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Elements of Programming provides 

a different understanding of programming 

than is presented elsewhere. Its major 

premise is that practical programming, 

like other areas of science and engineering, 

must be based on a solid mathematical 

foundation. The book shows that algorithms 

implemented in a real programming 

language, such as C++, can operate in 

the most general mathematical setting. 

For example, the fast exponentiation 

algorithm is defined to work with any 

associative operation. Using abstract 

algorithms leads to efficient, reliable, 

secure, and economical software. 

This is not an easy book. Nor is it a 

compilation of tips and tricks for incremental 

improvements in your programming skills. 

The book's value is more fundamental and, 

ultimately, more critical for insight into pro

gramming. To benefit fully, you will need to 

work through it from beginning to end, reading 

the code, proving the lemmas, and doing the 

exercises. When finished, you will see how 

the application of the deductive method to 

your programs assures that your system's 

software components will work together and 

behave as they must. 

The book presents a number of algorithms 

and requirements for types on which they are 

defined. The code for these descriptions 

also available on the Web-is written in a small 

subset of C++ meant to be accessible to 

any experienced programmer. This subset is 

defined in a special language appendix coau

thored by Sean Parent and Bjarne Stroustrup. 

Whether you are a software developer, or any 

other professional for whom programming is 

an important activity, or a committed student, 

you will come to understand what the book's 

experienced authors have been teaching and 

demonstrating for years - that mathematics 

is good for programming, and that theory is 

good for practice. 
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Preface 

This book applies the deductive method to programming by affiliating programs 
with the abstract mathematical theories that enable them to work. Specification of 
these theories, algorithms written in terms of these theories, and theorems and 

lemmas describing their properties are presented together. The implementation 
of the algorithms in a real programming language is central to the book. While 
the specifications, which are addressed to human beings, should, and even must, 
combine rigor with appropriate informality, the code, which is addressed to the 
computer, must be absolutely precise even while being general. 

As with other areas of science and engineering, the appropriate foundation of 
programming is the deductive method. It facilitates the decomposition of complex 
systems into components with mathematically specified behavior. That, in turn, is 
a necessary precondition for designing efficient, reliable, secure, and economical 
software. 

The book is addressed to those who want a deeper understanding of program
ming, whether they are full-time software developers, or scientists and engineers for 
whom programming is an important part of their professional activity. 

The book is intended to be read from beginning to end. Only by reading the 
code, proving the lemmas, and doing the exercises can readers gain understanding of 
the material. In addition, we suggest several projects, some open-ended. While the 
book is terse, a careful reader will eventually see the connections between its parts 
and the reasons for our choice of material. Discovering the architectural principles 
of the book should be the reader's goal. 

We assume an ability to do elementary algebraic manipulations. 1 We also assume 
familiarity with the basic vocabulary oflogic and set theory at the level of undergrad
uate courses on discrete mathematics; Appendix A summarizes the notation that 

we use. We provide definitions of a few concepts of abstract algebra when they are 

1. For a refresher on elementary algebra, we recommend Chrystal [1904]. 

lX 
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needed to specify algorithms. We assume programming maturity and understanding 
of computer architecture2 and fundamental algorithms and data structures.3 

We chose C++ because it combines powerful abstraction facilities with faithful 
representation of the underlying machine.4 We use a small subset of the language 
and write requirements as structured comments. We hope that readers not already 
familiar with C++ are able to follow the book. Appendix B specifies the subset of the 
language used in the book.5 Wherever there is a difference between mathematical 
notation and C++, the typesetting and the context determine whether the mathe
matical or C++ meaning applies. While many concepts and programs in the book 
have parallels in STL (the C++ Standard Template Library), the book departs from 
some of the STL design decisions. The book also ignores issues that a real library, 
such as STL, has to address: namespaces, visibility, inline directives, and so on. 

Chapter 1 describes values, objects, types, procedures, and concepts. Chapters 
2-5 describe algorithms on algebraic structures, such as semigroups and totally or
dered sets. Chapters 6-11 describe algorithms on abstractions of memory. Chapter 12 
describes objects containing other objects. The Afterword presents our reflections 
on the approach presented by the book. 
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Chapter 1 

Foundations 

Starting with a brief taxonomy of ideas, we introduce notions of value, object, type, 

procedure, and concept that represent different categories of ideas in the computer. A 
central notion of the book, regularity, is introduced and elaborated. When applied to 

procedures, regularity means that procedures return equal results for equal arguments. 

When applied to types, regularity means that types possess the equality operator and 

equality-preserving copy construction and assignment. Regularity enables us to ap

ply equational reasoning (substituting equals for equals) to transform and optimize 

programs. 

1.1 Categories of Ideas: Entity, Species, Genus 

In order to explain what objects, types, and other foundational computer notions 

are, it is useful to give an overview of some categories of ideas that correspond to 
these notions. 

An abstract entity is an individual thing that is eternal and unchangeable, while 
a concrete entity is an individual thing that comes into and out of existence in space 

and time. An attribute-a correspondence between a concrete entity and an abstract 

entity-describes some property, measurement, or quality of the concrete entity. 
Identity, a primitive notion of our perception of reality, determines the sameness 

of a thing changing over time. Attributes of a concrete entity can change without 
affecting its identity. A snapshot of a concrete entity is a complete collection of 
its attributes at a particular point in time. Concrete entities are not only physical 

entities but also legal, financial, or political entities. Blue and 13 are examples of 

abstract entities. Socrates and the United States of America are examples of concrete 
entities. The color of Socrates' eyes and the number of U.S. states are examples of 
attributes. 

1 



2 Foundations 

An abstract species describes common properties of essentially equivalent ab

stract entities. Examples of abstract species are natural number and color. A concrete 

species describes the set of attributes of essentially equivalent concrete entities. Ex

amples of concrete species are man and U.S. state. 
A/unction is a rule that associates one or more abstract entities, called arguments, 

from corresponding species with an abstract entity, called the result, from another 

species. Examples of functions are the successor function, which associates each 

natural number with the one that immediately follows it, and the function that 

associates with two colors the result of blending them. 
An abstract genus describes different abstract species that are similar in some 

respect. Examples of abstract genera are number and binary operator. A concrete 

genus describes different concrete species similar in some respect. Examples of 
concrete genera are mammal and biped. 

An entity belongs to a single species, which provides the rules for its construction 

or existence. An entity can belong to several genera, each of which describes certain 

properties. 
We show later in the chapter that objects and values represent entities, types 

represent species, and concepts represent genera. 

1.2 Values 

Unless we know the interpretation, the only things we see in a computer are Os and 

ls. A datum is a finite sequence of Os and ls. 
A value type is a correspondence between a species (abstract or concrete) and 

a set of datums. A datum corresponding to a particular entity is called a represen

tation of the entity; the entity is called the interpretation of the datum. We refer to 
a datum together with its interpretation as a value. Examples of values are integers 

represented in 32-bit two's complement big-endian format and rational numbers 

represented as a concatenation of two 32-bit sequences, interpreted as integer nu

merator and denominator, represented as two's complement big-endian values. 
A datum is well formed with respect to a value type if and only if that datum 

represents an abstract entity. For example, every sequence of 32 bits is well formed 
when interpreted as a two's-complement integer; an IEEE 754 floating-point NaN 

(Not a Number) is not well formed when interpreted as a real number. 

A value type is properly partial if its values represent a proper subset of the 

abstract entities in the corresponding species; otherwise it is total. For example, the 
type int is properly partial, while the type bool is total. 

A value type is uniquely represented if and only if at most one value corresponds 
to each abstract entity. For example, a type representing a truth value as a byte 
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that interprets zero as false and nonzero as true is not uniquely represented. A type 
representing an integer as a sign bit and an unsigned magnitude does not provide a 

unique representation of zero. A type representing an integer in two's complement 
is uniquely represented. 

A value type is ambiguous if and only if a value of the type has more than 
one interpretation. The negation of ambiguous is unambiguous. For example, a 
type representing a calendar year over a period longer than a single century as two 
decimal digits is ambiguous. 

Two values of a value type are equal if and only if they represent the same 
abstract entity. They are representationally equal if and only if their datums are 
identical sequences of Os and ls. 

Lemma 1.1 If a value type is uniquely represented, equality implies 
representational equality. 

Lemma 1.2 If a value type is not ambiguous, representational equality 
implies equality. 

If a value type is uniquely represented, we implement equality by testing that 
both sequences of Os and ls are the same. Otherwise we must implement equality in 
such a way that preserves its consistency with the interpretations of its arguments. 
Nonunique representations are chosen when testing equality is done less frequently 
than operations generating new values and when it is possible to make generating 
new values faster at the cost of making equality slower. For example, two rational 
numbers represented as pairs of integers are equal if they reduce to the same lowest 
terms. Two finite sets represented as unsorted sequences are equal if, after sorting 
and eliminating duplicates, their corresponding elements are equal. 

Sometimes, implementing true behavioral equality is too expensive or even 
impossible, as in the case for a type of encodings of computable functions. In these 
cases we must settle for the weaker representational equality: that two values are the 
same sequence of Os and ls. 

Computers implement functions on abstract entities as functions on values. 
While values reside in memory, a properly implemented function on values does 
not depend on particular memory addresses: It implements a mapping from values 
to values. 

A function defined on a value type is regular if and only if it respects equality: 
Substituting an equal value for an argument gives an equal result. Most numeric 
functions are regular. An example of a numeric function that is not regular is the 
function that returns the numerator of a rational number represented as a pair of 
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integers, since ~ = ~, but numerator(~) -:f numerator(~). Regular functions allow 
equational reasoning: substituting equals for equals. 

A nonregular function depends on the representation, not just the interpre
tation, of its argument. When designing the representation for a value type, two 

tasks go hand in hand: implementing equality and deciding which functions will be 

regular. 

1.3 Objects 

A memory is a set of words, each with an address and a content. The addresses 
are values of a fixed size, called the address length. The contents are values of 
another fixed size, called the word length. The content of an address is obtained by 

a load operation. The association of a content with an address is changed by a store 

operation. Examples of memories are bytes in main memory and blocks on a disk 

drive. 
An object is a representation of a concrete entity as a value in memory. An object 

has a state that is a value of some value type. The state of an object is changeable. 
Given an object corresponding to a concrete entity, its state corresponds to a snap
shot of that entity. An object owns a set of resources, such as memory words or 

records in a file, to hold its state. 

While the value of an object is a contiguous sequence of Os and ls, the re

sources in which these Os and 1 s are stored are not necessarily contiguous. It is 
the interpretation that gives unity to an object. For example, two doubles may be 

interpreted as a single complex number even if they are not adjacent. The resources 
of an object might even be in different memories. This book, however, deals only 

with objects residing in a single memory with one address space. Every object has 

a unique starting address, from which all its resources can be reached. 

An object type is a pattern for storing and modifying values in memory. Cor

responding to every object type is a value type describing states of objects of that 
type. Every object belongs to an object type. An example of an object type is inte

gers represented in 32-bit two's complement little-endian format aligned to a 4-byte 
address boundary. 

Values and objects play complementary roles. Values are unchanging and are 

independent of any particular implementation in the computer. Objects are change

able and have computer-specific implementations. The state of an object at any point 

in time can be described by a value; this value could in principle be written down 
on paper (making a snapshot) or serialized and sent over a communication link. 



1-3 Objects 5 

Describing the states of objects in terms of values allows us to abstract from the 
panicular implementations of the objects when discussing equality. Functional pro

gramming deals with values; imperative programming deals with objects. 
We use values to represent entities. Since values are unchanging, they can rep

resent abstract entities. Sequences of values can also represent sequences of snap
shots of concrete entities. Objects hold values representing entities. Since objects 
are changeable, they can represent concrete entities by taking on a new value to 
represent a change in the entity. Objects can also represent abstract entities: staying 
constant or taking on different approximations to the abstract. 

We use objects in the computer for the following three reasons. 

I. Objects model changeable concrete entities, such as employee records in a 
payroll application. 

2. Objects provide a powerful way to implement functions on values, such as a 
procedure implementing the square root of a floating-point number using an 

iterative algorithm. 

3. Computers with memory constitute the only available realization of a 
universal computational device. 

Some properties of value types carry through to object types. An. object is well 
formed if and only if its state is well formed. An object type is properly partial if 
and only if its value type is properly partial; otherwise it is total. An object type is 
uniquely represented if and only if its value type is uniquely represented. 

Since concrete entities have identities, objects representing them need a cor
responding notion of identity. An identity token is a unique value expressing the 
identity of an object and is computed from the value of the object and the address 
of its resources. Examples of identity tokens are the address of the object, an index 
into an array where the object is stored, and an employee number in a personnel 
record. Testing equality of identity tokens corresponds to testing identity. During 
the lifetime of an application, a particular object could use different identity tokens 
as it moves either within a data structure or from one data structure to another. 

Two objects of the same type are equal if and only if their states are equal. If 
two objects are equal, we say that one is a copy of the other. Making a change to an 
object does not affect any copy of it. 

This book uses a programming language that has no way to describe values and 
value types as separate from objects and object types. So from this point on, when 
we refer to types without qualification, we mean object types. 
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1.4 Procedures 

A procedure is a sequence of instructions that modifies the state of some objects; it 
may also construct or destroy objects. 

The objects with which a procedure interacts can be divided into four kinds, 
corresponding to the intentions of the programmer. 

1. Input/ output consists of objects passed to/from a procedure directly or 
indirectly through its arguments or returned result. 

2. Local state consists of objects created, destroyed, and usually modified during 
a single invocation of the procedure. 

3. Global state consists of objects accessible to this and other procedures across 

multiple invocations. 

4. Own state consists of objects accessible only to this procedure (and its 
affiliated procedures) but shared across multiple invocations. 

An object is passed directly if it is passed as an argument or returned as the result 
and is passed indirectly if it is passed via a pointer or pointerlike object. An object is 
an input to a procedure if it is read, but not modified, by the procedure. An object is 
an output from a procedure if it is written, created, or destroyed by the procedure, 
but its initial state is not read by the procedure. An object is an input/ output of a 
procedure if it is modified as well as read by the procedure. 

A computational basis for a type is a finite set of procedures that enable the 
construction of any other procedure on the type. A basis is efficient if and only 
if any procedure implemented using it is as efficient as an equivalent procedure 
written in terms of an alternative basis. For example, a basis for unsigned k-bit 
integers providing only zero, equality, and the successor function is not efficient, 
since the complexity of addition in terms of successor is exponential ink. 

A basis is expressive if and only if it allows compact and convenient definitions 
of procedures on the type. In particular, all the common mathematical operations 
need to be provided when they are appropriate. For example, subtraction could be 
implemented using negation and addition but should be included in an expressive 
basis. Similarly, negation could be implemented using subtraction and zero but 
should be included in an expressive basis. 

1.5 Regular Types 

There is a set of procedures whose inclusion in the computational basis of a type 
lets us place objects in data structures and use algorithms to copy objects from 
one data structure to another. We call types having such a basis regular, since their 
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use guarantees regularity of behavior and, therefore, interoperability.1 We derive 
the semantics of regular types from built-in types, such as bool, int, and, when 
restricted to well-formed values, double. A type is regular if and only if its basis 
includes equality, assignment, destructor, default constructor, copy constructor, total 
ordering,2 and underlying type.3 

Equality is a procedure that takes two objects of the same type and returns true 
if and only if the object states are equal. Inequality is always defined and returns the 
negation of equality. We use the following notation: 

Specifications C++ 
Equality a=b a == b 

Inequality a != b 

Assignment is a procedure that takes two objects of the same type and makes 
the first object equal to the second without modifying the second. The meaning 
of assignment does not depend on the initial value of the first object. We use the 
following notation: 

Specifications C++ 

Assignment a+- b a= b 

A destructor is a procedure causing the cessation of an object's existence. After 
a destructor has been called on an object, no procedure can be applied to it, and 
its former memory locations and resources may be reused for other purposes. The 
destructor is normally invoked implicitly. Global objects are destroyed when the 
application terminates, local objects are destroyed when the block in which they 
are declared is exited, and elements of a data structure are destroyed when the data 
structure is desiroyed. 

A constructor is a procedure transforming memory locations into an object. The 
possible behaviors range from doing nothing to establishing a complex object state. 

An object is in a partially formed state if it can be assigned to or destroyed. For 
an object that is partially formed but not well formed, the effect of any procedure 
other than assignment (only on the left side) and destruction is not defined. 

1. While regular types underlie the design of STL, they were first formally introduced in Dehnert 
and Stepanov [2000]. 

2. Strictly speaking, as becomes clear in Chapter 4, it could be either total ordering or default total 
ordering. 

3. Underlying type is defined in Chapter 12. 
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Lemma 1.3 A well-formed object is partially formed. 

A default constructor takes no arguments and leaves the object in a partially 
formed state. We use the following notation: 

C++ 
Local object of type T T a; 

Anonymous object of type T T () 

A copy constructor takes an additional argument of the same type and constructs 
a new object equal to it. We use the following notation: 

C++ 
Local copy of object b T a = b; 

1.6 Regular Procedures 

A procedure is regular if and only if replacing its inputs with equal objects results 
in equal output objects. As with value types, when defining an object type we must 
make consistent choices in how to implement equality and which procedures on the 
type will be regular. 

Exercise 1.1 Extend the notion of regularity to input/output objects of a 
procedure, that is, to objects that are modified as well as read. 

While regularity is the default, there are reasons for nonregular behavior of 
procedures. 

1. A procedure returns the address of an object; for example, the built-in 
function address of. 

2. A procedure returns a value determined by the state of the real world, such as 
the value of a clock or other device. 

3. A procedure returns a value depending on own state; for example, a 
pseudorandom number generator. 

4. A procedure returns a representation-dependent attribute of an object, such 
as the amount of reserved memory for a data structure. 
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A functional procedure is a regular procedure defined on regular types, with 

one or more direct inputs and a single output that is returned as the result of 

the procedure. The regularity of functional procedures allows two techniques for 

passing inputs. When the size of the parameter is small or if the procedure needs a 

copy it can mutate, we pass it by value, making a local copy. Otherwise we pass it by 
constant reference. A functional procedure can be implemented as a C++ function, 

function pointer, or function object.4 

This is a functional procedure: 

int plus_O(int a, int b) 
{ 

return a + b; 
} 

This is a semantically equivalent functional procedure: 

int plus_1(const int& a, const int& b) 
{ 

return a + b; 
} 

This is semantically equivalent but is not a functional procedure, because its 

inputs and outputs are passed indirectly: 

void plus_2(int* a, int* b, int* c) 
{ 

} 

In plus_2, a and bare input objects, while c is an output object. The notion of a 

functional procedure is a syntactic rather than semantic property: In our terminol

ogy, pl us_2 is regular but not functional. 

The definition space· for a functional procedure is that subset of values for 

its inputs to which it is intended to be applied. A functional procedure always 

terminates on input in its definition space; while it may terminate for input outside 

its definition space, it may not return a meaningful value. 

4. C++ functions are not objects and cannot be passed as arguments; C++ function pointers and 
function objects are objects and can be passed as arguments. 
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A homogeneous functional procedure is one whose input objects are all the same 
type. The domain of a homogeneous functional procedure is the type of its inputs. 

Rather than defining the domain of a nonhomogeneous functional procedure as 
the direct product of its input types, we refer individually to the input types of a 

procedure. 
The codomain for a functional procedure is the type of its output. The result 

space for a functional procedure is the set of all values from its codomain returned 
by the procedure for inputs from its definition space. 

Consider the functional procedure 

int square(int n) { return n * n; } 

While its domain and codomain are int, its definition space is the set of integers 

whose square is representable in the type, and its result space is the set of square 
integers representable in the type. 

Exercise 1.2 Assuming that int is a 32-bit two's complement type, deter
mine the exact definition and result space. 

1.7 Concepts 

A procedure using a type depends on syntactic, semantic, and complexity properties 
of the computational basis of the type. Syntactically it depends on the presence of 
certain literals and procedures with particular names and signatures. Its semantics 
depend on properties of these procedures. Its complexity depends on the time 
and space complexity of these procedures. A program remains correct if a type 
is replaced by a different type with the same properties. The utility of a software 

component, such as a library procedure or data structure, is increased by designing 
it not in terms of concrete types but in terms of requirements on types expressed 
as syntactic and semantic properties. We call a collection of requirements a concept. 

Types represent species; concepts represent genera. 
In order to describe concepts, we need several mechanisms dealing with types: 

type attributes, type functions, and type constructors. A type attribute is a mapping 
from a type to a value describing some characteristic of the type. Examples of type 
attributes are the built-in type attribute sizeof (T) in C++, the alignment of an 
object of a type, and the number of members in a struct. If F is a functional 
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procedure type, Arity(f) returns its number of inputs. A type function is a mapping 
from a type to an affiliated type. An example of a type function is: given "pointer to 

T," the type T. In some cases it is useful to define an indexed type function with an 
additional constant integer parameter; for example, a type function returning the 
type of the ith member of a structure type (counting from 0). If f is a functional 
procedure type, the type function Codomain(f) returns the type of the result. If f is a 
functional procedure type and i < Arity(f), the indexed type function In put T ype(f, i) 

returns the type of the ith parameter (counting from 0).5 A type constructor is a 
mechanism for creating a new type from one or more existing types. For example, 
pointer (T) is the built-in type constructor that takes a type T and returns the type 
-pointer tor"; struct is a built-in n-ary type constructor; a structure template is a 
user-defined n-ary type constructor. 

If 'J is an n-ary type constructor, we usually denote its application to types 

To, ... , Tn-1 as 'JT0 , ... ,Tn-i· An important example is pair, which, when applied to 
regular types To and Tl, returns a struct type pair To, Ti with a member mO of type T0 

and a member ml of type Tl. To ensure that the type pair To, Ti is itself regular, equality, 
assignment, destructor, and constructors are defined through memberwise exten
sions of the corresponding operations on the types To and Tl. The same technique 
is used for any tuple type, such as triple. In Chapter 12 we show the implementa
tion of pair To, Ti and describe how regularity is preserved by more complicated type 
constructors. 

Somewhat more formally, a concept is a description of requirements on one or 
more types stated in terms of the existence and properties of procedures, type at
tributes, and type functions defined on the types. We say that a concept is modeled 

by specific types, or that the types model the concept, if the requirements are sat
isfied for these types. To assert that a concept e is modeled by types T0 , ... , Tn_1, 

we write e(To, ... , T n-1 ). Concept e' refines concept e if whenever e' is satisfied 
for a set of types, e is also satisfied for those types. We say that e weakens e' if e' 
refines e. 

A type concept is a concept defined on one type. For example, C++ defines 
the type concept integral type, which is refined by unsigned integral type and by 
signed integral type, while STL defines the type concept sequence. We use the primi
tive type concepts Regular and FunctionalProcedure, corresponding to the informal 
definitions we gave earlier. 

5. Appendix B shows how to define type attributes and type functions in C++. 
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We define concepts formally by using standard mathematical notation. To define 
a concept e, we write 

e(To, ... , Tn_i) 6 

£0 
/\ £1 
/\ ... 
/\ £k-l 

where 6 is read as "is equal to by definition," the Ti are formal type parameters, 
and the £j are concept clauses, which take one of three forms: 

1. Application of a previously defined concept, indicating a subset of the type 

parameters modeling it. 

2. Signature of a type attribute, type function, or procedure that must exist for 
any types modeling the concept. A procedure signature takes the form 
f : T ~ T', where Tis the domain and T' is the codomain. A type function 

signature takes the form f : e ~ e'' where the domain and codomain are 
concepts. 

3. Axiom expressed in terms of these type attributes, type functions, and 
procedures. 

We sometimes include the definition of a type attribute, type function, or pro
cedure following its signature in the second kind of concept clause. It takes the form 
x ..--+ J'(x) for some expression J'. In a particular model, such a definition could be 
overridden with a different but consistent implementation. 

For example, this concept describes a unary functional procedure: 

UnaryFunction(F) 6 

FunctionalProcedure(F) 
/\ Arity(f) = 1 

This concept describes a homogeneous functional procedure: 

HomogeneousFunction(F) 6 

FunctionalProcedure(F) 
/\ Arity(f) > 0 
/\ (Vi, j E N)(i, j < Arity(f))::::} (lnputType(f, i) = lnputType(f, j)) 

/\ Domain : HomogeneousFunction ~ Regular 
f ..--+ lnputType(f, 0) 
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Observe that 

('v'F E FunctionalProcedure) UnaryFunction(F) :::} HomogeneousFunction(F) 

An abstract procedure is parameterized by types and constant values, with re
quirements on these parameters.6 We use function templates and function object 
templates. The parameters follow the template keyword and are introduced by 
typename for types and int or another integral type for constant values. Require
ments are specified via the requires clause, whose argument is an expression built 
up from constant values, concrete types, formal parameters, applications of type 
attributes and type functions, equality on values and types, concepts, and logical 
connectives. 7 

Here is an example of an abstract procedure: 

template<typename Op> 

requires(BinaryOperation(Op)) 

Domain(Op) square(const Domain(Op)& x, Op op) 
{ 

return op(x, x); 
} 

The domain values could be large, so we pass them by constant reference. 
Operations tend to be small (e.g., a function pointer or small function object), so 
we pass· them by value. 

Concepts describe properties satisfied by all objects of a type, whereas precon
ditions describe properties of particular objects. For example, a procedure might 
require a parameter to be a prime number. The requirement for an integer type 
is specified by a concept, while primality is specified by a precondition. The type 

of a function pointer expresses only its signature, not its semantic properties. For 
example, a procedure might requ'ire a parameter to be a pointer to a function imple
menting an associative binary operation on integers. The requirement for a binary 
operation on integers is specified by a concept; associativity of a particular function 
is specified by a precondition. 

6. Abstract procedures appeared, in substantially the form we use them, in 1930 in van der Waerden 
)930], which was based on the lectures of Emmy Noether and Emil Artin. George Collins and David 
~lusser used them in the context of computer algebra in the late 1960s and early 1970s. See, for example, 
:\lusser [ 1975]. 

7. See Appendix B for the full syntax of the requires clause. 
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To define a precondition for a family of types, we need to use mathematical 
notation, such as universal and existential quantifiers, implication, and so on. For 

example, to specify the primality of an integer, we define 

property(N : Integer) 
prime: N 

n ..--+ ('v'u, v E N) uv = n:::} (lul = 1 v lvl = 1) 

where the first line introduces formal type parameters and the concepts they model, 
the second line names the property and gives its signature, and the third line gives 
the predicate establishing whether the property holds for a given argument. 

To define regularity of a unary functional procedure, we write 

property(f : UnaryFunction) 
regular _unary _function : f 

f ..--+ ('v'f' E f) ('v'x, x' E Dorn a in (f)) 

(f = f' /\ x = x'):::} (f(x) = f'(x')) 

The definition easily extends to n-ary functions: Application of equal functions 
to equal arguments gives equal results. By extension, we call an abstract function 
regular if all its instantiations are regular. In this book every procedural argument 
is a regular function unless otherwise stated; we omit the precondition stating this 
explicitly. 

Project 1.1 Extend the notions of equality, assignment, and copy con
struction to objects of distinct types. Think about the interpretations of the 
two types and axioms that connect cross-type procedures. 

1.8 Conclusions 

The commonsense view of reality humans share has a representation in the computer. 
By grounding the meanings of values and objects in their interpretations, we obtain 
a simple, coherent view. Design decisions, such as how to define equality, become 
straightforward when the correspondence to entities is taken into account. 



Chapter 2 

Transformations and 
Their Orbits 

This chapter defines a transformation as a unary regular function from a type 

to itself. Successive applications of a transformation starting from an initial value 

determine an orbit of this value. Depending only on the regularity of the transformation 

and the finiteness of the orbit) we implement an algorithm for determining orbit 

structures that can be used in different domains. For example) it could be used to 

detect a cycle in a linked list or to analyze a pseudorandom number generator. We 

derive an interface to the algorithm as a set of related procedures and definitions for 

their arguments and results. This analysis of an orbit-structure algorithm allows us to 

introduce our approach to programming in the simplest possible setting. 

2.1 Transformations 

While there are functions from any sequence of types to any type, particular classes 
of signatures commonly occur. In this book we frequently use two such classes: 
homogeneous predicates and operations. Homogeneous predicates are of the form 

T x · · · x T ---* bool; operations are functions of the form T x · · · x T ---* T. While 
there are n-ary predicates and n-ary operations, we encounter mostly unary and 
binary homogeneous predicates and unary and binary operations. 

A predicate is a functional procedure returning a truth value: 

Predicate(P) D. 

FunctionalProcedure(P) 

/\ Codomain(P) = bool 

15 
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A homogeneous predicate is one that is also a homogeneous function: 

HomogeneousPredicate(P) ~ 
Predicate(P) 

/\ HomogeneousFunction(P) 

A unary predicate is a predicate taking one parameter: 

UnaryPredicate(P) ~ 
Predicate(P) 

/\ UnaryFunction(P) 

An operation is a homogeneous function whose codomain is equal to its domain: 

Operation (Op) ~ 

HomogeneousFunction( Op) 

/\ Codomain(Op) = Domain(Op) 

Examples of operations: 

int abs(int x) { 

if (x < 0) return -x; else return x; 

} I I unary operation 

double euclidean_norm(double x, double y) { 

return sqrt(x * x + y * y); 

} // binary operation 

double euclidean_norm(double x, double y, double z) { 

return sqrt(x * x + y * y + z * z); 
} I I ternary operation 

Lemma2.l euclidean_norm(x, y, z) = euclidean_norm(euclidean_norm(x, y), z) 

This lemma shows that the ternary version can be obtained from the binary ver
sion. For reasons of efficiency, expressiveness, and, possibly, accuracy, the ternary 
version is part of the computational basis for programs dealing with three
dimensional space. 
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A procedure is partial if its definition space is a subset of the direct product of 
the types of its inputs; it is total if its definition space is equal to the direct prod

uct. We follow standard mathematical usage, where partial function includes total 

function. We call partial procedures that are not total nontotal. Implementations of 
some total functions are nontotal on the computer because of the finiteness of the 
representation. For example, addition on signed 32-bit integers is nontotal. 

A nontotal procedure is accompanied by a precondition specifying its definition 
space. To verify the correctness of a call of that procedure, we must determine that 

the arguments satisfy the precondition. Sometimes, a partial procedure is passed as 

a parameter to an algorithm that needs to determine at runtime the definition space 

of the procedural parameter. To deal with such cases, we define a definition-space 
predicate with the same inputs as the procedure; the predicate returns true if and 
only if the inputs are within the definition space of the procedure. Before a nontotal 

procedure is called, either its precondition must be satisfied, or the call must be 

guarded by a call of its definition-space predicate. 

Exercise 2.1 Implement a definition-space predicate for addition on 32-

bit signed integers. 

This chapter deals with unary operations, which we call transformations: 

Transformation(F) 6 

Operation(F) 
/\ UnaryFunction(F) 
/\ DistanceType : Transformation ---* Integer 

We discuss DistanceType in the next section. 
Transformations are self-composable: f(x), f(f(x)), f(f(f(x))), and so on. The 

definition space off( f(x)) is the intersection of the definition space and result space 

off. This ability to self-compose, together with the ability to test for equality, allows 

us to define interesting algorithms. 
When f is a transformation, we define its powers as follows: 

if n = 0, 

if n > 0 
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To implement an algorithm to compute fn(x), we need to specify the require

ment for an integer type. We study various concepts describing integers in Chapter 5. 
For now we rely on the intuitive understanding of integers. Their models include 

signed and unsigned integral types, as well as arbitrary-precision integers, with these 

operations and literals: 

Specifications C++ 

+ 

I 

Sum 

Difference 

Product 

Quotient 

Remainder 

Zero 

mod 

0 

One 1 
Two 2 

where I is an integer type. 

That leads to the following algorithm: 

template<typename F, typename N> 

requires(Transformation(F) && Integer(N)) 

Domain(F) power_unary(Domain(F) x, N n, F f) 
{ 

+ 

* 
I 
% 

I ( 0) 

I ( 1) 

I ( 2) 

II Precondition: n > 0 /\(Vi EN) 0 < i < n => fn(x) is defined 
while (n != N(O)) { 

n = n - N(1); 

x = f(x); 

} 

return x; 
} 

2.2 Orbits 
To understand the global behavior of a transformation, we examine the structure 

of its orbits: elements reachable from a starting element by repeated applications 

of the transformation. y is reachable from x under a transformation f if for some 

n > 0, y = fn(x). x is cyclic under f if for some n > 1, x = fn(x). x is terminal 
under f if and only if x is not in the definition space off. The orbit of x under a 

transformation f is the set of all elements reachable from x under f. 
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Lemma 2.2 An orbit does not contain both a cyclic and a terminal element. 

Lemma 2.3 An orbit contains at most one terminal element. 

If y is reachable from x under f, the distance from x toy is the least number of 
transformation steps from x to y. Obviously, distance is not always defined. 

Given a transformation type F, DistanceType(F) is an integer type large enough 

to encode the maximum number of steps by any transformation f E F from one 
element of T = Domain(F) to another. If type T occupies k bits, there can be as many 

as 2k values but only 2k - 1 steps between distinct values. Thus if Tis a fixed-size 

type, an integral type of the same size is a valid distance type for any transformation 
on T. (Instead of using the distance type, we allow the use of any integer type in 
power _unary, since the extra generality does not appear to hurt there.) It is often the 

case that all transformation types over a domain have the same distance type. In this 

case the type function DistanceType is defined for the domain type and defines the 

corresponding type function for the transformation types. 

The existence of Distance Type leads to the following procedure: 

template<typename F> 

requires(Transformation(F)) 

DistanceType(F) distance(Domain(F) x, Domain(F) y, F f) 
{ 

} 

11 Precondition: y is reachable from x under f 
typedef DistanceType(F) N; 
N n(O); 
while (x != y) { 

x = f(x); 

n=n+N(1); 
} 

return n; 

Orbits have different shapes. An orbit of x under a transformation is 

infinite 
terminating 

circular 
p-shaped 

if it has no cyclic or terminal elements 

if it has a terminal element 

if xis cyclic 
if x is not cyclic, but its orbit contains a cyclic element 

An orbit of xis finite if it is not infinite. Figure 2.1 illustrates the various cases. 
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Infinite 

Terminating 

,J= , , J; Circular 

,:J= , j; p-shaped 

Figure 2.1 Orbit Shapes. 

The orbit cycle is the set of cyclic elements in the orbit and is empty for infinite 

and terminating orbits. The orbit handle, the complement of the orbit cycle with 

respect to the orbit, is empty for a circular orbit. The connection point is the first 

cyclic element, and is the first element of a circular orbit and the first element 

after the handle for a p-shaped orbit. The orbit size o of an orbit is the number of 

distinct elements in it. The handle size h of an orbit is the number of elements in 

the orbit handle. The cycle size c of an orbit is the number of elements in the orbit 

cycle. 

Lemma2.4 o = h+c 

Lemma 2.5 The distance from any point in an orbit to a point in a cycle 

of that orbit is always defined. 

Lemma 2.6 If x and y are distinct points in a cycle of size c, 

c = distance(x, y, f) + distance(y, x, f) 

Lemma 2.7 If x and y are points in a cycle of size c, the distance from x 

to y satisfies 

0 < distance(x, y, f) < c 
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2.3 Collision Point 

If we observe the behavior of a transformation, without access to its definition, we 

cannot determine whether a particular orbit is infinite: It might terminate or cycle 
back at any point. If we know that an orbit is finite, we can use an algorithm to 
determine the shape of the orbit. Therefore there is an implicit precondition of 
orbit finiteness for all the algorithms in this chapter. 

There is, of course, a naive algorithm that stores every element visited and 

checks at every step whether the new element has been previously encountered. 

E\?en if we could use hashing to speed up the search, such an algorithm still would 

require linear storage and would not be practical in many applications. However, 
there is an algorithm that requires only a constant amount of storage. 

The following analogy helps to understand the algorithm. If a fast car and a 
slow one start along a path, the fast one will catch up with the slow one if and only if 

there is a cycle. If there is no cycle, the fast one will reach the end of the path before 

the slow one. If there is a cycle, by the time the slow one enters the cycle, the fast 

one will already be there and will catch up eventually. Carrying our intuition from 

the continuous domain to the discrete domain requires care to avoid the fast one 

skipping past the slow one. 1 

The discrete version of the algorithm is based on looking for a point where fast 
meets slow. The collision point of a transformation f and a starting point x is the 

unique y such that 

and n > 0 is the smallest integer satisfying this condition. This definition leads to 

an algorithm for determining the orbit structure that needs one comparison of fast 
and slow per iteration. To handle partial transformations, we pass a definition-space 

predicate to the algorithm: 

template<typename F, typename P> 
requires(Transformation(F) && UnaryPredicate(P) && 

Domain(F) == Domain(P)) 
Domain(F) collision_point(const Domain(F)& x, Ff, Pp) 
{ 

11 Precondition: p(x) ¢} f(x) is defined 
if (!p(x)) return x; 

1. Knuth [ 1997, page 7] attributes this algorithm to Robert W. Floyd. 
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} 

Domain(F) slow = x; 

Domain(F) fast= f(x); 

while (fast != slow) { 

slow= f(slow); 

Transformations and Their Orbits 

II slow= f0 (x) 

II fast= f 1(x) 

11 n +--- 0 (completed iterations) 
II slow= fn(x) /\fast= f 2n+1(x) 
11 slow= fn+l (x) /\fast= f 2 n+l (x) 

if (!p(fast)) return fast; 
fast = f (fast); II slow= fn+l(x) /\fast= f 2n+2 (x) 

if (!p(fast)) return fast; 
fast = f (fast); 11 slow= fn+l (x) /\fast= f 2n+3 (x) 

lln+---n+l 
} 

return fast; 11 slow= fn(x) /\fast= f 2 n+l (x) 

11 Postcondition: return value is terminal point or collision point 

We establish the correctness of collision_point in three stages: (1) verifying 

that it never applies f to an argument outside the definition space; (2) verifying 

that if it terminates, the postcondition is satisfied; and (3) verifying that it always 

terminates. 

While f is a partial function, its use by the procedure is well defined, since the 

movement of fast is guarded by a call of p. The movement of slow is unguarded, 

because by the regularity off, slow traverses the same orbit as fast, so f is always 

defined when applied to slow. 

The annotations show that if, after n > 0 iterations, fast becomes equal to 
slow, then fast = f 2 n+1(x) and slow = fn(x). Moreover, n is the smallest such 

integer, since we checked the condition for every i < n. 

If there is no cycle, p will eventually return false because of finiteness. If there 

is a cycle, slow will eventually reach the connection point (the first element in the 

cycle). Consider the distanced from fast to slow at the top of the loop when slow 

first enters the cycle: 0 < d < c. If d = 0, the procedure terminates. Otherwise the 

distance from fast to slow decreases by 1 on each iteration. Therefore the procedure 

always terminates; when it terminates, slow has moved a total of h + d steps. 

The following procedure determines whether an orbit is terminating: 

t·emplate<typename F, typename P> 

requires(Transformation(F) && UnaryPredicate(P) && 
Domain(F) == Domain(P)) 

bool terminating(const Domain(F)& x, Ff, Pp) 
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{ 

} 

11 Precondition: p(x) ¢} f(x) is defined 
return !p(collision_point(x, f, p)); 
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Sometimes we know either that the transformation is total or that the orbit is 
nonterminating for a particular starting element. For these situations it is useful to 
have a specialized version of collision_point: 

template<typename F> 

requires(Transformation(F)) 

Domain(F) 

collision_point__nonterminating_orbit(const Domain(F)& x, F f) 
{ 

} 

Domain(F) slow = x; 

Domain(F) fast= f(x); 

while (fast != slow) { 

slow= f(slow); 

fast = f (fast) ; 

fast = f (fast); 

} 

II slow= f0 (x) 

llfast=f1(x) 

11 n +--- 0 (completed iterations) 
11 slow = fn(x) /\fast= f 2 n+l (x) 

11 slow = fn+l (x) /\fast = f 2 n+l (x) 

11 slow = fn+l (x) /\fast = f 2 n+2 (x) 

11 slow = fn+l (x) /\fast= f 2 n+3 (x) 

lln+---n+l 

return fast; 11 slow = fn(x) /\fast= f 2n+l (x) 

11 Postcondition: return value is collision point 

In order to determine the cycle structure-handle size, connection point, and 

cycle size-we need to analyze the position of the collision point. 

When the procedure returns the collision point 

n is the number of steps taken by slow, and 2n + 1 is the number of steps taken by 

fast. 

n=h+d 
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where h is the handle size and 0 < d < c is the number of steps taken by slow 

inside the cycle. The number of steps taken by fast is 

2n + 1 = h + d + qc 

where q > 0 is the number of full cycles completed by fast when slow enters the 

cycle. Since n = h + d, 

2(h + d) + 1 = h + d + qc 

Simplifying gives 

qc = h + d + 1 

Let us represent h modulo c: 

h=mc+r 

with 0 < r < c. Substitution gives 

qc =me+ r + d + 1 

or 

d = (q - m)c - r - 1 

0 < d < c implies 

q -m= 1 

so 

d=c-r-1 

and r + 1 steps are needed to complete the cycle. 

Therefore the distance from the collision point to the connection point is 

e=r+l 

In the case of a circular orbit h = 0, r = 0, and the distance from the collision 

point to the beginning of the orbit is 

e = 1 
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Circularity, therefore, can be checked with the following procedures: 

template<typename F> 

requires(Transformation(F)) 

bool circular_nonterminating_orbit(const Domain(F)& x, F f) 
{ 

return x == f(collision_point_nonterminating_orbit(x, f)); 
} 

template<typename F, typename P> 

requires(Transformation(F) && UnaryPredicate(P) && 

Domain(F) == Domain(P)) 

bool circular(const Domain(F)& x, Ff, Pp) 
{ 

} 

11 Precondition: p(x) -<:} f(x) is defined 
Domain(F) y = collision_point(x, f, p); 

return p(y) && x == f(y); 
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We still don't know the handle size h and the cycle size c. Determining the 

latter is simple once the collision point is known: Traverse the cycle and count the 
steps. 

To see how to determine h, let us look at the position of the collision point: 

Taking h + 1 steps from the collision point gets us to the point f(m+l)c+h(x), which 

equals fh(x), since (m + l)c corresponds to going around the cycle m + 1 times. If 
\\~e simultaneously take h steps from x and h + 1 steps from the collision point, we 

meet at the connection point. In other words, the orbits of x and 1 step past the 
collision point converge in exactly h steps, which leads to the following sequence 

of algorithms: 

template<typename F> 

requires(Transformation(F)) 

Domain(F) convergent_point(Domain(F) xO, Domain(F) x1, F f) 
{ 

while (xO ~= x1) { 
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} 

} 

xO = f(xO); 

x1 = f(x1); 

return xO; 

Transformations and Their Orbits 

template<typename F> 

requires(Transformation(F)) 

Domain(F) 

connection_point_nonterminating_orbit(const Domain(F)& x, F f) 
{ 

} 

return convergent_point( 

x, 

f(collision_point_nonterminating_orbit(x, f)), 

f); 

template<typename F, typename P> 

requires(Transformation(F) && UnaryPredicate(P) && 

Domain(F) == Domain(P)) 

Domain(F) connection_point(const Domain(F)& x, Ff, Pp) 
{ 

} 

11 Precondition: p(x) ¢} f(x) is defined 
Domain(F) y = collision_point(x, f, p); 

if (~p(y)) return y; 

return convergent_point(x, f(y), f); 

Lemma 2.8 If the orbits of two elements intersect, they have the same 
cyclic elements. 

Exercise 2.2 Design an algorithm that determines, given a transforma
tion and its definition-space predicate, whether the orbits of two elements 
intersect. 

Exercise 2.3 For convergenLpoint to work, it must be called with elements 
whose distances to the convergent point are equal. Implement an algorithm 
convergenLpoinLguarded for use when that is not known to be the case, but 
there is an element in common to the orbits of both. 
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2.4 Measuring Orbit Sizes 

The natural type to use for the sizes o, h, and c of an orbit on type T would be an 
integer count type large enough to count all the distinct values of type T. If a type T 

occupies k bits, there can be as many as 2k values, so a count type occupying k bits 
could not represent all the counts from 0 to 2 k. There is a way to represent these 
sizes by using distance type. 

An orbit could potentially contain all values of a type, in which case o might 
not fit in the distance type. Depending on the shape of such an orbit, hand c would 
not fit either. However, for a p-shaped orbit, both h and c fit. In all cases each of 
these fits: o - 1 (the maximum distance in the orbit), h- 1 (the maximum distance 
in the handle), and c - 1 (the maximum distance in the cycle). That allows us to 
implement procedures returning a triple representing the complete structure of an 
orbit, where the members of the triple are as follows: 

Case mO ml m2 

Terminating h-1 0 terminal element 

Circular 0 c-1 x 

p-shaped h c-1 connection point 

template<typename F> 

requires(Transformation(F)) 

triple<DistanceType(F), DistanceType(F), Domain(F)> 

orbit_structure_nonterminating_orbit(const Domain(F)& x, F f) 
{ 

} 

typedef DistanceType(F) N; 
Domain(F) y = connection_point_nonterminating_orbit(x, f); 

return triple<N, N, Domain(F)>(distance(x, y, f), 

distance(f(y), y, f), 

y); 

template<typename F, typename P> 

requires(Transformation(F) && 

UnaryPredicate(P) && Domain(F) == Domain(P)) 

triple<DistanceType(F), DistanceType(F), Domain(F)> 

orbit_structure(const Domain(F)& x, Ff, Pp) 
{ 

11 Precondition: p(x) ¢} f(x) is defined 
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} 

Transformations and Their Orbits 

typedef DistanceType(F) N; 
Domain(F) y = connection_point(x, f, p); 

Nm= distance(x, y, f); 
N n(O); 

if (p(y)) n = distance(f(y), y, f); 

II Terminating: m = h- 1 /\ n = 0 

11 Otherwise: m = h /\ n = c - 1 
return triple<N, N, Domain(F)>(m, n, y); 

Exercise 2.4 Derive formulas for the count of different operations (f, p, 

equality) for the algorithms in this chapter. 

Exercise 2.5 Use orbiLstructure_nonterminating_orbit to determine the av
erage handle size and cycle size of the pseudorandom number generators 
on your platform for various seeds. 

2.5 Actions 

Algorithms often use a transformation f in a statement like 

x = f(x); 

Changing the state of an object by applying a transformation to it pefines an 
action on the object. There is a duality between transformations and the correspond
ing actions: An action is definable in terms of a transformation, and vice versa: 

void a (T& x) { x = f (x) ; } 11 action from transformation 

and 

T f (T x) { a (x) ; return x; } 11 transformation from action 

Despite this duality, independent implementations are sometimes more effi
cient, in which case both action and transformation need to be provided. For 
example, if a transformation is defined on a large object and modifies only part 
of its overall state, the action could be considerably faster. 

Exercise 2.6 Rewrite all the algorithms in this chapter in terms of actions. 



2.6 Conclusions 

Project 2.1 Another way to detect a cycle is to repeatedly test a single 
advancing element for equality with a stored element while replacing the 
stored element at ever-increasing intervals. This and other ideas are de
scribed in Sedgewick, et al. [1979], Brent [1980], and Levy [1982]. Imple
ment other algorithms for orbit analysis, compare their performance for 
different applications, and develop a set of re.commendations for selecting 
the appropriate algorithm. 

2.6 Conclusions 

29 

:\bstraction allowed us to define abstract procedures that can be used in different 
domains. Regularity of types and functions is essential to make the algorithms work: 
fast and slow follow the same orbit because of regularity. Developing nomenclature 
is essential (e.g., orbit kinds and sizes). Affiliated types, such as distance type, need 
to be precisely defined. 
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Chapter 3 

Associative Operations 

This chapter discusses associative binary operations. Associativity allows regroup

ing the adjacent operations. This ability to regroup leads to an efficient algorithm for 

computing powers of the binary operation. Regularity enables a variety of program 

transformations to optimize the algorithm. We then use the algorithm to compute 

linear recurrences, such as Fibonacci numbers, in logarithmic time. 

3.1 Associativity 

A binary operation is an operation with two arguments: 

BinaryOperation( Op) 6 

Operation (Op) 

/\ Arity(Op) = 2 

The binary operations of addition and multiplication are central to mathematics . 
.\1any more are used, such as min, max, conjunction, disjunction, set union, set 
intersection, and so on. All these operations are associative: 

property(Op : BinaryOperation) 

associative : Op 

op~ (Va, b, c E Domain(op)) op(op(a, b), c) = op(a, op(b, c)) 

There are, of course, nonassociative binary operations, such as subtraction and 
division. 

When a particular associative binary operation op is clear from the context, we 
often use implied multiplicative notation by writing ab instead of op (a, b). Because 
of associativity, we do not need to parenthesize an expression involving two or 

31 
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more applications of op, because all the groupings are equivalent: ( · · · (aoa1) · · ·) 

an-1 = · · · = ao(· · · (an-2an-1) · · ·) = aoa1 · · · an-1· When ao = a1 = · · · = 
an-1 = a, we write an: the nth power of a. 

