
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 5

 Understanding Requirements

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 2

Requirements Engineering-I

 Inception—ask a set of questions that establish …

 basic understanding of the problem

 the people who want a solution

 the nature of the solution that is desired, and

 the effectiveness of preliminary communication and collaboration

between the customer and the developer

 Elicitation—elicit requirements from all stakeholders

 Elaboration—create an analysis model that identifies data,

function and behavioral requirements

 Negotiation—agree on a deliverable system that is realistic for

developers and customers

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 3

Requirements Engineering-II
 Specification—can be any one (or more) of the following:

 A written document

 A set of models

 A formal mathematical

 A collection of user scenarios (use-cases)

 A prototype

 Validation—a review mechanism that looks for

 errors in content or interpretation

 areas where clarification may be required

 missing information

 inconsistencies (a major problem when large products or systems
are engineered)

 conflicting or unrealistic (unachievable) requirements.

 Requirements management

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 4

Inception

 Identify stakeholders
 “who else do you think I should talk to?”

 Recognize multiple points of view

 Work toward collaboration

 The first questions
 Who is behind the request for this work?

 Who will use the solution?

 What will be the economic benefit of a successful
solution

 Is there another source for the solution that you
need?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5

Eliciting Requirements

 meetings are conducted and attended by both software
engineers and customers

 rules for preparation and participation are established

 an agenda is suggested

 a "facilitator" (can be a customer, a developer, or an outsider)
controls the meeting

 a "definition mechanism" (can be work sheets, flip charts, or wall
stickers or an electronic bulletin board, chat room or virtual
forum) is used

 the goal is

 to identify the problem

 propose elements of the solution

 negotiate different approaches, and

 specify a preliminary set of solution requirements

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 6

Eliciting Requirements

Use QFD to

priorit ize

requirem ents

inform ally

priorit ize

requirem ents

form al priorit izat ion?

Create Use-cases

yes no

El ic i t requi rem ent s

write scenario

def ine actors

com plete tem plate

draw use-case

diagram

Conduct FAST

m eet ings

Make lis t s of

funct ions, c lasses

Make lis ts of

const raints, etc.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 7

Quality Function Deployment

 Function deployment determines the “value”

(as perceived by the customer) of each

function required of the system

 Information deployment identifies data objects

and events

 Task deployment examines the behavior of the

system

 Value analysis determines the relative priority

of requirements

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8

Elicitation Work Products
 a statement of need and feasibility.

 a bounded statement of scope for the system or product.

 a list of customers, users, and other stakeholders who
participated in requirements elicitation

 a description of the system’s technical environment.

 a list of requirements (preferably organized by function)
and the domain constraints that apply to each.

 a set of usage scenarios that provide insight into the use of
the system or product under different operating conditions.

 any prototypes developed to better define requirements.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 9

Building the Analysis Model

 Elements of the analysis model

 Scenario-based elements

• Functional—processing narratives for software functions

• Use-case—descriptions of the interaction between an

“actor” and the system

 Class-based elements

• Implied by scenarios

 Behavioral elements

• State diagram

 Flow-oriented elements

• Data flow diagram

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 10

Use-Cases

 A collection of user scenarios that describe the thread of usage of a
system

 Each scenario is described from the point-of-view of an “actor”—a
person or device that interacts with the software in some way

 Each scenario answers the following questions:
 Who is the primary actor, the secondary actor (s)?

 What are the actor’s goals?

 What preconditions should exist before the story begins?

 What main tasks or functions are performed by the actor?

 What extensions might be considered as the story is described?

 What variations in the actor’s interaction are possible?

 What system information will the actor acquire, produce, or change?

 Will the actor have to inform the system about changes in the external
environment?

 What information does the actor desire from the system?

 Does the actor wish to be informed about unexpected changes?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11

Use-Case Diagram

homeowner

Arms/ disarms

syst em

Accesses syst em

via Int ernet

Reconf igures sensors

and relat ed

syst em f eat ures

Responds t o

alarm event

Encount ers an

error condit ion

syst em

administ rat or

sensors

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12

Class Diagram

Sensor

name/id

type

location

area

characteristics

identify()

enable()

disable()

reconfigure ()

From the SafeHome system …

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 13

State Diagram

Reading

Commands

System status = “ready”

Display msg = “enter cmd”

Display status = steady

Entry/subsystems ready

Do: poll user input panel

Do: read user input

Do: interpret user input

State name

State variables

State activities

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 14

Analysis Patterns
Pattern name: A descriptor that captures the essence of the pattern.

Intent: Describes what the pattern accomplishes or represents

Motivation: A scenario that illustrates how the pattern can be used to address the

problem.

Forces and context: A description of external issues (forces) that can affect how

the pattern is used and also the external issues that will be resolved when the

pattern is applied.

Solution: A description of how the pattern is applied to solve the problem with an

emphasis on structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what

trade-offs exist during its application.

Design: Discusses how the analysis pattern can be achieved through the use of

known design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named

pattern because (1) it is commonly used with the named pattern; (2) it is structurally

similar to the named pattern; (3) it is a variation of the named pattern.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 15

Negotiating Requirements

 Identify the key stakeholders

 These are the people who will be involved in the

negotiation

 Determine each of the stakeholders “win

conditions”

 Win conditions are not always obvious

 Negotiate

 Work toward a set of requirements that lead to “win-

win”

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 16

Validating Requirements - I

 Is each requirement consistent with the overall objective for the
system/product?

 Have all requirements been specified at the proper level of
abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?

 Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the
system?

 Is each requirement bounded and unambiguous?

 Does each requirement have attribution? That is, is a source
(generally, a specific individual) noted for each requirement?

 Do any requirements conflict with other requirements?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17

Validating Requirements - II

 Is each requirement achievable in the technical environment

that will house the system or product?

 Is each requirement testable, once implemented?

 Does the requirements model properly reflect the information,

function and behavior of the system to be built.

 Has the requirements model been “partitioned” in a way that

exposes progressively more detailed information about the

system.

 Have requirements patterns been used to simplify the

requirements model. Have all patterns been properly

validated? Are all patterns consistent with customer

requirements?

