Chapter 6

m Requirements Modeling: Scenarios, Information,
and Analysis Classes

Slide Set to accompany

Software Engineering.: A Practitioner's Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering. A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Requirements Analysis

m Requirements analysis
m specifies software’s operational characteristics
m indicates software's interface with other system elements
m establishes constraints that software must meet
m Requirements analysis allows the software engineer
(called an analyst or modelerin this role) to:

m elaborate on basic requirements established during earlier
requirement engineering tasks

m Dbuild models that depict user scenarios, functional
activities, problem classes and their relationships, system
and class behavior, and the flow of data as it is
transformed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

system
description

These slides are designed to accompany Software Engineering.: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Rules of Thumb

The model should focus on requirements that are visible
within the problem or business domain. The level of
abstraction should be relatively high.

Each element of the analysis model should add to an overall
understanding of software requirements and provide insight
Into the information domain, function and behavior of the
system.

Delay consideration of infrastructure and other non-
functional models until design.

Minimize coupling throughout the system.

Be certain that the analysis model provides value to all
stakeholders.

Keep the model as simple as it can be.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Domain Analysis

Software domain analysis is the identification, analysis,
and specification of common requirements from a
specific application domain, typically for reuse on
multiple projects within that application domain . . .
[Object-oriented domain analysis is] the identification,
analysis, and specification of common, reusable
capabilities within a specific application domain, in
terms of common objects, classes, subassemblies, and
frameworks . . .

Donald Firesmith

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Domain Analysis

m Define the domain to be investigated.

m Collect a representative sample of applications
In the domain.

m Analyze each application in the sample.
m Develop an analysis model for the objects.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Elements of Requirements Analysis

Scenario-
based
models

Class

models

e.q.,

class diagrams

collaboration
diagrams

e.g.,
use cases
user stories

software
requirements

Flow
Models

e.g.,

DFDs

data models

Behavioral
models

e.g.,
state diagrams
sequence

diagrams

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Scenario-Based Modeling

‘[Use-cases] are simply an aid to defining what exists
outside the system (actors) and what should be
performed by the system (use-cases).” Ivar Jacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

What to Write About?

m Inception and elicitation—provide you with the
iInformation you’ll need to begin writing use cases.

m Requirements gathering meetings, QFD, and other
reguirements engineering mechanisms are used to

m identify stakeholders

m define the scope of the problem

m specify overall operational goals

m establish priorities

= outline all known functional requirements, and

m describe the things (objects) that will be manipulated by the
system.

m To begin developing a set of use cases, list the functions
or activities performed by a specific actor.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

How Much to Write About?

m As further conversations with the stakeholders
progress, the requirements gathering team

develops use cases for each of the functions
noted.

m In general, use cases are written first in an
Informal narrative fashion.

m |f more formality is required, the same use
case Is rewritten using a structured format
similar to the one proposed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

10

Use-Cases

m a scenario that describes a “thread of usage” for
a system

m actors represent roles people or devices play as
the system functions

m (sers can play a number of different roles for a
given scenario

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11

Developing a Use-Case

m What are the main tasks or functions that are performed by
the actor?

m What system information will the the actor acquire,
produce or change?

m Will the actor have to inform the system about changes in
the external environment?

What information does the actor desire from the system?

Does the actor wish to be informed about unexpected
changes?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12

Use-Case Diagram

SafeHome

Access camera
surveillance viathe
Internet

A EEEEER cameras

™~/ Configure SafeHome

system parameters
homeowner \

A

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 13

Activity Diagram

enter password
and user ID

Supplements the
use case by
providing a
graphical
representation of
the flow of
Interaction within a
specific scenario

invalid passwor ds/ ID

select major functio

prompt for reentry,

select specific .
: select camera icon
camera - thumbnail

view camera outpu
in labelled window,

prompt for
another view

exit this function g e

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Swimlane Diagrams

homeowner camera interface

Allows the modeler to

represent the flow of o —

activities described by

the use-case and at the —

same time indicate i s j
which actor (if there are — | L

select major function

multiple actors involved

other function

prompt for reentry

in a specific use-case)

or analysis class has

responsibility for the ~ o
action described by an

activity rectangle thumbnaios T

select specific .
. select camera icon
camera - thumbnails

generate video

output
view camera output prompt for
in labelled window another view

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Data Modeling

® examines data objects independently of
processing

m focuses attention on the data domain

m creates a model at the customer’s level
of abstraction

m Indicates how data objects relate to one
another

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

16

What Is a Data Object?

