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Preface

Mixed-effects models provide a flexible and powerful tool for the analysis of
grouped data, which arise in many areas as diverse as agriculture, biology,
economics, manufacturing, and geophysics. Examples of grouped data in-
clude longitudinal data, repeated measures, blocked designs, and multilevel
data. The increasing popularity of mixed-effects models is explained by the
flexibility they offer in modeling the within-group correlation often present
in grouped data, by the handling of balanced and unbalanced data in a
unified framework, and by the availability of reliable and efficient software
for fitting them.

This book provides an overview of the theory and application of lin-
ear and nonlinear mixed-effects models in the analysis of grouped data.
A unified model-building strategy for both linear and nonlinear models is
presented and applied to the analysis of over 20 real datasets from a wide va-
riety of areas, including pharmacokinetics, agriculture, and manufacturing.
A strong emphasis is placed on the use of graphical displays at the various
phases of the model-building process, starting with exploratory plots of the
data and concluding with diagnostic plots to assess the adequacy of a fitted
model. Over 170 figures are included in the book.

The class of mixed-effects models considered in this book assumes that
both the random effects and the errors follow Gaussian distributions. These
models are intended for grouped data in which the response variable is (at
least approximately) continuous. This covers a large number of practical
applications of mixed-effects models, but does not include, for example,
generalized linear mixed-effects models (Diggle, Liang and Zeger, 1994).
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The balanced mix of real data examples, modeling software, and theory
makes this book a useful reference for practitioners who use, or intend to
use, mixed-effects models in their data analyses. It can also be used as a text
for a one-semester graduate-level applied course in mixed-effects models.
Researchers in statistical computing will also find this book appealing for
its presentation of novel and efficient computational methods for fitting
linear and nonlinear mixed-effects models.

The nlme library we developed for analyzing mixed-effects models in im-
plementations of the S language, including S-PLUS and R, provides the
underlying software for implementing the methods presented in the text,
being described and illustrated in detail throughout the book. All analyses
included in the book were produced using version 3.1 of nlme with S-PLUS
3.4 running on an Iris 5.4 Unix platform. Because of platform dependen-
cies, the analysis results may be expected to vary slightly with different
computers or operating systems and with different implementations of S.
Furthermore, the current version of the nlme library for R does not support
the same range of graphics presentations as does the S-PLUS version. The
latest version of nlme and further information on the NLME project can
be obtained at

http://nlme.stat.wisc.edu or
http://cm.bell-labs.com/stat/NLME.

Errata and updates of the material in the book will be made available
on-line at the same sites.

The book is divided into parts. Part I, comprising five chapters, is ded-
icated to the linear mixed-effects (LME) model and Part II, comprising
three chapters, covers the nonlinear mixed-effects (NLME) model. Chap-
ter 1 gives an overview of LME models, introducing some examples of
grouped data and the type of analyses that applies to them. The theory
and computational methods for LME models are the topics of Chapter
2. Chapter 3 describes the structure of grouped data and the many fa-
cilities available in the nlme library to display and summarize such data.
The model-building approach we propose is described and illustrated in
detail in the context of LME models in Chapter 4. Extensions of the ba-
sic LME model to include variance functions and correlation structures for
the within-group errors are considered in Chapter 5. The second part of
the book follows an organization similar to the first. Chapter 6 provides
an overview of NLME models and some of the analysis tools available for
them in nlme. The theory and computational methods for NLME models
are described in Chapter 7. The final chapter is dedicated to model building
in the context of NLME models and to illustrating in detail the nonlinear
modeling facilities available in the nlme library.

Even though the material covered in the book is, for the most part,
self-contained, we assume that the reader has some familiarity with linear
regression models, say at the level of Draper and Smith (1998). Although
enough theory is covered in the text to understand the strengths and weak-
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nesses of mixed-effects models, we emphasize the applied aspects of these.
Readers who desire to learn in more detail the theory of mixed-effects
are referred to the excellent book by Davidian and Giltinan (1995). Some
knowledge of the S language is definitely desireable, but not a pre-requisite
for following the material in the book. For those who are new to, or less
familiar with S, we suggest using in conjunction with this book the, by now,
classic reference Venables and Ripley (1999), which provides an overview
of S and an introduction to a wide variety of statistical models to be used
with S.

The authors may be contacted via electronic mail at
jcp@research.bell-labs.com
bates@stat.wisc.edu

and would appreciate being informed of typos, errors, and improvements
to the contents of this book.

Typographical Conventions:

The S language objects and commands referenced throughout the book are
printed in a monospaced typewriter font like this, while the S classes are
printed in sans-serif font like this. The standard prompt > is used for S
commands and the prompt + is used to indicate continuation lines.

To save space, some of the S output has been edited. Omission of com-
plete lines are usually indicated by

. . .

but some blank lines have been removed without indication. The S output
was generated using the options settings

> options( width = 68, digits = 5 )

The default settings are for 80 and 7, respectively.
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Part I

Linear Mixed-Effects
Models



1
Linear Mixed-Effects Models:
Basic Concepts and Examples

Many common statistical models can be expressed as linear models that
incorporate both fixed effects, which are parameters associated with an
entire population or with certain repeatable levels of experimental factors,
and random effects, which are associated with individual experimental units
drawn at random from a population. A model with both fixed effects and
random effects is called a mixed-effects model.

Mixed-effects models are primarily used to describe relationships between
a response variable and some covariates in data that are grouped according
to one or more classification factors. Examples of such grouped data include
longitudinal data, repeated measures data, multilevel data, and block designs.
By associating common random effects to observations sharing the same
level of a classification factor, mixed-effects models flexibly represent the
covariance structure induced by the grouping of the data.

In this chapter we present an overview of linear mixed-effects (LME)
models, introducing their basic concepts through the analysis of several
real-data examples, starting from simple models and gradually moving to
more complex models. Although the S code to fit these models is shown,
the purpose here is to present the motivation for using LME models to
analyze grouped data and not to concentrate on the software for fitting and
displaying the models. This chapter serves as an appetizer for the material
covered in later chapters: the theoretical and computational methods for
LME models described in Chapter 2 and the linear mixed-effects modeling
facilities available in the nlme library, covered in detail in Chapter 4.

The examples described in this chapter also serve to illustrate the breadth
of applications of linear mixed-effects models.



4 1. Linear Mixed-Effects Models

1.1 A Simple Example of Random Effects

The data shown in Figure 1.1 are from an experiment in nondestructive
testing for longitudinal stress in railway rails cited in Devore (2000, Exam-
ple 10.10, p. 427). Six rails were chosen at random and tested three times
each by measuring the time it took for a certain type of ultrasonic wave
to travel the length of the rail. The only experimental setting that changes
between the observations is the rail. We say these observations are arranged
in a one-way classification because they are classified according to a single
characteristic—the rail on which the observation was made. These data are
described in greater detail in Appendix A.26.

The quantities the engineers were interested in estimating from this ex-
periment are the average travel time for a “typical” rail (the expected travel
time), the variation in average travel times among rails (the between-rail
variability), and the variation in the observed travel times for a single rail
(the within-rail variability). We can see from Figure 1.1 that there is con-
siderable variability in the mean travel time for the different rails. Overall
the between-rail variability is much greater than the within-rail variability.

The data on the rails experiment are given in an object called Rail that
is available with the nlme library. Giving the name Rail by itself to the S
interpreter will result in the data being displayed.

> Rail

Grouped Data: travel ~ 1 | Rail

Rail travel

1 1 55

2 1 53

3 1 54

. . .

17 6 85

18 6 83

2
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travel
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l

FIGURE 1.1. Travel time in nanoseconds for ultrasonic head-waves in a sam-
ple of six railroad rails. The times shown are the result of subtracting 36,100
nanoseconds from the original observation.
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As would be expected, the structure of the data is quite simple—each row
corresponds to one observation for which the rail and the travel time are
recorded. The names of the variables in the data frame are Rail and travel.
There is also a formula, travel ~ 1 | Rail, associated with the data. This
formula is discussed in Chapter 3, where we describe structures available
in the nlme library for representing grouped data.

Data from a one-way classification like the rails example can be analyzed
either with a fixed-effects model or with a random-effects model. The dis-
tinction between the two models is according to whether we wish to make
inferences about those particular levels of the classification factor that were
used in the experiment or to make inferences about the population from
which these levels were drawn. In the latter case the “levels” usually corre-
spond to different subjects or different plots or different experimental units
of some sort.

To illustrate the importance of accounting for the classification factor
when modeling grouped data such as the rails example, we initially ignore
the grouping structure of the data and assume the simple model

yij = β + εij , i = 1, . . . , M, j = 1, . . . , ni, (1.1)

where yij is the observed travel time for observation j on rail i, β is the
mean travel time across the population of rails being sampled, and the εij

are independent N (0, σ2) error terms. The number of rails is M and the
number of observations on rail i is ni. In this case M = 6 and n1 = n2 =
· · · = n6 = 3. The total number of observations is N =

∑M
i=1 ni = 18.

The lm function is used to fit the single-mean model (1.1) in S. Its first
argument is a formula describing the model and its second argument is a
data frame containing the variables named in the model formula.

> fm1Rail.lm <- lm( travel ~ 1, data = Rail )

> fm1Rail.lm

Call:

lm(formula = travel ~ 1, data = Rail)

Coefficients:

(Intercept)

66.5

Degrees of freedom: 18 total; 17 residual

Residual standard error: 23.645

As is typical with S, we do not produce output directly from the fitting
process. Instead we store the fitted model as an object called fm1Rail.lm

then cause this object to be displayed. It contains the parameter estimates
β̂ = 66.5 and σ̂ = 23.645.

The boxplots of the residuals from the fm1Rail.lm fit by rail number,
displayed in Figure 1.2, illustrate the fundamental problem with ignoring
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FIGURE 1.2. Boxplots of residuals by rail number for the lm fit of the single-mean
model (1.1) to the data from the rail experiment.

the classification factor when modeling grouped data: the “group effects”
are incorporated into the residuals (which, in this case, have identical signs
for each rail), leading to an inflated estimate of the within-rail variability.

The “rail effects” indicated in Figure 1.2 may be incorporated into the
model for the travel times by allowing the mean of each rail to be repre-
sented by a separate parameter. This fixed-effects model for the one-way
classification is written

yij = βi + εij , i = 1, . . . , M, j = 1, . . . , ni, (1.2)

where the βi represents the mean travel time of rail i and, as in (1.1), the
errors εij are assumed to be independently distributed as N (0, σ2). We can
again use lm to fit (1.2).

> fm2Rail.lm <- lm( travel ~ Rail - 1, data = Rail )

> fm2Rail.lm

Call:

lm(formula = travel ~ Rail - 1, data = Rail)

Coefficients:

Rail2 Rail5 Rail1 Rail6 Rail3 Rail4

31.667 50 54 82.667 84.667 96

Degrees of freedom: 18 total; 12 residual

Residual standard error: 4.0208

A -1 is used in the model formula to prevent the default inclusion of an
intercept term in the model. As expected, there is considerable variation
in the estimated mean travel times per rail. The residual standard error
obtained for the fixed-effects model (1.2), σ̂ = 4.0208, is about one-sixth
of the corresponding estimate obtained for the single-mean model (1.1),
indicating that the fm2Rail.lm model has successfully accounted for the rail
effects. This is better illustrated by the boxplots of the fm2Rail.lm residuals
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FIGURE 1.3. Boxplots of residuals by rail number for the lm fit of the fixed-effects
model (1.2) to the data from the rail experiment.

by rail number, shown in Figure 1.3. The residuals are now centered around
zero and have considerably smaller magnitudes than those in Figure 1.2.

Even though the fixed-effects model (1.2) accounts for the rail effects, it
does not provide a useful representation of the rails data. Its basic problem
is that it only models the specific sample of rails used in the experiment,
while the main interest is in the population of rails from which the sample
was drawn. In particular, fm2Rail.lm does not provide an estimate of the
between-rail variability, which is one of the central quantities of interest in
the rails experiment. Another drawback of this fixed-effects model is that
the number of parameters in the model increases linearly with the number
of rails.

A random-effects model circumvents these problems by treating the rail
effects as random variations around a population mean. The following re-
parameterization of model (1.2) helps motivate the random-effects model
for the rails data. We write

yij = β̄ +
(
βi − β̄

)
+ εij , (1.3)

where β̄ =
∑6

i=1 βi/6 represents the average travel time for the rails in the
experiment. The random-effects model replaces β̄ by the mean travel time
over the population of rails and replaces the deviations βi − β̄ by random
variables whose distribution is to be estimated.

A random-effects model for the one-way classification used in the rails
experiment is written

yij = β + bi + εij , (1.4)

where β is the mean travel time across the population of rails being sam-
pled, bi is a random variable representing the deviation from the population
mean of the mean travel time for the ith rail, and εij is a random variable
representing the deviation in travel time for observation j on rail i from
the mean travel time for rail i.
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To complete the statistical model, we must specify the distribution of
the random variables bi, i = 1, . . . , M and εij , i = 1, . . . , M ; j = 1, . . . , ni.
We begin by modeling both of these as independent, constant variance,
normally distributed random variables with mean zero. The variances are
denoted σ2

b for the bi, or “between-rail” variability, and σ2 for the εij , or
“within-rail” variability. That is,

bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2). (1.5)

This model may be modified if it does not seem appropriate. As described
in Chapter 4, we encourage using graphical and numerical diagnostic tools
to assess the validity of the model and to suggest ways in which it could
be modified. To start, however, we will use this simple model.

This model with two sources of random variation, bi and εij , is sometimes
called a hierarchical model (Lindley and Smith, 1972; Bryk and Rauden-
bush, 1992) or a multilevel model (Goldstein, 1995). The bi are called ran-
dom effects because they are associated with the particular experimental
units—rails in this case—that are selected at random from the population
of interest. They are effects because they represent a deviation from an
overall mean. That is, the “effect” of choosing rail i is to shift the mean
travel time from β to β + bi. Because observations made on the same rail
share the same random effect bi, they are correlated. The covariance be-
tween observations on the same rail is σ2

b corresponding to a correlation of
σ2

b/
(
σ2

b + σ2
)
.

The parameters of the statistical model created by combining (1.4) and
(1.5) are β, σ2

b , and σ2. Note that the number of parameters will always
be three, irrespective of the number of rails in the experiment. Although
the random effects, bi, i = 1, . . . , M may behave like parameters, formally
they are just another level of random variation in the model so we do not
“estimate” them as such. We will, however, form predictions b̂i of the values
of these random variables, given the data we observed.

1.1.1 Fitting the Random-Effects Model With lme

The lme function from the nlme library for S can be used to fit linear
mixed-effects models, using either maximum likelihood (ML) or restricted
maximum likelihood (REML). These estimation methods for the parame-
ters in LME models are described in detail in §2.2.

A typical call to lme is similar to a call to lm. As in lm, the first two
arguments to lme, fixed and data, give the model for the expected response
(the fixed-effects part of the model) and the object containing the data
to which the model should be fit. The third argument, random, is a one-
sided formula describing the random effects and the grouping structure
for the model. Another important argument is method. Specifying method =

"ML" produces maximum likelihood fits while method = "REML", the default,
produces restricted maximum likelihood fits.
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Many variations in the specifications of linear mixed-effects models for
lme are possible, as shown later in this and other chapters. Details of all
the possible arguments and their forms are given in Appendix B.

We obtain the restricted maximum likelihood fit of the model given by
(1.4) and (1.5) to the Rail data with

> fm1Rail.lme <- lme(travel ~ 1, data = Rail, random = ~ 1 | Rail)

The first argument indicates that the response is travel and that there is
a single fixed effect, the intercept. The second argument indicates that the
data will be found in the object named Rail. The third argument indicates
that there is a single random effect for each group and that the grouping
is given by the variable Rail. Note that there is a variable or column Rail

within the data frame that is also named Rail. Because no estimation
method is specified, the default, "REML", is used.

We can query the fitted lme object, fm1Rail.lme, using different accessor
functions, also described in detail in Appendix B. One of the most useful
of these is the summary function

> summary( fm1Rail.lme )

Linear mixed-effects model fit by REML

Data: Rail

AIC BIC logLik

128.18 130.68 -61.089

Random effects:

Formula: ~ 1 | Rail

(Intercept) Residual

StdDev: 24.805 4.0208

Fixed effects: travel ~ 1

Value Std.Error DF t-value p-value

(Intercept) 66.5 10.171 12 6.5382 <.0001

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.6188 -0.28218 0.035693 0.21956 1.6144

Number of Observations: 18

Number of Groups: 6

We see that the REML estimates for the parameters have been calculated
as

β̂ = 66.5, σ̂b = 24.805, σ̂ = 4.0208,

corresponding to a log-restricted-likelihood of −61.089. The estimated mean
travel time β̂ is identical to the estimated intercept in the fm1Rail.lm fit,
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and the estimated within-rail standard deviation σ̂ is identical to the resid-
ual standard error from fm2Rail.lm. This will not occur in general; it is a
consequence of the Rail data being a balanced one-way classification that
has the same number of observations on each rail. We also note that the
estimated between-rail standard deviation σ̂b is similar to the residual stan-
dard error from the fm1Rail.lm fit.

The output of the summary function includes the values of the Akaike
Information Criterion (AIC ) (Sakamoto, Ishiguro and Kitagawa, 1986)
and the Bayesian Information Criterion (BIC ) (Schwarz, 1978), which is
also sometimes called Schwarz’s Bayesian Criterion (SBC ). These are
model comparison criteria evaluated as

AIC = −2 log Lik + 2npar ,
BIC = −2 log Lik + npar log(N),

where npar denotes the number of parameters in the model and N the
total number of observations used to fit the model. Under these defini-
tions, “smaller is better.” That is, if we are using AIC to compare two or
more models for the same data, we prefer the model with the lowest AIC.
Similarly, when using BIC we prefer the model with the lowest BIC.

To examine the maximum likelihood estimates we would call lme with the
same arguments as for fm1Rail.lme except for method = "ML". A convenient
way of fitting such alternative models is to use the update function where
we only need to specify the arguments that are different from those in the
earlier fit.

> fm1Rail.lmeML <- update( fm1Rail.lme, method = "ML" )

> summary( fm1Rail.lmeML )

Linear mixed-effects model fit by maximum likelihood

Data: Rail

AIC BIC logLik

134.56 137.23 -64.28

Random effects:

Formula: ~ 1 | Rail

(Intercept) Residual

StdDev: 22.624 4.0208

Fixed effects: travel ~ 1

Value Std.Error DF t-value p-value

(Intercept) 66.5 9.554 12 6.9604 <.0001

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.611 -0.28887 0.034542 0.21373 1.6222

Number of Observations: 18

Number of Groups: 6
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FIGURE 1.4. Standardized residuals versus the fitted values for the REML fit of
a random-effects model to the data from the rail experiment.

Notice that the ML estimate of σ is 4.0208, the same as the REML
estimate. Equality of the ML and REML estimates of σ occurs for this
simple model, but will not occur in general. The ML estimate of σb, 22.624,
is smaller than the REML estimate, 24.805. Finally the ML estimate of β,
66.5, is the same as the REML estimate. Again, exact equality of the ML
and REML estimates of the fixed effects need not occur in more complex
models, but it is commonplace for them to be nearly identical.

1.1.2 Assessing the Fitted Model

The fitted model can, and should, be examined using graphical and numer-
ical summaries. One graphical summary that should be examined routinely
is a plot of the residuals versus the fitted responses from the model. This
plot is used to assess the assumption of constant variance of the εij . Be-
cause this plot is a common diagnostic, it is the default plot method for a
fitted lme model. That is, it is produced by the simple call

> plot( fm1Rail.lme ) # produces Figure 1.4

The standardized residuals, shown on the vertical axis in Figure 1.4, are
the raw residuals, eij = yij − β̂ − b̂i, divided by the estimated standard
deviation, σ̂, of the εij .

In this plot we are looking for a systematic increase (or, less commonly,
a systematic decrease) in the variance of the εij as the level of the response
increases. If this is present, the residuals on the right-hand side of the plot
will have a greater vertical spread than those on the left, forming a hori-
zontal “wedge-shaped” pattern. Such a pattern is not evident in Figure 1.4.

With more complicated models there are other diagnostic plots that we
may want to examine, as discussed in Chapter 4.
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We should also examine numerical summaries of the model. A basic sum-
mary is a set of confidence intervals on the parameters, β, σ and σb, as
produced by the intervals function.

> intervals( fm1Rail.lme )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 44.339 66.5 88.661

Random Effects:

Level: Rail

lower est. upper

sd((Intercept)) 13.274 24.805 46.354

Within-group standard error:

lower est. upper

2.695 4.0208 5.9988

We can see that there is considerable imprecision in the estimates of all
three of these parameters.

Another numerical summary, used to assess the significance of terms in
the fixed-effects part of the model, is produced by the anova function

> anova( fm1Rail.lme )

numDF denDF F-value p-value

(Intercept) 1 12 42.748 <.0001

In this case, the fixed-effects model is so simple that the analysis of variance
is trivial. The hypothesis being tested here is β = 0. The p-value, which
is that probability of observing data as unusual as these or even more so
when β actually is 0, is so small as to rule out this possibility. Regardless
of the p-value, the hypothesis β = 0 is of no practical interest here because
the data have been shifted by subtracting 36,100 nanoseconds from each
measurement.

1.2 A Randomized Block Design

In the railway rails example of the last section, the observations were classi-
fied according to one characteristic only—the rail on which the observation
was made. In other experiments we may have more than one classification
factor for each observation. A randomized block design is a type of exper-
iment in which there are two classification factors: an experimental factor
for which we use fixed effects and a blocking factor for which we use random
effects.

The data shown in Figure 1.5 and available as the object ergoStool in
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FIGURE 1.5. Effort required (Borg scale) to arise from a stool for nine different
subjects each using four different types of stools. Different symbols, shown in the
key at the top of the plot, are used for the different types of stools.

the nlme library are from an ergometrics experiment that has a randomized
block design. The experimenters recorded the effort required by each of
nine different subjects to arise from each of four types of stools. We want
to compare these four particular types of stools so we use fixed effects
for the Type factor. The nine different subjects represent a sample from
the population about which we wish to make inferences so we use random
effects to model the Subject factor.

From Figure 1.5 it appears that there are systematic differences between
stool types on this measurement. For example, the T2 stool type required
the greatest effort from each subject while the T1 stool type was consistently
one of the low effort types. The subjects also exhibited variability in their
scoring of the effort, but we would expect this. We say that Subject to be
a blocking factor because it represents a known source of variability in the
experiment. Type is said to be an experimental factor because the purpose
of the experiment is to determine if there are systematic differences in the
level of effort to arise from the different types of stools.

We can visually compare the magnitude of the effects of the Type and
Subject factors using a “design plot”

> plot.design( ergoStool ) # produces Figure 1.6

This plot is produced by averaging the responses at each level of each factor
and plotting these averages. We see that the variability associated with the
Type factor is comparable to the variability associated with the Subject

factor. We also see that the average effort according to stool type is in the
order T1 ≤ T4 ≤ T3 ≤ T2.
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FIGURE 1.6. Design plot for the data in the stool ergometric experiment. The
mean of the response (effort) is plotted for each level of each of the factors Type
and Subject.

1.2.1 Choosing Contrasts for Fixed-Effects Terms

A model with fixed effects βj for the Type factor and random effects bi for
the Subject factor could be written

yij = βj + bi + εij , i = 1, . . . , 9, j = 1, . . . , 4,

bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2),

(1.6)

or, equivalently,

yi = Xiβ + Zibi + εi, i = 1, . . . , 9,

bi ∼ N (0, σ2
b ), εi ∼ N (0, σ2I),

where, for i = 1, . . . , 9,

yi =

⎡⎢⎢⎣
yi1

yi2

yi3

yi4

⎤⎥⎥⎦ , Xi =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , Zi = 1 =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ , εi =

⎡⎢⎢⎣
εi1

εi2

εi3

εi4

⎤⎥⎥⎦ .

This form of fixed-effects matrix Xi is sometimes called the cell means
form because the jth component of β represents what would be the mean
effort to arise from the jth type of stool if the whole population were tested.

These βj have a simple interpretation, but are not convenient to use
when assessing differences between stool types. To make it easier to assess
these differences we use an alternative form of the Xi matrices with one col-
umn representing some “overall mean” or reference level and three columns
representing changes between the types of stools. The three columns rep-
resenting the changes are called the contrasts. There are several different
choices available for these contrasts (Venables and Ripley, 1999, §6.2). In
S-PLUS, the default choice for unordered factors, such as the Type factor,
is the Helmert contrasts
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> contrasts( ergoStool$Type )

[,1] [,2] [,3]

1 -1 -1 -1

2 1 -1 -1

3 0 2 -1

4 0 0 3

(In R the default contrasts for an unordered factor are the “treatment”
contrasts, which are described below.)

The Xi matrices for a given set of contrasts can be displayed with the
model.matrix function. To save space we show the X1 matrix only.

> ergoStool1 <- ergoStool[ ergoStool$Subject == "1", ]

> model.matrix( effort ~ Type, ergoStool1 ) # X matrix for Subject 1

(Intercept) Type1 Type2 Type3

1 1 -1 -1 -1

2 1 1 -1 -1

3 1 0 2 -1

4 1 0 0 3

Using the Helmert contrasts shown above, the components of β represent:

• β1—Mean level of effort for the four stool types.

• β2—Difference between T2 and T1.

• β3—Twice the difference between T3 and the average of T1 and T2.

• β4—Three times the difference between T4 and the average of T1, T2,
and T3.

Fitting the model in this form with lme produces

> fm1Stool <-

+ lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)

> summary( fm1Stool )

. . .

Random effects:

Formula: ~ 1 | Subject

(Intercept) Residual

StdDev: 1.3325 1.1003

Fixed effects: effort ~ Type

Value Std.Error DF t-value p-value

(Intercept) 10.250 0.48052 24 21.331 <.0001

Type1 1.944 0.25934 24 7.498 <.0001

Type2 0.093 0.14973 24 0.618 0.5421

Type3 -0.343 0.10588 24 -3.236 0.0035

Correlation:

(Intr) T1 T2

T1 0
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T2 0 0

T3 0 0 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.802 -0.64317 0.057831 0.701 1.6314

Number of Observations: 36

Number of Groups: 9

By convention, the coefficient corresponding to the first column in the
Xi, which is the column of 1’s, is called the intercept. The name origi-
nated with models like the analysis of covariance model of §1.4 where a
straight-line model for each group is written in terms of its slope and its
intercept with the y-axis. In those cases, this parameter is the y-intercept.
For the model considered here, the parameter labelled (Intercept) is the
estimate of mean effort for all four types of stools across the population.
The other three parameters, labelled Type1, Type2, and Type3, are described
above. Their individual interpretations are not as important as the collec-
tive variability among the stool types they represent. The significance of
this variability, and hence the overall significance of the Type term, is as-
sessed with the anova function.

> anova( fm1Stool )

numDF denDF F-value p-value

(Intercept) 1 24 455.01 <.0001

Type 3 24 22.36 <.0001

On some occasions we may want to switch to other contrasts that provide
more meaningful parameter estimates for the experiment. For example, if
stool type T1 was a “standard” stool and we wished to compare the other
types to this standard type, we could use the contrasts called the treatment
contrasts. These contrasts represent the change from the first level of the
factor to each of the other levels.

One way to cause the treatment contrasts to be used is to reset the
contrasts option. Its value should be a vector of two character strings. The
first string is the name of the function to use for factors, such as Type, and
the second is the function to use for ordered factors, which are described
in §1.6.

> options( contrasts = c( factor = "contr.treatment",

+ ordered = "contr.poly" ) )

> contrasts( ergoStool$Type )

2 3 4

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1
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> fm2Stool <-

+ lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)

> summary( fm2Stool )

Linear mixed-effects model fit by REML

Data: ergoStool

AIC BIC logLik

133.13 141.93 -60.565

Random effects:

Formula: ~ 1 | Subject

(Intercept) Residual

StdDev: 1.3325 1.1003

Fixed effects: effort ~ Type

Value Std.Error DF t-value p-value

(Intercept) 8.5556 0.57601 24 14.853 <.0001

Type2 3.8889 0.51868 24 7.498 <.0001

Type3 2.2222 0.51868 24 4.284 0.0003

Type4 0.6667 0.51868 24 1.285 0.2110

Correlation:

(Intr) Type2 Type3

Type2 -0.45

Type3 -0.45 0.50

Type4 -0.45 0.50 0.50

...

> anova( fm2Stool )

numDF denDF F-value p-value

(Intercept) 1 24 455.01 <.0001

Type 3 24 22.36 <.0001

Although the individual parameter estimates for the Type factor are dif-
ferent between the two fits, the anova results are the same. The difference
in the parameter estimates simply reflects the fact that different contrasts
are being estimated. The similarity of the anova results indicates that the
overall variability attributed to the Type factor does not change. In each
case, the row labelled Type in the analysis of variance table represents a
test of the hypothesis

H0 : β2 = β3 = β4 = 0,

which is equivalent to reducing model (1.6) to

yi = 1β + Zibi + εi, i = 1, . . . , 9, bi ∼ N (0, σ2
b ), εi ∼ N (0, σ2I).

This reduced model is invariant under the change in contrasts.
There is a more subtle effect of changing from one form of Xj matrix to

another—the value of the REML criterion changes. As described in §2.2.5,
when the model parameters are kept at a fixed value, a change in the Xj

matrices results in change in the value of the restricted likelihood function.
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Even though we converge to the same variance component estimates σ̂ =
1.1003 and σ̂b = 1.3325, the value of the estimation criterion itself changes.
Because the AIC and BIC criteria are based on the REML criterion, they
will also change.

As a consequence, when using REML estimation we can only use likeli-
hood ratio tests or comparisons of AIC or BIC for models with the same
fixed-effects structure and the same contrasts for any factors used in the
fixed-effects structure.

We can fit the “cell means” parameterization of the model if we add the
term -1 to the formula for the fixed effects. This causes the column of 1’s
to be removed from the model matrices Xj ,

> model.matrix( effort ~ Type - 1, ergoStool1 )

Type1 Type2 Type3 Type4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

and the fitted model is now expressed in terms of the mean effort for each
stool type over the population

> fm3Stool <-

+ lme(effort ~ Type - 1, data = ergoStool, random = ~ 1 | Subject)

> summary( fm3Stool )

Linear mixed-effects model fit by REML

Data: ergoStool

AIC BIC logLik

133.13 141.93 -60.565

Random effects:

Formula: ~ 1 | Subject

(Intercept) Residual

StdDev: 1.3325 1.1003

Fixed effects: effort ~ Type - 1

Value Std.Error DF t-value p-value

Type1 8.556 0.57601 24 14.853 <.0001

Type2 12.444 0.57601 24 21.604 <.0001

Type3 10.778 0.57601 24 18.711 <.0001

Type4 9.222 0.57601 24 16.010 <.0001

Correlation:

Type1 Type2 Type3

Type2 0.595

Type3 0.595 0.595

Type4 0.595 0.595 0.595
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Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.802 -0.64317 0.057831 0.701 1.6314

Number of Observations: 36

Number of Groups: 9

This change in the fixed-effects structure does change the anova results.

> anova( fm3Stool )

numDF denDF F-value p-value

Type 4 24 130.52 <.0001

The hypothesis being tested by anova for this model is

H0 : β1 = β2 = β3 = β4 = 0,

which is equivalent to reducing model (1.6) to

yi = Zibi + εi, i = 1, . . . , 9, bi ∼ N (0, σ2
b ), εi ∼ N (0, σ2I).

That is, the hypothesis H0 completely eliminates the fixed-effects parame-
ters from the model so the mean response across the population would be
zero. This hypothesis is not meaningful in the context of this experiment.

To reiterate, some general principles to keep in mind regarding fixed-
effects terms for factors are:

• The overall effect of the factor should be assessed with anova, not
by examining the t-value’s or p-value’s associated with the fixed-
effects parameters. The anova output does not depend on the choice
of contrasts as long as the intercept term is retained in the model.

• Interpretation of the parameter estimates for a fixed-effects term de-
pends on the contrasts being used.

• For REML estimation, likelihood-ratio tests or comparisons of AIC
or BIC require the same fixed-effects structure and the same choice
of contrasts in all models.

• The “cell means” parameters can be estimated by adding -1 to a
model formula but this will usually make the results of anova mean-
ingless.

1.2.2 Examining the Model

As in the rail example, we should examine the fitted model both graphi-
cally and numerically. The intervals function provides an indication of the
precision of the estimates of the variance components.
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FIGURE 1.7. Standardized residuals versus the fitted values for the REML fit
of a random-effects model to the data in the ergometric experiment on types of
stools.

> intervals( fm1Stool )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 9.25825 10.250000 11.24175

Type1 1.40919 1.944444 2.47970

Type2 -0.21644 0.092593 0.40162

Type3 -0.56111 -0.342593 -0.12408

Random Effects:

Level: Subject

lower est. upper

sd((Intercept)) 0.74923 1.3325 2.3697

Within-group standard error:

lower est. upper

0.82894 1.1003 1.4605

We see that σ is estimated relatively precisely, whereas σb can vary by a
factor of about 5, which is a factor of 25 if we express the estimates as
variances.

The plot of the standardized residuals versus the fitted values, shown
in Figure 1.7, does not indicate a violation of the assumption of constant
variance for the εij terms.

Figure 1.7 shows the overall behavior of the residuals relative to the fitted
values. It may be more informative to examine this behavior according to
the Subject factor or according to the Type factor, which we can do by
providing an explicit formula to the plot method for the fitted lme model.
The formula can use functions such as resid or fitted applied to the fitted
model. As a shortcut, a "." appearing in the formula is interpreted as the
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FIGURE 1.8. Standardized residuals versus the fitted values by Subject for the
REML fit of a random-effects model to the data in the ergometric experiment on
types of stools.

fitted model object itself. Thus, to plot the standardized, or “Pearson,”
residuals versus the fitted values by Subject, we use

> plot( fm1Stool, # produces Figure 1.8

+ form = resid(., type = "p") ~ fitted(.) | Subject,

+ abline = 0 )

The argument abline = 0 adds a horizontal reference line at y = 0 to each
panel. In its more general form, the value of the abline argument should
be a numeric vector of length two giving the intercept and the slope of the
line to be drawn on each panel. Diagnostic plots for assessing the adequacy
of lme fits are discussed in detail in §4.3.

1.3 Mixed-Effects Models for Replicated, Blocked
Designs

In the ergometric experiment on the types of stools, each subject tried each
type of stool once. We say this design is unreplicated because only one ob-
servation is available at each combination of experimental conditions. In
other experiments like this it may be feasible to take replicate measure-
ments. For example, the Machines data, described in Milliken and Johnson
(1992, Chapter 23) and shown in Figure 1.9, gives the productivity score
for each of six randomly chosen workers tested on each of three different
machine types. Each worker used each machine three times so we have
three replicates at each set of conditions.

In Figure 1.9 we can see that there are strong indications of differences
between machines and also some indications of differences between workers.
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FIGURE 1.9. Productivity scores for three types of machines as used by six differ-
ent workers. Scores take into account the number and the quality of components
produced.

We note that there is very little variability in the productivity score for the
same worker using the same machine.

As we did for the experiment on the types of stools, we will model the
subject or Worker factor with random effects and the type or Machine factor
with fixed effects. The replications in this experiment will allow us to assess
the presence of interactions between worker and machine. That is, we can
address the question of whether the effect of changing from one type of
machine to another is different for different workers.

The comparative dotplot in Figure 1.9 allows us to see patterns across
the workers and to see differences between machines within each worker.
However, the possibility of interactions is not easy to assess in this plot. An
alternative plot, called an interaction plot, shows the potential interactions
more clearly. It is produced by averaging the scores for each worker on each
machine, plotting these averages versus the machine type, and joining the
points for each worker. The function interaction.plot in S creates such a
plot. It is most easily called after attach’ing the data frame with the data
so the variables in the data frame can be accessed by name.

> attach( Machines ) # make variables in Machines available by name

> interaction.plot( Machine, Worker, score, las = 1) # Figure 1.10

> detach() # undo the effect of ‘attach( Machines )’

(The optional argument las = 1 to interaction.plot alters the “label style”
on the vertical axis to a more appealing form.)

If there were no interactions between machines and workers, the lines
in the interaction plot would be approximately parallel. The lines in Fig-
ure 1.10 do not seem to be parallel, especially relative to the variability
within the replicates that we can see in Figure 1.9. Worker 6 has an un-
usual pattern compared to the other workers.
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FIGURE 1.10. An interaction plot for the productivity scores for six different
workers using three different machine types.

1.3.1 Fitting Random Interaction Terms

A model without interactions has the same form as the model for the
ergometric experiment.

yijk = βj + bi + εijk, i = 1, . . . , 6, j = 1, . . . , 3, k = 1, . . . , 3,

bi ∼ N (0, σ2
b ), εijk ∼ N (0, σ2). (1.7)

There is a fixed effect for each type of machine and a random effect for
each worker. As before, the fixed effects for the machines will be re-coded
as an intercept and a set of contrasts when we fit this model as

> fm1Machine <-

+ lme( score ~ Machine, data = Machines, random = ~ 1 | Worker )

> fm1Machine

Linear mixed-effects model fit by REML

Data: Machines

Log-restricted-likelihood: -145.23

Fixed: score ~ Machine

(Intercept) Machine1 Machine2

59.65 3.9833 3.3111

Random effects:

Formula: ~ 1 | Worker

(Intercept) Residual

StdDev: 5.1466 3.1616

Number of Observations: 54

Number of Groups: 6

Because the workers represent a random sample from the population
of interest, any interaction terms modeling differences between workers in
changing from one machine to another will also be expressed as random
effects. The model incorporating the random interaction terms, bij , i =
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1, . . . , 6, j = 1, . . . , 3, is

yijk = βj + bi + bij + εijk, i = 1, . . . , 6, j = 1, . . . , 3, k = 1, . . . , 3,

bi ∼ N (0, σ2
1), bij ∼ N (0, σ2

2), εijk ∼ N (0, σ2).

This model has random effects at two levels: the effects bi for the worker
and the effects bij for the type of machine within each worker. In a call
to lme we can express this nesting as Worker/Machine in the formula for
the random effects. This expression is read as “Worker and ‘Machine within
Worker’ ”. We can update the previous model with a new specification for
the random effects.

> fm2Machine <- update( fm1Machine, random = ~ 1 | Worker/Machine )

> fm2Machine

Linear mixed-effects model fit by REML

Data: Machines

Log-restricted-likelihood: -109.64

Fixed: score ~ Machine

(Intercept) Machine1 Machine2

59.65 3.9833 3.3111

Random effects:

Formula: ~ 1 | Worker

(Intercept)

StdDev: 4.7814

Formula: ~ 1 | Machine %in% Worker

(Intercept) Residual

StdDev: 3.7294 0.96158

Number of Observations: 54

Number of Groups:

Worker Machine %in% Worker

6 18

This model has produced a value of the REML criterion of −109.64,
which is considerably greater than that of fm1Machine, −145.23. The anova

function, when given two or more arguments representing fitted models,
produces likelihood ratio tests comparing the models.

> anova( fm1Machine, fm2Machine )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Machine 1 5 300.46 310.12 -145.23

fm2Machine 2 6 231.27 242.86 -109.64 1 vs 2 71.191 <.0001

The likelihood ratio statistic comparing the more general model (fm2Machine)
to the more specific model (fm2Machine) is huge and the p-value for the test
is essentially zero, so we prefer fm2Machine.
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The anova function with multiple arguments also reproduces the values
of the AIC and the BIC criteria for each model. As described in §1.1.1,
these criteria can be used to decide which model to prefer. Because the
preference is according to “smaller is better,” both these criteria show a
strong preference for fm2Machine over fm1Machine.

1.3.2 Unbalanced Data

The Machines data are balanced in that every Worker is tested on every
Machine exactly three times. Milliken and Johnson (1992) analyze this ex-
ample both as balanced data and as unbalanced data. To obtain the unbal-
anced data, they randomly deleted ten observations, as indicated in their
Table 23.1. They observe that the software they used to estimate the ran-
dom effects components (SAS PROC VARCOMP) did not produce sensible
maximum likelihood estimates (although the current version of this soft-
ware does). The lme function does produce sensible maximum likelihood
estimates or restricted maximum likelihood estimates from the unbalanced
data.

> ## delete selected rows from the Machines data

> MachinesUnbal <- Machines[ -c(2,3,6,8,9,12,19,20,27,33), ]

> ## check that the result is indeed unbalanced

> table(MachinesUnbal$Machine, MachinesUnbal$Worker)

6 2 4 1 3 5

A 3 2 2 1 1 3

B 3 3 3 1 2 2

C 3 3 3 3 3 3

> fm1MachinesU <- lme( score ~ Machine, data = MachinesUnbal,

+ random = ~ 1 | Worker/Machine )

> fm1MachinesU

Linear mixed-effects model fit by REML

Data: MachinesUnbal

Log-restricted-likelihood: -92.728

Fixed: score ~ Machine

(Intercept) Machine1 Machine2

59.648 3.9812 3.3123

Random effects:

Formula: ~ 1 | Worker

(Intercept)

StdDev: 4.7387

Formula: ~ 1 | Machine %in% Worker

(Intercept) Residual

StdDev: 3.7728 0.9332

Number of Observations: 44



26 1. Linear Mixed-Effects Models

Number of Groups:

Worker Machine %in% Worker

6 18

> intervals( fm1MachinesU )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 55.2598 59.6476 64.0353

Machine1 1.5139 3.9812 6.4485

Machine2 1.8940 3.3123 4.7307

Random Effects:

Level: Worker

lower est. upper

sd((Intercept)) 2.2162 4.7388 10.132

Level: Machine

lower est. upper

sd((Intercept)) 2.4091 3.7728 5.9084

Within-group standard error:

lower est. upper

0.71202 0.9332 1.2231

The estimates of the standard deviations and the confidence intervals
on these parameters look reasonable when compared to those from the
full data set. The techniques used in lme for parameter estimation do not
depend on the data being balanced.

However, for either balanced or unbalanced data we must have sufficient
information in the data to be able to estimate the variance components and
the fixed-effects parameters. We can fit a model with random interaction
effects to the Machines data because there are replications. If we tried to
fit a nested model to unreplicated data, such as the ergoStool data, it may
appear that we are successful until we examine the intervals on the variance
components.

> fm4Stool <- lme( effort ~ Type, ergoStool, ~ 1 | Subject/Type )

> intervals( fm4Stool )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 9.25825 10.250000 11.24175

Type1 1.40919 1.944444 2.47970

Type2 -0.21644 0.092593 0.40162

Type3 -0.56111 -0.342593 -0.12408
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Random Effects:

Level: Subject

lower est. upper

sd((Intercept)) 0.74952 1.3325 2.3688

Level: Type

lower est. upper

sd((Intercept)) 0.05386 0.99958 18.551

Within-group standard error:

lower est. upper

4.3603e-07 0.45988 485050

Apparently the standard deviations σ2 and σ could vary over twelve orders
of magnitude!

If we write this model for these data, taking into account that each
subject only tries each type of stool once, we would have

yij = βi + bj + bij + εij , i = 1, . . . , 3, j = 1, . . . , 6,

bj ∼ N (0, σ2
1), bij ∼ N (0, σ2

2), εij ∼ N (0, σ2).

We can see that the bij are totally confounded with the εij so we cannot
estimate separate standard deviations for these two random terms. In fact,
the estimates reported for σ and σ2 in this model give a combined variance
that corresponds to σ̂2 from fm1Stool.

> (fm1Stool$sigma)^2

[1] 1.2106

> (fm4Stool$sigma)^2 + 0.79621^2

[1] 1.2107

The lesson here is that it is always a good idea to check the confidence
intervals on the variance components after fitting a model. Having abnor-
mally wide intervals usually indicates problems with the model definition.
In particular, a model with nested interaction terms can only be fit when
there are replications available in the data.

1.3.3 More General Models for the Random Interaction
Effects

In the model (1.3.1), the random interaction terms all have the same vari-
ance σ2

2 . Furthermore, these random interactions are assumed to be in-
dependent of one another, even within the same subject. A more general
model could treat the random interactions for each subject as a vector and
allow the variance–covariance matrix for that vector to be estimated from
the set of all positive-definite matrices.

To express this model we return to the matrix/vector representation used
in (1.2.1). We define yi to be the entire response vector for the ith subject,
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β to be the three-dimensional vector of fixed-effects parameters for the
population, bi to be the three-dimensional vector of random effects for the
ith subject, Xi to be the 9×3 fixed-effects design matrix for subject i, and
Zi to be the 9× 3 random-effects design matrix for subject i. The general
form of the model is then

yi = Xiβ + Zibi + εi, i = 1, . . . , 6,

bi ∼ N (0,Ψ), εi ∼ N (0, σ2I),

where Ψ is a positive-definite, symmetric 3 × 3 matrix.
To be more specific we must define the matrices Xi and Zi or, equiva-

lently, define the formulae that generate these matrices as model matrices.
As discussed in §1.2.1, in the fixed-effects we generally use a formula that
creates Xi with a single column of 1’s and two columns of contrasts. We
could do the same for the Zi but, because the random effects are assumed
to have an expected value of 0 anyway, it is often more informative to use
a formula such as ~ Machine - 1 that removes the intercept column.

Sample model matrices, evaluated on the Worker1’s data only, are

> Machine1 <- Machines[ Machines$Worker == "1", ]

> model.matrix( score ~ Machine, Machine1 ) # fixed-effects X_i

(Intercept) Machine1 Machine2

1 1 -1 -1

2 1 -1 -1

3 1 -1 -1

19 1 1 -1

20 1 1 -1

21 1 1 -1

37 1 0 2

38 1 0 2

39 1 0 2

> model.matrix( ~ Machine - 1, Machine1 ) # random-effects Z_i

MachineA MachineB MachineC

1 1 0 0

2 1 0 0

3 1 0 0

19 0 1 0

20 0 1 0

21 0 1 0

37 0 0 1

38 0 0 1

39 0 0 1

The fitted model using this formulation is

> fm3Machine <- update( fm1Machine, random = ~Machine - 1 |Worker)

> summary( fm3Machine )

Linear mixed-effects model fit by REML
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Data: Machines

AIC BIC logLik

231.89 251.21 -105.95

Random effects:

Formula: ~ Machine - 1 | Worker

Structure: General positive-definite

StdDev Corr

MachineA 4.07928 MachnA MachnB

MachineB 8.62529 0.803

MachineC 4.38948 0.623 0.771

Residual 0.96158

Fixed effects: score ~ Machine

Value Std.Error DF t-value p-value

(Intercept) 59.650 2.1447 46 27.813 <.0001

Machine1 3.983 1.2104 46 3.291 0.0019

Machine2 3.311 0.5491 46 6.030 <.0001

Correlation:

(Intr) Machn1

Machine1 0.811

Machine2 -0.540 -0.453

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.3935 -0.51378 0.026908 0.47245 2.5334

Number of Observations: 54

Number of Groups: 6

This model can be compared to the previous two models using the multi-
argument form of anova.

> anova( fm1Machine, fm2Machine, fm3Machine )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Machine 1 5 300.46 310.12 -145.23

fm2Machine 2 6 231.27 242.86 -109.64 1 vs 2 71.191 <.0001

fm3Machine 3 10 231.89 251.21 -105.95 2 vs 3 7.376 0.1173

Because the p-value for the test comparing models 2 and 3 is about 12%,
we would conclude that the fit fm3Machine is not significantly better than
fm2Machine, taking into account the fact that fm3Maching requires four ad-
ditional parameters in the model.

The AIC criterion is nearly the same for models 2 and 3, indicating that
there is no strong preference between these models. The BIC criterion does
indicate a strong preference for model 2 relative to model 3. In general BIC
puts a heavier penalty than does AIC on having more parameters in the
model. Because there are a total of ten parameters in model 3 compared
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to six parameters in model 2, the BIC criterion will tend to prefer model 2
unless model 3 provides a substantially better fit.

1.4 An Analysis of Covariance Model

Traditionally, the term analysis of variance has been applied to models for
a continuous response as it relates to various classification factors for the
observations. The model for the rails example described in §1.1

yij = β + bi + εij , i = 1, . . . , M, j = 1, . . . , ni,

bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2)

is an example of an analysis of variance model with random-effects terms.
A linear regression model, such as

yi = β1 + β2xi + εi, i = 1, . . . , N, εi ∼ N (0, σ2),

relates a continuous response (the yi) to one or more continuous covariates
(the xi).

The term analysis of covariance designates a type of model that relates
a continuous response to both a classification factor and to a continuous
covariate. If yij is the jth observation in the ith group of data and xij is
the corresponding value of the covariate, an analysis of covariance model
with a random effect for the intercept would be

yij = β1 + bi + β2xij + εij , i = 1, . . . , M, j = 1, . . . , ni,

bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2).

(1.8)

This model combines a random-effects analysis of variance model with a
linear regression model.

1.4.1 Modeling Simple Linear Growth Curves

A common application of random-effects analysis of covariance models is in
modeling growth curve data—the results on different subjects of repeated
measurements of some characteristic over time. The terms repeated mea-
sures and longitudinal data are also applied to such data.

A classic example of such data, given in Potthoff and Roy (1964), is a set
of measurements of the distance from the pituitary gland to the pterygo-
maxillary fissure taken every two years from 8 years of age until 14 years of
age on a sample of 27 children—16 males and 11 females. The data, avail-
able as the S object Orthodont and shown in Figure 1.11, were collected by
orthodontists from x-rays of the children’s skulls. The pituitary gland and
the pterygomaxillary fissure are two easily located points on these x-rays.
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FIGURE 1.11. Distance from the pituitary to the pterygomaxillary fissure versus
age for a sample of 16 boys (subjects M01 to M16) and 11 girls (subjects F01 to
F11). The aspect ratio for the panels has been chosen to facilitate comparison of
the slope of the lines.

From Figure 1.11 it appears that there are qualitative differences between
boys and girls in their growth patterns for this measurement. In Chapter 4
we will model some of these differences, but for now it is easier to restrict
our modeling to the data from the female subjects only. To extract the
data for the females only we first check on the names of the variables in
the Orthodont object, then check for the names of the levels of the variables
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Sex, then extract only those rows for which the Sex variable has the value
"Female".

> names( Orthodont )

[1] "distance" "age" "Subject" "Sex"

> levels( Orthodont$Sex )

[1] "Male" "Female"

> OrthoFem <- Orthodont[ Orthodont$Sex == "Female", ]

Figure 1.11 indicates that, for most of the female subjects, the orthodon-
tic measurement increases with age and that the growth is approximately
linear over this range of ages. It appears that the intercepts, and possibly
the slopes, of these growth curves may differ between girls. For example,
subject 10 has considerably smaller measurements than does subject 11,
and the growth rate for subjects 2 and 3 is considerably greater than that
for subjects 5 and 8.

To explore this potential linear relationship further, we fit separate linear
regression models for each girl using the lmList function.

> fm1OrthF.lis <- lmList( distance ~ age, data = OrthoFem )

> coef( fm1OrthF.lis )

(Intercept) age

F10 13.55 0.450

F09 18.10 0.275

F06 17.00 0.375

F01 17.25 0.375

F05 19.60 0.275

F08 21.45 0.175

F07 16.95 0.550

F02 14.20 0.800

F03 14.40 0.850

F04 19.65 0.475

F11 18.95 0.675

The function coef is a generic function (Chambers and Hastie, 1992,
Appendix A) that extracts the estimated coefficients from a fitted model
object. For an lmList object the coefficients are returned as a matrix with
one row for each of the groups of observations.

We might wish to consider whether we need to allow different slopes for
each girl. There are formal statistical tests to assess this and we will discuss
them later. For now we can proceed informally and examine individual
confidence intervals on the parameters. As we have seen, the intervals

function is used to create confidence intervals on the parameters in an
object representing a fitted model.

> intervals( fm1OrthF.lis )

, , (Intercept)

lower est. upper

F10 10.071 13.55 17.029
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FIGURE 1.12. Comparison of 95% confidence intervals on the coefficients of
simple linear regression models fitted to the orthodontic growth curve data for
the female subjects.

F09 14.621 18.10 21.579

F06 13.521 17.00 20.479

F01 13.771 17.25 20.729

F05 16.121 19.60 23.079

F07 13.471 16.95 20.429

F02 10.721 14.20 17.679

F08 17.971 21.45 24.929

F03 10.921 14.40 17.879

F04 16.171 19.65 23.129

F11 15.471 18.95 22.429

, , age

lower est. upper

F10 0.1401 0.450 0.7599

F09 -0.0349 0.275 0.5849

F06 0.0651 0.375 0.6849

F01 0.0651 0.375 0.6849

F05 -0.0349 0.275 0.5849

F07 0.2401 0.550 0.8599

F02 0.4901 0.800 1.1099

F08 -0.1349 0.175 0.4849

F03 0.5401 0.850 1.1599

F04 0.1651 0.475 0.7849

F11 0.3651 0.675 0.9849

As often happens, displaying the intervals as a table of numbers is not
very informative. We find it much more effective to plot these intervals
using

> plot( intervals ( fm1OrthF.lis ) ) # produces Figure 1.12

Figure 1.12 is of interest as much for what it does not show as for what
it does show. First, consider what the figure does show. We notice that
the intervals for the intercepts are all the same width, as are the intervals
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FIGURE 1.13. Comparison of 95% confidence intervals on the coefficients of
simple linear regression models fitted to the centered orthodontic growth curve
data for the female subjects.

for the slope with respect to age. This is a consequence of having balanced
data; that is, all the subjects were observed the same number of times and
at the same ages. We also notice that there is considerable overlap in the
set of intervals for the slope with respect to age. It may be feasible to use
a model with a common slope.

The surprising thing about Figure 1.12 is that it does not show the
substantial differences in the intercepts that Figure 1.11 would lead us to
expect. Furthermore, even though we have ordered the groups from the
one with the smallest average distance (subject F10) to the one with the
largest average distance (subject F11), this ordering is not reflected in the
intercepts. Finally, we see that the pattern across subjects in the intervals
for the intercepts is nearly a reflection of the pattern in the intervals for
the slopes.

Those with experience analyzing regression models may already have
guessed why this reflection of the pattern occurs. It occurs because all the
data were collected between age 8 and age 14, but the intercept represents
a distance at age 0. The extrapolation back to age 0 will result in a high
negative correlation (about −0.98) between the estimates of the slopes and
their corresponding intercept estimate.

We will remove this correlation if we center the data. In this case, we
would fit the distance as a linear function of age - 11 so the two coefficients
being estimated are the distance at 11 years of age and the slope or growth
rate. If we fit this revised model and plot the confidence intervals

> fm2OrthF.lis <- update( fm1OrthF.lis, distance ~ I( age - 11 ) )

> plot( intervals( fm2OrthF.lis ) ) # produces Figure 1.13

then these intervals (Figure 1.13) show the expected trend in the (Intercept)
term, which now represents the fitted distance at 11 years.

To continue with the analysis of these data we could fit a regression model
to the centered data with a common growth rate but separate intercepts for
each girl. Before doing that we should consider what we could infer from
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such a model. We could use such a model to make inferences about the
growth rate for this sample of girls. Also, we could make inferences about
the expected distance for each girl at 11 years of age. Using combinations
of the parameters we could make inferences about the expected distance
for each of these girls at other ages. The key point is that we are in some
ways restricting ourselves to the distances that we have or could observe
on these particular girls

By fitting a mixed-effects model to these data we allow ourselves to make
inferences about the fixed effects, which represent average characteristics of
the population represented by these subjects, and the variability amongst
subjects. A call to lme to fit linear growth curves with common slopes but
randomly distributed shifts to the girls’ orthodontic data is

> fm1OrthF <-

+ lme( distance ~ age, data = OrthoFem, random = ~ 1 | Subject )

> summary( fm1OrthF )

Linear mixed-effects model fit by REML

Data: OrthoFem

AIC BIC logLik

149.22 156.17 -70.609

Random effects:

Formula: ~ 1 | Subject

(Intercept) Residual

StdDev: 2.0685 0.78003

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.373 0.85874 32 20.230 <.0001

age 0.480 0.05259 32 9.119 <.0001

Correlation:

(Intr)

age -0.674

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.2736 -0.70902 0.17282 0.41221 1.6325

Number of Observations: 44

Number of Groups: 11

We could also fit a model with the formula distance ~ I(age - 11) but,
because of the requirement of a common slope, for model building purposes
the properties of the centered model are essentially equivalent to the un-
centered model. Using the uncentered model makes it easier to compare
with other models described below.
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The model being fit would be expressed in matrix notation as

yi = Xiβ + Zibi + εi, i = 1, . . . , 11,

bi ∼ N (0,Ψ), εi ∼ N (0, σ2I),

with matrices

X1 = · · · = X11 =

⎡⎢⎢⎣
1 8
1 10
1 12
1 14

⎤⎥⎥⎦ , Z1 = · · · = Z11 =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ .

The two-dimensional fixed-effects vector β consists of the mean intercept,
β1, for the population and the common slope or growth rate, β2. The one-
dimensional random-effects vectors, bi, i = 1, . . . , 11, describe a shift in the
intercept for each subject. Because there is a common growth rate, these
shifts are preserved for all values of age. The matrix Ψ = σ2

b will be a 1×1
matrix in this case. It represents the variance of the measurements in the
population at a fixed value of age.

The REML estimates for the parameters are

σ̂b = 2.0685, σ̂ = 0.78003, β̂1 = 17.373, β̂2 = 0.480.

To obtain the maximum likelihood estimates we use method = "ML".

> fm1OrthFM <- update( fm1OrthF, method = "ML" )

> summary( fm1OrthFM )

Linear mixed-effects model fit by maximum likelihood

Data: OrthoFem

AIC BIC logLik

146.03 153.17 -69.015

Random effects:

Formula: ~ 1 | Subject

(Intercept) Residual

StdDev: 1.9699 0.76812

Fixed effects: distance ~ age

Value Std.Error DF t-value p-value

(Intercept) 17.373 0.85063 32 20.423 <.0001

age 0.480 0.05301 32 9.047 <.0001

Correlation:

(Intr)

age -0.685

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.3056 -0.71924 0.17636 0.4258 1.6689
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Number of Observations: 44

Number of Groups: 11

Notice that, to the accuracy printed here, the estimates of the fixed-effects
parameters are the same for ML and REML. The ML estimates of the
standard deviations, σ̂b = 1.9699 and σ̂ = 0.76812 are smaller than the
corresponding REML estimates. This is to be expected—the REML cri-
terion was created to compensate for the downward bias of the maximum
likelihood estimates of variance components, so it should produce larger
estimates.

We have made the assumption of a common slope or growth rate for all
the subjects. To test this we can fit a model with random effects for both
the intercept and the slope.

> fm2OrthF <- update( fm1OrthF, random = ~ age | Subject )

The predictions from this model are shown in Figure 1.14. We compare the
two models with the anova function.

> anova( fm1OrthF, fm2OrthF )

Model df AIC BIC logLik Test L.Ratio p-value

fm1OrthF 1 4 149.22 156.17 -70.609

fm2OrthF 2 6 149.43 159.85 -68.714 1 vs 2 3.7896 0.1503

Because the p-value for the second model versus the first is about 15%, we
conclude that the simpler model, fm1OrthF, is adequate.

1.4.2 Predictions of the Response and the Random Effects

The derivation of predicted values for the response and for the random
effects in the linear mixed-effects model is described in §2.5. We can extract
the best linear unbiased predictions (BLUPs) of the random effects from the
fitted model with the random.effects function.

> random.effects( fm1OrthF )

(Intercept)

F10 -4.005329

F09 -1.470449

F06 -1.470449

F01 -1.229032

F05 -0.021947

F07 0.340179

F02 0.340179

F08 0.702304

F03 1.064430

F04 2.150807

F11 3.599309
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FIGURE 1.14. Original data and fitted linear relationships from a mixed-effects
model for the girls’ orthodontic data. This model incorporates random effects for
both the slope and the intercept.

The shorter name ranef is a synonym for random.effects.

> ranef( fm1OrthFM )

(Intercept)

F10 -3.995835

F09 -1.466964

F06 -1.466964

F01 -1.226119

F05 -0.021895

F07 0.339372

F02 0.339372

F08 0.700640

F03 1.061907
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F04 2.145709

F11 3.590778

The coefficients function (or its shorter form coef) is used to extract
the coefficients of the fitted lines for each subject. For the fitted model
fm1OrthF the intercept of the fitted line for subject i is β̂1 + b̂i and the slope
is β̂2.

> coef( fm1OrthF )

(Intercept) age

F10 13.367 0.47955

F09 15.902 0.47955

F06 15.902 0.47955

F01 16.144 0.47955

F05 17.351 0.47955

F07 17.713 0.47955

F02 17.713 0.47955

F08 18.075 0.47955

F03 18.437 0.47955

F04 19.524 0.47955

F11 20.972 0.47955

Looking back at the BLUPs of the random effects for the ML and REML
fits, we can see that they are very similar. The same will be true of the
coefficients for each subject and hence for the fitted lines themselves. To
show this we can plot either the estimated BLUPs or the estimated coeffi-
cients. The compareFits function is helpful here because it allows us to put
both sets of coefficients on the same panels.

> plot(compareFits(coef(fm1OrthF), coef(fm1OrthFM))) # Figure 1.15

In Figure 1.15 each line corresponds to one subject. In the left panel the
estimated intercepts from the REML fit are shown as open circles while
those from the ML fit are shown as +’s. The two estimates for each subject
are essentially identical. In the right panel the estimates for the coefficient
with respect to age are shown. Because there is no random effect associated
with this coefficient, the estimates do not vary between subjects. Again, the
ML estimates and the REML estimates are essentially identical.

We may also want to examine the predictions for each subject from the
fitted model. The augPred function produces predictions of the response for
each of the groups over the observed range of the covariate (i.e. the range
8–14 for age). These predictions are augmented with the original data to
produce a plot of the predicted lines for each subject superposed on the
original data as in Figure 1.16.

> plot( augPred(fm1OrthF), aspect = "xy", grid = T ) # Fig. 1.16

Further diagnostic plots, such as plots of residuals versus the fitted values
by subject (not shown), did not indicate any serious deficiencies in this
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FIGURE 1.15. A comparison of the coefficients of the fitted lines for each female
subject in the orthodontic example. The two sets of coefficients are from the
restricted maximum likelihood fit (fm1OrthF) and the maximum likelihood fit
(fm1OrthFM).

model. We will return to this data set in Chapter 4 where we will fit a
combined model to the data for both the males and the females. This
allows us to check for sex-related differences in the growth patterns.

1.5 Models for Nested Classification Factors

In the Machines example of §1.3 we introduced the concept of nested random
effects to model an interaction between a fixed-effects factor and a random-
effects factor. Nested random-effects terms are also used when we have
nested classification factors.

Data from an experiment on the pixel intensity in computerized tomog-
raphy (CT) scans, available as the object Pixel, are shown in Figure 1.17
and are described in Appendix A.24. The experimenters injected each of
ten dogs with a dye contrast then recorded the mean pixel intensities from
CT scans of the right and left lymph nodes in the axillary region on several
occasions up to 21 days post injection.

Each observation is classified according to the Dog and the Side of the
Dog on which it was made. The nature of the experiment is such that the
left and right sides are expected to be different, but the difference is not
expected to be systematic in terms of left and right. That is, for one dog
the left side may have greater pixel intensities than the right, while for
another dog the opposite may be true. Thus Dog and Side are considered
to be nested classification factors. We will associate random-effects terms
with the Dog factor, and with the Side factor nested within Dog.

Figure 1.17 indicates that the intensities generally increase then decrease
over time, reaching a peak after about 10 days. There is, however, consid-
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FIGURE 1.16. Original data and fitted growth curves for each female subject
in the orthodontic example. The fitted curves are from a restricted maximum
likelihood fit of the analysis of covariance model.

erable variability between dogs in this pattern. Within the same dog, the
left and the right side generally follow the same pattern over time but often
with a vertical shift between sides.

We will start with a quadratic model with respect to the day covariate
so we can model the pattern of reaching a peak. We use random-effects for
both the intercept and the linear term at the Dog level and a single random
effect for the intercept at the Side within Dog level. This allows the overall
pattern to vary between dogs in terms of the location of the peak, but not
in terms of the curvature at the peak. The only difference between sides
for the same dog will be a shift in the intercept.
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FIGURE 1.17. Pixel intensity on CT scans over time for lymph nodes on the left
and the right sides of 10 dogs.

> fm1Pixel <- lme( pixel ~ day + day^2, data = Pixel,

+ random = list( Dog = ~ day, Side = ~ 1 ) )

> intervals( fm1Pixel )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 1053.0968 1073.33914 1093.5814

day 4.3797 6.12960 7.8795

I(day^2) -0.4349 -0.36735 -0.2998

Random Effects:

Level: Dog

lower est. upper

sd((Intercept)) 15.92849 28.36994 50.52918

sd(day) 1.08085 1.84375 3.14514

cor((Intercept),day) -0.89452 -0.55472 0.19138

Level: Side

lower est. upper

sd((Intercept)) 10.417 16.824 27.173

Within-group standard error:

lower est. upper

7.6345 8.9896 10.585

> plot( augPred( fm1Pixel ) ) # produces Figure 1.18

If we write the pixel intensity of the jth side’s on the ith dog at the kth
occasion as yijk i = 1, . . . , 10; j = 1, 2; k = 1, . . . , nij , and the time of the
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FIGURE 1.18. The fitted curves from a quadratic model fit to the pixel intensity
data. The model includes random effects in the intercept and the linear term for
each dog, and a random effect in the intercept for each side of each dog.

kth scan on the ith dog as dik, the model being fit can be expressed as

yijk = β1 + β2dik + β3d
2
ik + bi,1 + bi,2dik + bij + εijk,

i = 1, . . . , 10, j = 1, 2, k = 1, . . . , nij .
(1.9)

To describe the variance and covariance terms in the model, we consider
the nij-vector yij of intensities measured on side j = 1, 2 within dog i =
1, . . . , 10. In this experiment nij , the number of observations on side j of
dog i, does not depend on j but does depend on i. For example, dog 9
was scanned on only two occasions but dogs 3 and 4 were each scanned on
seven occasions. The model can be represented in terms of design matrices
Xij for the fixed effects, Zij for the random effects for side j within dog
i, and Zi,j for the random effects for dog i on the measurements for side j
within dog i.

Because both sides are scanned at the same times these matrices depend
on i but not on j. For example, because dog 8 was scanned on days 4, 6,
10, and 14,

X8 1 = X8 2 =

⎡⎢⎢⎣
1 4 16
1 6 36
1 10 100
1 14 196

⎤⎥⎥⎦ , Z8,1 = Z8,2 =

⎡⎢⎢⎣
1 4
1 6
1 10
1 14

⎤⎥⎥⎦ , Z8 1 = Z8 2 =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ .
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As before, β is the vector of fixed effects. In this case, β is three-dimensional.
The two-dimensional vector of random effects for dog i is written bi and
the one-dimension vector of random effects for side j within dog i is written
bij . Model (1.9) can then be expressed as

yij = Xijβ + Zi,jbi + Zijbij + εij ,

bi ∼ N (0,Ψ1), bij ∼ N (0, σ2
2), εij ∼ N (0, σ2I).

The parameters in this model are β, Ψ1, σ2
2 , and σ2. The summary and

intervals functions express the estimates of the variance components as
standard deviations and correlations, not as variances. We can use the
VarCorr function to examine them on both the standard deviation scale
and the variance scale.

> VarCorr( fm1Pixel )

Variance StdDev Corr

Dog = pdSymm(~ day)

(Intercept) 804.8535 28.3699 (Intr)

day 3.3994 1.8437 -0.555

Side = pdSymm(~ 1)

(Intercept) 283.0551 16.8242

Residual 80.8131 8.9896

1.5.1 Model Building for Multilevel Models

As when modeling data with a single level of random effects, we should
evaluate whether the fixed-effects structure and the random-effects struc-
ture are adequate to describe the observed data. We should also check if
we have incorporated unnecessary terms in the model.

The summary table for the fixed-effects terms

> summary( fm1Pixel )

...

Fixed effects: pixel ~ day + day^2

Value Std.Error DF t-value p-value

(Intercept) 1073.3 10.172 80 105.52 <.0001

day 6.1 0.879 80 6.97 <.0001

I(day^2) -0.4 0.034 80 -10.82 <.0001

...

indicates that the quadratic term is highly significant. In a polynomial
model like this we would generally retain the linear term and the intercept
term if we retain the quadratic term. Thus, we will accept the fixed-effects
model as it is and go on to examine the random-effects terms.

The first question to address is whether there is a need to have a random
effect for each Side within each Dog. We can fit the previous model without
the random effect for Side and compare the two fits with anova.
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> fm2Pixel <- update( fm1Pixel, random = ~ day | Dog)

> anova( fm1Pixel, fm2Pixel )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Pixel 1 8 841.21 861.97 -412.61

fm2Pixel 2 7 884.52 902.69 -435.26 1 vs 2 45.309 <.0001

The p-value is extremely small indicating that the more general model,
fm1Pixel, is definitely superior. The AIC and BIC values confirm this.

We can also check if the random effect for day at the Dog level is war-
ranted. If we eliminate this term the only random effects will be a random
effect for the intercept for each dog and for each side of each dog. We fit
this model and compare it to fm1Pixel with

> fm3Pixel <- update( fm1Pixel, random = ~ 1 | Dog/Side )

> anova( fm1Pixel, fm3Pixel )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Pixel 1 8 841.21 861.97 -412.61

fm3Pixel 2 6 876.84 892.41 -432.42 1 vs 2 39.629 <.0001

Again, the likelihood-ratio test, and the AIC and BIC criteria, all strongly
favor the more general model, fm1Pixel.

Earlier we stated that there does not appear to be a systematic difference
between the left and the right sides of the dogs. For some dogs the left side
produces higher pixel densities while for other dogs the right side does. We
can check that this indeed is the case by adding a term for Side to the fixed
effects.

> fm4Pixel <- update( fm1Pixel, pixel ~ day + day^2 + Side )

> summary( fm4Pixel )

...

Fixed effects: pixel ~ day + I(day^2) + Side

Value Std.Error DF t-value p-value

(Intercept) 1073.3 10.171 80 105.53 <.0001

day 6.1 0.879 80 6.97 <.0001

I(day^2) -0.4 0.034 80 -10.83 <.0001

Side -4.6 3.813 9 -1.21 0.2576

...

With a p-value of over 25% the fixed-effects term for Side would not be
considered significant.

Finally, we would examine residual plots such as Figure 1.19 for deficien-
cies in the model. There are no alarming patterns in this figure.

1.6 A Split-Plot Experiment

Multiple nested levels of random effects are also used in the analysis of
split-plot experiments such as that represented by the Oats data, shown in
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FIGURE 1.19. Standardized residuals versus fitted values by dog for a multilevel
mixed-effects model fit to the pixel data..

Figure 1.20. As described in Appendix A.15, the treatment structure in this
experiment was a 3 × 4 full factorial, with three varieties of oats and four
nitrogen concentrations. The term full factorial means that every variety
was used with every nitrogen concentration.

The agricultural plots for this experiment were grouped into six blocks,
each with three plots. Each plot was subdivided into four subplots. The va-
rieties were randomly assigned to the plots within each block. The nitrogen
concentrations were randomly assigned to the subplots within each plot.

Physically, there are three levels of grouping of the experimental units:
block, plot, and subplot. Because the treatments are randomly assigned
at each level of grouping, we may be tempted to associate random effects
with each level. However, because there is only one yield recorded for each
subplot we cannot do this as we would saturate the model with random
effects. We use a random intercept at each of the block and the whole plot
levels.

Generally, we begin modeling a split-plot experiment using fixed effects
for each of the experimental factors and for their interaction. For this ex-
periment the nitro factor is recorded as a numeric variable. If we wish to
allow general patterns in the dependencies of yield on nitro we should
“coerce” it to a factor using, say, factor(nitro). In this particular exam-
ple, there is a natural ordering of the levels of nitrogen applied so it makes
sense to coerce nitro to an ordered factor using ordered(nitro). As the
name implies, an ordered factor is a factor for which there is a natural
ordering of the levels. One consequence of using an ordered factor instead
of a factor is that the default contrasts for an ordered factor are orthogo-
nal polynomial contrasts. The first contrast estimates the linear trend, the
second estimates the quadratic effect orthogonal to the linear term, and so
on.
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FIGURE 1.20. Yield in bushels/acre of three different varieties of oats at four dif-
ferent concentrations of nitrogen (hundred weight/acre). The experimental units
were arranged into six blocks, each with three whole-plots subdivided into four
subplots. One variety of oats was used in each whole-plot with all four concen-
trations of nitrogen, one concentration in each of the four subplots. The panels
correspond to the blocks.

