Chapter 8

m Design Concepts

Slide Set to accompany
Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S . Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Design

m Mitch Kapor, the creator of Lotus 1-2-3,
presented a “software design manifesto” in Dr.
Dobbs Journal. He said:

m Good software design should exhibit:

m Firmness: A program should not have any bugs that
inhibit its function.

s Commodity: A program should be suitable for the
purposes for which it was intended.

m Delight: The experience of using the program should
be pleasurable one.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Analysis Model -> Design Model

scenario- basezl/
elements

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

Analysis Model

Component-
Level Design

flow-oriented
elements

data flow diagrams
control-flow diagrams
processing narratives

ety

la

=4

Interface Design

Architectural Design

class-based behavioral
elements elements
class diagrams state diagrams
analysis packages sequence diagrams
CRC models Data/ Class Design
collaboration diagrams

Design Model

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Design and Quality

m the design must implement all of the explicit
requirements contained in the analysis model,
and it must accommodate all of the implicit
requirements desired by the customer.

m the design must be a readable, understandable
guide for those who generate code and for
those who test and subsequently support the
software.

m the design should provide a complete picture of
the software, addressing the data, functional,
and behavioral domains from an
Implementation perspective.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Quality Guidelines

m A design should exhibit an architecture that (1) has been created using
recognizable architectural styles or patterns, (2) is composed of components
that exhibit good design characteristics and (3) can be implemented in an
evolutionary fashion

m For smaller systems, design can sometimes be developed linearly.
m A design should be modular; that is, the software should be logically partitioned
into elements or subsystems

m A design should contain distinct representations of data, architecture,
interfaces, and components.

m A design should lead to data structures that are appropriate for the classes to
be implemented and are drawn from recognizable data patterns.

m A design should lead to components that exhibit independent functional
characteristics.

m A design should lead to interfaces that reduce the complexity of connections
between components and with the external environment.

m A design should be derived using a repeatable method that is driven by
information obtained during software requirements analysis.

m A design should be represented using a notation that effectively communicates
its meaning.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Design Principles

The design process should not suffer from ‘tunnel vision.’
The design should be traceable to the analysis model.
The design should not reinvent the wheel.

The design should “minimize the intellectual distance” [DAV95] between
the software and the problem as it exists in the real world.

The design should exhibit uniformity and integration.
The design should be structured to accommodate change.

The design should be structured to degrade gently, even when aberrant
data, events, or operating conditions are encountered.

Design is not coding, coding is not design.

The design should be assessed for quality as it is being created, not after
the fact.

m The design should be reviewed to minimize conceptual (semantic) errors.

From Davis [DAV95]

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 6

Fundamental Concepts

Abstraction—data, procedure, control
Architecture—the overall structure of the software
Patterns—"conveys the essence” of a proven design solution

Separation of concerns—any complex problem can be more easily
handled if it is subdivided into pieces

Modularity—compartmentalization of data and function
Hiding—controlled interfaces

Functional independence—single-minded function and low coupling
Refinement—elaboration of detail for all abstractions

Aspects—a mechanism for understanding how global requirements
affect design

Refactoring—a reorganization techniqgue that simplifies the design
OO design concepts—Appendix Il

Design Classes—jprovide design detail that will enable analysis
classes to be implemented

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Data Abstraction

-
door

manufacturer
model number
type
swing direction
——] inserts
lights
type
number
weight
opening mechanism

_

implemented as a data structure

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Procedural Abstraction

open

details of enter
algorithm

implemented with a "knowledge" of the
object that is associated with enter

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Architecture

“The overall structure of the software and the ways In
which that structure provides conceptual integrity for a
system.” [SHA95a]

Structural properties. This aspect of the architectural design
representation defines the components of a system (e.g., modules,
objects, filters) and the manner in which those components are
packaged and interact with one another. For example, objects are
packaged to encapsulate both data and the processing that manipulates
the data and interact via the invocation of methods

Extra-functional properties. = The architectural design description
should address how the design architecture achieves requirements for
performance, capacity, reliability, security, adaptability, and other system
characteristics.

