
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 7

 Requirements Modeling: Flow, Behavior,

Patterns, and WebApps

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

Requirements Modeling Strategies

 One view of requirements modeling, called structured
analysis, considers data and the processes that

transform the data as separate entities.

 Data objects are modeled in a way that defines their

attributes and relationships.

 Processes that manipulate data objects are modeled in a

manner that shows how they transform data as data

objects flow through the system.

 A second approach to analysis modeled, called object-
oriented analysis, focuses on

 the definition of classes and

 the manner in which they collaborate with one another to

effect customer requirements.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 3

Flow-Oriented Modeling

 Represents how data objects are transformed at they

move through the system

 data flow diagram (DFD) is the diagrammatic form that

is used

 Considered by many to be an “old school” approach, but

continues to provide a view of the system that is

unique—it should be used to supplement other analysis

model elements

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 4

The Flow Model

Every computer-based system is an

information transform

computer
based
system

input output

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 5

Flow Modeling Notation

external entity

process

data flow

data store

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 6

External Entity

A producer or consumer of data

Examples: a person, a device, a sensor

Another example: computer-based

system

Data must always originate somewhere
and must always be sent to something

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 7

Process

A data transformer (changes input
to output)

Examples: compute taxes, determine area,
format report, display graph

Data must always be processed in some
way to achieve system function

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 8

Data Flow

Data flows through a system, beginning

as input and transformed into output.

compute

triangle

area

base

height

area

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 9

Data Stores

Data is often stored for later use.

look-up

sensor

data

sensor #

report required

sensor #, type,

location, age

sensor data

sensor number

type,

location, age

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

Data Flow Diagramming: Guidelines

 all icons must be labeled with meaningful

names

 the DFD evolves through a number of levels

of detail

 always begin with a context level diagram

(also called level 0)

 always show external entities at level 0

 always label data flow arrows

 do not represent procedural logic

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 11

Constructing a DFD—I

 review user scenarios and/or the data
model to isolate data objects and use a
grammatical parse to determine
“operations”

 determine external entities (producers
and consumers of data)

 create a level 0 DFD

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 12

Level 0 DFD Example

user
processing

request

video
source NTSC

video signal

digital
video

processor

requested
video
signal

monitor

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 13

Constructing a DFD—II

 write a narrative describing the transform

 parse to determine next level transforms

 “balance” the flow to maintain data flow

continuity

 develop a level 1 DFD

 use a 1:5 (approx.) expansion ratio

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 14

The Data Flow Hierarchy

P
a b

x y

p1

p2

p3

p4 5

a

b

c

d
e

f

g

level 0

level 1

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 15

Flow Modeling Notes

 each bubble is refined until it does just

one thing

 the expansion ratio decreases as the

number of levels increase

 most systems require between 3 and 7

levels for an adequate flow model

 a single data flow item (arrow) may be

expanded as levels increase (data

dictionary provides information)

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 16

Process Specification (PSPEC)

PSPEC

narrative

pseudocode (PDL)

equations

tables

diagrams and/or charts

bubble

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 17

Maps into

DFDs: A Look Ahead

analysis model

design model

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 18

Control Flow Modeling

 Represents “events” and the processes that

manage events

 An “event” is a Boolean condition that can be

ascertained by:
• listing all sensors that are "read" by the software.

• listing all interrupt conditions.

• listing all "switches" that are actuated by an operator.

• listing all data conditions.

• recalling the noun/verb parse that was applied to the

processing narrative, review all "control items" as

possible CSPEC inputs/outputs.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 19

Control Specification (CSPEC)

The CSPEC can be:

state diagram
(sequential spec)

state transition table

decision tables

activation tables

combinatorial spec

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 20

Behavioral Modeling

 The behavioral model indicates how software will

respond to external events or stimuli. To create the

model, the analyst must perform the following steps:

• Evaluate all use-cases to fully understand the sequence of

interaction within the system.

• Identify events that drive the interaction sequence and

understand how these events relate to specific objects.

• Create a sequence for each use-case.

• Build a state diagram for the system.

