Bounded Arithmetic: Classic and Intuitionistic

Morteza Moniri

Department of Mathematics

Shahid Beheshti University

5th Annual Conference of the IAL, 2017

Outline

(1) Bounded Arithmetic

Outline

(1) Bounded Arithmetic
(2) Buss's theories of Bounded Arithmetic

Bounded Arithmetic

- $\mathrm{I} \Delta_{0}=$ Bounded Arithmetic

Bounded Arithmetic

- I $\Delta_{0}=$ Bounded Arithmetic
- I Δ_{0} is obtained from PA by restricting Induction Scheme to bounded formulas.

Bounded Arithmetic

- I $\Delta_{0}=$ Bounded Arithmetic
- I Δ_{0} is obtained from PA by restricting Induction Scheme to bounded formulas.
- $\mathrm{I} \Delta_{0}$ is a bounded theory (Π_{1}-axiomatized).

Bounded Arithmetic

- I $\Delta_{0}=$ Bounded Arithmetic
- I Δ_{0} is obtained from PA by restricting Induction Scheme to bounded formulas.
- $\mathrm{I} \Delta_{0}$ is a bounded theory (Π_{1}-axiomatized).

Theorem

$\mathrm{I} \Delta_{0}$ can prove every property of exp-function, except totality:

$$
\mathrm{I} \Delta_{0} \nvdash \forall x \forall y \exists z \quad x^{y}=z
$$

Bounded Arithmetic

- I $\Delta_{0}=$ Bounded Arithmetic
- I Δ_{0} is obtained from PA by restricting Induction Scheme to bounded formulas.
- $\mathrm{I} \Delta_{0}$ is a bounded theory (Π_{1}-axiomatized).

Theorem

$\mathrm{I} \Delta_{0}$ can prove every property of exp-function, except totality:

$$
\mathrm{I} \Delta_{0} \nvdash \forall x \forall y \exists z \quad x^{y}=z
$$

Proof.

Let $a \in M \vDash I \Delta_{0}$, non-standard

$$
a^{\mathbb{N}}=\left\{b: b<a^{n} \text { for some } n\right\} \vDash \Pi_{1}\left(\mathrm{I} \Delta_{0}\right)
$$

Bounded Arithmetic

Theorem (Wilkie, Paris 1987)

- $\mathrm{I} \Delta_{0}+\exp \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)$ (Indeed, $\left.\mathrm{I} \Delta_{0}+\exp \nvdash \operatorname{Con}(\mathbb{Q})\right)$
- $\mathrm{I} \Delta_{0}+\exp +\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right) \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\exp \right)$

Bounded Arithmetic

Theorem (Wilkie, Paris 1987)

- $\mathrm{I} \Delta_{0}+\exp \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)$ (Indeed, $\left.\mathrm{I} \Delta_{0}+\exp \nvdash \operatorname{Con}(\mathbb{Q})\right)$
- $\mathrm{I} \Delta_{0}+\exp +\operatorname{Con}\left(\mathrm{I} \Delta_{0}\right) \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}+\exp \right)$

Theorem (Wilmers 1985)

$\mathrm{I} \Delta_{0}$ (and even IE_{1}) dose not have recursive model.

- Originally proved for PA by Tennenbaum (1959)

Bounded Arithmetic

Theorem (Paris, Kirby 1978)

$$
\mathrm{I} \Sigma_{n} \equiv \mathrm{I} \Pi_{n} \equiv \mathrm{~L} \Sigma_{n} \equiv \mathrm{~L} \Pi_{n}
$$

Bounded Arithmetic

Theorem (Paris, Kirby 1978)

$$
\mathrm{I} \Sigma_{n} \equiv \mathrm{I} \Pi_{n} \equiv \mathrm{~L} \Sigma_{n} \equiv \mathrm{~L} \Pi_{n}
$$

