
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 6

 Requirements Modeling: Scenarios, Information,

and Analysis Classes

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 2

Requirements Analysis
 Requirements analysis

 specifies software’s operational characteristics

 indicates software's interface with other system elements

 establishes constraints that software must meet

 Requirements analysis allows the software engineer

(called an analyst or modeler in this role) to:

 elaborate on basic requirements established during earlier

requirement engineering tasks

 build models that depict user scenarios, functional

activities, problem classes and their relationships, system

and class behavior, and the flow of data as it is

transformed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 3

A Bridge

system

description

analysis

model

design

model

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 4

Rules of Thumb
 The model should focus on requirements that are visible

within the problem or business domain. The level of
abstraction should be relatively high.

 Each element of the analysis model should add to an overall
understanding of software requirements and provide insight
into the information domain, function and behavior of the
system.

 Delay consideration of infrastructure and other non-
functional models until design.

 Minimize coupling throughout the system.

 Be certain that the analysis model provides value to all
stakeholders.

 Keep the model as simple as it can be.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5

Domain Analysis

Software domain analysis is the identification, analysis,

and specification of common requirements from a

specific application domain, typically for reuse on

multiple projects within that application domain . . .

[Object-oriented domain analysis is] the identification,

analysis, and specification of common, reusable

capabilities within a specific application domain, in

terms of common objects, classes, subassemblies, and

frameworks . . .

Donald Firesmith

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 6

Domain Analysis

 Define the domain to be investigated.

 Collect a representative sample of applications

in the domain.

 Analyze each application in the sample.

 Develop an analysis model for the objects.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 7

Elements of Requirements Analysis

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8

Scenario-Based Modeling

“[Use-cases] are simply an aid to defining what exists

outside the system (actors) and what should be

performed by the system (use-cases).” Ivar Jacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 9

What to Write About?
 Inception and elicitation—provide you with the

information you’ll need to begin writing use cases.

 Requirements gathering meetings, QFD, and other
requirements engineering mechanisms are used to

 identify stakeholders

 define the scope of the problem

 specify overall operational goals

 establish priorities

 outline all known functional requirements, and

 describe the things (objects) that will be manipulated by the
system.

 To begin developing a set of use cases, list the functions
or activities performed by a specific actor.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 10

How Much to Write About?

 As further conversations with the stakeholders

progress, the requirements gathering team

develops use cases for each of the functions

noted.

 In general, use cases are written first in an

informal narrative fashion.

 If more formality is required, the same use

case is rewritten using a structured format

similar to the one proposed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11

Use-Cases

 a scenario that describes a “thread of usage” for

a system

 actors represent roles people or devices play as

the system functions

 users can play a number of different roles for a

given scenario

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12

Developing a Use-Case
 What are the main tasks or functions that are performed by

the actor?

 What system information will the the actor acquire,
produce or change?

 Will the actor have to inform the system about changes in
the external environment?

 What information does the actor desire from the system?

 Does the actor wish to be informed about unexpected
changes?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 13

Use-Case Diagram

homeowner

Access camera

surveillance via the

Internet

Conf igure SafeHome

system parameters

Set alarm

cameras

SafeHome

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 14

Activity Diagram

enter password

and user ID

select major funct ion

valid passwor ds/ ID

prompt for reent ry

invalid passwor ds/ ID

input t r ies r em ain

no input

t r ies r em ain

select surveillance

ot her f unct ions

m ay also be

select ed

t hum bnail views select a specif ic cam er a

select camera icon

prompt for

another v iew

select specif ic

camera - thumbnails

exit t his f unct ion
see anot her cam er a

view camera output

in labelled window

Supplements the
use case by
providing a
graphical
representation of
the flow of
interaction within a
specific scenario

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 15

Swimlane Diagrams

Allows the modeler to
represent the flow of
activities described by
the use-case and at the
same time indicate
which actor (if there are
multiple actors involved
in a specific use-case)
or analysis class has
responsibility for the
action described by an
activity rectangle

enter password

and user ID

select m ajor funct ion

valid p asswo r d s/ ID

prom pt for reent ry

in valid

p asswo r d s/ ID

in p u t t r ies

r em ain

n o in p u t

t r ies r em ain

select surveillance

o t h er f u n ct io n s

m ay also b e

select ed

t h u m b n ail views select a sp ecif ic cam er a

select cam era icon

generate v ideo

output

select specif ic

cam era - thum bnails

exit t h is

f u n ct io n

see

an o t h er

cam er a

h o m e o w n e r c a m e ra i n t e rf a c e

prom pt for

another v iew

view cam era output

in labelled window

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 16

Data Modeling

 examines data objects independently of

processing

 focuses attention on the data domain

 creates a model at the customer’s level

of abstraction

 indicates how data objects relate to one

another

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17

What is a Data Object?
 a representation of almost any composite information

that must be understood by software.
 composite information—something that has a number of