Lemma 3.1 anam =a man= an+m (powers of the same element 

commute) 

It is not, however, always true that (ab)n = anbn. This condition holds only 

when the operation is commutative. 

If f and g are transformations on the same domain, their composition, g of, is 

a transformation mapping x to g(f(x)). 

Lemma 3.3 The binary operation of composition is associative. 

If we choose some element a of the domain of an associative operation op and 

consider the expression op( a, x) as a unary operation with formal parameter x, we 

can think of a as the transformation "multiplication by a." This justifies the use of the 

same notation for powers of a transformation, fn, and powers of an element under 

an associative binary operation, an. This duality allows us to use an algorithm from 

the previous chapter to prove an interesting theorem about powers of an associative 

operation. An element x has finite order under an associative operation if there exist 

integers 0 < n < m such that xn = xm. An element xis an idempotent element 

under an associative operation if x = x2. . 

Theorem 3.1 An element of finite order has an idempotent power 
(Frobenius [1895]). 

Proof Assume that x is an element of finite order under an associative operation op. 
Let g(z) = op(x, z). Since xis an element of finite order, its orbit under g has a cycle. 
By its postcondition, 

collision_point(x, g) = g n(x) = g2n+l (x) 

for some n =:::: 0. Thus 

gn(x) = xn+l 

g2n+l(x) = x2n+2 = x2(n+l) = (xn+l )2 

and xn+l is the idempotent power of x. 

Lemma 3.4 collision_poinLnonterminating_orbit can be used in the proof. 
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3.2 Computing Powers 

An algorithm to compute an for an associative operation op will take a, n, and op 
as parameters. The type of a is the domain of op; n must be of an integer type. 
Without the assumption of associativity, two algorithms compute power from left 
to right and right to left, respectively: 

template<typename I, typename Op> 

requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_left_associated(Domain(Op) a, I n, Op op) 
{ 

11 Precondition: n > 0 
if (n == I(1)) return a; 
return op(power_left_associated(a, n - I(1), op), a); 

} 

template<typename I, typename Op> 

requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_right_associated(Domain(Op) a, I n, Op op) 
{ 

11 Precondition: n > 0 
if (n == I(1)) return a; 
return op(a, power_right_associated(a, n - I(1), op)); 

} 

The algorithms perform n - 1 operations. They return different results for a 
nonassociative operation. Consider, for example, raising 1 to the 3rd power with 
the operation of subtraction. 

When both a and n are integers, and if the operation is multiplication, both 
algorithms give us exponentiation; if the operation is addition, both give us multi
plication. The ancient Egyptians discovered a faster multiplication algorithm that 
can be generalized to computing powers of any associative operation. 1 

Since associativity allows us to freely regroup operations, we have 

{

a ifn=l 

an = (a2 )n/2 if n is even 

(a2 )n12 a if n is odd 

1. The original is in Robins and Shute [1987, pages 16-17]; the papyrus is from around 1650 BC but 
its scribe noted that it was a copy of another papyrus from around 1850 BC. 
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which corresponds to 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_O(Domain(Op) a, I n, Op op) 
{ 

11 Precondition: associative( op) /\ n > 0 
if (n == I(1)) return a; 
if (n % I(2) == I(O)) 

Associative Operations 

return power_O(op(a, a), n I I(2), op); 
return op(power_O(op(a, a), n I I(2), op), a); 

} 

Let us count the number of operations performed by power _Q for an exponent 

of n. The number of recursive calls is Llog2 nj. Let v be the number of ls in the 
binary representation of n. Each recursive call performs an operation to square a. 
Also, v - 1 of the calls perform an extra operation. So the number of operations is 

For n = 15, Llog2 nJ = 3 and the number of ls is four, so the formula gives six 
operations. A different grouping gives a 15 = (a3 )5 , where a3 takes two operations 
and a5 takes three operations, for a total of five. There are also faster groupings for 
other exponents, such as 23, 27, 39, and 43.2 

Since power _lefLassociated does :n - 1 operations and power _Q does at most 
2 Llog2 nJ operations, it might appear that for very large n, power _Q will always be 
much faster. This is not always the case. For example, if the operation is mul
tiplication of univariate polynomials with arbitrary-precision integer coefficients, 
power _lefLassociated is faster. 3 Even for this simple algorithm, we do not know how 
to precisely specify the complexity requirements that determine which of the two is 
better. 

The ability of power _Q to handle very large exponents, say 10300 , makes it crucial 

for cryptography.4 

2. For a comprehensive discussion of minimal-operation exponentiation, see Knuth [1997, pages 
465-481]. 

3. See McCarthy [1986]. 
4. See the work on RSA by Rivest, et al. [1978]. 
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3.3 Program Transformations 

power _Q is a satisfactory implementation of the algorithm and is appropriate when 

the cost of performing the operation is considerably larger than the overhead of the 
function calls caused by recursion. In this section we derive the iterative algorithm 
that performs the same number of operations as power _o, using a sequence of pro

gram transformations that can be used in many contexts.5 For the rest of the book, 
we only show final or almost-final versions. 

power _Q contains two identical recursive calls. While only one is executed in a 

given invocation, it is possible to reduce the code size via common-subexpression 

elimination: 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_i(Domain(Op) a, I n, Op op) 
{ 

} 

11 Precondition: associative( op) /\ n > 0 

if (n == !(1)) return a; 
Domain(Op) r = power_1(op(a, a), n I !(2), op); 
if (n % !(2) != I(O)) r = op(r, a); 

return r; 

Our goal is to eliminate the recursive call. A first step is to transform the proce

dure to tail-recursive form, where the procedure's execution ends with the recursive 

call. One of the techniques that allows this transformation is accumulation-variable 

introduction, where the accumulation variable carries the accumulated result be

rween recursive calls: 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate_O(Domain(Op) r, Domain(Op) a, I n, 

Op op) 

5. Compilers perform similar transformations only for built-in types when the semantics and com
?lexity of the operations are known. The concept of regularity is an assertion by the creator of a type 
rh.at programmers and compilers can safely perform such transformations. 
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{ 

} 

11 Precondition: associative( op) /\ n > 0 

if (n == I(O)) return r; 
if (n % I(2) != I(O)) r = op(r, a); 

Associative Operations 

return power_accumulate_O(r, op(a, a), n I I(2), op); 

If ro, ao, and no are the original values of r, a, and n, this invariant holds at 

every recursive call: ran = ro a~0 • As an additional benefit, this version computes 
not just power but also power multiplied by a coefficient. It also handles zero as the 
value of the exponent. However, power _accumulate_O does an unnecessary squaring 

when going from 1 to 0. That can be eliminated by adding an extra case: 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate_i(Domain(Op) r, Domain(Op) a, I n, 

Op op) 
{ 

} 

11 Precondition: associative(op) /\ n > 0 
if (n == I(O)) return r; 
if (n == I(1)) return op(r, a); 
if (n % I(2) != I(O)) r = op(r, a); 
return power_accumulate_i(r, op(a, a), n I I(2), op); 

Adding the extra case results in a duplicated subexpression and in three tests 
that are not independent. Analyzing the dependencies between the tests and order
ing the tests based on expected frequency gives 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate_2(Domain(Op) r, Domain(Op) a, I n, 
Op op) 

{ 

} 

11 Precondition: associative( op) /\ n > 0 
if (n % I(2) != I(O)) { 

r = op(r, a); 
if (n == I(1)) return r; 

} else if (n == I(O)) return r; 
return power_accumulate_2(r, op(a, a), n I I(2), op); 
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A strict tail-recursive procedure is one in which all the tail-recursive calls are done 
with the formal parameters of the procedure being the corresponding arguments: 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate_3(Domain(Op) r, Domain(Op) a, I n, 

Op op) 
{ 

} 

11 Precondition: associative( op) /\ n > 0 
if (n % I(2) != I(O)) { 

r = op(r, a); 
if (n == I(1)) return r; 

} else if (n == I(O)) return r; 

a= op(a, a); 

n = n I I(2); 
return power_accumulate_3(r, a, n, op); 

A strict tail-recursive procedure can be transformed to an iterative procedure 
by replacing each recursive call with a goto to the beginning of the procedure or 
by using an equivalent iterative construct: 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate_4(Domain(Op) r, Domain(Op) a, I n, 

Op op) 
{ 

} 

11 Precondition: associative( op) /\ n > 0 
while (true) { 

} 

if (n % I(2) != I(O))"{ 

r = op(r, a); 
if (n == I(1)) return r;-

} else if (n == I(O)) return r; 

a= op(a, a); 
n = n·/ I(2); 

The recursion invariant becomes the loop invariant. 
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If n > 0 initially, it would pass through 1 before becoming 0. We take advantage 

of this by eliminating the test for 0 and strengthening the precondition: 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate_positive_O(Domain(Op) r, 

Domain(Op) a, I n, 

Op op) 
{ 

} 

11 Precondition: associative( op) /\ n > 0 

while (true) { 

} 

if (n % I(2) != I(O)) { 

r = op(r, a); 

if (n == I(1)) return r; 
} 

a= op(a, a); 

n = n I I(2); 

This is useful when it is known that n > 0. While developing a component, we 

often discover new interfaces. 

Now we relax the precondition again: 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate_5(Domain(Op) r, Domain(Op) a, I n, 

Op op) 
{ 

} 

11 Precondition: associative( op) /\ n > 0 
if (n == I(O)) return r; 
return power_accumulate_positive_O(r, a, n, op); 

We can implement power from power _accumulate by using a simple identity: 

\ 

an= aan-1 



3.4 Special-Case Procedures 

The transformation is accumulation-variable elimination: 

template<typename I, typename Op> 

requires (Integer (I) _&& BinaryOperation(Op)) 
Domain(Op) power_2(Domain(Op) a, I n, Op op) 
{ 

11 Precondition: associative( op) /\ n > 0 
return power_accumulate_5(a, a, n - I(1), op); 

} 
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This algorithm performs more operations than necessary. For example, when 
n is 16, it performs seven operations where only four are needed. When n is odd, 
this algorithm is fine. Therefore we can avoid the problem by repeated squaring of 
a and halving the exponent until it becomes odd: 

template<typename I, typename Op> 

requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_3(Domain(Op) a, I n, Op op) 
{ 

} 

11 Precondition: associative( op) /\ n > 0 
while (n % I(2) == I(O)) { 

a= op(a, a); 

n = n I I(2); 
} 

n = n I I(2); 

if (n == I(O)) return a; 
return power_accumulate_positive_O(a, op(a, a), n, op); 

Exercise 3.1 Convince yourself that the last three lines of code are correct. 

}.4 Special-Case Procedures 

In the final versions we used these operations: 

n I I(2) 
n '/. I(2) == I(O) 

n '/. I(2) != I(O) 

n == I(O) 
n == I(1) 
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Both I and% are expensive. We can use shifts and masks on non-negative values 
of both signed and unsigned integers. 

It is frequently useful to identify commonly occuring expressions involving 
procedures and constants of a type by defining special-case procedures. Often these 
special cases can be implemented more efficiently than the general case and, there
fore, belong to the computational basis of the type. For built-in types, there may 
exist machine instructions for the special cases. For user-defined types, there are 
often even more significant opportunities for optimizing special cases. For example, 
division of two arbitrary polynomials is more difficult than division of a polynomial 
by x. Similarly, division of two Gaussian integers (numbers of the form a+ bi where 
a and b are integers and i = .J=T) is more difficult than division of a Gaussian 
integer by 1 + i. 

Any integer type must provide the following special-case procedures: 

Integer(!) 6 

successor : I ---* I 

ni---+n+l 
/\ predecessor : I ---* I 

ni---+n-1 
/\ twice : I ---* I 

n i---+ n+n 
/\ halLnonnegative : I ---* I 

n i---+ Ln/2J, where n > 0 
/\ binary_scale_down_nonnegative : I x I ---* I 

(n, k) i---+ Ln/2k J, where n, k > 0 
/\ binary_scale_up_nonnegative : I x I ---* I 

( n, k) i---+ 2 kn, where n, k > 0 
/\ positive : I ---* bool 

ni---+n>O 
/\ negative : I ---* bool 

ni---+n<O 
/\ zero : I ---* bool 

ni---+n=O 
/\ one : I ---* bool 

ni---+n=l 
/\ even : I ---* bool 

n i---+ (n mod 2) = 0 
/\ odd : I ---* bool 

n i---+ (n mod 2) 10 
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Exercise 3.2 Implement these procedures for C++ integral types. 

Now we can give the final implementations of the power procedures by using 
che special-case procedures: 

template<typename I, typename Op> 

requires(Integer(I) && BinaryOperation(Op)) 
Domain(Op) power_accumulate_positive(Domain(Op) r, 

Domain(Op) a, I n, 

Op op) 
{ 

} 

11 Precondition: associative(op) /\ positive(n) 

while (true) { 
if (odd(n)) { 

r = op(r, a); 

if (one(n)) return r; 
} 

a= op(a, a); 
n = half__nonnegative(n); 

} 

template<typename I, typename Op> 

requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power_accumulate(Domain(Op) r, Domain(Op) a, I n, 

Op op) 
{ 

} 

11 Precondition: associative(op) /\ --inegative(n) 

if (zero(n)) return r; 

return power_accumulate_positive(r, a, n, op); 

template<typename I, typename Op> 

requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power(Domain(Op) a, I n, Op op) 
{ 

11 Precondition: associative( op) /\ positive( n) 

while (even(n)) { 

a= op(a, a); 

n = half__nonnegative(n); 
} 
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} 

n = half_nonnegative(n); 
if (zero(n)) return a; 
return power_accumulate_positive(a, op(a, a), n, op); 

Since we know that an+m = anam, a0 must evaluate to the identity element for 

the operation op. We can extend power to zero exponents by passing the identity 

element as another parameter:6 

template<typename I, typename Op> 
requires(Integer(I) && BinaryOperation(Op)) 

Domain(Op) power(Domain(Op) a, I n, Op op, Domain(Op) id) 
{ 

} 

11 Precondition: associative( op) /\. -inegative( n) 

if (zero(n)) return id; 
return power(a, n, op); 

Project 3.1 Floating-point multiplication and addition are not associative, 
so they may give different results when they are used as the operation 
for power and power _left_associated; establish whether power or power _left_ 

associated gives a more accurate result for raising a floating-point number 

to an integral power. 

3.5 Parameterizing Algorithms 

In power we use two different techniques for providing operations for the abstract 

algorithm. 

1. The associative operation is passed as a parameter. This allows power to be 

used with different operations on the same type, such as multiplication 

modulo n. 

2. The operations on the exponent are provided as part of the computational 
basis for the exponent type. We do not choose, for example, to pass 
halLnonnegative as a parameter to power, because we do not know of a case in 

which there are competing implementations of halLnonnegative on the same 

type. 

6. Another technique involves defining a function identity _element such that identity _element( op) 
returns the identity element for op. , 
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In general, we pass an operation as a parameter when an algorithm could be used 

\\rith different operations on the same type. When a procedure is defined with an 

operation as a parameter, a suitable default should be specified whenever possible. 

For example, the natural default for the operation passed to power is multiplication. 

Using an operator symbol or a procedure name with the same semantics on dif

ferent types is called overloading, and we say that the operator symbol or procedure 

name is overloaded on the type. For example, + is used on natural numbers, inte

gers, rationals, polynomials, and matrices. In mathematics + is always used for an 

associative and commutative operation, so using + for string concatenation would 

be inconsistent. Similarly, when both + and x are present, x must distribute over 

+. In power, halLnonnegative is overloaded on the exponent type. 

When we instantiate an abstract procedure, such as collision_point or power, 

\\ye create overloaded procedures. When actual type parameters satisfy the require

ments, the instances of the abstract procedure have the same semantics. 

3.6 Linear Recurrences 

A linear recurrence /unction of order k is a function f such tha't 

k-1 

fCyo, ... , 1h-1) = L Oi'JJ; 

i=O 

where coefficients ao, ak-1 1 0. A sequence {xo, x1, · · ·} is a linear recurrence 

sequence of order k if there is a linear recurrence function of order k-say, f-and 

Note that indices of x decrease. Given k initial values xo, ... , xk-1 and a linear 

recurrence function of order k, we can generate a linear recurrence sequence via a 

straightforward iterative algorithm. This algorithm requires n - k + 1 applications 

of the function to compute Xn, for n > k. As we will see, we can compute Xn in 

O(log2 n) steps, using power.7 If f(y 0 , ... , y k-l) = 2::~~1 aiy i is a linear recurrence 

7. The first O(log n) algorithm for linear recurrences is due to Miller and Brown [1966]. 
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function of order k, we can view f as performing vector inner product:8 

If we extend the vector of coefficients to the companion matrix with ls on its 

subdiagonal, we can simultaneously compute the new value Xn and shift the old 

values Xn-l, ... , Xx-k+l to the correct positions for the next iteration: 

ao a1 a2 

1 0 0 
0 1 0 

0 0 0 1 0 

Xn-1 

Xn-2 

Xn-3 

Xn-k 

Xn-1 

Xn-2 

Xn-k+l 

By the associativity of matrix multiplication, it follows that we can obtain Xn by 
multiplying the vector of the k initial values by the companion matrix raised to the 
power n - k + 1: 

n-k+l 
Xn ao a1 a2 ak-2 ak-1 Xk-1 

Xn-1 1 0 0 0 0 Xk-2 

Xn-2 = 0 1 0 0 0 Xk-3 

Xn-k+l 0 0 0 1 0 Xo 

Using power allows us to find Xn with at most 2 log2 ( n - k + 1) matrix multiplication 

operations. A straightforward matrix multiplication algorithm requires k3 multi

plications and k3 - k2 additions of coefficients. Therefore the computation of Xn 

requires no more than 2k3 log2 (n-k+ 1) multiplications and2(k3 - k2
) log2 (n-k+ 1) 

additions of the coefficients. Recall that k is the order of the linear recurrence and 

is a constant. 9 

We never defined the domain of the elements of a linear recurrence sequence. It 
could be integers, rationals, reals, or complex numbers: The only requirements are 

8. For a review of linear algebra, see Kwak and Hong [2004]. They discuss linear recurrences starting 
on page 214. 

9. Fiduccia [1985] shows how the constant factor can be reduced via modular polynomial multipli
cation. 
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the existence of associative and commutative addition, associative multiplication, 
and distributivity of multiplication over addition. 10 

The sequence f i generated by the linear recurrence function 

of order 2 with initial values f 0 = 0 and f 1 = 1 is called the Fibonacci sequence. 11 

It is straightforward to compute the nth Fibonacci number f n by using power with 
2 x 2 matrix multiplication. We use the Fibonacci sequence to illustrate how the k3 

multiplications can be reduced for this particular case. Let 

f = [~ ~] 
be the companion matrix for the linear recurrence generating the Fibonacci 
sequence. We can show by induction that 

Indeed: 

fl = [f2 
f 1 

fi] 
f o [~ ~] 

fn+l = ffn 

[~ 1] [fn+l 
0 f n 

f n ] 
f n-1 

[f n+l + f n 
f n+l 

fn +fn-1] 
f n 

= [f n+2 
f n+l 

f n+l] 
f n 

This allows us to express the matrix product of Fm and fn as 

[
fm+lfn+l +fmfn 

f m f n+l + f m-1 f n 
fm+lfn+fmfn-1] 
fmfn+fm-lfn-1 

10. It could be any type that models semiring, which we define in Chapter 5. 
11. Leonardo Pisano, Liber Abaci, first edition, 1202. For an English translation, see Sigler [2002]. 

The sequence appears on page 404. 
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We can represent the matrix Fn with a pair corresponding to its bottom row, 

(f n, f n-d, since the top row could be computed as (f n-1 + f n' f n), which leads 

to the following code: 

template<typename I> 

requires(Integer(I)) 

pair<!, I> fibonacci....matrix....multiply(const pair<!, I>& x, 

const pair<!, I>& y) 
{ 

} 

return pair<!, I>( 

x.mO * (y.m1 + y.mO) + x.m1 * y.mO, 

x.mO * y.mO + x.m1 * y.m1); 

This procedure performs only four multiplications instead of the eight required 

for general 2 x 2 matrix multiplication. Since the first element of the bottom row 

of Fn is f n, the following procedure computes f n: 

template<typename I> 

requires(Integer(I)) 

I fibonacci(I n) 
{ 

11 Precondition: n > 0 

if (n == I(O)) return I(O); 

return power(pair<I, I>(I(1), I(O)), 

n, 

fibonacci....matrix....multiply<I>).mO; 
} 

3. 7 Accumulation Procedures 

The previous chapter defined an action as a dual to a transformation. There is a 

dual procedure for a binary operation when it is used in a statement like 

x = op(x, y); 

Changing the state of an object by combining it with another object via a bi

nary operation defines an accumulation procedure on the object. An accumulation 
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procedure is definable in terms of a binary operation, and vice versa: 

void op_accumulate(T& x, const T& y) { x = op(x, y); } 

11 accumulation procedure from binary operation 

and 

T op(T x, const T& y) { op_accumulate(x, y); return x; } 

11 binary operation from accumulation procedure 
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As with actions, sometimes independent implementations are more efficient, in 
which case both operation and accumulation procedures need to be provided. 

Exercise 3.3 Rewrite all the algorithms in this chapter in terms of accu
mulation procedures. 

Project 3.2 Create a library for the generation of linear recurrence 
sequences based on the results of Miller and Brown [1966] and Fiduccia 
[1985]. 

3.8 Conclusions 

Algorithms are abstract when they can be used with different models satisfying the 
same requirements, such as associativity. Code optimization depends on equational 
reasoning; unless types are known to be regular, few optimizations can be performed. 
Special-case procedures can make code more efficient and even more abstract. The 
combination of mathematics and abstract algorithms leads to surprising algorithms, 
such as logarithmic time generation of the nth element of a linear recurrence. 
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Chapter 4 

Linear Orderings 

This chapter describes properties of binary relations, such as transitivity and 
symmetry. In particular; we introduce total and weak linear orderings. We intro

duce the concept of stability of /unctions based on linear ordering: preserving order 

present in the arguments for equivalent elements. We generalize min and max to 

order-selection /unctions, such as the median of three elements, and introduce a tech

nique for managing their implementation complexity through reduction to constrained 

subproblems. 

4.1 Classification of Relations 

A relation is a predicate taking two parameters of the same type: 

Relation(Op) ~ 

Predicate( Op) 

/\ HomogeneousFunction( Op) 

/\ Arity( Op) = 2 

A relation is transitive if, whenever it holds between a and b, and between b 

and c, it holds between a and c: 

property(R : Relation) 

transitive : R 

r ~ (Va, b, c E Domain(R)) (r(a, b) /\ r(b, c):::} r(a, c)) 

Examples of transitive relations are equality, equality of the first member of a 
pair, reachability in an orbit, and divisibility. 
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A relation is strict if it never holds between an element and itself; a relation is 

reflexive if it always holds between an element and itself: 

property(R : Relation) 

strict : R 

r ~ (Va E Domain(R)) --.r(a, a) 

property(R : Relation) 

reflexive : R 

r ~ (Va E Domain(R)) r(a, a) 

All the previous examples of transitive relations are reflexive; proper factor is 

strict. 

Exercise 4.1 Give an example of a relation that is neither strict nor reflexive. 

A relation is symmetric if, whenever it holds in one direction, it holds in .the 

other; a relation is asymmetric if it never holds in both directions: 

property(R : Relation) 

symmetric : R 

r ~ (Va, b E Domain(R)) (r(a, b) ==> r(b, a)) 

property(R : Relation) 

asymmetric : R 

r ~ (Va, b E Domain(R)) (r(a, b) ==> --.r(b, a)) 

An example of a symmetric transitive relation is "sibling"; an example of an 
asymmetric transitive relation is "ancestor." 

Exercise 4.2 Give an example of a symmetric relation that is not transitive. 

Exercise 4.3 Give an example of a symmetric relation that is not reflexive. 

Given a relation r(a, b), there are derived relations with the same domain: 

complementr(a, b) {} --.r(a, b) 

converser(a, b) {} r(b, a) 

complement_of_converser(a, b) {} --.r(b, a) 

Given a symmetric relation, the only interesting derivable relation is the com
plement, because the converse is equivalent to the original relation. 
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A relation is an equivalence if it is transitive, reflexive, and symmetric: 

property(R : Relation) 

eq u iva le nee : R 

r !----* transitive( r) /\ reflexive( r) /\ symmetric( r) 
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Examples of equivalence relations are equality, geometric congruence, and 
integer congruence modulo n. 

Lemma 4.1 If r is an equivalence relation, a= b ==> r(a, b). 

An equivalence relation partitions its domain into a set of equivalence classes: 

subsets containing all elements equivalent to a given element. We can often imple
ment an equivalence relation by defining a key /unction, a function that returns a 
unique value for all the elements in each equivalence class. Applying equality to the 

results of the key function determines equivalence: 

property(F : UnaryFunction, R : Relation) 

requires(Domain(F) = Domain(R)) 

key_function : F x R 

(f, r) !----* (Va, b E Domain(F)) (r(a, b) {} f(a) = f(b)) 

Lemma 4.2 key_function(f, r) ==> equivalence(r) 

4.2 Total and Weak Orderings 

A relation is a total ordering if it is transitive and obeys the trichotomy law, whereby 
for every pair of elements, exactly one of the following holds: the relation, its con
\yerse, or equality: 

property(R : Relation) 

total_ordering : R 

r !----* transitive( r) /\ 

(Va, b E Domain(R)) exactly one of the following holds: 
r(a, b), r(b, a), or a= b 

A relation is a weak ordering if it is transitive and there is an equivalence relation 
on the same domain such that the original relation obeys the weak-trichotomy law, 

whereby for every pair of elements, exactly one of the following holds: the relation, 
its converse, or the equivalence: 
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property(R : Relation) 

weak_ordering : R 

r i--+ transitive( r) /\ 

(Va, b E Domain(R)) exactly one of the following holds: 
r(a, b), r(b, a), or (--.r(a, b) /\ --.r(b, a)) 

Linear Orderings 

Given a relation r, the relation --.r( a, b) /\ --.r(b, a) is called the symmetric 

complement of r. 

Lemma 4.3 The symmetric complement of a weak ordering is an equiva

lence relation. 

Examples of a weak ordering are pairs ordered by their first members and 

employees ordered by salary. 

Lemma 4.4 A total ordering is a weak ordering. 

Lemma 4.5 A weak ordering is asymmetric. 

Lemma 4.6 A weak ordering is strict. 

A key function f on a set T, together with a total ordering r on the codomain of 
f, define a weak ordering f(x, 1J) ¢? r( f(x), f(1J) ). 

We refer to total and weak orderings as linear orderings because of their re

spective trichotomy laws. 

4.3 Order Selection 

Given a weak ordering r and two objects a and b from r's domain, it makes sense 
to ask which is the minimum. It is obvious how to define the minimum when r or 
its converse holds between a and b but is not so when they are equivalent. A similar 
problem arises if we ask which is the maximum. 

A property for dealing with this problem is known as stability. Informally, 
an algorithm is stable if it respects the original order of equivalent objects. So 
if we think of minimum and maximum as selecting, respectively, the smallest and 

second smallest from a list of two arguments, stability requires that when called with 
equivalent elements, minimum should return the first and maximum the second. 1 

1. In later chapters we extend the notion of stability to other categories of algorithms. 
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We can generalize minimum and maximum to (j, k)-order selection, where 
k > 0 indicates the number of arguments, and 0 < j < k indicates that the jth 

smallest is to be selected. To formalize our notion of stability, assume that each of 
the k arguments is associated with a unique natural number called its stability index. 

Given the original weak ordering r, we define the strengthened relation r on (object, 
stability index) pairs: 

If we implement an order-selection algorithm in terms of r, there are no ambiguous 
cases caused by equivalent arguments. The natural default for the stability index of 
an argument is its ordinal position in the argument list. 

While the strengthened relation r gives us a powerful tool for reasoning about 

stability, it is straightforward to define simple order-selection procedures without 
making the stability indices explicit. This implementation of minimum returns a 
when a and b are equivalent, satisfying our definition of stability:2 

template<typename R> 

requires(Relatian(R)) 
canst Damain(R)& select_Q_2(canst Damain(R)& a, 

canst Damain(R)& b, R r) 
{ 

} 

11 Precondition: weak_ardering( r) 

if (r(b, a)) return b; 

return a; 

Similarly, this implementation of maximum returns b when a and b are equiv
alent, again satisfying our definition of stability:3 

template<typename R> 

requires(Relatian(R)) 
canst Damain(R)& select_1_2(canst Damain(R)& a, 

canst Damain(R)& b, R r) 
{ 

11 Precondition: weak_ardering( r) 

2. We explain our naming convention later in this section. 
3. STL incorrectly requires that max( a, b) returns a when a and b are equivalent. 
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} 

if (r(b, a)) return a; 

return b; 

Linear Orderings 

For the remainder of this chapter, the precondition weak_ardering(r) is implied. 

While it is useful to have other order-selection procedures for k arguments, the 

difficulty of writing such an order-selection procedure grows quickly with k, and 

there are many different procedures we might have a need for. A technique we call 

reduction to constrained subproblems addresses both issues. We develop a family of 

procedures that assume a certain amount of information about the relative ordering 

of their arguments. 

Naming these procedures systematically is essential. Each name begins with 

selecLj_k, where 0 < j < k, to indicate selection of the jth largest of k arguments. 

We append a sequence of letters to indicate a precondition on the ordering of 

parameters, expressed as increasing chains. For example, a suffix of _ab means that 

the first two parameters are in order, and _abd means that the first, second, and 

fourth parameters are in order. More than one such suffix appears when there are 

preconditions on different chains of parameters. 

For example, it is straightforward to implement minimum and maximum for 

three elements: 

template<typename R> 

requires(Relatian(R)) 

canst Damain(R)& select_Q_3(canst Damain(R)& a, 

canst Damain(R)& b, 

canst Damain(R)& c, R r) 
{ 

return select_Q_2(select_Q_2(a, b, r), c, r); 
} 

template<typename R> 

requires(Relatian(R)) 

canst Damain(R)& select_2_3(canst Damain(R)& a, 

canst Damain(R)& b, 

canst Damain(R)& c, R r) 
{ 

return select_1_2(select_1_2(a, b, r), c, r); 
} 



4.3 Order Selection 55 

It is easy to find the median of three elements if we know that the first two 

elements are in increasing order: 

template<typename R> 

requires(Relation(R)) 

const Domain(R)& select_1_3_ab(const Domain(R)& a, 

const Domain(R)& b, 

const Domain(R)& c, R r) 
{ 

if ( ! r ( c, b)) return b; 11 a) b) c are sorted 

return select_L2 (a, c, r) ; 11 b is not the median 
} 

Establishing the precondition for selecLL3_ab requires only one comparison. 

Because the parameters are passed by constant reference, no data movement takes 

place: 

template<typename R> 

requires(Relation(R)) 

const Domain(R)& select_1_3(const Domain(R)& a, 

const Domain(R)& b, 

const Domain(R)& c, R r) 
{ 

if (r(b, a)) return select_1_3_ab(b, a, c, r); 

return select_1_3_ab(a, b, c, r); 

} 

In the worst case, selecLL3 does three comparisons. The function does two 

comparisons only when c is the maximum of a, b, c, and since it happens in one

rhird of the cases, the average number of comparisons is 2~, assuming a uniform 

distribution of inputs. 

Finding the second smallest of n elements requires at least n + !log2 n l - 2 
comparisons.4 In particular, finding the second of four requires four comparisons. 

It is easy to select the second of four if we know that the first pair of arguments 

and the second pair of arguments are each in increasing order: 

4. This result was conjectured by Jozef Schreier and proved by Sergei Kislitsyn [Knuth, 1998, 
Theorem S, page 209]. 
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template<typename R> 

requires(Relatian(R)) 

canst Damain(R)& select_1_4_ab_cd(canst Damain(R)& a, 

canst Damain(R)& b, 

canst Damain(R)& c, 

Linear Orderings 

canst Damain(R)& d, R r) { 

if (r(c, a)) return select_Q_2(a, d, r); 

return select_Q_2(b, c, r); 
} 

The precondition for select_L4_ab_cd can be established with one comparison 
if we already know that the first pair of arguments are in increasing order: 

template<typename R> 

requires(Relatian(R)) 

canst Damain(R)& select_1_4_ab(canst Damain(R)& a, 

canst Damain(R)& b, 

canst Damain(R)& c, 

} 

canst Damain(R)& d, R r) { 
if (r(d, c)) return select_1_4_ab_cd(a, b, d, c, r); 

return select_1_4_ab_cd(a, b, c, d, r); 

The precondition for select_L4_ab can be established with one comparison: 

template<typename R> 

requires(Relatian(R)) 

canst Damain(R)& select_1_4(canst Damain(R)& a, 

canst Damain(R)& b, 

canst Damain(R)& c, 

} 

canst Damain(R)& d, R r) { 
if (r(b, a)) return select_1_4_ab(b, a, c, d, r); 

return select_1_4_ab(a, b, c, d, r); 

Exercise 4.4 Implement select_2-4. 

Maintaining stability of order-selection networks up through order 4 has not 
been too difficult. But with order 5, situations arise in which the procedure 
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corresponding to a constrained subproblem is called with arguments out of or
der from the original caller, which violates stability. A systematic way to deal with 

such situations is to pass the stability indices along with the actual parameters and 
ro use the strengthened relation r. We avoid extra runtime cost by using integer 

template parameters. 
We name the stability indices ia, ib, ... , corresponding to the parameters a, 

b. and so on. The strengthened relation r is obtained by using the function object 
template campare_stricLar _reflexive, which takes a baal template parameter that, if 

true, means that the stability indices of its arguments are in increasing order: 

template<baal strict, typename R> 

requires(Relatian(R)) 

struct campare_strict_ar_reflexive; 

When we construct an instance of campare_stricLar _reflexive, we supply the ap

propriate Boolean template argument: 

template<int ia, int ib, typename R> 

requires(Relatian(R)) 

canst Damain(R)& select_Q_2(canst Damain(R)& a, 

canst Damain(R)& b, R r) 
{ 

} 

campare_strict_ar_reflexive<(ia < ib), R> cmp; 

if (cmp(b, a, r)) return b; 

return a; 

We specialize campare_stricLar _reflexive for the two cases: (1) stability indices in 
increasing order, in which case we use the original strict relation r; and (2) decreasing 

order, in which case we use the corresponding reflexive version of r: 

template<typename R> 

requires(Relatian(R)) 

struct campare_strict_ar _ref lexi ve<true, R> //strict 
{ 

baal aperatar()(canst Damain(R)& a, 

canst Damain(R)& b, R r) 
{ 

return r(a, b); 
} 

}; 
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template<typename R> 

requires(Relation(R)) 

struct compare_strict_or _ref lexi ve<f alse, R> 11 reflexive 

{ 

}; 

bool operator()(const Domain(R)& a, 

const Domain(R)& b, R r) 
{ 

return ! r (b, a); 11 complemenLoLconverser(a, b) 

} 

Linear Ordedngs 

When an order-selection procedure with stability indices calls another such 

procedure, the stability indices corresponding to the parameters, in the same order 

as they appear in the call, are passed: 

template<int ia, int ib, int ic, int id, typename R> 

requires(Relation(R)) 

const Domain(R)& select_1_4_ab_cd(const Domain(R)& a, 

const Domain(R)& b, 

const Domain(R)& c, 

const Domain(R)& d, R r) 
{ 

} 

compare_strict_or_reflexive<(ia < ic), R> cmp; 

if (cmp(c, a, r)) return 

select_0_2<ia,id>(a, d, r); 

return 

select_0_2<ib,ic>(b, c, r); 

template<int ia, int ib, int ic, int id, typename R> 

requires(Relation(R)) 

const Domain(R)& select_1_4_ab(const Domain(R)& a, 

{ 

const Domain(R)& b, 

const Domain(R)& c, 

const Domain(R)& d, R r) 

compare_strict_or_reflexive<(ic <id), R> cmp; 

if (cmp(d, c, r)) return 

select_1_4_ab_cd<ia,ib,id,ic>(a, b, d, c, r); 
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return 

select_1_4_ab_cd<ia,ib,ic,id>(a, b, c, d, r); 
} 

template<int ia, int ib, int ic, int id, typename R> 

requires(Relation(R)) 

const Domain(R)& select_1_4(const Domain(R)& a, 

{ 

} 

const Domain(R)& b, 

const Domain(R)& c, 

const Domain(R)& d, R r) 

compare_strict_or_reflexive<(ia < ib), R> cmp; 

if (cmp(b, a, r)) return 

select_1_4_ab<ib,ia,ic,id>(b, a, c, d, r); 

return 

select_1_4_ab<ia,ib,ic,id>(a, b, c, d, r); 

Now we are ready to implement order 5 selections: 

template<int ia, int ib, int ic, int id, int ie, typename R> 

requires(Relation(R)) 

const Domain(R)& select_2_5_ab_cd(const Domain(R)& 

{ 

} 

const Domain(R)& 

const Domain(R)& 

const Domain(R)& 

const Domain(R)& 

compare_strict_or_reflexive<(ic <id), R> cmp; 

if (cmp(c, a, r)) return 

select_1_4_ab<ia,ib,id,ie>(a, b, d, e, r); 

return 

select_1_4_ab<ic,id,ib,ie>(c, d, b, e, r); 

a, 

b, 

c, 

d, 

e, R r) 

template<int ia, int ib, int ic, int id, int ie, typename R> 

requires(Relation(R)) 
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const Domain(R)& select_2_5_ab(const Domain(R)& a, 

{ 

} 

const Domain(R)& b, 

const Domain(R)& c, 

const Domain(R)& d, 

const Domain(R)& e, 

compare_strict_or_reflexive<(ic <id), R> cmp; 

if (cmp(d, c, r)) return 

select_2_5_ab_cd<ia,ib,id,ic,ie>( 

a, b, d, c, e, r); 

return 
select_2_5_ab_cd<ia,ib,ic,id,ie>( 

a, b, c, d, e, r); 

R r) 

template<int ia, int ib, int ic, int id, int ie, typename R> 

requires(Relation(R)) 

const Domain(R)& select_2_5(const Domain(R)& a, 

{ 

} 

const Domain(R)& b, 

const Domain(R)& c, 

const Domain(R)& d, 

const Domain(R)& e, R r) 

compare_strict_or_reflexive<(ia < ib), R> cmp; 

if (cmp(b, a, r)) return 

select_2_5_ab<ib,ia,ic,id,ie>(b, a, c, d, e, r); 

return 

select_2_5_ab<ia,ib,ic,id,ie>(a, b, c, d, e, r); 

Lemma 4.7 selecL2_5 performs six comparisons. 

Exercise 4.5 Find an algorithm for median of 5 that does slightly fewer 
comparisons on average. 

We can wrap an order-selection procedure with an outer procedure that sup
plies, as the stability indices, any strictly increasing series of integer constants; by 
convention, we use successive integers starting with 0: 
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template<typename R> 

requires(Relation(R)) 

const Domain(R)& median_5(const Domain(R)& a, 

const Domain(R)& b, 

const Domain(R)& c, 

const Domain(R)& d, 

const Domain(R)& e, R r) 
{ 

} 

return select_2_5<0,1,2,3,4>(a, b, c, d, e, r); 

Exercise 4.6 Prove the stability of every order-selection procedure in this 
section. 

Exercise 4. 7 Verify the correctness and stability of every order-selection 

procedure in this section by exhaustive testing. 

Project 4.1 Design a set of necessary and sufficient conditions preserving 
stability under composition of order-selection procedures. 

Project 4.2 Create a library of minimum-comparison procedures for sta

ble sorting and merging.5 Minimize not only the number of comparisons 

but also the number of data movements. 

4.4 Natural Total Ordering 
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There is a unique equality on a type because equality of values of the type means 
that those values represent the same entity. Often there is no unique natural total 
ordering on a type. For a concrete species, there are often many total and weak 

orderings, without any of them playing a special role. For an abstract species, there 
may be one special total ordering that respects its fundamental operations. Such 

an ordering is called the natural total ordering and is denoted by the symbol <, as 
follows: 

5. See Knuth [1998, Section 5.3: Optimum Sorting]. 
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Totally Ordered (T) D

Regular(T) 
/\ <: T x T---+ bool 

/\ total_ordering( <) 

Linear Orderings 

For example, the natural total ordering on integers respects fundamental oper

ations: 

a < successor( a) 

a < b =} successor( a) < successor(b) 

a<b=}a+c<b+c 
a < b /\ 0 < c =} ca < cb 

Sometimes, a type does not have a natural total ordering. For example, com

plex numbers and employee records do not have natural total orderings. We require 

regular types to provide a default total ordering (sometimes abbreviated to default or
dering) to enable logarithmic searching. An example of default total ordering where 
no natural total ordering exists is lexicographical ordering for complex numbers. 
When the natural total ordering exists, it coincides with the default ordering. We 

use the following notation: 

Specifications C++ 

Default ordering for T less<T> 

4.5 Clusters of Derived Procedures 

Some procedures naturally come in clusters. If some procedures in a cluster are 
defined, the definitions of the others naturally follow. The complement of equality, 
inequality, is defined whenever equality is defined; the operators = and -=/= must be 
defined consistently. For every totally ordered type, all four operators<,>,<, and 
> must be defined together in such a way that the following hold: 

a>b{}b<a 
a < b {} --,(b < a) 

a> b {}-,(a< b) 
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4.6 Extending Order-Selection Procedures 

The order-selection procedures in this chapter do not return an object that can be 
mutated, because they work with constant references. It is useful and straightfor
ward to have versions that return a mutable object, so that they could be used on the 
left side of an assignment or as the mutable argument to an action or accumulation 
procedure. An overloaded mutable version of an order-selection procedure is imple
mented by removing from the nonmutable version the canst from each parameter 
type and the result type. For example, our version of select_Q_2 is supplemented with 

template<typename R> 

requires(Relation(R)) 
Domain(R)& select_0_2(Domain(R)& a, Domain(R)& b, R r) 
{ 

if (r(b, a)) return b; 

return a; 
} 

In addition, a library should provide versions for totally ordered types (with <), 

since it is a common case. This means that there are four versions of each procedure. 
The trichotomy and weak-trichotomy laws satisfied by total and weak ordering 

suggest that instead of a two-valued relation, we could use a three-valued comparison 
procedure, since, in some situations, this would avoid an additional procedure call. 

Exercise 4.8 Rewrite the algorithms in this chapter using three-valued 

comparison. 

4. 7 Conclusions 

The axioms of total and weak ordering provide the interface to connect specific 
orderings with general-purpose algorithms. Systematic solutions to small problems 
lead to easy decomposition of large problems. There are clusters of procedures with 
interrelated semantics. 
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Chapter 5 

Ordered Algebraic 
Structures 

Iis chapter presents a hierarchy of concepts from abstract algebra, starting with 
semigroups and ending with rings and modules. We then combine algebraic concepts 

with the notion of total ordering. When ordered algebraic structures are Archimedean) 
we can define an efficient algorithm for finding quotient and remainder. Quotient and 

remainder in turn lead to a generalized version of Euclid)s algorithm /or the greatest 

common divisor. We briefly treat concept-related logical notions) such as consistency 

and independence. We conclude with a discussion of computer integer arithmetic. 

5 .1 Basic Algebraic Structures 

An element is called an identity element of a binary operation if, when combined 
with any other element as the first or second argument, the operation returns the 

other element: 

property(T: Regular, Op : BinaryOperation) 

requires(T = Domain( Op)) 

identity_element : T x Op 

(e, op) r-+ (Va En op(a, e) = op(e, a)= a 

Lemma 5.1 An identity element is unique: 

identity _element( e, op) /\ identity _element( e', op) ==> e = e' 

The empty string is the identity element of string concatenation. The matrix 
( b ? ) is the multiplicative identity of 2 x 2 matrices, while ( g g) is their additive 
identity. 
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A transformation is called an inverse operation of a binary operation if an element 
and its transformation, when combined in either order, give the identity element: 

property(F : Transformation, T: R.egular, Op : BinaryOperation) 

requires(Domain(F) = T = Domain( Op)) 

inverse_operation : F x T x Op 

(inv, e, op) r-+ (Va ET) op(a, inv(a)) = op(inv(a), a)= e 

Lemma 5.2 n 3 is the multiplicative inverse modulo 5 of a positive integer 

n :f 0. 

A binary operation is commutative if its result is the same when its arguments 

are interchanged: 

property( Op : BinaryOperation) 

commutative : Op 

op r-+ (Va, b E Domain(Op)) op(a, b) = op(b, a) 

Composition of transformations is associative but not commutative. 
A set with an associative operation is called a semigroup. Since, as we remarked 

in Chapter 3, +is always used to denote an associative, commutative operation, a 
type with + is called an additive semigroup: 

AdditiveSemigroup(T) b. 

Regular(T) 

A+:TxT~T 

/\ associative(+) 

/\ commutative(+) 

Multiplication is sometimes not commutative. Consider, for example, matrix 
multiplication. 

MultiplicativeSemigroup(T) b. 

Regular(T) 

A ·:TxT---+T 
/\ associative(·) 

We use the following notation: 

Specifications C++ 

Multiplication * 
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A semigroup with an identity element is called a monoid. The additive identity 

element is denoted by 0, which leads to the definition of an additive monoid: 

AdditiveMonoid(T) b. 

Additives emigroup (n 
/\ 0 ET 

/\ identity _element( 0, +) 

We use the following notation: 

Additive identity 

Specifications C++ 
0 T ( 0) 

Non-negative reals are an additive monoid, as are matrices with natural numbers 

as their coefficients. 

The multiplicative identity element is denoted by 1, which leads to the definition 

of a multiplicative monoid: 

1\1.ultiplicativeMonoid (n b. 

MultiplicativeSemigroup(T) 

/\ 1 ET 

/\ identity _element( 1, ·) 

We use the following notation: 

Multiplicative identity 

Specifications 

1 

Matrices with integer coefficients are a multiplicative monoid. 

C++ 
T ( 1) 

A monoid with an inverse operation is called a group. If an additive monoid 

has an inverse, it is denoted by unary - , and there is a derived operation called 

subtraction, denoted by binary-. That leads to the definition of an additive group: 

AdditiveGroup(n b. 

AdditiveMonoid(T) 

/\-:T--+T 
/\ inverse_operation(unary -, 0, +) 

/\-:TxT--+T 
(a, b) r-+ a + (-b) 

Matrices with integer coefficients are an additive group. 
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Lemma 5.3 In an additive group, -0 = 0. 

Just as there is a concept of additive group, there is a corresponding concept of 

multiplicative group. In this concept the inverse is called multiplicative inverse, and 

there is a derived operation called division, denoted by binary/: 

MultiplicativeGroup(T) b. 

MultiplicativeMonoid(T) 

/\ multiplicative_inverse : T---+ T 
/\ inverse_operation(multiplicative_inverse, 1, ·) 

/\ /:TxT---+T 

(a, b) ~ a · multiplicative_inverse(b) 

multiplicative_inverse(x) is written as x- 1. 

The set {cos()+ i sin()} of complex numbers on the unit circle is a commutative 

multiplicative group. A unimodular group Gln(Z) (n x n matrices with integer co

efficients with determinant equal to ±1) is a noncommutative multiplicative group. 

Two concepts can be combined on the same type with the help of axioms 

connecting their operations. When both + and · are present on a type, they are 
interrelated with axioms defining a semiring: 

Semirin g(T) b. 

AdditiveMonoid(T) 

/\ MultiplicativeMonoid(T) 

/\ O:f:l 
/\ (Va E T) 0 · a = a · 0 = 0 
/\ (Va, b, c ET) 

a · (b + c) = a · b + a · c 

/\ (b + c) · a = b · a+ c · a 

The axiom about multiplication by 0 is called the annihilation property. The 

final axiom connecting + and · is called distributivity. 

Matrices with non-negative integer coefficients constitute a semiring. 

CommutativeSemiring(T) b. 

Semiring(T) 

/\ commutative(·) 

Non-negative integers constitute a commutative semiring. 
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Ring(n b. 

AdditiveGroup(n 

/\ Semiring(n 

Matrices with integer coefficients constitute a ring. 

CommutativeRing(n b. 

AdditiveGroup (n 
/\ CommutativeSemiring(n 
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Integers constitute a commutative ring; polynomials with integer coefficients 

constitute a commutative ring. 

A relational concept is a concept defined on two types. Semimodule is a relational 

concept that connects an additive monoid and a commutative semiring: 

Semimodule(T, S) b. 

AdditiveMonoid(n 

/\ CommutativeSemiring(S) 

/\ ·:SxT---+T 

/\ (Va, f3 E S)(Va, b E n 
a · ({3 · a) = (a · {3) · a 

(a+ {3) · a = a · a+ f3 · a 

a·(a+b) = a·a+a·b 

1 ·a = a 

If Semimodule(T, S), we say that Tis a semimodule over S. We borrow termi

nology from vector spaces and call elements of T vectors and elements of S scalars. 

