MATH3305 - Problem Sheet 2

Problems 2, 3 and 5 to be handed in at the lecture on Friday, 20 October 2017

1. Let \mathcal{M} be a manifold. Let V^{a} be contravariant vector and let W_{a} be a covariant vector. Show that

$$
\mu=V^{a} W_{a}
$$

is a scalar. (Hint: How does μ transform under coordinate transformations?)
2. You are given Euclidean 3 -space with standard Cartesian coordinates $X^{i}=\{x, y, z\}$. Now introduce spherical polar coordinates $Y^{i}=\{r, \theta, \phi\}$ satisfying

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta .
\end{aligned}
$$

(i) Find the line element $d s^{2}=d x^{2}+d y^{2}+d z^{2}$ in spherical polar coordinates (Answer is in the lecture notes).
(ii) Find the metric $g_{a b}$ in spherical polar coordinates.
(iii) Find the inverse metric $g^{a b}$ in spherical coordinates.
(iv) Show explicitly that $g_{a b} g^{b c}=\delta_{a}^{c}$.
3. Determine which of the following tensor equations are valid, and describe possible errors

$$
\begin{aligned}
K & =R_{a b c d} R^{a b c d} \\
T_{a b} & =F_{a c} F^{c}{ }_{c}+\frac{1}{4} \eta_{a b} F_{a b} F^{a b} \\
R_{a b}-\frac{1}{2} R & =8 \pi \kappa T_{a b} \\
E_{a}{ }^{b} & =F_{a c} H^{c b} .
\end{aligned}
$$

4. (Classical mechanics). Let $L(x(t), \dot{x}(t))$ be a smooth function of $x(t)$ and $\dot{x}(t)=d x(t) / d t$. What differential equation must L satisfy to extremise the following functional

$$
S=\int L(x, \dot{x}) d t
$$

(Keywords: Hamilton's/action principle, Euler-Lagrange equations, variational calculus)
5. Some 3-vector identities and index gymnastics. In index notation show that

$$
\begin{aligned}
& \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b}), \\
& \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \\
& \nabla \times(f \mathbf{a})=\nabla f \times \mathbf{a}+f \nabla \times \mathbf{a}
\end{aligned}
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are 3 -vectors and f is a smooth function.