The model with fixed effects for both experimental factors and for their
interaction and with random effects for both the Block factor and the
Variety (whole-plot) factor is fit with

> fm1Oats <- lme( yield ~ ordered(nitro) * Variety, data = Oats,

+ random = ~ 1 | Block/Variety )

> anova( fm1Oats )

numDF denDF F-value p-value

(Intercept) 1 45 245.15 <.0001

ordered(nitro) 3 45 37.69 <.0001

Variety 2 10 1.49 0.2724

ordered(nitro):Variety 6 45 0.30 0.9322

The anova results indicate that nitro is a significant factor, but that neither
Variety nor the interaction between Variety and nitro are significant.
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If we drop the interaction term and refit, we obtain essentially the same
results for the two main effects, Variety and nitro.

> fm2Oats <- update( fm1Oats, yield ~ ordered(nitro) + Variety )

> anova( fm2Oats )

numDF denDF F-value p-value

(Intercept) 1 51 245.14 <.0001

ordered(nitro) 3 51 41.05 <.0001

Variety 2 10 1.49 0.2724

> summary( fm2Oats )

...

Random effects:

Formula: ~ 1 | Block

(Intercept)

StdDev: 14.645

Formula: ~ 1 | Variety %in% Block

(Intercept) Residual

StdDev: 10.473 12.75

Fixed effects: yield ~ ordered(nitro) + Variety

Value Std.Error DF t-value p-value

(Intercept) 103.97 6.6406 51 15.657 <.0001

ordered(nitro).L 32.94 3.0052 51 10.963 <.0001

ordered(nitro).Q -5.17 3.0052 51 -1.719 0.0916

ordered(nitro).C -0.45 3.0052 51 -0.149 0.8823

Variety1 2.65 3.5395 10 0.748 0.4720

Variety2 -3.17 2.0435 10 -1.553 0.1515

...

In this model there is a random effect for Variety %in% Block as well as
a fixed effect for Variety. These terms model different characteristics of the
response. The random effects term, as a nested random effect, is allowing
for different intercepts at the level of plots within blocks. The fact that
each plot is planted with one variety means that we can use the Variety

factor to indicate the plot as long as we have Variety nested within Block.
As seen in Figure 1.20 the yields in one of the plots within a block may be
greater than those on another plot in the same block for all levels of nitro.
For example, in block III the plot that was planted with the Marvellous
variety had greater yields than the other two plots at each level of nitro.
The random effect at the level of Variety %in% Block allows shifts like this
that may be related to the fertility of the soil in that plot, for example.

On the other hand, the fixed-effects term for Variety is used to model a
systematic difference in the yields that would be due to the variety of oats
planted in the plot. There do not appear to be such systematic differences.
For example, even though the plot planted with the Marvellous variety is
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the highest yielding plot in block III, the Marvellous plot is one of the
lowest yielding in block V.

Because the fixed effect for Variety and the random effect for Variety

%in% Block are modeling different types of behavior, it makes sense to re-
move the fixed effect while retaining the random effect

> fm3Oats <- update( fm1Oats, yield ~ ordered( nitro ) )

> summary( fm3Oats )

...

Random effects:

Formula: ~ 1 | Block

(Intercept)

StdDev: 14.506

Formula: ~ 1 | Variety %in% Block

(Intercept) Residual

StdDev: 11.039 12.75

Fixed effects: yield ~ ordered(nitro)

Value Std.Error DF t-value p-value

(Intercept) 103.97 6.6406 51 15.657 <.0001

ordered(nitro).L 32.94 3.0052 51 10.963 <.0001

ordered(nitro).Q -5.17 3.0052 51 -1.719 0.0916

ordered(nitro).C -0.45 3.0052 51 -0.149 0.8823

We see that the estimates for the random-effects variances and the fixed-
effects for nitro have changed very little, if at all.

We can now examine the effect of nitrogen in more detail. We notice that
the linear term, ordered(nitro).L, is highly significant, but the quadratic
and cubic terms (.Q and .C extensions) are not. To remove the cubic and
quadratic terms in the model, we simply revert to using nitro as a numeric
variable.

> fm4Oats <-

+ lme( yield ~ nitro, data = Oats, random = ~ 1 | Block/Variety )

> summary( fm4Oats )

. . .

Random effects:

Formula: ~ 1 | Block

(Intercept)

StdDev: 14.506

Formula: ~ 1 | Variety %in% Block

(Intercept) Residual

StdDev: 11.005 12.867

Fixed effects: yield ~ nitro

Value Std.Error DF t-value p-value

(Intercept) 81.872 6.9453 53 11.788 <.0001

nitro 73.667 6.7815 53 10.863 <.0001
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Correlation:

(Intrc

nitro -0.293

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.7438 -0.66475 0.017104 0.54299 1.803

Number of Observations: 72

Number of Groups:

Block Variety %in% Block

6 18

With VarCorr and intervals we can examine the variance components
and their confidence intervals for this model

> VarCorr( fm4Oats )

Variance StdDev

Block = pdSymm(~ 1)

(Intercept) 210.42 14.506

Variety = pdSymm(~ 1)

(Intercept) 121.10 11.005

Residual 165.56 12.867

> intervals( fm4Oats )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 67.942 81.872 95.803

nitro 60.065 73.667 87.269

Random Effects:

Level: Block

lower est. upper

sd((Intercept)) 6.6086 14.506 31.841

Level: Variety

lower est. upper

sd((Intercept)) 6.408 11.005 18.899

Within-group standard error:

lower est. upper

10.637 12.867 15.565

We can see that the random effects at the Block and plot levels account
for a substantial amount of the variability in the response. Although the
standard deviations of these random effects are not estimated very precisely,
it does not appear reasonable that they could be zero. To check this we
would fit models without these random effects and use likelihood ratio tests
to compare them to fm4Oats. We do not show that here.
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FIGURE 1.21. Observed and predicted yields in bushels/acre for three different
varieties of oats at four different concentrations of nitrogen (hundred weight/acre)
by block and variety. Although the model has a random effect for variety, the
whole-plot factor, there is no fixed effect for variety.

The modeling of the dependence on nitrogen level by a simple linear term
appears adequate. Plots of the original data and the fitted curves, obtained
with

> plot( augPred( fm4Oats ), aspect = 2.5, layout = c(6, 3),

+ between = list( x = c(0, 0, 0.5) ) ) # produces Figure 1.21

do not show any systematic lack of fit. (The extra arguments in the plot

call are used to enhance the appearance of the plot. They are described in
§3.3.)

We could (and did) examine other common diagnostic plots to check for
inadequacies in this model, but did not find any. We now have a simple,
adequate model to explain the dependence of the response on both the levels
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of nitrogen applied, using fixed-effects terms, and the random variability
in blocks and plots, using random-effects terms.

1.7 Chapter Summary

In this chapter we have presented some motivation for the use of linear
mixed-effects models and an overview of their application. We showed sev-
eral examples of the types of data to which these models can be applied.

The defining characteristics of mixed-effects models are that they are ap-
plied to data where the observations are grouped according to one or more
levels of experimental units and that they incorporate both fixed-effects
terms and random-effects terms. A fixed-effects term in a model describes
the behavior of the entire population or of those units associated with re-
peatable levels of experimental factors. A random-effects term describes
the distribution within the population of a coefficient. The “effects” in a
random-effects term are associated with the individual experimental units
sampled from the population.

A linear mixed-effects model is fit with the lme function. A preliminary
list of fitted linear models by experimental unit can be obtained with the
lmList function. Both lmList and lme fits can be examined with the accessor
functions coef, ranef, fixef, residuals, and fitted. A summary of the fit is
obtained with the summary function. Diagnostic plots are generated with the
plot function or with specialized constructors such as augPred, compareFits,
and comparePred.

The significance of fixed-effects terms is assessed with the single-argument
form of the anova function or directly from the the summary function. Dif-
ferent forms of random-effects terms can be compared by fitting different
models and comparing them with the multiple-argument form of anova.

The purpose of this chapter is to present the motivation for using LME
models with grouped data and to set the stage for later chapters in the
book, dealing with the theory and computational methods for LME models
(Chapter 2) and the linear mixed-effects modeling facilities in the nlme
library (Chapter 4).

Exercises

1. The PBIB data (Appendix A.22) are from an agricultural experiment
that was laid out as a partially balanced incomplete block design. This
is described in more detail in §2.4.2. The roles of the variables in these
data are indicated by the names: response, Treatment, and Block. The
structure is similar to that of the ergoStool data but, because there
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are only four observations in each block and there are 15 levels of
Treatment, each block receives only a subset of the treatments.

(a) Plot the PBIB data with plot(PBIB). Do there appear to be sys-
tematic differences between blocks?

(b) Create a design plot, like Figure 1.6 (p. 14), for the PBIB data.
(c) Fit a linear mixed-effects model, with fixed effects for Treatment

and random effects for the intercept by Block, to the PBIB data.
The call to lme would be like that used to fit fm1Stool in §1.2.

(d) Apply anova to the fitted model. Is the Treatment term signifi-
cant? Describe the hypothesis being tested.

(e) Create a plot of the residuals versus the fitted values for this
fitted model. This plot is like Figure 1.4. Does this plot indicate
greater variance in the residuals at higher levels of the response?

(f) Create a plot of the standardized residuals versus the fitted val-
ues by Block. This plot is like Figure 1.8 (p. 21). Does this plot
indicate systematic patterns in the residuals by Block?

We will discuss the anova results for this fitted model in more detail
in §2.4.2.

2. The Oxboys data described in §3.1 and Appendix A.19 consist of the
heights of 26 boys from Oxford, England, each measured on nine
different occasions. The structure is similar to that of the OrthoFem

data of §1.4.

(a) Plot the data (using plot(Oxboys)) and verify that a simple lin-
ear regression model gives a suitable representation of the boys’
growth patterns. Do there appear to be significant differences in
the individual growth patterns?

(b) Fit a simple linear regression model to height versus age using
the lm function, ignoring the Subject effects. Obtain the boxplots
of the residuals by Subject with bwplot(Subject ~ resid(object),

Oxboys), where object should be replaced with the name of the
fitted lm object. Explain the observed pattern.

(c) Use the lmList function to fit separate simple linear regression
models for each Subject, using a call similar to the one used to
produce fm1OrthF.lis in §1.4. Compare the boxplots of the resid-
uals by Subject for the lmList fit (obtained with plot(object,

Subject ~ resid(.)), with object replaced with the name of the
lmList object) to those obtained for the lm fit. Compare also the
residual standard errors from the two fits and comment.

(d) Plot the individual confidence intervals on the parameters esti-
mated in the lmList fit and verify that both the intercept and
the slope vary significantly with Subject.



54 1. Linear Mixed-Effects Models

(e) Use the lme function to fit an LME model to the data with
random effects for both the intercept and the slope, using a call
similar to the one used to obtain fm1OrthF in §1.4. Examine the
boxplots of the residuals by Subject, comparing them to those
obtained for the lm and lmList fits.

(f) Produce the plot of the standardized residuals versus fitted val-
ues (plot(object)) and the normal plot of the standardized
residuals (qqnorm(object)). (In both cases object should be re-
placed with the name of the lme object.) Can you identify any
departures from the model’s assumptions?

(g) Plot the augmented predictions for the lme fit (obtained with
plot(augPred(object))). Do the linear models for each subject
appear adequate?

(h) Another way of assessing the linear models for each subject is
to plot the residuals versus age by Subject (use plot(object,

resid(.) ~ age | Subject), replacing object with the name of
the lme object). Several subjects have a noticeable “scooping”
pattern in their residuals, indicating the need for a model with
curvature.

(i) Use the lmList function to fit separate quadratic models for each
subject. A quadratic model in age, as shown in fm1Pixel of §1.5,
would be fit with lmList(height ~ age + age∧2, Oxboys).

(j) Examine a plot of the confidence intervals on coefficients from
this second lmList fit. Are there indications that the coefficients
differ between subjects? Are the quadratic coefficients signifi-
cantly different from zero for some subjects?

(k) Fit the full mixed-effects model corresponding to the last lmList
fit. The model will have linear and quadratic terms for age in the
fixed-effects and the random effects. A simple way to describe
this model is lme(object) replacing object with the name of the
lmList fit.

(l) Check residual plots and numerical summaries for this lme model.
Do there appear to be deficiencies in the fit? Do there appear to
be terms in the model that could be eliminated?

3. The LME model used for the Pixel data in §1.5 uses random effects for
the intercept and the slope at the Dog level and a single random effect
for the intercept at the Side within Dog level. We did not discuss there
how that random-effects model was chosen. The lmList function can
be used with multilevel data to investigate which terms in an LME
model require random effects.

(a) Use lmList to fit a separate quadratic model in day for each Dog.
Print the fitted object and examine the estimated coefficients.
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Can you explain the error message printed in the lmList fit? No-
tice that lmList was able to recover from the error and proceed
to normal completion.

(b) Plot the individual confidence intervals for the coefficients in the
lmList fit. Verify that only the intercept and the linear coefficient
seem to vary significantly with Dog.

(c) Use the level argument to lmList to fit separate quadratic mod-
els in day for each Side within Dog (use Dog/Side as the grouping
expression and set level=2). Print the fitted object using summary

and explain the missing values (NA) for the standard errors of Dog
10.

(d) Plot the individual confidence intervals for the coefficients in
the lmList fit by Side within Dog and verify that there is more
variation among the intercepts and the linear coefficients than
among the quadratic coefficients.

(e) Fit an LME model with random effects for the intercept and the
linear term at both levels of grouping. Compare the resulting
lme fit to the fm1Pixel object in §1.5 using anova. Which model
should be the preferred?

4. The Alfalfa data described in Appendix A.1 is another example of a
split-plot experiment. The structure is similar to that of the Oats data
of §1.6: a 3 × 4 full factorial on varieties of alfalfa and date of third
cutting is used with 6 blocks each subdivided into 4 plots according
to a split-plot arrangement. The whole-plot treatments are given by
the varieties and the subplot treatments by the date of third cutting.

(a) Plot the data (using plot(Alfalfa)). Do there appear to be cut-
ting dates that are consistently worse/better than the others?
What can you say about the block-to-block variation in the
yields?

(b) Use lme to fit a two-level LME model with grouping struc-
ture Block/Variety, including a single random intercept for each
level of grouping (i.e., random = ~1 | Block/Variety). Assume
a full factorial structure with main effects and interactions for
the fixed effects (i.e., fixed = Yield ~ Date * Variety). Use the
treatment contrasts (options(contrasts = c("contr.treatment",

"contr.poly"))) to get more interpretable coefficients for the
fixed effects.

(c) Examine the significance of the terms in the model using anova,
verifying that there are no significant differences between vari-
eties and no significant interactions between varieties and cut-
ting dates.
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(d) Because the data are balanced, a similar ANOVA model can
be fit using aov and the Error function (use aov(Yield ~ Date

* Variety + Error(Block/Variety), Alfalfa)). Compare the re-
sults from the aov and lme fits, in particular the F-values and
p-values for testing the terms in the fixed-effects model (these are
obtained for the aov object using the summary function). In this
case, because of the balanced structure of the data, the REML
fit (obtained with lme) and the ANOVA fit (obtained with aov)
are identical.

(e) Refit the LME model using fixed effects for Date only (a simple
way to do this is to use update(object, Yield ~ Date), where
object should be replaced with name of the previous lme ob-
ject). Print the resulting object using summary and investigate
the differences between the cutting dates (recall that, for the
treatment contrasts, the coefficients represent differences with
respect to the cutting date labelled None). Can you identify a
trend in the effect of cutting date on yield?

(f) Examine the plot of the residuals versus fitted values and the
normal plot of the residuals. Can you identify any departures
from the LME model’s assumptions?



2
Theory and Computational Methods
for Linear Mixed-Effects Models

In this chapter we present the theory for the linear mixed-effects model
introduced in Chapter 1. A general formulation of LME models is pre-
sented and illustrated with examples. Estimation methods for LME mod-
els, based on the likelihood or the restricted likelihood of the parameters,
are described, together with the computational methods used to imple-
ment them in the lme function. Asymptotic results on the distribution of
the maximum likelihood estimators and the restricted maximum likelihood
estimators are used to derive confidence intervals and hypotheses tests for
the model’s parameters.

The purpose of this chapter is to present an overview of the theoretical
and computational aspects of LME models that allows the evaluation of the
strengths and limitations of such models for practical applications. It is not
the purpose of this chapter to present a thorough theoretical description
of LME models. Such a comprehensive treatment of the theory of linear
mixed-effects models can be found, for example, in Searle, Casella and
McCulloch (1992) or in Vonesh and Chinchilli (1997).

Readers who are more interested in the applications of LME models
and the use of the functions and methods in the nlme library to fit such
models can, without loss of continuity, skip this chapter and go straight
to Chapter 3. If you decide to skip this chapter at a first reading, it is
recommended that you return to it (especially §2.1) at a later time to get
a good understanding of the LME model formulation and its assumptions
and limitations.
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2.1 The LME Model Formulation

Linear mixed-effects models are mixed-effects models in which both the
fixed and the random effects occur linearly in the model function. They ex-
tend linear models by incorporating random effects, which can be regarded
as additional error terms, to account for correlation among observations
within the same group.

In this section we present a general formulation for LME models proposed
by Laird and Ware (1982). The original single-level formulation is described
in §2.1.1 and its multilevel extension is described in §2.1.2.

2.1.1 Single Level of Grouping

For a single level of grouping, the linear mixed-effects model described by
Laird and Ware (1982) expresses the ni-dimensional response vector yi for
the ith group as

yi = Xiβ + Zibi + εi, i = 1, . . . , M,

bi ∼ N (0,Σ), εi ∼ N (0, σ2I),
(2.1)

where β is the p-dimensional vector of fixed effects, bi is the q-dimensional
vector of random effects, Xi (of size ni × p) and Zi (of size ni × q) are
known fixed-effects and random-effects regressor matrices, and εi is the
ni-dimensional within-group error vector with a spherical Gaussian distri-
bution. The assumption Var(εi) = σ2I can be relaxed as shown in Chap-
ter 5, where we describe extensions that allow us to model nonconstant
variances or special within-group correlation structures. The random ef-
fects bi and the within-group errors εi are assumed to be independent for
different groups and to be independent of each other for the same group.

Because the distribution of the random effects vectors bi is assumed to
be normal (or Gaussian) with a mean of 0, it is completely characterized
by its variance–covariance matrix Ψ. This matrix must be symmetric and
positive semi-definite; that is, all its eigenvalues must be non-negative. We
will make the stronger assumption that it is positive-definite which is to
say that all its eigenvalues must be strictly positive. We can make this
restriction because an indefinite model can always be re-expressed as a
positive-definite model of lower dimension.

The random effects bi are defined to have a mean of 0 and therefore any
nonzero mean for a term in the random effects must be expressed as part
of the fixed-effects terms. Thus, the columns of Zi are usually a subset of
the columns of Xi.

When computing with the model it is more convenient to express the
variance–covariance matrix in the form of a relative precision factor, ∆,
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which is any matrix that satisfies

Ψ−1

1/σ2
= ∆T ∆.

If Ψ is positive-definite then such a ∆ will exist, but it need not be unique.
The Cholesky factor (Thisted, 1988, §3.3) of σ2Ψ−1 is one possible ∆. The
matrix ∆ is called a relative precision factor because it factors the precision
matrix, Ψ−1, of the random effects, expressed relative to the precision,
1/σ2, of the εi.

We use some of the examples in Chapter 1 to illustrate the general LME
model formulation.

Railway Rails Experiment

In the case of the rails data introduced in §1.1, M = 6, ni = 3, i = 1, . . . , 6,
p = q = 1, and the regressor matrices for the fixed and random effects are
particularly simple:

Xi = Zi = 1 =

⎡⎣1
1
1

⎤⎦ , i = 1, . . . , 6.

The random effects bi, i = 1, . . . , 6 are scalars; hence their variance σ2
b is

also a scalar, as is the relative precision factor, ∆. There is only one choice
for ∆ (up to changes in sign) and that is

∆ =
√

σ2/σ2
b .

Ergometric Experiment of Types of Stools

The data for the stools ergometric experiment of §1.2 are balanced, with
M = 6, ni = 4, i = 1, . . . , 6, p = 4, and q = 1. The fixed-effects regressor
matrices Xi are determined by the contrasts chosen to represent the types
of stool. For the Helmert contrasts parameterization used in the fit of the
fm1Stool object in §1.2.1, we have

Xi =

⎡⎢⎢⎣
1 −1 −1 −1
1 1 −1 −1
1 0 2 −1
1 0 0 3

⎤⎥⎥⎦ , i = 1, . . . , 6.

The random-effects regression matrices Zi and the relative precision fac-
tor ∆ are the same as in the rails example.

Orthodontic Growth Curve in Girls

The orthodontic growth curve data for females presented in §1.4.1 are also
balanced, with M = 11, ni = 4, i = 1, . . . , 11. For the LME model with
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random effects for both the intercept and the slope, used to fit the fm2OrthF

object in §1.4.1, we have p = q = 2 and the fixed- and random-effects
regressor matrices are identical and given by

Xi = Zi =

⎡⎢⎢⎣
1 8
1 10
1 12
1 14

⎤⎥⎥⎦ , i = 1, . . . , 11.

Any square-root of the 2 × 2 matrix σ2Ψ−1 can be used as a relative
precision factor in this case.

2.1.2 A Multilevel LME Model

The Laird–Ware formulation for single-level LME models presented in
§2.1.1 can be extended to multiple, nested levels of random effects. In the
case of two nested levels of random effects the response vectors at the in-
nermost level of grouping are written yij , i = 1, . . . , M, j = 1, . . . , Mi where
M is the number of first-level groups and Mi is the number of second-level
groups within first-level group i. The length of yij is nij .

The fixed-effects model matrices are Xij , i = 1, . . . , M, j = 1, . . . , Mi of
size nij ×p. Using first-level random effects bi of length q1 and second-level
random effects bij of length q2 with corresponding model matrices Zi,j of
size ni × q1 and Zij of size ni × q2, we write the model as

yij = Xijβ + Zi,jbi + Zijbij + εij , i = 1, . . . , M, j = 1, . . . , Mi,

(2.2)

bi ∼ N (0,Ψ1), bij ∼ N (0,Ψ2), εij ∼ N (0, σ2I).

The level-1 random effects bi are assumed to be independent for different i,
the level-2 random effects bij are assumed to be independent for different
i or j and to be independent of the level-1 random effects, and the within-
group errors εij are assumed to be independent for different i or j and to
be independent of the random effects.

Extensions to an arbitrary number Q of levels of random effects follow
the same general pattern. For example, with Q = 3 the response for the
kth level-3 unit within the jth level-2 unit within the ith level-1 unit is
written

yijk = Xijkβ + Zi,jkbi + Zij,kbij + Zijkbijk + εijk,

i = 1, . . . , M, j = 1, . . . , Mi, k = 1, . . . , Mij ,

bi ∼ N (0,Σ1), bij ∼ N (0,Σ2), bijk ∼ N (0,Σ3), εijk ∼ N (0, σ2I).

Note that the distinction between, say, the kth horizontal section of the
regressor matrix for the level-2 random effect bij , written Zij,k, and the
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jkth horizontal section of the regressor matrix for the level-1 random effect
bi, written Zi,jk, is the position of the comma in the subscripts.

As with a single level of random effects, we will express the variance–
covariance matrices, Ψq, q = 1, . . . , Q, in terms of relative precision factors
∆q.

In this book, we only consider mixed-effects models with a multivariate
normal (or Gaussian) distribution for the random effects and the within-
group errors. Generally we assume that the variance–covariance matrix
Ψq for the level-q random effects can be any positive-definite, symmetric
matrix. In some models we will further restrict the form of Ψq, say by
requiring that it be diagonal or that it be a multiple of the identity.

Those familiar with the multilevel modeling literature (Bryk and Rauden-
bush, 1992; Goldstein, 1995) may notice that we count “levels” differently.
In that literature the model (2.1) is called a two-level model because there
are two levels of random variation. Similarly, the model (2.2) is called a
three-level model. We prefer the terminology from the experimental design
literature and count the number of “levels” as the number of nested levels
of random effects.

Split-Plot Experiment on Varieties of Oats and Nitrogen Levels

We use the split-plot experiment on the yield of three different varieties
of oats measured at four different concentrations of nitrogen, described in
§1.6, to illustrate the multilevel LME model formulation. The final model
used in that section, corresponding to the fitted object fm4Oats, represents
the yield yijk for the jth variety of oat at the kth nitrogen concentration
Nk in the ith block as

yijk = β0 + β1Nk + bi + bij + εijk, i = 1, . . . , 6, j = 1, . . . , 3, k = 1, . . . , 4,

bi ∼ N (
0, σ2

1

)
, bij ∼ N (

0, σ2
2

)
, εijk ∼ N (0, σ2).

The fixed effects are the intercept β0 and the nitrogen slope β1. The bi

denote the Block random effects, the bij denote the Variety within Block
random effects, and the εijk denote the within-group errors. This is an
example of a two-level mixed-effects model, with the bij random effects
nested within the bi random effects.

In this example, M = 6, Mi = 3, nij = 4, i = 1, . . . , 6 j = 1, . . . , 3,
p = 2, and q1 = q2 = 1. The regressor matrices are

Xij =

⎡⎢⎢⎣
1 0.0
1 0.2
1 0.4
1 0.6

⎤⎥⎥⎦ , Zi,j = Zi j =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ , i = 1, . . . , 6, j = 1, . . . , 3.
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Because all the random effects are scalars, the precision factors are
uniquely defined (up to changes in sign) as

∆1 =
√

σ2/σ2
1 and ∆2 =

√
σ2/σ2

2 .

2.2 Likelihood Estimation for LME Models

Several methods of parameter estimation have been used for linear mixed-
effects models. We will concentrate on two general methods: maximum
likelihood (ML) and restricted maximum likelihood (REML). Descriptions
and comparisons of the various estimation methods used for LME models
can be found, for example, in Searle et al. (1992) and Vonesh and Chinchilli
(1997).

2.2.1 The Single-Level LME Likelihood Function

Consider first the model (2.1) that has a single level of random effects. The
parameters of the model are β, σ2, and whatever parameters determine ∆.
We use θ to represent an unconstrained set of parameters that determine
∆. We will discuss parameterizations of ∆ in §2.2.7—for now we will simply
assume that a suitable parameterization has been chosen.

The likelihood function for the model (2.1) is the probability density for
the data given the parameters, but regarded as a function of the parameters
with the data fixed, instead of as a function of the data with the parameters
fixed. That is,

L
(
β, θ, σ2|y) = p(y|β, θ, σ2),

where L is the likelihood, p is a probability density, and y is the entire
N-dimensional response vector, N =

∑M
i=1 ni.

Because the nonobservable random effects bi, i = 1, . . . , M are part of
the model, we must integrate the conditional density of the data given the
random effects with respect to the marginal density of the random effects
to obtain the marginal density for the data. We can use the independence
of the bi and the εi to express this as

L
(
β, θ, σ2|y) =

M∏
i=1

p
(
yi|β, θ, σ2

)
=

M∏
i=1

∫
p
(
yi|bi, β, σ2

)
p
(
bi|θ, σ2

)
dbi,

(2.3)
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where the conditional density of yi is multivariate normal

p
(
yi|bi, β, σ2

)
=

exp
(
−‖yi − Xiβ − Zibi‖2 /2σ2

)
(2πσ2)ni/2

(2.4)

and the marginal density of bi is also multivariate normal

p
(
bi|θ, σ2

)
=

exp
(
−bT

i Ψ−1bi

)
(2π)q/2√|Ψ|

=
exp

(
−‖∆bi‖2

/2σ2
)

(2πσ2)q/2 abs |∆|−1
,

(2.5)

where |A| denotes the determinant of the matrix A. Substituting (2.4) and
(2.5) into (2.3) provides the likelihood as

L
(
β, θ, σ2|y) =

M∏
i=1

abs |∆|
(2πσ2)ni/2

∫ exp
[
−
(
‖yi − Xiβ − Zibi‖2 + ‖∆bi‖2

)
/2σ2

]
(2πσ2)q/2

dbi

=
M∏
i=1

abs |∆|
(2πσ2)ni/2

∫ exp
(
−
∥∥∥ỹi − X̃iβ − Z̃ibi

∥∥∥2

/2σ2

)
(2πσ2)q/2

dbi, (2.6)

where

ỹi =
[
yi

0

]
, X̃i =

[
Xi

0

]
, Z̃i =

[
Zi

∆

]
, (2.7)

are augmented data vectors and model matrices. This approach of changing
the contribution of the marginal distribution of the random effects into
extra rows for the response and the design matrices is called a pseudo-
data approach because it creates the effect of the marginal distribution by
adding “pseudo” observations.

The exponent in the integral of (2.6) is in the form of a squared norm or,
more specifically, a residual sum-of-squares. We can determine the condi-
tional modes of the random effects given the data, written b̂i, by minimizing
this residual sum-of-squares. This is a standard least squares problem for
which we could write the solution as

b̂i =
(
Z̃i

T
Z̃i

)−1

Z̃i
T
(
ỹi − X̃iβ

)
.

The squared norm can then be expressed as∥∥∥ỹi − X̃iβ − Z̃ibi

∥∥∥2

=
∥∥∥ỹi − X̃iβ − Z̃ib̂i

∥∥∥2

+
∥∥∥Z̃i

(
bi − b̂i

)∥∥∥2

=
∥∥∥ỹi − X̃iβ − Z̃ib̂i

∥∥∥2

+
(
bi − b̂i

)T

Z̃i
T
Z̃i

(
bi − b̂i

)
. (2.8)
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The first term in (2.8) does not depend on bi so its exponential can be fac-
tored out of the integral in (2.6). Integrating the exponential of the second
term in (2.8) is equivalent, up to a constant, to integrating a multivariate
normal density function. Note that

√
|Z̃T

i Z̃i|√
|Z̃T

i Z̃i|

∫ exp
[
−
(
bi − b̂i

)T

Z̃
T

i Z̃i

(
bi − b̂i

)
/2σ2

]
(2πσ2)q/2

dbi

=
1√

|Z̃T

i Z̃i|

∫ exp
[
−
(
bi − b̂i

)T

Z̃
T

i Z̃i

(
bi − b̂i

)
/2σ2

]
(2πσ2)q/2

/

√
|Z̃T

i Z̃i|
dbi

=
1√

|Z̃T

i Z̃i|
=

1√
|ZT

i Zi + ∆T ∆|
. (2.9)

By combining (2.8) and (2.9) we can express the integral in (2.6) as

∫ exp
[
−
∥∥∥ỹi − X̃iβ − Z̃ibi

∥∥∥2

/2σ2

]
(2πσ2)q/2

dbi

=
exp

(
−
∥∥∥ỹi − X̃iβ − Z̃ib̂i

∥∥∥2

/2σ2

)
√∣∣∣Z̃T

i Z̃i

∣∣∣
to give

L
(
β, θ, σ2|y)
=

1

(2πσ2)N/2
exp

⎛⎜⎝−∑M
i=1

∥∥∥ỹi − X̃iβ − Z̃ib̂i

∥∥∥2

2σ2

⎞⎟⎠ M∏
i=1

abs |∆|√∣∣∣Z̃T

i Z̃i

∣∣∣ .
(2.10)

The expression (2.10) could be used directly in an optimization routine to
calculate the maximum likelihood estimates for β, θ, and σ2. However, the
optimization is much simpler if we first concentrate or profile the likelihood
so it is a function of θ only. That is, we calculate the conditional estimates
β̂(θ) and σ̂2(θ) as the values that maximize L(β, θ, σ2) for a given θ.
Notice that the parts of (2.10) involving β and σ2 are identical in form
to the likelihood for a linear regression model so β̂(θ) and σ̂2(θ) can be
determined from standard linear regression theory.
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We do need to be careful because the least squares estimates for β will
depend on the conditional modes b̂i and these, in turn, depend on β. Thus,
we must determine these least squares values jointly as the least squares
solution to(

b̂
T

1 , . . . , b̂
T

M , β̂
T
)T

= arg min
b1,...,bM ,β

‖ye − Xe(b1, . . . , bM , β)T ‖2,

where

Xe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1 0 . . . 0 X1

∆ 0 . . . 0 0
0 Z2 . . . 0 X2

0 ∆ . . . 0 0
...

...
...

...
...

0 0 . . . ZM XM

0 0 . . . ∆ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and ye =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

0
y2

0
...

yM

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.11)

Conceptually we could write(
b̂

T

1 , . . . , b̂
T

M , β̂
T
)T

= (XT
e Xe)−1XT

e ye,

but we definitely would not want to calculate these values this way. The
matrix Xe is sparse and can be very large. If possible we want take advan-
tage of the sparsity and avoid working directly with Xe.

Linear regression theory also gives us the conditional maximum likeli-
hood estimate for σ2

σ̂2(θ) =
‖ye − Xe(b̂

T

1 , . . . , b̂
T

M , β̂
T
)T ‖2

N
. (2.12)

Notice that the maximum likelihood estimate of σ2 is the residual sum-of-
squares divided by N , not by N − p.

Substituting these conditional estimates back into (2.10) provides the
profiled likelihood

L(θ) = L(β̂(θ), θ, σ̂2(θ)) =
exp (−N/2)

[2πσ̂2(θ)]N/2

M∏
i=1

abs |∆|√∣∣∣Z̃T

i Z̃i

∣∣∣ . (2.13)

We do not actually need to calculate the values of b̂1, . . . , b̂M or β̂(θ) to
evaluate the profiled likelihood. We only need to know the norm of the
residual from the augmented least squares problem. The decomposition
methods described in §2.2.2 provide us with fast, convenient methods of
calculating this.
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The pseudo-data representation of the marginal density p(yi|β, θ, σ2)
used in (2.6) is just one way of expressing this density and deriving the
likelihood. It is also possible to describe this density as a normal distribu-
tion with mean 0 and a patterned variance–covariance matrix Σi—a rep-
resentation that is often used to derive the likelihood for the parameters in
a linear mixed-effects model. Although we will not use this representation
extensively in this chapter, we will use it in Chapter 5, so we present some
of this derivation of the likelihood here.

The model (2.1) can be re-expressed as

yi = Xiβ + Zibi + εi = Xiβ + ε∗i , i = 1, . . . , M, (2.14)

where ε∗i = Zibi + εi. Because the ε∗i are the sum of two independent
multivariate normal random vectors, they are independently distributed as
multivariate normal vectors with mean 0 and variance–covariance matrix
σ2Σi, where Σi = I + ZiΨZT

i /σ2. It then follows from (2.14) that the yi

are independent multivariate normal random vectors with mean Xiβ and
variance–covariance matrix σ2Σi. That is,

p
(
yi|β, θ, σ2

)
=
(
2πσ2

)−ni

2 exp

(
(yi − Xiβ)T Σ−1

i (yi − Xiβ)
−2σ2

)
|Σi|−

1
2 .

For a given value of θ, the values of β and σ2 that maximize the likelihood
could be written as

β̂(θ) =

(
M∑
i=1

XT
i Σ−1

i Xi

)−1 M∑
i=1

XT
i Σ−1

i yi,

σ̂2(θ) =

∑M
i=1

(
yi − Xiβ̂(θ)

)T

Σ−1
i

(
yi − Xiβ̂(θ)

)
N

.

Computationally these expressions are much more difficult than (2.11) and
(2.12). Using these expressions for β̂(θ) and σ̂2(θ) we could derive the
profiled likelihood or log-likelihood.

We present these expressions for completeness only. We prefer to use
the expressions from the pseudo-data representation for computation, es-
pecially when the pseudo-data representation is combined with orthogonal-
triangular decompositions described in the next section.

2.2.2 Orthogonal-Triangular Decompositions

Orthogonal-triangular decompositions of rectangular matrices are a pre-
ferred numerical method for solving least squares problems (Chambers,
1977; Kennedy and Gentle, 1980; Thisted, 1988). They are also called QR
decompositions as the decomposition is often written

X = Q

[
R
0

]
= QtR,
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where X is an n×p matrix (n ≥ p) of rank p, Q is n×n and orthogonal, R
is p × p and upper triangular, and Qt (Q-truncated) consists of the first p
columns of Q. To say that Q is orthogonal means that QT Q = QQT = I.
This implies that QT

t Qt = I.
The S function qr is used to create a QR decomposition from a matrix.

For example, in §1.4.1 we present a model where the fixed-effects model
matrices for each subject are

Xi =

⎡⎢⎢⎣
1 8
1 10
1 12
1 14

⎤⎥⎥⎦ , i = 1, . . . , 11.

We can generate such a matrix in S and create its decomposition by

> Xmat <- matrix( c(1, 1, 1, 1, 8, 10, 12, 14), ncol = 2 )

> Xmat

[,1] [,2]

[1,] 1 8

[2,] 1 10

[3,] 1 12

[4,] 1 14

> Xqr <- qr( Xmat ) # creates a QR structure

> qr.R( Xqr ) # returns R

[,1] [,2]

[1,] -2 -22.0000

[2,] 0 -4.4721

> qr.Q( Xqr ) # returns Q-truncated

[,1] [,2]

[1,] -0.5 0.67082

[2,] -0.5 0.22361

[3,] -0.5 -0.22361

[4,] -0.5 -0.67082

> qr.Q( Xqr, complete = TRUE ) # returns the full Q

[,1] [,2] [,3] [,4]

[1,] -0.5 0.67082 0.023607 0.54721

[2,] -0.5 0.22361 -0.439345 -0.71202

[3,] -0.5 -0.22361 0.807869 -0.21760

[4,] -0.5 -0.67082 -0.392131 0.38240

Although we will write expressions that involve Q, this matrix is not
usually evaluated explicitly. Products such as QT y or Qy can be calcu-
lated directly from information about the decomposition without having
to generate this n × n matrix. See Dongarra, Bunch, Moler and Stewart
(1979, Chapter 9) for details. The S functions qr.qty and qr.qy evaluate
these products directly.

An important property of orthogonal matrices is that they preserve
norms of vectors under multiplication either by Q or by QT . That is,
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the transformation represented by Q is a generalization of a rotation or
a reflection in the plane. In particular,

‖QT y‖2 = (QT y)T QT y = yT QQT y = yT y = ‖y‖2.

If we apply this to the residual vector in a least squares problem we get

‖y − Xβ‖2 =
∥∥∥QT (y − Xβ)

∥∥∥2

= ‖QT y − QT Xβ‖2

=
∥∥∥∥c − QT Q

[
R
0

]
β

∥∥∥∥2

=
∥∥∥∥c −

[
R
0

]
β

∥∥∥∥2

= ‖c1 − Rβ‖2 + ‖c2‖2,

where c =
(
cT
1 cT

2

)T = QT y is the rotated residual vector. The components
c1 and c2 are of lengths p and n − p, respectively.

Because X has rank p, the p × p matrix R is nonsingular and upper-
triangular. The least-squares solution β̂ is easily evaluated as the solution
to

Rβ̂ = c1

and the residual sum-of-squares is ‖c2‖2. Notice that the residual sum-of-
squares can be evaluated without having to calculate β̂.

2.2.3 Evaluating the Likelihood Through Decompositions

Returning to the linear mixed-effects model, we take an orthogonal-triang-
ular decomposition of the augmented model matrix Z̃i from (2.7) as

Z̃i = Q(i)

[
R11(i)

0

]
,

where Q(i) is (ni + q) × (ni + q) and R11(i) is q × q. Then∥∥∥ỹi − X̃iβ − Z̃ibi

∥∥∥2

=
∥∥∥QT

(i)

(
ỹi − X̃iβ − Z̃ibi

)∥∥∥2

=
∥∥c1(i) − R10(i)β − R11(i)bi

∥∥2 +
∥∥c0(i) − R00(i)β

∥∥2
,

where the q × p matrix R10(i), the ni × p matrix R00(i), the q-vector c1(i)

and the ni-vector c0(i) are defined by[
R10(i)

R00(i)

]
= QT

(i)X̃i and
[
c1(i)

c0(i)

]
= QT

(i)ỹi.
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Another way of thinking of these matrices is as components in an orthogonal-
triangular decomposition of an augmented matrix[

Zi Xi yi

∆ 0 0

]
= Q(i)

[
R11(i) R10(i) c1(i)

0 R00(i) c0(i)

]
,

where the reduction to triangular form is halted after the first q columns.
(The peculiar numbering scheme for the submatrices and subvectors is
designed to allow easy extension to more than one level of random effects.)
Returning to the integral in (2.6) we can now remove a constant factor and
reduce it to

∫ exp
[
−
(
‖yi − Xiβ − Zibi‖2 + ‖∆bi‖2

)
/2σ2

]
√

2πσ2
dbi

= exp
[‖c0(i) − R00(i)β‖2

−2σ2

] ∫ exp
[‖c1(i)−R10(i)β−R11(i)bi‖2

−2σ2

]
(2πσ2)q/2

dbi. (2.15)

Because R11(i) is nonsingular, we can perform a change of variable to φi =
(c1(i) − R10(i)β − R11(i)bi)/σ with differential dφi = σ−q abs |R11(i)| dbi

and write the integral as

∫
exp

(−‖c1(i) − R10(i)β − R11(i)bi‖2/2σ2
)

(2πσ2)q/2
dbi

=
1

abs
∣∣R11(i)

∣∣ ∫ exp
(−‖φi‖2/2

)
(2π)q/2

dφi

= 1/ abs
∣∣R11(i)

∣∣ . (2.16)

This is the same result as (2.10) because

√∣∣∣Z̃T

i Z̃
∣∣∣ =√∣∣∣∣[RT

11(i)0
]
QT

(i)Q(i)

[
R11(i)

0

]∣∣∣∣
=
√∣∣∣RT

11(i)R11(i)

∣∣∣
=
√∣∣∣RT

11(i)

∣∣∣ ∣∣R11(i)

∣∣
=

√(∣∣∣RT
11(i)

∣∣∣)2

= abs
∣∣R11(i)

∣∣ .
Because R11(i) is triangular, its determinant is simply the product of its
diagonal elements.
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Substituting (2.16) into (2.15) into (2.6) provides the likelihood as

L
(
β, θ, σ2|y) =

M∏
i=1

exp
[
−∥∥c0(i) − R00(i)β

∥∥2
/2σ2

]
(2πσ2)ni/2

abs

(
|∆|∣∣R11(i)

∣∣
)

=
exp

(
−∑M

i=1

∥∥c0(i) − R00(i)β
∥∥2

/2σ2
)

(2πσ2)−N/2

M∏
i=1

abs

(
|∆|∣∣R11(i)

∣∣
)

.

The term in the exponent has the form of a residual sum-of-squares for β
pooled over all the groups. Forming another orthogonal-triangular decom-
position ⎡⎢⎣R00(1) c0(1)

...
...

R00(M) c0(M)

⎤⎥⎦ = Q0

[
R00 c0

0 c−1

]
(2.17)

produces the reduced form

L
(
β, θ, σ2|y)
=
(
2πσ2

)−N/2
exp

(
‖c−1‖2 + ‖c0 − R00β‖2

−2σ2

)
M∏
i=1

abs

(
|∆|∣∣R11(i)

∣∣
)

.

(2.18)

For a given θ, the values of β and σ2 that maximize (2.18) are

β̂(θ) = R−1
00 c0 and σ̂2(θ) =

‖c−1‖2

N
, (2.19)

which give the profiled likelihood

L(θ|y) = L
(
β̂(θ), θ, σ̂2(θ)|y

)
=

(
N

2π ‖c−1‖2

)N/2

exp
(
−N

2

) M∏
i=1

abs
( |∆|
|R11(i)|

)
,

(2.20)

or the profiled log-likelihood

�(θ|y) = log L(θ|y)

=
N

2
[log N − log(2π) − 1] − N log ‖c−1‖ +

M∑
i=1

log abs
( |∆|
|R11(i)|

)
.

(2.21)

The profiled log-likelihood (2.21) is maximized with respect to θ, produc-
ing the maximum likelihood estimate θ̂. The maximum likelihood estimates
β̂ and σ̂2 are then obtained by setting θ = θ̂ in (2.19).
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Although technically the random effects bi are not parameters for the
statistical model, they do behave in some ways like parameters and often
we want to “estimate” their values. The conditional modes of the random
effects, evaluated at the conditional estimate of β, are the Best Linear Un-
biased Predictors or BLUPs of the bi, i = 1, . . . , M . They can be evaluated,
using the matrices from the orthogonal-triangular decompositions, as

b̂i(θ) = R−1
11(i)

(
c1(i) − R10(i)β̂(θ)

)
. (2.22)

In practice, the unknown vector θ is replaced by its maximum likelihood
estimate θ̂, producing estimated BLUPs b̂i(θ̂).

The decomposition (2.17) is equivalent to calculating the QR decompo-
sition of the potentially huge matrix Xe defined in (2.11). If we determined
the least-squares solution to (2.11) using an orthogonal-triangular decom-
position

Xe = Qe

[
Re

0

]
,

the triangular part of the decomposition and the leading part of the rotated,
augmented response vector would be

Re =

⎡⎢⎢⎢⎢⎢⎣
R11(1) 0 . . . 0 R10(1)

0 R11(2) . . . 0 R10(2)

...
...

...
...

...
0 0 . . . R11(M) R10(M)

0 0 0 0 R00

⎤⎥⎥⎥⎥⎥⎦ and c1 =

⎡⎢⎢⎢⎢⎢⎣
c1(1)

c1(2)

...
c1(M)

c0

⎤⎥⎥⎥⎥⎥⎦ .

Thus, the β̂(θ) and σ̂2(θ) from (2.19) are the same as those from (2.17)
and (2.12). The vector c−1 is the residual vector in the coordinate system
determined by Qe. Because Qe is orthogonal, ‖c−1‖2 is the residual sum-
of-squares for the least squares problem defined by Xe and ye.

The profiled log-likelihood (2.20) has the same form as (2.13). It consists
of three additive components; a constant, a scaled logarithm of the residual
sum-of-squares, and a sum of ratios of the logarithms of determinants. In
the next section we examine these terms in detail.

2.2.4 Components of the Profiled Log-Likelihood

Returning to the example of the rails data of §1.1, let us consider the
different components of the profiled log-likelihood as expressed in (2.21).
Recall that the relative precision factor ∆ will be a scalar in this case so
let us write it as ∆. There are three additive terms in the profiled log-
likelihood:
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1. The constant N
2 [log N − log(2π) − 1], which can be neglected for the

purposes of optimization.

2. −N log ‖c−1‖, a multiple of the logarithm of the norm of a residual
vector from the penalized least-squares fit for ∆, Xi, Zi, and yi.

3.
∑M

i=1 log
(
∆/ abs |R11(i)|

)
=
∑M

i=1 log
(

∆/
√

|ZT
i Zi + ∆2|

)
. In the

general case this is the sum of the logarithms of the ratios of deter-
minants.

In Figure 2.1 we show the two nonconstant terms and the resulting log-
likelihood as a function of ∆ for the rails example

The shapes of the curves in Figure 2.1 indicate that it would be better to
optimize the profiled log-likelihood with respect to θ = log ∆ instead of ∆.
This transformation will also help to ensure that ∆ does not become neg-
ative during the course of the iterations of whatever optimization routine
we use. In Figure 2.2 we show the components and the log-likelihood as a
function of θ. We can see that the log-likelihood is closer to a quadratic
with respect to θ than with respect to ∆.

There are patterns in Figure 2.2 that will hold in general for linear
mixed-effects models. The log of the norm of the residual is an increas-
ing sigmoidal, or “S-shaped,” function with respect to θ. As θ → −∞ (or
∆ → 0), this log-norm approaches a horizontal asymptote at a value that
corresponds to the log residual norm from an unpenalized regression of the
form

y =

⎡⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Z1 0 . . . 0 X1

0 Z2 . . . 0 X2

...
... . . .

...
...

0 0 . . . Zn Xn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

b1

b2

...
bn

β

⎤⎥⎥⎥⎥⎥⎦+ ε.

At the other extreme, large positive values of θ, and the correspondingly
large values of ∆, put such a heavy penalty on the size of the bi terms in
the regression that these are forced to zero. Thus, as θ → ∞, the penalized
residual norm approaches that from a regression of the entire response
vector y on the Xi matrices alone.

y =

⎡⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X1

X2

...
Xn

⎤⎥⎥⎥⎦β + ε.

In the ratio of determinants term, very large values of ∆ will dominate
ZT

i Zi in the denominator so the ratios approach ∆/∆ and the sum of the
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FIGURE 2.1. The profiled log-likelihood as a function of ∆ for the rails example.
Two of the components of the log-likelihood, log ‖�−1‖, the log of the length of
the residual, and

�M
i=1 log

�
∆/ abs |�11(i)|

�
, the log of the determinant ratios,

are shown on the same scale.
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FIGURE 2.2. The profiled log-likelihood as a function of θ = log(∆) for the rails
example. Two of the components of the log-likelihood, log ‖�−1‖, the log of the
length of the residual, and

�M
i=1 log

�
∆/ abs |�11(i)|

�
, the log of the determinant

ratios, are shown on the same scale.
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logarithms approaches zero. Very small values of ∆ will have little effect
on the denominator so the term has the form

M∑
i=1

(
θ − log

√
|ZT

i Zi|
)

= Mθ −
M∑
i=1

log
√

|ZT
i Zi|.

That is, when θ → −∞ this term approaches a linear function of θ, as can
be seen in Figure 2.2.

Because the log of the determinant ratio approaches a linear function of
θ as θ → −∞ while the log of the residual norm tends to a finite asymptote,
the log-likelihood approaches a linear function of θ. When ∆, and hence
θ, becomes large the log-likelihood will usually decrease then approach a
constant. This does not always occur, however. For some data sets, the
log-likelihood will continue to increase with θ as θ → ∞. In these cases,
the maximum likelihood estimator of σ2

b is zero.
Both in the log of the ratio of determinants term and in the log of the

norm of the penalized residual term, the effect of ∆ is determined by its
size relative to the Zi matrices. Values of ∆ that are either much less than

or much greater than
√

ZT
i Zi will produce a log-likelihood that is near

an asymptote. If there is to be a maximum for finite θ it will have to be

near θ0 = log ∆0 =
∑M

i=1 log
√

ZT
i Zi/M . In the case of the rails data

θ0 = 0.549.

2.2.5 Restricted Likelihood Estimation

Maximum likelihood estimates of “variance components,” such as σ2 and
σ2

b in the rails example, tend to underestimate these parameters. Many
analysts prefer the restricted (or residual) maximum likelihood (REML)
estimates (Patterson and Thompson, 1971; Harville, 1977) for these quan-
tities.

There are several ways to define the REML estimation criterion. One
definition that provides a convenient computational form (Laird and Ware,
1982) is

LR(θ, σ2|y) =
∫

L(β, θ, σ2|y) dβ,

which, within a Bayesian framework, corresponds to assuming a locally
uniform prior distribution for the fixed effects β and integrating them out
of the likelihood.
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Using (2.18) and the same change-of-variable techniques as in (2.16) gives
the log-restricted-likelihood

�R(θ, σ2|y) = log LR

(
θ, σ2

∣∣y)

= −N − p

2
log(2πσ2)− ‖c−1‖2

2σ2
− log abs |R00|+

M∑
i=1

log abs
( |∆|
|R11(i)|

)
.

This produces the conditional estimate σ̂2
R (θ) = ‖c−1‖2/(N − p) for σ2,

from which we obtain the profiled log-restricted-likelihood

�R(θ|y) = �R(θ, σ̂2
R(θ)|y)

= const − (N − p) log ‖c−1‖ − log abs |R00| +
M∑
i=1

log abs
( |∆|
|R11(i)|

)
.

(2.23)

The components of the profiled log-restricted-likelihood in (2.23) are sim-
ilar to those in the profiled log-likelihood (2.21) except that the log of the
norm of the residual vector has a different multiplier and there is an ex-
tra determinant term of log abs |R00| = log

∣∣∣∑M
i=1 XT

i Σ−1
i Xi

∣∣∣ /2. A plot
of the components of the profiled log-restricted-likelihood versus θ for the
rails example would be similar in shape to Figure 2.2.

The evaluation of the restricted maximum likelihood estimates is done
by optimizing the profiled log-restricted-likelihood (2.23) with respect to θ

only, and using the resulting REML estimate θ̂R to obtain the REML esti-
mate of σ2, σ̂2

R(θ̂R). Similarly, the REML estimated BLUPs of the random
effects are obtained by replacing θ with θ̂R in (2.22).

In some ways, it is blurring the definition of the REML criterion to speak
of the REML estimate of β. The REML criterion only depends on θ and σ.
However, it is still useful, and perhaps even sensible, to evaluate the “best
guess” at β from (2.19) once θ̂R has been determined using the REML
criterion.

An important difference between the likelihood function and the re-
stricted likelihood function is that the former is invariant to one-to-one
reparameterizations of the fixed effects (e.g., a change in the contrasts rep-
resenting a categorical variable), while the latter is not. Changing the Xi

matrices results in a change in log abs |R00| and a corresponding change in
�R(θ|y). As a consequence, LME models with different fixed-effects struc-
tures fit using REML cannot be compared on the basis of their restricted
likelihoods. In particular, likelihood ratio tests are not valid under these
circumstances.
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2.2.6 Multiple Levels of Random Effects

The likelihood function and the restricted likelihood function for multilevel
LME models can be calculated using the same techniques described for
the single-level model in §2.2.1, §2.2.3, and §2.2.5. We use the two-level
LME model to illustrate the basic steps in the derivation of the multilevel
likelihood function.

The likelihood for a model with two levels of random effects is defined
as in (2.3), but integrating over both levels of random effects

L(β, θ1, θ2, σ
2|y) =

M∏
i=1

∫ Mi∏
j=1

[∫
p(yij |bij , bi, β, σ2) p(bij |θ2, σ

2) dbij

]
p(bi|θ1, σ

2) dbi.

(2.24)

As with a single level of random effects, we can simplify the integrals in
(2.24) if we augment the Zij matrices with ∆2 and form orthogonal-
triangular decompositions of these augmented arrays. This allows us to
evaluate the inner integrals. To evaluate the outer integrals we iterate this
process.

That is, we first form and decompose the arrays[
Zij Zi,j Xij yij

∆2 0 0 0

]
= Q(ij)

[
R22(ij) R21(ij) R20(ij) c2(ij)

0 R11(ij) R10(ij) c1(ij)

]
,

i = 1, . . . , M, j = 1, . . . , Mi. (2.25)

The matrix R22(ij) will be an upper-triangular matrix of dimension q2×q2.
The other arrays in the first row of the decomposition in (2.25) are used
only if the conditional estimates β̂(θ) or the conditional modes b̂ij(θ) and
b̂i(θ) are required. The arrays in the second row of the decomposition:
R11(ij), R10ij , and c1(ij) each have nij rows.

To evaluate the outer integral in (2.24) we again form and decompose an
augmented array⎡⎢⎢⎢⎣

R11(i1) R10(i1) c1(i1)

...
...

...
R11(iMi) R10(iMi) c1(iMi)

∆1 0 0

⎤⎥⎥⎥⎦ = Q(i)

[
R11(i) R10(i) c1(i)

0 R00(i) c0(i)

]

i = 1, . . . , M. (2.26)

The final decomposition to produce R00, c0, and c−1 is the same as that
in (2.17).

Using the matrices and vectors produced in (2.25), (2.26), and (2.17) and
following the same steps as for the single level of nesting we can express
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the profiled log-likelihood for θ1 and θ2 as

�(θ1, θ2|y) = log L(β̂(θ1, θ2), θ1, θ2, σ̂
2(θ1, θ2)|y)

= const − N log ‖c−1‖ +
M∑
i=1

log abs
( |∆1|
|R11(i)|

)
+

M∑
i=1

Mi∑
j=1

log abs
( |∆2|
|R22(ij)|

)
.

Similarly, the profiled log-restricted-likelihood is

�R(θ1, θ2|y) = log LR(β̂R(θ1, θ2), θ1, θ2, σ̂
2
R(θ1, θ2)|y)

= const − (N − p) log ‖c−1‖ − log abs |R00|

+
M∑
i=1

log abs
( |∆1|
|R11(i)|

)
+

M∑
i=1

Mi∑
j=1

log abs
( |∆2|
|R22(ij)|

)
.

The calculation methods extend in the obvious way to Q nested levels of
random effects.

2.2.7 Parameterizing Relative Precision Factors

In a model with Q nested levels of random effects, there are Q symmetric,
positive-definite, variance–covariance matrices Ψk, k = 1, . . . , Q. For com-
putational purposes we express these in terms of relative precision factors
∆k, k = 1, . . . , Q that satisfy

∆T
k ∆k = σ2Ψ−1

k , k = 1, . . . , Q.

To optimize the log-likelihood or log-restricted-likelihood we express the
scaled variance–covariance matrices Ψk/σ2, or equivalently the relative
precision factors ∆k, as a function of unconstrained parameter vectors
θk, k = 1, . . . , Q. For example, when ∆ is a scalar, as in §2.2.4, we use the
unconstrained parameter θ = log ∆ when optimizing the log-likelihood.

For the general case where Ψk/σ2 is a positive-definite, symmetric matrix
of size q×q, we parameterize it through its matrix logarithm. To define this
parameterization, we note that any positive-definite, symmetric matrix A
can be expressed as the matrix exponential of another symmetric matrix
B. This means that

A = eB = I + B +
B2

2!
+

B3

3!
+ . . . .

If A is the matrix exponential of B, then B is the matrix logarithm of A.
Suppose A is q × q, symmetric and positive-definite. One way of eval-

uating its matrix logarithm B is to calculate an eigenvalue-eigenvector
decomposition

A = UΛUT ,
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where Λ is q × q and diagonal while U is q × q and orthogonal. If A is
positive-definite, then all the diagonal elements of Λ must be positive. The
matrix logarithm of Λ is the diagonal matrix whose diagonal elements are
the logarithms of the corresponding elements of Λ. We will denote this by
log Λ. Finally

B = log A = U log ΛUT .

We define θk to be the elements of the upper triangle of the matrix
logarithm of Ψk/σ2. This gives a nonredundant, unconstrained parameter
vector for Ψk/σ2.

Other unconstrained parameterizations for Ψk/σ2 are used when the
matrix is required to have a special structure beyond being symmetric and
positive-definite. For example, if Ψk/σ2 is to be diagonal and positive-
definite then the diagonal elements must all be positive and an uncon-
strained parameterization uses the logarithms of these diagonal elements.

2.2.8 Optimization Algorithms

Optimization of the profiled log-likelihood or the profiled log-restricted-
likelihood of an LME model is usually accomplished through EM iterations
or through Newton–Raphson iterations (Laird and Ware, 1982; Lindstrom
and Bates, 1988; Longford, 1993).

The EM algorithm (Dempster, Laird and Rubin, 1977) is a popular iter-
ative algorithm for likelihood estimation in models with incomplete data.
The EM iterations for the LME model are based on regarding the random
effects, such as the bi, i = 1, . . . , M , as unobserved data. At iteration w
we use the current variance–covariance parameter vector, θ(w), to evalu-
ate the distribution of b|y and derive the expectation of the log-likelihood
for a new value of θ given this conditional distribution. Because we are
taking an expectation, this step is called the E step. The M step consists
of maximizing this expectation with respect to θ to produce θ(w+1). Each
iteration of the EM algorithm results in an increase in the log-likelihood
function, though a possibly small increase. Efficient implementations of the
EM algorithm for LME models are described in Bates and Pinheiro (1998).

The Newton–Raphson algorithm (Thisted, 1988, §4.2.2) is one of the
most widely used optimization procedures. It uses a first-order expansion
of the score function (the gradient of the log-likelihood function) around the
current estimate θ(w) to produce the next estimate θ(w+1). Each Newton–
Raphson iteration requires the calculation of the score function and its
derivative, the Hessian matrix of the log-likelihood. Under general con-
ditions usually satisfied in practice, the Newton–Raphson algorithm con-
verges quadratically. Because the calculation of the Hessian matrix at each
iteration may be computationally expensive, simple, quicker to compute ap-
proximations are sometimes used, leading to the so-called Quasi–Newton
algorithms (Thisted, 1988, §4.3.3.4) .
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Any iterative optimization algorithm requires initial values for the pa-
rameters. Because we can express both the profiled log-likelihood and the
profiled log-restricted-likelihood as a function of the θ parameters, we only
need to formulate starting values for θ when performing iterative optimiza-
tion for LME models. These may be obtained from a previous fit for similar
data, or derived from the current data. A general procedure for deriving
initial values for θ from the data being fit is described in Bates and Pinheiro
(1998) and is implemented in the lme function.

Individual iterations of the EM algorithm are quickly and easily com-
puted. Although the EM iterations generally bring the parameters into the
region of the optimum very quickly, progress toward the optimum tends
to be slow when near the optimum. Newton–Raphson iterations, on the
other hand, are individually more computationally intensive than the EM
iterations, and they can be quite unstable when far from the optimum.
However, close to the optimum they converge very quickly.

We therefore recommend a hybrid approach of starting with an initial
θ(0), performing a moderate number of EM iterations, then switching to
Newton–Raphson iterations. Essentially the EM iterations can be regarded
as refining the starting estimates before beginning the more general op-
timization routine. The lme function implements such a hybrid optimiza-
tion scheme. It begins by calculating initial estimates of the θ parameters,
then uses several EM iterations to get near the optimum, then switches to
Newton–Raphson iterations to complete the convergence to the optimum.
By default 25 EM iterations are performed before switching to Newton–
Raphson iterations.

When fitting an LME model, it is often helpful to monitor the progress
of the Newton–Raphson iterations to identify possible convergence prob-
lems. This is done by including an optional control argument in the call
to lme. The value of control should be a list that can contain any of sev-
eral flags or settings for the optimization algorithm. One of these flags is
msVerbose. When it is set to TRUE or T, diagnostic output on the progress
of the Newton–Raphson iterations in the indirect call of the ms function
(Bates and Chambers, 1992, §10.2) is produced.

If we set this flag in the first fit for the rails example of §1.1, the di-
agnostic output is not very interesting because the EM iterations leave
the parameter estimates so close to the optimum that convergence of the
Newton–Raphson iterations is declared almost immediately.

> fm1Rail.lme <- lme( travel ~ 1, data = Rail, random = ~ 1 | Rail,

+ control = list( msVerbose = TRUE ) )

Iteration: 0 , 1 function calls, F= 61.049

Parameters:

[1] -1.8196

Iteration: 1 , 2 function calls, F= 61.049
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Parameters:

[1] -1.8196

Note that the parameter listed in the iteration output is

θ̂ = log(∆̂) = log (σ̂/σ̂b) = log(4.0208/24.805) = −1.8196

and this is the only parameter being directly controlled by the optimization
algorithm. The function labelled F in the iteration output is the negative of
the log-restricted-likelihood but without the constant term
N−p

2 [log(N − p) − log(2π) − 1], which is −0.0396 when N = 18 and p =
1. Thus, the value of F = 61.049 at convergence corresponds to a log-
likelihood of −(61.049 + 0.0396) = −61.089. Because most optimization
algorithms are designed to minimize rather than maximize a function of
the parameters, we minimize the negative of the log-likelihood instead of
maximizing the log-likelihood.

If we eliminate the EM iterations altogether with another control argu-
ment, niterEM, we can observe the progress of the Newton–Raphson itera-
tions for θ.

> fm1Rail.lme <- lme( travel ~ 1, data = Rail, random = ~ 1 | Rail,

+ control = list( msVerbose = TRUE, niterEM = 0 ))

Iteration: 0 , 1 function calls, F= 67.894

Parameters:

[1] -0.43152

Iteration: 1 , 3 function calls, F= 61.157

Parameters:

[1] -2.0007

Iteration: 2 , 4 function calls, F= 61.05

Parameters:

[1] -1.8028

Iteration: 3 , 5 function calls, F= 61.049

Parameters:

[1] -1.8195

The algorithm converged to a slightly different value of θ, but with essen-
tially the same value of the log-likelihood.

2.3 Approximate Distributions

Inference on the parameters of a linear mixed-effects model usually relies on
approximate distributions for the maximum likelihood estimates and the
restricted maximum likelihood estimates derived from asymptotic results.

Pinheiro (1994) has shown that, under certain regularity conditions gen-
erally satisfied in practice, the maximum likelihood estimates in the gen-
eral LME model described in §2.1 are consistent and asymptotically nor-
mal. The approximate variance–covariance matrix for the maximum like-
lihood estimates is given by the inverse of the information matrix (Cox
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and Hinkley, 1974, §4.8) corresponding to the log-likelihood function � =
�(β, θ1, . . . ,θQ, σ2). Because

E
[
∂2�/∂β∂θT

q

]
= 0, q = 1, . . . , Q and E

[
∂2�/∂β∂σ2

]
= 0,

the information matrix corresponding to an LME model with Q levels of
nesting is block diagonal and, therefore, the maximum likelihood estimates
of the fixed effects β are asymptotically uncorrelated with the maximum
likelihood estimates of θ1, . . . ,θQ and σ2.

The approximate distributions of the maximum likelihood estimates in
an LME model with Q levels of nesting are

β̂
·∼ N

(
β, σ2

[
R−1

00 R−T
00

])
,⎡⎢⎢⎢⎣

θ̂1

...
θ̂Q

log σ̂

⎤⎥⎥⎥⎦ ·∼ N

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

θ1

...
θQ

log σ

⎤⎥⎥⎥⎦ , I−1 (θ1, . . . ,θQ, σ)

⎞⎟⎟⎟⎠ ,

I (θ1, . . . ,θQ, σ) = −

⎡⎢⎢⎣
∂2�

∂θ1∂θT
1

∂2�
∂θ2∂θT

1
· · · ∂2�

∂ log σ∂θT
1

...
...

...
∂2�

∂θ1∂ log σ
∂2�

∂θ2∂ log σ · · · ∂2�
∂2 log σ

⎤⎥⎥⎦ ,

(2.27)

where � = �(θ1, . . . ,θQ, σ2) now denotes the log-likelihood function profiled
on the fixed effects, I denotes the empirical information matrix, and R00

is defined as in (2.17). We use log σ in place of σ2 in (2.27) to give an
unrestricted parameterization for which the normal approximation tends
to be more accurate.

As shown by Pinheiro (1994), the REML estimates in an LME model also
are consistent and asymptotically normal, with approximate distributions
identical to (2.27) but with � replaced by the log-restricted-likelihood �R

defined in §2.2.5.
In practice, the unknown parameters θ1, . . . ,θQ and σ2 are replaced by

their respective ML or REML estimates in the expressions for the approx-
imate variance–covariance matrices in (2.27). The approximate distribu-
tions for the maximum likelihood estimates and REML estimates are used
to produce hypothesis tests and confidence intervals for the LME model
parameters, as described in §2.4.

2.4 Hypothesis Tests and Confidence Intervals

After we have fit a statistical model to the data we usually want to assess
the precision of the estimates and the “significance” of various terms in the
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model or to compare how well one model fits the data relative to another
model. This section presents approximate hypothesis tests and confidence
intervals for the parameters in an LME model.

2.4.1 Likelihood Ratio Tests

A general method for comparing nested models fit by maximum likelihood
is the likelihood ratio test (Lehmann, 1986, §1.7). Such a test can also be
used with models fit by REML, but only if both models have been fit by
REML and if the fixed-effects specification is the same for both models.

One statistical model is said to be nested within another model if it
represents a special case of the other model. For example, in the analysis
of the Machines data described in §1.3, we fit one model, fm1Machine, with
a random effect for Worker only, then we fit a second model, fm2Machine,
with random effects for Worker and for Machine %in% Worker. The model
fm1Machine is nested within fm2Machine because it represents a special case
of fm2Machine in which the variance of the Machine %in% Worker interaction
term is zero.

If L2 is the likelihood of the more general model (e.g., fm2Machine) and
L1 is the likelihood of the restricted model (e.g., fm1Machine) we must have
L2 > L1 and, correspondingly, log L2 > log L1. The likelihood ratio test
(LRT) statistic

2 log(L2/L1) = 2[log(L2) − log(L1)]

will be positive. If ki is the number of parameters to be estimated in model i,
then the asymptotic, or “large sample,” distribution of the LRT statistic,
under the null hypothesis that the restricted model is adequate, is a χ2

distribution with k2 − k1 degrees of freedom.
In Chapter 1 we show several examples of likelihood ratio tests per-

formed with the anova function. When given two arguments representing
fits of nested models, this function displays the LRT statistic in the L.Ratio

column and gives the p-value from the χ2
k2−k1

distribution. The column la-
belled df is the number of parameters in each model. For example, using
model fits described in §1.3, we would have

> anova( fm1Machine, fm2Machine )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Machine 1 5 300.46 310.12 -145.23

fm2Machine 2 6 231.27 242.86 -109.64 1 vs 2 71.191 <.0001

The anova function also displays the values of the Akaike Information
Criterion (AIC ) (Sakamoto et al., 1986) and the Bayesian Information
Criterion (BIC ) (Schwarz, 1978). As mentioned in §1.1.1, these are model
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comparison criteria evaluated as

AIC = −2�
(
θ̂|y
)

+ 2npar ,

BIC = −2�
(
θ̂|y
)

+ npar log(N)
(2.28)

for each model, where npar denotes the number of parameters in the model.
Under these definitions, “smaller is better.” That is, if we are using AIC to
compare two or more models for the same data, we prefer the model with
the lowest AIC. Similarly, when using BIC we prefer the model with the
lowest BIC. The REML versions of the AIC and the BIC simply replace
�(θ̂|y) by �R(θ̂|y) in (2.28).

We will generally use likelihood-ratio tests to evaluate the significance
of terms in the random-effects structure. That is, we fit different nested
models in which the random-effects structure changes and apply likelihood-
ratio tests. Stram and Lee (1994), using the results of Self and Liang (1987),
argued that tests on the random effects structure conducted in this way can
be conservative. That is, the p-value calculated from the χ2

k2−k1
distribution

is greater than it should be. As Stram and Lee (1994) explain, changing
from the more general model to the more specific model involves setting the
variance of certain components of the random effects to zero, which is on
the boundary of the parameter region. The asymptotic results for likelihood
ratio tests have to be adjusted for boundary conditions. In the next section
we use simulations to demonstrate the effect of these adjustments.

Simulating Likelihood Ratio Test Statistics

One way to check on the distribution of the likelihood ratio test statistic
under the null hypothesis is through simulation. The simulate.lme function
takes two model specifications, the null model and the alternative model.
These may be given as lme objects corresponding to each model, or as
lists of arguments used to produce such fits. In the latter case, only those
characteristics that change between the two models need to be specified in
the argument list for the alternative model.

For example, in the analysis of the OrthoFem data presented in §1.4.1, the
fm1OrthF fit to the OrthoFem data has the specification

> fm1OrthF <- lme( distance ~ age, data = OrthoFem,

+ random = ~ 1 | Subject )

while fm2OrthF is fit as

> fm2OrthF <- update( fm1OrthF, random = ~ age | Subject )

Both models correspond to Xi matrices of

X1 = X2 = · · · = X11 =

⎡⎢⎢⎣
1 8
1 10
1 12
1 14

⎤⎥⎥⎦
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with a two-dimensional β vector. In fm1OrthF the Zi matrices are

Z1 = Z2 = · · · = Z11 =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦
and the bi are one-dimensional random vectors with variance Ψ = σ2

1 . In
fm2OrthF the Zi matrices are

Z1 = Z2 = · · · = Z11 =

⎡⎢⎢⎣
1 8
1 10
1 12
1 14

⎤⎥⎥⎦
and the bi are two-dimensional random vectors with variance–covariance
matrix

Ψ =
[

σ2
1 σ1 2

σ1 2 σ2
2

]
.

In the terminology of hypothesis tests, fm1OrthF is the null model and
fm2OrthF is the alternative model. In this case, the null model is a special
case of the alternative model, with one fewer random effect. The model
being fit as fm1OrthF is obtained from the model for fm2OrthF by requiring
the last row and column of the 2 × 2 Ψ to be zero. Although there are
three distinct entries in this row and column, these entries are determined
by only two parameters because Ψ must be symmetric. Notice that one of
these entries, σ2

2 , must be non-negative so setting it to zero corresponds to
a boundary condition.

To simulate the likelihood ratio test statistic comparing model fm1OrthF
to model fm2OrthF we generate data according to the null model using
the parameter values from fm1OrthF. We then fit both the null and the
alternative model to each set of simulated data and calculate the likelihood
ratio test statistic. This is repeated for nsim cases. By doing this we obtain
an empirical distribution of the likelihood ratio test statistic under the null
hypothesis. We can then compare the empirical distribution to different χ2

distributions as in Figure 2.3, which is produced by

> orthLRTsim <- simulate.lme( fm1OrthF, fm2OrthF, nsim = 1000 )

> plot( orthLRTsim, df = c(1, 2) ) # produces Figure 2.3

Figure 2.3 is a probability–probability plot—similar to a quantile–quantile
plot but on the p-value scale, rather than on the scale of the likelihood ratio
test (LRT) statistic. The nominal p-values for the simulated LRT statistics,
under χ2 distributions with 1 and 2 degrees of freedom and an equal-weight
mixture of those χ2 distributions (denoted Mix(1,2) in Figure 2.3), for both
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FIGURE 2.3. Plots of the nominal versus empirical p-values for the likelihood
ratio test statistic comparing two models for the orthodontic data, female subjects
only. The null model, fm1OrthF, has a random effect for the intercept only. The
alternative model, fm2OrthF, has random effects for both the intercept and the
slope. The null model was simulated 1000 times, both models were fit to the
simulated data, and the likelihood ratio test statistic was calculated for both
maximum likelihood and REML estimates. In each panel, the nominal p-values
for the LRT statistics under the corresponding distribution are plotted versus the
empirical p-values.

