (Hand et al.
2001). The complete search is more tractable than the exhaustive one, but still

Figure 3.8: Embedded model of feature selection.
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impractical for large numbers of variables. Neither of them can be used for typical
gene or protein expression data sets with thousands of variables.

Heuristic searches can efficiently deal with large numbers of variables by travers-
ing some good path through subsets of variables. Although they do not guarantee
identification of the best subset, properly designed heuristic searches are capable of
finding local optima resulting in efficient and parsimonious biomarkers. There are
indications that such local optima may constitute better solutions to the gene expres-
sion biomarker search problem as they are more stable and less prone to overfitting
than global optima (Guyon et al. 2002; Liu and Motoda 2007b). Heuristic searches
are often classified as sequential or random ones.

Heuristic sequential searches could implement a stepwise forward or a stepwise
backward selection strategy, or could combine these two strategies in a stepwise hybrid
selection that at each step considers adding as well as removing variables. Sequential
forward selection usually starts with the empty set and at each step adds one variable—
the one which, according to set evaluation criteria, is the best addition to the current
set. Sequential backward selection (called also backward elimination) starts with
the set of all p variables and at each step removes the variable with the least multi-
variate importance. Both algorithms are simple to implement as well as fast, as
the order of the search space is usually less than O( p2). Often called greedy or
hill-climbing search strategies, they result in nested subsets of variables (a subset
of m variables is included in a subset of m þ 1 variables). In some situations, optimal
subsets identified by backward elimination are better than the ones found by forward
selection (for forward selection cannot evaluate the importance of a variable in
the context of variables that are not included in the current subset). Backward
elimination cannot, however, be implemented with set evaluation criteria that
require the number of samples to be greater than the number of variables in the current
subset. Class separation metrics based on the ratio of the between class variation to
the within class variation belong to such criteria. These metrics cannot be calculated
for the set of all p variables in a typical gene expression data set. A stepwise hybrid
selection strategy may lead to the best results since at each step it considers both
adding and removing variables until the class separation cannot be further improved
for the current subset size. This strategy results in subsets that are not necessarily
nested (an optimal subset of m variables does not have to be included in an optimal
subset of m þ 1 variables). An example of this strategy is presented in the
Discriminant Analysis section of this chapter. All the sequential searches described
here can be extended to versions that consider adding (or removing) more than one
variable at a time.

Heuristic random searches may start with a randomly selected variable and
then follow the sequential stepwise forward or hybrid strategy, or they may randomly
generate a set of variables at each step. Either of these randomization approaches
may be used to avoid trapping in inefficient local optima. Adding a random starting
point to stepwise hybrid selection adds another level of hybridization to the strategy
(which already combines forward and backward selections). Another level of ran-
domization may be added when the feature selection process is performed a number
of times with bootstrap versions of the training data set. Such versions of the training
set may be created by random selections, with replacement, of N training samples

132 CHAPTER 3 BIOMARKER DISCOVERY AND CLASSIFICATION



from the original training data set. An example of this approach is described in the
Random Forests section of this chapter. A modified bagging schema that generates
bootstrap training sets by stratified random sampling of the training data set without
replacement is presented in Section 3.6.

3.2.4.3 Subset Evaluation Criteria

Each subset of variables considered during the feature selection process has to be eval-
uated by comparing it to other subsets in order to decide on the path leading to optimal
results. Depending on the search model, the criteria may be based on the character-
istics of the training data or on a measure of performance of the selected classification
algorithm. Examples of the former criteria are metrics of class separation or metrics of
information gain. The latter criteria usually depend on classifier efficiency estimations
based on a cross-validation method.

3.2.4.4 Search-Stopping Criteria

With the exception of some search procedures that may run till the search completes
(such as the exhaustive search or full backward elimination—neither of which is prac-
tical for gene expression data sets), the feature selection process needs to be stopped at
some point. Stopping criteria may be based on the size of a subset, the achieved value
of the evaluation criterion, the number of search iterations, or finding a local optimum
in the search space. For example, a search may be stopped:

† when the class separation metric reaches the predefined target value,

† when the subset size reaches the predefined maximum number of variables in
the biomarker,

† when a satisfactory level of predictive accuracy of classification is achieved,

† when subsequent subsets do not offer a better solution.

Usually, we want to achieve a compromise between competing criteria (such as
theminimal subset size and themaximal class separation) in order to avoid orminimize
the danger of overfitting. This compromise may be incorporated into the stopping cri-
teria definedby the algorithm.Alternatively, the searchprocessmay result in a sequence
of optimal biomarkers—one biomarker for each of the considered subset sizes.
The latter is preferable since, for each data set, we may decide on our optimal set of
variables by taking into consideration additional information specific to the data set
and the study. Please recall that the sequence of optimal biomarkers does not necessarily
mean nested subsets of variables. With a well designed search, the optimal subset of
m þ 1 variables does not have to include the optimal subset of m variables.

3.2.5 Feature Selection for Multiclass Discrimination

Some feature selection methods are capable of direct handling of multiclass dis-
crimination problems. Examples of such methods include those using subset evalu-
ation criteria based on the ratio of the between class variation to the within class
variation (such as linear discriminant analysis presented in Section 3.3), decision
trees, or specialized zero-norm minimization methods for multiclass Support Vector
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Machines (Weston et al. 2003). For methods that cannot directly handle multiclass
data, the problem has to be treated as several two-class problems (for instance, decom-
posing the multiclass problem into either one-versus-the-rest comparisons or into
pairwise comparisons). It may be argued that multiclass feature selection should
be less prone to overfitting since it may be less likely that a random biomarker
will provide a good separation of several classes. In practice, however, this may
hold true only in some situations, for instance when we have only a few classes
with a similar number of samples. A phenomenon often observed in multiclass
discrimination is that one or two of the classes dominate the discrimination (they
are easily separable) and render the remaining classes quite indistinguishable. A pref-
erable way of dealing with such a situation is to design a multistage classification
schema. This should be a data-driven schema. At the first stage, the highly overlapping
classes should be treated as a single class and then this class and the easily separable
classes should be discriminated. The second stage of the schema would consider only
the classes that were overlapping at the first stage. In the absence of the class or classes
originally dominating the discrimination, these overlapping classes may either be
separable now, or—if we still have more than just few classes—at least one of them
would dominate discrimination and the remaining ones that still heavily overlap
will again be treated as a single class. This scenario will be continued. At each con-
secutive stage, we will consider fewer and fewer classes until all of the remaining
classes can be significantly separated. For each of the stages, we will identify a
single optimal biomarker and then use all these optimal biomarkers to build the
multistage classification system. Each new sample will be processed through one or
more stages, until it is classified into one of the original phenotypic classes.

3.2.6 Regularization and Feature Selection

Regularization can be seen as a way of controlling the complexity of a classification
model in order to avoid (or minimize the danger of) overfitting the training data.
In situations where the model is fitted by the explicit minimization of some error, or
loss, function (that measures or estimates the discrepancy between the expected and
observed outputs from the model), regularization may be implemented by adding a
complexity penalty term to the error function. Models that are too complex will be
penalized via increased total error. With a proper balance between the error and pen-
alty terms, simpler and more generalizable classifiers can be designed. Common forms
of explicit regularization include L1 regularization (when the penalty term uses the
sum of the absolute values of model coefficients) and L2 regularization (when the
sum of squares of the coefficients is used). Both the L1 and L2 penalties control
model complexity by shrinking its coefficients towards zero. However, L1 regulari-
zation may shrink some coefficients to exactly zero. Hence, if the model coefficients
are weights associated with the variables, the L1 regularization performs feature
selection (Perkins et al. 2003; Zou and Hastie 2007).

Generally, any approach resulting in a more generalizable model can be consid-
ered a form of regularization. Hence, feature selection driven by a combined criterion
of maximizing the goodness of fit and simultaneously minimizing the number of
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variables (selected into a multivariate biomarker) plays a role of regularization (Guyon
and Elisseeff 2003).

Many learning algorithms may be seen as regularization methods. For example,
shrinking class covariance matrices of quadratic discriminant analysis towards a
common covariance matrix of linear discriminant analysis results in regularized dis-
criminant analysis (Friedman 1989; Hastie et al. 2009). In particular, when all class
covariance matrix estimates are replaced by the pooled estimate, decision boundaries
become linear, and the resulting linear classifier can be considered a maximally
regularized version of a quadratic one. Methods that further regularize linear discrimi-
nant analysis include shrinking the covariance matrix estimate towards its diagonal.
This leads to diagonal linear discriminant analysis. Note, however, that using a diag-
onal covariance matrix is equivalent to making the assumption that genes are inde-
pendent variables, which is unrealistic. For more information on linear discriminant
analysis, see Section 3.3.

Soft-margin support vector machines, described in Section 3.4.2, employ regu-
larization to find a compromise between maximizing the margin of class separation
and minimizing the number of misclassified training points. Depending on its defi-
nition, the soft-margin optimization problem can be converted into the loss þ penalty
form that implements either the L2 regularization or the L1 regularization (Zou and
Hastie 2007; Hastie et al. 2009).

Another approach to regularization is to design a classifier via exploiting infor-
mation frommanymodels built on perturbed versions of the training data (see descrip-
tions of such methods as bootstrap and bagging later in this chapter). The method
presented in Chapter 4 of optimizing feature selection by utilizing the Informative
Set of Genes and information acquired from ensembles of classifiers built with the
use of the modified bagging schema can also be considered a regularization approach
leading to generalizable and more stable classifiers.

3.2.7 Stability of Biomarkers

When feature selection is performed on different versions of the training data set or
by using different feature selection algorithms or their settings, the resulting multi-
variate biomarkers are most likely different.12 However, the differences among such
parsimonious sets of variables do not necessarily mean that the solution is unstable.
The stability of biomarkers should not be mistaken with the equality of such sets.
As long as these biomarkers consist of genes that point to a common set of biological
processes underlying class differences, they may represent a stable solution. Hence,
the stability of biomarkers can be defined in terms of the equivalence of biological
processes represented by sets of genes selected into the biomarkers. Since the identi-
fication of these biological processes is often a nontrivial task that is undertaken after
biomarker discovery, we can consider stability in terms of biomarkers consisting
of genes representing the same primary expression patterns associated with class

12This is especially true when we deal with a large number of variables and possibly complex dependencies
among them.
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differences. For more information on primary expression patterns and on the process
of optimizing feature selection to obtain stable biomarkers, see Chapter 4.

Other notions of stability may be based on the repeatability of classification
results. For example, the stability of a learning algorithm may be measured by the
degree of agreement between predictions generated by classifiers built on different
training sets selected from the same populations. The agreement may be defined as
the probability that the classifiers assign a test sample to the same class. Please note
that this does not have to be the true class of the test sample. Thus, the stability of learn-
ing algorithms has to be considered together with their accuracy (Turney 1995).

3.3 DISCRIMINANT ANALYSIS

“Both LDA and QDA perform well on amazingly large and diverse set of classifi-

cation tasks . . . It seems that whatever exotic tools are the rage of the day, we should

always have available these two simple tools.”

—(Hastie et al. 2009)

3.3.1 Introduction

Discriminant analysis (DA) for the differentiation between two classes was introduced
by British statistician and geneticist Sir Ronald A. Fisher in the 1930s, with some
earlier works related to the subject by Karl Pearson and Prasanta C. Mahalanobis. In
the 1940s, discriminant analysis was extended to multiclass differentiation by C. R.
Rao. Initially, discriminant analysis was applied to biological and medical problems,
but was later extended to other areas, such as business. Some statistical texts divide
discriminant analysis into two types—predictive DA and descriptive DA, with the
predictive DA focusing on predicting class membership and the descriptive13 DA
focusing on the interpretation of class differences (more precisely, on the interpretation
of the linear discriminant functions associated with class differences). With this dis-
tinction, methods and goals of descriptive DA are closely aligned with those of multi-
variate analysis of variance (MANOVA). This distinction of the two types of
discriminant analysis may work well for some research areas. We feel, however, that
in biomarker discovery it is best not to adhere to this distinction. Our goals in biomarker
discovery are twofold. First, to identify amultivariate biomarker that can be used to effi-
ciently predict class membership of new cases from targeted populations. Second, to
interpret the biomarker and class differentiation in a way that can elucidate biological
processes underlying class differences (it may mean either linking the biomarker with
known biological processes, or discovering new biomedical knowledge, or both).
Although it may be true that, in some situations (for instance, early diagnosis of a
specific cancer for which there is no efficient diagnostic biomarker), positive validation
of a new biomarker may be sufficient for its deployment even if we do not (yet) under-
stand the biology underlying the differentiation, we should always assume that

13The term descriptive discriminant analysis is sometimes used in a way that includes Multivariate Analysis
of Variance (MANOVA), and sometimes studies interested in group differences describe their approach as
including MANOVA along with the descriptive discriminant analysis.
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understanding how the biomarker reflects themechanisms of disease is a crucial part of
our studies.

Biomedical researchers may also be confused by different terminologies used
in the two types of discriminant analysis. For example, the meaning of independent
and dependent variables (or predictor and response variables) are reversed in these
two approaches. Without necessarily implying causality, it is natural for many bio-
marker discovery studies to treat the characteristics of biological samples (such as
the expression level of genes, proteins, or other variables representing or associated
with genes or proteins) as independent variables and the differentiated classes as
categories (or levels) of the dependent variable. It may, however, depend on whether
our study is an experimental or observational one. In the experimental study, it would
be more natural to consider variables manipulated by researchers as independent
ones. To avoid such terminological confusions and to avoid switching the meaning
of variables in the middle of a study (when, for instance, we start with MANOVA
and descriptive DA, and then follow up with predictive DA), we will try to avoid
using this taxonomy of discriminant analyses and, whenever possible, avoid describ-
ing study variables as independent and dependent.

Please recall from Section 3.1, that our use of the term sample corresponds to
a biological sample rather than to its statistical meaning. Instead of describing
variables as independent and dependent (or predictor and response), we will be
saying that each sample is represented by some (usually large) number of variables
(sample characteristics, which we want to use as a basis for classification and interpre-
tation) and that each sample is assigned to one of some number of classes (targeted
populations) we want to differentiate.

Yet another source of confusion when dealing with gene or protein expres-
sion data sets may be the ratio of samples to variables. Data miners experienced in
analysis of very large business-type data sets may be puzzled as to why they should
not assign much importance to results of the internal cross-validation methods, or
even why some well-tested and often recommended (in typical data mining
applications) approaches, such as dividing the data into training and test sets,
should be avoided. This confusion is somewhat related to the theoretical distinction
between the goals and methods of descriptive DA and predictive DA. An extension
of this distinction facilitates the distinction between feature selection driven by
group separation and feature selection driven by estimated classification accuracy.
Estimation of classification accuracy by internal cross-validation or the holdout
method can be reliable when applied to typical business problems where we may
have thousands (or even hundreds of thousands) of records and a few dozen (or few
hundred) variables. For example, practical advice from methodologists is that the
holdout method can give us a reliable estimate of the expected classification accuracy
only when the ratio of records (for the smallest class) to variables is at least five
(Huberty and Olejnik 2006). Some suggest minimum ratios of 10 or even 20.

Even when we have a relatively large biomedical data set, say, with a few hun-
dred biological samples (and if we forget for a moment about the required ratio of
records to variables), where we may be tempted to try splitting the data set into a train-
ing set and a test set (or even training, validation and test sets), we are still far from a
typical situation when mining business data. Splitting business data sets into training
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and test sets, with each of them containing a few (or even many) thousand of records,
does not compromise the quality of the classification model. Splitting our gene
expression data set will, however, most likely result in a classification model of
lesser quality than one built on the entire data set.

These are the reasons why we will not only combine both goals of discriminant
analysis (prediction and interpretation) by combining our biomarker identification
process (feature selection) with the process leading to the informative set of variables
(the set to be used to link class differences with biological phenomena), but we will
also drive both these processes by a metric of group separation. This approach is
championed by texts targeting the practical use of multivariate analysis; for example
in Tabachnick and Fidell (2007) we can read (p. 23): “If groups differ significantly
on a set of variables in MANOVA, the set of variables significantly predicts group
membership in discriminant analysis.”

Let us note, however, that the theoretical differences between the group
separation and classification accuracy criteria for feature selection disappear when
the analysis is done under the assumptions of multivariate normality, equal covariance
matrices, and equal prior probabilities (Huberty and Olejnik 2006). These assump-
tions are commonly made for practical applications of linear discriminant analysis.
For data sets with thousands of variables, an efficient way of checking some of
them is not an easy task (please refer to Section 3.1.3 of this chapter). Fortunately,
discriminant analysis is quite robust to departures from these assumptions. Usually,
then, we make the assumptions and consider what would happen to the results if
they were not met. It is also common practice to preprocess the data in a way that
will increase the chances that these assumptions are met.

The main assumptions of discriminant analysis are:

† The independence of biological samples.

† Multivariate normality. Under this assumption, each variable, as well as linear
combinations of variables, follow normal distributions. With thousands of
variables in typical gene expression data, it is impractical to test the normality
of all possible variable combinations. Thus, practical considerations are
often limited to checking on the univariate normality of the variables (this is a
necessary but not satisfactory condition for multivariate normality) or to pre-
processing the data in a way that should increase the chance of multivariate
normality. It is worth noting, however, that discriminant analysis is quite
robust to the violation of this assumption.

† Homogeneity of class covariances. This assumption results in linear dis-
criminant analysis (LDA). If class covariance matrices are not equal, we have
quadratic discriminant analysis (QDA).

† No singularities or multicollinearities. Singularity refers to completely redun-
dant variables and multicollinearity to highly correlated ones. With singularity,
covariance matrices cannot be inverted. With multicollinearity, the results of
matrix inversion are unstable.

† No extreme outliers that have a large impact on the group means and increase
variability.
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3.3.2 Learning Algorithm

Let the training data set consist of N data points (biological samples) and p variables
x1, . . . , xp (for instance, expression levels of p genes). Each of the N training data
points is assigned to one of the J classes (populations) that we want to differentiate.
Let each class j, where j ¼1, . . . , J, include nj data points, so N ¼PJ

j¼1 nj. Thus, a
training data point belonging to class j can be represented by a p-dimensional
vector x ji [<p,

x ji ¼

x1ji
x2ji

..

.

x pji

2
6664

3
7775, (3:23)

where i ¼ 1, . . . , nj is used as a separate index for biological samples from each class j.
Our gene expression matrix X (see Section 3.1.1) can be then presented in
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Let xj denote the mean vector for training data points belonging to class j,14

xj ¼ 1
nj

Xnj
i¼1

x ji (3:25)

and x the mean vector for all N training data points (overall mean),

x ¼ 1
N

XJ
j¼1

Xnj
i¼1

x ji ¼ 1
N

XJ
j¼1

njxj (3:26)

so that xj is an unbiased estimator of the population mean vector mj for class j,
j ¼ 1, . . . , J, and x is the estimator of the overall mean vectorm for all classes together.

The estimated covariance matrix15 for the class j is16

Sj ¼ 1
nj � 1

Xnj
i¼1

(x ji � xj)(x ji � xj)T : (3:27)

14Training data points belonging to class j represent a statistical sample selected from this class
(population j).
15This matrix is also called the variance–covariance matrix for its main diagonal elements are variances and
the off-diagonal elements are covariances (with covariance being the common variance shared between two
variables).
16The superscript T means transposition of a matrix, so a k � l matrix A becomes an l � k matrix AT when
transposed.
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Under the assumptions that population observations (biological samples) are inde-
pendent and normally distributed within classes (multivariate normal distribution in
the p-dimensional space of the p variables) with the common covariance matrix S,
the pooled estimate of S is

S ¼ 1
N � J

XJ
j¼1

Xnj
i¼1

(x ji � xj)(x ji � xj)T (3:28)

or

S ¼ 1
N � J

XJ
j¼1

(nj � 1)Sj : (3:29)

For better stability of results, the assumption of equal covariance matrices is
recommended for data sets with small nj to p ratios (ratios of the number of biological
samples in a class to the number of variables), even with covariance heterogeneity
(Huberty and Olejnik 2006). Gene and protein expression data sets definitely qualify
for having small values of these ratios. Hastie et al (2009) describe this stability in
terms of bias-variance tradeoff: “we can put up with the bias of a linear decision
boundary because it can be estimated with much lower variance than more exotic
alternatives.”

Let us now define the discriminatory power of a set of p variables as a metric
of class separation in the p-dimensional space of the variables. The metric can be
interpreted as the value of the test statistic measuring departure from the null hypo-
thesis H0 of the equality of the J class centroids mj, j ¼ 1, . . . , J (the p-dimensional
vectors representing the population means),

H0: m1 ¼ m2 ¼ 
 
 
 ¼ mJ

Ha: mj =mk for some j = k
(3:30)

Our preferred metric of the multivariate discriminatory power of a set of p variables
is the Lawley–Hotelling trace statistic T 2 (Lawley 1938; Hotelling 1951). There are
other statistics that could be used in this role (for instance, the Wilks L criterion, or
Roy’s maximum root test), but the T 2 trace criterion has interesting features allowing
for easy interpretation of the results.

The T 2 discriminatory power of a set of p variables is defined as

T 2 ¼ T 2(x1, . . . , xp) ¼ tr(HE�1), (3:31)

where

† H is the p � p “hypothesis” matrix describing variability between (or among)
the classes,

H ¼
XJ
j¼1

nj(x̄j � ��x)(x̄j � ��x)T (3:32)
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† E is the p � p “error” matrix describing variability within classes17,

E ¼
XJ
j¼1

Xnj
i¼1

(x ji � x̄j)(x ji � x̄j)T (3:33)

† tr(A) denotes the trace of a square matrixA, or the sum of its diagonal elements.

For the k � k matrix A, tr(A) ¼Pk
i¼1 aii.

† E21 denotes an inverse of matrix E, that is, E�1 � E ¼ I p�p, where I p�p is
the p� p identity matrix—a matrix with 1’s on the diagonal and 0’s off the
diagonal.

Maximizing the T 2 metric of discriminatory power means that the variation between
classes is maximized in relation to the variation within classes. In other words, maxi-
mal separation of classes does not necessarily mean maximal distances between
the class centroids; rather, it means minimal overlaps between the classes (Hastie
et al. 2001).

The exact distribution of T 2 is complicated (Anderson 2003; Morrison 2005)
but there are several T 2 approximations using either the x2 or the F distribution. We
can use, for example, the following F approximation of T 2 (Rencher 2002; Huberty
and Olejnik 2006):

F ¼ t(N � J � p� 1)þ 2
t2b

tr(HE�1), (3:34)

which (under the assumption that the null hypothesis is true) has an F distribution with
the following degrees of freedom for numerator (dfN) and denominator (dfD):

dfN ¼ bt, (3:35)

dfD ¼ t(N � J � p� 1)þ 2, (3:36)

where

t ¼ min ( p, J � 1),

b ¼ max ( p, J � 1):

Let us take a look at some properties of the T 2 metric (Ahrens and Läuter 1974):

† The value of the T 2 metric tells us how well a set of p variables can separate the
J classes. We always have T 2 � 0, with T 2 ¼ 0 meaning that the classes are
undistinguishable by the p variables. Increased values of T 2 correspond to
increased class separability.

17Note that S ¼ 1
N � J

E. The E matrix may be called the error sum-of-squares and cross-products matrix,

and H—the matrix for the hypothesis or the between-class sum-of-squares and cross-products matrix
(Huberty and Olejnik 2006; Meyers et al. 2006).
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† T 2 values can be used for direct comparison of discriminatory power of data sets
with different numbers of variables and different numbers of biological samples.

† T 2 metric is monotonic, which means that adding a variable to a set cannot
decrease the value of T 2,

T 2(x1) � T 2(x1, x2) � 
 
 
 � T 2(x1, . . . , x p):

† T 2 is invariant for linear and regular transformations of the p variables.

We can use the T 2 metric to measure discriminatory power of a set of p variables and
to answer the question about how well the set of p variables can separate the J
classes. However, T 2 can be calculated only when p, N – J – 1 (where N – J
is the error-term degrees of freedom). Can we then use it for the microarray gene
expression data set with, say, p ¼ 5000 probe sets, N ¼ 100 samples and J ¼ 3
classes? Definitely yes, but not with all the 5000 variables at once. As our goal is
biomarker discovery, we want to identify a small set of variables that (i) sufficiently
separates the classes, and (ii) can be used for efficient classification of new cases. We
may definitely use T 2 for the evaluation of the discriminatory power of small sets of
variables. Furthermore, we can use the T 2 metric directly in the process of selecting
the optimal multivariate biomarker for—as stated earlier—we want this process to be
driven by a metric of class separation. We will cover this feature selection method in
the next section. Here, assume that we already have an optimal multivariate bio-
marker consisting of p variables and that p is less than N – J – 1. In a real study,
after the well performed (and successful) step of feature selection, we would have
a biomarker with much fewer variables than N – J – 1 (which equals 96 for our
hypothetical study). Assume then that our optimal biomarker is a set of, say, p ¼
10 variables.

Now, we would like to build a classification system based on the multivariate
biomarker. We can use the classifier to further validate the biomarker (preferably
with a totally independent test data set) and then to classify new samples. Using
the above example, the classification of external samples can be performed in the
ten-dimensional space of the p ¼ 10 biomarker variables (probe sets). We can calcu-
late the centroid of each class, using (3.25), and classify a new sample based on some
measure of the distances between the point representing the sample and each of the J
centroids. Mahalanobis distance is often used since it takes into account correlations
between variables. Euclidean distance would be appropriate only when variables are
not correlated. Although after properly performed biomarker discovery we could
expect that the variables in a multivariate biomarker are not highly correlated (if
they were, they could be redundant and as such unlikely to be selected together
to the multivariate biomarker), they are not necessarily orthogonal or even quasi-
orthogonal. Mahalanobis distance D�j between the point x ¼ [x1, . . . , xp]T represent-
ing the sample to classify and the centroid of class j, xj, is equal to

D�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� xj)TS�1(x� xj)

q
: (3:37)
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The sample would be classified18 into the class corresponding to the smallest D�j .
A graphical presentation of the classification results is usually very important for

perception of the classification system by end users. For biomarkers with the number
of variables p . 3 neither the entire p-dimensional discriminatory space nor the full
classification results can be presented graphically. To facilitate visualization of classi-
fication models, we will decrease the dimensionality of the discriminatory space by
solving the generalized eigenproblem (Duda et al. 2001; Rencher 2002; Huberty
and Olejnik 2006; Johnson and Wichern 2007)

Hv ¼ lEv: (3:38)

This problem has t ¼ min( p, J 21) nonzero eigenvalues l1, l2, . . . , lt such that

l1 � l2 � 
 
 
 � lt: (3:39)

Associated with the t eigenvalues are t normalized eigenvectors v1, v2, . . . , vt. When
J � p, the solution to this problem allows for the transformation of the p-dimensional
space of the original biomarker into t-dimensional space having t linear discrimi-
nant functions. Because T 2 is invariant to such linear transformations and because
we use linear classifiers, the resulting t-dimensional space represents the same dis-
criminatory information as the original p-dimensional space. The t discriminant
functions are linear combinations of the p biomarker variables. For example, the
first discriminant function f1, associated with the largest eigenvalue l1 and its
p-dimensional eigenvector v1,

v1 ¼

v11

v21

..

.

v p1

2
66664

3
77775 (3:40)

is defined as

f1 ¼ v11x1 þ v21x2 þ 
 
 
 þ v p1xp

¼
Xp
l¼1

vl1xl

¼ vT1x: (3:41)

18In a more general case, when we do not make assumptions of (i) equal covariance matrices Sj, and (ii)
equal prior probabilities qj for each class, the sample would be classified to the class with the minimum
value of the following classification statistic: ln jSjj þD2

j � 2 ln qj, where Dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� xj)TS�1j (x� xj)

q
:

When the covariance matrices are assumed to be equal but the prior probabilities are not, wewould minimize
D�2j � 2 ln qj (Huberty and Olejnik 2006). The decision whether to assume equal or not equal prior

probabilities for class membership should be made on a case by case basis.

3.3 DISCRIMINANT ANALYSIS 143



It transforms any p-dimensional point x into the single dimension defined by
the f1 discriminant function (this dimension represents a feature—a new variable,
which is a linear combination of the original p variables). Elements of the vector v1
are the weights of this linear transformation associated with the original variables
x1, . . . , xp. Let us define a p � t matrix V whose columns are the t eigenvectors
v1, v2, . . . , vt associated with the t eigenvalues,

V ¼

v11 v12 
 
 
 v1t

v21 v22 
 
 
 v2t

..

. ..
. . .

. ..
.

v p1 v p2 
 
 
 v pt

2
66664

3
77775: (3:42)

The matrix V includes weights for all t linear discriminant functions f1, . . . , ft.
A sample to be classified (e.g., a patient to be diagnosed), represented by a
vector x [ <p,

x ¼

x1
x2

..

.

xp

2
6664

3
7775 (3:43)

in the p-dimensional space of p biomarker variables, can be now represented by a
vector w [ <t,

w ¼

w1

w2

..

.

wt

2
6664

3
7775 (3:44)

in the space of t features defined by the t discriminant functions where

w ¼ VTx: (3:45)

As indicated, the t features of the resultant t-dimensional space have the same dis-
criminatory power as the p original variables of our biomarker,

T 2(w1, . . . ,wt) ¼ T 2(x1, . . . , xp): (3:46)

A classification model is built in this t-dimensional space. Classes are represented by
t-dimensional hyperspheres, and classified samples by t-dimensional vectors, or
points. Since the number of differentiated classes is usually J � 4, the entire dis-
criminatory information for most classification models can be presented graphically
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in three or fewer dimensions. For rare models with more than four classes (J . 4), this
transformation orders the t dimensions according to their decreasing eigenvalues, and
the first two or three features often represent most of the discriminatory information.
For binary classification (J ¼ 2), the discriminatory space can be represented by a
single axis.

Besides the dimensionality reduction, there are other advantages of using the t
features:

† The features have unitary covariance matrix, which means they are uncorrelated
and their variance within each class is equal to 1 (which also means the
equivalence of the Mahalanobis and Euclidean distances in the space of these
features). Classes are represented by spherical (hyperspherical) areas rather
than by ellipsoidal (hyperellipsoidal) areas in the p-dimensional space of
original variables.

† The discriminatory power of each feature is equal to the eigenvalue associated
with the feature,

T 2(wk) ¼ lk for k ¼ 1, . . . , t: (3:47)

This leads to the following property of the T 2 metric of class separation:

T 2(w1, . . . ,wt) ¼
Xt
k¼1

lk: (3:48)

† As the eigenvalues are sorted in decreasing order, the discriminatory infor-
mation content of the features is also sorted in this order. In case we need further
reduction in dimensionality, the best t�-dimensional subspace, t� , t, of the
t-dimensional discriminatory space is the one including t� features correspond-
ing to the first t� eigenvalues.

To classify a new sample we may estimate the probability of its membership
in each of the J classes. Assuming that the vector w ¼ [w1, . . . ,wt]T representing
the unknown sample is the center m0 of a hypothetical class j ¼ 0, we can perform
J significance tests for j = 1, . . . , J,

H0: m0 ¼ mj

Ha: m0 =mj

(3:49)

We may use the following test statistic (Ahrens and Läuter 1974; Srivastava 2002;
Anderson 2003; Huberty and Olejnik 2006):

Fj ¼ nj
nj þ 1


 N � J � t þ 1
t(N � J)

(w� wj)
T (w� wj), (3:50)

where wj is the centroid of class j in t-dimensional discriminatory space,

wj ¼ VTxj: (3:51)
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The Fj statistic has an F distribution with t and N 2 J 2 t þ 1 degrees of freedom.
The result of each of the J tests can be interpreted in terms of the probability of
sample membership in the class j, j ¼ 1, . . . , J. When the tests are performed with a
specific significance level a (which may be adjusted for multiple testing), the
sample belongs to the class j if Fj � Fa. Direct interpretation of this approach may
result in the sample belonging to one class, to more than one class, or to none of
the discriminated classes. Alternatively, we may assign the sample to the class with
the smallest Fj value.

19

For a graphical presentation of the classification results, we may represent each
class as a t-dimensional hypersphere (more precisely, it would be a true hypersphere
only when the number of classes J is greater than four, for J ¼ 4 we would have
a three-dimensional sphere, for J ¼ 3 a circle, and for J ¼ 2 a line segment, see
Fig. 3.9). For a given significance level a, the hypersphere with the radius Rj, where

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa 
 nj þ 1

nj

 t(N � J)
N � J � t þ 1

s
, (3:52)

contains (12 a) . 100% samples belonging to the class j (Dziuda 1990).

Figure 3.9: Discriminatory space of a classification model built on an eight-gene multivariate
biomarker ( p ¼ 8). For this three-class model (J ¼ 3), the discriminatory space is
two-dimensional, t ¼ min( p, J 2 1) ¼ 2. The circles represent constant density boundaries
enclosing 95 percent of the probability for each class. Points represent samples from the training
data set. (Graphics from the MbMD data mining software.)20 (See color insert.)

19To account for unequal class prior probabilities qj, j ¼ 1, . . . , J, we would assign the classified sample to
the class with the minimum value of the following classification statistic: (w� wj)T (w� wj)� 2 ln qj
(Duda et al. 2001).
20www.MultivariateBiomarkers.com
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3.3.3 A Stepwise Hybrid Feature Selection with T 2

The goal of feature selection is to find a small subset of variables that can significantly
separate differentiated classes and that can be used to build a classifier generalizable
to populations represented by the training data. We look for a set with as few variables
as possible and with as high discriminatory power as possible. We take into account all
p0 variables of the training data set ( p0 is used here to denote the starting number of
variables, only to distinguish it from p, which is used more generally—for any
number of variables in a set).

A heuristic feature selection process can be designed as a stepwise search for a
parsimonious multivariate biomarker that maximizes the Lawley–Hotelling T 2 metric
of discriminatory power. The selection of variables into the marker may start with the
single most discriminatory variable or with a randomly selected one.21 At consecutive
steps, variables are being added or removed to maximize the discriminatory power
of a set of p variables ( p ¼ 1, 2, 3, . . .). The discriminatory power of each evaluated
set is calculated with the use of the previously defined T 2 metric of class separation. At
each step, forward selection is performed first. From the pool of remaining p0 2 p þ 1
variables the variable that best complements the current set of p2 1 variables is
selected, that is, the variable whose addition will maximize the T 2 discriminatory
power of a set of p variables. Then, for steps with p. 2, an attempt is made to find
a p 2 1 variable subset of the p variables that is more optimal than the previous
set of p2 1 variables. That is, if the elimination of any one of the p variables from
the current set results in a set of p 2 1 variables with T 2 greater than that for the
previously selected best set of p 2 1 variables, then the variable associated with the
minimal T 2 decrease is eliminated. The resulting set of p2 1 variables becomes
the current selection. At each step, this hybrid (forward and backward) stepwise
search is iterated until there is no further gain in T 2. Each eliminated variable is
sent back to the pool of available variables, so it can still be reconsidered in subsequent
steps. The algorithm stopping criteria are defined by two adjustable parameters:
stop_T 2 and stop_p. When T 2 � stop_T 2 or p ¼ stop_ p, the selection process ends
(Table 3.4).

Although the hybrid search through the space of subsets is driven by the T 2

criterion of class separation, each T 2 value is associated with its statistical significance.
The significance is calculated in two ways. One method implements the permutation-
based generation of the experimental distribution of the T 2 metric. The other uses
an approximation of the T 2 distribution with the F distribution, and then applies a
conservative Bonferroni correction to the calculated p-value.

21A practical note on the random selection of the first variable: The random selection of any of the p0 original
variables may sound plausible. However, if the selected variable’s individual T 2 discriminatory power is
particularly small, the best univariate variable is often selected as the second. Then, the starting-point vari-
able may be quickly eliminated and the resulting set may be identical (or very similar) to one starting with the
best univariate variable. To avoid this phenomenon, we may restrict our random selection of the first variable
to variables that have their individual T 2 above some level. For example, the stepwise hybrid feature selec-
tion algorithm implemented in the MbMD data mining software uses a randMax parameter limiting the
random selection to the first randMax variables sorted in descending order of their individual T 2 measures
(the default value of randMax is equal to 1000).
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TABLE 3.4: C-Style Pseudocode of the Stepwise Hybrid Feature Selection Algorithm

1 // Stepwise hybrid feature selection
2 // input: trainingData(N, p, J) training data set: p variables, N samples, J classes
3 // stop_p, stop_T2 stopping criteria
4 // randomFlag starting point flag
5 // output: currentSet an optimal subset
6 pool trainingData(N, p, J);
7 currentSet NULL;
8 poolSize = p; markerSize = 0; currentT2 = 0.0;
9 for (step = 1; markerSize < stop_p && currentT2 < stop_T2 &&
10 (markerSize < (N-J-2) k (N-J-2) == 0) && markerSize < p;
11 step++ ) f
12 maxGain = 0.0;
13 markerSize++;
14 if (markerSize == 1 && randomFlag) f
15 selectedVar = selectRandomVar(pool); // random first variable
16 maxGain = calculateT2(selectedVar);
17 g else f
18 // Forward selection: add the variable that maximizes T2 of this step.
19 for (i=1; i<=poolSize; i++) f
20 deltaT2 = calculateT2( currentSet + poolVar (i)) - currentT2;
21 if (deltaT2 >= maxGain) f
22 maxGain = deltaT2;
23 selectedVar = poolVar(i);
24 g
25 g
26 g
27 currentT2 += maxGain;
28 poolToMarker(selectedVar); // move selected variable from pool to currentSet
29 poolSize– –;
30 pEmpirical = bootstrap(currentT2); // Bootstrap estimate of the T2 p-value
31 pF = pValueF(currentT2); // p-value from F distribution (w/Bonferroni)
32 // Calculate multivariate significance of the added variable
33 member_F = memberSignificance(currentSet, selectedVar);
34 // Backward optimization: if elimination of any variable results in T2 greater
35 // than that of the previous step, eliminate one that minimally decreases T2.
36 minLoss = currentT2;
37 if (markerSize > 2 ) f
38 for (i=1; i<markerSize; i++) f
39 deltaT2 = currentT2 – calculateT2( currentSet – setVar(i));
40 if (deltaT2 <= minLoss) f
41 minLoss = deltaT2;
42 removedVar = setVar(i);
43 g
44 g

(Continued)
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This heuristic search may be described as the search for an optimal biomarker,
where optimization means satisfying a combined criterion of minimal size p and maxi-
mal discriminatory power T 2. The search can be performed in a very reasonable
amount of time,22 even for data sets with a very large number of variables p0. This
search is, however, a local search and there is no guarantee that a better result
cannot be found. To decrease a chance of being trapped in a particularly inefficient
local optimum, the search may be performed more than once, each time with a
different starting point (a different variable selected as the first one). Additional optimi-
zation could include partial backward elimination of the identified biomarker and its
stepwise rebuilding to its original size.23 However, a better optimization method will
be introduced in Chapter 4. This method will optimize feature selection by utilizing
the Informative Set of Genes (identified on the basis of a sequence of alternative multi-
variate biomarkers) and information acquired from ensembles of classifiers built with
the use of the modified bagging schema (described later in this chapter).

