
Chapter 8

� Design Concepts

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 1

Slides copyright © 1996, 2001, 2005, 2009 by Roger S . Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

Design

� Mitch Kapor, the creator of Lotus 1-2-3,
presented a “software design manifesto” in Dr.
Dobbs Journal. He said:
� Good software design should exhibit:

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 2

� Firmness: A program should not have any bugs that
inhibit its function.

� Commodity: A program should be suitable for the
purposes for which it was intended.

� Delight: The experience of using the program should
be pleasurable one.

Analysis Model -> Design Model

f low- or ient ed
element s

scenar io- based
element s

Component -
Level Design

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 3

Analysis Model

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

data flow diagrams
control-flow diagrams
processing narratives

behavioral
element s

class- based
element s

class diagrams
analysis packages
CRC models
collaboration diagrams

state diagrams
sequence diagrams

Dat a/ Class Design

Archit ect ura l Design

Int erface Design

Design Model

Design and Quality
� the design must implement all of the explicit

requirements contained in the analysis model,
and it must accommodate all of the implicit
requirements desired by the customer.

� the design must be a readable, understandable

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 4

� the design must be a readable, understandable
guide for those who generate code and for
those who test and subsequently support the
software.

� the design should provide a complete picture of
the software, addressing the data, functional,
and behavioral domains from an
implementation perspective.

Quality Guidelines
� A design should exhibit an architecture that (1) has been created using

recognizable architectural styles or patterns, (2) is composed of components
that exhibit good design characteristics and (3) can be implemented in an
evolutionary fashion

� For smaller systems, design can sometimes be developed linearly.

� A design should be modular; that is, the software should be logically partitioned
into elements or subsystems

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 5

into elements or subsystems
� A design should contain distinct representations of data, architecture,

interfaces, and components.
� A design should lead to data structures that are appropriate for the classes to

be implemented and are drawn from recognizable data patterns.
� A design should lead to components that exhibit independent functional

characteristics.
� A design should lead to interfaces that reduce the complexity of connections

between components and with the external environment.
� A design should be derived using a repeatable method that is driven by

information obtained during software requirements analysis.
� A design should be represented using a notation that effectively communicates

its meaning.

Design Principles
� The design process should not suffer from ‘tunnel vision.’
� The design should be traceable to the analysis model.
� The design should not reinvent the wheel.
� The design should “minimize the intellectual distance” [DAV95] between

the software and the problem as it exists in the real world.
� The design should exhibit uniformity and integration.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 6

� The design should exhibit uniformity and integration.
� The design should be structured to accommodate change.
� The design should be structured to degrade gently, even when aberrant

data, events, or operating conditions are encountered.
� Design is not coding, coding is not design.
� The design should be assessed for quality as it is being created, not after

the fact.
� The design should be reviewed to minimize conceptual (semantic) errors.

From Davis [DAV95]

Fundamental Concepts
� Abstraction—data, procedure, control
� Architecture—the overall structure of the software
� Patterns—”conveys the essence” of a proven design solution
� Separation of concerns—any complex problem can be more easily

handled if it is subdivided into pieces
� Modularity—compartmentalization of data and function

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 7

� Modularity—compartmentalization of data and function
� Hiding—controlled interfaces
� Functional independence—single-minded function and low coupling
� Refinement—elaboration of detail for all abstractions
� Aspects—a mechanism for understanding how global requirements

affect design
� Refactoring—a reorganization technique that simplifies the design
� OO design concepts—Appendix II
� Design Classes—provide design detail that will enable analysis

classes to be implemented

Data Abstraction
doordoor

manufacturermanufacturer
model numbermodel number
typetype
swing directionswing direction

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 8

implemented as a data structure

swing directionswing direction
insertsinserts
lightslights

typetype
numbernumber

weightweight
opening mechanismopening mechanism

Procedural Abstraction
openopen

details of enter details of enter
algorithmalgorithm

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 9

implemented with a "knowledge" of the
object that is associated with enter

algorithmalgorithm

Architecture
“The overall structure of the software and the ways in “The overall structure of the software and the ways in
which that structure provides conceptual integrity for a which that structure provides conceptual integrity for a
system.” [SHA95a]system.” [SHA95a]
Structural properties. This aspect of the architectural design This aspect of the architectural design
representation defines the components of a system (e.g., modules, representation defines the components of a system (e.g., modules,
objects, filters) and the manner in which those components are objects, filters) and the manner in which those components are

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 10

objects, filters) and the manner in which those components are objects, filters) and the manner in which those components are
packaged and interact with one another. For example, objects are packaged and interact with one another. For example, objects are
packaged to encapsulate both data and the processing that manipulates packaged to encapsulate both data and the processing that manipulates
the data and interact via the invocation of methods the data and interact via the invocation of methods
Extra-functional properties. The architectural design description The architectural design description
should address how the design architecture achieves requirements for should address how the design architecture achieves requirements for
performance, capacity, reliability, security, adaptability, and other system performance, capacity, reliability, security, adaptability, and other system
characteristics.characteristics.
Families of related systems. The architectural design should draw The architectural design should draw
upon repeatable patterns that are commonly encountered in the design upon repeatable patterns that are commonly encountered in the design
of families of similar systems. In essence, the design should have the of families of similar systems. In essence, the design should have the

ability to reuse architectural building blocks.ability to reuse architectural building blocks.