ML and REML estimation, are plotted versus the empirical p-values, ob-
tained from the empirical distribution of the simulated LRT statistics.

For both REML and ML estimates, the nominal p-values for the LRT
statistics under a χ2 distribution with 2 degrees of freedom are much greater
than the empirical p-values. This is the sense in which the likelihood ratio
test using χ2

2 for the reference distribution will be conservative—the actual
p-value is smaller than the p-value that is reported. Stram and Lee (1994)
suggest a 0.5χ2

1 + 0.5χ2
2 mixture as a reference distribution, which is con-

firmed in Figure 2.3, for both ML and REML estimation. A χ2
1 appears to

be “anti-conservative” in the sense that the nominal p-values are smaller
than the empirical p-values.

The adjustment suggested by Stram and Lee (1994) is not always this
successful. According to this adjustment, the null distribution of the like-
lihood ratio test statistic for comparing fm1Machine to fm2Machine should
have approximately a 0.5χ2

0 + 0.5χ2
1 mixture distribution, where χ2

0 repre-
sents a distribution with a point mass at 0. When simulated

> machineLRTsim <- simulate.lme(fm1Machine, fm2Machine, nsim= 1000)
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FIGURE 2.4. Plots of the nominal versus empirical p-values for the likeli-
hood ratio test statistic comparing two models for the Machines data. The null
model, fm1Machine, has a random effect for Worker only. The alternative model,
fm2Machine, has random effects for the Worker and a random interaction for
Machine %in% Worker. Both models were fit to 1000 sets of data simulated from
the null model and the likelihood ratio test statistics were calculated.

> plot( machineLRTsim, df = c(0, 1), # produces Figure 2.4

+ layout = c(4,1), between = list(x = c(0, 0.5)) )

it produces a distribution for the LRT statistics that closely agrees with the
equal-weight mixture in the REML case, but which resembles a 0.65χ2

0 +
0.35χ2

1 mixture in the ML case.
It is difficult to come up with general rules for approximating the dis-

tribution of the LRT statistic for such nested mixed-effects models. The
naive approach of using a χ2 distribution with the number of degrees of
freedom determined by the difference in the number of nonredundant pa-
rameters in the models as the reference is easily implemented and tends to
be conservative. This is the reference distribution we use to calculate the
p-values quoted in the multiargument form of anova. One should be aware
that these p-values may be conservative. That is, the reported p-value may
be greater than the true p-value for the test and, in some cases, it may be
much greater.

2.4.2 Hypothesis Tests for Fixed-Effects Terms

When two nested models differ in the specification of their fixed-effects
terms, a likelihood ratio test can be defined for maximum likelihood fits
only. As described in §2.2.5 a likelihood ratio test for REML fits is not
feasible, because there is a term in the REML criterion that changes with
the change in the fixed-effects specification.

Even though a likelihood ratio test for the ML fits of models with different
fixed effects can be calculated, we do not recommend using such tests. Such



88 2. Theory and Computational Methods for LME Models

0.0

0.2

0.4

0.6

0.8

1.0
df=3
ML

0.0 0.4 0.8

Mix(3,4)
ML

0.0 0.4 0.8

df=4
ML

0.0 0.4 0.8

Empirical p-value

N
om

in
al

 p
-v

al
ue

FIGURE 2.5. Plots of the nominal versus empirical p-values for the likelihood
ratio test statistic comparing two models for the ergoStool data. The alternative
model has a fixed effect for Type but the null model does not. The random effects
specifications are the same. Both models were fit to 1000 sets of data simulated
from the null model and the likelihood ratio test statistics from the maximum
likelihood estimates were calculated.

likelihood ratio tests using the standard χ2 reference distribution tend to
be “anticonservative”—sometimes quite badly so.

As an example, consider the ergoStool example analyzed in §1.2.1. Sup-
pose we compare fm1Stool, the model for the ergoStool data with a fixed
effect for the Type factor, to a model without a fixed effect for the Type

factor.
> stoolLRTsim <-

+ simulate.lme( m1 = list(fixed = effort ~ 1, data = ergoStool,

+ random = ~ 1 | Subject),

+ m2 = list(fixed = effort ~ Type),

+ method = "ML", nsim = 1000 )

> plot( stoolLRTsim, df = c(3, 4) ) # Figure 2.5

We can see from Figure 2.5 that, at 3 degrees of freedom, which is the
difference in the number of parameters in the two models, the χ2 distribu-
tion gives p-values that are “anticonservative.” At 4 degrees of freedom the
p-values will be conservative. The nominal p-values for the equal-weight
mixture of χ2

3 and χ2
4 distributions, represented in the middle panel of

Figure 2.5, are in close agreement with the empirical p-values.
In this case the slight anticonservative nature of the reported p-values

may not be too alarming. However, as the number of parameters being
removed from the fixed effects becomes large, compared to the total number
of observations, this inaccuracy in the reported p-values can be substantial.
For example, Littell, Milliken, Stroup and Wolfinger (1996, §1.5) provide
analyses of data from a partially balanced incomplete block (PBIB) design.
The design is similar to the randomized block design in the ergometric
experiment described in §1.2 except that not every level of the treatment
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FIGURE 2.6. Plots of the nominal versus empirical p-values for the likelihood
ratio test statistic comparing two models for the PBIB data. The alternative model
has a fixed effect for Type, but the null model does not. The random effects
specifications are the same. Both models were fit to 1000 sets of data simulated
from the null model, and the likelihood ratio test statistics from the maximum
likelihood estimates were calculated.

appears with every level of the blocking factor. This is the sense in which
it is an “incomplete” block design. It is “partially balanced” because every
pair of treatments occur together in a block the same number of times.
These data are described in greater detail in Appendix A.22 and are given
as an object called PBIB that is available with the nlme library.

The important point with regard to the likelihood ratio tests is that there
are 15 levels of the Treatment factor and only 60 observations in total. The
blocking factor also has 15 levels. If we simulate the likelihood ratio test
and plot the p-values calculated from the χ2

14 distribution,

> pbibLRTsim <-

+ simulate.lme( m1 = list( fixed = response ~ 1, data = PBIB,

+ random = ~ 1 | Block ),

+ m2 = list( fixed = response ~ Treatment ),

+ method = "ML", nsim = 1000 )

> plot( pbibLRTsim, df = c(14,16,18), weights = FALSE ) # Figure 2.6

we can see, from Figure 2.6, that the p-values calculated using χ2
14 as the

reference distribution are seriously “anticonservative.”
Another, perhaps more conventional, approach to performing hypothesis

tests involving terms in the fixed-effects specification is to condition on
the estimates of the random effects variance–covariance parameters, θ̂. As
described in §2.2.1, for a fixed value of θ, the conditional estimates of
the fixed effects, β̂(θ), are determined as standard least-squares estimates.
The approximate distribution of the maximum likelihood or the REML
estimates of the fixed effects in (2.27) is exact for the conditional estimates
β̂(θ).
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Conditional tests for the significance of a term in the fixed-effects specifi-
cation are given by the usual F-tests or t-tests for linear regression models,
based on the usual (REML) conditional estimate of the variance

σ̂2
R(θ) = s2 =

RSS
N − p

=
‖c−1‖2

N − p
.

In practice, the unknown parameter vector θ is replaced by its maximum
likelihood estimate or its REML estimate so the conditional tests hold only
approximately.

The conditional t-tests are included in the output of the summary method
applied to lme objects. They test the marginal significance of each fixed
effect coefficient when all other fixed effects are present in the model. For
example the t-tests for the fm2Machine model

> summary( fm2Machine )

. . .

Fixed effects: score ~ Machine

Value Std.Error DF t-value p-value

(Intercept) 59.650 2.1447 36 27.813 <.0001

Machine1 3.983 1.0885 10 3.660 0.0044

Machine2 3.311 0.6284 10 5.269 0.0004

. . .

indicate that all the fixed-effects terms are significant.
The conditional F-tests are implemented in the single-argument form of

the anova method for fitted models from lme. They test the significance
of terms in the fixed effects model, which may include several coefficients.
By default, the terms are tested sequentially in the order they enter the
model, but the argument type to anova can be used to specify marginal
F-tests. For example, to jointly test the significance of all 14 coefficients
corresponding to Treatment in the PBIB example we use

> fm1PBIB <- lme( response ~ Treatment, data = PBIB, random = ~ 1 )

> anova( fm1PBIB )

numDF denDF F-value p-value

(Intercept) 1 31 1654.2 <.0001

Treatment 14 31 1.5 0.1576

We will compare this result, a p-value of 15.8%, with that from the
likelihood ratio test. Because a likelihood ratio test for terms in the fixed-
effects specification must be done on ML fits, we first re-fit fm1PBIB using
maximum likelihood, then modify the model.

> fm2PBIB <- update( fm1PBIB, method = "ML" )

> fm3PBIB <- update( fm2PBIB, response ~ 1 )

> anova( fm2PBIB, fm3PBIB )

Model df AIC BIC logLik Test L.Ratio p-value

fm2PBIB 1 17 56.571 92.174 -11.285

fm3PBIB 2 3 52.152 58.435 -23.076 1 vs 2 23.581 0.0514
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The simulation illustrated in Figure 2.6 shows that the 15.8% p-value from
the conditional F-test is much more realistic than the 5.1% p-value from
the likelihood ratio test.

For this reason, we prefer the conditional F-tests and t-tests for assessing
the significance of terms in the fixed effects.

These conditional tests for fixed-effects terms require denominator de-
grees of freedom. In the case of the conditional F-tests, the numerator
degrees of freedom are also required, being defined by the term itself. The
denominator degrees of freedom are determined by the grouping level at
which the term is estimated. A term is called inner relative to a grouping
factor if its value can change within a given level of the grouping factor.
A term is outer to a grouping factor if its value does not change within
levels of the grouping factor. A term is said to be estimated at level i, if it
is inner to the i− 1st grouping factor and outer to the ith grouping factor.
For example, the term Machine in the fm2Machine model is outer to Machine

%in% Worker and inner to Worker, so it is estimated at level 2 (Machine %in%

Worker). If a term is inner to all Q grouping factors in a model, it is es-
timated at the level of the within-group errors, which we denote as the
Q + 1st level.

The intercept, which is the parameter corresponding to the column of 1’s
in the model matrices Xi, is treated differently from all the other param-
eters, when it is present. As a parameter it is regarded as being estimated
at level 0 because it is outer to all the grouping factors. However, its de-
nominator degrees of freedom are calculated as if it were estimated at level
Q + 1. This is because the intercept is the one parameter that pools infor-
mation from all the observations at a level even when the corresponding
column in Xi doesn’t change with the level.

Letting mi denote the total number of groups in level i (with the con-
vention that m0 = 1 when the fixed effects model includes an intercept
and 0 otherwise, and mQ+1 = N) and pi denote the sum of the degrees
of freedom corresponding to the terms estimated at level i, the ith level
denominator degrees of freedom is defined as

denDF i = mi − (mi−1 + pi) , i = 1, . . . , Q + 1.

This definition coincides with the classical decomposition of degrees of free-
dom in balanced, multilevel ANOVA designs and gives a reasonable approx-
imation for more general mixed-effects models.

For example, in the fm2Machine model, Q = 2, m0 = 1, m1 = 6, m2 = 18,
m3 = 54, p0 = 1, p1 = 0, p2 = 2, and p3 = 0, giving denDF 1 = 5,
denDF 2 = 10, and denDF 3 = 36.

> anova( fm2Machine )

numDF denDF F-value p-value

(Intercept) 1 36 773.57 <.0001

Machine 2 10 20.58 3e-04
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Because Machine is estimated at level 2, its denominator degrees of freedom
is 10.

Another example is provided by the analysis of the Oats data, presented
in §1.6, which shows an anova of the form

> anova( fm2Oats )

numDF denDF F-value p-value

(Intercept) 1 51 245.14 <.0001

ordered(nitro) 3 51 41.05 <.0001

Variety 2 10 1.49 0.2724

In this example, Q = 2, m0 = 1, m1 = 6, m2 = 18, m3 = 72, p0 = 1, p1 = 0,
p2 = 2, and p3 = 3, giving denDF 1 = 5, denDF 2 = 10, and denDF 3 = 51.
The nitro factor changes within levels of the first-level grouping factor,
Block, and within levels of the second-level grouping factor, Variety %in%

Block. Thus, it is inner to each of these grouping factors and is estimated at
level 3, with 51 denominator degrees of freedom. By definition, the Variety

factor cannot change within levels of Variety %in% Block, but it changes
within levels of Block. It is therefore outer to Variety %in% Block and inner
to Block, being estimated at level 2 with 10 denominator degrees of freedom.

2.4.3 Confidence Intervals

Approximate confidence intervals on the variance–covariance components
and the fixed effects are obtained using the approximate distributions for
the maximum likelihood estimates and the REML estimates described in
§2.3 and the conditional t-tests described in §2.4.2.

Letting dfj denote the denominator degrees-of-freedom for the condi-
tional t-test corresponding to the the jth fixed effect based on the β̂, an
approximate confidence interval of level 1 − α for βj is

β̂j ± tdfj
(1 − α/2)σ̂R

√[
R−1

00 R−T
00

]
jj

,

where tdfj
(1−α/2) denotes the 1−α/2 quantile of the t-distribution with

dfj degrees of freedom and σ̂R denotes the REML estimate of σ. The matrix
R00 is evaluated at the estimated value of θ.

Confidence intervals on the within-group standard deviation σ are ob-
tained from the approximate distribution in (2.27). Letting

[I−1
]
σ σ

repre-
sent the last diagonal element of the inverse empirical information matrix
defined in (2.27), an approximate confidence interval of level 1−α for σ is[

σ̂ exp
(
−z(1 − α/2)

√[I−1
]
σ σ

)
, σ̂ exp

(
z(1 − α/2)

√[I−1
]
σ σ

)]
,

where z(1 − α/2) denotes the 1 − α/2 quantile of the standard normal
distribution. This confidence interval formulation works for both ML and
REML estimates, with the obvious modifications.
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Confidence intervals on the variance–covariance components for the ran-
dom effects are a bit trickier to obtain. In practice, one is interested in
getting confidence intervals on the original scale of the elements of Ψ and
not in the scale of the unconstrained parameters θ used in the optimization.
For some simple forms of Ψ, such as a diagonal structure or a multiple of
the identity structure, it is easy to transform the confidence intervals ob-
tained in the unconstrained scale (the logarithm of the standard deviations
in the two examples mentioned) back to the original parameter scale (by ex-
ponentiating the confidence limits in the case of the diagonal and multiple
of the identity structures).

In the case of a general positive-definite Ψ, however, usually it is not
possible to transform back to the original scale the confidence intervals
obtained for the unconstrained parameter used in the optimization. This
is true, for example, for the matrix logarithm parameterization described
in §2.2.7, when the dimension of Ψ is greater than one.

The approach used in lme is to consider a different parameterization
for general positive-definite Ψ when calculating confidence intervals. This
parameterization, which we call the natural parameterization, uses the log-
arithm of the standard deviations and the generalized logits of the corre-
lations. For a given correlation parameter −1 < ρ < 1, its generalized logit
is log[(1 + ρ)/(1− ρ)] which can take any value in the real line. We denote
by η the parameter vector determining the natural parameterization. The
elements of η are individually unconstrained, but not jointly so. Therefore,
the natural parameterization cannot be used for optimization. However,
the elements of η can be individually transformed into meaningful parame-
ters in the original scale, so it is a useful parameterization for constructing
confidence intervals.

If ηj corresponds to the logarithm of a standard deviation in Ψ and let-
ting [I−1]jj denote its associated diagonal element in the inverse empirical
information matrix, an approximate level 1 − α confidence interval for the
corresponding standard deviation is

[
exp

(
η̂j − z(1 − α/2)

√[I−1
]
jj

)
, exp

(
η̂j + z(1 − α/2)

√[I−1
]
jj

)]
.

An approximate confidence interval for a correlation coefficient represented
by ηj in the natural parameter vector is

⎡⎣exp
(
η̂j − z(1 − α

2 )
√[I−1

]
jj

)
− 1

exp
(
η̂j − z(1 − α

2 )
√[I−1

]
jj

)
+ 1

,
exp

(
η̂j + z(1 − α

2 )
√[I−1

]
jj

)
− 1

exp
(
η̂j + z(1 − α

2 )
√[I−1

]
jj

)
+ 1

⎤⎦ .
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2.5 Fitted Values and Predictions

Fitted values, which are the predicted values for the observed responses
under the fitted model, are often of interest for model checking. Predicted
values for new observations are one of the primary quantities of interest
when making inferences from a fitted model.

In a mixed-effects model, fitted values and predictions may be obtained
at different levels of nesting, or at the population level. Population level
predictions estimate the marginal expected value of the response. For ex-
ample, letting xh represent a vector of fixed effects covariates, the marginal
expected value of the corresponding response yh is

E [yh] = xT
h β. (2.29)

Predicted values at the kth level of nesting estimate the conditional ex-
pectation of the response, given the random effects at levels ≤ k. For ex-
ample, letting zh(i) denote a vector of covariates corresponding to random
effects associated with the ith group at the first level of nesting, the level-1
predictions estimate

E [yh(i)|bi] = xT
h β + zh(i)T bi. (2.30)

Similarly, letting zh(i, j) denote a covariate vector associated with the jth
level-2 group within the ith level-1 group, the level-2 predicted values es-
timate

E [yh(i)|bi, bij ] = xT
h β + zh(i)T bi + zh(i, j)T bij . (2.31)

This extends naturally to an arbitrary level of nesting.
The Best Linear Unbiased Predictors (BLUPs) of the population ex-

pected values and the conditional expectations given the random effects are
obtained by replacing, in the expressions defining the expectations, β with
its conditional estimate β̂(θ) and the random effects with their BLUPs.
For example, the BLUPs corresponding to the expected values in (2.29),
(2.30), and (2.31) are

ŷh = xT
h β̂(θ)

ŷh(i) = xT
h β̂(θ) + zh(i)T b̂i(θ)

ŷh(i, j) = xT
h β̂(θ) + zh(i)T b̂i(θ) + zh(i, j)T b̂ij(θ).

In practice, the unknown parameter vector θ is replaced by its maximum
likelihood estimate or its REML estimate, producing estimated BLUPs of
the expected values.

2.6 Chapter Summary

This chapter presents the theory and computational methods for linear
mixed-effects models. We express linear mixed-effects models in the Laird–
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Ware formulation. For a single grouping factor that divides the observations
into M groups of ni, i = 1, . . . , M observations, the model is written

yi = Xiβ + Zibi + εi, i = 1, . . . , M,

bi ∼ N (0,Ψ), εi ∼ N (0, σ2I).

The parameters in the model are the p-dimensional fixed effects, β, the q×q
variance–covariance matrix, Ψ, for the random effects, and the variance σ2

of the “noise” εi. We estimate these parameters by maximum likelihood
(ML) or by restricted maximum likelihood (REML).

Although the random effects bi, i = 1, . . . , M are not formally parameters
in the model, we will often want to formulate our “best guess” for these
values given the data. We use the Best Linear Unbiased Predictors (BLUPs)
for this.

For computational purposes the variance–covariance matrix Ψ is re-
expressed in terms of the relative precision factor ∆ which satisfies

∆T ∆ = Ψ/σ2

and the matrix ∆ is expressed as a function of an unconstrained parameter
vector θ.

The profiled log-likelihood function with respect to θ can be easily calcu-
lated using matrix decompositions. That is, the log-likelihood correspond-
ing to the conditionally best estimates β̂(θ) and σ̂2(θ) can be evaluated as a
function of θ alone. This simplifies the problem of optimizing the likelihood
to get maximum likelihood estimates because it reduces the dimension of
the optimization. The same simplification applies to REML estimation.

We describe approximate distributions for the maximum likelihood esti-
mates and the REML estimates using results from asymptotic theory for
linear mixed-effects models.

We compare models that differ in the random effects specification by
likelihood ratio tests or by simulation-based parametric bootstrap evalua-
tions.

We assess the significance of terms in the fixed-effects specification by
standard linear regression tests conditional on the value of θ̂. These tests
include t-tests for individual coefficients or F-tests for more complicated
terms or linear combinations of coefficients. The degrees of freedom for
a t-test (or the denominator degrees of freedom for an F-test) depend on
whether the factor being considered is inner to the grouping factor (changes
within levels of the grouping factor) or outer to the grouping factor (is
invariant within levels of the grouping factor).

Approximate confidence intervals for the fixed effects and the variance–
covariance parameters are produced from the approximate distributions of
the maximum likelihood estimates and REML estimates.



96 2. Theory and Computational Methods for LME Models

All these results extend to multiple nested levels of random effects. A
model with two levels of nested random effects, for example, is written

yij = Xijβ + Zi,jbi + Zijbij + εij , i = 1, . . . , M, j = 1, . . . , Mi,

bi ∼ N (0,Ψ1), bij ∼ N (0,Ψ2), εij ∼ N (0, σ2I).

The two variance–covariance matrices Ψ1 and Ψ2 are written in terms
of relative precision factors ∆1 and ∆2, parameterized by unconstrained
parameter vectors θ1 and θ2. The profiled log-likelihood or the profiled log-
restricted-likelihood, a function of θ1 and θ2 only, is maximized to produce
the estimates β̂, σ̂2, Ψ̂1, and Ψ̂2.

Exercises

1. The simulation results presented in Figure 2.4 (p. 87) indicate that
the null distribution of the REML likelihood ratio test statistic com-
paring a null model with a single level of scalar random effects to
an alternative model with nested levels of scalar random effects is
approximately an equally weighted mixture of a χ2

0 and a χ2
1.

Confirm this result by simulating a LRT statistic on the Oats data,
considered in §1.6. The preferred model for those data, fm4Oats, was
defined with random = ~Block/Variety. Re-fit this model with random

= ~Block. Using this fit as the null model and fm4Oats as the alterna-
tive model, obtain a set of simulated LRT statistics with simulate.lme.
Plot these simulated LRT statistics setting df = c(0,1) to obtain a
plot like Figure 2.4. Are the conclusions from this simulation similar
to those from the simulation shown in Figure 2.4?

Note that simulate.lme must fit both models to nsim simulated sets
of data. By default nsim = 1000, which could tie up your computer
for a long time. You may wish to set a lower value of nsim if the
default number of simulations will take too long.



3
Describing the Structure of
Grouped Data

As illustrated by the examples in Chapter 1, we will be modeling data from
experiments or studies in which the observations are grouped according to
one or more nested classifications. Often this classification is by “Subject”
or some similar experimental unit. Repeated measures data, longitudinal
data, and growth curve data are examples of this general class of grouped
data.

A common and versatile way of organizing data in S is as data.frame
objects. These are in the form of tables where each row corresponds to an
observation and each column corresponds to one of the variables being ob-
served. We extend the data.frame class to the class of groupedData objects,
which are data frames with additional information about the grouping of
the observations and, possibly, other special roles of some variables.

In this chapter we describe creating, summarizing and displaying grouped-
Data objects with a single level of grouping or with multiple levels of group-
ing.

3.1 The Display Formula and Its Components

A groupedData object contains the data values themselves, stored as a data
frame, and a formula that designates special roles for some of the variables
in the data frame. The most important of the special roles is that of a
grouping factor that divides the observations into the distinct groups of
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observations. The formula also designates a response and, when available,
a primary covariate. It is given as

response ~ primary | grouping

where response is an expression for the response, primary is an expression
for the primary covariate, and grouping is an expression for the grouping
factor. Most often these expressions are simply the name of a variable in
the data frame, but they could also be functions of one or more variables.
For example, log(conc) would be a legitimate expression for the response
if conc is one of the variables in the data frame.

The formula function extracts the formula from a grouped data object.
Applied to some of the data sets used in Chapter 1 it produces

> formula( Rail )

travel ~ 1 | Rail

> formula( ergoStool )

effort ~ Type | Subject

> formula( Machines )

score ~ Machine | Worker

> formula( Orthodont )

distance ~ age | Subject

> formula( Pixel )

pixel ~ day | Dog/Side

> formula( Oats )

yield ~ nitro | Block

Notice that there is not primary covariate in the Rail data so we use the
constant expression 1 in that position in the formula. In data with multi-
ple, nested grouping factors, such as the Pixel data, the grouping factors
are separated by “/”. Factors that are nested within other factors appear
further to the right so an expression like Dog/Side indicates that Side is
nested within Dog.

The formula of a grouped data object has the same pattern as the for-
mula used in a call to a trellis graphics function, such as xyplot. This is
intentional. Because such a formula is available with the data, the plot

method for objects in the groupedData class can produce an informative
trellis display from the object alone. It may, in fact, be best to think of the
formula stored with the data as a display formula for the data because it
provides a meaningful default graphical display method for the data.

The formula function shown above is an example of an extractor function
for this class. It returns some property of the object—the display formula
in this case—without requiring the user to be aware of how that property is
stored. We provide other extractor functions for each of the components of
the display formula. The getGroups extractor returns the value of the group-
ing factor. A companion function, getGroupsFormula, returns the formula
that is evaluated to produce the grouping factor. The extractors for the
other components of the display formula are getResponse and getCovariate,
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FIGURE 3.1. Heights of 26 boys from Oxford, England, each measured on nine
occasions. The ages have been centered and are in an arbitrary unit.

which return numeric vectors or factors, and getResponseFormula and
getCovariateFormula, which return formulas.

It is safer to use these extractor functions instead of checking the display
formula for the object and extracting a variable from the object. For ex-
ample, suppose we wish to check for balance in the Oxboys data, shown in
Figure 3.1, and consisting of the heights at different ages of several boys
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from Oxford, England (see Appendix A.19 for more detail). We could use
the table function on the grouping factor,

> table( Oxboys$Subject )

10 26 25 9 2 6 7 17 16 15 8 20 1 18 5 23 11 21 3 24 22 12 13

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

14 19 4

9 9 9

to check if each boy’s height is recorded the same number of times. To do
this, we must know that the grouping factor for the Oxboys data is named
Subject. A form that is easier to remember, and also more general, is

> table( getGroups( Oxboys ) )

10 26 25 9 2 6 7 17 16 15 8 20 1 18 5 23 11 21 3 24 22 12 13

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

14 19 4

9 9 9

> unique( table( getGroups( Oxboys ) ) ) # a more concise result

[1] 9

Because there are exactly nine observations for each subject, the data are
balanced with respect to the number of observations. However, if we also
check for balance in the covariate values, we find they are not balanced.

> unique( table( getCovariate( Oxboys ), getGroups( Oxboys ) ) )

[1] 1 0

> length( unique( getCovariate( Oxboys ) ) )

[1] 16

Further checking reveals that there are 16 unique values of the covariate age.
The boys are measured at approximately the same ages, but not exactly the
same ages. This imbalance could affect some analysis methods for repeated
measures data. It does not affect the methods described in this book.

The isBalanced function in the nlme library can be used to check a
groupedData object for balance with respect to the grouping factor(s) or
with respect to the groups and the covariate. It is built from calls to
getGroups and table like those above.

When applied to data with multiple, nested grouping factors, the get-

Groups extractor takes an optional argument level. Levels are counted from
the outside inward so, in the Pixel data where the grouping is Dog/Side,
Dog is the first level and Side is the second level. When the argument level

specifies a single level the result is returned as a vector

> unique( getGroups(Pixel, level = 1) )

[1] 1 2 3 4 5 6 7 8 9 10

> unique( getGroups(Pixel, level = 2) )

[1] 1/R 2/R 3/R 4/R 5/R 6/R 7/R 8/R 9/R 10/R 1/L ...

1/R < 2/R < 3/R < 4/R < 5/R < ...
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Notice that the groups at level = 2, the “Side within Dog” factor, are
coerced to an ordered factor with distinct levels for each combination of
Side within Dog.

If we extract the groups for multiple levels the result is returned as a
data frame with one column for each level. Any inner grouping factors are
preserved in their original form in this frame rather than being coerced to
an ordered factor with distinct levels as above. For example,

> Pixel.groups <- getGroups( Pixel, level = 1:2 )

> class( Pixel.groups )

[1] "data.frame"

> names( Pixel.groups )

[1] "Dog" "Side"

> unique( Pixel.groups[["Side"]] )

[1] R L

In a call to a linear mixed-effects modeling function, lme or lmList, or
to a nonlinear mixed-effects modeling function, nlsList or nlme (discussed
in Chapter 8), the default values for the response, for a covariate, and for
the grouping factor are obtained from the formula stored with the data.
These are, however, only the default values. They can be overridden with an
explicit model formula. For example, during the course of model building
we may wish to change our idea of what constitutes the response, say
by transforming from a measure of concentration to the logarithm of the
concentration. It is not necessary to change the formula stored with the data
when doing this. We can use an explicit model formula as an argument to
the model fitting function and override the formula stored with the data.

If we do decide to make a permanent change in the formula of a grouped-
Data object, we can use the update function to do this. For example, we
could change the covariate in the PBG data (discussed in §3.2.1 and Ap-
pendix A.21) from dose to log(dose) by updating the object.

> formula( PBG )

deltaBP ~ dose | Rabbit

> PBG.log <- update( PBG, formula = deltaBP ~ log(dose) | Rabbit )

> formula(PBG.log)

deltaBP ~ log(dose) | Rabbit

> unique( getCovariate(PBG.log) )

[1] 1.8326 2.5257 3.2189 3.9120 4.6052 5.2983

> unique( getCovariate(PBG) )

[1] 6.25 12.50 25.00 50.00 100.00 200.00

3.2 Constructing groupedData Objects

Constructing a groupedData object requires the data to be available as a
data frame. There are several ways that data can be imported into S and
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formed into a data frame. One of the simplest ways is using the read.table

function on data stored in an external file (Venables and Ripley, 1999, §2.4).
For example, if the Oxford boys’ height data are stored in a text file

named oxboys.dat of the form

Subject age height

1 -1.0000 140.50

1 -0.7479 143.40

1 -0.4630 144.80

1 -0.1643 147.10

1 -0.0027 147.70

1 0.2466 150.20

1 0.5562 151.70

1 0.7781 153.30

1 0.9945 155.80

2 -1.0000 136.90

...

26 -0.0027 138.40

26 0.2466 138.90

26 0.5562 141.80

26 0.7781 142.60

26 1.0055 143.10

we can create a data frame with

> Oxboys.frm <- read.table( "oxboys.dat", header = TRUE )

> class( Oxboys.frm ) # check the class of the result

[1] "data.frame"

> dim( Oxboys.frm ) # check the dimensions

[1] 234 3

The argument header = TRUE in the call to read.table indicates that the
first line of the file is to be used to create the names for the variables in
the frame.

The result of read.table is of the data.frame class. It has two dimensions:
the number of rows (cases) and the number of columns (variables).

A function to create objects of a given class is called a constructor for that
class. The primary constructor function for a class is often given the same
name as the class itself. Thus the default constructor for the groupedData
class is the groupedData function. Its required arguments are a formula and
a data frame. Optional arguments include labels, where display labels for
the response and the primary covariate can be given, and units, where the
units of these variables can be given. The default axis labels for data plots
are constructed by pasting together components of labels and units. The
reason for separating the units from the rest of the display label is to permit
propagation of the units to derived quantities such as the residuals from a
fitted model.
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For example, reading the Oxboys data from a file, converting it to a
groupedData object, and establishing default labels could be accomplished
in a single call of

> Oxboys <- groupedData( height ~ age | Subject,

+ data = read.table("oxboys.dat", header = TRUE),

+ labels = list(x = "Centered age", y = "Height"),

+ units = list(y = "(cm)") )

> Oxboys # display the object

Grouped Data: height ~ age | Subject

Subject age height

1 1 -1.0000 140.50

2 1 -0.7479 143.40

3 1 -0.4630 144.80

...

234 26 1.0055 143.10

By default the groupedData constructor also converts the grouping factor
(the factor Subject in the Oxboys data) to an ordered factor. The order is
determined by applying a summary function to the response within each
group. The default summary function is max, the maximum.

When the grouping factor has been converted to an ordered factor, the
panels in the trellis plots are arranged in that order. The order of the panels
is from left to right across the rows, starting with the bottom row. In the
default ordering described above the maximum value of the response in
each panel will increase across the rows starting from the lower left panel.
Most of the data plots in this book are ordered in this way.

Conversion of the grouping factor to an ordered factor is done only if
the expression for the grouping factor is simply the name of a variable in
the data frame. The conversion does not cause the rows of the data frame
themselves to be reordered; it merely changes the class of the grouping
factor and attaches the ordering to it. One way to examine the ordering is
by requesting the unique values of the grouping factor

> unique( getGroups( Oxboys ) )

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[21] 21 22 23 24 25 26

10 < 26 < 25 < 9 < 2 < 6 < 7 < 17 < 16 < 15 < 8 < 20 < 1 < 18 ...

The first value of Subject in the data is 1, but the value of Subject with
the smallest maximum height is 10 so this subject’s data occupy the lower
left panel in Figure 3.1.

The labels and units arguments are optional. We recommend using them
because this makes it easier to create more informative trellis plots.
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FIGURE 3.2. Weight versus time of rats on three different diets. The first group of
eight rats is on the control diet. There were four rats each in the two experimental
diets.

3.2.1 Roles of Other Experimental or Blocking Factors

Although the display formula can be used to designate a response, a co-
variate, and a grouping factor, these may not be sufficient to describe the
structure of the experiment or study completely. Many experiments impose
additional structure on the data. For example, the observations in the or-
thodontic data, described in §1.4.1, are grouped according to the subject
on which the measurements were made. In most analyses of this type of
data we would want to include the subject’s sex as an explanatory factor.
Because Sex is a characteristic of the subject, it is invariant within the ob-
servations for a single subject. A factor that is invariant within the groups
determined by the grouping factor is said to be outer to the grouping factor.

When outer factors are present they can, and should, be designated as
such when constructing a groupedData object using; for example,

outer = ~ Sex

Multiple outer factors can be specified by separating their names with “*”
in the formula.

Outer factors can be characteristics of the subject (more generally, of
the “experimental unit”) such as Sex in this example. They can also be
experimental factors that are applied to this level of experimental unit.
For example, the BodyWeight data, shown in Figure 3.2 and described in
Appendix A.3, contain measurements of the weights of 16 rats over time.
Eight of the rats were given a control diet, four rats were given one exper-
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FIGURE 3.3. Weight of rats versus time for three different diets.

imental diet, and four rats were given another experimental diet. The Diet

factor is an experimental factor that is outer to the grouping factor Rat.
One benefit of specifying outer factors to the constructor is that the con-

structor will modify the way in which the groups are ordered. Reordering
of the groups is permitted only within the same level of an outer factor (or
within the same combination of levels of outer factors, when there is more
than one). This ensures that groups at the same levels of all outer factors
will be plotted in a set of adjacent panels.

The plot method for the groupedData class allows an optional argument
outer that can be either a logical value or a formula. When this argument is
used the panels are determined by the factor or combination of factors given
in the outer formula. A logical value of TRUE or T can be used instead of a
formula, indicating that the outer formula stored with the data should be
used to determine the panels in the plot. For example, we can get a stronger
visual comparison of the differences between the diets for the BodyWeight

data with

> plot( BodyWeight, outer = ~ Diet, aspect = 3 ) # Figure 3.3
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The aspect argument, discussed in §3.3.1, is used to enhance the visual-
ization of patterns in the plot. Because this outer formula was stored with
the BodyWeight data we would produce the same plot with

> plot( BodyWeight, outer = TRUE, aspect = 3 )

In plots grouped by the levels of an outer formula, the original grouping
factor stored with the data determines which points are associated with
each other in the panels. Points in the same group are joined by lines when
each panel is a scatter plot of the response versus a continuous covariate. If
there is no primary covariate the data will be plotted as a dot plot where
points in the same group will be rendered with the same symbol and color.

When there is more than one outer factor in the data the arrangement of
the panels depends on the order in which the factors are listed in the outer

formula for the plot. For example, in Chapter 7 we show several plots
of the results of an experiment in which the weights of soybean plants,
grown in different experimental plots, were measured several times during
the growing season. There were two different varieties of soybeans in the
experiment, which was carried out over three consecutive growing seasons.
The grouping factor is Plot and the outer factors are Variety and Year.
The plot produced by

> plot( Soybean, outer = ~ Year * Variety ) # Fig 6.10 (p. 288)

arranges panels of the same Variety on the same row, making it easy to
compare the results for each variety across years. Conversely, the plot pro-
duced by

> plot( Soybean, outer = ~ Variety * Year )

(not shown) arranges panels of the same Year on the same row, making it
easy to compare varieties within each year.

When specifying outer factors in the constructor or in a plot call we
should ensure that they are indeed constant or invariant within each level
of the grouping factor. The gsummary function with the optional argument
invariantsOnly = TRUE allows us to check this. It returns the values of only
those variables that are invariant within each level of the grouping factor.
These values are returned as a data frame with one row for each level of
the grouping factor. For the BodyWeight data we get

> gsummary( BodyWeight, invar = TRUE )

Rat Diet

2 2 1

3 3 1

4 4 1

1 1 1

8 8 1

5 5 1
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FIGURE 3.4. Change in blood pressure versus dose of phenylbiguanide (PBG)
for five rabbits. Each rabbit was exposed to increasing doses of PBG, once af-
ter treatment with the H3

5-agonist MDL 72222 and once after treatment with a
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6 6 1
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12 12 2

13 13 3

15 15 3
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16 16 3

indicating that Diet is an invariant of the grouping structure determined
by the Rat factor. Notice that the grouping factor itself, Rat in this case,
must be one of the invariants.

An outer factor is a characteristic of the experimental unit or an indicator
of a treatment applied to the entire unit. In some experiments one level of a
treatment may be applied to the experimental unit, say Subject, for some
of the observations, then another level applied for other observations. If
such an inner factor is distinct from the primary covariate, we may want
to indicate it somehow on a data plot. An example of an inner factor is
provided by the phenylbiguanide (PBG) data, shown in Figure 3.4 and
described in Appendix A.21. These data are from a cross-over trial where
each experimental animal was exposed to increasing doses of PBG under
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two treatments; once with the MD5-antagonist MDL 72222 and once with a
placebo. The change in blood pressure was measured for each dose on each
occasion.

In Figure 3.4, produced by

> plot( PBG, inner = ~ Treatment, scales = list(x = list(log = 2)))

the lines in each panel joint points with the same Treatment. (The scales

argument to the plot call will be described in §3.3.) This plot provides a
strong indication that the effect of the PBG treatment is to shift the dose–
response curve to the right. We will discuss methods for modeling this in
Chapter 7.

The PBG data is similar in structure to the Pixel data. In both these data
sets there is a continuous response, a continuous covariate (day for Pixel and
dose for PBG), a major grouping factor corresponding to the experimental
animal (Dog for Pixel and Rabbit for PBG) and a factor that varies within
this major grouping factor (Side for Pixel and Treatment for PBG). In the
case of the Pixel data we used nested grouping factors to represent this
structure. In the case of the PBG data we used a single grouping factor with
an inner treatment factor. These two structures are quite similar—in fact,
for the purposes of plotting the data, they are essentially equivalent. The
choice of one structure or the other is more an indication of how we think
the inner factor should be modeled. For the Pixel data we modeled the
effect of the Side factor as a random effect because the Side just represents
a random selection of lymph node for each Dog. In other experiments there
may be important physiological differences between the left side and the
right side of the animal so we would model it as a fixed effect. In the PBG

data the Treatment factor is a factor with fixed, repeatable levels, and we
model it as a fixed effect.

If we decide that an inner factor should be modeled as a random effect
we should specify it as part of a nested grouping structure. If it should be a
fixed effect we specify it as an inner factor. These choices can be overridden
when constructing models.

3.2.2 Constructors for Balanced Data

The ergoStool data is an example of a data set that is balanced both with
respect to the grouping factor and with respect to the primary covariate.
That is, each Subject has the same number of observations on each Subject

and each subject uses each stool type the same number of times.
It can be convenient to represent a balanced, unreplicated set of responses

as a matrix. For example,

> ergoStool.mat <- asTable( ergoStool )
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> ergoStool.mat

T1 T2 T3 T4

8 7 11 8 7

5 8 11 8 7

4 7 11 10 9

9 9 13 10 8

6 9 11 11 10

3 7 14 13 9

7 8 12 12 11

1 12 15 12 10

2 10 14 13 12

The asTable function, which can only be used with balanced and unrepli-
cated data, produces a table of the responses in the form of a matrix where
columns correspond to the unique values of the primary covariate and rows
correspond to groups. The dimnames of the matrix are the unique levels of
the grouping factor and the covariate.

This table provides a compact representation of balanced data. Often
the data from a balanced experiment are provided in the form of a table
like this. The balancedGrouped function convert data from a table like this
to a groupedData object.

> ergoStool.new <- balancedGrouped( effort ~ Type | Subject,

+ data = ergoStool.mat )

Warning messages:

4 missing values generated coercing from character to numeric

in: as.numeric(dn[[1]])

> ergoStool.new

Grouped Data: effort ~ Type | Subject

Type Subject effort

1 T1 8 7

2 T2 8 11

3 T3 8 8

4 T4 8 7

5 T1 5 8

...

36 T4 2 12

The formula given as the first argument to balancedGrouped is used to
assign names to the response, the primary covariate, and the grouping
factor. The data values are extracted from the matrix itself and from its
dimnames attribute. The matrix should be arranged so each row contains the
data from one group. The covariate values, corresponding to the different
columns, can be the levels of a factor or of a continous covariate. If the
column names can all be converted to numeric values, the covariate is
assumed to be continuous and is coerced to a numeric vector. Otherwise
it is left as a factor. The process of checking for numeric values in these
names is what generates the warning message in the previous example.
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It is a common practice to label the levels of a factor like the Type factor
as 1, 2, . . . , which would result in its being coerced to a numeric variable.
Unless this is detected and the numeric variable is explicitly converted to
a factor, models fit to such data will be nonsensical. It is always a good
idea to check that the variables in a groupedData object have the expected
classes. We describe how to do this in §3.4.

The optional labels and units arguments can be used with balanced-

Grouped just as in the groupedData constructor.
As seen in the example, the balancedGrouped constructor produces an

object like any other groupedData object. The matrix of response values
is converted to a vector and both the primary covariate and the grouping
factor are expanded to have the same length as the response vector. Later
manipulations of the object or plots created from the object do not rely on
its having been generated from balanced data. This is intentional. Although
there is a certain amount of redundancy in storing multiple copies of the
same covariate or grouping factor values, it is offset by the flexibility of
the data.frame structure in dealing with missing data and with general,
unbalanced data.

Many methods for the analysis of longitudinal data or repeated mea-
surements data depend on having balanced data. The analysis techniques
described in this book do not.

3.3 Controlling Trellis Graphics Presentations of
Grouped Data

Trellis graphics presentations of grouped data allow easy evaluation of the
behavior of the response with respect to the primary covariate within each
group. They also allow comparisons between groups. Because they are so ef-
fective at illustrating both within-group and between-group behavior, they
are the default plot method for groupedData objects.

The defaults chosen in the trellis graphics library and in the plot method
for groupedData objects will usually provide an informative and visually
appealing plot. Sometimes, however, the default plot can be made even
more informative by adjusting one or two of the trellis graphics parameters.
In this section we describe some of the trellis parameters that are helpful in
enhancing plots of grouped data. For a full discussion of the trellis graphics
parameters and controls see Becker, Cleveland and Shyu (1996) or the on-
line documentation for the trellis library.

3.3.1 Layout of the Trellis Plot

A trellis plot consists of one or more panels arranged in a regular array
on one or more pages. In the default data plot for a groupedData object



3.3 Controlling Trellis Graphics Presentations of Grouped Data 111

with a continuous primary covariate, there is one panel for each level of the
grouping factor. The horizonal axis in the panel is the primary covariate,
the vertical axis is the response, and the data are represented both as points
and by a connecting line. If the primary covariate is a factor, such as in the
Machine data, or if there is no primary covariate, such as in the Rail data,
the plot is a dotplot with one row for each level of the grouping factor. In
this case the response is on the horizontal axis.

For numeric covariates the aspect ratio of each panel, which is the ratio
of the physical size of the vertical axis to that of the horizontal axis, is
determined by the 45-degree banking rule described in Cleveland (1994,
§3.1). We have found that this rule produces appealing and informative
aspect ratios in a wide variety of cases. If you wish to override this choice
of aspect ratio, you can give an numerical value as the optional aspect

argument in the call to plot. A value greater than 1.0 produces tall, narrow
panels, while a value between 0.0 and 1.0 produces short, wide panels.

The arrangement of panels in rows and columns on the page is calculated
to make the specified number of panels of the chosen aspect ratio fill as
much as possible of the available area. This does not always create a good
arrangement for comparing patterns across outer factors. For example, the
grouping factor Plant in the CO2 data, described in Appendix A.5, has
twelve different levels. The plants themselves come from one of two types
and have been subjected to one of two treatments. Because the aspect ratio
chosen by the banking rule creates panels that are taller than they are wide,
a more-or-less square plot area will be filled with three rows of four panels
each (Figure 3.5).

For some combinations of grass type and treatment the panels are spread
across more than one row in Figure 3.5. It would be better to keep these
combinations on the same row so we can more easily compare treatments
and grass types. That is, we would prefer the panels to be arranged in four
rows of three or, perhaps, two rows of six. If we have four rows of three,
we may wish to indicate visually that the lower two rows represent one
type of plant (Québec) and the upper two rows represent the other type
(Mississippi). We can do this by specifying a list as the optional between
argument. A component named x in this list indicates the sizes of gaps to
leave between columns while a component named y specifies gaps between
rows. (When forming a between argument for the rows, remember that the
trellis convention is to count from the bottom to the top, not from the top
to the bottom.) The gaps are given in units of character heights. Generally
a gap of 0.5 is sufficient to distinguish groups without using too much space.

An arrangement of the CO2 data in two rows of six panels with a gap
between the third and fourth columns, shown in Figure 3.6, is produced by

> plot(CO2, layout=c(6,2), between=list(x=c(0,0,0.5,0,0))) # Fig 3.6

Assembling the panels on a single page is effective when there is a small
or moderate number of groups. If there is a large number of groups, the
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FIGURE 3.5. Carbon dioxide uptake versus ambient CO2 concentration for
Echinochloa crus-galli plants, six from Québec and six from Mississippi. Half the
plants of each type were chilled overnight before the measurements were taken.
The labels of each panel show the origin of the plant (Québec or Mississippi)
and the treatment (chilled or nonchilled). This plot shows a default layout of the
panels.

single page plot may result in the panels being too small to be informative.
In these cases a third component can be added to the layout argument
causing the plot to be spread over several pages.

If the number of groups in some level of an outer factor does not fit
exactly into the rectangular array, an optional skip argument can be used
to skip over selected panel locations.

The use of both of these arguments is illustrated in the code for the figures
of the spruce tree growth data (Appendix A.28). There were four groves
of trees; two exposed to an ozone-rich atmosphere, and two exposed to a
normal atmosphere. In the first and second groves 27 trees were measured,
but in the third and fourth groves only 12 and 13 trees were measured,
respectively.
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FIGURE 3.6. Carbon dioxide uptake versus ambient CO2 concentration for
Echinochloa crus-galli plants. This plot shows an alternative layout of the panels.

The three pages of figures (Figures A.8–A.10, pages 445–447) in an array
of four rows of seven columns per page were created with

> plot( Spruce, layout = c(7, 4, 3),

+ skip = c(rep(FALSE, 27), TRUE, rep(FALSE, 27), TRUE,

+ rep(FALSE, 12), rep(TRUE, 2), rep(FALSE,13)) )

An alternative arrangement (not shown) of three pages in an array of three
rows of nine columns per page can be created with

> plot( Spruce, layout = c(9, 3, 3),

+ skip = c(rep(FALSE, 66), TRUE, TRUE, rep(FALSE, 13)) )

On the first two pages of this plot the array would be filled. On the third
page there would be a gap in the middle of the array to separate the panels
corresponding to the two different groves of trees exposed to a normal
atmosphere.

3.3.2 Modifying the Vertical and Horizontal Scales

It is often helpful to present quantities such as concentrations on a loga-
rithmic scale. The optional scales argument for trellis graphics functions
allows specification of logarithmic scales on either the vertical or horizontal
axes. The axis annotations can be at powers of 10 or at powers of 2.

For example, the default plot of the DNase assay data shown in Figure 3.7
squeezes most of the data onto the left-hand side of the panel. (These data
are described in more detail in Appendix A.7.)
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FIGURE 3.7. Optical density versus DNase concentration, arithmetic scale

Both the facts that the unique values of the DNase concentration are,
for the most part, logarithmically spaced

> unique( getCovariate(DNase) )

[1] 0.048828 0.195312 0.390625 0.781250 1.562500 3.125000

[7] 6.250000 12.500000

> log( unique(getCovariate(DNase)), 2 )

[1] -4.35614 -2.35614 -1.35614 -0.35614 0.64386 1.64386 2.64386

[8] 3.64386

and the experimenters’ desire to fit a logistic response function (described
in Chapter 6 and Appendix C.7) to the logarithm of the concentration
indicate that we should use a logarithmic scale on the horizontal axis. This
change is incorporated in Figure 3.8, produced with

> plot( DNase, layout=c(6,2), scales = list(x=list(log=2)) )

3.3.3 Modifying the Panel Function

This is an advanced topic. You can consider skipping this section unless
you want to modify the way the data are presented within each panel.

The presentation of the data within each panel is controlled by a panel
function. If no primary covariate is available, or if the primary covariate
is a categorical variable, the default panel function for the plot method
for groupedData objects is panel.dotplot. When the primary covariate is
numeric, the default panel function is

function(x, y) {
panel.grid()

panel.xyplot(x, y)
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FIGURE 3.8. Optical density versus DNase concentration for eleven runs of an
assay. The concentration is shown on a logarithmic scale.

y.avg <- tapply(y, x, mean) # average y for each distinct x

xvals <- as.numeric(names(y.avg))

ord <- order(xvals)

panel.xyplot(xvals[ord], y.avg[ord], type = "l")

}

The first two lines of this function draw the background grid and place
symbols at the data values. The actual symbol that is drawn is determined
by the trellis device that is active when the plot is displayed. It is usually
an open circle.

The last four lines of the panel function add a line through the data
values. Some care needs to be taken when doing this. In the DNase assay
data, for example, there are duplicate observations at each concentration in
each run. Rather than “joining the dots,” it makes more sense to draw the
line through the average response in each set of replicates. In the default
panel function xvals is defined to be the unique values of x and y.avg is
calculated as the average of the y values at these distinct x values. Finally,
the xvals vector is put into increasing order and the line drawn with the
points in this order.

This panel function can be overridden with an explicit panel argument to
the plot call if, for example, you want to omit the background grid. If you
do override the default panel function, it would be a good idea to follow
the general pattern of this function. In particular, you should draw the grid
first (if you choose to do so) then add any points or lines. Also, be careful
to handle replicates or unusual ordering of the (x, y) pairs gracefully.



116 3. Describing the Structure of Grouped Data

3.3.4 Plots of Multiply-Nested Data

The plot method for multiply-nested groupedData objects takes an optional
argument displayLevel that defines the display level to be used. By default,
the innermost level of grouping is used as the display level. For the Pixel

data, this is “Side within Dog”, as shown in Figure 3.9.

> plot( Pixel, layout = c(4,5), # Figure 3.9

+ between = list(x = c(0, 0.5), y = 0.5) )

A more meaningful trellis display of these data, using Dog as the display
level, is obtained with

> plot( Pixel, displayLevel = 1 ) # Figure 3.10

When the display level for a multiply-nested groupedData object is smaller
than the maximum grouping level, different actions can be taken with re-
spect to the inner grouping levels. The default action is to preserve, as
much as possible, the original structure of the data and use the combina-
tion of the inner grouping factors as a single inner factor, as in Figure 3.10.
Alternatively, observations within a given value of the display level may
be collapsed over some, or all inner levels by giving a collapse argument
in the plot call. Another optional argument, FUN, can specify the summary
function to be use when collapsing the data. This summary function should
take a numeric vector as its argument and return a single numeric value.
The default is the mean function.

Using collapse can help to reduce clutter in a plot. For example, the
Wafer data, from an experiment in semiconductor manufacturing, give cur-
rent intensity versus the applied voltage at eight sites on each of ten wafers
(see Appendix A.30 for details). Differences between wafers and between
sites within wafers are too subtle to be noticeable on a plot at displayLevel
= 2 that has separate panels for each Site within each Wafer. Displaying
at the Wafer level with separate curves for each Site within each Wafer, as
in Figure 3.11, produces a cluttered plot because the eight curves for each
wafer nearly overlay each other. It is more informative to examine the mean
curve for each wafer and the standard deviation about this mean curve, as
in Figures 3.12 and 3.13

> plot( Wafer, display = 1, collapse = 1 ) # Fig. 3.12

> plot( Wafer, display = 1, collapse = 1, # Fig. 3.13

+ FUN = function(x) sqrt(var(x)), layout = c(10,1) )

In general there is a trend for the standard deviation about the curve to
be greater when the response is greater. This is a common occurrence. A
less obvious effect is that the standard deviation is greater in the wafers
with overall higher current intensity, even though the differences in the
current intensity are small.
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FIGURE 3.9. Mean pixel intensity of lymph nodes in the axillary region versus
time by Side within Dog.
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FIGURE 3.10. Mean pixel intensity of lymph nodes in the axillary region versus
time by Dog. The two curves on each plot correspond to the left and the right
sides of the Dog.
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FIGURE 3.11. Current versus voltage for the Wafer data. The panels correspond
to wafers. With each wafer the current was measured at eight different sites.
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FIGURE 3.12. Mean current versus voltage at the wafer level for the Wafer data.
Each point on each curve is the average of the current for that voltage at eight
sites on the wafer.
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FIGURE 3.13. Standard deviation of current versus voltage at the wafer level for
the Wafer data. Each point on each curve is the standard deviation of the current
at that voltage at eight sites on the wafer.
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3.4 Summaries

In addition to creating graphical presentations of the data we may wish to
summarize the data numerically, either by group or across groups. In §3.1
we demonstated the use of the table, gsummary, and unique functions to
summarize data by group. In this section we expand on the usage of these
functions and introduce another groupwise summary function gapply.

The gapply function is part of the nlme library. It joins several standard
S functions in the “apply family.” These include apply, lapply, tapply, and
sapply. They all apply a function to subsections of some data structure
and gather the results in some way. Both lapply and sapply can be used
to apply a function to the components of a list. The result of lapply is
always a list; sapply will create a more compact result if possible. Because
the groupedData class inherits from the data.frame class and a data frame
can be treated as a list whose components are the columns of the frame, we
can apply a function to the columns of a groupedData object. For example,
we can use sapply to check the data.class of the columns of a groupedData
object by

> sapply( ergoStool, data.class )

effort Type Subject

"numeric" "factor" "ordered"

We see that effort, the response, is a numeric variable; Type, the covariate,
is a factor, and Subject, the grouping factor, is an ordered factor. We could
replace sapply with lapply and get the same information, but the result
would be returned as a list and would not print as compactly.

Checking the data.class of all variables in a data.frame or a groupedData
object is an important first step in any data analysis. Because factor levels
are often coded as integers, it is a common mistake to leave what should
be a factor as a numeric variable. Any linear models using such a “factor”
will be meaningless because the factor will be treated as a single numeric
variable instead of being expanded into a set of contrasts. Another way of
checking on the data.class of variables in a frame is to use the summary

function shown later in this section.
The table and unique functions are not solely intended for use with

grouped data, but often are useful when working with grouped data. The
gsummary function, however, is specifically designed for use with grouped-
Data objects. In §3.2.1 we used gsummary with the optional argument
invariantsOnly=TRUE to extract only those variables in the groupedData
object that are invariant within levels of the grouping factor. These could
be experimental factors, like Diet in the BodyWeight data, or they could
simply be additional characteristics of the groups, like Sex in the Orthodont

data. The Theoph data are another example of a medical study where the
grouping is by Subject. They are from a study of the pharmacokinetics of
the drug theophylline, which is used to treat asthma. Each subject’s weight
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and dose of theophylline are given in the data. As this is a short-duration
study (about 24 hours) and only one dose of theophylline was given, both
Wt and Dose are invariants.

> gsummary( Theoph, inv = TRUE )

Subject Wt Dose

6 6 80.0 4.00

7 7 64.6 4.95

8 8 70.5 4.53

11 11 65.0 4.92

3 3 70.5 4.53

2 2 72.4 4.40

4 4 72.7 4.40

9 9 86.4 3.10

12 12 60.5 5.30

10 10 58.2 5.50

1 1 79.6 4.02

5 5 54.6 5.86

Sometimes it is distracting to have the grouping factor itself included
as one of the invariants. The optional argument omitGroupingFactor=TRUE

suppresses this. The combination of omit = TRUE and inv = TRUE can be
used to check if there are any nontrivial invariants. The value returned will
be NULL unless there are invariants other than the grouping factor.

> gsummary( Theoph, omit = TRUE, inv = TRUE )

Wt Dose

6 80.0 4.00

7 64.6 4.95

8 70.5 4.53

11 65.0 4.92

3 70.5 4.53

2 72.4 4.40

4 72.7 4.40

9 86.4 3.10

12 60.5 5.30

10 58.2 5.50

1 79.6 4.02

5 54.6 5.86

> is.null(gsummary(Theoph, inv = T, omit = T)) # invariants present

[1] F

> is.null(gsummary(Oxboys, inv = T, omit = T)) # no invariants

[1] T

When the invariantsOnly argument is omitted or given the value FALSE, a
summary of all the variables in the object is returned. The default summary
is a “representative value” for each variable within each group: numeric
variables are represented by their mean within each group and non-numeric
variables (e.g. factors) by their modes (the most frequently occuring value)
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within each group. When multiple modes are present, the first element of
the sorted modes is returned.

> gsummary( Theoph )

Subject Wt Dose time conc

6 6 80.0 4.00 5.888182 3.525455

7 7 64.6 4.95 5.865455 3.910909

8 8 70.5 4.53 5.890000 4.271818

11 11 65.0 4.92 5.871818 4.510909

3 3 70.5 4.53 5.907273 5.086364

2 2 72.4 4.40 5.869091 4.823636

4 4 72.7 4.40 5.940000 4.940000

9 9 86.4 3.10 5.868182 4.893636

12 12 60.5 5.30 5.876364 5.410000

10 10 58.2 5.50 5.915455 5.930909

1 1 79.6 4.02 5.950000 6.439091

5 5 54.6 5.86 5.893636 5.782727

By giving a numeric summary function, which is a function that cal-
culates a single numerical value from a numeric vector, as the argument
FUN, we can produce other summaries. For example, we can check that
the Theoph data are sorted according to increasing values of the maximum
response with

> gsummary( Theoph, FUN = max, omit = TRUE )

Wt Dose time conc

6 80.0 4.00 23.85 6.44

7 64.6 4.95 24.22 7.09

8 70.5 4.53 24.12 7.56

11 65.0 4.92 24.08 8.00

3 70.5 4.53 24.17 8.20

2 72.4 4.40 24.30 8.33

4 72.7 4.40 24.65 8.60

9 86.4 3.10 24.43 9.03

12 60.5 5.30 24.15 9.75

10 58.2 5.50 23.70 10.21

1 79.6 4.02 24.37 10.50

5 54.6 5.86 24.35 11.40

This ordering of the subjects does indeed give increasing maximum con-
centration of theophylline.

The FUN argument to gsummary is applied only to numeric variables in the
grouped data object. Any non-numeric variables are represented by their
modes within each group. A variable that is invariant within each group
is represented by the (single) value that it assumes within each group. In
other words, the value returned for each variable is determined according
to:

• If the variable is an invariant, its value within each group is returned.
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• If the variable is a factor (ordered or unordered) or of mode character,
the mode for each group is returned.

• If the variable is numeric and not invariant, the summary function
FUN is applied within each group and those values are returned.

When there are a large number of groups in the data, the result of
gsummary may itself be so large as to be unwieldy. The Quinidine data,
described in Appendix A.25, is from a study where thirteen different vari-
ables were recorded on 136 subjects.

> Quin.sum <- gsummary( Quinidine, omit = TRUE, FUN = mean )

> dim( Quin.sum )

[1] 136 13

Upon examining the first few rows

> Quin.sum[1:10, ]

time conc dose interval Age Height Weight Race Smoke

109 30.2633 NA NA NA 70 67 58.000 Caucasian no

70 0.7500 NA NA NA 68 69 75.000 Caucasian no

23 52.0263 NA NA NA 75 72 108.000 Caucasian yes

92 8.8571 NA NA NA 68 72 65.000 Caucasian yes

111 18.1638 NA NA NA 68 66 56.000 Latin yes

5 24.3750 NA NA NA 62 71 66.000 Caucasian yes

18 196.8438 NA NA NA 87 69 85.375 Caucasian no

24 31.2500 NA NA NA 55 69 89.000 Latin no

2 12.2000 NA NA NA 58 69 85.000 Latin no

88 4.7900 NA NA NA 85 72 77.000 Caucasian no

Ethanol Heart Creatinine glyco

109 none No/Mild >= 50 0.46000

70 former No/Mild >= 50 1.15000

23 none No/Mild >= 50 0.83875

92 former No/Mild >= 50 1.27000

111 former No/Mild >= 50 1.23000

5 none Severe >= 50 1.39000

18 none No/Mild < 50 1.26000

24 former No/Mild >= 50 0.57000

2 current Moderate >= 50 0.82000

88 none Moderate >= 50 0.61000

we see some unusual results. The summarized values of conc, dose, and
interval are always recorded as missing values (NA). A less obvious pecu-
liarity in the data is an apparent inconsistency in the numeric values of
height and weight; for some reason height was recorded in inches while
weight was recorded in kilograms.

Returning to the question of the missing values in conc, dose, and inter-

val, the data from a single subject indicate the reason for this
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> Quinidine[Quinidine[["Subject"]] == 3, 1:8]

Subject time conc dose interval Age Height Weight

17 3 0.00 NA 201 NA 67 69 69

18 3 8.00 NA 201 NA 67 69 69

19 3 16.00 NA 201 NA 67 69 69

20 3 24.00 NA 201 NA 67 69 69

21 3 32.00 NA 201 NA 67 69 69

22 3 41.25 2.4 NA NA 67 69 69

23 3 104.00 NA 201 8 67 69 69

24 3 113.00 2.3 NA NA 67 69 69

25 3 3865.00 NA 201 6 67 69 62

26 3 3873.00 NA 201 NA 67 69 62

27 3 3881.00 NA 201 NA 67 69 62

28 3 3889.00 NA 201 NA 67 69 62

29 3 3897.00 NA 201 NA 67 69 62

30 3 3900.00 NA NA NA 67 69 62

31 3 3905.00 NA 201 NA 67 69 62

32 3 3909.00 4.7 NA NA 67 69 62

33 3 4073.00 NA 201 8 67 69 62

Each observation is either a record of a dosage or a record of a concentra-
tion measurement but never both. Thus, whenever dose is present, conc is
missing and whenever conc is present, both dose and interval are missing.
Because any subject in the experiment must have at least one dosage record
and at least one concentration record, every subject has missing data in
the conc, dose, and interval variables.

The default behavior of most summary functions in S is to return the
value NA if the input vector contains any missing values. The mean function
behaves like this and returns NA for every subject in each of these three
variables. The behavior can be overridden in mean (and in several other
summary functions) by giving the optional argument na.rm = TRUE. The
default value of FUN in gsummary is mean with na.rm = TRUE.

> Quin.sum1 <- gsummary( Quinidine, omit = TRUE )

> Quin.sum1[1:10, 1:7]

time conc dose interval Age Height Weight

1 92.817 2.2000 268.71 6.0000 60.000 69 106.000

2 12.200 1.2000 166.00 NA 58.000 69 85.000

3 2090.015 3.1333 201.00 7.3333 67.000 69 65.294

4 137.790 3.3667 236.39 7.3333 88.000 66 95.185

5 24.375 0.7000 301.00 NA 62.000 71 66.000

6 3.625 2.6000 166.00 6.0000 76.000 71 93.000

7 1187.320 2.7833 256.22 6.0000 60.097 66 85.484

8 20.019 2.5000 166.00 NA 52.000 71 75.000

9 69.200 3.9500 498.00 6.0000 68.000 70 79.000

10 1717.261 3.1667 201.00 8.0000 73.154 69 79.462

Notice that there are still some NA’s in the groupwise summary for inter-
val. For these subjects every value of interval was missing.
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The function summary can be used with any data frame to summarize the
columns according to their class. In particular, we can use it on Quin.sum1 to
obtain some summary statistics for each variable with each group (subject)
counted only once.

> summary( Quin.sum1 )

time conc dose interval

Min. : 0.065 Min. :0.50 Min. : 83 Min. : 5.00

1st Qu.: 19.300 1st Qu.:1.70 1st Qu.:198 1st Qu.: 6.00

Median : 47.200 Median :2.24 Median :201 Median : 6.00

Mean : 251.000 Mean :2.36 Mean :224 Mean : 6.99

3rd Qu.: 171.000 3rd Qu.:2.92 3rd Qu.:249 3rd Qu.: 8.00

Max. :5360.000 Max. :5.77 Max. :498 Max. :12.00

NA’s :29.00

Age Height Weight Race

Min. :42.0 Min. :60.0 Min. : 41.0 Caucasian:91

1st Qu.:61.0 1st Qu.:67.0 1st Qu.: 67.8 Latin :35

Median :66.0 Median :70.0 Median : 79.2 Black :10

Mean :66.9 Mean :69.6 Mean : 79.2

3rd Qu.:73.0 3rd Qu.:72.0 3rd Qu.: 88.2

Max. :92.0 Max. :79.0 Max. :119.0

Smoke Ethanol Heart Creatinine glyco

no :94 none :90 No/Mild :55 < 50 : 36 Min. :0.390

yes:42 current:16 Moderate:40 >= 50:100 1st Qu.:0.885

former :30 Severe :41 Median :1.170

Mean :1.210

3rd Qu.:1.450

Max. :2.990

Contrast this with the result of

> summary( Quinidine )

...

time conc dose interval

Min. : 0 Min. : 0.40 Min. : 83 Min. : 4.00

1st Qu.: 16 1st Qu.: 1.60 1st Qu.:166 1st Qu.: 6.00

Median : 60 Median : 2.30 Median :201 Median : 6.00

Mean : 373 Mean : 2.45 Mean :225 Mean : 7.11

3rd Qu.: 241 3rd Qu.: 3.00 3rd Qu.:249 3rd Qu.: 8.00

Max. :8100 Max. : 9.40 Max. :603 Max. : 12.00

NA’s :1110.00 NA’s :443 NA’s :1222.00

Age Height Weight Race

Min. :42.0 Min. :60.0 Min. : 41.0 Caucasian:968

1st Qu.:60.0 1st Qu.:67.0 1st Qu.: 69.5 Latin :384

Median :66.0 Median :69.0 Median : 78.0 Black :119

Mean :66.7 Mean :69.2 Mean : 79.7

3rd Qu.:74.0 3rd Qu.:72.0 3rd Qu.: 89.0

Max. :92.0 Max. :79.0 Max. :119.0

Smoke Ethanol Heart Creatinine

no :1024 none :991 No/Mild :598 < 50 : 418
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yes: 447 current:191 Moderate:375 >= 50:1053

former :289 Severe :498

glyco

Min. :0.39

1st Qu.:0.93

Median :1.23

Mean :1.28

3rd Qu.:1.54

Max. :3.16

The first summary tells us that there are 94 nonsmokers in the study and
42 smokers while the second tells us that there are 1024 total observations
on the nonsmokers and 447 on the smokers.

Both summaries are useful to us in understanding these data. Because
NA’s in conc and dose are mutually exclusive, we can see that there are
at most 1110 dosage records and at most 443 concentration measurements.
Because there are 136 subjects in the study, this means there are on average
fewer than three concentration measurements per subject.

We can get an exact count of the number of concentrations by counting
the number of nonmissing values in the entire conc variable. One way to
do this is

> sum( ifelse(is.na(Quinidine[["conc"]]), 0, 1) )

[1] 361

This is equivalent to the somewhat more terse expression

> sum( !is.na(Quinidine[["conc"]]) )

[1] 361

because the logical values TRUE and FALSE are interpreted as 1 and 0 in
arithmetic expressions.

A similar expression

> sum( !is.na(Quinidine[["dose"]]) )

[1] 1028

tells us that there are 1028 dosage events. The 164 rows that are neither
dosage records nor concentration measurements are cases where values of
other variables changed for the subject.

With only 361 concentration measurements for 136 subjects there are
fewer than three concentration measurements per subject. To explore this
further, we would like to determine the distribution of the number of con-
centration measurements per subject. We need to divide the data by subject
(or “by group” in our general terminology) and count the number of non-
missing values in the conc variable for each subject. The function gapply is
available to perform calculations such as this. It “applies” another function
to some or all of the variables in a grouped data object by group.
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> gapply( Quinidine, "conc", function(x) sum(!is.na(x)) )

109 70 23 92 111 5 18 24 2 88 91 117 120 13 89 27 53 122 129 132

1 1 3 1 1 2 3 1 1 1 1 3 2 1 3 1 1 1 2 3

16 106 15 22 57 77 115 121 123 11 48 126 223 19 38 42 52 56 63 83

1 1 1 1 3 1 4 1 1 2 2 2 6 1 1 2 1 1 4 1

104 118 137 17 29 34 46 73 87 103 138 45 44 97 36 37 72 100 8 71

2 2 1 1 1 1 3 2 2 1 2 3 7 2 2 3 1 3 1 5

6 14 26 75 20 96 99 134 12 49 67 85 112 127 55 68 124 1 35 47 79

1 3 1 3 2 3 2 1 1 3 3 1 3 3 6 3 1 2 2 5 3

95 114 135 105 116 62 65 107 130 66 139 33 80 125 110 128 136 21

3 2 2 1 3 4 7 4 3 1 3 3 2 1 11 2 11 2

43 90 102 40 84 98 30 82 93 108 119 32 133 7 9 76 94 58 113 50 39

1 1 2 2 6 2 1 3 4 1 3 1 2 6 2 6 5 1 2 3 2

78 25 61 3 64 60 59 10 69 4 81 54 41 74 28 51

10 2 2 3 4 4 3 6 2 6 11 4 3 3 4 6

The result can be a bit confusing when printed in this way. It is a named
vector of the counts where the names are the values of the Subject variable.
Thus, subjects 124 and 125 both had only a single concentration measure-
ment. To obtain the distribution of the measurements, we apply the table

function to this vector

> table( gapply(Quinidine, "conc", function(x) sum(!is.na(x))) )

1 2 3 4 5 6 7 10 11

46 33 31 9 3 8 2 1 3

We see that most of the subjects in the study have very few measurements
of the response. A total of 110 out of the 136 subjects have fewer than four
response measurements. This is not uncommon in such routine clinical data
(data that are collected in the routine course of treatment of patients). A
common consequence of having so few observations for most of the subjects
is that the information gained from such a study is imprecise compared to
that gained from a controlled experiment.

The second argument to gapply is the name or index of the variable in
the groupedData object to which we will apply the function. When only a
single name or index is given, the value passed to the function to be applied
is in the form of a vector. If more than one variable is to be passed, they
are passed as a data.frame. If this argument is missing, all the variables in
the groupedData object are passed as a data.frame so the effect is to select
subsets of the rows corresponding to unique values of the grouping factor
from the groupedData object.

To illustrate this, let us determine those subjects for whom there are
records that are neither dosage records nor concentration records. For each
subject we must determine whether there are any records with both the
conc variable and the dose variable missing.

> changeRecords <- gapply( Quinidine, FUN = function(frm)

+ any(is.na(frm[["conc"]]) & is.na(frm[["dose"]])) )
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> changeRecords

109 70 23 92 111 5 18 24 2 88 91 117 120 13 89 27 53 122 129 132

F F F F F F T F F F F F F F F F F F F T

...

78 25 61 3 64 60 59 10 69 4 81 54 41 74 28 51

F F T T T F F T F T T T T F T F

As we see, the printed representation as a named vector of length 136 is
not easy to read. It is more informative if we convert the result to a vector
of levels of the Subject factor for which there are records that are neither
dosage records nor concentration records.