3.4 SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) were introduced in the 1990s (Boser et al. 1992;
Vapnik 1998) as a supervised method for finding the optimal hyperplane separating
two classes (binary classification problem) in a possibly high-dimensional space.
Since then, they have become popular in the area of biomedical research.

TABLE 3.4: Continued

45 if (minLoss < maxGain) f
46 markerToPool(removedVar); // move variable from currentSet to pool
47 poolSize++; markerSize– –;
48 currentT2 –= minLoss;
49 g
50 saveSet(currentSet); // save set optimal for the current cardinality
51 g
52 g
53 return currentSet;

After the algorithm finishes, we are presented with the marker of size stop_ p or with a marker with fewer variables but
satisfactory discriminatory power of T 2 � stop_T 2. The optimal sets for all considered cardinalities are also available
for eventual selection of one of them as our optimal marker.

22The cost of the stepwise selection for a marker of p variables out of p0 variables is proportional to
p(2p0 2 p þ 1). Even under the pessimistic assumption of 1023 seconds per subset this translates into an
easily manageable amount of time for the marker selection process.
23Optimization of a biomarker should focus on limiting its size and increasing chances for its good gener-
alization. Over-optimization should be avoided as it usually results in overfitting.
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Let the training data set consist of N data points (biological samples) and p
variables (for instance, p probe sets or p m/z variables). Each training data point
can be represented by a p-dimensional vector xi [ <p, where i ¼ 1, . . . ,N,

xi ¼

x1i
x2i

..

.

x pi

2
6664

3
7775: (3:53)

The assignment of each training point xi to one of the J differentiated classes Cj, where
j ¼ 1, . . . , J, can be represented by a pair (xi , yi), where yi [ fC1, . . . ,CJg. In
the context of a two-class SVM (J ¼ 2), it is convenient to represent class labels as
yi [ fþ1, 21g. A linear boundary between the two classes is represented by a
( p2 1)-dimensional hyperplane. The optimal hyperplane is defined as a boundary
that maximizes the margin of separation between classes (i.e., maximizes the distance
between the boundary and the points that are closest to the boundary).

To illustrate this, let us look at a simple case where we only have two variables
( p ¼ 2); training points of the two classes are represented in Figure 3.10 by circles and
triangles.

3.4.1 Hard-Margin Support Vector Machines

Assume for now that the training data points are linearly separable. This means that all
the points on one side of a separating hyperplane have the same class label. However,
this can be true for an infinite number of hyperplanes. Which one of them is optimal?
The SVM learning algorithm looks for the one with the largest margin of class
separation.

Figure 3.10: A training data set with two input variables (x1, x2) and two classes; p ¼ 2, J ¼
2. The classes are linearly separable.
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A separating hyperplane (w, b) can be defined by the equation

wTxþ b ¼ 0, (3:54)

where the p-dimensional vector w is orthogonal to the hyperplane (thus determines its
orientation) and the bias term b defines the offset of the hyperplane from the origin24

(see Fig. 3.11).
For the two-dimensional space defined by variables x1 and x2, the equation can

be written as

[w1w2]
x1
x2

� �
þ b ¼ 0 (3:55)

or

w1x1 þ w2x2 þ b ¼ 0: (3:56)

For linearly separable classes where no training point xi, i ¼ 1, . . . , N lies on the
separating hyperplane, we have

wTxi þ b . 0 for the training points with the class label yi ¼ þ1, and
wTxi þ b , 0 for the training points with the class label yi ¼ 21.

w x

w

Figure 3.11: Separating hyperplane wTx þ b ¼ 0. The margin m is the functional distance
between the separating hyperplane and the training data point(s) nearest to the hyperplane.
Elements of the vector w are weights associated with the p variables. The scalar b defines
the offset of the hyperplane from the origin. Euclidean distances corresponding to m and b
are m=kwk and jbj=kwk.

24wTx is a similarity measure between the vectors w and x. It is called the inner product (other names are
scalar product or dot product) and for p-dimensional vectors is defined as wTx ¼Pp

k¼1 wkxk : The super-
script T denotes vector transposition.
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These two inequalities can be combined into

yi(wTxi þ b) . 0: (3:57)

Let us now define two types of margins: the functional margin and the geometric
one (Cristianini and Shawe-Taylor 2000). The functional margin of a training data
point xi with respect to a separating hyperplane (w, b) is equal to the value of the
function yi(wTxi þ b) at the point xi. The functional margin m of the separating hyper-
plane is the minimum functional margin for the training data set,

m ¼ min
i

yi(wTxi þ b): (3:58)

The geometric margin of a point xi is defined as the Euclidean distance of the point
from the separating hyperplane (w, b), and equals

1
kwk yi(w

Txi þ b), (3:59)

where kwk is the Euclidean norm25 of the vectorw. Therefore, the geometric margin g
of the separating hyperplane equals

g ¼ min
i

1
kwk yi(w

Txi þ b)

¼ m

kwk : (3:60)

If we move the separating hyperplane parallel to itself in the direction of one class
and then in the direction of another until it hits the nearest training point(s) of the
classes, we will define two support hyperplanes such that the functional margin of
their points is m.

As no training point has its functional margin (with respect to the separating
hyperplane) less than m, we may rewrite the inequality (3.57) as

yi(wTxi þ b) � m: (3:61)

The optimal separating hyperplane (also called the maximal margin hyperplane)
is the solution of the optimization problem that maximizes the geometric margin
(see Fig. 3.12):

maximize
w,b

m

kwk
subject to yi(wTxi þ b) � m, i ¼ 1, . . . ,N:

(3:62)

25The Euclidean norm, or L2 norm, of a p-dimensional vector w is defined as the length of the vector in the
p-dimensional space, kwk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
k¼1 w

2
k

p
. The geometric margin is then equal to the functional margin of a

normalized vector w (Cristianini and Shawe-Taylor 2000).
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It has been shown that instead of maximizing m=kwk we may minimize the
inverse kwk=m or the squared inverse kwk=mð Þ2 subject to the same constraints.
Furthermore, we may rescale the hyperplane (w, b)26 in a way that allows the set up
of an arbitrary value of the functional margin m (Cristianini and Shawe-Taylor
2000; Hastie et al. 2001; Shawe-Taylor and Cristianini 2004; Abe 2005). Therefore,
we may set the functional margin to be m ¼ 1 and state the optimization problem
(3.62) as27

minimize
w,b

kwk2

subject to yi(wTxi þ b) � 1 for all training points xi, i ¼ 1, . . . ,N:
(3:63)

This optimization problem (known as the primal optimization problem) is a
quadratic programming problem with a linear constraint that can be solved in the
primal space of w and b. The solution is the pair (w, b) that defines the optimal
separating hyperplane. The solution vectorw defines the orientation of the hyperplane
and is composed of weights assigned to each of the p variables (dimensions). The
scalar b defines the offset of the optimal hyperplane from the origin.

The dual representation of this optimization problem has some very interesting
properties that can give us a deeper understanding of the solution (Vapnik 1998). By
introducing N auxiliary nonnegative variables28 ai � 0, i ¼ 1, . . . ,N (they are the

Figure 3.12: Out of the infinite number of (hyper)planes separating the classes, the one that is
optimal is the one with the largest geometric margin g.

26If the hyperplane (w, b) is a solution to the optimization problem, then a rescaled hyperplane
(aw, ab), a [ <þ is also a solution. The rescaling will not change the classification function.
27A hyperplane with the functional margin m ¼ 1 is known as canonical hyperplane (Cristianini and
Shawe-Taylor 2000). The minimization is performed with respect to both the vector w and the scalar b
(Vapnik 2000).
28The dual variable ai may be interpreted as the importance of a training point xi in the solution of the
optimization problem (Cristianini and Shawe-Taylor 2000).
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Lagrange multipliers ai associated with the training data points xi, i ¼ 1, . . . ,N ), we
can represent our optimization problem in the dual space of these Lagrange
multipliers.

It has been shown (Vapnik 1998) that our convex optimization problem (3.63)
can be solved by finding the saddle point of the following Lagrange function
(Lagrangian):

L(w, b, a) ¼ 1
2
wTw�

XN
i¼1

ai[ yi(wTxi þ b)� 1]: (3:64)

First, we minimize the Lagrangian L(w, b, a) with respect to w and b. Solving

@L(w, b, a)
@w

¼ 0

and

@L(w, b, a)
@b

¼ 0

results in the following dual representation of the Lagrange function:

W(a) ¼
XN
i¼1

ai � 1
2

XN
i, j¼1

aiaj yi yj xTi xj: (3:65)

Now we need to maximize W(a) with respect to ai � 0 (i.e., in the nonnegative
orthant). This leads to the following dual representation of the optimization problem
(Cristianini and Shawe-Taylor 2000; Vapnik 2000; Abe 2005):

maximize W(a) ¼
XN
i¼1

ai � 1
2

XN
i, j¼1

aiaj yi yjxTi xj

subject to
XN
i¼1

yiai ¼ 0,

ai � 0, for i ¼ 1, . . . ,N:

(3:66)

Please note two important properties of this dual representation of the optimization
problem:

† The primal optimization problem (3.63) is solved with respect to p þ 1
variables: the p-dimensional vector w and the scalar b. The dual problem
(3.66) is solved with respect to only N variables: the N-dimensional Lagrange
multiplier vector a ¼ (a1, . . . ,aN)T , that is, one Lagrange multiplier ai for
each of the N training data points (Abe 2005). For typical microarray gene
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expression data sets, this is a very significant decrease in the number of optimi-
zation problem’s variables and in its processing time.

† In the dual representation, training data points appear only in the form of their
inner product xTi xj. This property of support vector machines will facilitate
the kernel trick described in Section 3.4.3.

The solution to (3.66) has to satisfy the following conditions (known as
the Karush–Kuhn–Tucker, or KKT, complementarity conditions):

ai[ yi(wTxi þ b)� 1] ¼ 0 for i ¼ 1, . . . ,N: (3:67)

It is easy to notice that:

a) ai can be positive only when yi(wTxi þ b) ¼ 1,

b) all training points, for which yi(wTxi þ b) . 1 must have ai ¼ 0.

The training data points that are on the support hyperplanes wTxi þ b ¼+1 and that
have ai . 0 are called support vectors (Fig. 3.13).

The solution vector w� can be calculated from

w� ¼
XN
i¼1

aiyixi, (3:68)

w x

w x

w x

Figure 3.13: Only the training data points that lie on one of the support hyperplanes
wTx þ b ¼+1 may have nonzero values of the Lagrange multipliers ai, ai. 0. The training
data points with nonzero ai are called support vectors.
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which means that the orientation of the optimal separating hyperplane depends only on
the support vectors—the training data points with ai . 0. This is another important
property of SVMs—the solution is sparse in the sense that support vectors are only
a small part of the training data.

Once the solution vector w� has been found, the offset b� can be calculated by
solving the KKT conditions (3.67) for any of the support vectors,29 giving

b� ¼ yi � w�Txi: (3:69)

Identification of the optimal separating hyperplane (w�, b�) allows us to classify any
unknown sample by calculating a signed distance between the vector x [ <p,

x ¼

x1

x2

..

.

xp

2
666664

3
777775 (3:70)

representing the sample, and the separating hyperplane. The classification function

f (x) ¼ sign(w�Txþ b�) (3:71)

assigns the unknown sample to class C1 if f (x) . 0 and to C2 if f (x) , 0. Points on the
separating hyperplane ( f (x) ¼ 0) cannot be classified.

Let us look at some implications of the fact that the separating hyperplane
is (usually) determined by only a very small number of training points—the support
vectors. Once the support vectors are identified, the rest of training data may be
discarded. We do not even need to use the vector w� explicitly; by rewriting the
classification function as

f (x) ¼ sign
XN
i¼1

aiyixTi xþ b�
 !

, (3:72)

we may classify unknown samples by using the support vectors directly (again, only
these vectors xi, for which ai . 0). Being dependent only on the support vectors, the
optimum hyperplane classifier is called a support vector machine (SVM).

According to Cristianini (2001), this duality is the first feature of SVMs, which
are linear classifiers that can be represented in the dual form:

f (x) ¼ sign(w�Txþ b�)

¼ sign
XN
i¼1

aiyixTi xþ b�
 !

:

29Note that yi ¼ 1
yi
. Furthermore, in practice, the optimal value of b� is usually calculated by averaging b

over the set of support vectors.

156 CHAPTER 3 BIOMARKER DISCOVERY AND CLASSIFICATION



Maximizing the margin and sparseness of the solution is often considered a way
to identify generalizable classifiers. Hastie et al. (2009) note, however, that this
depends on the data distribution. If the differentiated classes are normally distributed,
then the separating hyperplane will be defined by the noisier data on peripheries of the
classes. For such data sets, linear discriminant analysis, which is based on class cen-
troids (depending on all training points), would be a better choice.

3.4.2 Soft-Margin Support Vector Machines

Support vector machines designed under the assumption that the training data points
that are linearly separable are called hard-margin SVMs. What if the classes cannot
be linearly separated in the space of the p input variables? To solve this more
common problem, we allow for the optimal separating hyperplane classifier to mis-
classify some of the training data points. We will then try to find a solution that
would be a compromise between maximizing the margin and minimizing the cost
of misclassification.

To quantify the classification error, we introduce nonnegative slack variables
ji � 0, i ¼ 1, . . . , N, such that we have ji , 1 for the training points xi that are
correctly classified, ji ¼ 1 for the points on the optimal separating hyperplane, and
ji . 1 for the misclassified training points (Fig. 3.14).

w x

Figure 3.14: The slack variables ji are measures of the margin violations for the training data
points. Training points violating the margin may be correctly classified (like the point A). If they
are, however, on the wrong side of the separating hyperplane (like the point B), they are
misclassified and have ji . 1. The Euclidean distance corresponding to a ji equals ji=kwk.
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The optimization problem will be now formulated as30

minimize
w,b, j

kwk2 þ C
XN
i¼1

ji

subject to yi(wTxi þ b) � 1�ji for all training points xi, i ¼ 1, . . . ,N, (3:73)

where C is a regularization, or trade-off, parameter controlling overlap between the
classes (the trade-off between maximizing the margin and minimizing the number
of misclassified training points).

Similar to hard-margin SVMs, this optimization problem can be formulated
in its corresponding dual form (Cristianini and Shawe-Taylor 2000; Vapnik 2000;
Abe 2005; Hastie et al. 2009):

maximize W(a) ¼
XN
i¼1

ai � 1
2

XN
i, j¼1

aiaj yiyjxTi xj

subject to
XN
i¼1

yiai ¼ 0,

0 � ai � C, for i ¼ 1, . . . ,N:

(3:74)

Note that the only difference between this optimization problem and the hard-margin
SVMs optimization problem (3.66) is the upper bound on the ai values. However, the
Karush-Kuhn-Tucker conditions now include the following constraints:

ai[ yi(wTxi þ b)� 1þ ji] ¼ 0 for i ¼ 1, . . . ,N (3:75)

ji(ai � C) ¼ 0 for i ¼ 1, . . . ,N: (3:76)

For the solution satisfying these KKT constraints we have the following:

a) The slack variables ji can assume nonzero values only when ai ¼ C.

b) Ifai ¼ 0 then ji ¼ 0 and the training point xi is correctly classified and is outside
of the geometric margin 1=kwk of the solution.

c) The training points for which 0 , ai , C have ji ¼ 0 and yi(wTxi þ b) ¼ 1,
thus they lie on one of the two support hyperplanes wTxi þ b ¼+1 and are
support vectors of the solution. These support vectors are called unbounded
support vectors (Fig. 3.15).

d) The training points with ji . 0 violate the margin of their class and, according to
(a), they have to have ai ¼ C. They are also support vectors because they do

30Such a formulated optimization problem is known as L1 soft-margin SVM, or 1-Norm soft-margin SVM.
Another way of defining the optimization problem for soft-margin SVMs is to use squares of the slack
variables and minimize kwk2 þ C

PN
i¼1 j

2
i : Such SVMs are called L2 or 2-Norm soft-margin SVMs

(Cristianini and Shawe-Taylor 2000; Abe 2005).
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affect the solution. The training points with 0, ji , 1 are correctly classified,
and the ones with ji . 1 are misclassified. The training points with ji ¼ 1 lie on
the separating hyperplane and cannot be classified. The support vectors that
violate the margin constraint are called bounded support vectors.

The solution vector w� for a soft-margin SVM can be calculated as

w� ¼
XN
i¼1

aiyixi: (3:77)

To find the offset bwe can use (3.75) and solve it for any31 of the (unbounded) support
vectors with ji ¼ 0. We have then:

b� ¼ yi � w�Txi: (3:78)

Comparing (3.68) and (3.69) to (3.77) and (3.78) one may ask whether the solution
for the soft-margin SVM is the same as for the hard-margin one. The answer is
no.32 The vector w� (the orientation of the separating hyperplane) is defined not

w x

w x

w x

Figure 3.15: This figure represents a soft-margin SVM. The training data points with ji . 0
violate their margin. It they have ji . 1, they are on the wrong side of the separating hyperplane
and are misclassified. They all have ai ¼ C and are called bounded support vectors (since the
ai multipliers associated with them reach the upper bound value defined by C ). The support
vectors that are on the support hyperplanes are called unbounded support vectors; they have
0 , ai , C and ji ¼ 0.

31Similarly as for the hard-margin SVM, the optimal value of b� is usually calculated as the average over all
unbounded support vectors.
32Assuming the classes are not linearly separable. Otherwise, we would have no bounded support vectors
and the solution would be the same as for the hard-margin SVM.
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only by the support vectors that lie on the margin, but also by all the bounded support
vectors that violate the margin (whether they are classified correctly or misclassified).

What flexibility do we have in selecting the solution? Recall that ji can be
interpreted as the amount by which a training point xi violates its margin. Therefore,
C
P

ji quantifies the total cost of violating the margin constraints. Increasing the
value of the regularization parameter C will decrease the margin of the solution
whereas decreasing C will result in a larger margin and many more points violating
the margin.33 The cost parameter C is also the upper bound for the ai Lagrange
multipliers, that is, ai � C for i ¼ 1, . . . , N, which limits the impact of outliers.

The classification function for the soft-margin SVM has the same form as for
the hard-margin case:

f (x) ¼ sign(w�Txþ b�) (3:79)

in its primal form and

f (x) ¼ sign
XN
i¼1

ai yi xTi xþ b�
 !

(3:80)

in the dual form, which depends only on inner products of the support vectors xi and
the classified vector x.

Since the inner product xTi x can be interpreted as a similarity measure between
the vectors xi and x, the classification is performed by comparing the vector x repre-
senting an unknown sample to all the support vectors (the training points xi, for
which ai . 0).

3.4.3 Kernels

Both hard- and soft-margin SVMs can be used to design classifiers for problems where
classes can be efficiently separated (with or without training errors) by a linear bound-
ary. This, however, will not work for classes with intrinsically nonlinear boundaries.
Figure 3.16 shows a popular toy example of a training data set (with two input vari-
ables x1 and x2) for which no linear boundary in the original space (x1, x2) can
separate the classes (Bennett and Campbell 2000; Jordan 2004; Moulines 2008).

The boundary is nonlinear and such has to be the case for the discriminating
function. Or does it? Definitely so, if we limit the solution to the original (x1, x2)
space. If we, however, map the input space into another space, for example

(x1, x2)! x21,
ffiffiffi
2
p

x1x2, x
2
2

� �
, (3:81)

then the two classes may be linearly separable in this new three-dimensional space
(see Figs 3.17 and 3.18).We could then use the same SVMmethods to find the optimal
separating hyperplane in this new feature space and define a linear classifier there.

33Hence, setting C high may lead to overfitting whereas smaller values of C correspond to more regularized
solutions (Hastie et al. 2009).
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Generally, solving nonlinear problems with the use of SVMs is based on a map-
ping F from the p-dimensional input space into a usually higher, say s-dimensional
feature space, in which the classes can be linearly separable:

F: xi ¼

x1i
x2i

..

.

x pi

2
6664

3
7775 [ <p! zi ¼

z1i
z2i

..

.

zsi

2
6664

3
7775 [ <s, i ¼ 1, . . . ,N (3:82)

Figure 3.16: A data set with a nonlinear boundary between the two classes.

Φ

Figure 3.17: The general idea of mapping the space of original variables into a space of
features in order to make the classes linearly separable. This figure shows a mapping from a
two-dimensional space into a two-dimensional space. Usually, however, the space of original
variables is mapped into a higher-dimensional (even infinite-dimensional) space.
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or

F: (x1, . . . , xp)! (z1, . . . , zs): (3:83)

The greatest challenge in practical applications of SVMs is the selection of an
appropriate mapping F. For the toy example (from Fig. 3.16) with only two
variables, it is obvious that the decision boundary can be described by an ellipse.
The mapping

F: (x1, x2)! (z1, z2, z3), (3:84)

where

z1 ¼ x21; z2 ¼
ffiffiffi
2
p

x1x2; z3 ¼ x22 (3:85)

will result in a separating hyperplane in (z1, z2, z3) described by an equation of the form
wTz þ b ¼ 0. By mapping it back into the original space, we will have

wTz ¼ w1z1 þ w2z2 þ w3z3

¼ w1x
2
1 þ w2

ffiffiffi
2
p

x1x2 þ w3x
2
2, (3:86)

with

w1x
2
1 þ w2

ffiffiffi
2
p

x1x2 þ w3x
2
2 ¼ 0 (3:87)

describing an ellipse in (x1, x2).
For genomic and proteomic data sets with thousands of variables, the selection

of an appropriate mapping may be far from obvious. For such data, we usually try
linear SVMs first and use nonlinear ones only when necessary.

Φ

Figure 3.18: Mapping the data into a higher-dimensional space can make the classes linearly
separable.
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As the feature space <s has higher (and possibly infinite) dimensionality,
one may ask about the curse of dimensionality. Are we making the problem compu-
tationally much more difficult? To answer this question, let us look first at the classi-
fication function in <s,

f (x) ¼ sign(wTzþ b)

¼ sign
XN
i¼1

aiyizTi zþ b

 !
: (3:88)

Since the point zi in the feature space (a support vector in<s when ai . 0) is the image
of one of the training points xi, and z is the image of the point x to be classified
(unknown sample),

zi ¼ F(xi),

z ¼ F(x),
(3:89)

we have:

f (x) ¼ sign
XN
i¼1

aiyiF(xi)TF(x)þ b

 !
: (3:90)

Not only the classification function but also the dual optimization problem leading
to the solution can be presented in terms of the inner product of two points in the
feature space zTi z or the equivalent inner product of the mapping of the two points
in the input space F(xi)TF(x). If we now define (for the mapping F) a function K,
such that

K(xi, x) ¼ F(xi)TF(x), (3:91)

then the classification function

f (x) ¼ sign
XN
i¼1

aiyiK(xi, x)þ b

 !
(3:92)

as well as the optimization problem can be formulated in terms of the functionK(xi, x).
Since the only arguments of the function K are vectors in the input space, we can
solve the optimization problem and then perform classifications using this function,
without explicitly mapping the data.

A function returning the value of the inner product of the images of two vectors
in the input space is called a kernel. By using kernels, the SVM method can be
extended to nonlinear cases. No algorithmic changes are required, just the replacement
of the inner product with the kernel function.

Let us illustrate this using our simple example mapping the two-dimensional
space into the three-dimensional feature space (Fig. 3.18). To solve the optimization
problem and to perform classification, we need the inner product zTi z. For the
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sake of symmetry of the calculations, consider any two points zi and zj in the space
(z1, z2, z3),

zi ¼
z1i
z2i
z3i

2
4

3
5 and zj ¼

z1j
z2j
z3j

2
4

3
5: (3:93)

Their inner product is zTi zj. Using the mapping defined by (3.84) and (3.85), we have

zTi zj ¼ z1iz1j þ z2iz2j þ z3iz3j

¼ x21ix
2
1j þ 2x1ix2ix1jx2j þ x22ix

2
2j

¼ (xTi xj)
2, (3:94)

which means that by defining the kernel function as

K(xi, xj) ¼ F(xi)TF(xj) ¼ (xTi xj)
2, (3:95)

we can optimize the problem in the (z1, z2, z3) space and define the classification
function without explicitly performing the mapping.

The use of kernel to perform calculations based only on the original data,
without explicitly using the mapping F is known as the kernel trick. Thus, higher
or even infinite dimensionality of the feature space causes no computational problems.

The most commonly used kernels are:

† Polynomial kernel (of degree d ):

K(xi, xj) ¼ (xTi xj þ 1)d , d . 0, (3:96)

or its less general version

K(xi, xj) ¼ (xTi xj)
d, d . 0, (3:97)

which, with d ¼ 2, is the kernel used in our example.

† Radial basis function kernel:

K(xi, xj) ¼ exp �kxi � xjk2
s 2

� 	
: (3:98)

† Sigmoid kernel (also known as hyperbolic tangent kernel):

K(xi, xj) ¼ tanh (bxTi xj þ g): (3:99)

Note: This function is a kernel only for some combinations of parameters b
and g (e.g., for b ¼ 2 and g ¼ 1).
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3.4.4 SVMs and Multiclass Discrimination

SVMs are binary classifiers. Multiclass problems may be approached either by using
a set of binary classifiers, or by trying to extend SVMs to consider all the classes
simultaneously (Schèolkopf and Smola 2002; Lee et al. 2004). A set of binary
SVMs can be defined either by pairwise classifiers or one-versus-the-rest classifiers.
The latter approach seems to be more popular. It requires fewer classifiers, but its
separation power is lower than for the pairwise approach.

3.4.4.1 One-Versus-the-Rest Approach

For J classes, we define a set of J one-versus-the-rest binary classifiers

fj(x) ¼
XN
i¼1

aijyixTi xþ b�j , j ¼ 1, . . . , J: (3:100)

They are almost the same as the binary SVMs defined by (3.72) or (3.80);
however, they return the value rather than the sign of the expression. Using a discrete
classifier that returns just the sign of the expression could result in the assignment of
the classified sample into several classes or to none of them. By defining the continu-
ous classifiers in (3.100) we may be able to avoid such unclassifiable regions
(Abe 2005). An unknown sample x is assigned to the class j with the largest value
of the classification function fj(x). Sometimes, however, we may not want this
winner-takes-all approach to mask some ambiguity in the classification results. The
requirement that the sample x can be assigned to class j only when the value of
fj(x) exceeds the next largest value by some threshold u,

fj(x) � f j 0 (x)þ u, j, j 0 ¼ 1, . . . , J, j = j 0, (3:101)

can be added to highlight such ambiguous situations (Schèolkopf and Smola 2002).
Please note that the one-versus-the-rest design is intrinsically asymmetric due to the
unbalanced size of the classes and possibly the high heterogeneity of the classes in
the-rest class.

3.4.4.2 Pairwise Approach

In this approach one classifier is designed for each of the J
2

� � ¼ J(J�1)
2 possible pairs of

classes. Although in practice it usually does not make much sense for a study to differ-
entiate many classes simultaneously, even with a modest number (say 5, 6, or 7) of
classes we may need to construct many binary classifiers. For instance, for five classes
(J ¼ 5) we would need ten classifiers, and for seven classes—twenty one. Although
training data sets for these classifiers are smaller than for those in the one-versus-
the-rest approach (only a subset of data is used), the times required to train and then
to use all the binary classifiers for classification may be larger than for the one-
versus-the-rest approach. However, the advantage of the pairwise approach is that
the classes are more homogeneous and the design of each comparison is more
balanced than for the one-versus-the-rest approach. To classify an unknown sample,
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we need to use all of the pairwise classifiers. The sample is “voted” into the class to
which it was assigned by the largest number of classifiers. Unclassifiable regions
may still exist; Abe (2005) describes how such unclassifiable regions may be resolved.

3.4.4.3 All-Classes-Simultaneously Approach

There are also approaches that extend SVMs to directly differentiate between more
than two classes (see for example Lee et al. 2004; Abe 2005). Their optimization pro-
blems have to deal with all support vectors at the same time (Schèolkopf and
Smola 2002), but simultaneous determination of all classification functions allows
for avoiding unclassifiable regions (Abe 2005).

3.4.5 SVMs and Feature Selection: Recursive Feature
Elimination

Recursive Feature Elimination (Guyon et al. 2002) is an embedded version of the
sequential backward feature selection. The algorithm may be described as follows:

† Start with the training data set including all variables.

† Repeat the following steps until the current subset of variables is empty (or a
stopping criterion is true):
W build an optimal classifier for the current subset of variables,
W for each variable in the current subset estimate its current multivariate
importance,

W remove the feature with the least value of the multivariate importance.

The elimination process ends either when all of the features are eliminated or when a
predefined result is achieved (for instance, a combined optimum defined by the size
of the subset and its measure of discriminatory power or classification efficiency).
In either case we are presented with a sequence of nested feature subsets. The results
may have a form that looks like a ranked list of genes (with the last eliminated gene
at the top of the list and the one eliminated first at the bottom). Do not confuse, how-
ever, the ranked list form of the results with a univariate ranking of the genes. The
recursive feature elimination ranks gene subsets. Each of the identified nested feature
subsets of size m (where m may assume values from p to 1) can be retrieved from the
list by taking the top m genes from the list (assuming the process ended with the
elimination of all genes). Support Vector Machine Recursive Feature Elimination
(SVM-RFE) utilizes the fact that the optimal separating hyperplane is associated
with a vector w of feature weights wk,

w ¼

w1

w2

..

.

wp

2
6664

3
7775, (3:102)

where k ¼ 1, . . . , p and p is the number of features (variables, dimensions, genes, . . .).
A feature that is orthogonal to the vector w (with the weight wk equal to zero) does not
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contribute to classification. The elements wk of the vector w may be positive
or negative, so we may define the multivariate importance of each feature k as the
absolute value of the weight jwkj (or, for instance, as w2

k ). At each stage of recursive
feature elimination, a feature with the minimal multivariate importance jwkj may be
removed. With many thousands of variables in typical gene expression data, training
the support vector machine p times may be computationally costly. Some implemen-
tations generalize the algorithm by removing more than one feature per step. This can
be accomplished either by removing all of the features with a jwkj value below a
threshold level (which may be dynamic and change from step to step) or by removing
a predefined proportion of the current number of features. Since the current weight of
each feature is determined and meaningful only in the context of all of the features in
the current subset, removing more than one feature at a time neglects some interactions
between features and may lead to inferior results. There are, however, indications
(Guyon et al. 2002) that the results of group elimination are significantly worse
only for relatively small subsets of features. Therefore, a reasonable compromise
between accuracy and computational costs can be achieved by removing groups of
features (even up to 50 percent of them) in the first few iterations and then—once
the current subset has only a few hundred variables—switch the mode to eliminating
only one variable at a time.

Extensions and variations of SVM-RFE include such approaches as Multiple
SVM-RFE (Duan et al. 2005), Recursive SVM, R-SVM (Zhang et al. 2006), and
Multiclass SVM-RFE (Zhou and Tuck 2007).

The Multiple SVM-RFE method trains multiple SVMs on different subsets of
the training samples at each step of the recursive feature elimination. The multivariate
importance of each feature (included in the current feature subset) is based on a
statistical analysis of the weight vectors associated with each trained SVM.

The Recursive SVM feature selection (R-SVM) method differs from the SVM-
RFE method mainly in the way the multivariate importance of each gene is calculated.
Each feature’s relative contribution to classification sk is based not only on its weight
wk, but also on the projection of the distance between class centers onto the feature’s
dimension,

sk ¼ wk(c
þ
k � c�k ), (3:103)

where cþk and c�k are coordinates of the two class centers in the dimension defined
by the feature k.

3.4.6 Summary

Support vector machines (SVMs) are binary classifiers based on an optimal hyper-
plane linearly separating the classes. For classes with nonlinear boundaries in the
input space of original variables, they utilize the kernel function approach mapping
the input space into a higher-dimensional feature space in which linear separation
may be possible. The kernel trick allows for all calculations to be based on the original
training data (in its input space) without explicitly using or even knowing the mapping.
Therefore, high, or even infinite, dimensionality of the feature space does not increase
the computational cost of training classifiers and performing classification.
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The main features of SVMs are:

Maximizing the margin

The optimal hyperplane is designed in a way that maximizes the margin
between the classes (whether this is a hard-margin with no training errors,
or a soft-margin where the size of the margin is conditioned upon its viola-
tions by the training data).

Duality

The dual form of the optimization problem allows training (and then classifi-
cation) to depend only on the inner product of the vectors in the input space.
Furthermore, the dual problem is optimized in the N-dimensional space of
Lagrangemultipliers,whereN is the numberof trainingdata points. For typical
microarray gene expression data with N biological samples, p genes, and
N 	 p, this results in a significant decrease in the number of variables as com-
pared to the primal problem whose dimensionality includes all p variables.

Kernels

Kernel functions allow for the extension of linear SVMs to efficiently handle
nonlinear cases. Using the original vectors in the input space, kernel func-
tions return the inner product of their mapping into the feature space. This
facilitates virtual optimization in the high-dimensional (or even infinite-
dimensional) feature space without explicitly mapping training data into
the feature space. However, selection of a kernel appropriate for a particular
data set may be a time-consuming process.

Sparseness

The solution to the optimization problem is sparse in the sense that it depends
only on a small subset of training data—the support vectors.

Convexity

The separating hyperplane is identified by optimizing a convex function,
which means there are no local optima and the solution is unique (for a
given subset of genes).

3.5 RANDOM FORESTS

Though this be madness, yet there is method in ’t.

Shakespeare, The Tragedy of Hamlet

3.5.1 Introduction

The Random Forests learning algorithm was created by Leo Breiman (Breiman 2001).
Though related to decision trees, its utilization of a collection of tree classifiers, as well
as randomness in their design, results in better accuracy as well as better generalization
and stability of the resulting ensemble classifier. The random forests method (along
with other ensemble learning approaches) is gaining popularity in biomedical
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research. Randomness in the method is represented by bagging and random variable
selection. Before describing the random forests learning algorithm, let us take a look at
the following methods.

Bootstrap

Generally, bootstrapmethods belong to resampling techniques that are used to
generate artificial data sets to allow for better estimation of statistical
properties of a prediction system or a population. For example, to make
some inferences about the distribution of the population from which our
statistical sample (training data) was selected, wemay investigate the relation-
ship between this sample and a number of its subsamples (bootstrap samples).
The bootstrap is most often identified with Efron’s nonparametric bootstrap
in which bootstrap samples are randomly selected from the sample, with
replacement, and are of the same size as the original sample (Efron 1979;
Efron and Tibshirani 1993). Unknown population parameters may be esti-
mated by averaging estimates from all the bootstrap samples (Duda et al.
2001). The bootstrap approach can be used to estimate the misclassification
error rate of a classification system. Bootstrap training sets can be used to
build a number of classifiers, which are then used to classify samples from
the original training data set. The estimate is more realistic when each boot-
strap-based classifier is used to classify only those samples from the original
data sets that were not used to train this classifier (Hastie et al. 2001). The
random forests method uses Efron’s nonparametric bootstrap. Other versions
of bootstrap will be mentioned in Section 3.6.

Bagging

Introduced by Breiman (Breiman 1996a), bagging (bootstrap aggregating) is
a method of combining bootstrap-based classifiers in order to improve the
classification accuracy. Multiple classifiers are built from training sets
generated as bootstrap samples (with replacement) from the original training
data set. Usually, each of the classifiers implements the same classifica-
tion method (for instance, a decision tree) but being built from different train-
ing sets they differ in classification parameters. An unknown sample is
classified by all of the classifiers and assigned to the most popular class.
By averaging over training sets of the same size selected from the same
distribution, bagging is capable of improving the prediction of unstable learn-
ing methods34 by reducing the variance.

Boosting

The general idea of boosting is to combine many weak classifiers to build a
powerful ensemble classifier. Weak classifiers are ones whose accuracy is
only slightly better than random guessing. Starting with a weak classifier,
called a base classifier, the boosting method creates a sequence of classifiers

34Amethod is unstable if a small change in the training set may cause large changes in classifier’s parameters
and accuracy (Duda et al. 2001).
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trained on a modified data set. Modification to the training data may include
the assignment of different weights to training samples. At each iteration,
emphasis is given to the samples that were misclassified in the previous
step. The ensemble classifier is composed from all sequentially created
classifiers and classification is based on their weighted vote (Theodoridis
and Koutroumbas 2006; Hastie et al. 2009). Although designing classi-
fiers by concentrating on misclassified cases may seem like a recipe for
overfitting, Breiman claims that, “Boosting is a classification algorithm
that gives consistently lower error rates than bagging” (Breiman 2002a).
The most popular boosting algorithm, AdaBoost, was proposed in 1997 by
Freund and Shapire.

AdaBoost

The AdaBoost (adaptive boosting) method (Freund and Shapire 1997) trains
a set of classifiers on weighted versions of the original training data. Initially,
each of the N training samples is assigned the same weight of 1/N. At each
consecutive step, weights of the samples misclassified by the classifier
designed in the previous step are increased. Samples that were correctly
classified have their weights decreased. The weights are nonnegative and
their sum is kept constant and equal to one (Breiman 2002a). At each step,
a new training set is randomly selected, with replacement, according to the
current weights assigned to samples. Samples with higher weights have
higher probabilities of being selected (or selected multiple times). A
sequence of classifiers is built this way and each of them is tested on its
own training set to determine the classifier’s training error. The process con-
tinues for either a specified number of iterations or until a sufficiently low
training error of the ensemble classifier is achieved. An unknown sample is
classified by the ensemble classifier according toweighted voting of the com-
ponent classifiers (classifiers with lower training errors are assigned higher
vote weights). Usually, the training error of the ensemble classifier decreases
exponentially when the number of iterations (and component classifiers)
increases. Though the AdaBoost method has been successfully applied to
many real-world examples, we should remember that the decrease in training
error (based on classification of the training data) does not guarantee better
generalization, or the decrease of the classification error measured on an inde-
pendent test set (Duda et al. 2001). A special caution is due when training
data sets include a small number of samples N.

CART

The Classification And Regression Trees (CART) algorithm is a learning
algorithm belonging to decision tree methods. A decision tree is a collection
of decision nodes connected by branches. It starts with the root node and
grows downward by splitting nodes until terminal leaf nodes are reached;
more on decision trees may be found in (Duda et al. 2001; Larose 2005;
Hastie et al. 2009). The CART model, introduced in Breiman et al. (1984),
builds a binary tree with a univariate decision at each node. Generally,
decision trees can split a node into more than two branches. However,
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every multiway split can be represented by a set of binary splits, which
enables the decision on how to split each node to be treated as a one-
dimensional optimization problem (Duda et al. 2001).
The CART algorithm starts with the entire training data set and splits it at

the root node into two nonoverlapping subsets (child nodes). A splitting
criterion is a measure of class homogeneity of the samples assigned to each
of the child nodes. Decisions are based on the values of a single variable—
the variable that offers the best split (highest class purity or lowest class
impurity of the two subsets). Each child node is then split and this recursive
splitting continues until each of the final nodes (leaves) includes only samples
from one class, or when no further splitting is possible. Since a fully grown
tree may overfit the training data, the final classification tree is usually the
result of a pruning process. Pruning decreases the size of the tree in order to
minimize an estimate of the misclassification error rate and improve general-
ization. After pruning, all nodes that are not split are declared leaves. Each het-
erogeneous (impure) leaf has to be assigned to one of the classes.
One of the strengths of the CART algorithm is its ability to handle different

types of variables—qualitative, quantitative, or their mixture. However, when
dealing with numerical variables such as gene expression ones, splitting
each node on a single variable results in hyper-rectangular decision regions
defined by the cutoff values of the splitting variables (Hand et al. 2001). If
the boundaries of such regions are far from alignment with natural boundaries
between classes, the CART algorithm may result in inefficient (poorly
generalizable) classifiers. To handle such situations, an extension to multi-
variate trees would be necessary; for example, trees that split nodes on a
linear function of a subset of variables. Another disadvantage of decision
tree classifiers is their intrinsic instability (high variance) caused by their
hierarchical structure—learning errors made at a parent node are propagated
to all its child nodes (Hastie et al. 2009).