Theorem (Wilmers 1985)

$$
\mathrm{IE}_{n} \equiv \mathrm{IU}_{n} \equiv \mathrm{LE}_{n}
$$

Bounded Arithmetic

Theorem (Paris, Kirby 1978)

$$
\mathrm{I} \Sigma_{n} \equiv \mathrm{I} \Pi_{n} \equiv \mathrm{~L} \Sigma_{n} \equiv \mathrm{~L} \Pi_{n}
$$

Theorem (Wilmers 1985)

$$
\mathrm{IE}_{n} \equiv \mathrm{IU}_{n} \equiv \mathrm{LE}_{n}
$$

Questions (Wilmers)

$$
\mathrm{IE}_{1} \vdash^{?} \mathrm{LU}_{1}
$$

Bounded Arithmetic

MRDP Theorem (Matitasevic 1971)

$$
\Sigma_{1}^{\mathbb{N}}=\exists_{1}^{\mathbb{N}}
$$

Bounded Arithmetic

MRDP Theorem (Matitasevic 1971)

$$
\Sigma_{1}^{\mathbb{N}}=\exists_{1}^{\mathbb{N}}
$$

\Longrightarrow Negative answer to Hilbert's tenth problem (because r.e. $=\Sigma_{1}^{\mathbb{N}}$).

Bounded Arithmetic

MRDP Theorem (Matitasevic 1971)

$$
\Sigma_{1}^{\mathbb{N}}=\exists_{1}^{\mathbb{N}}
$$

\Longrightarrow Negative answer to Hilbert's tenth problem (because r.e. $=\Sigma_{1}^{\mathbb{N}}$).

Theorem (Dimitracopoulos, Gaifman 1982)

$$
\mathrm{I} \Delta_{0}+\exp \vdash \mathrm{MRDP}
$$

Bounded Arithmetic

MRDP Theorem (Matitasevic 1971)

$$
\Sigma_{1}^{\mathbb{N}}=\exists_{1}^{\mathbb{N}}
$$

\Longrightarrow Negative answer to Hilbert's tenth problem (because r.e. $=\Sigma_{1}^{\mathbb{N}}$).

Theorem (Dimitracopoulos, Gaifman 1982)

$$
\mathrm{I} \Delta_{0}+\exp \vdash \mathrm{MRDP}
$$

Questions
$\mathrm{I} \Delta_{0} \vdash$? MRDP

Bounded Arithmetic

- $|x|=$ The length of code of x in base 2

Bounded Arithmetic

- $|x|=$ The length of code of x in base 2
- $\Omega_{1}: \forall x \forall y \exists z \quad z=x^{\text {Ln }}$

Bounded Arithmetic

- $|x|=$ The length of code of x in base 2
- $\Omega_{1}: \forall x \forall y \exists z \quad z=x^{\text {Lny }}$
- I $\Delta_{0}+\Omega_{1}$ is strong enough to formalize consistency

Bounded Arithmetic

- $|x|=$ The length of code of x in base 2
- $\Omega_{1}: \forall x \forall y \exists z \quad z=x^{\text {Lny }}$
- I $\Delta_{0}+\Omega_{1}$ is strong enough to formalize consistency

Syntax: Lengths of words (cods) in any model of $\mathrm{I} \Delta_{0}+\Omega_{1}$ is closed under multiplication. So, Polynomial Time computation can be formalized in this theory.

$$
\begin{gathered}
x \rightsquigarrow|x| \\
x^{|y|} \rightsquigarrow|y| \cdot|x|
\end{gathered}
$$

Bounded Arithmetic

Definition (Polynomial Hierachy)

$$
\left\{\begin{aligned}
\sum_{0}^{P} & =\mathrm{P} \\
\Sigma_{i+1}^{\mathrm{P}} & =\mathrm{NP}\left(\Sigma_{i}^{\mathrm{P}}\right)
\end{aligned}\right.
$$

Bounded Arithmetic

Definition (Polynomial Hierachy)

$$
\left\{\begin{aligned}
\Sigma_{0}^{P} & =\mathrm{P} \\
\Sigma_{i+1}^{\mathrm{P}} & =\mathrm{NP}\left(\Sigma_{i}^{\mathrm{P}}\right)
\end{aligned}\right.
$$

- LinH is defined similarly, changing P to L .