> sort( as.numeric( names(changeRecords)[changeRecords] ) )

[1] 3 4 7 10 14 18 28 33 37 40 41 44 45 46 47

[16] 48 50 54 55 61 62 63 64 65 71 75 76 77 79 80

[31] 81 82 84 94 95 96 97 98 110 112 114 118 119 127 132

[46] 133 135 136 139 223

Notice that subject 3 is one of those with such a “change” record. We
printed some of the variables from this subject’s data on page 123. We can
see there that the record in question is row 30. If we look at this row and
the adjacent rows

> Quinidine[29:31,]

Grouped Data: conc ~ time | Subject

Subject time conc dose interval Age Height Weight Race

29 3 3897 NA 201 NA 67 69 62 Caucasian

30 3 3900 NA NA NA 67 69 62 Caucasian

31 3 3905 NA 201 NA 67 69 62 Caucasian

Smoke Ethanol Heart Creatinine glyco

29 yes former Moderate < 50 1.71

30 yes former Moderate < 50 1.71

31 yes former Moderate < 50 1.71

we can see that there are no changes in any of the variables except for time

so this row is redundant. We did not cull such redundant rows from the
data set because we wanted to be able directly to compare results based
on these data with analyses done by others.

The data for subject 4 provide a better example.

> Quinidine[Quinidine[["Subject"]] == 4, ]

Grouped Data: conc ~ time | Subject

Subject time conc dose interval Age Height Weight Race Smoke

45 4 0.00 NA 332 NA 88 66 103 Black yes

46 4 7.00 NA 332 NA 88 66 103 Black yes

47 4 13.00 NA 332 NA 88 66 103 Black yes

48 4 19.00 NA 332 NA 88 66 103 Black yes

49 4 21.50 3.1 NA NA 88 66 103 Black yes

50 4 85.00 NA 249 6 88 66 103 Black yes

51 4 91.00 5.8 NA NA 88 66 103 Black yes
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52 4 91.08 NA 249 NA 88 66 103 Black yes

53 4 97.00 NA 249 NA 88 66 103 Black yes

54 4 103.00 NA 249 NA 88 66 103 Black yes

55 4 105.00 NA NA NA 88 66 92 Black yes

56 4 109.00 NA 249 NA 88 66 92 Black yes

57 4 115.00 NA 249 NA 88 66 92 Black yes

58 4 145.00 NA 166 NA 88 66 92 Black yes

59 4 151.00 NA 166 NA 88 66 92 Black yes

60 4 156.00 3.1 NA NA 88 66 92 Black yes

61 4 157.00 NA 166 NA 88 66 92 Black yes

62 4 163.00 NA 166 NA 88 66 92 Black yes

63 4 169.00 NA 166 NA 88 66 92 Black yes

64 4 174.75 NA 201 NA 88 66 92 Black yes

65 4 177.00 NA NA NA 88 66 92 Black yes

66 4 181.50 3.1 NA NA 88 66 92 Black yes

67 4 245.00 NA 201 8 88 66 92 Black yes

68 4 249.00 NA NA NA 88 66 86 Black yes

69 4 252.50 3.2 NA NA 88 66 86 Black yes

70 4 317.00 NA 201 8 88 66 86 Black yes

71 4 326.00 1.9 NA NA 88 66 86 Black yes

Ethanol Heart Creatinine glyco

45 none Severe >= 50 1.48

46 none Severe >= 50 1.48

47 none Severe >= 50 1.48

48 none Severe >= 50 1.48

49 none Severe >= 50 1.48

50 none Severe >= 50 1.61

51 none Severe >= 50 1.61

52 none Severe >= 50 1.61

53 none Severe >= 50 1.61

54 none Severe >= 50 1.61

55 none Severe >= 50 1.61

56 none Severe >= 50 1.61

57 none Severe >= 50 1.61

58 none Severe >= 50 1.88

59 none Severe >= 50 1.88

60 none Severe >= 50 1.88

61 none Severe >= 50 1.88

62 none Severe >= 50 1.88

63 none Severe >= 50 1.88

64 none Severe >= 50 1.88

65 none Severe >= 50 1.68

66 none Severe >= 50 1.68

67 none Severe >= 50 1.87

68 none Severe >= 50 1.87

69 none Severe >= 50 1.87

70 none Severe >= 50 1.83

71 none Severe >= 50 1.83
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Here rows 55, 65, and 68 are in fact “change rows.” Both rows 55 and 68
record changes in the subject’s weight. Row 65 records a change in the
glyco variable (i.e., the serum concentration of alpha-1-acid glycoprotein).

3.5 Chapter Summary

In this chapter we have shown examples of constructing, summarizing, and
graphically displaying groupedData objects. These objects include the data,
stored as a data frame, and a formula that designates different variables
as a response, a primary covariate, and as one or more grouping factors.
Other variables can be designated as outer or inner factors relative to the
grouping factors. Accessor or extractor functions are available to extract
either the formula for these variables or the value of these variables.

Informative and visually appealing trellis graphics displays of the data
can be quickly and easily generated from the information that is stored
with the data. The regular data summary functions in S can be applied to
the data as well as the gsummary and gapply functions that are especially
designed for these data.

Informative plots and summaries of the data are very useful for the pre-
liminary phase of the statistical analysis. Many important features of the
data are identified at this stage, but usually one is interested in going a
step further in the analysis and fitting parametric models, such as the linear
mixed-effects models described in the next chapter.

Exercises

1. In Figure 3.6 (p. 113), the twelve panels in the plot of the CO2 data
were laid out as two rows of six columns. Create a plot of these
data arranged as four rows of three columns. You should insert some
space between the second and third rows to separate the panels for
the Mississippi plants from those for the Québec plants.

2. Use the outer argument to the plot function to produce a plot of the
CO2 data similar to Figure 8.15 (p. 369) where each panel displays
the data for all three plants at some combination of Variety and
Treatment. Produce two such plots of these data, each laid out as two
rows by two columns. One plot should have the rows determined by
Variety and the columns by Treatment. This arrangement makes it
easy to assess the effect of Treatment within a Variety. The other plot
should have rows determined by Treatment and columns by Variety,
allowing easy assessment of the effect of Variety within Treatment.
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3. The Dialyzer data, described in Appendix A.6 and used in some
examples in §5.4 and §8.3.3, consists of observations of ultrafiltration
rates at different transmembrane pressures on different subjects. The
QB variable, which indicates the blood flow rate used for the subject,
is outer to the grouping factor Subject.

(a) Check if these data are balanced with respect to the number of
observations on each Subject.

(b) Check if these data are balanced with respect to the number
of observations and the values of the transmembrane pressure.
Verify your result using the isBalanced function.

(c) Produce a plot of the ultrafiltration rate versus transmembrane
pressure by subject.

(d) Check with gsummary that QB is invariant within each Subject.
Determine which Subjects are at which QB levels.

(e) Recreate the plot from part (c) arranging for the panels corre-
sponding to subjects at a QB of 200 dl/min to be separated from
those at a QB of 300 dl/min.

(f) Use the outer argument to plot as outer = TRUE or outer = ~QB

to create a plot of ultrafiltration rate versus transmembrane
pressure by subject divided into two panels according to blood
flow rate. Compare this plot to Figure 5.1 (p. 215). Note the
change in the aspect ratio of the panels relative to the plots in
parts (c) and (d).

(g) Use the aspect argument in a plot like the last one to produce
a plot similar to Figure 5.1.

(h) Use gsummary or gapply to determine the maximum observed
ultrafiltration rate by subject. Produce dotplots or boxplots of
this maximum rate dividing the subjects according to blood flow
rate (QB). Does the maximum ultrafiltration rate appear to be
related to the blood flow rate?

4. In the DNase data, described in §3.3.2, there are two measurements
of the optical density at each DNase concentration within each run.
When such replicate observations are available, one can check the
assumption of constant variance for the εij in a linear mixed-effects
model by plotting the logarithm of the standard deviation of the
replicate measurements versus the logarithm of their average (Box,
Hunter and Hunter, 1978, §7.8).

(a) Determine the average optical density at each set of replicate
observations. One way to do this would be to create a copy of
the groupedData object DNase redefining the display formula to
be density ~1 | Run/conc. Applying gsummary to this object will
produce the average optical density for each pair of replicates.
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(b) Determine the standard deviation of the optical density at each
set of replicate observations. Note that some of these standard
deviations should be zero because the replicate observations are
equal. Due to numerical round-off some equal replicates may
produce a standard deviation that is very small but not exactly
zero. Use a boxplot of the logarithm of the standard deviations
to check for these. You may wish to replace those small values
with zero.

(c) Plot the logarithm of the standard deviation versus the loga-
rithm of the average. Estimate the slope of a straight line fit to
these points.
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Fitting Linear Mixed-Effects Models

As seen in Chapter 1, mixed-effects models provide a flexible and powerful
tool for analyzing balanced and unbalanced grouped data. These models
have gained popularity over the last decade, in part because of the develop-
ment of reliable and efficient software for fitting and analyzing them. The
linear and nonlinear mixed-effects (nlme) library in S is an example of such
software. We describe the lme function from that library in this chapter,
as well the methods for displaying and comparing fitted models created by
this function.

The first section gives a brief review of the standard linear modeling
facilities in S to introduce the general style of the S modeling functions,
classes, and methods that are used with the nlme library. The lmList func-
tion, used to obtain separate lm fits according to the levels of a grouping
variable, is described and illustrated through examples.

The next section describes the linear mixed-effects modeling capabilities
in S. The S modeling function lme is described, together with its associ-
ated methods. Its use is illustrated through examples, including single- and
multilevel grouped data.

After a model has been fit to the data, it is important to examine whether
the underlying assumptions appear to be violated. Graphical methods and
numerical summaries for assessing the validity of the assumptions in a linear
mixed-effects model are described in §4.3.

An “inside-out” model building approach is adopted here, starting with
individual fits by group, using plots of the individual coefficients to decide
on the random-effects structure, and finally fitting a mixed-effects model
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to the complete data. We make extensive use of examples to introduce and
illustrate the available functions and methods.

In this chapter we will restrict our attention to models in which the
within-group errors are independent and have equal variance. Models with
more complex within-group covariance structures, such as the heteroge-
neous AR(1) structure, will be explored in detail in Chapter 5.

4.1 Fitting Linear Models in S with lm and lmList

S offers a variety of functions and methods for fitting and manipulating
linear models. The two main modeling functions are lm, for linear regression
models, and aov, for analysis of variance models. These two functions have
similar syntax and generate similar fitted objects. We concentrate here on
lm. A typical call to lm is of the form

lm(formula, data)

where formula specifies the linear model to be fitted and data gives a data
frame in which the variables in formula are to be evaluated. Several other
arguments to lm are available and are described in detail in Chambers and
Hastie (1992, Chapter 4) and also in Venables and Ripley (1999, Chapter
6).

The formula language used in the formula argument gives lm great flexi-
bility in specifying linear models. The formulas use a version of the syntax
defined by Wilkinson and Rogers (1973), which translates a linear model
like y = β0 + β1x1 + β2x2 + ε into the S expression

y ~ 1 + x1 + x2

The ~ is read “is modeled as.” The expression on the left-hand side of the
~ specifies the response to be modeled. The expression on the right-hand
side describes the covariates used and the ways they will be combined to
form the model. The expression does not include the coefficients (the β’s).
They are implicit.

The constant term 1 is included by default and does not need to be given
explicitly in the model. If a model without an intercept term is desired, a
-1 must be included in the formula. The covariates can be factors, ordered
factors, continuous variables, matrices, or data frames. Any function of a
covariate that returns one of these types of covariate can also be used on
the right-hand side of the formula. Function calls are also allowed on the
left-hand side of the formula. For example,

log(y) ~ exp(x1) + cos(x2)

is a valid lm formula. An interaction between two covariates is denoted by
the : operator. Nesting of a covariate within a factor is denoted by the
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%in% operator. More detailed references on the formula language include
Chambers and Hastie (1992, Chapter 2) and Venables and Ripley (1999,
§6.2).

The lm function operates in a style common to most modeling functions
in S, in particular lme and nlme. A call to lm returns a fitted object of class
lm to which several generic functions can be applied. These can display
the results of the fit (print and summary), produce diagnostic plots (plot),
return predictions (predict), extract components (fitted, residuals, and
coef), update the original model (update), or compare different fitted ob-
jects (anova).

To illustrate some of these capabilities, we revisit the orthodontic growth
curve data of §1.4. Suppose that we initially ignore the grouping structure
in the data and fit a single linear regression model of distance on age to
the data from all the subjects. The corresponding call to lm is

> fm1Orth.lm <- lm( distance ~ age, Orthodont )

A brief description of the results is provided by the print method which is
called implicitly when the fitted object is to be displayed.

> fm1Orth.lm # equivalent to print( fm1Orth.lm )

Call:

lm(formula = distance~age, data = Orthodont)

Coefficients:

(Intercept) age

16.761 0.66019

Degrees of freedom: 108 total; 106 residual

Residual standard error: 2.5372

Diagnostic plots for assessing the quality of the fit are obtained using the
method for the plot generic function

> par( mfrow=c(3,2) ) # arrange 6 separate plots on a page

> plot( fm1Orth.lm ) # Figure 4.1

There is considerable variability remaining after the fit, as shown in the
residual plots. This is not surprising, as we know that the simple linear
regression model does not represent the structure of the data well. Ap-
parently there are some observations with unusual influence on the fit,
especially observations 39 and 104. Furthermore, the normal probability
plot of the residuals suggests that the error distribution has heavier tails
than expected from normally distributed variates.

Suppose that we now want to test for possible differences in intercept or
in slope between boys and girls. We can use the following model,

distance = β0 + β1 Sex + β2 age + β3 age × Sex + ε, (4.1)
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FIGURE 4.1. Diagnostic plots for the simple linear regression model fit of the
orthodontic growth curve data.
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with Sex representing a binary variable taking values −1 for boys and 1 for
girls. The parameters β1 and β3 represent, respectively, the intercept and
slope gender effects. We can fit this model in S with another call to lm or
by using update on the previous fitted model and redefining the formula.

> fm2Orth.lm <- update( fm1Orth.lm, formula = distance ~ Sex*age )

The expression Sex*age in a linear model formula crosses the Sex and age

factors. This means it generates the main effects for these factors and their
interaction. It is equivalent to Sex + age + Sex:age.

The summary method displays the results in more detail. In particular,
it provides information about the marginal significance of the parameter
estimates.

> summary( fm2Orth.lm )

Call: lm(formula = distance ~Sex + age + Sex:age, data = Orthodont)

Residuals:

Min 1Q Median 3Q Max

-5.62 -1.32 -0.168 1.33 5.25

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 16.857 1.109 15.194 0.000

Sex 0.516 1.109 0.465 0.643

age 0.632 0.099 6.394 0.000

Sex:age -0.152 0.099 -1.542 0.126

Residual standard error: 2.26 on 104 degrees of freedom

Multiple R-Squared: 0.423

F-statistic: 25.4 on 3 and 104 d.o.f., the p-value is 2.11e-12

Correlation of Coefficients:

(Intercept) Sex age

Sex 0.185

age -0.980 -0.181

Sex:age -0.181 -0.980 0.185

The p-values for the Sex and Sex:age coefficients suggest that there is no
gender effect on the orthodontic measurement growth. Because the t-test
is only measuring the marginal significance of each term in the model, we
should proceed with caution and delete one term at a time from the model.
Deleting first the least significant term, Sex, we get:

> fm3Orth.lm <- update( fm2Orth.lm, formula = . ~ . - Sex )

> summary( fm3Orth.lm )

. . .

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 16.761 1.086 15.432 0.000
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FIGURE 4.2. Residual plots corresponding to the fm2Orth.lm fitted object, by
subject.

age 0.640 0.097 6.613 0.000

Sex:age -0.107 0.020 -5.474 0.000

. . .

By convention, the .~. expression represents the formula in the object being
updated and the - operator is used to delete terms from the model.

The Sex:age coefficient now becomes very significant, indicating that the
growth patterns are different for boys and girls. Because the lm fit is not
adequate for these data, we will postpone further discussion of these model-
building issues until the linear mixed-effects model has been described.

The grouped nature of these data, with repeated measures on each sub-
ject at four different years, violates the basic assumption of independence
that underlies the statistical methods used in lm. Boxplots of the fm2Orth.lm

residuals by subject show this.

> bwplot( getGroups(Orthodont)~resid(fm2Orth.lm) ) # Figure 4.2

The most important feature observed in Figure 4.2 is that residuals corre-
sponding to the same subject tend to have the same sign. This indicates the
need for a “subject effect” in the model, which is precisely the motivation
for linear mixed-effects models.
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4.1.1 Separate lm Fits per Group: the lmList Function

The first step in the model-building process for a linear mixed-effects model,
after the functional form of the model has been decided, is choosing which
parameters in the model, if any, should have a random-effect component
included to account for between-group variation. The lmList function and
the methods associated with it are useful for this.

A typical call to lmList is

lmList( formula, data )

where the right-hand side of the formula consists of two parts separated by
the | operator. The first part specifies the linear model to be fitted to each
subset of data; the second part specifies the grouping factor. Any linear
formula allowed in lm can also be used as a model formula with lmList.
The data argument gives the data frame in which to find the variables used
in formula.

Continuing with the analysis of the orthodontic data, we see from a Trellis
plot of these data (Figure 1.11, page 31) that a simple linear regression
model of distance as a function of age may be suitable. We fit this by

> fm1Orth.lis <- lmList( distance ~ age | Subject, Orthodont )

If data is a groupedData object (see Chapter 3), the grouping variable can
be omitted from formula, being extracted from the group formula in data.

> getGroupsFormula( Orthodont )

~ Subject

so an alternative call to lmList to obtain the same fitted object is

> fm1Orth.lis <- lmList( distance ~ age, Orthodont )

Because the lmList function is a generic function (Chambers and Hastie,
1992, Appendix A) with different methods for arguments of different classes,
this same fit can be specified in an even simpler way. If the first argument
to lmList is a groupedData object, the display formula for this object is
used to create a default model formula and to extract the grouping vari-
able expression. Because we are using the same grouping, response, and
covariate in our lmList fit as in the display formula

> formula( Orthodont )

distance ~ age | Subject

we can obtain the same fitted model object with the simpler call

> fm1Orth.lis <- lmList( Orthodont )

Objects returned by lmList are of class lmList, for which several display
and plot methods are available. Table 4.1 lists some of the most important
methods for class lmList. We illustrate the use of some of these methods
below.

The print method displays minimal information about the fitted object.
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TABLE 4.1. Main lmList methods.

augPred predictions augmented with observed values
coef coefficients from individual lm fits
fitted fitted values from individual lm fits
fixef average of individual lm coefficients
intervals confidence intervals on coefficients
lme linear mixed-effects model from lmList fit
logLik sum of individual lm log-likelihoods
pairs scatter-plot matrix of coefficients or random effects
plot diagnostic Trellis plots
predict predictions for individual lm fits
print brief information about the lm fits
qqnorm normal probability plots
ranef deviations of coefficients from average
resid residuals from individual lm fits
summary more detailed information about lm fits
update update the individual lm fits

> fm1Orth.lis

Call:

Model: distance ~ age | Subject

Data: Orthodont

Coefficients:

(Intercept) age

M16 16.95 0.550

. . .

F11 18.95 0.675

Degrees of freedom: 108 total; 54 residual

Residual standard error: 1.31

The residual standard error given in the output is the pooled estimate of
the standard error calculated from the individual lm fits by group. More
detailed output can be obtained using the summary method.

> summary( fm1Orth.lis )

Call:

Model: distance ~ age | Subject

Data: Orthodont

Coefficients:

(Intercept)

Value Std. Error t value Pr(>|t|)

M16 16.95 3.2882 5.15484 3.6952e-06
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FIGURE 4.3. Pairs plot for fm1Orth.lis.

M05 13.65 3.2882 4.15124 1.1817e-04

. . .

F11 0.675 0.29293 2.30428 2.5081e-02

Residual standard error: 1.31 on 54 degrees of freedom

Diagnostic plots can be obtained using the plot method, as described in
§4.3.

The main purpose of the preliminary analysis provided by lmList is to
give an indication of what random-effects structure to use in a linear mixed-
effects model. We must decide which random effects to include in a model
for the data, and what covariance structure these random effects should
have. The pairs method provides one view of the random-effects covariance
structure.

> pairs( fm1Orth.lis, id = 0.01, adj = -0.5 ) # Figure 4.3

The id argument is used to identify outliers—points outside the estimated
probability contour at level 1-id/2 will be marked in the plot. We see that
subject M13 has an unusually low intercept, compensated by a large slope.
There appears to be a negative correlation between the intercept and slope
estimates. Those with experience analyzing regression models may already
have guessed why this pattern occurs. It is because all the data were col-
lected between age 8 and age 14, but the intercept represents the measure-
ment at age 0. This causes a high negative correlation (−0.98) between
estimates of the slopes and the intercepts. We can remove this correlation
by centering the data. In this case, we fit distance as a linear function of
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FIGURE 4.4. Pairs plot for fm2Orth.lis with ages centered at 11 years.

age - 11. The two quantities being estimated then are the distance at 11
years of age and the slope, or growth rate. We fit this revised model with

> fm2Orth.lis <- update( fm1Orth.lis, distance ~ I(age-11) )

The corresponding pairs plot (Figure 4.4) does not suggest any correlation
between the intercept estimates and the slope estimates. It is clear that the
orthodontic distance for subject M13 has grown at an unusually fast rate, but
his orthodontic distance at age 11 was about average. Both intercept and
slope estimates seem to vary with individual, but to see how significantly
they vary among subjects we need to consider the precision of the lmList

estimates. This can be evaluated with the intervals method.

> intervals( fm2Orth.lis )

, , (Intercept)

lower est. upper

M16 21.687 23.000 24.313

M05 21.687 23.000 24.313

M02 22.062 23.375 24.688

. . .

F04 23.562 24.875 26.188

F11 25.062 26.375 27.688

, , I(age - 11)

lower est. upper

M16 -0.037297 0.550 1.1373

M05 0.262703 0.850 1.4373
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FIGURE 4.5. Ninety-five percent confidence intervals on intercept and slope for
each subject in the orthodontic distance growth data.

M02 0.187703 0.775 1.3623

. . .

F04 -0.112297 0.475 1.0623

F11 0.087703 0.675 1.2623

As often happens, displaying the intervals as a table of numbers is not very
informative. We find it much more effective to plot these intervals using

> plot( intervals(fm2Orth.lis) ) # Figure 4.5

The individual confidence intervals in Figure 4.5 give a clear indication
that a random effect is needed to account for subject-to-subject variability
in the intercept. Except for subject M13, all confidence intervals for the
slope overlap, so perhaps this parameter can be regarded as a fixed effect
in the mixed-effects model. We will explore these questions in §4.2.1, while
describing the lme function.

To further illustrate the capabilities of lmList, we consider data on radio-
immunoassays of the protein Insulin-like Growth Factor (IGF-I) presented
in Davidian and Giltinan (1995, §3.2.1, p. 65). The data are from quality
control radioimmunoassays for ten different lots of a radioactive tracer used
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FIGURE 4.6. Estimated concentration of the protein Insulin-like Growth Factor
(IGF-I) versus age of radioactive tracer for ten lots of tracer.

in the calibration of IGF-I concentration measurements. They are described
in more detail in Appendix A.11.

> IGF

Grouped Data: conc ~ age | Lot

Lot age conc

1 1 7 4.90

2 1 7 5.68

. . .

236 10 11 5.30

237 10 13 5.63

This data set, displayed in Figure 4.6, is an example of unbalanced, repeated
measures data. We do not consider these data to be longitudinal because
different tracer samples are used at each radioimmunoassay. This reduces
the potential for serial correlation in the responses.

The primary purpose of the IGF-I experiment was to investigate possible
trends in control values with tracer age, which would indicate tracer decay
within the usual storage period. We can investigate this by testing if the
slope of a simple linear regression model is significantly different from zero.
We must account for both the within-lot and the between-lot variability
when fitting the model and testing for the significance of the slope. A
linear mixed-effects model will do this, but first we investigate the sources
of variation in the data by fitting separate regression lines to each lot. As
the fixed-effects formula coincides with the display formula in IGF, we can
use the simple form of the call to lmList

> fm1IGF.lis <- lmList( IGF )

> coef( fm1IGF.lis )

(Intercept) age

9 5.0986 0.0057276

6 4.6300 0.1700000
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FIGURE 4.7. Ninety-five percent confidence intervals on intercept and slope for
each lot in the IGF data.

1 5.4929 -0.0077901

10 6.0516 -0.0473282

2 5.4764 -0.0144271

8 5.5922 0.0060638

5 5.3732 -0.0095140

4 5.5768 -0.0166578

3 5.2788 0.0100830

7 5.2069 0.0093136

A quick look at the individual coefficient estimates indicates that Lot 6 is
unusual. It has a low intercept compensated by a high slope. Examination
of Figure 4.6 shows that this lot has only four observations and that these
are at nearby tracer ages. The coefficients from the individual fit to this lot
are unreliable. We will return to this issue in §4.2.1.

The plot of the individual 95% confidence intervals, shown in Figure 4.7,
provides some insight about lot-to-lot variation in the parameter estimates.

> plot( intervals(fm1IGF.lis) ) # Figure 4.7

Because of the imbalance in the data, these confidence intervals have very
different lengths. There is little indication of lot-to-lot variation in either
the intercept or the slope estimates, since all confidence intervals overlap.
A fixed-effects model seems adequate to represent the IGF data.

> fm1IGF.lm <- lm( conc ~ age, data = IGF )

> summary( fm1IGF.lm )

. . .

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 5.351 0.104 51.584 0.000

age -0.001 0.004 -0.170 0.865

Residual standard error: 0.833 on 235 degrees of freedom

. . .
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There does not appear to be a significant tracer decay within the 50-day
period over which the data were collected. A linear mixed-effects model for
the IGF data will be considered in the next section.

4.2 Fitting Linear Mixed-Effects Models with lme

The general formulation of a linear mixed-effects model, as well as the es-
timation methods used to fit it, have been described in Chapter 2. In this
section, we concentrate on the capabilities available in the nlme library for
fitting such models. We initially consider lme fits for single-level grouped
data with general covariance structures for the random effects. Fitting mod-
els with patterned covariance structures for the random effects is described
in §4.2.2. In §4.2.3, we describe how to fit multilevel models with lme.

4.2.1 Fitting Single-Level Models

We use the lme function to fit linear mixed-effects models by maximum like-
lihood or by restricted maximum likelihood (the default). Several optional
arguments can be used with this function, but a typical call is

lme( fixed, data, random )

The first argument is a two-sided linear formula specifying the fixed effects
in the model. The third argument is typically given as a one-sided linear
formula, specifying the random effects and the grouping structure in the
model. For the orthodontic data, with the ages centered at 11 years, these
formulas are:

fixed = distance ~ I(age-11), random = ~ I(age-11) | Subject

Note that the response is specified only in the fixed formula. If the random

formula is omitted, its default value is taken as the right-hand side of the
fixed formula. This describes a model in which every fixed effect has an
associated random effect. To use this default, data must be a groupedData
object, so the formula for the grouping structure can be obtained from the
display formula.

The argument data specifies a data frame in which the variables named in
fixed and random can be evaluated. When data inherits from class grouped-
Data, the expression defining the grouping structure can be omitted in
random.

A simple call to lme to fit the orthodontic data model is

> fm1Orth.lme <- lme( distance ~ I(age-11), data = Orthodont,

+ random = ~ I(age-11) | Subject )

or, because Orthodont is a groupedData object and, by default, the random
effects have the same form as the fixed effects
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TABLE 4.2. Main lme methods.

ACF empirical autocorrelation function of within-group residuals
anova likelihood ratio or conditional tests
augPred predictions augmented with observed values
coef estimated coefficients for different levels of grouping
fitted fitted values for different levels of grouping
fixef fixed-effects estimates
intervals confidence intervals on model parameters
logLik log-likelihood at convergence
pairs scatter-plot matrix of coefficients or random effects
plot diagnostic Trellis plots
predict predictions for different levels of grouping
print brief information about the fit
qqnorm normal probability plots
ranef random-effects estimates
resid residuals for different levels of grouping
summary more detailed information about the fit
update update the lme fit
Variogram semivariogram of within-group residuals

> fm1Orth.lme <- lme( distance ~ I(age-11), data = Orthodont )

Because the lme function is generic, the model can be described in several
different ways. For example, there is an lme method for lmList objects. When
an lmList object, such as fm2Orth.lis in §4.1.1, is given as the first argument
to lme, it provides default values for fixed, random, and data. We can create
the same fitted model with the simple call

> fm1Orth.lme <- lme( fm2Orth.lis )

One advantage of this method is that initial estimates for the parameters
in the profiled (restricted-)likelihood of the mixed-effects model are auto-
matically calculated from the lmList object.

The fitted object is of the lme class, for which several methods are avail-
able to display, plot, update, and further explore the estimation results.
Table 4.2 lists the most important methods for class lme. We illustrate the
use of these methods through the examples in the next sections.

Orthodontic Growth Curve

As for all the classes of objects representing fitted models, the print method
for the lme class returns a brief description of the estimation results. It
prints the estimates of the standard deviations and the correlations of the
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random effects, the within-group standard error, and the fixed effects. For
the fm1Orth.lme object it gives

> fm1Orth.lme

Linear mixed-effects model fit by REML

Data: Orthodont

Log-restricted-likelihood: -221.32

Fixed: distance ~ I(age - 11)

(Intercept) I(age - 11)

24.023 0.66019

Random effects:

Formula: ~ I(age - 11) | Subject

Structure: General positive-definite

StdDev Corr

(Intercept) 2.13433 (Inter

I(age - 11) 0.22643 0.503

Residual 1.31004

Number of Observations: 108

Number of Groups: 27

One of the questions of interest for the orthodontic growth data is whether
boys and girls have different growth patterns. We can assess this by fitting
the model

> fm2Orth.lme <- update(fm1Orth.lme,fixed = distance~Sex*I(age-11))

Note that lmList cannot be used to test for gender differences in the or-
thodontic growth data, as it estimates individual coefficients for each sub-
ject. In general, we will not be able to use lmList to test for differences due
to factors that are invariant with respect to the groups.

Some more detailed output is supplied by summary.

> summary( fm2Orth.lme )

Linear mixed-effects model fit by REML

Data: Orthodont

AIC BIC logLik

451.35 472.51 -217.68

Random effects:

Formula: ~ I(age - 11) | Subject

Structure: General positive-definite

StdDev Corr

(Intercept) 1.83033 (Inter

I(age - 11) 0.18035 0.206

Residual 1.31004

Fixed effects: distance ~ Sex + I(age - 11) + Sex:I(age - 11)
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Value Std.Error DF t-value p-value

(Intercept) 23.808 0.38071 79 62.537 <.0001

Sex -1.161 0.38071 25 -3.048 0.0054

I(age - 11) 0.632 0.06737 79 9.381 <.0001

Sex:I(age - 11) -0.152 0.06737 79 -2.262 0.0264

Correlation:

(Intrc Sex I(-11)

Sex 0.185

I(age - 11) 0.102 0.019

Sex:I(age - 11) 0.019 0.102 0.185

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.1681 -0.38594 0.0071041 0.44515 3.8495

Number of Observations: 108

Number of Groups: 27

The small p-values associated with Sex and Sex:I(age-11) in the summary

output indicate that boys and girls have significantly different orthodontic
growth patterns.

The fitted method is used to extract the fitted values from the lme
object, using the methodology described in §1.4.2. By default, the within-
group fitted values, that is, the fitted values corresponding to the individual
coefficient estimates, are produced. Population fitted values, based on the
fixed-effects estimates alone, are obtained setting the level argument to 0

(zero). Both types of fitted values can be simultaneously obtained with
> fitted( fm2Orth.lme, level = 0:1 )

fixed Subject

1 22.616 24.846

2 24.184 26.576

3 25.753 28.307

. . .

Residuals are extracted with the resid method, which also takes a level

argument.
> resid( fm2Orth.lme, level = 1 )

M01 M01 M01 M01 M02 M02 M02 M02

1.1543 -1.5765 0.69274 0.96198 0.22522 -0.29641 -1.318 0.66034

. . .

F10 F10 F10 F10 F11 F11 F11

-1.2233 0.44296 -0.39073 -0.72443 0.28277 -0.37929 1.4587

F11

0.29661

attr(, "label"):

[1] "Residuals (mm)"

By default, the raw, or response residuals, given by the observed responses
minus the fitted values, are calculated. Standardized, or Pearson residuals,
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corresponding to the raw residuals divided by the estimated within-group
standard deviation, are obtained using

> resid( fm2Orth.lme, level = 1, type = "pearson" )

M01 M01 M01 M01 M02 M02 M02

0.88111 -1.2034 0.5288 0.73431 0.17192 -0.22626 -1.0061

. . .

F09 F10 F10 F10 F10 F11 F11

-0.76369 -0.93382 0.33813 -0.29826 -0.55298 0.21585 -0.28952

F11 F11

1.1135 0.22641

attr(, "label"):

[1] "Standardized residuals"

Partial matching of arguments is used throughout the nlme library, so type

= "p" would suffice in this case.
Predicted values are obtained with the predict method. For example, to

predict the orthodontic distance for boy M11 and girl F03 at ages 16, 17 and
18, we first define a data frame with the relevant information

> newOrth <- data.frame( Subject = rep(c("M11","F03"), c(3, 3)),

+ Sex = rep(c("Male", "Female"), c(3, 3)),

+ age = rep(16:18, 2) )

and then use

> predict( fm2Orth.lme, newdata = newOrth )

M11 M11 M11 F03 F03 F03

26.968 27.612 28.256 26.614 27.207 27.8

attr(, "label"):

[1] "Predicted values (mm)"

By default, the within-group predictions are produced. To obtain both
population and within-group predictions we use

> predict( fm2Orth.lme, newdata = newOrth, level = 0:1 )

Subject predict.fixed predict.Subject

1 M11 28.891 26.968

2 M11 29.675 27.612

3 M11 30.459 28.256

4 F03 25.045 26.614

5 F03 25.525 27.207

6 F03 26.005 27.800

The predict.fixed column gives the population predictions, while
predict.Subject gives the within-group predictions. We see that M11 is be-
low the boys’ average, while F11 is above the girls’ average.

The fm2Orth.lme object corresponds to a restricted-maximum likelihood
fit, which tends to produce more conservative estimates of the variance
components. A maximum likelihood fit is obtained with



4.2 Fitting Linear Mixed-Effects Models with lme 151

> fm2Orth.lmeM <- update( fm2Orth.lme, method = "ML" )

> summary( fm2Orth.lmeM )

Linear mixed-effects model fit by maximum likelihood

Data: Orthodont

AIC BIC logLik

443.81 465.26 -213.9

Random effects:

Formula: ~ I(age - 11) | Subject

Structure: General positive-definite

StdDev Corr

(Intercept) 1.75219 (Inter

I(age - 11) 0.15414 0.234

Residual 1.31004

Fixed effects: distance ~ Sex + I(age - 11) + Sex:I(age - 11)

Value Std.Error DF t-value p-value

(Intercept) 23.808 0.37332 79 63.775 <.0001

Sex -1.161 0.37332 25 -3.109 0.0046

I(age - 11) 0.632 0.06606 79 9.567 <.0001

Sex:I(age - 11) -0.152 0.06606 79 -2.307 0.0237

. . .

As expected, the ML estimates of the random-effects standard deviations
are smaller than the corresponding REML estimates. The estimated within-
group residual standard deviations are identical, which generally need not
occur. In general, the fixed-effects estimates obtained using ML and REML
will be similar, though not identical, as in this example. Inferences regarding
the fixed effects are essentially the same for the two estimation methods,
in this case.

It is instructive, at this point, to compare the individual coefficient es-
timates obtained with lmList to those obtained with lme. The function
compareFits can be used for this. The resulting object has a plot method
that displays these coefficients side-by-side.

> compOrth <-

+ compareFits( coef(fm2Orth.lis), coef(fm1Orth.lme) )

> compOrth

, , (Intercept)

coef(fm2Orth.lis) coef(fm1Orth.lme)

M16 23.000 23.078

M05 23.000 23.128

M02 23.375 23.455

. . .

F04 24.875 24.764

F11 26.375 26.156

, , I(age - 11)

M16 0.550 0.59133
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FIGURE 4.8. Individual estimates from an lmList fit and from an lme fit of the
orthodontic distance growth data

M05 0.850 0.68579

M02 0.775 0.67469

. . .

M13 1.950 1.07385

. . .

F04 0.475 0.63032

F11 0.675 0.74338

> plot( compOrth, mark = fixef(fm1Orth.lme) ) # Figure 4.8

The mark argument to the plot method indicates points in the horizontal
axis where dashed vertical lines should be drawn.

The plots in Figure 4.8 indicate that the individual estimates from the lme
fit tend to be “pulled toward” the fixed-effects estimates, when compared
to the lmList estimates. This is typical of linear mixed-effects estimation:
the individual coefficient estimates from the lme fit represent a compromise
between the coefficients from the individual fits corresponding to the lmList

fit and the fixed-effects estimates, associated with the population averages.
For this reason, these estimates are often called shrinkage estimates , in
the sense that they shrink the individual estimates toward the population
average.

The shrinkage toward the fixed effects is particularly noticeable for the
slope estimate of subject M13. As pointed out in §4.2, this subject has an
outlying orthodontic growth pattern, which leads to an abnormally high
estimated slope in the lm fit. The pooling of subjects in the lme estimation
gives a certain amount of robustness to individual outlying behavior. This
feature is better illustrated by the comparison of the predicted values from
the two fits, which is obtained with the comparePred function.

> plot( comparePred(fm2Orth.lis, fm1Orth.lme, length.out = 2),
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FIGURE 4.9. Individual predicted values from separate lm fits and from an lme

fit of the orthodontic distance growth data

+ layout = c(8,4), between = list(y = c(0, 0.5)) ) # Figure 4.9

The length.out argument specifies the number of predictions for each fitted
object. In this case, because the model is a straight line, only two points
are needed. The plot of the individual predictions for the lmList and lme

fits, shown in Figure 4.9, clearly indicates the greater sensitivity of the
individual lm fits to extreme observations.

It is also interesting to compare the fm2Orth.lme and the fmOrth.lmeM

objects, corresponding, respectively, to REML and ML fits of the same
model. We compare the estimated random effects for each fit with the
compareFits function.

> plot( compareFits(ranef(fm2Orth.lme), ranef(fm2Orth.lmeM)),

+ mark = c(0, 0) ) # Figure 4.10

The ML random-effects estimates tend to be closer to zero than the REML
estimates, especially the slope random effects. This will usually occur in
mixed-effects models, because REML estimation generally produces larger
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FIGURE 4.10. Individual random-effects estimates from restricted maximum like-
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growth data

estimates for the random-effects variances which, in turn, result in less
shrinkage toward zero for the random-effects estimates.

We can also compare the lme fit to an lm fit without random effects:

> fm4Orth.lm <- lm( distance ~ Sex * I(age-11), Orthodont )

> summary( fm4Orth.lm )

. . .

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 23.808 0.221 107.731 0.000

Sex -1.161 0.221 -5.251 0.000

I(age - 11) 0.632 0.099 6.394 0.000

Sex:I(age - 11) -0.152 0.099 -1.542 0.126

Residual standard error: 2.26 on 104 degrees of freedom

. . .

The pointwise estimates of the fixed effects are almost identical, but their
standard errors are quite different. The lm fit has smaller standard errors
for the (Intercept) and Sex fixed effects and larger standard errors for the
fixed effects involving age. This is because the model used in lm ignores the
group structure of the data and incorrectly combines the between-group
and the within-group variation in the residual standard error. Fixed effects
that are associated with invariant factors (factors that do not vary within
groups) are actually estimated with less precision than suggested by the lm

output, because the contribution of the between-group variation to their
standard error is larger than that included in the lm residual standard
error. Conversely, the precision of the fixed effects related to variables that
vary within group are less affected by the between-group variation. In the
terminology of split-plot experiments, (Intercept) and Sex are associated
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with whole-plot treatments and should be compared to the whole-plot error,
while I(age−11) and Sex:I(age−11) are related to subplot treatments and
should be tested against the subplot error.

The anova method can be used to compare lme and lm objects.

> anova( fm2Orth.lme, fm4Orth.lm )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Orth.lme 1 8 451.35 472.51 -217.68

fm4Orth.lm 2 5 496.33 509.55 -243.17 1 vs 2 50.977 <.0001

In this case, as evidenced by the low p-value for the likelihood ratio test,
the linear mixed-effects model provides a much better description of the
data than the linear regression model.

Radioimmunoassays of IGF-I

The linear mixed-effects model corresponding to the simple linear regression
of the estimated concentration of IGF-I (yij) in the jth tracer sample within
the ith lot on the age of the tracer sample (xij) is

yij = (β0 + b0i) + (β1 + b1i)xij + εij ,

bi =
[

b0i

b1i

]
∼ N (0,Ψ) , εij ∼ N (

0, σ2
)
,

(4.2)

where β0 and β1 are, respectively, the fixed effects for the intercept and the
slope; the bi are the random-effects vectors, assumed to be independent
for different lots; and the εij are the independent, identically distributed
within-group errors, assumed to be independent of the random effects.

We fit the linear mixed-effects model (4.2) with

> fm1IGF.lme <- lme( fm1IGF.lis )

> fm1IGF.lme

Linear mixed-effects model fit by REML

Data: IGF

Log-restricted-likelihood: -297.18

Fixed: conc ~ age

(Intercept) age

5.375 -0.0025337

Random effects:

Formula: ~ age | Lot

Structure: General positive-definite

StdDev Corr

(Intercept) 0.0823594 (Inter

age 0.0080862 -1

Residual 0.8206310

Number of Observations: 237

Number of Groups: 10
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The fixed-effects estimates are similar to the ones obtained with the sin-
gle lm fit of §4.1.1. The within-group standard errors are also similar in
the two fits, which suggests that not much is gained by incorporating ran-
dom effects into the model. The estimated correlation between the random
effects (� −1) gives a clear indication that the estimated random-effects
covariance matrix is ill-conditioned, suggesting that the model may be over-
parameterized. The confidence intervals for the standard deviations and
correlation coefficient reinforce the indication of overparameterization.

> intervals( fm1IGF.lme )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 5.163178 5.3749606 5.5867427

age -0.012471 -0.0025337 0.0074039

Random Effects:

Level: Lot

lower est. upper

sd((Intercept)) 0.0011710 0.0823594 5.792715

sd(age) 0.0013177 0.0080862 0.049623

cor((Intercept),age) -1.0000000 -0.9999640 1.000000

Within-group standard error:

lower est. upper

0.7212 0.82063 0.93377

The 95% confidence interval for the correlation coefficient covers all possible
values for this parameter. There is also evidence of large variability in the
estimates of the (Intercept) and age standard deviations. These issues are
explored in more detail in §4.3.

The primary question of interest in the IGF-I study is whether the tracer
decays with age. We can investigate it with the summary method.

> summary( fm1IGF.lme )

. . .

Fixed effects: conc ~ age

Value Std.Error DF t-value p-value

(Intercept) 5.3750 0.10748 226 50.011 <.0001

age -0.0025 0.00504 226 -0.502 0.6159

. . .

As with the lm results of §4.1.1, there is no significant evidence of tracer
decay with age, for the 50-day period in which the observations were col-
lected. Note that the standard errors for the estimates are very similar to
the ones in the lm fit.

The plots of the coefficient estimates corresponding to fm1IGF.lis and
fm1IGF.lme are shown in Figure 4.11. Once again we observe a “shrinkage
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FIGURE 4.11. Individual estimates from separate lm fits and from an lme fit of
the IGF-I radioimmunoassays data.

toward the population mean” pattern for the individual lme coefficients.
The IGF-I data contain several outlying observations and the dramatic
shrinkage in the coefficient estimates observed for some of the lots reflects
the greater robustness of the lme fit. This is better illustrated by comparing
the individual predictions under each fit, as presented in Figure 4.12. The
differences in the predicted values for the two fits are particularly dramatic
for lots 6 and 10, both of which have observations only over a very limited
time range. For lot 6 a single low observation at one of the earliest times
causes a dramatic change in the estimate of both the slope and intercept
when this lot is fit by itself. When it is combined with the other lots in a
mixed-effects model the effect of this single observation is diminished. Also
notice that the outlying observations for lots 4, 3, and 7 have very little
effect on the parameter estimates because in each of these lots there are
several other observations at times both above and below the times of the
aberrant observations.

4.2.2 Patterned Variance–Covariance Matrices for the
Random Effects: The pdMat Classes

The models considered in §4.2.1 do not assume any special form for the
random-effects variance–covariance matrix Ψ. In many practical applica-
tions, however, we will wish to restrict Ψ to special forms of variance–
covariance matrices that are parameterized by fewer parameters. For exam-
ple, we may be willing to assume that the random effects are independent,
in which case Ψ would be diagonal, or that, in addition to being indepen-
dent, they have the same variance, in which case Ψ would be a multiple of
the identity matrix.

The nlme library provides several classes of positive-definite matrices,
the pdMat classes, that are used to specify patterned variance–covariance
matrices for the random effects. Table 4.3 lists the standard pdMat classes
included in the nlme library. The default class of positive-definite matrix
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TABLE 4.3. Standard pdMat classes.

pdBlocked block-diagonal
pdCompSymm compound-symmetry structure
pdDiag diagonal
pdIdent multiple of an identity
pdSymm general positive-definite matrix

for the random effects in the nlme library is pdSymm, corresponding to a
general symmetric positive-definite matrix.

A function that creates an object of a given class is called a constructor
for that class. The pdMat constructors have the same name as their cor-
responding classes so, for example, the constructor for the pdDiag class is
also called pdDiag.

Because initial values for Ψ can be derived internally in the lme function,
the pdMat constructors are typically used only to specify a pdMat class and
a formula for the random-effects model. For example,

> pd1 <- pdDiag( ~ age )

> pd1

Uninitialized positive definite matrix structure of class pdDiag

> formula( pd1 )

~ age
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creates an object of class pdDiag, with a formula attribute specifying a
random-effects model, but with no initial value assigned to the matrix.

Radioimmunoassays of IGF-I

The pdMat object returned by the constructor is passed through the random

argument to the lme function. For example, to specify a diagonal variance–
covariance structure for the random effects in the IGF-I example of §4.2.1,
we use

> fm2IGF.lme <- update( fm1IGF.lme, random = pdDiag(~age) )

> fm2IGF.lme

Linear mixed-effects model fit by REML

Data: IGF

Log-restricted-likelihood: -297.4

Fixed: conc ~ age

(Intercept) age

5.369 -0.0019301

Random effects:

Formula: ~ age | Lot

Structure: Diagonal

(Intercept) age Residual

StdDev: 0.00031074 0.0053722 0.8218

. . .

With the exception of the standard deviation for the (Intercept) random
effect, all estimates are similar to the ones in fm1IGF.lme. We can compare
the two fits with

> anova( fm1IGF.lme, fm2IGF.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1IGF.lme 1 6 606.37 627.12 -297.18

fm2IGF.lme 2 5 604.80 622.10 -297.40 1 vs 2 0.43436 0.5099

The large p-value for the likelihood ratio test and the smaller AIC and
BIC values for the simpler model fm2IGF.lme indicate that it should be
preferred.

Because IGF is a groupedData object, the grouping structure does not
need to be given explicitly in random. In cases when both the grouping
structure and a pdMat class are to be declared in random, we use a named
list, with the name specifying the grouping factor.

> update( fm1IGF.lme, random = list(Lot = pdDiag(~ age)) )

The value argument to the constructor is used to assign a value to the
positive-definite matrix. In this case, the random-effects formula needs to
be specified through the form argument.

> pd2 <- pdDiag( value = diag(2), form = ~ age )
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> pd2

Positive definite matrix structure of class pdDiag representing

[,1] [,2]

[1,] 1 0

[2,] 0 1

> formula( pd2 )

~ age

This can be used to provide initial values for the scaled variance–covariance
matrix of the random effects, D = Ψ/σ2 in the lme call.

> lme( conc ~ age, IGF, pdDiag(diag(2), ~age) )

Split-Plot Experiment on Varieties of Oats

We now revisit the Oats example of §1.6 and describe alternative ways of
analyzing the split-plot data using pdMat classes. The final mixed-effects
model resulting from the analysis presented in that section is

yijk = β0 + β1Nk + bi + bi,j + εijk, i = 1, . . . , 6,

j = 1, . . . 3, k = 1, . . . , 4,

εijk ∼ N (0, σ2), bi ∼ N (
0, σ2

1

)
, bi,j ∼ N (

0, σ2
2

)
,

(4.3)

where i indexes the Blocks, j indexes the Varieties, and k indexes the Ni-
trogen concentrations Nk. The intercept is represented by β0, the Nitrogen
slope by β1 and the yield by yijk. The bi denote the Block random effects,
the bi,j denote the Variety within Block random effects, and the εijk de-
note the within-group errors. This is an example of a two-level mixed-effects
model, with the bi,j random effects nested within the bi random effects.

The multilevel model capabilities of lme were used in §1.6 to fit (4.3). We
recommend fitting the model this way, as it uses efficient computational
algorithms designed specifically for this type of model. Nevertheless, to
further illustrate the use of the pdMat classes, we consider equivalent single-
level representations of the same model.

By defining

yi =

⎡⎢⎢⎢⎣
yi11

yi12

...
yi34

⎤⎥⎥⎥⎦ , εi =

⎡⎢⎢⎢⎣
εi11

εi12

...
εi34

⎤⎥⎥⎥⎦ , β =
[

β0

β1

]
, b∗i =

⎡⎣ bi + bi,1

bi + bi,2

bi + bi,3

⎤⎦ ,

Xi =

⎡⎣ 1
1
1

⎤⎦⊗

⎡⎢⎢⎣
N1 0 0 0
0 N2 0 0
0 0 N3 0
0 0 0 N4

⎤⎥⎥⎦ , Zi =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦⊗

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ ,
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with ⊗ denoting the Kronecker product, we can rewrite (4.3) as the single-
level model

yi = Xiβ + Zib
∗
i + εi, b∗i ∼ N (0,Ψ∗) , εi ∼ N (

0, σ2I
)
, (4.4)

where

Ψ∗ =

⎡⎣ σ2
1 + σ2

2 σ2
1 σ2

1

σ2
1 σ2

1 + σ2
2 σ2

1

σ2
1 σ2

1 σ2
1 + σ2

2

⎤⎦ .

The Ψ∗ matrix has a compound symmetry structure, represented in nlme
by the pdCompSymm class. We fit (4.4) with

> fm4OatsB <- lme( yield ~ nitro, data = Oats,

+ random =list(Block = pdCompSymm(~ Variety - 1)))

> summary( fm4OatsB )

Linear mixed-effects model fit by REML

Data: Oats

AIC BIC logLik

603.04 614.28 -296.52

Random effects:

Formula: ~ Variety - 1 | Block

Structure: Compound Symmetry

StdDev Corr

VarietyGolden Rain 18.208

VarietyMarvellous 18.208 0.635

VarietyVictory 18.208 0.635 0.635

Residual 12.867

Fixed effects: yield ~ nitro

Value Std.Error DF t-value p-value

(Intercept) 81.872 6.9453 65 11.788 <.0001

nitro 73.667 6.7815 65 10.863 <.0001

Correlation:

(Intr)

nitro -0.293

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.7438 -0.66475 0.017103 0.54299 1.803

Comparing this with the output of summary(fm4Oats) in §1.6, we see that,
except for the random-effects variance–covariance components, the results
are nearly identical.

Verifying the equivalence of the random-effects variance–covariance com-
ponents requires some extra work. Note that the variance in the com-
pound symmetric matrix Ψ∗ is σ2

b∗ = σ2
1 + σ2

2 and the correlation is
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ρ = σ2
1/
(
σ2

1 + σ2
2

)
. Therefore, σ2

1 = ρσ2
b∗ and σ2

2 = σ2
b∗ − σ2

1 . We can
then derive the REML estimates of σ1 and σ2 from fm4OatsB

σ̂1 =
√

0.63471 × 18.208 = 14.506, σ̂2 =
√

18.2082 − 14.5062 = 11.005,

verifying that they are identical to the estimates corresponding to fm4Oats

in §1.6. Because the REML estimate of ρ in the summary(fm4OatsB) output
was displayed with only three decimal places, we used

> corMatrix( fm4OatsB$modelStruct$reStruct$Block )[1,2]

[1] 0.63471

to obtain the more accurate ρ̂ used to obtain σ̂1 and σ̂2.
Yet another representation of (4.3) as a single-level model is obtained by

defining

b∗∗
i =

⎡⎢⎢⎣
bi

bi,1

bi,2

bi,3

⎤⎥⎥⎦ , W i =

⎡⎣ 1 1 0 0
1 0 1 0
1 0 0 1

⎤⎦⊗

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ ,

Ψ∗∗ =

⎡⎢⎢⎣
σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

2 0
0 0 0 σ2

2

⎤⎥⎥⎦
and writing

yi = Xiβ + W ib
∗∗
i + εi, b∗∗i ∼ N (0,Ψ∗∗) , εi ∼ N (

0, σ2I
)
. (4.5)

The parameters in (4.3) are equivalent to those in (4.5).
The Ψ∗∗ matrix is structured as a block diagonal matrix, with blocks σ2

1

and σ2
2I. The pdBlocked class is used to represent block diagonal matrices in

the nlme library. It takes as an argument a list of pdMat objects, specifying
the different blocks in the order they appear in the main diagonal of the
corresponding block-diagonal matrix. In the case of Ψ∗∗, both blocks are
expressed as multiples of the identity matrix, represented by the pdIdent
class in nlme. We can then fit (4.5) with

> fm4OatsC <- lme( yield ~ nitro, data = Oats,

+ random=list(Block=pdBlocked(list(pdIdent(~ 1),

+ pdIdent(~ Variety-1)))))

> summary( fm4OatsC )

Linear mixed-effects model fit by REML

Data: Oats

AIC BIC logLik

603.04 614.28 -296.52

Random effects:
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Composite Structure: Blocked

Block 1: (Intercept)

Formula: ~ 1 | Block

(Intercept)

StdDev: 14.505

Block 2: VarietyGolden Rain, VarietyMarvellous, VarietyVictory

Formula: ~ Variety - 1 | Block

Structure: Multiple of an Identity

VarietyGolden Rain VarietyMarvellous VarietyVictory

StdDev: 11.005 11.005 11.005

Residual

StdDev: 12.867

Fixed effects: yield ~ nitro

Value Std.Error DF t-value p-value

(Intercept) 81.872 6.9451 65 11.788 <.0001

nitro 73.667 6.7815 65 10.863 <.0001

Correlation:

(Intr)

nitro -0.293

. . .

Comparing this to the output of summary(fm4Oats) in §1.6 we verify that,
as expected, the two fits are nearly identical.

Cell Culture Bioassay with Crossed Random Effects

Data grouped according to crossed classification factors induce a variance–
covariance structured for the observations which can be flexibly represented
by mixed-effects models with crossed random effects. These models can also
be fit with the lme function. However, unlike in the case of nested random
effects, the underlying estimation algorithm is not optimized to take full
advantage of the sparse structure of design matrices for crossed random
effects.

The crossed random-effects structure is represented in lme by a combina-
tion of pdBlocked and pdIdent objects. We illustrate its use with an example
of a cell culture plate bioassay conducted at Searle, Inc. The data, courtesy
of Rich Wolfe and David Lansky, come from a bioassay run on a cell culture
plate with two blocks of 30 wells each. The wells in each block are labeled
according to six rows and five columns, corresponding to a crossed clas-
sification. Within each block, six different samples are randomly assigned
to rows and five serial dilutions are randomly assigned to columns. The
response variable is the logarithm of the optical density measure on a well.
The cells are treated with a compound that they metabolize to produce
the stain. Only live cells can make the stain, so the optical density is a
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FIGURE 4.13. Log-optical density measured on the central 60 wells of a cell
culture plate. The wells are divided into two blocks with six rows and five columns,
with samples being assigned to rows and dilutions to columns. Panels in the plot
correspond to the serial dilutions and symbols refer to the samples.

measure of the number of cells that are alive and healthy. These data are
described in detail in Appendix A.2 and are included in the nlme library
as the groupedData object Assay.

The plot of the log-optical densities, displayed in Figure 4.13, indicates
that the response increases with dilution and is generally lower for treat-
ments a and e. There does not appear to be any interactions between sample
and dilution.

A full factorial model is used to represent the fixed effects and three
random effects are used to account for block, row, and column effects, with
the last two random effects nested within block, but crossed with each
other. The corresponding mixed-effects model for the log-optical density
yijk in the jth row, kth column of the ith block, for i = 1, . . . , 2, j =
1, . . . , 6, k = 1, . . . , 5, is

yijk = µ + αj + βk + γjk + bi + rij + cik + εijk,

bi ∼ N (
0, σ2

1

)
, rij ∼ N (

0, σ2
2

)
, cik ∼ N (

0, σ2
3

)
, εijk ∼ N (

0, σ2
)
.

(4.6)

The fixed effects in (4.6) are µ, the grand mean, αj and βk, the sample and
dilution main effects, and γjk, the sample-dilution interaction. To ensure
identifiability of the fixed effects, it is conventioned that α1 = β1 = γ1k =
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γj1 = 0, for j = 1, . . . , 6, k = 1, . . . , 5. The random effects in (4.6) are
bi, the block random effect, rij , the row within block random effect, and
cik, the column within block random effect. All random effects are assumed
independent of each other and independent of the within-groups errors εijk.

The crossed random-effects structure in (4.6) can alternatively be rep-
resented as the random-effects structure corresponding to a single-level
model, with block as the single grouping variable, and random-effects vec-
tor bi = (bi, ri1, . . . , ri6, ci1, . . . , ci5)

T , i = 1, . . . , 2, with

Var (bi) =

⎡⎣σ2
1 0 0
0 σ2

2I 0
0 0 σ2

3I

⎤⎦ .

That is, bi has a block diagonal variance–covariance matrix, with diagonal
blocks given by multiples of the identity matrix. This type of variance–
covariance structure is represented in S by a pdBlocked object with pdIdent
elements. We fit the linear mixed-effects model (4.6) with lme as

> ## establishing the desired parameterization for contrasts

> options( contrasts = c("contr.treatment", "contr.poly") )

> fm1Assay <- lme( logDens ~ sample * dilut, Assay,

+ random = pdBlocked(list(pdIdent(~ 1), pdIdent(~ sample - 1),

+ pdIdent(~ dilut - 1))) )

> fm1Assay

Linear mixed-effects model fit by REML

Data: Assay

Log-restricted-likelihood: 38.536

Fixed: logDens ~ sample * dilut

(Intercept) sampleb samplec sampled samplee samplef dilut2

-0.18279 0.080753 0.13398 0.2077 -0.023672 0.073569 0.20443

dilut3 dilut4 dilut5 samplebdilut2 samplecdilut2

0.40586 0.57319 0.72064 0.0089389 -0.0084953

sampleddilut2 sampleedilut2 samplefdilut2 samplebdilut3

0.0010793 -0.041918 0.019352 -0.025066

samplecdilut3 sampleddilut3 sampleedilut3 samplefdilut3

0.018645 0.0039886 -0.027713 0.054316

samplebdilut4 samplecdilut4 sampleddilut4 sampleedilut4

0.060789 0.0052598 -0.016486 0.049799

samplefdilut4 samplebdilut5 samplecdilut5 sampleddilut5

0.063372 -0.045762 -0.072598 -0.17776

sampleedilut5 samplefdilut5

0.013611 0.0040234

Random effects:

Composite Structure: Blocked

Block 1: (Intercept)

Formula: ~ 1 | Block
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(Intercept)

StdDev: 0.0098084

Block 2: samplea, sampleb, samplec, sampled, samplee, samplef

Formula: ~ sample - 1 | Block

Structure: Multiple of an Identity

samplea sampleb samplec sampled samplee samplef

StdDev: 0.025289 0.025289 0.025289 0.025289 0.025289 0.025289

Block 3: dilut1, dilut2, dilut3, dilut4, dilut5

Formula: ~ dilut - 1 | Block

Structure: Multiple of an Identity

dilut1 dilut2 dilut3 dilut4 dilut5

StdDev: 0.0091252 0.0091252 0.0091252 0.0091252 0.0091252

Residual

StdDev: 0.041566

Number of Observations: 60

Number of Groups: 2

The REML estimates of the standard deviation components in this example
are σ̂1 = 0.0098, σ̂2 = 0.0253, σ̂3 = 0.0091, and σ̂ = 0.0416.

The primary question of interest for this experiment is whether there are
significant differences among the fixed effects, which we investigate with

> anova( fm1Assay )

numDF denDF F-value p-value

(Intercept) 1 29 538.03 <.0001

sample 5 29 11.21 <.0001

dilut 4 29 420.80 <.0001

sample:dilut 20 29 1.61 0.1193

As suggested by Figure 4.13, there are significant differences among samples
and among dilutions, but no significant interaction between the two factors.

The small estimated standard deviations in the fm1Assay fit suggest that
some, or perhaps all, of the random effects can be eliminated from (4.6).
However, because our purpose here is just to illustrate the use of lme with
crossed random effects, we do not pursue the analysis of the Assay data any
further.

New pdMat classes, representing user-defined positive-definite matrix
structures, can be added to the set of standard classes in Table 4.3 and
used with the lme and nlme functions. For this, one must specify a con-
structor function, generally with the same name as the class, and, at a
minimum, methods for the functions pdConstruct, pdMatrix, and coef. The
pdDiag constructor and methods can serve as templates for these.
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4.2.3 Fitting Multilevel Models

Linear mixed-effects models with nested grouping factors, generally called
multilevel models (Goldstein, 1995) or hierarchical linear models (Bryk and
Raudenbush, 1992), can be fitted with the lme function, just like single-level
models. The only difference is in the specification of the random argument,
which must provide information about the nested grouping structure and
the random-effects model at each level of grouping. We describe the multi-
level model capabilities in lme through the analyses of two examples from
Integrated Circuiting (IC) manufacturing.

Thickness of Oxide Coating on a Semiconductor

Littell et al. (1996) describe data from a passive data collection study in the
IC industry in which the thickness of the oxide coating layer was measured
on three randomly selected sites in each of three wafers from each of eight
lots randomly selected from the population of lots. There are two nested
grouping levels in this example: lot and wafer within lot. The objective
of the study was to estimate the variance components associated with the
different levels of nesting and the within-group error, to evaluate assignable
causes of variability in the oxide deposition process. These data are also
described in Appendix A.20 and are included in the groupedData object
Oxide in the nlme library.

The plot of the data, shown in Figure 4.14, suggests that the lot-to-
lot variability of the oxide layer thickness is greater than the wafer-to-
wafer variability within a lot, which, in turn, is greater than the site-to-site
variation within a wafer.

A multilevel model to describe the oxide thickness yijk measured on the
kth site of the jth wafer within the ith lot is

yijk = µ + bi + bi,j + εijk, i = 1, . . . , 8, j, k = 1, 2, 3,

bi ∼ N (
0, σ2

1

)
, bi,j ∼ N (

0, σ2
2

)
, εijk ∼ N (

0, σ2
)
,

(4.7)

where the lot random effects bi are assumed to be independent for different
i, the wafer within lot random effects bi,j are assumed to be independent
for different i and j and to be independent of the bi, and the within-group
errors εijk are assumed to be independent for different i, j, and k and to
be independent of the random effects.

The most general form of the argument random when lme is used to fit
a multilevel model is as a named list where the names define the grouping
factors and the formulas describe the random-effects models at each level.
The order of nesting is taken to be the order of the elements in the list,
with the outermost level appearing first. In the case of (4.7) we write

random = list( Lot = ~ 1, Wafer = ~ 1 )

When the random-effects formulas are the same for all levels of grouping,
we can replace the named list by a one-sided formula with the common
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FIGURE 4.14. Thickness of oxide layer measured on different sites of wafers
selected from a sample of manufacturing lots. Symbols denote different wafers
within the same lot.

random-effects formula and an expression defining the grouping structure
separated by a | operator.

random = ~ 1 | Lot/Wafer

Because Oxide contains this grouping structure in its display formula

> formula( Oxide )

Thickness ~ 1 | Lot/Wafer

the grouping structure expression can be omitted from random. In fact,
because, by default, random is equal to the right-hand side of the fixed

formula, ~1 in this case, we can omit random all together from the lme call
and fit the model with

> fm1Oxide <- lme( Thickness ~ 1, Oxide )

> fm1Oxide

Linear mixed-effects model fit by REML

Data: Oxide

Log-restricted-likelihood: -227.01

Fixed: Thickness ~ 1

(Intercept)

2000.2

Random effects:

Formula: ~ 1 | Lot

(Intercept)

StdDev: 11.398
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Formula: ~ 1 | Wafer %in% Lot

(Intercept) Residual

StdDev: 5.9888 3.5453

Number of Observations: 72

Number of Groups:

Lot Wafer %in% Lot

8 24

The REML estimates of the variance components are the square of the
standard deviations in the fm1Oxide output: σ̂2

1 = 11.3982 = 129.91, σ̂2
2 =

5.98882 = 35.866, and σ̂2 = 3.54532 = 12.569. We can assess the variability
in these estimates with the intervals method.

> intervals( fm1Oxide, which = "var-cov" )

Approximate 95% confidence intervals

Random Effects:

Level: Lot

lower est. upper

sd((Intercept)) 5.0277 11.398 25.838

Level: Wafer

lower est. upper

sd((Intercept)) 3.4615 5.9888 10.361

Within-group standard error:

lower est. upper

2.6719 3.5453 4.7044

All intervals are bounded well away from zero, indicating that the two
random effects should be kept in (4.7). We can test, for example, if the
wafer within lot random effect can be eliminated from the model with

> fm2Oxide <- update( fm1Oxide, random = ~ 1 | Lot)

> anova( fm1Oxide, fm2Oxide )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Oxide 1 4 462.02 471.07 -227.01

fm2Oxide 2 3 497.13 503.92 -245.57 1 vs 2 37.11 <.0001

The very high value of the likelihood ratio test statistic confirms that the
significance of that term in the model.

As with single-level fits, estimated BLUPs of the individual coefficients
are obtained using coef, but, because of the multiple grouping levels, a
level argument is used to specify the desired grouping level. For example,
to get the estimated average oxide layer thicknesses by lot, we use

> coef( fm1Oxide, level = 1 )

(Intercept)

1 1996.7

2 1988.9
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3 2001.0

4 1995.7

5 2013.6

6 2019.6

7 1992.0

8 1993.8

while the estimated average thicknesses per wafer are obtained with

> coef( fm1Oxide, level = 2 ) # default when level is omitted

(Intercept)

1/1 2003.2

1/2 1984.7

1/3 2001.1

. . .

8/2 1995.2

8/3 1990.7

The level argument is used similarly with the methods fitted, predict,
ranef, and resid, with the difference that multiple levels can be simultane-
ously specified. For example, to get the estimated random effects at both
grouping levels we use

> ranef( fm1Oxide, level = 1:2 )

Level: Lot

(Intercept)

1 -3.46347

2 -11.22164

. . .

8 -6.38538

Level: Wafer %in% Lot

(Intercept)

1/1 6.545993

1/2 -11.958939

. . .

8/3 -3.074863

These methods are further illustrated in §4.3, when we describe tools for
assessing the adequacy of fitted models.

Manufacturing of Analog MOS Circuits

The Wafer data, introduced in §3.3.4 and shown in Figure 4.15, provide
another example of multilevel data in IC manufacturing and are used here
to illustrate the capabilities in lme when covariates are used in a multilevel
model. As described in Appendix A.30, these data come from an experi-
ment conducted at the Microelectronics Division of Lucent Technologies to
study different sources of variability in the manufacturing of analog MOS
circuits. The intensity of current (in mA) at 0.8, 1.2, 1.6, 2.0, and 2.4
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FIGURE 4.15. Current versus voltage curves for each site, by wafer.

V was measured on 80µm×0.6µm n-channel devices. Measurements were
made on eight sites in each of ten wafers selected from the same lot. Two
levels of nesting are present in these data: wafer and site within wafer. The
main objective of the experiment was to construct an empirical model for
simulating the behavior of similar circuits.

From Figure 4.15, it appears that current can be modeled as a quadratic
function of voltage. We initially consider a full mixed-effects model, with all
terms having random effects at both the wafer and the site within wafer
levels. The corresponding multilevel model for the intensities of current
yijk at the kth level of voltage vk in the jth site within the ith wafer is
expressed, for i = 1, . . . , 10, j = 1, . . . , 8, and k = 1, . . . , 5 as

yijk = (β0 + b0i + b0i,j) + (β1 + b1i + b1i,j) vk + (β2 + b2i + b2i,j) v2
k + εijk,

bi =

⎡⎣ b0i

b1i

b2i

⎤⎦ ∼ N (0,Ψ1) , bi,j =

⎡⎣ b0i,j

b1i,j

b2i,j

⎤⎦ ∼ N (0,Ψ2) ,

εijk ∼ N (
0, σ2

)
.

(4.8)

The parameters β0, β1, and β2 are the fixed effects in the quadratic model,
bi is the wafer-level random-effects vector, bi,j is the site within wafer-
level random-effects vector, and εijk is the within-group error. As usual,
the bi are assumed to be independent for different i, the bi,j are assumed
to be independent for different i, j and independent of the bi, and the εijk

are assumed to be independent for different i, j, k and independent of the
random effects.
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The large number of parameters in (4.8)—twelve variance–covariance
components for the random effects—makes the optimization of the profiled
log-restricted-likelihood quite difficult and unstable. To make the optimiza-
tion more stable during this initial model-building phase, we simplify (4.8)
by assuming that Ψ1 and Ψ2 are diagonal matrices.

> fm1Wafer <- lme( current ~ voltage + voltage^2, data = Wafer,

+ random = list(Wafer = pdDiag(~voltage + voltage^2),

+ Site = pdDiag(~voltage + voltage^2)))

> summary( fm1Wafer )

Linear mixed-effects model fit by REML

Data: Wafer

AIC BIC logLik

-281.51 -241.67 150.75

Random effects:

Formula: ~ voltage + voltage^2 | Wafer

Structure: Diagonal

(Intercept) voltage I(voltage^2)

StdDev: 0.00047025 0.18717 0.025002

Formula: ~ voltage + voltage^2 | Site %in% Wafer

Structure: Diagonal

(Intercept) voltage I(voltage^2) Residual

StdDev: 0.00038085 0.13579 1.5202e-05 0.11539

Fixed effects: current ~ voltage + voltage^2

Value Std.Error DF t-value p-value

(Intercept) -4.4612 0.051282 318 -86.992 <.0001

voltage 5.9034 0.092700 318 63.683 <.0001

I(voltage^2) 1.1704 0.022955 318 50.987 <.0001

Correlation:

(Intr) voltag

voltage -0.735

I(voltage^2) 0.884 -0.698

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.8967 -0.53534 0.024858 0.79853 1.7777

Number of Observations: 400

Number of Groups:

Wafer Site %in% Wafer

10 80

Because Wafer is a groupedData object and the random-effects model is
identical for both levels of grouping, we could have used

random = pdDiag( ~ voltage + voltage^2 )
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in the lme call to produce fm1Wafer. In this case, the object specified in
random is repeated for all levels of grouping.

The very small estimated standard deviations for the (Intercept) ran-
dom effect at both levels of grouping and for the voltage^2 random effect
at the Site %in% Wafer level suggest that these terms could be eliminated
from (4.8). Before pursuing this any further, we should assess the ade-
quacy of the fitted model. This is considered in detail in §4.3 and reveals
that important terms are omitted from the fixed-effects model in (4.8). We
therefore postpone this discussion until §4.3 and proceed with the analysis
of fm1Wafer in this section to further illustrate the use of lme methods with
multilevel objects.

As with single-level objects, the fitted method is used to extract the
fitted values, with the level argument being used to specify the desired
level(s) of grouping. For example, to get the population level fitted values,
we use

> fitted( fm1Wafer, level = 0 )

1 1 1 1 1 1 1 1 1

1.0106 4.3083 7.9805 12.027 16.448 1.0106 4.3083 7.9805 12.027

. . .

10 10 10 10

4.3083 7.9805 12.027 16.448

attr(, "label"):

[1] "Fitted values (mA)"

Similarly, residuals are extracted using the resid method. For example, the
Wafer and Site %in% Wafer residuals are obtained with

> resid( fm1Wafer, level = 1:2 )

Wafer Site

1 0.0615008 0.0680629

2 -0.1898559 -0.1800129

. . .