Gini impurity index

To decide which variable to select to split an internal node, we need to first
define a measure of impurity of the child nodes. Assume that we are per-
forming a study differentiating among J classes, and we want to measure
the impurity of node a with Na observations (biological samples). For
each class j, where j ¼ 1, . . . , J, define p̂j (a) as the proportion of the Na

training samples that belong to class j. If all Na samples of node a are in
the same class, we want the measure i(a) of the node a impurity to be
zero. Increased heterogeneity of the node samples should increase the
impurity measure. Commonly used measures are: entropy impurity, variance
impurity and its generalization known as the Gini index, andmisclassification
rate impurity.

† Entropy impurity (also known as information gain impurity) measure:

ientropy(a) ¼ �
XJ
j¼1

p̂j(a) log2p̂j(a): (3:104)
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† Misclassification rate impurity:

imisclassification(a) ¼ 1�max
j

p̂j(a): (3:105)

† Gini impurity index:

iGini(a) ¼
XJ
j¼1

XJ
j0¼1 j0=j

p̂j(a)p̂ j0 (a): (3:106)

† Variance impurity is a special case of the Gini impurity, when we
differentiate only between two classes, thus J ¼ 2 and

iGini(a) ¼ p̂1(a)p̂2(a): (3:107)

To split a parent node t into two child nodes a and b, we will select the
variable that offers the maximal decrease in the impurity measure. Assum-
ing a binary tree and J differentiated classes, the decrease DiGini(t) in the
Gini impurity measure iGini(t) for node t can be calculated as

DiGini(t) ¼ iGini(t)� iGini(a)p̂a � iGini(b)p̂b, (3:108)

where iGini(a) and iGini(b) are the Gini impurity indices of the child nodes
and p̂a and p̂b are the fractions of the training samples in node t that are
assigned to nodes a and b, respectively.

3.5.2 Random Forests Learning Algorithm

The random forests method builds a collection of decision trees—a forest. It utilizes
bagging since each tree is grown from a bootstrap sample of the training data (i.e.,
each tree is trained on a set of biological samples randomly selected, with replacement,
from the original training set). The size of each bootstrap training set is the same as
the size of the original data set. At each node, a tree is split using the best variable
from a small number m of randomly selected variables (m	 p; for instance,
m ¼ ffiffiffi

p
p

or m ¼ log2( p þ 1), where p is the number of variables in the training
data set). The m variables are selected independently for each node. By doing this,
an additional level of randomness is added to the method, on top of bagging.
Hundreds or thousands of trees are built to maximum size, without pruning.
Classification is based on their unweighted voting for the most popular class. Due
to the intrinsic randomness of the design, increasing the number of trees does not
lead to overfitting. According to Breiman, this method can handle thousands of
variables with no degeneration in accuracy, is more accurate than AdaBoost and is
“relatively robust to outliers and noise” (Breiman 2001).

Since each bootstrap training set leaves out about one-third of the original
samples (they are called out-of-bag samples), they may be used as an internal test
set to estimate classification error of their corresponding tree. The classification
error for each training sample may be estimated by averaging the classification of
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the sample over all trees for which the sample was out-of-bag. Averaging over all train-
ing samples leads to a test-set estimate of the overall classification error, which
is called the out-of-bag (OOB) estimate of the misclassification error rate. There
are indications that this OOB estimate of the misclassification error rate may be as
accurate as estimates based on a test set of the same size as the original training set
(Breiman 1996c; 2001). The OOB samples may also be used to select the value of
m (the number of randomly selected variables to be considered for splitting a node).
Breiman and Cutler’s random forests manual (Breiman and Cutler 2004) suggests
starting with the default value of m ¼ ffiffiffi

p
p

, running some 20–30 trees recording the
OOB error rate, then decreasing and increasing m until the value of m that
minimizes the OOB error rate is found.

The random forests algorithm has only two parameters: the number of trees ntree
to build and the number of variables m that are randomly selected to split each node.
The steps of the algorithm can be summarized as follows:

1. Randomly select ntree bootstrap training sets, drawing with replacement from
the original data set of N samples (and p variables). Each bootstrap set is of
size N � p (the same size as the original data set). On the average, each of the
bootstrap training sets includes about 0.632�N unique samples, which leaves
out—on the average—about 0.368�N samples35 that are not used to train a
particular tree (OOB samples).

2. Loop over the ntree bootstrap training sets and for each of them:

(a) grow a classification tree to its maximum size (no pruning),

(b) at each node, randomly select m variables (m	 p) and—using the Gini
impurity index—choose the best split based on one of these m variables:
† find the best split for each of the m variables,

† select the best split from among the identified m best splits.

(c) classify each OOB sample (a sample from the original data set that was not
selected into the current bootstrap training set) by running it down the cur-
rent tree; save the results of this OOB classification.

3. Aggregate the results of the OOB classifications to calculate the OOB estimate
of error rate.

4. Classify new data by the plurality vote of all ntree classifiers.

The cost to build each of the random forest trees isO(
ffiffiffiffi
p
p

N logN), which makes
this method efficient for data sets with large numbers of variables p and not too large
numbers of samples N (Tuv et al. 2007). For a comparison of the CART and random
forests methods see Table 3.5.

35For each selection into the bootstrap set, the probability that a particular sample is selected from the train-
ing set of N samples is equal to 1/N. Thus, the probability that the sample is not selected during the N selec-
tions is (12 1/N )N. For largeN, this probability approaches 1/e ¼ 0.368, whichmeans that on average 36.8
percent of the samples will not be selected into the bootstrap set (Han and Kamber 2006). This approxi-
mation is quite good even for relatively small training data sets. For example, when N ¼ 50, this probability
is 0.364.
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3.5.3 Random Forests and Feature Selection

Since a random forest ensemble classifier uses many trees and many variables to clas-
sify new samples, it does not provide a biomarker with a small number of variables.
Thus, the main goals of biomarker discovery cannot be achieved without additional
considerations aimed at feature selection. Feature selection can be embedded within
the random forests algorithm and performed by utilizing a measure of variable
importance.

Breiman (2001) proposed that changes in the classification of OOB cases, after
randomly permuting the data values of a variable, can be used as variable importance
metrics. Several metrics have been defined with the following one currently being

TABLE 3.5: Quick Comparison of CART and Random Forests Methods Based on Breiman’s
Random Forests Manual (2003)

CART—tree
construction

Random forests

Construction of a
single tree Notes

Root node Contains original
training data set ( p
variables and N samples)

Contains a bootstrap
training set of the
same size as the
original training set

Each of the ntree trees is
grown from a different
bootstrap training set.
On average, a bootstrap
set leaves out about 1/3
of the training samples
(out-of-bag samples)

Split at each
node

All p variables are
considered in order to
find the best split into
two child nodes. The
Gini impurity is used as
the splitting criterion

m variables (m	 p)
are randomly
selected. Only these
m variables are
considered in order to
find the best split
based on one of
them. The Gini
impurity is used as
the splitting criterion

Breiman suggests
setting m ¼ ffiffiffi

p
p

and
eventually to try using
half or twice that
number. Larger m
values should be used
for data sets with many
noisy variables

Stop criterion The tree is grown all the
way down and then
pruned up to minimize
misclassification error
for the test set

The tree is grown all
the way down and
not pruned

Classification Single tree classifier New sample is
classified by all ntree
trees and assigned to
the class with the
most votes

OOB samples can be
used in lieu of an external
test set to estimate the
misclassification error
rate
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among the most often implemented (Breiman and Cutler 2004; Tuv 2006; Archer and
Kimes 2008; Liaw et al. 2008).

To calculate the importance Ik of the variable k, for every tree t in the forest
(t ¼ 1, . . . , ntree) take the following steps:

† Classify the samples that are out-of-bag for the tree (not used in the bootstrap
training set from which the tree was grown) and count the number of votes
for the correct class (i.e., the number of correctly classified OOB samples).

† Randomly permute the data values of the variable k in the OOB samples, run
such prepared OOB samples down the tree and count the number of votes for
the correct class.

† Subtract the number of votes for the correct class in the OOB samples with the
variable k permuted from the number of votes for the correct class in the original
OOB data. The resulting difference is the importance Ik(t) of variable k for tree t.

The mean value of this difference over all trees in the forest can be used as the raw
importance Ik of variable k,

Ik ¼ 1
ntree

Xntree
t¼1

Ik(t): (3:109)

By dividing the raw importance Ik by its standard error s=
ffiffiffiffiffiffiffiffi
ntree
p

, we can calculate the
standardized index

zk ¼ Ik
sffiffiffiffiffiffiffiffi
ntree
p

(3:110)

and use it to assign statistical significance to the importance score Ik. Please note,
however, that:

(i) the standard error represents the between-tree variance rather than the variance
due to sampling from the population (Lunetta et al. 2004),

(ii) we are averaging over all ntree trees, and

(iii) the variable importance is equal to zero for any tree in which the variable is not
used to split any node.

Two variable importance measures based on the sample margin have been
described by Breiman (Breiman 2002b, 2003). The sample margin is defined as the
difference between the proportion of the votes for the correct class and the maximum
proportion of votes for each of the other classes (Breiman 2002a). The margin gives us
information on the confidence of sample classification. One of the measures defines
the importance of the variable k as the mean decrease of the margin over all OOB
samples classified after the variable is randomly permuted. The other measure uses
the difference between the number of OOB samples with decreased margin and the
number of those with increased margin.

The decrease in the Gini impurity index DiGini(t, k) when node t is split based
on variable k can also be used to calculate the variable importance. The variable

3.5 RANDOM FORESTS 175



importance Ik(t) for a single tree t, where t ¼ 1, . . . , ntree can be calculated as the sum
of all impurity index decreases in tree t due to the variable k,

Ik(t) ¼
X
t[t

DiGini(t, k): (3:111)

Averaging the variable importance Ik(t) over all the trees in the forest gives us the
variable importance measure Ik (3.109), which is often consistent with permutation-
based measures (Breiman and Cutler 2004).

Using one of the variable importance metrics, feature selection may be per-
formed as an iterative procedure similar to recursive feature elimination. The general
idea is to build a sequence of random forests. At each iteration, the least important
variables are removed and a new forest is grown on the remaining variables. The
criterion to eliminate variables may be either some cut-off value of variable impor-
tance or a percentage of the current number of variables. After the sequence of forests
is built, a single forest and its set of variables are selected. The selection can be based
on the number of variables, on the forest OOB error rate, or on a combination of the
two. For example, Diaz-Uriarte and de Andres select the set of variables associated
with the forest having the smallest number of genes among all forests with an OOB
error rate within a predefined number of standard deviations from the minimum
error rate for all forests (Diaz-Uriarte and Alvarez de Andres 2006).

Breiman indicated, however, a weakness in feature selection utilizing random
forest based measures of variable importance (Breiman 2001). Variables that are
redundant but significantly predictive may simultaneously have a high importance
score, even when only one of them would be necessary in a biomarker. This is due
to the fact that the variables have similar probabilities of being selected in a random
forest and that permutation experiments (and/or importance calculations) are per-
formed separately for each of them. To identify a parsimonious biomarker, one may
use the random forests approach to select a subset of relevant variables, and then
apply a feature selection method that takes into account all interactions between the
variables. The distinction between relevant and irrelevant variables may be based
on randomly generated noise variables. Tuv et al. propose generating noise variables
by random permutation of the data values of the original p variables across the N
samples (Tuv et al. 2007). The values of variable importance calculated for these
additional noise variables may be used to determine the ranking cut-off point. To
assign statistical significance to the difference in the importance scores, the process
of generating noise variables and ranking them is repeated a number of times.
Variables whose importance is significantly greater than a selected percentile of
importance scores calculated for the noise variables are deemed relevant.

3.5.4 Summary

The random forests learning algorithm utilizes bootstrap sampling from the training
data set and the random selection of the variables considered for splitting tree nodes
to build an ensemble of decision tree classifiers. The intrinsic randomness of the
design results in the ensemble classifier that can be both accurate and relatively
robust to noise and outliers. Out-of-bag samples can be used to estimate the misclassi-
fication error rate of the ensemble classifier with accuracy comparable to using a test
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set of the same size as the training data set. One of the internal variable importance
metrics (either permutation based or utilizing the Gini impurity index) may be used
to perform embedded feature selection. Some external processing may, however, be
necessary to identify a truly multivariate biomarker.

3.6 ENSEMBLE CLASSIFIERS, BOOTSTRAP METHODS,
AND THE MODIFIED BAGGING SCHEMA

3.6.1 Ensemble Classifiers

Ensemble methods build supervised classification systems based on multiple
individual classifiers. Ensemble classifiers often outperform single classifiers,
especially when the latter are weak or unstable. An unknown sample is classified by
all individual classifiers and assigned to one of the classes based on their weighted
or unweighted voting. Ensemble classifiers can be built by combining individual
classifiers in a parallel or serial fashion (Tuv 2006).

3.6.1.1 Parallel Approach
In the parallel approach, individual classifiers are created independently of each other.
Their diversity may be due to different versions of the training data set, due to random-
ness in the learning process, or both. Ensembles of parallel classifiers are especially
useful when they combine individual classifiers that may be accurate but unstable.
The random forests method described in Section 3.5 is an example of the parallel
approach. Each tree in the forest is grown from a different bootstrap version of the
training data. Additional randomness is added at each node by the random selection
of a small subset of variables to be considered for splitting the node.

3.6.1.2 Serial Approach
In the serial approach, a series of classifiers is built. The next classifier tries to boost
performance by focusing on the samples misclassified by the previous classifier. The
resulting ensemble classifier may have high accuracy even when the individual clas-
sifiers are quite weak. AdaBoost is the best known example of the serial ensemble
approach.

3.6.1.3 Ensemble Classifiers and Biomarker Discovery
One of the main goals of biomarker discovery is to identify a small set of genes whose
joint expression pattern can significantly separate the differentiated classes and can
be used for efficient classification of new cases. However, the ensemble approach
generally does not deliver parsimonious biomarkers. On the contrary, ensemble clas-
sifiers usually base their voting on a large number of variables represented in all indi-
vidual classifiers. These are not the kind of classifiers we would use in clinical
practice.36 Are ensemble approaches useless for gene expression biomarkers? Not

36Of course, there could be exceptions to this rule. If a feature selection process embedded in the ensemble
approach results in a small (and truly multivariate) set of genes, we could use the ensemble classifier in
clinical practice.
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necessarily. A single parsimonious biomarker identified from a single training data set
may be prone to overfitting and may be unstable. To properly validate the biomarker,
we need a large and independent test data set. What if we do not have such a test set?
Splitting our original data set into training and test sets is generally not a good idea
since many gene expression data sets suffer from small number of samples (often
fewer than 100). Though we would not ordinarily use ensemble classifiers directly
for the classification task, they may be very useful for finding a more stable biomarker
or for providing a reliable estimation of the biomarker generalization.

Whatever feature selection method we use, we may repeat it many times with
different versions of our training data set. Furthermore, additional randomness may
be added to the feature selection algorithm. We can build an ensemble of classifiers,
but not use them for classification. Rather, we can analyze sets of genes selected into
the classifiers with the goal of finding a parsimonious but more stable biomarkers than
those identified for the individual classifiers. The main idea of this approach is based
on the assumption that combinations of the variables that are frequently selected into
individual classifiers of an ensemble should lead to more robust biomarkers. The
ensemble is therefore used to vote for variables rather than for classes (Chan et al.
2007). This may be seen as regularization of potentially unstable feature selection
by utilizing a large number of bootstrap-based classifiers as an intermediate step
leading to selection of a more stable multivariate biomarker.

If bagging or a similar method of varying training sets that results in out-of-bag
samples is used, we can use the OOB samples to estimate the misclassification error
rate of our classifier. Let us note that this estimate is for the ensemble classifier.
Nevertheless, it can serve as an indirect estimate of the generalization of our parsimo-
nious biomarker derived from feature selection based on the ensemble’s individual
markers.

3.6.2 Bootstrap Methods

“Bootstrap methods are helpful in understanding the variability of all aspects of the

prediction problem.”

—(Efron 1983)

As mentioned earlier, Efron’s nonparametric bootstrap is not the only bootstrap
approach. Here are short descriptions of selected bootstrap methods:

Efron’s Nonparametric Bootstrap

Whenever the bootstrap term is used without qualification, it most likely
refers to Efron’s nonparametric bootstrap introduced in (Efron 1979). This
version of bootstrap makes no assumption about the underlying population,
samples with replacement and generates bootstrap samples of the same size
as the original sample.

Parametric Bootstrap

Generally, parametric bootstraps are based on some parametric models of
the data. Instead of sampling with replacement from the training data,
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bootstrap samples may be generated from a parametric estimation of the
population (Efron and Tibshirani 1993). In regression problems, bootstrap
samples may be generated by adding Gaussian noise to the predicted value
(Breiman 1996b; Hastie et al. 2009). In classification, parametric noise
may be added to the training data vectors (Efron and Intrator 2004).

Randomized Bootstrap

This modification of Efron’s nonparametric bootstrap applies only to two-
class problems. With some probability, it allows for training observations
from one class to be assigned to the other class (Efron 1983).

Double Bootstrap

This method implements bootstrap iteration. Second order bootstrap samples
are taken from bootstrap samples. This method of bootstrapping the bootstrap
was described by Efron as a way to improve the error rate estimate of linear
classifiers. Although a straightforward application of the double bootstrap
requires B2 bootstrap samples, it can be implemented with only 2B bootstrap
samples (Efron 1983).

Without Replacement Bootstrap

This term is usually associated with stratified sampling without replacement,
which may be seen as an extension of Efron’s nonparametric bootstrap to
stratified sampling from finite populations (Gross 1980; Bickel and
Freedman 1984). First, disjoint strata of a finite population are independently
sampled without replacement. Then, observations in each sample are repli-
cated to result in bootstrap populations of the same size as the population
strata. Finally, bootstrap samples of the same size as the original samples
are selected without replacement from the bootstrap populations.

m-out-of-n Bootstrap

In the m-out-of-n bootstrap, bootstrap samples are of size m , N, where N is
the size of the original training data.37 This bootstrap can be implemented
with replacement or without replacement (Bickel et al. 1994; Politis and
Romano 1994; Bertail 1997; Bühlmann and Yu 2002). There are situations
in which the nonparametric bootstrap (with bootstrap samples of size N )
fails, but the m-out-of-n bootstrap provides consistent estimates (Bickel
et al. 1994; Chernick 2008).

3.6.3 Bootstrap and Linear Discriminant Analysis

Efron used the bootstrap approach to estimate the error rate in linear discriminant
analysis and presented an example, in which bootstrapping outperformed leave-one-
out cross-validation (Efron 1979). Interestingly, Breiman reported that LDA is not
improved by bagging (Breiman 1998). However, the four data sets used in his study

37In this chapter, we use N to denote the size of the training data set. However, we keep the original m-out-
of-n name for this bootstrap method. Hence, n in m-out-of-n equals N here.
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had only a few variables (8–16) and much larger numbers of observations (214 to
1395). We may expect that in such situations (when p	 N ) LDA is quite stable
and bagging will not produce a significant decrease in the misclassification error rate.

The gene expression data sets we deal with have thousands of variables and
much fewer biological samples ( p�N ). Therefore, before the bootstrap-based
classifiers can be built, we would perform independent feature selection on each
bootstrap training set. Each LDA classifier would then be built from amultivariate bio-
marker identified from its bootstrap training set via a heuristic search. The Lawley–
Hotelling T 2 measure of class separation that we would use to drive the feature selec-
tion search is based on such LDA assumptions as the independence of training set
observations (biological samples) and multivariate normality of its variables. While
LDA is quite robust to violations of the normality assumption,38 we are concerned
with the violation of the independence assumption when biological samples are
selected into the bootstrap training sets with replacement.

Can we then take advantage of the OOB validation and the more stable bio-
markers offered by the bootstrap-based ensemble approach when our LDA-based
feature selection is performed in p� N situations? Yes, but to avoid shaky ground
(Chernick 2008) we would not be sampling with replacement. Instead of using
bagging based on the nonparametric bootstrap that samples the training set with
replacement, we will modify bagging in a way that bootstrap training sets are genera-
ted without violation of the independence assumption. We will use such modified
bagging to generate a large number of classifiers. By using these classifiers to vote
for variables, we expect to find biomarkers that are more robust than a biomarker
based on a single feature selection performed on the original training data set (see
Chapter 4).

3.6.4 The Modified Bagging Schema

Variations of bagging (bootstrap aggregating) may modify the aggregating stage (by
utilizing various combinations of information provided by a large number of
classifiers),39 or they may modify the bootstrap approach. Examples of modification
to the bootstrap stage may include:

38It is worth mentioning that selecting a second order statistical sample (i.e., sampling the training data set,
which is already a sample from the underlying population) means selecting from a discrete distribution since
the training set includes at mostN discrete values of each variable. Thus we may not only violate the normal-
ity assumption, but wemay depart from the realm of continuously distributed variables (Miller 2008). This is
also true for other resampling methods, for example the leave-one-out and K-Fold cross-validations.
However, one can argue that such methods are implementing the what-if scenario aimed at answering ques-
tions like this: “How would our biomarker or classifier change if they are based on N 2 1 observations,
when one of the biological samples is—for whatever reason—excluded from the training set?” Stretching
this reasoning, one may eventually argue that such methods do not really violate the normality assumption.
Nevertheless, even if we agreewith this kind of argumentation and extend it to the bootstrap without replace-
ment, it cannot—for small sample sizes—be extended to bootstrapping with replacement.
39There are also methods that use bootstrap-generated classifiers but do not aggregate their information. For
example, in bumping the classifier that best fits the training data is selected from among classifiers built on
bootstrap training sets. The bumping approach may be used to avoid models that are finding inefficient local
optima (Hastie et al. 2009).
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† stratification (independent selection of observations from each class),

† subsampling (m-out-of-n bootstrap without replacement),

† selecting all observations from one class and randomly sampling the other class,
when the design is heavily unbalanced.

Since the term bootstrap may refer to sampling with or without replacement,
aggregating classifiers generated with modified bootstrap methods may still be
called bagging. Nevertheless, other terms have also been proposed. For example,
subagging may refer to subsample aggregating, and moon-bagging to m-out-of-n
bootstrap aggregating (Bühlmann and Yu 2002).

We will define a modified bagging schema as a procedure that generates
bootstrap training sets by stratified random sampling of the training data set without
replacement. Let the training data set consist of N biological samples assigned to J
classes and let each class j, where j ¼ 1, . . . , J, be represented in the training set by
nj samples, so N ¼P

j¼1
J nj. Let us define the gOOB parameter that represents a desired

proportion of the out-of-bag samples, that is, the proportion of the training samples
that are not selected into a bootstrap training set. Hence, each bootstrap training
set will include about (1 2 gOOB)N biological samples that will include about
(1 2 gOOB)nj samples from each class.40

Using this modified bagging schema, we will be generating a large number, say
B, of classifiers that will be based on B bootstrap training sets. Classifying the OOB
samples using their respective classifiers will give us an estimate of generalization
for the ensemble classifier. However, wemay interpret this estimate as a predicted mis-
classification error rate of an average individual classifier. We may use this estimate
during various stages of biomarker discovery and for verification of the selection of
the Informative Set of Genes41 (see Chapter 4).

When the standard nonparametric bootstrap is used, the number of possible
bootstrap training sets of size N selected with replacement from the original training
data set of size N is (Hall 1992; Efron and Tibshirani 1993; Chernick 2008):

2N � 1
N

� 	
¼ (2N � 1)!

N!(N � 1)!
: (3:112)

For the modified bagging schema, we define the number of OOB samples in each
class as

nOOBj ¼ int(gOOB 
 nj þ 0:99), j ¼ 1, . . . , J: (3:113)

Hence, the total number of OOB samples for each classifier can be calculated as

nOOB ¼
XJ
j¼1

nOOBj: (3:114)

40Note that if (12 gOOB) � 0.632, the number of OOB samples will be similar to that of the nonparametric
bootstrap with replacement.
41The Informative Set of Genes will be defined in Chapter 4.
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The number of possible bootstrap training sets generated by the modified bagging
schema is

YJ
j¼1

nj
nOOBj

� 	
: (3:115)

This is a large number even for relatively small values ofN. The probability that any of
the bootstrap training sets is repeated is very low even for large B.

Summing up, to apply the modified bagging schema, we will generate hundreds
or thousands of classifiers built from bootstrap training sets consisting of a specified
proportion of biological samples randomly selected without replacement from the
original training data set. For each classifier, a separate feature selection (e.g., heuristic
search driven by a multivariate metric of discriminatory power of a subset of variables)
will be performed. An additional level of randomness may be added to the schema by
introducing randomness into the feature selection process (e.g., by starting a heuristic
search from a randomly selected variable). Once the classifiers are generated, we will
not use them as an ensemble classifier. Wewill use them to aggregate information per-
taining to the misclassification error rate and information about the distribution of
variables selected into the classifiers. Each classifier will be tested on its OOB
samples. Averaging testing results over a large number of classifiers will provide a
reliable estimate of the misclassification error rate. This would be the error rate of
the ensemble classifier or its average component. However, it will also give us an
estimate of generalization abilities of an optimal biomarker identified by the same
feature selection method and of the same size as our bootstrap-based classifiers. In
Chapter 4, we will describe the use of the modified bagging schema in verification
of the Informative Set of Genes (by evaluating the amount of discriminatory infor-
mation remaining in the training set that does not include the Informative Set of
Genes). Another use of the modified bagging schema will be based on aggregating
information about variables selected into the bootstrap-based classifiers. By examin-
ing the distribution of genes among these classifiers, we will be identifying primary
gene expression patterns and frequently used informative genes representing these
patterns. This can be seen as using ensembles of classifiers to vote for variables.
This approach will also be described in Chapter 4.

3.7 OTHER LEARNING ALGORITHMS

From among other learning algorithms that may be used for classification
based on gene expression data, we will briefly describe two nonparametric
methods—k-Nearest Neighbors and Artificial Neural Networks. They may not be
our first choice in biomarker discovery based on expression data, but in some situ-
ations they may be useful. For example, we would not use the k-nearest neighbor
approach for classification based on a training set that includes thousands of variables
(especially with a small number of training samples). However, after feature selection
is performed, a k-nearest neighbor classifier applied to data with a small number of
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variables may be as successful as far more sophisticated approaches. Similarly, we
would not use artificial neural networks when the interpretation of the classification
model is important (which almost always is the case in biomarker discovery).
However, in specific situations where—for whatever reason—it is important to use
a nonlinear classification model and where prediction without interpretation is accep-
table, neural networks can be among our top choices.

3.7.1 k-Nearest Neighbor Classifiers

k-Nearest Neighbor classifiers are conceptually very simple. The training data is used
directly to classify a new sample, and no classification model is built. Consider a
training data set with p variables, N objects (biological samples) and J classes. Each
training sample as well as a new sample to classify can be represented by a point in
the p-dimensional space of the p variables. The general idea of k-nearest neighbor
classification can be illustrated as follows. Assume we use the Euclidean metric of
distance.42 Imagine a p-dimensional point representing the object to classify. Center
a p-dimensional hypersphere at this point. Gradually increase the radius of this hyper-
sphere, from zero until the hypersphere includes exactly k training points—the k near-
est neighbors. Each of these k neighbors votes for its class and the new sample is
classified into the most popular class. If J ¼ 2 and k is odd, the new sample is
always voted into one of the classes. In other situations, ties may be resolved by
random selection of one of the most popular classes. An extension of the k-nearest
neighbor rule can be made to require that at least l of k neighbors, (l � k), belong to
a class in order to declare the class a winner; otherwise the result of classification is
considered doubtful (Hellman 1970). When costs of misclassification are different,
we may further extend this requirement to allow different l values for different classes
(Ripley 1996).

In a straightforward computer implementation of the k-nearest neighbor method,
all training points are stored in the memory and used for classification. Advantages
of this approach include its simplicity and flexibility—since all training samples are
directly used in classification, adding new training samples requires no change to
the algorithm (there is no model to retrain). However, every time we classify a new
sample, we need to calculate N p-dimensional distances. Hence, the cost of doing
this via the straightforward approach is O( pN). To decrease memory requirements
and computational costs, various editing or condensing procedures have been pro-
posed. They try to identify a subset of training points important for k-nearest neighbor
classification, and discard the remaining training data. For example, if homogeneous
clusters of training samples can be identified, only important exterior points of these
clusters may be kept (Hart 1968). However, with such modifications, the k-nearest
neighbor approach is no longer flexible in accepting new training data points. Other
approaches (such as branch and bound algorithms) keep the entire training data, but
focus on speeding up classification by calculating only a subset of distances. They

42Euclidean distance is often used in the k-nearest neighbor implementations. If the variables are measured
in different units, they should be scaled. Gene (or protein) expression variables are measured in the same
units.

3.7 OTHER LEARNING ALGORITHMS 183



utilize the structure of the distances between training data points (which needs to be
determined only once) to rule out the training points deduced—without the explicit
calculation of their distances to the currently classified sample—to be too far to be
included in the set of k nearest neighbors (Hand et al. 2001). Yet another approach
computes partial distances in subspaces of the p-dimensional classification space. If
a partial distance is greater than the distance between the point to classify and a cur-
rently identified kth nearest neighbor, the full distance is not calculated and the training
point is ruled out (Duda et al. 2001).43

The approach illustrated earlier by the expanding hypersphere works under the
assumption that class probabilities are similar in every direction within the neighbor-
hood of the point to classify. If that is not the case, the misclassification error may be
large. To adjust for possibly different class probabilities in different directions, we
may replace a hypersphere with a hyperellipsoid. The directions and lengths of the
axes of the hyperellipsoid can be determined by the ratio of the variation between
classes to the variation within classes in a local neighborhood of the point to classify.
This modified approach is called the discriminant adaptive nearest-neighbor pro-
cedure (Hastie et al. 2009). Please note that the parameters of the hyperellipsoid
(and adaptation of the distance metric) are determined separately for each sample to
classify.

From among the various types of other modifications to the k-nearest neighbor
approach, we shall mention those that incorporate weights. The weights may be
assigned to variables, to training data points, or they may be incorporated into
the voting procedure. In cases where variables have different relative importance,
we may assign them different weights and then incorporate the weights into the
implemented distance metric (Hand et al. 2001). If—for whatever reason—we want
to treat some training data points as more important than others, we may assign
weights to the training instances and then multiply each calculated distance by the
appropriate weight. Hence, training points with smaller weights are more likely to
be among the selected k-nearest neighbors (Morring and Martinez 2004). Finally,
voting can be weighted by assigning higher weights to the training points closer to
the classified sample (Mitchell 1997; Larose 2005).

Although k-nearest neighbor classification is very simple, it is often successful
when class boundaries are highly irregular and classes have many possible prototypes
(Hastie et al. 2009). Another advantage of the k-nearest neighbor approach is the easy
interpretation of the classification results. However, this approach has the disadvan-
tage of being rendered inappropriate in some situations. For example, k-nearest
neighbor methods usually perform poorly when the number of variables p is large.
The reason is that the training data is sparse in high-dimensional space and at least
some of the k neighbors may be quite far from the sample to classify (Hand et al.
2001). That is one of the reasons why we would not use this approach for a gene
expression matrix with thousands of variables. However, when applied after feature
selection, the k-nearest neighbor methods may perform as well as our preferred learn-
ing algorithms (see examples in Chapter 6).

43Of course, this approach works only with distances that cannot decrease when the number of dimensions
increases. The Euclidean metric belongs to this class.
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Even in situations where it is reasonable to use the k-nearest neighbor rule, its
performance may highly depend on the choice of k. The best value of k depends on
the idiosyncrasies of a particular training data set (and especially on the number of
samples N ) and should be selected as a compromise between overfitting and general-
ization, which usually is achieved when k is a small fraction of N. Using k ¼ 1 may
render unstable classifiers (exceptions include situations where the training data is
edited in a way that optimizes the performance of the algorithm for k ¼ 1). Setting
k too high may define a neighborhood that includes training points quite far from
the classified sample (Duda et al. 2001).44 In practice, cross-validation may be used
to select the value of k that minimizes the misclassification error estimate (Hastie
et al. 2009).

3.7.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are learning algorithms inspired by the nonlinear-
ity and parallelism of the human brain learning process. Plasticity, massive parallelism,
and fault tolerance are among intrinsic features of this process. Although signal pro-
pagation in the human brain is several orders of magnitude slower than in computer
chips, humans can efficiently deal with perceptual problems that are far too complex
for present-day computer systems. The cerebral cortex of the human brain contains
about 1011 neurons, which are nerve cells consisting of dendrites (inputs), the cell
body (the processing unit) and the axon (output). The high efficiency of the brain’s
information processing is mostly due to the approximately 1014 to 1015 interconnec-
tions between the neurons (this means that, on average, each neuron is connected to
103 to 104 other neurons). A neuron receives electrical signals from other neurons
via its dendrites, and combines these signals. If the combined input signal exceeds
some threshold level, the neuron “fires,” that is, transmits its electrical signal output
along its single axon. Axons and dendrites of communicating neurons are connected
through synapses, which are biochemical units whose neurotransmitters can impose
either excitation or inhibition on the receptive neurons. Since the information is
stored in the weights associated with synaptic interconnections, the learning process
of the human brain may include the creation of new connections between neurons
or changes in theweights of existing connections. Due to the distributed nature of proc-
essing and storing information, this structure is highly adaptable and fault-tolerant.

Early concepts associated with ANNs include the McCulloch–Pitts model
of a neuron (McCulloch and Pitts 1943), the Hebbian learning rule (Hebb 1949),
and—inspired by them—Rosenblatt’s perceptron (Rosenblatt 1958). The model of
a neuron proposed by McCulloch and Pitts consists of binary inputs and a single
binary output. Connections between the inputs and the output are either excitatory
(with positive weights) or inhibitory (with negative weights). The weights are constant
and the neuron calculates the weighted sum of the input signals. If this sum is above a
threshold value, the neuron “fires,” that is, generates an output signal of 1 (Jain et al.

44If we look at the k-nearest neighbor rule as a method to estimate posterior probabilities of class member-
ship in the neighborhood of the classified sample, then large k may result in a neighborhood too large for a
reliable estimate.
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1996). The Hebbian learning rule states that if two neurons are activated synchro-
nously, their synaptic connection is strengthened.

3.7.2.1 Perceptron

A perceptron (Rosenblatt 1958) can be considered a single-neuron network with
adjustable real-valued connection weights, bias and an activation function (see
Fig. 3.19). Such a simple neural network can be used as a classifier differentiating
between two linearly separable classes (Haykin 2008).

Activation signal a is a linear function of all inputs and the bias element,

a ¼ w0 þ
Xp
k¼1

wkxk

¼ w0 þ wTx, (3:116)

where x is a p-dimensional vector of input signals (corresponding to p input variables)
and w is the vector of synaptic connection weights. Since wTx represents a ( p 2 1)-
dimensional hyperplane in the p-dimensional space defined by the p input variables,
the weight of the bias element w0 can be interpreted as the offset of the hyperplane
from the origin. The output signal y is determined by applying a nonlinear activation
function f to the activation signal a,

y ¼ f (a): (3:117)

Please note that the bias weight w0 is directly related to the neuron activation threshold
u, u ¼ 2w0, which determines the minimum value of the weighted sum of input
signals

P
k¼1
p wkxk required for having a non-negative activation signal a.

∑

Figure 3.19: A perceptron with p inputs, bias and activation function f. Connection weights
between inputs and the summing element are adjustable. The summing node calculates a
weighted sum of the p input signals and adds the bias, which is related to the neuron activation
threshold.
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In a basic version of a perceptron, a hard-limiter activation function is used that
returns the sign of the activation signal,

f (a) ¼ sign(a)

¼ sign(w0 þ wTx)

¼
1 if a . 0

0 if a ¼ 0

�1 otherwise

8><
>:

9>=
>;: (3:118)

More general versions may use various soft limiting nonlinear activation functions,
such as piecewise linear, sigmoidal or Gaussian. The logistic sigmoid function,

f (a) ¼ 1
1þ e�ba

, (3:119)

where b. 0 is the slope parameter of the function, is among the most popular ones
(Fig. 3.20).

The term perceptron can also refer to a single-layer neural network consisting of
multiple outputs. Such networks can classify into more than two classes. However,
they are still limited to the differentiation of linearly separated classes. To handle
nonlinear boundaries between classes, neural networks require a multilayer topology.

3.7.2.2 Multilayer Feedforward Neural Networks

A neural network whose topology contains no feedback loops (i.e., its connection pat-
tern can be represented by a directed acyclic graph) is called a feedforward network.

Figure 3.20: The logistic sigmoid function, f (a) ¼ 1/(1 þ e2ba), with three values of the
slope parameter, b ¼ 0.5, b ¼ 1.0, and b ¼ 2.0. This is a monotone and differentiable function.
Since it returns values in the range (0, 1) for any range of values of the activation signal a, it may
be called a squashing function.
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Although such a network does not have to have a layered topology, it usually consists
of the input layer, some number of hidden layers and the output layer. Since infor-
mation in a feedforward network is propagated only in one direction45 (from input
nodes to output nodes), the outputs can be explicitly determined from the inputs
and the connection weights; they do not depend on the history of the network
state.46 A connection weight (also known as a synaptic weight) represents the strength
of a connection. The weights may be positive (excitatory), negative (inhibitory), or
zero (no connection).

For a classification problem with training data in the form of a gene expression
matrix with p variables and N biological samples representing J classes, the input
layer consists of p nodes, and the output layer contains J neurons.47 Please note
that, similar to the unsupervised version of neural network described in Chapter 2
(the self-organizing map), the input layer is not neuronal (i.e., no processing is per-
formed at this layer’s nodes). Here, the input layer nodes correspond to p variables
representing a biological sample. The number of hidden layers and the number
of neurons at each of them should be adjusted for the complexity of the problem.
In most situations, one or two hidden layers can provide satisfactory solutions.
For example, a two-layer network whose hidden layer has a sufficiently large
number of neurons and sigmoidal activation functions can approximate any con-
tinuous input-output mapping function arbitrarily well. However, in some situations,
a topology with additional hidden layer(s) may provide a more efficient solution
(Bishop 1995).

