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How to Judge if a Rule/Pattern Is Interesting?

 Pattern-mining will generate a large set of patterns/rules
 Not all the generated patterns/rules are interesting
 Interestingness measures: Objective vs. subjective
 Objective interestingness measures
 Support, confidence, correlation, …
 Subjective interestingness measures: One man’s trash could be 

another man’s treasure
 Query-based:  Relevant to a user’s particular request
 Against one’s knowledge-base: unexpected, freshness, timeliness
 Visualization tools: Multi-dimensional, interactive examination
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Limitation of the Support-Confidence Framework

 Are s and c interesting in association rules: “A  B” [s, c]? 
 Example:  Suppose one school may have the following statistics on # 

of students who may play basketball and/or eat cereal:

 Association rule mining may generate the following:
 play-basketball  eat-cereal [40%, 66.7%]  (higher s & c)
 But this strong association rule is misleading: The overall % of 

students eating cereal is 75% > 66.7%, a more telling rule:
 ¬ play-basketball eat-cereal [35%, 87.5%] (high s & c)

play-basketball not play-basketball sum (row)

eat-cereal 400 350 750

not eat-cereal 200 50 250

sum(col.) 600 400 1000

Be careful!
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Interestingness Measure: Lift

 Measure of dependent/correlated events: lift
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B ¬B ∑row

C 400 350 750

¬C 200 50 250

∑col. 600 400 1000

Lift is more telling than s & c

 Lift(B, C) may tell how B and C are correlated
 Lift(B, C) = 1: B and C are independent
 > 1:  positively correlated
 < 1: negatively correlated
 For our example,

 Thus, B and C are negatively correlated since lift(B, C) < 1; 
 B and ¬C are positively correlated since lift(B, ¬C) > 1
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Interestingness Measure: χ2

 Another measure to test correlated events: χ2 B ¬B ∑row

C 400 (450) 350 (300) 750

¬C 200 (150) 50 (100) 250

∑col 600 400 1000

 


Expected
ExpectedObserved 2

2 )(

 General rules

 χ2  = 0:  independent

 χ2  > 0:  correlated, either positive or negative, so it needs 
additional test

 Now,

 χ2  shows B and C are negatively correlated since the expected 
value is 450 but the observed is only 400

 χ2 is also more telling than the support-confidence framework

Expected value

Observed value

 2  (400 450)2

450
+ (350300)2

300
+ (200150)2

150
+ (50100)2

100
 55.56
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Lift and χ2 : Are They Always Good Measures?

 Null transactions:  Transactions that contain 
neither B nor C

 Let’s examine the dataset D

 BC (100) is much rarer than B¬C (1000) and ¬BC 
(1000), but there are many ¬B¬C (100000)

 Unlikely B & C will happen together!

 But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are 
strongly positively correlated!)

 χ2 = 670: Observed(BC) >> expected value (11.85)

 Too many null transactions may “spoil the soup”!

B ¬B ∑row

C 100 1000 1100

¬C 1000 100000 101000

∑col. 1100 101000 102100

B ¬B ∑row

C 100 (11.85) 1000 1100

¬C 1000 (988.15) 100000 101000

∑col. 1100 101000 102100

null transactions

Contingency table with expected values added
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Interestingness Measures & Null-Invariance

 Null invariance: Value does not change with the # of null-transactions
 A few interestingness measures:  Some are null invariant

Χ2 and lift are not 
null-invariant

Jaccard, consine, 
AllConf, MaxConf, 

and Kulczynski
are null-invariant 

measures
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Null Invariance: An Important Property

 Why is null invariance crucial for the analysis of massive transaction data? 
 Many transactions may contain neither milk nor coffee!

 Lift and 2 are not null-invariant: not good to 
evaluate data that contain too many or too 
few null transactions!

 Many measures are not null-invariant! 
Null-transactions 

w.r.t. m and c

milk vs. coffee contingency table
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Comparison of Null-Invariant Measures
 Not all null-invariant measures are created equal
 Which one is better?
 D4—D6 differentiate the null-invariant measures
 Kulc (Kulczynski 1927) holds firm and is in balance of 

both directional implications

All 5 are null-invariant

Subtle: They disagree on those cases

2-variable contingency table
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Analysis of DBLP Coauthor Relationships

Advisor-advisee relation: Kulc: high, Jaccard: low, 
cosine: middle

Recent DB conferences, removing balanced associations, low sup, etc.

 Which pairs of authors are strongly related?
 Use Kulc to find Advisor-advisee, close collaborators
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Imbalance Ratio with Kulczynski Measure

 IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in 
rule implications:

 Kulczynski and Imbalance Ratio (IR) together present a clear picture for all 
the three datasets D4 through D6

 D4  is neutral & balanced;  D5  is neutral but imbalanced 
 D6  is neutral but very imbalanced 
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What Measures to Choose for Effective Pattern Evaluation?

 Null value cases are predominant in many large datasets 
 Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author 

in most of the papers; ……
 Null-invariance is an important property
 Lift, χ2 and cosine are good measures if null transactions are not predominant
 Otherwise, Kulczynski + Imbalance Ratio should be used to judge the 

interestingness of a pattern 
 Exercise: Mining research collaborations from research bibliographic data 
 Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 Can you find the likely advisor-advisee relationship and during which years such a 

relationship happened?
 Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-

Advisee Relationships from Research Publication Networks", KDD'10
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Summary:  Mining Frequent Patterns, Association 
and Correlations

 Basic Concepts: 
 Frequent Patterns, Association Rules, Closed Patterns and Max-Patterns

 Frequent Itemset Mining Methods 
 The Downward Closure Property and The Apriori Algorithm
 Extensions or Improvements of Apriori
 Mining Frequent Patterns by Exploring Vertical Data Format
 FPGrowth:  A Frequent Pattern-Growth Approach
 Mining Closed Patterns 
 Which Patterns Are Interesting?—Pattern Evaluation Methods
 Interestingness Measures: Lift and χ2

 Null-Invariant Measures
 Comparison of Interestingness Measures