399 0.0051645 0.1187074

400 -0.2076543 -0.0714028

The predict method is used to obtain predictions for new observations.
For example, to obtain the predicted currents at 1.0 V, 1.5 V, 3.0 V and
3.5 V for Wafer 1, we first construct a data frame with the relevant infor-
mation

> newWafer <-

+ data.frame( Wafer = rep(1, 4), voltage = c(1, 1.5, 3, 3.5) )

and then use

> predict( fm1Wafer, newWafer, level = 0:1 )

Wafer predict.fixed predict.Wafer

1 1 2.6126 2.4014
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2 1 7.0273 6.7207

3 1 23.7826 23.2314

4 1 30.5381 29.9192

Note that, because no predictions were desired at the Site %in% Wafer level,
Site did not need to be specified in newWafer. If we are interested in getting
predictions for a specific site, say 3, within Wafer 1, we can use

> newWafer2 <- data.frame( Wafer = rep(1, 4), Site = rep(3, 4),

+ voltage = c(1, 1.5, 3, 3.5) )

> predict( fm1Wafer, newWafer2, level = 0:2 )

Wafer Site predict.fixed predict.Wafer predict.Site

1 1 1/3 2.6126 2.4014 2.4319

2 1 1/3 7.0273 6.7207 6.7666

3 1 1/3 23.7826 23.2314 23.3231

4 1 1/3 30.5381 29.9192 30.0261

These methods will be used extensively in the next section, when we
describe methods for assessing the adequacy of the fitted models.

4.3 Examining a Fitted Model

Before making inferences about a fitted mixed-effects model, we should
check whether the underlying distributional assumptions appear valid for
the data. There are two basic distributional assumptions for the mixed-
effects models considered in this chapter:

Assumption 1 - the within-group errors are independent and identi-
cally normally distributed, with mean zero and variance σ2, and they
are independent of the random effects.

Assumption 2 - the random effects are normally distributed, with
mean zero and covariance matrix Ψ (not depending on the group)
and are independent for different groups;

The nlme library provides several methods for assessing the validity of these
assumptions. The most useful of these methods are based on plots of the
residuals, the fitted values, and the estimated random effects. The validity
of the distributional assumptions may also be formally assessed using hy-
pothesis tests. However, only rarely do the conclusions of a hypothesis test
about some assumption in the model contradict the information displayed
in a diagnostic plot.

4.3.1 Assessing Assumptions on the Within-Group Error

Because the assumptions above break down into several smaller assump-
tions, several diagnostic plots are needed to properly assess their validity.
We start by considering Assumption 1 on the within-group error term.
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Dependencies among the within-group errors are usually modeled with
correlation structures, which will be discussed in detail in §5.3, where meth-
ods for assessing the assumption of independence among the within-group
errors will also be described. In this section, we concentrate on methods
for assessing the assumption that the within-group errors are normally dis-
tributed, are centered at zero, and have constant variance.

The primary quantities used to assess the adequacy of Assumption 1 are
the within-group residuals, defined as the difference between the observed
response and the within-group fitted value. Conditional on the random-
effects variance–covariance components, the within-group residuals are the
BLUPs of the within-group errors. In practice, the within-group residu-
als are only estimated BLUPs, as the random-effects variance–covariance
components need to be replaced with their estimates. Nevertheless, they
generally provide good surrogates for the within-group errors and can be
used to qualitatively assess the validity of Assumption 1. Other quantities
used for assessing Assumption 1 graphically include the within-group fitted
values, the observed values, and any covariates of interest.

The plot method for the lme class is the primary tool for obtaining
diagnostic plots for Assumption 1. It takes several optional arguments, but
a typical call is

plot( object, formula )

where object is an lme object and formula is a formula object describing
the components to be used in the plot. The general expression for formula

is y~x|g where y and x define, respectively, the vertical and horizontal axes
for the plot and g is an optional factor (or a set of factors separated by *

operators) defining the panels of a Trellis display of y~x. Any variables, or
functions of variables, which can be evaluated in the data frame used to
fit object, are allowed for y, x, and g, provided the resulting plot is a valid
Trellis plot. The symbol "." is reserved to represent the fitted object itself
in the formula definition. For example, resid(.) can be used in formula to
represent resid(object). We illustrate the capabilities of the plot method
through the analysis of the examples described in earlier sections of this
chapter. Details about the arguments to the lmList and lme plot methods
are given in the help files in Appendix B.

Orthodontic Growth Curve

The first residual plot we consider is the boxplot of residuals by group. For
the fm2Orth.lme object of §4.2.1 we use

> plot( fm2Orth.lme, Subject~resid(.), abline = 0 ) # Figure 4.16

The argument abline = 0 indicates that a vertical line at zero should be
added to the plot. This plot is useful for verifying that the errors are
centered at zero (i.e., E [ε] = 0), have constant variance across groups
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FIGURE 4.16. Boxplots of the residuals for fm2Orth.lme by subject.

(Var (εij) = σ2), and are independent of the group levels. Figure 4.16 in-
dicates that the residuals are centered at zero, but that the variability
changes with group. Because there are only four observations per subject,
we cannot rely too much on the individual boxplots for inference about
the within-group variances. We observe an outlying observation for subject
M13 and large residuals for subject M09. A pattern suggested by the indi-
vidual boxplots is that there is more variability among boys (the lower 16
boxplots) than among girls (the upper 11 boxplots). We can get a better
feeling for this pattern by examining the plot of the standardized residuals
versus fitted values by gender, shown in Figure 4.17

> plot( fm2Orth.lme, resid(., type = "p") ~ fitted(.) | Sex,

+ id = 0.05, adj = -0.3 ) # Figure 4.17

The type = "p" argument to the resid method specifies that the standard-
ized residuals should be used. The id argument specifies a critical value for
identifying observations in the plot (standardized residuals greater than the
1-id/2 standard normal quantile in absolute value are identified in plot).
By default, the group labels are used to identify the observations. The ar-
gument adj controls the position of the identifying labels. It is clear from
Figure 4.17 that the variability in the orthodontic distance measurements
is greater among boys than among girls. Within each gender the variability
seems to be constant. The outlying observations for subjects M09 and M13

are evident.
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FIGURE 4.17. Scatter plots of standardized residuals versus fitted values for
fm2Orth.lme by gender.

A more general model to represent the orthodontic growth data allows
different variances by gender for the within-group error. The lme function
allow the modeling of heteroscesdasticity of the within-error group via a
weights argument. This topic will be covered in detail in §5.2, but, for now,
it suffices to know that the varIdent variance function structure allows
different variances for each level of a factor and can be used to fit the
heteroscedastic model for the orthodontic growth data as

> fm3Orth.lme <-

+ update( fm2Orth.lme, weights = varIdent(form = ~ 1 | Sex) )

> fm3Orth.lme

Linear mixed-effects model fit by REML

Data: Orthodont

Log-restricted-likelihood: -207.15

Fixed: distance ~ Sex + I(age - 11) + Sex:I(age - 11)

(Intercept) Sex I(age - 11) Sex:I(age - 11)

23.808 -1.1605 0.63196 -0.15241

Random effects:

Formula: ~ I(age - 11) | Subject

Structure: General positive-definite

StdDev Corr

(Intercept) 1.85498 (Inter

I(age - 11) 0.15652 0.394

Residual 1.62959

Variance function:

Structure: Different standard deviations per stratum

Formula: ~ 1 | Sex

Parameter estimates:

Male Female

1 0.40885
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FIGURE 4.18. Scatter plots of standardized residuals versus fitted values for the
heteroscedastic fit of fm3Orth.lme by gender.

Number of Observations: 108

Number of Groups: 27

The parameters for varIdent give the ratio of the stratum standard errors
to the within-group standard error. To allow identifiability of the parame-
ters, the within-group standard error is equal to the first stratum standard
error. For the orthodontic data, the standard error for the girls is about
41% of that for the boys. The remaining estimates are very similar to the
ones in the homoscedastic fit fm2Orth.lme. We can assess the adequacy of
the heteroscedastic fit by re-examining plots of the standardized residuals
versus the fitted values by gender, shown in Figure 4.18. The standardized
residuals in each gender now have about the same variability. We can still
identify the outlying observations, corresponding to subjects M09 and M13.
Overall, the standardized residuals are small, suggesting that the linear
mixed-effects model was successful in explaining the orthodontic growth
curves This is better seen by looking at a plot of the observed responses
versus the within-group fitted values.

> plot( fm3Orth.lme, distance ~ fitted(.),

+ id = 0.05, adj = -0.3 ) # Figure 4.19

The fm3Orth.lme fitted values are in close agreement with the observed
orthodontic distances, except for the three extreme observations on subjects
M09 and M13.

The need for an heteroscedastic model for the orthodontic growth data
can be formally tested with the anova method.

> anova( fm2Orth.lme, fm3Orth.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Orth.lme 1 8 451.35 472.51 -217.68

fm3Orth.lme 2 9 432.30 456.09 -207.15 1 vs 2 21.059 <.0001
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FIGURE 4.19. Observed versus fitted values plot for fm3Orth.lme.

The very small p-value of the likelihood ratio statistic confirms that the
heteroscedastic model explains the data significantly better than the homo-
scedastic model.

The assumption of normality for the within-group errors can be assessed
with the normal probability plot of the residuals, produced by the qqnorm

method. A typical call to qqnorm is of the form

qqnorm( object, formula )

where object is an lme object and formula is a one-sided formula object of
the form ~x|g. As in the plot method, the symbol "." represents the fitted
lme object. The x term in formula can be either the residuals (resid(.)),
or the random effects (ranef(.)) associated with the fit. In this section, we
consider only the case where x defines a vector of residuals. The random-
effects case is considered in §4.3.2. The g term in formula defines an optional
factor (or set of factors joined by *) determining the panels for a Trellis
display.

For example, to obtain the normal plots of the residuals corresponding
to fm3Orth.lme by gender, we use

> qqnorm( fm3Orth.lme, ~resid(.) | Sex ) # Figure 4.20

Once again, we observe the three outlying points, but for the rest of the
observations the normality assumption seems plausible.

Radioimmunoassays of IGF-I

We initially consider the plot of the standardized residuals versus fitted
values by Lot for the fm2IGF.lme object, obtained with
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FIGURE 4.20. Normal plot of residuals for the fm3Orth.lme lme fit.

> plot( fm2IGF.lme, resid(., type = "p") ~ fitted(.) | Lot,

+ layout = c(5,2) ) # Figure 4.21

The residuals are centered around zero and seem to have similar variability
across lots. There are some outliers in the data, most noticeably for Lots 3
and 7.

We assess the normality of the within-group errors with a qqnorm plot of
the residuals.
> qqnorm( fm2IGF.lme, ~ resid(.),

+ id = 0.05, adj = -0.75 ) # Figure 4.22

The normal plot in Figure 4.22 suggests that the distribution of the within-
group errors has heavier tails than expected under normality, but is also
symmetric around zero. Perhaps a mixture of normal distributions or a
t-distribution with a moderate number of degrees of freedom would model
the distribution of the within-group error more adequately. However, as the
heavier tails seem to be distributed symmetrically, the estimates of the fixed
effects should not change substantially under either a mixture model or a
t-model. The heavier tails tend to inflate the estimate of the within-group
standard error under the Gaussian model, leading to more conservative
tests for the fixed effects, but, because the p-value for the hypothesis that
the decay of tracer activity with age is zero is quite high (0.673), the main
conclusion should remain unchanged under either a mixture or a t-model.

Thickness of Oxide Coating on a Semiconductor

The plot of the within-group standardized residuals (level = 2 in this case)
versus the within-group fitted values is the default display produced by the
plot method. Therefore,
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FIGURE 4.21. Scatter plots of standardized residuals versus fitted values for the
fm2IGF.lme fit, by lot.
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FIGURE 4.22. Normal plot of residuals for the fm2IGF.lme fit.
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FIGURE 4.23. Scatter plot of the standardized within-group residuals versus the
within-group fitted values for the fm1Oxide fit.

> plot( fm1Oxide ) # Figure 4.23

results in the plot shown in Figure 4.23, which does not indicate any de-
partures from the within-group errors assumptions: the residuals are sym-
metrically distributed around zero, with approximately constant variance.

By default, the qqnorm method produces a normal plot of the within-
group standardized residuals. Hence,

> qqnorm( fm1Oxide ) # Figure 4.24

gives the normal plot in Figure 4.24, which indicates that the assumption
of normality for the within-group errors is plausible.

Manufacturing of Analog MOS Circuits

The plot of the within-group residuals versus voltage by wafer, shown in
Figure 4.25, shows a clear periodic pattern for the residuals.

> plot( fm1Wafer, resid(.) ~ voltage | Wafer ) # Figure 4.25

We can enhance the visualization of this pattern by adding a loess smoother
(Cleveland, Grosse and Shyu, 1992) to each panel, using

> plot( fm1Wafer, resid(.) ~ voltage | Wafer,

+ panel = function(x, y, ...) {
+ panel.grid()

+ panel.xyplot(x, y)

+ panel.loess(x, y, lty = 2)

+ panel.abline(0, 0)

+ } ) # Figure 4.26

The panel argument to the plot method overwrites the default panel func-
tion, allowing customized displays.
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FIGURE 4.24. Normal plot of within-group standardized residuals for the
fm1Oxide fit.
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FIGURE 4.25. Scatter plots of within-group residuals versus voltage by wafer for
the fm1Wafer fit.
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FIGURE 4.26. Scatter plots of within-group residuals versus voltage by wafer for
the fm1Wafer fit. A loess smoother has been added to each panel to enhance the
visualization of the residual pattern.

The same periodic pattern appears in all panels of Figure 4.26, with a
period T of approximately 1.5 V. Noting that the residuals are centered
around zero, this periodic pattern can be represented by the cosine wave

β3 cos (ωv) + β4 sin (ωv) , (4.9)

where β3 and β4 determine the amplitude (=
√

β2
3 + β2

4) and ω is the fre-
quency of the cosine wave. We can incorporate this pattern into model (4.8)
by rewriting the fixed-effects model for the expected value of yijk as

E [yijk] = β0 + β1vk + β2v
2
k + β3 cos (ωvk) + β4 sin (ωvk) . (4.10)

Because ω is unknown, (4.10) formally gives an example of a nonlinear
mixed-effects model, discussed later in Chapter 8. To proceed with the
model building analysis, we assume, for now, that ω is a purely fixed effect
(i.e., does not vary with wafer and/or site) and estimate it by fitting (4.9) to
the within-group residuals of fm1Wafer, using the nls function in S (Bates
and Chambers, 1992). By replacing ω in (4.10) with its nonlinear least-
squares estimate ω̂ , we are left with a linear mixed-effects model, which
can then be fitted with lme.

Initial values for β3, β4, and ω are needed in the iterative algorithm
used in nls. The frequency ω and the period T are related by the formula
ω = 2π/T , giving the initial estimate ω0 = 2π/1.5 = 4.19 V −1 for ω. For a
fixed ω = ω0, (4.9) is a linear function of β3 and β4 and we can use lm to
obtain initial estimates for these parameters.
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> attach( Wafer ) # making variables in Wafer available

> coef(lm(resid(fm1Wafer) ~ cos(4.19*voltage)+sin(4.19*voltage)-1))

cos(4.19 * voltage) sin(4.19 * voltage)

-0.051872 0.1304

> nls( resid(fm1Wafer) ~ b3*cos(w*voltage) + b4*sin(w*voltage),

+ start = list(b3 = -0.0519, b4 = 0.1304, w = 4.19) )

Residual sum of squares : 0.72932

parameters:

b3 b4 w

-0.11173 0.077682 4.5679

formula: resid(fm1Wafer) ~ b3*cos(w*voltage) + b4*sin(w*voltage)

400 observations

> detach( )

The resulting estimate for the frequency is ŵ = 4.5679 V −1.
We refit model (4.8), with the fixed-effects model replaced by (4.10) and

ω held constant at ω̂, with

> fm2Wafer <- update( fm1Wafer,

+ fixed = . ~ . + cos(4.5679*voltage) + sin(4.5679*voltage),

+ random = list(Wafer=pdDiag(~voltage+voltage^2),

+ Site=pdDiag(~voltage+voltage^2)) )

> summary( fm2Wafer )

Linear mixed-effects model fit by REML

Data: Wafer

AIC BIC logLik

-1232.6 -1184.9 628.31

Random effects:

Formula: ~ voltage + voltage^2 | Wafer

Structure: Diagonal

(Intercept) voltage I(voltage^2)

StdDev: 0.12888 0.34865 0.049074

Formula: ~ voltage + voltage^2 | Site %in% Wafer

Structure: Diagonal

(Intercept) voltage I(voltage^2) Residual

StdDev: 0.039675 0.23437 0.047541 0.011325

Fixed effects: current ~ voltage + I(voltage^2) +

cos(4.5679 * voltage) + sin(4.5679 * voltage)

Value Std.Error DF t-value p-value

(Intercept) -4.2554 0.04223 316 -100.76 <.0001

voltage 5.6224 0.11416 316 49.25 <.0001

I(voltage^2) 1.2585 0.01696 316 74.21 <.0001

cos(4.5679 * voltage) -0.0956 0.00112 316 -85.05 <.0001

sin(4.5679 * voltage) 0.1043 0.00150 316 69.42 <.0001

. . .
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The .~. in the fixed formula is an abbreviated form for the fixed-effects for-
mula in the original lme object, fm1Wafer. This convention is also available
in other S modeling functions, such as lm and aov. The random argument
was included in the call to update to prevent the estimated random-effects
parameters from fm1Wafer to be used as initial estimates (these give bad
initial estimates in this case and may lead to convergence problems).

The very high t-values for the sine and cosine terms in the summary output
indicate a significant increase in the quality of the fit when these terms are
included in the fixed-effects model. The estimated standard deviations for
the random effects are quite different from the ones in fm1Wafer and now
suggest that there is significant wafer-to-wafer and site-to-site variation
in all random effects in the model. The estimated within-group standard
deviation for fm2Wafer is about ten times smaller than that of fm1Wafer,
giving further evidence of the greater adequacy of (4.10). We assess the
variability in the estimates with

> intervals( fm2Wafer )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) -4.338485 -4.255388 -4.172292

voltage 5.397744 5.622357 5.846969

I(voltage^2) 1.225147 1.258512 1.291878

cos(4.5679 * voltage) -0.097768 -0.095557 -0.093347

sin(4.5679 * voltage) 0.101388 0.104345 0.107303

Random Effects:

Level: Wafer

lower est. upper

sd((Intercept)) 0.065853 0.128884 0.25225

sd(voltage) 0.174282 0.348651 0.69747

sd(I(voltage^2)) 0.023345 0.049074 0.10316

Level: Site

lower est. upper

sd((Intercept)) 0.017178 0.039675 0.091635

sd(voltage) 0.175311 0.234373 0.313332

sd(I(voltage^2)) 0.035007 0.047541 0.064564

Within-group standard error:

lower est. upper

0.0085375 0.011325 0.015023

The plots of the within-group residuals versus voltage, by wafer, shown
in Figure 4.27, indicate that there is still some periodicity left in some of the
wafers, suggesting that random effects may be needed to accommodate the
variation in ω. We postpone this discussion until Chapter 8, when nonlinear
mixed-effects models are described. Note that the absolute values of the
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FIGURE 4.27. Scatter plots of within-group residuals versus within-group fitted
values by wafer for the fm2Wafer fit. A loess smoother has been added to each
panel to enhance the visualization of the residual pattern.

within-groups residuals in Figure 4.27 are about an order of magnitude
smaller than the ones in Figure 4.26.

The normal plot of the within-group residuals for fm2Wafer, obtained
with

> qqnorm( fm2Wafer ) # Figure 4.28

and shown in Figure 4.28, does not indicate any violations from the
assumption of normality for the within-group errors.

4.3.2 Assessing Assumptions on the Random Effects

In this section, we describe diagnostic methods for assessing Assumption
2, on the distribution of the random effects. The ranef method is used
to extract the estimated BLUPs of the random effects from lme objects.
These are the primary quantities for assessing the distributional assump-
tions about the random effects.

Two types of diagnostic plots will be used to investigate departures from
Assumption 2:

• qqnorm—normal plot of estimated random effects for checking marginal
normality and identifying outliers;

• pairs—scatter plot matrix of the estimated random effects for iden-
tifying outliers and checking the assumption of homogeneity of the
random effects covariance matrix;
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FIGURE 4.28. Normal probability plot of the within-group standardized residuals
for the fm2Wafer fit.

We illustrate the use of these display methods by continuing the analysis
of the examples in §4.3.1.

Orthodontic Growth Curve

We first consider the homoscedastic fitted object fm2Orth.lme and investi-
gate the marginal normality of the corresponding random effects using the
normal plots in Figure 4.29.

> qqnorm( fm2Orth.lme, ~ranef(.),

+ id = 0.10, cex = 0.7 ) # Figure 4.29

As in the residual plots of §4.3.1, the id argument specifies a critical value
for identifying points in the plot (standardized random-effects estimates
greater than the 1-id/2 standard normal quantile in absolute value are
identified). By default, the group labels are used to identify the points.
The assumption of normality seems reasonable for both random effects,
though there is some asymmetry in the distribution of the (Intercept)

random effects. A few outliers appear to be present in both random effects:
F10, F11, and M10 for the intercept and M13 for the slope.

To investigate the homogeneity of the random-effects distribution for
boys and girls, we use the pairs method to obtain scatter plots of the
random-effects estimates by gender, as shown in Figure 4.30.

> pairs( fm2Orth.lme, ~ranef(.) | Sex,

+ id = ~ Subject == "M13", adj = -0.3 ) # Figure 4.30
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FIGURE 4.29. Normal plot of estimated random effects for the homoscedastic
fm2Orth.lme fit.
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FIGURE 4.30. Scatter plot of estimated random effects for the homoscedastic
fm2Orth.lme fit.
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FIGURE 4.31. Normal plot of estimated random effects for the heteroscedastic
fm3Orth.lme lme fit.

The id argument is given as a formula object, which is used to identify
subject M13 in the plot. Alternatively, it can be given as a numeric value
such that points outside the normal distribution contour of level 1-id/2

are identified in the plot. Except for the pair corresponding to subject
M13, the estimated random effects in the two groups seem to have similar
distributions.

As seen in §4.3.1, the within-group variance appears to be larger among
boys than among girls for the Orthodont data and the heteroscedastic fit
fm3Orth.lme gives a better representation of the data. We consider now the
diagnostic plots for the random effects in this model. The normal prob-
ability plots of the estimated random effects (Figure 4.31) are similar to
those in Figure 4.29 with one important exception: the estimated random
effect for the slope of subject M13 is no longer identified in the plot as an
outlier. In mixed-effects estimation, there is a trade-off between the within-
group variability and the between-group variability, when accounting for
the overall variability in the data. The use of a common within-group vari-
ance in fm2Orth.lme leads to an increase in the estimated between-group
variability, which in turn allows the random-effects estimates to be pulled
away by outliers. The heteroscedastic model in fm3Orth.lme accommodates
the impact of the boys’ outlying observations in the within-group variances
estimation and reduces the estimated between-group variability, thus in-
creasing the degree of shrinkage in the random-effects estimates. In this
case, the use of different within-group variances by gender adds a certain
degree of robustness to the lme fit.
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FIGURE 4.32. Normal plot of estimated random effects for the homoscedastic
fm2IGF.lme fit.

The pairs plots by gender for Orthodont.lme3, not included here, do not
suggest any departures from the assumption of homogeneity of the random-
effects distribution.

Radioimmunoassays of IGF-I

The normal plots of the estimated random effects for the fm2IGF.lme fit,
shown in Figure 4.32, do not indicate any departures from normality or any
outlying subjects. They do, however, suggest that there is very little vari-
ability in the (Intercept) random effect, as the estimated random effects
are on the order of 10−7.

The relative variability of each random effect with respect to the corre-
sponding fixed-effect estimates can be calculated as

> fm2IGF.lme

. . .

Fixed: conc ~ age

(Intercept) age

5.369 -0.0019301

Random effects:

Formula: ~ age | Lot

Structure: Diagonal

(Intercept) age Residual

StdDev: 0.00031074 0.0053722 0.8218

. . .

> c( 0.00031074, 0.0053722 )/abs( fixef(fm2IGF.lme) )

(Intercept) age

5.7876e-05 2.7833
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FIGURE 4.33. Normal plot of estimated Lot random effects for the fm1Oxide fit.

The relative variability of the (Intercept) random effect is only 0.006%,
while the relative variability of the age random effect is about 278.3%,
suggesting that the former could be dropped from the model.

> fm3IGF.lme <- update( fm2IGF.lme, random = ~ age - 1 )

> anova( fm2IGF.lme, fm3IGF.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm2IGF.lme 1 5 604.8 622.10 -297.4

fm3IGF.lme 2 4 602.8 616.64 -297.4 1 vs 2 1.0881e-05 0.9974

The high p-value for the likelihood ratio test indicates that the random
effect for the intercept does not contribute significantly to the fit of the IGF

data.
The normal plot of the estimated random effects for the reduced model

fm3IGF.lme, not included here, does not suggest any violations of the nor-
mality assumption and does not show any outlying values.

Thickness of Oxide Coating on a Semiconductor

Normal probability plots of the estimated random effects must be examined
at each level of grouping when assessing the adequacy of a multilevel model
fit. The normal plot of the estimated Lot random effects for the fm1Oxide

fit, shown in Figure 4.33, is obtained with

> qqnorm( fm1Oxide, ~ranef(., level = 1), id=0.10 ) # Figure 4.33

The level argument to the ranef method is required in this case, as, by
default, ranef returns a list with the estimated random effects at each level
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FIGURE 4.34. Normal plot of estimated Wafer %in% Lot random effects for the
fm1Oxide fit.

of grouping, which will cause an error in qqnorm. Because there are only
eight random effects at the Lot level, it is difficult to identify any patterns
in Figure 4.33. Lot 6 is indicated as a potential outlier, which is consistent
with the plot of the data in Figure 4.14, where this lot is shown to have
the thickest oxide layers.

The normal plot of the Wafer %in% Lot random effects, shown in Fig-
ure 4.34, and obtained with

> qqnorm( fm1Oxide, ~ranef(., level = 2), id=0.10 ) # Figure 4.34

does not indicate any departures from normality. There is some mild evi-
dence that Wafers 1/2 and 6/1 may be outliers.

Manufacturing of Analog MOS Circuits

The pairs plot of the estimated Wafer random effects for the fm2Wafer fit,
shown in Figure 4.35, suggests that the random effects at that level are
correlated.

The fm2Wafer fit uses a diagonal structure for the variance–covariance
matrix of the Wafer random effects, which is equivalent to assuming that
these random effects are independent. We test the independence assump-
tion by fitting the model with a general positive-definite structure for the
variance–covariance matrix of the Wafer random effects and comparing it
to the fm2Wafer fit using the anova method.

> fm3Wafer <- update( fm2Wafer,
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FIGURE 4.35. Scatter plot of estimated Wafer random effects for the fm2Wafer

fit.

+ random = list(Wafer = ~voltage+voltage^2,

+ Site = pdDiag(~voltage+voltage^2)))

> fm3Wafer

. . .

Random effects:

Formula: ~ voltage + voltage^2 | Wafer

Structure: General positive-definite

StdDev Corr

(Intercept) 0.131622 (Intr) voltag

voltage 0.359244 -0.967

I(voltage^2) 0.051323 0.822 -0.940

Formula: ~ voltage + voltage^2 | Site %in% Wafer

Structure: Diagonal

(Intercept) voltage I(voltage^2) Residual

StdDev: 0.033511 0.21831 0.045125 0.011832

. . .

> anova( fm2Wafer, fm3Wafer )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Wafer 1 12 -1232.6 -1184.9 628.31

fm3Wafer 2 15 -1267.0 -1207.3 648.50 1 vs 2 40.378 <.0001

There is a very significant increase in the log-restricted-likelihood, as evi-
denced by the large value for the likelihood ratio test, indicating that the
more general model represented by fm3Wafer gives a better fit.
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FIGURE 4.36. Scatter plot of estimated random effects at the Site %in% Wafer

level for the fm3Wafer fit.

The pairs plot for the estimated Site %in% Wafer random effects corre-
sponding to fm3Wafer in Figure 4.36 indicate that there is a strong neg-
ative correlation between the voltage and voltage^2 random effects, but
no substantial correlation between either of these random effects and the
(Intercept) random effects. A block-diagonal matrix can be used to rep-
resent such covariance structure, with the (Intercept) random effect cor-
responding to one block and the voltage and voltage^2 random effects
corresponding to another block.

> fm4Wafer <- update( fm3Wafer,

+ random = list(Wafer = ~ voltage + voltage^2,

+ Site = pdBlocked(list(~1, ~voltage+voltage^2 - 1))))

> fm4Wafer

. . .

Random effects:

Formula: ~ voltage + voltage^2 | Wafer

Structure: General positive-definite

StdDev Corr

(Intercept) 0.131807 (Intr) voltag

voltage 0.354746 -0.967

I(voltage^2) 0.049957 0.814 -0.935

Composite Structure: Blocked

Block 1: (Intercept)

Formula: ~ 1 | Site %in% Wafer
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(Intercept)

StdDev: 0.066562

Block 2: voltage, I(voltage^2)

Formula: ~ voltage + voltage^2 - 1 | Site %in% Wafer

Structure: General positive-definite

StdDev Corr

voltage 0.2674061 voltag

I(voltage^2) 0.0556441 -0.973

Residual 0.0091086

. . .

> anova( fm3Wafer, fm4Wafer )

Model df AIC BIC logLik Test L.Ratio p-value

fm3Wafer 1 15 -1267.0 -1207.3 648.50

fm4Wafer 2 16 -1461.6 -1398.0 746.82 1 vs 2 196.65 <.0001

The small p-value for the likelihood ratio test indicates that the fmWafer4

model fits the data significantly better than the model represented by
fm3Wafer. This will be the final model consider in this chapter for the Wafer

data. Later in §8 we revisit this example, fitting a nonlinear mixed-effects
model to the data.

The normal plot of the estimated Site %in% Wafer random effects corre-
sponding to fm4Wafer, shown in Figure 4.37, does not suggest any significant
departure from the assumption of normality for these random effects. There
is some moderate evidence that Sites 1/6, 7/3 and 8/1 may be outliers.

> qqnorm( fm4Wafer, ~ranef(., level = 2), id = 0.05,

+ cex = 0.7, layout = c(3, 1) ) # Figure 4.37

4.4 Chapter Summary

This chapter describes the capabilities available in the nlme library for
fitting and analyzing linear mixed-effects models with uncorrelated, ho-
moscedastic within-group errors. The lme function, for fitting linear mixed-
effects models, is described in detail and its various capabilities and as-
sociated methods are illustrated through the analyses of several real data
examples, covering single-level models, multilevel nested models, and mod-
els with crossed random effects.

The model-building approach developed in this chapter follows an “inside-
out” strategy, using individual lm fits, obtained with the lmList function,
to construct more sophisticated linear mixed-effects models. A rich, inte-
grated suite of diagnostic plots to assess model assumptions is described
and illustrated through examples.

The class of mixed-effects models which can be fit with lme is greatly ex-
tended by the availability of patterned random-effects variance–covariance
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FIGURE 4.37. Normal plot of estimated Site %in% Wafer random effects for the
fm4Wafer fit.

structures. These are implemented in S through pdMat classes, which can
be extended with user defined classes.

The linear mixed-effects model considered in this chapter is extended in
two different ways later in the book. In Chapter 5, the assumption of uncor-
related, homoscedastic within-group errors is relaxed, and variance func-
tions and correlation structures are introduced the model heteroscedasticity
and within-group dependence. The assumption of linearity for E [yi|bi] is
relaxed in Chapter 8, when nonlinear mixed-effects models are described.

Exercises

1. In §1.3.3 (p. 27) we fit the model

> fm3Machine <- update(fm1Machine, random = ~Machine-1|Worker)

The estimated correlations of the components of the random-effects
vectors bi in fm3Machine, 0.803, 0.623, and 0.771, are similar in magni-
tude. The estimated standard deviations of these components, 4.08,
8.63, and 4.39 are comparable to each other although not as close
as the estimated correlations. Together, these suggest a compound
symmetry structure for Ψ as described in §4.2.2.

(a) Fit a model like that of fm3Machine, but with a compound sym-
metry structure. This is similar to the model fm4OatsB in §4.2.2.
Examine numerical summaries and residual plots for this model.
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(b) Compare this fitted model to fm3Machine with anova. Is the
greater number of parameters in fm3Machine producing a sig-
nificantly better fit?

(c) Compare the pdCompSymm model to fm2Machine from §1.3.3 with
anova. Note that the likelihoods and the numbers of parameters
are identical.

(d) The pdCompSymm model is equivalent to fm2Machine. Use VarCorr

to extract the estimates of the variance components from each
model. What is the relationship between the estimated variance
components of the two models?

2. There are some unusual residuals for subjects M09 and M13 in several of
the fits of the Orthodont data. See, for example, Figure 4.17 (p. 177).
An examination of the original data, say in Figure 4.9 (p. 153), shows
some suspicious observations on these subjects. The observation at
age 8 for subject M13 is unusually low. The four observations for sub-
ject M09 decrease, then increase dramatically, then decrease again.
The two observations at ages 10 and 12 appear to be incorrect.

(a) Repeat the stages of fitting a linear mixed-effects models to the
Orthodont data with the suspicious observations for subjects M13
and M09 removed. Do you arrive at different conclusions regard-
ing the models?

(b) There are other subjects like M09 in the Orthodont data for whom
the observed distance decreases with increasing age. Because
it is unlikely that this measurement on the same child would
get smaller over time, these are probably misrecorded data or
unusually large measurement errors.

i. Find the number of pairs of measurements that represent de-
creases within a subject. You can begin with gapply(Ortho-

dont, "distance", diff) which returns a list of successive
differences of the distance by Subject.

ii. What should be done with these aberrant data points?
iii. If you handle the suspect data by deleting some observa-

tions, repeat as much of this chapter’s analysis of Orthodont
as is feasible with the modified data. (Note that if you de-
cide to delete some of the suspect data, the resulting data
will be unbalanced. Is it still possible to fit mixed-effects
models to such unbalanced data?)

3. When analyzing the Assay data (Figure 4.13, p. 164), we noted that
the interaction term in the fixed effects for the fitted model fm1Assay
is not significant.
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(a) Refit the model as, say, fm2Assay with the interaction term re-
moved from the fixed effects. Are the estimates of the other
parameters changed noticeably? Can you compare this fitted
model to fm1Assay with anova and assess the significance of the
interaction term?

(b) Use VarCorr to extract the estimates of the variance components
from fm2Assay. Notice that the estimated variance component for
the columns on the plate, indexed by dilut within Block, is very
small. Refit the model as, say, fm3Assay with this variance com-
ponent eliminated. You can express the random argument for this
reduced model in at least three ways: (i) using pdBlocked and
pdIdent as in fm1Assay, (ii) using pdCompSymm as in fm4OatsB, or
(iii) using nested random effects for Block and for sample within
Block. Experiment with these different representations. Demon-
strate that that the fitted models for these three representations
are indeed equivalent. For which of the three representations
does lme converge most easily? Compare one of these fitted mod-
els to fm2Assay using anova. Is the variance component for the
columns significant?

(c) Extract the estimates of the variance components from the fit-
ted model fm3Assay and examine the confidence intervals on
the standard deviations of the random effects. Do the variance
components appear to be significantly greater than zero? Fit a
model, say fm4Assay, with a single variance component for the
Block. Compare it to fm3Assay with anova.

(d) Can the random effects be eliminated entirely? Fit a model,
say fm5Assay, using just the fixed-effects terms from fm4Assay.
Because this model does not have any random-effects terms, you
will need to use lm or gls to fit it.

(e) Compare models fm2Assay, fm3Assay, fm4Assay, and fm5Assay

with anova. Which model provides the simplest adequate rep-
resentation for these data?

(f) Notice that the dilut factor represents serial dilutions that will
be equally spaced on the logarithm scale. Does converting dilut

to an ordered factor, so the contrasts used for this factor will
be polynomial contrasts, suggest further simplifications of the
model?



5
Extending the Basic Linear
Mixed-Effects Model

The linear mixed-effects model formulation used in Chapters 2 and 4 allows
considerable flexibility in the specification of the random-effects structure,
but restricts the within-group errors to be independent, identically dis-
tributed random variables with mean zero and constant variance. As illus-
trated in Chapters 2 and 4, this basic linear mixed-effects model provides
an adequate model for many different types of grouped data observed in
practice. However, there are many applications involving grouped data for
which the within-group errors are heteroscedastic (i.e., have unequal vari-
ances) or are correlated or are both heteroscedastic and correlated.

In this chapter, we extend the basic linear mixed-effects model to allow
heteroscedastic, correlated within-group errors. We describe how the lme

function can be used to fit the extended linear mixed-effects model, illus-
trating its various capabilities through examples. We also introduce a new
modeling function, gls—for generalized least squares, to fit models with
heteroscedastic and correlated within-group errors, but with no random
effects.

In §5.1, we show how the estimation and computational methods of
Chapter 2 can be adapted to the extended model formulation and describe
how the variance–covariance structure of the within-group errors can be
decomposed into two independent components: a variance structure and a
correlation structure. Variance function models to represent the variance
structure component of the within-group errors are described in §5.2 and
their use with lme is illustrated through examples. Classes of correlation
models to represent the correlation structure of the within-group errors are
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presented and have their use illustrated in §5.3. In §5.4, the gls function is
described and illustrated through examples.

5.1 General Formulation of the Extended Model

As described in §2.1.1, the basic single-level linear mixed-effects model (2.1)
assumes that the within-group errors εi are independent N (

0, σ2I
)

ran-
dom vectors. The extended single-level linear mixed-effects model relaxes
this assumption by allowing heteroscedastic and correlated within-group
errors, being expressed as

yi = Xiβ + Zibi + εi, i = 1, . . . , M,

bi ∼ N (0,Ψ), εi ∼ N (
0, σ2Λi

)
, i = 1, . . . , M,

(5.1)

where the Λi are positive-definite matrices parametrized by a fixed, gener-
ally small, set of parameters λ. As in the basic linear mixed-effects model of
§2.1, the within-group errors εi are assumed to be independent for different
i and independent of the random effects bi. The σ2 is factored out of the
Λi for computational reasons (it can then be eliminated from the profiled
likelihood function).

Similarly, the extended two-level linear mixed-effects model generalizes
the basic two-level model (2.2) described in §2.1.2 by letting

εij ∼ N (
0, σ2Λij

)
, i = 1, . . . , M, j = 1, . . . , Mi,

where the Λij are positive-definite matrices parametrized by a fixed λ vec-
tor. This readily generalizes to a multilevel model with Q levels of random
effects. For simplicity, we concentrate for the remainder of this section on
the extended single-level model (5.1), but the results we obtain are easily
generalizable to multilevel models with an arbitrary number of levels of
random effects.

5.1.1 Estimation and Computational Methods

Because Λi is positive-definite, it admits an invertible square-root Λ1/2
i

(Thisted, 1988, §3), with inverse Λ−1/2
i , such that

Λi =
(
Λ1/2

i

)T

Λ1/2
i and Λ−1

i = Λ−1/2
i

(
Λ−1/2

i

)T

.

Letting

y∗
i =

(
Λ−1/2

i

)T

yi, ε∗i =
(
Λ−1/2

i

)T

εi,

X∗
i =

(
Λ−1/2

i

)T

Xi, Z∗
i =

(
Λ−1/2

i

)T

Zi,

(5.2)
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and noting that

ε∗i ∼ N
[(

Λ−1/2
i

)T

0, σ2
(
Λ−1/2

i

)T

ΛiΛ
−1/2
i

]
= N (

0, σ2I
)
,

we can rewrite (5.1) as

y∗
i = X∗

i β + Z∗
i bi + ε∗i , i = 1, . . . , M,

bi ∼ N (0,Ψ), ε∗i ∼ N (
0, σ2I

)
, i = 1, . . . , M.

(5.3)

That is, y∗
i is described by a basic linear mixed-effects model.

Because the differential of the linear transformation y∗
i = (Λ−1/2

i )T yi is

simply dy∗
i =

∣∣∣Λ−1/2
i

∣∣∣ dyi, the likelihood function L corresponding to the
extended linear mixed-effects model (5.1) is expressed as

L
(
β, θ, σ2, λ|y) =

M∏
i=1

p
(
yi|β, θ, σ2, λ

)
=

M∏
i=1

p
(
y∗

i |β, θ, σ2, λ
) ∣∣∣Λ−1/2

i

∣∣∣ = L
(
β, θ, σ2, λ|y∗) M∏

i=1

∣∣∣Λ−1/2
i

∣∣∣ , (5.4)

where p(·) denotes a probability density function.
The likelihood function L

(
β, θ, σ2, λ|y∗) corresponds to a basic linear

mixed-effects model and, therefore, all results presented in §2.2 also ap-
ply to it. The compact representation of the profiled log-likelihood based
on orthogonal-triangular decompositions, described in §2.2.3, can also be
used with the likelihood L

(
β, θ, σ2, λ|y∗), leading to numerically efficient

algorithms for maximum likelihood estimation.
The restricted likelihood corresponding to the extended model (5.1) is

defined, as in §2.2.5, by integrating out the fixed effects from the likelihood.

LR

(
θ, σ2, λ|y) =

∫
L
(
β, θ, σ2, λ|y) dβ = LR

(
θ, σ2, λ|y∗) M∏

i=1

∣∣∣Λ−1/2
i

∣∣∣ .
The function LR

(
β, θ, σ2, λ|y∗) corresponds to a restricted likelihood func-

tion of a basic linear mixed-effects model. Hence, the results in §2.2.5 can
be used to obtain a numerically efficient representation of the profiled log-
restricted-likelihood.

5.1.2 An Extended Linear Model with No Random Effects

The variance–covariance matrix of the response vector yi in the extended
linear mixed-effects model (5.1),

Var (yi) = Σi = σ2
(
ZiDZT

i + Λi

)
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has two components that can be used to model heteroscedasticity and corre-
lation: a random-effects component, given by ZiDZT

i , and a within-group
component, given by Λi. In practice, these two components may “com-
pete” with each other in the model specification, in the sense that similar
Σi matrices may result from a more complex random-effects component
being added to a simpler within-group component (say Λi = I), or a sim-
pler random-effects component (say ZiDZT

i = σ2
b11

T ) being added to a
more complex within-group component. There will generally be a trade-off
between the complexity of the two components of Σi and some care must
be exercised to prevent nonidentifiability, or near nonidentifiability, of the
parameters in the model.

In some applications, one may wish to avoid incorporating random effects
in the model to account for dependence among observations, choosing to
use the within-group component Λi to directly model variance–covariance
structure of the response. This results in the simplified version of the ex-
tended linear mixed-effects model (5.1)

yi = Xiβ + εi, εi ∼ N (
0, σ2Λi

)
, i = 1, . . . , M. (5.5)

Estimation under this model has been studied extensively in the linear
regression literature (Draper and Smith, 1998; Thisted, 1988), usually as-
suming that the Λi are known, being referred to as the generalized least
squares problem.

Using the same transformations as in (5.2), we can re-express (5.5) as a
“classic” linear regression model.

y∗
i = X∗

i β + ε∗i , ε∗i ∼ N (
0, σ2I

)
, i = 1, . . . , M. (5.6)

Hence, for fixed λ, the maximum likelihood estimators of β and σ2 are
obtained by solving an ordinary least-squares problem. Letting X∗ denote
the matrix obtained by stacking up the X∗

i matrices, the conditional MLEs
of β and σ2 are

β̂(λ) =
[
(X∗)T

X∗
]−1

(X∗)T
y∗,

σ̂2(λ) =

∥∥∥y∗ − X∗β̂ (λ)
∥∥∥2

N
.

(5.7)

The profiled log-likelihood corresponding to (5.5), which is a function of
λ only, is obtained by replacing β and σ2 in the full log-likelihood by their
conditional MLEs (5.7), giving

� (λ|y) = const − N log
∥∥∥y∗ − X∗β̂(λ)

∥∥∥− 1
2

M∑
i=1

log |Λi| . (5.8)

Maximum likelihood estimates are obtained by first optimizing the profiled
log-likelihood (5.8) over λ and then replacing λ in (5.7) with its MLE λ̂, to



5.1 General Formulation of the Extended Model 205

get the MLEs for β and σ2. Orthogonal-triangular decomposition methods
similar to the ones described in §2.2.3 can be used to obtain more compact
and numerically efficient representations of the profiled log-likelihood (5.8)
and the conditional MLEs (5.7), being left to the reader as an exercise.

The restricted likelihood for the extended linear model (5.5) is defined as
in the extended linear mixed-effects model (5.1), by integrating the param-
eter vector β out of the full likelihood. Using the results in Harville (1977),
we write the profiled log-restricted-likelihood corresponding to (5.5) as

�R (λ|y) = const − (N − p) log
∥∥∥y∗ − X∗β̂(λ)

∥∥∥
− 1

2
log
∣∣∣(X∗)T

X∗
∣∣∣− 1

2

M∑
i=1

log |Λi| ,

with p denoting the dimension of β. The REML estimator of σ2 is defined
as in (5.7), but with the N in the denominator replaced by N − p.

The modeling function gls in the nlme library is used to fit the extended
linear model (5.5), using either maximum likelihood or restricted maximum
likelihood. We describe the use of this function in §5.4, after presenting the
capabilities available in the nlme library for modeling heteroscedasticity
and correlation.

5.1.3 Decomposing the Within-Group Variance–Covariance
Structure

The Λi matrices can always be decomposed into a product of simpler
matrices

Λi = V iCiV i, (5.9)

where V i is diagonal and Ci is a correlation matrix, that is, a positive-
definite matrix with all diagonal elements equal to one. The matrix V i

in (5.9) is not uniquely defined, as we can multiply any number of its rows
by −1 and still get the same decomposition. To ensure uniqueness, we
require that all the diagonal elements of V i be positive.

It is easy to verify that

Var (εij) = σ2 [V i]
2
jj , cor (εij , εjk) = [Ci]jk ,

so that V i describes the variance and Ci describes the correlation of the
within-group errors εi. This decomposition of Λi into a variance structure
component and a correlation structure component is convenient both the-
oretically and computationally. It allows us to model and develop code for
the two structures separately and to combine them into a flexible family of
models for the within-group variance–covariance. In §5.2 we describe vari-
ance function structures to represent the variance component V i and in
§5.3 we present correlation structures for the correlation component Ci.
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5.2 Variance Functions for Modeling
Heteroscedasticity

Variance functions are used to model the variance structure of the within-
group errors using covariates. They have been studied in detail in the con-
text of mixed-effects models by Davidian and Giltinan (1995) and in the
context of the extended linear model (5.5) by Carroll and Ruppert (1988).

Following Davidian and Giltinan (1995, Ch. 4), we define the general
variance function model for the within-group errors in the extended single-
level linear mixed-effects model (5.1) as

Var (εij |bi) = σ2g2 (µij , vij , δ) , i = 1, . . . , M, j = 1, . . . , ni, (5.10)

where µij = E [yij |bi], vij is a vector of variance covariates, δ is a vector of
variance parameters and g(·) is the variance function, assumed continuous
in δ. For example, if the within-group variability is believed to increase
with some power of the absolute value of a covariate vij , we can write the
variance model as

Var (εij |bi) = σ2 |vij |2δ
.

The variance function in this case is g(x, y) = |x|y and the covariate vij

can be the expected value µij .
The single-level variance function model (5.10) can be generalized to

multilevel models. For example, the variance function model for a two-level
model is

Var (εijk|bi,j , bij) = σ2g2 (µijk, vijk, δ) ,

i = 1, . . . , M, j = 1, . . . , Mi, k = 1, . . . , nij ,

where µijk = E [yijk|bi,j , bij ]. We concentrate, for the remainder of this
section, in the single-level model (5.1), but all results presented here easily
generalize to multilevel models.

The variance function formulation (5.10) is very flexible and intuitive,
because it allows the within-group variance to depend on the fixed effects,
β, and the random effects, bi, through the expected values, µij . However, as
discussed in Davidian and Giltinan (1995, Ch. 4), it poses some theoretical
and computational difficulties, as the within-group errors and the random
effects can no longer assumed to be independent. Under the assumption
that E [εi|bi] = 0, it is easy to verify that Var (εij) = E [Var (εij |bi)], so
that the dependence on the unobserved random effects can be avoided by
integrating them out of the variance model. Because the variance function
g is generally nonlinear in bi, integrating the random effects out of the vari-
ance model (5.10) does not lead to a computationally feasible optimization



5.2 Variance Functions for Modeling Heteroscedasticity 207

procedure. Instead, we proceed as in Davidian and Giltinan (1995, Ch. 6),
and use an approximate variance model in which the expected values µij

are replaced by their BLUPs µ̂ij = xT
ijβ +zT

ij b̂i, where xij and zij denote,
respectively, the jth rows of Xi and Zi,

Var (εij) � σ2g2 (µ̂ij , vij , δ) , i = 1, . . . , M, j = 1, . . . , ni. (5.11)

Under this approximation, the within-group errors are assumed indepen-
dent of the random effects, as in (5.1), and the results in §5.1.1 can still be
used. Note that, if the conditional variance model (5.10) does not depend
on µij , (5.11) gives the exact marginal variance and no approximation is
required.

When the conditional variance model (5.10) depends on µij , the opti-
mization algorithm follows an “iteratively reweighted” scheme: for given
β(t), θ(t), λ(t), the corresponding BLUPs µ̂

(t)
ij are obtained and held fixed

while the objective function is optimized to produce new estimates β(t+1),
θ(t+1), λ(t+1) which, in turn, give updated BLUPs µ̂

(t+1)
ij , with the process

iterating until convergence. The resulting estimates approximate the (re-
stricted) maximum likelihood estimates. When the variance model does not
involve µij , the (restricted) likelihood can be directly optimized, producing
the exact (restricted) maximum likelihood estimates.

Variance functions for the extended linear model (5.5) are similarly de-
fined, but, because no random effects are present, the model for the marginal
variance does not involve any approximations, being expressed as

Var (εij) = σ2g2 (µij , vij , δ) , i = 1, . . . , M, j = 1, . . . , ni, (5.12)

where µij = E [yij ] = xT
ijβ and vij and δ are defined as in (5.10). This

coincides with the variance function model proposed in Carroll and Rup-
pert (1988, §3). When the variance model (5.12) depends on µij , the op-
timization algorithm parallels the linear mixed-effects model iteratively
reweighted scheme described before: for given β(t) and λ(t) estimated µ

(t)
ij

are obtained and held fixed while the objective function is optimized to
produce new estimates β(t+1) and λ(t+1), which, in turn, give updated
µ

(t+1)
ij , with the process iterating until convergence. This estimation pro-

cedure is known in the literature (Carroll and Ruppert, 1988, §3.2) as
pseudo-likelihood estimation (when the objective function corresponds to
a log-likelihood), or pseudo-restricted-likelihood estimation (when the ob-
jective function corresponds to a log-restricted-likelihood). If the variance
model (5.12) does not involve µij , the (restricted) likelihood can be di-
rectly optimized and the exact (restricted) maximum likelihood estimates
obtained.
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TABLE 5.1. Standard varFunc classes.

varFixed fixed variance
varIdent different variances per stratum
varPower power of covariate
varExp exponential of covariate
varConstPower constant plus power of covariate
varComb combination of variance functions

5.2.1 Variance Functions in nlme: The varFunc Classes

The nlme library provides a set of classes of variance functions, the var-
Func classes, that are used to specify within-group variance models in
either the extended linear mixed-effects model (5.1), or the extended lin-
ear model (5.5). Table 5.1 lists the standard varFunc classes included in
the nlme library. The varFunc constructors have the same name as their
corresponding classes.

The two main arguments for most of the varFunc constructors are value

and form. The first specifies the values of the variance parameters δ and
the second is a one-sided formula specifying the variance covariate v and,
optionally, a stratification variable for the variance parameters—different
parameters are used for each level of the stratification variable. For exam-
ple, to specify age as a variance covariate and to have different variance
parameters for each level of Sex, we would use

form = ~ age | Sex

The fitted object may be referenced in form by the symbol ., so, for example,

form = ~ fitted(.)

specifies the fitted values as the variance covariate.
Several methods are available for each varFunc class, including initial-

ize, which initializes the variance covariates and stratification variables,
and varWeights, which extracts the variance weights , defined as the inverse
of the variance function values. We now describe and illustrate each of the
standard varFunc classes.

varFixed

This class represents a variance function with no parameters and a single
variance covariate, being used when the within-group variance is known
up to a proportionality constant. The varFixed constructor takes a single
argument, value, which is a one-sided formula that evaluates to the de-
sired variance model. No stratification variables or expressions involving
the symbol . are allowed in value. For example, suppose it is known that
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the within-group variance increases linearly with age

Var (εij) = σ2ageij ,

corresponding to a variance function

g
(
ageij

)
= √ageij

and being represented as

> vf1Fixed <- varFixed( ~ age )

The variance covariate is calculated in the initialize method, which,
besides the varFixed object, also requires a data argument naming a data
frame in which to evaluate the variance covariate formula. Initialization of
a varFunc object is generally done inside the modeling function (e.g., lme,
gls) which uses it.

> vf1Fixed <- initialize( vf1Fixed, data = Orthodont )

> varWeights( vf1Fixed )

[1] 0.35355 0.31623 0.28868 0.26726 0.35355 0.31623 0.28868

. . .

The variance weights in this case are given by 1/
√ageij .

varIdent

This class represents a variance model with different variances for each level
of a stratification variable s, taking values in the set {1, 2, . . . , S},

Var (εij) = σ2δ2
sij

, (5.13)

corresponding to the variance function

g (sij , δ) = δsij
.

The variance model (5.13) uses S+1 parameters to represent S variances
and, therefore, is not identifiable. To achieve identifiability, we need to
impose some restriction on the variance parameters δ. We use δ1 = 1, so
that δl, l = 2, . . . , S represent the ratio between the standard deviations of
the lth stratum and the first stratum. By definition, δl > 0, l = 2, . . . , S.

The main arguments to the varIdent constructor are value, a named
numeric vector or a named list specifying the values and the strata of the
δ parameters that are allowed to vary in the optimization, and form, a one-
sided formula of the form ~1|s specifying the stratification variable s. Some,
or all, of the variance parameters may be set to fixed values (which do not
vary during the optimization) using the argument fixed. This may be given
either as named numeric vector, or a named list, specifying the values and
the strata of the δ that are to remain fixed during the optimization.

For example, to specify and initialize a variance function with different
variances per gender for the Orthodont data described in §1.4.1, with the
initial value of the δ parameter corresponding to Female set to 0.5, we use
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> vf1Ident <- varIdent( c(Female = 0.5), ~ 1 | Sex )

> vf1Ident <- initialize( vf1Ident, Orthodont )

> varWeights( vf1Ident )

Male Male Male Male Male Male Male Male Male Male Male Male

1 1 1 1 1 1 1 1 1 1 1 1

. . .

Female Female

2 2

If the ratio between the Female and Male standard deviations, given by δ,
is to be kept fixed at 0.5 and not allowed to vary during the optimization,
we can use instead

> vf2Ident <- varIdent( form = ~ 1 | Sex, fixed = c(Female = 0.5))

> vf2Ident <- initialize( vf2Ident, Orthodont )

> varWeights( vf2Ident )

Male Male Male Male Male Male Male Male Male Male Male Male

1 1 1 1 1 1 1 1 1 1 1 1

. . .

Female Female

2 2

It is possible to specify several stratification variables simultaneously in
form, separated by the * operator. The levels of the different stratification
variables are pasted together and a different δ is used for each combination
of levels. For example, to specify a variance function with different variances
for each age and Sex combination we can use

> vf3Ident <- varIdent( form = ~ 1 | Sex * age )

> vf3Ident <- initialize( vf3Ident, Orthodont )

> varWeights( vf3Ident )

Male*8 Male*10 Male*12 Male*14 Male*8 Male*10 Male*12 Male*14

1 1 1 1 1 1 1 1

. . .

Female*12 Female*14

1 1

By default, all variance parameters are initialized to 1, corresponding to
equal variance weights of 1 being assigned to all strata.

varPower

The variance model represented by this class is

Var (εij) = σ2 |vij |2δ
, (5.14)

corresponding to the variance function

g (vij , δ) = |vij |δ ,
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which is a power of the absolute value of the variance covariate. The pa-
rameter δ is unrestricted (i.e., may take any value in the real line) so (5.14)
can model cases where the variance increases or decreases with the absolute
value of the variance covariate. Note that, when vij = 0 and δ > 0, the
variance function is 0 and the variance weight is undefined. Therefore, this
class of variance functions should not be used with variance covariates that
may assume the value 0.

The main arguments to the varPower constructor are value and form,
which specify, respectively, an initial value for δ, when this is allowed to vary
in the optimization, and a one-sided formula with the variance covariate. By
default, value = 0, corresponding to equal variance weights of 1, and form =

~fitted(.), corresponding to a variance covariate given by the fitted values.
For example, to specify a variance model with the δ parameter initially set
to 1, and allowed to vary in the optimization, and the fitted values as the
variance covariate, we use

> vf1Power <- varPower( 1 )

> formula( vf1Power )

~ fitted(.)

The fixed argument can be used to set δ to a fixed value, which does
not change in the optimization. For example,

> vf2Power <- varPower( fixed = 0.5 )

specifies a model in which the variance increases linearly with the fitted
values.

An optional stratification variable, or several stratification variables sep-
arated by *, may be included in the form argument, with a different δ be-
ing used for each stratum. This corresponds to the following generalization
of (5.14)

Var (εij) = σ2 |vij |2δsij , g (vij , sij , δ) = |vij |δsij .

When a stratification variable is included in form, the arguments value

and fixed must be either named vectors, or named lists. For example, to
specify a model for the Orthodont data in which the variance increases
linearly with the fitted values for Males and stays constant for Females,
with both parameters held fixed during the optimization, we use

> vf3Power <- varPower( form = ~ fitted(.) | Sex,

+ fixed = list(Male = 0.5, Female = 0) )

varExp

The variance model represented by this class is

Var (εij) = σ2 exp (2δvij) , (5.15)
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corresponding to the variance function

g (vij , δ) = exp (δvij) ,

which is an exponential function of the variance covariate. The parameter
δ is unrestricted, so (5.15) can model cases where the variance increases
or decreases with the variance covariate. There are no restrictions on the
variance covariate, which, in particular, may take the value 0.

The arguments value, form, and fixed to the varExp constructor are
defined and declared as in varPower, assuming also the same default values.
An optional stratification variable, or stratification variables separated by
*, may be specified in form, corresponding to the following generalization
of (5.15)

Var (εij) = σ2 exp
(
2δsij

vij

)
, g (vij , sij , δ) = exp

(
δsij

vij

)
.

As with varPower, when a stratification variable is included in form, the
arguments value and fixed must be either named vectors, or named lists.
For example, a variance model in which the Male variance increases expo-
nentially with age, but the Female variance is held at a constant value is
expressed as

> vf1Exp <- varExp( form = ~ age | Sex, fixed = c(Female = 0) )

varConstPower

The variance model represented by this class is

Var (εij) = σ2
(
δ1 + |vij |δ2

)2

, (5.16)

corresponding to the variance function

g (vij , δ) = δ1 + |vij |δ2 ,

which is a constant plus a power of the absolute value of the variance
covariate. δ1 is restricted to be positive and δ2 is unrestricted. If δ2 > 0,
which will generally be the case in practice, the varConstPower variance
function is approximately constant and equal to δ1, when the variance
covariate is close to 0, and increases with the absolute value of the variance
covariate as it gets away from 0. This generally gives a more realistic model
than the varPower model, in cases when the variance covariate takes values
close or equal to 0.

Initial values for parameters that are allowed to vary during the opti-
mization are specified through the arguments const and power. The former
is used for δ1 and the latter for δ2. By default, const = 1 and power = 0,
corresponding to constant variance weights equal to 1. The form argument
is defined as in varPower and varExp, assuming the same default value. The
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argument fixed is given as a list with components const and power and
may be used to set either, or both, of the variance parameters to a fixed
value. For example, to specify a variance function with δ1 fixed at the value
1, with δ2 allowed to vary but initialized to 0.5, and the fitted values as the
variance covariate, we use

> vf1ConstPower <- varConstPower( power = 0.5,

+ fixed = list(const = 1) )

An optional stratification variable, or several stratification variables sep-
arated by *, may be included in the form argument, with different δ1 and
δ2 being used for each stratum. This corresponds to the following general-
ization of (5.16)

Var (εij) = σ2
(
δ1,sij

+ |vij |δ2,sij

)2

, g (vij , sij , δ) = δ2,sij
+ |vij |δ2,sij .

When a stratification variable is included in form, the arguments const,
power and the components of fixed must be either named vectors, or named
lists.

varComb

This class allows the combination of two, or more, variance models, by
multiplying together the corresponding variance functions. For example,
a variance model in which the variance is proportional to an exponential
function of a variance covariate, but in which the proportionality constant
varies according to the levels of an stratification variable s can be expressed
as a product of a varIdent variance function and a varExp variance function.

Var (εij) = σ2δ2
1,sij

exp (2δ2vij) = σ2g2
1 (sij , δ1) g2

2 (vij , δ2) ,

g1 (sij , δ1) = δ1,sij
, g2 (vij , δ2) = exp (δ2vij) .

(5.17)

The varComb constructor can take any number of varFunc objects as ar-
guments. For example, to represent (5.17), with Sex as the stratification
variable and age as the variance covariate, we use

> vf1Comb <- varComb( varIdent(c(Female = 0.5), ~ 1 | Sex),

+ varExp(1, ~ age) )

> vf1Comb <- initialize( vf1Comb, Orthodont )

> varWeights( vf1Comb )

1 2 3 4 5 6 7 8 9

0.125 0.1 0.083333 0.071429 0.125 0.1 0.083333 0.071429 0.125

. . .

98 99 100 101 102 103 104 105 106 107

0.2 0.16667 0.14286 0.25 0.2 0.16667 0.14286 0.25 0.2 0.16667

108

0.14286
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The varComb variance weights correspond to the product of the individual
variance weights of each of its varFunc objects. In the case of vf1Comb, these
are given by 1/

√ageij for Male (observations 1–64) and 2/√ageij for Female
(observations 65–108).

New varFunc classes, representing user-defined variance functions, can be
added to the set of standard classes in Table 5.1 and used with the model-
ing functions in the nlme library. For this, one must specify a constructor
function, generally with the same name as the class, and, at a minimum,
methods for the functions coef, coef<-, and initialize. The varPower con-
structor and methods can serve as templates for these.

5.2.2 Using Variance Functions with lme

Variance functions are specified in the lme function using the weights argu-
ment. By default, weights = NULL, corresponding to a homoscedastic vari-
ance model for the within-group errors. Variance models can be specified
in weights either as a one-sided formula, in which case it is passed as the
single argument to the varFixed constructor, or as a varFunc object, cre-
ated using the standard constructors described in §5.2.1, or a user-defined
constructor. In this section, we describe the use of variance models in lme

through the analysis of two examples of grouped data with heteroscedastic
within-group errors.

High-Flux Hemodialyzer Ultrafiltration Rates

Vonesh and Carter (1992) describe and analyze data measured on high-
flux hemodialyzers to assess their in vivo ultrafiltration characteristics. The
ultrafiltration rates (in ml/hr) of 20 high-flux dialyzers were measured at
7 ascending transmembrane pressures (in dmHg). The in vitro evaluation
of the dialyzers used bovine blood at flow rates of either 200 dl/min or
300 dl/min. These data are also described in Appendix A.6 and are included
in the nlme library as the groupedData object Dialyzer.

The plots of the ultrafiltration rates versus transmembrane pressure by
bovine blood flow rate, displayed in Figure 5.1, reveal that the ultrafiltra-
tion rate increases with transmembrane pressure and that higher ultrafil-
tration rates are attained with the 300 dl/min blood flow dialyzers. These
plots also indicate that the variability in the ultrafiltration rates increases
with transmembrane pressure.

Vonesh and Carter (1992) use a nonlinear model to represent the re-
lationship between ultrafiltration rate and transmembrane pressure. An
alternative analysis is presented in Littell et al. (1996), who compare sev-
eral linear mixed-effects models and extended linear models to represent
the ultrafiltration rate yij at the jth transmembrane pressure xij for the
ith subject. The best linear mixed-effects model indicated by their analysis
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FIGURE 5.1. Hemodialyzer ultrafiltration rates (in ml/hr) measured at 7 differ-
ent transmembrane pressures (in dmHg) on 20 high-flux dialyzers. In vitro evalu-
ation of dialyzers based on bovine blood flow rates of 200 dl/min and 300 dl/min.

is

yij =(β0 + γ0Qi + b0i) + (β1 + γ1Qi + b1i)xij

+ (β2 + γ2Qi + b2i) x2
ij + (β3 + γ3Qi)x3

ij + (β4 + γ4Qi)x4
ij + εij ,

(5.18)

bi =

⎡⎣ b0i

b1i

b2i

⎤⎦ ∼ N (0,Ψ) , εij ∼ N (
0, σ2

)
,

where Qi is a binary variable taking values −1 for 200 dl/min hemodialyzers
and 1 for 300 dl/min hemodialyzers; β0, β1, β2, β3, and β4 are, respectively,
the intercept, linear, quadratic, cubic, and quartic fixed effects averaged
over the levels of Q; γi is the blood flow effect associated with the fixed effect
βi; bi is the vector of random effects, assumed independent for different i;
and εij is the within-group error, assumed independent for different i, j and
independent of the random effects.

We fit the homoscedastic linear mixed-effects model (5.18) with

> fm1Dial.lme <-

+ lme(rate ~(pressure + pressure^2 + pressure^3 + pressure^4)*QB,

+ Dialyzer, ~ pressure + pressure^2)

> fm1Dial.lme

Linear mixed-effects model fit by REML

Data: Dialyzer

Log-restricted-likelihood: -326.39

Fixed: rate ~(pressure + pressure^2 + pressure^3 + pressure^4)*QB
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(Intercept) pressure I(pressure^2) I(pressure^3) I(pressure^4)

-16.598 88.673 -42.732 9.2165 -0.77561

QB pressure:QB I(pressure^2):QB I(pressure^3):QB

-0.63174 0.31044 1.5741 0.050928

I(pressure^4):QB

-0.085967

Random effects:

Formula: ~ pressure + pressure^2 | Subject

Structure: General positive-definite

StdDev Corr

(Intercept) 1.4989 (Intr) pressr

pressure 4.9074 -0.507

I(pressure^2) 1.4739 0.311 -0.944

Residual 1.8214

Number of Observations: 140

Number of Groups: 20

The primary tool for investigating within-group heteroscedasticity is the
plots of residuals against the fitted values and other candidate variance
covariates. In the hemodialyzer example, the transmembrane pressure is a
natural candidate for the variance covariate. The corresponding residuals
plot, obtained with

> plot( fm1Dial.lme, resid(.) ~ pressure, abline = 0 ) # Figure 5.2

and displayed in Figure 5.2, confirms that the within-group variability in-
creases with transmembrane pressure.

Because of its flexibility, the varPower variance function is a common
choice for modeling monotonic heteroscedasticity, when the variance co-
variate is bounded away from zero (transmembrane pressure varies in the
data between 0.235 dmHg and 3.030 dmHg). The corresponding model
only differs from (5.18) in that the within-group errors are allowed to be
heteroscedastic with variance model

Var (εij) = σ2x2δ
ij (5.19)

and we fit it with

> fm2Dial.lme <- update( fm1Dial.lme,

+ weights = varPower(form = ~ pressure) )

> fm2Dial.lme

Linear mixed-effects model fit by REML

Data: Dialyzer

Log-restricted-likelihood: -309.51

Fixed: rate ~(pressure + pressure^2 + pressure^3 + pressure^4)*QB

(Intercept) pressure I(pressure^2) I(pressure^3) I(pressure^4)

-17.68 93.711 -49.186 12.245 -1.2426
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FIGURE 5.2. Plot of residuals versus transmembrane pressure for the homo-
scedastic fitted object fm1Dial.lme.

QB pressure:QB I(pressure^2):QB I(pressure^3):QB

-0.92072 1.3528 0.48071 0.49118

I(pressure^4):QB

-0.14624

Random effects:

Formula: ~ pressure + pressure^2 | Subject

Structure: General positive-definite

StdDev Corr

(Intercept) 1.8569 (Intr) pressr

pressure 5.3282 -0.522

I(pressure^2) 1.6483 0.362 -0.954

Residual 1.2627

Variance function:

Structure: Power of variance covariate

Formula: ~ pressure

Parameter estimates:

power

0.74923

Number of Observations: 140

Number of Groups: 20

The anova method can be used to test the significance of the heteroscedas-
tic model (5.19).
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FIGURE 5.3. Plot of standardized residuals versus transmembrane pressure for
the varPower fitted object fm2Dial.lme.

> anova( fm1Dial.lme, fm2Dial.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Dial.lme 1 17 686.78 735.53 -326.39

fm2Dial.lme 2 18 655.01 706.63 -309.51 1 vs 2 33.77 <.0001

As expected, there is a highly significant increase in the log-likelihood as-
sociated with the inclusion of the varPower variance function. The plot of
the standardized residuals, defined as rij = (yij − ŷij) /(σ̂x

�δ
ij) in this case,

versus the variance covariate is used to graphically assess the adequacy of
the variance model.

> plot( fm2Dial.lme, resid(., type = "p") ~ pressure,

+ abline = 0 ) # Figure 5.3

The resulting plot, displayed in Figure 5.3, reveals a reasonably homoge-
neous pattern of variability for the standardized residuals, indicating that
the varPower model successfully describes the within-group variance.

We assess the variability of the variance parameter estimate δ̂ with the
intervals method.
> intervals( fm2Dial.lme )

. . .

Variance function:

lower est. upper

power 0.4079 0.74923 1.0906

. . .

The resulting confidence interval is based on a normal approximation for
the distribution of the (restricted) maximum likelihood estimators, with
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FIGURE 5.4. Plot of residuals versus transmembrane pressure by bovine blood
flow level for the varPower fitted object fm2Dial.lme.

an approximate variance–covariance matrix given by the inverse of the
observed information matrix evaluated at the converged values.

An interesting question about the hemodialyzer data is whether the
within-group variability depends on the bovine blood flow level. We can
investigate this graphically with the plots of the raw residuals versus trans-
membrane pressure by blood flow level, obtained with

> plot(fm2Dial.lme, resid(.) ~ pressure|QB, abline = 0) # Fig. 5.4

and displayed in Figure 5.4. Note that the pattern of increasing variability
is still present in the raw residuals, as we did not transform the data, but,
instead, incorporated the within-group heteroscedasticity in the model. The
heteroscedastic patterns seem the same for both blood flow levels. We can
test this formally using

> fm3Dial.lme <- update(fm2Dial.lme,

+ weights=varPower(form = ~ pressure | QB))

> fm3Dial.lme

. . .

Variance function:

Structure: Power of variance covariate, different strata

Formula: ~ pressure | QB

Parameter estimates:

200 300

0.64775 0.83777

. . .

> anova( fm2Dial.lme, fm3Dial.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Dial.lme 1 18 655.01 706.63 -309.51

fm3Dial.lme 2 19 656.30 710.78 -309.15 1 vs 2 0.71091 0.3991
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FIGURE 5.5. Plot of predicted ultrafiltration rates versus transmembrane pres-
sure by subject corresponding to the fitted object fm2Dial.lme.

As expected, there is no evidence of a significant effect of blood flow in the
within-group variability.

Because the transmembrane pressure takes values relatively close to zero,
we may wish to investigate if a varConstPower variance model

Var (εij) = σ2
(
δ1 + xδ2

ij

)2

would give a more appropriate representation of the within-group variance.

> fm4Dial.lme <- update(fm2Dial.lme,

+ weights = varConstPower(form = ~ pressure))

> anova( fm2Dial.lme, fm4Dial.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Dial.lme 1 18 655.01 706.63 -309.51

fm4Dial.lme 2 19 656.85 711.34 -309.43 1 vs 2 0.15915 0.6899

The nearly identical log-likelihood values indicate that there is no need for
the extra parameter associated with varConstPower and that the simpler
varPower model should be maintained.

A final assessment of the heteroscedastic version of the linear mixed-
effects model (5.18) with within-group variance model (5.19) is provided
by the plot of the augmented predictions by subject, obtained with

> plot( augPred(fm2Dial.lme), grid = T ) # Figure 5.5

and displayed in Figure 5.5. The predicted values closely match the ob-
served ultrafiltration rates, attesting the adequacy of the model.



5.2 Variance Functions for Modeling Heteroscedasticity 221

One of the questions of interest for the hemodialyzer data is whether the
ultrafiltration characteristics differ with the evaluation blood flow rates,
which is suggested by the plots in Figure 5.1. The anova method can be
used to test the significance of the terms associated with the evaluation
blood flow rates, in the order they were entered in the model (a sequential
type of test).

> anova( fm2Dial.lme )

. . .

numDF denDF F-value p-value

(Intercept) 1 112 552.9 <.0001

pressure 1 112 2328.6 <.0001

I(pressure^2) 1 112 1174.6 <.0001

I(pressure^3) 1 112 359.9 <.0001

I(pressure^4) 1 112 12.5 0.0006

QB 1 18 4.8 0.0414

pressure:QB 1 112 80.1 <.0001

I(pressure^2):QB 1 112 1.4 0.2477

I(pressure^3):QB 1 112 2.2 0.1370

I(pressure^4):QB 1 112 0.2 0.6840

. . .

