Chapter 4

m Principles that Guide Practice

Slide Set to accompany

Software Engineering.: A Practitioner's Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering. A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Software Engineering Knowledge

m You often hear people say that software development
knowledge has a 3-year halt-life: half of what you need to
know today will be obsolete within 3 years. In the domain of
technology-related knowledge, that’s probably about right. But
there 1s another kind of software development knowledge—a
kind that I think of as "software engineering principles"—that
does not have a three-year halt-life. These sofiware
engineering principles are likely to serve a professional
programmer throughout his or her career.

Steve McConnell

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 2

Principles that Guide Process - |

m Principle #1. Be agi/le. Whether the process model you
choose is prescriptive or agile, the basic tenets of agile
development should govern your approach.

m Principle #2. Focus on quality at every step. The exit
condition for every process activity, action, and task should
focus on the quality of the work product that has been
produced.

m Principle #3. Be ready to adapt. Process is not a religious
experience and dogma has no place in it. When necessary,
adapt your approach to constraints imposed by the problem,
the people, and the project itself.

m Principle #4. Build an effective team. Software engineering
process and practice are important, but the bottom line is
people. Build a self-organizing team that has mutual trust and
respect.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Principles that Guide
Process - |l

m Principle #5. Establish mechanisms for communication
and coordination. Projects fail because important information
falls into the cracks and/or stakeholders fail to coordinate their
efforts to create a successful end product.

m Principle #6. Manage change. The approach may be either
formal or informal, but mechanisms must be established to
manage the way changes are requested, assessed, approved
and implemented.

m Principle #7. Assess risk. Lots of things can go wrong as
software is being developed. It's essential that you establish
contingency plans.

m Principle #8. Create work products that provide value for
others. Create only those work products that provide value for
other process activities, actions or tasks.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Principles that Guide Practice

m Principle #1. Divide and conguer. Stated in a more
technical manner, analysis and design should always
emphasize separation of concerns (SoC).

m Principle #2. Understand the use of abstraction. At it
core, an abstraction is a simplification of some complex
element of a system used to communication meaning in
a single phrase.

m Principle #3. Strive for consistency. A familiar context
makes software easier to use.

m Principle #4. Focus on the transfer of information.
Pay special attention to the analysis, design,
construction, and testing of interfaces.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Principles that Guide Practice

Principle #5. Build software that exhibits effective
modularity. Separation of concerns (Principle #1)
establishes a philosophy for software. Modularity
provides a mechanism for realizing the philosophy.

Principle #6. Look for patterns. Brad Appleton
[App00] suggests that: “The goal of patterns within the
software community is to create a body of literature to
help software developers resolve recurring problems
encountered throughout all of software development.

Principle #7. When possible, represent the problem
and its solution from a number of different
perspectives.

Principle #8. Remember that someone will maintain
the software.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Communication Principles

m Principle #1. L/sten. Try to focus on the speaker’s
words, rather than formulating your response to those
words.

m Principle # 2. Prepare before you communicate.
Spend the time to understand the problem before you
meet with others.

m Principle # 3. Someone should facilitate the activity.
Every communication meeting should have a leader (a
facilitator) to keep the conversation moving in a
productive direction; (2) to mediate any conflict that does
occur, and (3) to ensure than other principles are
followed.

m Principle #4. Face-to-face communication is best.
But it usually works better when some other
representation of the relevant information is present.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Communication Principles

m Principle #5. Take notes and document decisions. Someone
participating in the communication should serve as a “recorder” and
write down all important points and decisions.

m Principle # 6. Strive for collaboration. Collaboration and consensus
occur when the collective knowledge of members of the team is
combined ...

m Principle # 7. Stay focused, modularize your discussion. The
more people involved in any communication, the more likely that
discussion will bounce from one topic to the next.

m Principle # 8. /f something is unclear, draw a picture.

m Principle #9. (a) Once you agree to something, move on, (b) If
you can’t agree to something, move on, (c) If a feature or function
/s unclear and cannot be clarified at the moment, move on.

m Principle # 10. Negotiation is not a contest or a game. It works
best when both parties win.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Planning Principles

m Principle #1. Understand the scope of the project.
It's impossible to use a roadmap if you don’t know where
you're going. Scope provides the software team with a
destination.

m Principle #2. /nvolve the customer in the planning
activity. The customer defines priorities and establishes
project constraints.

m Principle #3. Recognize that planning is iterative. A
project plan is never engraved in stone. As work begins,
it very likely that things will change.

m Principle #4. Estimate based on what you know.
The intent of estimation is to provide an indication of
effort, cost, and task duration, based on the team’s
current understanding of the work to be done.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Planning Principles

m Principle #5. Consider risk as you define the p/an. If you
have identified risks that have high impact and high probability,
contingency planning is necessary.

m Principle #6. Be realistic. People don’t work 100 percent of
every day.

m Principle #7. Adjust granularity as you define the plan.
Granularity refers to the level of detail that is introduced as a
project plan is developed.