Bounded Arithmetic

Definition (Polynomial Hierachy)

$$
\left\{\begin{aligned}
\Sigma_{0}^{P} & =\mathrm{P} \\
\Sigma_{i+1}^{\mathrm{P}} & =\mathrm{NP}\left(\Sigma_{i}^{\mathrm{P}}\right)
\end{aligned}\right.
$$

- LinH is defined similarly, changing P to L.

Fact

$$
\Delta_{0}(\mathbb{N})=\operatorname{LinH}
$$

Bounded Arithmetic

Theorem

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \mathrm{MRDP} \Longrightarrow \mathrm{NP}=\mathrm{co}-\mathrm{Nr} P
$$

Bounded Arithmetic

Theorem

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \mathrm{MRDP} \Longrightarrow \mathrm{NP}=\mathrm{co}-\mathrm{Np}
$$

Theorem
$\mathrm{I} \Delta_{0}+\Omega_{1}$ finitely axiomatizable \Longrightarrow PH collapses

Buss's theories of Bounded Arithmetic

- Language $=\left\{0, s,+, \sharp,|x|,\left\lfloor\frac{1}{2}\right\rfloor, \leqslant\right\}$
with the intended interpretations as follows:

$$
\begin{aligned}
& |x| \quad \text { lenght of } \mathrm{x}\left(\text { gratest } \mathrm{y} \text { s.t. } 2^{y} \leqslant x\right) \\
& \left\lfloor\frac{1}{2}\right\rfloor \text { integer part of } \frac{x}{2} \\
& x \sharp y=2^{|x| \cdot|y|}
\end{aligned}
$$

Buss's theories of Bounded Arithmetic

- Language $=\left\{0, s,+, \sharp,|x|,\left\lfloor\frac{1}{2}\right\rfloor, \leqslant\right\}$
with the intended interpretations as follows:

$$
\begin{array}{ll}
|x| & \text { lenght of } x\left(\text { gratest } y \text { s.t. } 2^{y} \leqslant x\right) \\
\left\lfloor\frac{1}{2}\right\rfloor & \text { integer part of } \frac{x}{2} \\
x \sharp y & =2^{|x| \cdot|y|}
\end{array}
$$

- BASIC : Expressing basic properties of the parameters.

Buss's theories of Bounded Arithmetic

- Language $=\left\{0, s,+, \sharp,|x|,\left\lfloor\frac{1}{2}\right\rfloor, \leqslant\right\}$
with the intended interpretations as follows:

$$
\begin{array}{ll}
|x| & \text { lenght of } x\left(\text { gratest } y \text { s.t. } 2^{y} \leqslant x\right) \\
\left\lfloor\frac{1}{2}\right\rfloor & \text { integer part of } \frac{x}{2} \\
x \sharp y & =2^{|x| \cdot|y|}
\end{array}
$$

- BASIC : Expressing basic properties of the parameters.
- Polynomial Induction PIND:

$$
\left[A(0) \wedge \forall x\left(A\left(\left\lfloor\frac{x}{2}\right\rfloor\right) \rightarrow A(x)\right)\right] \rightarrow \forall x A(x)
$$

\sum_{i}^{b} and Π_{i}^{b}

Definition

- $\Sigma_{0}^{\mathrm{b}}=\Pi_{0}^{\mathrm{b}}$ is the class of all sharply bounded formulas.
- The syntactic classes $\sum_{i+1}^{\mathrm{b}}, \Pi_{i+1}^{\mathrm{b}}$ of bounded formulas are defined by counting alternations of bounded quantifiers ignoring sharply bounded quantifiers.