The large p-values associated with terms of degree greater than or equal to
2 involving the variable QB suggest that they are not needed in the model.
We can verify their joint significance with

> anova( fm2Dial.lme, Terms = 8:10 )

F-test for: I(pressure^2):QB, I(pressure^3):QB, I(pressure^4):QB

numDF denDF F-value p-value

1 3 112 1.2536 0.2939

The large p-value for the F-test confirms that these terms could be elimi-
nated from the model.

Body Weight Growth in Rats

As a second example to illustrate the use of variance functions with lme, we
revisit the BodyWeight data introduced in §3.2.1 and described in Hand and
Crowder (1996, Table A.1), on the body weights of rats measured over 64
days. The body weights of the rats (in grams) are measured on day 1 and
every seven days thereafter, until day 64, with an extra measurement on
day 44. There are three groups of rats, each on a different diet. These data
are also described in Appendix A.3 and are included in the nlme library as
the groupedData object BodyWeight.

The plots of the body weights versus time by diet, shown in Figure 5.6,
indicate strong differences among the three diet groups. There is also evi-
dence of a rat in diet group 2 with an unusually high initial body weight.

The body weights appear to grow linearly with time, possibly with dif-
ferent intercepts and slopes for each diet, and with intercept and slope
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FIGURE 5.6. Body weights of rats measured over a period of 64 days. The rats
are divided into three groups on different diets.

random effects to account for rat-to-rat variation. We express this as the
linear mixed-effects model

yij = (β0 + γ02D2i + γ03D3i + b0i) + (β1 + γ12D2i + γ13D3i + b1i) tij + εij ,

bi =
[

b0i

b1i

]
∼ N (0,Ψ) , εij ∼ N (

0, σ2
)
, (5.20)

where D2i is a binary variable taking the value 1 if the ith rat receives Diet
2; D3i is a binary indicator variable for Diet 3; β0 and β1 are, respectively,
the average intercept and the average slope for rats under Diet 1; γ0k is the
average difference in intercept between rats under Diet k and rats under
Diet 1; γ1k is the average difference in slope between rats under Diet k and
rats under Diet 1; bi is the vector of random effects, assumed independent
for different i; and εij is the within-group error, assumed independent for
different i, j and independent of the random effects.

To fit (5.20), we first need to reset the contrasts option to use the
contr.treatment parameterization for factors, as described in §1.2.1,

> options( contrasts = c("contr.treatment", "contr.poly") )

and then use

> fm1BW.lme <- lme( weight ~ Time * Diet, BodyWeight,

+ random = ~ Time )
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FIGURE 5.7. Plot of standardized residuals versus fitted values for the homo-
scedastic fitted object fm1BW.lme.

> fm1BW.lme

Linear mixed-effects model fit by REML

Data: BodyWeight

Log-restricted-likelihood: -575.86

Fixed: weight ~ Time * Diet

(Intercept) Time Diet2 Diet3 TimeDiet2 TimeDiet3

251.65 0.35964 200.67 252.07 0.60584 0.29834

Random effects:

Formula: ~ Time | Rat

Structure: General positive-definite

StdDev Corr

(Intercept) 36.93907 (Inter

Time 0.24841 -0.149

Residual 4.44361

Number of Observations: 176

Number of Groups: 16

The plot of the standardized residuals versus the fitted values, displayed
in Figure 5.7, gives clear indication of within-group heteroscedasticity.
Because the fitted values are bounded away from zero, we can use the
varPower variance function to model the heteroscedasticity.

> fm2BW.lme <- update( fm1BW.lme, weights = varPower() )

> fm2BW.lme

Linear mixed-effects model fit by REML

Data: BodyWeight
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Log-restricted-likelihood: -570.96

Fixed: weight ~ Time * Diet

(Intercept) Time Diet2 Diet3 TimeDiet2 TimeDiet3

251.6 0.36109 200.78 252.17 0.60182 0.29523

Random effects:

Formula: ~ Time | Rat

Structure: General positive-definite

StdDev Corr

(Intercept) 36.89887 (Inter

Time 0.24373 -0.147

Residual 0.17536

Variance function:

Structure: Power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:

power

0.54266

Number of Observations: 176

Number of Groups: 16

Note that the form argument did not need to be specified in the call to
varPower, because its default value, ~fitted(.), corresponds to the desired
variance covariate.

The plot of the standardized residuals versus fitted values for the het-
eroscedastic fit corresponding to fm2BW.lme, displayed in Figure 5.8, indi-
cates that the varPower variance function adequately represents the within-
group heteroscedasticity.

We can test the significance of the variance parameter in the varPower
model using the anova method, which, as expected, strongly rejects the
assumption of homoscedasticity (i.e., δ = 0).

> anova( fm1BW.lme, fm2BW.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1BW.lme 1 10 1171.7 1203.1 -575.86

fm2BW.lme 2 11 1163.9 1198.4 -570.96 1 vs 2 9.7984 0.0017

The primary question of interest for the BodyWeight data is whether the
growth rates differ significantly among diets. Because of the parametriza-
tion used in (5.20), the summary method only provides tests for differences
between Diets 1 and 2 (γ12 in (5.20)) and between Diets 1 and 3 (γ13

in (5.20)).

> summary( fm2BW.lme )

. . .

Fixed effects: weight ~ Time * Diet

Value Std.Error DF t-value p-value

(Intercept) 251.60 13.068 157 19.254 <.0001
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FIGURE 5.8. Plot of standardized residuals versus fitted values for the varPower
fitted object fm2BW.lme.

Time 0.36 0.088 157 4.084 0.0001

Diet2 200.78 22.657 13 8.862 <.0001

Diet3 252.17 22.662 13 11.127 <.0001

TimeDiet2 0.60 0.155 157 3.871 0.0002

TimeDiet3 0.30 0.156 157 1.893 0.0602

. . .

There appears to be a significant increase in growth rate associated with
Diet 2 (TimeDiet2) and a borderline significant increase in growth rate for
Diet 3 (TimeDiet3). We can test the difference in growth rates between Diets
2 and 3 using the anova method.

> anova( fm2BW.lme, L = c(TimeDiet2 = 1, TimeDiet3 = -1) )

F-test for linear combination(s)

TimeDiet2 TimeDiet3

1 -1

numDF denDF F-value p-value

1 1 157 2.8608 0.0927

The argument L is used to specify contrasts of coefficients to be tested as
equal to zero. The names of the elements in L must correspond to coefficients
in the model. There does not seem to be a significant difference in growth
rate between Diets 2 and 3.
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5.3 Correlation Structures for Modeling
Dependence

Correlation structures are used to model dependence among observations.
In the context of mixed-effects models and extended linear models, they
are used to model dependence among the within-group errors. Historically,
correlation structures have been developed for two main classes of data:
time-series data and spatial data. The former is generally associated with
observations indexed by an integer-valued time variable, while the latter
refers primarily to observations indexed by a two-dimensional spatial loca-
tion vector, taking values in the real plane.

To establish a general framework for correlation structures, we assume
that the within-group errors εij are associated with position vectors pij .
For time series data, the pij are typically integer scalars, while for spatial
data they are generally two-dimensional coordinate vectors. The correla-
tion structures considered in this book are assumed to be isotropic (Cressie,
1993, §2.3.1); that is, the correlation between two within-group errors εij , εij′

is assumed to depend on the corresponding position vectors pij , pij′ only
through some distance between them, say d

(
pij , pij′

)
, and not on the par-

ticular values they assume. The general within-group correlation structure
for single-level grouping is expressed, for i = 1, . . . , M and j, j′ = 1, . . . , ni,
as

cor (εij , εij′) = h
[
d(pij , pij′), ρ

]
, (5.21)

where ρ is a vector of correlation parameters and h(·) is a correlation
function taking values between −1 and 1, assumed continuous in ρ, and
such that h (0, ρ) = 1, that is, if two observations have identical position
vectors, they are the same observation and therefore have correlation 1.

The single-level correlation model (5.21) can be easily generalized to
multilevel grouping. For example, the correlation model for two nested
levels of grouping is

cor (εijk, εijk′) = h
[
d(pijk, pijk′), ρ

]
,

i = 1, . . . , M, j = 1, . . . , Mi, k, k′ = 1, . . . , nij .

Note that the correlation model applies to within-group errors within the
same innermost level of grouping. We concentrate, for the remainder of
this section, in the single-level correlation model (5.21), but all correlation
structures presented here can be easily extended to multilevel models.

5.3.1 Serial Correlation Structures

Serial correlation structures are used to model dependence in time-series
data, that is, data observed sequentially over time and indexed by a one-
dimensional position vector. Serial correlation structures for linear models



5.3 Correlation Structures for Modeling Dependence 227

without random effects have been extensively studied by Box, Jenkins and
Reinsel (1994). In the context of linear mixed-effects models, they are de-
scribed in detail in Jones (1993).

We simplify the isotropy assumption and assume that the serial correla-
tion model depends on the one-dimensional positions pij , pij′ only through
their absolute difference. The general serial correlation model is then de-
fined as

cor (εij , εij′) = h (|pij − pij′ | , ρ) .

In the context of time-series data, the correlation function h (·) is re-
ferred to as the autocorrelation function. The empirical autocorrelation
function (Box et al., 1994, §3), a nonparametric estimate of the autocorre-
lation function, provides a useful tool for investigating serial correlation in
time-series data. Let rij = (yij − ŷij) /σ̂ij , denote the standardized resid-
uals from a fitted mixed-effects model, with σ2

ij = Var (εij). The empirical
autocorrelation at lag l is defined as

ρ̂ (l) =

∑M
i=1

∑ni−l
j=1 rijri(j+l)/N(l)∑M

i=1

∑ni

j=1 r2
ij/N(0)

, (5.22)

where N(l) is the number of residual pairs used in the summation defining
the numerator of ρ̂(l).

Serial correlation structures typically require that the data be observed
at integer time points and do not easily generalize to continuous position
vectors. We describe below some of the most common serial correlation
structures used in practice, all of which are implemented in the nlme library.

Compound Symmetry

This is the simplest serial correlation structure, which assumes equal cor-
relation among all within-group errors pertaining to the same group. The
corresponding correlation model is

cor (εij , εij′) = ρ, ∀j �= j′, h(k, ρ) = ρ, k = 1, 2, . . . , (5.23)

where the single correlation parameter ρ is generally referred to as the
intraclass correlation coefficient.

The variance–covariance matrix for the ith response vector in a single-
level linear mixed-effects model with independent and identically distributed
within-group errors, with variance σ2, and a single intercept random effect,
with variance σ2

b , is σ2I + σ2
b11T , corresponding to the correlation matrix

σ2/
(
σ2

b + σ2
)
I+σ2

b/
(
σ2

b + σ2
)
11T . This is equivalent to a compound sym-

metry structure with intraclass correlation ρ = σ2
b/
(
σ2

b + σ2
)
, indicating

that the correlation structure defined by this linear mixed-effects model
is a particular case of (5.23). The two correlation models are not equiva-
lent, however, because the intraclass correlation in the linear mixed-effects
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model can only take values between 0 and 1, while (5.23) allows ρ to take
negative values (to have a positive-definite compound symmetry correlation
structure, it is only required that ρ > −1/ [maxi≤M (ni) − 1]).

The compound symmetry correlation model tends to be too simplistic
for practical applications involving time-series data, as, in general, it is
more realistic to assume a model in which the correlation between two
observations decreases, in absolute value, with their distance. It is a useful
model for applications involving short time series per group, or when all
observations within a group are collected at the same time, as in split-plot
experiments.

General

This structure represents the other extreme in complexity to the compound
symmetry structure. Each correlation in the data is represented by a dif-
ferent parameter, corresponding to the correlation function

h(k, ρ) = ρk, k = 1, 2, . . . . (5.24)

Because the number of parameters in (5.24) increases quadratically with
the maximum number of observations within a group, this correlation struc-
ture will often lead to overparameterized models. When there are relatively
few observations per group, the general correlation structure is useful as
an exploratory tool to determine a more parsimonious correlation model.

Autoregressive–Moving Average

This family of correlation structures, described in detail in Box et al. (1994),
includes different classes of linear stationary models: autoregressive mod-
els, moving average models, and mixture of autoregressive–moving average
models. These are also called Box and Jenkins models.

Autoregressive–moving average correlation models assume that the data
are observed at integer time points and, for simplicity, we use the notation
εt to refer to an observation taken at time t. The distance, or lag, between
two observations εt and εs is given by |t−s|. So lag-1 refers to observations
one time unit apart and so on.

Autoregressive models express the current observation as a linear func-
tion of previous observations plus a homoscedastic noise term, at, centered
at 0 (E [at] = 0) and assumed independent of the previous observations.

εt = φ1εt−1 + · · · + φpεt−p + at. (5.25)

The number of past observations included in the linear model (5.25), p, is
called the order of the autoregressive model, which is denoted by AR(p).
There are p correlation parameters in an AR(p) model, given by φ =
(φ1, . . . , φp).
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The AR(1) model is the simplest (and one of the most useful) autore-
gressive model. Its correlation function decreases in absolute value expo-
nentially with lag.

h(k, φ) = φk, k = 0, 1, . . . . (5.26)

The single correlation parameter, φ, represents the lag-1 correlation and
takes values between −1 and 1. The AR(1) model is one of the few serial
correlation structures that can be generalized to continuous time measure-
ments. We define the continuous time AR(1) correlation function (Jones,
1993, 3.3), denoted CAR(1), as

h(s, φ) = φs, s ≥ 0, φ ≥ 0. (5.27)

Note that the single correlation parameter φ in (5.27) must be non-negative.
For autoregressive models of order greater than 1, the correlation func-

tion does not admit a simple representation as in (5.26), being defined
recursively through the difference equation (Box et al., 1994, §3.2.2)

h(k, φ) = φ1h(|k − 1|, φ) + · · · + φph(|k − p|, φ), k = 1, 2, . . . .

Moving average correlation models assume that the current observation
is a linear function of independent and identically distributed noise terms.

εt = θ1at−1 + · · · + θqat−q + at. (5.28)

The number of noise terms included in the linear model (5.28), q, is called
the order of the moving average model, which is denoted by MA(q). There
are q correlation parameters in an MA(q) model, given by θ = (θ1, . . . , θq).

The correlation function for an MA(q) model is

h(k, θ) =

{
θk+θ1θk−1+···+θk−qθq

1+θ2
1+···+θ2

q
, k = 1, . . . , q,

0, k = q + 1, q + 2, . . . .

Observations more than q time units apart are uncorrelated, as they do not
share any common noise terms at.

Strategies for estimating the order of autoregressive and moving average
models in time series applications are discussed in Box et al. (1994, §3).

Mixed autoregressive–moving average models, called ARMA models, are
obtained by combining together an autoregressive model and a moving
average model.

εt =
p∑

i=1

φiεt−i +
q∑

j=1

θjat−j + at.

There are p + q correlation parameters ρ in an ARMA(p, q) model, cor-
responding to the combination of the p autoregressive parameters φ =
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(φ1, . . . , φp) and the q moving average parameters θ = (θ1, . . . , θq). By
convention, ARMA(p, 0) = AR(p) and ARMA(0, q) = MA(q), so that both
autoregressive and moving average models are particular examples of the
general ARMA model.

The correlation function for an ARMA(p, q) model behaves like the corre-
lation function of an AR(p) model for lags greater than q and like an AR(p)
correlation function plus a term related to the moving average part of the
model, between lags 1 and q. It is obtained using the recursive relations

h(k, ρ) =

⎧⎨⎩ φ1h(|k − 1|, ρ) + · · · + φph(|k − p|, ρ)+
θ1ψ(k − 1, ρ) + · · · + θqψ(k − q, ρ), k = 1, . . . , q,

φ1h(|k − 1|, ρ) + · · · + φph(|k − p|, ρ), k = q + 1, q + 2, . . . ,

where ψ(k, φ, θ) = E [εt−kat] /Var (εt). Note that ψ(k, φ, θ) = 0, k =
1, 2, . . . , as, in this case, εt−k and at are independent and E [at] = 0.

5.3.2 Spatial Correlation Structures

Spatial correlation structures were originally proposed to model dependence
in data indexed by continuous two-dimensional position vectors, such as
geostatistical data, lattice data, and point patterns. Because the isotropic
spatial correlation structures we consider are continuous functions of some
distance between position vectors, they are easily generalized to any finite
number of position dimensions. In particular, they can be used with time
series data. The basic reference for spatial correlation structures used with
linear models with no random effects is Cressie (1993). Spatial correlation
structures in the context of mixed-effects models are described at length in
Diggle et al. (1994).

For simplicity of notation, we denote by εx the observation taken at
position x = (x1, . . . , xr)

T . Any distance metric may be used with isotropic
spatial correlation structures, the most common being the Euclidean, or L2,

distance, defined as dE (εx, εy) =
√∑r

i=1 (xi − yi)
2. Other popular choices

are the Manhattan, or L1, distance dMan (εx, εy) =
∑r

i=1 |xi − yi| and the
maximum distance dMax (εx, εy) = maxi=1,... ,r |xi − yi|.

Semivariogram

Spatial correlation structures are generally represented by their semivar-
iogram, instead of their correlation function (Cressie, 1993, §2.3.1). The
semivariogram of an isotropic spatial correlation structure with a distance
function d(·) is defined as

γ [d (εx, εy) , λ] = 1
2Var (εx − εy) = 1

2E [εx − εy]2 , (5.29)

with the last equality following from E [εx] = E [εy] = 0. The within-
group errors can be standardized to have unit variance, without changing
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their correlation structure. So, without loss of generality, we assume that
Var (εx) = 1, ∀x. In this case, γ (·) will depend only on the correlation
parameters ρ and it is easy to verify that

γ (s, ρ) = 1 − h(s, ρ).

It follows from h(0, ρ) = 1 that γ(0, ρ) = 0. To account for abrupt changes
at very small distances, it is desirable, in some applications, to allow a dis-
continuity in γ(·) at 0, so that γ(s, ρ) → c0, when s ↓ 0, with 0 < c0 < 1.
This is called a nugget effect in the spatial statistics literature (Cressie,
1993, §2.3.1). In terms of the correlation function, the nugget effect trans-
lates into h(s, ρ) → 1 − c0 as s ↓ 0. It is easy to obtain a correlation
function that incorporates a nugget effect from a correlation function that
is continuous in s.

hnugg (s, c0, ρ) =
{

(1 − c0)hcont (s, ρ) , s > 0,
0, s = 0.

The standardized residuals rij = (yij − ŷij) /σ̂ij , with σ2
ij = Var (εij), are

the primary quantities used for estimating the semivariogram. The classical
estimator of the semivariogram (Matheron, 1962) is

γ̂(s) =
1

2N(s)

M∑
i=1

∑
d(pij ,pij′)=s

(rij − rij′)2 , (5.30)

where N(s) denotes the number of residual pairs at a distance s of each
other. Because γ̂(s) uses the squared differences between residual pairs, it
can be quite sensitive to outliers. Furthermore, because each residual rij

appears in ni−1 squared differences in (5.30), a single outlier can affect the
estimation of the semivariogram at several distances. A robust estimator
of the semivariogram, proposed by Cressie and Hawkins (1980), uses the
square-root differences to reduce the influence of outliers.

γ̄(s) =

⎛⎜⎝ 1
2N(s)

M∑
i=1

∑
d(pij ,pij′)=s

|rij − rij′ |1/2

⎞⎟⎠
4

/ (0.457 + 0.494/N(s)) .

(5.31)

Some Isotropic Variogram Models

Cressie (1993, §2.3.1) describes an extensive collection of isotropic vari-
ogram models and give conditions for their validity. The single-parameter
models in Table 5.2 are a subset of the collection in Cressie (1993), with
the Linear variogram model modified so that it is bounded in s. I(s < ρ)
denotes a binary variable taking value 1 when s < ρ and 0 otherwise. Most
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TABLE 5.2. Some isotropic variogram models for spatial correlation structures.

Exponential γ(s, ρ) = 1 − exp (−s/ρ)
Gaussian γ(s, ρ) = 1 − exp

[
− (s/ρ)2

]
Linear γ(s, ρ) = 1 − (1 − s/ρ) I(s < ρ)
Rational quadratic γ(s, ρ) = (s/ρ)2 /

[
1 + (s/ρ)2

]
Spherical γ(s, ρ) = 1 −

[
1 − 1.5 (s/ρ) + 0.5 (s/ρ)3

]
I(s < ρ)

of the models in Table 5.2 are also described in Littell et al. (1996, §9.3.1).
The correlation parameter ρ is generally referred to as the range in the

spatial statistics literature (Littell et al., 1996, §9.3).
For one-dimensional position vectors, the exponential spatial correlation

structure is equivalent to the CAR(1) structure (5.27). This is easily verified
by defining φ = exp(−1/ρ) and noting the correlation function associated
with the exponential structure is expressed as h(s, φ) = φs. The exponential
correlation model can be regarded as a multivariate generalization of the
the CAR(1) model.

Correlation functions for the structures in Table 5.2 may be obtained
using the relation h(s, ρ) = 1− γ(s, ρ). A nugget effect c0 may be added to
any of the variogram models, using

γnugg (s, co, ρ) =
{

c0 + (1 − c0) γ(s, ρ), s > 0,
0, s = 0.

Figure 5.9 displays plots of the semivariograms models in Table 5.2,
corresponding to a range of ρ = 1 and a nugget effect of c0 = 0.1 The
semivariograms increase monotonically with distance and vary between 0
and 1, corresponding to non-negative correlation functions that decrease
monotonically with distance. All of the spatial correlation models in Ta-
ble 5.2 are implemented in the nlme library as corStruct classes, described
in the next section.

5.3.3 Correlation Structures in nlme: The corStruct Classes

The nlme library provides a set of classes of correlation structures, the
corStruct classes, which are used to specify within-group correlation mod-
els in either the extended linear mixed-effects model (5.1), or the extended
linear model (5.5). Table 5.3 lists the standard corStruct classes in the nlme
library. The corStruct constructors have the same name as their corre-
sponding classes.

The two main arguments to most of the corStruct constructors are value

and form. The first specifies the values of the correlation parameters and
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FIGURE 5.9. Plots of semivariogram versus distance for the isotropic spatial
correlation models in Table 5.2 with range = 1 and nugget effect = 0.1.

the second is a one-sided formula specifying the position vector and, op-
tionally, a grouping variable for the data—observations in different groups
are assumed independent. For example, to specify age as a position variable
and to have Subject defining the grouping of the data, we use

form = ~ age | Subject

A two-dimensional position vector with coordinates x and y is specified
with

form = ~ x + y

The argument fixed, available in all corStruct constructors, may be used
to specify fixed correlation structures, which coefficients are not allowed
to change during the numerical optimization in the modeling functions. If
fixed = TRUE, the coefficients in the structure are fixed. Default is fixed =

FALSE.
Several methods are available for each corStruct class, including initial-

ize, which initializes position vectors and grouping variables, and corMatrix,
which extracts the within-group correlation matrices. We now describe and
illustrate the standard corStruct classes.

corCompSymm

This class implements the compound symmetry correlation structure (5.23.
The argument value is used to initialize the intraclass correlation coef-
ficient, assuming a default value of 0. Because the compound symmetry
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TABLE 5.3. Standard corStruct classes.

corCompSymm compound symmetry
corSymm general
corAR1 autoregressive of order 1
corCAR1 continuous-time AR(1)
corARMA autoregressive-moving average
corExp exponential
corGaus Gaussian
corLin linear
corRatio rational quadratic
corSpher spherical

correlation model does not depend on the position of the observation, but
just on the group to which it belongs, the form argument is used only to
specify the grouping structure. For example,

> cs1CompSymm <- corCompSymm( value = 0.3, form = ~ 1 | Subject )

specifies a compound symmetry structure with intraclass correlation of 0.3
and grouping defined by Subject. The variable used on the left hand side
of the | operator in form is ignored, so

> cs2CompSymm <- corCompSymm( value = 0.3, form = ~ age | Subject )

gives a corCompSymm object identical to cs1CompSymm. By default, form = ~1,
implying that all observations belong to the same group.

The initialize method is used to initialize the grouping factor and the
correlation matrices per group. It takes an argument data, naming a data
frame in which to evaluate the variables in form.

> cs1CompSymm <- initialize( cs1CompSymm, data = Orthodont )

> corMatrix( cs1CompSymm )

$M01:

[,1] [,2] [,3] [,4]

[1,] 1.0 0.3 0.3 0.3

[2,] 0.3 1.0 0.3 0.3

[3,] 0.3 0.3 1.0 0.3

[4,] 0.3 0.3 0.3 1.0

. . .

Typically, initialize is only called from within the modeling function using
the corStruct object.

corSymm

This class implements the general correlation structure (5.24). The argu-
ment value is used to initialize the correlation parameters, being given as



5.3 Correlation Structures for Modeling Dependence 235

a numeric vector with the lower diagonal elements of the the largest corre-
lation matrix represented by the corSymm object stacked columnwise. For
example, to represent the correlation matrix⎡⎢⎢⎣

1.0 0.2 0.1 −0.1
0.2 1.0 0.0 0.2
0.1 0.0 1.0 0.0
−0.1 0.2 0.0 1.0

⎤⎥⎥⎦ (5.32)

we use

value = c( 0.2, 0.1, -0.1, 0, 0.2, 0 )

The correlations specified in value must define a positive-definite correla-
tion matrix. By default, value = numeric(0), which leads to initial values
of 0 being assigned to all correlations in the initialize method.

The argument form specifies a one-sided formula with the position vari-
able and, optionally, a grouping variable. The position variable defines the
indices of the correlation parameters for each observation and must eval-
uate to an integer vector, with nonrepeated values per group, such that
its unique values, when sorted, form a sequence of consecutive integers. By
default, the position variable in form is 1, in which case the order of the
observations within the group is used to index the correlation parameters.

For example, to specify a general correlation correlation structure with
initial correlation matrix as in (5.32), observation order within the group
as the position variable, and grouping variable Subject, we use

> cs1Symm <- corSymm( value = c(0.2, 0.1, -0.1, 0, 0.2, 0),

+ form = ~ 1 | Subject )

> cs1Symm <- initialize( cs1Symm, data = Orthodont )

> corMatrix( cs1Symm )

$M01:

[,1] [,2] [,3] [,4]

[1,] 1.0 0.2 0.1 -0.1

[2,] 0.2 1.0 0.0 0.2

[3,] 0.1 0.0 1.0 0.0

[4,] -0.1 0.2 0.0 1.0

corAR1

This class implements an autoregressive correlation structure of order 1, for
integer position vectors. The argument value initializes the single correla-
tion parameter φ, which takes values between −1 and 1, and, by default, is
set to 0. The argument form is a one-sided formula specifying the position
variable and, optionally, a grouping variable. The position variable must
evaluate to an integer vector, with nonrepeated values per group, but its
values are not required to be consecutive, so that missing time points are
naturally accommodated. By default, form = ~1, implying that the order
of the observations within the group be used as the position variable.
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For example, to specify an AR(1) correlation structure with φ = 0.8,
position variable given by observation order within-group, and grouping
variable Subject, we use

> cs1AR1 <- corAR1( 0.8, form = ~ 1 | Subject )

> cs1AR1 <- initialize( cs1AR1, data = Orthodont )

> corMatrix( cs1AR1 )

$M01:

[,1] [,2] [,3] [,4]

[1,] 1.000 0.80 0.64 0.512

[2,] 0.800 1.00 0.80 0.640

[3,] 0.640 0.80 1.00 0.800

[4,] 0.512 0.64 0.80 1.000

As described in §5.3.1, the AR(1) model is equivalent to an ARMA(1, 0)
model, so that the corARMA class can also be used to represent an corAR1
object. However, the corAR1 methods are designed to take advantage of
the particular structure of the AR(1) model, and are substantially more
efficient than the corresponding corARMA methods.

corCAR1

This class implements the continuous time AR(1) structure (5.27). Its ar-
guments are defined as in corAR1, but the position variable can be any
continuous variable with non-repeated values per group and the correla-
tion parameter φ can only take positive values.

corARMA

This corStruct class is used to specify autoregressive–moving average models
for the within-group errors. The argument value specifies the values of
the autoregressive and moving average parameters. If both autocorrelation
and moving average parameters are present, the former should precede
the latter in value. By default, all correlation parameters are set to 0,
corresponding to uncorrelated within-group errors. The form argument is a
one-sided formula defining the position variable and, optionally, a grouping
variable. The position variable must evaluate to an integer vector, with
non-repeated elements per group. Its values do not need to be consecutive,
so that missing time points are allowed. By default, form = ~1, implying
that the order of the observations within the group be used as the position
variable.

Two additional arguments, p and q, are used, respectively, to specify
the order of the autoregressive model and the order of the moving average
model. Using p > 0 and q = 0 specifies an AR(p) model, while p = 0 and
q > 0 specifies an MA(q) model. By default, p = 0 and q = 0.

For example, to specify an MA(1) model with parameter θ = 0.4, posi-
tion variable given by the observation order within the group, and groups
defined by Subject, we use
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> cs1ARMA <- corARMA( 0.4, form = ~ 1 | Subject, q = 1 )

> cs1ARMA <- initialize( cs1ARMA, data = Orthodont )

> corMatrix( cs1ARMA )

$M01:

[,1] [,2] [,3] [,4]

[1,] 1.00000 0.34483 0.00000 0.00000

[2,] 0.34483 1.00000 0.34483 0.00000

[3,] 0.00000 0.34483 1.00000 0.34483

[4,] 0.00000 0.00000 0.34483 1.00000

An ARMA(1, 1) model with parameters φ = 0.8 and θ = 0.4 is specified
with

> cs2ARMA <- corARMA( c(0.8, 0.4), form = ~ 1 | Subject, p=1, q=1 )

> cs2ARMA <- initialize( cs2ARMA, data = Orthodont )

> corMatrix( cs2ARMA )

$M01:

[,1] [,2] [,3] [,4]

[1,] 1.0000 0.880 0.704 0.5632

[2,] 0.8800 1.000 0.880 0.7040

[3,] 0.7040 0.880 1.000 0.8800

[4,] 0.5632 0.704 0.880 1.0000

Spatial corStruct Classes

The corStruct classes representing spatial correlation structures are corExp,
corGaus, corLin, corRatio, and corSpher. As the corresponding constructors
all have the same syntax, we will show examples for corExp only.

The argument value is used to specify values for the range ρ and the
nugget effect c0, in this order. The range only takes positive values and
the nugget effect can only vary between 0 and 1. By default, value =

numeric(0), in which case the range is initialized to 90% of the minimum
between-pairs distance and the nugget effect is initialized to 0.1.

The argument form is a one-sided formula specifying a position vector
and, optionally, a grouping variable. The coordinates of the position vec-
tor must be numeric variables, but are otherwise unrestricted. By default,
form = ~1, translating into a one-dimensional position vector given by the
observation order within the group.

The argument nugget determines whether a nugget effect should be in-
cluded in the correlation model. If TRUE, a nugget effect is included. Its
default value is FALSE, corresponding to no nugget effect in the model. The
argument metric is a character string specifying a metric to be used for cal-
culating the between-pairs distances. Possible values include "euclidean",
"maximum", and "manhattan", corresponding to the metrics described in
§5.3.2.

To illustrate the use of the spatial corStruct classes, we consider an arti-
ficial data frame spatDat, with columns x and y.
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> spatDat

x y

1 0.00 0.00

2 0.25 0.25

3 0.50 0.50

4 0.75 0.75

5 1.00 1.00

An exponential spatial correlation structure based on the Euclidean dis-
tance between x and y, with range equal to 1, and no nugget effect is
constructed and initialized with

> cs1Exp <- corExp( 1, form = ~ x + y )

> cs1Exp <- initialize( cs1Exp, spatDat )

> corMatrix( cs1Exp )

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000 0.70219 0.49307 0.34623 0.24312

[2,] 0.70219 1.00000 0.70219 0.49307 0.34623

[3,] 0.49307 0.70219 1.00000 0.70219 0.49307

[4,] 0.34623 0.49307 0.70219 1.00000 0.70219

[5,] 0.24312 0.34623 0.49307 0.70219 1.00000

To calculate the distances in the Manhattan (L1) metric, we use

> cs2Exp <- corExp( 1, form = ~ x + y, metric = "man" )

> cs2Exp <- initialize( cs2Exp, spatDat )

> corMatrix( cs2Exp )

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000 0.60653 0.36788 0.22313 0.13534

[2,] 0.60653 1.00000 0.60653 0.36788 0.22313

[3,] 0.36788 0.60653 1.00000 0.60653 0.36788

[4,] 0.22313 0.36788 0.60653 1.00000 0.60653

[5,] 0.13534 0.22313 0.36788 0.60653 1.00000

Note that because partial matches are used on the value of the metric

argument, we only gave the first three characters of "manhattan" in the
call.

A nugget effect of 0.2 is added to the correlation structure using

> cs3Exp <- corExp( c(1, 0.2), form = ~ x + y, nugget = T )

> cs3Exp <- initialize( cs3Exp, spatDat )

> corMatrix( cs3Exp )

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000 0.56175 0.39445 0.27698 0.19449

[2,] 0.56175 1.00000 0.56175 0.39445 0.27698

[3,] 0.39445 0.56175 1.00000 0.56175 0.39445

[4,] 0.27698 0.39445 0.56175 1.00000 0.56175

[5,] 0.19449 0.27698 0.39445 0.56175 1.00000

New corStruct classes, representing user-defined correlation structures,
can be added to the set of standard classes in Table 5.3 and used with
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the modeling functions in the nlme library. For this, one must specify a
constructor function, generally with the same name as the class, and, at a
minimum, methods for the functions coef, corMatrix, and initialize. The
corAR1 constructor and methods can serve as templates for these.

5.3.4 Using Correlation Structures with lme

Correlation structures are specified in lme through the correlation ar-
gument. By default, correlation = NULL, corresponding to uncorrelated
within-group errors. Correlation structures are specified as corStruct ob-
jects, created using the standard constructors described in §5.3.3, or a
user-defined corStruct constructor. In this section, we describe the use of
correlation models in lme through the analysis of two examples of grouped
data with correlated within-group errors.

When assessing the adequacy of a correlation model, it is often use-
ful to consider diagnostic plots of the normalized residuals, defined as

ri = σ̂−1(Λ̂
−1/2

i )T (yi − ŷi), where σ̂2Λ̂i denotes the estimated variance–
covariance matrix for the i within-group errors. If the within-group variance–
covariance model is correct, the normalized residuals should be approxi-
mately distributed as independent N (0, I) random vectors.

Counts of Ovarian Follicles

Pierson and Ginther (1987) report on a study of the number of ovar-
ian follicles larger than 10 mm in diameter detected in eleven different
mares at several times in their estrus cycles. The data were recorded daily
from three days before ovulation until three days after the next ovulation.
The measurement times for each mare are scaled so that the ovulations
for each mare occur at times 0 and 1. These data are also described in
Appendix A.18 and are included in the nlme library as the groupedData
object Ovary.

The plots of the number of follicles versus time per mare, shown in Fig-
ure 5.10, suggest a periodic behavior for the number of follicles over time.

Preliminary analyses indicate that the following linear mixed-effects model
provides a reasonable representation for the number of follicles yij for the
ith mare at time tij .

yij = (β0 + b0i) + (β1 + b1i) sin (2πtij) + β2 cos (2πtij) + εij ,

bi =
[

b0i

b1i

]
∼ N (

0, diag
(
σ2

0 , σ2
1

))
, εij ∼ N (

0, σ2
)
,

(5.33)

where β0, β1, and β2 are the fixed effects, bi is the random effects vector,
assumed independent for different mares, and εij is the within-group error,
assumed independent for different i, j and independent of the random ef-
fects. The random effects b0i and b1i are assumed to be independent with
variances σ2

0 and σ2
1 , respectively.
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FIGURE 5.10. Number of ovarian follicles greater than 10 mm in diameter de-
tected in mares at various times in their estrus cycles. The times have been scaled
so the ovulations occur at times 0 and 1.

We fit the linear mixed-effects model (5.33) with

> fm1Ovar.lme <- lme( follicles ~ sin(2*pi*Time) + cos(2*pi*Time),

+ data = Ovary, random = pdDiag(~sin(2*pi*Time)) )

> fm1Ovar.lme

Linear mixed-effects model fit by REML

Data: Ovary

Log-restricted-likelihood: -813.04

Fixed: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)

(Intercept) sin(2 * pi * Time) cos(2 * pi * Time)

12.182 -3.2985 -0.86237

Random effects:

Formula: ~ sin(2 * pi * Time) | Mare

Structure: Diagonal

(Intercept) sin(2 * pi * Time) Residual

StdDev: 3.0521 2.0793 3.1129

Number of Observations: 308

Number of Groups: 11
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The observations in the Ovary data were collected at equally spaced cal-
endar times. When the calendar time was converted to the ovulation cy-
cle scale, the intervals between observations remained very similar, but no
longer identical. Therefore, when considered in the scale of the within-group
observation order, the Ovary data provides an example of time-series data.
We use it here to illustrate the modeling of serial correlation structures in
lme.

The ACF method for the lme class obtains the empirical autocorrelation
function (5.22) from the residuals of an lme object.

> ACF( fm1Ovar.lme )

lag ACF

1 0 1.000000

2 1 0.379480

3 2 0.179722

4 3 0.035693

5 4 0.059779

6 5 0.002097

7 6 0.064327

8 7 0.071635

9 8 0.048578

10 9 0.027782

11 10 -0.034276

12 11 -0.077204

13 12 -0.161132

14 13 -0.196030

15 14 -0.289337

Empirical autocorrelations at larger lags tend to be less reliable, because
they are estimated with fewer residual pairs. We control the number of lags
for which to calculate the empirical autocorrelations in ACF with the argu-
ment maxLag. A plot of the empirical autocorrelation function, displayed in
Figure 5.11, is obtained with

> plot(ACF(fm1Ovar.lme, maxLag = 10), alpha = 0.01) # Figure 5.11

The argument alpha specifies the significance level for approximate two-
sided critical bounds for the autocorrelations (Box et al., 1994), given by
±z(1 − α/2)/

√
N(l), with z(p) denoting the standard normal quantile of

order p and N(l) defined as in (5.22).
The empirical autocorrelations in Figure 5.11 are significantly different

from 0 at the first two lags, decrease approximately exponentially for the
first four lags, and stabilize at nonsignificant levels for larger lags. This sug-
gests that an AR(1) model may be suitable for the within-group correlation
and we fit it with

> fm2Ovar.lme <- update( fm1Ovar.lme, correlation = corAR1() )

Linear mixed-effects model fit by REML

Data: Ovary
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FIGURE 5.11. Empirical autocorrelation function corresponding to the standard-
ized residuals of the fm1Ovar.lme object.

Log-restricted-likelihood: -774.72

Fixed: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)

(Intercept) sin(2 * pi * Time) cos(2 * pi * Time)

12.188 -2.9853 -0.87776

Random effects:

Formula: ~ sin(2 * pi * Time) | Mare

Structure: Diagonal

(Intercept) sin(2 * pi * Time) Residual

StdDev: 2.8585 1.258 3.5071

Correlation Structure: AR(1)

Formula: ~ 1 | Mare

Parameter estimate(s):

Phi

0.5722

Number of Observations: 308

Number of Groups: 11

Note that no arguments need to be passed to corAR1 in this case, as its
default formula ~1 specifies the position variable as the within-group order
of the observations, which is what is desired for the fm2Ovar.lme model.

Because the fm1Ovar.lme model is nested within the fm2Ovar.lme model
(corresponding to φ = 0) we can compare them using a likelihood ratio
test.
> anova( fm1Ovar.lme, fm2Ovar.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Ovar.lme 1 6 1638.1 1660.4 -813.04

fm2Ovar.lme 2 7 1563.4 1589.5 -774.72 1 vs 2 76.634 <.0001

The very significant p-value for the likelihood ratio test indicates that the
AR(1) provides a substantially better fit of the data than the indepen-
dent errors model (5.33), suggesting that within-group serial correlation is
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present in Ovary. We can assess the precision of the correlation parameter
estimate in fm2Ovar.lme with the intervals method.

> intervals( fm2Ovar.lme )

. . .

Correlation structure:

lower est. upper

Phi 0.36607 0.5722 0.72481

. . .

Consistently with the likelihood ratio test results, the confidence interval
on φ indicates that it is significantly different from 0.

The autocorrelation pattern in Figure 5.11 is also consistent with that of
an MA(2) model, in which only the first two lags have nonzero correlations.
We fit this model with

> fm3Ovar.lme <- update(fm1Ovar.lme, correlation = corARMA(q = 2))

> fm3Ovar.lme

. . .

Correlation Structure: ARMA(0,2)

Formula: ~ 1 | Mare

Parameter estimate(s):

Theta1 Theta2

0.47524 0.25701

. . .

The AR(1) and MA(2) models are not nested and, therefore, cannot be
compared through a likelihood ratio test. They can, however, be compared
via their information criterion statistics.

> anova( fm2Ovar.lme, fm3Ovar.lme, test = F )

Model df AIC BIC logLik

fm2Ovar.lme 1 7 1563.4 1589.5 -774.72

fm3Ovar.lme 2 8 1571.2 1601.0 -777.62

Even though it has one fewer parameter than the MA(2) model, the AR(1)
model is associated with a larger log-restricted-likelihood, which translates
into smaller AIC and BIC, making it the preferred model of the two.

Because the fixed- and random-effects models in (5.33) use a continuous
time scale, we investigate if a continuous time AR(1) model would provide
a better representation of the within-group correlation, using the corCAR1
class.

> fm4Ovar.lme <- update( fm1Ovar.lme,

+ correlation = corCAR1(form = ~Time) )

> anova( fm2Ovar.lme, fm4Ovar.lme, test = F )

Model df AIC BIC logLik

fm2Ovar.lme 1 7 1563.4 1589.5 -774.72

fm4Ovar.lme 2 7 1565.5 1591.6 -775.77
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No grouping variable needs to be specified in the call to corCAR1, as the
innermost grouping variable in the lme object is used by default. As in-
dicated by the AIC and the BIC in the anova output, the AR(1) model
provides a better representation of the within-group correlation than its
continuous-time version.

An “intermediate” model between the AR(1) and the MA(2) models is
the ARMA(1, 1) model, which has an exponentially decaying autocorrela-
tion function for lags ≥ 2, but allows more flexibility in the first autocor-
relation. We fit it with

> fm5Ovar.lme <- update(fm1Ovar.lme, corr = corARMA(p = 1, q = 1))

> fm5Ovar.lme

. . .

Correlation Structure: ARMA(1,1)

Formula: ~ 1 | Mare

Parameter estimate(s):

Phi1 Theta1

0.78716 -0.27957

. . .

The AR(1) model is nested within the ARMA(1, 1) model (corresponding
to θ1 = 0) and we can use anova to compare the two fits through a likelihood
ratio test.

> anova( fm2Ovar.lme, fm5Ovar.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Ovar.lme 1 7 1563.4 1589.5 -774.72

fm5Ovar.lme 2 8 1559.9 1589.7 -771.95 1 vs 2 5.5537 0.0184

The low p-value for the likelihood ratio test indicates that the ARMA(1, 1)
model provides a better fit of the data.

We can assess the adequacy of the ARMA(1, 1) model using the empirical
autocorrelation function of the normalized residuals.

> plot( ACF(fm5Ovar.lme, maxLag = 10, resType = "n"),

+ alpha = 0.01 ) # Figure 5.12

No significant autocorrelations are observed in Figure 5.12, indicating that
the normalized residuals behave like uncorrelated noise, as expected under
the appropriate correlation model.

Body Weight Growth in Rats

We revisit the BodyWeight example of §5.2.2 to illustrate the use of corStruct
classes in lme in combination with variance functions. As described in §5.2.2,
the observations in the BodyWeight data are not equally spaced in time, as
an extra observation is taken at 44 days. We use the spatial correlation
corStruct classes to use fit continuous-time within-group correlation models,
which naturally accommodate the imbalance in the data.
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FIGURE 5.12. Empirical autocorrelation function corresponding to the normal-
ized residuals of the fm5Ovar.lme object.

The Variogram method for the lme class estimates the sample semi-
variogram from the residuals of the lme object. The arguments resType

and robust control, respectively, what type of residuals should be used
("pearson" or "response") and whether the robust algorithm (5.31) or the
classical algorithm (5.30) should be used to estimate the semivariogram.
The defaults are resType = "pearson" and robust = FALSE, so that classical
estimates of the semivariogram are obtained from the standardized residu-
als. The argument form is a one-sided formula specifying the position vector
to be used for the semivariogram calculations.

> Variogram( fm2BW.lme, form = ~ Time )

variog dist n.pairs

1 0.34508 1 16

2 0.99328 6 16

3 0.76201 7 144

4 0.68496 8 16

5 0.68190 13 16

6 0.95118 14 128

7 0.89959 15 16

8 1.69458 20 16

9 1.12512 21 112

10 1.08820 22 16

11 0.89693 28 96

12 0.93230 29 16

13 0.85144 35 80

14 0.75448 36 16

15 1.08220 42 64

16 1.56652 43 16

17 0.64378 49 48

18 0.67350 56 32

19 0.58663 63 16
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FIGURE 5.13. Sample semivariogram estimates corresponding to the standard-
ized residuals of the fm2BW.lme object. A loess smoother is added to the plot to
enhance the visualization of patterns in the semivariogram.

The columns in the data frame returned by Variogram represent, respec-
tively, the sample semivariogram, the distance, and the number of residual
pairs used in the estimation. Because of the imbalance in the time measure-
ments, the number of residual pairs used at each distance varies consider-
ably, making some semivariogram estimates more reliable than others. In
general, the number of residual pairs used in the semivariogram estimation
decreases with distance, making the values at large distances unreliable.
We can control the maximum distance for which semivariogram estimates
should be calculated using the argument maxDist.

A graphical representation of the sample semivariogram is obtained with
the plot method for class Variogram.

> plot( Variogram(fm2BW.lme, form = ~ Time,

+ maxDist = 42) ) # Figure 5.13

The resulting plot, shown in Figure 5.13, includes a loess smoother (Cleveland
et al., 1992) to enhance the visualization of semivariogram patterns. The
semivariogram seems to increase with distance up to 20 days and then sta-
bilizes around 1. We initially use an exponential spatial correlation model
for the within-group errors, fitting it with

> fm3BW.lme <- update( fm2BW.lme, corr = corExp(form = ~ Time) )

> fm3BW.lme

. . .

Correlation Structure: Exponential spatial correlation
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Formula: ~ Time | Rat

Parameter estimate(s):

range

4.8862

Variance function:

Structure: Power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:

power

0.59436

. . .

Note that the model corresponding to fm3BW.lme includes both a variance
function and a correlation structure. We assess the variability in the spatial
correlation parameter estimate with the intervals method.

> intervals( fm3BW.lme )

. . .

Correlation structure:

lower est. upper

range 1.852 4.8862 12.891

. . .

The confidence intervals is bounded away from zero, suggesting that the
spatial correlation model produced a significantly better fit. We can also
test this using the anova method.

> anova( fm2BW.lme, fm3BW.lme )

Model df AIC BIC logLik Test L.Ratio p-value

fm2BW.lme 1 11 1163.9 1198.4 -570.96

fm3BW.lme 2 12 1145.1 1182.8 -560.57 1 vs 2 20.781 <.0001

The likelihood ratio test also indicates that the corExp model fits the data
significantly better than the independent errors model corresponding to
fm2BW.lme.

The semivariogram plot in Figure 5.13 gives some indication that a
nugget effect may be present in the data. We can test it with

> fm4BW.lme <- update( fm3BW.lme,

+ corr = corExp(form = ~ Time, nugget = T) )

> anova( fm3BW.lme, fm4BW.lme )

Model df AIC BIC logLik Test L.Ratio

fm3BW.lme 1 12 1145.1 1182.8 -560.57

fm4BW.lme 2 13 1147.1 1187.9 -560.57 1 vs 2 0.00043111

p-value

fm3BW.lme

fm4BW.lme 0.9834

The nearly identical log-likelihood values indicate that a nugget effect is,
in fact, not needed.
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FIGURE 5.14. Sample semivariogram estimates corresponding to the standard-
ized residuals of the fm2BW.lme object. The fitted semivariogram corresponding
to fm3BW.lme is added to plot.

When an lme object includes a spatial corStruct object, we can further
assess the adequacy of the correlation model with the plot method. In this
case, instead of a loess smoother, the fitted semivariogram corresponding
to the corStruct object is displayed in the plot, along with the sample
variogram estimates.

> plot( Variogram(fm3BW.lme, form = ~ Time,

+ maxDist = 42) ) # Figure 5.14

The fitted semivariogram agrees reasonably well with the sample variogram
estimates.

We can also assess the adequacy of the exponential spatial correlation
model by investigating the sample semivariogram for the normalized resid-
uals.

> plot( Variogram(fm3BW.lme, form = ~ Time, maxDist = 42,

+ resType = "n", robust = T) ) # Figure 5.15

The robust semivariogram estimator is used to reduce the influence of an
outlying value at distance 1 on the loess smoother. The sample semivari-
ogram estimates in Figure 5.15 appear to vary randomly around the y = 1
line, suggesting that the normalized residuals are approximately uncorre-
lated and, hence, the corExp model is adequate.

We may compare the corExp model to other spatial correlation models,
using the update method and the anova method. As the models are not
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FIGURE 5.15. Sample semivariogram estimates corresponding to the normalized
residuals of the fm3BW.lme object. A loess smoother is added to the plot to
enhance the visualization of patterns in the semivariogram.

nested, they have to be compared based on the information criteria AIC
and BIC.

> fm5BW.lme <- update( fm3BW.lme, corr = corRatio(form = ~ Time) )

> fm6BW.lme <- update( fm3BW.lme, corr = corSpher(form = ~ Time) )

> fm7BW.lme <- update( fm3BW.lme, corr = corLin(form = ~ Time) )

> fm8BW.lme <- update( fm3BW.lme, corr = corGaus(form = ~ Time) )

> anova( fm3BW.lme, fm5BW.lme, fm6BW.lme, fm7BW.lme, fm8BW.lme )

Model df AIC BIC logLik

fm3BW.lme 1 12 1145.1 1182.8 -560.57

fm5BW.lme 2 12 1148.8 1186.4 -562.38

fm6BW.lme 3 12 1150.8 1188.4 -563.39

fm7BW.lme 4 12 1150.8 1188.4 -563.39

fm8BW.lme 5 12 1150.8 1188.4 -563.39

The corExp fit has the smallest AIC and BIC and seems the most adequate
within-group correlation model for the BodyWeight data, among the spatial
correlation models considered.

5.4 Fitting Extended Linear Models with gls

The general formulation of the extended linear model, as well as the esti-
mation methods used to fit it, have been described in §5.1.2. In this section,
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TABLE 5.4. Main gls methods.

ACF empirical autocorrelation function of residuals
anova likelihood ratio or conditional tests
augPred predictions augmented with observed values
coef estimated coefficients for expected response model
fitted fitted values
intervals confidence intervals on model parameters
logLik log-likelihood at convergence
plot diagnostic Trellis plots
predict predicted values
print brief information about the fit
qqnorm normal probability plots
resid residuals
summary more detailed information about the fit
update update the gls fit
Variogram semivariogram of residuals

we concentrate on the capabilities available in the nlme library for fitting
such models.

The gls function is used to fit the extended linear model (5.5), using
either maximum likelihood, or restricted maximum likelihood. It can be
viewed as an lme function without the argument random. Several arguments
are available in gls, but typical calls are of the form

gls( model, data, correlation ) # correlated errors

gls( model, data, weights ) # heteroscedastic errors

gls( model, data, correlation, weights ) # both

The first argument, model, is a two-sided linear formula specifying the model
for the expected value of the response. Correlation and weights are used,
as in lme, to define, respectively, the correlation model and the variance
function model for the error term. Data specifies a data frame in which the
variables named in model, correlation, and weights can be evaluated.

The fitted object returned by gls inherits from class gls, for which several
methods are available to display, plot, update, and further explore the
estimation results. Table 5.4 lists the most important methods for class gls.
The use of the gls function and its associated methods is described and
illustrated through the examples in the next sections.

Orthodontic Growth Curve

The Orthodont data were analyzed in §4.2 and §4.3 using a linear mixed-
effects model. We describe here an alternative analysis based on the ex-
tended linear model (5.5).
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Because of the small number of observations per subject, it is feasible for
these data to fit a linear model with a general variance–covariance structure
for the errors. The corresponding extended linear model for the ith subject
orthodontic distance at age j, i = 1, . . . , 27 and j = 1, . . . , 4, is written as

distanceij = β0 + β1 Sex + β2

(
agej − 11

)
+ β3

(
agej − 11

)
Sex + εij ,

εi =

⎡⎢⎢⎣
εi1

εi2

εi3

εi4

⎤⎥⎥⎦ ∼ N (0,Λi) , Λi =

⎡⎢⎢⎣
σ2

1 σ12 σ13 σ14

σ12 σ2
2 σ23 σ24

σ13 σ23 σ2
3 σ34

σ14 σ24 σ34 σ2
4

⎤⎥⎥⎦ , (5.34)

with Sex representing a binary variable taking values −1 for boys and 1
for girls. The parameters β1 and β3 represent, respectively, the intercept
and slope gender effects. The variance–covariance matrix Λi is assumed the
same for all subjects.

We fit (5.34) with gls using a combination of the corSymm correlation
class and the varIdent variance function class.

> fm1Orth.gls <- gls( distance ~ Sex * I(age - 11), Orthodont,

+ correlation = corSymm(form = ~ 1 | Subject),

+ weights = varIdent(form = ~ 1 | age) )

In this case, because Orthodont is a groupedData object with grouping vari-
able Subject, the argument form could be omitted in the call to corSymm.

The print method gives some basic information about the fit.

> fm1Orth.gls

Generalized least squares fit by REML

Model: distance ~ Sex * I(age - 11)

Data: Orthodont

Log-restricted-likelihood: -213.66

Coefficients:

(Intercept) Sex I(age - 11) Sex:I(age - 11)

23.801 -1.136 0.6516 -0.17524

Correlation Structure: General

Formula: ~ 1 | age

Parameter estimate(s):

Correlation:

1 2 3

2 0.568

3 0.659 0.581

4 0.522 0.725 0.740

Variance function:

Structure: Different standard deviations per stratum

Formula: ~ 1 | age



252 5. Extending the Basic Linear Mixed-Effects Model

Parameter estimates:

8 10 12 14

1 0.8792 1.0747 0.95872

Degrees of freedom: 108 total; 104 residual

Residual standard error: 2.329

The correlation estimates are similar, suggesting that a compound symme-
try structure may be a suitable correlation model. We explore this further
with the intervals method.

> intervals( fm1Orth.gls )

Approximate 95% confidence intervals

Coefficients:

lower est. upper

(Intercept) 23.06672 23.80139 24.536055

Sex -1.87071 -1.13605 -0.401380

I(age - 11) 0.52392 0.65160 0.779289

Sex:I(age - 11) -0.30292 -0.17524 -0.047552

Correlation structure:

lower est. upper

cor(1,2) 0.098855 0.56841 0.83094

cor(1,3) 0.242122 0.65878 0.87030

cor(1,4) 0.021146 0.52222 0.81361

cor(2,3) 0.114219 0.58063 0.83731

cor(2,4) 0.343127 0.72510 0.90128

cor(3,4) 0.382248 0.73967 0.90457

Variance function:

lower est. upper

10 0.55728 0.87920 1.3871

12 0.71758 1.07468 1.6095

14 0.61253 0.95872 1.5005

Residual standard error:

lower est. upper

1.5985 2.329 3.3933

All confidence intervals for the correlation parameters overlap, corrobo-
rating the compound symmetry assumption. We can test it formally by
updating the fitted object and using the anova method.

> fm2Orth.gls <-

+ update(fm1Orth.gls, corr = corCompSymm(form = ~ 1 | Subject))

> anova( fm1Orth.gls, fm2Orth.gls )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Orth.gls 1 14 455.32 492.34 -213.66

fm2Orth.gls 2 9 452.74 476.54 -217.37 1 vs 2 7.4256 0.1909



5.4 Fitting Extended Linear Models with gls 253

The large p-value for the likelihood ratio statistics reported in the anova

output confirms the compound symmetry model.
The confidence intervals for the variance function parameters correspond-

ing to fm2Orth.gls,

> intervals( fm2Orth.gls )

. . .

Variance function:

lower est. upper

10 0.56377 0.86241 1.3193

12 0.68132 1.03402 1.5693

14 0.60395 0.92045 1.4028

. . .

all include the value 1, suggesting that the variability does not change with
age. The high p-value for the associated likelihood ratio test confirms this
assumption.

> fm3Orth.gls <- update( fm2Orth.gls, weights = NULL )

> anova( fm2Orth.gls, fm3Orth.gls )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Orth.gls 1 9 452.74 476.54 -217.37

fm3Orth.gls 2 6 448.53 464.40 -218.26 1 vs 2 1.7849 0.6182

As with other modeling functions, the plot method is used to assess the
assumptions in the model. Its syntax is identical to the plot method for
class lme. For example, to examine if the error variance is the same for boys
and girls we may examine the plot of the normalized residuals versus age
by gender, obtained with

> plot( fm3Orth.gls, resid(., type = "n") ~ age | Sex ) # Fig. 5.16

and displayed in Figure 5.16. It is clear that there is more variability among
boys than girls, which we can represent in the model with the varIdent
variance function class.

> fm4Orth.gls <- update( fm3Orth.gls,

+ weights = varIdent(form = ~ 1 | Sex) )

> anova( fm3Orth.gls, fm4Orth.gls )

Model df AIC BIC logLik Test L.Ratio p-value

fm3Orth.gls 1 6 448.53 464.40 -218.26

fm4Orth.gls 2 7 438.96 457.47 -212.48 1 vs 2 11.569 7e-04

As expected, the likelihood ratio test gives strong evidence in favor of the
heteroscedastic model.

The qqnorm method is used to assess the assumption of normality for the
errors. Its syntax is identical to the corresponding lme method. The normal
plots of the normalized residuals by gender, obtained with

> qqnorm( fm4Orth.gls, ~resid(., type = "n") ) # Figure 5.17



254 5. Extending the Basic Linear Mixed-Effects Model

-2

-1

0

1

2

3

4

Male

8 9 10 11 12 13 14

Female

8 9 10 11 12 13 14

Age (yr)

N
or

m
al

iz
ed

 r
es

id
ua

ls

FIGURE 5.16. Scatter plots of normalized residuals versus age by gender for the
fm3Orth.gls fitted object.

and displayed in Figure 5.17, do not indicate serious departures from nor-
mality and confirm that the variance function model included in fm4Orth.gls

was successful in accommodating the error heteroscedasticity.
It is interesting, at this point, to compare the gls fit corresponding to

fm4Orth.gls to the lme fit corresponding to fm3Orth.lme, obtained in §4.3.1.
Because the corresponding models are not nested, a likelihood ratio test
is nonsensical. However, the information criteria can be compared, as the
fixed effects models are identical for the two fits. The anova method can be
used to compare gls and lme objects.

> anova( fm3Orth.lme, fm4Orth.gls, test = F )

Model df AIC BIC logLik

fm3Orth.lme 1 9 432.30 456.09 -207.15

fm4Orth.gls 2 7 438.96 457.47 -212.48

The lme fit has the smallest AIC and BIC and, therefore, seems to give a
better representation of the Orthodont data.

The choice between an lme model and a gls model should take into ac-
count more than just information criteria and likelihood tests. A mixed-
effects model has a hierarchical structure which, in many applications, pro-
vides a more intuitive way of accounting for within-group dependency than
the direct modeling of the marginal variance–covariance structure of the re-
sponse in the gls approach. Furthermore, the mixed-effects estimation gives,
as a byproduct, estimates for the random effects, which may be of interest
in themselves. The gls model focuses on marginal inference and is more
appealing when a hierarchical structure for the data is not believed to be
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FIGURE 5.17. Normal plots plots of normalized residuals by gender for the
fm4Orth.gls fitted object.

present, or is not relevant in the analysis, and one is more interested in
parameters associated with the error variance–covariance structure, as in
time-series analysis and spatial statistics.

High-Flux Hemodialyzer Ultrafiltration Rates

The hemodialyzer data were analyzed in §5.2.2 to illustrate the use of
variance functions with linear mixed-effects models. An alternative analysis,
using the gls function, is presented here.

We initially consider a linear model with the same expected response
as the linear mixed-effects model (5.18) and independent, homoscedastic
errors.

yij = (β0 + γ0Qi) + (β1 + γ1Qi)xij + (β2 + γ2Qi+)x2
ij +

(β3 + γ3Qi)x3
ij + (β4 + γ4Qi)x4

ij + εij , εij ∼ N (
0, σ2

)
,

(5.35)

where Qi is a binary variable taking values −1 for 200 dl/min hemodialyzers
and 1 for 300 dl/min hemodialyzers; β0, β1, β2, β3, and β4 are, respectively,
the intercept, linear, quadratic, cubic, and quartic coefficients averaged over
the levels of Q; γi is the blood flow effect associated with the coefficient βi;
and εij is the error term.

We may fit the linear model (5.35) using the gls function

> fm1Dial.gls <-

+ gls(rate ~(pressure + pressure^2 + pressure^3 + pressure^4)*QB,

+ Dialyzer)
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FIGURE 5.18. Plot of residuals versus transmembrane pressure for the homo-
scedastic fitted object fm1Dial.gls.

Because no variance functions and correlation structures are used, the gls
fit is equivalent to an lm fit, in this case.

The plot of the residuals versus transmembrane pressure, obtained with

> plot( fm1Dial.gls, resid(.) ~ pressure,

+ abline = 0 ) # Figure 5.18

and shown in Figure 5.18, displays the same pattern of heteroscedastic-
ity observed for the within-group residuals of the lme object fm1Dial.lme,
presented in Figure 5.2.

As in the lme analysis of §5.2.2, we choose the flexible variance function
class varPower to model the heteroscedasticity in the response, and test its
significance using the anova method.

> fm2Dial.gls <- update( fm1Dial.gls,

+ weights = varPower(form = ~ pressure) )

> anova( fm1Dial.gls, fm2Dial.gls)

Model df AIC BIC logLik Test L.Ratio p-value

fm1Dial.gls 1 11 768.10 799.65 -373.05

fm2Dial.gls 2 12 738.22 772.63 -357.11 1 vs 2 31.882 <.0001

As expected, the likelihood ratio test strongly rejects the assumption of
homoscedasticity. The plot of the standard residuals corresponding to
fm2Dial.gls versus pressure, shown in Figure 5.19, indicates that the power
variance function adequately represents the heteroscedasticity in the data.

Because the hemodialyzer ultrafiltration rates are measured sequentially
over time on the same subjects, the within-subject observations are likely
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FIGURE 5.19. Plot of standardized residuals versus transmembrane pressure for
the heteroscedastic fitted object fm2Dial.gls.

to be correlated. In §5.2.2, random effects were used to account for the
within-group correlation. We may, alternatively, use a correlation structure
to directly model the association among the within-subject errors. Because
the measurements in this example are equally spaced in time, the em-
pirical autocorrelation function can be used to investigate within-subject
correlation. The ACF method for the gls class has a syntax similar to the
corresponding lme method, but includes a form argument which allows the
specification of a time covariate, to define the lags between observations,
and a grouping variable, to specify a partition for the residuals.

> ACF( fm2Dial.gls, form = ~ 1 | Subject )

lag ACF

1 0 1.000000

2 1 0.770851

3 2 0.632301

4 3 0.408306

5 4 0.200737

6 5 0.073116

7 6 0.077802

The empirical ACF values indicate that the within-group observations are
correlated, and that the correlation decreases with lag. As usual, it is more
informative to look at a plot of the empirical ACF, displayed in Figure 5.20
and obtained with

> plot( ACF( fm2Dial.gls, form = ~ 1 | Subject),

+ alpha = 0.01 ) # Figure 5.20
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FIGURE 5.20. Empirical autocorrelation function corresponding to the standard-
ized residuals of the fm2Dial.gls object.

The ACF pattern observed in Figure 5.20 suggests that an AR(1) model
may be appropriate to describe it. The corAR1 class is used to represent it.

> fm3Dial.gls <- update( fm2Dial.gls,

+ corr = corAR1(0.771, form = ~ 1 | Subject) )

> fm3Dial.gls

Generalized least squares fit by REML

Model: rate ~(pressure + pressure^2 + pressure^3 + pressure^4)*QB

Data: Dialyzer

Log-restricted-likelihood: -308.34

Coefficients:

(Intercept) pressure I(pressure^2) I(pressure^3) I(pressure^4)

-16.818 92.334 -49.265 11.4 -1.0196

QB pressure:QB I(pressure^2):QB I(pressure^3):QB

-1.5942 1.7054 2.1268 0.47972

I(pressure^4):QB

-0.22064

Correlation Structure: AR(1)

Formula: ~ 1 | Subject

Parameter estimate(s):

Phi

0.75261

Variance function:

Structure: Power of variance covariate

Formula: ~ pressure

Parameter estimates:

power

0.51824

Degrees of freedom: 140 total; 130 residual

Residual standard error: 3.0463
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The initial value for the AR(1) parameter is given by the lag-1 empirical
autocorrelation. The form argument is used to specify the grouping variable
Subject.

The intervals method is used to assess the variability in the estimates.

> intervals( fm3Dial.gls )

Approximate 95% confidence intervals

Coefficients:

lower est. upper

(Intercept) -18.8968 -16.81845 -14.740092

pressure 81.9144 92.33423 102.754073

I(pressure^2) -63.1040 -49.26515 -35.426279

I(pressure^3) 4.5648 11.39967 18.234526

I(pressure^4) -2.1248 -1.01964 0.085557

QB -4.7565 -1.59419 1.568141

pressure:QB -13.6410 1.70544 17.051847

I(pressure^2):QB -17.9484 2.12678 22.201939

I(pressure^3):QB -9.3503 0.47972 10.309700

I(pressure^4):QB -1.8021 -0.22064 1.360829

Correlation structure:

lower est. upper

Phi 0.56443 0.75261 0.86643

Variance function:

lower est. upper

power 0.32359 0.51824 0.71289

Residual standard error:

lower est. upper

2.3051 3.0463 4.0259

The confidence interval on the correlation parameter φ is bounded away
from zero, indicating that the AR(1) model provides a significantly better
fit. We can confirm it with the likelihood ratio test.

> anova( fm2Dial.gls, fm3Dial.gls )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Dial.gls 1 12 738.22 772.63 -357.11

fm3Dial.gls 2 13 642.67 679.95 -308.34 1 vs 2 97.546 <.0001

No significant correlations are observed in the plot of the empirical auto-
correlation function for the normalized residuals of fm3Dial.gls, displayed
in Figure 5.21, indicating that the AR(1) adequately represents the within-
subject dependence.

The gls model corresponding to fm3Dial.gls may be compared to the best
lme model for the Dialyzer data in §5.2.2, corresponding to the fm2Dial.lme

object. As the models are not nested, only the information criterion statis-
tics can be compared.
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FIGURE 5.21. Empirical autocorrelation function for the normalized residuals of
the fm3Dial.gls object.

> anova( fm3Dial.gls, fm2Dial.lme, test = F )

Model df AIC BIC logLik

fm3Dial.gls 1 13 642.67 679.95 -308.34

fm2Dial.lme 2 18 655.01 706.63 -309.51

The two log-likelihoods are very similar, suggesting that the models give
equivalent representations of the data. Because the gls model has five fewer
parameters than the lme model, its information criterion statistics take
smaller values, suggesting it is a better model. However, as pointed out
in the previous example, the choice between a gls and an lme should take
other factors in consideration, besides the information criteria.

Wheat Yield Trials

Stroup and Baenziger (1994) describe an agronomic experiment to compare
the yield of 56 different varieties of wheat planted in four blocks arranged
according to a randomized complete complete block design. All 56 varieties
of wheat were used in each block. The latitude and longitude of each ex-
perimental unit in the trial were also recorded. These data are described in
greater detail in Appendix A.31, being included in the nlme library as the
groupedData object Wheat2.

The plot of the wheat yields for each variety by block, shown in Fig-
ure 5.22, suggests that a block effect is present in the data. As pointed out
by Littell et al. (1996, §9.6.2), the large number of plots within each block
makes the assumption of within-block homogeneity unrealistic. A better
representation of the dependence among the experimental units may be
obtained via spatial correlation structures that use the information on their
latitude and longitude. The corresponding extended linear model for the ith
wheat variety yield in the jth block, yij , for i = 1, . . . , 56, j = 1, . . . , 4,
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FIGURE 5.22. Yields of 56 different varieties of wheat for each block of a ran-
domized complete block design.

is given by

yij = τi + εij , ε = N (
0, σ2Λ

)
, (5.36)

where τi denotes the average yield for variety i and εij denotes the error
term, assumed to be normally distributed with mean 0 and with variance–
covariance matrix σ2Λ.

To explore the structure of Λ, we initially fit the linear model (5.36) with
the errors assumed independent and homoscedastic, i.e., Λ = I.

> fm1Wheat2 <- gls( yield ~ variety - 1, Wheat2 )

As described in §5.3.2, the sample semivariogram of the standardized resid-
uals is the primary tool for investigating spatial correlation in the errors.
The variogram method for class gls is used to obtain the sample semivari-
ogram for the residuals of a gls object. Its syntax is identical to that of the
Variogram method for lme objects.

> Variogram( fm1Wheat2, form = ~ latitude + longitude )

variog dist n.pairs

1 0.36308 4.3000 1212

2 0.40696 5.6080 1273

3 0.45366 8.3863 1256

4 0.51639 9.3231 1245

5 0.57271 10.5190 1254

6 0.58427 12.7472 1285

7 0.63854 13.3929 1175

8 0.65123 14.7635 1288

9 0.73590 16.1818 1290

10 0.73797 17.3666 1187

11 0.75081 18.4567 1298
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FIGURE 5.23. Sample semivariogram estimates corresponding to the standard-
ized residuals of the fm1Wheat2 object. A loess smoother is added to the plot to
enhance the visualization of patterns in the semivariogram.

12 0.88098 20.2428 1226

13 0.81019 21.6335 1281

14 0.86199 22.6736 1181

15 0.86987 24.6221 1272

16 0.85818 26.2427 1223

17 0.97145 28.4542 1263

18 0.98778 30.7877 1228

19 1.09617 34.5879 1263

20 1.34146 39.3641 1234

The sample semivariogram increases with distance, indicating, as expected,
that the observations are spatially correlated. The graphical representation
of the sample semivariogram produced by the plot method, displayed in
Figure 5.23, allows easier interpretation of the spatial correlation pattern.

> plot( Variogram(fm1Wheat2, form = ~ latitude + longitude,

+ maxDist = 32), xlim = c(0,32) ) # Figure 5.23

The distance is “censored” at 32, using the maxDist argument, to avoid
the less reliable estimates associated with distant plots. A nugget effect of
about 0.2 seems to be present and the semivariogram appears to approach
1 around distance 28.

Littell et al. (1996, §9.6.2) use the spherical correlation structure to model
the spatial correlation in these data. We can fit it using the corSpher class.
Initial values for the range and the nugget effect are obtained from Fig-
ure 5.23, noting that, in corSpher, the range is the distance at which the
semivariogram first equals 1.

> fm2Wheat2 <- update( fm1Wheat2, corr = corSpher(c(28, 0.2),

+ form = ~ latitude + longitude, nugget = T) )
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> fm2Wheat2

Generalized least squares fit by REML

Model: yield ~ variety - 1

Data: Wheat2

Log-restricted-likelihood: -533.93

Coefficients:

varietyARAPAHOE varietyBRULE varietyBUCKSKIN varietyCENTURA

26.659 25.85 34.848 25.095

. . .

varietySIOUXLAND varietyTAM107 varietyTAM200 varietyVONA

25.656 22.77 18.764 24.782

Correlation Structure: Spherical spatial correlation

Formula: ~ latitude + longitude

Parameter estimate(s):

range nugget

27.457 0.20931

Degrees of freedom: 224 total; 168 residual

Residual standard error: 7.4106

An alternative model suggested by the slow increase of the semivariogram
with distance in Figure 5.23 is the rational quadratic model of §5.3.2. An
initial value for the range in this model can also be obtained from the
semivariogram plot, noting that, when distance = range the semivariogram
in the rational quadratic model is equal to (1 + nugget)/2. For a nugget
effect of 0.2, this gives an initial estimate for the range of about 12.5 (the
approximate distance in Figure 5.23 at which the semivariogram is 0.6).
The corRatio class is used to fit the rational quadratic model.

