Chapter 7

m Requirements Modeling: Flow, Behavior,
Patterns, and WebApps

Slide Set to accompany

Software Engineering.: A Practitioner's Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering. A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Requirements Modeling Strategies

m One view of requirements modeling, called structured
analysis, considers data and the processes that
transform the data as separate entities.

m Data objects are modeled in a way that defines their
attributes and relationships.

m Processes that manipulate data objects are modeled in a
manner that shows how they transform data as data
objects flow through the system.

m A second approach to analysis modeled, called ob/ect-
oriented analysis, focuses on

m the definition of classes and

m the manner in which they collaborate with one another to
effect customer requirements.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Flow-Oriented Modeling

m Represents how data objects are transformed at they
move through the system

m data flow diagram (DFD) is the diagrammatic form that
IS used

m Considered by many to be an “old school” approach, but
continues to provide a view of the system that is
unique—it should be used to supplement other analysis
model elements

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

The Flow Model

Every computer-based system is an
Information transform

These slides are designed to accompany Software Engineering. A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Flow Modeling Notation

. external entity

process

/ data flow

data store

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

External Entity

ANeI@ducer or consumer of data

Examples. a person, a device, a sensor

Another example: computer-based
system

Data must always originate somewhere
and must always be sent to something

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Process

ta transformer (changes input
utput)

Examples: compute taxes, determine area,
format report, display graph

Data must always be processed in some
way to achieve system function

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Data Flow
e

Data flows through a system, beginning
as input and transformed into output.

base

compute

triangle £G4 >

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Data Stores

Data Is often stored for later use.

sensor #

sensor #, type,
look-up location, age

report required 1 data

il type,
location, age
sensor number

sensor data

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Data Flow Diagramming: Guidelines

all icons must be labeled with meaningful
names

the DFD evolves through a number of levels
of detall

always begin with a context level diagram
(also called level 0)

always show external entities at level O
always label data flow arrows
do not represent procedural logic

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

10

Constructing a DFD—|

m review user scenarios and/or the data
model to isolate data objects and use a
grammatical parse to determine
“operations”

m determine external entities (producers
and consumers of data)

m create alevel O DFD

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

11

Level O DFD Example

processing
request requested
. video
digital signal
Processor
video [l
source TN
video signal

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

12

Constructing a DFD—I|

m Wwrite a narrative describing the transform
m parse to determine next level transforms

m “balance’” the flow to maintain data flow
continuity

m develop a level 1 DFD
m Use a 1:5 (approx.) expansion ratio

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

13

The Data Flow Hierarchy

a b

——————

level O

C

f

\
‘090
d -~y —
09

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 14

level 1

Flow Modeling Notes

m each bubble is refined until it does just
one thing

m the expansion ratio decreases as the
number of levels increase

B Mmost systems require between 3 and 7
levels for an adequate flow model

m a single data flow item (arrow) may be
expanded as levels increase (data
dictionary provides information)

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

15

Process Specification (PSPEC)

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

16

DFDs: A Look Ahead
'/‘/'*‘—»

analysis model
{ @ M into

design model

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

17

Control Flow Modeling

m Represents “events” and the processes that
manage events

m An “event’ is a Boolean condition that can be
ascertained by:

listing all sensors that are "read" by the software.
listing all interrupt conditions.

listing all "switches" that are actuated by an operator.

listing all data conditions.

recalling the noun/verb parse that was applied to the
processing narrative, review all "control items" as
possible CSPEC inputs/outputs.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

18

Control Specification (CSPEC)

The CSPEC can be:

B state diagram
(sequential spec)

B state transition table . .
combinatorial spec
B decision tables

B activation tables

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 19

Behavioral Modeling

m The behavioral model indicates how software will
respond to external events or stimuli. To create the
model, the analyst must perform the following steps:

Evaluate all use-cases to fully understand the sequence of
interaction within the system.