A network with no hidden layers (i.e., where input nodes are connected directly
to output neurons) is called a single-layer neural network (since it contains only
one layer of neurons). Neural networks with one or more hidden layers are called
multilayer networks. Figure 3.21 depicts a feedforward neutral network with a
single hidden layer (hence, a two-layer network). Assume that this is a fully connected
network, meaning each neuron is connected to all nodes of the preceding layer.
Assume further that there are p input nodes (corresponding to p variables), H nodes
(neurons) of the hidden layer, and J neurons of the output layer (corresponding to
J differentiated classes). The J network output signals represent the output variables
yj, j ¼ 1, . . . , J. A classified pattern is assigned to class j represented by the output
with the highest signal value yj. If we want to interpret network output signals as
class probabilities, the signals should assume values in the range (0, 1) and should
sum to 1.

45During classification, after the network has already been trained. During supervised learning, a “teacher”
system—external to the network—calculates error signals and backpropagates them through the network to
adjust the network connection weights. Supervised learning results in a classifier whose parameters are
stored in the form of network connection weights.
46Hence, feedforward networks are static networks. Networks with feedback connections are called recur-
rent neural networks or dynamic networks (Dreyfus 2005).
47When only two classes are differentiated (J ¼ 2), neural networks are usually implemented with only one
output neuron.
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Each training sample can be represented by a p-dimensional vector xi [ <p of
p gene expression levels,

xi ¼

x1i
x2i

..

.

x pi

2
66664

3
77775, i ¼ 1, . . . ,N: (3:120)

Each input node is connected to each neuron of the hidden layer, and each of these
p � H connections is characterized by a weight wkh, k ¼ 1, . . . , p, h ¼ 1, . . . ,H.
Hence, each neuron of the hidden layer is associated with a p-dimensional vector of
connection weights (see Fig. 3.22),

wh ¼

w1h

w2h

..

.

wph

2
66664

3
77775, h ¼ 1, . . . ,H: (3:121)

Figure 3.21: Topology of a feedforward neural network with a single hidden layer. The input
layer consists of p nodes corresponding to p variables (for instance, expression levels of p genes
representing a biological sample). The output layer consists of J neurons corresponding to J
differentiated classes. Each neuron of the hidden layer is connected to each input node.
Assuming there are H neurons of the hidden layer, each neuron of the output layer will have H
input connections. This neural network may be referred to as p-H-J network.
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Similarly, each neuron of the output layer has assigned to it an H-dimensional vector
of weights corresponding to its H connections with the hidden layer (see Fig. 3.23),

wj ¼

w1j

w2j

..

.

wHj

2
666664

3
777775, j ¼ 1, . . . , J: (3:122)

Let ah represent the weighted sum of input signals of neuron h of the hidden
layer. If we include the bias w0h of neuron h (see Fig. 3.22), then48

ah ¼ w0h þ
Xp
k¼1

wkhxki

¼ w0h þ xTi wh, h ¼ 1, . . . ,H: (3:123)

x w

∑

Figure 3.22: Input and output signals for neuron h of the hidden layer of the feedforward
neural network with a single hidden layer. There are p connections between input nodes and
each neuron h, each with its own weight. Hence, a p-dimensional vector of weights, whose
values are adjusted during the learning process, is associated with each neuron h. An additional
input x0 ¼ 1 with adjustable synaptic weight w0h represents the bias. The fh element represents a
nonlinear and differentiable activation function.

48Note that to simplify the notation, we do not include a layer qualification. To add such qualification, the
weights could be denoted wkh

(1) for the first neuronal layer (the hidden layer) and whj
(2) for the second neuronal

layer (the output layer), or more generallyw�†
(l) for any layer l ¼ 1, . . . , L. Here L denotes the number of layers

with adaptive weights.
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If fh(
) denotes the activation function of neuron h, then the output signal from neuron
h of the hidden layer is

zh ¼ fh(ah), (3:124)

and all output signals of the hidden layer can be represented by an H-dimensional
vector z,

z ¼

z1
z2

..

.

zH

2
6664

3
7775: (3:125)

Analogically, for neuron j of the output layer, we shall have:

aj ¼ w0j þ
XH
h¼1

whjzh

¼ w0j þ zTwj, j ¼ 1, . . . , J, (3:126)

and

yj ¼ fj(aj), j ¼ 1, . . . , J, (3:127)

where fj(.) represents the activation function of neuron j. Examples of activation
functions that are often used in the output layer include the logistic sigmoid function

w

∑

Figure 3.23: Input and output signals for neuron j of the output layer of the feedforward
neural network with a single hidden layer. Each neuron j has H input connections and is
associated with an H-dimensional vector of weights. fj represents a differentiable activation
function.
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(see Fig. 3.20) and its generalization, the softmax function,

fj(aj) ¼ eajXJ

g¼1 e
ag
, j ¼ 1, . . . , J: (3:128)

The softmax activation function results in network output signals that lie in the range
(0, 1) and sum up to 1.

If we combine (3.123) to (3.127) into a single representation of the network
function, we shall have:

yj ¼ fj w0j þ
XH
h¼1

whj fh w0h þ
Xp
k¼1

wkhxki

 ! !
, j ¼ 1, . . . , J: (3:129)

3.7.2.3 Training the Network (Supervised Learning)

First, the network is initialized by assigning random values to its weights. Then, the
training samples are presented, in a random order, to the network. For each sample
xi, the output values are compared to ones expected for the sample’s true class, and
error values ej are calculated for each output yj. The error values are then used to
adjust the connection weights in a way that each adjustment depends on the weight’s
contribution to the error. The adjustments can be made once per training epoch (an
iteration during which all training samples are presented to the network) or after
each training sample.

Since the training samples are propagated through the network in a random
order, let us use t as the index of learning steps. The goal of training is to minimize
some error function E,

E ¼
XN
i¼1

Ei, (3:130)

where Ei ¼ Ei(t) represents the error for training sample xi presented to the network at
step t. The error Ei may be calculated as49

Ei(t) ¼ 1
2

XJ
j¼1

e2j (t)

¼ 1
2

XJ
j¼1

[cj(t)� yj(t)]
2, (3:131)

49Note that the backpropagation algorithm may use any error function that is differentiable with respect to
network connection weights. For example, instead of the sum of squared errors, a cross-entropy error func-
tion may be used (Hastie et al. 2009). Furthermore, a weight decay regularization approach to reducing the
risk of overfitting (by forcing some connection weights to assume values close to zero) may be implemented
by adding a complexity penalty term to the error function (Mitchell 1997; Haykin 2008).
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where

† cj(t) is the target value of output j, corresponding to correct classification of
sample xi,

† yj(t) is the observed value of output j for training sample xi presented to the
network at step t,

† ej(t) ¼ cj(t) 2 yj(t) is the error signal at output j at step t.

3.7.2.3.1 Backpropagation
To train the network, we minimize the error E with respect to the network connection
weights. This may be accomplished using the backpropagation algorithm implement-
ing a gradient descent method.50 Since each derivative of the error term E (with
respect to the weights) can be expressed as a sum of the derivatives of Ei over all train-
ing samples, we may train the network by minimizing each error Ei separately (Bishop
1995; Izenman 2008). This approach, when training samples are selected in a random
order, and weight adjustments are performed every time a training sample has been
propagated through the network, is called the stochastic gradient descent method.

Recall that t is the index of learning steps; t is increased by one after each training
sample is propagated through the network and the network weights adjusted. Using
the chain rule for differentiation, the gradient descent adjustment to the weights
associated with neuron j of the output layer can be calculated as

whj(t þ 1) ¼ whj(t)þ Dwhj(t)

¼ whj(t)� h
@Ei(t)
@whj(t)

¼ whj(t)� h
@Ei(t)
@aj(t)


 @aj(t)
@whj(t)

¼ whj(t)þ hdj(t)zh(t), (3:132)

where

† h is the learning rate parameter,

† dj(t) is the local gradient at output neuron j (or sensitivity of neuron j),

dj(t) ¼ � @Ei(t)
@aj(t)

¼ � @Ei(t)
@ej(t)


 @ej(t)
@yj(t)


 @yj(t)
@aj(t)

¼ ej(t)f
0
j (aj(t)), (3:133)

50Although backpropagation is not the fastest method for training neural networks, it is among the simplest
and most instructive ones (Duda et al. 2001). Conjugate gradient descent is another popular method. The
gradient of an error functionmeans a vector of first partial derivatives of the functionwith respect to network
connection weights.
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† fj0 (.) denotes the derivative of the activation function fj(.),

† zh(t) is the signal associated with connection h to neuron j, as defined by
(3.124).

To use the backpropagation algorithm to adjust weights wkh of the hidden layer, we
have to remember that each of these weights is used in calculating signals propagated
to all output neurons. Thus the backpropagation algorithm has to take into account the
error signals of all the output nodes. Following reasoning similar to that for output
neurons, the gradient descent update to the weight associated with a connection
between input node k and the hidden layer’s neuron h can be calculated as

wkh(t þ 1) ¼ wkh(t)þ Dwkh(t)

¼ wkh(t)þ hdh(t)xk(t), (3:134)

where

† dh(t) is the local gradient at hidden node h, which depends on the derivative of
the activation function of this node and on the weighted sum of local gradients
of all output nodes,

dh(t) ¼ f 0h(ah(t))
XJ
j¼1

dj(t)whj(t), (3:135)

† f 0h(
) is the derivative of the activation function fh(
),
† xk(t) is the input signal propagated via connection k to neuron h, i.e., the kth
element of the input vector xi (3.120), representing the training sample
presented to the network at step t.

3.7.2.3.2 The Learning Rate and Momentum Parameters
The magnitude of the weight adjustments depends on the learning rate parameter h,
which may assume values 0 , h , 1. Small values of h tend to provide more
stable weight estimates but increase the learning time. On the other hand, large
values of hmay lead to oscillatory behavior, that is, repeated “overshooting” of a mini-
mum due to too large weight adjustments. A compromise can be achieved by adding a
momentum term a, 0 � a , 1, which adds inertia to the learning process by making
the weight adjustment at step t dependent on the weight adjustment of preceding step
t2 1. For example, to add a momentum term to the weight adjustment Dwhj(t) defined
within (3.132) for neuron j of the output layer, we shall redefine Dwhj(t) in the
following way:

Dwhj(t) ¼ aDwhj(t � 1)þ hdj(t)zh(t): (3:136)

When a ¼ 0, backpropagation is carried out without momentum. When a . 0 and
subsequent adjustments to a connection weight are made in the same direction, the
momentum term increases the magnitude of the adjustments and accelerates the
gradient descent. When consecutive adjustments have opposite signs, the weight
adjustment is decreased (Mitchell 1997; Haykin 2008).
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Other modifications to the backpropagation learning process include changing
the learning rate h from epoch to epoch. Usually, an initial learning rate is relatively
large to speed up early phases of training. Then, it gradually decreases when the net-
work converges (Larose 2005). Furthermore, we may assign different values of the
learning rate to different parts of the network (Haykin 2008). Note that for multilayer
neural networks, the hypersurface representing the error function51 may have multiple
minima and that the gradient descent method may find a local minimum, not neces-
sarily the global one. However, please recall that a solution associated with a local
minimummay be less prone to overfitting the training data than the one corresponding
to the global minimum.

3.7.2.3.3 Generalization to a Feedforward Neural Network with Any
Number of Layers
Our considerations for a two-layer feedforward network (including only one hidden
layer) can be easily extended to a multilayer feedforward network with any number
of layers L. Such a network will include L – 1 hidden layers and one output layer.
Please recall that the depth L of a multilayer neural network is defined by the
number of neuronal layers; the input layer—where no processing is performed—is
not counted towards the depth. Including the momentum term, we may combine
and generalize equations (3.132) and (3.134) as follows:

w(l)
�y(t þ 1) ¼ w(l)

�y(t)þ Dw(l)
�y(t)

¼ w(l)
�y(t)þ aDw(l)

�y(t � 1)þ hd(l)y (t) f
(l�1)
� (a(l�1)� (t)), (3:137)

where

† superscript (l ) denotes neuronal layer l, l ¼ 1, . . . , L; for hidden layers
l ¼ 1, . . . , L 21, for the output layer l ¼ L,

† subscript † is a placeholder for the index of neurons of layer l,

† subscript � is a placeholder for the index of neurons (or nodes) of layer l2 1;
thus l2 1 ¼ 0 refers to the input layer,

† w(l )
�y denotes the weight of a connection between node � of layer l 2 1 and

neuron † of layer l,

† f (l�1 )� denotes the activation function of the previous layer (l 2 1); if l 2 1 refers
to the input layer, f (0)� is the identity function and a(0)� corresponds to one of
the input variables,

† d(l )y is the sensitivity of neuron † at layer l; combining and generalizing (3.133)
and (3.135), and using S as a placeholder for the index of neurons of the next

51The error hypersurface is defined in a multidimensional space with the number of dimensions equal to the
number of connection weights in the network. Since the state of a network can be represented as a point on
the error hypersurface, the general idea of the backpropagation algorithm is to update connection weights in
a way that this point moves in the direction of the negative gradient of the hypersurface (steepest descent
from the current location). The magnitude of each move is determined by the learning rate parameter h.
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layer, l þ 1, we shall have:

d(l)y (t) ¼
ej(t)f 0j (aj(t)) for neuron j of the output layer L

f 0 (l)y (a(l)y (t))
P
S

d(lþ1)S (t)w(lþ1)
yS (t) for neuron y of hidden layer l

8<
:

9=
;

(3:138)

3.7.2.3.4 Example of Training Algorithm for a Multilayer Feedforward Neural
Network

1. For the implemented topology of the neural network (defined by the number
of input variables, the number of layers and numbers of neurons at each layer):

† initialize the weights of all the network connections to small random values
(e.g., between 20.5 and 0.5),

† set the learning step index t ¼ 1 (t will be increased after each training sample
is propagated through the network and all weights adjusted),

† initialize the learning rate h and momentum a,

† Specify the maximum number of iterations (epochs).

2. Repeat until convergence or until the maximum number of iterations is
performed:

(a) Loop over the data set of the N training samples, selecting samples in a
random order. The learning steps are indexed by the consecutive values of t:

Forward propagation:
† propagate a single training input pattern xi(t) through the network,

Backpropagation:
† calculate the error signal ej(t) for each output j, j ¼ 1, . . . , J,

† update the network connection weights according to (3.137).
(b) Decrease the values of the learning rate h and the momentum parameter a.

3. Estimate the misclassification error rate of the resulting neural network classifier,
preferably by classifying samples of an independent test data set.

3.7.2.3.5 Building a Generalizable Neural Network Classifier
Similar to the situation when we perform only a single feature selection in a search for
a multivariate biomarker, training a neural network only once on a training data set
with a large number of variables does not necessarily provide an efficient classifier.
To look for more generalizable solutions, we may:

† perform cross-validation pretraining runs (for instance, K runs for the K-Fold
cross-validation schema) to determine the number of iterations providing the
best cross-validation results; then train the network on the entire training set
performing that number of iterations (Mitchell 1997),
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† train the network multiple times with different starting weights,

† try different network topologies,

† build an ensemble of neural network classifiers based on bootstrap training
sets (selected from the original training set with or without replacement);
we may either select one of these classifiers (based on some estimate of their
generalization abilities) or use all of them as an ensemble classifier,

† combine some of the above.

Additional options include multivariate feature selection to reduce the number of
input variables, or regularization by adding a complexity penalty term to the error
function.

3.8 EIGHT COMMANDMENTS OF GENE EXPRESSION
ANALYSIS (FOR BIOMARKER DISCOVERY)

1. Do not use training data sets with too few (biological) samples. Most likely they
do not properly represent the researched populations. Your results may be anec-
dotal rather than scientific.

2. Do not include in the training data set any sample for which its class membership
is doubtful (garbage-in garbage-out).

3. Do not rely on univariate approaches in selecting variables for multivariate bio-
markers. By limiting your study to a relatively small number of top univariately
ranked variables, most important discriminatory information may be removed
from consideration.

4. Do not use unsupervised methods to identify classes as a preprocessing step for
classification. With thousands of variables, the identified clusters may have very
little to do with the classes you want to discriminate (see #2).

5. Do not use unsupervised methods to decrease dimensionality of the training data
set as a preprocessing step for biomarker discovery. The directions of most
variation in the data may be very different from the most discriminatory
directions (the directions that best separate the differentiated classes).

6. Do not limit evaluation of a classifier to internal cross-validation. Whenever
possible, test your classifier on an independent data set. If independent data is
not available, use a bagging (or modified bagging) approach to estimate the
generalization abilities of the classifier.

7. Do not stop at identification of an optimal biomarker and efficient classification
system. Extend the biomarker into the Informative Set of Genes, which may
facilitate biological interpretation of class differences. Furthermore, if no
alternative biomarkers can be identified for the same training data set, this
may indicate that your optimal biomarker is a result of statistical chance.

8. If possible, do not let your boss override any of the above.
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EXERCISES

3.1 Select at least two software packages that can be used (individually or together) for a com-
prehensive analysis of gene expression data. Consider open source or free for academic use
software or trial/test versions of commercial packages. Your selection has to cover the fol-
lowing areas:

† Basic exploratory analysis.

† Unsupervised (taxonomy-related) analysis; for example, hierarchical clustering or self-
organizing maps.

† Feature selection; recall that this means multivariate and supervised feature selection
(e.g., heuristic stepwise methods or recursive feature elimination).

† Supervised learning algorithms—at least two of the following four: linear discriminant
analysis (LDA), support vector machines (SVMs), random forests (RFs), and artificial
neural networks (ANNs).

† Ensemble-based approach to estimation of the misclassification error rate.

It is highly recommended to use software that generates low-dimensional visualization of
the discriminatory space.
Evaluate considered packages by performing test experiments (for instance, analyzing

data sets used in the Chapter 2 exercises). Describe your search, test experiments and
results of your evaluation and selection.

3.2 Select a gene expression data set with more than four classes. Design a data-driven multi-
stage classification schema.

a) Download the selected gene expression data. Perform quality control of the data and
any additional preprocessing deemed necessary. Filter out variables whose expression
measurements are not reliable or represent experimental noise, preferably using filters
based on detection calls and on the range of expression values.

b) From the software packages evaluated in Exercise 3.1, arrange a working environment
that includes feature selection and building ensembles of classifiers (preferably com-
bined into one method).

c) Start with building models that try to separate all classes simultaneously. Prepare the
training data (in the form of a gene expression matrix) that consists of as many separate
classes as represented in the data set.

d) Build a small ensemble of ten to twenty classifiers based on randomized training sets.
Use bagging or similar approach to generate bootstrap training sets (e.g., consider bag-
ging for nonparametric learning algorithms, and modified bagging for parametric
ones). Each classifier should be based on a small multivariate biomarker (no more
than ten genes) identified for the classifier by an independent feature selection process.

e) Investigate discriminatory spaces of the generated classifiers looking at their low-
dimensional projections representing most of the discriminatory information. A
common situation in a multiclass discrimination is that one or two of the classes
dominate the class separation, that is, they are clearly separated from the remaining
classes that overlap. Identify such a class or classes.

† If only one class is well separated from the overlapping rest of classes, consider a
two-class model that differentiates this dominating class against all the remaining
training samples combined into a single class.

† If two classes are well separated from the rest, consider a three-class model.
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Note:

If your software selection does not offer visualization of the discriminatory space, try to
identify the dominating class by interpreting confusion matrices of the classifiers.

f) Estimate the misclassification error rate of the considered model (differentiating either
two or three classes). Build a large ensemble consisting of at least 500 classifiers. As
before, the classifiers need to be based on bootstrap training sets, and separate feature
selection has to be performed for each of them.

g) If the evaluation of the model considered at step (f) indicates that this configuration of
classes may lead to a classifier with reasonable generalization, end the current stage of
the multiclass schema design. Otherwise it is possible that the data set cannot be used
for efficient discrimination of the represented classes.

h) At the next stage of the multiclass differentiation, include only the overlapping classes.
Remove the dominating class (or classes) from the training data. Using this smaller
training data set, repeat steps (d) to (g) and identify configuration of classes for the
next stage of classification. Continue this process until all stages of the multistage
classification schema are identified.

3.3 Select one stage of the multistage classification schema designed in Exercise 3.2. Build a
preliminary classification model for the groups of samples differentiated at this stage. We
call it a preliminary model because we do not utilize here optimization approaches
described in Chapter 4.

a) Use the training data set including only groups of samples discriminated at the selected
stage. Depending on the class configuration identified for this stage, the samples are
grouped either into two or three classes. If necessary, perform additional filtering of
noise by criteria specific for the differentiated classes.

b) Perform feature selection utilizing a multivariate supervised approach; for example, a
heuristic stepwise search or recursive feature elimination. Identify a parsimonious
multivariate biomarker consisting of no more than 10 genes.

c) Build a classifier based on the identified biomarker.

d) Test the classifier using the following methods:

† reclassification,

† internal cross-validation,

† external cross-validation,

† ensemble-based validation,

† if possible, find an independent data set and use it for validation.

e) Compare results of the tests performed at step (d). Based on these results, explain why
some of the methods do not provide reliable estimates of the classifier’s generalization
abilities.

3.4 Repeat all steps ofExercise 3.3 using a different learning algorithmand, preferably, a differ-
ent feature selectionmethod. It would be best if one of the learning algorithms is parametric
and the other nonparametric. Compare results and discuss any significant differences.

3.5 Perform experiments using a training set that combines two data sets.

a) Identify three gene expression data sets differentiating the same set of classes. It is
preferable to work with data sets generated in different labs, and maybe in different
countries.
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b) Set aside one of them as the test set.

c) Use one of the remaining two data sets as a training set. Perform all steps necessary to
build a classifier based on a parsimonious multivariate biomarker.

d) Validate the classifier using the test data set.

e) Combine the two data sets into one training set. Use it to build another classifier based
on a multivariate biomarker identified from the combined training set.

f) Validate the new classifier using the same test set.

g) Compare and discuss the results of testing both classifiers on the same test set.
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CHA P T E R4
THE INFORMATIVE SET
OF GENES

4.1 INTRODUCTION

In this chapter, a multivariate method for the identification of the Informative Set of
Genes will be presented. The term “informative set of genes” is often used without
a clear definition and with the implied meaning of a set of genes containing some
information relevant for a study. We will define the Informative Set of Genes as a
set containing all of the information significant for the differentiation of two or
more classes represented in a training data set. Various parametric or nonparametric
supervised learning algorithms can be used to identify parsimonious multivariate bio-
markers. While such biomarkers may contain information sufficient for the efficient
classification of new cases, they do not necessarily provide insight into biological pro-
cesses underlying class differentiation. By our definition, the Informative Set of Genes
contains all significant discriminatory information. As such, it should constitute a
much better starting point for the elucidation of biological processes underlying
class differences or for the extraction of new knowledge about processes associated
with the class differences.

Many studies limit their search for biomarkers and for their biological interpre-
tation to sets of genes identified via univariate or univariately-biased methods. Such
methods are missing genes whose discriminatory importance can be identified only
by a multivariate approach. In the presented method, the Informative Set of Genes can
be seen as an expansion of a parsimonious multivariate biomarker. Both of them—
the biomarker and the informative set—are identified by a heuristic and multivariate
approach to feature selection. Biological processes (or genes) that individually are not
crucial for class differences may be very important when considered together with
other biological processes (or other genes). Multivariate approaches can discover
such relations.

While the Informative Set of Genes is identified primarily to facilitate the bio-
logical interpretation of class differences, we will also show how using it in combi-
nation with ensembles of classifiers generated via the modified bagging schema
may lead to the discovery of multivariate biomarkers that are more robust than bio-
markers resulting from feature selection performed on the entire training data set.

Data Mining for Genomics and Proteomics. By Darius M. Dziuda
Copyright # 2010 John Wiley & Sons, Inc.
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4.2 DEFINITIONS

In Chapter 3, we defined a multivariate biomarker as a set of genes whose joint
expression pattern is predictive of class membership, and an optimal multivariate bio-
marker as a parsimonious multivariate biomarker that provides the best compromise
between overfitting and generalization. Now, we will add a definition of the
Informative Set of Genes and definitions of alternative biomarkers that will be used
for its identification.

Informative Set of Genes—a set of genes containing all of the information
significant for class differentiation.1 Since such a set is usually considerably
larger than the optimal multivariate biomarker, it provides better foundation
for the elucidation of the biological processes associated with class
differences.

Alternative Multivariate Biomarker—a set of genes that has satisfactory
discriminatory power, but does not contain any gene included in the pre-
viously identified optimal multivariate biomarker.

Secondary Alternative Biomarker—a set of genes that has satisfactory dis-
criminatory power, but does not contain any gene included in the optimal
biomarker and the previously identified alternative marker. Extending
this definition, we can define a tertiary and then subsequent alternative
markers.

Sequence of Alternative Biomarkers2—a series of alternative markers iden-
tified via the same multivariate feature selection method when each succes-
sively identified alternative marker is based on a training data set that does
not include genes that were already selected into the optimal multivariate bio-
marker or into the previously identified alternative markers.

Alternative Models—classification models based on alternative markers. Each
of them is built to estimate the amount of discriminatory information con-
tained in the training set used for the identification of a particular alternative
marker.

4.3 THE METHOD

To identify the Informative Set of Genes, we build a sequence of alternative multi-
variate biomarkers (Dziuda 2007; Dziuda and Zhou 2007; Dziuda 2008). Although
various supervised methods can be considered for this purpose, we recommend
using only such methods that are able to: (i) identify parsimonious multivariate bio-
markers; and (ii) provide a measure of discriminatory power of each alternative bio-
marker. An example of such methods is the stepwise hybrid feature selection driven
by the T2 measure of class separation (described in Chapter 3).

1More precisely, all such information contained in the training data set.
2All of the markers we discuss are multivariate. Hence, whenever the termmarker is used without qualifica-
tion, it means multivariate marker. Furthermore, we use the terms marker and biomarker interchangeably
and treat them here as synonymous.
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Theprocess leading to the InformativeSetofGenesconsistsof the followingsteps.

† The identification of an optimal multivariate biomarker.

† Estimating generalization abilities of this optimal biomarker.

† Generating a sequence of alternative multivariate biomarkers.

† Selecting the Informative Set of Genes.

† The verification of the Informative Set of Genes.

We assume that the Informative Set of Genes represents gene expression patterns
important for the discrimination of phenotypic classes represented in the training
data set. To identify these patterns and the genes that best represent them, we perform
further analysis of the informative set:

† identification of the primary expression patterns of the Informative Set of Genes,

† identification of the most important genes of the primary patterns.

4.3.1 Identification of the Informative Set of Genes

Identification of an Optimal Multivariate Biomarker

Since the Informative Set of Genes can be seen as an extension of an optimal multi-
variate biomarker,3 we start with the identification of the optimal biomarker. We
use the entire training data set—the gene expression matrix with all the genes that
are represented there after filtering unreliable variables and noise. Using stepwise
hybrid feature selection mentioned earlier, we identify the optimal multivariate bio-
marker4—a small set of genes with satisfactory discriminatory power.

Estimating Generalization Abilities of the Optimal Biomarker

Before generating a sequence of alternative markers, we estimate the generalization
abilities of a classifier built on our optimal biomarker. For this purpose, we can use
either an independent test data set or the modified bagging approach. Nevertheless,
even if we have the independent test set available, it may be advantageous to set it
aside (we will discuss its better use at a later stage) and proceed, at this stage, with
the modified bagging approach to validation of the optimal biomarker.

As described in Chapter 3, to apply the modified bagging schema, we generate
hundreds or thousands of classifiers (an ensemble) built on randomized training sets.
Each classifier5 is based on its own training set consisting of a specified proportion of
biological samples randomly selected—without replacement—from the original train-
ing set. The samples that are not used to train a classifier constitute its out-of-bag (OOB)
samples. For each classifier, a separate feature selection is performed and amultivariate

3In a sense that the Informative Set of Genes is used to facilitate identification of biological processes rep-
resented by the optimal biomarker.
4This marker represents an optimal compromise between overfitting and generalization—it is small enough
to minimize chances of overfitting, but is large enough to allow accurate classification of new samples.
5If we use the T2-based feature selection, then linear discriminant analysis (LDA) will be used to design
classifiers (see Chapter 3).
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marker of a particular size (the same as the size of the optimal biomarker) is identified.
An additional level of randomness may be added to the feature selection process (for
example, we may start each heuristic search from a randomly selected variable).
Once the classifiers are built, each of them is used to classify its own OOB samples.
For example, if each of the randomly generated training sets consists of 80 percent of
all training samples, eachclassifierwill be testedon the remaining20 percent of samples
that were not used in training the classifier. Byaveraging test results over a large number
of classifiers, we are provided with a reliable estimate of the misclassification error rate
of an average classifier of the ensemble. We also use it as an estimate of generalization
abilities of our optimal multivariate biomarker. Our experience indicates that such an
estimate is quite stable when based on an ensemble of 1,000 or more classifiers.

When—and only when—this estimate indicates that our optimal biomarker may
be able to provide accurate classification of new samples (above some predefined level
of sensitivity, specificity, and the overall rate of correct classification), we will proceed
with the identification of the Informative Set of Genes. Otherwise, it is very likely that
our training data set does not contain enough discriminatory information to be used as
a base for building efficient classifiers.

Generating a Sequence of Alternative Multivariate Biomarkers

While the optimal multivariate biomarker may contain information sufficient for effi-
cient classification of new cases, it does not necessarily provide insight into the biologi-
cal processes underlying class differences. The Informative Set of Genes, as we defined
it, contains all of the information significant for class differentiation. Analysis of the
Informative Set of Genes should allow for the elucidation of biological processes
associated with class differences and may result in new biomedical knowledge.

To find the Informative Set of Genes, we start by generating a sequence of
alternative multivariate markers. After the optimal biomarker is identified, its genes
are removed from the training data set and feature selection is performed again to
identify the alternative multivariate marker. This process is then repeated—the
genes of the alternative marker are also removed from the training set and a subsequent
alternative marker is identified. The process continues until one of its stopping criteria
is satisfied. For example, when we use the T2-driven heuristic feature selection, the
stopping criterion may be defined by two adjustable parameters:

† min_T2—the minimum required discriminatory power of an alternative multi-
variate marker. This parameter should be set to a T2 value clearly indicating
that discriminatory information of the training data is exhausted. The process
of generating alternative markers ends when the T2 measure of discriminatory
power of subsequently identified alternative markers drops below min_T2.

† max_ALT—the maximum number of identified alternative multivariate markers.

Since the removal of variables selected into subsequently identified alternative
markers decreases the amount of discriminatory information remaining in the training
set, we expect that the discriminatory power of successively identified alternative
markers will also have decreasing tendency. To facilitate the comparison of discrimi-
natory power of subsequent alternative markers and to detect the exhaustion of the dis-
criminatory information of the training set, all of the identified alternative markers
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should be of the same size. This size may be determined by evaluating the discrimina-
tory space of a classifier built on the optimal multivariate biomarker, and by probing
the discriminatory power of multivariate markers of different cardinalities. Usually,
when differentiated classes seem to be quite homogeneous and not too difficult to
separate by a small optimal marker providing relatively large discriminatory power,
the size of alternative markers may be the same as the size of the optimal marker.
Otherwise, this size may be slightly greater than the size of the optimal marker.6 In
Chapter 3, we stated that the preferable size of a truly multivariate biomarker should
not exceed ten variables. The same holds true for alternativemarkers.We do not recom-
mend alternative markers that include more than 10 variables. Such markers would
be likely to overfit their training data and include variables that are less likely to be
important for discrimination and more likely to be selected by fitting noise.

Note:

If no alternative multivariate biomarker of reasonable size and reasonable
discriminatory power can be identified, then it is very likely that the training
data set does not include discriminatory information sufficient for the efficient
discrimination of the represented classes. Even if we have already identified a
single (and seemingly promising) optimal multivariate biomarker, the absence
of alternative markers suggests that this marker is a result of overfitting and
does not represent biological processes associated with class differences.

Selecting the Informative Set of Genes

Todecidewhich alternativemarkers should be included in the Informative Set ofGenes,
we need to select a cut-off point at which significant discriminatory information of the
training set is considered exhausted. Although parametric or nonparametric methods
canbeused for identification of the Informative Set ofGenes,we focus on the parametric
method using theT2measure of discriminatory power.7When using thismethod, theT2

level is an important but not the single factor in deciding about the cut-off point. Please
recall from Chapter 3 that the T2 measure is based on the parametric assumptions of
linear discriminant analysis (such as the multivariate normal distribution of variables
and homogeneity of variance–covariance matrices). Although LDA is quite robust to
violations of these assumptions, known or suspected departures from the assumptions
should be taken into account. Visual examination of the distributions of training sam-
ples in relation to the LDA-defined distributions of the differentiated classes should
provide us with additional information necessary for making the cut-off decision.8

When we plot discriminatory power of subsequent alternative markers, it should
exhibit decreasing tendency that is often well approximated by a logarithmic trend line
(Fig. 4.1). By examining the discriminatory spaces of alternative classification models

6For illustration of both cases, see Chapter 6.
7This method is illustrated by the exercises presented in Chapter 6.
8Among other factors to consider are:
† information about how well the training data represents the underlying populations (this usually

depends on the size of the training set),
† information about potential heterogeneity of classes (for example, when a single class includes distinct

subpopulations—this is common in some multiclass discrimination schemas).
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Figure 4.1: Selecting the Informative Set of Genes. The scatter plot points represent
discriminatory power of the subsequently identified alternative multivariate markers (the plotted
data represent the example discussed in Section 6.3 of Chapter 6). Usually, a strong decreasing
tendency of this discriminatory power can be well approximated by a logarithmic trend line
(a power function may also be tried). Discriminatory spaces and T2 values of alternative
classification models built on the alternative markers represented by the points in area A (above
the T2

A horizontal line and to the left of the vertical line crossing the trend line at T2
A) indicate

good class separation. An example of the discriminatory space and distribution of the training
samples for an average model in area A is shown at the top of the figure (Model A).
Classification models based on markers from area B (below the T2

B horizontal line) cannot
satisfactorily separate even the training samples. An example of the discriminatory space and
distribution of training samples for an average model in area B is shown at the bottom of the
figure (Model B). The trend line crosses the T2

A level of discriminatory power in the vicinity of
alternative markerMa; it crosses T2

B in the vicinity of alternative markerMb. Models built on the
alternative markers represented by the points in the gray areas (between T2

A and T2
B horizontal

lines, and above T2
B and between the vertical lines representing alternative markers Ma and Mb)

may have some border line class separation abilities. Since only two classes are differentiated in
this example, the discriminatory spaces of Models A and B are one-dimensional. The boxes and
vertical offsets of points are used for emphasis only. The boxes represent sections (of the
discriminatory dimension) that enclose 95 percent of the probability in each class. The points
represent samples from the training data set. (See color insert.)
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with different levels of discriminatory power we decide on the T2 cut-off value below
which the alternative models do not provide good separation of the classes.9

Figure 4.1 shows an example of a discriminatory power plot with the marked
areas representing different amounts of discriminatory information. Examination
of alternative models (their discriminatory spaces and distributions of the points
representing reclassification of training samples) based on alternative markers with
different levels of discriminatory power T2 allows for the identification of two
levels of T2: T2

A and T2
B.

Alternative markers with discriminatory power T2 � T2
A are deemed to represent

significant discriminatory information. Alternative markers with T2 , T2
B (area B)

carry no such information. Markers M0 to Ma, identified before the trend line crosses
the T2

A level, seem to tap into significant discriminatory information still present in the
subsequently decreasing set of variables of the training data.10 However, some of them
may be trapped in particularly inefficient local optima, especially when the trend
line approaches the T2

A level. Conversely, some markers identified after Ma may
find local optima with T2 . T2

A. There may be arguments for and against the inclusion
of these two types of markers in the Informative Set of Genes. We recommend to start
by defining the Informative Set of Genes as the set of genes included in the alternative
markers represented by the points in area A (i.e., included in these of M0 to Ma

markers whose discriminatory power is not less than T2
A). We can verify our decision

by estimating residual discriminatory information left in the training set after all
markers of area A are excluded.

Verification of the Informative Set of Genes

To verify our selection of the Informative Set of Genes, we may compare estimated
sensitivity and specificity of average classifiers of the three ensembles:

1. The ensemble built on the entire training set (the same ensemble that was used
for validation of the optimal multivariate biomarker).

2. The ensemble built on the Informative Set of Genes.

3. The ensemble built on the training set without variables included in the
Informative Set of Genes.

In each case, the modified bagging schema may be used to build a large number
(hundreds or thousands) of classifiers trained on a particular proportion of biological
samples randomly selected from the original training set. Independent feature selection
is performed on each bootstrap training set and each classifier is built on its own multi-
variate biomarker of the same size as the size of the previously identified optimal bio-
marker. For each of the three ensembles, the average sensitivity and specificity of its
classifiers is estimated via classification of the OOB samples. The classifiers built on
multivariate markers selected from the Informative Set of Genes are expected
to provide similar results as the classifiers built on markers selected from the entire

9Most often, this cut-off level is in the range between T2 ¼ 3 and T2 ¼ 5.
10M0 denotes the optimal multivariate biomarker; the first alternative marker is denoted M1, the second M2,
etc.
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training set (the results may even be better since the multivariate markers selected from
the Informative Set of Genes should be less likely to fit noise). The sensitivity or speci-
ficity of the classifiers built on markers selected from the training set that does not
include the Informative Set of Genes is expected to be significantly lower and too
low for efficient classification. For example, in the exercise described in Section 6.3
of Chapter 6, the average sensitivity drops more than 20 percent (from 98.2 percent
for the ensemble using only the Informative Set of Genes to 77.1 percent for the ensem-
ble using all variables but the ones included in the Informative Set of Genes).

4.3.2 Primary Expression Patterns of the Informative Set
of Genes

Usually, the optimal multivariate biomarker consists of up to ten genes (see Chapter 3)
whereas the informative set—of hundreds of them. Since our Informative Set of Genes
is identified in a multivariate way, it has a much better chance of pointing to all bio-
logical processes significant for differences between classes than sets identified via
univariate or univariately-biased approaches. The biological processes, which by
themselves—in isolation from other processes—are not crucial for the class differ-
ences, cannot be identified by univariate methods. However, such processes may be
very important when considered together with other biological processes.
Multivariate approaches are capable of extracting such relations.

We assume that the Informative Set of Genes includes all gene expression pat-
terns associated with biological processes important for the differentiation of classes
represented in the training data. To facilitate biological interpretation of class differ-
ences, we will identify these patterns. Various clustering methods may be used to
group genes with similar expression patterns. Please note that the unsupervised
approach is used here after the supervised analysis is performed, when we already
know that the clustered genes of the Informative Set of Genes are associated with
differences between the classes of interest.11

Clustering Genes of the Informative Set of Genes

Self-organizing maps (SOM) and hierarchical clustering are methods frequently used
for grouping genes by their expression patterns. SOM clustering (see Chapter 2) is
usually more informative since it preserves relations between groups of genes—
expression patterns of neighboring clusters are more similar to each other than to pat-
terns of clusters that are farther away on the grid. Like for other clustering methods,
results of SOM clustering depend on the distance measure and other parameters of
the clustering process (such as the grid topology, the learning rate, or the definition
of a local neighborhood). To group genes with similar shapes of their expression pat-
terns across samples (rather than grouping genes with similar expression levels), we
may use the correlation distance. As for the topology of the self-organizing map
and the number of output layer’s neurons, we may use a rectangular grid with the
number of neurons corresponding to the average cluster size of 20–25 genes.