Patterns
Design Pattern TemplateDesign Pattern Template
Pattern namePattern name——describes the essence of the pattern in a short but describes the essence of the pattern in a short but
expressive name expressive name
IntentIntent——describes the pattern and what it doesdescribes the pattern and what it does
AlsoAlso--knownknown--asas——lists any synonyms for the patternlists any synonyms for the pattern
MotivationMotivation——provides an example of the problem provides an example of the problem
ApplicabilityApplicability——notes specific design situations in which the patte rn is notes specific design situations in which the patte rn is

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 11

ApplicabilityApplicability——notes specific design situations in which the patte rn is notes specific design situations in which the patte rn is
applicableapplicable
StructureStructure——describes the classes that are required to implemen t the describes the classes that are required to implemen t the
patternpattern
ParticipantsParticipants——describes the responsibilities of the classes that are describes the responsibilities of the classes that are
required to implement the patternrequired to implement the pattern
CollaborationsCollaborations——describes how the participants collaborate to carr y out describes how the participants collaborate to carry out
their responsibilitiestheir responsibilities
ConsequencesConsequences——describes the “design forces” that affect the patte rn and describes the “design forces” that affect the patte rn and
the potential tradethe potential trade--offs that must be considered w hen the pattern is offs that must be considered when the pattern is
implementedimplemented
Related patternsRelated patterns——crosscross--references related design patternsreferences related design patterns

Separation of Concerns
� Any complex problem can be more easily

handled if it is subdivided into pieces that can
each be solved and/or optimized independently

� A concern is a feature or behavior that is

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 12

� A concern is a feature or behavior that is
specified as part of the requirements model for
the software

� By separating concerns into smaller, and
therefore more manageable pieces, a problem
takes less effort and time to solve.

Modularity

� "modularity is the single attribute of software that allows
a program to be intellectually manageable" [Mye78].

� Monolithic software (i.e., a large program composed of a
single module) cannot be easily grasped by a software
engineer.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 13

engineer.
� The number of control paths, span of reference, number of

variables, and overall complexity would make
understanding close to impossible.

� In almost all instances, you should break the design into
many modules, hoping to make understanding easier
and as a consequence, reduce the cost required to build
the software.

Modularity: Trade-offs
What is the "right" number of modules What is the "right" number of modules
for a specific software design?for a specific software design?

cost ofcost of
softwaresoftware

module development cost module development cost

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 14

optimal numberoptimal number
of modulesof modules

softwaresoftware

number of modulesnumber of modules

modulemodule
integrationintegration

costcost

Information Hiding
modulemodule

controlledcontrolled
interfaceinterface

• algorithm• algorithm

• data structure• data structure

• details of external interface• details of external interface

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 15

"secret""secret"

• resource allocation policy• resource allocation policy

clientsclients

a specific design decisiona specific design decision

Why Information Hiding?
� reduces the likelihood of “side effects”
� limits the global impact of local design

decisions
� emphasizes communication through

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 16

� emphasizes communication through
controlled interfaces

� discourages the use of global data
� leads to encapsulation—an attribute of

high quality design
� results in higher quality software

Stepwise Refinement
open

walk to door;
reach for knob;

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 17

reach for knob;

open door;

walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

Sizing Modules: Two Views
What's
inside??

How big
is it??

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 18

MODULE

Functional Independence
� Functional independence is achieved by developing

modules with "single-minded" function and an "aversion"
to excessive interaction with other modules.

� Cohesion is an indication of the relative functional
strength of a module.

A cohesive module performs a single task, requiring little

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 19

� A cohesive module performs a single task, requiring little
interaction with other components in other parts of a
program. Stated simply, a cohesive module should (ideally)
do just one thing.

� Coupling is an indication of the relative interdependence
among modules.
� Coupling depends on the interface complexity between

modules, the point at which entry or reference is made to a
module, and what data pass across the interface.

Aspects

� Consider two requirements, A and B.
Requirement A crosscuts requirement B “if a
software decomposition [refinement] has been
chosen in which B cannot be satisfied without

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 20

taking A into account. [Ros04]
� An aspect is a representation of a cross-cutting

concern.

Aspects—An Example
� Consider two requirements for the SafeHomeAssured.com WebApp.