For example, polynomials with non-negative integer coefficients constitute a semi

module over non-negative integers. 

Theorem 5.1 AdditiveMonoid(T) ::::} Semimodule(T, N), where scalar mul

tiplication is defined as n · x = x + · · · + x. 
~ 

n times 

Proof It follows trivially from the definition of scalar multiplication together with 
associativity and commutativity of the monoid operation. For example, 

n · a + n · b = (a + · · · + a) + (b + · · · + b) 

=(a+b)+···+(a+b) 

=n·(a+b) 
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Using power from Chapter 3 allows us to implement multiplication by an integer 

in log2 n steps. 

Strengthening the requirements by replacing the additive monoid with an ad

ditive group and replacing the semiring with a ring transforms a semimodule into a 

module: 

Module(T, S) b. 

Semimodule(T, S) 

/\ AdditiveGroup(T) 

/\ Ring(S) 

Lemma 5.4 Every additive group is a module over integers with an ap

propriately defined scalar multiplication. 

Computer types are often partial models of concepts. A model is called par

tial when the operations satisfy the axioms where they are defined but are not 

everywhere defined. For example, the result of concatenation of strings may not 

be representable, because of memory limitations, but concatenation is associative 

whenever it is defined. 

5 .2 Ordered Algebraic Structures 

When a total ordering is defined on the elements of a structure in such a way that 

the ordering is consistent with the structure's algebraic properties, it is the natural 

total ordering for the structure: 

OrderedAdditiveSemigroup(T) b. 

AdditiveSemigroup(T) 

/\ TotallyOrdered(T) 

/\ (V' a, b, c E T) a < b :::::} a + c < b + c 

OrderedAdditiveMonoid(n b. 

OrderedAdditiveSemigroup(T) 

/\ AdditiveMonoid(T) 

OrderedAdditiveGroup(T) b. 

OrderedAdditiveMonoid(T) 

/\ AdditiveGroup(T) 
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Lemma 5.5 In an ordered additive semigroup, a < b /\ c < d => a+ c < 
b+ d. 

Lemma 5.6 In an ordered ·additive monoid viewed as a semimodule over 
natural numbers, a > 0 /\ n > 0 => na > 0. 

Lemma 5.7 In an ordered additive group, a< b => -b < -a. 

Total ordering and negation allow us to define absolute value: 

template<typename T> 

requires(OrderedAdditiveGroup(T)) 

T abs(const T& a) 
{ 

if (a < T(O)) return -a; 

else return a; 
} 

The following lemma captures an important property of abs. 

Lemma 5.8 In an ordered additive group, a < 0 => 0 < - a. 
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We use the notation I al for the absolute value of a. Absolute value satisfies the 
following properties. 

Lemma 5.9 

5 .3 Remainder 

la-bl=lb-al 

la+ bl < lal + lbl 

la - bl > lal - lbl 

lal =0=> a=O 

a#O=>lal>O 

\\
7e saw that repeated addition in an additive monoid induces multiplication by an 

integer. In an additive group, this algorithm can be inverted, obtaining division by 
repeated subtraction on elements of the form a = nb, where b divides a. To extend 
chis to division with remainder for an arbitrary pair of elements, we need ordering. 
The ordering allows the algorithm to terminate when it is no longer possible to 
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·subtract. As we shall see, it also enables an algorithm to take a logarithmic number 
of steps. The subtraction operation does not need to be defined everywhere; it is 

sufficient to have a partial subtraction called cancellation, where a-bis only defined 
when b does not exceed a: 

CancellableMonoid(T) b. 

OrderedAdditiveMonoid(T) 

/\-:TxT---+T 

/\ (Va, b E T) b < a ::::} a - b is defined /\ (a - b) + b = a 

We write the axiom as (a - b) + b = a instead of (a+ b) - b = a to avoid overflow 
in partial models of CancellableMonoid: 

template<typename T> 

requires(CancellableMonoid(T)) 

T slow_remainder(T a, T b) 
{ 

} 

11 Precondition: a > 0 /\ b > 0 
while (b <= a) a = a - b; 

return a; 

The concept CancellableMonoid is not strong enough to prove termination of 
slow_remainder. For example, slow_remainder does not always terminate for polyno

mials with integer coefficients, ordered lexicographically. 

Exercise 5.1 Give an example of two polynomials with integer coefficients 
for which the algorithm does not terminate. 

To ensure that the algorithm terminates, we need another property, called the 
Axiom of Archimedes:1 

ArchimedeanMonoid(T) b. 

CancellableMonoid(T) 

/\ (Va, b E T) (a > 0 /\ b > O) ::::} slow_remainder(a, b) terminates 

/\ QuotientType : ArchimedeanMonoid ---+ Integer 

1. " . . . the excess by which the greater of (two) unequal areas exceeds the less can, by being added 
to itself, be made to exceed any given finite area." See Heath [1912, page 234]. 
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Observe that termination of an algorithm is a legitimate axiom; in this case it is 
equivalent to 

(3n E QuotientType(T)) a - n · b < b 

\Xnile the Axiom of Archimedes is usually given as "there exists an integer n such 

that a < n · b," our version works with partial Archimedean monoids where n · b 

might overflow. The type function QuotientType returns a type large enough to 

represent the number of iterations performed by slow_remainder. 

Lemma 5.10 The following are Archimedean monoids: integers, rational 

numbers, binary fractions { 2~}, ternary fractions { 3~}, and real numbers. 

We can trivially adapt the code of slow_remainder to return the quotient: 

template<typename T> 

requires(ArchimedeanMonoid(T)) 

QuotientType(T) slow_quotient(T a, T b) 
{ 

} 

11 Precondition: a > 0 /\ b > 0 
QuotientType(T) n(O); 
while (b <= a) { 

a = a - b; 

n = successor(n); 
} 

return n; 

Repeated doubling leads to the logarithmic-complexity power algorithm. A 

related algorithm is possible for remainder.2 Let us derive an expression for the 

remainder u from dividing a by b in terms of the remainder v from dividing a 
bv 2b: 

a= n(2b) + v 

Since the remainder v must be less than the divisor 2b, it follows that 

{
v 

u-
v-b 

if v < b 

if v > b 

2. The Egyptians used this algorithm to do division with remainder, as they used the power algorithm 
ro do multiplication. See Robins and Shute [1987, page 18]. 
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That leads to the following recursive procedure: 

template<typename T> 

requires(ArchimedeanMonoid(T)) 

T remainder_recursive(T a, T b) 
{ 

} 

11 Precondition: a > b > 0 

if (a - b >= b) { 

} 

a= remainder_recursive(a, b + b); 

if (a < b) return a; 

return a - b; 

Ordered Algebraic Structures 

Testing a - b > b rather than a > b + b avoids overflow of b + b: 

template<typename T> 

requires(ArchimedeanMonoid(T)) 

T remainder_nonnegative(T a, T b) 
{ 

} 

11 Precondition: a > 0 /\ b > 0 

if (a < b) return a; 

return remainder_recursive(a, b); 

Exercise 5.2 Analyze the complexity of remainder _nonnegative. 

While we believe that there is no logarithmic time, constant-space algorithm for 

remainder on Archimedean monoids, an iterative constant-space algorithm exists 

when we can divide by 2.3 This is likely to be possible in many situations. For 

example, while the general k-section of an angle by ruler and compass cannot be 

done, the bisection is trivial. 

HalvableMonoid(T) b. 

ArchimedeanMonoid(T) 

/\ half: T---+ T 

/\ (Va, b E T) ( b > 0 /\ a = b + b) ::::} ha If (a) = b 

Observe that half needs to be defined only for "even" elements. 

3. Dijkstra [1972, page 13] attributes this algorithm to N. G. de Bruijn. 
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template<typename T> 

requires(HalvableMonoid(T)) 

T remainder_nonnegative_iterative(T a, T b) 
{ 

} 

11 Precondition: a > 0 /\ b > 0 
if (a < b) return a; 

Tc= largest_doubling(a, b); 

a = a - c; 

while (c != b) { 

c = half(c); 

if (c <= a) a = a - c; 
} 

return a; 

where largesLdoubling is defined by the following procedure: 

template<typename T> 

requires(ArchimedeanMonoid(T)) 

T largest_doubling(T a, T b) 
{ 

} 

11 Precondition: a > b > 0 

while (b <= a - b) b = b + b; 

return b; 
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The correctness of remainder _nonnegative_iterative depends on the following 
lemma. 

Lemma 5.11 The result of doubling a positive element of a halvable 
monoid k times may be halved k times. 

We would only need. remainder _nonnegative if we had an Archimedean monoid 
that was not halvable. The examples we gave-line segments in Euclidean geometry, 
rational numbers, binary and ternary fractions-are all halvable. 

Project 5.1 Are there useful models of Archimedean monoids that are 
not halvable monoids? 
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5 .4 Greatest Common Divisor 

For a> 0 and b > 0 in an Archimedean monoid T, we define divisibility as follows: 

b divides a{:} (3n E QuotientType(T)) a= nb 

Lemma 5.12 In an Archimedean monoid Twith positive x, a, b: 

• b divides a {:} remainder _non negative( a, b) = 0 

• b divides a =} b < a 

• a > b /\ x divides a /\ x divides b =} x divides (a - b) 

• x divides a/\ x divides b =} x divides remainder_nonnegative(a, b) 

The greatest common divisor of a and b, denoted by gcd(a, b), is a divisor of a 
and b that is divisible by any other common divisor of a and b.4 

Lemma 5.13 In an Archimedean monoid, the following hold for positive 
x, a, b: 

• gcd is commutative 

• gcd is associative 

• x divides a/\ x divides b =} x < gcd(a, b) 

• gcd(a, b) is unique 

• gcd(a, a) = a 

• a > b =} gcd(a, b) = gcd(a - b, b) 

The previous lemmas immediately imply that if the following algorithm termi

nates, it returns the gcd of its arguments:5 

template<typename T> 

requires(ArchimedeanMonoid(T)) 

T subtractive_gcd_nonzero(T a, T b) 
{ 

4. While this definition works for Archimedean monoids, it does not depend on ordering and can 
be extended to other structures with divisibility relations, such as rings. 

5. It is known as Euclid's algorithm [Heath, 1925, pages 14-22]. 
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} 

11 Precondition: a > 0 /\ b > 0 
while (true) { 

} 

if (b < a) a = a - b; 

else if (a < b) b = b - a; 

else return a; 

Lemma 5.14 It always terminates for integers and rationals. 

There are types for which it does not always terminate. In particular, it does 

not always terminate for real numbers; specifically, it does not terminate for input 

of Ji. and 1. The proof of this fact depends on the following two lemmas: 

Lemma 5.16 If the square of an integer n is even, n is even. 

Theorem 5.2 subtractive_gcd_nonzero(.J2, 1) does not terminate. 

Proof Suppose that su btractive_gcd_nonzero( ~, 1) terminates, returning d. Let m = 
1 and n = ~;by Lemma 5.15, m and n have no co1:11mon factors greater than 1. 

m = h = '2 so m2 = 2n2
· mis even- £or some integer u m = 2u 4u2 = 2n2 so n 1 '\/ L., ' ' ' • ' 

n 2 = 2u2 ; n is even. Both m and n are divisible by 2; a contradiction.6 

A Euclidean monoid is an Archimedean monoid where subtractive_gcd_nonzero 

always terminates: 

EuclideanMonoid(T) b. 

ArchimedeanMonoid(T) 
/\ (V' a, b E T) (a > 0 /\ b > 0) :::::} su btractive_gcd_nonzero( a, b) terminates 

Lemma 5.17 Every Archimedean monoid with a smallest positive ele
ment is Euclidean. 

6. The incommensurability of the side and the diagonafof a square was one of the first mathematical 
proofs discovered by the Greeks. Aristotle refers to it in Prior Analytics I. 23 as the canonical example 
of proof by contradiction (reductio ad absurdum). 
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Lemma 5.18 The rational numbers are a Euclidean monoid. 

It is straightforward to extend subtractive_gcd_nonzero to the case in which one 

of its arguments is zero, since any b :f 0 divides the zero of the monoid: 

template<typename T> 

requires(EuclideanMonoid(T)) 

T subtractive_gcd(T a, T b) 
{ 

} 

II Precondition: a> 0 /\ b > 0 /\ --i(a = 0 /\ b = 0) 

while (true) { 

} 

if (b == T(O)) return a; 

while (b <= a) a = a - b; 

if (a == T(O)) return b; 

while (a <= b) b = b - a; 

Each of the inner while statements in subtractive_gcd is equivalent to a call 
of slow_remainder. By using our logarithmic remainder algorithm, we speed up the 
case when a and b are very different in magnitude while relying only on primitive 
subtraction on type T: 

template<typename T> 
requires(EuclideanMonoid(T)) 

T fast_subtractive_gcd(T a, T b) 
{ 

} 

II Precondition: a> 0 /\ b > 0 /\ --i(a = 0 /\ b = 0) 

while (true) { 

} 

if (b == T(O)) return a; 

a= remainder_nonnegative(a, b); 

if (a == T(O)) return b; 

b = remainder_nonnegative(b, a); 

The concept of Euclidean monoid gives us an abstract setting for the original 
Euclid algorithm, which was based on repeated subtraction. 
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5.5 Generalizing gcd 

\Ye can use fast_subtractive_gcd with integers because they constitute a Euclidean 

monoid. For integers, we could also use the same algorithm with the built-in remain

der instead of remainder _nonnegative. Furthermore, the algorithm works for certain 

non-Archimedean domains, provided that they possess a suitable remainder func

tion. For example, the standard long-division algorithm easily extends from decimal 

integers to polynomials over reals.7 Using such a remainder, we can compute the 

gcd of two polynomials. 

Abstract algebra introduces the notion of a Euclidean ring (also known as a 

Euclidean domain) to accommodate such uses of the Euclid algorithm.8 However, 

the requirements of semiring suffice: 

EuclideanSemiring(T) ~ 

CommutativeSemiring(T) 

/\ NormType: EuclideanSemiring ~ Integer 

/\ w: T ~ NormType(T) 

/\ (Va E T) w(a) > 0 

/\ (Va E T) w( a) = 0 ~ a = 0 

/\ (Va, b ET) b :f 0::::} w(a · b) > w(a) 

/\ remainder : T x T ~ T 

/\ quotient : T x T ~ T 

/\ (Va, b E T) b :f 0 ::::} a = quotient( a, b) · b + remainder( a, b) 

/\ (Va, b ET) b :f 0::::} w(remainder(a, b)) < w(b) 

w is called the Euclidean /unction. 

Lemma 5.19 In a Euclidean semiring, a· b = 0 ::::} a= 0 vb = 0. 

template<typename T> 
requires(EuclideanSemiring(T)) 

T gcd(T a, T b) 
{ 

II Precondition: --i(a = 0 /\ b = 0) 

while (true) { 

if (b == T(O)) return a; 

-; . See Chrystal [ 1904, Chapter 5]. 
8. See van der Waerden [1930, Chapter 3, Section 18]. 



80 

} 

} 

a= remainder(a, b); 

if (a == T(O)) return b; 

b = remainder(b, a); 

Ordered Algebraic Structures 

Observe that instead of using remainder_nonnegative, we use the remainder func
tion defined by the type. The fact that w decreases with every application of remainder 

ensures termination. 

Lemma 5.20 gcd terminates on a Euclidean semiring. 

In a Euclidean semiring, quotient returns an element of the semiring. This pre
cludes its use in the original setting of Euclid: determining the common measure 

of any two commensurable quantities. For example, gcd( ~, *) = ~. We can unify 
the original setting and the modern setting with the concept Euclidean semimodule, 

which allows quotient to return a different type and takes the termination of gcd as 
an axiom: 

EuclideanSemimodule(T, S) ~ 
Semimodule(T, S) 

/\ remainder : T x T---+ T 

/\ quotient : T x T ---+ S 

/\ (Va, b E T) b :f 0 ::::} a= quotient( a, b) · b +remainder( a, b) 

/\ ('v' a, b E T) (a :f 0 v b :f 0) ::::} gcd (a, b) terminates 

where gcd is defined as 

template<typename T, typename S> 

requires(EuclideanSemimodule(T, S)) 

T gcd(T a, T b) 
{ 

} 

11 Precondition: --,(a = 0 /\ b = O) 

while (true) { 

} 

if (b == T(O)) return a; 

a= remainder(a, b); 

if (a == T(O)) return b; 

b = remainder(b, a); 
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Since every commutative semiring is a semimodule over itself, this algorithm 

can be used even when quotient returns the same type, as with polynomials over 

reals. 

S.6 Stein gcd 

In 1961 Josef Stein discovered a new gcd algorithm for integers that is frequently 

faster than Euclid's algorithm [Stein, 1967]. His algorithm depends on these two 

familiar properties: 

gcd(a, b) = gcd(b, a) 

gcd(a, ci) = a 

together with these additional properties that for all a > b > 0: 

gcd(2a, 2b) = 2 gcd(a, b) 

gcd(2a, 2b + 1) = gcd(a, 2b + 1) 

gcd(2a + 1, 2b) = gcd(2a + 1, b) 

gcd(2a + 1, 2b + 1) = gcd(2b + 1, a - b) 

Exercise 5.3 Implement Stein gcd for integers, and prove its termination. 

While it might appear that Stein gcd depends on the binary representation of 

integers, the intuition that 2 is -the smallest prime integer allows generalizing it to 

other domains by using smallest primes in these domains; for example, the monomial 

:\: for polynomials9 or 1 + i for Gaussian integers. 10 Stein gcd could be used in rings 

that are not Euclidean. 11 

Project 5.2 Find the correct general setting for Stein gcd. 

5.7 Quotient 

The derivation of fast quotient and remainder exactly parallels our earlier derivation 

of fast remainder. We derive an expression for the quotient m and remainder u from 

dividing a by bin terms of the quotient n and remainder v from dividing a by 2b: 

a= n(2b) +v 

9. See Knuth [1997, Exercise 4.6.1.6 (page 435) and Solution (page 673)]. 
10. See Weilert [2000]. 
11. See Agarwal and Frandsen [2004]. 
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and 

Ordered Algebraic Structures 

Since the remainder v must be less than the divisor 2b, it follows that 

{
v u-
v-b 

{
2n m-
2n+ 1 

This leads to the following code: 

if v < b 

if v > b 

if v < b 

if v > b 

template<typename T> 

requires(ArchimedeanMonoid(T)) 

pair<QuotientType(T), T> 

quotient_remainder_nonnegative(T a, T b) 
{ 

} 

11 Precondition: a > 0 /\ b > 0 

typedef QuotientType(T) N; 

if (a< b) return pair<N, T>(N(O), a); 

if (a - b < b) return pair<N, T>(N(1), a - b); 

pair<N, T> q = quotient_remainder_nonnegative(a, b + b); 

Nm= twice(q.mO); 

a= q.m1; 

if (a< b) return pair<N, T>(m, a); 

else return pair<N, T>(successor(m), a - b); 

When "halving" is available, we obtain the following: 

template<typename T> 

requires(HalvableMonoid(T)) 

pair<QuotientType(T), T> 

quotient_remainder_nonnegative_iterative(T a, T b) 
{ 

11 Precondition: a > 0 /\ b > 0 
typedef QuotientType(T) N; 

if (a< b) return pair<N, T>(N(O), a); 

Tc= largest_doubling(a, b); 

a = a - c; 

N n (1); 

while (c != b) { 
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} 

} 

n = twice(n); 

c = half(c); 

if Cc <= a) { 

a = a - c; 

n = successor(n); 
} 

return pair<N, T>(n, a); 

S.8 Quotient and Remainder for Negative Quantities 
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The definition of quotient and remainder used by many computer processors and 

programming languages handles negative quantities incorrectly. An extension of our 

definitions for an Archimedean monoid to an Archimedean group T must satisfy 

these properties, where b :f 0: 

a= quotient(a, b) · b + remainder(a, b) 

lremainder(a, b)I < lbl 

remainder(a + b, b) = remainder(a - b, b) = remainder( a, b) 

The final property is equivalent to the classical mathematical definition of con

gruence.12 While books on number theory usually assume b > 0, we can consistently 

extend remainder to b < 0. These requirements are not satisfied by implementations 

that truncate quotient toward zero, thus violating our third requirement. 13 In ad

dition to violating the third requirement, truncation is an inferior way of rounding 

because it sends twice as many values to zero as to any other integer, thus leading 

to a nonuniform distribution. 

Given a remainder procedure rem and a quotient-remainder procedure 

quo_rem satisfying our three requirements for non-negative inputs, we can write 

adapter procedures that give correct results for positive or negative inputs. These 

adapter procedures will work on an Archimedean group: 

ArchimedeanGroup(T) b. 

ArchimedeanMonoid (T) 

· AdditiveGroup(T) 

12 _ -H two numbers a and b have the same remainder r relative to the same modulus k they will be 
called congruent relative to the modulus k (following Gauss)" [Dirichlet, 1863]. 

13 _ For an excellent discussion of quotient and remainder, see Boute [ 1992]. Boute identifies the two 
acceptable extensions as E and F; we· follow Knuth in preferring what Boute calls F. 
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template<typename Op> 

requires(BinaryOperation(Op) && 
ArchimedeanGroup(Domain(Op))) 

Domain(Op) remainder(Domain(Op) a, Domain(Op) b, Op rem) 
{ 

} 

11 Precondition: b -=/= 0 
typedef Domain(Op) T; 

T r; 

if (a < T(O)) 
if (b < T(O)) { 

r = -rem(-a, -b); 

} else { 

r = rem(-a, b); if (r != T(O)) r = b - r; 
} 

else 

if (b < T(O)) { 

r = rem(a, -b); if (r != T(O)) r = b + r; 
} else { 

r = rem(a, b); 

} 

return r; 

template<typename F> 

requires(HomogeneousFunction(F) && Arity(F) == 2 && 
ArchimedeanGroup(Domain(F)) && 
Codomain(F) == pair<QuotientType(Domain(F)), 

Domain(F)>) 

pair<QuotientType(Domain(F)), Domain(F)> 
quotient_remainder(Domain(F) a, Domain(F) b, F quo_rem) 
{ 

11 Precondition: b -=f 0 
typedef Domain(F) T; 
pair<QuotientType(T), T> q_r; 
if (a < T(O)) { 

if (b < T(O)) { 
q_r = quo_rem(-a, -b); q_r.m1 = -q_r.m1; 

} else { 
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} 

} 

} else { 

q_r = quo_rem(-a, b); 
if (q_r.m1 != T(O)) { 

q_r.m1 = b - q_r.m1; q_r.mO = successor(q_r.mO); 
} 

q_r.mO = -q_r.mO; 

if (b < T(O)) { 

} 

else 

} 

q_r = quo_rem( a, -b); 
if (q_r.m1 != T(O)) { 

q_r.m1 = b + q_r.m1; q_r.mO = successor(q_r.mO); 
} 

q_r .mo = -q_r .mo; 

q_r = quo_rem( a, b); 

return q_r; 

Lemma 5.21 remainder and quotienLremainder satisfy our requirements 

when their functional parameters satisfy the requirements for positive 

arguments. 

S.9 Concepts and Their Models 

85 

We have been using integer types since Chapter 2 without formally defining the 

concept. Building on the ordered algebraic structures defined earlier in this chapter, 

we can formalize our treatment of integers. First, we define discrete Archimedean 

semtrzng: 

DiscreteArchimedeanSemiring(T) ~ 

CommutativeSemiring(T) 

/\ ArchimedeanMonoid(T) 

/\ (Va, b, c E T) a < b /\ 0 < c ==> a · c < b · c 
/\ -,(3a E T) 0 < a < 1 

Discreteness refers to the last property: There is no element between 0 and 1. 
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A discrete Archimedean semiring might have negative elements. The related 
concept that does not have negative elements is 

NonnegativeDiscreteArchimedeanSemiring(T) ~ 
DiscreteArchimedeanSemiring(T) 

/\ (Va E T) 0 < a 

A discrete Archimedean semiring lacks additive inverses; the related concept 
with additive inverses is 

DiscreteArchimedeanRing(T) ~ 
DiscreteArchimedeanSemiring(T) 

/\ AdditiveGroup(T) 

Two types T and T' are isomorphic if it is possible to write conversion functions 
from T to T' and from T' to T that preserve the procedures and their axioms. 

A concept is univalent if any types satisfying it are isomorphic. The concept 
NonnegativeDiscreteArchimedeanSemiring is univalent; types satisfying it are iso
morphic to N, the natural numbers. 14 DiscreteArchimedeanRing is univalent; types 
satisfying it are isomorphic to Z, the integers. As we have seen here, adding axioms 
reduces the number of models of a concept, so that one quickly reaches the point 
of univalency. 

This chapter proceeds deductively, from more general to more specific concepts, 
by adding more operations and axioms. The deductive approach statically presents 
a taxonomy of concepts and affiliated theorems and algorithms. The actual process 
of discovery proceeds inductively, starting with concrete models, such as integers 
or reals, and then removing operations and axioms to find the weakest concept to 
which interesting algorithms apply. 

When we define a concept, the independence and consistency of its axioms 
must be verified, and its usefulness must be demonstrated. 

A proposition is independent from a set of axioms if there is a model in which 
all the axioms are true, but the proposition is false. For example, associativity and 
commutativity are independent: String concatenation is associative but not commu
tative, while the average of two values ( x;y) is commutative but not associative. A 
proposition is dependent or provable from a set of axioms if it can be derived from 
them. 

14. We follow Peano [1908, page 27] and include 0 in the natural numbers. 
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A concept is consistent if 1t has a model. Continuing our example, addition of 
natural numbers is associative and commutative. A concept is inconsistent if both 

a proposition and its negation can be derived from its axioms. In other words, to 
demonstrate consistency, we construct a model; to demonstrate inconsistency, we 
derive a contradiction. 

A concept is useful if there are useful algorithms for which this is the most 
abstract setting. For example, parallel out-of-order reduction applies to any asso
ciative, commutative operation. 

S.10 Computer Integer Types 

Computer instruction sets typically provide partial representations of natural num

bers and integers. For example, a bounded unsigned binary integer type, Un, where 

n = 8, 16, 32, 64, ... , is an unsigned integer type capable of representing a value in 

the interval [O, 2n); a bounded signed binary integer type, Sn, where n = 8, 16, 32, 

64, ... , is a signed integer type capable of representing a value in t?e interval 
( -2n-1, 2n-l ). Although these types are bounded, typical computer instructions 

prm~ide total operations on them because the results are encoded as a tuple of 
bounded values. 

Instructions on bounded unsigned types with signatures like these usually exist: 

sum_extended: Un X Un X U1 ~ U1 X Un 

difference_extended : Un X Un X U1 ~ U1 X Un 

product_extended : Un X Un ~ U2n 

quotienLremainder _extended : U2n X Un ~ Un X Un 

Observe that U2n can be represented as Un x Un (a pair of Un). Programming 
languages that provide full access to these hardware operations make it possible to 
write efficient and abstract software components involving integer types. 

Project 5.3 Design a family of concepts for bounded unsigned and signed 

binary integers. A study of the instruction sets for modern computer ar
chitectures shows the functionality that should be encompassed. A good 

abstraction of these instruction sets is provided by MMTX [Knuth, 2005]. 
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5 .11 Conclusions 

We can combine algorithms and mathematical structures into a seamless whole by 
describing algorithms in abstract terms and adjusting theories to fit algorithmic 
requirements. The mathematics and algorithms in this chapter are abstract restate
ments of results that are more than two thousand years old. 



Chapter 6 

Iterators 

This chapter introduces the concept of iterator: an interface between algorithms 
and sequential data structures. A hierarchy of iterator concepts corresponds to different 

kinds of sequential traversals: single-pass forward, multipass forward, bidirectional, 

and random access. 1 We investigate a variety of inter/aces to common algorithms, such 

as linear and binary search. Bounded and counted ranges provide a flexible way of 

defining interfaces for variations of a sequential algorithm. 

6.1 Readability 
Every object has an address: an integer index into computer memory. Addresses 
allow us to access or modify an object. In addition, they allow us to create a wide 
variety of data structures, many of which rely on the fact that addresses are effectively 
integers and allow integer-like operations. 

Iterators are a family of concepts that abstract different aspects of addresses, 
allowing us to write algorithms that work not only with addresses but also with 
any addresslike objects satisfying the minimal set of requirements. In Chapter 7 we 
introduce an even broader conceptual family: coordinate structures. 

There are two kinds of operations on iterators: accessing values or traversal. 
There are three kinds of access: reading, writing, or both reading and writing. There 
are four kinds of linear traversal: single-pass forward (an input stream), multipass 
forward (a singly linked list), bidirectional (a doubly linked list), and random access 
(an array). 

1. Our treatment of iterators is a further refinement of the one in Stepanov and Lee [ 1995] but differs 
from it in several aspects. 

89 
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This chapter studies the first kind of access: readability, that is, the ability to 

obtain the value of the object denoted by another. A type T is readable if a unary 

function source defined on it returns an object of type ValueType(T): 

Readable(T) 6 

Regular(n 
/\ ValueType: Readable---+ Regular 
/\ source : T---+ ValueType(TI 

source is only used in contexts in which a value is needed; its result can be passed 

to a procedure by value or by constant reference. 

There may be objects of a readable type on which source is not defined; source 

does not have to be total. The concept does not provide a definition-space predicate 

to determine whether source is defined for a particular object. For example, given 

a pointer to a type T, it is impossible to determine whether it points to a validly 

constructed object. Validity of the use of source in an algorithm must be derivable 

from preconditions. 

Accessing data by calling source on an object of a readable type is as fast as 

any other way of accessing this data. In particular, for an object of a readable type 

with value type T residing in main memory, we expect the cost of source to be 

approximately equal to the cost of dereferencing an ordinary pointer to T. As with 

ordinary pointers, there could be nonuniformity owing to the memory hierarchy. In 

other words, there is no need to store pointers instead of iterators to speed up an 

algorithm. 

It is useful to extend source to types whose objects don't point to other objects. 

We do this by having source return its argument when applied to an object of such a 

type. This allows a program to specify its requirement for a value of type Tin such a 

way that the requirement can be satisfied by a value of type T, a pointer to type T, or, 

in general, any readable type with a value type of T. Therefore we assume that unless 

otherwise defined, ValueType(TI = T and that source returns the object to which it is 

applied. 

6.2 Iterators 

Traversal requires the ability to generate new iterators. As we saw in Chapter 2, one 

way to generate new values of a type is with a transformation. While transformations 

are regular, some one-pass algorithms do not require regularity of traversal, and 



62 Iterators 91 

some models, such as input streams, do not provide regularity of traversal. Thus the 
weakest iterator concept requires only the pseudotrans/ormation2 successor and the 

type function Distance Type: 

lterator(T) b. 

Regular(T) 

/\ DistanceType : Iterator---+ Integer 

/\ successor : T ---+ T 

/\ successor is not necessarily regular 

DistanceType returns an integer type large enough to measure any sequence 
of applications of successor allowable for the type. Since regularity is assumed by 
default, we must explicitly state that it is not a requirement for successor. 

As with source on readable types, successor does not have to be total; there may 

be objects of an iterator type on which successor is not defined. The concept does 

not provide a definition-space predicate to determine whether successor is defined 

for a particular object. For example, a pointer into an array contains no information 

indicating how many times it could be incremented. Validity of the use of successor 

in an algorithm must be derivable from preconditions. 
The following defines the action corresponding to successor: 

template<typename I> 
requires(Iterator(I)) 

void increment(!& x) 
{ 

} 

II Precondition: successor(x) is defined 

x = successor(x); 

Many important algorithms, such as linear search and copying, are single-pass; 

that is, they apply successor to the value of each iterator once. Therefore they can 
be used with input streams, and that is why we drop the requirement for successor 

to be regular: i = j does not imply successor( i) = successor(j) even when successor is 
defined. Furthermore, after successor( i) is called, i and any iterator equal to it may 

no longer be well formed. They remain partially formed and can be destroyed or 

assigned to; successor, source, and= should not be applied to them. 

2. A pseudotransformation has the signature of a transformation but is not regular. 
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Note that successor(i) = successor(j) does not imply that i = j. Consider, for 
example, two null-terminating singly linked lists. 

An iterator provides as fast a linear traversal through an entire collection of data 
as any other way of traversing that data. 

In order for an integer type to model Iterator, it must have a distance type. 
An unsigned integer type is its own distance type; for any bounded signed binary 
integer type Sn, its distance type is the corresponding unsigned type Un. 

6.3 Ranges 

When f is an object of an iterator type and n is an object of the corresponding 
distan.ce type, we want to be able to define algorithms operating on a weak range 

[f, n~ of n iterators beginning with f, using code of the form 

while (!zero(n)) { n = predecessor(n); ... f = successor(f); } 

This property enables such an iteration: 

property(! : Iterator) 

weak_range : I x DistanceType(I) 

(f, n) r-+ (Vi E DistanceType(I)) 

(O < i < n) =} successori(f) is defined 

Lemma 6.1 0 < j < i /\ weak_range(f, i) =} weak_range(f, j) 

In a weak range, we can advance up to its size: 

template<typename I> 
requires(Iterator(I)) 

I operator+(I f, DistanceType(I) n) 
{ 

} 

II Precondition: n > 0 /\ weak_range(f, n) 

while (!zero(n)) { 

} 

n = predecessor(n); 
f = successor(f); 

return f; 
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The addition of the following axiom ensures that there are no cycles in the 
range: 

property(! : Iterator, N : Integer) 

counted_range: I x N 
( f, n) r-+ weak_range( f, n) /\ 

(Vi, j E N) (0 < i < j < n) ==> 
successor i ( f) f. successorj ( f) 

When f and l are objects of an iterator type, we want to be able to define 
algorithms working on a bounded range [ f, l) of iterators beginning with f and 

limited by l, using code of the form 

while (f != 1) { ... f = successor(f); } 

This property enables such an iteration: 

property(! : Iterator) 

bou nded_ra nge : I x I 

(f, l) r-+ (3k E DistanceType(I)) counted_range(f, k) /\ successork(f) = l 

The structure of iteration using a bounded range terminates the first time l is 
encountered; therefore, unlike a weak range, it cannot have cycles. 

In a bounded range, we can implement3 a partial subtraction on iterators: 

template<typename I> 
requires(Iterator(I)) 

DistanceType(I) operator-CI 1, I f) 
{ 

} 

11 Precondition: bounded_range( f, l) 

DistanceType(I) n(O); 
while (f != 1) { 

} 

n = successor(n); 

f = successor(f); 

return n; 

3. Notice the similarity to distance from Chapter 2. 
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Because successor may not be regular, subtraction should be used only in pre

conditions or in situations in which we only want to compute the size of a bounded 

range. 

Our definitions of + and - between iterators and integers are not inconsistent 

with mathematical usage, where + and - are always defined on the same type. As 

in mathematics, both + between iterators and integers and - between iterators 

are defined inductively in terms of successor. The standard inductive definition of 

addition on natural numbers uses the successor function:4 

a+O=a 

a + successor(b) = successor( a + b) 

Our iterative definition of f + n for iterators is equivalent even though f and n are 

of different types. As with natural numbers, a variant of associativity is provable by 

induction. 

Lemma6.2 (f+n)+m=f+(n+m) 

In preconditions we need to specify membership within a range. We borrow 

conventions from intervals (see Appendix A) to introduce half-open and closed 

ranges. We use variations of the notation for weak or counted ranges and for 

bounded ranges. 

A half-open weak or counted range [ f, n~, where n > 0 is an integer, de

notes the sequence of iterators {successork(f) I 0 < k < n}. A closed weak or 

counted range [f, n], where n > 0 is an integer, denotes the sequence of itera

tors {successork(f) I 0 < k < n}. 

A half-open bounded range [ f, l) is equivalent to the half-open counted range 

[f, l - f~. A closed bounded range [f, l] is equivalent to the closed counted range 
[f, l - f]. 

The size of a range is the number of iterators in the sequence it denotes. 

Lemma 6.3 successor is defined for every iterator in a half-open range and 

for every iterator except the last in a closed range. 

If r is a range and i is an iterator, we say that i E r if i is a member of the 

corresponding set of iterators. 

4. First introduced in Grassmann [1861]; Grassmann's definition was popularized in Peano [1908]. 
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Lemma 6.4 If i E [f, l), both [f, i) and [i, l) are bounded ranges. 

Empty half-open ranges are specified by [i, O~ or [i, i) for some iterator i. There 

are no empty closed ranges. 

Lemma 6.5 i rt [i, O~ /\ i rt [i, i) 

Lemma 6.6 Empty ranges have neither first nor last elements. 

It is useful to describe an empty sequence of iterators starting at a particular 

iterator. For example, binary search looks for the sequence of iterators whose values 

are equal to a given value. This sequence is empty if there are no such values but is 

positioned where they would appear if inserted. 

An iterator l is called the limit of a half-open bounded range [f, l). An iterator 

f + n is the limit of a half-open weak range [f, n). Observe that an empty range has 

a limit even though it does not have a first or last element. 

Lemma 6.7 The size of a half-open weak range [f, n~ is n. The size of a 

closed weak range [f, n] is n + 1. The size of a half-open bounded range 

[f, l) is 1- f. The size of a closed bounded range [f, l] is {l - f) + 1. 

If i and j are iterators in a counted or bounded range, we define the relation 

i -< j to mean that i f:. j /\ bounded_range(i, j): in other words, that one or more 

applications of successor leads from i to j. The relation -< ("precedes") and the 

corresponding reflexive relation -< ("precedes o.r equal") are used in specifications, 

such as preconditions and postconditions of algorithms. For many pairs of values 

of an iterator type, -< is not defined, so there is often no effective way to write code 

implementing-<. For example, there is no efficient way to determine whether one 

node precedes another in a linked structure; the nodes might not even be linked 

together. 

6.4 Readable Ranges 

A range of iterators from a type modeling Readable and_Iterator is readable if source 

is defined on all the iterators in the range: 

property(I : Readable) 
requires{lterator(I)) 

readable_bounded_range : I x I 

(f, l) ~ bounded_range(f, l) /\ (Vi E [f, l)) source(i) is defined 
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Observe that source need not be defined on the limit of the range. Also, since an 

iterator may no longer be well-formed after successor is applied, it is not guaranteed 
that source can be applied to an iterator after its successor has been obtained. 
readable_weak_range and readable_counted_range are defined similarly. 

Given a readable range, we could apply a procedure to each value in the range: 

template<typename I, typename Proc> 
requires(Readable(I) && Iterator(I) && 

Procedure(Proc) && Arity(Proc) == 1 && 
ValueType(I) == InputType(Proc, 0)) 

Proc for_each(I f, I 1, Proc proc) 
{ 

} 

11 Precondition: readable_bounded_range( f, l) 

while (f != 1) { 

proc(source(f)); 

f = successor(f); 
} 

return proc; 

We return the procedure because it could have accumulated useful information 

during the traversal.5 

We implement linear search with the following procedure: 

template<typename I> 
requires(Readable(I) && Iterator(I)) 

I find(I f, I 1, const ValueType(I)& x) 
{ 

} 

11 Precondition: reada ble_bou nded_ra nge( f, l) 

while (f != 1 && source(f) != x) f = successor(f); 

return f; 

Either the returned iterator is equal to the limit of the range, or its value is 
equal to x. Returning the limit indicates failure of the search. Since there are n + 1 
outcomes for a search of a range of size n, the limit serves a useful purpose here 

5. A function object can be used in this way. 
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and in many other algorithms. A search involving find can be restarted by advancing 
past the returned iterator and then calling find again. 

Changing the comparison with x to use equality instead of inequality gives us 
find_not. 

We can generalize from searching for an equal value to searching for the first 
\·al ue satisfying a unary predicate: 

template<typename I, typename P> 

requires(Readable(I) && Iterator(!) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

I find_if(I f, I 1, Pp) 
{ 

} 

11 Precondition: reada ble_bounded_ra nge( f, l) 

while (f != 1 && !p(source(f))) f = successor(f); 

return f; 

Applying the predicate instead of its complement gives us find_iLnot. 

Exercise 6.1 Use find_if and find_if_not to implement quantifier functions 
all, none, not_all, and some, each taking a bounded range and a predicate. 

The find and quantifier functions let us search for values satisfying a condition; 
we can also count the number of satisfying values: 

template<typename I, typename P, typename J> 

requires(Readable(I) && Iterator(I) && 
UnaryPredicate(P) && Iterator(J) && 
ValueType(I) == Domain(P)) 

J count_if(I f, I 1, Pp, J j) 
{ 

} 

11 Precondition: readable_bounded_range( f, l) 

while (f != 1) { 

} 

if (p(source(f))) j = successor(j); 

f = successor(f); 

return j; 

Passing j explicitly is useful when adding an integer to j takes linear time. The 
type J could be any integer or iterator type, including I. 
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Exercise 6.2 Implement count_if by passing an appropriate function ob

ject to for _each and extracting the accumulation result from the returned 

function object. 

The natural default is to start the count from zero and use the distance type of 
the iterators: 

template<typename I, typename P> 

requires(Readable(I) && Iterator(!) && 
UnaryPredicate(P) && ValueType(I) -- Domain(P)) 

DistanceType(I) count_if(I f, I l, Pp) { 

11 Precondition: readable_bounded_range( f, l) 

return count_if(f, 1, p, DistanceType(I)(O)); 
} 

Replacing the predicate with an equality test gives us count; negating the tests 
gives us count_not and count_iLnot. 

The notation I:=:o ai for the sum of the ai is frequently generalized to other 

binary operations; for example, rr:o ai is used for products and /\:o ai for con
junctions. In each case, the operation is associative, which means that the grouping is 

not important. Kenneth Iverson unified this notation in the programming language 
APL with the reduction operator I, which takes a binary operation and a sequence 

and reduces the elements into a single result.6 For example, +I 1 2 3 equals 6. 

Iverson does not restrict reduction to associative operations. We extend Iver

son's reduction to work on iterator ranges but restrict it to partially associative 

operations: If an operation is defined between adjacent elements, it can be reasso
ciated: 

property( Op: BinaryOperation) 

partially_associative : Op 

op ~ (Va, b, c E Domain(op)) 

If op(a, b) and op(b, c) are defined, 
op(op(a, b), c) and op(a, op(b, c))) are defined 

and are equal. 

As an example of an operation that is partially associative but not associative, 

consider concatenation of two ranges [ f o, lo) and [ f 1, 11), which is defined only 

when lo= fi. 

6. See Iverson [1962]. 
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We allow a unary function to be applied to each iterator before the binary 
operation is performed, obtaining ai from i. Since an arbitrary partially associative 

operation might not have an identity, we provide a version of reduction requiring a 
nonempty range: 

template<typename I, typename Op, typename F> 
requires(Iterator(I) && BinaryOperation(Op) && 

UnaryFunction(F) && 

I == Domain(F) && Codomain(F) == Domain(Op)) 

Domain(Op) reduce_nonempty(I f, I 1, Op op, F fun) 
{ 

} 

11 Precondition: bounded_range(f, l) /\ f -=fl 

11 Precondition: partially_associative(op) 

11 Precondition: (Vx E [ f, l)) fun(x) is defined 
Domain(Op) r = fun(f); 

f = successor(f); 

while (f != 1) { 

} 

r = op(r, fun(f)); 

f = successor(f); 

return r; 

The natural default for fun is source. An identity element can be passed in to 

be returned on an empty range: 

template<typename I, typename Op, typename F> 

requires(Iterator(I) && BinaryOperation(Op) && 

UnaryFunction(F) && 

I == Domain(F) && Codomain(F) == Domain(Op)) 

Domain(Op) reduce(! f, I 1, Op op, F fun, const Domain(Op)& z) 
{ 

} 

11 Precondition: bounded_range( f, l) 

11 Precondition: partially_associative(op) 

II Precondition: (Vx E [f, l))fun(x) is defined 
if (f == 1) return z; 

return reduce_nonempty(f, 1, op, fun); 
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When operations involving the identity element are slow or require extra logic 
to implement, the following procedure is useful: 

template<typename I, typename Op, typename F> 
requires(Iterator(I) && BinaryOperation(Op) && 

UnaryFunction(F) && 
I == Domain(F) && Codomain(F) == Domain(Op)) 

Domain(Op) reduce_nonzeroes(I f, I 1, 

{ 

} 

Op op, F fun, const Domain(Op)& z) 

11 Precondition: bounded_range( f, l) 

11 Precondition: partially_associative(op) 

II Precondition: (Vx E [f, l))fun(x) is defined 
Domain(Op) x; 
do { 

if (f == 1) return z; 

x = fun(f); 
f = successor(f); 

} while (x == z); 
while (f != 1) { 

Domain(Op) y = fun(f); 

} 

if (y != z) x = op(x, y); 
f = successor(f); 

return x; 

Algorithms taking a bounded range have a corresponding version taking a weak 

or counted range; more information, however, needs to be returned: 

template<typename I, typename Proc> 
requires(Readable(I) && Iterator(!) && 

Procedure(Proc) && Arity(Proc) == 1 && 

ValueType(I) == InputType(Proc, 0)) 
pair<Proc, I> for_each_n(I f, DistanceType(I) n, Proc proc) 
{ 

11 Precondition: reada ble_wea k_ra nge( f, n) 

while (!zero(n)) { 

n = predecessor(n); 
proc(source(f)); 
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f = successor(f); 
} 

return pair<Proc, I>(proc, f); 
} 

The final value of the iterator must be returned because the lack of regularity of 
successor means that it could not be recomputed. Even for iterators where successor 

is regular, recomputing it could take time linear in the size of the range. 

template<typename I> 

requires(Readable(I) && Iterator(!)) 

pair<!, DistanceType(I)> find_n(I f, DistanceType(I) n, 

const ValueType(I)& x) 
{ 

} 

II Precondition: weak_range(f, n) 

while (!zero(n) && source(f) != x) { 

n = predecessor(n); 

f = successor(f); 
} 

return pair<!, DistanceType(I)>(f, n); 

find_n returns the final value of the iterator and the count because both are 
needed to restart a search. 

Exercise 6.3 Implement variations taking a weak range instead of a 
bounded range of all the versions of find, quantifiers, count, and reduce. 

We can eliminate one of the two tests in the loop of find_if when we are assured 
that an element in the range satisfies the predicate; such an element is called a 
sentinel: 

template<typename I, typename P> 

requires(Readable(I) && Iterator(!) && 

UnaryPredicate~P) && ValueType(I) == Domain(P)) 
I find_if_unguarded(I f, Pp) { 

} 

II Precondition: (3l) readable_bounded_range(f, l) /\ some(f, l, p) 

while (!p(source(f))) f = successor(f); 

return f; 
11 Postcondition: p(source( f)) 
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Applying the predicate instead of its complement gives find_iLnoLunguarded. 

Given two ranges with the same value type and a relation on that value type, 

we can search for a mismatched pair of values: 

template<typename IO, typename 11, typename R> 
requires(Readable(IO) && Iterator(IO) && 

Readable(I1) && Iterator(I1) && Relation(R) && 
ValueType(IO) == ValueType(I1) && 
ValueType(IO) == Domain(R)) 

pair<IO, 11> find_mismatch(IO fO, IO 10, 11 f1, !1 11, R r) 
{ 

} 

11 Precondition: readable_bounded_range( fO, 10) 

II Precondition: readable_bounded_range(fl, 11) 

while (fO != 10 && f1 != 11 && r(source(fO), source(f1))) { 

fO = successor(fO); 

f1 = successor(f1); 
} 

return pair<IO, I1>(f0, f1); 

Exercise 6.4 State the postcondition for find_mismatch, and explain why 

the final values of both iterators are returned. 

The natural default for the relation in find_mismatch is the equality on the value 
type. 

Exercise 6.5 Design variations of find_mismatch for all four combinations 

of counted and bounded ranges. 

Sometimes, it is important to find a mismatch not between ranges but between 
adjacent elements of the same range: 

template<typename I, typename R> 

requires(Readable(I) && Iterator(!) && 
Relation(R) && ValueType(I) == Domain(R)) 
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I find_adjacent_mismatch(I f, I 1, R r) 
{ 

} 

11 Precondition: readable_bounded_range( f, l) 

if (f == 1) return l; 
ValueType(I) x = source(f); 

f = successor(f); 
while (f != 1 && r(x, source(f))) { 

x = source(f); 

f = successor(f); 
} 

return f; 
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We must copy the previous value because we cann'ot apply source to an iterator 

after successor has been applied to it. The weak requirements of Iterator also imply 

that returning the first iterator in the mismatched pair may return a value that is not 

well formed. 