Buss's theories of Bounded Arithmetic

$$
\begin{aligned}
& S_{2}^{i}=\text { BASIC }+\Sigma_{i}^{\mathrm{b}}-\text { PIND } \\
& S_{2}=\bigcup S_{2}^{i}
\end{aligned}
$$

Buss's theories of Bounded Arithmetic

$$
\begin{aligned}
& S_{2}^{i}=\text { BASIC }+\Sigma_{i}^{\mathrm{b}}-\text { PIND } \\
& S_{2}=\bigcup S_{2}^{i}
\end{aligned}
$$

Theorem (Buss 1985)

$$
\Sigma_{i}^{\mathrm{b}}(\mathbb{N})=\Sigma_{i}^{\mathrm{P}}
$$

Σ_{1}-definable functions

Definition

Let T be an arithmetical theory. A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is Σ_{1}-definable in T if there is a Σ_{1}-formula $\phi(\vec{x}, y)$ such that

1) $\phi(\vec{n}, f(\vec{n}))$ is true, $n \in \mathbb{N}$
2) $T \vdash \forall \vec{x} \exists y \phi(\vec{x}, y)$

Σ_{1}-definable functions

Definition

Let T be an arithmetical theory. A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is Σ_{1}-definable in T if there is a Σ_{1}-formula $\phi(\vec{x}, y)$ such that

1) $\phi(\vec{n}, f(\vec{n}))$ is true, $n \in \mathbb{N}$
2) $T \vdash \forall \vec{x} \exists y \phi(\vec{x}, y)$

Theorem (Parsons, Takeuti, ... 1970)
Σ_{1}-definable functions of I Σ_{1} are exactly primitive recursive functions.

Buss's theories of Bounded Arithmetic

Theorem (Buss 1985)

1) Σ_{1}^{b}-definable functions of S_{2}^{1} are Polynomial Time computable functions.
2) Δ_{1}^{b}-definable predicates of S_{2}^{1} are exactly P-relations.

Buss's theories of Bounded Arithmetic

Theorem (Buss 1985)

1) Σ_{1}^{b}-definable functions of S_{2}^{1} are Polynomial Time computable functions.
2) Δ_{1}^{b}-definable predicates of S_{2}^{1} are exactly P-relations.

Theorem (Krajicek, Pudlak, Takeuti 1991)

$$
\exists i S_{2}^{i}=S_{2}^{i+1} \Longrightarrow \text { PH collapses }
$$

$\mathrm{IS}_{2}^{1}(C U)$

Definitin (Cook, Urquhart 1989-1993)
$I S_{2}^{1}(C U)=$ Intuitionistic theory axiomatized by
$\operatorname{BASIC}+\operatorname{PIND}\left(\Sigma_{1}^{\mathrm{b}^{+}}\right)$

$\mathrm{IS}_{2}^{1}(C U)$

Definitin (Cook, Urquhart 1989-1993)
$\mathrm{I} S_{2}^{1}(C U)=$ Intuitionistic theory axiomatized by
$\operatorname{BASIC}+\operatorname{PIND}\left(\Sigma_{1}^{\mathrm{b}^{+}}\right)$

- $\Sigma_{1}^{\mathrm{b}^{+}}$: Positive Σ_{1}^{b} (without \neg, \rightarrow)

$I S_{2}^{1}(C U)$

Definitin (Cook, Urquhart 1989-1993)

$I S_{2}^{1}(C U)=$ Intuitionistic theory axiomatized by
BASIC $+\operatorname{PIND}\left(\Sigma_{1}^{b^{+}}\right)$

- $\Sigma_{1}^{\mathrm{b}^{+}}$: Positive Σ_{1}^{b} (without \neg, \rightarrow)
- They independently proved the main theorem of S_{2}^{1} for $I S_{2}^{1}(C U)$.

IS ${ }_{2}^{1}(B)$

Another intuitionistic version of S_{2}^{1} intruduced by Buss himself.

