Chapter 5

m Understanding Requirements

Slide Set to accompany

Software Engineering.: A Practitioner's Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering. A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Requirements Engineering-|

m Inception—ask a set of questions that establish ...

basic understanding of the problem
the people who want a solution
the nature of the solution that is desired, and

the effectiveness of preliminary communication and collaboration
between the customer and the developer

m Elicitation—elicit requirements from all stakeholders

m Elaboration—create an analysis model that identifies data,
function and behavioral requirements

m Negotiation—agree on a deliverable system that is realistic for
developers and customers

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Requirements Engineering-|

m Specification—can be any one (or more) of the following:

A written document

A set of models

A formal mathematical

A collection of user scenarios (use-cases)
A prototype

m Validation—a review mechanism that looks for

errors in content or interpretation
areas where clarification may be required
missing information

Inconsistencies (a major problem when large products or systems
are engineered)

conflicting or unrealistic (unachievable) requirements.

u Requirements management

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Inception

m |dentify stakeholders

“‘who else do you think | should talk to?”

m Recognize multiple points of view
m Work toward collaboration
m The first questions

Who is behind the request for this work?
Who will use the solution?

What will be the economic benefit of a successful
solution

Is there another source for the solution that you
need?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Eliciting Requirements

m meetings are conducted and attended by both software
engineers and customers

rules for preparation and participation are established

an agenda is suggested

a "facilitator" (can be a customer, a developer, or an outsider)
controls the meeting

m a "definition mechanism" (can be work sheets, flip charts, or wall
stickers or an electronic bulletin board, chat room or virtual
forum) is used

m the goalis
m to identify the problem
m propose elements of the solution
m negotiate different approaches, and
m specify a preliminary set of solution requirements

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5

Eliciting Requirements

Conduct FAST
meetings
Make lists of
functions, classes
Make lists of
constraints, etc.

Use QFDto
prioritize

define actors
requirements

¥
< draw use-case : .
. ’ diagram write scenario
4 A agral

informally
prioritize
requirements

complete template

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Quality Function Deployment

m Function deployment determines the “value”
(as perceived by the customer) of each
function required of the system

m Information deployment identifies data objects
and events

m Task deployment examines the behavior of the
system

m Value analysis determines the relative priority
of requirements

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Elicitation Work Products

a statement of need and feasibility.
a bounded statement of scope for the system or product.

a list of customers, users, and other stakeholders who
participated in requirements elicitation

a description of the system’s technical environment.

a list of requirements (preferably organized by function)
and the domain constraints that apply to each.

m a set of usage scenarios that provide insight into the use of
the system or product under different operating conditions.

m any prototypes developed to better define requirements.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8

Building the Analysis Model

m Elements of the analysis model

m Scenario-based elements
» Functional—processing narratives for software functions

« Use-case—descriptions of the interaction between an
“actor” and the system

m Class-based elements
* Implied by scenarios

m Behavioral elements
« State diagram

m Flow-oriented elements
« Data flow diagram

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

Use-Cases

m A collection of user scenarios that describe the thread of usage of a
system

m Each scenario is described from the point-of-view of an “actor’—a
person or device that interacts with the software in some way
m Each scenario answers the following questions:
m Who is the primary actor, the secondary actor (s)?
What are the actor’s goals?
What preconditions should exist before the story begins?
What main tasks or functions are performed by the actor?
What extensions might be considered as the story is described?
What variations in the actor’s interaction are possible?
What system information will the actor acquire, produce, or change?

Will the actor have to inform the system about changes in the external
environment?

What information does the actor desire from the system?
m Does the actor wish to be informed about unexpected changes?

These slides are designed to accompany Software Engineering. A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

10

Use-Case Diagram

Arms/ disarms
system

—~

Accesses system sensors
\ via Internet

homeowner

Responds to
alarm event

Encounters an
error condition

N

Reconfigures sensors
and related
system features

system
administrator

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11

Class Diagram

From the SafeHome system ...

Sensor

name/id

type

location

area
characteristics

identify()
enable()
disable()
reconfigure ()

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

12

State Diagram

/ Reading

Commands

A

T State name

System status = “ready”

Display status = steady

Display msg = “enter cmd”

~

! State variables

Entry/subsystems ready
Do: poll user input panel
Do: read user input

Do: interpret user input

.

—~
\ State activities

/

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

13

Analysis Patterns

Pattern name: A descriptor that captures the essence of the pattern.
Intent: Describes what the pattern accomplishes or represents

Motivation: A scenario that illustrates how the pattern can be used to address the
problem.

Forces and context: A description of external issues (forces) that can affect how
the pattern is used and also the external issues that will be resolved when the
pattern is applied.

Solution: A description of how the pattern is applied to solve the problem with an
emphasis on structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what
trade-offs exist during its application.

Design: Discusses how the analysis pattern can be achieved through the use of
known design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named
pattern because (1) it is commonly used with the named pattern; (2) it is structurally
similar to the named pattern; (3) it is a variation of the named pattern.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 14

Negotiating Requirements

m |dentify the key stakeholders
m These are the people who will be involved in the
negotiation
m Determine each of the stakeholders “win
conditions”
= Win conditions are not always obvious

m Negotiate
m Work toward a set of requirements that lead to “win-

win

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 15

Validating Requirements - |

m |s each requirement consistent with the overall objective for the
system/product?

m Have all requirements been specified at the proper level of
abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?

m Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the
system?

Is each requirement bounded and unambiguous?

Does each requirement have attribution? That is, is a source
(generally, a specific individual) noted for each requirement?

m Do any requirements conflict with other requirements?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

16

Validating Requirements - I

m Is each requirement achievable in the technical environment
that will house the system or product?

m Is each requirement testable, once implemented?

m Does the requirements model properly reflect the information,
function and behavior of the system to be built.

m Has the requirements model been “partitioned” in a way that
exposes progressively more detailed information about the
system.

m Have requirements patterns been used to simplify the
requirements model. Have all patterns been properly
validated? Are all patterns consistent with customer
requirements?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.