Requirement A is described via the use-case Access camera
surveillance via the Internet. A design refinement would focus on
those modules that would enable a registered user to access video
from cameras placed throughout a space. Requirement B is a generic
security requirement that states that a registered user must be
validated prior to using SafeHomeAssured.com. This requirement is

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 21

validated prior to using SafeHomeAssured.com. This requirement is
applicable for all functions that are available to registered SafeHome
users. As design refinement occurs, A* is a design representation for
requirement A and B* is a design representation for requirement B.
Therefore, A* and B* are representations of concerns, and B* cross-
cuts A*.

� An aspect is a representation of a cross-cutting concern. Therefore,
the design representation, B*, of the requirement, a registered user
must be validated prior to using SafeHomeAssured.com, is an aspect
of the SafeHome WebApp.

Refactoring

� Fowler [FOW99] defines refactoring in the following manner:
� "Refactoring is the process of changing a software system in

such a way that it does not alter the external behavior of the
code [design] yet improves its internal structure.”

� When software is refactored, the existing design is examined
for

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 22

for
� redundancy
� unused design elements
� inefficient or unnecessary algorithms
� poorly constructed or inappropriate data structures
� or any other design failure that can be corrected to yield a better

design.

OO Design Concepts

� Design classes
� Entity classes
� Boundary classes
� Controller classes

� Inheritance—all responsibilities of a superclass is

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 23

� Inheritance—all responsibilities of a superclass is
immediately inherited by all subclasses

� Messages—stimulate some behavior to occur in the
receiving object

� Polymorphism—a characteristic that greatly reduces the
effort required to extend the design

Design Classes
� Analysis classes are refined during design to become entity

classes
� Boundary classes are developed during design to create the

interface (e.g., interactive screen or printed reports) that the user
sees and interacts with as the software is used.
� Boundary classes are designed with the responsibility of managing

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 24

� Boundary classes are designed with the responsibility of managing
the way entity objects are represented to users.

� Controller classes are designed to manage
� the creation or update of entity objects;
� the instantiation of boundary objects as they obtain information from

entity objects;
� complex communication between sets of objects;
� validation of data communicated between objects or between the

user and the application.

The Design Model
high

class diagrams
analysis packages
CRC models
collaborat ion diagrams

use-cases - text
use-case diagrams
act ivity diagrams
swim lane diagrams
collaboration diagrams data f low diagrams

control-f low diagrams
processing narrat ives

data f low diagrams
control-f low diagrams
processing narrat ives state diagrams

sequence diagrams

class diagrams
analysis packages
CRC models
collaborat ion diagrams

analysis model

Requirements:
 const raints
 interoperabilit y
 targets and
 conf igurat ion

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 25

process dimension

architecture
elements

interface
elements

component -level
elements

deployment -level
elements

low

state diagrams
sequence diagrams

design class realizat ions
subsystems
collaborat ion diagrams

design class realizat ions
subsystems
collaborat ion diagrams

ref inements to:

deployment diagrams

component diagrams
design classes
act ivity diagrams
sequence diagrams

ref inements to:

component diagrams
design classes
act ivity diagrams
sequence diagrams

design class realizat ions
subsystems
collaborat ion diagrams

component diagrams
design classes
act ivity diagrams
sequence diagrams

design model

technical interface
 design
Navigat ion design
GUI design

Design Model Elements
� Data elements

� Data model --> data structures
� Data model --> database architecture

� Architectural elements
� Application domain
� Analysis classes, their relationships, collaborations and behaviors are

transformed into design realizations

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 26

transformed into design realizations
� Patterns and “styles” (Chapters 9 and 12)

� Interface elements
� the user interface (UI)
� external interfaces to other systems, devices, networks or other

producers or consumers of information
� internal interfaces between various design components.

� Component elements
� Deployment elements

Architectural Elements
� The architectural model [Sha96] is derived from

three sources:
� information about the application domain for the

software to be built;

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 27

� specific requirements model elements such as data
flow diagrams or analysis classes, their relationships
and collaborations for the problem at hand, and

� the availability of architectural patterns (Chapter 12)
and styles (Chapter 9).

Interface Elements

Cont rolPanel

WirelessPDA

MobilePhone

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 28

LCDdisplay
LEDindicators
keyPadCharacterist ics
speaker
wirelessInterface

readKeyStroke()
decodeKey ()
displayStatus()
lightLEDs()
sendControlMsg()

Figure 9 .6 UML int erface represent at ion for Cont rolPanel

KeyPad

readKeystroke()
decodeKey()

<<int erface>>

KeyPad

Component Elements

SensorManagement
Sensor

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 29

Sensor

Deployment Elements
Cont rol Panel CPI server

Security homeownerAccess

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 30

Figure 9 .8 UML deployment diagram for SafeHome

Personal computer

Security

homeManagement

Surveillance

communication

externalAccess