Sizes of the identified clusters may vary significantly. The size of alternative mark-
ers has been selected in a way that provides a good compromise between overfitting and

11We do need to guess whether a gene correlated with a gene associated with class differences is also impor-
tant for class separation—all genes of the Informative Set of Genes were deemed as such.
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generalization. Furthermore, the alternative markers selected into the Informative Set of
Genes have been identified when their training data sets still included a significant
amount of discriminatory information. Nevertheless, it is possible that some genes
included in some of these alternative markers were selected due to fitting noise.
However, we may assume that it is quite unlikely that the same noise-fitting pattern
was selected into many alternative markers. This suggests that clusters with one or very
few genes may represent expression patterns selected into alternative markers by chance.

Using Ensembles of Classifiers to Identify Primary Gene Expression Patterns

To identify primary expression patterns (the patterns that are associated with the
most important biological processes underlying class differences), we examine the
distribution of each cluster’s genes among a large number of classifiers built with
the modified bagging schema. We use two of the three ensembles of classifiers
generated and used for the verification of the Informative Set of Genes—one built
on the training set including all variables, the other built on the variables of the
Informative Set of Genes only.

For each cluster and ensemble combination, we calculate two parameters:

Cluster Use—a number of times the cluster genes are selected into the ensem-
ble’s classifiers.

Average Use of Cluster Genes—Cluster Use divided by the number of genes in
the cluster. This represents the average number of times a gene from the clus-
ter is selected into the ensemble’s classifiers.

We can calculate these parameters either using all classifiers of an ensemble or only
those that provide accurate or perfect classification of their respective OOB samples.
Let us define the latter.

Perfect OOB Classifier—a classifier that correctly classifies all of its OOB
samples.

Accurate OOB Classifier—a classifier that correctly classifies at least a particu-
lar proportion of its OOB samples (e.g., at least 90 percent of its OOB
samples).

When classes can be efficiently separated and the OOB-based estimates indicate
high sensitivity and high specificity of average classifiers of the two ensembles, we
may expect that either of these approaches would identify the same set of clusters
that are most often used by the classifiers of the two ensembles.12 These primary
clusters represent the primary expression patterns.

Primary Clusters—clusters (of the Informative Set of Genes) with the highest
average use of their genes by classifiers of the two ensembles—one ensemble
built on the entire training data set, the other built on the training set including
only genes from the Informative Set of Genes.

12If there are discrepancies, priority is given to the classifiers built on the Informative Set of Genes since the
ones built on the training set including all variables may be more prone to fitting noise.

210 CHAPTER 4 THE INFORMATIVE SET OF GENES



Primary Expression Patterns—gene expression patterns represented by the
primary clusters.

For example, in the exercise sketched in Section 6.3 of Chapter 6, the same four
clusters are at the top of all four lists of clusters sorted in descending order of the
average use of cluster genes. The four lists represent the four combinations of the
two ensembles and two ways of calculating cluster use—one including all classifiers,
the other including only the perfect OOB classifiers (see Table 4.1).

Although all clusters (with the possible exception of ones that include only very
few genes that are rarely selected into ensemble classifiers) of the Informative Set
of Genes may be used for biological interpretation, priority should be given to the
primary clusters since they are most likely associated with biological processes that
are most important for class differentiation.

4.3.3 The Most Frequently Used Genes of the Primary
Expression Patterns

The genes included in the primary clusters (that represent the primary expression
patterns of the Informative Set of Genes) are not necessarily equally important for
classification and for elucidation of biological processes associated with class differ-
ences. We make the assumption that the genes that are most often selected into the per-
fect OOB classifiers (which are built from training sets consisting of randomly selected
subsets of all training samples) are most important for class discrimination. To identify
such genes, we analyze the distributions of the primary cluster genes among the per-
fect OOB classifiers of the same two ensembles built on the Informative Set of Genes
and on all variables. We introduce two additional definitions:

Frequent Primary Genes—the genes of the primary clusters that are selected
into at least a particular proportion (for example, one percent) of perfect
OOB classifiers of the ensemble built on the training set including only
genes of the Informative Set of Genes.

Most Frequent Primary Genes—the genes of the primary clusters that are
selected into at least a particular proportion of the perfect OOB classifiers
of each of the two ensembles (one built on all variables, the other on the
Informative Set of Genes).

The frequent primary genes or the most frequent primary genes may be used to rep-
resent the primary expression patterns if we prefer to focus our biological inter-
pretation on a smaller number of genes than all the genes included in the primary
clusters. These genes may also be important for identification of robust multivariate
biomarkers.

4.4 USING THE INFORMATIVE SET OF GENES TO
IDENTIFY ROBUST MULTIVARIATE BIOMARKERS

Although our initial reason for identification of the Informative Set of Genes was to
facilitate elucidation of biological processes associated with class differences, we
can also use the Informative Set of Genes, its primary expression patterns and its
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frequent primary genes for regularization of feature selection that may lead to identi-
fication of a more robust biomarker.

One of prerequisites of building the sequence of alternative biomarkers was the
identification of a parsimonious multivariate biomarker13 and its positive validation
(for example, by estimating sensitivity and specificity of an average multivariate
biomarker of the same size by classification of OOB samples of a large number
of classifiers built from randomized training sets). Now, we can limit our heuristic
search to the frequent primary genes. Since they represent the primary expression
patterns associated with class separation and are frequently used by the perfect
OOB classifiers, we may expect that their optimal combination will provide not
only a more robust multivariate biomarker, but also one with a plausible biological
interpretation.14 If we have an independent test data set and have not used it yet, we
should use it now to validate our final multivariate biomarker.

4.5 SUMMARY

We described amethod for the identification of the Informative Set of Genes, which we
defined as a set of genes containing all of the discriminatory information significant for
differentiation of phenotypic classes represented in the training data set. We also
demonstrated the utilization of the ensemble paradigm in validation of multivariate
biomarkers, in verification of the Informative Set of Genes, and in identification of
more robust biomarkers.

The search for the Informative Set of Genes is performed after we have evidence
that the training data support identification of parsimonious and generalizable multi-
variate biomarkers. This is done by the identification and validation of a multivariate
biomarker that represents optimal compromise between overfitting and generalization
(i.e., is small enough to minimize the danger of overfitting, but large enough to allow
for the accurate classification of new samples). This optimal multivariate biomarker
is a small set of genes whose joint expression pattern provides satisfactory class
separation. We estimate the generalization abilities of the optimal biomarker by clas-
sifying the OOB samples of a large number of classifiers built using the modified
bagging schema.

While it is possible that this optimal biomarker can correctly classify new
cases,15 a small set of genes included in this marker does not necessarily provide

13Recall that we called this marker an “optimal” multivariate biomarker since it was the best compromise
between overfitting and generalization we were able to achieve before the identification of the
Informative Set of Genes. Now, using a set of the frequent primary genes, we may be able to find a more
robust biomarker.
14Different algorithms may result in different sets of genes deemed as an optimal multivariate biomarker.
However, those seemingly different results may represent a stable solution to the classification problem,
as long as these different sets of genes represent the same set of biological processes.
15Our OOB-based validation gives us information about the classification efficiency of an average bio-
marker of the size of the optimal biomarker. Although it can be used as an indication of accuracy of the opti-
mal biomarker, we will not be sure about the actual performance of this particular biomarker until we test it
on an independent test set.
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Figure 4.2: The key steps in the identification of the Informative Set of Genes. First, the
optimal multivariate biomarker is identified and validated. If it can be well generalized, a
sequence of alternative multivariate markers is generated. The discriminatory power of these
alternative markers and the discriminatory spaces of (based on them) alternative classification
models are analyzed and a candidate informative set of genes is selected. Then, using ensembles
of classifiers built on randomized training sets, we verify whether the informative set of genes
includes all significant discriminatory information.
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insight into biological processes underlying class differences. The primary reason for
identifying a larger Informative Set of Genes is to facilitate biological interpretation of
gene expression patterns associated with class differences.

To identify the Informative Set of Genes we generate a sequence of alternative
multivariate markers. Each of them is a result of the heuristic feature selection process
performed on training data from which all the variables selected into the optimal bio-
marker and into all previously identified alternative markers are removed (see
Fig. 4.2). The Informative Set of Genes is defined as the set of genes included in
the alternative markers whose discriminatory power is above a particular level and
which are identified before the significant discriminatory information of the training
data is deemed exhausted.

By its definition, the Informative Set of Genes contains all of the significant dis-
criminatory information. As such, it should include all the gene expression patterns

Informative Set of Genes

Figure 4.3: The analysis of the Informative Set of Genes. First, the genes of the Informative
Set of Genes are clustered by their expression patterns. Then two ensembles of classifiers built
via themodified bagging schema are used to identify the primary clusters. These are the clusters
whose genes are most frequently used by the ensembles’ classifiers. By analyzing the distri-
bution of individual genes of the primary clusters among the perfect OOB classifiers of both
ensembles, we identify the frequent primary and themost frequent primary genes. These are the
genes that are most important for biological interpretation of class differences as well as for
identification of robust multivariate biomarkers.
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associated with biological processes whose combinations may lead to class distinc-
tion. To identify these patterns, we perform clustering of the Informative Set of
Genes. Then, using the ensemble approach and the modified bagging schema, we
evaluate the importance of each of these patterns. Two ensembles of classifiers are
used for this purpose—one built on the training set including all variables, the other
built on the training set including only genes of the Informative Set of Genes. The
more important the pattern is for classification, the more classifiers will include
genes from the pattern. By examining the distribution of each cluster’s genes
among classifiers of the two ensembles, we identify the primary clusters and the pri-
mary expression patterns (see Fig. 4.3). Although all clusters of the Informative Set of
Genes may be used for biological interpretation, we hypothesize that the primary
expression patterns represent biological processes whose combinations are most
important for class differentiation.

After finding the primary expression patterns of the Informative Set of
Genes, we are looking at the individual genes included in the primary clusters
representing these patterns. By analyzing the distribution of these genes among
the perfect OOB classifiers (of the same two ensembles we used for finding the
primary clusters), we identify a set of frequent primary genes and its subset of
the most frequent primary genes. These are the genes that are most often selected
into the classifiers that perfectly classify their OOB samples. For biological
interpretation of class differences, we should focus first on the frequent primary
genes. Whereas a single multivariate biomarker includes only a few genes and
while the Informative Set of Genes usually consists of a few hundred genes, the
set of frequent primary genes may represent the optimal amount of information
allowing elucidation of biological processes underlying phenotypic differences
between classes. If necessary, biological interpretation may be stratified into four
layers that will be based on: the most frequent primary genes, the frequent primary
genes, all genes of the primary expression patterns, and eventually on the entire
Informative Set of Genes.

Finally, we described another important utility of the Informative Set of Genes.
In addition to its primary function of facilitating biological interpretation of class
differences, we can use the Informative Set of Genes, its primary expression patterns
and its frequent primary genes for identification of potentially more robust biomarkers.
For example, if we limit heuristic feature selection to the frequent primary genes, we
may expect that their optimal combination will provide a robust multivariate bio-
marker with a plausible biological interpretation.

EXERCISES

4.1 Select a publicly available gene expression microarray-based data set with two or three
classes (diseases, therapy outcomes, phenotypes, biological states, etc.) and at least 50
(preferably more) biological samples. Select a biomedical area that you are interested
in. If you do not have preferences, consider cancer- or CNS-related research. You may
reuse one of the data sets identified for the Chapter 2 or Chapter 3 exercises, if it fits
this description. Perform all steps necessary for preparation of the training data set.
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a) If only raw data (CEL files) are available (or if you are not sure how the available probe
set level data was preprocessed), perform low-level preprocessing. Use the Expression
Console software or other low-level preprocessing software of your choice.

b) Having probe set level expression data available, perform quality control of the data
and any necessary additional scaling, normalization, or transformation.

c) Filter out variables that are unreliable or represent experimental noise.

d) Prepare the training set in the form of a gene expression matrix.

4.2 Using the training data set prepared in Exercise 4.1, identify the Informative Set of Genes.

a) Perform feature selection experiments resulting in multivariate biomarkers of different
cardinality (number of variables included in the set). Decide on the optimal size of
the multivariate marker—your optimal biomarker should be a small set of genes
with satisfactory discriminatory power.

b) Estimate the generalization abilities of the optimal biomarker using the ensemble-
based validation. Use the bagging (or modified bagging) approach to generate boot-
strap training sets, and build an ensemble of at least 500 classifiers. If the results of
OOB classification are satisfactory, proceed to step (c). Otherwise consider different
cardinality of a biomarker or use a different data set.

c) Generate a sequence of alternative multivariate biomarkers.

d) Investigate discriminatory power of subsequently identified alternative markers and
discriminatory spaces of alternative models. Decide on the cut-off defining the
Informative Set of Genes.

e) Prepare a second training set including only the genes from the Informative Set of
Genes.

4.3 Verify your selection of the Informative Set of Genes using three ensembles of at least 500
classifiers each:

a) The ensemble built on the entire training set.

b) The ensemble built on the Informative Set of Genes.

c) The ensemble built on the training set without variables included in the Informative Set
of Genes.

4.4 Using hierarchical clustering or self-organizing maps, group genes of the Informative Set
of Genes into clusters of similar gene expression patterns.

4.5 Identify primary expression patterns by examining the distribution of each cluster’s genes
among classifiers of the ensembles (a) and (b) from Exercise 4.3.

4.6 Using the same two ensembles (as in Exercise 4.5), identify the set of frequent primary
genes and its subset of the most frequent primary genes. To achieve this, examine the dis-
tribution of individual genes of the primary clusters among classifiers of the two
ensembles.

4.7 If you have biology background, try to provide a biological interpretation of the most fre-
quent primary genes. You may extend your interpretation to all frequent primary genes,
and then to biological interpretation of the primary gene expression patterns.
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4.8 In a search for robust multivariate biomarkers with a plausible biological interpretation,
perform feature selection limited either to frequent primary genes or to the Informative
Set of Genes.

a) Use more than one method of feature selection to identify more than one parsimonious
multivariate biomarker.

b) Use more than one learning algorithm to build classifiers based on the biomarkers
identified in step (a).

c) Test the classifiers on an independent test set and compare their performance.
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CHA P T E R5
ANALYSIS OF PROTEIN
EXPRESSION DATA

5.1 INTRODUCTION

The Human Genome Project, rapidly developing technology for more efficient
genome-level sequencing, and mature gene expression microarrays are the main
factors in the unprecedented change in the way biomedical research is conducted.
Statistics, data mining, multivariate analysis, and computer science met to change
the face of computational biology and create bioinformatics. Steady advances in
sequencing and microarray technologies have been driving quantitative evolution of
genomic research. The next, qualitative leap is expected when protein chip technology
matures. Large-scale proteomic studies utilizing direct and simultaneous measurement
of protein expression at a whole-proteome level will follow.

Proteomics can be defined as the study of proteins, their structures and functions,
their post-translational modifications, interactions with other proteins, and their role in
the metabolic pathways. The ultimate goal of proteomics is to study all proteins within
a cell or tissue. As proteins are direct players in cell physiology, analysis of their
expression should yield better understanding of biological processes. High throughput
proteomic techniques coupled with multivariate analysis may enable the investigation
of disease-related processes at the individual patient level (Gulmann et al. 2006).
Multi-protein expression patterns may be used as biomarkers for early diagnosis, per-
sonalized therapy selection, evaluation of treatment results, drug discovery, and in
other situations where we want to assign a new sample to one of the differentiated
classes. To support personalized medicine, a disease may be redefined in a way that
will partition the disease into segments according to characteristic molecular profiles.
In genomics, the profile is a gene expression pattern. Proteomics, however, is capable
of deeper partitioning since a disease with the same clinical characteristics and the
same gene expression pattern may still be associated with different protein expression
patterns (DePalma 2003).

Due to alternative splicing, post-translational modifications, and interactions
between proteins, the human proteome is much larger than the human genome.
Current estimates of the size of the human proteome range from several hundred thou-
sand proteins to one million proteins (Pollard et al. 2008). Gene expression analysis,
even when performed at the whole-genome level, cannot elucidate processes such as
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post-translational modification of proteins, or protein–protein interactions. Many
cellular functions cannot be appropriately analyzed at the level of gene expression
(Maercker 2005).

The main difficulty in protein chip technology is related to the three-
dimensional structure of a protein molecule, which is the crucial factor since protein
functions are determined by their three-dimensional folding. The genomic microarray
technology of printing DNA on a two-dimensional surface cannot be applied to
proteins. Proteomic material immobilized on the microarray has to be fully functional
and in such a position that its biding sites are accessible to target molecules (Tanaka
et al. 2006). Furthermore, whereas in DNAmicroarrays, immobilized probes and their
targets represent complementary strands of DNA that can hybridize, protein micro-
arrays require high-affinity capture reagents (such as antibodies) that will bind
target proteins. Yet another challenge in proteomics and proteomic arrays is detection
of low-abundance proteins—there are no protein amplification techniques such as
polymerase chain reaction (PCR)1 widely used in genomics.

Many companies are developing protein arrays, but we are yet to see a high-
throughput technology that would allow simultaneous and direct measurement of
expression of hundreds of thousands of proteins, and eventually the entire human
proteome.

For researchers involved in genomics since its beginning, the current tech-
nologies of proteomics recall those of genomics in the 1990s. Then, before the
completion of the draft version of the human genome and before the maturity of
genomic microarray technologies, electrophoresis-based studies were the main
stream of gene expression analysis. The main advantage of electrophoresis-based
experiments was the ability to identify (and quantify) any sequence, whether known
or unknown. In contrast to this unbiased technology, microarray experiments are
biased—gene expression can be measured only for the known sequences (correspond-
ing to genes or tentative genes) that are represented by probe sets on the array. The
main advantage of microarray technologies is, however, the direct measurement of
gene expression whereas electrophoretic experiments resulted in intensities of bands
representing the abundance of DNA fragments with approximately known lengths
and known sequences of few nucleotides on both ends.2 A many-to-many relationship
between the bands and genes (or unknown sequences) required specialized algorithms
for ‘translation’ of the band data into gene expression data; see for example
(Bader et al. 2006). As evolving microarrays were covering more and more known
sequences, electrophoresis-based genomic studies were vanishing from the gene
expression research.

1Polymerase chain reaction (PCR) is a widely used method for amplification of the amount of a specific
DNA fragment. The reaction is performed in cycles and the amount of target DNA is amplified exponen-
tially (theoretically, it is doubled at each cycle) (Garrett and Grisham 2007).
2Restriction enzymes are proteins that cut DNA in specific locations corresponding to known recognition
sequences. The resulting DNA fragments are then separated by their length during gel electrophoresis.
Because the enzymes cut DNA in known spots, the experimental length of the fragments (bands) could
be compared with the results of ‘theoretical’ digestion of DNA sequences.
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Although biased proteomic technologies (such as antibody or protein micro-
arrays) are constantly evolving,3 they have yet to achieve a high-throughput whole-
proteome level of direct measurement of relative protein expression. Unbiased and
indirect proteomic technologies, such as mass spectrometry and two-dimensional
gel electrophoresis, are still the flavor du jour.

In this chapter we will discuss both approaches. Our main focus—as in Chapter
3—will be multivariate biomarker discovery, which for proteomics means the identi-
fication of a small set of proteins whose joint expression pattern can separate the dif-
ferentiated classes and can be used for efficient classification of new cases.

Multivariate Proteomic Biomarker

Asmall set of proteins, or variables representing proteins (for instance, a small
set of m/z mass spectrometry peaks) whose joint expression pattern can
significantly separate the differentiated classes. Such a set can be used to
build a classification system capable of accurate prediction of class member-
ship for new samples. Analogically as for multivariate genomic biomarkers,
the stress here is on the predictive power of the set of proteins rather than
on the discriminatory power of individual proteins. Similarly as in genomics,
a commonmisconception in early proteomic biomarker discovery studies was
the assumption that each protein included in a multi-protein biomarker has to
be individually correlated with the disease or phenotype.

Before moving on to the first topic (protein chip technologies), we start
with the introduction of a few basic terms (Ganten and Ruckpaul 2006; Eidhammer
et al. 2007):

Antibody

Antibodies (or immunoglobulins) are proteins used by the immune system to
bind with specific antigens of foreign cells (to neutralize bacteria or viruses).

Antigen

Antigens are foreign molecules that trigger antibody generation in the
organism.

Peptide

Peptides are short chains of amino acids (not longer than several dozen amino
acids). Longer chains of amino acids are called polypeptides.

Polypeptide

A macromolecular chain of amino acids. A polypeptide may be a protein or
one of its components.

Protein

A protein is a macromolecule composed of one or more polypeptides. In
some texts, each of these single polypeptide chains is called a protein, and
assemblies of polypeptides are called protein complexes.

3The concept of multi-analyte assays for simultaneous measurement of concentration of hundreds of
proteins was introduced about 20 years ago (Ekins 1989).
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Enzyme

Enzymes are proteins that act as catalysts of biochemical reactions.

Molecular mass (m)

The mass of a single molecule of a substance. The molecular mass is com-
monly expressed in Daltons. Dalton (Da) is defined as 1/12 of the mass of
the carbon isotope 12C, and equals approximately 1.661 � 10224 g.

Isoelectric point (pI)

The isoelectric point of a protein is defined as the pH value of a solution at
which the protein is electrically neutral. pH, or potential of Hydrogen,
measures the acidity of a solution and is defined as the negative common log-
arithm of the concentration of Hþ (hydrogen ions) in the solution. Neutral
solutions have pH ¼ 7 (2log10 10

27). A protein has a net positive charge
at pH lower than its isoelectric point, and a net negative charge at pH
higher than its isoelectric point.

Peptide-mass fingerprint

A set of molecular masses of the peptides that are generated by enzymatic
digestion of a protein. The peptide masses are determined by mass spec-
trometry. The resulting peptide-mass fingerprint is used for protein identifi-
cation by comparing the fingerprint to the peptide masses calculated for a
theoretical (in silico) digestion of protein sequences in a database.

5.2 PROTEIN CHIP TECHNOLOGY

The ultimate goal of protein chip technology supporting the analysis of protein
expression for biomarker discovery is the development of whole-proteome micro-
arrays. Such arrays would enable direct and simultaneous measurement of expression
levels of all of the proteins of a proteome as large and complex as the human proteome.
Another major goal of protein chip technology is the identification of protein functions
on a whole-proteome scale. The whole-genome DNA microarrays—although techno-
logically much more mature than proteomic microarrays, and very important for bio-
medical research—cannot elucidate processes such as post-translational modification
of proteins, or protein–protein interactions. Although our focus is analysis of protein
expression data, in this section we will describe the currently most popular types of
protein chips, whether their main application is protein expression profiling or protein
functional analysis.

Protein microarrays can be divided into two categories: forward-phase micro-
arrays and reverse-phase microarrays. The forward-phase protein microarrays consist
of molecules (such as antibodies, proteins, protein fragments, enzymes, or peptides)
immobilized in a matrix pattern on small surfaces (coated glass slides, microplates
or membranes). These immobilized capture molecules, or detector molecules, are to
react with proteins of the analyzed samples, or analytes, in order to determine the pres-
ence, and to measure abundance, of target proteins. The most popular among the for-
ward-phase arrays are the antibody microarrays that use protein-specific antibodies as

222 CHAPTER 5 ANALYSIS OF PROTEIN EXPRESSION DATA



the immobilized capture molecules. The protein microarrays with immobilized pep-
tides or whole proteins that are used as the capture molecules are among other popular
forward-phase arrays. In reverse-phase proteinmicroarrays, the analytes (the samples to
be analyzed) are immobilized on the array surface. This allows for the simultaneous
analysis of small amounts of tissue from many samples.

Depending on the design of protein microarrays, either the analytes or the detec-
tion molecules are labeled in a way that allows for their quantification. The common
methods of labeling include fluorescence, chemiluminescence, and radioactivity.
Fluorescent labeling is currently the most popular one (Korf 2006).

The analysis of protein expression data generated by biased protein chip tech-
nologies is similar to the analysis of gene expression data. Once the signal associated
with the targeted proteins is measured and the raw data is available, the data has to be
preprocessed to represent the concentration of each of the targeted proteins in each of
the analyzed biological samples. Although details of the preprocessing depend on a
particular microarray technology and the labeling method used in the experiment,
the general approach to preprocessing is similar to that previously described for the
gene expression microarrays. The measured intensities have to be adjusted for back-
ground, quality controlled, normalized across all arrays of the experiment and log trans-
formed (if necessary). After this low-level preprocessing, we have the experimental
data in the form of a protein expression matrix, akin to the gene expression matrix
described in Chapter 2. The rows of the protein expression matrix represent the
targeted proteins (either directly or via the capture or detection molecules associated
with the proteins), and the columns represent the analyzed samples. Each data point
(a cell in the protein expression matrix) represents the concentration of a protein
(row) in a sample (column). Once the data is represented in the form of the protein
expression matrix, the same methods of the basic exploratory analysis and the more
advancedmultivariate supervised or unsupervised analysis can be applied as described
in Chapters 2 and 3 in relation to data represented by the gene expression matrix.

5.2.1 Antibody Microarrays

Antibody microarrays are currently most popular among the protein chips. They are
protein-detection and profiling arrays. Protein-specific antibodies are immobilized
on the solid surface of a chip in such a way that they are biologically active and may
interact with proteins or antigens (Tanaka et al. 2006; Astle and Kodadek 2008).
Due to similarities in the structure of antibodies against different proteins, these
arrays can be manufactured with standardized spotting conditions. Similarly as DNA
microarrays are used for gene expression profiling, the antibody microarrays can be
used to quantify the concentration of specific known proteins (Maercker 2005). In par-
ticular, theymay be used for biomarker discovery, that is, to identify a subset of proteins
whose joint expression pattern can differentiate between disease states. As the concept
of antibody-based protein detection is well known and commonly used in ELISA
(enzyme-linked immunosorbent assays), the antibody microarrays can be seen as the
multiplexed form of the ELISA technique. The microarrays, however, allow for simul-
taneous detection of hundreds of protein targets, are more sensitive and require a much
smaller amount of biological material (Pang et al. 2005; Korf 2006).
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There are two types of antibody microarrays—sandwich technology arrays and
single-antibody technology arrays (Figs 5.1 and 5.2). In the sandwich type arrays, two
protein-specific antibodies are used for each target protein. Capture antibodies are
immobilized on the array to bind first with the sample proteins. Then fluorescently
labeled protein-specific detection antibodies are added to bind with the captured pro-
teins and allow for their quantification. The requirement that two independent protein-
specific antibodies bind to each targeted protein increases the specificity of protein
identification.

In the single-antibody arrays, the analyzed samples are themselves labeled
allowing for direct detection of proteins bound to the immobilized capture antibodies.
This approach allows for identification of proteins for which paired antibodies are not
known. However, as all proteins in the analyzed sample are labeled, background noise
increases.

Labeled
detection antibody

Capture antibody

Target protein

Figure 5.1: Sandwich type of antibody microarray technology.

Labeled target protein

Capture antibody

Figure 5.2: Single-antibody type of antibody microarray technology.
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5.2.2 Peptide Microarrays

Peptide chips are microarrays consisting of thousands of immobilized peptides playing
the role of capture molecules. Since many protein activities are directed towards pep-
tides, the peptide microarrays can be used to study diverse biological or biochemical
activities of proteins (Min and Mrksich 2004; Volkmer-Engert 2006). Fluorescent
labeling of samples is a typical method of detecting proteins bound to the array pep-
tides. Two main approaches are used to generate peptide arrays. One is the in situ syn-
thesis of peptides, and the other is the immobilization, on the array surface, already
synthesized peptides.

The in situ approach is usually implemented either by utilizing photolitho-
graphic synthesis (Fodor et al. 1991) or the SPOT-synthesis technique (Frank
1992). The mask-based photolithographic technology is similar to one used in man-
ufacturing Affymetrix gene expression microarrays. Peptide sequences are syn-
thesized in parallel directly on the microarray surface—amino acid by amino acid—
by adding at each step a single amino acid to each of the currently unmasked spots.
Since preparation of photomasks is both expensive and time consuming, other photo-
lithographic approaches have been proposed. One of them is the light-activated paral-
lel synthesis of peptides that utilizes digital photolithography and photogenerated
reagent chemistry (Pellois et al. 2002; Gao et al. 2004). The SPOT in situ technique
allows for manual or automated synthesis of peptides by delivering small volumes
of activated amino acids to addressable spots of a membrane support (such as pure cel-
lulose chromatography paper). Although the SPOT-synthesis technique does not
result in array densities as high as achieved by photolithographic approaches, it is
very flexible and does not require any expensive equipment (Frank 2002). Another
main approach to preparation of peptide microarrays is to immobilize, on the array,
already presynthesized peptides. This method is preferable in situations when we
want to use the same set of peptides to prepare a large number of identical microarrays.

5.2.3 Protein Microarrays

Protein microarrays consisting of thousands of immobilized complete proteins can be
used as functional assays enabling high-throughput detection of protein biochemical
activities or protein interactions with proteins and other biomolecules (Ge 2000;
Maercker 2005). “The ultimate form of a functional protein array would consist of
all of the proteins encoded by the genome of an organism” (Schweitzer et al.
2003). To build a whole-proteome array, we need to know the sequence of an organ-
ism genome and all of its open reading frames (ORFs).4 Each ORF needs to be cloned
and then used in protein production and purification. Such prepared proteins
are spotted onto the microarray surface (Kung and Snyder 2006). Although whole-
proteome microarrays can already be built for such organisms as yeast (Zhu et al.
2001), due to the much higher complexity of the human proteome we are yet to see
functional arrays for the complete human proteome (Korf 2006).

4Open reading frame is a sequence of nucleotides that could potentially encode a protein or an RNA product.
The sequence begins with the start codon (ATG) and ends with one of the three stop codons, TAA, TAG, or
TGA (Singleton 2008).
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5.2.4 Reverse Phase Microarrays

Protein chips with immobilized capture molecules, such as those described in previous
sections—antibody, peptide, and protein arrays—are called forward-phase protein
microarrays. Another type of protein chips are reverse-phase microarrays (Paweletz
et al. 2001), in which the samples to be analyzed (rather than the capture molecules)
are spotted on the microarray. Then an antibody for a specific protein can be used to
assess the abundance of this target protein in the samples. The reverse-phase protein
microarrays consist of immobilized tissue or cell lysates,5 thus each microarray spot
may represent the whole proteome of a particular cell or tissue.6 These arrays can
be used to study protein modifications and the differences in their expression levels
among groups of cells or tissues. This may lead to the identification of proteomic bio-
markers specific to diseases or their states. Since samples from hundreds, or even thou-
sands, of patients can be spotted on a single array, this technology allows for screening
such groups of samples for the presence, or absence, of specific target proteins.
Coupling reverse-phase microarray technology with laser capture microdissection
allows for the analysis of samples represented by specific subpopulations of tissue
cells (Charboneau et al. 2002; Hamdan and Righetti 2005; Astle and Kodadek
2008). Various applications of the reverse-phase protein microarrays have been
recently reported. These applications include the detection of changes in protein
expression in response to different treatments, studying dynamics of protein signaling
networks, analyzing sensitivity of cell lines to a compound, preclinical biomarker dis-
covery, and the validation of potential drug candidates (Balboni et al. 2006; Glaser
2007; VanMeter et al. 2007; Spurrier et al. 2008).

5.3 TWO-DIMENSIONAL GEL ELECTROPHORESIS

Two-dimensional gel electrophoresis (2D gel electrophoresis) is unbiased technology
used in proteomics for the identification and quantification of proteins by separating
them in two dimensions. Known since the 1970s (O’Farrell 1975), 2D gel electro-
phoresis is still the core technology of proteomic studies (Donoghue et al. 2008).

In the first dimension, the proteins are separated by their isoelectric point
(charge).7A pHgradient (usually, strips of chemical compounds arranged in increasing
order of their pH values) is embedded into a polyacrylamide gel8 and then an electric
field is generated by applying an electric potential to the gel across the pH gradient.
The sample proteins that have a positive charge will move towards the negative
electrode, and those negatively charged towards the positive one. The migration of

5A lysate is a solution that contains cells whose cellular membrane has been broken. This allows for the
analysis of the cell proteins.
6Sometimes the cell or tissue lysates are separated into fractions to decrease the number of proteins at each
spot.
7The separation of analytes by their isoelectric point is called isoelectric focusing (Ganten and Ruckpaul
2006).
8A polyacrylamide gel is commonly used in 2D gel electrophoresis experiments. Therefore, the technique is
often called two-dimensional polyacrylamide gel electrophoresis, or 2D-PAGE (Jungblut 2006).
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each protein will stop once the protein become electrically neutral. This will happen
when the protein enters the pH zone corresponding to its isoelectric point.

In the second dimension, orthogonal to the first one, the sample proteins are
separated by their molecular mass. To make the protein progress through the gel
dependent on their masses, their natural three-dimensional forms have to be unfolded.
This is achieved by denaturing them with sodium dodecyl sulfate (SDS). SDS is not
only unfolding proteins into rodlike-shaped particles, but it also makes them nega-
tively charged, with the charge proportional to the protein mass (which means that
the net charge per unit mass is approximately the same for most of the proteins).
An electric field is generated again, this time in the direction orthogonal to the direc-
tion of the electric field used for the separation by charge. The sample proteins will
move towards the current position of the positive electrode. Their velocities will
depend on the lengths of their unfolded rodlike forms (Hamdan and Righetti 2005;
Eidhammer et al. 2007). Since these lengths are proportional to proteins’ molecular
masses, the velocity of the protein migration will be approximately in reverse pro-
portion to their masses. Smaller proteins will move faster. When the smallest of
them reaches the end of the gel, the electric field is turned off and all sample proteins
are immobilized at spots whose spatial coordinates depend on their isoelectric points
and molecular masses. Since the isoelectric point and the molecular mass are inde-
pendent protein properties, separation by both of them may result in a quite uniform
distribution of proteins across the two-dimensional area of the gel (O’Farrell 1975).

To visualize and detect protein spots in the gel, staining with fluorescent or non-
fluorescent dyes or metals (usually silver), or radioactive labeling can be used.
However, none of these detection techniques can simultaneously achieve all of the
sensitivity, reproducibility, and linearity requirements that would guarantee accurate
quantification of all types of proteins. Due to this and other limitations of 2D gel
electrophoresis, low abundant proteins, proteins with very small or very large
masses, and proteins with very low or very high values of their isoelectric point are
often not detected. Furthermore, some spots may contain more than one protein
posing an additional challenge for protein quantification. (Beranova-Giorgianni
2003; Jungblut 2006; Eidhammer et al. 2007; Donoghue et al. 2008).

Once the gel is scanned, its digital image is used as the raw data for further analy-
sis. Spots (representing proteins) are identified and their intensities are quantified,
adjusted for noise and for the background, and normalized across the gel. Data for
each spot include its spatial coordinates, spot size, and its normalized intensity.
Since each gel represents a single biological sample in the experiment, the spots
have to be matched across all of the gels (usually, standard reference spots are used
to align the gels). After preprocessing, the format of the data used for statistical analy-
sis can be similar to the gene expression matrix, with the variables (rows) being here
the spots representing different proteins, columns corresponding to samples, and data
points representing the spot intensities. The same univariate and multivariate methods
(as used for the gene expression data) can be applied to identify differentially
expressed variables or multivariate biomarkers.

However, once such spot variables are selected, they have to be traced back to
proteins. The spatial characteristics of the spots, which are translated into the approxi-
mate mass and charge values, may be used to associate the spots with the proteins they
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represent. Unfortunately, these characteristics are often insufficient for unique identi-
fication of the proteins. Commonly, mass spectrometry of each trypsin-digested
protein of interest is subsequently performed to determine the protein peptide-mass
fingerprint. The fingerprint is then used to search protein sequence databases in
order to identify the protein (Henzel et al. 1993; Fenyo and Beavis 2008).

Fluorescent labeling of samples allows for processing of more than one sample
on a single gel. Up to three samples can be labeled with different cyanine dyes (Cy2,
Cy3, and Cy5), mixed, and have their proteins separated on one gel. When three
samples are multiplexed, they usually include two experimental biological samples
and one reference sample, which is the internal standard that is run on all of the
gels of the experiment. The internal standard sample may be used to normalize spot
intensities within and between gels and to improve mapping of spots between gels.
This technique, called two-dimensional difference gel electrophoresis (DIGE),
allows for minimizing experimental variation in experiments aimed at the identi-
fication of proteins that are differentially expressed between samples representing
two populations (Unlü et al. 1997; Kreil et al. 2004; Ganten and Ruckpaul 2006;
Kultima et al. 2006; Donoghue et al. 2008).

Although two-dimensional gel electrophoresis can separate thousands of
proteins in a specific tissue, this technique has relatively low throughput, low sensi-
tivity and poor reproducibility. This technology is constantly improved, but eventually
it will be replaced by biased proteomic technologies, once they achieve the whole-
proteome level of direct quantification of protein expression.

5.4 MALDI-TOF AND SELDI-TOF MASS
SPECTROMETRY

Mass spectrometry can be used in proteomics as high-throughput technology for pro-
filing and quantification of proteins by measuring the ratio of mass to charge either for
whole proteins or for their fragments (peptides). Mass spectrometry is performed in
three key steps. First, the analyte (proteins or peptides) is ionized into gas phase
ions. Then, the ions are separated according to their mass-to-charge ratio (m/z). At
the third step, a detector counts the ions, separately for each m/z value (Vlahou and
Fountoulakis 2005; Dubitzky et al. 2007). Due to the very large dynamic range of
protein expression (the expression levels may differ by ten orders of magnitude),
direct application of mass spectrometry to protein expression analysis of complex bio-
logical samples (such as plasma or serum) is limited. Usually, mass spectrometry is
performed after the sample proteins are separated by 2D gel electrophoresis or after
they are prefractionated with the use of chromatography (Poon 2007; Bertucci and
Goncalves 2008).

Recently, two mass spectrometry techniques are among the most commonly
used:

† MALDI-TOF—Matrix-Assisted Laser Desorption and Ionization Time-Of-
Flight mass spectrometry.

† SELDI-TOF—Surface-Enhanced Laser Desorption and Ionization Time-Of-
Flight mass spectrometry, which can be considered a modified version of
MALDI-TOF.
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The most significant disadvantage of these mass spectrometry techniques is that
the m/z ratios do not provide direct identification of proteins. ‘Translation’ of spectral
peak data into protein data is necessary—again, similarly as in the 1990s for the
unbiased genomic methods, specialized algorithms for identification of significant
associations between selected spectral peaks (for instance, the m/z peaks selected
into a multivariate biomarker) and proteins are necessary.