m arepresentation of almost any composite information

that must be understood by software.
m composite information—something that has a number of
different properties or attributes

m can be an external entity (e.g., anything that produces or
consumes information), a thing (e.g., a report or a
display), an occurrence (e.g., a telephone call) or event
(e.g., an alarm), a role (e.g., salesperson), an
organizational unit (e.g., accounting department), a place
(e.g., a warehouse), or a structure (e.g., a file).

m The description of the data object incorporates the data
object and all of its attributes.

m A data object encapsulates data only—there is no
reference within a data object to operations that act on
the data.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17

Data Objects and Attributes

A data object contains a set of attributes that
act as an aspect, quality, characteristic, or
descriptor of the object

object: automobile

attributes:
make
model
body type
price
options code

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

18

What Is a Relationship?

m Data objects are connected to one another In
different ways.

m A connection is established between person and car
because the two objects are related.

« A person owns a car
» A person /s insured to drive a car

m The relationships owrns and /nsured to drive
define the relevant connections between
person and car.

m Several instances of a relationship can exist
m Objects can be related in many different ways

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 19

ERD Notation

One common form:

object,

(0, m)

relationship

Another common form.:

object,

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

>0

relationship

(1, 1)

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

object,

20

Building an ERD

m [evel/ I—model all data objects (entities)
and their “connections” to one another

m [evel/ Z—model all entities and
relationships

m [Level 3—model all entities, relationships,
and the attributes that provide further depth

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

21

The ERD: An Example

Customer T.1) @ (1,m)

standard
task table

Selected work (1,w)

request
for service

from

(1)

tasks \V

(1,n)] work

generates

consists

order

(1,1)

materials

il

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Class-Based Modeling

m Class-based modeling represents:
m Objects that the system will manipulate

m operations (also called methods or services) that will
be applied to the objects to effect the manipulation

m relationships (some hierarchical) between the objects
m collaborations that occur between the classes that
are defined.

m The elements of a class-based model include
classes and objects, attributes, operations,
CRC models, collaboration diagrams and
packages.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 23

ldentifying Analysis Classes

m Examining the usage scenarios developed as
part of the requirements model and perform a
"grammatical parse" [Abb83]

m Classes are determined by underlining each noun or
noun phrase and entering it into a simple table.

m Synonyms should be noted.

m If the class (noun) is required to implement a
solution, then it is part of the solution space;
otherwise, if a class is necessary only to describe a
solution, it is part of the problem space.

m But what should we look for once all of the
nouns have been isolated?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Manifestations of Analysis Classes

m Analysis classes manifest themselves in one of the
following ways:

External entities (e.g., other systems, devices, people) that
produce or consume information

Things (e.qg, reports, displays, letters, signals) that are part of
the information domain for the problem

Occurrences or events (e.g., a property transfer or the
completion of a series of robot movements) that occur within
the context of system operation

Roles (e.g., manager, engineer, salesperson) played by
people who interact with the system

Organizational units (e.qg., division, group, team) that are
relevant to an application

Places (e.g., manufacturing floor or loading dock) that
establish the context of the problem and the overall function

Structures (e.g., sensors, four-wheeled vehicles, or
computers) that define a class of objects or related classes of
objects

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

25

Potential Classes

m Retained information. The potential class will be useful during analysis
only if information about it must be remembered so that the system can
function.

m Needed services. The potential class must have a set of identifiable
operations that can change the value of its attributes in some way.

m Multiple attributes. During requirement analysis, the focus should be on
"major" information; a class with a single attribute may, in fact, be
useful during design, but is probably better represented as an attribute
of another class during the analysis activity.

m Common afttributes. A set of attributes can be defined for the potential
class and these attributes apply to all instances of the class.

m Common operations. A set of operations can be defined for the
potential class and these operations apply to all instances of the class.

m Essential requirements. External entities that appear in the problem
space and produce or consume information essential to the operation
of any solution for the system will almost always be defined as classes
in the requirements model.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 26

Defining Attributes

m Altfributes describe a class that has been
selected for inclusion in the analysis model.