6.5 Increasing Ranges 

Given a relation on the value type of some iterator, a range over that iterator type 

is called relation preserving if the relation holds for every adjacent pair of values in 
the range. In other words, find_adjacent_mismatch will return the limit when called 

with this range and relation: 

template<typename I, typename R> 

requires(Readable(I) && Iterator(!) && 
Relation(R) && ValueType(I) == Domain(R)) 

bool relation_preserving(I f, I 1, R r) 
{ 

11 Precondition: readable_bounded_range( f, l) 

return 1 == find_adjacent_mismatch(f, 1, r); 
} 

Given a weak ordering r, we say that a range is r-increasing if it is relation 

preserving with respect to the complement of the converse of r. Given a weak 
ordering r, we say that a range is strictly r-increasing if it is relation preserving 
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with respect to r.7 It is straightforward to implement a test for a strictly increasing 

range: 

template<typename I, typename R> 
requires(Readable(I) && Iterator(!) && 

Relation(R) && ValueType(I) == Domain(R)) 
bool strictly_increasing_range(I f, I 1, R r) 
{ 

} 

11 Precondition: readable_bounded_range( f, l) /\ weak_ordering( r) 

return relation_preserving(f, 1, r); 

With the help of a function object, we can implement a test for an increasing 

range: 

template<typename R> 

requires(Relation(R)) 
struct complement_of _converse 
{ 

}; 

typedef Domain(R) T; 

R r; 
complement_of_converse(const R& r) : r(r) { } 

bool operator()(const T& a, const T& b) 
{ 

return !r(b, a); 
} 

template<typename I, typename R> 
requires(Readable(I) && Iterator(!) && 

Relation(R) && ValueType(I) == Domain(R)) 

bool increasing_range(I f, I 1, R r) 
{ 

II Precondition: readable_bounded_range(f, l) /\ weak_ordering(r) 

7. Some authors use nondecreasing and increasing instead of increasing and strictly increasing, 
respectively. 
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} 

return relation_preserving( 

f' 1, 

complement_of_converse<R>(r)); 
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Defining strictly_increasing_counted_range and increasing_counted_range ls 

straightforward. 
Given a predicate p on the value type of some iterator, a range over that iterator 

type is called p-partitioned if any values of the range satisfying the predicate follow 

every value of the range not satisfying the predicate. A test that shows whether a 

range is p-partitioned is straightforward: 

template<typename I, typename P> 

requires(Readable(I) && Iterator(!) && 
UnaryPredicate(P) && ValueType(I) -- Domain(P)) 

bool partitioned(! f, I 1, Pp) 
{ 

11 Precondition: readable_bounded_range( f, l) 

return 1 == find_if....not(find_if(f, 1, p), 1, p); 
} 

The iterator returned by the call of find_if is called the partition point; it is the 

first iterator, if any, whose value satisfies the predicate. 

Exercise 6.6 Implement the predicate partitioned_n, which tests whether 

a counted range is p-partitioned. 

Linear search must invoke source after each application of successor because a 

failed test provides no information about the value of any other iterator in the range. 

However, the uniformity of a partitioned range gives us more information. 

Lemma 6.8 If p is a predicate and [ f, l) is a p-partitioned range: 

('Vm E [f, I) --,p(source(m)) ==> ('Vj E [f, m]) --,p(sourceU)) 

('Vm E [f, I) p(source(m)) ==> ('Vj E [m, I)) p(sourceU)) 

This suggests a bisection algorithm for finding the partition point: Assuming a 

uniform distribution, testing the midpoint of the range reduces the search space by 

a factor of 2. However, such an algorithm may need to traverse an already traversed 
subrange, which requires the regularity of successor. 
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6.6 Forward Iterators 

Making successor regular allows us to pass through the same range more than once 

and to maintain more than one iterator into the range: 

Forwarditerator(T) 6 

Iterator(T) 
/\ regular _unary_function(successor) 

Note that Iterator and Forwarditerator differ only by an axiom; there are no 

new operations. In addition to successor, all the other functional procedures defined 

on refinements of the forward iterator concept introduced later in the chapter are 

regular. The regularity of successor allows us to implement find_adjacenLmismatch 

without saving the value before advancing: 

template<typename I, typename R> 

requires(Readable(I) && Forwardlterator(I) && 
Relation(R) && ValueType(I) == Domain(R)) 

I find_adjacent_mismatch_forward(I f, I 1, R r) 
{ 

} 

11 Precondition: readable_bounded_range( f, l) 

if (f == 1) return l; 

I t; 

do { 

t = f; 
f = successor(f); 

} while (f != 1 && r(source(t), source(f))); 

return f; 

Note that t points to the first element of this mismatched pair and could also 

be returned. 

In Chapter 10 we show how to use concept dispatch to overload versions of an 

algorithm written for different iterator concepts. Suffixes such as _forward allow us 

to disambiguate the different versions. 

The regularity of successor also allows us to implement the bisection algorithm 

for finding the partition point: 

template<typename I, typename P> 

requires(Readable(I) && Forwarditerator(I) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 
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I partition_point_n(I f, DistanceType(I) n, Pp) 
{ 

} 

11 Precondition: readable_counted_range( f, n) /\ partitioned_n( f, n, p) 

while (!zero(n)) { 

} 

DistanceType(I) h = half_nonnegative(n); 

I m = f + h; 

if (p(source(m))) { 

n = h; 

} else { 

n = n - successor(h); f = successor(m); 
} 

return f; 
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Lemma 6.9 partition_poinLn returns the partition point of the p-partitioned 

range [f, n~. 

Finding the partition point in a bounded range by bisection8 requires first 
finding the size of the range: 

template<typename I, typename P> 

requires(Readable(I) && Forwarditerator(I) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

I partition_point(I f, I 1, Pp) 
{ 

} 

II Precondition: readable_bounded_range(f, l) /\ partitioned(f, l, p) 

return partition_point_n(f, 1 - f, p); 

The definition of partition point immediately leads to binary search algorithms 
on an r-increasing range for a weak ordering r. Any value a, whether or not it 

appears in the increasing range, determines two iterators in the range called lower 

bound and upper bound. Informally, a lower bound is the first position where a 

8. The bisection technique dates back at least as far as the proof of the Intermediate Value Theorem in 
Bolzano [1817] and, independently, in Cauchy [1821]. While Balzano and Cauchy used the technique 
for the most general case of continuous functions, Lagrange [1795] had previously used it to solve 
.a particular problem of approximating a root of a polynomial. The first description of bisection for 
searching was John W. Mauchly's lecture "Sorting and collating" [Mauchly, 1946]. 
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value equivalent to a could occur in the increasing sequence. Similarly, an upper 
bound is the successor of the last position where a value equivalent to a could occur. 
Therefore elements equivalent to a appear only in the half-open range from lower 
bound to upper bound. For example, assuming total ordering, a sequence with 
lower bound l and upper bound u for the value a looks like this: 

XQ, X1, · · · , X1-1, Xi, · · · , Xu-1, Xu, Xu+l, · · · , Xn-1 
---....~-- ' V' ,I ----...----

Xi<O 

Note that any of the three regions may be empty. 

Lemma 6.10 In an increasing range [ f, l), for any value a of the value type 
of the range, the range is partitioned by the following two predicates: 

lower _bound a (x) {} --,r(x, a) 

upper_bound
0
(x) ¢> r(a, x) 

That allows us to formally define lower bound and upper bound as the partition 
points of the corresponding predicates. 

Lemma 6.11 The lower-bound iterator precedes or equals the upper
bound iterator. 

Implementing a function object corresponding to the predicate leads immedi
ately to an algorithm for determining the lower bound: 

template<typename R> 

requires(Relation(R)) 

struct lower_bound_predicate 
{ 

}; 

typedef Domain(R) T; 

const T& a; 

R r; 
lower_bound_predicate(const T& a, R r) : a(a), r(r) {} 

bool operator()(const T& x) {return !r(x, a); } 

template<typename I, typename R> 

requires(Readable(I) && Forwarditerator(I) && 
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Relation(R) && ValueType(I) == Domain(R)) 
I lower_bound_n(I f, DistanceType(I) n, 

{ 

} 

const ValueType(I)& a, R r) 

II Precondition: weak_ordering(r) /\ increasing_counted_range(f, n, r) 

lower_bound_predicate<R> p(a, r); 

return partition_point_n(f, n, p); 

Similarly, for the upper bound: 

template<typename R> 
requires(Relation(R)) 

struct upper_bound_predicate 
{ 

}; 

typedef Domain(R) T; 

const T& a; 

R r; 
upper_bound_predicate(const T& a, R r) : a(a), r(r) {} 

bool operator()(const T& x) {return r(a, x); } 

template<typename I, typename R> 

requires(Readable(I) && Forward!terator(I) && 

Relation(R) && ValueType(I) == Domain(R)) 
I upper_bound_n(I f, DistanceType(I) n, 

{ 

} 

const ValueType(I)& a, R r) 

II Precondition: weak_ordering(r) /\ increasing_counted_range(f, n, r) 

upper_bound_predicate<R> p(a, r); 

return partition_point_n(f, n, p); 

Exercise 6.7 Implement a procedure that returns both lower and upper 
bounds and does fewer comparisons than the sum of the comparisons that 
would ,be done by calling both lower _bound_n and upper _bound_n.9 

9. A similar STL function is called equal_range. 
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Applying the predicate in the middle of the range ensures the optimal worst-case 

number of predicate applications in the partition-point algorithm. Any other choice 

would be defeated by an adversary who ensures that the larger subrange contains 

the partition point. Prior knowledge of the expected position of the partition point 

would lead to probing at that point. 

partition_point_n applies the predicate Llog2 nJ + 1 times, since the length of the 

range is reduced by a factor of 2 at each step. The algorithm performs a logarithmic 

number of iterator/integer additions. 

Lemma 6.12 For a forward iterator, the total number of successor oper

ations performed by the algorithm is less than or equal to the size of the 

range. 

partition_point also calculates 1- f, which, for forward iterators, adds another n 

calls of successor. It is worthwhile to use it on forward iterators, such as linked lists, 

whenever the predicate application is more expensive than calling successor. 

Lemma 6.13 Assuming that the expected distance to the partition point 

is equal to half the size of the range, partition_point is faster than find_if on 

finding the partition point for forward iterators whenever 

( 
log2 n) 

costsuccessor < 1 - 2 n costpredicate 

6. 7 Indexed Iterators 

In order for partition_point, lower _bound, and upper _bound to dominate linear search, 

we need to ensure that adding an integer to an iterator and subtracting an iterator 

from an iterator are fast: 

Indexedlterator(T) 6 

Forwardlterator(T) 

/\ + : T x DistanceType(T) ~ T 

/\ - : T x T ~ DistanceType(T) 

/\ + takes constant time 

/\ - takes constant time 

The operations + and -, which were defined for Iterator in terms of successor, 

are now required to be primitive and fast: This concept differs from Forwardlterator 
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only by strengthening complexity requirements. We expect the cost of+ and - on 

indexed iterators to be essentially identical to the cost of successor. 

6.8 Bidirectional Iterators 

There are situations in which indexing is not possible, but we have the ability to go 

backward: 

Bidirectionaliterator(T) 6 

Forwardlterator(T) 

/\ predecessor : T ---+ T 

/\ predecessor takes constant time 

/\ (Vi E T) successor( i) is defined ==} 

predecessor(successor( i)) is defined and equals i 

/\ (Vi E T) predecessor( i) is defined ==} 

successor( predecessor( i)) is defined and equals i 

As with successor, predecessor does not have to be total; the axioms of the concept 

relate its definition space to that of successor. We expect the cost of predecessor to 

be essentially identical to the cost of successor. 

Lemma 6.14 If successor is defined on bidirectional iterators i and j, 

successor( i) = successor(j) ==} i = j 

In a weak range of bidirectional iterators, movement backward as far as the 

beginning of the range is possible: 

template<typename I> 

requires(Bidirectionallterator(I)) 

I operator-(! 1, DistanceType(I) n) 
{ 

} 

11 Precondition: n > 0 /\ (3f E I) weak_range( f, n) /\ l = f + n 

while (!zero(n)) { 

} 

n = predecessor(n); 

1 = predecessor(l); 

return l; 
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With bidirectional iterators, we can search backward. As we noted earlier, when 
searching a range of n iterators, there are n + 1 outcomes; this is true whether we 
search forward or backward. So we need a convention for representing half-open 
on left ranges of the form (f, l]. To indicate "not found," we return f, which forces 
us to return successor( i) if we find a satisfying element at iterator i: 

template<typename I, typename P> 
requires(Readable(I) && Bidirectionallterator(I) && 

UnaryPredicate(P) && ValueType(I) == Domain(P)) 
I find_backward_if(I f, I 1, Pp) 
{ 

} 

11 Precondition: ( f, l] is a readable bounded half-open on left range 
while (1 != f && !p(source(predecessor(l)))) 

1 =predecessor(!); 

return l; 

Comparing this with find_if illustrates a program transformation: f and l in
terchange roles, source(i) becomes source(predecessor(i)), and successor(i) becomes 
predecessor(i). Under this transformation, in a nonempty range, l is dereferenceable, 
but f is not. 

The program transformation just demonstrated can be applied to any algorithm 
that takes a range of forward iterators. Thus it is possible to implement an adapter 
type that, given a bidirectional iterator type, produces another bidirectional iter
ator type where successor becomes predecessor, predecessor becomes successor, and 
source becomes source of predecessor. 10 This adapter type allows any algorithm on 
iterators or forward iterators to work backward on bidirectional iterators, and it 
also allows any algorithm on bidirectional iterators to interchange the traversal 
directions. 

Exercise 6.8 Rewrite find_backward_if with only one call of predecessor in 
the loop. 

Exercise 6.9 As an example of an algorithm that uses both successor and 
predecessor, implement a predicate that determines whether a range is a 
palindrome: It reads the same way forward and backward. 

10. In STL this is called a reverse iterator adapter. 
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6.9 Random-Access Iterators 

Some iterator types satisfy the requirements of both indexed and bidirectional itera

tors. These types, called random-access iterators, provide the full power of computer 
addresses: 

RandomAccessiterator(T) b. 

Indexedlterator(T) /\ Bidirectionallterator(T) 

/\ TotallyOrdered(T) 

/\ (Vi, j E T) i < j {} i -< j 

/\ DifferenceType : RandomAccessiterator---+ Integer 

/\ + : T x DifferenceType(T) ---+ T 

/\ - : T x Difference Type(T) ---+ T 

/\ - : T x T---+ DifferenceType(T) 

/\ < takes constant time 

/\ - between an iterator and an integer takes constant time 

Difference Type(T) is large enough to contain distances and their additive inverses; 

if i and j are iterators from a valid range, i - j is always defined. It is possible to add 

a negative integer to, or subtract it from, an iterator. 

On weaker iterator types, the operations + and - are only defined within one 

range. For random-access iterator types, this holds for < as well as for+ and -. In 

general, an operation on two iterators is defined only when they belong to the same 

range. 

Project 6.1 Define axioms relating the operations of random-access iter

ators to each other. 

We do not describe random-access iterators in great detail, because of the 

following. 

Theorem 6.1 For any procedure defined on an explicitly given range of 

random-access iterators, there is another procedure defined on indexed it

erators with the same complexity. 

Proof Since the operations on random-access iterators are only defined on iterators 
belonging to the same range, it is possible to implement an adapter type that, given 
an indexed iterator type, produces a random-access iterator type. The state of such 
an iterator contains an iterator f and an integer i and represents the iterator f + i. 
The iterator operations, such as+, -, and <,operate on i; source operates on f + i. 
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In other words, an iterator pointing to the beginning of the range, together with an 
index into the range, behave like a random-access iterator. 

The theorem shows the theoretical equivalence of these concepts in any context 
in which the beginnings of ranges are known. In practice, we have found that there 
is no performance penalty for using the weaker concept. In some cases, however, a 
signature needs to be adjusted to include the beginning of the range. 

Project 6.2 Implement a family of abstract procedures for finding a sub
sequence within a sequence. Describe the tradeoffs for selecting an appro
priate algorithm. 11 

6.10 Conclusions 

Algebra provides us with a hierarchy of concepts, such as semigroups, monoids, 
and groups, that allows us to state algorithms in the most general context. Simi
larly, the iterator concepts (Figure 6.1) allow us to state algorithms on sequential 
data structures in their most general context. The development of these concepts 
used three kinds of refinement: adding an operation, strengthening semantics, and 
tightening complexity requirement. In particular, the three concepts iterator, for

ward iterator, and indexed iterator differ not by their operations but only by their 

semantics and complexity. A variety of search algorithms for different iterator con
cepts, counted and bounded ranges, and range ordering serve as the foundation of 
sequential programming. 

II 

RI 

Figure 6.1 Iterator concepts. 

11. Two of the best-known algorithms for this problem are Boyer and Moore [1977] and Knuth, et al. 
[1977]. Musser and Nishanov [1997] serves as a good foundation for the abstract setting for these 
algorithms. 
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Coordinate Structures 

Chapter 6 introduced a family of iterator concepts as the interface between al
gorithms and objects in data structures with immutable linear shape. This chapter 

goes beyond iterators to coordinate structures with more complex shape. We introduce 

bifurcate coordinates and implement algorithms on binary trees with the help of a 

machine for iterative tree traversal. After discussing a concept schema for coordinate 

structures, we conclude with algorithms for isomorphism, equivalence, and ordering. 

7 .1 Bifurcate Coordinates 

Iterators allow us to traverse linear structures, which have a single successor at each 

position. While there are data structures with an arbitrary number of successors, in 

this chapter we study an important case of structures with exactly two successors 

at every position, labeled left and right. In order to define algorithms on these 

structures, we define the following concept: 

BzfurcateCoordinate(T) b. 

Regular(T) 

/\ WeightType: BzfurcateCoordinate ~ Integer 

/\ empty: T ~ bool 

/\ has_left_successor : T ~ bool 

/\ has_righLsuccessor : T ~ bool 

/\ lefLsuccessor : T ~ T 

/\ right_successor : T ~ T 

/\ (Vi, j E T) ( left_successor( i) = j V right_successor( i) = j) :::} -.em pty(j) 

The WeightType type function returns a type capable of counting all the ob

jects in a traversal that uses a bifurcate coordinate. WeightType is analogous to 

DistanceType for an iterator type. 
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The predicate empty is everywhere defined. If it returns true, none of the other 

procedures are defined. empty is the negation of the definition-space predicate 

for both has_lefLsuccessor and has_righLsuccessor. has_lefLsuccessor is the definition

space predicate for lefLsuccessor, and has_righLsuccessor is the definition-space pred

icate for righLsuccessor. In other words, if a bifurcate coordinate is not empty, 

has_lefLsuccessor and has_righLsuccessor are defined; if either one of them returns 

true, the corresponding successor function is defined. With iterators, algorithms 

use a limit or count to indicate the end of a range. With bifurcate coordinates, there 

are many positions at which branches end. Therefore it is more natural to introduce 

the predicates has_lefLsuccessor and has_righLsuccessor for determining whether a 

coordinate has successors. 

In this book we describe algorithms on BzfurcateCoordinate, where all the op

erations are regular. This is different from the Iterator concept, where the most 

fundamental algorithms, such as find, do not require regularity of successor and 

where there are nonregular models, such as input streams. Structures where appli

cation of lefLsuccessor and righLsuccessor change the shape of the underlying binary 

tree require a concept of WeakBzfurcateCoordinate, where the operations are not 

regular. 

The shape of a structure accessed via iterators is possibly cyclic for a weak range 

and is a linear segment for a counted or bounded range. In order to discuss the shape 

of a structure accessed via bifurcate coordinates, we need a notion of reachability. 

A bifurcate coordinate y is a proper descendant of another coordinate x if y is 

the left or right successor of x or if it is a proper descendant of the left or right 

successor of x. A bifurcate coordinate y is a descendant of a coordinate x if y = x 

or y is a proper descendant of x. 

The descendants of x form a directed acyclic graph (DAG) if for all y in the 

descendants of x, y is not its own descendant. In other words, no sequence of 

successors of any coordinate leads back to itself. x is called the root of the DAG 

of its descendants. If the descendants of x form a DAG and are finite in number, 

they form a finite DAG. The height of a finite DAG is one more than the maximum 

sequence of successors starting from its root, or zero if it is empty. 

A bifurcate coordinate y is left reachable from x if it is a descendant of the left 

successor of x, and similarly for right reachable. 
The descendants of x form a tree if they form a finite DAG and for all y, z 

in the descendants of x, z is not both left reachable and right reachable from y. 

In other words, there is a unique sequence of successors from a coordinate to any 

of its descendants. The property of being a tree serves the same purpose for the 
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algorithms in this chapter as the properties of being a bounded or counted range 
served in Chapter 6, with finiteness guaranteeing termination: 

property ( C : BzfurcateCoordinate) 
tree: C 

x I-* the descendants of x form a tree 

These are the recursive algorithms for computing the weight and height of a 
tree: 

template<typename C> 

requires(BifurcateCoordinate(C)) 
WeightType(C) weight_recursive(C c) 
{ 

} 

11 Precondition: tree( c) 

typedef WeightType(C) N; 
if (empty(c)) return N(O); 

N 1(0); 

N r(O); 
if (has_left_successor(c)) 

1 = weight_recursive(left_successor(c)); 

if (has_right_successor(c)) 

r = weight_recursive(right_successor(c)); 

return successor(!+ r); 

template<typename C> 
requires(BifurcateCoordinate(C)) 

WeightType(C) height_recursive(C c) 
{ 

11 Precondition: tree(c) 

typedef WeightType(C) N; 
if (empty(c)) return N(O); 

N 1(0); 

N r(O); 
if (has_left_successor(c)) 

1 = height_recursive(left_successor(c)); 

if (has_right_successor(c)) 
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} 

r = height_recursive(right_successor(c)); 

return successor(max(l, r)); 

Lemma 7 .1 heighLrecursive(x) < weighLrecursive(x) 

Coordinate Structures 

heighLrecursive correctly computes the height of a DAG but visits each coordi
nate as many times as there are paths to it; this fact means that weighLrecursive does 
not correctly compute the weight of a DAG. Algorithms for traversing DAGs and 
cyclic structures require marking: a way of remembering which coordinates have 
been previously visited. 

There are three primary depth-first tree-traversal orders. All three fully traverse 
the left descendants and then the right descendants. Preorder visits to a coordi

nate occur before the traversal of its descendants; inorder visits occur between the 
traversals of the left and right descendants; postorder visits occur after traversing all 
descendants. We name the three visits with the following type definition: 

enum visit { pre, in, post }; 

We can perform any combination of the traversals with a single procedure that 
takes as a parameter another procedure taking the visit together with the coordinate: 

template<typename C, typename Proc> 

requires(BifurcateCoordinate(C) && 
Procedure(Proc) && Arity(Proc) 2 && 
visit == InputType(Proc, 0) && 
C == InputType(Proc, 1)) 

Proc traverse_nonempty(C c, Proc proc) 
{ 

} 

11 Precondition: tree(c) /\ -iempty(c) 

proc(pre, c); 
if (has_left_successor(c)) 

proc = traverse_nonempty(left_successor(c), proc); 

proc(in, c); 

if (has_right_successor(c)) 

proc = traverse_nonempty(right_successor(c), proc); 

proc(post, c); 

return proc; 



7 .2 Bidirectional Bifurcate Coordinates 119 

7 .2 Bidirectional Bifurcate Coordinates 

Recursive traversal requires stack space proportional to the height of the tree, which 
can be as large as the weight; this is often unacceptable for large, unbalanced trees. 
Also, the interface to traverse_nonempty does not allow concurrent traversal of multi
ple trees. In general, traversing more than one tree concurrently requires a stack per 
tree. If we combined a coordinate with a stack of previous coordinates, we would 
obtain a new coordinate type with an additional transformation for obtaining the 
predecessor. (It would be more efficient to use actions rather than transformations, 
to avoid copying the stack each time.) Such a coordinate would model the concept 
bidirectional bifurcate coordinate. There is a simpler and more flexible model of this 
concept: trees that include a predecessor link in each node. Such trees allow concur
rent, constant-space traversals and make possible various rebalancing algorithms. 
The overhead for the extra link is usually justified. 

BidirectionalBi/urcateCoordinate(n b. 

BzfurcateCoordinate(n 
/\ has_predecessor : T ---+ bool 

/\ (Vi E T) .....,empty( i) :::} has_predecessor( i) is defined 

/\ predecessor : T ---+ T 

/\ (Vi E T) has_left_successor( i) :::} 

predecessor(left_successor( i)) is ·defined and equals i 
/\ (Vi E T) has_right_successor( i) :::} 

predecessor(righLsuccessor( i)) is defined and equals i 
/\ (Vi E T) has_predecessor( i) :::} 

is_left_successor( i) V is_righLsuccessor( i) 

where is_left_successor and is_right_successor are defined as follows: 

template<typename T> 

requires(BidirectionalBifurcateCoordinate(T)) 

bool is_left_successor(T j) 
{ 

} 

11 Precondition: has_predecessor(j) 

Ti= predecessor(j); 

return has_left_successor(i) && left_successor(i) j; 

template<typename T> 

requires(BidirectionalBifurcateCoordinate(T)) 
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bool is_right_successor(T j) 
{ 

} 

11 Precondition: has_predecessor(j) 

Ti= predecessor(j); 

return has_right_successor(i) && right_successor(i) -- j; 

Lemma 7 .2 If x and 1J are bidirectional bifurcate coordinates, 

lefLsuccessor( x) = lefLsuccessor( 1J) ==> x = 1J 

lefLsuccessor(x) = righLsuccessor(1J) ==> x = 1J 

righLsuccessor(x) = righLsuccessor(1J) ==> x = 1J 

Exercise 7.1 Would the existence of a coordinate x such that 

isJefLsuccessor(x) /\ is_right_successor(x) 

contradict the axioms of bidirectional bifurcate coordinates? 

traverse_nonempty visits each coordinate three times, whether or not it has suc

cessors; maintaining this invariant makes the traversal uniform. The three visits to 

a coordinate always occur in the same order (pre, in, post), so given a current co

ordinate and the visit just performed on it, we can determine the next coordinate 
and the next ·State, using only the information from the coordinate and its prede

cessor. These considerations lead us to an iterative constant-space algorithm for 
traversing a tree with bidirectional bifurcate coordinates. The traversal depends on 

a machine-a sequence of statements used as a component of many algorithms: 

template<typename C> 

requires(BidirectionalBifurcateCoordinate(C)) 

int traverse_step(visit& v, C& c) 
{ 

11 Precondition: has_predecessor(c) v v 1 post 

switch (v) { 

case pre: 
if (has_left_successor(c)) { 

c = left_successor(c); return 1; 
} v = in; return O; 
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case in: 
if (has_right_successor(c)) { 

v =pre; c = right_successor(c); return 1; 

} v = post; return O; 
case post: 

if (is_left_successor(c)) 

v = in; 

c = predecessor(c); return -1; 

} 

} 

The value returned by the procedure is the change in height. An algorithm 
based on traverse_step uses a loop that terminates when the original coordinate is 
reached on the final (post) visit: 

template<typename C> 

requires(BifurcateCoordinate(C)) 

bool reachable(C x, C y) 
{ 

} 

11 Precondition: tree(c) 

if (empty(x)) return false; 

C root = x; 

visit v = pre; 

do { 

if (x == y) return true; 

traverse_step(v, x); 

} while (x !=root I I v !=post); 

return false; 

Lemma 7.3 If reachable returns true, v = pre right before the return. 

To compute the weight of a tree, we count the pre visits in a traversal: 

template<typename C> 

requires(BidirectionalBifurcateCoordinate(C)) 

WeightType(C) weight(C c) 
{ 
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} 

11 Precondition: tree( c) 

typedef WeightType(C) N; 

if (empty(c)) return N(O); 

C root = c; 

visit v = pre; 
N n ( 1) ; 11 Invariant: n is count of pre visits so far 

do { 

traverse_step(v, c); 

if (v ==pre) n = successor(n); 

} while (c !=root I I v !=post); 

return n; 

Coordinate Structures 

Exercise 7.2 Change weight to count in or post visits instead of pre. 

To compute the height of a tree, we need to maintain the current height and 

the running maximum: 

template<typename C> 

requires(BidirectionalBifurcateCoordinate(C)) 

WeightType(C) height(C c) 
{ 

} 

11 Precondition: tree(c) 

typedef WeightType(C) N; 
if (empty(c)) return N(O); 

C root = c; 

visit v = pre; 

N n ( 1) ; 11 Invariant: n is max of height of pre visits so far 

N m ( 1) ; 11 Invariant: m is height of current pre visit 

do { 
m = (m - N(1)) + N(traverse_step(v, c) + 1); 

n = max(n, m); 

} while (c !=root I I v !=post); 

return n; 

The extra -1 and+ 1 are in case Weight Type is unsigned. The code would benefit 

from an accumulating version of max. 
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We can define an iterative procedure corresponding to traverse_nonempty. We 
include a test for the empty tree, since it is not executed on every recursive call: 

template<typename C, typename Proc> 

requires(BidirectionalBifurcateCoordinate(C) && 
Procedure(Proc) && Arity(Proc) == 2 && 
visit == InputType(Proc, 0) && 
C == InputType(Proc, 1)) 

Proc traverse(C c, Proc proc) 
{ 

} 

11 Precondition: tree(c) 
if (empty(c)) return proc; 

C root = c; 

visit v = pre; 

proc(pre, c); 

do { 

traverse_step(v, c); 

proc(v, c); 

} while (c !=root I I v !=post); 

return proc; 

Exercise 7.3 Use traverse_step and the procedures of Chapter 2 to deter

mine whether the descendants of a bidirectional bifurcate coordinate form 

a DAG. 

The property readable_bounded_range for iterators says that for every iterator in 

a range, source is defined. An analogous property for bifurcate coordinates is 

property(C: Readable) 
requires(BifurcateCoordinate( C)) 

reada ble_tree : C 
x ~ tree(x) /\ (Vy E C) reachable(x, -y) ==> source(-y) is defined 

There are two approaches to extending iterator algorithms, such as find and 

count, to bifurcate coordinates: implementing specialized versions or implementing 

an adapter type. 

Project 7.1 Implement versions of algorithms in Chapter 6 for bidirec
tional bifurcate coordinates. 
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Project 7 .2 Design an adapter type that, given a bidirectional bifurcate 

coordinate type, produces an iterator type that accesses coordinates in a 

traversal order (pre, in, or post) specified when an iterator is constructed. 

7 .3 Coordinate Structures 

So far, we have defined individual concepts, each of which specifies a set of proce

dures and their semantics. Occasionally it is useful to define a concept schema, which 

is a way of describing some common properties of a family of concepts. While it is 

not possible to define an algorithm on ~ concept schema, it is possible to describe 

structures of related algorithms on different concepts belonging to the same con

cept schema. For example, we defined several iterator concepts describing linear 

traversals and bifurcate coordinate concepts describing traversal of binary trees. 

To allow traversal within arbitrary data structures, we introduce a concept schema 

called coordinate structures. A coordinate structure may have several interrelated co

ordinate types, each with diverse traversal functions. Coordinate structures abstract 

the navigational aspects of data structures, whereas composite objects, introduced 

in Chapter 12, abstract storage management and ownership. Multiple coordinate 

structures can describe the same set of objects. 

A concept is a coordinate structure if it consists of one or more coordinate 

types, zero or more value types, one or more traversal functions, and zero or more 

access functions. Each traversal function maps one or more coordinate types and/or 

value types into a coordinate type, whereas each access function maps one or more 

coordinate types and/or value types into a value type. For example, when considered 

as a coordinate structure, a readable indexed iterator has one value type and two 

coordinate types: the iterator type and its distance type. The traversal functions 

are + (adding a distance to an iterator) and - (giving the distance between two 

iterators). There is one access function: source. 

7 .4 Isomorphism, Equivalence, and Ordering 

Two collections of coordinates from the same coordinate structure concept are iso

morphic if they have the same shape. More formally, they are isomorphic if there 

is a one-to-one correspondence between the two collections such that any valid 

application of a traversal function to coordinates from the first collection returns 

the coordinate corresponding to the same traversal function applied to the corre

sponding coordinates from the second collection. 
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Isomorphism does not depend on the values of the objects pointed to by the 
coordinates: Algorithms for testing isomorphism use only traversal functions. But 
isomorphism requires that the same access functions are defined, or not defined, 
for corresponqing coordinates. For example, two bounded or counted ranges are 
isomorphic if they have the same size. Two weak ranges of forward iterators are 
isomorphic if they have the same orbit structure, as defined in Chapter 2. Two trees 
are isomorphic when both are empty; when both are nonempty, isomorphism is 
determined by the following code: 

template<typename CO, typename C1> 

requires(BifurcateCoordinate(CO) && 

BifurcateCoordinate(C1)) 

bool bifurcate_isomorphic_nonempty(CO cO, C1 c1) 
{ 

} 

11 Precondition: tree(cO) /\ tree(cl) /\ --iempty(cO) /\ ~empty(cl) 

if (has_left_successor(cO)) 

if (has_left_successor(c1)) { 

if (!bifurcate_isomorphic_nonempty( 
left_successor(cO), left_successor(c1))) 

return false; 
} else return false; 

else if (has_left_successor(c1)) return false; 

if (has_right_successor(cO)) 

if (has_right_successor(c1)) { 

if (!bifurcate_isomorphic_nonempty( 

right_successor(cO), right_successor(c1))) 

return false; 

} else return false; 

else if (has_right_successor(c1)) return false; 

return true; 

Lemma 7 .4 For bidirectional bifurcate coordinates, trees are isomorphic 

when simultaneous traversals take the same sequepce of visits: 

template<typename CO, typename C1> 

requires(BidirectionalBifurcateCoordinate(CO) && 

BidirectionalBifurcateCoordinate(C1)) 
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bool bifurcate_isomorphic(CO cO, C1 c1) 
{ 

} 

11 Precondition: tree( cO) /\ tree( c 1) 

if (empty(cO)) return empty(c1); 

if (empty(c1)) return false; 

CO rootO = cO; 

visit vO = pre; 

visit v1 = pre; 
while (true) { 

} 

traverse_step(vO, cO); 
traverse_step(v1, c1); 

if (vO != v1) return false; 

if (cO == rootO && vO == post) return true; 

Chapter 6 contains algorithms for linear and bisection search, depending on, 

respectively, equality and total ordering, which are part of the notion of regularity. 
By inducing equality and ordering on collections of coordinates from a coordinate 
structure, we can search for collections of objects rather than for individual objects. 

Two collections of coordinates from the same readable coordinate structure 

concept and with the same value types are equivalent under given equivalence 

relations (one per value type) if they are isomorphic and if applying the same access 
function to corresponding coordinates from the two collections returns equivalent 

objects. Replacing the equivalence relations with the equalities for the value types 
leads to a natural definition of equality on collections of coordinates. 

Two readable bounded ranges are equivalent if they have the same size and if 

corresponding iterators have equivalent values: 

template<typename IO, typename I1, typename R> 
requires(Readable(IO) && Iterator(IO) && 

Readable(I1) && Iterator(I1) && 
ValueType(IO) == ValueType(I1) && 
Relation(R) && ValueType(IO) == Domain(R)) 

bool lexicographical_equivalent(IO fO, IO 10, I1 f1, I1 11, R r) 
{ 

11 Precondition: readable_bounded_range( fO, 10) 
11 Precondition: readable_bounded_range(fl, ll) 

11 Precondition: equivalence(r) 
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} 

pair<IO, I1> p = find_mismatch(fO, 10, f1, 11, r); 

return p.mO == 10 && p.m1 == 11; 
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It is straightforward to implement lexicographical_equal by passing a function 
object implementing equality on the value type to lexicographical_equivalent: 

template<typename T> 
requires(Regular(T)) 

struct equal 
{ 

}; 

bool operator()(const T& x, const T& y) 
{ 

return x == y; 
} 

template<typename IO, typename I1> 
requires(Readable(IO) && Iterator(IO) && 

Readable(I1) && Iterator(I1) && 

ValueType(IO) == ValueType(I1)) 
bool lexicographical_equal(IO fO, IO 10, I1 f1, I1 11) 
{ 

} 

return lexicographical_equivalent(fO, 10, f1, 11, 

equal<ValueType(IO)>()); 

Two readable trees are equivalent if they are isomorphic and if corresponding 
coordinates have equivalent values: 

template<typename CO, typename Ci, typename R> 

requires(Readable(CO) && BifurcateCoordinate(CO) && 
Readable(C1) && BifurcateCoordinate(C1) && 

ValueType(CO) == ValueType(C1) && 
Relation(R) && ValueType(IO) == Domain(R)) 

bool bifurcate_equivalent__nonempty(CO cO, C1 c1, R r) 
{ 

11 Precondition: read a ble_tree( cO) /\ read a ble_tree( c 1) 

11 Precondition: ....,empty( cO) /\ ....,empty( c 1) 
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} 

11 Precondition: equivalence( r) 

if (!r(source(cO), source(c1))) return false; 

if (has_left_successor(cO)) 

if (has_left_successor(c1)) { 
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if (!bifurcate_equivalent_nonempty( 

left_successor(cO), left_successor(c1), r)) 

return false; 

} else return false; 

else if (has_left_successor(c1)) return false; 

if (has_right_successor(cO)) 

if (has_right_successor(c1)) { 

if (!bifurcate_equivalent_nonempty( 

right_successor(cO), right_successor(c1), r)) 

return false; 

} else return false; 

else if (has_right_successor(c1)) return false; 

return true; 

For bidirectional bifurcate coordinates, trees are equivalent if simultaneous 

traversals take the same sequence of visits and if corresponding coordinates have 

equivalent values: 

template<typename CO, typename C1, typename R> 

requires(Readable(CO) && 
BidirectionalBifurcateCoordinate(CO) && 
Readable(C1) && 
BidirectionalBifurcateCoordinate(C1) && 
ValueType(CO) == ValueType(C1) && 
Relation(R) && ValueType(C) == Domain(R)) 

bool bifurcate_equivalent(CO cO, C1 c1, R r) 
{ 

11 Precondition: readable_tree(cO) /\ readable_tree(cl) 

11 Precondition: equivalence( r) 

if (empty(cO)) return empty(c1); 

if (empty(c1)) return false; 

co rootO = cO; 
visit vO = pre; 
visit v1 = pre; 
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} 

while (true) { 

} 

if (vO ==pre && !r(source(cO), source(ci))) 

return false; 
traverse_step(vO, cO); 
traverse_step(vi, ci); 

if (vO != vi) return false; 
if (cO == rootO && vO == post) return true; 
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We can extend a weak (total) ordering to readable ranges of iterators by using 
lexicographical ordering, which ignores prefixes of equivalent (equal) values and 
considers a shorter range to precede a longer one: 

template<typename IO, typename Ii, typename R> 
requires(Readable(IO) && Iterator(IO) && 

Readable(Ii) && Iterator(Ii) && 
ValueType(IO) == ValueType(I1) && 
Relation(R) && ValueType(IO) == Domain(R)) 

bool lexicographical_compare(IO fO, IO 10, Ii fi, Ii li, R r) 
{ 

} 

11 Precondition: readable_bounded_range(fO, 10) 

11 Precondition: readable_bounded_range(fl, 11) 

11 Precondition: wea k_orderi ng( r) 

while (true) { 

} 

if (fi == li) return false; 

if (fO == 10) return true; 
if (r(source(fO), source(fi))) return true; 
if (r(source(f1), source(fO))) return false; 

fO = successor(fO); 
f1 = successor(fi); 

It is straightforward to specialize this to lexicogra ph ica Liess by passing as r a 

function object capturing < on the value type: 

template<typename T> 
requires(TotallyOrdered(T)) 
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struct less 
{ 

}; 

bool operator()(const T& x, const T& y) 
{ 

return x < y; 
} 

template<typename IO, typename I1> 

requires(Readable(IO) && Iterator(IO) && 

Readable(I1) && Iterator(I1) && 

ValueType(IO) == ValueType(I1)) 
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bool lexicographical_less(IO fO, IO 10, I1 f1, I1 11) 
{ 

} 

return lexicographical_compare(fO, 10, f1, 11, 

less<ValueType(IO)>()); 

Exercise 7.4 Explain why, in lexicographicaLcompare, the third and fourth 
if statements could be interchanged, but the first and second cannot. 

Exercise 7.5 Explain why we did not implement lexicographicaLcompare 

by using find_mismatch. 

We can also extend lexicographical ordering to bifurcate coordinates by ignor

ing equivalent rooted subtrees and considering a coordinate without a left successor 
to precede a coordinate having a left successor. If the current values and the left sub

trees do not determine the outcome, consider a coordinate without a right successor 

to precede a coordinate having a right successor. 

Exercise 7.6 Implement bifurcate_compare_nonempty for readable bifur
cate coordinates. 

The readers who complete the preceding exercise will appreciate the simplicity 
of com paring trees based on bidirectional coordinates and iterative traversal: 

template<typename CO, typename C1, typename R> 

requires(Readable(CO) && 

BidirectionalBifurcateCoordinate(CO) && 
Readable(C1) && 
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BidirectionalBifurcateCoordinate(C1) && 
Relation(R) && ValueType(C) == Domain(R)) 

bool bifurcate_compare(CO cO, C1 c1, R r) 
{ 

} 

11 Precondition: readable_tree(cO) /\ readable_tree(c 1) /\ weak_ordering( r) 

if (empty(c1)) return false; 

if (empty(cO)) return true; 

co rootO = cO; 

visit vO = pre; 

visit v1 = pre; 

while (true) { 

} 

if 

} 

(vO == pre) { 

if (r(source(cO), source(c1))) return true; 

if (r(source(c1), source(cO))) return false; 

traverse_step(vO, cO); 

traverse_step(v1, c1); 

if (vO != v1) return vO > v1; 

if (cO == rootO && vO == post) return false; 
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We can implement bifurcate_shape_compare by passing the relation that is al

ways false to bifu rcate_com pare. This allows us to sort a range of trees and then use 

upper _bound to find an isomorphic tree in logarithmic time. 

Project 7.3 Design a coordinate structure for a family of data structures, 

and extend isomorphism, equivalence, and ordering to this coordinate 
structure. 

7 .5 Conclusions 

Linear structures play a fundamental role in computer science, and iterators provide 

a natural interface between such structures and the algorithms working on them. 
There are, however, nonlinear data structures with their own nonlinear coordinate 

structures. Bidirectional bifurcate coordinates provide an example of iterative al

gorithms quite different from algorithms on iterator ranges. We extend the notions 

of isomorphism, equality, and ordering to collections of coordinates of different 

topologies. 
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Chapter 8 

Coordinates with 
Mutable Successors 

This chapter introduces iterator and coordinate structure concepts that allow 
relinking: modifying successor or other traversal /unctions for a particular coordinate. 

Relinking allows us to implement rearrangements, such as sorting, that preserve the 

i·alue of source at a coordinate. We introduce relinking machines that preserve certain 

structural properties of the coordinates. We conclude with a machine allowing certain 

traversals of a tree without the use of a stack or predecessor links, by temporarily 

relinking the coordinates during the traversal. 

8.1 Linked Iterators 

In Chapter 6 we viewed the successor of a given interator as immutable: Applying 
successor to a particular iterator value always returns the same result. A linked iterator 

type is a forward iterator type for which a linker object exists; applying the linker 
object to an iterator allows the successor of that iterator to be changed. Such iterators 
are modeled by linked lists, where relationships between nodes can be changed. 
\\

7e use linker objects rather than a single set_successor function overloaded on the 
iterator type to allow different linkings of the same data structure. For example, 
doubly linked lists could be linked by setting both successor and predecessor links 
or by setting successor links only. This allows a multipass algorithm to minimize 
v."ork by omitting maintenance of the predecessor links until the final pass. Thus we 
specify concepts for linked iterators indirectly, in terms of the corresponding linker 
objects. Informally, we still speak oflinked iterator types. To define the requirements 
on linker objects, we define the following related concepts: 

ForwardLinker(S) 6 

lteratorType : ForwardLinker--+ Forwardlterator 

!\ Let I = lteratorType(S) in: 
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(Vs E S) (s : I x I --+ void) 

!\ (Vs E S) (Vi, j E I) if successor(i) is defined, 

then s(i, j) establishes successor(i) = j 

BackwardLinker(S) 6 

lteratorType : BackwardLinker--+ Bidirectionallterator 

!\ Let I = lteratorType(S) in: 
(Vs E S) (s : I x I --+ void) 

!\ (Vs E S) (Vi, j E I) if predecessor(j) is defined, 
then s(i, j) establishes i = predecessor(j) 

BidirectionalLinker(S) 6 ForwardLinker(S) !\ BackwardLinker(S) 

Two ranges are disjoint if they include no iterator in common. For half-open 
bounded ranges, this corresponds to the following: 

property(! : Iterator) 

disjoint : I x I x I x I 

( fO, lO, fl, ll) r-+ (Vi E I) --, ( i E [ fO, lO) !\ i E [fl, ll)) 

and similarly for other kinds of ranges. Since linked iterators are iterators, they 
benefit from all the notions we defined for ranges, but disjointness and all other 
properties of ranges can change over time on linked iterators. It is possible for 
disjoint ranges of forward iterators with only a forward linker-singly linked lists
to share the same limit-commonly referred to as nil. 

8.2 Link Rearrangements 

A link rearrangement is an algorithm taking one or more linked ranges, returning 
one or more linked ranges, and satisfying the following properties. 

• Input ranges (either counted or bounded) are pairwise disjoint. 

• Output ranges (either counted or bounded) are pairwise disjoint. 

• Every iterator in an input range appears in one of the output ranges. 

• Every iterator in an output range appeared in one of the input ranges. 

• Every iterator in each output range designates the same object as before the 
rearrangement, and this object has the same value. 

Note that successor and predecessor relationships that held in the input ranges 
may not hold in the output ranges. 
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A link rearrangement is precedence preserving if, whenever two iterators i -< j in 
an output range came from the same input range, i -< j originally held in the input 

range. 

Implementing a link rearrangement requires care to satisfy the properties of 
disjointness, conservation, and ordering. We proceed by presenting three short 
procedures, or machines, each of which performs one step of traversal or linking, 
and then composing from these machines link rearrangements for splitting, com
bining, and reversing linked ranges. The first two machines establish or maintain 

the relationship t = successor( f) between two iterator objects passed by reference: 

template<typename I> 

requires(Forwarditerator(I)) 

void advance_tail(I& t, I& f) 
{ 

} 

11 Precondition: successor( f) is defined 
t = f; 

f = successor(f); 

template<typename S> 

requires(ForwardLinker(S)) 

struct linker_to_tail 

{ 

}; 

typedef IteratorType(S) I; 

S set_link; 

linker_to_tail(const S& set_link) 

void operator()(!& t, I& f) 
{ 

} 

11 Precondition: successor( f) is defined 
set_link(t, f); 

advance_tail(t, f); 

set_link(set_link) { } 

We can use advance_tail to find the last iterator in a nonempty bounded range: 1 

template<typename I> 

requires(Forwarditerator(I)) 

1. Observe that find_adjacenLmismatch_forward in Chapter 6 used advance_tail implicitly. 
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I find_last(I f, I 1) 
{ 

} 

11 Precondition: bounded_range( f, l) /\ f -fl 

I t; 

do 
advance_tail(t, f); 

while (f != l); 

return t; 

We can use advance_tail and linker _to_tail together to split a range into two ranges 
based on the value of a pseudopredicate applied to each iterator. A pseudopredicate is 
not necessarily regular, and its result may depend on its own state as well as its inputs. 

For example, a pseudopredicate might ignore its arguments and return alternating 
false and true values. The algorithm takes a bounded range of linked iterators, a 
pseudopredicate on the linked iterator type, and a linker object. The algorithm 
returns a pair of ranges: iterators not satisfying the pseudopredicate and iterators 
satisfying it. It is useful to represent these returned ranges as closed bounded ranges 
[h, t], where his the first, or head, iterator, and tis the last, or tail, iterator. Returning 
the tail of each range allows the caller to relink that iterator without having to traverse 
to it (using find_last, for example). However, either of the returned ranges could be 

empty, which we represent by returning h = t = l, where l is the limit of the input 
range. The successor links of the tails of the two returned ranges are not modified 
by the algorithm. Here is the algorithm: 

template<typename I, typename S, typename Pred> 

requires(ForwardLinker(S) && I -- IteratorType(S) && 
UnaryPseudoPredicate(Pred) && I == Domain(Pred)) 

pair< pair<I, I>, pair<I, I> > 
split_linked(I f, I 1, Pred p, S set_link) 
{ 

11 Precondition: bou nded_ra nge( f, l) 

typedef pair<I, I> P; 
linker_to_tail<S> link_to_tail(set_link); 

I hO = l; I tO = l; 

I hi = l; I ti = l; 

if (f == 1) goto s4; 
if (p(f)) {hi= f; advance_tail(ti, f); goto si; } 

else { hO = f; advance_tail(tO, f); goto sO; } 
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sO: if (f == 1) goto s4; 

if (p (f)) { h1 = f · advance_tail ( t 1, f); goto s3; } 
' 

else { advance_tail ( tO, f); goto sO; } 

s1: if (f -- 1) goto s4; 

if (p(f)) { advance_tail ( t 1, f); goto s1; } 

else { hO = f · advance_tail ( tO, f); goto s2; } 
' 

s2: if (f == 1) goto s4; 

if (p(f)) { link_to_tail ( t 1, f); goto s3; } 

else { advance_tail ( tO, f); goto s2; } 

s3: if (f == 1) goto s4; 

if (p(f)) { advance_tail ( t 1, f); goto s3; } 

else { link_to_tail(tO, f); goto s2; } 

s4: return pair<P, P>(P(hO, tO), P(h1, t1)); 

} 

The procedure is a state machine. The variables tO and tl point to the tails of the 
two output ranges, respectively. The states correspond to the following conditions: 

sO: successor(tO) = f /\ --,p(tO) 

sl: successor(tl) = f /\ p(tl) 

s2: successor(tO) = f /\ --,p(tO) /\ p(tl) 

s3: successor(tl) = f /\ --,p(tO) /\ p(tl) 

Relinking is necessary only when moving between states s2 and s3. goto state
ments from a state to the immediately following state are included for symmetry. 