Identify events that drive the interaction sequence and
understand how these events relate to specific objects.

Create a sequence for each use-case.
Build a state diagram for the system.

Review the behavioral model to verify accuracy and
consistency.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

20

State Representations

m In the context of behavioral modeling, two different
characterizations of states must be considered:

m the state of each class as the system performs its function
and

m the state of the system as observed from the outside as the
system performs its function

m The state of a class takes on both passive and active
characteristics [CHA93].

m A passive stateis simply the current status of all of an
object’s attributes.

m The active state of an object indicates the current status of

the object as it undergoes a continuing transformation or
processing.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 21

State Diagram for the ControlPanel Class

timer< lockedTime

timer > lockedTime locked

password = incorrect
& numberOfTries < maxTries

password

entered do: validatePassword

N

reading numberOfTries > maxTries

password = correct

selecting

activation successful

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

22

The States of a System

m State—a set of observable circum-
stances that characterizes the behavior
of a system at a given time

m state transition—the movement from one
state to another

m event—an occurrence that causes the
system to exhibit some predictable form
of behavior

m action—process that occurs as a
consequence of making a transition

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

23

Behavioral Modeling

m Mmake a list of the different states of a system
(How does the system behave?)

m Iindicate how the system makes a transition
from one state to another (How does the
system change state?)

= indicate event
= indicate action

m draw a state diagram or a sequence diagram

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

24

Sequence Diagram

homeowner

control panel

system
ready

password entered

() iimer > lockedTime

>
comparing

system

request lookup |

result

password = correct
numberOfTries > maxTries
locked

'___‘_______________.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

request activation

Sensors

activation successful

>

|
selecting
activation successful

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

5

25

Writing the Software Specification

Everyone knew exactly
what had to be done
until someone wrote it
down!

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 26

Patterns for Requirements Modeling

m Software patterns are a mechanism for capturing domain
knowledge in a way that allows it to be reapplied when a
new problem is encountered

m domain knowledge can be applied to a new problem within
the same application domain

m the domain knowledge captured by a pattern can be
applied by analogy to a completely different application
domain.

m The original author of an analysis pattern does not
“‘create” the pattern, but rather, discoversit as
requirements engineering work is being conducted.

m Once the pattern has been discovered, it is documented

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 27

Discovering Analysis Patterns

m The most basic element in the description of a
requirements model is the use case.

m A coherent set of use cases may serve as the
basis for discovering one or more analysis
patterns.

m A semantic analysis pattern (SAP) “Is a pattern
that describes a small set of coherent use cases that
together describe a basic generic application.”
[FerO0]

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 28

Requirements Modeling for WebApps

Content Analysis. The full spectrum of content to be provided by
the WebApp is identified, including text, graphics and images,
video, and audio data. Data modeling can be used to identify
and describe each of the data objects.

Interaction Analysis. The manner in which the user interacts with
the WebApp is described in detail. Use-cases can be
developed to provide detailed descriptions of this interaction.

Functional Analysis. The usage scenarios (use-cases) created as
part of interaction analysis define the operations that will be
applied to WebApp content and imply other processing
functions. All operations and functions are described in detail.

Configuration Analysis. The environment and infrastructure in
which the WebApp resides are described in detail.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 29

When Do We Perform Analysis?

m In some WebE situations, analysis and design

merge. However, an explicit analysis activity
occurs when ...

m the WebApp to be built is large and/or complex

m the number of stakeholders is large

m the number of Web engineers and other contributors
IS large

m the goals and objectives (determined during
formulation) for the WebApp will effect the business’
bottom line

m the success of the WebApp will have a strong
bearing on the success of the business

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 30

The Content Model

m Content objects are extracted from use-cases
m examine the scenario description for direct and
Indirect references to content
m Attributes of each content object are identified

m The relationships among content objects
and/or the hierarchy of content maintained by a
WebApp

m Relationships—entity-relationship diagram or UML
m Hierarchy—data tree or UML

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 31

Data Tree

MarketingDescriptio

Photograph
partNumber
TechDescription
/ partName
1 . Schematic
component — artType
<: i /
\ description) g
price ey