> fm3Wheat2 <- update( fm1Wheat2,

+ corr = corRatio(c(12.5, 0.2),

+ form = ~ latitude + longitude, nugget = T) )

> fm3Wheat2

Generalized least squares fit by REML

Model: yield ~ variety - 1

Data: Wheat2

Log-restricted-likelihood: -532.64

Coefficients:

varietyARAPAHOE varietyBRULE varietyBUCKSKIN varietyCENTURA

26.546 26.284 35.037 24.867

. . .

varietySIOUXLAND varietyTAM107 varietyTAM200 varietyVONA

25.74 22.476 18.693 25.046

Correlation Structure: Rational quadratic spatial correlation

Formula: ~ latitude + longitude
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FIGURE 5.24. Sample semivariogram estimates corresponding to the normalized
residuals of the fm3Wheat2 object. A loess smoother is added to the plot to
enhance the visualization of patterns in the semivariogram.

Parameter estimate(s):

range nugget

13.461 0.1936

Degrees of freedom: 224 total; 168 residual

Residual standard error: 8.8463

> anova( fm2Wheat2, fm3Wheat2 )

Model df AIC BIC logLik

fm2Wheat2 1 59 1185.9 1370.2 -533.93

fm3Wheat2 2 59 1183.3 1367.6 -532.64

The smaller AIC and BIC values for the rational quadratic model indi-
cate that it gives a better representation of the correlation in the data than
the spherical model. We can test the significance of the spatial correlation
parameters comparing the fm3Wheat2 fit to the fit with independent errors
corresponding to fm1Wheat2.

> anova( fm1Wheat2, fm3Wheat2 )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Wheat2 1 57 1354.7 1532.8 -620.37

fm3Wheat2 2 59 1183.3 1367.6 -532.64 1 vs 2 175.46 <.0001

The large value of the likelihood ratio test statistics gives strong evidence
against the assumption of independence.

We can verify the adequacy of the corRatio model by examining the plot
of the sample semivariogram for the normalized residuals of fm3Wheat2.

> plot( Variogram(fm3Wheat2, resType = "n") ) # Figure 5.24

No patterns are observed in the plot of the sample semivariogram, suggest-
ing that the rational quadratic model is adequate.
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FIGURE 5.25. Scatter plot of normalized residuals versus fitted values for the
fitted object fm3Wheat2.

The normalized residuals are also useful for investigating heteroscedastic-
ity and departures from normality. For example, the plot of the normalized
residuals versus the fitted values, displayed in Figure 5.25 and obtained
with

> plot( fm3Wheat2, resid(., type = "n") ~ fitted(.),

+ abline = 0 ) # Figure 5.25

does not indicate any heteroscedastic patterns. The normal plot of the
normalized residuals in Figure 5.26 is obtained with

> qqnorm( fm3Wheat2, ~ resid(., type = "n") ) # Figure 5.26

No significant departures from the assumption of normality are observed
in this plot.

The anova method can be used to assess differences between the wheat
varieties. For example, to test if there are any differences between varieties,
we first have to reparametrize (5.36) in terms of an intercept plus contrasts
between the varieties and then use anova.

> fm4Wheat2 <- update( fm3Wheat2, model = yield ~ variety )

> anova( fm4Wheat2 )

Denom. DF: 168

numDF F-value p-value

(Intercept) 1 30.405 <.0001

variety 55 1.851 0.0015

The small p-value of the F-test for variety indicates that there are signifi-
cant differences between varieties. We can test specific contrasts using the
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FIGURE 5.26. Normal plots plots of normalized residuals for the fitted object
fm3Wheat2.

argument L to anova, with the original cell means parametrization. For ex-
ample, to test the difference between the first and the third wheat varieties
we use

> anova( fm3Wheat2, L = c(-1, 0, 1) )

Denom. DF: 168

F-test for linear combination(s)

varietyARAPAHOE varietyBUCKSKIN

-1 1

numDF F-value p-value

1 1 7.6966 0.0062

The small p-value for the F-test, combined with the coefficient estimates
displayed previously, indicates that the BUCKSKIN variety has significant
higher yields than the ARAPAHOE variety. Similar analyses can be obtained
for other linear contrasts of the model coefficients.

5.5 Chapter Summary

In this chapter the linear mixed-effects model of Chapters 2 and 4 is ex-
tended to include heteroscedastic, correlated within-group errors. We show
how the estimation and computational methods of Chapter 2 can be ex-
tended to this more general linear mixed-effects model. We introduce sev-
eral classes of variance functions to characterize heteroscedasticity and
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several classes of correlation structures to represent serial and spatial cor-
relation, and describe how variance functions and correlations structures
can be combined to flexibly model the within-group variance–covariance
structure.

We illustrate, through several examples, how the lme function is used to
fit the extended linear mixed-effects model and describe a suite of S classes
and methods to implement variance functions (varFunc) and correlation
structures (corStruct). Any of these classes, or others defined by users, can
be used with lme to fit extended linear mixed-effects models.

An extended linear model with heteroscedastic, correlated errors is intro-
duced and a new modeling function to fit it, gls, is described. This extended
linear model can be thought of as an extended linear mixed-effects model
with no random effects, and any of the varFunc and corStruct classes avail-
able with lme can also be used with gls. Several examples are used the
illustrate the use of gls and its associated methods.

Exercises

1. The within-group heteroscedasticity observed for the fm1BW.lme fit of
the BodyWeight data in §5.2.2 was modeled using the power variance
function (varPower) with the fitted values as the variance covariate.
An alternative approach, which is explored in this exercise, is to allow
different variances for each Diet.

(a) Plot the residuals of fm1BW.lme versus Diet (use plot(fm1BW.lme,

resid(.) ~ as.integer(Diet), abline = 0)). Note that the vari-
ability for Diets 1 and 2 are similar, but the residuals for Diet 3
have larger variability.

(b) Update the fm1BW.lme fit allowing different variances per Diet

(use weights = varIdent(form = ~1|Diet)). To get a fit that can
be compared to fm1BW.lme, remember to set the contrasts pa-
rameterization to "contr.helmert". Obtain confidence intervals
on the variance function coefficients using intervals. Do they
agree with the conclusions from the plot of the residuals versus
Diet? Explain.

(c) Compare the fit with the varIdent variance function to fm1BW.lme

using anova. Compare it also to fm2BW.lme, the fit with the
varPower variance function. Which variance function model is
preferable? Why?

(d) Use the gls function described in §5.4 to fit a model with a
varPower variance function in the fitted values and a corCAR1

correlation structure in Time, but with no random effects. Com-
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pare the resulting fit to the fm3BW.lme fit of §5.3.4 using anova.
Are the two models nested? Why?

2. A multilevel LME analysis of the Oats data was presented in §1.6 and
an equivalent single-level analysis using a block-diagonal Ψ matrix
(pdBlocked class) was discussed in §4.2.2. This exercise illustrates yet
another possible approach for analyzing split-plot experiments such
as the Oats data.

(a) Fit an LME model to the Oats data using the same fixed-effects
model as in the fm4Oats fit of §1.6, a single random intercept at
the Block level, and a general correlation structure (corSymm) at
the Variety within Block level (use random = ~1|Block and corr

= corSymm(form = ~1|Block/Variety)).

(b) Obtain the confidence intervals on the within-group correlations
associated with the corSymm structure. Note that all intervals
overlap and the estimates are of similar magnitude. This sug-
gests a compound symmetry correlation structure. Update the
previous fit using corr = corCompSymm(form=~1|Block/Variety).
Assess the validity of the corCompSymm model using anova.

(c) Compare the fit obtained in the previous item to the fm4Oats

fit. Note that the log-likelihoods are nearly identical and so are
the estimated fixed effects and the estimated standard error
for Blocks (σ̂1). The two models are actually identical: verify
that the estimated within-group variance for the lme fit with
the corCompSymm structure is equal to the sum of the estimated
Variety within Block variance (σ̂2

2) and the estimated within-
group variance (σ̂2) in the fm4Oats fit and that the estimated
correlation for the corCompSymm structure is equal to σ̂2

2/(σ̂2
2+σ̂2).

(d) Use gls to fit a model with corCompSymm correlation structure at
the Variety within Block level, but with no random effects and
use it to assess the significance of the “Block effect” in the Oats

experiment.

3. Obtain a gls fit of the Ovary data using the same fixed-effects model
and correlation structure as in the fm5Ovar.lme fit of §5.3.4 but with
no random effects (use corr = corARMA(form=~1|Mare, p=1, q=1) to
define the grouping structure). Compare the fit with fm5Ovar.lme us-
ing anova. Is there significant evidence for keeping the random effects
in the model? Can you give an explanation for what you found?

4. As mentioned in §5.2, new varFunc classes representing user-defined
variance functions can be incorporated into the nlme library and used
with any of its modeling function. This exercise illustrates how a new
varFunc class can be created.
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We use a variance function based on a linear combination of covari-
ates, which we denote varReg. Letting v denote a vector of variance
covariates and δ the variance parameters, the varReg variance model
and variance function are defined as

Var (ε) = σ2 exp
(
2vT δ

)
, g (v, δ) = exp

(
vT δ

)
,

where, as in §5.2, ε represents the random variable whose variance
is being modeled. Note that the variance parameters δ are uncon-
strained and, for identifiability, the linear model in the variance func-
tion can not have an intercept (it would be confounded with σ). The
varReg class extends the varExp class defined in §5.2 by allowing more
than one variance covariate to be used. The varReg class is frequently
used in the analysis of dispersion effects in robust designs (Wolfinger
and Tobias, 1998).

(a) Write a constructor for the varReg class. It should contain at
least two arguments: value with initial values for the variance
parameters δ (set the default to numeric(0) to indicate non-
initialized structures) and form with a linear formula defining the
variance covariates. To simplify things, assume that the fitted
object can not be used to define a variance covariate for this
class, that no stratification of parameters will be available and
that no parameters can be made fixed in the estimation. You
can use the varExp constructor as a template.

(b) Next you need to write an initialize method. This takes two
required arguments object, the varReg object, and data, a data
frame in which to evaluate the variance covariates. For consis-
tency with the generic function, include a ... at the end of the
argument list. The initialize method should obtain the model
matrix corresponding to formula(object), evaluated on data,
and save it as an attribute for later calculations. As mentioned
before, the model matrix should not have an (Intercept) col-
umn; check if one is present and remove it if necessary. You
should make sure that the parameters are initialized (if no start-
ing values are given in the constructor, initialize them to 0, corre-
sponding to an homoscedastic variance model). Additionally, the
"logLik" and "weights" attributes of the returned object need to
be initialized. Note that the weights are simply exp(-modMat %*%

coefs), where modMat represents the model matrix for the vari-
ance covariates and coefs the initialized coefficients. You can
use the initialize.varExp method as a template.

(c) The coef method for the varReg class is very simple: for consis-
tency with other varFunc coef methods, it takes three arguments:
object (the varReg object), unconstrained, and allCoef. Because
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δ is unconstrained and we are not allowing any parameters to
be fixed, the method will always return as.vector(object).

(d) The coef<- method takes two arguments: object, the varReg ob-
ject, and value, the new values for the coefficients. This method
is also used to update the value of the "logLik" and "weights"

attributes, after the coefficients in object have been updated.
You can use coef<-.varExp as a template.

(e) Write a summary.varReg method to provide a description of the
varReg variance function when it is the varReg object is printed
(usually as part of the output of some modeling function). Use
summary.varExp as an example.

(f) Test your class by fitting an LME model to the BodyWeight data
with a different variances for each Diet (you can use weights =

varReg(form = ~Diet), because the initialize method will re-
move the (Intercept) column of the model matrix).



Part II

Nonlinear Mixed-Effects
Models



6
Nonlinear Mixed-Effects Models: Basic
Concepts and Motivating Examples

This chapter gives an overview of the nonlinear mixed-effects (NLME)
model, introducing its main concepts and ideas through the analysis of
real-data examples. The emphasis is on presenting the motivation for using
NLME models when analyzing grouped data, while introducing some of
the key features in the nlme library for fitting and analyzing such models.
This chapter serves as an appetizer for the material covered in the last two
chapters of the book: the theoretical foundations and computational meth-
ods for NLME models described in Chapter 7 and the nonlinear modeling
facilities available in the nlme library, described in detail in Chapter 8.

6.1 LME Models vs. NLME Models

The first and possibly most important question about NLME models is
why would one want to use them? This question, of course, also applies to
nonlinear regression models in general as does the answer: interpretability,
parsimony, and validity beyond the observed range of the data.

When choosing a regression model to describe how a response variable
varies with covariates, one always has the option of using models, such as
polynomial models, that are linear in the parameters. By increasing the
order of a polynomial model, one can get increasingly accurate approxima-
tions to the true, usually nonlinear, regression function, within the observed
range of the data. These empirical models are based only on the observed
relationship between the response and the covariates and do not include
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any theoretical considerations about the underlying mechanism producing
the data.

Nonlinear models, on the other hand, are often mechanistic, i.e., based on
a model for the mechanism producing the response. As a consequence, the
model parameters in a nonlinear model generally have a natural physical
interpretation. Even when derived empirically, nonlinear models usually in-
corporate known, theoretical characteristics of the data, such as asymptotes
and monotonicity, and in these cases, can be considered as semi-mechanistic
models. A nonlinear model generally uses fewer parameters than a com-
petitor linear model, such as a polynomial, giving a more parsimonious
description of the data. Nonlinear models also provide more reliable pre-
dictions for the response variable outside the observed range of the data
than, say, polynomial models would.

To illustrate these differences between linear and nonlinear models, let
us consider a simple example in which the expected height ht of a tree at
time t follows a three-parameter logistic growth model.

ht = φ1/ {1 + exp [− (t − φ2) /φ3]} . (6.1)

As described in Appendix C.7, the parameters in (6.1) have a physical
interpretation: φ1 is the asymptotic height; φ2 is the time at which the tree
reaches half of its asymptotic height; and φ3 is the time elapsed between
the tree reaching half and 1/(1 + e−1) � 3/4 of its asymptotic height. The
logistic model (6.1) is linear in one parameter, φ1, but nonlinear in φ2 and
φ3.

To make the example more concrete, suppose that φ1 = 3, φ2 = 1, and
φ3 = 1.2 and that we initially want to model the tree growth for 0.4 ≤ t ≤
1.6. The logistic curve, shown as a solid line in Figure 6.1, is approximated
very well in the interval [0.4, 1.6] by the fifth-degree polynomial

ht � −2.2911 + 16.591t − 44.411t2 + 56.822t3 − 31.514t4 + 6.3028t5

obtained as a least-squares fit to equally spaced t values in the interval
[0.4, 1.6]. The polynomial fit, shown as a dashed line in Figure 6.1, is vir-
tually indistinguishable from the logistic curve within this interval.

Unlike the coefficients in the logistic model, the coefficients in the polyno-
mial approximation do not have any physical interpretation. Also, the linear
polynomial model uses twice as many parameters as the logistic model to
give comparable fitted values. Finally, the polynomial approximation is un-
reliable outside the interval [0.4, 1.6]. Figure 6.2, displaying the two curves
over the extended interval [0, 2], shows the dramatic differences between the
curves outside the original range. We would expect growth curves to follow
a pattern more like the logistic model than like the polynomial model.

Nonlinear mixed-effects models extend linear mixed-effects models by
allowing the regression function to depend nonlinearly on fixed and random
effects. Because of its greater flexibility, an NLME model is generally more
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interpretable and parsimonious than a competitor empirical LME model
based, say, on a polynomial function. Also, the predictions obtained from
an NLME model extend more reliably outside the observed range of the
data.

The greater flexibility of NLME models does not come without cost,
however. Because the random effects are allowed to enter the model non-
linearly, the marginal likelihood function, obtained by integrating the joint
density of the response and the random effects with respect to the random
effects, does not have a closed-form expression, as in the LME model. As
a consequence, an approximate likelihood function needs to be used for
the estimation of parameters, leading to more computationally intensive
estimation algorithms and to less reliable inference results. These issues
are described and discussed in detail in Chapter 7.

An important practical difference between NLME and LME models is
that the former require starting estimates for the fixed-effects coefficients.
Determining reasonable starting estimates for the parameters in a nonlin-
ear model is somewhat of an art, although some general recommendations
are available (Bates and Watts, 1988, §3.2). In many applications, the same
nonlinear model is to be used several times with similar datasets. In these
cases, it is worthwhile to program the steps used to obtain starting esti-
mates into a function, which can then be used to produce starting estimates
from many datasets. Such self-starting nonlinear models are described and
illustrated in §8.1.2.

There are far more similarities than differences between LME and NLME
models. Both models are used with grouped data and serve the same pur-
pose: to describe a response variable as a function of covariates, taking
into account the correlation among observations in the same group. Ran-
dom effects are used to represent within-group dependence in both LME
and NLME models, and the assumptions about the random effects and the
within-group errors are identical in the two models.

The same “inside-out” model building strategy used for LME models
in Part I is used here with NLME models: whenever feasible, we begin
by getting separate fits of a model for each group, then examining these
individual fits to see which coefficients appear to be common to all groups
and which coefficients seem to vary among groups. We then proceed to fit
an overall mixed-effects model to the data, using random-effects terms if
they seem warranted. Diagnostics plots are then used to assess the model’s
assumptions and to decide on refinements of the initial model.

The S methods for displaying, plotting, comparing, and updating nlme
fitted objects will look very familiar to the readers of Part I. Because of
the similarities between LME and NLME models, most of the lme methods
described in §4.2.1 can be used, without changes, with nlme objects. The
nonlinear mixed-effects models modeling functions and methods included
in the nlme library are described and illustrated in detail in Chapter 8. The
examples in the next sections serve to illustrate some of the basic concepts
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of NLME models and to introduce the capabilities provided by the nlme
library for analyzing them.

6.2 Indomethicin Kinetics

The data for our first example come from a laboratory study on the pharma-
cokinetics of the drug indomethicin (Kwan, Breault, Umbenhauer, McMa-
hon and Duggan, 1976). Six human volunteers received bolus intravenous
injections of the same dose of indomethicin and had their plasma concen-
trations of the drug (in mcg/ml) measured 11 times between 15 minutes
and 8 hours postinjection. These data are described in more detail in Ap-
pendix A.12 and are also analyzed in Davidian and Giltinan (1995, §2.1).
The indomethicin data are included in the nlme library as the groupedData
object Indometh.

The plot of the Indometh data, obtained with

> plot( Indometh ) # Figure 6.3

and displayed in Figure 6.3, reveals a familiar pattern in plots of grouped
data: the concentration curves have a similar shape, but differ among indi-
viduals. As indicated in Figure 6.3, these data are balanced, as the serum
concentrations were measured at the same time points for all six individu-
als.
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FIGURE 6.3. Concentration of indomethicin over time for six subjects following
intravenous injection.
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A common method of modeling pharmacokinetic data is to represent the
human body as a system of compartments in which the drug is transferred
according to first-order kinetics (Gibaldi and Perrier, 1982). In such a com-
partment model the concentration of the drug over time in the different
compartments is determined by a linear system of differential equations,
whose solution can be expressed as a linear combination of exponential
terms. The mechanistic model for the indomethicin concentration is from
a two-compartment model. It expresses the expected concentration E(yt)
at time t as a linear combination of two exponentials

E (yt) = φ1 exp (−φ2t) + φ3 exp (−φ4t) , φ2 > 0, φ4 > 0. (6.2)

The biexponential model (6.2) is not identifiable, in the sense of having
a unique vector of parameters associated with a given set of predictions,
because the parameters in the two exponential terms may be exchanged
without changing the predictions. Identifiability is ensured by requiring
that φ2 > φ4 so that the first exponential term determines the initial
elimination phase of the drug (the sharp decreases in the individual curves
of Figure 6.3). The terminal elimination phase is primarily determined by
the second exponential term.

Model (6.2) is linear in multipliers φ1 and φ3, but nonlinear in the rate
constants φ2 and φ4. Because the rate constants must be positive to be
physically meaningful, we reparameterize (6.2) in terms of the log-rate con-
stants φ′

2 = log φ2 and φ′
4 = log φ4.

When introducing LME models in §1.1 we demonstrated that the LME
model can be considered as a compromise between a single linear model
that ignores the grouping in the data and a linear model that provides
separate fits for each of the groups. These linear models were fit using lm

and lmList, respectively. To illustrate why NLME models are useful for
datasets like the indomethicin data, we will repeat that development using
the nonlinear model-fitting functions nls and nlsList.

If we ignore the grouping of the concentration measurements according
to individual and fit a single nonlinear model to all the data we express the
indomethicin concentration yij in individual i at time tj is

yij = φ1 exp [− exp (φ′
2) tj ] + φ3 exp [− exp (φ′

4) tj ] + εij , (6.3)

where the error terms εij are assumed to be independently distributed
as N (0, σ2). Nonlinear regression models with independent, identically dis-
tributed Gaussian errors, like (6.3), are fit by nonlinear least squares (Bates
and Watts, 1988; Seber and Wild, 1989), as implemented in the S function
nls (Bates and Chambers, 1992).

Starting values for the parameters in the biexponential model are usually
obtained through the method of peeling , as described in Appendix C.4.1.
However, we need not be concerned with obtaining initial estimates for
the biexponential model parameters, as the self-starting model function
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FIGURE 6.4. Boxplots of residuals by subject for fm1Indom.nls, a nonlinear least
squares fit of a two-compartment model to the indomethicin data ignoring the
subject dependence.

SSbiexp, described in Appendix C.4, produces them automatically from the
data. A call to nls to fit the biexponential model (6.3) using a self-starting
function is almost as simple as a call to lm to fit a linear model.

> fm1Indom.nls <- nls( conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),

+ data = Indometh )

> summary(fm1Indom.nls)

Formula: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Parameters:

Value Std. Error t value

A1 2.77342 0.25323 10.9522

lrc1 0.88627 0.22222 3.9882

A2 0.60663 0.26708 2.2713

lrc2 -1.09209 0.40894 -2.6705

Residual standard error: 0.174489 on 62 degrees of freedom

. . .

> plot( fm1Indom.nls, Subject ~ resid(.), abline = 0 ) # Figure 6.4

The correspondence between the parameters in fm1Indom.nls and in (6.3)
is φ1 = A1, φ′

2 = lrc1, φ3 = A2, φ′
4 = lrc2.

The boxplots of the residuals by individual in Figure 6.4 are similar to
those from the lm fit to the Rails data (Figure 1.2). In Figure 6.4 the resid-
uals tend to be mostly negative for some subjects and mostly positive for
others although the pattern is not as pronounced as that in Figure 1.2.
Because a single concentration curve is used for all subjects, the individ-
ual differences noticed in Figure 6.3 are incorporated in the residuals, thus
inflating the residual standard error. Probably the most important draw-
back of using an nls model with grouped data is that it prevents us from
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understanding the true structure of the data and from considering differ-
ent sources of variability that are of interest in themselves. For example,
in the indomethicin study, an important consideration in determining an
adequate therapeutic regime for the drug is knowing how the concentration
profiles vary among individuals.

To fit a separate biexponential model to each subject, thus allowing the
individual effects to be incorporated in the parameter estimates, we express
the model as

yij = φ1i exp [− exp (φ′
2i) tj ] + φ3i exp [− exp (φ′

4i) tj ] + εij , (6.4)

where, as before, the εij are independent N (0, σ2) errors and use the
nlsList function

> fm1Indom.lis <- nlsList(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),

+ data = Indometh )

> fm1Indom.lis

Call:

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2) | Subject

Data: Indometh

Coefficients:

A1 lrc1 A2 lrc2

1 2.0293 0.57938 0.19154 -1.78783

4 2.1979 0.24249 0.25481 -1.60153

2 2.8277 0.80143 0.49903 -1.63508

5 3.5663 1.04095 0.29170 -1.50594

6 3.0022 1.08811 0.96840 -0.87324

3 5.4677 1.74968 1.67564 -0.41226

Degrees of freedom: 66 total; 42 residual

Residual standard error: 0.07555

We can see that there is considerable variability in the individual param-
eter estimates and that the residual standard error is less than one-half
that from the nls fit. The boxplots of the residuals by subject, shown in
Figure 6.5, indicate that the individual effects have been accounted for in
the fitted nlsList model.

The nlsList model is at the other extreme of the flexibility spectrum
compared to the nls model: it uses 24 coefficients to represent the individ-
ual concentration profiles and does not take into account the obvious sim-
ilarities among the individual curves, indicated in Figure 6.3. The nlsList

model is useful when one is interested in modeling the behavior of a par-
ticular, fixed set of individuals, but it is not adequate when the observed
individuals are to be treated as a sample from a population of similar indi-
viduals, which constitutes the majority of applications involving grouped
data. In this case, the interest is in estimating the average behavior of an
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FIGURE 6.5. Boxplots of residuals by subject for fm1Indom.lis, a set of nonlinear
regression fits of a two-compartment model to the indomethicin data where each
subject’s data is fit separately.
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FIGURE 6.6. Ninety-five percent confidence intervals on the biexponential model
parameters for each individual in the indomethicin data.

individual in the population and the variability among and within individ-
uals, which is precisely what mixed-effects models are designed to do.

The plot of the individual confidence intervals for the coefficients in the
nlsList model, shown in Figure 6.6, gives a better idea about their vari-
ability among subjects.

> plot( intervals(fm1Indom.lis) ) # Figure 6.6

The terminal phase log-rate constants, φ4i, do not seem to vary substan-
tially among individuals, but the remaining parameters do.

Recall that in lmList fits to balanced data, the lengths of the confidence
intervals on a parameter were the same for all the groups (see Figure 1.12,
p. 33, or Figure 1.13, p. 34). This does not occur in an nlsList fit because
the approximate standard errors used to produce the confidence intervals
in a nonlinear least squares fit depend on the parameter estimates (Seber
and Wild, 1989, §5.1).
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To introduce the concepts of fixed and random effects in a nonlinear
mixed-effects model, it is useful to re-express the model (6.4) as

yij =
[
φ̄1 +

(
φ1i − φ̄1

)]
exp

{− exp
[
φ̄′

2 +
(
φ′

2i − φ̄′
2

)]
tj
}

+
[
φ̄3 +

(
φ3i − φ̄3

)]
exp

{− exp
[
φ̄′

4 +
(
φ′

4i − φ̄′
4

)]
tj
}

+ εij ,
(6.5)

where φ̄ denotes the average of the individual parameters. The nlsList

model treats the deviations of the individual coefficients from their mean
as parameters to be estimated. Mixed-effects models, on the other hand,
represent these deviations from the mean value of the coefficients (the fixed
effects) as random effects, treating the individuals as a sample from a pop-
ulation. The nonlinear mixed-effects version of (6.5) is

yij = (β1 + b1i) exp [− exp (β2 + b2i) tj ]
+ (β3 + b3i) exp [− exp (β4 + b4i)) tj ] + εij . (6.6)

The fixed effects β1, β2, β3, and β4 represent the mean values of the pa-
rameters in the population of individuals. The individual deviations are
represented by the random effects b1i, b2i, b3i, and b4i, which are assumed
to be distributed normally with mean 0 and variance–covariance matrix Ψ.
Random effects corresponding to different individuals are assumed to be
independent. The within-group errors εij are assumed to be independently
distributed as N (0, σ2) and to be independent of the random effects.

The nonlinear mixed-effects model (6.6) gives a compromise between the
rigid nls model (6.3) and the overparameterized nlsList model (6.4). It
accommodates individual variations through the random effects, but ties
the different individuals together through the fixed effects and the variance–
covariance matrix Ψ.

A crucial step in the model-building of mixed-effects models is deciding
which of the coefficients in the model need random effects to account for
their between-subject variation and which can be treated as purely fixed
effects. Plots of individual confidence intervals obtained from an nlsList

fit, like the one shown in Figure 6.6, are often useful for that purpose.
In the case of the indomethicin data, the individual confidence intervals
suggest that the b4i random effect for the terminal elimination phase log-
rate constant in (6.6) is not needed.

An alternative model-building strategy is to start with a model with
random effects for all parameters and then examine the fitted object to
decide which, if any, of the random effects can be eliminated from the
model. One problem with this approach is that, when a general positive-
definite structure is assumed for the random effects variance–covariance
matrix Ψ, the number of parameters to estimate increases with the square
of the number of random effects. In cases where the number of random
effects is large relative to the number of individuals, as in the indomethicin
data, it is generally recommended to use a diagonal Ψ initially, to prevent
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convergence problems with an overparameterized model. We apply this
approach to the indomethicin data.

> fm1Indom.nlme <- nlme( fm1Indom.lis,

+ random = pdDiag(A1 + lrc1 + A2 + lrc2 ~ 1) )

> fm1Indom.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Data: Indometh

Log-likelihood: 54.592

Fixed: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

A1 lrc1 A2 lrc2

2.8276 0.7733 0.46104 -1.345

Random effects:

Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Level: Subject

Structure: Diagonal

A1 lrc1 A2 lrc2 Residual

StdDev: 0.57136 0.15811 0.11154 7.2051e-11 0.081496

Number of Observations: 66

Number of Groups: 6

The nlme function extracts the information about the model to fit, the
parameters to estimate, and the starting estimates for the fixed effects
from the fm1Indom.lis object.

The near-zero estimate for the standard deviation of the lrc2 random
effect suggests that this term could be dropped from the model. The re-
maining estimated standard deviations suggest that the other random ef-
fects should be kept in the model. We can test if the lrc2 random effect
can be removed from the model by updating the fit and using anova.

> fm2Indom.nlme <- update( fm1Indom.nlme,

+ random = pdDiag(A1 + lrc1 + A2 ~ 1) )

> anova( fm1Indom.nlme, fm2Indom.nlme )

Model df AIC BIC logLik Test L.Ratio

fm1Indom.nlme 1 9 -91.185 -71.478 54.592

fm2Indom.nlme 2 8 -93.185 -75.668 54.592 1 vs 2 6.2637e-06

p-value

fm1Indom.nlme

fm2Indom.nlme 0.998

The two fits give nearly identical log-likelihoods, confirming that lrc2 can
be treated as a purely fixed effect.

To further explore the variance–covariance structure of the random ef-
fects that are left in fm2Indom.nlme, we update the fit using a general
positive-definite Ψ matrix.

> fm3Indom.nlme <- update( fm2Indom.nlme, random = A1+lrc1+A2 ~ 1 )
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> fm3Indom.nlme

. . .

Random effects:

Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1)

Level: Subject

Structure: General positive-definite

StdDev Corr

A1 0.690406 A1 lrc1

lrc1 0.179030 0.932

A2 0.153669 0.471 0.118

Residual 0.078072

. . .

The large correlation between the A1 and lrc1 random effects and the small
correlation between these random effects and the A2 random effect suggest
that a block-diagonal Ψ could be used to represent the variance–covariance
structure of the random effects.

> fm4Indom.nlme <- update( fm3Indom.nlme,

+ random = pdBlocked(list(A1 + lrc1 ~ 1, A2 ~ 1)) )

> anova( fm3Indom.nlme, fm4Indom.nlme )

Model df AIC BIC logLik Test L.Ratio

fm3Indom.nlme 1 11 -94.945 -70.859 58.473

fm4Indom.nlme 2 9 -97.064 -77.357 57.532 1 vs 2 1.8809

p-value

fm3Indom.nlme

fm4Indom.nlme 0.3904

The large p-value for the likelihood ratio test and the smaller values
for the AIC and BIC corroborate the block-diagonal variance–covariance
structure. Allowing the A1 and lrc1 random effects to be correlated causes
a significant improvement in the log-likelihood.

> anova( fm2Indom.nlme, fm4Indom.nlme )

Model df AIC BIC logLik Test L.Ratio

fm2Indom.nlme 1 8 -93.185 -75.668 54.592

fm4Indom.nlme 2 9 -97.064 -77.357 57.532 1 vs 2 5.8795

p-value

fm2Indom.nlme

fm4Indom.nlme 0.0153

The plot of the standardized residuals versus the fitted values corre-
sponding to fm4Indom.nlme, presented in Figure 6.7, does not indicate any
departures from the NLME model assumptions, except for two possible
outlying observations for Individual 2.

> plot( fm4Indom.nlme, id = 0.05, adj = -1 ) # Figure 6.7

No significant departures from the assumption of normality for the within-
group errors is observed in the normal probability plot of the standardized
residuals of fm4Indom.nlme, shown in Figure 6.8.
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FIGURE 6.7. Scatter plot of standardized residuals versus fitted values for
fm4Indom.nlme.

> qqnorm( fm4Indom.nlme ) # Figure 6.8

A final assessment of the adequacy of the fm4Indom.nlme model is given
by the plot of the augmented predictions in Figure 6.9. For comparison, and
to show how individual effects are accounted for in the NLME model, both
the population predictions (corresponding to random effects equal to zero)
and the within-group predictions (obtained using the estimated random
effects) are displayed.

> plot( augPred(fm4Indom.nlme, level = 0:1) ) # Figure 6.9

Note that the within-group predictions are in close agreement with the ob-
served concentrations, illustrating that the NLME model can accommodate
individual effects.

We conclude that fm4Indom.nlme provides a good representation of the
concentration profiles in the indomethicin data. Its summary

> summary( fm4Indom.nlme )

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)

Data: Indometh

AIC BIC logLik

-97.064 -77.357 57.532

Random effects:

Composite Structure: Blocked

Block 1: A1, lrc1

Formula: list(A1 ~ 1, lrc1 ~ 1)
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FIGURE 6.8. Normal plot of standardized residuals for the fm4Indom.nlme nlme

fit.
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(Subject), and observed concentrations of indomethicin (circles) versus time since
injection for fm4Indom.nlme.



6.3 Growth of Soybean Plants 287

Level: Subject

Structure: General positive-definite

StdDev Corr

A1 0.69496 A1

lrc1 0.17067 0.905

Block 2: A2

Formula: A2 ~ 1 | Subject

A2 Residual

StdDev: 0.18344 0.078226

Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)

Value Std.Error DF t-value p-value

A1 2.8045 0.31493 57 8.9049 <.0001

lrc1 0.8502 0.11478 57 7.4067 <.0001

A2 0.5887 0.13321 57 4.4195 <.0001

lrc2 -1.1029 0.16954 57 -6.5054 <.0001

. . .

shows that the fixed-effects estimates are similar to the parameter esti-
mates in the nls fit fm1Indom.nls. The approximate standard errors for the
fixed effects are substantially different from and, except for A1, considerably
smaller than those from the nls fit. The estimated within-group standard
error is slightly larger than the residual standard error in the nlsList fit
fm1Indom.lis.

6.3 Growth of Soybean Plants

The example discussed in this section illustrates an important area of appli-
cation of NLME models: growth curve data. It also introduces the concept
of using covariates to explain between-group variability in NLME models.

The soybean data, displayed in Figure 6.10, are described in Davidian
and Giltinan (1995, §1.1.3, p. 7) as “Data from an experiment to compare
growth patterns of two genotypes of soybeans: Plant Introduction #416937
(P), an experimental strain, and Forrest (F), a commercial variety.” The
average leaf weight (in grams) of six plants chosen at random from each plot
was measured at approximately weekly intervals, between two and eleven
weeks after planting. The experiment was carried out over three different
planting years: 1988, 1989, and 1990. Eight plots were planted with each
genotype in each planting year, giving a total of forty-eight plots in the
study. These data are available in the nlme library as the groupedData
object Soybean and are also described in Appendix A.27.

> Soybean[1:3, ]

Grouped Data: weight ~ Time | Plot
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FIGURE 6.10. Average leaf weight per plant of two genotypes of soybean versus
time since planting, over three different planting years. Within each year data
were obtained on eight plots of each variety of soybean.

Plot Variety Year Time weight

1 1988F1 F 1988 14 0.106

2 1988F1 F 1988 21 0.261

3 1988F1 F 1988 28 0.666

> plot( Soybean, outer = ~ Year * Variety ) # Figure 6.10

The average leaf weight per plant in each plot is measured the same number
of times, but at different times, making the data unbalanced.

There is considerable variation in the growth curves among plots, but
the same overall S-shaped pattern is observed for all plots. This nonlinear
growth pattern is well described by the three parameter logistic model (6.1),
introduced in §6.1. The self-starting function SSlogis, described in Ap-
pendix C.7, can be used to automatically generate starting estimates for
the parameters in an nlsList fit.

> fm1Soy.lis <- nlsList( weight ~ SSlogis(Time, Asym, xmid, scal),

+ data = Soybean )

Error in nls(y ~ 1/(1 + exp((xmid - x)/scal)..: singular gradient

matrix

Dumped
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> fm1Soy.lis

Call:

Model: weight ~ SSlogis(Time, Asym, xmid, scal) | Plot

Data: Soybean

Coefficients:

Asym xmid scal

1988F4 15.1513 52.834 5.1766

1988F2 19.7455 56.575 8.4067

. . .

1989P8 NA NA NA

. . .

1990P5 19.5438 51.148 7.2920

1990P2 25.7873 62.360 11.6570

Degrees of freedom: 404 total; 263 residual

Residual standard error: 1.0438

The error message from nls indicates that convergence was not attained for
one of the plots, 1989P8. The nlsList function is able to recover from such
nonconvergence problems and carry on with subsequent nls fits. Missing
values (NA) are assigned to the coefficients of the nonconverging fits. The
coefficients in fm1Soy.lis are related to the logistic model parameters as
follows: φ1 = Asym, φ2 = xmid, and φ3 = scal

Analysis of the individual confidence intervals for fm1Soy.lis suggests
that random effects are needed for all of the parameters in the logistic
model. The corresponding nonlinear mixed-effects model for the average
leaf weight per plant yij in plot i at tij days after planting is

yij =
φ1i

1 + exp [− (tij − φ2i) /φ3i]
+ εij ,

φi =

⎡⎣φ1i

φ2i

φ3i

⎤⎦ =

⎡⎣β1

β2

β3

⎤⎦+

⎡⎣b1i

b2i

b3i

⎤⎦ = β + bi,

bi ∼ N (0,Ψ) , εij ∼ N (
0, σ2

)
.

(6.7)

The fixed effects β represent the mean values of the parameters φi in the
population and the random effects bi represent the deviations of the φi

from their mean values. The random effects are assumed to be indepen-
dent for different plots and the within-group errors εij are assumed to be
independent for different i, j and to be independent of the random effects.

Because the number of plots in the soybean data, 48, is large compared
to the number of random effects in (6.7), we use a general positive-definite
Ψ for the initial NLME model. Because we can extract information about
the model, the parameters to estimate, and the starting values for the fixed
effects from the fm1Soy.lis object we can fit model (6.7) with the simple
call
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FIGURE 6.11. Scatter plot of standardized residuals versus fitted values for
fm1Soy.nlme.

> fm1Soy.nlme <- nlme( fm1Soy.lis )

> fm1Soy.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: weight ~ SSlogis(Time, Asym, xmid, scal)

Data: Soybean

Log-likelihood: -739.84

Fixed: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Asym xmid scal

19.253 55.02 8.4033

Random effects:

Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Level: Plot

Structure: General positive-definite

StdDev Corr

Asym 5.2011 Asym xmid

xmid 4.1974 0.721

scal 1.4047 0.711 0.958

Residual 1.1235

Number of Observations: 412

Number of Groups: 48

The plot of the standardized residuals versus the fitted values in Fig-
ure 6.11 shows a pattern of increasing variability for the within-group er-
rors. We model the within-group heteroscedasticity using the power vari-
ance function, described in §5.2.1 and represented in S by the varPower
class.

> fm2Soy.nlme <- update( fm1Soy.nlme, weights = varPower() )
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FIGURE 6.12. Standardized residuals versus fitted values in the nlme fit of the
soybean data, with heteroscedastic error.

> anova( fm1Soy.nlme, fm2Soy.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Soy.nlme 1 10 1499.7 1539.9 -739.84

fm2Soy.nlme 2 11 737.3 781.6 -357.66 1 vs 2 764.35 <.0001

The heteroscedastic model provides a much better representation of the
data. We can assess the adequacy of the power variance function by again
plotting the standardized residuals against the fitted values as in Fig-
ure 6.12. The power variance function seems to model adequately the
within-plot heteroscedasticity.

The primary question of interest for the soybean data is the possible
relationship between the growth pattern of the soybean plants and the ex-
perimental factors Variety and Year. Plots of estimates of the random ef-
fects are useful for exploring the relationship between the individual growth
patterns and the experimental factors.

> plot(ranef(fm2Soy.nlme, augFrame = T),

+ form = ~ Year * Variety, layout = c(3,1)) # Figure 6.13

In Figure 6.13 all three parameters seem to vary with year and variety. It
appears that the asymptote (Asym) and the scale (scal) are larger for the P

variety than for the F variety and that this difference is more pronounced
in 1989. The time at which half of the asymptotic leaf weight is attained
(xmid) appears to be smaller for the P variety than for the F variety.

The fixed argument to nlme allows linear modeling of parameters with
respect to covariates. For example, we can model the dependence of all
three parameters on Year with

> soyFix <- fixef( fm2Soy.nlme )
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FIGURE 6.13. Estimates of the random effects by Year and Variety in the nlme

fit of the soybean data.

> options( contrasts = c("contr.treatment", "contr.poly") )

> fm3Soy.nlme <- update( fm2Soy.nlme,

+ fixed = Asym + xmid + scal ~ Year,

+ start = c(soyFix[1], 0, 0, soyFix[2], 0, 0, soyFix[3], 0, 0) )

> fm3Soy.nlme

. . .

Log-likelihood: -325.02

Fixed: Asym + xmid + scal ~ Year

Asym.(Intercept) Asym.Year1989 Asym.Year1990 xmid.(Intercept)

20.222 -6.3775 -3.4995 54.118

xmid.Year1989 xmid.Year1990 scal.(Intercept) scal.Year1989

-2.4696 -4.8764 8.0515 -0.93374

scal.Year1990

-0.66884

Random effects:

Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Level: Plot

Structure: General positive-definite

StdDev Corr

Asym.(Intercept) 2.3686896 Asy(I) xmd(I)

xmid.(Intercept) 0.5863454 -0.997

scal.(Intercept) 0.0043059 -0.590 0.652

Residual 0.2147634

Variance function:

Structure: Power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:

power

0.95187

. . .
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The default parameterization for contrasts is changed to contr.treatment

to allow easier interpretation of the fixed effects included in the model:
they represent differences from the year 1988. Note that, because the fixed-
effects model has changed, new starting values for the fixed effects must be
provided.

We can assess the significance of Year for the fixed effects model using
anova with a single argument.

> anova( fm3Soy.nlme )

numDF denDF F-value p-value

Asym.(Intercept) 1 356 402.4 <.0001

Asym.Year 2 356 105.0 <.0001

xmid.(Intercept) 1 356 9641.2 <.0001

xmid.Year 2 356 10.2 <.0001

scal.(Intercept) 1 356 8378.5 <.0001

scal.Year 2 356 11.7 <.0001

As suggested by Figure 6.13, Year has a very significant effect on the growth
pattern of the soybean plants.

The estimated standard deviation for the scal random effect in the
fm3Soy.nlme fit is only 0.004, corresponding to an estimated coefficient of
variation with respect to the scal.(Intercept) fixed effect of only 0.05%.
This suggests that scal can be treated as a purely fixed effect. When we do
refit the model dropping the scal random effect, we get a p-value of 0.99
in the likelihood ratio test. It often happens that creating a better-fitting
model for the fixed effects, by including their dependence on covariates, re-
duces the need for random-effects terms. In these cases, the between-group
parameter variation is mostly being explained by the covariates included
in the model.

Proceeding sequentially in the model-building process by examining plots
of the estimated random effects against the experimental factors, testing
for the inclusion of covariates and for the elimination of random effects, we
end up with the following model, in which the only random effect is that
for Asym.

> summary( fm4Soy.nlme )

. . .

AIC BIC logLik

616.32 680.66 -292.16

Random effects:

Formula: Asym ~ 1 | Plot

Asym.(Intercept) Residual

StdDev: 1.0349 0.21804

Variance function:

Structure: Power of variance covariate

Formula: ~ fitted(.)
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Parameter estimates:

power

0.9426

Fixed effects: list(Asym ~ Year * Variety, xmid ~ Year + Variety,

scal ~ Year)

Value Std.Error DF t-value p-value

Asym.(Intercept) 19.434 0.9537 352 20.379 <.0001

Asym.Year1989 -8.842 1.0719 352 -8.249 <.0001

Asym.Year1990 -3.707 1.1768 352 -3.150 0.0018

Asym.Variety 1.623 1.0380 352 1.564 0.1188

Asym.Year1989Variety 5.571 1.1704 352 4.760 <.0001

Asym.Year1990Variety 0.147 1.1753 352 0.125 0.9004

xmid.(Intercept) 54.815 0.7548 352 72.622 <.0001

xmid.Year1989 -2.238 0.9718 352 -2.303 0.0218

xmid.Year1990 -4.970 0.9743 352 -5.101 <.0001

xmid.Variety -1.297 0.4144 352 -3.131 0.0019

scal.(Intercept) 8.064 0.1472 352 54.762 <.0001

scal.Year1989 -0.895 0.2013 352 -4.447 <.0001

scal.Year1990 -0.673 0.2122 352 -3.172 0.0016

. . .

The residual plots for fm4Soy.nlme do not indicate any violations in the
NLME model assumptions. An overall assessment of the adequacy of the
model is provided by the plot of the augmented predictions in Figure 6.14,
which indicates that the fm4Soy.nlme model describes the individual growth
patterns of the soybean plots well.

6.4 Clinical Study of Phenobarbital Kinetics

The data for the last example in this chapter come from a clinical phar-
macokinetic study of the drug phenobarbital, used for preventing seizures
(Grasela and Donn, 1985). The study followed 59 preterm infants during
the first 16 days after birth. Each infant received one or more intravenous
injections of phenobarbital. As part of routine clinical monitoring, blood
samples were drawn from the infants at irregular time intervals to deter-
mine the serum concentration of phenobarbital. The number of concentra-
tion measurements per individual varies between 1 and 6, with a total of
155 measurements for all 59 individuals. This is typical of clinical pharma-
cokinetic studies: there are relatively few observations on each of a large
number of individuals. In addition to the concentration and dosing infor-
mation, each infant’s birth weight (in kilograms) and 5-minute Apgar score
(which gives an overall indication of health of the newborn) are provided.
These data have been analyzed in Grasela and Donn (1985), Boeckmann,
Sheiner and Beal (1994), Davidian and Giltinan (1995, §6.6), and Littell
et al. (1996, §12.5).
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FIGURE 6.14. Average leaf weights of soybean plants versus time since planting
and their within-group predictions from the model fm4Soy.nlme.

The phenobarbital data, displayed in Figure 6.15, are available in the
nlme library as the groupedData object Phenobarb and are described in
more detail in Appendix A.23.

The mechanistic model postulated for the phenobarbital kinetics is a one-
compartment open model with intravenous administration and first-order
elimination (Grasela and Donn, 1985) . The corresponding model for the
expected phenobarbital concentration ct at time t for an infant receiving a
single dose Dd administered at time td is

ct =
Dd

V
exp

[
−Cl

V
(t − td)

]
, td < t,

where V and Cl denote, respectively, the volume of distribution and the
clearance. The model for an individual who has received several doses by
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FIGURE 6.15. Serum concentrations of phenobarbital in 59 newborn infants un-
der varying dosage regimens versus time after birth.

time t is given by the sum of the individual contributions of each dose.

ct =
∑

d:td<t

Dd

V
exp

[
−Cl

V
(t − td)

]
. (6.8)

Model (6.8) can also be expressed in recursive form (Grasela and Donn,
1985). To ensure that the estimates of V and Cl are positive, we repa-
rameterize 6.8) using the logarithm of these parameters: lV = log V and
lCl = log Cl . The function phenoModel in the nlme library implements the
reparameterized version of model (6.8) in S. Because phenoModel is not self-
starting, initial values need to be provided for the parameters when this
function is used for estimation in S.
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Because of the small number of concentrations recorded for each indi-
vidual, the usual model-building approach of beginning the analysis with
an nlsList fit cannot be used with the phenobarbital data and we must go
directly to an NLME fit. The nonlinear mixed-effects model corresponding
to (6.8) representing the phenobarbital concentration yij measured at time
tij on individual i, following intravenous injections of dose Did at times tid,
is expressed as

yij =
∑

d:tid<tij

Did

exp (lV i)
exp [− exp (lCl i − lV i) (tij − tid)] + εij ,[

lCl i
lV i

]
=
[
β1

β2

]
+
[
b1i

b2i

]
= β + bi, bi ∼ N (0,Ψ) , εij ∼ N (

0, σ2
)
.

(6.9)

The fixed effects, β, represent the average log-clearance and log-volume of
distribution in the infant population, and the random effects, bi, account for
individual differences from the population average. As usual, the random
effects are assumed to be independent for different individuals and the
within-group errors εij are assumed to be independent for different i, j and
to be independent of the random effects.

To avoid convergence problems with the optimization algorithm used in
nlme due to the sparsity of the phenobarbital concentrations in the data, a
diagonal Ψ is assumed in model (6.9), which is then fitted with

> fm1Pheno.nlme <-

+ nlme( conc ~ phenoModel(Subject, time, dose, lCl, lV),

+ data = Phenobarb, fixed = lCl + lV ~ 1,

+ random = pdDiag(lCl + lV ~ 1), start = c(-5, 0),

+ na.action = na.include, naPattern = ~ !is.na(conc) )

> fm1Pheno.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ phenoModel(Subject, time, dose, lCl, lV)

Data: Phenobarb

Log-likelihood: -505.41

Fixed: lCl + lV ~ 1

lCl lV

-5.0935 0.34259

Random effects:

Formula: list(lCl ~ 1, lV ~ 1)

Level: Subject

Structure: Diagonal

lCl lV Residual

StdDev: 0.43989 0.45048 2.7935

Number of Observations: 155

Number of Groups: 59
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FIGURE 6.16. Estimated log-clearance and log-volume of distribution random
effects from model fm1Pheno.nlme versus birth weight (Wt) and Apgar score in-
dicator (ApgarInd) in the phenobarbital data. A loess smoother is included in
the scatter plots of the continuous covariates to aid in visualizing possible trends.

Starting values for the fixed effects are obtained from Davidian and Giltinan
(1995, §6.6). The na.action argument in the nlme call is used to preserve
those rows with dose information. (These rows contain NA for the concen-
tration.) The naPattern argument is used to remove these rows from the
calculation of the objective function in the optimization algorithm.

One of the questions of interest for the phenobarbital data is the possible
relationship between the pharmacokinetic parameters in (6.9) and the addi-
tional covariates available on the infants, birth weight and 5-minute Apgar
score. For the purposes of modeling the pharmacokinetic parameters, the
5-minute Apgar score is converted to a binary indicator of whether the
score is < 5 or ≥ 5, represented by the column ApgarInd in the Phenobarb

data frame.
Figure 6.16 contains plots of the estimated random effects from

fm1Pheno.nlme versus birth weight (Wt) and 5-minute Apgar score indicator
(ApgarInd). It is produced by

> fm1Pheno.ranef <- ranef( fm1Pheno.nlme, augFrame = T )

> plot( fm1Pheno.ranef, form = lCl ~ Wt + ApgarInd )

> plot( fm1Pheno.ranef, form = lV ~ Wt + ApgarInd )
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The plots in Figure 6.16 clearly indicate that both clearance and volume
of distribution increase with birth weight. A linear model seems adequate
to represent the increase in lV with birth weight. For birth weights less than
2.5 kg, the increase in lCl seems linear. Because there are few infants with
birth weights greater than 2.5 kg in this data set, it is unclear whether the
linear relationship between lCl and Wt extends beyond this limit, but we
will assume it does. The Apgar score does not seem to have any relationship
with clearance and is not included in the model for the lCl fixed effect. It is
unclear whether the Apgar score and the volume of distribution are related,
so we include ApgarInd in the model for lV to test for a possible relationship.

The updated fit with covariates included in the fixed-effects model is
then obtained with

> options( contrasts = c("contr.treatment", "contr.poly") )

> fm2Pheno.nlme <- update( fm1Pheno.nlme,

+ fixed = list(lCl ~ Wt, lV ~ Wt + ApgarInd),

+ start = c(-5.0935, 0, 0.34259, 0, 0),

+ control = list(pnlsTol = 1e-6) )

> #pnlsTol reduced to prevent convergence problems in PNLS step

> summary( fm2Pheno.nlme )

. . .

Random effects:

Formula: list(lCl ~ 1, lV ~ 1)

Level: Subject

Structure: Diagonal

lCl.(Intercept) lV.(Intercept) Residual

StdDev: 0.21599 0.17206 2.7374

Fixed effects: list(lCl ~ Wt, lV ~ Wt + ApgarInd)

Value Std.Error DF t-value p-value

lCl.(Intercept) -5.9574 0.12425 92 -47.947 <.0001

lCl.Wt 0.6197 0.07569 92 8.187 <.0001

lV.(Intercept) -0.4744 0.07258 92 -6.537 <.0001

lV.Wt 0.5325 0.04141 92 12.859 <.0001

lV.ApgarInd -0.0228 0.05131 92 -0.444 0.6577

. . .

As expected, the fixed effects corresponding to birth weight, lCl.Wt and
lV.Wt, are highly significant. The large p-value for the lV.ApgarInd fixed
effect indicates that the volume of distribution is not related to the Apgar
scores. The estimated standard deviations for the random effects are about
half of the corresponding values in the fm1Pheno.nlme fit, indicating that
a substantial part of the between-individual variability in the pharmacoki-
netic parameters is explained by birth weight.

The ApgarInd variable is dropped from the lV fixed effect model to give
the final NLME model for the phenobarbital data considered here.
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> fm3Pheno.nlme <- update( fm2Pheno.nlme,

+ fixed = lCl + lV ~ Wt, start = fixef(fm2Pheno.nlme)[-5] )

> fm3Pheno.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ phenoModel(Subject, time, dose, lCl, lV)

Data: Phenobarb

Log-likelihood: -437.7

Fixed: lCl + lV ~ Wt

lCl.(Intercept) lCl.Wt lV.(Intercept) lV.Wt

-5.9577 0.61968 -0.48452 0.53205

Random effects:

Formula: list(lCl ~ 1, lV ~ 1)

Level: Subject

Structure: Diagonal

lCl.(Intercept) lV.(Intercept) Residual

StdDev: 0.21584 0.17316 2.7326

. . .

The likelihood ratio tests for dropping either of the random effects in
fm3Pheno.nlme have very significant p-values (< 0.0001), indicating that
both random effects are needed in the model to account for individual
effects.

A plot of the augmented predictions is not meaningful for the pheno-
barbital data, due to the small number of observations per individual, but
we can still assess the adequacy of the fit with the plot of the observed
concentrations against the within-group fitted values, produced with

> plot( fm3Pheno.nlme, conc ~ fitted(.), abline = c(0,1) )

and displayed in Figure 6.17. The good agreement between the observations
and the predictions attests the adequacy of the fm3Pheno.nlme model.

6.5 Chapter Summary

This chapter gives an introductory overview of the nonlinear mixed-effects
model, describing its basic concepts and assumptions and relating it to the
linear mixed-effects model described in the first part of the book. Real-life
examples from pharmacokinetics studies and an agricultural experiment
are used to illustrate the use of the nlme function in S, and its associated
methods, for fitting and analyzing NLME models.

The many similarities between NLME and LME models allow most of
the lme methods defined in the first part of the book to also be used with
the nlme objects introduced in this section. There are, however, important
differences between the two models, and the methods used to fit them,
which translate into more complex estimation algorithms and less accurate
inference for NLME models.
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FIGURE 6.17. Observed phenobarbital concentrations versus within-group fitted
values corresponding to the fm3Pheno.nlme model.

The purpose of this chapter is to present the motivation for using NLME
models with grouped data and to set the stage for the following two chapters
in the book, dealing with the theory and computational methods for NLME
models (Chapter 7) and the nonlinear modeling facilities in the nlme library
(Chapter 8).

Exercises

1. The Loblolly data described in Appendix A.13 consist of the heights
of 14 Loblolly pine trees planted in the southern United States, mea-
sured at 3, 5, 10, 15, 20, and 25 years of age. An asymptotic regression
model, available in nlme as the self-starting function SSasymp (Ap-
pendix C.1), seems adequate to explain the observed growth pattern.

(a) Plot the data (using plot(Loblolly)) and verify that the same
growth pattern is observed for all trees. The similarity can be
emphasized by putting all the curves into a single panel using
plot(Loblolly, outer = ~1). What is the most noticeable dif-
ference among the curves?

(b) Fit a separate asymptotic regression model to each tree us-
ing nlsList and SSasymp. Notice that no starting values are
needed for the parameters, as they are automatically produced
by SSasymp.
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(c) Plot the confidence intervals on the individual parameters from
the nlsList fit. Can you identify the ones that vary significantly
with tree?

(d) Use the nlsList object to fit an NLME model with random ef-
fects for all parameters (you can use nlme(object), with object

replaced with the name of the nlsList object). Can you eval-
uate the confidence intervals on the NLME parameters (using
intervals(object))? The error message indicates that the max-
imum likelihood estimates do not correspond to a numerically
stable solution (this generally occurs when the random-effects
model is overparameterized).

(e) Update the previous nlme fit using a diagonal structure for Ψ
(use random = pdDiag(Asym+R0+lrc ~ 1) in the call to update).
Print the results and examine the estimated standard errors of
the random effects. Which random effect can be dropped from
the model?

(f) Update the nlme fit eliminating the random effect you identified
in the previous item (continue to use a diagonal Ψ). Compare
this fit to the one obtained in the previous item using anova.
What do you conclude? Can you drop further random effects
from the model?

(g) Plot the augmented predictions (using plot(augPred(object)))
for the final model obtained in the previous item. Does the model
seem adequate?

2. Davidian and Giltinan (1995, §1.1, p. 2) describe a pharmacokinetic
study of the drug cefamandole in which plasma concentrations of
cefamandole at 14 time points following intravenous infusion were
collected on 6 healthy volunteers. These data are available in nlme
as the object Cefamandole and are described in greater detail in Ap-
pendix A.4.

(a) Plot the cefamandole plasma concentrations versus time by sub-
ject (use plot(Cefamandole). The concentration-time profiles are
well described by the biexponential model (6.2) used with the
Indometh data in §6.2.

(b) Use the self-starting function SSbiexp (Appendix C.4) in con-
junction with nlsList to produce separate fits per subject. Plot
the individual confidence intervals and identify the coefficients
that seem to vary significantly with subject.

(c) Fit an NLME model to the data with random effects for all
coefficients, using the nlsList object produced in the previous
item. Because of the small number of subjects, convergence is
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not attained for a model with a general Ψ (try it). Use a diago-
nal structure for Ψ (random = pdDiag(A1+lrc1+A2+lrc2~1)) and
examine the estimated standard errors for the random effects.
Can any of the random effects be dropped from the model? Does
this agree with your conclusions from the plot of the confidence
intervals for the nlsList fit?

(d) Update the nlme fit in the previous item according to your pre-
vious conclusions for the random-effects model. Use anova to
compare the two models. Produce the confidence intervals for
the parameters in the updated model. Do you think any further
random effects can be dropped from the model? If so, update
the fit and compare it to the previous model using anova.

(e) Plot the standardized residuals versus the fitted values for the
final model obtained in the previous item. Do you observe any
patterns that contradict the model’s assumptions? Plot the ob-
served concentrations versus the fitted values by subject. Does
the fitted model produce sensible predictions?

3. Data on the intensity of 23 large earthquakes in western North Amer-
ica between 1940 and 1980 were reported by Joyner and Boore (1981).
The data, included in the object Earthquake , are described in more
detail in Appendix A.8. The objective of the study was to predict the
maximum horizontal acceleration (accel) at a given location during
a large earthquake based on the magnitude of the quake (Richter)
and its distance from the epicenter (distance). These data are ana-
lyzed in Davidian and Giltinan (1995, §11.4, pp. 319–326). The model
proposed by Joyner and Boore (1981) can be written as

log10(accel) = φ1 + φ2Richter

− log10

√
distance2 + exp(φ3) − φ4

√
distance2 + exp(φ3).

(a) Plot the data and verify that acceleration measurements are
sparse or noisy for most of the quakes. No common attenuation
pattern is evident from the plot.

(b) No self-starting function is available in nlme for the Earthquake

data model. The estimates reported in Davidian and Giltinan
(1995) (φ̂1 = −0.764, φ̂2 = 0.218, φ̂3 = 1.845, and φ̂4 = 5.657 ×
10−3) can be used as initial estimates for an nlsList fit (use
start = c(phi1 = -0.764, phi2 = 0.218, phi3 = 1.845, phi4 =

0.005657). However, due to sparse and noisy nature of the data,
convergence is not attained for any of the quakes in the nlsList

fit (verify it).
(c) Fit an NLME model to the data with random effects for all

coefficients and a diagonal Ψ, using as starting values for the
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fixed effects the estimates reported in Davidian and Giltinan
(1995) (listed in the previous item). Note that, even though the
model did not converge for any of the individual quakes in the
nlsList fit, it converged for the combined data in the nlme fit.
The individual quakes “borrow strength” from each other in the
nlme fit.

(d) Examine the estimated standard errors for the random effects
in the nlme fit relative to the absolute value of the estimated
fixed effects. Can any of the random effects be dropped from
the model? If so, refit the model with fewer random effects an
compare it to the previous model using anova. Repeat the pro-
cedure until no further random effects can be removed from the
model. (You may have to use nls to fit a model with no random
effects, which can also be compared to an nlme fit using anova,
provided the nlme object comes first in the argument list.)

(e) Examine the plot of the standard residuals versus the fitted val-
ues and the normal plot of the standardized residuals for the
final model obtained in the previous item. Are there any appar-
ent departures from the model’s assumptions? Plot the observed
log10(accel) measurements versus the fitted values. How well
does the model predict the accelerations?

(f) One of the questions of interest in this study was the possible ef-
fect of soil type (represented in Earthquake by the indicator vari-
able soil, taking values 0 for “rock” and 1 for “soil”) on acceler-
ation. Update the final nlme model obtained before to include a
“soil effect” for the fixed effects of coefficients with an associated
random effect. For example, if phi4 is the only coefficient with
a random effect, you can use fixed = list(phi1+phi2+phi3 ~ 1,

phi4 ~ soil). You will also need to provide initial estimates for
the fixed effects, using for example start = c(fixef(object),

0), where object should be replaced with the name of the nlme

object being updated. Use summary to test the significance of soil
type.



7
Theory and Computational Methods
for Nonlinear Mixed-Effects Models

This chapter presents the theory for the nonlinear mixed-effects model in-
troduced in Chapter 6. A general formulation of NLME models is presented
and illustrated with examples. Estimation methods for fitting NLME mod-
els, based on approximations to the likelihood function, are described and
discussed. The computational methods used in the nlme function to fit
NLME models are also described. An extended class of nonlinear regres-
sion models with heteroscedastic, correlated errors, but with no random
effects, is presented.

The objective of this chapter is to give an overall description of the
theoretical and computational aspects of NLME models so as to allow one
to evaluate the strengths and limitations of such models in practice. It is not
the purpose of this chapter to present a thorough theoretical description of
NLME models. Such a comprehensive treatment of the theory of nonlinear
mixed-effects models can be found, for example, in Davidian and Giltinan
(1995) and in Vonesh and Chinchilli (1997).

Readers who are more interested in the applications of NLME models
and the use of the functions and methods in the nlme library to fit such
models can, without loss of continuity, skip this chapter and go straight
to Chapter 8. If you decide to skip this chapter at a first reading, it is
recommended that you return to it (especially §7.1) at a later time to get a
good understanding of the NLME model formulation and its assumptions
and limitations.
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7.1 The NLME Model Formulation

Nonlinear mixed-effects models are mixed-effects models in which some, or
all, of the fixed and random effects occur nonlinearly in the model function.
They can be regarded either as an extension of linear mixed-effects models
in which the conditional expectation of the response given the random
effects is allowed to be a nonlinear function of the coefficients, or as an
extension of nonlinear regression models for independent data (Bates and
Watts, 1988) in which random effects are incorporated in the coefficients to
allow then to vary by group, thus inducing correlation within the groups.

This section presents a general formulation for NLME models proposed
by Lindstrom and Bates (1990). The NLME model for single-level grouped
data, which includes repeated measures and longitudinal data, is presented
in §7.1.1. The multilevel NLME model is described in §7.1.2.

7.1.1 Single-Level of Grouping

By far the most common application of NLME models is for repeated mea-
sures data—in particular, longitudinal data. The nonlinear mixed-effects
model for repeated measures proposed by Lindstrom and Bates (1990) can
be thought of as a hierarchical model. At one level the jth observation on
the ith group is modeled as

yij = f(φij , vij) + εij , i = 1, . . . , M, j = 1, . . . , ni, (7.1)

where M is the number of groups, ni is the number of observations on the
ith group, f is a general, real-valued, differentiable function of a group-
specific parameter vector φij and a covariate vector vij , and εij is a nor-
mally distributed within-group error term. The function f is nonlinear in
at least one component of the group-specific parameter vector φij , which
is modeled as

φij = Aijβ + Bijbi, bi ∼ N (0,Ψ), (7.2)

where β is a p-dimensional vector of fixed effects and bi is a q-dimensional
random effects vector associated with the ith group (not varying with j)
with variance–covariance matrix Ψ. The matrices Aij and Bij are of ap-
propriate dimensions and depend on the group and possibly on the values
of some covariates at the jth observation. This model is a slight general-
ization of that described in Lindstrom and Bates (1990) in that Aij and
Bij can depend on j. This generalization allows the incorporation of “time-
varying” covariates in the fixed effects or the random effects for the model.
It is assumed that observations corresponding to different groups are inde-
pendent and that the within-group errors εij are independently distributed
as N (0, σ2) and independent of the bi. The assumption of independence
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and homoscedasticity for the within-group errors can be relaxed, as shown
in §7.4.

Because f can be any nonlinear function of φij , the representation of
the group-specific coefficients φij could be chosen so that Aij and Bij are
always simple incidence matrices. However, it is desirable to encapsulate as
much modeling of the φij as possible in this second stage, as this simplifies
the calculation of the derivatives of the model function with respect to β
and bi, used in the optimization algorithm. In a call to nlme the arguments
fixed and random are used to specify the Aij and Bij matrices, respectively.

We can write (7.1) and (7.2) in matrix form as

yi = f i (φi, vi) + εi,

φi = Aiβ + Bibi,
(7.3)

for i = 1, . . . , M , where

yi =

⎡⎢⎣ yi1

...
yini

⎤⎥⎦ , φi =

⎡⎢⎣φi1
...

φini

⎤⎥⎦ , εi =

⎡⎢⎣ εi1

...
εini

⎤⎥⎦ , f i (φi, vi) =

⎡⎢⎣ f(φi1, vi1)
...

f(φini
, vini

)

⎤⎥⎦ ,

vi =

⎡⎢⎣ vi1

...
vini

⎤⎥⎦ , Ai =

⎡⎢⎣Ai1

...
Aini

⎤⎥⎦ , Bi =

⎡⎢⎣Bi1

...
Bini

⎤⎥⎦ . (7.4)

We use the examples of Chapter 6 to illustrate the general NLME model
formulation.

Indomethicin Kinetics

The final model obtained in §6.2 for the indomethicin data, represented by
the object fm4Indom.nlme, expresses the concentration measurement yij for
the ith subject at time tj as

yij = φ1i exp [− exp (φ′
2i) tj ] + φ3i exp [− exp (φ′

4i) tj ] + εij ,⎡⎢⎢⎣
φ1i

φ2i

φ3i

φ4i

⎤⎥⎥⎦
︸ ︷︷ ︸

φij

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
︸ ︷︷ ︸

Aij

⎡⎢⎢⎣
β1

β2

β3

β4

⎤⎥⎥⎦
︸ ︷︷ ︸

β

+

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎦
︸ ︷︷ ︸

Bij

⎡⎣b1i

b2i

b3i

⎤⎦
︸ ︷︷ ︸

bi

,

bi ∼ N
⎛⎝0,

⎡⎣ψ11 ψ12 0
ψ12 ψ22 0
0 0 ψ33

⎤⎦⎞⎠ , εij ∼ N (
0, σ2

)
.

In this case, the individual coefficients φij and the design matrices Aij = I
and Bij do not vary with time. The Ψ matrix for the random effects is
block-diagonal.
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Growth of Soybean Plants

The fitted object fm4Soy.nlme represents the final model for the soybean
data obtained in §6.3. We use plot 1990P8, for which Year = 1990 and
Variety = P, to illustrate the general NLME model representation, express-
ing the average leaf weight yij for plot i at tij days after planting as

yij =
φ1i

1 + exp [− (tij − φ2i) /φ3i]
+ εij ,

⎡⎣φ1i

φ2i

φ3i

⎤⎦
︸ ︷︷ ︸

φij

=

⎡⎣1 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1

⎤⎦
︸ ︷︷ ︸

Aij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1

β2

β3

β4

β5

β6

β7

β8

β9

β10

β11

β12

β13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

β

+

⎡⎣1
0
0

⎤⎦
︸︷︷︸
Bij

[
b1i

]︸︷︷︸
bi

,

bi ∼ N (0, ψ) , εij |φi ∼ N
(
0, σ2 [E (yij |φi)]

θ
)

.

The correspondence between the fixed effects, β, and the coefficient
names used in fm4Soy.nlme is: β1 = Asym.(Intercept), β2 = Asym.Year1989,
β3 = Asym.Year1990, β4 = Asym.Variety, β5 = Asym.Year1989Variety, β6 =
Asym.Year1990Variety, β7 = xmid.(Intercept), β8 = xmid.Year1989, β9 =
xmid.Year1990, β10 = xmid.Variety, β11 = scal.(Intercept), β12 = scal.-

Year1989, and β13 = scal.Year1990. The design matrices Aij and Bij do
not vary with j in this example and, as a result, neither do the coefficients
φij . The use of variance functions for the within-group errors is discussed
in §7.4, when we present extensions to the basic NLME model.

Clinical Study of Phenobarbital Kinetics

The final model for the phenobarbital data, represented in §6.4 by the ob-
ject fm3Pheno.nlme, includes only the infant’s birth weight wi as a covariate
for the fixed effects. The phenobarbital concentration yij for individual i
measured at time tij , following intravenous injections of dose Did at times
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tid, is expressed as

yij =
∑

d:tid<tij

Did

exp (lV i)
exp [− exp (lCl i − lV i) (tij − tid)] + εij ,

[
lCl i
lV i

]
︸ ︷︷ ︸

φij

=
[
1 wi 0 0
0 0 1 wi

]
︸ ︷︷ ︸

Aij

⎡⎢⎢⎣
β1

β2

β3

β4

⎤⎥⎥⎦
︸ ︷︷ ︸

β

+
[
1 0
0 1

]
︸ ︷︷ ︸

Bij

[
b1i

b2i

]
︸ ︷︷ ︸

bi

,

bi ∼ N
(
0,

[
ψ11 0
0 ψ22

])
, εij ∼ N (

0, σ2
)
.

The correspondence between the fixed effects, β, and the coefficient names
in the fm3Pheno.nlme object is: β1 = lCl.(Intercept), β2 = lCl.Wt, β3 =
lV.(Intercept), and β4 = lV.Wt. A diagonal Ψ matrix is used to represent
the independence between the random effects.

7.1.2 Multilevel NLME Models

The single-level NLME model (7.1) can be extended to data grouped ac-
cording to multiple, nested factors by modifying the model for the random
effects in (7.2). For example, the multilevel version of the Lindstrom and
Bates (1990) model for two levels of nesting is written as a two-stage model
in which the first stage expresses the response yijk for the kth observation
on the jth second-level group of the ith first-level group as

yijk = f(φijk, vijk) + εijk,

i = 1, . . . , M, j = 1, . . . , Mi, k = 1, . . . , nij , (7.5)

where M is the number of first-level groups, Mi is the number of second-
level groups within the ith first-level group, nij is the number of observa-
tions on the jth second-level group of the ith first-level group, and εijk is a
normally distributed within-group error term. As in the single-level model,
f is a general, real-valued, differentiable function of a group-specific pa-
rameter vector φijk and a covariate vector vijk. It is nonlinear in at least
one component of φij . The second stage of the model expresses φij as

φijk = Aijkβ + Bi,jkbi + Bijkbij ,

bi ∼ N (0,Ψ1), bij ∼ N (0,Ψ2).
(7.6)

As in the single-level model (7.2), β is a p-dimensional vector of fixed
effects, with design matrix Aijk, which may incorporate time-varying co-
variates. The first-level random effects bi are independently distributed
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q1-dimensional vectors with variance–covariance matrix Ψ1. The second-
level random effects bij are q2-dimensional independently distributed vec-
tors with variance–covariance matrix Ψ2, assumed to be independent of
the first-level random effects. The random effects design matrices Bi,jk

and Bijk depend on first- and second-level groups and possibly on the
values of some covariates at the kth observation. The within-group errors
εijk are independently distributed as N (0, σ2) and are independent of the
random effects. The assumption of independence and homoscedasticity for
the within-group errors can be relaxed, as shown in §7.4.

We can express (7.5) and (7.6) in matrix form as

yij = f ij

(
φij , vij

)
+ εij ,

φij = Aijβ + Bi,jbi + Bijbij ,
(7.7)

for i = 1, . . . , M, j = 1, . . . , Mi, where

yij =

⎡⎢⎣ yij1

...
yijnij

⎤⎥⎦ , φij =

⎡⎢⎣ φij1
...