Lemma 8.1 For each of the ranges [h, t] returned by spliLlinked, h = l {} 
t = l. 

Exercise 8.1 Assuming that one of the ranges (h, t) returned by splitJinked 

is not empty, explain what iterator t points to and what the value of 
successor( t) is. 

Lemma 8.2 splitJinked is a precedence-preserving link rearrangement. 

We can also use advance_tail and linker_to_tail to implement an algorithm to 

combine two ranges into a single range based on a pseudorelation applied to the 
heads of the remaining portions of the input ranges. A pseudorelation is a binary 
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homogeneous pseudopredicate and thus not necessarily regular. The algorithm takes 
two bounded ranges of linked iterators, a pseudorelation on the linked iterator type, 

and a linker object. The algorithm returns a triple ( f, t, l), where [ f, l) is the half-open 

range of combined iterators, and t E [ f, l) is the last-visited iterator. A subsequent 
call to find_last(t, l) would return the last iterator in the range, allowing it to be 

linked to another range. Here is the algorithm: 

template<typename I, typename S, typename R> 

requiresCForwardLinkerCS) && I == IteratorTypeCS) && 
PseudoRelationCR) && I == DomainCR)) 

triple<!, I, I> 

combine_linked_nonemptyCI fO, I 10, I f1, I 11, R r, S set_link) 
{ 

sO: 

s1: 

s2: 

s3: 
} 

11 Precondition: bounded_range( fO, 10) /\ bounded_range( fl, 11) 

11 Precondition: fO f 10 /\fl f 11 /\disjoint( fO, 10, fl, 11) 

typedef triple<!, I' I> T; 
linker_to_tail<S> link_to_tailCset_link); 

I h; I t; 

if CrCf1, fO)) { h = f1; advance_tail Ct, f1); goto 

else { h = fO; advance_ tail Ct, fO); goto 

if CfO == 10) goto 

if CrCf1, fO)) { link_ to_ tail Ct, f1); goto 

else { advance_tail Ct, fO); goto 

if Cf1 == 11) goto 

if CrCf1, fO)) { advance_ tail Ct, f1); goto 

else { link_to_tail Ct, fO); goto 

set_linkCt, f1); return TCh, t, 11); 

set_linkCt, fO); return TCh, t, 10); 

s1; } 

sO; } 

s2; 

s1; } 

sO; } 

s3; 

s1; } 

sO; } 

Exercise 8.2 Implement combine_linked, allowing for empty inputs. What 
value should be returned as the last-visited iterator? 

The procedure is also a state machine. The variable t points to the tail of the 

output range. The states correspond to the following conditions: 

sO: successor( t) = fO /\ -.r( f 1, t) 

sl: successor(t) =fl/\ r(t, fO) 

Relinking is necessary only when moving between states sO and sl. 
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Lemma 8.3 If a call combine_linked_nonempty(fO, 10, fl, 11, r, s) returns 

(h, t, l), h equals fO or fl and, independe~tly, l equals 10 or 11. 

Lemma 8.4 When state s2 is reached, t is from the original range [ fO, 

10), successor(t) = 10, and fl :f 11; when state s3 is reached, tis from the 

original range [fl, 11), successor(t) = 11, and fO :f 10. 

Lemma 8.5 combine_linked_nonempty is a precedence-preserving link re

arrangement. 

The third machine links to the head of a list rather than to its tail: 

template<typename I, typename S> 

requires(ForwardLinker(S) && I 

struct linker_to__head 

IteratorType(S)) 

{ 

}; 

S set_link; 

linker_to__head(const S& set_link) 

void operator()(!& h, I& f) 

set_link(set_link) { } 

{ 

} 

11 Precondition: successor( f) is defined 
IteratorType(S) tmp = successor(f); 

set_link(f, h); 

h = f; 

f = tmp; 

With this machine, we can reverse a range of iterators: 

template<typename I, typename S> 

requires(ForwardLinker(S) && I == IteratorType(S)) 

I reverse_append(I f, I 1, I h, S set_link) 
{ 

} 

11 Precondition: bounded_range( f, l) /\ h tJ. [ f, l) 

linker_to__head<I, S> link_to__head(set_link); 

while (f != 1) link_to__head(h, f); 

return h; 
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To avoid sharing of proper tails, h should be the beginning of a disjoint linked 

list (for a singly linked list, nil is acceptable) or l. While we could have used l as 

the initial value for h (thus giving us reverse_linked), it is useful to pass a separate 

accumulation parameter. 

8.3 Applications of Link Rearrangements 

Given a predicate on the value type of a linked iterator type, we can use split_linked 

to partition a range. We need an adapter to convert from a predicate on values to a 

predicate on iterators: 

template<typename I, typename P> 

requires(Readable(I) && 

Predicate(P) && ValueType(I) -- Domain(P)) 

struct predicate_source 
{ 

}; 

p p; 

predicate_source(const P& p) 

bool operator()(! i) 
{ 

return p(source(i)); 
} 

p(p) { } 

With this adapter, we can partition a range into values not satisfying the given 

predicate and those satisfying it: 

template<typename I, typename S, typename P> 

requires(ForwardLinker(S) && I == IteratorType(S) && 

UnaryPredicate(P) && ValueType(I) == Domain(P)) 

pair< pair<I, I>, ,pair<I, I> > 
partition_linked(I f, I 1, Pp, S set_link) 
{ 

predicate_source<I, P> ps(p); 

return split_linked(f, 1, ps, set_link); 
} 
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Given a weak ordering on the value type of a linked iterator type, we can use 
combine_linked_nonempty to merge increasing ranges. Again, we need an adapter to 

convert from a relation on values to a relation on iterators: 

template<typename IO, typename 11, typename R> 

requires(Readable(IO) && Readable(I1) && 

ValueType(IO) == ValueType(I1) && 

Relation(R) && ValueType(IO) == Domain(R)) 

struct relation_source 
{ 

}; 

R r; 
relation_source(const R& r) : r(r) { } 

bool operator()(IO iO, !1 ii) 
{ 

return r(source(iO), source(i1)); 
} 

After combining ranges with this relation, the only remaining work is to find 
the last iterator of the combined range and set it to ll: 

template<typename I, typename S, typename R> 

requires(Readable(I) && 

ForwardLinker(S) && I -- IteratorType(S) && 

Relation(R) && ValueType(I) == Domain(R)) 
pair<I, I> merge_linked__nonempty(I fO, I 10, I f1, I 11, 

R r, S set_link) 
{ 

} 

11 Precondition: fO f lO /\ fl f ll 
11 Precondition: increasing_range( fO, lO, r) 
II Precondition: increasing_range(fl, ll, r) 
relation_source<I, I, R> rs(r); 

triple<!, I, I> t = combine_linked__nonempty(fO, 10, f1, 11, 
rs, set_link); 

set_link(find_last(t.m1, t.m2), 11); 

return pair<I, I>(t.mO, 11); 
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Lemma 8.6 If [fO, 10) and [fl, 11) are nonempty increasing bounded 

ranges, their merge with merge_linked_nonempty is an increasing bounded 

range. 

Lemma8.7 IfiO E [fO, lO)andil E [fl, ll)areiteratorswhosevaluesare 

equivalent under r, in the merge of these ranges with merge_linked_nonempty, 

iO -< il. 

Given merge_linked_nonempty, it is straightforward to implement a merge sort: 

template<typename I, typename S, typename R> 

requires(Readable(I) && 
ForwardLinker(S) && I -- IteratorType(S) && 
Relation(R) && ValueType(I) == Domain(R)) 

pair<I, I> sort_linked__nonempty__n(I f, DistanceType(I) n, 

R r, S set_link) 
{ 

} 

11 Precondition: counted_range( f, n) /\ n > 0 /\ weak_ordering(r) 

typedef DistanceType(I) N; 

typedef pair<I, I> P; 

if (n == N(i)) return P(f, successor(f)); 

N h = half__nonnegative(n); 

P pO = sort_linked__nonempty__n(f, h, r, set_link); 

P pi= sort_linked__nonempty__n(pO.mi, n - h, r, set_link); 

return merge_linked__nonempty(pO.mO, pO.mi, 

p1.m0, pi.mi, r, set_link); 

Lemma 8.8 sort_linked_nonempty_n is a link rearrangement. 

Lemma 8.9 If [f, n~ is a nonempty counted range, sorLlinked_nonempty_n 

will rearrange it into an increasing bounded range. 

A sort on a linked range is stable with respect to a weak ordering r if, whenever 

iterators i -< j in the input have equivalent values with respect to r, i -< j in the 

output. 

Lemma 8.10 sort_linked_nonempty_n is stable with respect to the supplied 
weak ordering r. 
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Exercise 8.3 Determine formulas for the worst-case and average 
number of applications of the relation and of the linker object in sorLlinked_ 

nonempty_n. 
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While the number of operations performed by sorLlinked_nonempty_n is close 

to optimal, poor locality of reference limits its usefulness if the linked structure 
does not fit into cache memory. In such situations, if extra memory is available, one 
should copy the linked list to an array and sort the array. 

Sorting a linked range does not depend on predecessor. Maintaining the invari-

ant: 

i = predecessor( successor( i)) 

requires a number of backward-linking operations proportional to the number 

of comparisons. We can avoid extra work by temporarily breaking the invariant. 
Suppose that I is a linked bidirectional iterator type, and that forward_linker 

and backward_linker are, respectively, forward and backward linker objects for 
I. We can supply f orward_linker to the sort procedure-treating the list as singly 

linked-and then fix up the predecessor links by applying backward_linker to each 

iterator after the first: 

pair<I, I> p = sort_linked_nonempty_n(f, n, 

f = p.mO; 
while (f != p.m1) { 

backward_linker(f, successor(f)); 

f = successor(f); 
}; 

r, forward_linker); 

Exercise 8.4 Implement a precedence-preserving linked rearrangement 

unique that takes a linked range and an equivalence relation on the value 
type of the iterators and that produces two ranges by moving all except the 
first iterator in any adjacent sequence of iterators with equivalent values to 

a second range. 

8.4 Linked Bifurcate Coordinates 

Allowing the modification of successor leads to link-rearrangement algorithms, such 

as combining and splitting. It is useful to have mutable traversal functions for other 
coordinate structures. We illustrate the idea with linked bifurcate coordinates. 
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For linked iterators, we passed the linking operation as a parameter because of 
the need to use different linking operations: for example, when restoring backward 
links after sort. For linked bifurcate coordinates, there does not appear to be a need 
for alternative versions of the linking operations, so we define them in the concept: 

LinkedBzfurcateCoordinate(T) b. 

Bz/urcateCoordinate(T) 

/\ seLlefLsuccessor : T x T-* void 

( i, j) r-+ establishes lefLsuccessor( i) = j 

/\ seLrighLsuccessor : T x T -* void 

( i, j) r-+ establishes righLsuccessor( i) = j 

The definition space for seLlefLsuccessor and seLrighLsuccessor is the set of 
nonempty coordinates. 

Trees constitute a rich set of possible data structures and algorithms. To con
clude this chapter, we show a small set of algorithms to demonstrate an important 
programming technique. This technique, called link reversal, modifies links as the 
tree is traversed, restoring the original state after a complete traversal while requir
ing only constant additional space. Link reversal requires additional axioms that 
allow dealing with empty coordinates: ones on which the traversal functions are not 
defined: 

EmptyLinkedBzfurcateCoordinate(T) b. 

LinkedBzfurcateCoordinate(n 

/\ em pty(T() )2 

/\ -iempty(i) ==> 
lefLsuccessor( i) and righLsuccessor( i) are defined 

/\ -iempty(i) ==> 
(-ihas_lefLsuccessor( i) {} empty(lefLsuccessor( i))) 

/\ -iempty(i) ==> 
(-ihas_righLsuccessor( i) {} em pty(righLsuccessor( i))) 

traverse_step from Chapter 7 is an efficient way to traverse via bidirectional bifur
cating coordinates but requires the predecessor function. When the predecessor func
tion is not available and recursive (stack-based) traversal is unacceptable because 
of unbalanced trees, link reversal can be used to temporarily store the link to the 

2. In other words, empty is true on the default constructed value and possibly on other values as 
well. 
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predecessor in a link normally containing a successor, thus ensuring that there is a 

path back to the root.3 

If we consider the left and right successors of a tree node together with the 

coordinate of a previous tree node as constituting a triple, we can perform a rotation 

of the three members of the triple with this machine: 

template<typename C> 

requires(EmptyLinkedBifurcateCoordinate(C)) 

void tree_rotate(C& curr, C& prev) 
{ 

} 

11 Precondition: --.empty(curr) 

C tmp = left_successor(curr); 

set_left_successor(curr, right_successor(curr)); 

set_right_successor(curr, prev); 

if (empty(tmp)) { prev = tmp; return; } 

prev = curr; 

curr = tmp; 

Repeated applications of tree_rotate allow traversal of an entire tree: 

template<typename C, typename Proc> 

requires(EmptyLinkedBifurcateCoordinate(C) && 

Procedure(Proc) && Arity(Proc) == 1 && 

C == InputType(Proc, 0)) 

Proc traverse_rotating(C c, Proc proc) 
{ 

11 Precondition: tree(c) 

if (empty(c)) return proc; 

C curr = c; 

C prev; 
do { 

proc(curr); 

tree_rotate(curr, prev); 

3. Link reversal was introduced in Schorr and Waite [ 1967] and was independently discovered by 
L. P. Deutsch. A version without tag bits was published in Robson [ 1973] and Morris [ 1979]. We show 
the particular technique of rotating the links due to Lindstrom [1973] and independently by Dwyer 
[1974]. 
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} 

} while (curr != c); 

do { 

proc(curr); 
tree_rotate(curr, prev); 

} while (curr != c); 

proc(curr); 

tree_rotate(curr, prev); 

return proc; 

Coordinates with Mutable Successors 

Theorem 8.1 Consider a call of traverse_rotating(c, proc) and any non

empty descendant i of c, where i has initial left and right successors l and r 

and predecessor p. Then 

1. The left and right successors of i go through three transitions: 

pre in post 
(l, r) ---+ ( r, p) ---+ ( p, l) ---+ (l, r) 

2. If n 1 and nr are the weights of land r, the transitions (r, p) ~ (p, l) and 

(p, l) p~t (l, r) take 3ni + 1 and 3nr + 1 calls of tree_rotate, respectively. 

3. If k is a running count of the calls of tree_rotate, the value of k mod 3 is 

distinct for each of the three transitions of the successors of i. 

4. During the call of traverse_rotati ng( c, proc), the total number of calls of 

tree_rotate is 3n, where n is the weight of c. 

Proof By induction on n, the weight of c. 

Exercise 8.5 Draw diagrams of each state of the traversal by traverse_rotati ng 

of a complete binary tree with seven nodes. 

traverse_rotati ng performs the same sequence of preorder, in order, and postorder 

visits as traverse_nonempty from Chapter 7. Unfortunately, we do not know how to 

determine whether a particular visit to a coordinate is the pre, in, or post visit. There 

are still useful things we can compute with traverse_rotati ng, such as the weight of a 

tree: 

template<typename T, typename N> 

requires(Integer(N)) 
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struct counter 
{ 

}; 

N n; 

counter() : n(O) { } 

counter(N n) : n(n) { } 

void operator()(const T&) { n = successor(n); } 

template<typename C> 

requires(EmptyLinkedBifurcateCoordinate(C)) 

WeightType(C) weight_rotating(C c) 
{ 

} 

11 Precondition: tree( c) 

typedef WeightType(C) N; 
return traverse_rotating(c, counter<C, N>()).n I N(3); 
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We can also arrange to visit each coordinate exactly once by counting visits 
modulo 3: 

template<typename N, typename Proc> 

requires(Integer(N) && 

Procedure(Proc) && Arity(Proc) -- 1) 

struct phased_applicator 
{ 

}; 

N period; 

N phase; 
N n; 

11 Invariant: n, phase E [O, period) 

Proc proc; 

phased_applicator(N period, N phase, N n, Proc proc) 

period(period), phase(phase), n(n), proc(proc) {} 

void operator()(InputType(Proc, 0) x) 
{ 

} 

if (n ==phase) proc(x); 

n = successor(n); 

if (n == period) n = O; 
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template<typename C, typename Proc> 

requires(EmptyLinkedBifurcateCoordinate(C) && 
Procedure(Proc) && Arity(Proc) == 1 && 
C == InputType(Proc, 0)) 

Proc traverse_phased_rotating(C c, int phase, Proc proc) 
{ 

} 

II Precondition: tree(c) /\ 0 <phase < 3 
phased_applicator<int, Proc> applicator(3, phase, 0, proc); 

return traverse_rotating(c, applicator).proc; 

Project 8.1 Consider using tree_rotate to implement isomorphism, equi

valence, and ordering on binary trees. 

8.5 Conclusions 

Linked coordinate structures with mutable traversal functions allow useful rear
rangement algorithms, such as sorting linked ranges. Systematic composition of 
such algorithms from simple machinelike components leads to efficient code with 
precise mathematical properties. Disciplined use of goto is a legitimate way of 

implementing state machines. Invariants involving more than one object may be 
temporarily violated during an update of one of the objects. An algorithm defines 
a scope inside which invariants may be broken as long as they are restored before 
the scope is exited. 
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Copying 

This chapter introduces writable iterators, whose access /unctions allow the value 

of iterators to be modified. We illustrate the use of writable iterators with a family 

of copy algorithms constructed from simple machines that copy one object and update 

the input and output iterators. Careful specification of preconditions allows input and 

output ranges to overlap during copying. When two nonoverlapping ranges of the 

same size are mutable, a family of swapping algorithms can be used to exchange their 

contents. 

9 .1 Writability 
This chapter discusses the second kind of access to iterators and other coordinate 
structures: writability. A type is writable if a unary procedure sink is defined on it; 
sink can only be used on the left side of an assignment whose right side evaluates to 
an object of ValueType(T): 

Writable(T) ~ 

ValueType: Writable~ Regular 

/\ (Vx ET) (Vv E ValueType(T)) sink(x) +---vis a well-formed statement 

The only use of sink(x) justified by the concept Writable is on the left side of an 
assignment. Of course, other uses may be supported by a particular type modeling 
Writable. 

sink does not have to be total; there may be objects of a writable type on which 
sink is not defined. As with readability, the concept does not provide a definition
space predicate to determine whether sink is defined for a particular object. Validity 
of its use in an algorithm must be derivable from preconditions. 
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For a particular state of an object x, only a single assignment to sink(x) can be 

justified by the concept Writable; a specific type might provide a protocol allowing 

subsequent assignments to sink(x). 1 

A writable object x and a readable object 1J are aliased if sink(x) and source(1J) 

are both defined and if assigning any value v to sink(x) causes it to appear as the 

value of source(11): 

property(T: Writable, U : Readable) 
requires(ValueType(T) = ValueType(U)) 

aliased : T x U 

(x, 11) r-+ sink(x) is defined/\ 

source( 1J) is defined /\ 
(Vv E ValueType(T)) sink(x) ~ v establishes source(1J) = v 

The final kind of access is mutability, which combines readability and writability 

in a consistent way: 

Mutable(T) ~ 
Readable(T) /\ Writable(T) 

/\ (Vx E T) sink(x) is defined {} source(x) is defined 
/\ (Vx E T) sink(x) is defined =} aliased(x, x) 

/\ deref: T ~ ValueType(T)& 

/\ (Vx E n sink(x) is defined {} deref(x) is defined 

For a mutable iterator, replacing source(x) or sink(x) with deref(x) does not affect a 

program's meaning or performance. 
A range of iterators from a type modeling Writable and Iterator is writable if 

sink is defined on all the iterators in the range: 

property(! : Writable) 
requires(lterator(I)) 

writable_bounded_range : I x I 

(f, l) r-+ bounded_range(f, l) /\(Vi E [f, l)) sink(i) is defined 

writable_weak_range and writable_counted_range are defined similarly. 

With a readable iterator i, source(i) may be called more than once and always 

returns the same value: It is regular. This allows us to write simple, useful algo

rithms, such as find_if. With a writable iterator j, however, assignment to sink(j) is 

1. Jerry Schwarz suggests a potentially more elegant interface: replacing sink with a procedure store 
such that store(v, x) is equivalent to sink(x) ~ v. 
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not repeatable: A call to successor must separate two assignments through an iterator. 

The asymmetry between readable and writable iterators is intentional: It does not 

seem to eliminate useful algorithms, and it allows models, such as output streams, 

that are not buffered. Nonregular successor in the Iterator concept and nonregu

lar sink enable algorithms to be used with input and output streams and not just 

in-memory data structures. 

A range of iterators from a type modeling Mutable and Forwardlterator is 

mutable if sink, and thus source and deref, are defined on all the iterators in the 

range. Only multipass algorithms both read from and write to the same range. Thus 

for mutable ranges we require at least forward iterators and we drop the requirement 

that two assignments to an iterator must be separated by a call to successor: 

property(! : Mutable) 

requires(Forwardlterator(I)) 

mutable_bounded_range : I x I 

(f, l) r-+ bounded_range(f, l) /\(Vi E [f, l)) sink(i) is defined 

mutable_weak_range and mutable_counted_range are defined similarly. 

9.2 Position-Based Copying 

We present a family of algorithms for copying objects from one or more input ranges 

to one or more output ranges. In general, the postconditions of these algorithms 

specify equality between objects in output ranges and the original values of objects 

in input ranges. When input and output ranges do not overlap, it is straightforward 

to establish the desired postcondition. It is, however, often useful to copy objects 

between overlapping ranges, so the precondition of each algorithm specifies what 

kind of overlap is allowed. 

The basic rule for overlap is that if an iterator within an input range is aliased 

with an iterator within an output range, the algorithm may not apply source to 

the input iterator after applying sink to the output iterator. We develop precise 

conditions, and general properties to express them, as we present the algorithms. 

The machines from which we compose the copying algorithms all take two iter

ators by reference and are responsible for both copying and updating the iterators. 

The most frequently used machine copies one object and then increments both 

iterators: 

template<typename I, typename O> 

requires(Readable(I) && Iterator(!) && 
Writable(O) && Iterator(O) && 
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ValueType(I) == ValueType(O)) 
void copy_step(I& f_i, O& f_o) 
{ 

} 

II Precondition: source(f J and sink(f 0 ) are defined 

sink(f_o) = source(f_i); 

f_i = successor(f_i); 

f_o = successor(f_o); 

Copying 

The general form of the copy algorithms is to perform a copying step until the 

termination condition is satisfied. For example, copy copies a half-open bounded 

range to an output range specified by its first iterator: 

template<typename I, typename 0> 

requires(Readable(I) && Iterator(!) && 

Writable(O) && Iterator(O) && 

ValueType(I) == ValueType(O)) 
0 copy(I f_i, I l_i, 0 f_o) 
{ 

} 

11 Precondition: noLoverla pped _forward ( f b lb f 0 , f 0 + (li - f J) 
while (f_i != l_i) copy_step(f_i, f_o); 

return f_o; 

copy returns the limit of the output range because it might not be known to the 

caller. The output iterator type might not allow multiple traversals, in which case if 

the limit were not returned, it would not be recoverable. 

The postcondition for copy is that the sequence of values in the output range is 

equal to the original sequence of values in the input range. In order to satisfy this 

postcondition, the precondition must ensure readability and writability, respectively, 

of the input and output ranges; sufficient size of the output range; and, if the input 

and output ranges overlap, that no input iterator is read after an aliased output 

iterator is written. These conditions are formalized with the help of the property 

noLoverlapped_forward. A readable range and a writable range are not overlapped 

forward if any aliased iterators occur at an index within the input range that does 

not exceed the index in the output range: 

property(! : Readable, 0 : Writable) 

requires(Iterator(I) /\ Iterator( 0)) 
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not_overlapped_forward : I x I x 0 x 0 

(fb lb f 0 , lo) I--* 

readable_bounded_range( f b lJ /\ 

writa ble_bou nded _range( f 0 , 10 ) /\ 

(Vki E [f b lJ)(Yk0 E [f 0 , 10 )) 

aliased(k0 , kJ ==} ki - f i < k 0 - f 0 

Sometimes, the sizes of the input and output ranges may be different: 

template<typename I, typename O> 
requires(Readable(I) && Iterator(!) && 

Writable(O) && Iterator(D) && 
ValueType(I) == ValueType(D)) 

pair<!, O> copy_bounded(I f_i, I l_i, 0 f_o, 0 l_o) 
{ 

} 

11 Precondition: not_overlapped_forward ( f b lb f 0 , 10 ) 

while (f_i != l_i && f_o != l_o) copy_step(f_i, f_o); 

return pair<!, O>(f_i, f_o); 
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While the ends of both ranges are known to the caller, returning the pair allows 
the caller to determine which range is smaller and where in the larger range copying 
stopped. Compared to copy, the output precondition is weakened: The output 
range could be shorter than the input range. One could even argue that the weakest 
precondition should be 

not_overlapped_forward(f bf i + n, f 0 , f 0 + n) 

wheren = min(li - fb 10 - fo). 

This auxiliary machine handles the termination condition for counted ranges: 

template<typename N> 

requires(Integer(N)) 
bool count_down(N& n) 
{ 

} 

11 Precondition: n > 0 
if (zero(n)) return false; 

n = predecessor(n); 

return true; 
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copy_n copies a half-open counted range to an output range specified by its first 
iterator: 

template<typename I, typename 0, typename N> 
requires(Readable(I) && Iterator(!) && 

Writable(O) && Iterator(D) && 
ValueType(I) == ValueType(D) && 

Integer(N)) 
pair<I, O> copy_n(I f_i, N n, 0 f_o) 
{ 

} 

II Precondition: not_overlapped_forward(f bf i+n' f 0 , f o+n) 

while (count_down(n)) copy_step(f_i, f_o); 

return pair<I, D>(f_i, f_o); 

The effect of copy_bounded for two counted ranges is obtained by calling copy_n 

with the minimum of the two sizes. 
When ranges overlap forward, it still is possible to copy if the iterator types 

model Bidirectionallterator and thus allow backward movement. That leads to the 
next machine: 

template<typename I, typename O> 

requires(Readable(I) && Bidirectionaliterator(I) && 
Writable(O) && Bidirectionaliterator(O) && 

ValueType(I) == ValueType(D)) 
void copy_backward_step(I& l_i, O& l_o) 
{ 

} 

11 Precondition: source(predecessor(li)) and sink(predecessor(l 0 )) 

11 are defined 
l_i = predecessor(l_i); 
l_o = predecessor(l_o); 
sink(l_o) = source(l_i); 

Since we deal with half-open ranges and start at the limit, we need to decrement 
before copying, which leads to copy_backward: 

template<typename I, typename O> 
requires(Readable(I) && Bidirectionaliterator(I) && 

Writable(O) && Bidirectionaliterator(O) && 
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ValueType(I) == ValueType(O)) 
0 copy_backward(I f_i, I l_i, 0 l_o) 
{ 

} 

II Precondition: not_overlapped_backward(f b lb 10 - (li - f J, 10 ) 

while (f_i ~= l_i) copy_backward_step(l_i, l_o); 

return l_o; 

copy _backward _n is similar. 
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The postcondition for copy_backward is analogous to copy and is formalized with 
the help of the property not_overlapped_backward. A readable range and a writable 
range are not overlapped backward if any aliased iterators occur at an index from the 
limit of the input range that does not exceed the index from the limit of the output 
range: 

property(! : Readable, 0 : Writable) 
requires(Iterator(I) /\Iterator( 0)) 

not_overlapped_backward : I x I x 0 x 0 

(fb lb f 0 , 10 ) I--+ 

readable_bounded_range( f b lJ /\ 

writa ble_bou nded _range( f 0 , 10 ) /\ 

(Yki E [f b lJ)(Yko E [f 0, lo)) 

aliased(k0 , kJ ==} li - ki < 10 - k 0 

If either of the ranges is of an iterator type modeling Bidirectiona!Iterator, we 
can reverse the direction of the output range with respect to the input range by 
using a machine that moves backward in the output or one that moves backward in 
the input: 

template<typename I, typename O> 

requires(Readable(I) && Bidirectionaliterator(I) && 

Writable(O) && Iterator(D) && 

ValueType(I) == ValueType(D)) 
void reverse_copy_step(I& l_i, O& f_o) 
{ 

} 

11 Precondition: source(predecessor(lJ) and sink(f 0 ) are defined 
l_i = predecessor(l_i); 

sink(f_o) = source(l_i); 

f_o = successor(f_o); 
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template<typename I, typename O> 

requires(Readable(I) && Iterator(!) && 

Writable(O) && Bidirectional!terator(D) && 

ValueType(I) == ValueType(O)) 
void reverse_copy_backward_step(I& f_i, O& l_o) 
{ 

} 

11 Precondition: source( f J and sink ( predecessor(l 0 )) are defined 
l_o = predecessor(l_o); 

sink(l_o) = source(f_i); 

f_i = successor(f_i); 

leading to the following algorithms: 

template<typename I, typename O> 
requires(Readable(I) && Bidirectional!terator(I) && 

Writable(O) && Iterator(O) && 

ValueType(I) == ValueType(O)) 
0 reverse_copy(I f_i, I l_i, 0 f_o) 
{ 

} 

II Precondition: not_overlapped(f b li, f 0 , f 0 + (li - f J) 
while (f_i != l_i) reverse_copy_step(l_i, f_o); 

return f_o; 

template<typename I, typename O> 
requires(Readable(I) && Iterator(!) && 

Writable(O) && Bidirectional!terator(D) && 

ValueType(I) == ValueType(D)) 
0 reverse_copy_backward(I f_i, I l_i, 0 l_o) 
{ 

} 

11 Precondition: not_overla pped ( f i, li, 10 - (li - f J, 10 ) 

while (f_i != l_i) reverse_copy_backward_step(f_i, l_o); 

return l_o; 

reverse_copy _n and reverse_copy _backward_n are similar. 

Copying 

The postcondition for both reverse_copy and reverse_copy _backward is that the 

output range is a reversed copy of the original sequence of values of the input range. 

The practical, but not the weakest, precondition is that the input and output ranges 
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do not overlap, which we formalize with the help of the property noLoverlapped. 

A readable range and a writable range are not overlapped if they have no aliased 

iterators in common: 

property(! : Readable, 0 : Writable) 

requires(lterator(I) /\ Iterator( 0)) 

noLoverlapped : I x I x 0 x 0 

(fb li, f 0 , 10 ) ~ 

readable_bounded_range( f b lJ /\ 

writable_bounded_range( f 0 , 10 ) /\ 

(Vki E [fb li)) (Vk0 E [f 0 , 10 )) --,aliased(k0 , kJ 

Exercise 9.1 Find the weakest preconditions for reverse_copy and its com
panion reverse_copy _backward. 

While the main reason to introduce copy_backward as well as copy is to handle 

ranges that are overlapped in either direction, the reason for introducing reverse_ 

copy_backward as well as reverse_copy is to allow greater flexibility in terms of iterator 

requirements. 

9 .3 Predicate-Based Copying 

The algorithms presented so far copy every object in the input range to the output 

range, and their postconditions do not depend on the value of any iterator. The 

algorithms in this section take a predicate argument and use it to control each 

copying step. 

For example, making the copying step conditional on a unary predicate leads 
to copy _select: 

template<typename I, typename 0, typename P> 

requires(Readable(I) && Iterator(!) && 
Writable(D) && Iterator(D) && 
ValueType(I) == ValueType(D) && 
UnaryPredicate(P) && I == Domain(P)) 

0 copy_select(I f_i, I l_i, 0 f_t, P p) 
{ 

II Precondition: noLoverlapped_forward(fi, lb f bf t + nt) 

11 where nt is an upper bound for the number of iterators satisfying p 
while (f_i != l_i) 

if (p(f_i)) copy_step(f_i, f_t); 
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} 

else f_i = successor(f_i); 

return f_t; 

The worst case for nt is li - f i; the context might ensure a smaller value. 

In the most common case, the predicate is applied not to the iterator but to its 

value: 

template<typename I, typename 0, typename P> 

requires(Readable(I) && Iterator(!) && 
Writable(O) && Iterator(O) && 
ValueType(I) == ValueType(O) && 
UnaryPredicate(P) && ValueType(I) -- Domain(P)) 

0 copy_if (I f_i, I l_i, 0 f_t, P p) 
{ 

} 

11 Precondition: same as for copy _select 

predicate_source<I, P> ps(p); 
return copy_select(f_i, l_i, f_t, ps); 

In Chapter 8 we presented spliUinked and combine_linked_nonempty operating 

on linked ranges of iterators. There are analogous copying algorithms: 

template<typename I, typename O_f, typename O_t, typename P> 

requires(Readable(I) && Iterator(!) && 
Writable(O_f) && Iterator(O_f) && 
Writable(O_t) && Iterator(O_t) && 
ValueType(I) == ValueType(O_f) && 
ValueType(I) == ValueType(O_t) && 
UnaryPredicate(P) && I == Domain(P)) 

pair<O_f, O_t> spli t_copy (I f _i, I l_i, O_f f _f, O_t Lt, 
p p) 

{ 

} 

11 Precondition: see below 

while (f_i != l_i) 

if (p(f_i)) copy_step(f_i, f_t); 

else copy_step(f_i, f_f); 
return pair<O_f, O_t>(f_f, f_t); 

Exercise 9.2 Write the postcondition for spliLcopy. 
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To satisfy its postcondition, a call of split_copy must ensure that the two output 
ranges do not overlap at all. It is permissible for either of the output ranges to 

overlap the input range as long as they do not overlap forward. This results in the 

following precondition: 

not_write_overla pped (ff, nf, f b nt) /\ 

((not_overlapped_forward(fb lb ff, ff+ nf) /\ not_overlapped(fi, lb fb lt)) V 

(not_overlapped_forward(fb lb ft, ft+ nt) /\ not_overlapped(fb lb ff, lf))) 

where nf and nt are upper bounds for the number of iterators not satisfying and 

satisfying p, respectively. 
The definition of the property not_write_overlapped depends on the notion of 

write aliasing: two writable objects x and 1J such that sink(x) and sink(1J) are both 
defined, and any observer of the effect of writes to x also observes the effect of 

writes to 1J: 

property(T: Writable, U: Writable) 

requires(ValueType(T) = ValueType(U)) 

write_aliased : T x U 

(x, 11) r-+ sink(x) is defined/\ sink(1J) is defined/\ 
(YV E Readable) (Yv EV) aliased(x, v) ¢> aliased(1J, v) 

That leads to the definition of not write overlapped, or writable ranges that have 

no aliased sinks in common: 

property(Oo : Writable, 0 1 : Writable) 

requires(lterator(Oo) /\ lterator(Oi)) 

not_write_overlapped : Oo x Oo x 01 x 01 

(fo, lo, fl, li) r-+ 

writable_bounded_range(fo, lo) /\ 

writable_bounded_range(f1, li) /\ 

(Yko E [fo, lo))(Yk1 E [f1, li)) -,write_aliased(ko, ki) 

As with select_copy, the predicate in the most common case of split_copy is 

applied not to the iterator but to its value:2 

template<typename I, typename O_f, typename O_t, typename P> 

requires(Readable(I) && Iterator(!) && 
Writable(O_f) && Iterator(O_f) && 
Writable(O_t) && Iterator(O_t) && 
ValueType(I) == ValueType(O_f) && 

2. The interface was suggested to us by T. K. Lakshman. 
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ValueType(I) == ValueType(O_t) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

pair<O_f, O_t> partition_copy(I f_i, I l_i, O_f f_f, O_t f_t, 
p p) 

{ 

} 

11 Precondition: same as split_copy 

predicate_source<I, P> ps(p); 
return split_copy(f_i, l_i, f_f, f_t, ps); 

Copying 

The values of each of the two output ranges are in the same relative order as in 
the input range; partition_copy _n is similar. 

The code for combine_copy is equally simple: 

template<typename IO, typename Ii, typename 0, typename R> 

requires(Readable(IO) && Iterator(IO) && 
Readable(Ii) && Iterator(Ii) && 
Writable(O) && Iterator(O) && 
BinaryPredicate(R) && 
ValueType(IO) == ValueType(O) && 
ValueType(Ii) == ValueType(O) && 
IO == InputType(R, i) && Ii == InputType(R, 0)) 

0 combine_copy(IO f_iO, IO l_iO, Ii f_ii, Ii l_ii, 0 f_o, R r) 
{ 

11 Precondition: see below 
while (f_iO != l_iO && f_ii != l_ii) 

if (r(f_ii, f_iO)) copy_step(f_ii, f_o); 

else copy_step(f_iO, f_o); 

return copy(f_ii, l_ii, copy(f_iO, l_iO, f_o)); 
} 

For combine_copy, read overlap between the input ranges is acceptable. Fur
thermore, it is permissible for one of the input ranges to overlap with the output 
range, but such overlap cannot be in the forward direction and must be offset in 
the backward direction by at least the size of the other input range, as described by 
the property backward_offset used in the precondition of combine_copy: 

(backward_offset(fi0 , li.o, f 0 , 10 , li1 - fi 1 ) /\ not_overlapped(fip lip f 0 , 10 )) V 

(backward_offset(fi1 , li1 , f 0 , 10 , lio - fi0 ) /\ not_overlapped(fi0 , li0 , f 0 , 10 )) 

where 10 = f 0 + (lio - f io) + (li 1 - f ii) is the limit of the output range. 
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The property backward_offset is satisfied by a readable range, a writable range, 
and an offset n > 0 if any aliased iterators occur at an index within the input range 

that, when increased by n, does not exceed the index in the output range: 

property(! : Readable, 0 : Writable, N : Integer) 

requires(Iterator(I) /\Iterator( 0)) 

backward_offset : I x I x 0 x 0 x N 

(fi, li, f 0) lo, n) !---+ 

readable_bounded_range(f i' lJ /\ 

n > 0 /\ 

writable_bounded_range(f 0 , 10 ) /\ 

('v'ki E [ f i, lJ )('v'k 0 E [ f 0 , l 0 ) ) 

aliased(k0 , kJ => ki - fi +n < k 0 - f 0 

Note that noLoverlapped_forward(fi, li, f 0 , 10 ) = backward_offset(fi, li, f 0 , 10 , 0). 

Exercise 9.3 Write the postcondition for combine_copy, and prove that it 

is satisfied whenever the precondition holds. 

combine_copy_backward is similar. To ensure that the same postcondition holds, 
the order of the if clauses must be reversed from the order in combine_copy: 

template<typename IO, typename Ii, typename 0, typename R> 

requires(Readable(IO) && Bidirectionaliterator(IO) && 
Readable(Ii) && Bidirectionaliterator(Ii) && 
Writable(O) && Bidirectionaliterator(O) && 
BinaryPredicate(R) && 
ValueType(IO) == ValueType(O) && 
ValueType(Ii) == ValueType(O) && 
IO == InputType(R, i) && Ii == InputType(R, 0)) 

0 combine_copy_backward(IO f_iO, IO l_iO, Ii f_ii, Ii l_ii, 

0 Lo, R r) 

{ 

11 Precondition: see below 
while (f_iO != l_iO && f_ii != l_ii) { 

} 

if (r(predecessor(l_ii), predecessor(l_iO))) 

copy_backward_step(l_iO, l_o); 

else 
copy_backward_step(l_ii, l_o); 
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} 

return copy_backward(f_iO, l_iO, 
copy_backward(f_i1, l_i1, l_o)); 

The precondition for combine_copy_backward is 

(forward_offset(fi0 , li
0

, f 0 , 10 , li1 - f ii)/\ noLoverlapped(fip li
1

, f 0 , 10 )) V 

(forward_offset(fip lip f 0 , 10 , lio ......... f io) /\ noLoverlapped(ficP li0 , f 0 , 10 )) 

where f 0 = 10 - (lio - f 10 ) + (li1 - f ii) is the first iterator of the output range. 

The property forward_offset is satisfied by a readable range, a writable range, 

and an offset n > 0 if any aliased iterators occur at an index from the limit of the 

input range that, increased by n, does not exceed the index from the limit of the 

output range: 

property(! : Readable, 0 : Writable, N : Integer) 

requires(Iterator(I) /\Iterator( 0)) 

forward_offset : I x I x 0 x 0 x N 

(fb li, f 0) lo, n) !---+ 

readable_bounded_range( f b li) /\ 

n>O/\ 
writable_bounded_range(f 0 , 10 ) /\ 

(Yki E [ f b li) )(Yko E [ f 0' lo)) 

aliased(ko, kJ => li - ki + n < lo - ko 

Note that noLoverlapped_backward(f b li, f 0 , 10 ) = forward_offset(f b lb f 0 , 

10 , 0). 

Exercise 9.4 Write the postcondition for combine_copy_backward, and 

prove that it is satisfied whenever the precondition holds. 

When the forward and backward combining copy algorithms are passed a weak 

ordering on the the value type, they merge increasing ranges: 

template<typename IO, typename Ii, typename 0, typename R> 

requires(Readable(IO) && Iterator(IO) && 
Readable(I1) && Iterator(I1) && 
Writable(O) && Iterator(O) && 
Relation(R) && 
ValueType(IO) == ValueType(O) && 
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ValueType(I1) == ValueType(O) && 
ValueType(IO) == Domain(R)) 

0 merge_copy(IO f_iO, IO l_iO, I1 f_i1, I1 l_i1, 0 f_o, R r) 
{ 

11 Precondition: in addition to that for combine_copy 

11 weak_ordering(r) /\ 

11 increasing_range( f io, lio, r) /\ increasing_range( f ii, li1 , r) 

relation_source<I1, IO, R> rs(r); 
return combine_copy(f_iO, l_iO, f_i1, l_i1, f_o, rs); 

} 

template<typename IO, typename I1, typename 0, typename R> 

requires(Readable(IO) && Bidirectionaliterator(IO) && 
Readable(I1) && Bidirectiona1Iterator(I1) && 
Writable(O) && Bidirectionaliterator(O) && 
Relation(R) && 
ValueType(IO) -- ValueType(O) && 
ValueType(I1) == ValueType(O) && 
ValueType(IO) == Domain(R)) 

0 merge_copy_backward(IO f_iO, IO l_iO, I1 f_i1, I1 l_i1, 0 l_o, 

R r) 

{ 

} 

11 Precondition: in addition to that for combine_copy_backward 

11 weak_ordering(r) /\ 

11 i ncreasi ng_ra nge( f io, lio, r) /\ i ncreasi ng_ra nge( f i 1 , li1 , r) 

relation_source<I1, IO, R> rs(r); 
return combine_copy_backward(f_iO, l_iO, f_i1, l_i1, l_o, 

rs); 

Exercise 9.5 Implement combine_copy_n and combine_copy_backward_n 

with the appropriate return values. 

Lemma 9.1 If the sizes of the input ranges are no and ni, merge_copy 

and merge_copy_backward perform n 0 + n 1 assignments and, in the worst 

case, no+ ni - 1 comparisons. 

Exercise 9.6 Determine the best case and average number of compari
sons. 

163 
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Project 9.1 Modern computing systems include highly optimized library 

procedures for copying memory; for example, memmove and memcpy, which 

use optimization techniques not discussed in this book. Study the proce

dures provided on your platform, determine the techniques they use (for 

example, loop unrolling and software pipelining), and design abstract pro

cedures expressing as many of these techniques as possible. What type 

requirements and preconditions are necessary for each technique? What 

language extensions would allow a compiler full flexibility to carry out these 

optimizations? 

9 .4 Swapping Ranges 

Instead of copying one range into another, it is sometimes useful to swap two ranges 

of the same size: to exchange the values of objects in corresponding positions. 

Swapping algorithms are very similar to copying algorithms, except that assignment 

is replaced by a procedure that exchanges the values of objects pointed to by two 

mutable iterators: 

template<typename IO, typename 11> 

requires(Mutable(IO) && Mutable(I1) && 
ValueType(IO) == ValueType(I1)) 

void exchange_values(IO x, 11 y) 
{ 

} 

11 Precondition: deref(x) and deref(-y) are defined 

ValueType(IO) t = source(x); 

sink(x) = source(y); 

sink(y) = t; 

Exercise 9.7 What is the postcondition of exchange_values? 

Lemma 9.2 The effects of exchange_values(i, j) and exchange_values(j, i) 

are equivalent. 

We would like the implementation of exchange_values to avoid actually con

structing or destroying any objects but simply to exchange the values of two objects, 

so that its cost does not increase with the amount of resources owned by the objects. 

We accomplish this goal in Chapter 12 with a notion of underlying type. 
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As with copying, we construct the swapping algorithms from machines that take 
two iterators by reference and are responsible for both exchanging and updating the 

iterators. One machine exchanges two objects and then increments both iterators: 

template<typename IO, typename I1> 

requires(Mutable(IO) && Forwarditerator(IO) && 

Mutable(I1) && Forwarditerator(I1) && 

ValueType(IO) == ValueType(I1)) 

void swap_step(IO& fO, I1& f1) 
{ 

} 

11 Precondition: de ref( f o) and de ref( f 1) are defined 
exchange_values(fO, f1); 

fO = successor(fO); 

f1 = successor(f1); 

This leads to the first algorithm, which is analogous to copy: 

template<typename IO, typename I1> 
requires(Mutable(IO) && Forwarditerator(IO) && 

Mutable(I1) && Forwarditerator(I1) && 

ValueType(IO) == ValueType(I1)) 

I1 swap_ranges(IO fO, IO 10, I1 f1) 
{ 

} 

11 Precondition: mutable_bounded_range( f o, lo) 

II Precondition: mutable_counted_range(f1, lo - fo) 

while (fO != 10) swap_step(fO, f1); 

return f1; 

The second algorithm is analogous to copy_bounded: 

template<typename IO, typename I1> 
requires(Mutable(IO) && Forwarditerator(IO) && 

Mutable(I1) && Forwarditerator(I1) && 

ValueType(IO) == ValueType(I1)) 

pair<IO, I1> swap_ranges_bounded(IO fO, IO 10, I1 f1, I1 11) 
{ 

11 Precondition: m uta ble_bou nded _range( f o, lo) 
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} 

11 Precondition: m uta ble_bou nded _range( f 1, 11) 

while (fO != 10 && f1 != 11) swap_step(fO, f1); 

return pair<IO, I1>(f0, f1); 

The third algorithm is analogous to copy_n: 

template<typename IO, typename I1, typename N> 

requires(Mutable(IO) && Forwarditerator(IO) && 

Mutable(I1) && Forwarditerator(I1) && 

ValueType(IO) == ValueType(I1) && 

Integer(N)) 
pair<IO, I1> swap_ranges__n(IO fO, I1 f1, N n) 
{ 

} 

11 Precondition: mutable_counted_range( fo, n) 

11 Precondition: mutable_counted_range( f 1, n) 

while (count_down(n)) swap_step(fO, f1); 

return pair<IO, I1>(f0, f1); 

Copying 

When the ranges passed to the range-swapping algorithms do not overlap, it 

is apparent that their effect is to exchange the values of objects in corresponding 
'positions. In the next chapter, we derive the postcondition for the overlapping 

case. 
Reverse copying results in a copy in which positions are reversed from the 

original; reverse swapping is analogous. It requires a second machine, which moves 
backward in the first range and forward in the second range: 

template<typename IO, typename I1> 

requires(Mutable(IO) && Bidirectionaliterator(IO) && 

Mutable(I1) && Forwarditerator(I1) && 

ValueType(IO) == ValueType(I1)) 

void reverse_swap_step(IO& 10, I1& f1) 
{ 

} 

11 Precondition: de ref( predecessor(lo)) and de ref( f 1) are defined 
10 = predecessor(lO); 

exchange_values(lO, f1); 

f1 = successor(f1); 
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Because of the symmetry of exchange_values, reverse_swap_ranges can be used 

whenever at least one iterator type is bidirectional; no backward versions are needed: 

template<typename IO, typename I1> 

requires(Mutable(IO) && Bidirectionaliterator(IO) && 
Mutable(I1) && Forwarditerator(I1) && 
ValueType(IO) == ValueType(I1)) 

I1 reverse_swap_ranges(IO fO, IO 10, I1 f1) 
{ 

} 

11 Precondition: mutable_bounded_range(fo, lo) 

11 Precondition: m uta ble_cou nted _range( f 1, lo - f o) 

while (fO != 10) reverse_swap_step(lO, f1); 

return f 1; 

template<typename IO, typename I1> 

requires(Mutable(IO) && Bidirectionaliterator(IO) && 
Mutable(I1) && Forwarditerator(I1) && 
ValueType(IO) == ValueType(I1)) 

pair<IO, I1>reverse_swap_ranges_bounded(IO fO, IO 10, 

I1 f1, I1 11) 
{ 

} 

11 Precondition: mutable_bounded_range(fo, lo) 

11 Precondition: mutable_bounded_range( fl, 11) 

while (fO != 10 && f1 != 11) 

reverse_swap_step(lO, f1); 

return pair<IO, I1>(10, f1); 

template<typename IO, typename I1, typename N> 

requires(Mutable(IO) && Bidirectionaliterator(IO) && 
Mutable(I1) && Forwarditerator(I1) && 
ValueType(IO) == ValueType(I1) && 
Integer(N)) 

pair<IO, I1> reverse_swap_ranges__n(IO 10, I1 f1, N n) 
{ 

11 Precondition: mutable_counted_range(lo - n, n) 
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} 

11 Precondition: mutable_counted_range( f 1, n) 

while (count_down(n)) reverse_swap_step(lO, f1); 

return pair<IO, 11>(10, f1); 

9 .5 Conclusions 

Copying 

Extending an iterator type with sink leads to writability and mutability. Although 
the axiom for sink is simple, the issues of aliasing and of concurrent updates
which this book does not treat-make imperative programming complicated. In 
particular, defining preconditions that deal with aliasing through different iterator 
types requires great care. Copying algorithms are simple, powerful, and widely 
used. Composing these algorithms from simple machines helps to organize them 
into a family by identifying commonalities and suggesting additional variations. 
Using value exchange instead of value assignment leads to an analogous but slightly 
smaller family of useful range-swapping algorithms. 