Definitin

IS ${ }_{2}^{1}(B)=$ Intuitionistic theory axiomatized by all consequence of S_{2}^{1} of the form $\left(B_{1} \wedge \cdots \wedge B_{m}\right) \rightarrow B_{m+1}$ where B_{i} is $\mathrm{H} \Sigma_{1}^{\mathrm{b}}+\mathrm{PIND}\left(\mathrm{H} \Sigma_{1}^{\mathrm{b}}\right)$.

IS ${ }_{2}^{1}(B)$

Another intuitionistic version of S_{2}^{1} intruduced by Buss himself.

Definitin

I $S_{2}^{1}(B)=$ Intuitionistic theory axiomatized by all consequence of S_{2}^{1} of the form $\left(B_{1} \wedge \cdots \wedge B_{m}\right) \rightarrow B_{m+1}$ where B_{i} is $H \Sigma_{1}^{b^{2}}+\operatorname{PIND}\left(H \Sigma_{1}^{b}\right)$.

- $\mathrm{H} \Sigma_{1}^{\mathrm{b}}=$ hereditavy $\Sigma_{1}^{\mathrm{b}}=$ the set of formulas A such that each subformula of A is Σ_{1}^{b}.

IS ${ }_{2}^{1}(B)$

Another intuitionistic version of S_{2}^{1} intruduced by Buss himself.

Definitin

I $S_{2}^{1}(B)=$ Intuitionistic theory axiomatized by all consequence of S_{2}^{1} of the form $\left(B_{1} \wedge \cdots \wedge B_{m}\right) \rightarrow B_{m+1}$ where B_{i} is $H \Sigma_{1}^{b^{b}}+\operatorname{PIND}\left(H \Sigma_{1}^{b}\right)$.

- $\mathrm{H} \Sigma_{1}^{\mathrm{b}}=$ hereditavy $\Sigma_{1}^{\mathrm{b}}=$ the set of formulas A such that each subformula of A is Σ_{1}^{b}.

Theorem (Buss 1992)

$$
\mathrm{I} S_{2}^{1}(B)=\mathrm{I} S_{2}^{1}(C U)
$$

$I S_{2}^{n}$

Generalizing IS S_{2}^{1} to $I S_{2}^{n}$:

- $\operatorname{I} S_{2}^{n}(B)(1986)$
- IS ${ }_{2}^{n}(H)$ (Victor Harnic, JSL 1992)

PV_{n}

PV_{n} : Originally defined by Cook for level 1 and extended by Harnik for each n .

Definitin (Harnik)

- $I S_{2}^{n}=\operatorname{BASIC}+\operatorname{PEM}\left(\Sigma_{n-1}^{\mathrm{b}} \cup \Pi_{n-1}^{\mathrm{b}}\right)+\operatorname{PIND}\left(\Sigma_{n}^{\mathrm{b}^{+}}\right)$.
- $\mathrm{IPV}_{\mathrm{n}}=\mathrm{I} S_{2}^{n}\left(\mathrm{PV}_{\mathrm{n}}\right)$
- $\mathrm{PV}_{\mathrm{n}}=$ Equational theory for Π_{n}^{P}-functions (level n of the PH for functions)
- $\mathrm{CPV}_{\mathrm{n}}=$ Classical version of $\mathrm{IPV}_{\mathrm{n}}$.

PV_{n}

Theorem (MM 2009)

1) If $\mathrm{CPV}_{\mathrm{n}} \vdash \forall x \exists y A$ then $\mathrm{IPV}_{\mathrm{n}} \vdash \forall x \exists y A$,
2) If $S_{2}^{n} \vdash \forall x \exists y A$ then $I S_{2}^{n} \vdash \forall x \exists y A$.
where A is a positive \sum_{n}^{b}-formula.

Proof.

Use Jeremy Avigad's forcing method (Avigad 2002-2004).