different properties or attributes

 can be an external entity (e.g., anything that produces or
consumes information), a thing (e.g., a report or a
display), an occurrence (e.g., a telephone call) or event
(e.g., an alarm), a role (e.g., salesperson), an
organizational unit (e.g., accounting department), a place
(e.g., a warehouse), or a structure (e.g., a file).

 The description of the data object incorporates the data
object and all of its attributes.

 A data object encapsulates data only—there is no
reference within a data object to operations that act on
the data.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 18

Data Objects and Attributes

A data object contains a set of attributes that

act as an aspect, quality, characteristic, or

descriptor of the object

object: automobile

attributes:
make
model
body type
price
options code

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 19

What is a Relationship?

 Data objects are connected to one another in
different ways.
 A connection is established between person and car

because the two objects are related.
• A person owns a car

• A person is insured to drive a car

 The relationships owns and insured to drive
define the relevant connections between
person and car.

 Several instances of a relationship can exist

 Objects can be related in many different ways

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 20

ERD Notation

(0, m) (1, 1)

object objectrelationship
1 2

One common form:

(0, m)

(1, 1)

object
1 object2

relationship

Another common form:

attribute

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 21

Building an ERD

 Level 1—model all data objects (entities)

and their “connections” to one another

 Level 2—model all entities and

relationships

 Level 3—model all entities, relationships,

and the attributes that provide further depth

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 22

The ERD: An Example

(1,1) (1,m)
placesCustomer

request
for service

generates
(1,n)

(1,1)

work
order

work
tasks

materials

consists
of

lists

(1,1)
(1,w)

(1,1)

(1,i)

selected
from

standard
task table

(1,w)

(1,1)

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 23

Class-Based Modeling

 Class-based modeling represents:

 objects that the system will manipulate

 operations (also called methods or services) that will

be applied to the objects to effect the manipulation

 relationships (some hierarchical) between the objects

 collaborations that occur between the classes that

are defined.

 The elements of a class-based model include

classes and objects, attributes, operations,

CRC models, collaboration diagrams and

packages.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 24

Identifying Analysis Classes

 Examining the usage scenarios developed as
part of the requirements model and perform a
"grammatical parse" [Abb83]
 Classes are determined by underlining each noun or

noun phrase and entering it into a simple table.

 Synonyms should be noted.

 If the class (noun) is required to implement a
solution, then it is part of the solution space;
otherwise, if a class is necessary only to describe a
solution, it is part of the problem space.

 But what should we look for once all of the
nouns have been isolated?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 25

Manifestations of Analysis Classes

 Analysis classes manifest themselves in one of the
following ways:

• External entities (e.g., other systems, devices, people) that
produce or consume information

• Things (e.g, reports, displays, letters, signals) that are part of
the information domain for the problem

• Occurrences or events (e.g., a property transfer or the
completion of a series of robot movements) that occur within
the context of system operation

• Roles (e.g., manager, engineer, salesperson) played by
people who interact with the system

• Organizational units (e.g., division, group, team) that are
relevant to an application

• Places (e.g., manufacturing floor or loading dock) that
establish the context of the problem and the overall function

• Structures (e.g., sensors, four-wheeled vehicles, or
computers) that define a class of objects or related classes of
objects

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 26

Potential Classes

 Retained information. The potential class will be useful during analysis
only if information about it must be remembered so that the system can
function.

 Needed services. The potential class must have a set of identifiable
operations that can change the value of its attributes in some way.

 Multiple attributes. During requirement analysis, the focus should be on
"major" information; a class with a single attribute may, in fact, be
useful during design, but is probably better represented as an attribute
of another class during the analysis activity.

 Common attributes. A set of attributes can be defined for the potential
class and these attributes apply to all instances of the class.

 Common operations. A set of operations can be defined for the
potential class and these operations apply to all instances of the class.