5.4.1 MALDI-TOF Mass Spectrometry

The MALDI-TOF technique is often used to identify proteins after they are separated
by 2D gel electrophoresis. The gel spots of interest (for instance, the spots selected in
the result of the statistical analysis of the gel image data) are excised from the gel and
digested with an enzyme, usually trypsin.9 The digestion of the spot protein results in
peptides that are subsequently analyzed by MALDI-TOF mass spectrometry. The
MALDI-TOF analysis determines the masses of these peptides, that is, the peptide-
mass fingerprint of the unknown protein represented by the analyzed spot. The identi-
fication of the protein is based on a database search for the match between this
experimental peptide-mass fingerprint and the theoretical peptide masses calculated
for the proteins included in a sequence database (Beranova-Giorgianni 2003;
Hamdan and Righetti 2005; Vlahou and Fountoulakis 2005). One may ask, “Why
do we cleave the spot protein into peptides (and then use the peptide-mass fingerprint
to identify the protein) rather than determining the mass of the whole protein and
match it to the masses calculated from the sequences of known proteins?” There are
several reasons. The protein of interest may be a modified version of the protein in
the database and its measured mass may not match the mass calculated from the
sequence stored in the database. Furthermore, the sequence in the database may
have errors preventing the correct matching at the protein level. Searching by the
peptide-mass fingerprint is more robust. Only peptides affected by modifications or
errors will not match. Matching all other peptides may be sufficient for the positive
identification of the protein. Furthermore, the accuracy of mass measurement and
the sensitivity of detection are better in the peptide mass range than for larger
masses of whole proteins (Gobom 2006).

To prepare an analyte for MALDI-TOF, its molecules are embedded in a matrix
of usually small organic molecules that can absorb the laser energy (of a specific fre-
quency).10 The mixture is crystallized and then irradiated by very short pulses of the
laser light. The matrix absorbs the laser energy (thus protecting the analyte from being
damaged) and facilitates desorption and ionization of the analyte.11 This results in
predominantly singly charged ions of the analyte molecules. Therefore, the m/z ratio
can be interpreted as the molecular mass12 (Gobom 2006; Dubitzky et al. 2007;
Eidhammer et al. 2007). An electric field accelerates the ions to velocities that are

9Enzymes cut proteins in known (enzyme-specific) spots. For instance, trypsin cuts proteins at the sites of
two amino acids—lysine and arginine.
10Commonly used are nitrogen lasers emitting ultraviolet light.
11Current knowledge of this process is mostly empirical rather than based on full understanding of its details
(Gobom 2006; Eidhammer et al. 2007).
12This is true for both MALDI-TOF and SELDI-TOF mass spectrometry experiments.
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in reverse proportion to their masses. When an ion reaches the detector, its time-
of-flight (TOF) can be used to calculate its mass (or, more generally, its mass-to-
charge ratio). A signal generated by ions created by each of the laser pulses is a
spectrum of peaks defined by m/z ratios and the peak intensities. Averaging spectra
from different pulses allows for decreasing the signal-to-noise-ratio.

Generally, MALDI-TOF mass spectrometry may be used to determine mole-
cular masses ranging from hundreds of Daltons to several hundred thousand
Daltons. However, the range for a single experiment is not that large and depends
on whether we are measuring proteins or peptides.13 For example, an average
trypsin-cut peptide consists of about ten amino acids, which gives an average molecu-
lar mass of about 1000 Da. Although very short fragments (say, less than 500 Da) can
be measured with high accuracy, they are not informative (for they can be associated
with a very large number of proteins). On the other hand, long protein fragments (say,
with a mass above 6000 Da) are often the result of miscleavage, in which case their
mass should not be used for the protein identification.14 For these reasons, the
analyzed spectra of peptide masses are usually limited to the range 500–6000 Da
(Eidhammer et al. 2007).

5.4.2 SELDI-TOF Mass Spectrometry

SELDI-TOF mass spectrometry,15 also known as SELDI ProteinChip technology16

(Wright 2002; Reddy and Dalmasso 2003; Hamdan and Righetti 2005; Reddy et al.
2006), is often used in the discovery of protein expression biomarkers. ProteinChip
arrays, used by the SELDI-TOF technology, consist of chemically or biochemically
active surfaces that can capture either specific proteins or specific classes of proteins.
The chemically active surfaces (hydrophobic, hydrophilic, cation exchange, anion
exchange, metal affinity, or other solid chromatographic surfaces) are used to capture
subsets of proteins with specific physical or chemical properties. ProteinChip arrays
with this type of surfaces represent an unbiased technology and are used in protein
expression and biomarker discovery studies. SELDI-TOF ProteinChip technology
can also be used as a biased technology targeting specific known proteins. In such
arrays, the biochemically active surfaces contain immobilized capture molecules
(such as antibodies) that will interact with specific target proteins. Since the capture
molecules target particular known proteins, the arrays with this type of surfaces are

13AlthoughMALDI-TOFmass spectrometry can be performed either on peptides or whole proteins, the pro-
blem with whole proteins is that the ionization techniques available for them work well only when the
sample contains about equal amounts of different proteins. Biological samples are dominated, however,
by a small number of proteins with the high abundance (such as albumins). Such proteins would overshadow
other proteins.
14This mass is different from the theoretical mass of a properly cut trypsin-digested peptide, so it should not
be compared—during a database search—to the masses calculated from theoretical trypsin-digestion of
known protein sequences.
15What is currently known as SELDI-TOF mass spectrometry was introduced by Hutchens and Yip as
“laser-assisted surface-enhanced affinity capture (SEAC) time-of-flight mass spectrometry” and “surface-
enhanced neat desorption (SEND) time-of-flight mass spectrometry” (Hutchens and Yip 1993).
16SELDI ProteinChip technology was commercialized by Ciphergen Biosystems, Inc. (currently
Vermillion, Inc.). In 2006, the technology was acquired by Bio-Rad Laboratories, Inc. (www.bio-rad.com).
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used in the studies interested in protein interactions or in the quantification of the
specific target proteins.

Each ProteinChip array has eight spots to process eight samples in parallel.
Studies focusing on protein expression profiling and biomarker discovery use arrays
with chemically active surfaces. SELDI-TOF mass spectrometry utilizing arrays
with chromatographic surfaces is a combination of chromatographic prefractionation
of sample proteins and MALDI-TOF mass spectrometry. Since arrays with diverse
types of substrates have different affinity to different classes of proteins, this can be
seen as separation of the classes of proteins. Separate mass spectra are generated for
different classes of proteins. This way complex biological samples can be analyzed
with improved resolution and enrichment of at least some low-abundant proteins.
Combining results from various arrays allows for the detection of up to 2000 proteins
(Poon 2007; Bertucci and Goncalves 2008).

Once unbound proteins are washed off, processing of the ProteinChip array is
similar to the MALDI-TOF technique. Usually, a solution with energy absorbing
molecules (matrix) is added to the array. After the crystallization of the mixture of
this solution and the captured proteins, the proteins are subject to laser-initiated
desorption and ionization. Then, the gas-phase protein ions are detected by time-of-
flight mass spectrometry (Bio-Rad Laboratories 2008). The generated spectral data
usually consist of 15,000–50,000 variables corresponding to the detectable m/z
ratio values. The height (the second dimension) of the spectrum represents the relative
signal intensity for each m/z variable (the relative abundance of spot proteins of a
given molecular mass).

SELDI-TOF mass spectrometry is a high-throughput technology allowing for
the processing of a large number of samples in a relatively short time. Analyzing
the generated (and appropriately preprocessed) mass spectra with the use of data
mining methods—such as those described in Chapter 3—may lead to identification
of multivariate proteomic biomarkers. However, these biomarkers are sets ofm/z vari-
ables that do not provide direct identification of proteins. Although one can imagine
using the m/z variables for diagnostic or prognostic purposes, such sets of SELDI
peaks—by themselves—identify neither the proteins nor biological processes asso-
ciated with class differentiation. Additional processing is necessary to identify
proteins corresponding to the selected SELDI peaks. Since the measured m/z value
represents only the approximate molecular mass of the protein, searching protein data-
bases may result in many proteins with the molecular masses within the error range of
the m/z measurement. To identify the protein generating a SELDI peak, the sample
proteins may be purified and then separated by either one- or two-dimensional gel
electrophoresis (this, however, is not a high-throughput process). The gel spot corre-
sponding to the selected SELDI peak is excised and digested by trypsin. Molecular
masses of the resulting peptides are identified by mass spectrometry, and then protein
sequence databases are searched for this protein’s peptide-mass fingerprint (Mazzatti
et al. 2007; Poon 2007).

Although SELDI-TOF mass spectrometry can be used to identify markers with
m/z values up to 250 kDa, the current resolution of this technology is satisfactory only
for proteins with molecular masses up to about 20 kDa. Other limitations of this tech-
nology include questionable stability and reliability of its results, and difficulty in the
identification of low-abundant proteins in complex biological samples. Nevertheless,
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in part due to its high throughput, relatively low cost and ease of use, SELDI-TOF
mass spectrometry is already a popular and important tool in the discovery of proteo-
mic biomarkers. It is expected that further development of this technology (and its
eventual coupling with other technologies) will lead to significant improvements in
its sensitivity and reliability, and to direct identification of the biomarker proteins
(Poon 2007; Bertucci and Goncalves 2008).

We have to remember that SELDI-TOF, when used for biomarker discovery, is
an unbiased technology. Although currently this is to its advantage, this advantagewill
be disappearing when our knowledge of proteomes becomes more complete. Just as
the unbiased genomic methods of the 1990s were replaced by the biased methods
capable of addressing entire genomes, we may expect future shifts in proteomic
methods towards the biased whole-proteome approach.

5.5 PREPROCESSING OF MASS SPECTROMETRY DATA

5.5.1 Introduction

Although wewill focus here on SELDI-TOFm/z data, preprocessing of anym/zmass
spectrometry data resulting from experiments generating predominantly single-
charged ions can be performed in a similar way.

Rawmass spectrometry data can be represented in the form of a matrix similar to
the gene expression matrix (see Table 5.1). The rows of the matrix (variables) corre-
spond now to the recorded mass-to-charge, or m/z, ratios and the columns represent
biological samples (for instance, tissues from different patients). The m/z ratios are
measured in Daltons (Da) per fundamental unit of charge (the charge of an electron).17

The data points represent intensities recorded for the m/z values. For the supervised
analysis, we have also meta data that assigns samples to classes (phenotypes, diseases,
etc.) we want to differentiate.

Although the format of the data is similar to that of gene expression matrix,
the data itself is more similar to the band intensities resulting from early genomic
experiments based on gel electrophoresis of the restriction enzyme-digested DNA
fragments (bands).

The intensities associated with neighboring variables (m/z ratios, or basically
molecular masses) are not independent variables; in fact, they are usually very
highly correlated. In a biomarker discovery study, our ultimate goal is to identify a
small subset of proteins whose multivariate expression pattern can be used for efficient
classification of new samples. The first step of this higher-level analysis focuses on
peaks and our biomarker would be composed of, preferably, just a few m/z peaks.
Then, the peaks have to be associated with proteins. Typically, however, this
higher-level analysis is not performed on the raw data. The raw data represented by
the m/z intensity matrix is first preprocessed in order to remove multicollinearities,
identify and quantify true peaks, and align and normalize them across all spectra of

17For MALDI-TOF and SELDI-TOF mass spectrometry, we may assume single-charged ions, thus the m/z
ratios could be seen as measured in Daltons.
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the study. Typical elements of this low-level preprocessing are: baseline correction,
smoothing and noise reduction, peak detection, alignment, and normalization. So
far, there is no standard method for preprocessing of m/z mass spectrometry data
(Cruz-Marcelo et al. 2008). There are many approaches that differ not only in the
algorithms used but also in the set and order of performed preprocessing steps.

5.5.2 Elements of Preprocessing of SELDI-TOF Mass
Spectrometry Data

Low-level preprocessing of mass spectrometry data can be seen as extracting the true
signal from the observed raw signal. Theoretically, we could represent the observed
signal as a composition of the true signal, baseline, and noise (Coombes et al. 2007),

O(x) ¼ n 
 S(x)þ B(x)þ N(x) (5:1)

where

† O(x) is the observed signal,

† S(x) represents the true signal,

† n is a normalization factor,

† B(x) is the baseline,

† N(x) is the noise,

† x represents either the recorded time of flight t, or the mass-to-charge ratio m/z
calculated from the time of flight.

Whereas we can model the true signal as a sum of independent (and eventually
overlapping) peaks representing proteins and we can use white noise as a model for
N(x), we do not have a plausible model for the baseline component (Coombes et al.
2005, 2007).

5.5.2.1 Quality Assessment

A biomarker discovery study may use hundreds or even thousands of SELDI-TOF
spectra. Before the spectra are preprocessed and then analyzed, their quality should
be evaluated. Low quality spectra (for instance, ones with low signal-to-noise
ratios) indicating failed experiments should be removed from further processing.
Both visualization techniques and computational methods may be used for quality
assessment. Heat maps of all spectra (or the spectra from one class of samples) may
be used to visually inspect peaks that are observed in many spectra; their alignment
may give us information about the quality of mass calibration (Hilario et al. 2006).
Coombes and colleagues used principal component analysis (PCA) to detect outliers
among SELDI chips. This approach may be extended to assessing the quality of
individual spectra (spots) of SELDI chips (Coombes et al. 2003). Similarly, as for
microarray data, clustering samples by their intensity data may reveal serious quality
problems when the samples are grouped by factors other than their biological charac-
teristics (for instance, by the date of their processing).
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5.5.2.2 Calibration

Each ion detected by time-of-flight mass spectrometry is associated with the intensity
of its signal and the recorded time t of its flight to the detector. Calibration is the pro-
cess of mapping the time t scale into the mass-to-charge ratio m/z scale (Coombes
et al. 2007). Typically, calibration is performed at the beginning of the low-level pre-
processing of mass spectra. However, the preprocessing steps may as well be carried
out on the time-scale data, with calibration performed at the end of preprocessing.
Coombes and colleagues point out that using the time scale for peak alignment
yields more reproducible results since we are avoiding errors introduced to the data
by the calibration step (Coombes et al. 2007).

5.5.2.3 Baseline Correction

The baseline offset of the spectrum, B(x), is attributable mainly to chemical noise gen-
erated by the molecules of the energy absorbing matrix. For each spectrum, this offset
line can be approximated and subtracted from the raw spectrum intensities. Usually,
the baseline is highest at the low range of m/z values and exponentially decreases
with the increase in m/z values. Popular methods of the baseline approximation fit
polynomial or exponential functions to the local minima of the spectrum. Other
approaches may be based on fast Fourier transform or wavelets (Hilario et al. 2006;
Eidhammer et al. 2007). Coombes et al. proposed a method that combines baseline
correction with the peak detection step (Coombes et al. 2003). Instead of explicit
fitting of the baseline for the entire spectrum, they defined the baseline locally, for
each identified peak, as the local minimum in the fixed-width window containing
the peak. The baseline-adjusted height of the peak is calculated simply as the differ-
ence between the local maximum and local minimum. However, in situations when
peaks overlap, the local minimum may be significantly higher than the real baseline
and the height of the peak may be underestimated (Coombes et al. 2007).

5.5.2.4 Noise Reduction and Smoothing

The random noise component of the observed signal, N(x), is mainly of electronic
origin. A simple way of reducing the noise is to perform smoothing of the spectrum
by using a sliding window and replacing the intensity values in the window by a
single value based on all of the values in the window, for example their weighted aver-
age. Fourier transform, smoothing splines, andwavelets are amongmore sophisticated
approaches to noise reduction (Hastie et al. 2001; Hilario et al. 2006; Eidhammer et al.
2007). For example, Coombes et al. use the undecimated discrete wavelet transform
(UDWT) for denoising SELDI spectra (Coombes et al. 2005).

5.5.2.5 Peak Detection

A discretized representation of a mass spectrum may contain tens of thousands of m/z
values. The intensities of neighboringm/z values are often highly correlated when sig-
nals representing proteins (or peptides) are wider than the sampling m/z intervals.

Although it is possible to perform a higher-level analysis (such as feature selec-
tion and biomarker discovery) using the raw data, peak detection is recommended for
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at least two important reasons. First, it significantly increases chances for plausible
biological interpretation of an identified biomarker. Second, it decreases the possi-
bility that the biomarker is the result of fitting noise. Furthermore, it also reduces
the dimensionality of the data used for the higher-level analysis. Many peak detection
algorithms identify peaks as local maximawith intensities above some threshold of the
signal-to-noise ratio. Some methods consider also the area under the peak or even
the shape of the peak. Additional approaches (such as wavelet transforms) may be
necessary to separate overlapping peaks (Beyer et al. 2006; Hilario et al. 2006;
Coombes et al. 2007; Eidhammer et al. 2007).

Although many preprocessing algorithms perform peak detection individually
for each analyzed spectrum, it is preferable to do it simultaneously for all spectra in
the experiment. This way such issues like mass-shift of corresponding peaks from
different spectra may be more properly addressed. One of the proposed approaches
is to perform peak detection in the mean spectrum (Coombes et al. 2007). First, all
spectra have to be aligned, the mean spectrum calculated and denoised. Peak detection
is then based on finding local maxima and minima in the mean spectrum. Another
approach combines peak detection with peak alignment and supervised peak filter-
ing18 (Bader et al. 2006). A general idea of this method can be described as follows.

† Identify all local maxima from all spectra (all samples); a local maximum may
be defined as being required to monotonically decrease over some m/z range
(parameter) on each side of the peak.

† Treat the local maxima corresponding to m/z values differing less than some
maximum shift (parameter) as the same maximum. This means that any calcu-
lations for such maxima (especially their comparison) should use the intensities
corresponding to the maximum point rather than the intensities for the samem/z
values.

† Sort all of the identified local maxima according to some measure(s) of their
relevance. For instance, sort them first in ascending order of their p-value of
an ANOVA F-test (based on the ratio of the between-class variance to the
within-class variance), and then in descending order of some measure of their
N-fold change between the classes.

† Select the top peak (local maximum) from the above list and move it to another
list—the list of selected peaks; then remove from the original list all local
maxima within the mass-window distance (parameter) of the selected peak.
Repeat these two steps until the original list of sorted peaks is empty.

5.5.2.6 Intensity Normalization

Due to experimental variations, peaks from different spectra should be normalized
before comparing their intensities. One popular method of normalization is to
divide each intensity of a spectrum by the sum of all intensities of the spectrum

18The goal of this supervised filtering is to alleviate the problem of inherent multicollinearity of raw m/z
data and to select the most prominent peak (if any) in each m/z window. This is not feature selection for
biomarker discovery.
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(the total ion count). Sometimes, more robust results may be achieved when the inten-
sities are divided by the median intensity of the spectrum. If internal standards (known
proteins added to the sample) are available, peak intensities may be normalized in
relation to such standards (Coombes et al. 2007; Eidhammer et al. 2007).

5.5.2.7 Peak Alignment Across Spectra

Due to measurement errors, peaks corresponding to the same protein may, in different
spectra, be associated with different m/z values. The m/z errors are usually estimated
as not greater than 0.3 percent of the m/z values. Peaks with their m/z values within
suchm/z error intervals should be aligned across spectra and treated as the same peak.
For example, the identified peaks may be first sorted by their intensity values or their
signal-to-noise ratios. Then, starting from the most prominent peaks, we may match
peaks from different spectra if their m/z values differ less than an appropriate m/z
error interval (Coombes et al. 2005; Bader et al. 2006). Peak alignment based on hier-
archical clustering of peaks from all considered spectra has also been proposed (Prados
et al. 2004). Peaks are clustered by theirm/z values, with constraints based on them/z
measurement error rate,merr. The distance between two m/z values (or two clusters of
m/z values) is calculated in relation to their mean, so it can be directly compared to the
relative measure of the m/z error. Although the centroid linkage distance is used by
Prados and colleagues to identify clusters that are candidates for merging, two clusters
may be merged only if their complete linkage distance19 is below 2 � merr, the
doubled mass measurement error.

5.6 ANALYSIS OF PROTEIN EXPRESSION DATA

Whether we use biased or unbiased technologies to generate raw protein expression
data, after preprocessing such data can be represented in the form of a protein
expression matrix (see Table 5.2). This matrix form can be used as a common form
for a wide range of protein expression studies. Like the gene expression matrix intro-
duced in Chapter 2, the protein expression matrix consists of N columns representing
biological samples and p rows representing variables. The variables presumably rep-
resent proteins, either directly or indirectly. For biased proteomic technologies, such as
protein microarrays, the variables directly represent proteins. When these technologies
mature to the current maturity level of genomic technologies, the protein expression
matrix may represent whole-proteome level expression data.

For unbiased technologies, such as SELDI-TOF or MALDI-TOF mass spec-
trometry, the variables represent the identified spectra peaks, which hypothetically
represent proteins or peptides. While it would be more precise to call such data the
peak expression matrix, it has the same form as the more general protein expression
matrix and can be analyzed in exactly the same way. Only after an optimal biomarker
is identified, we have to remember the necessity of matching its peaks to proteins,
before looking for biological interpretation of the biomarker.

19Centroid linkage and complete linkage are described in Chapter 2.
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The protein expression matrix has the same form as the gene expression matrix
introduced in Chapter 2. Furthermore, the goals of protein expression studies are
basically the same as the goals of gene expression studies. For example, biomarker dis-
covery aims at the identification of small sets of proteins (or m/z peaks) whose joint
expression pattern can significantly separate differentiated classes. Therefore, the
methods of analysis and mining proteomic data represented by the protein expression
matrix are the same as those described in Chapters 2 and 3, which were dealing with
gene expression data.

Similarly as for gene expression data, there is no single workflow common
for all protein expression studies (see Figs 5.3 and 5.4). Low-level preprocessing
depends on the type of raw protein expression data and on the technology that gener-
ated the data. For example, it will be different for mass spectrometry data, and different
for protein microarray data. It will also differ for various technologies of proteomic
microarrays.

Whatever are the idiosyncrasies of low-level preprocessing, this step of protein
expression analysis should result in a protein expression matrix. The higher level
analysis and data mining of protein expression data include additional preprocessing,
basic exploratory analysis, unsupervised learning, and supervised learning—feature
selection, biomarker discovery, and classification.

5.6.1 Additional Preprocessing

Depending on the technology generating raw expression data and the steps of low-
level preprocessing, some additional preprocessing of protein expression matrix
data may be necessary. It may include filtering, transformation, and additional quality
assessment. The approaches may be identical or similar to those described for gene
expression data (refer to Section 2.6). For example, a logarithmic transformation20

of the intensities may be necessary to stabilize the variance (i.e., to transform multi-
plicative noise into additive noise).

5.6.2 Basic Exploratory Data Analysis

The univariate exploratory analysis is the common first step in analyzing protein
expression data. Usually, a t test (when there are two classes to differentiate) or an
ANOVA F test (in cases with three or more classes) are used to identify differentially
expressed variables (see Sections 2.7.1 and 2.7.2). The variables may be ordered by
p-values representing the significance of their differential expression. Due to a large
number of simultaneous univariate tests (equal to the number of variables), the
p-values have to be corrected for multiple testing (see Section 2.7.5). Since the uni-
variate approach neglects relations between variables, it has a very limited use for
biomarker discovery. Nevertheless, it may give us some feeling about the data at
hand and maybe even some information that can be used during the multivariate
supervised analysis (for instance, during stepwise feature selection).

20Depending on a data set, other transformations (e.g., the arsinh or the cube root transformation) may result
in better stabilization of the variance (Huber et al. 2002; Coombes et al. 2003; Beyer et al. 2006).
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5.6.3 Unsupervised Learning

For studies seeking new taxonomic information, unsupervisedmethods may be used to
group samples or variables, or samples and variables simultaneously. Clustering
methods are used to identify groups of similar objects. Clustering biological samples
may lead to the identification of new subtypes of diseases. By clustering variables
representing proteins (either directly or indirectly) we may gain information about

Figure 5.3: Analysis of protein expression microarray data—an example. The raw data is
generated by a biased proteomic technology. Preprocessing of the raw data depends on the
idiosyncrasies of specific microarray technology. The protein expression matrix is the basic data
form used for higher-level analyses. The basic exploratory analysis is commonly performed as
the initial step of the higher-level analyses. Unsupervised learning is the main approach for
studies looking for new taxonomic information. For supervised learning studies, unsupervised
analysis is sometimes performed as a part of the exploratory analysis. However, unsupervised
analysis should not be used for variable selection or dimensionality reduction performed as a
preprocessing step for supervised analysis because it will most likely result in discarding
important discriminatory information. The dashed line from Biomarker discovery to Taxonomy-
related analysis represents the use of unsupervised analysis to find associations between proteins
identified during the supervised analysis (for instance, to cluster proteins selected into the
informative set of proteins—see Chapter 4).
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groups of proteins that have similar functions or are associatedwith the same biochemi-
cal processes. Simultaneous clustering of samples and variables (two-way clustering)
may identify subsets of proteins which exhibit distinctive expression patterns only for a
subset of samples. Dimensionality reduction techniques (such as PCA) may be used to
preserve most of the variation in the data represented by a much smaller number of
variables. A low-dimensional representation of the data may be defined either by a
subset of original variables or by new variables that are linear combinations of the

Figure 5.4: Elements of biomarker discovery based on proteomic data generated by an
unbiased technology—a SELDI-TOF example; step 1: from a SELDI-TOF experiment to a
multivariate biomarker consisting ofm/z peaks. After SELDI-TOFmass spectrometry, data is in
the raw form of the m/z intensity matrix. Preprocessing of such data may include quality
assessment, calibration, baseline correction, smoothing and noise reduction, peak detection,
alignment, and normalization. After preprocessing, the data may be represented in the form of a
protein expression matrix with the variables (rows) representing the identifiedm/z peaks and the
biological samples (columns) associated with the differentiated classes. The biomarker dis-
covery step, including feature selection and supervised learning, is performed on this protein
expression matrix. The result is a parsimonious multivariate biomarker—a small set ofm/z peak
variables whose joint intensity pattern can significantly separate the discriminated classes.
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original variables. However, using original variables allows for more straightforward
biological interpretation of the results. Low-dimensional representations of the
data—generated by such methods like PCA or self-organizing maps (SOM)—enable
visualization of data points and their eventual grouping. For more information on
unsupervised learning, cluster analysis, PCA and SOM please read Section 2.8.

5.6.4 Supervised Learning—Feature Selection and
Biomarker Discovery

The main goal of feature selection and biomarker discovery is to identify a parsimo-
nious multivariate biomarker consisting of proteins whose joint multi-protein
expression pattern can be used for efficient classification of new cases, that is, for accu-
rate prediction of their class membership. When feature selection is performed on the
datawhose variables only indirectly represent proteins, for example, when the variables
are m/z mass spectrometry peaks, the identified biomarker consists of a small set of
m/z peaks. Although it is possible to use such biomarkers for classification of new
cases, a set of m/z peaks does not allow for direct biological interpretation of classifi-
cation results. Even if the efficiency of such biomarkers is positively validated on inde-
pendent test data, their biological validation would be difficult since a set ofm/z peaks
does not point directly to protein expression patterns underlying class differences.
Therefore, it is important that such m/z biomarkers are subject to subsequent exper-
iments and analysis translating them into biomarkers consisting of sets of proteins.

A protein expression matrix may consist of thousands of variables. When biased
proteomic technologies allowing for direct measurement of protein expression at the
whole-proteome level are developed, we may deal with hundreds of thousands or
even a million variables. Similarly, as for gene expression data, the exhaustive
search for the best multivariate biomarker is not an option. Recommended feature
selection strategies are such heuristic searches that can efficiently identify small
subsets of variables associated with local optima in a high-dimensional space of
all p variables. Heuristic searches may be implemented as sequential, random, or
hybrid ones.

Basic strategies for the sequential heuristic searches are stepwise forward selec-
tion and stepwise backward elimination. The forward selection starts with the empty set
and sequentially adds variables, one by one, in away that maximizes ameasure of class
separation calculated for the subsets of variables considered for each cardinality. The
backward elimination starts with all p variables and sequentially eliminates variables
that are multivariately least important for class separation. However, the best results
may be achievedwhen these two strategies are combined into stepwise hybrid selection.
At each step of the hybrid selection, evaluated are subsets of variables that can be
generated from the currently optimal subset by either adding or removing variables.
Heuristic random searches allow escaping particularly inefficient local optima in the
high-dimensional space of p variables. They may randomly select variables at each
step of the search. Alternatively, they may randomly select the first variable and then
follow either the stepwise forward or the stepwise hybrid strategy.

Whatever search strategy is implemented, the search for an optimal biomarker
ends when one of the stopping criteria is achieved. The stopping criteria may be
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based on themeasure of class separation, on the size of the biomarker, on the number of
iterations, or upon arriving at a local optimum in the search space.

Feature selection methods may also be classified as implementing either filter or
wrapper, or hybrid, or embedded search models. This classification depends on the
relationship between the feature selection process and the learning algorithm used
to build a classification system. Filter models perform feature selection independently
of any learning algorithm. In wrapper models, a learning algorithm is included in
the feature selection process and used to evaluate each of the considered subsets
of variables. Hybrid models combine the filter and wrapper approaches. First, the
filter model is used to identify the optimal biomarker for each of the considered
cardinalities. Then, the wrapper model is used to select one of the cardinalities by
evaluating each of the optimal biomarkers. In embedded models, feature selection is
implemented within the learning algorithm. Thus, feature selection is an integral
part of the training process.

For a more detailed description of feature selection and biomarker discovery,
please refer to Sections 3.2 and 3.1.2 of Chapter 3. Though these sections deal
with gene expression analysis, their contents are equally applicable to protein
expression analysis.

5.6.5 Supervised Learning—Classification Systems

To build a classification system, we need a training data set and a machine learning
algorithm. The training data set has the form of a protein expression matrix and con-
sists of statistical samples representing the populations to be differentiated. The classi-
fication system may be designed after the optimal biomarker has been identified at the
feature selection step. Alternatively, the learning algorithm may include feature
selection (the embedded model of feature selection). In any case, parameters of the
classifier are learned from the training data set. Therefore, for the classifier to be
generalizable, it is very important that the training set is of high quality and of
appropriate size in order to properly represent the underlying populations (the classes
to be differentiated).

Many learning algorithms may be used to build a classifier and so far there is no
proof that any of them is generally superior over the others. However, depending on
the idiosyncrasies of a particular classification problem and the available data, differ-
ent learning algorithmsmay yield different results. Unless the differentiated classes are
easily separable (in which case any learning algorithm may be able to deliver a satis-
factory solution), it is a good idea to try more than one learning algorithm and select
the one most appropriate for the project at hand. The very same learning algorithms
that are described in Chapter 3 may be considered for designing classifiers based on
protein expression data. These algorithms represent classical methods (such as
linear discriminant analysis), newer and already popular algorithms (for instance,
support vector machines), and recent and promising approaches (random forests
and other ensemble-based methods).

Once the classification system is built, it has to be properly validated, which
means that its generalization abilities have to be reliably estimated. We always have
to remember that for the ultimate estimation of predictive abilities of the classifier,
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we need to validate it on a large and independent test data set. If such a set is not avail-
able, the ensemble-based validation using out-of-bag (OOB) samples is recommended.

More information on classification systems and biomarker discovery as well as
details of several learning algorithms are provided in Chapter 3.

5.7 ASSOCIATING BIOMARKER PEAKS
WITH PROTEINS

5.7.1 Introduction

A parsimonious multivariate biomarker and a generalizable classifier are all that we
need for efficient assignment of new biological samples to one of the differentiated
classes. Similarly as for gene expression biomarkers, protein expression biomarkers
may be used for diagnostic, prognostic, or therapy selection systems, for drug dis-
covery, and any other applications where biological samples need to be assigned to
one of well defined classes.

Since proteins are directly associated with cellular biochemical processes,
exploitation of protein expression biomarkers in the area of personalized medicine
is more promising and may be more appropriate than the use of gene expression
biomarkers. Class membership is defined by the proteomic expression pattern of
biomarker variables. If the biomarker variables are proteins, then they (and,
eventually, the Informative Set of Proteins identified via a sequence of alternative
protein expression biomarkers) may be used by domain experts to elucidate biological
processes associated with the class differences. However, if the biomarker was
identified from mass spectrometry data, its variables are mass-to-charge, or m/z,
peaks. Generally, the peaks may correspond to proteins or to peptides. Usually, how-
ever, proteomic biomarker discovery studies based on mass spectrometry data utilize
SELDI-TOF technology, which generates spectra of protein m/z values.

Protein databases (such as Swiss-Prot) can be searched for information about
molecular masses of proteins with known amino acid sequences. However, direct
comparison of SELDI-TOF m/z peaks with the masses retrieved from the databases
is not recommended. Due to intrinsic errors of m/z measurements, the m/z values
of the peaks selected into the biomarker (as well as other spectra peaks) represent
only the approximate molecular masses of the proteins that generated the peaks.
Searching protein databases for one of these m/z values may result in many proteins
whose masses are within the error interval of the m/zmeasurement. As described ear-
lier (in the section on MALDI-TOF mass spectrometry), more robust are database
searches utilizing the peptide-mass fingerprint of the protein to be identified.
Therefore, in order to identify the biomarker proteins, the sample proteins are often
purified and then separated by two-dimensional gel electrophoresis. The gel spots cor-
responding to the biomarker m/z peaks are then identified, excised from the gel and
digested by trypsin. As a result of the digestion process, the spot protein is cleaved
into peptides. Subsequently, molecular masses of these peptides are determined by
MALDI-TOF mass spectrometry. The resulting peptide-mass fingerprint is character-
istic for the biomarker protein. Searching for the identity of this protein is based on
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Figure 5.5: Elements of biomarker discovery based on proteomic data generated by an
unbiased technology—a SELDI-TOF example; step 2: from a multivariate biomarker of m/z
peaks to a multivariate protein expression biomarker. At step 1, an optimal multivariate
biomarker has been identified. Such a biomarker, when positively validated on an independent
test data set, can be used to build a classification system that is generalizable and allows for
classification of new cases with high sensitivity and high specificity. To identify proteins that
generated the biomarker’s m/z peaks, 2D-gel electrophoresis may be performed to separate
sample proteins. The gel spots (proteins) corresponding to each of the biomarker’s m/z peaks
are then excised and digested by tripsin. MALDI-TOF mass spectrometry is performed on the
resulting peptides, and a peptide-mass fingerprint is generated for each of the proteins that
produced the biomarker peaks. Subsequently, a protein sequence database may be searched
to compare each of the observed fingerprints with theoretical fingerprints calculated for the
database proteins (search programs are described in Section 5.7.3). Alternatively (or if a search
with peptide-mass fingerprint data is not successful), some or all peptides of a fingerprint may be
further fragmented and have m/z ratios determined for the resulting fragments. This may be
accomplished with the use of tandem mass spectrometry. A database search, de novo
sequencing, or peptide sequence tagging (see Section 5.7.4) can be subsequently used to
identify the peptides and then the protein.
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comparing its fingerprint to peptide masses calculated for theoretical digestion of
proteins with known sequences stored in protein databases (see Fig. 5.5).

Because of the many-to-many relationship between peptides and proteins (simi-
larly as for bands and genes in the electrophoresis-based genomic studies of the
1990s), specialized algorithms (and software programs) for the identification of sig-
nificant associations between the observed peptide-mass fingerprint and theoretical
sequences stored in protein databases are necessary. The general idea of such search
algorithms is to assess the probability of a protein from a sequence database to generate
the observed experimental results. The most widely used protein sequence database is
Swiss-Prot, which is currently a part of the Universal Protein Resource.

5.7.2 The Universal Protein Resource (UniProt)

The Universal Protein Resource (The UniProt Consortium 2008) is a freely accessible
repository of protein sequences and annotations. The UniProt Consortium (www.
uniprot.org) was formed in 2002 as a collaboration between three institutions: the
European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB),
and the Protein Information Resource (PIR).

UniProt consists of four databases:

† the protein knowledge base (UniProtKB),

† the reference sequence clusters (UniRef),

† the sequence archive (UniParc),

† the repository of metagenomic and environmental sequences (UniMES).

Themain part of UniProt is the UniProt knowledge base, which is divided into two sec-
tions, Swiss-Prot and TrEMBL (Bairoch et al. 2008; The UniProt Consortium 2008):

Swiss-Prot

Swiss-Prot21 (UniProtKB/Swiss-Prot) is a cross-referenced database of manually
annotated and continuously updated protein sequences. It is a central repository of
high-quality information about all publicly available protein sequences. The infor-
mation is extracted from literature and from results of computational analyses. All
information is reviewed, curated and annotated by experts. Each Swiss-Prot sequence
entry includes:

† protein name or description,

† amino-acid sequence,

† bibliographical references,

† taxonomic data,

† annotations, which may include information about protein function (or
functions), alternate protein products (results of alternative splicing), post-
translational modifications, diseases associated with the protein deficiencies, etc.

21The first version of Swiss-Prot was released by Amos Bairoch in 1986. Since 1994, Swiss-Prot has been a
collaborative project with the European Bioinformatics Institute (Bairoch 2000; Bairoch et al. 2008).
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Swiss-Prot entries may also include cross-references and links to nucleotide
sequence databases (such as EMBL-Bank, GenBank, and DDBJ), 3D structure data-
bases, enzyme and pathway databases, ontologies, genome annotation databases, gene
expression databases (such as ArrayExpress), and many other databases.

TrEMBL

TrEMBL (UniProtKB/TrEMBL) is a supplement to Swiss-Prot that contains compu-
tationally analyzed, automatically annotated and unreviewed protein sequences, which
await full manual annotation and integration into Swiss-Prot.

5.7.3 Search Programs

While the peptide-mass-fingerprint and the information concerning what enzyme was
used for digestion are the main experimental data for protein search, other available
information may be helpful in the positive identification of the protein. Examples of
such information are the approximate molecular mass of the protein (the m/z value
of the SELDI-TOF peak or the mass associated with the gel spot), the isoelectric
point of the protein, and the peak intensities associated with the fingerprint’s m/z
values. To compare the peptide-mass fingerprint to a database sequence, theoretical
(in silico) digestion of the database sequence—with the same enzyme that was used
to obtain the experimental fingerprint—has to be performed. The simplest search
algorithms rank sequences in a protein database by the number of theoretical peptide
masses matching the fingerprint peptide masses (within a given tolerance). If they do
not adjust for the mass of a database sequence, then large proteins will likely score
higher. Other algorithms, though also based on counting the number of peptide
matches, compensate for the relative abundance of the peptides of a given mass and
for the protein size. More sophisticated algorithms add statistical verification of the
identified matches. Since different search programs make different assumptions and
implement different algorithms, it is a good practice to use more than one search
program and look for the overlapping results.

A recent survey of the proteomic literature suggests that Mascot, Ms-Fit
and ProFound are the most commonly used programs for the peptide-mass
fingerprinting-based protein identification (Damodaran et al. 2007). In addition to
these three search programs, we will look at one of the many other algorithms—
Aldente, which combines the search with a quite unique recalibration of the empirical
masses.