m Principle #8. Define how you intend to ensure quality. The
plan should identify how the software team intends to ensure
quality.

m Principle #9. Describe how you intend to accommodate
change. Even the best planning can be obviated by
uncontrolled change.

m Principle #10. Track the plan frequently and make
adjustments as required. Software projects fall behind
schedule one day at a time.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 10

Modeling Principles

m In software engineering work, two classes of

models can be created:

m Requirements models (also called analysis models)
represent the customer requirements by depicting the
software in three different domains: the information
domain, the functional domain, and the behavioral
domain.

m Design models represent characteristics of the
software that help practitioners to construct it
effectively: the architecture, the user interface, and
component-level detail.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 11

Requirements Modeling Principles

m Principle #1. The information domain of a problem
must be represented and understood.

m Principle #2. The functions that the software
performs must be defined.

m Principle #3. The behavior of the software (as a
consequence of external events) must be
represented.

m Principle #4. The models that depict information,
function, and behavior must be partitioned in a
manner that uncovers detail in a layered (or
hierarchical) fashion.

m Principle #5. The analysis task should move from
essential information toward implementation detail.

These slides are designed to accompany Software Engineering. A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Design Modeling Principles

Principle #1. Design should be traceable to the requirements
model.

Principle #2. Always consider the architecture of the system to
be built.

Principle #3. Design of data is as important as design of
processing functions.

Principle #5. User interface design should be tuned to the needs
of the end-user. However, in every case, it should stress ease of
use.

Principle #6. Component-level design should be functionally
independent.

Principle #7. Components should be loosely coupled to one
another and to the external environment.

Principle #8. Design representations (models) should be easily
understandable.

Principle #9. The design should be developed iteratively. With
ach iteration ner ive Lo;/ greater simplicity.

I
These slides are §e5|gned to accompanyst bmgarg ng/ ering: /§ /b a?:t%o%r% Al;Jproac
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

13

Agile Modeling Principles

m Principle #1. The primary goal of the software team is to build software, not
create models.

Principle #2. Travel light—don’t create more models than you need.

Principle #3. Strive to produce the simplest model that will describe the
problem or the software.

Principle #4. Build models in a way that makes them amenable to change.

Principle #5. Be able to state an explicit purpose for each model that is
created.

Principle #6. Adapt the models you develop to the system at hand.

Principle #7. Try to build useful models, but forget about building perfect
models.

m Principle #8. Don’t become dogmatic about the syntax of the model. If it
communicates content successftully, representation is secondary.

m Principle #9. /f your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned.

m Principle #10. Get feedback as soon as you can.

These slides are designed to accompany Software Engineering. A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Construction Principles

m The construction activity encompasses a set of
coding and testing tasks that lead to
operational software that is ready for delivery to
the customer or end-user.

m Coding principles and concepts are closely
aligned programming style, programming
languages, and programming methods.

m Testing principles and concepts lead to the
design of tests that systematically uncover
different classes of errors and to do so with a
minimum amount of time and effort.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 15

Preparation Principles

m Before you write one line of code, be sure

you:

Understand the problem you’re trying to solve.
Understand basic design principles and concepts.

Pick a programming language that meets the needs of
the software to be built and the environment in which it
will operate.

Select a programming environment that provides tools
that will make your work easier.

Create a set of unit tests that will be applied once the
component you code is completed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

16

Coding

Principles

m As you begin writing code, be sure you.

Constrain your algorithms by following structured
programming [BohOO] practice.

Consider the use of pair programming
Select data structures that will meet the needs of the design.

Understand the software architecture and create interfaces
that are consistent with it.

Keep conditional logic as simple as possible.

Create nested loops in a way that makes them easily testable.

Select meaningful variable names and follow other local
coding standards.

Write code that is self-documenting.

Create a visual layout (e.g., indentation and blank lines) that
aids understanding.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

17

Validation Principles

m After you’ve completed your first coding

pass, be sure you.
» Conduct a code walkthrough when appropriate.
» Perform unit tests and correct errors you've uncovered.
» Refactor the code.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 18

Testing Principles

m Al Davis [Dav95] suggests the following:

m Principle #1. A/l tests should be traceable to
customer requirements.

m Principle #2. Tests should be p/lanned long before
testing begins.

m Principle #3. The Pareto principle applies to
software testing.

m Principle #4. Testing should begin “in the small”
and progress toward testing “in the large.”

m Principle #5. Exhaustive testing is not possible.

These slides are designed to accompany Software Engineering. A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 19

Deployment Principles

m Principle #1. Customer expectations for the
software must be managed. Too often, the customer
expects more than the team has promised to deliver, and
disappointment occurs immediately.

m Principle #2. A complete delivery package should be
assembled and tested.

m Principle #3. A support regime must be established
before the software is delivered. An end-user expects
responsiveness and accurate information when a
guestion or problem arises.

m Principle #4. Appropriate instructional materials
must be provided to end-users.

m Principle #5. Buggy software should be fixed first,
delivered later.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 20

