

Decidability

Ali Shakiba ali.shakiba@vru.ac.ir Vali-e-Asr University of Rafsanjan

What we are going to discuss?

- Decidable problems concerning
 - Regular languages
 - Context-free languages
- Undecidability
 - Diagonalization method
 - An unrecognizable language

An Undecidable Problem

The general problem of software verification **is not** solvable by computers.

$A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and accepts } w \}$

The proof is by diagonalization.

Some Terminologies

- Let $f: A \rightarrow B$ be a function. It is said to be ...
 - ... one-to-one, or injective, if f(a) = f(b) implies a = b.
 - ... onto, or surjective, if for every $b \in B$, there is an $a \in A$ such that f(a) = b.
 - ... correspondence, or bijection, if f is both onto and one-to-one.

The sets *A* and *B* are the same size if there is a correspondence, or bijection, function $f: A \rightarrow B$.

A set A is **countable** if either it is finite or it has the same size as \mathbb{N} .

WARM UP WITH DIAGONALIZATION TECHNIQUE

Theorem 4.17: \mathbb{R} is uncountable.

Proof: (*Proof by contradiction*)

- Suppose there is a correspondence $f: \mathbb{N} \to \mathbb{R}$.
- We will construct an x ∈ R such that it differs from all paired real numbers, i.e. x ≠ f(n) for every n ∈ N.
- An we use diagonalization to construct that 0 < x < 1 by choosing the *i*th decimal of *x* different from the *i*th decimal of *f*(*i*).

The fact that " \mathbb{R} is uncountable" leads to ...

Corollary 4.18: Some languages are not Turing-recognizable.

- Observe that Σ^* is countable for any alphabet Σ .
 - How?
- The set of all Turing machines is countable.
 - How?
- The set of all languages is uncountable.
 - How?
- Sum it up! 😊

$A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and accepts } w\}$

Proof: (By contradiction)

• Suppose there is a decider *H*

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

• We construct *D* as follows

D = "On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what *H* outputs. That is, if *H* accepts, *reject*; and if *H* rejects, *accept*."

$A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and accepts } w\}$

Proof: (By contradiction)

• Suppose there is a decider *H*

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

• We construct *D* as follows

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$

• Then, what about $D(\langle D \rangle)$?

$$A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and accepts } w \}$$

Proof: (By contradiction)

• S

• $V \quad D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle. \end{cases}$ $(reject \quad \text{if } M \text{ accept } Where \text{ is } diagonalization?}$

21

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept		accept		
M_2	accept	accept	accept	accept	
M_3					
M_4	accept	accept			
:					

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
M_4	accept	accept	reject	reject	
:		:			
•			•		

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
÷		÷			·		
D	reject	reject	accept	accept		?	
÷		:					·

Co-Turing recognizable

A language L is **co-Turing recognizable** if it is the complement of Turing recognizable language.

Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-Turing recognizable.

Corollary 4.23: Language $\overline{A_{TM}}$ is not Turing-recognizable.

That's all for now!

Chapter 4 is finished. Assignments are on their way...