

Reducibility

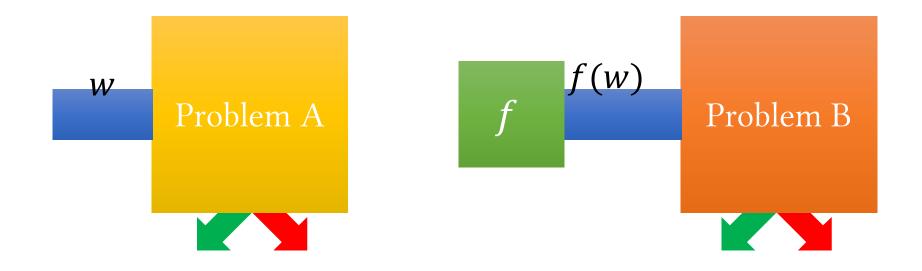
Ali Shakiba ali.shakiba@vru.ac.ir Vali-e-Asr University of Rafsanjan

What we are going to discuss?

- Undecidable problems from language theory
 - Reductions via computation histories
- Mapping reducibility
 - Computable functions
 - Formal definition of mapping reducibility
- Post correspondence problem, or PCP

Reduction

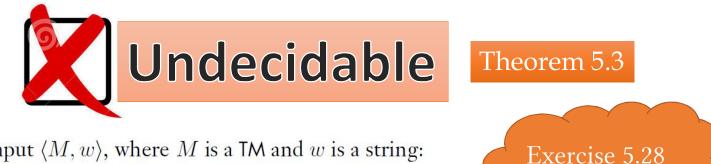
A way of converting one problem to another problem in such a way that a solution to the second problem can be used to solve the first problem.



$HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM and halts on input } w\}$

$$E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Regular_{*TM*} = { $\langle M \rangle$ | *M* is a TM and *L*(*M*) is regular}



- S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Construct the following TM M_2 .
 - $M_2 =$ "On input x:
 - 1. If x has the form $0^n 1^n$, accept.
 - **2.** If x does not have this form, run M on input w and accept if M accepts w."
 - **2.** Run R on input $\langle M_2 \rangle$.
 - 3. If R accepts, accept; if R rejects, reject."

(Rice's theorem)

 $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Computation Histories for Turing Machines

The sequence of configurations that the machine goes through as it processes the input.

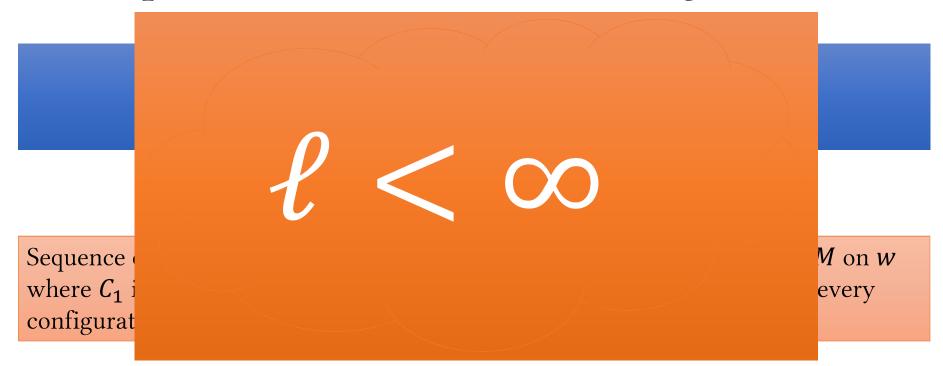
Sequence of configurations $C_1, ..., C_\ell$ is an **accepting computation history** for M on w where C_1 is the **start configuration** and C_ℓ is an **accepting configuration** and every configuration C_{i+1} legally follows from configuration C_i .

Computation Histories for Turing Machines

The sequence of configurations that the machine goes through as it processes the input.

Sequence of configurations $C_1, ..., C_\ell$ is a **rejecting computation history** for M on w where C_1 is the **start configuration** and C_ℓ is an **rejecting configuration** and every configuration C_{i+1} legally follows from configuration C_i .

Computation Histories for Turing Machines



If TM *M* does not reject on input *w*, then ...

No accepting or rejecting computation history exists

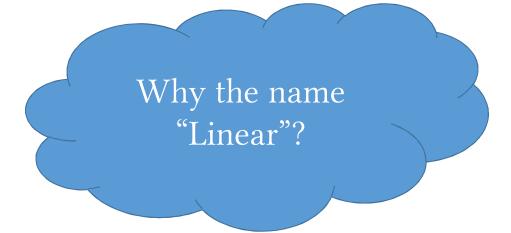
Computation histories for ...

- Deterministic machines
 - at most one computation history on any given input
- Non-deterministic machines
 - many computation histories are possible

$A_{LBA} = \{\langle M, w \rangle | M \text{ is an LBA that accepts string } w\}$

Linear Bounded Automaton, or LBA, is ...

- a restriction of a TM in terms of memory,
- the tape head is not permitted to move off the portion of the tape containing the input.
- the tape head stays on the rightmost or leftmost tape cell if the machine tries to move off the end of the input.



$A_{LBA} = \{\langle M, w \rangle | M \text{ is an LBA that accepts string } w\}$

Lemma 5.8: There are qng^n distinct configurations for an LBA with q states and g symbols on input of length n.

Proof on board

L = "On input $\langle M, w \rangle$, where M is an LBA and w is a string:

- 1. Simulate M on w for qng^n steps or until it halts.
- 2. If M has halted, accept if it has accepted and reject if it has rejected. If it has not halted, reject."

 $E_{LBA} = \{ \langle M \rangle | M \text{ is an LBA and } L(M) = \emptyset \}$

S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Construct LBA B from M and w as described in the proof idea.
- **2.** Run R on input $\langle B \rangle$.
- 3. If R rejects, accept; if R accepts, reject."

$ALL_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$

Theorem 5.13

Do not forget EQ_{CFG} is undecidable (Exercise 5.1).