CU

Definition (CU)

- IPV $=I S_{2}^{1}(\mathrm{PV})$
- $\mathrm{IPV}^{+}=\mathrm{PV}+$ PIND over formulas of the form $(A(x) \vee B)$
- $\mathrm{IPV}^{*}=\mathrm{PV}+\mathrm{PIND}(\neg \neg A(x))$
$A(x)$ an NP-formula (of the form $\exists x \leq t(r=s)$)

CU

Definition (CU)

- IPV $=I S_{2}^{1}(\mathrm{PV})$
- $\mathrm{IPV}^{+}=\mathrm{PV}+$ PIND over formulas of the form $(A(x) \vee B)$
- $\mathrm{IPV}^{*}=\mathrm{PV}+\mathrm{PIND}(\neg \neg A(x))$
$A(x)$ an NP-formula (of the form $\exists x \leq t(r=s)$)
Questions (CU 1993)
- $\mathrm{IPV}=$? IPV^{+}
- IPV $=$? IPV^{*}

CU

Theorem (MM 2003)
Answer is 'probably' No

- $\mathrm{IPV}=\mathrm{IPV}^{+} \Longrightarrow \mathrm{CPV}=\mathrm{PV} \Longrightarrow \mathrm{PH}$ collapses.
- $\mathrm{IPV}=\mathrm{IPV}^{*} \Longrightarrow \mathrm{CPV}=\mathrm{PV} \Longrightarrow \mathrm{PH}$ collapses.

CU

Proof.

$$
\begin{aligned}
& \text { By using Kripke models of IPV. Note that } \\
& \qquad\left(\mathrm{IPV}^{+}\right)^{c}=\left(\mathrm{IPV}^{*}\right)^{c}=\mathrm{CPV}
\end{aligned}
$$

CU

Proof.

By using Kripke models of IPV. Note that

$$
\left(\mathrm{IPV}^{+}\right)^{c}=\left(\mathrm{IPV}^{*}\right)^{c}=\mathrm{CPV}
$$

- For IPV^{+}: Consider $M \vDash \mathrm{PV}$ and $M \not \vDash \mathrm{CPV}$. M can be Σ_{1}^{b}-elementary embeded in a model M^{\prime} of CPV. Now consider two-node Kripke model M^{\prime} above M. K forces IPV but not IPV ${ }^{+}$.

Proof.

By using Kripke models of IPV. Note that

$$
\left(\mathrm{IPV}^{+}\right)^{c}=\left(\mathrm{IPV}^{*}\right)^{c}=\mathrm{CPV}
$$

- For IPV^{+}: Consider $M \vDash \mathrm{PV}$ and $M \not \vDash \mathrm{CPV}$. M can be Σ_{1}^{b}-elementary embeded in a model M^{\prime} of CPV. Now consider two-node Kripke model M^{\prime} above M. K forces IPV but not IPV ${ }^{+}$.
- For IPV* : The union of the worlds in any linear Kripke model of IPV*, satisfies CPV. Any chain of CPV-models is a K. M. of IPV*. So, if IPV $=\mathrm{IPV}^{*}$, the class of models of CPV is closed under union of chain. So, CPV world be \forall_{2}-axiomatized. Therefore, as CPV is \forall_{2}-conservative over PV , we have $\mathrm{CPV}=\mathrm{PV}$.

IS ${ }_{2}^{i}(B)$

We alredy defined $I S_{2}^{n}(H)$.

- $\operatorname{I} S_{2}^{n}(B)$: The set of all consequences of S_{n}^{i} of the form $\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow B$ where $A_{i}, B \in \mathrm{H} \Sigma_{n}^{\mathrm{b}}$ plus Polynomial Induction on $\mathrm{H} \Sigma_{n}^{\mathrm{b}}$-formulas.
- $\mathrm{H} \Sigma_{n}^{\mathrm{b}}$: The class of all formulas A such that all subformulas of A is Σ_{n}^{b}.

IS ${ }_{2}^{i}(B)$

Theorem (MM 2008)

$$
\forall i \quad \mathrm{I} S_{2}^{i}(B)=\mathrm{I} S_{2}^{i}(H)
$$

Proof.

A generalization of Buss's proof using a sequent calculus $f 0 m$ of $I S_{2}^{i}$.

Thank you for your attention