= build two different classes for professional baseball
players

« For Playing Statistics software: name, position,
batting average, fielding percentage, years played, and
games played might be relevant

* For Pension Fund software: average salary, credit
toward full vesting, pension plan options chosen,
mailing address, and the like.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 27

Defining Operations

m Do a grammatical parse of a processing
narrative and look at the verbs

m Operations can be divided into four broad
categories:

m (1) operations that manipulate data in some way
(e.g., adding, deleting, reformatting, selecting)

m (2) operations that perform a computation

m (3) operations that inquire about the state of an
object, and

m (4) operations that monitor an object for the
occurrence of a controlling event.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

28

CRC Models

m Class-responsibility-collaborator (CRC)
modeling [Wir90] provides a simple means for
Identifying and organizing the classes that are
relevant to system or product requirements.
Ambler [Amb95] describes CRC modeling in
the following way:

m A CRC model is really a collection of standard index
cards that represent classes. The cards are divided
Into three sections. Along the top of the card you
write the name of the class. In the body of the card
you list the class responsibilities on the left and the
collaborators on the right.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

29

CRC Modeling

ol

ol

LClace:

— Class: FloorPlan

— | Description:

—| Responsibility:

Collaborator:

defines floor plan nameftype
manages floor plan positioning

scales floor plan for display
scales floor plan for display

incorporates walls, doors and windows

shows position of video cameras

Wall
Camera

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

30

Class Types

m Entity classes, also called model or business classes, are
extracted directly from the statement of the problem (e.qg.,
FloorPlan and Sensor).

m Boundary classes are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees and
Interacts with as the software is used.

m Controller classes manage a “unit of work” [UMLO3] from start to
finish. That is, controller classes can be designed to manage

m the creation or update of entity objects;

m the instantiation of boundary objects as they obtain information from
entity objects;

m complex communication between sets of objects;

m Vvalidation of data communicated between objects or between the
user and the application.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 31

Responsiblilities

System intelligence should be distributed across classes
to best address the needs of the problem

Each responsibility should be stated as generally as
possible

Information and the behavior related to it should reside
within the same class

Information about one thing should be localized with a
single class, not distributed across multiple classes.

Responsibilities should be shared among related
classes, when appropriate.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

32

Collaborations

m Classes fulfill their responsibilities in one of two ways:

m A class can use its own operations to manipulate its own
attributes, thereby fulfilling a particular responsibility, or

m a class can collaborate with other classes.
m Collaborations identify relationships between classes

m Collaborations are identified by determining whether a class
can fulfill each responsibility itself

m three different generic relationships between classes [WIR90]:

m the /s-part-ofrelationship
m the has-knowledge-ofrelationship
m the depends-upon relationship

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

33

Composite Aggregate Class

Player

PlayerHead

Play erBody

Player Arms

PlayerLegs

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

34

Associations and Dependencies

m Two analysis classes are often related to one
another in some fashion

m In UML these relationships are called associations
m Associations can be refined by indicating multiplicity
(the term cardinalityis used in data modeling

® [n many instances, a client-server relationship
exists between two analysis classes.

m In such cases, a client-class depends on the server-

class in some way and a dependency relationship is
established

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Multiplicity

Wall
1 1 1
is used to build P> « is used to build
A
1% 0.*| isusedtobuild | *
WallSegment Window Door

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Dependencies

DisplayWindow

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

<<access>>

{password}

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Camera

37

Analysis Packages

m Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that
packages them as a grouping

m The plus sign preceding the analysis class name in each
package indicates that the classes have public visibility
and are therefore accessible from other packages.

m Other symbols can precede an element within a
package. A minus sign indicates that an element is
hidden from all other packages and a # symbol indicates
that an element is accessible only to packages contained
within a given package.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 38

Analysis Packages

_ - - package name

=

Environment - -~

+Treel
+Landscapel]
+Road
+WallC
+Bridgel
+BuildingC
+VisualEffectd
+Scenel]

' RulesOf TheGame

1
+RulesOfMovement[]
! +ConstraintsOnAction

Characters

+Player(]
+Protagonist[]
+Antagonist[]

+SupportingRole

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

39

Reviewing the CRC Model

m All participants in the review (of the CRC model) are given a subset of the CRC
model index cards.

m Cards that collaborate should be separated (i.e., no reviewer should have
two cards that collaborate).

m All use-case scenarios (and corresponding use-case diagrams) should be
organized into categories.

m The review leader reads the use-case deliberately.

m As the review leader comes to a named object, she passes a token to the
person holding the corresponding class index card.

m When the token is passed, the holder of the class card is asked to describe the
responsibilities noted on the card.

m The group determines whether one (or more) of the responsibilities satisfies
the use-case requirement.

m If the responsibilities and collaborations noted on the index cards cannot
accommodate the use-case, modifications are made to the cards.

m This may include the definition of new classes (and corresponding CRC
index cards) or the specification of new or revised responsibilities or
collaborations on existing cards.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 40