Chapter 10 

Rearrangements 

Lis chapter introduces the concept of permutation and a taxonomy for a class of 

algorithms) called rearrangements) that permute the elements of a range to satisfy a 

given postcondition. We provide iterative algorithms of reverse for bidirectional and 

random-access iterators) and a divide-and-conquer algorithm for reverse on forward 

iterators. We show how to transform divide-and-conquer algorithms to make them 

run faster when extra memory is available. We describe three rotation algorithms 

corresponding to different iterator concepts) where rotation is the interchange of two 

adjacent ranges of not necessarily equal size. We conclude with a discussion of how to 

package algorithms for compile-time selection based on their requirements. 

10.1 Permutations 

A transformation f is an into transformation if, for all x in its definition space, there 
exists a y in its definition space such that y = f(x). A transformation f is an onto 

transformation if, for all y in its definition space, there exists an x in its definition 
space such that y = f(x). A transformation f is a one-to-one transformation if, for 
all x, x' in its definition space, f(x) = f(x') ::::} x = x'. 

Lemma 10.1 A transformation on a finite definition space is an onto trans
formation if and only if it is both an into and one-to-one transformation. 

Exercise 10.1 Find a transformation of the natural numbers that is both 
an into and onto transformation but not a one-to-one transformation, and 
one that is both an into and one-to-one transformation but not an onto 
transformation. 
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A fixed point of a transformation is an element x such that f (x) = x. An identity 

transformation is one that has every element of its definition space as a fixed point. 

We denote the identity transformation on a set S as identity 5 . 

A permutation is an onto transformation on a finite definition space. An example 
of a permutation on [O, 6): 

p(O) = 5 

p(l) = 2 

p(2) = 4 

p(3) = 3 

p(4) = 1 

p(5) = 0 

If p and q are two permutations on a set S, the composition q op takes x E S to 
q(p(x)). 

Lemma 10.2 The composition of permutations is a permutation. 

Lemma 10.3 Composition of permutations is associative. 

Lemma 10.4 For every permutation p on a set S, there is an inverse per

mutation p-1 such that p-1 op =po p-1 = identity 5 . 

The permutations on a set form a group under composition. 

Lemma 10.5 Every finite group is a subgroup of a permutation group 

of its elements, where every permutation in the subgroup is generated by 

multiplying all the elements by an individual element. 

For example, the multiplication group modulo 5 has the following multiplica
tion table: 

x 1 2 3 4 
1 1 2 3 4 
2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

Every row and column of the multiplication table is a permutation. Since not ev
ery one of the 4 ! = 24 permutations of four elements appears in it, the multiplication 
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group modulo 5 is therefore a proper subgroup of the permutation group of four 

elements. 

A cycle is a circular orbit within a permutation. A trivial cycle is one with a cycle 

size of 1; the element in a trivial cycle is a fixed point. A permutation containing 

a single nontrivial cycle is called a cyclic permutation. A transposition is a cyclic 

permutation with a cycle size of 2. 

Lemma 10.6 Every element in a permutation belongs to a unique cycle. 

Lemma 10.7 Any permutation of a set with n elements contains k < n 

cycles. 

Lemma 10.8 Disjoint cyclic permutations commute. 

Exercise 10.2 Show an example of two nondisjoint cyclic permutations 

that do not commute. 

Lemma 10.9 Every permutation can be represented as a product of the 

cyclic permutations corresponding to its cycles. 

Lemma 10.10 The inverse of a permutation is the product of the inverses 

of its cycles. 

Lemma 10.11 Every cyclic permutation is a product of transpositions. 

Lemma 10.12 Every permutation is a product of transpositions. 

A finite set S of size n is a set for which there exists a pair of functions 

satisfying 

chooses : [O, n) ~ S 

index5 : S ~ [O, n) 

choose 5 (index5 (x)) = x 

index 5 (choose 5 ( i)) = i 

In other words, Scan be put into one-to-one correspondence with a range of natural 

numbers. 
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If p is a permutation on a finite set S of size n, there is a corresponding index 

permutation p' on [O, n) defined as 

p' ( i) = index5 (p(choose 5 (i))) 

Lemma 10.13 p(x) = choose 5 (p'(index5 (x))) 

We will frequently define permutations by the corresponding index permuta

tions. 

10.2 Rearrangements 

A rearrangement is an algorithm that copies the objects from an input range to an 
output range such that the mapping between the indices of the input and output 

ranges is a permutation. This chapter deals with position-based rearrangements, 
where the destination of a value depends only on its original position and not on the 
value itself. The next chapter deals with predicate-based rearrangements, where the 
destination of a value depends only on the result of applying a predicate to a value, 
and ordering-based rearrangements, where the destination of a value depends only 
on the ordering of values. 

In Chapter 8 we studied link rearrangements, such as reverse_linked, where 
links are modified to establish a rearrangement. In Chapter 9 we studied copying 
rearrangements, such as copy and reverse_copy. In this and the next chapter we study 
mutative rearrangements, where the input and output ranges are identical. 

Every mutative rearrangement corresponds to two permutations: a to-permuta

tion mapping an iterator i to the iterator pointing to the destination of the element 
at i and a from-permutation mapping an iterator i to the iterator pointing to the 

origin of the element moved to i. 

Lemma 10.14 The to-permutation and from-permutation for a rearrange
ment are inverses of each other. 

If the to-permutation is known, we can rearrange a cycle with this algorithm: 

template<typename I, typename F> 

requires(Mutable(I) && Transformation(F) && I -- Domain(F)) 

void cycle_to(I i, F f) 
{ 

11 Precondition: The orbit of i under f is circular 

11 Precondition: (Vn E N) deref( fn ( i)) is defined 
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} 

I k = f(i); 
while (k != i) { 

exchange_values(i, k); 

k = f(k); 
} 
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After cycle_to(i, f), the value of source(f(j)) and the original value of source(j) 

are equal for all j in the orbit of i under f. The call performs 3(n - 1) assignments 
for a cycle of size n. 

Exercise 10.3 Implement a version of cycle_to that performs 2n - 1 

assignments. 

If the from-permutation i_s known, we can rearrange a cycle with this algorithm: 

template<typename I, typename F> 
requires(Mutable(I) && Transformation(F) && I -- Domain(F)) 

void cycle_from(I i, F f) 
{ 

} 

11 Precondition: The orbit of i under f is circular 
11 Precondition: (Vn E N) de ref( fn ( i)) is defined 
ValueType(I) tmp = source(i); 

I j = i; 
I k = f(i); 
while (k != i) { 

} 

sink(j) = source(k); 

j = k; 

k = f(k); 

sink(j) = tmp; 

After cycle_from(i, f), the value of source(j) and the original value of source(f(j)) 

are equal for all j in the orbit of i under f. The call performs n + 1 assignments, 
whereas implementing it with exchange_values would perform 3 ( n - 1) assignments. 
Observe that we require only mutability on the type I; we do not need any traver
sal functions, because the transformation f performs the traversal. In addition to 
the from-permutation, implementing a mutative rearrangement using cycle_from 
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requires a way to obtain a representative element from each cycle. In some cases the 

cycle structure and representatives of the cycles are known. 

Exercise 10.4 Implement an algorithm that performs an arbitrary rear
rangement of a range of indexed iterators. Use an array of n Boolean values 

to mark elements as they are placed, and scan this array for an unmarked 
value to determine a representive of the next cycle. 

Exercise 10.5 Assuming iterators with total ordering, design an algorithm 

that uses constant storage to determine whether an iterator is a representa
tive for a cycle; use this algorithm to implement an arbitrary rearrangement. 

Lemma 10.15 Given a from-permutation, it is possible to perform a mu

tative rearrangement using n+ cN - cT assignments, where n is the number 

of elements, cN the number of nontrivial cycles, and cT the number of trivial 

cycles. 

10.3 Reverse Algorithms 

A simple but useful position-based mutative rearrangement is reversing a range. 

This rearrangement is induced by the reverse permutation on a finite set with n 

elements, which is defined by the index permutation 

p(i) = (n - 1) - i 

Lemma 10.16 The number of nontrivial cycles in a reverse permutation 

is Ln/2J; the number of trivial cycles is n mod 2. 

Lemma 10.17 Ln/2J is the largest possible number of nontrivial cycles in 
a permutation. 

The definition of reverse directly gives the following algorithm for indexed 
iterators: 1 

template<typename I> 

requires(Mutable(I) && Indexediterator(I)) 

1. A reverse algorithm could return the range of elements that were not moved: the middle element 
when the size of the range is odd or the empty range between the two "middle" elements when the size 
of the range is even. We do not know of an example when this return value is useful and, therefore. 
return void. Of course, for versions taking a counted range of forward iterators, it is useful to return 
the limit. 
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void reverse_n_indexed(I f, DistanceType(I) n) 
{ 

} 

11 Precondition: mutable_counted_range( f, n) 

DistanceType(I) i(O); 

n = predecessor(n); 

while (i < n) { 

} 

II n = (noriginat - 1) - i 
exchange_values(f + i, f + n); 

i = successor(i); 

n = predecessor(n); 
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If the algorithm is used with forward or bidirectional iterators, it performs a 
quadratic number of iterator increments. For bidirectional iterators, two tests per 
iteration are required: 

template<typename I> 

requires(Mutable(I) && Bidirectionaliterator(I)) 

void reverse_bidirectional(I f, I 1) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) 

while (true) { 

} 

if (f == 1) return; 

1 = predecessor(l); 

if (f == 1) return; 

exchange_values(f, l); 

f = successor(f); 

When the size of the range is known, reverse_swap_ranges_n can be used: 

template<typename I> 

requires(Mutable(I) && Bidirectionallterator(I)) 

void reverse_n_bidirectional(I f, I 1, DistanceType(I) n) 
{ 

} 

II Precondition: mutable_bounded_range(f, l) /\. 0 < n < 1- f 

reverse_swap_ranges_n(l, f, half_nonnegative(n)); 
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The order of the first two arguments to reverse_swap_ranges_n is determined by 

the fact that it moves backward in the first range. Passing n < l - f to 

reverse_n_bidirectional leaves values in the middle in their original positions. 
When a data structure provides forward iterators, they are sometimes linked 

iterators, in which case reverse_linked can be used. In other cases extra buffer memory 
may be available, allowing the following algorithm to be used: 

template<typename I, typename B> 

requires(Mutable(I) && Forwarditerator(I) && 
Mutable(B) && Bidirectionaliterator(B) && 
ValueType(I) == ValueType(B)) 

I reverse...n_with_buffer(I f_i, DistanceType(I) n, B f_b) 
{ 

} 

11 Precondition: mutable_counted_range( f i' n) 

11 Precondition: m uta ble_cou nted _range( f b, n) 

return reverse_copy(f_b, copy...n(f_i, n, f_b) .mi, f_i); 

reverse_n_with_buffer performs 2n assignments. 

We will use this approach of copying to a buffer and back for other rearrange

ments. 
If no buffer memory is available but logarithmic storage is available as stack 

space, a divide-and-conquer algorithm is possible: Split the range into two parts. 
reverse each part, and, finally, interchange the parts with swap_ranges_n. 

Lemma 10.18 Splitting as evenly as possible minimizes the work. 

Returning the limit allows us to optimize traversal to the midpoint by using the 

technique we call auxiliary computation during recursion: 

template<typename I> 

requires(Mutable(I) && Forwarditerator(I)) 

I reverse_n_forward(I f, DistanceType(I) n) 
{ 

11 Precondition: mutable_counted_range( f, n) 

typedef DistanceType(I) N; 

if (n < N(2)) return f + n; 

N h = half...nonnegative(n); 
N n_mod_2 = n - twice(h); 
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} 

Im= reverse_n_forward(f, h) + n__mod_2; 

I 1 = reverse_n_forward(m, h); 

swap_ranges_n(f, m, h); 

return l; 

The correctness of reverse_n_forward depends on the following. 

Lemma 10.19 The reverse permutation on [O, n) is the only permutation 
satisfying i < j => p(j) < p(i). 

177 

This condition obviously holds for ranges of size 1. The recursive calls induc
tively establish that the condition holds within each half. The condition between the 
halves and the skipped middle element, if any, is reestablished with swap_ranges_n. 

Lemma 10.20 For a range of length n = l:~~~nJ ai2\ where ai is the 
ith digit in the binary representation of n, the number of assignments is 
3 ~Llog nJ ·2i 
2 L..Ji=O U(t · 

reverse_n_forward requires a logarithmic amount of space for the call stack. A 
memory-adaptive algorithm uses as much additional space as it can acquire to max
imize performance. A few percent of additional space gives a large performance 
improvement. That leads to the following algorithm, which uses divide and con
quer and switches to the linear-time reverse_n_with_buffer whenever the subproblem 

fits into the buffer: 

template<typename I, typename B> 

requires(Mutable(I) && Forwarditerator(I) && 
Mutable(B) && Bidirectionaliterator(B) && 
ValueType(I) == ValueType(B)) 

I reverse_n_adaptive(I f_i, DistanceType(I) n_i, 

B f_b, DistanceType(I) n_b) 
{ 

II Precondition: mutable_counted_range(f b nJ 

II Precondition: mutable_counted_range(fb, nb) 

typedef DistanceType(I) N; 
if (n_i < N(2)) 

return f_i + n_i; 
if (n_i <= n_b) 
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} 

return reverse_n_with_buffer(f_i, n_i, f_b); 

N h_i = half_nonnegative(n_i); 

N n_mod_2 = n_i - twice(h_i); 

Rearrangements 

I m_i = reverse_n_adaptive(f_i, h_i, f_b, n_b) + n_mod_2; 

I l_i = reverse_n_adaptive(m_i, h_i, f_b, n_b); 

swap_ranges_n(f_i, m_i, h_i); 

return l_i; 

Exercise 10.6 Derive a formula for the number of assignments performed 
by reverse_n_adaptive for given range and buffer sizes. 

10.4 Rotate Algorithms 

The permutation p of n elements defined by an index permutation p(i) = (i + k) 

mod n is called the k-rotation. 

Lemma 10.21 The inverse of a k-rotation of n elements is an (n - k)

rotation. 

An element with index i is in the cycle 

{i, (i + k) mod n, (i + 2k) mod n, ... } = {(i + uk) mod n} 

The length of the cycle is the smallest positive integer m such that 

i = ( i + mk) mod n 

This is equivalent to mk mod n = 0, which shows the length of the cycle to be 

independent of i. Since mis the smallest positive number such that mk mod n = 0, 
lcm(k, n) = mk. Using the standard identity 

lcm(a, b) gcd(a, b) =ab 

we obtain that the size of the cycle 

lcm(k, n) kn n 
m= = =---

k gcd(k, n)k gcd(k, n) 

The number of cycles, therefore, is gcd(k, n). 
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Consider two elements in a cycle: (i + uk) mod n and (i + vk) mod n. The 

distance between them is 

l(i + uk) mod n - (i + vk) mod nl = (u - v)k mod n 

=(u-v)k-pn 

where p = quotient((u - v)k, n). Since both k and n are divisible by d = gcd(k, n), 

so is the distance. Therefore the distance between different elements in the same 

cycle is at least d, and elements with indices in [O, d) belong to disjoint cycles. 

k-rotation rearrangement of a range [ f, l) is equivalent to interchanging the 

relative positions of the values in the subranges [f, m) and [m, l), where m = 

f + ( (l - f) - k) = l - k. m is a more useful input than k. When forward or 

bidirectional iterators are involved, it avoids performing linear-time operations to 

compute m from k. Returning the iterator m' = f + k pointing to the new position 

of the element at f is useful for many other algorithms.2 

Lemma 10.22 Rotating a range [f, l) around the iterator m and then ro

tating it around the returned value m' returns m and restores the range to 

its original state. 

We can use cycle_from to implement a k-rotation rearrangement of a range of 

indexed or random-access iterators. The to-permutation is p(i) = (i+ k) mod n, and 

thefrom-permutationisitsinverse:p-1(i) = (i+(n-k)) mod n,wheren-k = m-f. 

We want to avoid evaluating mod, and we observe that 

p_ 1(i) = {i + (n - k) 

i-k 

if i < k 

if i > k 

That leads to the following function object for random-access iterators: 

template<typename I> 

requires(RandomAccessiterator(I)) 

struct k_rotate_f rom_permutation_random_access 
{ 

DistanceType(I) k; 

DistanceType(I) n_minus_k; 

2. Joseph Tighe suggests returning a pair, m and m', in the order constituting a valid range; although 
it is an interesting suggestion and preserves all the information, we do not yet know of a compelling 
use of such an interface. 
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I m_prime; 

k_rotate_from_permutation_random_access(I f, Im, I 1) 

k(l - m), n__minus__k(m - f), m_prime(f + (1 - m)) 

}; 

{ 

II Precondition: bounded_range(f, l) /\. m E [f, l) 
} 

I operator()(! x) 
{ 

11 Precondition: x E [ f, l) 
if (x < m_prime) return x + n__minus__k; 

else return x - k; 
} 

For indexed iterators, the absence of natural ordering and subtraction of a 

distance from an iterator costs an extra addition or two: 

template<typename I> 

requires(Indexedlterator(I)) 
struct k_rotate_from_permutation_indexed 
{ 

}; 

DistanceType(I) k; 

DistanceType(I) n__minus__k; 

I f; 

k_rotate_from_permutation_indexed(I f, Im, I 1) 

k(l - m), n__minus__k(m - f), f(f) 

{ 

II Precondition: bounded_range(f, l) /\. m E [f, l) 

} 

I operator()(! x) 
{ 

} 

11 Precondition: x E [ f, l) 
DistanceType(I) i = x - f; 
if (i < k) return x + n__minus__k; 

else return f + (i - k); 
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This procedure rotates every cycle: 

template<typename I, typename F> 

requires(Mutable(I) && Indexediterator(I) && 
Transformation(F) && I == Domain(F)) 

I rotate_cycles(I f, Im, I 1, F from) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) /\. m E [ f, l] 

11 Precondition: from is a from-permutation on [ f, l) 

typedef DistanceType(I) N; 

Nd= gcd<N, N>(m - f, 1 - m); 

while (count_down(d)) cycle_from(f + d, from); 

return f + (1 - m); 
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This algorithm was first published in Fletcher and Silver [1966] except that 
they used cycle_to where we use cycle_from. These procedures select the appropriate 
function object: 

template<typename I> 

requires(Mutable(I) && Indexediterator(I)) 

I rotate_indexed...nontrivial(I f, Im, I 1) 
{ 

} 

II Precondition: mutable_bounded_range(f, l) /\. f-< m-< l 

k_rotate_from_permutation_indexed<I> p(f, m, l); 

return rotate_cycles(f, m, 1, p); 

template<typename I> 

requires(Mutable(I) && RandomAccessiterator(I)) 

I rotate_random_access...nontrivial(I f, Im, I 1) 
{ 

} 

II Precondition: mutable_bounded_range(f, l) /\. f-< m-< l 

k_rotate_from_permutation_random_access<I> p(f, m, l); 

return rotate_cycles(f, m, 1, p); 

The number of assignments is n + cN - cT = n + gcd(n, k). Recall that n is the 
number of elements, cN the number of nontrivial cycles, and cT the number of trivial 
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cycles. The expected value of gcd( n, k) for 1 < n, k < m is ; 2 ln m + C + 0( 1fo) 
(see Diaconis and Erdos [2004]). 

The following property leads to a rotation algorithm for bidirectional iterators. 

Lemma 10.23 The k-rotation on [O, n) is the only permutation p that 
inverts the relative ordering between the subranges [O, n- k) and [n- k, n) 

but preserves the relative ordering within each subrange: 

1. i < n - k /\. n - k < j < n:::} p(j) < p(i) 

2. i < j < n - k v n - k < i < j :::} p(i) < p(j) 

The reverse rearrangement satisfies condition 1 but not 2. Applying reverse to 
subranges [O, n - k) and [n - k, n) and then applying reverse to the entire range 

will satisfy both conditions: 

reverse_bidirectional(f, m); 

reverse_bidirectional(m, l); 

reverse_bidirectional(f, l); 

Finding the return value m' is handled by using reverse_swap_ranges_bounded:3 

template<typename I> 

requires(Mutable(I) && Bidirectionallterator(I)) 

I rotate_bidirectional_nontrivial(I f, Im, I 1) 
{ 

} 

II Precondition: mutable_bounded_range(f, l) /\. f-< m-< l 

reverse_bidirectional(f, m); 

reverse_bidirectional(m, l); 

pair<I, I> p = reverse_swap_ranges_bounded(m, 1, f, m); 

reverse_bidirectional(p.m1, p.mO); 

if (m == p.mO) return p.m1; 

else return p.mO; 

Lemma 10.24 The number of assignments is 3(Ln/2J + Lk/2J + 

L(n-k)/2J ), which is 3n when both nand k are even and 3(n-2) otherwise. 

3. The use of reverse_swa p_ra nges_bou nded to determine m' was suggested to us by Wilson Ho 
and Raymond Lo. 
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Given a range [ f, l) and an iterator m in that range, a call 

p ~ swap_ranges_bounded(f, m, m, l) 

sets p to a pair of iterators such that 

p.mO = m v p.ml = l 

If p. mO = m /\ p. mO = l, we are done. Otherwise [ f, p. mO) are in the final position 

and, depending on whether p.mO = m or p.ml = l, we need to rotate [p.mO, l) 

around p.ml or m, respectively. This immediately leads to the following algorithm, 

first published in Gries and Mills [ 1981]: 

template<typename I> 

requires(Mutable(I) && Forwarditerator(I)) 

void rotate_forward_annotated(I f, Im, I 1) 

{ 

} 

11 Precondition: mutable_bounded_range(f, l) /\ f -< m-< l 
DistanceType(I) a= m - f; 

DistanceType(I) b = 1 - m; 

while (true) { 

} 

pair<!, I> p = swap_ranges_bounded(f, m, m, l); 

if (p.mO == m && p.m1 == 1) { assert(a == b); 

return; 
} 

f = p.mO; 

if (f == m) { 

m = p.m1; 
} else { 

} 

assert(b >a); 

b = b - a; 

assert(a > b); 

a = a - b; 

Lemma 10.25 The first time the else clause is taken, f = m', the standard 

return value for rotate. 

The annotation variables a and b remain equal to the sizes of the two subranges 

to be swapped. At the same time, they perform subtractive gcd of the initial sizes. 
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Each call of exchange_values performed by swap_ranges_bounded puts one value into 

its final position, except during the final call of swap_ranges_bounded, when each call 

of exchange_values puts two values into their final positions. Since the final call of 

swap_ranges_bounded performs gcd(n, k) calls of exchange_values, the total number 

of calls to exchange_values is n - gcd(n, k). 

The previous lemma suggests one way to implement a complete rotate_forward: 

Create a second copy of the code that saves a copy off in the else clause and then 

invokes rotate_forward_annotated to complete the rotation. This can be transformed 

into the following two procedures: 

template<typename I> 

requires(Mutable(I) && Forwardlterator(I)) 

void rotate_forward_step(I& f, I& m, I 1) 

{ 

} 

11 Precondition: mutable_bounded_range(f, l) /\ f -< m -< l 

I c = m; 
do { 

swap_step (f, c) ; 

if (f == m) m = c; 

} while (c != l); 

template<typename I> 

requires(Mutable(I) && Forwardlterator(I)) 

I rotate_forward..nontrivial(I f, Im, I 1) 

{ 

} 

II Precondition: mutable_bounded_range(f, l) /\ f-< m-< l 

rotate_forward_step(f, m, l); 

I m_prime = f ; 

while (m != 1) rotate_forward_step(f, m, l); 

return m_prime; 

Exercise 10.7 Verify that rotate_forward_nontrivial rotates [ f, l) around m 

and returns m'. 

Sometimes, it is useful to partially rotate a range, moving the correct objects 

to [ f, m') but leaving the objects in [ m', l) in some rearrangement of the objects 

originally in [ f, m). For example, this can be used to move undesired objects to the 
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end of a sequence in preparation for erasing them. We can accomplish this with the 

following algorithm: 

template<typename I> 

requires(Mutable(I) && Forwardlterator(I)) 

I rotate_partial...nontrivial(I f, Im, I 1) 
{ 

} 

11 Precondition: m uta ble_bou nded_ra nge( f, l) /\ f -< m -< l 

return swap_ranges(m, 1, f); 

Lemma 10.26 The postcondition for rotate_partial_nontrivial is that it per

forms a partial rotation such that the objects in positions [ m', l) are k

rotated where k = -(l - f) mod (m - f). 

A backward version of rotate_partial_nontrivial that uses a backward version of 

swa p_ra nges could be useful sometimes. 

When extra buffer memory is available, the following algorithm may be used: 

template<typename I, typename B> 

requires(Mutable(I) && Forwardlterator(I) && 
Mutable(B) && Forwardlterator(B)) 

I rotate_with_buffer...nontrivial(I f, Im, I 1, B f_b) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) /\ f -< m -< l 

II Precondition: mutable_counted_range(fb, 1- f) 

B l_b = copy(f, m, f_b); 

I m_prime = copy(m, 1, f); 
copy(f_b, l_b, m_prime); 

return m_prime; 

rotate_with_buffer _nontrivial performs (l - f) + ( m - f) assignments, whereas the 

following algorithm performs (l- f) + (l-m) assignments. When rotating a range of 

bidirectional iterators, the algorithm minimizing the number of assignments could 

be chosen, although computing the differences at runtime requires a linear number 

of successor operations: 

template<typename I, typename B> 

requires(Mutable(I) && Bidirectionallterator(I) && 
Mutable(B) && Forwardlterator(B)) 
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I rotate_with_buffer_backward...nontrivial(I f, Im, I 1, B f_b) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) /\ f -< m -< l 

11 Precondition: mutable_counted_range( f b, l - f) 
B l_b = copy(m, 1, f_b); 

copy_backward(f, m, l); 

return copy(f_b, l_b, f); 

10.5 Algorithm Selection 

In Section 10.3 we presented reverse algorithms with a variety of iterator require

ments and procedure signatures, including versions taking counted and bounded 

ranges. It is worth defining variations that make the most convenient signatures 

available for additional iterator types. For example, an additional constant-time 

iterator difference leads to the algorithm for reversing a bounded range of indexed 

iterators: 

template<typename I> 

requires(Mutable(I) && Indexediterator(I)) 

void reverse_indexed(I f, I 1) 
{ 

} 

/I Precondition: mutable_bounded_range( f, l) 
reverse...n_indexed(f, 1 - f); 

When a range of forward iterators must be reversed, there is usually enough 

extra memory available to allow reverse_n_adaptive to run efficiently. When the size 

of the range to be reversed is moderate, it can be obtained in the usual way (for 

example, malloc). However, when the size is very large, there might not be enough 

available physical memory to allocate a buffer of this size. Because algorithms such 

as reverse_n_adaptive run efficiently even when the size of the buffer is small in 

proportion to the range being mutated, it is useful for the system to provide a 

way to allocate a temporary buffer. The allocation may reserve less memory than 

requested; in a system with virtual memory, the allocated memory has physical 

memory assigned to it. A temporary buffer is intended for short-term use and is 

guaranteed to be returned when the algorithm terminates. 
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For example, the following algorithm uses a type temporary_buffer: 

template<typename I> 

requires(Mutable(I) && Forwarditerator(I)) 

void reverse_n_with_temporary_buffer(I f, DistanceType(I) n) 
{ 

} 

II Precondition: mutable_counted_range(f, n) 

temporary_buffer<ValueType(I)> b(n); 

reverse_n_adaptive(f, n, begin(b), size(b)); 
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The constructor b(n) allocates memory to hold some number m < n adjacent 
objects of type ValueType(I); size(b) returns the number m, and begin(b) returns an 

iterator pointing to the beginning of this range. The destructor for b deallocates the 
memory. 

For the same problem, there are often different algorithms for different type 

requirements. For example, for rotate there are three useful algorithms for indexed 

(and random access), bidirectional, and forward iterators. It is possible to auto

matically select from a family of algorithms, based on the requirements the types 
satisfy. We accomplish this by using a mechanism known as concept dispatch. We 
start by defining a top-level dispatch procedure, which in this case also handles 
trivial rotates: 

template<typename I> 

requires(Mutable(I) && Forwarditerator(I)) 

I rotate(! f, Im, I 1) 
{ 

} 

II Precondition: mutable_bounded_range(f, l) /\ m E [f, l] 

if Cm == f) return l; 

if Cm== 1) return f; 

return rotate_nontrivial(f, m, 1, IteratorConcept(I)()); 

The type function lteratorConcept returns a concept tag type, a type that encodes 

the strongest concept modeled by its argument. We then implement a procedure 
for each concept tag type: 

template<typename I> 

requires(Mutable(I) && Forwarditerator(I)) 
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I rotate_nontrivial(I f, Im, I 1, forward_iterator_tag) 
{ 

} 

II Precondition: mutable_bounded_range(f, l) /\ f -< m-< l 

return rotate_forward_nontrivial(f, m, l); 

template<typename I> 

requires(Mutable(I) && Bidirectionallterator(I)) 

I rotate_nontrivial(I f, Im, I 1, bidirectional_iterator_tag) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) /\ f -< m -< l 

return rotate_bidirectional_nontrivial(f, m, l); 

template<typename I> 

requires(Mutable(I) && Indexedlterator(I)) 

I rotate_nontrivial(I f, Im, I 1, indexed_iterator_tag) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) /\ f -< m -< l 

return rotate_indexed_nontrivial(f, m, l); 

template<typename I> 

requires(Mutable(I) && RandomAccesslterator(I)) 

I rotate_nontrivial(I f, Im, I l, random_access_iterator_tag) 
{ 

} 

II Precondition: mutable_bounded_range(f, l) /\ f-< m-< l 

return rotate_random_access_nontrivial(f, m, l); 

Concept dispatch does not take into consideration factors other than type re
quirements. For example, as summarized in Table 10.1, we can rotate a range of 

random-access iterators by using three algorithms, each performing a different num
ber of assignments. When the range fits into cache memory, then+ gcd(n, k) as

signments performed by the random-access algorithm give us the best performance. 

But when the range does not fit into cache, the 3n assignments of the bidirectional 
algorithm or the 3 ( n - gcd( n, k)) assignments of the forward algorithm are faster. In 

this case additional factors are affecting whether the bidirectional or forward algo
rithm will be fastest, including the more regular loop structure of the bidirectional 
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Table 10.1 Number of Assignments Performed 
by Rotate Algorithms 

Algorithm 

indexed, random_access 
bid i rection a I 
forward 
with_buffer 
with_buffer _backward 
partial 

Assignments 

n + gcd (n, k) 
3n or 3(n - 2) 
3(n - gcd (n, k)) 
n + (n - k) 
n+k 
3k 

Note: where n = 1- f and k = 1- m 
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algorithm, which can make up for the additional assignments it performs, and details 

of the processor architecture, such as its cache configuration and prefetch logic. It 

should also be noted that the algorithms perform iterator operations in addition to 

assignments of the value type; as the size of the value type gets smaller, the relative 

cost of these other operations increases. 

Project 10.1 Design a benchmark comparing performance of all the algo

rithms for different array sizes, element sizes, and rotation amounts. Based 

on the results of the benchmark, design a composite algorithm that appro

priately uses one of the rotate algorithms depending on the iterator concept, 

size of the range, amount of rotation, element size, cache size, availability 

of temporary buffer, and other relevant considerations. 

Project 10.2 We have presented two kinds of position-based rearrange

ment algorithms: reverse and rotate. There are, however, other examples 

of such algorithms in the literature. Develop a taxonomy of position-based 

rearrangements, catalog existing algorithms, discover missing algorithms, 

and produce a library. 

10.6 Conclusions 

The structure of permutations allows us to design and analyze rearrangement al

gorithms. Even simple problems, such as reverse and rotate, lead to a variety of 

useful algorithms. Selecting the appropriate one depends on iterator requirements 

and system issues. Memory-adaptive algorithms provide a practical alternative to 

the theoretical notion of in-place algorithms. 
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Chapter 11 

Partition and Merging 

This chapter constructs predicate-based and ordering-based rearrangements from 
components from previous chapters. After presenting partition algorithms for forward 

and bidirectional iterators, we implement a stable partition algorithm. We then in

troduce a binary counter mechanism for transforming bottom-up divide-and-conquer 

algorithms, such as stable partition, into iterative form. We introduce a stable memory

adaptive merge algorithm and use it to construct an efficient memory-adaptive stable 

sort that works for forward iterators: the weakest concept that allows rearrangements. 

11.1 Partition 

In Chapter 6 we introduced the notion of a range partitioned by a predicate together 
with the fundamental algorithm partition_point on such a range. Now we look at 

algorithms for converting an arbitrary range into a partitioned range. 

Exercise 11.1 Implement an algorithm partitioned_at_point that checks 

whether a given bounded range is partitioned at a specified iterator. 

Exercise 11.2 Implement an algorithm potentiaLpartition_point returning 

the iterator where the partition point would occur after partitioning. 

Lemma 11.1 If m = potentiaLpartition_point(f, l, p), then 

count_if( f, m, p) = count_if_not( m, l, p) 

In other words, the number of misplaced elements on either side of m is 
the same. 
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The lemma gives the minimum number of assignments to partition a range, 
2n + 1, where n is the number of misplaced elements on either side of m: 2n 

assignments to misplaced elements and one assignment to a temporary variable. 

Lemma 11.2 There are u!v! permutations that partition a range with u 
false values and v true values. 

A partition rearrangement is stable if the relative order of the elements not 
satisfying the predicate is preserved, as is the relative order of the elements satisfying 
the predicate. 

Lemma 11.3 The result of stable partition is unique. 

A partition rearrangement is semistable if the relative order of elements not 
satisfying the predicate is preserved. The following algorithm performs a semistable 
partition: 1 

template<typename I, typename P> 

requires(Mutable(I) && Forwarditerator(I) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

I partition_semistable(I f, I 1, Pp) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) 

Ii= find_if(f, 1, p); 

if (i == 1) return i; 

I j = successor(i); 
while (true) { 

} 

j = find_if__not(j, 1, p); 

if (j == 1) return i; 

swap_step ( i, j) ; 

The correctness of partition_semistable depends on the following three lemmas. 

Lemma 11.4 Before the exit test, none(f, i, p) /\ all(i, j, p). 

1. Bentley [1984, pages 287-291] attributes the algorithm to Nico Lomuto. 
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Lemma 11.5 After the exit test, p(source(i)) /\ --.p(source(j)). 

Lemma 11.6 After the call of swa p_step, none( f, i, p) /\ a 11 ( i, j, p). 

Semistability follows from the fact that the swap_step call moves an element 
not satisfying the predicate before a range of elements satisfying the predicate, and 
therefore the order of elements not satisfying the predicate does not change. 

partition_semistable uses only one temporary object, in swap_step. 

Let n = l - f be the number of elements in the range, and let w be the number 
of elements not satisfying the predicate that follow the first element satisfying the 
predicate. Then the predicate is applied n times, exchange_values is performed w 
times, and the number of iterator increments is n + w. 

Exercise 11.3 Rewrite partition_semistable, expanding the call of find_if_not 

inline and eliminating the extra test against l. 

Exercise 11.4 Give the postcondition of the algorithm that results from re
placing swap_step(i, j) with copy_step(j, i) in partition_semistable, suggest an 
appropriate name, and compare its use with the use of partition_semistable. 

Let n be the number of elements in a range to be partitioned. 

Lemma 11.7 A partition rearrangement that returns the partition point 
requires n applications of the predicate. 

Lemma 11.8 A partition rearrangement of a nonempty range that does 
not return the partition point requires n - 1 applications of the predicate.2 

Exercise 11.5 Implement a partition rearrangement for nonempty ranges 
that performs n - 1 predicate applications. 

Consider a range with one element satisfying the predicate, followed by n 

elements not satisfying the predicate. partition_semistable will perform n calls of 
exchange_values, while one suffices. If we combine a forward search for an element 
satisfying the predicate with a backward search for an element not satisfying the 

2. This lemma and the following exercise were suggested to us by Jon Brandt. 
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predicate, we avoid unnecessary exchanges. The algorithm requires bidirectional 

iterators: 

template<typename I, typename P> 
requires(Mutable(I) && Bidirectionaliterator(I) && 

UnaryPredicate(P) && ValueType(I) == Domain(P)) 

I partition_bidirectional(I f, I 1, Pp) 
{ 

} 

11 Precondition: mutable_bounded_range( f, l) 

while (true) { 

} 

f = find_if(f, 1, p); 
1 = find_backward_if_not(f, l, p); 

if (f == 1) return f; 

reverse_swap_step(l, f); 

As with partition_semistable, partition_bidirectional uses only one temporary 

object. 

Lemma 11.9 The number of times exchange_values is performed, v, equals 

the number of misplaced elements not satisfying the predicate. The total 

number of assignments, therefore, is 3v. 

Exercise 11.6 Implement a partition rearrangement for forward iterators 

that calls exchange_values the same number of times as partition_bidirectional 

by first computing the potential partition point. 

It is possible to accomplish partition with a different rearrangement that has 

only a single cycle, resulting in 2v + 1 assignments. The idea is to save the first 

misplaced element, creating a "hole," then repeatedly find a misplaced element on 

the opposite side of the potential partition point and move it into the hole, creating 

a new hole, and finally move the saved element into the last hole. 

Exercise 11.7 Using this technique, implement partition_single_cycle. 

Exercise 11.8 Implement a partition rearrangement for bidirectional iter

ators that finds appropriate sentinel elements and then uses find_iLunguarded 

and an unguarded version of find_backward_if_not. 
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Exercise 11.9 Repeat the previous exercise, incorporating the single-cycle 
technique. 
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The idea for a bidirectional partition algorithm, as well as the single-cycle and 
sentinel variations, are from C. A .R. Hoare.3 

When stability is needed for both sides of the partition and enough memory is 
available for a buffer of the same size as the range, the following algorithm can be 
used: 

template<typename I, typename B, typename P> 

requires(Mutable(I) && Forwarditerator(I) && 
Mutable(B) && Forwarditerator(B) && 
ValueType(I) == ValueType(B) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

I partition_stable_with_buffer(I f, I 1, B f_b, Pp) 
{ 

} 

11 Precondition: mutable_bounded_range(f, l) 

11 Precondition: mutable_counted_range( f b, l - f) 

pair<I, B> x = partition_copy(f, 1, f, f_b, p); 

copy(f_b, x.m1, x.mO); 

return x.mO; 

When there is not enough memory for a full-size buffer, it is possible to im
plement stable partition by using a divide-and-conquer algorithm. If the range is a 
singleton range, it is already partitioned, and its partition point can be determined 
with one predicate application: 

template<typename I, typename P> 

requires(Mutable(I) && Forwarditerator(I) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

pair<I, I> partition_stable_singleton(I f, Pp) 
{ 

11 Precondition: reada ble_bou nded_ra nge( f, successor( f)) 

3. See Hoare. [ 1962] on the Quicksort algorithm. Because of the requirements of Quicksort, Hoare's 
partition interchanges elements that are greater than or equal to a chosen element with elements that 
are less than or equal to the chosen element. A range of equal elements is divided in the middle. Observe 
that these two relations, :=:: and :=:::, are not complements of each other. 
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} 

I 1 = successor(f); 

if (!p(source(f))) f = l; 
return pair<I, I>(f, l); 

Partition and Merging 

The returned value is the partition point and the limit of the range: in other 
words, the range of values satisfying the predicate. 

Two adjacent partitioned ranges can be combined into a single partitioned range 
by rotating the range bounded by the first and second partition points around the 
middle: 

template<typename I> 
requires(Mutable(I) && Forwarditerator(I)) 

pair<I, I> combine_ranges(const pair<I, I>& x, 

canst pair<I, I>& y) 
{ 

} 

11 Precondition: mutable_bounded_range(x. mO, y. mO) 

II Precondition: x.ml E [x.mO, y.mO] 

return pair<I, I>(rotate(x.mO, x.m1, y.mO), y.m1); 

Lemma 11.10 combine_ranges is associative when applied to three nonover
lapping ranges. 

Lemma 11.11 If, for some predicate p, 

then after 

the following hold: 

('v'i E [x.mO, x.ml))p(i) /\ 

('v'i E [x.ml, y.mO)) --.p(i) /\ 

('v'i E [y.mO, y.ml)) p(i) 

z ~ combine_ranges(x, y) 

('v'i E [x. mO, z. mO)) --.p ( i) 

('v'i E [z.mO, z.ml))p(i) 
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The inputs are the ranges of values satisfying the predicate and so is the output; 
therefore a nonsingleton range is stably partitioned by dividing it in the middle, 

partitioning both halves recursively, and then combining the partitioned parts: 

template<typename I, typename P> 

requires(Mutable(I) && Forwarditerator(I) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

pair<I, I> partition_stable_n_nonempty(I f, DistanceType(I) n, Pp) 
{ 

} 

11 Precondition: mutable_counted_range(f, n) /\ n > 0 

if (one(n)) return partition_stable_singleton(f, p); 

DistanceType(I) h = half_nonnegative(n); 

pair<I, I> x = partition_stable_n_nonempty(f, h, p); 

pair<I, I> y = partition_stable_n_nonempty(x.m1, n - h, p); 

return combine_ranges(x, y); 

Since empty ranges never result from subdividing a range of size greater than 

1, we handle that case only at the top level: 

template<typename I, typename P> 

requires(Mutable(I) && Forwarditerator(I) && 
UnaryPredicate(P) && ValueType(I) == Domain(P)) 

pair<I, I> partition_stable_n(I f, DistanceType(I) n, Pp) 
{ 

} 

11 Precondition: mutable_counted_range(f, n) 

if (zero(n)) return pair<I, I>(f, f); 

return partition_stable_n_nonempty(f, n, p); 

Exactly n predicate applications are performed at the bottom level of recur
sion. The depth of the recursion for partition_stable_n_nonempty is llog2 n l. At every 

recursive level, we rotate n/2 elements on the average, requiring between n/2 and 

3n/2 assignments, depending on the iterator category. The total number of assign

ments is n log2 n/2 for random-access iterators and 3n log2 n/2 for forward and 

bidirectional iterators. 

Exercise 11.10 Use techniques from the previous chapter to produce a 
memory-adaptive version of partition_stable_n. 
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11.2 Balanced Reduction 

Although the performance of partition_stable_n depends on subdividing the range in 

the middle, its correctness does not. Since combine_ranges is a partially associative 

operation, the subdivision could be performed at any point. We can take advantage 

of this fact to produce an iterative algorithm with similar performance; such an 

algorithm is useful, for example, when the size of the range is not known in advance 

or to eliminate procedure call overhead. The basic idea is to use reduction, applying 

partition_stable_singleton to each singleton range and combining the results with 

combine_ranges: 

reduce_nonempty ( 

f' l, 

combine_ranges<I>, 

partition_trivial<I, P>(p)); 

where partition_trivial is a function object that binds the predicate parameter to 

partition _sta ble_si ngleton: 

template<typename I, typename P> 

requires(Forwarditerator(I) && 
UnaryPredicate(P) && ValueType(I) -- Domain(P)) 

struct partition_trivial 
{ 

}; 

p p; 

partition_trivial(const P & p) 

pair<I, I> operator()(! i) 
{ 

p(p) { } 

return partition_stable_singleton<I, P>(i, p); 
} 

Using reduce_nonempty leads to quadratic complexity. We need to take advantage 
of partial associativity to create a balanced reduction tree. We use a binary counter 

technique to build the reduction tree bottom-up.4 A hardware binary counter in

crements an n-bit binary integer by 1. A 1 in position i has a weight of 2 1
; a carry 

4. The technique is attributed to John McCarthy in Knuth [ 1998, Section 5 .2.4 (Sorting by Merging), 
Exercise 17, page 167]. 
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from this position has a weight of 2H1 and propagates to the next-higher position. 

Our counter uses the "bit" in position i to represent either empty or the result 

of reducing 2i elements from the original range. When the carry propagates to 

the next higher position, it is either stored or is combined with another value of 
the same weight. The carry from the highest position is returned by the follow

ing procedure, which takes the identity element as an explicit parameter, as does 
reduce_nonzeroes: 

template<typename I, typename Op> 

requires(Mutable(I) && Forwarditerator(I) && 

BinaryOperation(Op) && ValueType(I) == Domain(Op)) 
Domain(Op) add_to_counter(I f, I 1, Op op, Domain(Op) x, 

canst Domain(Op)& z) 
{ 

} 

if (x == z) return z; 

while (f != 1) { 

} 

if (source(f) -- z) { 

sink(f) = x; 

return z; 
} 

x = op(source(f), x); 

sink(f) = z; 

f = successor(f); 

return x; 

Storage for the counter is provided by the following type, which handles over
flows from add_to_counter by extending the counter: 

template<typename Op> 

requires(BinaryOperation(Op)) 
struct counter_machine 
{ 

typedef Domain(Op) T; 

Op op; 

T z; 

T f [64] ; 

pointer(T) l; 
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}; 

counter...machine(Op op, canst Domain(Op)& z) 

op(op), z(z), l(f) {} 

void operator()(const T& x) 
{ 

Partition and Merging 

11 Precondition: must not be called more than 264 - 1 times 
T tmp = add_to_counter(f, 1, op, x, z); 

if (tmp != z) { 

sink(l) = tmp; 

1 =successor(!); 
} 

} 

This uses a built-in C++ array; alternative implementations are possible.5 

After add_to_counter has been called for every element of a range, the nonempty 

positions in the counter are combined with leftmost reduction to produce the final 

result: 

template<typename I, typename Op, typename F> 

requires(Iterator(I) && BinaryOperation(Op) && 

UnaryFunction(F) && I == Domain(F) && 

Codomain(F) == Domain(Op)) 

Domain(Op) reduce_balanced(I f, I 1, Op op, F fun, 

canst Domain(Op)& z) 
{ 

} 

11 Precondition: bounded_range(f, l) /\ l - f < 264 

11 Precondition: partially_associative(op) 

II Precondition: (Tix E [f, l))fun(x) is defined 
counter...machine<Op> c(op, z); 

while (f != 1) { 

c(fun(f)); 

f = successor(f); 
} 

transpose_operation<Op> t_op(op); 

return reduce....nonzeroes(c.f, c.l, t_op, z); 

5. The choice of 64 elements for the array handles any application on 64-bit architectures. 
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The values in higher positions of the counter correspond to earlier elements 
of the original range, and the operation is not necessarily commutative. Therefore 
we must use a transposed version of the operation, which we obtain by using the 
following function object: 

template<typename Op> 

requires(BinaryOperation(Op)) 

struct transpose_operation 
{ 

}; 

Op op; 
transpose_operation(Op op) : op(op) { } 

typedef Domain(Op) T; 
T operator()(const T& x, canst T& y) 
{ 

return op(y, x); 
} 

Now we can implement an iterative version of stable partition with the following 
procedure: 

template<typename I, typename P> 

requires(Forwarditerator(I) && UnaryPredicate(P) && 

ValueType(I) == Domain(P)) 
I partition_stable_iterative(I f, I 1, Pp) 
{ 

} 

11 Precondition: bounded_range(f, l) /\ l - f < 264 

return reduce_balanced( 

f' 1, 

combine_ranges<I>, 

partition_trivial<I, P>(p), 

pair<I, I>(f, f) 
) .mo; 

pair 1, 1 ( f, f) is a good way to represent the identity element since it is never 
returned by partition_trivial or the combining operation. 