• Review the behavioral model to verify accuracy and

consistency.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 21

State Representations
 In the context of behavioral modeling, two different

characterizations of states must be considered:

 the state of each class as the system performs its function
and

 the state of the system as observed from the outside as the
system performs its function

 The state of a class takes on both passive and active
characteristics [CHA93].

 A passive state is simply the current status of all of an
object’s attributes.

 The active state of an object indicates the current status of
the object as it undergoes a continuing transformation or
processing.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 22

State Diagram for the ControlPanel Class

reading

locked

select ing

password

ent ered

comparing

password = incorrect

& numberOfTries < maxTries

password = correct

act ivat ion successful

key hit

do: validat ePassword

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 23

The States of a System
 state—a set of observable circum-

stances that characterizes the behavior

of a system at a given time

 state transition—the movement from one

state to another

 event—an occurrence that causes the

system to exhibit some predictable form

of behavior

 action—process that occurs as a

consequence of making a transition

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 24

Behavioral Modeling

 make a list of the different states of a system

(How does the system behave?)

 indicate how the system makes a transition

from one state to another (How does the

system change state?)

 indicate event

 indicate action

 draw a state diagram or a sequence diagram

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 25

Sequence Diagram

homeowner cont ro l panel sensorssyst em sensors

syst em

ready

reading

request lookup
comparing

result

password ent ered

password = correct

request act ivat ion

act ivat ion successfu l

locked
num berOfTries > m axTries

select ing

t imer > lockedTime
A

A

Figure 8 .2 7 Sequence diagram (part ial) f or Saf eHome securit y f unct ion

act ivat ion successfu l

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 26

Writing the Software Specification

Everyone knew exactly
what had to be done
until someone wrote it
down!

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 27

Patterns for Requirements Modeling

 Software patterns are a mechanism for capturing domain

knowledge in a way that allows it to be reapplied when a

new problem is encountered

 domain knowledge can be applied to a new problem within

the same application domain

 the domain knowledge captured by a pattern can be

applied by analogy to a completely different application

domain.

 The original author of an analysis pattern does not

“create” the pattern, but rather, discovers it as

requirements engineering work is being conducted.

 Once the pattern has been discovered, it is documented

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 28

Discovering Analysis Patterns

 The most basic element in the description of a

requirements model is the use case.

 A coherent set of use cases may serve as the

basis for discovering one or more analysis

patterns.

 A semantic analysis pattern (SAP) “is a pattern

that describes a small set of coherent use cases that

together describe a basic generic application.”

[Fer00]

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 29

Requirements Modeling for WebApps

Content Analysis. The full spectrum of content to be provided by
the WebApp is identified, including text, graphics and images,
video, and audio data. Data modeling can be used to identify
and describe each of the data objects.

Interaction Analysis. The manner in which the user interacts with
the WebApp is described in detail. Use-cases can be
developed to provide detailed descriptions of this interaction.

Functional Analysis. The usage scenarios (use-cases) created as
part of interaction analysis define the operations that will be
applied to WebApp content and imply other processing
functions. All operations and functions are described in detail.

Configuration Analysis. The environment and infrastructure in
which the WebApp resides are described in detail.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 30

When Do We Perform Analysis?

 In some WebE situations, analysis and design
merge. However, an explicit analysis activity
occurs when …

 the WebApp to be built is large and/or complex

 the number of stakeholders is large

 the number of Web engineers and other contributors
is large

 the goals and objectives (determined during
formulation) for the WebApp will effect the business’
bottom line

 the success of the WebApp will have a strong
bearing on the success of the business

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 31

The Content Model

 Content objects are extracted from use-cases

 examine the scenario description for direct and

indirect references to content

 Attributes of each content object are identified

 The relationships among content objects

and/or the hierarchy of content maintained by a

WebApp

 Relationships—entity-relationship diagram or UML

 Hierarchy—data tree or UML

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 32

Data Tree

Figure 1 8 .3 Dat a t ree for a SafeHom e com ponent

component

part Number

part Name

part Type

descr ipt ion

pr ice

Market ingDescript ion

Phot ograph

TechDescript ion

Schemat ic

Video

WholesalePrice

Ret ailPr ice

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 33

The Interaction Model

 Composed of four elements:

 use-cases

 sequence diagrams

 state diagrams

 a user interface prototype

 Each of these is an important UML notation

and is described in Appendix I

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 34

Sequence Diagram

Figure 18.5 Sequence diagram for use-case: select SafeHome components

new cust omer

:Room :FloorPlan

desc ribes

room *
plac es room

in f loor p lan

:Product

Component

se lec t s produc t c om ponent *

:Billof

Mat er ials

add t o BoM

FloorPlan

Reposit ory

sav e f loor p lan c onf igurat ion

sav e b i l l o f m at eria ls

BoM

Reposit ory

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 35

State Diagram

Figure 1 8 .6 Part ial st at e diagram f or ne w c us t ome r int eract ion

n e w cu st o m e r

Validat ing user

system status=“input ready”

display msg = “enter userid”

display msg =“enter pswd”

ent ry/ log-in requested

do: run user validat ion

exit / set user access switch

select “log-in”

userid

validated

password validated

Select ing user act ion

system status=“link ready”

display: navigat ion choices”

ent ry/ validated user

do: link as required

exit /user act ion selected

select other funct ions

select customizat ion funct ionalit y

select e-commerce (purchase) funct ionalit y

Customizing

system status=“input ready”

display: basic inst ruct ions

ent ry/validated user

do: process user select ion

exit / customizat ion terminated

select descript ive

content

room being def ined

Def ining room

system status=“input ready”

display: room def . window

ent ry/ room def . selected

do: run room queries

do: store room variables

exit / room completed

select descript ive

content

Building f loor plan

system status=“input ready”

display: f loor plan window

ent ry/ f loor plan selected

do: insert room in place

do: store f loor plan variables

exit / room insert ion completed

select descript ive

content

select enter room in f loor plan

Saving f loor plan

system status=“input ready”

display: storage indicator

ent ry/ f loor plan save selected

do: store f loor plan

exit / save completed

select save f loor plan

room insert ion completed

next select ion

customizat ion complete

all rooms

def ined

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 36

The Functional Model

 The functional model addresses two

processing elements of the WebApp
 user observable functionality that is delivered by the

WebApp to end-users

 the operations contained within analysis classes that

implement behaviors associated with the class.

 An activity diagram can be used to represent

processing flow

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 37

Activity Diagram

Figure 1 8 .7 Act ivit y diagram f or c omput e Pr i c e() ope r a t i on

init ialize t ot alCost

invoke

calcShippingCost
get price and
quant it y

components remain on BoMList

invoke

det ermineDiscount

discount < = 0

discount>0
t ot alCost=
 t ot alCost - discount

t axTot al=

t ot alCost x t axrat e

no components remain on BoMList

lineCost =

price x quant it y

add lineCost t o

t ot alCost

priceTot al =

 t ot alCost + t axTot al
 + shippingCost

ret urns:
 shippingCost

ret urns: discount

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 38

The Configuration Model

 Server-side

 Server hardware and operating system environment

must be specified

 Interoperability considerations on the server-side

must be considered

 Appropriate interfaces, communication protocols and

related collaborative information must be specified

 Client-side

 Browser configuration issues must be identified

 Testing requirements should be defined

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 39

Navigation Modeling-I
 Should certain elements be easier to reach (require

fewer navigation steps) than others? What is the priority
for presentation?

 Should certain elements be emphasized to force users to
navigate in their direction?

 How should navigation errors be handled?

 Should navigation to related groups of elements be given
priority over navigation to a specific element.

 Should navigation be accomplished via links, via search-
based access, or by some other means?

 Should certain elements be presented to users based on
the context of previous navigation actions?

 Should a navigation log be maintained for users?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 40

Navigation Modeling-II
 Should a full navigation map or menu (as opposed to a single

“back” link or directed pointer) be available at every point in a

user’s interaction?

 Should navigation design be driven by the most commonly

expected user behaviors or by the perceived importance of the

defined WebApp elements?

 Can a user “store” his previous navigation through the WebApp

to expedite future usage?

 For which user category should optimal navigation be

designed?

 How should links external to the WebApp be handled?

overlaying the existing browser window? as a new browser

window? as a separate frame?