 Essential requirements. External entities that appear in the problem
space and produce or consume information essential to the operation
of any solution for the system will almost always be defined as classes
in the requirements model.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 27

Defining Attributes

 Attributes describe a class that has been

selected for inclusion in the analysis model.
 build two different classes for professional baseball

players

• For Playing Statistics software: name, position,

batting average, fielding percentage, years played, and

games played might be relevant

• For Pension Fund software: average salary, credit

toward full vesting, pension plan options chosen,

mailing address, and the like.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 28

Defining Operations

 Do a grammatical parse of a processing

narrative and look at the verbs

 Operations can be divided into four broad

categories:

 (1) operations that manipulate data in some way

(e.g., adding, deleting, reformatting, selecting)

 (2) operations that perform a computation

 (3) operations that inquire about the state of an

object, and

 (4) operations that monitor an object for the

occurrence of a controlling event.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 29

CRC Models

 Class-responsibility-collaborator (CRC)
modeling [Wir90] provides a simple means for

identifying and organizing the classes that are

relevant to system or product requirements.

Ambler [Amb95] describes CRC modeling in

the following way:

 A CRC model is really a collection of standard index

cards that represent classes. The cards are divided

into three sections. Along the top of the card you

write the name of the class. In the body of the card

you list the class responsibilities on the left and the

collaborators on the right.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 30

CRC Modeling

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class: FloorPlan

Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 31

Class Types
 Entity classes, also called model or business classes, are

extracted directly from the statement of the problem (e.g.,
FloorPlan and Sensor).

 Boundary classes are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees and
interacts with as the software is used.

 Controller classes manage a “unit of work” [UML03] from start to
finish. That is, controller classes can be designed to manage

 the creation or update of entity objects;

 the instantiation of boundary objects as they obtain information from
entity objects;

 complex communication between sets of objects;

 validation of data communicated between objects or between the
user and the application.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 32

Responsibilities
 System intelligence should be distributed across classes

to best address the needs of the problem

 Each responsibility should be stated as generally as
possible

 Information and the behavior related to it should reside
within the same class

 Information about one thing should be localized with a
single class, not distributed across multiple classes.

 Responsibilities should be shared among related
classes, when appropriate.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 33

Collaborations
 Classes fulfill their responsibilities in one of two ways:

 A class can use its own operations to manipulate its own

attributes, thereby fulfilling a particular responsibility, or

 a class can collaborate with other classes.

 Collaborations identify relationships between classes

 Collaborations are identified by determining whether a class

can fulfill each responsibility itself

 three different generic relationships between classes [WIR90]:

 the is-part-of relationship

 the has-knowledge-of relationship

 the depends-upon relationship

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 34

Composite Aggregate Class

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 35

Associations and Dependencies

 Two analysis classes are often related to one

another in some fashion

 In UML these relationships are called associations

 Associations can be refined by indicating multiplicity
(the term cardinality is used in data modeling

 In many instances, a client-server relationship

exists between two analysis classes.

 In such cases, a client-class depends on the server-

class in some way and a dependency relationship is

established

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 36

Multiplicity

WallSegm ent Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 37

Dependencies

CameraDisplayWindow

{password}

<<access>>

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 38

Analysis Packages

 Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that
packages them as a grouping

 The plus sign preceding the analysis class name in each
package indicates that the classes have public visibility
and are therefore accessible from other packages.

 Other symbols can precede an element within a
package. A minus sign indicates that an element is
hidden from all other packages and a # symbol indicates
that an element is accessible only to packages contained
within a given package.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 39

Analysis Packages

Environment

+Tree

+Landscape

+Road

+Wall

+Bridge

+Building

+VisualEffect

+Scene

Characters

+Player

+Protagonist

+Antagonist

+SupportingRole

RulesOfTheGame

+RulesOfMovement

+ConstraintsOnAction

package name

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 40

Reviewing the CRC Model

 All participants in the review (of the CRC model) are given a subset of the CRC
model index cards.

 Cards that collaborate should be separated (i.e., no reviewer should have
two cards that collaborate).

 All use-case scenarios (and corresponding use-case diagrams) should be
organized into categories.

 The review leader reads the use-case deliberately.

 As the review leader comes to a named object, she passes a token to the
person holding the corresponding class index card.

 When the token is passed, the holder of the class card is asked to describe the
responsibilities noted on the card.

 The group determines whether one (or more) of the responsibilities satisfies
the use-case requirement.

 If the responsibilities and collaborations noted on the index cards cannot
accommodate the use-case, modifications are made to the cards.

 This may include the definition of new classes (and corresponding CRC
index cards) or the specification of new or revised responsibilities or
collaborations on existing cards.