The iterative algorithm constructs a different reduction tree than the recursive 
algorithm. When the size of the problem is equal to 2k, the recursive and iterative 
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versions perform the same sequence of combining operations; otherwise the iterative 

version may do up to a linear amount of extra work. For example, in some algorithms 

the complexity goes from n log2 n to n log2 n + ~. 

Exercise 11.11 Implement an iterative version of sort_linked_nonempty_n 

from Chapter 8, using reduce_balanced. 

Exercise 11.12 Implement an iterative version of reverse_n_adaptive from 

Chapter 10, using reduce_balanced. 

Exercise 11.13 Use reduce_balanced to implement an iterative and memory

adaptive version of partition_stable_n. 

11.3 Merging 

In Chapter 9 we presented copying merge algorithms that combine two increasing 

ranges into a third increasing range. For sorting, it is useful to have a rearrangement 

that merges two adjacent increasing ranges into a single increasing range. With a 

buffer of size equal to that of the first range, we can use the following procedure:6 

template<typename I, typename B, typename R> 

requires(Mutable(I) && Forwarditerator(I) && 
Mutable(B) && Forwarditerator(B) && 
ValueType(I) == ValueType(B) && 
Relation(R) && ValueType(I) == Domain(R)) 

I merge_n_with_buffer(I fO, DistanceType(I) nO, 

{ 

} 

I f1, DistanceType(I) n1, B f_b, R r) 

11 Precondition: mergea ble( f o, no, f 1, n 1, r) 

11 Precondition: mutable_counted_range( f b, no) 
copy_n(fO, nO, f_b); 

return merge_copy_n(f_b, nO, f1, n1, fO, r).m2; 

where mergeable is defined as follows: 

property(! : Forwarditerator, N : Integer, R : Relation) 
requires(Mutable(I) /\ ValueType(I) = Domain(R)) 

6. Solving Exercise 9.5 explains the need for extracting the member m2. 
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mergeable : I x N x I x N x R 

( f o, no, f 1 , n 1 , r) ~ f o + no = f 1 /\ 

mutable_counted_range(fo, no+ ni) /\ 

wea k_orderi ng( r) /\ 

increasing_counted_range( f o, no, r) /\ 

increasing_counted_range( f 1, ni, r) 

Lemma 11.12 The postcondition for merge_n_with_buffer is 

increasing_counted_range(fo, no+ ni, r) 
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A merge is stable if the output range preserves the relative order of equivalent 
elements both within each input range and between the first and second input range. 

Lemma 11.13 merge_n_with_buffer is stable. 

Note that mergeJinked_nonempty, merge_copy, and merge_copy_backward are also 
stable. 

We can sort a range with a buffer of half of its size:7 

template<typename I, typename B, typename R> 

requires(Mutable(I) && Forwarditerator(I) && 
Mutable(B) && Forwarditerator(B) && 
ValueType(I) == ValueType(B) && 
Relation(R) && ValueType(I) == Domain(R)) 

I sort_n_with_buffer(I f, DistanceType(I) n, B f_b, R r) 
{ 

} 

11 Precondition: mutable_counted_range( f, n) /\ weak_ordering( r) 

11 Precondition: mutable_counted_range(fb, n/2) 

DistanceType(I) h = half_nonnegative(n); 

if (zero(h)) return f + n; 
I m = sort_n_with_buffer(f, h, f _b, r) ; 

sort_n_with_buffer(m, n - h, f_b, r); 

return merge_n_with_buffer(f, h, m, n - h, f_b, r); 

7. A similar algorithm was first described in ] ohn W. Mauchly's lecture "Sorting and collating" 
[Mauchly, 1946]. 
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Lemma 11.14 The postcondition for sort_n_with_buffer is 

i ncreasi ng_cou nted _range( f, n, r) 

A sorting algorithm is stable if it preserves the relative order of elements with 

equivalent values. 

Lemma 11.15 sort_n_with_buffer is stable. 

The algorithm has llog2 n l recursive levels. Each level performs at most 3n/2 
assignments, for a total bounded by ~n llog2 n l. At the ith level from the bottom, 
the worst-case number of comparisons is n - 2~, giving us the following bound on 

the number of comparisons: 

rlog2 n l 

n flog2 n l - L ; ~ n flog2 n l - n 
i=l 

When a buffer of sufficient size is available, sort_n_with_buffer is an efficient 

algorithm. When less memory is available, a memory-adaptive merge algorithm can 
be used. Subdividing the first subrange in the middle and using the middle element 

to subdivide the second subrange at its lower bound point results in four subranges 

ro, r 1, r2, and r3 such that the values in r2 are strictly less than the values in r1. 

Rotating the ranges r2 and r3 leads to two new merge subproblems ( ro with r2 and 

r1 with r3 ): 

template<typename I, typename R> 
requires(Mutable(I) && Forwarditerator(I) && 

Relation(R) && ValueType(I) == Domain(R)) 

void merge_n_step_O(I fO, DistanceType(I) nO, 

{ 

I f1, DistanceType(I) n1, R r, 
I& fO_O, DistanceType(I)& nO_O, 

I& f0_1, DistanceType(I)& n0_1, 
I& f1_0, DistanceType(I)& n1_0, 

I& f1_1, DistanceType(I)& n1_1) 

II Precondition: mergeable(fo, no, fi, ni, r) 

fO_O = fO; 
nO_Q = half_nonnegative(nO); 
f0_1 fQ_Q + nO_O; 

f1_1 = lower_bound_n(f1, n1, source(f0_1), r); 
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} 

f1_0 = rotate(f0_1, f1, f1_1); 
n0_1 = f1_0 - f0_1; 

f1_0 = successor(f1_0); 

n1_0 = predecessor(nO - nO_O); 

n1_1 = n1 - n0_1; 

Lemma 11.16 The rotate does not change the relative positions of ele

ments with equivalent values. 
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An iterator i in a range is a pivot if its value is not smaller than any value 

preceding it and not larger than any value following it. 

Lemma 11.17 After merge_n_step_O, fLO is a pivot. 

We can perform an analogous subdivision from the right by using upper _bound: 

template<typename I, typename R> 

requires(Mutable(I) && Forwarditerator(I) && 

Relation(R) && ValueType(I) == Domain(R)) 

void merge_n_step_1(I fO, DistanceType(I) nO, 

{ 

} 

I f1, DistanceType(I) n1, R r, 

I& fO_O, DistanceType(I)& nO_O, 

I& f0_1, DistanceType(I)& n0_1, 

I& f1_0, DistanceType(I)& n1_0, 

I& f1_1, DistanceType(I)& n1_1) 

11 Precondition: mergea ble( f o, no, f 1, n 1, r) 

fO_O = fO; 
n0_1 = 
fL1 = 
f0_1 = 
fL1 = 
fLO = 
nO_O = 
nLO = 
nL1 = 

half_nonnegative(n1); 

f1 + n0_1; 

upper_bound_n(fO, nO, source(f1_1), r); 

successor (f L1); 
rotate(f0_1, f1, f1_1); 
f0_1 - fO_O; 

no - nO_O; 

predecessor(n1 - n0_1); 



206 Partition and Merging 

This leads to the following algorithm from Dudzinski and Dydek [1981]: 

template<typename I, typename B, typename R> 

requires(Mutable(I) && Forwarditerator(I) && 
Mutable(B) && Forwarditerator(B) && 
ValueType(I) == ValueType(B) && 
Relation(R) && ValueType(I) == Domain(R)) 

I merge_n_adaptive(I fO, DistanceType(I) nO, 

I f1, DistanceType(I) n1, 

{ 

} 

B f_b, DistanceType(B) n_b, R r) 

II Precondition: mergeable(fo, no, fi, ni, r) 

II Precondition: mutable_counted_range(fb, nb) 

typedef DistanceType(I) N; 

if (zero(nO) I I zero(n1)) return fO + nO + n1; 
if (nO <= N(n_b)) 

return merge_n_with_buffer(fO, nO, f1, n1, f_b, r); 
I fO_O; I f0_1; I f1_0; I f1_1; 

N nO_O; N n0_1; N n1_0; N n1_1; 

if (nO < n1) merge_n_step_O( 

else 

fO, nO, f1, n1, r, 
fO_O, nO_O, f0_1, n0_1, 

f LO, nLO, fL1, nL1); 
merge_n_step_1 ( 

fO, nO, f1, n1, r, 
fO_O, nO_O, f0_1, n0_1, 

fLO, nLO, f L1, nL1); 
merge_n_adaptive(fO_O, nO_O, f0_1, n0_1, 

f _b , n_b , r) ; 

return merge_n_adaptive(f1_0, n1_0, f1_1, n1_1, 

Lb, n_b, r) ; 

Lemma 11.18 merge_n_adaptive terminates with an increasing range. 

Lemma 11.19 merge_n_adaptive is stable. 

Lemma 11.20 There are at most Llog2 (min(n0, nl))J + 1 recursive levels. 
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Using merge_n_adaptive, we can implement the following sorting procedure: 

template<typename I, typename B, typename R> 

requires(Mutable(I) && Forwarditerator(I) && 
Mutable(B) && Forwarditerator(B) && 
ValueType(I) == ValueType(B) && 
Relation(R) && ValueType(I) == Domain(R)) 

I sort_n_adaptive(I f, DistanceType(I) n, 

{ 

} 

B f_b, DistanceType(B) n_b, R r) 

11 Precondition: mutable_counted_range( f, n) /\ weak_ordering( r) 

II Precondition: mutable_counted_range(fb, nb) 

DistanceType(I) h = half_nonnegative(n); 

if (zero(h)) return f + n; 
Im= sort_n_adaptive(f, h, f _b, n_b, r) ; 

sort_n_adaptive(m, n - h, f_b, n_b, r); 

return merge_n_adaptive(f, h, m, n - h, f_b, n_b, r); 

Exercise 11.14 Determine formulas for the number of assignments and 

the number of comparisons as functions of the size of the input and buffer 

ranges. Dudzinski and Dydek [1981] contains a careful complexity analysis 

of the case in which there is no buff er. 

We conclude with the following algorithm: 

template<typename I, typename R> 

requires(Mutable(I) && Forwarditerator(I) && 
Relation(R) && ValueType(I) == Domain(R)) 

I sort_n(I f, DistanceType(I) n, R r) 
{ 

} 

II Precondition: mutable_counted_range(f, n) /\ weak_ordering(r) 

temporary_buffer<ValueType(I)> b(half_nonnegative(n)); 

return sort_n_adaptive(f, n, begin(b), size(b), r); 

It works on ranges with minimal iterator requirements, is stable, and is efficient 
even when temporary_b~ffer is only able to allocate a few percent of the requested 
memory. 
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Project 11.1 Develop a library of sorting algorithms constructed from 
abstract components. Design a benchmark to analyze their performance for 
different array sizes, element sizes, and buffer sizes. Document the library 
with recommendations for the circumstances in which each algorithm is 
appropriate. 

11.4 Conclusions 

Complex algorithms are decomposable into simpler abstract components with care
fully defined interfaces. The components so discovered are then used to implement 
other algorithms. The iterative process going from complex to simple and back is 
central to the discovery of a systematic catalog of efficient components. 



Chapter 12 

Composite Objects 

Chapters 6 through 11 presented algorithms working on collections of objects (data 
structures) through iterators or coordinate structures in isolation from construction, 

destruction, and structural mutation of these collections: Collections themselves were 

not viewed as objects. This chapter provides examples of composite objects, starting 

with pairs and constant-size arrays and ending with a taxonomy of implementations 

of dynamic sequences. We describe a general schema of a composite object containing 

other objects as its parts. We conclude by demonstrating the mechanism enabling 

efficient behavior of rearrangement algorithms on nested composite objects. 

12.1 Simple Composite Objects 

To understand how to extend regularity to composite objects, let us start with some 
simple cases. In Chapter 1 we introduced the type constructor pair, which, given 

two types To and T1, returns the structure type pairTo,Ti. We implement pair with a 
structure template together with some global procedures: 

template<typename TO, typename T1> 

requires(Regular(TO) && Regular(T1)) 

struct pair 
{ 

TO mO; 
T1 m1; 
pair() { } 

pair(const 
}; 

11 default constructor 

TO& mO, const T1& m1) mO(mO), m1(m1) {} 

C++ ensures that the default constructor performs a default construction of 
both members, guaranteeing that they are in partially formed states and can thus 
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be assigned to or destroyed. C++ automatically generates a copy constructor and 

assignment that, respectively, copies or assigns each member and automatically 

generates a destructor that invokes the destructor for each member. We need to 
provide equality and ordering manually: 

template<typename TO, typename T1> 

requires(Regular(TO) && Regular(T1)) 

bool operator==(const pair<TO, T1>& x, const pair<TO, T1>& y) 
{ 

return x.mO == y.mO && x.m1 == y.m1; 
} 

template<typename TO, typename T1> 

requires(TotallyOrdered(TO) && Totally0rdered(T1)) 

bool operator<(const pair<TO, T1>& x, const pair<TO, T1>& y) 
{ 

return x.mO < y.mO I I (!(y.mO < x.mO) && x.m1 < y.m1); 
} 

Exercise 12.1 Implement the default ordering, less, for pairm n, using the 
' 

default orderings for TO and Tl, for situations in which both member types 
are not totally ordered. 

Exercise 12.2 Implement tripleTo, Ti, T2 • 

While pair is a heterogeneous type constructor, array_k is a homogeneous type 

constructor, which, given an integer k and a type T, returns the constant-size se

quence type array_kk, T: 

template<int k, typename T> 

requires(O < k && k <= MaximumValue(int) I sizeof (T) && 

Regular(T)) 

struct array _k 
{ 

}; 

T a[k]; 

T& operator[] (int i) 
{ 

} 

11 Precondition: 0 < i < k 

return a[i]; 
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The requirement on k is defined in terms of type attributes. MaximumValue(N) 

returns the maximum value representable by the integer type N, and sizeof is the 

built-in type attribute that returns the size of a type. C++ generates the default 
constructor, copy constructor, assignment, and destructor for array_k with correct 

semantics. We implement the member function that allows reading or writing x[i] .1 

lteratorType(array_kk, T) is defined to be pointer to T. We provide procedures to 
return the first and the limit of the array elements:2 

template<int k, typename T> 

requires(Regular(T)) 

pointer(T) begin(array__k<k, T>& x) 
{ 

return addressof(x.a[O]); 
} 

template<int k, typename T> 

requires(Regular(T)) 

pointer(T) end(array_k<k, T>& x) 
{ 

return addressof(x.a[k]); 
} 

An object x of array_kk, T type can be initialized to a copy of the counted range 
[f, k~ with code like 

copy_n(f, k, begin(x)); 

We do not know how to implement a proper initializing constructor that avoids 
the automatically generated default construction of every element of the array. In 

addition, while copy _n takes any category of iterator and returns the limit iterator, 
there would be no way to return the limit iterator from a copy constructor. 

Equality and ordering for arrays use the lexicographical extensions introduced 
in Chapter 7: 

template<int k, typename T> 

requires(Regular(T)) 

bool operator==(const array__k<k, T>& x, canst array__k<k, T>& y) 

1. As with begin and end, overloading on constant is needed for a complete implementation. 
2. A complete implementation will also provide a constant iterator type, as a constant pointer to 

T, together with versions of begin and end overloaded on constant array_k that return the constant 
iterator type. 
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{ 

} 

return lexicographical_equal(begin(x), end(x), 

begin(y), end(y)); 

template<int k, typename T> 

requires(Regular(T)) 

Composite Objects 

bool operator<(const array__k<k, T>& x, const array__k<k, T>& y) 
{ 

} 

return lexicographical_less(begin(x), end(x), 

begin(y), end(y)); 

Exercise 12.3 Implement versions of= and < for array_kk, T that generate 
inline unrolled code for small k. 

Exercise 12.4 Implement the default ordering, less, for array_kk, T· 

We provide a procedure to return the number of elements in the array: 

template<int k, typename T> 

requires(Regular(T)) 

int size(const array...k<k, T>& x) 
{ 

return k; 
} 

and one to determine whether the size is 0: 

template<int k, typename T> 

requires(Regular(T)) 

bool empty(const array__k<k, T>& x) 
{ 

return false; 
} 

We took the trouble to define size and empty so that array_k would model 
Sequence, which we define later. 
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Exercise 12.5 Extend array_k to accept k = 0. 

array_k models the concept Linearizable: 

Linearizable(W) ~ 

Regular(W) 

/\ lteratorType : Linearizable --+ Iterator 

/\ ValueType : Linearizable --+ Regular 

WI--* ValueType(lteratorType(W)) 

/\ SizeType: Linearizable--+ Integer 

WI--* DistanceType(lteratorType(W)) 

/\ begin : W--+ lteratorType(W) 

/\ end : W--+ lteratorType(W) 

/\ size: W--+ SizeType(W) 

x I--* end(x) - begin(x) 

/\ empty: W--+ bool 

x I--* begin(x) = end(x) 

/\ [] : W x SizeType(W) --+ ValueType(W)& 

(w, i) I--* deref(begin(w) + i) 
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empty always takes constant time, even when size takes linear time. The precon

dition for w [ i] is 0 < i < size( w); its complexity is determined by the iterator type 

specification of concepts refining Linearizable: linear for forward and bidirectional 

iterators and constant for indexed and random-access iterators. 

A linearizable type describes a range of iterators via the standard functions 

begin and end, but unlike array_k, copying a linearizable does not need to copy 

the underlying objects; as we shall see later, it is not a container, a sequence that 

owns its elements. The following type, for example, models Linearizable and is 

not a container; it designates a bounded range of iterators residing in some data 

structure: 

template<typename I> 

requires(Readable(I) && Iterator(!)) 

struct bounded_range { 

I f; 

I l; 

bounded_range() { } 

bounded_range(const I& f, canst I& 1) f(f), 1(1) {} 

canst ValueType(I)& operator[](int i) 
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{ 

} 

}; 

11 Precondition: 0 < i < l - f 

return source(f + i); 

Composite Objects 

C++ automatically generates the copy constructor, assignment, and destructor, 

with the same semantics as pairI,I. If Tis bounded_range 1, lteratorType(T) is defined 

to be I, and SizeType(T) is defined to be DistanceType(I). 

It is straightforward to define the iterator-related procedures: 

template<typename I> 

requires(Readable(I) && Iterator(!)) 

I begin(const bounded_range<I>& x) { return x.f; } 

template<typename I> 

requires(Readable(I) && Iterator(!)) 

I end(const bounded_range<I>& x) { return x.l; } 

template<typename I> 

requires(Readable(I) && Iterator(!)) 

DistanceType(I) size(const bounded_range<I>& x) 
{ 

return end(x) - begin(x); 
} 

template<typename I> 

requires(Readable(I) && Iterator(!)) 

bool empty(const bounded_range<I>& x) 
{ 

return begin(x) == end(x); 
} 

Unlike array_k, equality for bounded_range does not use lexicographic equality 

but instead effectively treats the object as a pair of iterators and compares the 

corresponding values: 

template<typename I> 

requires(Readable(I) && Iterator(!)) 
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bool operator==(const bounded_range<I>& x, 

canst bounded_range<I>& y) 
{ 

return begin(x) == begin(y) && end(x) == end(y); 
} 
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The equality so defined is consistent with the copy constructor generated by 
C++, which treats it just as a pair of iterators. Consider a type W that models 
Linearizable. If Wis a container with linear coordinate structure, lexicographical_equal 

is its correct equality, as we defined for array_k. If W is a homogeneous con
tainer whose coordinate structure is not linear (e.g., a tree or a matrix), neither 
lexicographical_equal nor range equality (as we defined for bounded_range) is the cor
rect equality, although lexicographical_equal may still be a useful algorithm. If Wis 

not a container but just a description of a range owned by another data structure, 
range equality is its correct equality. 

The default total ordering for bounded_range 1 is defined lexicographically on 

the pair of iterators, using the default total ordering for I: 

template<typename I> 

requires(Readable(I) && Iterator(!)) 

struct less< bounded_range<I> > 
{ 

}; 

bool operator()(const bounded_range<I>& x, 

canst bounded_range<I>& y) 
{ 

} 

less<I> less_I; 

return less_I(begin(x), begin(y)) I I 
(!less_I(begin(y), begin(x)) && 

less_I(end(x), end(y))); 

Even when an iterator type has no natural total ordering, it should provide a 
default total ordering: for example, by treating the bit pattern as an unsigned integer. 

pair and array_k are examples of a very broad class of composite objects. An 

object is a composite object if it is made up of other objects, called its parts. The 
whole-part relationship satisfies the four properties of connectedness, noncircularity, 

disjointness, and ownership. Connectedness means that an object has an affiliated 
coordinate structure that allows every part of the object to be reached from the 
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object's starting address. Noncircularity means that an object is not a subpart of itself, 

where subparts of an object are its parts and subparts of its parts. (Non circularity 

implies that no object is a part of itself.) Disjointness means that if two objects have 

a subpart in common, one of the two is a subpart of the other. Ownership means 

that copying an object copies its parts, and destroying the object destroys its parts. 

A composite object is dynamic if the set of its parts could change over its lifetime. 

We refer to the type of a composite object as a composite object type and to 

a concept modeled by a composite object type as a composite object concept. No 

algorithms can be defined on composite objects as such, since composite object is 

a concept schema rather than a concept. 

array_k is a model of the concept Sequence: a composite object concept that 

refines Linearizable and whose range of elements are its parts: 

Sequence(S) ~ 

Linearizable(S) 

/\ (Vs ES) (Vi E [begin(s), end(s))) deref(i) is a part of s 

/\ = : S x S --+ bool 
(s, s') I--* lexicographical_equal( 

begin(s), end(s), begin(s'), end(s')) 

/\ < : S x S --+ bool 
(s, s') I--* lexicographicaUess( 

begin(s), end(s), begin(s'), end(s')) 

If s and s' are equal but not identical sequences, begin(s) =f begin(s'), but 

source(begin(s)) = source(begin(s') ). This is an example of projection regularity. Note 

that begin and end can be regular for a Linearizable that is not a Sequence; for 

example, they are regular for bounded_range. 

Exercise 12.6 Define a property projection_regular _function. 

12.2 Dynamic Sequences 

array_kk, Tis a constant-size sequence: The parameter k is determined at compile time 

and applies to all objects of the type. We do not define a corresponding concept for 

constant-size sequences, since we are not aware of other useful models. Similarly, 

we do not define a concept for a fixed-size sequence, whose size is determined at 

construction time. All the data structures we know that model a fixed-size sequence 

also model a dynamic-size sequence, whose size varies as elements are inserted or 
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erased. (There are, however, fixed-size composite objects; for example, n x n square 
matrices.) 

Regardless of the specific data structure, the requirements of regular types 

dictate standard behavior for a dynamic sequence. When it is destroyed, all its 

elements are destroyed, and their resources are freed. Equality and total ordering 

on dynamic sequences are defined lexicographically, just as for array_k. When a 

dynamic sequence is assigned to, it becomes equal to but disjoint from the right

hand side; similarly, a copy constructor creates an equal but disjoint sequence. 

If s is a dynamic-size, or simply dynamic, sequence of size n > 0, inserting a 

range r of size k at insertion index i increases the size to n + k. The insertion index 

i may be any of then+ 1 values in the closed interval [0, n]. Ifs' is the value of the 

sequence after the insertion, then 

{ 

s[j] 

s'[j] = r[j - i] 

s[j - k] 

ifO<j<i 

ifi<j<i+k 

ifi+k<j <n+k 

Similarly, if s is a sequence of size n > k, erasing k elements at erasure index i 

decreases the size to n - k. The erasure index i may be any of the n - k values in 

the open interval [0, n - k). Ifs' is the value of the sequence after the erasure, then 

$I [j] = { $ [j] 
s[j + k] 

ifO<j<i 

ifi<j<n-k 

The need to insert and erase elements introduces many varieties of sequential 

data structures with different complexity tradeoffs for insert and erase. All these 

categories depend on the presence of remote parts. A part is remote if it does not 

reside at a constant offset from the address of an object but must be reached via 

a traversal of the object's coordinate structure starting at its header. The header of 

a composite object is the collection of its local parts, that is, the parts residing at 

constant offsets from the starting address of the object. The number of local parts 

in an object is a constant determined by its type. 

In this section we summarize the properties of sequential data structures falling 

into the fundamental categories: linked and extent-based. 

Linked data structures connect data parts with pointers serving as links. Each 

element resides in a distinct permanently placed part: During the lifetime of an 

element, its address never changes. Along with the element, the part contains con

nectors to adjacent parts. The iterators are linked iterators; indexed iterators are not 

supported. Insert and erase operations taking constant time are possible, since they 
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are implemented by relinking operations and, therefore, do not invalidate iterators. 
There are two main varieties of linked list: singly linked and doubly linked. 

A singly linked list has a linked Forwardlterator. The cost of insert and erase 
after a specified iterator is constant, whereas the cost of insert before and erase at 
an arbitrary iterator is linear in the distance from the front of the list. Thus the cost 
of insert and erase at the front of the list is constant. There are several varieties of 
singly linked lists, differing in the structure of the header and the link of the last 
element. The header of a basic list consists of a link to the first element, or a special 
null value to indicate an empty list; the link of the last element is null. The header 
of a circular list consists of the link to the last element or null to indicate an empty 
list; the link of the last element points to the first element. The header of a first-last 

list consists of two parts: the header of a null-terminated basic list and a link to the 
last element of the list or null if the list is empty. 

Several factors affect the choice of a singly linked list implementation. A smaller 
header is valuable in an application with a large number of lists, many of which are 
empty. The iterator for a circular list is larger, and its successor operation is slower 
because it is necessary to distinguish between the pointer to the first and the pointer 
to the limit. A data structure supporting constant-time insert at the back can be 
used as a queue or output-restricted deque. These implementation tradeoffs are 
summarized in the following table: 

Variety One-word header Simple iterator Back insert 

basic yes yes no 

circular yes no yes 
first-last no yes yes 

A doubly linked list has a linked Bidirectionallterator. The cost of insert before 

or after an erase at an arbitrary iterator is constant. As with singly linked lists, there 
are several varieties of doubly linked lists. The header of a circular list consists of a 
pointer to the first element or null to indicate an empty list; the backward link of 
the first element points to the last element, and the forward link of the last element 
points to the first element. A dummy node list is similar to a circular list but has an 
additional dummy node between the last and first elements; the header consists of 
a link to the dummy node, which might omit the actual data object. A two-pointer 

header is similar to a dummy node list, but the header consists of two pointers 
corresponding to the links of the dummy node. 

Two factors affecting the choice of a singly linked list implementation are 
relevant for doubly linked list implementations, namely, header size and iterator 
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complexity. There are additional issues specific to doubly linked lists. Some algo
rithms may be simplified if a list has a permanent limit iterator, since the limit can 

then be used as a value distinguishable from any valid iterator over the entire lifetime 
of the list. As we will see later in this chapter, the presence of links from remote parts 
to local parts makes it more costly to perform a rearrangement on elements that are 
of the list type. These implementation tradeoffs are summarized in the following 
table: 

One-word Simple No remote to Permanent 
Variety header iterator local links limit 

circular yes no yes no 

dummy node yes yes yes no3 

two-pointer header no yes no yes 

In Chapter 8 we introduced link rearrangements, which rearrange the connec
tivity of linked iterators in one or more linked ranges without creating or destroying 
iterators or changing the relationships between the iterators and the objects they 
designate. Link rearrangements can be restricted to one list, or they can involve mul
tiple lists, in which case ownership of the elements changes. For example, spliLlinked 

can be used to move elements satisfying a predicate from one list to another, and 
combine_linked_nonempty can be used to move elements in one list to merged posi
tions in another list. Splicing is a link rearrangement that erases a range from one 

list and reinserts it in another list. 
Backward links in a linked structure are not used in algorithms like sorting. They 

do, however, allow constant-time erasure and insertion of elements at an arbitrary 
location, which are more expensive in a singly linked structure. Since the efficiency 
of insertion and deletion is often the reason for choosing linked structures in the 
first place, bidirectional linkage should be seriously considered. 

Extent-based data structures group elements in one or more extents, or remote 
blocks of data parts, and provide random access to them. Insert and erase at an 
arbitrary position take time proportionate to the size of the sequence, whereas insert 
and erase at the back and possibly the front take amortized constant time.4 Insert and 
erase invalidate certain iterators following specific rules for each implementation; in 
other words, no element is permanently placed. Some extent-based data structures 

3. If the dummy node is allocated even when the list is empty, there is a permanent limit; unfortunately, 
this violates the desirable property of empty data structures having no remote parts and thus being 
constructable without any additional resources. 

4. The amortized complexity of an operation is the complexity averaged over a worst-case sequence 
of operations. The notion of amortized complexity was introduced in Tarjan [1985]. 
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use a single extent, whereas others are segmented, using multiple extents as well as 

additional index structures. 

In a single-extent array the extent need only be present when the size is nonzero. 
To avoid reallocation at every insert, the extent contains a reserve area; when the 

reserve area is exhausted, the extent is reallocated. The header contains a pointer 
to the extent; additional pointers keeping track of the data and reserve areas nor
mally reside in a prefix of the extent. Placing the additional pointers in the prefix 

and not in the header improves both space and time complexity when arrays are 

nested. 

There are several varieties of single-extent arrays. In a single-ended array, the 
data starts at a fixed offset in the extent and is followed by the reserve area.5 In 
a double-ended array, the data is in the middle of the extent, with reserve areas 
surrounding it at both ends; if growth at either end exhausts the corresponding 

reserve area, the extent is reallocated. In a circular array, the extent is treated 

as if the successor to its highest address is its lowest address; thus the single re

serve area always logically precedes and follows the data, which can grow in both 
directions. 

Several factors affect the choice of a single-extent array implementation. For 
single-ended and double-ended arrays, machine addresses are the most efficient 

implementation of iterators; the iterator for a circular array is larger, and its traversal 

functions are slower because of the need to keep track of whether the in-use area has 

wrapped around to the start of the extent. A data structure supporting constant-time 

insert/erase at the front allows a data structure to be used as a queue or an output
restricted deque. A double-ended array could require reallocation even when one 

of its two reserve areas has available space; a single-ended or circular array only 
requires reallocation when no reserve remains. 

Simple Front Reallocation 
Variety iterator insert/ erase efficient 

single-ended yes no yes 

double-ended yes yes no 

circular no yes yes 

When an insert occurs and the extent of a single-ended or circular array is full, 

reallocation occurs: A larger extent is allocated, and the existing elements are moved 

to the new extent. In the case of a double-ended array, an insertion exhausting the 

5. Of course, it is possible to grow data from the back downward, but this does not appear to be 
practically useful. 
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reserve at one end of the array requires either reallocation or moving the elements 
toward the other end to redistribute the remaining reserve. Reallocation-and mov

ing elements within a double-ended array-invalidates all the iterators pointing into 
the array. 

When reallocation occurs, increasing the size of the extent by a multiplicative 

factor leads to an amortized constant number of constructions per element. Our ex
periments suggest a factor of 2 as a good tradeoff between minimizing the amortized 

number of constructions per element and the storage utilization. 

Exercise 12.7 Derive expressions for the storage utilization and number 

of constructions per element for various multiplicative factors. 

Project 12.1 Combine theoretical analysis with experimentation to deter

mine optimal reallocation strategies for single-extent arrays under various 

realistic work.loads. 

For a single-ended or circular single-extent array a, there is a function capacity 

such that size( a) < capacity( a), and insertion in a performs reallocation only when 

size( a) < ca pa city( a). There is also a procedure reserve that allows the capacity of 

an array to be increased to a specified amount. 

Exercise 12.8 Design an interface for capacity and reserve for double

ended arrays. 

A segmented array has one or more extents holding the elements and an index 

data structure managing pointers to the extents. Checking for the end of the extent 
makes the iterator traversal functions slower than for a single-extent array. The 

index must support the same behavior as the segmented array: It must support 

random access and insertion and erasure at the back and, if desired, at the front. 

Full reallocation is never needed, because another extent is added when an existing 

extent becomes full. Reserve space is only needed in the extents at one or both 
ends. 

The main source of variety of segmented arrays is the structure of the index. A 

single-extent index is a single-extent array of pointers to data extents; such an index 

supports growth at the back, whereas a double-ended or circular index supports 

growth at either end. A segmented index is itself a segmented array, typically with a 
single-extent index, but potentially also with a segmented index. A slanted index has 
multiple levels. Its root is a single fixed-size extent; the first few elements are pointers 
to data extents; the next element points to an indirect index extent containing 
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pointers to data extents; the next points to a doubly indirect extent containing 
pointers to indirect index extents; and so on. 6 

Project 12.2 Design a complete family of interfaces for dynamic sequen
ces. It should include construction, insertion, erasure, and splicing. Ensure 
that there are variations to handle the special cases for different implemen
tations. For example, it should be possible to insert after as well as before 
a specified iterator to handle singly linked lists. 

Project 12.3 Implement a comprehensive library of dynamic sequences, 
providing various singly linked, doubly linked, single-extent, and segmented 
data structures. 

Project 12.4 Design a benchmark for dynamic sequences based on realis
tic application workloads, measure the performance of various data struc
tures, and provide a selection guide for the user, based on the results. 

12.3 Underlying Type 

In Chapters 2 through 5 we studied algorithms on mathematical values and saw 
how equational reasoning as enabled by regular types applies to algorithms as well 
as to proofs. In Chapters 6 through 11 we studied algorithms on memory and saw 
how equational reasoning remains useful in a world with changing state. We dealt 
with small objects, such as integers and pointers, which are cheaply assigned and 
copied. In this chapter we introduced composite objects that satisfy the requirements 
of regular types and can thus be used as elements of other composite objects. 
Dynamic 'sequences and other composite objects that separate the header from 

the remote parts allow for an efficient way to implement rearrangements: moving 
headers without moving the remote parts. 

To understand the problem of an inefficient rearrangement involving composite 
objects, consider the swap_basic procedure defined as follows: 

template<typename T> 

requires(Regular(T)) 

void swap_basic(T& x, T& y) 
{ 

6. This is based on the original UNIX file system [see Thompson and Ritchie, 197 4]. 
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} 

T tmp = x; 
x = y; 
y = tmp; 

Suppose that we call swap_basic(a, b) to interchange two dynamic sequences. 
The copy construction and the two assignments it performs take linear time. Fur
thermore, an out-of-memory exception could occur even though no net increase of 
memory is needed. 

We could avoid this expensive copying by specializing swap_basic to swap the 
headers of the specific dynamic sequence type and, if necessary, update links from 
the remote parts to the header. There are, however, problems with specializing 
swap_basic. First, it needs to be repeated for each data structure. More impor
tant, many rearrangement algorithms are not based on swap_basic, including in
place permutations, such as cycle_from, and algorithms that use a buffer, such as 
merge_n_with_buffer. Finally, there are situations, such as reallocating a single-extent 
array, in which objects are moved from an old extent to a new one. 

We want to generalize the idea of swapping headers to arbitrary rearrangements, 
to allow the use of buffer memory and reallocation, and to continue to write abstract 
algorithms that do not depend on the implementation of the objects they manipulate. 
To accomplish this, we associate every regular type T with its underlying type, U = 
Underlying T ype(n. The type U is identical to the type T when T has no remote parts 
or has remote parts with links back to the header.7 Otherwise U is identical to type 
T in every respect except that it does not maintain ownership: Destruction does 
not affect the remote parts, and copy construction and assignment simply copy the 
header without copying the remote parts. When the underlying type is different 
from the original type, it has the same layout (bit pattern) as the header of the 
original type. 

The fact that the same bit pattern could be interpreted as an object of a type and 
of its underlying type allows us to view the memory as one or the other, using the 
built-in reinterpreLcast function template. Objects of UnderlyingType(T) may only be 
used to hold temporary values while implementing a rearrangement of objects of 
type T. The complexity of copy construction and assignment for a proper underlying 
type-one that is not identical to the original type-are proportional to the size of 
the header of type T. An additional benefit in this case is that copy construction and 

assignment for UnderlyingType(n never throw an exception. 

7. This explains the warning against links from remote parts to the header in our discussion of doubly 
linked lists. 
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The implementation of the underlying type for an original type Tis straightfor

ward and could be automated. U = UnderlyingType(T) always has the same layout as 

the header of T. The copy constructor and assignment for U just copy the bits; they 

do not construct a copy of the remote parts of T. For example, the underlying type 

of pair To, Ti is a pair whose members are the underlying types of To and T1; similarly 
for other tuple types. The underlying type of array_kk Tis an array_kk whose elements 

) 

are the underlying type of T. 

Once UnderlyingType(T) has been defined, we can cast a reference to Tinto 

a reference to UnderlyingType(T), without performing any computation, with this 

procedure: 

template<typename T> 
requires(Regular(T)) 

UnderlyingType(T)& underlying_ref (T& x) 
{ 

return reinterpret_cast<UnderlyingType(T)&>(x); 
} 

Now we can efficiently swap composite objects by rewriting swap_basic as 

follows: 

template<typename T> 
requires(Regular(T)) 

void swap(T& x, T& y) 
{ 

UnderlyingType(T) tmp = underlying_ref(x); 
underlying__ref(x) = underlying_ref(y); 

underlying_ref (y) = tmp; 
} 

which could also be accomplished with: 

swap_basic(underlying_ref(x), underlying_ref(y)); 

Many rearrangement algorithms can be modified for use with underlying type 

simply by reimplementing exchange_values and cycle_from the same way we reimple

mented swap. 

To handle other rearrangement algorithms, we use an iterator adapter. Such 

an adapter has the same traversal operations as the original iterator, but the value 

type is replaced by the underlying type of the original value type; source returns 
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underlying_ref (source (x. i)), and sink returns underlying_ref (sink(x. i)), 

where x is the adapter object, and i is the original iterator object inside x. 

Exercise 12.9 Implement such an adapter that works for all iterator 
concepts. 

Now we can reimplement reverse_n_with_temporary_buffer as follows: 

template<typename I> 

requires(Mutable(I) && Forwarditerator(I)) 

void reverse_n_with_temporary_buffer(I f, DistanceType(I) n) 
{ 

} 

11 Precondition: mutable_counted_range(f, n) 

temporary_buffer<UnderlyingType(ValueType(I))> b(n); 
reverse_n_adaptive(underlying_iterator<I>(f), n, 

begin(b), size(b)); 

where underlying_iterator is the adapter from Exercise 12.9. 

Project 12..5 Use underlying type systematically throughout a major C++ 

library, such as STL, or design a new library based on the ideas in this book. 

12.4 Conclusions 

We extended the structure types and constant-size array types of C++ to dynamic 
data structures with remote parts. The concepts of ownership and regularity de
termine treatment of parts by copy construction, assignment, equality, and total 

ordering. As we showed for the case of dynamic sequences, useful varieties of data 

structures should be carefully implemented, classified, and documented so that pro
grammers can select the best one for each application. Rearrangements on nested 

data structures are efficiently implemented by temporarily relaxing the ownership 
invariant. 
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Afterword 

W.recap the main themes of the. book: regularity, concepts, algorithms and their 
interfaces) programming techniques) and meanings of pointers. For each theme) we 
also discuss its particular limitations. 

Regularity 

Regular types define copy construction and assignment in terms of equality. Regu

lar functions return equal results when applied to equal arguments. For example, 

regularity of transformations allowed us to define and reason about algorithms for 

analyzing orbits. Regularity was in fact relied on throughout the book by ordering 

relations, the successor function for forward iterators, and many others. 

When we work with built-in types, we usually treat the complexity of equality, 

copying, and assignment as constant. When we deal with composite objects, the 

complexity of these operations is expected to be linear in the area of objects: the 

total amount of memory, including remote as well as local parts. Our expectation, 

however, that equality is at worst linear in the area of its arguments cannot always 

be met in practice. 

For example, consider representing a multiset, or unordered collection of po

tentially repeated elements, as an unsorted dynamic sequence. Although inserting a 

new element takes constant time, testing two multisets for equality takes 0( n log n) 

time to sort them and then compare them lexicographically. If equality testing is 

infrequent, this is a good tradeoff; however, putting such multisets into a sequence 

to be searched with find could lead to unacceptable performance. For an extreme 

example, consider a situation in which the equality for a type must be implemented 

with graph isomorphism, a problem for which no polynomial-time algorithm is 

known. 
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We noted in Section 1.2 that when implementing behavioral equality on val

ues is not feasible, we can often implement representational equality. For composite 

objects, we often implement representational equality with the techniques of 

Section 7.4. Such structural equality is often useful in giving the semantics of copy 

construction and assignment and may be useful for other purposes. Recall that 

representational equality implies behavioral equality. Similarly, while a natural total 

ordering is not always realizable, a default total ordering based on structure (e.g., lex

icographical ordering for sequences) allows us to efficiently sort and search. There 

are, of course, objects for which neither copy construction nor assignment-nor 

even equality-makes sense, because they own a unique resource. 

Concepts 

We use concepts from abstract algebra-semigroups, monoids, and modules-to 

describe such algorithms as power, remainder, and gcd. In many cases we need to 

adapt standard mathematical concepts to fit algorithms. Sometimes, we introduce 

new concepts, such as HalvableMonoid, to strengthen requirements. Sometimes, we 

relax requirements, as with the partially_associative property. Often we deal with par

tial domains, as with the definition-space predicate passed to collision_point. Mathe

matical concepts are tools to be used and freely modified. It is the same with concepts 

originating in computer science. The iterator concepts describe fundamental prop

erties of certain algorithms and data structures; however, there are other coordinate 

structures described by concepts yet to be discovered. It is a task of the programmer 

to determine whether a given concept is useful. 

Algorithms and Their lnterf aces 

Bounded half-open ranges correspond naturally to the implementation of many 

data structures and provide a convenient way to represent inputs and outputs for 

such algorithms as find, rotate, partition, merge, and so on. However, with some 

algorithms, such as partition_poinLn, a counted range is the natural interface. Even 

for algorithms for which bounded ranges are natural, there usually exist natural 

variations taking counted ranges. Limiting ourselves to a single variety of interface 

would be a false economy. 

Three rotation algorithms, described in Chapter 10, correspond to three itera

tor concepts. For every algorithm, we need to discover its conceptual requirements, 

the preconditions on its input, and any other characteristics that make its use appro

priate. It is rarely the case that a single algorithm is appropriate in all circumstances. 
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Programming Techniques 

Using successor, a transformation that is strictly functional, allowed us to write a 
variety of clear and efficient programs. In Chapter 9, however, we chose to en

capsulate calls of successor and predecessor into small mutative machines, such as 
copy_step, since it led to clearer code for a family of related algorithms. Similarly, it 

is appropriate to use goto in the state machines in Chapter 8 and to use reinter

pret_cast for the underlying type mechanism in Chapter 12. Instead of restricting 

the expressive power of the underlying machine and the language, it is necessary 

to determine the appropriate use for each available construct. Good software re

sults from the proper organization of components, not from syntactic or semantic 
restrictions. 

Meanings of Pointers 

The book demonstrates two ways of using pointers: ( 1) as iterators and other coordi

nates representing intermediate positions within an algorithm, and (2) as connectors, 

representing ownership of the remote parts of a composite object. For example, in 

Section 12.2, we discussed the use of pointers to connect nodes within a list and 

extents within an array. 
These two roles for pointers determine different behavior when an object is 

copied, destroyed, or compared for equality. Copying an object follows its connec

tors to copy the remote parts, so the new object contains new connectors pointing 

to the copied parts. On the other hand, copying an object containing iterators 

(e.g., a bounded_range) simply copies the iterators without following them. Simi

larly, destroying an object follows its connectors to destroy the remote parts, while 
destroying an object containing iterators has no effect on the object to which the 

iterators point. Finally, equality on a container follows connectors to compare cor
responding parts, while equality on a noncontainer (e.g., a bounded_range) simply 

tests for equality of corresponding iterators. 

There is, however, a third way to use pointers: to represent a relationship be
tween entities. A relationship between two or more objects is not a part owned by 

these objects; it has an existence of its own while maintaining mutual dependencies 
between the objects it relates. In general, a pointer ·representing a relationship does 

not participate in the regular operations. For example, copying an object does not 

follow or copy a relationship pointer, since the relationship exists for the object 
being copied but not for its copy. If a one-to-one relationship is represented as a 

pair of embedded pointers linking two objects, destroying either of the objects must 
clear the corresponding pointer in the other object. 
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Designing data structures as composite objects with ownership and remote 

parts leads to a programming style in which the primary objects-those that are 
not subparts of other objects-reside in static variables, with a lifetime of the entire 
program execution or, in local variables, with a lifetime of a block. Dynamically 
allocated memory is used only for remote parts. This extends the stack-based block 
structure of Algol 60 to handle arbitrary data structures. Such structure naturally fits 
many applications. However, there are circumstances in which reference counting, 
garbage collection, or other memory-management techniques are appropriate. 

Conclusions 

Programming is an iterative process: studying useful problems, finding efficient 
algorithms for them, distilling the concepts underlying the algorithms, and orga

nizing the concepts and algorithms into a coherent mathematical theory. Each new 
discovery adds to the permanent body of knowledge, but each has its limitations. 



Appendix A 

Mathematical Notation 

W. use the symbol /:;. to mean "equals by definition." 

If P and Qare propositions, so too are ....,p (read as "not P"), P v Q ("P or Q"), 

P /\ Q ("P and Q"), P ==> Q ("P implies Q"), and P ¢> Q ("Pis equivalent to Q"). 

For equivalence, we often write "P if and only if Q". 

If P is a proposition and x is a variable, (3x)P is a proposition (read as "there 
exists x such that P"). If Pis a proposition and xis a variable, (Vx)P is a proposition 
(read as "for all x, P"); (Vx)P ¢> (--i(3x)....,P). 

We use this vocabulary from set theory: 
a E X ("a is an element of X") 

X C Y ("Xis a subset of Y") 

{ao, ... , an} ("thefinite set with elements ao, ... , and an") 

{a E XI P( a)} ("the subset of X for which the predicate P holds") 

XU Y ("the union of X and Y") 
X n Y ("the intersection of X and Y") 

X x Y ("the direct product of X and Y") 

f : X ~ Y ("f is a/unction from X to Y") 

f : Xo x X1 ~ Y ("f is a function from the product of Xo and X1 to Y") 

x r-+ £(x) ("x maps to £(x)", always given following a function signature) 

A closed interval [a, b] is the set of all elements x such that a < x < b. An open 

interval (a, b) is the set of all elements x such that a < x < b. A half-open-on-right 

interval [a, b) is the set of all elements x such that a < x < b. A half-open

on-left interval (a, b] is the set of all elements x such that a < x < b. A half-open 

interval is our shorthand for half-open on right. These definitions generalize to weak 

orderings. 
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We use this notation in specifications, where i and j are iterators and n is an 

integer: 
i -< j ( "i precedes j ") 
i -< j ("i precedes or equals j ") 
[i, j) ("half-open bounded range from i to j ") 
[ i, j] ("closed bounded range from i to j ") 
[i, n~ ("half-open weak or counted range from i for n > O") 

[i, n] ("closed weak or counted range from i for n > O") 

We use this terminology when discussing concepts: 
Weak refers to weakening, which includes dropping, an axiom. For example, a 

weak ordering replaces equality with equivalence. 
Semi refers to dropping an operation. For example, a semigroup lacks the 

inverse operation. 

Partial refers to restricting the definition space. For example, partial subtraction 
(cancellation) a - b is defined when a > b. 
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Programming Language 

Sean Parent and Bjarne Stroustrup 

This appendix defines the subset of C++ used in the book. To simplify the syntax, 
we use a few library facilities as intrinsics. These intrinsics are not written in this subset 

but take advantage of other C++ features. Section B.1 defines this subset; Section B.2 
specifies the implementation of the intrinsics. 

B.1 Language Definition 

Syntax Notation 

An Extended Backus-Naur Form designed by Niklaus Wirth is used. Wirth [1977, 

pages 822-823] describes it as follows: 

The word identifier is used to denote nonterminal symbol, and literal stands for terminal 

symbol. For brevity, identifier and character are not defined in further detail. 

syntax = {production}. 
production = identifier 11-11 expression 
expression = term {11 111 term}. 
term = factor {factor}. 
factor identifier I literal 

II (II expression II ) II 

I II [ II expression 11 ] II 

I "{II expression 11}11. 

literal = II II 11 II character {character} II 11 11 11 

Repetition is denoted by curly brackets, i.e., {a} stands for E I a I aa I aaa I .... 
Optionality is expressed by square brackets, i.e., [a] stands for a I E . Parentheses 

233 



234 Programming Language 

merely serve for grouping, e.g., (a I b) c stands for ac I be. Terminal symbols, i.e., 
literals, are enclosed in quote marks (and, if a quote mark appears as a literal itself, it is 

written twice). 

Lexical Conventions 

The following productions give the syntax for identifiers and literals: 

identif er = (letter "_") {letter I II II I digit}. -
literal = boolean integer I real. 
boolean = "false" "true". 
integer = digit {digit}. 
real = integer II II [integer] I II II integer. 

Comments extend from two slashes to the end of the line: 

comment = "I I" {character} eol. 