WholesalePrice

RetailPrice

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

32

The Interaction Model

m Composed of four elements:
B use-cases
m sequence diagrams
m state diagrams
m a user interface prototype

m Each of these is an important UML notation
and is described in Appendix |

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

33

Sequence Diagram

:Room

:FloorPlan

:Product
Component

new cust omer

describes
room*

placesroom
in floor plan

:Billof
Materials

FloorPlan
Repository

BoM
Repository

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

34

State Diagram

(Validating user \

select “log-in”

newcustomer

system status="input ready’
displaymsg = “entemserid”
displaymsg =“enterpswd”

f Selecting user action ’

userid select other funiuons. ve
system status="link ready”

validated

display: navigation choices’

entry/ log-in requested
do: run user validation

exit/set user access switch

customization complete

password validat!:
_’ do: link as required
\exit/user action selected J

entry/ validated user

select e-commerce (purchase) functionality

select customization functionality

_’[Customizing \‘

next selection

L X 1

system status="input ready’
display: basic instructions

entry/validated user
do: process user selection
ext/ customization terminat:

select descriptive
content

f Defining room \ .

select descriptive
content

room being defined | system status=“input ready’
—Ig display: roondef. window

Saving floor plan

system status=“input ready’
display: storage indicator

<

——] entry/ roomdef.selected
all rooms| do: run room queries
defined | do: store room variables

exit/room completed

select save floor plan

(Building floor plan \

select enter room in floor plan

>

system status="input ready’
display: floor plan window

entry/ floor plan selected
do: insert room in place
do: store floor plan variablej

room insertion completed

o

exit/room insertion complet:

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

entry/ floor plan save seleqed
do: store floor plan
’ exit/save completed

select descriptive
content

35

The Functional Model

m The functional model addresses two
processing elements of the WebApp

m user observable functionality that is delivered by the
WebApp to end-users

m the operations contained within analysis classes that
Implement behaviors associated with the class.

m An activity diagram can be used to represent
processing flow

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 36

ctivity Diagram

no components remain orBoMList components remain onBoMList

invoke get price and
calcShipping Cost quantity

returns:

shipping Cost

lineCost =

price x quant ity

invoke
det ermineDiscount

returns: discount add lineCost to

tot alCost

discount>0 t ot alCost=
totalCost - discount
discount <= 0

taxTotal=
totalCost xtaxrate

+ shipping Cost

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

37

The Configuration Model

m Server-side

m Server hardware and operating system environment
must be specified

m Interoperability considerations on the server-side
must be considered

m Appropriate interfaces, communication protocols and
related collaborative information must be specified
m Client-side
m Browser configuration issues must be identified
m Testing requirements should be defined

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Navigation Modeling-|

Should certain elements be easier to reach (require
fewer navigation steps) than others? What is the priority
for presentation?

Should certain elements be emphasized to force users to
navigate in their direction?

How should navigation errors be handled?

Should navigation to related groups of elements be given
priority over navigation to a specific element.

Should navigation be accomplished via links, via search-
based access, or by some other means?

Should certain elements be presented to users based on
the context of previous navigation actions?

Should a navigation log be maintained for users?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

39

Navigation Modeling-II

Should a full navigation map or menu (as opposed to a single
“back” link or directed pointer) be available at every point in a
user’s interaction?

Should navigation design be driven by the most commonly
expected user behaviors or by the perceived importance of the
defined WebApp elements?

Can a user “store” his previous navigation through the WebApp
to expedite future usage?

For which user category should optimal navigation be
designed?

How should links external to the WebApp be handled?
overlaying the existing browser window? as a new browser
window? as a separate frame?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

40