Mascot–Mowse

Mascot22 (Perkins et al. 1999) implements the Mowse scoring algorithm (Pappin et al.
1993). TheMowse (Molecularweight search) algorithm starts with comparing masses
of the fingerprint peptides with the theoretical peptide masses calculated for database
sequences. The database sequences can be prefiltered by the taxonomy parameter lim-
iting the search to a specified species.23 A peptide match is identified if the mass

22www.matrixscience.com
23For example, if we limit a Swiss-Prot search to the human sequences, only 20,408 sequences out of
400,771 Swiss-Prot sequences will be considered (the numbers as of November 14, 2008).
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difference falls within a given mass tolerance. The reported sequence-level matches
may, however, be limited by the protein mass parameter,24 which is used as a sliding
mass window. Mowse scoring not only counts the peptide matches and adjusts them
for the sequence mass, but also uses empirically determined distribution of peptide
masses in the database to assign aweight to each peptide match between the fingerprint
and database sequences. Then, for eachmatched sequence,Mascot calculates the prob-
ability p that the observed (or better) match between the sequence and the fingerprint
is a random event. This p-value is subsequently converted into the reported score S,

S ¼ �10 
 log10 ( p) (5:2)

This score, however, is independent of the database size. Therefore, it should be com-
pared to the cut-off scoreC based on the significance level a adjusted for multiple test-
ing. In Mascot, the adjustment is done by dividing a by N, the number of database
sequences considered during the search.

C ¼ �10 
 log10
a

N

� �
(5:3)

For example, if the significance level a ¼ 0.05 and the number of searched data-
base sequences N ¼ 50,000, the matches with the Mascot score of S � C ¼ 60 would
be considered statistically significant.

Instead of comparing the score S to the cut-off score C, the E-value (expectation
value) can be calculated for each reported sequence match,

E ¼ a 
 10C�S
10

¼ p 
 N (5:4)

If this E-value was restricted to be not greater than 1, it could be interpreted as the
p-value of the match adjusted for multiple testing. Without this restriction, it can be
interpreted as the expected number of sequences that would be assigned a particular
score S (or higher) by chance.25

MS-Fit

MS-Fit26 (Clauser et al. 1999; Baker and Clauser 2008), similarly as Mascot,
implements the Mowse scoring algorithm. MS-Fit, however, directly reports the
Mowse score and does not provide information on its statistical significance.
Reported are all proteins with the number of peptide matches equal to or greater
than the user specified minimum number of required peptide matches.

24Though called “the protein mass,” this parameter is used byMascot as a sliding mass window. This means
that for a sequence to be reported as a match, all of its peptide matches have to be contained within a con-
tiguous stretch of sequence with the mass not greater than the specified protein mass.
25Recently, a decoy database search is recommended as a way to estimate the false positive rate or the false
discovery rate, especially for MS/MS experiments (see Section 5.7.4) with large numbers of spectra (Elias
et al. 2005; Reidegeld et al. 2008). A decoy database is a database consisting of randomized or reversed
sequences. The number of matches found in such a decoy database provides an estimate of the number
of false positives among the matches found in the real sequence database.
26http://prospector.ucsf.edu
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ProFound

ProFound27 (Zhang and Chait 2000) implements a Bayesian approach to searching a
protein database for sequences that are likely to generate the observed peptide-mass
fingerprint. For each considered database protein k, ProFound calculates the con-
ditional probability P(kjDI) that protein k is the sample protein given the observed fin-
gerprint data D and the available background information I (such as the species,
approximate mass of the protein, the enzyme used for protein digestion, peptide
mass accuracy, etc.). Proteins are ranked by this Bayesian probability. Let us note
that this is the probability that a database protein is the sample protein—this is not a
p-value, which would be the probability that the match occurred by chance.

Aldente

Aldente,28 Advanced Large-scale Identification Engine (Gasteiger et al. 2005), is a
search program that compares an experimental peptide-mass fingerprint with the
theoretical peptide masses calculated for protein sequences stored in the Swiss-Prot
or TrEMBL database. To resolve ambiguities in matching the observed peptide
masses with theoretical ones, the Aldente algorithm recalibrates the experimental
masses using the Hough line transform (Hough 1962; Duda and Hart 1972). This
heuristic technique takes into account the estimated internal precision of the mass
spectrometer and identifies a straight line (in the two-dimensional space defined
by the experimental and theoretical peptide masses) that maximizes the number of
matched masses. During the search, a score is calculated for each protein. The
Aldente scoring system can take into account several user supplied parameters, both
at the protein level (such as the estimated protein molecular mass and isoelectric
point) and at the peptide level (such as the intensities of the fingerprint peaks). If no
such parameters are supplied, a protein score is the number of matched peptides. As
a result of the search, a list of the best matching proteins is provided. The proteins
are listed in decreasing order of their scores. Each score is associated with the
p-value, which can be interpreted as the probability of finding—for the same exper-
imental data—a protein sequence with the same or better score in a database of
randomly generated sequences.

5.7.4 Tandem Mass Spectrometry

Sometimes, the results of protein identification via peptide-mass fingerprinting may be
ambiguous. Different peptides may have similar masses. A mass of a modified peptide
may match a theoretical mass of another peptide. A fingerprint peak may be the result
of contamination or noise. Supplementing the peptide-mass fingerprint with peptide
sequence information would greatly improve chances for correct protein identification.
Including sequence information for one or two peptides is often satisfactory for unam-
biguous protein identification. Tandem mass spectrometry (Tandem MS, MS/MS, or
MS2) can be used to obtain information about the sequence of a specific peptide. In

27http://prowl.rockefeller.edu
28www.expasy.org/tools/aldente
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tandem mass spectrometry, a two-step mass analysis is performed.29 The first step of
the analysis is performed for a small range of m/z values focused on the m/z of the
selected peptide ( parent ion). Then the peptide is fragmented30 and, at the second
step of the mass analysis, the ions resulting from its fragmentation ( product ions)
are measured. The final result of tandem mass spectrometry is the MS/MS spectrum
with peaks corresponding to m/z values and intensities of the fragment ions
(Eidhammer et al. 2007).

Database searching, de novo sequencing and peptide sequence tagging are
common approaches used to determine the peptide sequence from the MS/MS spec-
trum of its fragments.

Database Searching

A database search compares the experimental MS/MS spectrum of peptide fragments
with the theoretical spectra calculated for peptide sequences stored in a database. For
each considered peptide sequence, calculated is the score that indicates the degree of
match between this database sequence and the experimental MS/MS spectrum. The
best matches are associated with the MS/MS spectrum. To identify the biomarker
protein, tandem mass spectrometry and database searches are performed for all
peaks from the protein’s peptide-mass fingerprint. Then the protein may be identified
by analyzing the generated lists of best matching peptide sequences (Eidhammer et al.
2007; Fenyo and Beavis 2008). Mascot (Perkins et al. 1999) and SEQUEST (Eng et al.
1994) are popular database search programs for the peptide identification.

De Novo Sequencing

Methods that try to determine a peptide’s sequence from aMS/MS spectrum alone are
termed de novo peptide sequencing. Without going into details of such methods, the
idea of de novo sequencing is based on ordering the m/z values of fragment ions and
trying to match the m/z differences between them to one or more amino acids. A pop-
ular approach to de novo sequencing is the spectrum graphmethod. A spectrum is rep-
resented by a directed acyclic graph, whose nodes correspond to the spectrum peaks
arranged in ascending order of their masses. Directed edges (from a lower mass to a
higher one) are defined between any two subsequent nodes whose mass difference cor-
responds to the mass of an amino acid. In an ideal situation, when all possible peptide
fragments are represented in the MS/MS spectrum, there will be a path through the
graph that will define the peptide sequence (Frank and Pevzner 2005; Xu and Ma
2006). In practice, however, such complete spectra are rare. When some fragments
(peaks) are missing, we may allow graph edges to correspond to the sum of masses
of two or more amino acids. However, there may be many other departures from
the ideal MS/MS spectrum of a peptide (for instance, additional peaks corresponding
to contaminations or noise). Various de novo sequencing algorithms and programs
have been developed to deal with such uncertainties and to generate a ranked list of
potential peptide sequences. Among them are Lutefisk (Taylor and Johnson 2001),

29Both steps of this analysis can be automatically performed on the same mass spectrometer.
30More specifically, fragmented are all ions present in the specified m/z range of the first analysis.
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SHERENGA (Dancı́k et al. 1999), PepNovo (Frank and Pevzner 2005) and PEAKS
(Ma et al. 2003). The first three programs implement the spectrum graph approach.
PEAKS software works directly on spectrum data, without converting them into a
spectrum graph.

Peptide Sequence Tagging

Peptide sequence tagging is another approach to peptide identification. It combines
de novo sequencing with database searching. Instead of trying to determine the com-
plete sequence of a peptide, the de novo step of this approach infers from the MS/MS
spectrum only short partial sequences—sequence tags. A sequence tag divides the
peptide into three sections, the region preceding the tag, the sequence tag and the
region trailing the tag. The combination of the sequence tag with molecular masses
of these two regions defines a peptide sequence tag, which is used to search for match-
ing peptide sequences in the database (Mann and Wilm 1994). Algorithms that
implement the peptide sequence tagging approach may use the spectrum graph
method to generate a number of short tags (typically three amino acids), and then
may assign to each tag the probability that its sequence is correct. The goal is to use
a small set of tags that includes at least one correct tag. Therefore, only tags with
high probabilities are used for the database search. This allows for efficient database
filtering as well as for high probability of success (Frank et al. 2005). InsPecT (Tanner
et al. 2005) and GutenTag (Tabb et al. 2003) are examples of programs implementing
peptide sequence tagging.

5.8 SUMMARY

Protein expression analysis is likely to become one of the main sources of new bio-
markers for personalized medicine, which may include early medical diagnosis,
tailoring therapy selection to the prediction of individual response to available
treatment modalities, and assessing treatment progression and drug efficacy.
Multivariate approaches to feature selection coupled with large and good quality train-
ing data sets will lead to the identification of parsimonious proteomic biomarkers
representing multi-protein expression patterns characteristic for the differentiated
classes. Proteomic biomarkers will be routinely used during drug discovery and devel-
opment to assess efficacy, safety, and toxicity of drug candidates.

When biased proteomic technologies achieve a high-throughput whole-
proteome level of direct measurement of relative protein expression, they are likely
to replace the currently dominating unbiased proteomic approaches. Two-dimensional
gel electrophoresis and mass spectrometry are examples of popular unbiased pro-
teomic technologies. Their advantage is that they can be used to identify any protein
or sequence, whether known or unknown. This advantagewill, however, be disappear-
ing as our knowledge of the human proteome (or human proteomes, depending on the
definition used) will increase. High throughput biased technologies, such as antibody
or protein microarrays, will be more and more popular, especially when they become
cost- and time-efficient. Whole-proteome microarrays would enable direct and

5.8 SUMMARY 251



simultaneous measurement of expression levels of all proteins of a proteome as large
and complex as the human proteome. Functional microarrays would enable elucida-
tion of protein functions on a whole-proteome scale.

Whatever technology is used to generate protein expression data, the methods
that should be used to analyze such data depend on goals of the study. For example,
unsupervised learning methods should be used for studies aimed at new taxonomic
knowledge, but supervised learning has to be the main approach for biomarker
discovery.

Preprocessing of raw proteomic data depends on the technology that generated
the data. Nevertheless, after low-level preprocessing we can represent any protein
expression data in the form of a protein expression matrix. The variables of this
matrix can represent proteins either directly (as in the case of antibody microarrays)
or indirectly (for instance, SELDI-TOF m/z variables). In either case, the higher-
level analysis of such protein expression data can be performed with the use of the
same data mining methods that we are using to analyze gene expression data. If the
goal of our analysis is biomarker discovery, we try to identify a small set of variables
whose joint expression pattern can significantly separate the differentiated classes.
When these variables are m/z peaks rather that proteins, additional analysis is
necessary to associate the biomarker variables with proteins. For example, SELDI-
TOF analysis may be followed by 2D gel electrophoresis and MALDI-TOF mass
spectrometry in order to identify peptide-mass fingerprints for proteins associated
with the SELDI-TOF m/z peaks selected into the biomarker. Specialized search pro-
grams may be then used to associate the fingerprints with protein sequences stored in
protein databases. If this does not lead to the positive identification of all biomarker
proteins, tandem mass spectrometry may be subsequently applied. The fingerprint
peptides are further fragmented and the masses of these secondary fragments are
used to identify the peptides via database search, de novo sequencing, or sequence
tagging.

Heuristic approaches to multivariate feature selection, efficient supervised learn-
ing algorithms, improving generalization by introducing randomness to training data
sets and to algorithms, and validation of the generated classifiers with the use of
independent test data sets are the elements of biomarker discovery approaches that
can efficiently analyze data sets with a very large number of variables, such as the
whole-proteome level protein expression data.
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CHA P T E R6
SKETCHES FOR
SELECTED EXERCISES

6.1 INTRODUCTION

In this chapter, we draw sketches of selected approaches to various stages of analysis
of gene expression data. It is important to indicate that no single method works opti-
mally in all situations. With the possible exception of very simple cases when the
differentiated classes are particularly easy to separate and almost any method can
yield plausible results, it is a good idea to try more than one method and compare
the results. One may notice our preferences, such as a heuristic search approach for
feature selection. Our primary method used for feature selection and biomarker dis-
covery is the stepwise hybrid search driven by Lawley–Hotelling T2 measure of
class separation as described in Chapter 3. For validation (when we do not have an
independent test set or when we want to estimate generalizability of a classifier
before testing it on independent data), we use the modified bagging schema (see
Chapter 3). This schema generates a large number of classifiers built on random
subsets of the original training samples. However, we do not treat these classifiers
as an ensemble of classifiers used for prediction. We use each of them to classify
its out-of-bag (OOB) samples—the samples that were not selected for the training
set used for feature selection performed for this particular classifier. Averaging the
results of OOB classification over hundreds or thousands of classifiers gives us an esti-
mate of the generalization abilities of an optimal biomarker built from the entire train-
ing set. To facilitate biological interpretation of class differences, we generate a
sequence of alternative multivariate markers and use them for the identification of
the Informative Set of Genes. This method has been introduced in Chapter 4.
Furthermore, by analyzing the distribution of the informative set variables among
classifiers built by the modified bagging schema, we identify the primary expression
patterns and their frequent primary genes, which can be used for a more focused
biological interpretation of class differences and for the identification of more
robust multivariate biomarkers.

Let us stress here that we are not endorsing or recommending any software
package or solution. Though we perform feature selection, the identification of the
Informative Set of Genes, and biomarker optimization and validation with themodified
bagging schema and on independent data using the MbMD biomarker discovery
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software,1 various algorithms and software solutions may be successfully used for
these tasks as long as they use multivariate methods implementing a supervised learn-
ing approach.

We feel that it is also important to indicate that a promising data set does not
always lead to the sought after results. In real-life biomedical studies, it is sometimes
necessary to conclude (after various approaches and methods are tried) that the data at
hand is not sufficient for the identification of reliable and efficient biomarkers, and that
either a larger or more representative training set is required, or maybe data of a differ-
ent type should be gathered and analyzed (for instance, protein expression data instead
of gene expression data). We would discourage our readers from reporting, in such
situations, perfect or near-perfect reclassification or internal cross-validation results.
With a large number of variables and much fewer samples, such results are often
easy to achieve,2 but they should not be reported as the only results of a study if
they are not supported by more reliable indications of good generalization of bio-
marker classification abilities.

6.2 MULTICLASS DISCRIMINATION (EXERCISE 3.2)

6.2.1 Data Set Selection, Downloading, and Consolidation

ALL3 data (http://www.stjuderesearch.org/data/ALL3/dataFiles.html) from
St. Jude Children’s Research Hospital (Memphis, TN) is an example of a good quality
multiclass data set (Ross et al. 2003). It includes 132 samples representing seven
groups of pediatric acute lymphoblastic leukemia (ALL)—six subtypes of ALL
(T-ALL, E2A-PBX1, TEL-AML1, MLL rearrangement, BCR-ABL, and hyper-
diploid karyotypes with more than 50 chromosomes) and the seventh group of
“other” ALL samples. The samples were hybridized on the Affymetrix HG-U133
set of microarrays (HG-U133A and HG-U133B).

Download ALL3 Data Files from the St. Jude Website

† The data set consists of 14 files; there are two files for each of the seven groups of
samples: one file with the HG-U133A expression data (Chip A) and onewith the
HG-U133B data (Chip B).

† Each Chip A file has 22,285 rows, and each Chip B file has 22,647 rows
(included in the numbers are two header rows in each file).

Check Whether Arrays are Scaled to the Same Target. Rescale if Necessary

† For each of the 14 downloaded files, calculate a four percent trimmed mean for
each array (column).

Question: Why do we use the four percent trimmed mean (see Chapter 2)?

1www.MultivariateBiomarkers.com
2Such results can be achieved even for data that represent randomly generated noise.
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Excel Tip
To calculate the trimmed means in a Chip A file:

W in the spreadsheet cell C22286, define function
“TRIMMEAN(C3:C22285, 0.04)”

W highlight the three cells: C22286 to E22286,

W copy them and then paste to the remaining columns of row C22286,

W calculate the MIN and MAX values of the trimmed means in row
C22286. Both of them should be very close to the target intensity
value (500).

† If we prefer to work with data scaled to a different target value, we will multiply
each expression data value by a rescaling factor. For example, to change the
target intensity to 100, we use the rescaling factor of 0.2 (see Chapter 2).

Consolidate the Data into a Single File (Gene Expression Matrix)

† In each of the 14 data files, each biological sample is represented by three
columns: expression level, detection call, and p-value of the detection call. If
we use the default p-value ranges for detection calls, the columns with the detec-
tion p-values may be removed. We may also remove the second and the last
column (probe set descriptions).

Question: What are the default p-value ranges for the Present, Marginal, and
Absent detection calls (See Chapter 2)?

† For each of the seven groups, append the Chip B data to the bottom of theChip A
data. For each of the seven combined files, check that the sample names in the
columns of the appendedChip B file correspond to those of the Chip A columns.

Excel Tip

W Cut the two header rows of the appended Chip B data and insert them
below row 2.

W Insert a new row below row 4 and using the Excel IF function check
whether the sample names in rows 1 and 3 are the same for all columns
(in C5, enter “ ¼IF(C1¼C3,0,1)”, copy this function to all cells of row
5 and then sum the results—the sum should be zero).

W Remove rows 2 to 5. We now should have 44,930 rows in each of the
seven resulting Excel files: two header rows and 44,928 probe set
rows. Each sample is represented by two columns: the intensity and
the detection call.

† Remove the control probe sets: 68 probe sets with the names starting with AFFX
and the set of 100 normalization controls (200000_s_at to 200099_s_at). Since
they are repeated on the U133A and 133B arrays, we are removing 336 probe
sets (if we have not changed the order of probe sets, these control probe sets
are the first 168 rows in the Chip A and Chip B data). Each of the seven files
should now include 44,592 probe sets.
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† Since we will filter probe sets by the fraction of Present calls in each class, it is
convenient to calculate this fraction now, when we still have seven separate class
files. In each of them, we add two columns.

W A column that calculates the number of Present calls in a row. For
example, for the first probe set of the BCR-ABL file, which has the
data for its 15 samples in columns B3 to AE3, this would be calculated
as “¼COUNTIF(B3:AE3,“P”)”.

W A column that calculates the percent of Present calls in a row.

† After replacing the functions (in the newly added last two columns) with values,
we may remove all columns with the detection call information. Hence, each of
the seven files will now have one column for each sample.

† Now we can combine all seven files. Starting with one of the files, we will be
appending—one by one—columns from the remaining six files. It is a good
idea to compare—after each append—the order of probe sets.

Excel Tip

W When the columns of a file are appended to the right of the current data,
the first appended column includes the probe set names. Cut this column
and insert it after the first column.

W Insert an empty column after the two, and define there a function check-
ing if the probe set names are the same in the first two columns. For
example, for row 3, the function would be: “¼IF(A3¼B3,0,1)”.

W Copy this function to the remaining cells of column 3.

W Check if the sum of values in column 3 is zero. If so, columns 2 and 3
can be removed, and the next file appended to the right.

† The last two columns of each of the combined seven files may be moved to the
very right of the spreadsheet. The spreadsheet would now consist of the gene
expression matrix with 14 additional columns holding the information about
the number and percent of Present calls in each class.

6.2.2 Filtering Probe Sets

The main goal of filtering is to eliminate the probe sets (i.e., rows of the gene
expression matrix) whose expression measurements are not reliable or represent
experimental noise. Since this data set includes detection call information, we
may filter variables by the fraction of Present calls in a class. This should remove
a significant portion of unreliable measurements. In addition, we may apply filter-
ing based on the intensity level, for example filtering by the range of expression
values.

Filtering by the Fraction of Present Calls in a Class

Since numbers of samples per class are relatively small (four out of seven classes have
fewer than 20 samples), we may filter out probe sets that have less than 50 percent of
Present calls in each of the seven classes. There are 28,388 such probe sets.
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Filtering by the Range of Expression Values

Assuming that we rescaled the data to the trimmed mean of 100 (for each array), we
may decide to remove all probe sets for which the amplitude of their intensity values is
less than 100 (Max–Min,100). There are 9980 such probe sets. However, 9473 of
them are already included in the set of probe sets to be removed by the fraction of
Present calls filter. Therefore, this filtering by the range of expression values removes
only 507 additional probe sets.

Question: Explain the fact that the majority of probe sets targeted by this
filter have already been included in the set of variables marked for removal
by the fraction of Present calls filter (See Chapter 2)?

After filtering and removing the columns with filter information, we have the
expression data ready for analysis. The gene expression matrix includes 15,697
probe sets and 132 samples assigned to seven classes.

The unfiltered data consisted of 5,886,144 intensity values (44,592 probe sets
times 132 samples). Only 28.09 percent of these values were associated with
Present calls. After filtering, we have 2,072,004 intensity values, and 71.63 percent
of them are associated with Present calls.

6.2.3 Designing a Multistage Classification Schema

There are several approaches to multiclass differentiation. One is to try and build
a single classifier to differentiate all of the classes simultaneously. For example,
Clemmensen and colleagues applied this approach to a subset of six classes selected
from an older version of the St. Jude ALL data (Yeoh et al. 2002). Using sparse dis-
criminant analysis, they identified a single multivariate marker consisting of twenty
five variables (Clemmensen et al. 2008). In the original study of ALL3 data (Ross
et al. 2003), two decision tree schemas were designed. One of them implemented a
parallel approach, in which each leukemia subtype was discriminated against all
other cases of the training set. The second, called “the differential diagnosis decision
tree approach,” implemented a multistage schema with predetermined sequence of
differentiated classes. All three are valid approaches to multiclass classification. We
suggest a multistage schema with a data-driven (rather than predetermined) sequence
of differentiated classes. Furthermore, individual classifiers of the schema do not have
to be limited to binary discrimination. When training data supports it, the multistage
schema may include multiclass models.

When the class membership is the predominant factor differentiating biological
samples of the training data, unsupervised approaches (such as hierarchical clustering
or principal component analysis) may be used to decide on the sequence of models of a
multistage schema. However, this does not need to be the case. Supervised methods
represent a more general approach to the identification of sets of classes that should
be differentiated at the subsequent stages of a multistage classification schema.

Stage 1: Seven Classes

To decide which of the seven classes (represented in the ALL3 data set) should be dis-
criminated and which should be combined into a relatively homogeneous group at the
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first stage of the classification schema, we use a supervised approach. Though various
supervised learning algorithms may be used for this purpose, we prefer those that pro-
vide a measure of class separation and overlaps. Ideally, a numerical measure describ-
ing class relationships would be accompanied by a low-dimensional projection of the
discriminatory space. To accomplish this, we may use linear discriminant analysis
(LDA) coupled with the stepwise hybrid feature selection driven by the T2 measure
of discriminatory power (as described in Chapter 3).

We begin by building a model that tries to separate all seven classes. We expect
that one or two classes will dominate the separation, causing the remaining classes
to overlap—this is a common situation in multiclass discrimination. When we run a
T2-driven feature selection, the heuristic search stops after a set of 11 variables is
identified—the stopping criterion for the discriminatory power, T2 � 100, has been
achieved. A projection of the six-dimensional discriminatory space indicates that
T-ALL and E2A-PBX1 are totally separated, and that the remaining five classes
overlap (see Fig. 6.1).

To investigate whether the observed separation of T-ALL and E2A-PBX1 is not
due to chance, we may build an ensemble of some 10 to 100 classifiers. Following the
modified bagging schema (see Chapter 3), each of the classifiers is based on a ran-
domly selected subset of the training samples. For example, each of the randomly
generated training sets may include 80 percent of all training samples. This would
leave 20 percent OOB samples that can be used as the test data for each classifier.
Note that we are not interested in finding a classifier yet. The goal of this modified

Figure 6.1: The classification model built on a set of 11 variables. When seven classes are
differentiated, the discriminatory space has six dimensions (see Chapter 3). The projection onto
a two-dimensional space of the first two linear discriminant functions (with the two largest
eigenvalues) presented here represents 97.96 percent of the discriminatory information, which
allows drawing conclusions about class separation in the six-dimensional discriminatory space.
The circles represent the two-dimensional projections of the six-dimensional hyperspheres
enclosing 95 percent of the probability in each class. The points are projections of the
six-dimensional vectors representing training samples.
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bagging experiment is to verify the assumption that the data support separation of
T-ALL and E2A-PBX1 from the other five classes.

By investigating different cardinality sets identified during the T2-driven
heuristic search, we can see that subsets of three to five variables may have satisfactory
discriminatory power (to at least separate one class from the others). We may decide to
use themodified bagging schema to generate classifiers based on sets of five variables.
For each classifier, an independent feature selection is performed and a multivariate
marker of five variables is identified.

This experiment indicates that:

† T-ALL is separated from all other classes,

† in the majority of models, both T-ALL and E2A-PBX1 are totally separated
from the other classes (see Fig. 6.2).

Based on the results of these experiments, we may decide on one of two
plausible designs for the first stage of classification:

† to build a model that differentiates three classes: T-ALL, E2A-PBX1, and the
remaining five groups treated as a single class, or

† to build two binarymodels—the first one separating T-ALL from the six remain-
ing groups, and the second one to separate E2A-PBX1 from the remaining
five groups.

Note:

For either scenario, biomarkers with very few variables can be found.

Stage 1: Three Classes

Assume that at stage 1 we differentiate three classes: T-ALL, E2A-PBX1, and all other
samples combine into the third class. To verify this assumption, we first modify the
meta-data in our gene expression matrix to include only three classes (all samples
not belonging to T-ALL or E2A-PBX1 will be associated with the third class that
we can call 5-Remaining) and then use it as the base training data set to build an
ensemble of 1000 classifiers. As before, the modified bagging schema may be
implemented, which means that:

† each classifier is based on its own training set that includes about 80
percent of the samples that have been randomly selected from the base training
data set,

† the remaining about 20 percent of the samples are OOB samples that can be used
as test samples for this particular classifier.

To have about 20 percent of the OOB samples selected from each class, we
assume the proportion of the OOB samples gOOB ¼ 0.2 and calculate the number of
OOB samples from class j as

nOOBj ¼ int(gOOB 
 nj þ 0:99), j ¼ 1, . . . , J (6:1)
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This way, the total number of randomly selected OOB samples for each classifier
can be calculated as

nOOB ¼
XJ
j¼1

nOOBj (6:2)

For our training data with 14 T-ALL samples, 18 E2A-PBX1 samples and 100
samples in the 5-Remaining class, each of the 1000 randomly generated training
sets will include 11 T-ALL samples, 14 E2A-PBX1 samples, and 80 samples from

Figure 6.2: Two examples of classifiers based on multivariate sets of five variables.
T-ALL and E2A-PBX1 are totally separated from the other classes. The remaining five
classes heavily overlap. These two projections represent 92.9 percent and 98.5 percent of
the discriminatory information in their respective six-dimensional discriminatory spaces.
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the 5-Remaining class. The size of each OOB set will be 27, with three T-ALL and
four E2A-PBX1 samples. Please note that the number of different training sets
that can be generated by the modified bagging schema is much larger than 1000,
and can be calculated as

YJ
j¼1

nj
nOOBj

� 	
¼ 14

3

� 	

 18

4

� 	

 100

20

� 	
� 5:97 
 1026 (6:3)

For each of the 1000 classifiers, a separate feature selection is performed. We may
decide to stop each selection process when a set of five variables is selected (from
all 15,697 variables represented in the training data). If the T2-driven heuristic
search is used for feature selection, an additional level of randomness may be added
by starting each search from a randomly selected variable (see Chapter 3).

Note that we are still not in a biomarker building phase. All we aim to do now is
to verify our initial assumption about differentiating the three classes at the first stage
of the classification schema. From this experiment, we seek the following:

a) to determine if the three classes can be well separated by a multivariate marker
of five variables,

b) an initial estimate of the accuracy for a classifier based on a marker of five
variables.

To verify our assumption, we look at the discriminatory spaces of classifiers based on
the randomly selected training sets and at the estimate of the misclassification error rate
provided by classification of their OOB samples.

Results:

† 98.9 percent of the OOB samples are classified correctly (99.7 percent for
T-ALL, 99.3 percent for E2A-PBX1, and 98.7 percent for the samples belong-
ing to the 5-Remaining class). This result is based on the classification of 27,000
samples (27 OOB samples for each of the 1000 classifiers).

† The discriminatory spaces of the models show that the three classes are totally
separated (see an example in Fig. 6.3). Note that this only means that the training
samples are well separated. Whether new samples can be correctly assigned to
their true classes depends on how well the training data represents the under-
lying populations. Nevertheless, these results suggest that, when we enter the
phase of building an optimal biomarker, we can consider biomarkers with
fewer than five variables.

Stage 2: Five Classes

The next stage of multiclass differentiation includes only the five groups that pre-
viously belonged to the 5-Remaining class. Since samples belonging to the subtypes
addressed at stage 1 (T-ALL and E2A-PBX1) were excluded from consideration, our
training set changes and we need to revisit probe set filtering. Using the same approach
as before, that is, filtering by the fraction of Present calls in a class and filtering by the
range of expression values, we now end up with 14,537 variables.
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As before, to check which group or groups dominate separation, we start with
five classes, each class representing one group. When feature selection utilizing
the T2-driven heuristic search is performed, the process stops when a set of 14 vari-
ables with T2 � 100 (strong indication of overfitting) is identified (Fig. 6.4). The
examination of models with 1 to 14 variables identified during this process indicates
that sets of four to eight variables may have satisfactory discriminatory power.

To decide, which combination of classes should be separated at this stage, we
build an ensemble of 100 classifiers, utilizing the modified bagging schema with
random selection of about 80 percent of samples into each bootstrap training set.

Figure 6.3: An example of a discriminatory space typical for classifiers built on five-gene sets
selected from training sets generated by the modified bagging schema. Since three classes are
differentiated here, the discriminatory space has only two dimensions. The circles represent
constant density boundaries enclosing 95 percent of the probability in each class. The points
represent the training samples.

Figure 6.4: Discriminatory space of the classifier built on a multivariate set of 14 variables.
This two-dimensional projection of the four-dimensional discriminatory space represents
98.6 percent of the discriminatory information.
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This time we stop feature selection for each model when a set of eight variables is
identified.

The discriminatory spaces of all identified models indicate a good separation
of MLL from the other four classes. Many models separate two classes: MLL and
TEL-AML1. Hence, we may also consider models that separate either three or two
classes at this stage.

Stage 2: Three Classes

First consider separation of three classes: MLL, TEL-AML1, and the remaining
three groups of samples treated as one class. We build a single model based on a
marker of five variables (see Fig. 6.5). All three classes are well separated in its
discriminatory space.

To check whether a model of five variables has a chance for good generalization,
we use the modified bagging approach to build 1000 classifiers based on training
sets consisting of randomly selected 80 percent of all training samples. When OOB
samples are classified, only 92.8 percent of them are assigned to their true classes.

Stage 2: Two Classes

Now let’s look at the discrimination of two classes only—MLL versus the remaining
four groups treated as a single class. First, we build a single model with five variables
and confirm that the training samples of the two classes are totally separated.

Next, we build 1000 classifiers based on the randomized training sets generated
by the modified bagging schema. This time, 97.8 percent of the OOB samples are cor-
rectly classified, making this design more likely to deliver a generalizable classifier.

Figure 6.5: Discriminatory space of a classification model built on a set of five variables.
Since only three classes are differentiated, the discriminatory space has two dimensions and the
figure represents 100 percent of the discriminatory information.
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Based on these results, at stage 2 we may decide to differentiate two classes—MLL
against all remaining samples combined into the 4-Remaining class.

Remaining Stages of the Classification Schema

Following the approach described for the first two stages, we are designing the five-
stage classification schema presented in Table 6.1.

6.3 IDENTIFYING THE INFORMATIVE SET OF GENES
(EXERCISES 4.2–4.6)

We will illustrate the identification of the Informative Set of Genes on the example
of Model 2 of the multistage classification schema designed for ALL3 data. This
model differentiates MLL from the 4-Remaining class that includes four groups
of samples3 (TEL-AML1, Hyperdiploid . 50, BCR-ABL, and “Others”). The
previously performed modified bagging experiments indicate that a classification
model based on a marker of five variables may be expected to properly classify
about 97.8 percent of the samples not seen by the model. Actually, we may anticipate
a better performance out of a classifier built on the entire training set since the 97.8
percent average accuracy was based on models built from training sets including
only 80 percent of the samples from the base training data. Furthermore, using the
Informative Set of Genes for identification of robust biomarkers may also lead to a
better than average performance of such biomarkers (see Chapter 4).

At this point, one may consider additional filtering of noise by criteria specific
for two-class differentiation. Examples of such filters are as follows.

† Filtering by the average expression level in a class. For this data, we could
consider retaining only those probe sets whose average intensity level
exceeds a specified threshold (e.g., 100) in at least one of the two classes
(McClintick and Edenberg 2006). This would constitute much more aggressive
filtration than that already applied using the range of expression values
(Max2Min, 100). Here, it would remove an additional 2699 probe sets.

† Filtering by the fold change. In Chapter 2, we did not recommend using this as
the only filtration method. Here, we add an additional warning against filtering
by the fold change with the commonly encountered thresholds of 1.5 or greater.
Filtering with such thresholds may add a strong univariate bias to the analysis.
Genes whose average expression is not very different in the two classes may
have expression patterns complementary to the expression patterns of some of
the other genes. Their combined expression changes may define a strong multi-
variate pattern significantly separating the classes, even when genes contribut-
ing to the pattern are not individually discriminatory. However, with much
lower thresholds, we may use the fold change filter for the additional elimination
of noise (especially at lower expression levels).

3Hence, this Informative Set of Genes will contain discriminatory information significant for MLL subtype
prediction.
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Assume that we applied the fold change filter and eliminated probe sets whose ratio of
the average expressions in the two classes was less than 1.1. Our gene expression
matrix now includes 8950 variables.

To illustrate the identification and then verification of the Informative Set of
Genes, we will use T2-based stepwise hybrid feature selection and the modified
bagging schema with LDA (details of these methods are described in Chapter 3).
However, any supervised learning approach that can identify parsimonious multi-
variate markers and provide a measure of their discriminatory power may be used
for this purpose.

6.3.1 The Informative Set of Genes

To identify the Informative Set of Genes, we generate a sequence of alternative
multivariate biomarkers and use them to build alternative classification models
(see Chapter 4 for a description of the method). Each alternative marker is a result
of feature selection performed on a training set that does not include genes already
selected into the previously identified markers. The stepwise hybrid search driven
by the T2 measure of class separation is used to identify alternative markers of five
variables. The discriminatory power of subsequent alternative markers (and models)
has a strong decreasing tendency that can be approximated by a logarithmic trend
line (Fig. 6.6).

To decide at which point significant discriminatory information of the training
data is exhausted, we investigate alternative models with different levels of

T

y x

R

Figure 6.6: Decreasing discriminatory power of the subsequently identified alternativemarkers.
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discriminatory power T2. For this data, we decide4 that a plausible cut-off is at T2 ¼ 5.
The logarithmic trend line crosses this level in the neighborhood of the alternative
marker 84 (M84). We define the Informative Set of Genes as the set of genes included
in these of M0 to M84 markers5 which have T2 � 5. Since there are seventy one such
markers, our Informative Set of Genes includes 355 genes. Let us call this set INF-355.

Note:

If we decided on a cut-off at T2 ¼ 4, the informative set would include 600 genes
selected into the first 120 markers with T2 � 4.

To verify our selection of the Informative Set of Genes, we compare the
estimated MLL sensitivity of the classifiers of three ensembles built on:

† the entire training set of 8950 variables,

† the informative set INF-355,

† the training set without variables included in INF-355.

In each case, the modified bagging schema is used to build 1000 classifiers based on
randomly selecting 80 percent of the samples from each class. Please recall that
separate feature selection is performed for each classifier. MLL sensitivity is estimated
by the classification of the OOB samples.

The results are summarized in Table 6.2.When the training data include only the
INF-355 variables, MLL sensitivity is 98.2 percent. This sensitivity drops about
21 percent (to 77.1 percent) when the classifiers are built using the data including
all variables but those belonging to INF-355. Note that MLL sensitivity estimated
for classifiers selecting variables from all 8950 variables is about 3 percent lower
than the one for classifiers considering only the INF-355 variables. A plausible expla-
nation of this fact is that the classifiers built on the Informative Set of Genes are less
likely to fit noise.

6.3.2 Primary Expression Patterns of the Informative Set

We assume that the Informative Set of Genes includes gene expression patterns impor-
tant for separation of MLL samples from samples belonging to the 4-Remaining
class. To identify these patterns, we start with clustering the INF-355 variables.
Various clustering approaches may be used to identify clusters of genes with similar
expression patterns. Here, we use a self-organizing map (SOM) with 16 neurons of
the output layer organized into a 4 � 4 rectangular grid. Pearson correlation is used
as a distancemeasure between the input gene expression vectors and theweight vectors

4We consider not only the T2 discriminatory power of themodels, but also look at their discriminatory spaces
to evaluate the distribution of training data points in relation to the boundaries enclosing 95 percent of the
probability in each class. Models with a T2 of 5 and above look like they provide good discrimination.
Models with a T2 of 3 or 4 look like they provide a borderline class separation. This indicates that significant
discriminatory information may be exhausted somewhere between T2 ¼ 5 and T2 ¼ 4.
5Marker M0 is the optimal multivariate biomarker identified from the entire training set (including all 8950
variables).
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representing cluster prototypes.As a result,we have 16 clusters of geneswith cluster sizes
varying from 4 to 55 genes. Although very small clusters may suggest that their genes
were selected into alternative markers by chance, we do not evaluate the importance of
gene expression patterns solely on the size of clusters representing the patterns.