Basic Types 

Three C++ types are used: bool has values false and true, int has signed integer 
values, and double has IEEE 64-bit floating-point values: 

basic_type = "bool" I "int" I "double". 

Expressions 

Expressions may be either runtime or compile time. Compile-time expressions may 
evaluate to either a value or a type. 

Expressions are defined by the following grammar. Operators in inner 
productions-those appearing lower in the grammar-have a higher order of prece
dence than those in outer productions: 

expression 
conjunction 
equality 
relational 
additive 
multiplicative 
pref ix 
postfix 

= conjunction {" 11" conjunction}. 
=equality{"&&" equality}. 

relational { ( "==" I "! =") relational}. 
= additive { ( "<" I ">" I "<=" I ">=") additive}. 
=multiplicative {("+" I "-") multiplicative}. 

pref ix { ( " * " I " I " I " % " ) pref ix} . 
= [ 11

-
11 I 11 ! 11 I 11 const 11

] postfix. 
primary { 11

•
11 identifier 

I " (" [ expression_list J 11
) " 

I " [" expression "J " 
I II & II}. 
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primary = literal I identifier I 11 
( 

11 expression 11
) 

11 

I basic_type I template_name I 11 typename 11
• 

expression_list =expression { 11
,

11 expression}. 

The I I and && operators designate v (disjunction) and /\ (conjunction), respec
tively. The operands must be Boolean values. The first operand is evaluated prior to 
the second operand. If the first operand determines the outcome of the expression 
(true for 11, or false for&&), the second operand is not evaluated, and the result 
is the value of the first operand. Prefix ! is --, (negation) and must be applied to a 
Boolean value. 

== and ! = are, respectively, equality and inequality operators and return a 
Boolean value. 

<, >,<=,and>= are, respectively, less than, greater than, less or equal, and greater 
or equal, also returning a Boolean value. 

+ and - are, respectively, addition and subtraction; prefix - is additive inverse. 
*,/,and% are, respectively, multiplication, division, and remainder. 
Postfix . (dot) takes an object of structure type and returns the member corre

sponding to the identifier following the dot. Postfix () takes a procedure or object 
on which the apply operator is defined and returns the result of invoking the pro
cedure or function object with the given arguments. When applied to a type, () 
performs a construction using the given arguments; when applied to a type function, 
it returns another type. Postfix [] takes an object on which the index operator is 
defined and returns the element whose position is determined by the value of the 

expression within the brackets. 
Prefix canst is a type operator returning a type that is a constant version of its 

operand. 
Postfix & is a type operator returning a reference type of its operand. 

Enumerations 

An enumeration generates a type with a unique value corresponding to each iden
tifier in the list. The only operations defined on enumerations are those of regular 
types: equality, relational operations, inequality, construction, destruction, and as
signment: 

enumeration 
identif er_list 

= 11 enum 11 identifier 11
{

11 identifer_list 
=identifier { 11

, 
11 identifier}. 

II } II II• II 
I • 
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Structures 

A structure is a type consisting of a heterogeneous tuple of named, typed objects 
called data members. Each data member is either an individual object or an array 
of constant size. In addition, the structure may include definitions of constructors, 
a destructor, member operators (assignment, application, and indexing), and local 
typedefs. A structure with an apply operator member is known as a/unction object. 

Omitting the structure body allows a forward declaration. 

structure 
structure_name 
structure_body 
member 

= "struct" structure_name [structure_body] 
= identifier. 

II• II 

data_member 
constructor 

destructor 
assign 

apply 

index 

= " { " {member} " } " . 
= data_member 

I constructor I destructor 
I assign I apply I index 
I typedef. 

=expression identifier ["["expression"]"] 
= structure_name " (" [parameter_list] ")" 

[":" initializer_list] body. 
= " - " structure_name " (" ") " body. 

"void" "operator" "=" 
" ( " parameter " ) " body. 

= expression "operator" " (" ")" 
" (" [parameter_list] ") " body. 

= expression "operator" " [" "]" 
" (" parameter ")" body. 

initializer_list =initializer {"," initializer}. 
initializer identifer " (" [expression_list] ") ". 

I • 

II• II 
I • 

A constructor taking a constant reference to the type of the structure is a copy 

constructor. If a copy constructor is not defined, a member-by-member copy con

structor is generated. A constructor with no arguments is a default constructor. A 
member-by-member default constructor is generated only if no other constructors 
are defined. If an assignment operator is not defined, a member-by-member as
signment operator is generated. If no destructor is supplied, a member-by-member 
destructor is generated. Each identifier in an initializer list is the identifier of a data 
member of the structure. If a constructor contains an initializer list, every data mem
ber of the structure is constructed with a constructor matching1 the expression list 

1. The matching mechanism performs overload resolution by exact matching without any implicit 
conversions. 
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of the initializer; all these constructions occur before the body of the constructor is 
executed. 

Procedures 

A procedure consists of its return type or, when no value is returned, void, followed 
by its name and parameter list. The name may be an identifier or an operator. A 
parameter expression must yield a type. A procedure signature without a body 
allows a forward declaration. 

procedure = (expression I "void") procedure_name 
" (" [parameter_list] ") " (body I "; ") . 

procedure_name = identifier I operator. 
operator = "operator" 

parameter_ list = 
("==" I "<" I 11 +" I "-" I "*" I "I" I "%") • 

parameter{", 11 parameter}. 
parameter expression [identifier]. 
body = compound. 

Only the listed operators can be defined. A definition for the operator ~ = is 
generated in terms of==; definitions for the operators >, <=, and >= are generated 
in terms of<. When a procedure is called, the value of each argument expression is 
bound to the corresponding parameter, and the body of the procedure is executed. 

Statements 

Statements make up the body of procedures, constructors, destructors, and member 
operators: 

statement 

simple_statement 
assignment 
construction 
initialization 
control statement 

return 
conditional 

switch 

= [identifier ": "] 
(simple_statement I assignment 
I construction I control statement 
I typedef) . 

= expression II• II 
I • 

=expression "= 11 expression";". 
= expression identifier [initialization] II• II 

I • 

= " (" expression_list ") " I "=" expression. 
= return I conditional I switch I while I do 

I compound I switch I break I goto. 
= "return" [expression] 11

;". 

= 11 if 11 
" (" expression ")" statement 

[ 
11 else" statement] . 

="switch" 11
(" expression 11

)" "{"{case}"}". 
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case 
while 
do 

compound 
break 
goto 
typedef 

Programming Language 

= "case" expression ":" {statement}. 
= "while" " (" expression ")" statement. 
= "do" statement 

II• II "while" " (" expression ")" 
= "{" {statement} "}°". 

="break"";". 

I • 

= "goto" identifier ";". 
= "typedef" expression identifier II• II 

I • 

A simple statement, which is often a procedure call, is evaluated for its side 

effects. An assignment applies the assignment operator for the type of the object 

on the left-hand side. The first expression for a construction is a type expression 

giving the type to be constructed. A construction without an initialization applies the 

default constructor. A construction with a parenthesized expression list applies the 

matching constructor. A construction with an equal sign followed by an expression 

applies the copy constructor; the expression must have the same type as the object 

being constructed. 

The return statement returns control to the caller of the current function with 

the value of the expression as the function result. The expression must evaluate to 

a value of the return type of the function. 

The conditional statement executes the first statement if the value of the ex

pression is true; if the expression is false and there is an else clause, the second 

statement is executed. The expression must evaluate to a Boolean. 

The switch statement evaluates the expression and then executes the first 

statement following a case label with matching value; subsequent statements 

are executed to the end of the switch statement or until a break statement is 

executed. The expression in a switch statement must evaluate to an integer or 

enumeration. 

The while statement repeatedly evaluates the expression and executes the state

ment as long as the expression is true. The do statement repeatedly executes the 

statement and evaluates the expression until the expression is false. In either case, 
the expression must evaluate to a Boolean. 

The compound statement executes the sequence of statements in order. 

The goto statement transfers execution to the statement following the corre

sponding label in the current function. 

The break statement terminates the execution of the smallest enclosing switch, 

while, or do statement; execution continues with the statement following the ter
minated statement. 

The typedef statement defines an alias for a type. 
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Templates 

A template allows a structure or procedure to be parameterized by one or more types 

or constants. Template definitions and template names use < and > as delimiters.2 

template = template_decl 
(structure I procedure I specialization). 

specialization "struct" structure_name "<" additive list ">" 

[structure_body] "; ". 
template_decl = "template" "<" [parameter_list] ">" [constraint]. 
constraint ="requires" "("expression")". 

template_name = (structure_name I procedure_name) 
[ II < II addi ti ve_l is t II > II ] • 

additive_list =additive {","additive}. 

When a temp la te_name is used as a primary, the template definition is used 

to generate a structure or procedure with template parameters replaced by corre

sponding template arguments. These template arguments are either given explicitly 

as the delimited expression list in the temp la te__name or, for procedures, may be 
deduced from the procedure argument types. 

A template structure can be specialized, providing an alternative definition for 
the template that is considered when the arguments match before the unspecialized 
version of the template structure. 

When the template definition includes a constraint, the template argument types 

and values must satisfy the Boolean expression following requires. 

Intrinsics 

pointer (T) is a type constructor that returns the type pointer to T. If x is an 
object of type T, addressof (x) returns a value of type pointer (T) referring to x. 

source, sink, and deref are unary functions defined on pointer types. source is 

defined for all pointer types and returns a corresponding constant reference; see 
Section 6.1. sink and deref are defined for pointer types to nonconstant objects and 
return corresponding nonconstant references; see Section 9.1. reinterpret_cast 

is a function template that takes a reference type and an object (passed by reference) 
and returns a reference of the reference type to the same object. The object must 

also have a valid interpretation with the reference type. 

2. To disambiguate between the use of< and > as relations or as template name delimiters, once 
a structure_name or procedure_name is parsed as part of a template, it becomes a terminal 
symbol. 
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B.2 Macros and Trait Structures 

To allow the language defined in Section B.1 to compile as a valid C++ program, a 

few macros and structure definitions are necessary. 

Template· Constraints 

The requires clause is implemented with this macro:3 

#define requires( ... ) 

Intrinsics 

pointer (T) and addressof (x) are introduced to give us a simple linear notation 

and allow simple top-down parsing. They are implemented as 

#define pointer(T) T* 

template<typename T> 

pointer(T) addressof (T& x) 
{ 

return &x; 
} 

Type Functions 

Type functions are implemented by using a C++ technique called a trait class. For 
each type function-say, Value Type-we define a corresponding structure template: 
say, value_type<T>. The structure template contains one typedef, named type by 

convention; if appropriate, a default can be provided in the base structure template: 

template<typename T> 

struct value_type 
{ 

typedef T type; 
}; 

To provide a convenient notation, we define a macro4 that extracts the typedef 
as the result of the type function: 

3. This implementation treats requirements as documentation only. 
4. Such a macro works only inside a template definition, because of the use of the keyword typename. 
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#define ValueType(T) typename value_type< T >::type 

We refine the global definition for a particular type by specializing: 

template<typename T> 

struct value_type<pointer(T)> 
{ 

typedef T type; 
}; 

241 
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----* (function), 231 
- (additive inverse), in additive group, 67 
/\ (and), 231 
- (difference) 

in additive group, 67 
in cancellable monoid, 72 
of integers, 18 
of iterator and integer, 111 
of iterators, 93 

x (direct product), 231 
E (element), 231 
= (equality), 7 

for array_k, 212 
for pair, 210 

£. (equals by definition), 12, 231 
~ (equivalent), 231 
3 (exists), 231 
V (for all), 231 
> (greater), 62 
:::: (greater or equal), 62 
=> (implies), 231 
[] (index) 

for array _k, 211 
for bounded_range, 214 

i- (inequality), 7, 62 
n (intersection)' 231 
< (less), 62 

for array _k, 212 
natural total ordering, 61 
for pair, 210 

:::: (less or equal), 62 
I-* (maps to), 231 
-. (not), 231 
v (or), 231 
an (power of associative operation), 3 2 
f n (power of transformation)' 17 
-< (precedes), 95 

Index 

~ (precedes or equal), 95 
· (product) 

of integers, 18 
in multiplicative semigroup, 66 
in semimodule, 69 

/ (quotient), of integers, 18 
[f, l] (range, closed bounded), 94 
[ f, n] (range, closed weak or counted), 94 
[f, l) (range, half-open bounded), 94 
[ f, n~ (range, half-open weak or 

counted), 94 
c (subset), 231 
+(sum) 

in additive semigroup, 66 
of integers, 18 
of iterator and integer, 92 

U (union), 231 

A 
abs algorithm, 16, 71 
absolute value, properties, 71 
abstract entity, 1 
abstract genus, 2 
abstract procedure, 13 

overloading, 43 
abstract species, 2 
accumulation procedure, 46 
accumulation variable 

elimination, 39 
introduction, 3 5 

action, 28 
acyclic descendants of bifurcate coordinate, 

116 
additive inverse(-), in additive group, 67 
AdditiveGroup concept, 67 
AdditiveMonoid concept, 67 
AdditiveSemigroup concept, 66 
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address, 4 
abstracted by iterator, 89 

add_to_counter algorithm, 199 
advance_tail machine, 135 
algorithm. See machine 

abs, 16, 71 
add_to_counter, 199 
all, 97 
bifurcate_compare, 131 
bifurcate_compare_nonempty, 130 
bifurcate_equivalent, 129 
bif u rcate_eq u iva lenLnonem pty, 128 
bifu rcate_isomorph ic, 126 
bifu rcate_isomorph ic_nonem pty, 125 
circular, 25 
circular _nonterminating_orbit, 25 
collision_point, 22 
col I ision _poi nLnonterm i nati ng_orbit, 23 
combine_copy, 160 
combine_copy_backward, 162 
combine_linked_nonempty, 138 
combine_ranges, 196 
compare_stricLor _reflexive, 57-58 
complement, 50 
complement_of_converse, 50 
connection_point, 26 
connection _poi nLnonterm i nati ng_orbit, 26 
convergenLpoint, 26 
converse, 50 
copy, 152 
copy _backward, 155 
copy_bounded, 153 
copy_if, 158 
copy_n, 154 
copy _select, 158 
COLI nt_if, 97, 98 
cycle_from, 173 
cycle_to, 173 
distance, 19 
euclidean_norm, 16 
exchange_values, 164 
fasLsubtractive_gcd, 78 
fibonacci, 46 
find, 96 
find_adjacenLmismatch, 103 
find_adjacenLmismatch_forward, 106, 135 
find_backward_if, 112 
find_if, 97 

find_if_noLunguarded, 102 
find_if_unguarded, 101 
find_last, 136 
find_mismatch, 102 
find_n, 101 
find_not, 97 
for _each, 96 
for _each_n, 101 
gcd,80 
height, 122 
heighLrecursive, 118 
increment, 91 
is_lefLsuccessor, 119 
is_right_successor, 120 

Index 

k_rotate_from _permutation _indexed, 180 
k_rotate_from _permutation _random_ 

access, 180 
largesLdoubling, 75 
lexicogra ph ica I _com pare, 129 
lexicographicaLequal, 127 
lexicogra ph ica I _equivalent, 127 
lexicographicaLless, 130 
lower _bound_n, 109 
lower _bound_predicate, 108 
median_5, 61 
memory-adaptive, 177 
merge_copy, 163 
merge_copy_backward, 163 
merge_linked_nonempty, 141 
merge_n_adaptive, 206 
merge_n_with_buffer, 202 
none,97 
noLall, 97 
orbiLstructu re, 28 
orbiLstructu re_nonterm i nati ng_orbit, 27 
partitioned_at_poi nt, 191 
partition_bidirectional, 194 
partition_copy, 160 
partition_copy_n, 160 
partition_linked, 140 
partition_point, 107 
partition_poinLn, 107 
partition_semistable, 192 
partition_single_cycle, 194 
partition_stable_iterative, 201 
partition_stable_n, 197 
partition_stable_n_adaptive, 197 
partition_stable_n_nonempty, 197 
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partition_stable_singleton, 196 
partition_stable_with_buffer, 195 
partition_trivial, 198 
phased_applicator, 147 
potential_partition_point, 191 
power, 42 
power _accumulate, 41 
power _accumulate_positive, 41 
power _left_associated vs. power _Q, 34 
power _righLassociated, 3 3 
power _unary, 18 
pred icate_sou rce, 140 
quotienLremainder, 85 
quotienLremainder _nonnegative, 82 
quotienLrema i nder _non negative_iterative, 

83 
reachable, 121 
reduce, 99 
reduce_balanced, 200 
reduce_nonempty, 99 
red uce_nonzeroes, 100 
relation_source, 141 
remainder, 84 
remainder _nonnegative, 74 
remainder _nonnegative_iterative, 75 
reverse_append, 139, 140 
reverse_bidirectional, 175 
reverse_copy, 156 
reverse_copy _backward, 156 
reverse_indexed, 186 
reverse_n_adaptive, 178 
reverse_n_bidirectional, 175 
reverse_n _forward, 177 
reverse_n_indexed, 175 
reverse_n_with_buffer, 176 
reverse_swap_ranges, 167 
reverse_swap_ranges_bounded, 167 
reverse_swa p_ra nges_n, 168 
reverse_with_temporary_buffer, 187, 225 
rotate, 187 
rotate_bidirectionaLnontrivial, 182 
rotate_cycles, 181 
rotate_forward_annotated, 183 
rotate_forward_nontrivial, 184 
rotate_forwa rd _step, 184 
rotate_indexed_nontrivial, 181 
rotate_nontrivial, 188 
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rotate_partial_nontrivial, 185 
rotate_ra ndom _access_nontrivi a I, 181 
rotate_with_buffer _backward_nontrivial, 

186 
rotate_with_buffer _nontrivial, 185 
selecL0_2, 53, 63 
select_Q_3, 54 
selecLL2, 54 
selecLL3, 55 
selecLL3_ab, 55 
selecLL4, 56, 59 
selecLL4_ab, 56, 59 
selecLL4_ab_cd, 56, 58 
select_2_3, 54 
selecL2_5, 60 
selecL2_5_ab, 60 
selecL2_5_ab_cd, 59 
slow_quotient, 73 
slow_remainder, 72 
some, 97 
sort_linked_nonempty_n, 142 
sort_n, 207 
sort_n_adaptive, 207 
sorLn_with_buffer, 203 
spliLcopy, 158 
splitJinked, 137 
subtractive_gcd, 78 
subtractive_gcd_nonzero, 77 
swap, 224 
swa p_basic, 223 
swap_ranges, 165 
swap_ranges_bounded, 166 
swap_ranges_n, 166 
terminating, 23 
transpose_operation, 201 
traverse, 123 
traverse_nonempty, 118 
traverse_phased_rotating, 148 
traverse_rotati ng, 146 
u nderlyi ng_ref, 224 
upper _bound_n, 109 
upper _bound_predicate, 109 
weight, 122 
weight_recursive, 117 
weighLrotating, 147 

aliased property, 150 
aliased write-read, 150 
aliased write-write, 159 
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all algorithm, 97 
ambiguous value type, 3 
amortized complexity, 219 
and (/\), 231 
annihilation property, 68 
annotation variable, 183 
ArchimedeanGroup concept, 83 
ArchimedeanMonoid concept, 72 
area of object, 227 
Aristotle, 77 
Arity type attribute, 11 
array, varieties, 220-221 
array _k type, 210 
Artin, Emil, 13 
assignment, 7 

for array _k, 211 
for pair, 210 

associative operation, 31, 98 
power of (an)' 3 2 

associative property, 31 
exploited by power, 3 3 
partially _associative, 98 
of permutation composition, 170 

asymmetric property, 50 
attribute, 1 
auxiliary computation during recursion, 17 6 
Axiom of Archimedes, 72, 73 

B 
backward movement in range, 112 
BackwardLinker concept, 134 
backward_offset property, 161 
basic singly linked list, 218 
begin 

for array _k, 211 
for bounded_range, 214 
for Linearizable, 213 

behavioral equality, 3, 228 
BidirectionalBzfurcateCoordinate concept, 
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Bidirectional! terator concept, 111 
BidirectionalLinker concept, 134 
BzfurcateCoordinate concept, 115 
bifurcate_compare algorithm, 131 
bifurcate_compare_nonempty algorithm, 130 
bifurcate_equivalent algorithm, 129 
bifurcate_eq uiva lenLnonem pty algorithm, 
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bifu rcate_isomorph ic algorithm, 126 
bifu rcate_isomorph ic_nonem pty algorithm, 
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BinaryOperation concept, 31 
binary _sca le_down _non negative, 41 
binary_scale_up_nonnegative, 41 
bisection technique, 107 
Balzano, Bernard, 107 
bounded integer type, 87 
bounded range, 93 
bounded_range property, 93 
bounded_range type, 214 
Brandt, Jon, 193 

c 
CancellableMonoid concept, 72 
cancellation in monoid, 72 
categories of ideas, 1 
Cauchy, Augustin Louis, 107 
circular algorithm, 25 
circular array, 220 
circular doubly linked list, 218 
circular singly linked list, 218 
circular _nonterminating_orbit algorithm, 25 
closed bounded range ([f, l]), 94 
closed interval, 231 
closed weak or counted range ( [ f, n]), 94 
clusters of derived procedures, 62 
codomain, 10 
Codomain type function, 11 
Collins, George, 13 
collision point of orbit, 21 
collision_point algorithm, 22 
collision_poinLnonterminating_orbit 

algorithm, 23 
combine_copy algorithm, 160 
combine_copy_backward algorithm, 162 
combine_linked_nonempty algorithm, 138 
com bi ne_ra nges algorithm, 196 
common-subexpression elimination, 35 
commutative property, 66 
CommutativeRing concept, 69 
CommutativeSemiring concept, 68 
compare_stricLor _reflexive algorithm, 

57-58 
complement algorithm, 50 
complement of converse of relation, 50 
complement of relation, 50 
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complemenLof _converse algorithm, 50 
complemenLof _converse property, 104 
complexity 

amortized, 219 
of empty, 213 
of indexing of a sequence, 213 
of regular operations, 227 
of source, 90 
of successor, 92 

composite object, 215 
composition 

of permutations, 170 
of transformations, 17, 32 

computational basis, 6 
concept, 11 

AdditiveGroup, 67 
AdditiveMonoid, 67 
AdditiveSemigroup, 66 
ArchimedeanGroup, 83 
ArchimedeanMonoid, 72 
BackwardLinker, 134 
BidirectionalBzfurcateCoordinate, 119-120 
Bidirectionallterator, 111 
BidirectionalLinker, 134 
BzfurcateCoordinate, 115 
Binary Operation, 31 
CancellableMonoid, 72 
CommutativeRing, 69 
CommutativeSemiring, 68 
consistent, 87 
DiscreteArchimedeanRin g, 86 
DiscreteArchimedeanSemiring, 85 
EmptyLinkedBzfurcateCoordinate, 144 
EuclideanMonoid, 77 
EuclideanSemimodule, 80 
EuclideanSemiring, 79 
examples from C++ and STL, 11 
Forwarditerator, 106 
ForwardLinker, 133 
FunctionalProcedure, 11 
HalvableMonoid, 7 4 
HomogeneousFunction, 12 
HomogeneousPredicate, 16 
Indexediterator, 110 
Integer, 18, 40 
Iterator, 91 
Linearizable, 213 
LinkedBzfurcateCoordinate, 144 
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modeled by type, 11 
Module, 70 
MultiplicativeGroup, 68 
MultiplicativeMonoid, 6 7 
MultiplicativeSemigroup, 66 
NonnegativeDiscreteArchimedeanSemiring, 

86 
Operation, 16 
OrderedAdditiveGroup, 70 
OrderedAdditiveMonoid, 70 
OrderedAdditiveSemigroup, 7 0 
Predicate, 15 
RandomAccessiterator, 113 
refinement, 11 
Regular, 11 
Relation, 49 
relational concept, 69 
Ring, 69 
Semimodule, 69 
Semiring, 68 
Sequence, 216 
TotallyOrdered, 62 
Transformation, 17 
type concept, 11 
UnaryFunction, 12 
UnaryPredicate, 16 
univalent, 86 
useful, 87 
weakening, 11 

concept dispatch, 106, 187 
concept schema 

composite object, 216 
coordinate structure, 124 

concept tag type, 187 
concrete entity, 1 
concrete genus, 2 
concrete species, 2 
connectedness of composite object, 215 
connection point of orbit, 20 
connection_point algorithm, 26 
con nection_poi nLnonterm i nati ng_orbit 

algorithm, 26 
connectors, 229 
consistency of concept's axioms, 87 
constant-size sequence, 216 
constructor, 7 
container, 213 
convergenLpoint algorithm, 26 
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converse algorithm, 50 
converse of relation, 50 
coordinate structure 

bifurcate coordinate, 115 
of composite object, 215 
concept schema, 124 
iterator, 89 

copy algorithm, 152 
copy constructor, 8 

for array_k, 211 
for pair, 210 

copy of object, 5 
copying rearrangement, 172 
copy_backward algorithm, 155 
copy _backward_step machine, 154 
copy _bounded algorithm, 153 
copy_if algorithm, 158 
copy _n algorithm, 154 
copy_select algorithm, 158 
copy _step machine, 152 
counted_range property, 93 
counter _machine type, 200 
counLdown machine, 153 
counLif algorithm, 97, 98 
cycle detection intuition, 21 
cycle in a permutation, 171 
cycle of orbit, 20 
cycle size, 20 
cycle_from algorithm, 173 
cycle_ to algorithm, 17 3 
cyclic element under transformation, 18 
cyclic permutation, 171 

D 
DAG (directed acyclic graph), 116 
datum, 2 
de Bruijn, N. G., 74 
default constructor, 8 

for array _k, 211 
for pair, 209 

default ordering, 62 
default total ordering, 62 

importance of, 228 
definition space, 9 
definition-space predicate, 17 
dependence of axiom, 86 
deref, 150 
derived relation, 50 

descendant of bifurcate 
coordinate, 116 

destructor, 7 
for pair, 210 

difference ( - ) 
in additive group, 67 
in cancellable monoid, 72 
of integers, 18 
of iterator and integer, 111 
of iterators, 93 

Difference Type type function, 113 
direct product ( x ) , 231 
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directed acyclic graph, 116 
DiscreteArchimedeanRing concept, 86 
DiscreteArchimedeanSemiring concept, 85 
discreteness property, 85 
disjoint property, 134 
disjointness of composite object, 216 
distance algorithm, 19 
distance in orbit, 19 
DistanceType type function, 17, 91 
distributive property, holds for semiring, 

68 
divisibility on an Archimedean monoid, 

76 
division, 68 
domain, 10 
Domain type function, 12 
double-ended array, 220 
doubly linked list, 218-219 
Dudzinski, Krzysztof, 206 
dummy node doubly linked list, 218 
Dydek, Andrzej, 206 
dynamic-size sequence, 216 

E 
efficient computational basis, 6 
element ( ~), 231 
eliminating common subexpression, 3 5 
empty 

for array_k, 212 
for bounded_range, 214 
for Linearizable, 213 

empty coordinate, 144 
empty range, 95 
EmptyLinkedBzfurcateCoordinate 

concept, 144 
end 
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for array _k, 211 
for bounded_range, 214 
for Linearizable, 213 

entity, 1 
equality 

=,7 

t=' 62 
for array _k, 212 
behavioral, 3, 228 
equal for Regular, 127 
for objects, 5 
for pair, 210 
for regular type, 7 
representational, 3, 228 
structural, 228 
for uniquely represented type, 3 
for value type, 3 

equals by definition ( ~), 12, 231 
equational reasoning:, 4 
equivalence class, 51 
equivalence property, 51 
equivalent ( <=:>), 231 
equivalent coordinate collections, 126 
erasure in a sequence, 217 
Euclidean function, 79 
EuclideanMonoid concept, 77 
EuclideanSemimodule concept, 80 
EuclideanSemiring concept, 79 
euclidean_norm algorithm, 16 
even,41 
exchange_values algorithm, 164 
exists (3), 231 
expressive computational basis, 6 

F 
fast_subtractive_gcd algorithm, 78 
fibonacci algorithm, 46 
Fibonaccisequence,45 
find algorithm, 96 
find_adjacent_mismatch algorithm, 103 
fi nd_adjacent_m ismatch_forward algorithm, 

106, 135 
find_backward_if algorithm, 112 
find_if algorithm, 97 
findJLnot, 97 
find_if_noLunguarded algorithm, 102 
find_iLunguarded algorithm, 101 
findJast algorithm, 136 

find_mismatch algorithm, 102 
find_n algorithm, 101 
find_not algorithm, 97 
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finite order, under associative operation, 32 
finite set, 171 
first-last singly linked list, 218 
fixed point of transformation, 17 0 
fixed-size sequence, 216 
Floyd, Robert W., 21 
for all (V), 231 
Forwardlterator concept, 106 
ForwardLinker concept, 13 3 
forward_offset property, 162 
for _each algorithm, 96 
for _each_n algorithm, 101 
Frobenius, Georg Ferdinand, 32 
from-permutation, 172 
function, 2 
~,231 

on abstract entities, 2 
on values, 3 

function object, 9, 96, 236 
functional procedure, 9 
FunctionalProcedure concept, 11 

G 
garbage collection, 230 
Gaussian integers, 40 

Stein's algorithm, 81 
gcd, 76 

Stein, 81 
subtractive, 7 6 

gcd algorithm, 80 
genus, 2 
global state, 6 
goto statement, 148 
greater ( >), 62 
greater or equal(~), 62 
greatest common divisor (gcd), 7 6 
group, 67 

of permutations, 170 

H 
half _nonnegative, 41 
half-open bounded range ([ f, l)), 94 
half-open interval, 231 
half-open weak or counted range ([f, n~), 94 
HalvableMonoid concept, 7 4 
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handle of orbit, 20 
handle size, 20 
header of composite object, 217 
height algorithm, 122 
height of bifurcate coordinate (DAG), 116 
heighLrecursive algorithm, 118 
Ho, Wilson, 182 
Hoare, C. A. R., 195 
homogeneous functional procedure, 10 
HomogeneousFunction concept, 12 
HomogeneousPredicate concept, 16 

I 
ideas, categories of, 1 
identity 

of concrete entity, 1 
of object, 5 

identity element, 65 
identity token, 5 
identity transformation, 170 
identity _element property, 65 
implies (:::}), 231 
inconsistency of concept, 87 
increasing range, 103 
increasing_counted_range property, 105 
increasing_range property, 105 
increment algorithm, 91 
independence of proposition, 86 
index ([ ]) 

for array _k, 211 
for bounded_range, 214 

index permutation, 172 
index of segmented array, 221 
indexed iterator 

equivalent to random-access iterator, 113 
Indexediterator concept, 110 
inequality ( f= ) , 7 

standard definition, 62 
inorder, 118 
input object, 6 
input/ output object, 6 
Input Type type function, 11 
insertion in a sequence, 217 
Integer concept, 18, 40 
interpretation, 2 
intersection (n), 231 
interval, 231 
into transformation, 169 

invariant, 148 
loop, 37 
recursion, 36 

inverse of permutation, 170, 171 
inverse_operation property, 66 
isomorphic coordinate sets, 124 
isomorphic types, 86 
is_lefLsuccessor algorithm, 119 
is_righLsuccessor algorithm, 120 
iterator adapter 
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for bidirectional bifurcate coordinates, 
project, 124 

random access from indexed, 114 
reverse from bidirectional, 112 
underlying type, 224 

Iterator concept, 91 
iterator invalidation in array, 221 
lteratorConcept type function, 187 
Iterator Type type function, 133, 134, 213 

K 
Kislitsyn, Sergei, 55 
k_rotate_from_perm utation_i ndexed 

algorithm, 180 
k_rotate_from_permutation_random_access 

algorithm, 180 

L 
Lagrange, J.-L., 107 
Lakshman, T. K., 159 
largesLdoubling algorithm, 75 
less ( <), 62 

for array _k, 212 
for bounded_range, 215 
less for TotallyOrdered, 130 
natural total ordering, 61 
for pair, 210 

less or equal (:::;), 62 
lexicographicaLcompare algorithm, 129 
lexicographicaLequal algorithm, 127 
lexicogra ph ica Leq u iva lent algorithm, 127 
lexicographicaUess algorithm, 130 
limit in a range, 95 
linear ordering, 52 
Linearizable concept, 213 
link rearrangement, 134 

on lists, 219 
linked iterator, 13 3 
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linked structures, forward vs. bidirectional, 
219 

LinkedBzfurcateCoordinate concept, 144 
linker object, 133 
linker _to_head machine, 139 
linker _to_tail machine, 135 
links, reversing, 145 
list 

doubly linked, 218 
singly linked, 218 

Lo, Raymond, 182 
load, 4 
local part of composite object, 217 
local state, 6 
locality of reference, 143 
loop invariant, 3 7 
lower bound, 107 
lower _bound_n algorithm, 109 
lower _bound_predicate algorithm, 108 

M 
machine, 120 

advance_tail, 135 
copy_backward_step, 154 
copy _step, 152 
counLdown, 153 
linker _to_head, 139 
linker _to_tail, 135 
merge_n_step_O, 205 
merge_n_step_l, 205 
reverse_copy _backward_step, 156 
reverse_copy _step, 155 
reverse_swap_step, 166 
swap_step, 165 
traverse_step, 121 
tree_rotate, 145 

maps to (i-+ ), 231 
marking, 118 
Mauchly, John W., 107 
median_5 algorithm, 61 
memory, 4 
memory-adaptive algorithm, 177 
merge, stability, 203 
mergeable property, 203 
merge_copy algorithm, 163 
merge_copy_backward algorithm, 163 
merge_linked_nonempty algorithm, 141 
merge_n_adaptive algorithm, 206 

merge_n_step_O machine, 205 
merge_n_step_l machine, 205 
merge_n_with_buffer algorithm, 202 
mod (remainder), 18 
model, partial, 70 
models, 11 
Module concept, 70 
monoid, 67 
multipass traversal, 106 
MultiplicativeGroup concept, 68 
MultiplicativeMonoid concept, 67 
MultiplicativeSemigroup concept, 66 
multiset, 227 
Musser, David, 13 
mutable range, 151 
mutable_bounded_range property, 151 
mutable_counted_range property, 151 
mutable_weak_range property, 151 
mutative rearrangement, 172 

N 
natural total ordering, < reserved for, 61 
negative, 41 
nil, 134 
Noether, Emmy, 13 
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noncircularity of composite object, 216 
none algorithm, 97 
NonnegativeDiscreteArchimedeanSemiring 

concept, 86 
nontotal procedure, 17 
not (--i), 231 
noLall algorithm, 97 
noLoverlapped property, 157 
noLoverlapped_backward property, 155 
noLoverlapped_forward property, 153 
noLwrite_overlapped property, 159 
null link, 218 

0 
object, 4 

area, 227 
equality, 5 
starting address, 216 
state, 4 

object type, 4 
odd,41 
one, 41 
one-to-one transformation, 169 
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onto transformation, 169 
open interval, 231 
Operation concept, 16 
or (v), 231 
orbit, 18-20 
orbiLstructu re algorithm, 28 
orbit_structu re_nonterm i nati ng_orbit 

algorithm, 27 
OrderedAdditiveGroup concept, 7 0 
OrderedAdditiveMonoid concept, 70 
OrderedAdditiveSemigroup concept, 70 
ordering, linear, 52 
ordering-based rearrangement, 172 
output object, 6 
overloading, 43, 133, 144 
own state, 6 
ownership, of parts by composite 

object, 216 

p 
pair type, 11, 209 
parameter passing, 9 
part of composite object, 215-219 
partial model, 7 0 
partial procedure, 17 
partial (usage convention), 23 2 
partially formed object state, 7 
partially_associative property, 98 
partition algorithm, origin of, 195 
partition point, 105 

lower and upper bounds, 107 
partition rearrangement, semistable, 192 
partitioned property, 105 
partitioned range, 105 
partitioned_at_point algorithm, 191 
partition_bidirectional algorithm, 194 
partition_copy algorithm, 160 
partition_copy_n algorithm, 160 
partition_linked algorithm, 140 
partition_point algorithm, 107 
partition_point_n algorithm, 107 
partition_semistable algorithm, 192 
partition_single_cycle algorithm, 194 
partition_stable_iterative algorithm, 201 
partition_stable_n algorithm, 197 
partition_stable_n_adaptive algorithm, 197 
partition_stable_n_nonempty 

algorithm, 197 
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partition_stable_singleton algorithm, 196 
partition_stable_with_buffer algorithm, 195 
partition_trivial algorithm, 198 
permanently placed part of composite object, 

217 
permutation, 170 

composition, 170 
cycle, 171 
cyclic, 171 
from, 172 
index, 172 
inverse, 170, 171 
product of its cycles, 171 
reverse, 17 4 
rotation, 178 
to, 172 
transposition, 171 

permutation group, 170 
phased_applicator algorithm, 147 
pivot, 205 
position-based rearrangement, 172 
positive, 41 
postorder, 118 
potentiaLpartition_poi nt algorithm, 191 
power 

of associative operation (an), 3 2 
powers of same element commute, 32 
of transformation (fn), 17 

power algorithm, 42 
operation count, 34 

power _accumulate algorithm, 41 
power _accumulate_positive algorithm, 41 
power _righLassociated algorithm, 33 
power _unary algorithm, 18 
precedence preserving link rearrangement, 

135 
precedes (-<), 95 
precedes or equal(~), 95 
precondition, 13 
predecessor 

of integer, 41 
of iterator, 111 

Predicate concept, 15 
predicate-based rearrangement, 172 
predicate_source algorithm, 140 
prefix of extent, 220 
preorder, 118 
prime property, 14 
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procedure, 6 
abstract, 13 
functional, 9 
nontotal, 17 
partial, 17 
total, 17 

product(·) 
of integers,· 18 
in multiplicative semigroup, 66 
in semimodule, 69 

program transformation 
accumulation-variable elimination, 39 
accumulation-variable introduction, 35 
common-subexpression elimination, 35 
enabled by regular types, 3 5 
forward to backward iterators, 112 
relaxing precondition, 3 8 
strengthening precondition, 3 8 
strict tail-recursive, 3 7 
tail-recursive form, 35 

project 
abstracting platform-specific copy 

algorithms, 164 
algorithms for bidirectional bifurcate 

algorithms, 123 
axioms for random-access iterator, 113 
benchmark and composite algorithm for 

rotate, 189 
concepts for bounded binary 

integers, 87 
coordinate structure concept, 131 
cross-type operations, 14 
cycle-detection algorithms, 29 
dynamic-sequences benchmark, 222 
dynamic-sequences implementation, 222 
dynamic-sequences interfaces, 222 
floating-point nonassociativity, 42 
isomorphism, equivalence, and ordering 

using tree_rotate, 148 
iterator adapter for bidirectional bifurcate 

coordinates, 124 
linear recurrence sequences, 47 
minimum-comparison stable sorting and 

merging, 61 
nonhalvable Archimedean monoids, 75 
order-selection stability, 61 
reallocation strategy for single-extent 

arrays, 221 

searching for a subsequence within a 
sequence, 114 

setting for Stein gcd, 81 
sorting library, 208 

257 

underlying type used in major library, 225 
projection regularity, 216 
proper underlying type, 223 
properly partial object state, 5 
properly partial value type, 2 
property 

aliased, 150 
annihilation, 68 
associative, 31 
asymmetric, 50 
backward_offset, 161 
bounded_range, 93 
commutative, 66 
com plement_of _converse, 104 
counted_range, 93 
discreteness, 85 
disjoint, 134 
distributive, 68 
equivalence, 51 
forward _offset, 162 
identity element, 65 
identity _element, 65 
increasing_counted_range, 105 
increasing_range, 105 
inverse_operation, 66 
mergeable, 203 
mutable_bounded_range, 151 
mutable_counted_range, 151 
mutable_weak_range, 151 
notation, 14 
noLoverlapped, 157 
noLoverlapped_backward, 155 
noLoverlapped_forward, 153 
noLwrite_overla pped, 159 
partially_associative, 98 
partitioned, 105 
prime, 14 
readable_bounded_range, 95 
readable_counted_range, 96 
reada ble_tree, 123 
readable_weak_range, 96 
reflexive, 50 
regular _unary_function, 14 
relation_preserving, 103 
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property (cont.) 
strict, 50 
strictly_increasing_counted_range, 105 
strictly _i ncreasi ng_ra nge, 104 
symmetric, 50 
total_ordering, 51 
transitive, 49 
tree, 117 
trichotomy, 51 
weak trichotomy, 51 
weak_ordering, 52 
wea k_ra nge, 92 
writable_bounded_range, 150 
writable_counted_range, 150 
writable_weak_range, 150 
write_aliased, 159 

proposition, independence of, 86 
pseudopredicate, 13 6 
pseudorelation, 13 7 
pseudotransformation, 91 

Q 
quotient (/),of integers, 18 
quotient 

in Euclidean semimodule, 80 
in Euclidean semiring, 79 

Quotient Type type function, 72 
quotient_remainder algorithm, 85 
q uotient_rema i nder _non negative algorithm, 

82 
q uotient_rema i nder _non negative_iterative 

algorithm, 83 

R 
random-access iterator, equivalent to indexed 

iterator, 113 
RandomAccess!terator concept, 113 
range 

backward movement, 112 
closed bounded ( [ f, l]), 94 
closed weak or counted ([f, n]), 94 
empty, 95 
half-open bounded ([f, l)), 94 
half-open weak or counted ([f, n~), 94 
increasing, 103 
limit, 95 
lower bound, 107 

mutable, 151 
partition point, 105 
partitioned, 105 
readable, 95 
size, 94 
strictly increasing, 103 
upper bound, 107 
writable, 150 

reachability 
of bifurcate coordinate, 116 
in orbit, 18 

reachable algorithm, 121 
readable range, 95 
readable_bounded_range property, 95 
readable_counted_range property, 96 
readable_tree property, 123 
readable_weak_range property, 96 
rearrangement, 172 

bin-based, 172 
copying, 172 
link, 134 
mutative, 172 
ordering-based, 172 
position-based, 172 
reverse, 174 
rotation, 179 

recursion invariant, 36 
reduce algorithm, 99 
reduce_balanced algorithm, 200 
reduce_nonempty algorithm, 99 
red uce_nonzeroes algorithm, 100 
reduction, 98 
reference counting, 230 
refinement of concept, 11 
reflexive property, 50 
Regular concept, 11 

and program transformation, 35 
regular function on value tY.pe, 3 
regular type, 6-8 
regularity, 216, 217 
regular _unary_function property, 14 
Relation concept, 49 
relational concept, 69 
relationship, 229 
relation_preservi ng property, 103 
relation_source algorithm, 141 
relaxing precondition, 3 8 
remainder 
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algorithm, 84 
in Euclidean semimodule, 80 
in Euclidean semiring, 79 

remainder (mod), of integers, 18 
remainder _nonnegative algorithm, 74 
remainder _non negative_iterative algorithm, 

75 
remote part of composite object, 217 
representation, 2 
representational equality, 3, 228 
requires clause, 13 

syntax, 240 
resources, 4 
result space, 10 
returning useful information, 87, 96, 97, 

101-103, 106, 112, 152, 153, 159, 
163, 174, 179, 182,211 

reverse rearrangement, 174 
reverse_append algorithm, 139, 140 
reverse_bidirectional algorithm, 175 
reverse_copy algorithm, 156 
reverse_copy _backward algorithm, 156 
reverse_copy _backward_step machine, 156 
reverse_copy _step machine, 155 
reverse_indexed algorithm, 186 
reverse_n_adaptive algorithm, 178 
reverse_n_bidirectional algorithm, 175 
reverse_n_forward algorithm, 177 
reverse_n_indexed algorithm, 175 
reverse_n_with_buffer algorithm, 176 
reverse_swap_ranges algorithm, 167 
reverse_swa p_ra nges_bou nded 

algorithm, 167 
reverse_swap_ranges_n algorithm, 168 
reverse_swa p_step machine, 166 
reverse_with_temporary_buffer algorithm, 

187,225 
reversing links, 145 
Rhind Mathematical Papyrus 

division, 7 3 
power, 33 

Ring concept, 69 
rotate algorithm, 187 
rotate_bidirectional_nontrivial 

algorithm, 182 
rotate_cycles algorithm, 181 
rotate_forward_annotated algorithm, 

183 
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rotate_forward_nontrivial algorithm, 184 
rotate_forward_step algorithm, 184 
rotate_indexed_nontrivial algorithm, 181 
rotate_nontrivial algorithm, 188 
rotate_partiaLnontrivial algorithm, 185 
rotate_ra ndom _access_nontrivia I algorithm, 

181 
rotate_with_buffer _backward_nontrivial 

algorithm, 186 
rotate_with_buffer _nontrivial algorithm, 185 
rotation 

permutation, 17 8 
rearrangement, 179 

s 
schema, concept, 124 
Schreier, Jozef, 5 5 
Schwarz, Jerry, 150 
segmented array, 221 
segmented index, 221 
select_Q_2 algorithm, 53, 63 
select_Q_3 algorithm, 54 
select_L2 algorithm, 54 
select_L3 algorithm, 5 5 
select_L3_ab algorithm, 55 
select_L4 algorithm, 56, 59 
select_L4_ab algorithm, 56, 59 
select_L4_ab_cd algorithm, 56, 58 
select_2_3 algorithm, 54 
select_2_5 algorithm, 60 
select_2_5_ab algorithm, 60 
select_2_5_ab_cd algorithm, 59 
semi (usage convention), 232 
semigroup, 66 
Semimodule concept, 69 
Semiring concept, 68 
semistable partition rearrangement, 192 
sentinel, 101 
Sequence concept, 216 

extent-based models, 219 
linked models, 219 

set, 231 
single-ended array, 220 
single-extent array, 220 
single-extent index, 221 
single-pass traversal, 91 
singly linked list, 218 
sink, 149 
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size 
for array _k, 212 
for bounded_range, 214 
for Linearizable, 213 

size of an orbit, 20 
size of a range, 94 
Size Type type function, 213 
slanted index, 221 
slow_quotient algorithm, 73 
slow_remainder algorithm, 72 
snapshot, 1 
some algorithm, 97 
sort_linked_nonempty_n algorithm, 142 
sort_n algorithm, 207 
sort_n_adaptive algorithm, 207 
sort_n_with_buffer algorithm, 203 
source, 90 
space complexity, memory adaptive, 

177 
species 

abstract, 2 
concrete, 2 

splicing link rearrangement, 219 
spliLcopy algorithm, 158 
spliLlinked algorithm, 137 
stability, 52 

of merge, 203 
of partition, 192 
of sort, 204 
of sort on linked range, 142 

stability index, 53 
Standard Template Library, x 
starting address, 4, 216 
state of object, 4 
Stein, Josef, 81 
Stein gcd, 81 
STL, x 
store, 4 
strengthened relation, 5 3 
strengthening precondition, 3 8 
strict property, 50 
strict tail-recursive, 3 7 
strictly increasing range, 103 
strictly _increasing_counted_range property, 

105 
strictly_increasing_range property, 104 
structural equality, 228 
subpart of composite object, 216 

subset (c), 231 
subtraction, in additive group, 67 
subtractive_gcd algorithm, 78 
subtractive_gcd_nonzero algorithm, 77 
successor 

definition space on range, 94 
of integer, 41 
of iterator, 91 

sum(+) 
in additive semigroup, 66 
of integers, 18 
of iterator and integer, 92 

swap algorithm, 224 
swa p_basic algorithm, 223 
swap_ranges algorithm, 165 
swap_ranges_bounded algorithm, 166 
swap_ranges_n algorithm, 166 
swap_step machine, 165 
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symmetric complement of a relation, 52 
symmetric property, 50 

T 
tail-recursive form, 35 
technique. See program transformation 

auxiliary computation during recursion, 176 
memory-adaptive algorithm, 177 
operation-accumulation procedure duality, 

47 
reduction to constrained subproblem, 54 
returning useful information, 87, 96, 97, 

101-103, 106, 112, 152, 153, 159, 163, 
174, 179, 182, 211 

transformation-action duality, 28 
useful variations of an interface, 3 8 

tern porary _buffer type, 187 
terminal element under transformation, 18 
terminating algorithm, 23 
three-valued compare, 63 
Tighe, Joseph, 179 
to-permutation, 172 
total object state, 5 
total procedure, 17 
total value type, 2 
TotallyOrdered concept, 62 
totaLordering property, 51 
trait class, 240 
transformation, 17 

composing, 17, 32 
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cyclic element, 18 
fixed point of, 17 0 
identity, 170 
into, 169 
of program. See program transformation 
one-to-one, 169 
onto, 169 
orbit, 18 
power of (fn), 17 
terminal element, 18 

Trans/ ormation concept, 17 
transitive property, 49 
tra nspose_operation algorithm, 201 
transposition, 171 
traversal 

multipass, 106 
single-pass, 91 
of tree, recursive, 119 

traverse algorithm, 123 
traverse_nonempty algorithm, 118 
traverse_phased _rotating algorithm, 148 
traverse_rotati ng algorithm, 146 
traverse_step machine, 121 
tree property, 117 
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