Families of related systems. The architectural design should draw
upon repeatable patterns that are commonly encountered in the design
of families of similar systems. In essence, the design should have the

ability to reuse architectural building blocks.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 10

Patterns

Design Pattern Template

Pattern name—describes the essence of the pattern in a short but
expressive name

Intent—describes the pattern and what it does
Also-known-as—Ilists any synonyms for the pattern
Motivation—provides an example of the problem

Applicability—notes specific design situations in which the patte rnis
applicable

Structure—describes the classes that are required to implemen tthe
pattern

Participants—describes the responsibilities of the classes that are
required to implement the pattern

Collaborations—describes how the participants collaborate to carry y out
their responsibilities

Consequences—describes the “design forces” that affect the patte rn and
the potential trade-ofiéf shhtnusish &€ aosisielere dwhe heéhdlpapatters is
implemented

Related patterns—cross-reftrmrumesredéd tat ces gyn pterns

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Segaration of Concerns

m Any complex problem can be more easily
handled if it is subdivided into pieces that can
each be solved and/or optimized independently

m A concern Is a feature or behavior that Is
specified as part of the requirements model for
the software

m By separating concerns into smaller, and
therefore more manageable pieces, a problem
takes less effort and time to solve.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 12

Modularity

m "modularity is the single attribute of software that allows
a program to be intellectually manageable" [Mye78].

m Monolithic software (i.e., a large program composed of a
single module) cannot be easily grasped by a software
engineer.

m The number of control paths, span of reference, number of
variables, and overall complexity would make
understanding close to impossible.

m |n almost all instances, you should break the design into
many modules, hoping to make understanding easier
and as a consequence, reduce the cost required to build

the software.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

13

Modularity: Trade-offs

What is the "right" number of modules
for a specific software design?

module development cost

cost of
software

~ module
integration
cost

optimal number_/ number of modules

of modules
These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

14

Information Hiding

controlled
interface

clients

a specific design decision

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 15

Why Information Hiding?

m reduces the likelihood of “side effects”

= |imits the global impact of local design
decisions

® emphasizes communication through
controlled interfaces

m discourages the use of global data

m |eads to encapsulation—an attribute of
high quality design
m results in higher quality software

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

16

Stepwise Refinement

repeat until door opens

turn knob clockwise;

If knob doesn't turn, then
take key out;
find correct key;
insert in lock;

endif

pull/push door

move out of way;

end repeat

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

1/

Sizing Modules: Two Views

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

18

Functional Independence

m Functional independence is achieved by developing
modules with "single-minded" function and an "aversion"
to excessive interaction with other modules.

m Cohesion is an indication of the relative functional
strength of a module.

m A cohesive module performs a single task, requiring little
Interaction with other components in other parts of a
program. Stated simply, a cohesive module should (ideally)
do just one thing.

m Coupling is an indication of the relative interdependence
among modules.

m Coupling depends on the interface complexity between
modules, the point at which entry or reference is made to a
module, and what data pass across the interface.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 19

Aspects

m Consider two requirements, A and B.
Requirement A crosscuts requirement B “if a
software decomposition [refinement] has been
chosen in which B cannot be satisfied without
taking A into account. [Ros04]

m An aspect Is a representation of a cross-cutting
concern.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 20

Aspects—An Example

Consider two requirements for the SafeHomeAssured.com WebApp.
Requirement A is described via the use-case Access camera
surveillance via the Internet. A design refinement would focus on
those modules that would enable a registered user to access video
from cameras placed throughout a space. Requirement B is a generic
security requirement that states that a registered user must be
validated prior to using SafeHomeAssured.com. This requirement is
applicable for all functions that are available to registered SafeHome
users. As design refinement occurs, A* is a design representation for
requirement A and B* is a design representation for requirement B.
Therefore, A* and B* are representations of concerns, and B* cross-
cuts A*.