To identify primary expression patterns, we look at the distribution of each clus-
ter’s genes among the classifiers built with the modified bagging schema. We use two
ensembles of 1000 classifiers. One ensemble is built on the entire training set of 8950
variables, the other on 355 variables of the INF-355 set only (see Table 6.2). The
average use of cluster genes by the perfect OOB classifiers of these ensembles (i.e.,
the classifiers that correctly classify all of their respective OOB samples) is our
measure of the importance of gene expression patterns represented by the clusters.
The results (see Table 6.3) indicate that the genes of the same group of four clusters
are most often used by the perfect classifiers of both ensembles. Gene expression

TABLE 6.3: Use of Clusters and Their Genes Among the Perfect OOB Classifiers of Two
Ensembles6

Cluster Size

Ensemble built on
355 variables

Ensemble built on
8950 variables

Cluster
Use

Average
Use

Cluster
Use

Average
Use

12 10 694 69.40 569 56.90

13 25 497 19.88 408 16.32

1 55 813 14.78 573 10.42

15 16 235 14.69 181 11.31

3 4 54 13.50 8 2.00

11 12 140 11.67 67 5.58

14 24 238 9.92 116 4.83

5 38 346 9.11 162 4.26

6 24 202 8.42 80 3.33

16 40 304 7.60 142 3.55

2 35 245 7.00 140 4.00

7 11 29 2.64 11 1.00

8 23 56 2.43 33 1.43

9 4 8 2.00 4 1.00

4 28 23 0.82 10 0.36

10 6 4 0.67 4 0.67

One ensemble of 1000 classifiers was built on the training set including all 8950 variables. The other ensemble of 1000
classifiers was built on the training set limited to the 355 genes of the Informative Set of Genes. The perfect OOB
classifiers of both ensembles most often tap into the same four clusters. The Cluster Use column shows the number
of times genes of a cluster are used in the classifiers. The Average Use is the average number of times a gene from
the cluster is selected into the classifiers. Note that Cluster 1 is used 813 times in the 778 perfect OOB classifiers built
on the INF-355 variables. This means that some of these classifiers were built on multivariate markers that included
more than one gene from this cluster.
6Instead of using only the perfect OOB classifiers, we could use all classifiers of both ensembles (see Chapter 4).
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patterns represented by these four primary clusters are called the primary expression
patterns. We assume that these patterns represent the most important biological pro-
cesses associated with the class differences. Hence, the interpretation of differences
between MLL and the other four subtypes represented in this experiment may be
based on the four identified primary expression patterns.

6.3.3 The Most Frequently Used Genes of the Primary
Expression Patterns

The four primary clusters representing the primary expression patterns include 106
genes. These genes are not necessarily equally important for classification and for bio-
logical interpretation of class differences. We may assume that genes that are most
often selected into the perfect OOB classifiers generated by the modified bagging
schema are more important for class differentiation than other genes. To identify

TABLE 6.4: List of 21 Frequent Primary Genes of the Informative Set INF-355

Probe set Cluster

Gene use in perfect
OOB classifiers of
the ensemble built
on 355 variables

Gene use in perfect
OOB classifiers of
the ensemble built
on 8950 variables

GenBank
accession Chip

203434_s_at 12 652 542 AI433463 A

210487_at 13 463 389 M11722 A

226415_at 1 371 295 AA156723 B

219686_at 15 191 142 NM_018401 A

219463_at 1 140 123 NM_012261 A

231899_at 1 76 36 AB051513 B

226546_at 1 50 33 BG477064 B

203076_s_at 15 32 36 U65019 A

209905_at 1 21 20 AI246769 A

203435_s_at 12 17 10 NM_007287 A

202603_at 1 16 11 N51370 A

204069_at 1 16 9 NM_002398 A

223046_at 12 12 11 AL117352 B

206875_s_at 13 11 13 NM_014720 A

218566_s_at 1 11 8 NM_012124 A

220668_s_at 1 22 5 NM_006892 A

219988_s_at 1 18 3 NM_018150 A

223467_at 13 15 4 AF069506 B

203375_s_at 1 11 2 NM_003291 A

202365_at 1 10 3 BC004815 A

219036_at 1 9 3 NM_024491 A

The 15 genes at the top of the list are the most frequent primary genes (selected into at least one percent of the perfect
OOB classifiers of the two ensembles, one built on the training set including all 8950 genes, the other built on the INF-355
genes only).
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such genes, we will revisit the two ensembles of 1000 classifiers (one built on all 8950
variables and the other on the 355 genes of the informative set). This time, however,
we will look at the distributions of the primary cluster genes among the five-gene mar-
kers used in the perfect OOB classifiers. By defining the frequently used genes as
those that are selected into at least one percent of the perfect OOB classifiers of the
ensemble built on the training set including only the INF-355 variables, we identify
21 genes that are considered the frequently used genes of the primary clusters.7 We
call these genes the frequent primary genes. Fifteen of these 21 genes are used in at
least one percent of the perfect OOB classifiers of both ensembles; they are the
most frequent primary genes of the informative set. Information about all frequent
primary genes is presented in Table 6.4.

6.4 USING THE INFORMATIVE SET OF GENES
TO IDENTIFY ROBUST MULTIVARIATE MARKERS
(EXERCISE 4.8)

The main goal of searching for the Informative Set of Genes, its primary patterns and
their most frequently used genes is to facilitate biological interpretation of class
differences. Before we identified the informative set, we could already have a parsi-
monious multivariate biomarker built on the training set including all 8950 variables.
However, such a marker may have a higher chance of overfitting the training data
than a marker built from the genes representing the primary expression patterns
associated with class differentiation. When we use the Informative Set of Genes or
its subset of the frequent primary genes, we may expect not only a more robust bio-
marker, but also one that may be associated with more plausible biological

TABLE 6.5: The Multivariate Marker of Five Genes Identified for Model 2 (of
the Multistage Classification Schema) Differentiating MLL from the Four
Other ALL Subtypes

Probe set Cluster
GenBank
accession Chip

203434_s_at 12 AI433463 A

210487_at 13 M11722 A

226415_at 1 AA156723 B

226546_at 1 BG477064 B

204069_at 1 NM_002398 A

Three of the four primary clusters are represented in this biomarker. Three genes of this biomarker
are selected from the largest 55-gene Cluster 1. This suggests that there are at least three
subpatterns in this cluster that are joined at the level of similarity used by applied SOM clustering.
For biological interpretation, we may either try to interpret the super pattern of Cluster 1 or split it
into a few subpatterns (by further clustering the gene expressions of Cluster 1).

7Please check that some of these genes are quite far on the univariately ordered list of 8950 genes.
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interpretation. When we perform T2-based stepwise hybrid feature selection using
only the 15 most frequent primary genes, we identify the multivariate biomarker
of five genes presented in Table 6.5. Figure 6.7 shows the discriminatory space of
an LDA classifier built on this marker.

Question: Use the INF-355 training set with other multivariate methods that
can identify a biomarker consisting of a small number of genes and can estimate
its generalization. One such method is Recursive Feature Elimination often
implemented with support vector machines or random forests learning algo-
rithms. Do the resulting biomarkers prefer genes that are on the short list of
the 21 frequent primary genes?

6.5 VALIDATING BIOMARKERS ON AN
INDEPENDENT TEST DATA SET (EXERCISE 4.8)

To validate the five-gene biomarker identified in the previous section, we search public
repositories for a data set with samples representing subtypes of pediatric ALL and
processed on the same or a compatible microarray platform. In Gene Expression
Omnibus we can find a recently published data set GSE13351 (Den Boer et al.
2009). This data set is also available in ArrayExpress under the accession number
E-GEOD-13351. It includes 107 cases representing the seven ALL subtypes. To
use it as a test set for a Model 2 classifier, we will use a subset of 90 samples (four
MLL samples and 86 samples representing the four subtypes of the 4-Remaining
class). The samples were processed on Affymetrix GeneChip HG-U133 Plus 2.0
microarrays. Though this is a different array than that used for the ALL3 data, the
two designs are compatible in such a way that all probe sets represented on the
HG-U133A and HG-U133B arrays are also represented on the Plus 2.0 array.

Figure 6.7: Discriminatory space of the five-gene biomarker for Model 2 differentiating
MLL from the four other ALL subtypes. Since two classes are differentiated, the discriminatory
space is one-dimensional and is represented by the horizontal line. The vertical offset is added
only to improve the visibility. The classes are represented by their centroids and the segments
(of the discriminatory direction) that include 95 percent of the probability in each class. The
points (or more precisely, their horizontal coordinates) represent the training samples. The
fact that the training samples are well separated in this discriminatory space is only a necessary
but not satisfactory condition for the marker to be generalizable. However, the fact that this
marker is based on the most frequent primary genes of the Informative Set of Genes suggests
that it may be more robust than similar markers based on all the variables of the original
training set.
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Take the following steps.

† Either download the probe set intensity data and rescale each array to the same
target as used for the ALL3 data, or download the CEL files and preprocess them
using the Affymetrix Expression Console software.

† Log2 the preprocessed (or rescaled) test data.

Table 6.6 summarizes the results of testing several classifiers built from the training
set including only the 355 genes of the Informative Set of Genes. Each classifier is used
to classify samples of the independent test set represented by the GSE13351 data.

6.6 USING A TRAINING SET THAT COMBINES MORE
THAN ONE DATA SET (EXERCISES 3.5 AND 4.1–4.8)

In this exercise, wewill combine two pediatric ALL data sets. One is the ALL3 set used
in the previous exercises. The other is the GSE13425 data set (Den Boer et al. 2009)
recently uploaded to GEO (also available in ArrayExpress as E-GEOD-13425). The
samples of the GSE13425 data set have been processed on Affymetrix HG-U133A
2.0 microarrays, which are compatible with the HG-U133 chips used for ALL3. The
GSE13425 data set includes 190 samples associated with the same seven ALL sub-
types that are represented in ALL3. Since the two data sets originate not only in differ-
ent medical centers but also in different countries, we may hope that the combined
training set will better represent the underlying populations of the ALL subtypes.

Figure 6.8: The results of the classification of the independent test set (GSE13351) by the
LDA classifier based on the five-gene biomarker identified by the T2-driven stepwise hybrid
feature selection. As in Figure 6.7, the discriminatory space is one dimensional and is
represented by the horizontal line; the vertical offset is added only to improve the visibility of the
results. The points represent the classification results of the biological samples of the
independent test set. Since the classifying software does not know the true classes of the test
samples, it paints all points with the same vertical offset. All four MLL samples are correctly
classified to the MLL class. All 86 samples representing the four subtypes of the 4-Remaining
class are also correctly classified into their true class. However, two of these 86 samples
(GSE337072 and GSE337066) are close to the decision boundary.
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This may lead to more robust biomarkers and classifiers. However, there is also a dis-
advantage in combining these particular sets. The GSE13425 data is limited to Chip A
probe sets, which means that we will need to discard the discriminatory information
contained in the Chip B probe sets of the ALL3 data set.

To be able to compare the results of this exercise with the previous results, we
may prepare and then use the combined training set to identify the Informative Set
of Genes and biomarkers for the same stage of the multistage classification schema
(i.e., Model 2 that differentiates MLL from other four ALL subtypes).

6.6.1 Combining the Two Data Sets into a Single Training Set

Since neither the GSE13425 nor the E-GEOD-13425 probe set level expression data
include the detection call information that we want to use for filtering unreliable vari-
ables, we will download the CEL files and perform low-level preprocessing using the
Affymetrix Expression Console software.

† From ArrayExpress, download the 190 CEL files of the GSE13425 (E-GEOD-
13425) data set.

† From ArrayExpress, download the Detailed sample annotation (or SDRF file)
for this data set, and save it as an Excel file.

† From Affymetrix, download and install the Expression Console software.

† Open the Expression Console application and:

B download the library and annotation files for the HG-U133A microarray
(this will define report controls and thresholds),

B create a new study,

B add the 190 CEL files to the study,

B define a new advanced configuration of the MAS5 algorithm and specify a
target intensity of 100,

B run the analysis by executing this advanced MAS5 configuration,

B set the report options to include Signal and Detection Calls,

B export the probe set data to a text file,

B save the study.

† Open the exported data in Excel.

B Using the Detailed sample annotation, associate each column with a bio-
logical sample and its ALL subtype.

B Remove the control probe sets: the 68 probe sets with names starting
with AFFX and the set of 100 normalization controls (200000_s_at
to 200099_s_at). The file should now include 22,115 probe sets.

B Append, to the right of the spreadsheet, the Chip A data of the ALL3 file
(including the Signal and Detection Call columns). Be sure that the
header rows of both files represent the same type of information and that
the order of the probe sets is identical.
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B Since in this exercisewe are interested in differentiatingMLL from the other
four ALL subtypes (as identified forModel 2 of the multistage classification
schema), remove the T-ALL and the E2A-PBX1 samples.

B Rearrange the column order so that the samples of the same subtype are
together.

6.6.2 Filtering Probe Sets of the Combined Data

† Filter by the fraction of Present calls and remove the 13,132 probe sets that have
no class with at least 50 percent of Present calls.

† Filter by the range of expression values and remove the additional 131 probe
sets with amplitude of expression level below 100 (Max2Min , 100). There
are 5951 such probe sets but almost all of them are already removed by the frac-
tion of Present calls filter.

† Filter by the fold change and remove the additional 1962 probe sets whose ratio
of the average expressions in the two classes is less than 1.1.

After removing the Detection Call columns, we should have the data in the form of a
gene expression matrix with 6890 variables and 241 samples (24 MLL samples and
217 samples of the 4-Remaining class).

6.6.3 Assessing the Discriminatory Power of the Biomarkers
and Their Generalization

If we had not already performed exercises for Model 2, we would assess here the
approximate size of a multivariate biomarker by performing feature selection
experiments and checking the discriminatory power and the class separation of var-
ious cardinality markers. However, the previous results allow us to expect that a
marker of five or so variables still should be sufficient to separate the classes
well. Due to the increased heterogeneity of the training data, we may also expect
new markers to be more robust, that is, less fit to the training data but still well
generalizable. When we design an ensemble of 1000 classifiers based on the
randomized training sets generated with the use of the modified bagging schema,
we notice that the average T2 measure of discriminatory power of these classifiers
is significantly lower than when only the ALL3 data were used. However, they pro-
vide similar MLL sensitivity, specificity, and accuracy in the classification of their
OOB samples.

6.6.4 Identifying the Informative Set of Genes

As described in Chapter 4, identification of the Informative Set of Genes is based on a
sequence of alternative markers (models) resulting from feature selection performed
on the training data from which all the variables selected into the previously identified
alternative markers have been excluded. Here, we build a sequence of alternative
markers of eight variables.8 The discriminatory information in the data is quickly
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exhausted and we define the Informative Set of Genes as the set of 176 genes included
in the 22 markers with T2 � 3 (see Fig. 6.9). We will call this set INF-176.

To verify our selection of the Informative Set of Genes, we estimate the MLL
sensitivity using three ensembles of 1000 classifiers built on:

† the entire training set of 6890 variables,

† the informative set INF-176,

† the training set without the variables included in INF-176.

In each case, the classifiers are based on randomized training sets generated by the
modified bagging schema (which includes independent feature selection performed
for each classifier). They are then used to classify their respective OOB samples.

The results are summarized in Table 6.7. Classifiers based on the multivariate
markers selected from the INF-176 set correctly classify 95.1 percent of the MLL
OOB samples. When the INF-176 variables are excluded from the training set, the
MLL sensitivity is only 76.2 percent. This is a clear indication that no significant
discriminatory information is left in this set. Figure 6.10 presents a heat map of the
Informative Set of Genes.

T
y x

R

Figure 6.9: Alternative models built on the training set combining the ALL3 and the
GSE13425 data sets. The quickly decreasing discriminatory power of subsequent alternative
markers is approximated by a logarithmic trend line. The variables selected into the alternative
markers represented by the points above the horizontal line T2 ¼ 3 and to the left of the point in
which the trend line crosses this horizontal line are included in the Informative Set of Genes.
There are 22 such alternative markers. Hence, the Informative Set of Genes includes 176 genes.

8We are increasing the size of the alternative markers to account for the decreased discriminatory power of a
single marker and for the decreased amount of discriminatory information in the data (since onlyChip A data
are included).
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Figure 6.10: A heat map representing the two-way clustering of the INF-176 Informative
Set of Genes. The dendrogram at the top of the image represents the results of hierarchical
clustering of the training samples. The leftmost cluster of this dendrogram includes all 24 MLL
samples. The dendrogram at the left side of the image represents the results of clustering genes.
Since the multivariate approach was used to identify the Informative Set of Genes, some of them
are far from the top of a univariately ordered list of genes. Individually, they do not discriminate
the two classes. However, their expression patterns are complementary to the patterns of some
other genes in a way that a joint expression pattern of a small subset of such complementary
genes provides good separation of the MLL samples from the samples of the other class. (See
color insert.)
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6.6.5 Primary Expression Patterns of the Informative
Set of Genes

To identify groups of similar expression patterns included in the Informative Set of
Genes, we cluster the 176 variables of the INF-176 set. We use a SOM with a 3 � 3
rectangular topology of the output layer and with Pearson correlation as a distance
measure between the vectors representing gene expressions and the weight vectors
of cluster prototypes. The resulting nine clusters include 1 to 44 genes.

To identify the primary expression patterns, we check how often the genes
of these nine clusters are used by the two ensembles of 1000 classifiers. One of
these ensembles is built on the training set with all 6890 variables, the other—on
the 176 variables of the Informative Set of Genes only (see Table 6.7). We examine
only the perfect OOB classifiers, that is, the classifiers that correctly classify all
their OOB samples. The genes of the same group of four clusters are most often
selected into the perfect OOB classifiers of the two ensembles. These clusters
also have the highest average use of their genes (the results are summarized in
Table 6.8). These four primary clusters represent the primary expression patterns
(see Fig. 6.11)—the patterns associated with the most important biological processes
underlying the differences between MLL and the other four ALL subtypes con-
sidered by Model 2.

TABLE 6.8: Use of Clusters and Their Genes Among the Perfect OOB Classifiers of Two
Ensembles

Cluster Size

Ensemble built on
176 variables

Ensemble built on
6890 variables

Cluster
Use

Average
Use

Cluster
Use

Average
Use

9 51 1728 33.88 1453 28.49

4 16 463 28.94 413 25.81

2 16 218 13.63 214 13.38

1 44 437 9.93 203 4.61

6 11 78 7.09 35 3.18

8 10 37 3.70 19 1.90

7 22 42 1.91 31 1.41

3 5 4 0.80 3 0.60

One ensemble of 1000 classifiers was built on the training set that included all 6890 variables, the other—on the training
set limited to the 176 genes of the Informative Set of Genes. In both ensembles, the perfect OOB classifiers most often
used genes of the same four clusters. The Cluster Use column shows the number of times the genes of a cluster were
selected into these classifiers. The Average Use represents the average number of times a gene from the cluster was
selected into the classifiers. Note that Cluster 9 is used more than 548 times by the perfect OOB classifiers of the ensemble
built on all 6890 variables, and more than 607 times by the perfect OOB classifiers of the ensemble built on the
Informative Set of Genes. This means that many of these classifiers use more than one gene from this cluster. This
may prompt further clustering of the 51 genes of this cluster in order to identify subpatterns in its expression
pattern. Note also that Cluster 5 is not shown in the table; its single gene has not been selected into any of the perfect
OOB classifiers.
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6.6.6 The Most Frequently Used Genes of the Primary
Expression Patterns

The four primary clusters representing the primary expression patterns include 127
genes. To find out which of them are the most representative for class discrimination
and for biological interpretation of the class differences, we examine how often these
genes are selected into the perfect OOB classifiers of the same two ensembles that
were used to identify these primary patterns (one ensemble of 1000 classifiers select-
ing from all 6890 variables, and the other ensemble of 1000 classifiers selecting
variables from the INF-176 set only).

We define the frequent primary genes as those genes of the primary clusters that
are selected into at least one percent of the perfect OOB classifiers of the ensemble
built on the Informative Set of Genes. The most frequent primary genes are those
that are selected into at least one percent of the perfect OOB classifiers in both ensem-
bles. The four primary clusters include 27 frequent primary genes.9 Eighteen of them
are the most frequent primary genes. Information about these genes is presented in
Table 6.9. Figure 6.12 shows expressions of the 18 most frequent primary genes of
the informative set.

Please note that it is a common practice for gene expression studies to use the
terms probe set and gene as synonyms. However, more than one probe set may be
associated with the same gene. For example, 27 probe sets listed in Table 6.9

Figure 6.11: The four primary expression patterns of the Informative Set of Genes identified
from the combined training data set (ALL3 þ GSE13425). (See color insert.)

9Please check that some of these genes are quite far on a univariately ordered list of 6890 genes.
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correspond to 25 unique gene symbols. Although each of these 27 probe sets has a
different GenBank accession,10 the probe sets 201151_s_at and 201153_s_at are
associated with gene symbol MBNL1, whereas probe sets 208112_x_at and
209038_s_at with EHD1. Such “redundant” probe sets are associated with different

TABLE 6.9: List of 27 Frequent Primary Genes of the Informative Set of Genes

Probe set Cluster

Gene use in
perfect OOB

classifiers of the
ensemble built
on 176 variables

Gene use in
perfect OOB

classifiers of the
ensemble built

on 6890
variables

GenBank
accession

Gene
symbol

219463_at 9 596 528 NM_012261 C20orf103

209905_at 9 434 374 AI246769 HOXA9

203434_s_at 4 408 386 NM_007287 MME

201153_s_at 9 273 248 N31913 MBNL1

209354_at 1 242 134 BC002794 TNFRSF14

219686_at 2 207 204 NM_018401 STK32B

204069_at 9 144 123 NM_002398 MEIS1

201151_s_at 9 76 44 BF512200 MBNL1

209038_s_at 1 71 22 AL579035 EHD1

211066_x_at 9 53 60 BC006439 PCDHGC3

211126_s_at 9 52 33 U46006 CSRP2

208729_x_at 1 48 8 D83043 HLA-B

212237_at 9 32 11 N64780 ASXL1

208112_x_at 1 24 11 NM_006795 EHD1

206492_at 4 22 7 NM_002012 FHIT

200989_at 1 17 12 NM_001530 HIF1A

220448_at 9 9 12 NM_022055 KCNK12

200953_s_at 2 8 7 NM_001759 CCND2

212762_s_at 1 13 5 AI375916 TCF7L2

208779_x_at 4 13 5 L20817 DDR1

208690_s_at 4 6 5 BC000915 PDLIM1

219821_s_at 1 10 4 NM_018988 GFOD1

204304_s_at 9 12 3 NM_006017 PROM1

203795_s_at 9 12 3 NM_020993 BCL7A

218764_at 4 7 2 NM_024064 PRKCH

203837_at 9 11 1 NM_005923 MAP3K5

213150_at 9 6 1 BF792917 HOXA10

The 18 genes at the top of the list are the most frequent primary genes (selected into at least one percent of the perfect
OOB classifiers of the two ensembles, one built on the training set including all 6890 genes, the other on the INF-176
genes only).

10The GenBank database accepts all submitted sequences, which means multiple GenBank accessions may
represent the same gene. Only after curation by experts a sequencemay be elevated to the status of a reference
sequence (Gibson and Muse 2009).
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regions of the targeted gene. If those regions belong to different exons, the probe sets
may represent different splice variants of the gene.

Biological Interpretation of the Most Frequent Primary Genes (Contributed
by Dr. Preethi Gunaratne from Baylor College of Medicine)

The presented multivariate approach identified a set of 176 informative genes that are
important for discrimination of MLL from four other B-cell ALL subtypes (TEL-
AML1, Hyperdiploid . 50, BCR-ABL, and “Others”). Eighteen of these genes are
most frequently used by a large number of bootstrap-based classifiers and they consti-
tute the best starting point for biological interpretation of the results. This set of 18
most frequent primary genes consists of genes with diverse functions and cellular
locations. Among them are genes that regulate a number of important cellular pro-
cesses that have been linked with cancer, including cellular differentiation, cell
adhesion, and regulation of cell proliferation and survival. This is very illuminating
from the point of view that cancer cells display properties that overlap with cells
that have either undergone developmental arrest or retained stem cell characteristics.
In that context, the presence of at least four key developmental genes (HOXA9,
MEIS1, ASXL1, and CSRP2) in the set suggests that one of the reasons for poor prog-
nosis of MLL, as opposed to other B-cell ALL subtypes, is likely due to premature
termination of the developmental cascades in these cells. The other genes that may
have then contributed to the malignancy include genes that promote cell proliferation
(CCND2, HIF1A) and cell survival (TNFRSF14). Finally, cell–cell communication
and adhesion properties are also significantly different in differentiated cells as
compared to stem cells. The former are characterized by increased cell-to-cell com-
munication and adhesion, and the latter by decreased adhesion required for stem
cells self-renewal. But for a few other genes (MBNL1—an RNA-binding protein,
STK32B—a serine/threonine kinase, and KCNK12—a potassium channel gene),
the majority of these 18 genes have a direct link to stem cell related processes.

Genes Linked to Cancer Related Pathways
Developmental Genes The first cellular process that is striking in the signature is a
set of genes involved in the specification and development of the hematopoietic

Figure 6.12: A heat map of the expression data of the 18 most frequent primary genes of the
Informative Set of Genes. The leftmost cluster of the top dendrogram includes all 24 MLL
samples of the combined training set. (See color insert.)
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lineage. These include the homeodomain proteins HOXA9 and MEIS1, a polycomb
group (PcG) repressor ASXL1, and a LIM domain protein CSRP2. HOX proteins are a
family of DNA binding transcription factors that play a central role in the specification
of segmental body patterns during development. MEIS1 is a lineage-specific tran-
scription factor that is expressed in hematopoietic stem and progenitor cells.
HOXA9 and Hox-cofactor MEIS1 have been highly linked in MLL-rearranged leuke-
mias (Dou and Hess 2008; Faber et al. 2009; Li et al. 2009). Increased HOXA9
is linked with coordinate up-regulation of HOXA10, MEIS1, PBX3, and MEF2C,
which together lead to increased cell survival and poor prognosis (Faber et al.
2009). ASXL1 is a member of the PcG group of proteins that play an important
role in the maintenance of the pluripotent embryonic stem cells in self-renewal,
through the stable repression of homeotic loci. Mutations in this locus have been
associated with myelodysplastic syndrome and chronic myelomonocytic leukemia
(Gelsi-Boyer et al. 2009). This gene has also been identified as a fusion partner
with PAX5 resulting in the inactivation of this gene in human cancers (An et al.
2008). Another gene, CSRP2, is a member of a family of genes containing LIM
domains. This group of proteins has been highly implicated in cellular differentiation
in the developing embryo. Collectively, this group of genes is likely responsible for the
developmental arrest of hematopoietic development that is in part responsible for the
MLL phenotype.

Cell Proliferation, Survival and Adhesion CCND2 activity is required for
cell cycle G1/S transition through its regulation of CDK4 or CDK6. This gene has
been implicated in a large number of cancers including hepatocellular carcinoma,
gastric, and ovarian cancer (Goode et al. 2009; Hirata et al. 2009; Moribe et al.
2009; Yasuda et al. 2009). It is likely that this gene plays a major role in the increased
proliferative potential of this very aggressive leukemia. Two transcription factors,
FHIT and HIF-1, are also included in the set. FHIT is a fragile histidine triad gene
that is also a tumor suppressor gene found to be rearranged in infant acute lympho-
blastic leukemia (Stam et al. 2006). Promoter hypermethylation of FHIT has been
postulated to be linked to disease progression in ALL (Yang et al. 2006) and myelo-
dysplastic syndrome MDS (Iwai et al. 2005). In addition, decreased expression of
FHIT has been shown to be correlated with poor prognosis in patients with diffuse
large B-cell lymphoma (Jais et al. 2008). Hypoxia-inducible factor-1 (HIF-1) is a
transcription factor that controls homeostatic responses to hypoxia. HIF-1 has been
found to induce survival or death in different contexts. Hypoxia in general has been
found to lead to survival of leukemic cells when transplanted into mice. HIF-1A
associates with RUNX1. RUNX1 is highly linked to myeloid leukemia (Munker
et al. 2009) and AML-linked with MDS (Harada and Harada 2009). TNFRSF14 is
a member of the tumor necrosis factor receptor that is primarily known for its role
in mediating the entry of herpesvirus into T cells to serve in the costimulatory pathway
to promote T-cell survival. Disruptions of this gene have been found in association
with synovial cell carcinoma (Yu et al. 1999; Costello et al. 2003).

Genes involved in cell–cell communication are also found among these 18
genes. Membrane metallo-endopeptidase (MME) is a transmembrane glycoprotein
that cleaves and inactivates several peptide hormones. It is also a common cell surface
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marker for acute lymphocytic leukemia (ALL), and has been shown to predict
progression-free survival of diffuse large B-cell lymphoma (DLBCL) in a multivariate
model (Jais et al. 2008). EHD1 plays an important role in protein-protein interactions
with regard to intracellular sorting. The protein encoded by this gene is thought to play
a role in the endocytosis of IGF1 receptors. EHD1 is one among seven biomarkers that
are able to distinguish between neuroblastoma, non-Hodgkin lymphoma, rhabdomyo-
sarcoma, and Ewing sarcoma that share similar histology and therefore often present a
confusing clinical picture (Pal et al. 2007). PCDHGC3 belongs to the cadherin-like
cell adhesion proteins found to play an important role in the establishment of cell–
cell connections.

Other Genes STK32B is a serine/threonine kinase of which not much is
known; however, other members of this kinase family, such as GSK3, have been
linked to poor prognosis human leukemia. KCNK12 belongs to the superfamily of
potassium channel proteins containing two pore-forming P domains. In addition,
MBNL1—a double stranded RNA binding protein that specifically binds to expanded
CUG triplet repeat sequences—is also included in the set of frequent primary genes.
This protein has been linked with muscular dystrophy but not with leukemia, so it is
yet unclear what its role is in this disease.

6.6.7 Using the Informative Set of Genes to Identify Robust
Multivariate Markers

Although we identify the Informative Set of Genes to facilitate the biological
interpretation of a parsimonious multivariate biomarker that we may have already
found and initially validated, the genes included in the primary expression patterns
of this set—and especially the frequent primary genes—may serve as a basis for
the identification of potentially more robust biomarkers. Furthermore, the fact that
such biomarkers will only tap into the primary expression patterns of the
Informative Set of Genes should allow their easier and more meaningful biological
interpretation.

TABLE 6.10: Multivariate Marker of Five Genes Identified for Model 2 (of theMultistage
Classification Schema) When Feature Selection is Performed on the Training Data Only
Including the 18 Most Frequent Primary Genes

Probe set Cluster GenBank accession Gene symbol

219463_at 9 NM_012261 C20orf103

201153_s_at 9 N31913 MBNL1

203434_s_at 4 NM_007287 MME

209905_at 9 AI246769 HOXA9

209354_at 1 BC002794 TNFRSF14

Three of the five genes selected into this marker belong to Cluster 9 that includes 51 genes. This suggests that
the expression super-pattern represented by this cluster includes some complementary subpatterns that
together are important for separating the MLL subtype from the other four subtypes.
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When T2-driven stepwise hybrid feature selection is performed to select an opti-
mal subset of the eighteen most frequent primary genes, we identify the multivariate
biomarker of the five genes presented in Table 6.10.

6.6.8 Validating Biomarkers on an Independent Test Data Set

We will validate our biomarker on the independent test set available in GEO as
GSE13351 (and in ArrayExpress as E-GEOD-13351). This is the same test set we
used in the exercise where only the ALL3 data were used for training. The fact that
this test set includes samples from a different country11 than the training set and
that it was processed on a different (though compatible) microarray12 makes the test
results more reliable. The GSE13351 data set consists of 107 samples representing
seven ALL subtypes. Ninety of these samples are associated with the subtypes

A

B

Figure 6.13: Comparing two LDA classifiers built on different training sets. Both classifiers
are based on the multivariate markers of five genes identified by the stepwise hybrid feature
selection driven by the T2 measure of discriminatory power. For both, the one-dimensional
discriminatory spaces (the vertical offset is added only to improve the visibility) and results of
classification of the independent test samples (GSE13351) are shown. Classifier A (top figure) is
based on the training set combining two data sets (ALL3 and GSE13425). Classifier B (bottom
figure) is based on the ALL3 training data only. Both of them were identified by performing
feature selection on the most frequent primary genes of their respective Informative Sets of
Genes. As could be expected, the larger and more heterogeneous training set allows for more
precise estimation of the distributions of the differentiated classes (top figure). All but two
samples of the independent test set are classified within the segments (of the one-dimensional
discriminatory space) representing 95 percent of the probability of their true classes. Only the
same two samples that were previously suspected of being outliers are outside of such segment
of their class (and one of them is misclassified).

11The combined training set (ALL3 plus GSE13425) includes samples of patients from USA and Germany,
the test set GSE13351 consists of samples from Dutch patients.
12The test set samples were processed on Affymetrix GeneChip HG-U133 Plus 2.0 microarrays, the ALL3
part of the training set used HG-U133A chips, and the GSE13425 part of the training set HG-U133A 2.0
arrays.
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differentiated by Model 2 and they will constitute our test data. They include four
MLL samples and 86 samples of the 4-Remaining class including four ALL subtypes.

To prepare the test data we may download the CEL files and preprocess them
using the Expression Console software. Alternatively, we may download the prepro-
cessed probe set intensity data and rescale it to the target value used for the
training data.

Table 6.11 summarizes classification of the test samples by classifiers based on
multivariate biomarkers identified from the training set including only 176 genes of
the Informative Set of Genes.

Questions:

What could be a plausible explanation for the fact that the sample GSM337066
(which was previously suspected of being one of the two outliers) is correctly
classified when a multivariate marker is identified by a nonparametric learning
algorithm (SVM-based), but misclassified when a marker is selected by a para-
metric algorithm (LDA-based)?

What are advantages and disadvantages of the parametric and nonparametric
approaches?

(See Chapter 3 and the discussion under Fig. 6.13.)
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Ahrens, H. and J. Läuter (1974). Mehrdimensionale Varianzanalyse: Hypothesenprüfung,
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Figure 1.2: The DNA double helix (courtesy: The U.S. Department of Energy Genome
Programs, http://genomics.energy.gov). The DNA structure includes two antiparallel
deoxyribose-phosphate helical chains, which are connected via hydrogen bonds between
complementary bases on the chains (base pairs). The base pairs “rungs of the ladder” are spaced
0.34 nm apart. This double helix structure repeats itself every 10 base pairs, or 3.4 nm
(Watson and Crick 1953a; Garrett and Grisham 2007).

Figure 1.3: A human protein-coding gene: the structure, transcription, splicing, and
translation. The top row shows a schematic structure of the gene. The transcribed region consists
of exons that are interrupted by introns (on average, introns are about 20 times longer than
exons). The promoter associated with the gene is a regulatory sequence that facilitates initiation
of gene transcription and controls gene expression. Enhancers and silencers are other
gene-associated regulatory sequences that may activate or repress transcription of the gene
(they are not shown here as they are often located distantly from the transcribed region). The
gene’s exons and introns are first transcribed into a complementary RNA (called nuclear RNA,
primary RNA transcript or pre-mRNA). Then, the splicing process removes introns, joins exons,
and creates mRNA (called also mature mRNA). The mRNA travels from the nucleus to the
cytoplasm where, in ribosomes, it is translated into a protein.



Figure 1.4: A human protein-coding gene: an example of alternative splicing. During
alternative splicing of the primary RNA transcript, different subsets of exons are joined to create
two (or more) different mRNA isoforms. These mRNA isoforms are then translated into usually
distinct proteins. The majority of human protein-coding genes undergo alternative splicing
(Stamm 2006).

Δ

Δ

Figure 2.8: A scatterplot of the observed relative difference d versus the expected relative
difference dE. The dashed lines are at a threshold D distance from the d ¼ dE identity line.
The genes represented by the points that are outside of these threshold lines are deemed
differentially expressed at the threshold level D. Depending on the sign of their relative
difference d, SAM calls them either “significant positive genes” or “significant negative genes.”



Figure 2.11: An example of a heat map showing the results of independent hierarchical
clustering of genes (the dendrogram down the side of the image) and biological samples
(the dendrogram across the top of the image). The expression levels are represented as color
intensities or as shades of gray. When colors are used, red corresponds to higher expression
levels and green to lower ones. When shades of gray are used, brighter spots represent higher
expression levels.



Figure 2.19: An example of graphical presentation of clustering genes by similarity of their
expression profiles. Self-organizing map with 3 � 3 rectangular topology and correlation
distance have been used. The image was obtained with MultiExperiment Viewer software
(Saeed et al. 2003).

Figure 3.4: A data set with two classes of samples. There are only two variables. Neither
of them is univariately significant for the class discrimination. However, as a set of two variables
they can perfectly separate the classes.



Figure 3.5: A data set with two classes of samples. The direction of the first principal
component, PC1, is aligned with the direction of the most variation in the data. This direction
is very different from the direction of DA, which best separates the classes (and can be found
by supervised methods such as discriminant analysis). As this is a toy example with only
two dimensions, adding the second principal component, PC2, will preserve the entire variation
in the data. However, this would neither decrease the dimensionality nor identify the most
discriminatory direction.

Figure 3.9: Discriminatory space of a classification model built on an eight-gene multivariate
biomarker ( p ¼ 8). For this three-class model (J ¼ 3), the discriminatory space is
two-dimensional, t ¼ min( p, J 2 1) ¼ 2. The circles represent constant density boundaries
enclosing 95 percent of the probability for each class. Points represent samples from the training
data set. (Graphics from the MbMD data mining software.)



Figure 4.1: Selecting the Informative Set of Genes. The scatter plot points represent
discriminatory power of the subsequently identified alternative multivariate markers (the plotted
data represent the example discussed in Section 6.3 of Chapter 6). Usually, a strong decreasing
tendency of this discriminatory power can be well approximated by a logarithmic trend line
(a power function may also be tried). Discriminatory spaces and T2 values of alternative
classification models built on the alternative markers represented by the points in area A (above
the T2

A horizontal line and to the left of the vertical line crossing the trend line at T2
A) indicate

good class separation. An example of the discriminatory space and distribution of the training
samples for an average model in area A is shown at the top of the figure (Model A).
Classification models based on markers from area B (below the T2

B horizontal line) cannot
satisfactorily separate even the training samples. An example of the discriminatory space and
distribution of training samples for an average model in area B is shown at the bottom of the
figure (Model B). The trend line crosses the T2

A level of discriminatory power in the vicinity of
alternative markerMa; it crosses T2

B in the vicinity of alternative markerMb. Models built on the
alternative markers represented by the points in the gray areas (between T2

A and T2
B horizontal

lines, and above T2
B and between the vertical lines representing alternative markersMa andMb)

may have some border line class separation abilities. Since only two classes are differentiated in
this example, the discriminatory spaces of Models A and B are one-dimensional. The boxes and
vertical offsets of points are used for emphasis only. The boxes represent sections (of the
discriminatory dimension) that enclose 95 percent of the probability in each class. The points
represent samples from the training data set.



Figure 6.10: A heat map representing the two-way clustering of the INF-176 Informative
Set of Genes. The dendrogram at the top of the image represents the results of hierarchical
clustering of the training samples. The leftmost cluster of this dendrogram includes all twenty
four MLL samples. The dendrogram at the left side of the image represents the results of
clustering genes. Since the multivariate approach was used to identify the Informative Set of
Genes, some of them are far from the top of a univariately ordered list of genes. Individually,
they do not discriminate the two classes. However, their expression patterns are complementary
to the patterns of some other genes in a way that a joint expression pattern of a small subset
of such complementary genes provides good separation of the MLL samples from the samples
of the other class.



Figure 6.11: The four primary expression patterns of the Informative Set of Genes
identified from the combined training data set (ALL3 þ GSE13425).

Figure 6.12: A heat map of the expression data of the 18 most frequent primary genes of the
Informative Set of Genes. The leftmost cluster of the top dendrogram includes all 24 MLL
samples of the combined training set.
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