An aspect is a representation of a cross-cutting concern. Therefore,
the design representation, B*, of the requirement, a registered user
must be validated prior to using SafeHomeAssured.com, is an aspect
of the SafeHome WebApp.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 21

Refactoring

m Fowler [FOW99] defines refactoring in the following manner:
m "Refactoring is the process of changing a software system in
such a way that it does not alter the external behawor of the
code [design] yet improves its internal structure.”
0 ¥Vhen software is refactored, the existing design is examined
or
m redundancy
unused design elements
inefficient or unnecessary algorithms
poorly constructed or inappropriate data structures

or any other design failure that can be corrected to yield a better
design.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 22

OO Design Concepts

m Design classes
m Entity classes
m Boundary classes
m Controller classes
m Inheritance—all responsibilities of a superclass is
immediately inherited by all subclasses
m Messages—stimulate some behavior to occur in the
receiving object
m Polymorphism—a characteristic that greatly reduces the
effort required to extend the design

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Design Classes

m Analysis classes are refined during design to become entity
classes

m Boundary classes are developed during design to create the
interface (e.g., interactive screen or printed reports) that the user
sees and interacts with as the software is used.

m Boundary classes are designed with the responsibility of managing
the way entity objects are represented to users.

m Controller classes are designed to manage
m the creation or update of entity objects;

m the instantiation of boundary objects as they obtain information from
entity objects;

m complex communication between sets of objects;

m validation of data communicated between objects or between the
user and the application.

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 24

The Design Model

high

analysis model

class diagrams

c analysis packages e o A g Féqwremgnts:
% (c:(fﬁ:a?grd:tls)n o use-case diagrams analysis packages constraints
on fag activity diagrams CRC models int eroperability
C data flow diagrams i i
L s swim lane diagrams collaboration diagrams targets and
E C°”"°"T'°W dlagr.ams collaboration diagrams data flow diagrams i :
= processing narratives state diagrams S L e configuration
- ~4- sequence diagrams processing narratives
o} et state diagrams
o T - 38 sequence diagrams
¥ Behg 8
E design class realizations B ~—
"U-t: subsystems E o
i i technical interface i
o collaboration diagrams _ cprgrall deoas design class realizations
o design design classes
[. w0 subsystems
Navigation design activity diagrams - ;
!) collaboration diagrams
GUldesign sequence diagrams .
- component diagrams
design model design classes
refinements to: activity diagrams
refinements to: component diagrams sequence diagrams
design class realizations design classes v
subsystems ity i
IOW collaboration diagrams W N dlzgrarm
sequencediagrams deployment diagrams
architecture interface component-level deployment-level
elements elements elements elements

process dimension

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

25

Design Model Elements

m Data elements
m Data model --> data structures
m Data model --> database architecture

m Architectural elements
= Application domain

m Analysis classes, their relationships, collaborations and behaviors are
transformed into design realizations

m Patterns and “styles” (Chapters 9 and 12)
m Interface elements
m the user interface (Ul)

m external interfaces to other systems, devices, networks or other
producers or consumers of information

m internal interfaces between various design components.
Component elements
Deployment elements

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

26

Architectural Elements

m The architectural model [Sha96] is derived from
three sources:

m information about the application domain for the
software to be built;

m specific requirements model elements such as data
flow diagrams or analysis classes, their relationships
and collaborations for the problem at hand, and

m the availability of architectural patterns (Chapter 12)
and styles (Chapter 9).

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 27

Interface Elements

MobilePhone

WirelessPDA

ControlPanel

LCDdisplay V
LEDindicators
keyPadCharacteristics KeyPad

speaker
wirelessinterface

readKeyStroke()
decodeKey ()
displayStatus()
light LEDs() | =
sendControlMsq())

|

: <<interface>>
| KeyPad
|

|

readKeystroke()
decodeKey()

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Component Elements

SensorManagement

Sensor

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

29

Deployment Elements

Control Panel OPl server
Security homeownerAccess
7 [
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| }
| Personal computer |
| |
| |
| externalAccess |
| |
_——)t e]]
—1
Security Surveilance
homeManagement communication

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