φijnij

⎤⎥⎦ , εij =

⎡⎢⎣ εij1

...
εijnij

⎤⎥⎦ ,

f ij

(
φij , vij

)
=

⎡⎢⎣ f(φij1, vij1)
...

f(φijnij
, vijnij

)

⎤⎥⎦ , vij =

⎡⎢⎣ vij1

...
vijnij

⎤⎥⎦ ,

Aij =

⎡⎢⎣ Aij1

...
Aijnij

⎤⎥⎦ , Bi,j =

⎡⎢⎣ Bi,j1

...
Bi,jnij

⎤⎥⎦ , Bij =

⎡⎢⎣ Bij1

...
Bijnij

⎤⎥⎦ .

Extensions of the NLME model to more than two levels of nesting are
straightforward. For example, with three levels of nesting the second-stage
model for the group-specific coefficients is

φijkl = Aijklβ + Bi,jklbi + Bij,klbij + Bijklbijk,

bi ∼ N (0,Ψ1), bij ∼ N (0,Ψ2), bijk ∼ N (0,Ψ3).

7.1.3 Other NLME Models

The first developments of nonlinear mixed-effects models appear in Sheiner
and Beal (1980). Their models and estimation methods are incorporated in
the NONMEM program (Beal and Sheiner, 1980), which is widely used in
pharmacokinetics. They introduced a model similar to (7.1) and developed
a maximum likelihood estimation method based on a first-order Taylor
expansion of the model function around 0, the expected value of the random
effects vector b.
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A nonparametric maximum likelihood method for nonlinear mixed-effects
models was proposed by Mallet, Mentre, Steimer and Lokiek (1988). They
use a model similar to (7.1), but make no assumptions about the distri-
bution of the random effects. The conditional distribution of the response
given the random effects is assumed to be known. The objective of the esti-
mation procedure is to get the probability distribution of the group-specific
coefficients (φij) that maximizes the likelihood of the data. Mallet (1986)
showed that the maximum likelihood solution is a discrete distribution
with the number of discontinuity points less than or equal to the number
of groups in the sample. Inference for this model is based on the maxi-
mum likelihood distribution from which summary statistics (e.g., means
and variance–covariance matrices) and plots are obtained.

Davidian and Gallant (1992) introduced a smooth, nonparametric maxi-
mum likelihood estimation method for nonlinear mixed effects. Their model
is similar to (7.1), but with a more general definition for the group-specific
coefficients, φij = g(β, bi, vij), where g is a general, possibly nonlinear
function. As in Mallet et al. (1988), Davidian and Gallant assume that the
conditional distribution of the response vector given the random effects is
known (up to the parameters that define it), but the distribution of the
random effects is free to vary within a class of smooth densities defined in
Gallant and Nychka (1987).

A Bayesian approach using hierarchical models for nonlinear mixed ef-
fects is described in Bennett and Wakefield (1993) and Wakefield (1996).
The first stage model is similar to (7.1) and the distributions of both the
random effects and the errors εij are assumed known up to population pa-
rameters. Prior distributions for the population parameters must be pro-
vided then Markov-chain Monte Carlo methods, such as the Gibbs sampler
(Geman and Geman, 1984) or the Metropolis algorithm (Hastings, 1970),
are used to approximate the posterior density of the random effects.

Vonesh and Carter (1992) developed a mixed-effects model that is non-
linear in the fixed effects, but linear in the random effects. Their model
is

yi = f(β, vi) + Zi(β)bi + εi,

where, as before, β, bi, and εi denote, respectively, the fixed effects, the
random effects, and the within-group error term, vi is a matrix of covari-
ates, and Zi is a full-rank matrix of known functions of the fixed effects β.
It is further assumed that bi ∼ N (0,Ψ), εi ∼ N (0, σ2I), and the two vec-
tors are independent. In some sense, Vonesh and Carter incorporate in the
model the approximations suggested by Sheiner and Beal (1980) and Lind-
strom and Bates (1990). Their approach concentrates more on inferences
about the fixed effects, and less on the variance–covariance components of
the random effects.
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7.2 Estimation and Inference in NLME Models

Different methods have been proposed to estimate the parameters in the
NLME model described in §7.1.1 and §7.1.2. In this book we restrict our-
selves to methods based on the likelihood function. Descriptions and com-
parisons of other estimation methods proposed for NLME models can be
found, for example, in Ramos and Pantula (1995), Davidian and Giltinan
(1995), and Vonesh and Chinchilli (1997).

7.2.1 Likelihood Estimation

Because the random effects are unobserved quantities, maximum likelihood
estimation in mixed-effects models is based on the marginal density of the
responses y, which, for a model with Q levels of nesting, is calculated as

p
(
y|β, σ2,Ψ1, . . . ,ΨQ

)
=
∫

p
(
y|b, β, σ2

)
p (b|Ψ1, . . . ,ΨQ) db, (7.8)

where p
(
y|β, σ2,Ψ1, . . . ,ΨQ

)
is the marginal density of y, p(y|b, β, σ2) is

the conditional density of y given the random effects b, and the marginal
distribution of b is p (b|Ψ1, . . . ,ΨQ). For the NLME model (7.1), express-
ing the random effects variance–covariance matrix in terms of the precision
factor ∆, so that Ψ−1 = σ−2∆T ∆ as described in §2.1.1, provides the
marginal density of y as

p
(
y|β, σ2,∆

)
=

|∆|M
(2πσ2)(N+Mq)/2

M∏
i=1

∫
exp

{
‖yi − f i (β, bi)‖2 + ‖∆bi‖2

−2σ2

}
dbi, (7.9)

where f i (β, bi) = f i [φi (β, bi) , vi].
Because the model function f can be nonlinear in the random effects, the

integral in (7.8) generally does not have a closed-form expression. To make
the numerical optimization of the likelihood function a tractable problem,
different approximations to (7.8) have been proposed. Some of these meth-
ods consist of taking a first-order Taylor expansion of the model function f
around the expected value of the random effects (Sheiner and Beal, 1980;
Vonesh and Carter, 1992), or around the conditional (on ∆) modes of the
random effects (Lindstrom and Bates, 1990). Gaussian quadrature rules
have also been used (Davidian and Gallant, 1992).

We describe three different methods for approximating the likelihood
function in the NLME model. The first, proposed by Lindstrom and Bates
(1990), approximates (7.8) by the likelihood of a linear mixed-effects
model. We call this the LME approximation. It is the basis of the esti-
mation algorithm currently implemented in the nlme function. The second
method uses a Laplacian approximation to the likelihood function, and
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the last method uses an adaptive Gaussian quadrature rule to improve the
Laplacian approximation. The LME, Laplacian, and adaptive Gaussian ap-
proximations have increasing degrees of accuracy, at the cost of increasing
computational complexity. The three approximations to the NLME likeli-
hood are discussed and compared in Pinheiro and Bates (1995).

Lindstrom and Bates Algorithm

The estimation algorithm described by Lindstrom and Bates (1990) alter-
nates between two steps, a penalized nonlinear least squares (PNLS) step,
and a linear mixed effects (LME) step, as described below. We initially
consider the alternating algorithm for the single-level NLME model (7.1).

In the PNLS step, the current estimate of ∆ (the precision factor) is
held fixed, and the conditional modes of the random effects bi and the
conditional estimates of the fixed effects β are obtained by minimizing a
penalized nonlinear least squares objective function

M∑
i=1

[
‖yi − f i (β, bi)‖2 + ‖∆bi‖2

]
. (7.10)

The LME step updates the estimate of ∆ based on a first-order Taylor
expansion of the model function f around the current estimates of β and
the conditional modes of the random effects bi, which we will denote by

β̂
(w)

and b̂
(w)

i , respectively. Letting

X̂
(w)

i =
∂f i

∂βT

∣∣∣∣
�β

(w)
,�b

(w)
i

, Ẑ
(w)

i =
∂f i

∂bT
i

∣∣∣∣
�β

(w)
,�b

(w)
i

,

ŵ
(w)
i = yi − f i(β̂

(w)
, b̂

(w)

i ) + X̂
(w)

i β̂
(w)

+ Ẑ
(w)

i b̂
(w)

i ,

(7.11)

the approximate log-likelihood function used to estimate ∆ is

�LME

(
β, σ2,∆ | y

)
= −N

2
log
(
2πσ2

)− 1
2

M∑
i=1

{log |Σi(∆)|

+σ−2

[
ŵ

(w)
i − X̂

(w)

i β

]T

Σ−1
i (∆)

[
ŵ

(w)
i − X̂

(w)

i β

]}
, (7.12)

where Σi(∆) = I +Ẑ
(w)

i ∆−1∆−T Ẑ
(w)T

i . This log-likelihood is identical to
that of a linear mixed-effects model in which the response vector is given
by ŵ(w) and the fixed- and random-effects design matrices are given by

X̂
(w)

and Ẑ
(w)

, respectively. Using the results in §2.2, one can express the
optimal values of β and σ2 as functions of ∆ and work with the profiled
log-likelihood of ∆, greatly simplifying the optimization problem.
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Lindstrom and Bates (1990) also proposed a restricted maximum likeli-
hood estimation method for ∆, which consists of replacing the log-likelihood
in the LME step of the alternating algorithm by the log-restricted-likelihood

�R
LME

(
σ2,∆ | y

)
=

�LME

(
β̂ (∆) , σ2,∆ | y

)
− 1

2

M∑
i=1

log
∣∣∣∣σ−2X̂

(w)T

i Σ−1
i (∆)X̂

(w)

i

∣∣∣∣ . (7.13)

Note that, because X̂
(w)

i depends on both β̂
(w)

and b̂
(w)

i , changes in ei-
ther the fixed effects model or the random effects model imply changes in
the penalty factor for the log-restricted-likelihood (7.13). Therefore, log-
restricted-likelihoods from NLME models with different fixed or random
effects models are not comparable.

The algorithm alternates between the PNLS and LME steps until a con-
vergence criterion is met. Such alternating algorithms tend to be more
efficient when the estimates of the variance–covariance components (∆
and σ2) are not highly correlated with the estimates of the fixed effects
(β). Pinheiro (1994) has shown that, in the linear mixed-effects model, the
maximum likelihood estimates of ∆ and σ2 are asymptotically independent
of the maximum likelihood estimates of β . These results have not yet been
extended to the nonlinear mixed-effects model (7.1).

Lindstrom and Bates (1990) only use the LME step to update the es-
timate of ∆. However, the LME step also produces updated estimates of
β and the conditional modes of bi. Thus, one can iterate LME steps by
re-evaluating (7.11) and (7.12) (or (7.13) for the log-restricted-likelihood)
at the updated estimates of β and bi, as described in Wolfinger (1993).
Because the updated estimates correspond to the values obtained in the
first iteration of a Gauss–Newton algorithm for the PNLS step, iterated
LME steps will converge to the same values as the alternating algorithm,
though possibly not as quickly.

Wolfinger (1993) also shows that, when a flat prior is assumed for β, the
LME approximation to the log-restricted-likelihood (7.13) is equivalent to a
Laplacian approximation (Tierney and Kadane, 1986) to the integral (7.9).

The alternating algorithm and the LME approximation to the NLME log-
likelihood can be extended to multilevel models. For example, for an NLME
model with two levels of nesting, the PNLS step consists of minimizing the
penalized nonlinear least-squares function

M∑
i=1

⎧⎨⎩
Mi∑
j=1

[
‖yij − f ij(β, bi, bij)‖2 + ‖∆2bij‖2

]
+ ‖∆1bi‖2

⎫⎬⎭ (7.14)

to obtain estimates for the fixed effects β and the conditional (on ∆1 and
∆2) modes of the random effects bi and bij .
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Letting
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(7.15)

the approximate log-likelihood function used to estimate ∆1 and ∆2 in the
two-level NLME models is

�LME

(
β, σ2,∆1,∆2 | y

)
= −N

2
log
(
2πσ2

)− 1
2
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where Σi(∆1,∆2) = I+Ẑ
(w)

i ∆−1
1 ∆−T

1 Ẑ
(w)T

i +
⊕Mi

j=1 Ẑ
(w)

ij ∆−1
2 ∆−T

2 Ẑ
(w)T

ij

and ⊕ denotes the direct sum operator. The corresponding log-restricted-
likelihood is

�R
LME

(
σ2,∆1,∆2 | y

)
= �LME

(
β̂ (∆1,∆2) , σ2,∆1,∆2 | y

)
− 1

2
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log
∣∣∣∣σ−2X̂

(w)T

i Σ−1
i (∆1,∆2)X̂

(w)

i

∣∣∣∣ .
This formulation can be extended to multilevel NLME models with an
arbitrary number of levels.

The alternating algorithm is the only estimation algorithm used in the
nlme function. It is implemented for maximum likelihood and restricted
maximum likelihood estimation in single and multilevel NLME models.

Laplacian Approximation

Laplacian approximations are used frequently in Bayesian inference to es-
timate marginal posterior densities and predictive distributions (Tierney
and Kadane, 1986; Leonard, Hsu and Tsui, 1989). These techniques can
also be used for approximating the likelihood function in NLME models.
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We consider initially the single-level NLME models. The integral that
we want to estimate to obtain the marginal distribution of yi in (7.9) can
be written as

p(yi | β, σ2,∆) =
∫ (

2πσ2
)−(ni+q)/2 |∆| exp

[−g(β,∆, yi, bi)/2σ2
]
dbi,

where g(β,∆, yi, bi) = ‖yi − f i(β, bi)‖2+‖∆bi‖2 , the sum of which is the
objective function for the PNLS step of the alternating algorithm defined
in (7.10). Let

b̂i = b̂i (β,∆, yi) = arg min
bi

g(β,∆, yi, bi),

g′ (β,∆, yi, bi) =
∂g(β,∆, yi, bi)

∂bi
,

g′′ (β,∆, yi, bi) =
∂2g(β,∆, yi, bi)

∂bi∂bT
i

,

(7.16)

and consider a second-order Taylor expansion of g around b̂i

g (β,∆, yi, bi) � g
(
β,∆, yi, b̂i

)
+

1
2

[
bi − b̂i

]T
g′′
(
β,∆, yi, b̂i

) [
bi − b̂i

]
.

(7.17)

(The linear term in the expansion vanishes because g′(β,∆, yi, b̂i) = 0.)
The Laplacian approximation is defined as

p
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)
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The Hessian
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involves second derivatives of f but, at b̂i, the contribution of
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∂bi∂bT
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�bi

[
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]
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is usually negligible compared to that of ∂f i(β, bi)/∂bi|�bi
∂f i(β, bi)/∂bT

i

∣∣∣
�bi

(Bates and Watts, 1980). Therefore, we use the approximation

g′′
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β,∆, yi, b̂i
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∂bi
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�bi
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∂bT
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�bi
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(7.18)

This approximation is similar to that used in the Gauss–Newton algorithm
for nonlinear least squares and has the advantage of requiring only the first-
order partial derivatives of f with respect to the random effects. These
are usually available as a by-product of the estimation of b̂i, which is a
penalized least squares problem, for which standard and reliable code is
available.

The modified Laplacian approximation to the log-likelihood of the single-
level NLME model (7.1) is then given by

�LA

(
β, σ2,∆, | y

)
= −N

2
log
(
2πσ2

)
+ M log |∆|

− 1
2

{
M∑
i=1

log |G (β,∆, yi)| + σ−2
M∑
i=1

g
(
β,∆, yi, b̂i

)}
. (7.19)

Because b̂i does not depend on σ2, for given β and ∆ the maximum
likelihood estimate of σ2 (based upon �LA) is

σ̂2 = σ̂2 (β,∆, y) =
M∑
i=1

g
(
β,∆, yi, b̂i

)
/N.

We can profile �LA on σ2 to reduce the dimension of the optimization
problem, obtaining

�LAp (β,∆) =

− N

2
[
1 + log (2π) + log

(
σ̂2
)]

+ M log |∆| − 1
2

M∑
i=1

log |G (β,∆, yi)| .

If the model function f is linear in the random effects, then the modified
Laplacian approximation is exact because the second-order Taylor expan-
sion in (7.17) is exact when f i (β, bi) = f i (β) + Zi (β) bi.

There does not yet seem to be a straightforward generalization of the
concept of restricted maximum likelihood to NLME models. The difficulty
is that restricted maximum likelihood depends heavily upon the linearity
of the fixed effects in the model function, which does not occur in nonlinear
models. Lindstrom and Bates (1990) circumvented that problem by using
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an approximation to the model function f in which the fixed effects, β,
occur linearly. This cannot be done for the Laplacian approximation, unless
we consider yet another Taylor expansion of the model function, what would
lead us back to something very similar to Lindstrom and Bates’s approach.

The Laplacian approximation (7.19) can be extended to multilevel NLME
models. For example, in a two-level NLME model, let

baug
i =

⎡⎢⎢⎢⎣
bi

bi1

...
biMi

⎤⎥⎥⎥⎦ , i = 1, . . . , M

denote the augmented random effects vector for the ith first-level group,
containing the first-level random effects bi and all the second-level random
effects bij pertaining to first-level i. The two-level NLME likelihood can
then be expressed as

p(yi | β, σ2,∆1,∆2) =
∫ (

2πσ2
)−(ni+q1+Miq2)/2 |∆1| |∆2|Mi

× exp
[−g(β,∆1,∆2, yi, b

aug
i )/2σ2

]
dbaug

i ,

where g(β,∆1,∆2, yi, b
aug
i ) is the objective function for the PNLS step in

the alternating algorithm for two-level NLME models, defined in (7.14).
We proceed as in the single-level case and define

b̂
aug

i = b̂
aug
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to obtain the second-order approximation
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We note that ∂2g(β,∆1,∆2, yi, b
aug
i )/∂bij∂bT

ik = 0 for any j �= k and
use the same reasoning as in (7.18), to approximate the matrix g′′(β,∆, yi, b̂i)
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by
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Mi⊕
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f i(β, baug
i ) =

⎡⎢⎣ f i1(β, bi, bi1)
...

f iMi
(β, bi, biMi

)

⎤⎥⎦ .

The modified, profiled Laplacian approximation to the log-likelihood of
the two-level NLME model is then given by

�LAp (β,∆1,∆2) = −N

2
[
1 + log (2π) + log

(
σ̂2
)]

+ M log |∆1|

+
M∑
i=1

Mi log |∆2| − 1
2

M∑
i=1

log |G (β,∆1,∆2, yi)| ,

where σ̂2 =
∑M

i=1 g
(
β,∆1,∆2, yi, b̂

aug

i

)
/N. This formulation can be ex-

tended to multilevel NLME models with an arbitrary number of levels.
The Laplacian approximation generally gives more accurate estimates

than the alternating algorithm, as it uses an expansion around the esti-
mated random effects only, while the LME approximation in the alternat-
ing algorithm uses an expansion around the estimated fixed and random
effects. Because it requires solving a different penalized nonlinear least-
squares problem for each group in the data and its objective function can-
not be profiled on the fixed effects, the Laplacian approximation is more
computationally intensive than the alternating algorithm. The algorithm
for calculating the Laplacian approximation can be easily parallelized, be-
cause the individual PNLS problems are independently optimized.

Adaptive Gaussian Approximation

Gaussian quadrature rules are used to approximate integrals of functions
with respect to a given kernel by a weighted average of the integrand eval-
uated at predetermined abscissas. The weights and abscissas used in Gaus-
sian quadrature rules for the most common kernels can be obtained from
the tables of Abramowitz and Stegun (1964) or by using an algorithm
proposed by Golub (1973) (see also Golub and Welsch (1969)). Gaussian
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quadrature rules for multiple integrals are known to be numerically complex
(Davis and Rabinowitz, 1984), but using the structure of the integrand in
the nonlinear mixed-effects model we can transform the problem into suc-
cessive applications of simple one-dimensional Gaussian quadrature rules.
We consider initially the single-level NLME model.

A natural candidate for the kernel function for the quadrature rule in the
single-level NLME model is the marginal distribution of the random effects,
that is, the N (0,Ψ) density. The Gaussian quadrature rule in this case can
be viewed as a deterministic version of a Monte Carlo integration algorithm
in which random samples of the random effects, bi, are generated from
the N (0,Ψ) distribution. The samples and the weights in the Gaussian
quadrature rule are fixed beforehand, while in Monte Carlo integration
they are left to random choice. Because importance sampling tends to be
much more efficient than simple Monte Carlo integration (Geweke, 1989),
we consider an importance sample version of the Gaussian quadrature rule,
which we denote by adaptive Gaussian quadrature.

The critical step for the success of importance sampling is the choice
of an importance distribution that approximates the integrand. For the
single-level NLME model the integrand is proportional to

exp
[−g (β,∆, yi, bi) /2σ2

]
,

which is approximated by a N (b̂i, σ
2G−1(β,∆, yi)) density, with b̂i defined

as in (7.16) and G(β,∆, yi) defined as in (7.18). This is the importance
distribution used in the adaptive Gaussian quadrature, so that the grid
of abscissas in the bi scale is centered around the conditional modes b̂i

and G (β, D, yi) is used for scaling. Letting zj , wj j = 1, . . . , NGQ denote,
respectively, the abscissas and the weights for the (one-dimensional) Gaus-
sian quadrature rule with NGQ points based on the N (0, 1) kernel, the
adaptive Gaussian quadrature rule is given by

∫
exp
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]
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dz
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· · ·
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exp
(
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/2σ2

+ ‖zj‖2 /2
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k=1

wjk
,
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where [G (β,∆, yi)]
1/2 denotes a square root of G (β,∆, yi) and zj =(

zj1 , . . . , zjq

)T .
The adaptive Gaussian approximation to the log-likelihood function in

the single-level NLME model is then
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+ M log |∆| − 1

2

M∑
i=1

log |G (β,∆, yi)|

+
M∑
i=1

log

⎛⎝NGQ∑
j

exp
{
−g
[
β,∆, yi, b̂i + σG−1/2 (β,∆, yi) zj

]
/2σ2

+ ‖zj‖2 /2
} q∏
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)
.

The one point (i.e., NGQ = 1) adaptive Gaussian quadrature approxima-
tion is simply the modified Laplacian approximation (7.19), because in this
case z1 = 0 and w1 = 1. The adaptive Gaussian quadrature also gives
the exact log-likelihood when the model function f is linear in the random
effects b.

The adaptive Gaussian approximation can be made arbitrarily accurate
by increasing the number of abscissas, NGQ . However, because Nq

GQ grid
points are used to calculate the adaptive Gaussian quadrature for each
group, it quickly becomes prohibitively computationally intensive as the
number of abscissas increases. In practice NGQ ≤ 7 generally suffices and
NGQ = 1 often provides a reasonable approximation (Pinheiro and Bates,
1995).

The adaptive Gaussian approximation can be generalized to multilevel
NLME models, using the same steps as in the multilevel Laplacian ap-
proximation. For example, the adaptive Gaussian approximation to the
log-likelihood of a two-level NLME model is
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− 1
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b̂
aug

i + σG−1/2 (β,∆1,∆2, yi) zj

]
/2σ2 + ‖zj‖2 /2

} q1+Miq2∏
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wjk

)⎤⎦ ,

where zj =
(
zj1 , . . . , zjq1+Mq2

)T . In this case, the number of grid points for
the ith first-level group is Nq1+Miq2

GQ , so that the computational complexity
of the calculations increases exponentially with the number of second-level
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groups. This formulation can be extended to multilevel NLME models with
arbitrary number of levels.

7.2.2 Inference and Predictions

Because the alternating algorithm of Lindstrom and Bates (1990) is the
only estimation algorithm implemented in the nlme function, we restrict
ourselves for the rest of this section to inference and predictions using this
estimation algorithm. The results described here can be easily extended to
other likelihood estimation approaches, such as the Laplacian and adaptive
Gaussian approximations described in §7.2.1.

Inference

Inference on the parameters of an NLME model estimated via the alter-
nating algorithm is based on the LME approximation to the log-likelihood
function, defined in §7.2.1. Using this approximation at the estimated values
of the parameters and the asymptotic results for LME models described in
§2.3 we obtain standard errors, confidence intervals, and hypothesis tests
for the parameters in the NLME model. We use the single-level NLME
model of §7.1.1 to illustrate the inference results derived from the LME ap-
proximation to the log-likelihood. Extensions to multilevel NLME models
are straightforward.

Under the LME approximation, the distribution of the (restricted) max-
imum likelihood estimators β̂ of the fixed effects is

β̂
·∼ N

⎛⎝β, σ2

[
M∑
i=1

X̂
T

i Σ−1
i X̂i

]−1
⎞⎠ , (7.20)

where Σi = I + Ẑi∆−1∆−T Ẑ
T

i , with X̂i and Ẑi are defined as in (7.11).
The standard errors included in the summary method for nlme objects are
obtained from the approximate variance–covariance matrix in (7.20). The t
and F tests reported in the summary method and in the anova method with
a single argument are also based on (7.20). The degrees-of-freedom for t
and F tests are calculated as described in §2.4.2.

Now let θ denote an unconstrained set of parameters that determine the
precision factor ∆. The LME approximation is also used to provide an
approximate distribution for the (RE)ML estimators (θ̂, log σ̂)T . We use
log σ in place of σ2 to give an unrestricted parameterization for which the
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normal approximation tends to be more accurate.[
θ̂

log σ̂

]
·∼ N

([
θ

log σ

]
, I−1 (θ, σ)

)
,

I (θ, σ) = −
⎡⎣ ∂2�LMEp/∂θ∂θT ∂2�LMEp/∂ log σ∂θT

∂2�LMEp/∂θ∂ log σ ∂2�LMEp/∂2 log σ

⎤⎦ ,

(7.21)

where �LMEp = �LMEp(∆, σ) denotes the LME approximation to the log-
likelihood, profiled on the fixed effects, and I denotes the empirical infor-
mation matrix. The same approximate distribution is valid for the REML
estimators with �LMEp replaced by the log-restricted-likelihood �R

LME de-
fined in (7.13).

In practice, ∆ and σ2 are replaced by their respective (RE)ML esti-
mates in the expressions for the approximate variance–covariance matrices
in (7.20) and (7.21). The approximate distributions for the (RE)ML estima-
tors are used to produce the confidence intervals reported in the intervals

method for nlme objects.
The LME approximate log-likelihood is also used to compare nested

NLME models through likelihood ratio tests, as described in §2.4.1. In the
case of REML estimation, only models with identical fixed and random-
effects structures can be compared, because the X̂i matrices depend on
both β̂ and the b̂i. The same recommendations stated in §2.4.1, on the
use of likelihood ratio tests for comparing LME models, remain valid for
likelihood ratio tests (based on the LME approximate log-likelihood) for
comparing NLME models. Hypotheses on the fixed effects should be tested
using t and F tests, because likelihood ratio tests tend to be “anticonserva-
tive.” Likelihood ratio tests for variance–covariance parameters tend to be
somewhat conservative, but are generally used to compare NLME models
with nested random effects structures. Information criterion statistics, for
example, AIC and BIC, based on the LME approximate log-likelihood are
also used to compare NLME models.

The inference results for NLME models based on the LME approximation
to the log-likelihood are “approximately asymptotic,” making them less
reliable than the asymptotic inference results for LME models described in
§2.3.

Predictions

As with LME models, fitted values and predictions for NLME models
may be obtained at different levels of nesting, or at the population level.
Population-level predictions estimate the expected response when the ran-
dom effects are equal to their mean value, 0. For example, letting xh rep-
resent a vector of fixed-effects covariates and vh a vector of other model
covariates, the population prediction for the corresponding response yh es-
timates f(xT

h β, vh).
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Predicted values at the kth level of nesting estimate the conditional ex-
pectation of the response given the random effects at levels ≤ k and with the
random effects at higher levels of nesting set to zero. For example, letting
zh(i) denote a vector of covariates corresponding to random effects associ-
ated with the ith group at the first level of nesting, the level-1 predictions
estimate f(xT

h β + zh(i)T bi, vh). Similarly, letting zh(i, j) denote a covari-
ate vector associated with the j th level-2 group within the ith level-1 group,
the level-2 predicted values estimate f(xT

h β + zh(i)T bi + zh(i, j)T bij , vh).
This extends naturally to an arbitrary level of nesting.

The (RE)ML estimates of the fixed effects and the conditional modes of
the random effects, which are estimated Best Linear Unbiased Estimates
(BLUPs) of the random effects in the LME approximate log-likelihood,
are used to obtain predicted values for the response. For example, the
population, level-1, and level-2 predictions for yh are

ŷh = f(xT
h β̂, vh),

ŷh(i) = f(xT
h β̂ + zh(i)T b̂i, vh),

ŷh(i, j) = f(xT
h β̂ + zh(i)T b̂i + zh(i, j)T b̂i,j , vh).

7.3 Computational Methods

In this section we describe efficient computational methods for estimat-
ing the parameters in an NLME model using the alternating algorithm
presented in §7.2.1. The LME step of the alternating algorithm consists of
optimizing a linear mixed-effects log-likelihood, or log-restricted-likelihood,
for which efficient computational algorithms are discussed in §2.2.8. There-
fore, we concentrate here on computational methods for the PNLS step
of the alternating algorithm, focusing initially on the single-level NLME
model.

The objective function optimized in the PNLS step of the alternating
algorithm for a single-level NLME model is the penalized sum of squares

M∑
i=1

[
‖yi − f i(β, bi)‖2 + ‖∆bi‖2

]
. (7.22)

By adding “pseudo” observations to the data, we can convert (7.22) into a
simple nonlinear sum of squares. Define the augmented response and model
function vectors

ỹi =
[
yi

0

]
, f̃ i (β, bi) =

[
f i (β, bi)

∆bi

]
.
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The penalized sum of squares (7.22) can then be re-expressed as

M∑
i=1

‖ỹi − f̃ i(β, bi)‖2. (7.23)

It follows from (7.23) that, conditional on ∆, the estimation of β and
bi in the PNLS step can be regarded as a standard nonlinear least-squares
problem. A common iterative estimation method for standard nonlinear
least-squares problems is the Gauss–Newton method (Bates and Watts,
1988, §2.2) wherein a nonlinear model f(α) is replaced by a first-order
Taylor series approximation about current estimates α̂(w) as

f(α) ≈ f(α̂(w)) +
∂f

∂αT

∣∣∣∣
�α(w)

(
α − α̂(w)

)
.

The parameter increment δ̂
(w+1)

= α̂(w+1) − α̂(w) for the wth iteration is
calculated as the solution of the least-squares problem∥∥∥∥[y − f(α̂(w))

]
− ∂f

∂αT

∣∣∣∣
�α(w)

(
α − α̂(w)

)∥∥∥∥2

.

Step-halving is used at each Gauss–Newton iteration to ensure that the
updated parameter estimates result in a decrease of the objective function.

That is, the new estimate is set to α̂(w)+δ̂
(w+1)

and the corresponding value
of the objective function is calculated. If it is less than the value at α̂(w),
the value is retained and the algorithm proceed to the next step, or declares

convergence. Otherwise, the new estimate is set to α̂(w) + δ̂
(w+1)

/2 and the
procedure is repeated, with the increment being halved until a decrease in
the objective function is observed or some predetermined minimum step
size is reached.

The Gauss–Newton algorithm is used to estimate β and the bi in the
PNLS step of the alternating algorithm. Because of the “loosely coupled”
structure of the PNLS problem (Soo and Bates, 1992), efficient nonlinear
least-squares algorithms can be employed.

The derivative matrices for the Gauss–Newton optimization of (7.23) are,
for i = 1, . . . , M ,

∂f̃ i (β, bi|∆)
∂βT

∣∣∣∣∣
�β

(w)
,�b

(w)
i

= X̃
(w)

i =

[
X̂

(w)

i

0

]
,

∂f̃ i (β, bi|∆)
∂bT

i

∣∣∣∣∣
�β

(w)
,�b

(w)
i

= Z̃
(w)

i =

[
Ẑ

(w)

i

∆

]
,



326 7. Theory and Computational Methods for NLME Models

with X̂
(w)

i and Ẑ
(w)

i defined as in (7.11). The least-squares problem to be
solved at each Gauss–Newton iteration is

M∑
i=1

∥∥∥∥[ỹi − f̃ i

(
β̂

(w)
, b̂

(w)

i

)]
− X̃

(w)

i

(
β − β̂

(w)
)
− Z̃

(w)

i

(
bi − b̂

(w)

i

)∥∥∥∥2

or, equivalently,

M∑
i=1

∥∥∥w̃(w)
i − X̃

(w)

i β − Z̃
(w)

i bi

∥∥∥2

, where w̃
(w)
i =

[
ŵ

(w)
i

0

]
, (7.24)

with ŵ(w) defined as in (7.11).
We use the same matrix decomposition methods as in §2.2.3 to obtain

an efficient algorithm for solving (7.24). Consider first the orthogonal-
triangular decomposition[

Ẑ
(w)

i X̂
(w)

i ŵ
(w)
i

∆ 0 0

]
= Q1(i)

[
R11(i) R10(i) c1(i)

0 R00(i) c0(i)

]
, (7.25)

where the reduction to triangular form is halted after the first q columns.
The numbering scheme used for the components in (7.25) is the same in-
troduced for the LME model in §2.2.3. Because ∆ is assumed to be of full
rank, so is the upper-triangular matrix R11(i) in (7.25).

Forming another orthogonal-triangular decomposition⎡⎢⎣R00(1) c0(1)

...
...

R00(M) c0(M)

⎤⎥⎦ = Q0

[
R00 c0

0 c−1

]
(7.26)

and noticing that the Q1(i) and Q0 are orthogonal matrices, we can rewrite
(7.24) as

M∑
i=1

∥∥c1(i) − R11(i)bi − R10(i)β
∥∥2 + ‖c0 − R00β|2 + ‖c−1‖2

. (7.27)

We assume that the R00 is of full-rank, in which case (7.27) is uniquely
minimized by the least-squares estimates

β̂ = R−1
00 c0,

b̂i = R−1
11(i)

(
c1(i) − R10(i)β̂

)
, i = 1, . . . , M.

(7.28)

The Gauss–Newton increments are then obtained as the difference between
the least-squares estimates (7.28) and the current estimates, β̂

(w)
and b̂

(w)

i .
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Step-halving is used to ensure that the new estimates result in a decrease
of the objective function (7.23).

The efficient Gauss–Newton algorithm described above can be extended
to multilevel PNLS optimization problems. For example, in the two-level
NLME model, the PNLS step consists in optimizing

M∑
i=1

⎧⎨⎩
Mi∑
j=1

[
‖yij − f ij(β, bi, bij)‖2 + ‖∆2bij‖2

]
+ ‖∆1bi‖2

⎫⎬⎭ (7.29)

over β, bi, and bij .
The Gauss–Newton iteration is implemented by solving the least-squares

problem

M∑
i=1

⎧⎨⎩
Mi∑
j=1

[‖ŵ(w)
ij − X̂

(w)

ij β − Ẑ
(w)

i,j bi − Ẑ
(w)

ij bij‖2 + ‖∆2bij‖2] + ‖∆1bi‖2

⎫⎬⎭ ,

(7.30)

with ŵ
(w)
ij , X̂

(w)

ij , Ẑ
(w)

i,j , and Ẑ
(w)

ij defined as in (7.15). To solve it efficiently,
we first consider the orthogonal-triangular decomposition[
Ẑ

(w)

ij Ẑ
(w)

i,j X̂
(w)

ij ŵ
(w)
ij

∆2 0 0 0

]
= Q2(ij)

[
R22(ij) R21(ij) R20(ij) c2(ij)

0 R11(i) R10(i) c1(i)

]
,

where the reduction to triangular form is halted after the first q2 columns.
Because ∆2 is assumed of full rank, so is R22(ij). We then form a second
orthogonal-triangular decomposition for each first-level group⎡⎢⎢⎢⎣

R11(i1) R10(i1) c1(i1)

...
...

...
R11(iMi) R10(iMi) c1(iMi)

∆1 0 0

⎤⎥⎥⎥⎦ = Q1(i)

[
R11(i) R10(i) c1(i)

0 R00(i) c0(i)

]
,

where the reduction to triangular form is stopped after the first q1 columns.
The ∆1 matrix is assumed of full rank and, as a result, so is R11(i). A final
orthogonal-decomposition, identical to (7.26), is then formed.

Because the matrices Q2(ij), Q1(i), and Q0 are orthogonal, (7.30) can be
re-expressed as

M∑
i=1

⎧⎨⎩
Mi∑
j=1

[∥∥c2(ij) − R20(ij)β − R21(ij)bi − R22(ij)bij

∥∥2
]

+
∥∥c1(i) − R10(i)β − R11(i)bi

∥∥2
}

+ ‖c0 − R00β‖2 ,
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which is uniquely minimized by the least-squares estimates

β̂ = R−1
00 c0,

b̂i = R−1
11(i)

(
c1(i) − R10(i)β̂

)
, i = 1, . . . , M,

b̂ij = R−1
22(ij)(c2(ij) − R21(ij)b̂i − R20(i)β̂), i = 1, . . . , M, j = 1, . . . , Mi.

(7.31)

The Gauss–Newton increments are then obtained as the difference between
the least-squares estimates (7.31) and the current estimates β̂

(w)
, b̂

(w)

i , and

b̂
(w)

ij , with step-halving used to ensure that the objective function (7.29) de-
creases. This extends naturally to multilevel NLME models with arbitrary
number of levels.

The efficiency of the Gauss–Newton algorithm described in this section
derives from the fact that, at each iteration, the orthogonal-triangular de-
compositions are performed separately for each group and then once for the
fixed effects. This allows efficient memory allocation for storing intermedi-
ate results and reduces the numerical complexity of the decompositions.
Also, the matrix inversions required to calculate the Gauss–Newton incre-
ments involve only upper-triangular matrices of small dimension, which
are easy to invert. (In fact, although (7.28) and (7.31) are written in terms
of matrix inverses, such as R−1

00 , the actual calculation performed is the
solution of the triangular system of equations R00β̂ = c0, which is even
simpler.)

7.4 Extending the Basic NLME Model

The nonlinear mixed-effects model formulation used so far in this chap-
ter allows considerable flexibility in the specification of the random-effects
structure, but restricts the within-group errors to be independent and to
have constant variance. This basic NLME model provides an adequate
model for a broad range of applications, but there are many cases in which
the within-group errors are heteroscedastic (i.e., have unequal variances) or
are correlated or are both heteroscedastic and correlated.

This section extends the basic NLME model to allow heteroscedastic,
correlated within-group errors. We show how the estimation methods of
§7.2 and the computational methods of §7.3 can be adapted to the extended
model formulation.

7.4.1 General Formulation of the Extended NLME Model

As described in §7.1.1, the basic single-level NLME model (7.3) assumes
that the within-group errors εi are independent N (

0, σ2I
)

random vectors.
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The extended single-level NLME model relaxes this assumption by allowing
heteroscedastic and correlated within-group errors, being expressed for i =
1, . . . , M as

yi = f i (φi, vi) + εi, φi = Aiβ + Bibi,

bi ∼ N (0,Ψ), εi ∼ N (
0, σ2Λi

)
.

(7.32)

The Λi are positive-definite matrices parametrized by a fixed, generally
small, set of parameters λ. As in the basic NLME model, the within-group
errors εi are assumed to be independent for different i and to be indepen-
dent of the random effects bi. The σ2 is factored out of the Λi for com-
putational reasons (it can then be eliminated from the profiled likelihood
function).

Similarly, the extended two-level NLME model generalizes the basic two-
level NLME model (7.7) described in §7.1.2 by letting

εij ∼ N (
0, σ2Λij

)
, i = 1, . . . , M j = 1, . . . , Mi,

where the Λij are positive-definite matrices parametrized by a fixed λ vec-
tor. This readily generalizes to a multilevel model with Q levels of random
effects. For simplicity, we concentrate for the remainder of this section on
the extended single-level NLME model (7.32), but the results we obtain
are easily generalizable to multilevel models with an arbitrary number of
levels of random effects.

As described in §5.1.3, the variance–covariance structure of the within-
group errors can be decomposed into two independent components: a vari-
ance structure and a correlation structure. Variance function models to
represent the variance structure component of the within-group errors are
described and illustrated in §5.2. Correlation models to represent the corre-
lation structure of the within-group errors are presented and have their use
illustrated in §5.3. The use of the nlme function to fit the extended NLME
model is described in §8.3.

7.4.2 Estimation and Computational Methods

Because Λi is positive-definite, it admits an invertible square-root Λ1/2
i

(Thisted, 1988, §3), with inverse Λ−1/2
i , such that

Λi = ΛT/2
i Λ1/2

i and Λ−1
i = Λ−1/2

i Λ−T/2
i .

Letting

y∗
i = Λ−T/2

i yi,

f∗
i (φi, vi) = Λ−T/2

i f i (φi, vi) ,

ε∗i = Λ−T/2
i εi,

(7.33)
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and noting that ε∗i ∼ N
[
Λ−T/2

i 0, σ2Λ−T/2
i ΛiΛ

−1/2
i

]
= N (

0, σ2I
)
, we can

rewrite (7.32) as

y∗
i = f∗

i (φi, vi) + ε∗i ,
φi = Aiβ + Bibi,

bi ∼ N (0,Ψ), ε∗i ∼ N (
0, σ2I

)
.

That is, y∗
i is described by a basic NLME model.

Because the differential of the linear transformation y∗
i = Λ−T/2

i yi is
simply dy∗

i = |Λi|−1/2 dyi, the log-likelihood function corresponding to
the extended NLME model (7.32) is expressed as

�
(
β, σ2,∆, λ|y) =

M∑
i=1

log p
(
yi|β, σ2,∆, λ

)
=

M∑
i=1

log p
(
y∗

i |β, σ2,∆, λ
)− 1

2

M∑
i=1

log |Λi|

= �
(
β, σ2,∆, λ|y∗)− 1

2

M∑
i=1

log |Λi| .

The log-likelihood function �
(
β, σ2,∆, λ|y∗) corresponds to a basic NLME

model with model function f∗
i and, therefore, the approximations presented

in §7.2.1 can be applied to it. The inference results described in §7.2.2 also
remain valid.

Alternating Algorithm

The PNLS step of the alternating algorithm for the extended NLME model
consists of minimizing, over β and bi, i = 1, . . . , M , the penalized nonlin-
ear least-squares function

M∑
i=1

[
‖y∗

i − f∗
i (β, bi)‖2 + ‖∆bi‖2

]
=

M∑
i=1

{∥∥∥Λ−T/2
i [yi − f i (β, bi)]

∥∥∥2

+ ‖∆bi‖2

}
.

The derivative matrices and working vector used in the Gauss–Newton
algorithm for the PNLS step and also in the LME step are defined as

X̂
∗(w)

i =
∂f∗

i

∂βT

∣∣∣∣
�β

(w)
,�b

(w)
i

= Λ−T/2
i X̂

(w)

i ,

Ẑ
∗(w)

i =
∂f∗

i

∂bT
i

∣∣∣∣
�β

(w)
,�b

(w)
i

= Λ−T/2
i Ẑ

(w)

i ,

ŵ
∗(w)
i = y∗

i − f∗
i (β̂

(w)
, b̂

(w)

i ) + X̂
∗(w)

i β̂
(w)

+ Ẑ
∗(w)

i b̂
(w)

i = Λ−T/2
i ŵ

(w)
i ,
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with X̂
(w)

i , Ẑ
(w)

i , and ŵ
(w)
i defined as in (7.11).

The Gauss–Newton algorithm for the PNLS step is identical to the algo-

rithm described in §7.3, with X̂
(w)

i , Ẑ
(w)

i , and ŵ
(w)
i replaced, respectively,

by X̂
∗(w)

i , Ẑ
∗(w)

i , and ŵ
∗(w)
i . The LME approximation to the log-likelihood

function of the extended single-level NLME model is

�∗LME

(
β, σ2,∆, λ | y

)
= �LME

(
β, σ2,∆, λ | y∗)− 1

2

M∑
i=1

log |∆i| ,

which has the same form as the log-likelihood of the extended single-level
LME model described in §5.1. The log-restricted-likelihood for the extended
NLME model is similarly defined.

Laplacian and Adaptive Gaussian Approximations

For the extended single-level NLME model, the objective function which is
minimized to produce the conditional modes b̂i used in the Laplacian and
adaptive Gaussian approximations is

g∗ (β,∆, λ, yi, bi) =
∥∥∥Λ−T/2

i [yi − f i (β, bi)]
∥∥∥2

+ ‖∆bi‖2 .

The corresponding approximation to the second-derivative matrix of g∗

with respect bi evaluated at b̂i is

∂∂2g∗(β,∆, λ, yi, bi)
∂bi∂bT

i

∣∣∣∣
�bi

� G∗ (β,∆, λ, yi) =

∂f i(β, bi)
∂bi

∣∣∣∣
�bi

Λ−1
i

∂f i(β, bi)
∂bT

i

∣∣∣∣
�bi

+ ∆T ∆.

The modified Laplacian approximation to the log-likelihood of the ex-
tended single-level NLME model is then given by

�∗LA

(
β, σ2,∆, λ, | y

)
= −N

2
log
(
2πσ2

)
+ M log |∆|

−1
2

{
M∑
i=1

log |G∗ (β,∆, λ, yi)| + σ−2
M∑
i=1

g∗(β,∆, λ, yi, b̂i)

}
−1

2

M∑
i=1

log |Λi|
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and the adaptive Gaussian approximation is given by

�∗AGQ

(
β, σ2,∆, λ, | y

)
=

− N
2 log

(
2πσ2

)
+ M log |∆| − 1

2

M∑
i=1

log |G∗ (β,∆, λ, yi)|

+
M∑
i=1

log(
NGQ∑

j

exp{−g∗[β,∆, λ, yi, b̂i + σ (G∗)−
1
2 (β,∆, λ, yi)zj ]/2σ2

+ ‖zj‖2 /2}
q∏

k=1

wjk
) − 1

2

M∑
i=1

log |Λi| .

The same comments and conclusions presented in §5.2 for the case when
the within-group variance function depends on the fixed effects and/or the
random effects also apply to the extended NLME model. As in the LME
case, to keep the optimization problem feasible, an “iteratively reweighted”
scheme is used to approximate the variance function. The fixed and random
effects used in the variance function are replaced by their current estimates
and held fixed during the log-likelihood optimization. New estimates for the
fixed and random effects are then produced and the procedure is repeated
until convergence. In the case of the alternating algorithm, the estimates
for the fixed and random effects obtained in the PNLS step are used to
calculate the variance function weights in the LME step. If the variance
function does not depend on either the fixed effects or the random effects,
then no approximation is necessary.

7.5 An Extended Nonlinear Regression Model

In many applications of nonlinear regression models to grouped data, one
wishes to represent the within-group variance–covariance structure through
the Λi matrices only, avoiding the use of random effects to account for
within-group dependence. This results in a simplified version of the ex-
tended single-level NLME model (7.32), which we call the extended non-
linear regression model. In this section, we present the general formulation
of the extended nonlinear regression model, describe methods for estimat-
ing its parameters, and present computational algorithms for implementing
such estimation methods.

The modeling function gnls in the nlme library fits the extended nonlin-
ear regression model using maximum likelihood. The use of this function
is described and illustrated in §8.3.3.
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7.5.1 General Model Formulation

The extended nonlinear regression model for the jth observation on the ith
group, yij , is

yij = f
(
φij , vij

)
+ εij , i = 1, . . . , M, j = 1, . . . , ni,

φij = Aijβ.
(7.34)

The real-valued function f depends on a group-specific parameter vector
φij and a known covariate vector vij . It is nonlinear in at least one compo-
nent of φij and differentiable with respect to the group-specific parameters.
M is the number of groups, ni is the number of observations on the ith
group, and εij is a normally distributed error term.

The extended nonlinear regression model (7.34) is a two-stage model in
which the second stage expresses the group-specific parameters φij as a
linear function of a fixed set of parameters β. The design matrices Aij are
known. We note that the coefficients β could be incorporated directly into
the model function f , thus eliminating the need of a second stage in the
model. However, there are advantages in having the second stage in (7.34),
some of which are (i) group-specific parameters generally have a more nat-
ural interpretation in the model, (ii) inclusion and elimination of covariates
in the model can be done at the second-stage model only, facilitating the
understanding of the model building process, and (iii) because the φij are
linear functions of the β, derivatives with respect to φij are easily obtained
from derivatives with respect to β.

Using the same definitions of vectors and matrices given in (7.4), we can
express the extended nonlinear regression in matrix form as

yi = f i (φi, vi) + εi,

φi = Aiβ, εi ∼ N (
0, σ2Λi

)
.

As in the extended NLME model of §7.4, the Λi matrices are determined
by a fixed, generally small, set of parameters λ.

Estimation and inference under this model has been studied extensively
in the nonlinear regression literature (Carroll and Ruppert, 1988; Seber
and Wild, 1989), usually assuming that the Λi matrices are known, being
referred to as the generalized least-squares model (Seber and Wild, 1989,
§2.1.4). We refer to it as the generalized nonlinear least-squares (GNLS)
model to differentiate from the extended linear model described in §5.1.2.

Using the same transformations described in (7.33), the GNLS model
(7.34) can be re-expressed as a “classic” nonlinear regression model:

y∗
i = f∗

i (φi, vi) + ε∗i ,
φi = Aiβ, ε∗i ∼ N (

0, σ2I
)
.



334 7. Theory and Computational Methods for NLME Models

7.5.2 Estimation and Computational Methods

Different estimation methods have been proposed for the parameters in the
GNLS model (Davidian and Giltinan, 1995, §2.5). We concentrate here on
maximum likelihood estimation.

The log-likelihood function for the GNLS model is

�
(
β, σ2, δ

∣∣y) = −1
2

{
N log

(
2πσ2

)
+

M∑
i=1

[
‖y∗

i − f∗
i (β)‖2

σ2
+ log |Λi|

]}
,

(7.35)

where N represents the total number of observations and, for simplicity,
we use f∗

i (β) = f∗
i (φi, vi).

For fixed β and λ, the maximum likelihood estimator of σ2 is

σ̂2(β, λ) =
M∑
i=1

‖y∗
i − f∗

i (β)‖2
/N, (7.36)

so that the profiled log-likelihood, obtained by replacing σ2 with σ̂2(β, λ)
in (7.35), is

� (β, λ|y) = −1
2

{
N [log (2π/N) + 1] + log

(
M∑
i=1

‖y∗
i − f∗

i (β)‖2

)

+
M∑
i=1

log |Λi|
}

. (7.37)

A Gauss–Seidel algorithm (Thisted, 1988, §3.11.2) is used with the pro-
filed log-likelihood (7.37) to obtain the maximum likelihood estimates of β

and λ. Given the current estimate λ̂
(w)

of λ, a new estimate β̂
(w)

for β

is produced by maximizing �(β, λ̂
(w)

). The roles are then reversed and a

new estimate λ(k+1) is produced by maximizing �(β̂
(w)

, λ). The procedure
iterates between the two optimizations until a convergence criterion is met.

It follows from (7.37) that, conditional on λ, the maximum likelihood
estimator of β is obtained by solving an ordinary nonlinear least-squares
problem

β̂(λ) = arg min
β

M∑
i=1

‖y∗
i − f∗

i (β)‖2
,

for which we can use a standard Gauss–Newton algorithm. If k is the it-

eration counter for this algorithm and β̂
(k)

= β̂
(k)

(λ(w)) is the current
estimate of β, then the derivative matrices

X̂
(k)

i =
∂f i (β)
∂βT

∣∣∣∣
�β

(k)
, X̂

∗(k)

i = Λ−T/2
i X̂

(k)

i ,
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provide the Gauss–Newton increment δ̂
(k+1)

for β̂ as the (ordinary) least-
squares solution of

M∑
i=1

∥∥∥∥ŵ∗(k)
i − X̂

∗(k)

i δ

∥∥∥∥2

,

where ŵ
∗(k)
i = y∗

i − f∗
i (β̂

(k)
). Orthogonal-triangular decomposition meth-

ods similar to the ones described in §7.3 can be used to obtain a compact
and numerically efficient implementation of the Gauss–Newton algorithm
for estimating β. The derivation is left to the reader as an exercise.

Inference on the parameters of the GNLS model generally relies on
“classical” asymptotic theory for maximum likelihood estimation (Cox and
Hinkley, 1974, §9.2), which states that, for large N , the MLEs are approxi-
mately normally distributed with mean equal to the true parameter values
and variance–covariance matrix given by the inverse of the information ma-
trix. Because E[∂2�(β, σ2, λ)/∂β∂λT ] = 0 and E[∂2�(β, σ2, λ)/∂β∂σ2] =
0, the expected information matrix for the GNLS likelihood is block-diagonal
and the MLE of β is asymptotically uncorrelated with the MLEs of λ and
σ2.

The approximate distributions for the MLEs in the GNLS model which
are used for constructing confidence intervals and hypothesis tests are

β̂
.∼ N

⎛⎝β, σ2

[
M∑
i=1

X̂
T

i Λ−1
i X̂i

]−1
⎞⎠ ,

[
λ̂

log σ̂

]
·∼ N

([
λ

log σ

]
, I−1 (λ, σ)

)
,

I (λ, σ) = −
⎡⎣ ∂2�/∂λ∂λT ∂2�/∂ log σ∂λT

∂2�/∂λ∂ log σ ∂2�/∂2 log σ

⎤⎦ ,

(7.38)

where X̂i is the derivative matrix evaluated at the true parameter values.
As in §7.2.2, log σ is used in place of σ2 to give an unrestricted parameter-
ization for which the normal approximation tends to be more accurate. In
practice, the parameters in the approximate variance–covariance matrices
in (7.38) are replaced by their respective MLEs.

To reduce the bias associated with the maximum likelihood estimation
of σ2, the following modified version of (7.36) is used,

σ̃2 =
M∑
i=1

∥∥∥∥Λ̂−T/2

i

[
yi − f i

(
β̂
)]∥∥∥∥2

/(N − p),

with p denoting the length of β. (N − p)σ̃2 is approximately distributed as
a σ2χ2

N−p random variable and is asymptotically independent of β̂. This
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is used to produce approximate t and F tests for the coefficients β. These
tests tend to have better small sample properties than the tests obtained
from the normal approximation (7.38) alone.

7.6 Chapter Summary

This chapter presents the theoretical foundations of the nonlinear mixed-
effects model for single- and multilevel grouped data, including the general
model formulation and its underlying distributional assumptions. Efficient
computational methods for maximum likelihood estimation in the NLME
model are described and discussed. Different approximations to the NLME
model log-likelihood with varying degrees of accuracy and computational
complexity are derived.

The basic NLME model with independent, homoscedastic within-group
errors is extended to allow correlated, heteroscedastic within-group errors
and efficient computational methods are described for maximum likelihood
estimation of its parameters.

An extended class of nonlinear regression models, with correlated and
heteroscedastic errors, but with no random effects, is presented. An efficient
maximum likelihood estimation algorithm is described and approximate
inference results for the parameters in this extended nonlinear regression
are presented.



8
Fitting Nonlinear Mixed-Effects
Models

As shown in the examples in Chapter 6, nonlinear mixed-effects models
offer a flexible tool for analyzing grouped data with models that depend
nonlinearly upon their parameters. As nonlinear models are usually based
on a mechanistic model of the relationship between the response and the
covariates, their parameters can have a theoretical interpretation and are
often of interest in their own right. In this chapter, we describe in detail
the facilities in the nlme library for fitting nonlinear mixed-effects models.

The first section presents a brief review of the standard nonlinear re-
gression function in S, nls, to illustrate the use of nonlinear formulas and
the derivation of starting estimates for the model parameters. We describe
the selfStart class of nonlinear model functions that can calculate initial
values for their parameters from the data. The nlsList function, which
produces separate nls fits for each level of a grouping variable, is described
and illustrated through examples.

Section 8.2 describes the nlme function for fitting nonlinear mixed-effects
models with single or multiple levels of nesting. Method functions for dis-
playing, plotting, updating, making predictions, and obtaining confidence
intervals from a fitted nlme object are described and illustrated with ex-
amples.

The use of correlation structures and variance functions to extend the
basic nonlinear mixed-effects model is discussed in Section 8.3. The gnls

function for fitting the extended nonlinear regression model without ran-
dom effects, presented in §7.5.1, is described, together with its associated
methods.
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8.1 Fitting Nonlinear Models in S with nls and
nlsList

In this section we describe the use of the nonlinear least squares (nls)
function for fitting a single nonlinear regression model and the nlsList

function for fitting a set of nonlinear regression models to grouped data.
Especially with nlsList, it is very helpful to have the model function itself
defined as a self-starting model, as described in §8.1.2.

8.1.1 Using the nls Function

The S function nls uses a Gauss–Newton algorithm, described in §7.5.2,
to determine the nonlinear least squares estimates of the parameters in a
nonlinear regression model. A typical call to nls is of the form

nls( formula, data, start )

where formula is a two-sided nonlinear formula specifying the model, data
is a data frame with the variables used in formula, and start is a named
vector or list containing the starting estimates for the model parameters.
Several other arguments to nls are available, as described in Bates and
Chambers (1992) and Venables and Ripley (1999, Chapter 8).

We illustrate the use of nls to fit nonlinear regression models with the
Orange data from a study of the growth of orange trees, reported in Draper
and Smith (1998, Exercise 24.N, p. 559). The data, shown in Figure 8.1 and
described in Appendix A.16, are the trunk circumferences (in millimeters)
of each of five trees at each of seven occasions.

> ## outer = ~1 is used to display all five curves in one panel

> plot( Orange, outer = ~1 ) # Figure 8.1

Because all trees are measured on the same occasions these are balanced,
longitudinal data. It is clear from Figure 8.1 that a “tree effect” is present,
and we will take this into account when fitting nlme or nlsList models.
To illustrate some of the details of fitting nls models, we will temporarily
ignore the tree effect and fit a single logistic model to all the data. Recall
from §6.1 that this model expresses the trunk circumference yij of tree i at
age xij for i = 1, . . . , 5 j = 1, . . . , 7 as

yij =
φ1

1 + exp [− (tij − φ2) /φ3]
+ εij , (8.1)

where the error terms εij are assumed to be distributed independently as
N (0, σ2). As explained in §6.1, the model parameters are the asymptotic
trunk circumference φ1, the age at which the tree attains half of its asymp-
totic trunk circumference φ2, and the growth scale φ3. This function is
nonlinear in φ2 and φ3.

Model (8.1) can be represented in S by the nonlinear formula
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FIGURE 8.1. Circumference of five orange trees from a grove in southern Califor-
nia over time. The measurement is probably the “circumference at breast height”
commonly used by foresters. Points corresponding to the same tree are connected
by lines.

circumference ~ Asym/(1 + exp(-(age - xmid)/scal)),

where Asym = φ1, xmid = φ2, and scal = φ3. Unlike in the linear case, the
parameters must be declared explicitly in a nonlinear model formula and
an intercept is not assumed by default.

An alternative approach is to write an S function representing the logistic
model as, say,

> logist <-

+ function(x, Asym, xmid, scal) Asym/(1 + exp(-(x - xmid)/scal))

and then use it in the nonlinear formula

circumference ~ logist(age, Asym, xmid, scal)

An advantage of this latter approach is that we can modify our logist

function to include a gradient attribute with its returned value. This would
then be used as the gradient matrix in the Gauss–Newton nonlinear least-
squares optimization, increasing the numerical stability and the rate of
convergence of the algorithm, compared to the default use of numerical
derivatives. The deriv function can be used to produce a function that
returns a gradient attribute with its value.

> logist <- deriv( ~Asym/(1+exp(-(x-xmid)/scal)),
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+ c("Asym", "xmid", "scal"), function(x, Asym, xmid, scal){} )

> Asym <- 180; xmid <- 700; scal <- 300

> logist( Orange$age[1:7], Asym, xmid, scal )

[1] 22.617 58.931 84.606 132.061 153.802 162.681 170.962

attr(, "gradient"):

Asym xmid scal

[1,] 0.12565 -0.065916 0.127878

[2,] 0.32739 -0.132124 0.095129

[3,] 0.47004 -0.149461 0.017935

[4,] 0.73367 -0.117238 -0.118802

[5,] 0.85446 -0.074616 -0.132070

[6,] 0.90378 -0.052175 -0.116872

[7,] 0.94979 -0.028614 -0.084125

As mentioned in §6.1, one important difference between linear and non-
linear regression is that the nonlinear models require starting estimates for
the parameters. Determining reasonable starting estimates for a nonlinear
regression problem is something of an art, but some general recommenda-
tions are available (Bates and Watts, 1988, §3.2). We return to this issue
in §8.1.2, where we describe the selfStart class of model functions.

Because the parameters in the logistic model (8.1) have a graphical in-
terpretation, we can determine initial estimates from a plot of the data.
In Figure 8.1 it appears that the mean asymptotic trunk circumference is
around 170 mm and that the trees attain half of their asymptotic trunk
circumference at about 700 days of age. Therefore, we use the inital esti-
mates of φ̃1 = 170 for the asymptotic trunk circumference and φ̃2 = 700
for the location of the inflection point. To obtain an initial estimate for φ3,
we note that the logistic curve reaches approximately 3/4 of its asymptotic
value when x = φ2 + φ3. Inspection of Figure 8.1 suggests that the trees
attain 3/4 of their final trunk circumference at about 1200 days, giving an
intial estimate of φ̃3 = 500.

We combine all this information in the following call to nls

> fm1Oran.nls <- nls(circumference ~ logist(age, Asym, xmid, scal),

+ data = Orange, start = c(Asym = 170, xmid = 700, scal = 500) )

Our initial estimates are reasonable and the call converges. Following the
usual framework for modeling functions in S, the object fm1Oran.nls pro-
duced by the call to nls is of class nls, for which several methods are
available to display, plot, update, and extract components from a fitted
object. For example, the summary method provides information about the
estimated parameters.

> summary( fm1Oran.nls )

Formula: circumference ~ logist(age, Asym, xmid, scal)

Parameters:

Value Std. Error t value

Asym 192.68 20.239 9.5203
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FIGURE 8.2. Scatter plots of standardized residuals versus fitted values for
fm1Oran.nls, a nonlinear least squares fit of the logistic growth model to the
entire orange tree data set.

xmid 728.71 107.272 6.7931

scal 353.49 81.460 4.3395

Residual standard error: 23.3721 on 32 degrees of freedom

Correlation of Parameter Estimates:

Asym xmid

xmid 0.922

scal 0.869 0.770

The final estimates are close to the initial values derived from Figure 8.1.
The standard errors for the parameter estimates are relatively large, sug-
gesting that there is considerable variability in the data.

The plot method for nls objects (which is included with the nlme library),
has a syntax similar to the lme and gls plot methods described in §4.3.1
and §5.4. By default, the plot of the standardized residuals versus fitted
values, shown in Figure 8.2, is produced.

> plot( fm1Oran.nls ) # Figure 8.2

The variability in the residuals increases with the fitted values, but, in this
case, the wedge-shaped pattern is due to the correlation among observations
in the same tree and not to heteroscedastic errors. We can get a better
understanding of the problem by looking at the plot of the residuals by
tree presented in Figure 8.3.

> plot(fm1Oran.nls, Tree ~ resid(.), abline = 0) # Figure 8.3
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FIGURE 8.3. Boxplots of residuals by tree for fm1Oran.nls, a nonlinear least
squares fit of the logistic growth model to the entire orange tree data set.

The residuals are mostly negative for trees 1 and 3 and mostly positive for
trees 2 and 4, giving strong evidence that a “tree effect” should be included
in the model.

A simple approach to account for a tree effect is to allow different pa-
rameters for each tree, resulting in separate nls fits. This is the approach
used in the nlsList function, described in §8.1.3, which provides a valuable
tool for model building, but usually produces overparametrized models. As
illustrated in Chapter 6, nonlinear mixed-effects models strike a balance
between the simple nls model and the overparametrized nlsList model, by
allowing random effects to account for among-group variation in some of
the parameters, while preserving a moderate number of parameters in the
model.

8.1.2 Self-Starting Nonlinear Model Functions

Bates and Watts (1988, §3.2) describe several techniques for determining
starting estimates in a nonlinear regression. Some of the more effective
techniques are:

• Take advantage of partially linear models, as described in Bates and
Chambers (1992, §10.2.5), so that initial estimates are needed only
for those parameters that enter the model nonlinearly.

• Choose parameters that have meaningful graphical interpretations,
as we did for the logistic model.

• Refine the estimates of some of the parameters by iterating on them
while holding all the other parameters fixed at their current values.

The application of these techniques to a particular nonlinear regression
model applied to a given set of data can be straightforward but tedious.
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Especially when the same model will be applied to several similar sets of
data, as is the case in many of the examples we consider here, we do not
want to have to manually repeat the same series of steps in determining
starting estimates. A more sensible approach is to encapsulate the steps
used to derive initial estimates for a given nonlinear model into a function
that can be used to generate intial estimates from any dataset. Self-starting
nonlinear regression models are S functions that contain an auxillary func-
tion to calculate the initial parameter estimates. They are represented in
S as selfStart objects.

The S objects of the selfStart class are composed of two functions; one
that evaluates the nonlinear regression model itself and an auxillary func-
tion, called the initial attribute, that determines starting estimates for the
model’s parameters from a set of data. When a selfStart object for a model
is available, there is no need to determine starting values for the parame-
ters. The user can simply specify the formula for the model and the data to
which it should be applied. From a user’s point of view, fitting self-starting
nonlinear regression models is nearly as easy as fitting linear regression
models.

We illustrate the construction and use of self-starting models by building
function one for the logistic model. The basic steps in the calculation of
initial estimates for the logistic model (8.1) from the Orange dataset are:

1. Sort/average: sort the data according to the x variable and obtain
the average response y for each unique x.

2. Asymptote: use the maximum y as an initial value φ̃1 for the asymp-
tote.

3. Inflection point : use the x corresponding to 0.5φ̃1 as an initial value
φ̃2 for the inflection point.

4. Scale: use the difference between the x corresponding to 0.75φ̃1 and
φ̃2 as an initial value φ̃3 for the growth scale

Step 1, sort/average, was carried out implicitly in our graphical deriva-
tion of initial values for the orange trees example, but is now explicitly
incorporated in the algorithm.

Two auxillary functions, sortedXyData and NLSstClosestX, included in the
nlme library, are particularly useful for constructing self-starting models.
The sortedXyData function performs the sort/average step. It takes the
arguments x, y, and data and returns a data.frame with two columns: y,
the average y for each unique value of x, and x, the unique values of x,
sorted in ascending order. The arguments x and y can be numeric vectors
or they can be expressions or strings to be evaluated in data. The returned
object is of class sortedXyData. For example, the pointwise averages of the
growth curves of the orange trees are obtained with
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> Orange.sortAvg <- sortedXyData( "age", "circumference", Orange )

> Orange.sortAvg

x y

1 118 31.0

2 484 57.8

3 664 93.2

4 1004 134.2

5 1231 145.6

6 1372 173.4

7 1582 175.8

The NLSstClosestX function estimates the value of x corresponding to a
given y, using linear interpolation. It takes two arguments: xy, a sortedXy-
Data object, and yval, the desired value of y, and returns a numeric value.
For example, the estimated age at which the average growth curve reaches
130 mm is

> NLSstClosestX(Orange.sortAvg, 130)

[1] 969.17

A function to serve as an initial attribute of a selfStart function must be
defined with the arguments mCall, LHS, and data, in that order, and must
return the initial values as a vector, or list, with elements named according
to the actual parameters in the model function’s call. The first argument,
mCall, is a matched call to the selfStart model. It contains the arguments
of the function call (as expressions), matched with the formal parameters,
which are the argument names used in the original definition of the model.
In the case of the logist function, defined before as

function(x, Asym, xmid, scal)

the formal parameters are x, Asym, xmid, and scal. If the function is called
as

logist(age, A, xmid, scal)

then mCall will have components x = age, Asym = A, xmid = xmid and scal

= scal. As described above, the names of these components are the formal
parameters in the model function definition. The values of these compo-
nents are the names (or, more generally, the expressions) that are the actual
arguments in the call to the model function.

The LHS argument is the expression on the left-hand side of the model
formula in the call to nls. It determines the response vector. The data

argument gives a data.frame in which to find the variables named in the
other two arguments. The function logistInit below implements a slightly
more general version of the algorithm described above for calculating initial
estimates in the logistic model, using the required syntax.



8.1 Fitting Nonlinear Models in S with nls and nlsList 345

> logistInit

function(mCall, LHS, data)

{
xy <- sortedXyData(mCall[["x"]], LHS, data)

if(nrow(xy) < 3) {
stop("Too few distinct input values to fit a logistic")

}
Asym <- max(abs(xy[,"y"]))

if (Asym != max(xy[,"y"])) Asym <- -Asym # negative asymptote

xmid <- NLSstClosestX(xy, 0.5 * Asym)

scal <- NLSstClosestX(xy, 0.75 * Asym) - xmid

value <- c(Asym, xmid, scal)

names(value) <- mCall[c("Asym", "xmid", "scal")]

value

}

The algorithm in logistInit includes a check for an adequate number of
distinct observations to fit a logistic model and allows negative as well as
positive asymptotes.

Before the starting values are returned, we ensure that the components
are named according to the actual parameters in the model function call.
As described above, the object mCall provides the correspondence between
the formal parameter names and the actual parameter names, so we assign
the names indirectly through mCall. This step is important. All functions
to be used as the initial attribute of a selfStart model should indirectly
assign the names to the result in this way.

The selfStart constructor is used to create a self-starting model. It can
be called with two functions, the model function itself and the initial

attribute, as in

> logist <- selfStart( logist, initial = logistInit )

> class( logist )

[1] "selfStart"

Alternatively, it can be called with a one-sided formula defining the non-
linear model, the function for the initial attribute, and a character vector
giving the parameter names.

> logist <- selfStart( ~ Asym/(1 + exp(-(x - xmid)/scal)),

+ initial = logistInit, parameters = c("Asym", "xmid", "scal"))

When selfStart is called like this, the model function is produced by ap-
plying deriv to the right-hand side of the model formula.

The getInitial function is used to extract the initial parameter esti-
mates from a given dataset when using a selfStart model function. It takes
two arguments: a two-sided model formula, which must include a selfStart
function on its right-hand side, and a data.frame in which to evaluate the
variables in the model formula.
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TABLE 8.1. Standard selfStart functions in the NLME 3.0 distribution.

SSasymp asymptotic regression
SSasympOff asymptotic regression with an offset
SSasympOrig asymptotic regression through the origin
SSbiexp biexponential
SSfol first-order compartment
SSfpl four-parameter logistic
SSlogis logistic
SSmicmen Michaelis–Menten

> getInitial(circumference ~ logist(age, Asym, xmid, scal), Orange)

Asym xmid scal

175.8 637.05 347.46

As expected, the initial values produced by logist are similar to those
obtained previously using the graphical interpretation of the parameters
and Figure 8.1.

When nls is called without initial values for the parameters and a self-
Start model function is provided, nls calls getInitial to provide the initial
values. In this case, only the model formula and the data are required to
fit the model, making the call nearly as simple as an lm call. For example,
the logistic model can be fit to the orange tree data with

> nls( circumference ~ logist(age, Asym, xmid, scal), Orange )

Residual sum of squares : 17480

parameters:

Asym xmid scal

192.69 728.77 353.54

formula: circumference ~ logist(age, Asym, xmid, scal)

35 observations

The nlme library includes several self-starting model functions that can
be used to fit nonlinear regression models in S without specifying starting
estimates for the parameters. They are listed in Table 8.1 and are described
in detail in Appendix B. The SSlogis function is a more sophisticated ver-
sion of our simple logist self-starting model, but with the same argument
sequence. It uses several techniques, such as the algorithm for partially
linear models, to refine the starting estimates so the returned values are
actually the converged estimates.

> getInitial(circumference ~ SSlogis(age,Asym,xmid,scal), Orange)

Asym xmid scal

192.68 728.72 353.5

> nls( circumference ~ SSlogis(age, Asym, xmid, scal), Orange )

Residual sum of squares : 17480
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parameters:

Asym xmid scal

192.68 728.72 353.5

formula: circumference ~ SSlogis(age, Asym, xmid, scal)

35 observations

We can see that selfStart model objects relieve the user of much of the
effort required for a nonlinear regression analysis. If a versatile, effective
strategy for determining starting estimates is represented carefully in the
object, it can make the use of nonlinear models nearly as simple as the
use of linear models. If you frequently use a nonlinear model not included
in Table 8.1, you should consider writing your own self-starting model to
represent it. The selfStart functions in Table 8.1 and the logist function
described in this section can be used as templates.

8.1.3 Separate Nonlinear Fits by Group: The nlsList

Function

In the indomethicin and soybean examples of Chapter 6 we saw how the
nlsList function can be used to produce separate fits of a nonlinear model
for each group in a groupedData object. These separate fits by group are
a powerful tool for model building with nonlinear mixed-effects models
because the individual estimates can suggest the type of random-effects
structure to use. Also, these estimates provide starting values for the pa-
rameters in the mixed-effects model. In this section we provide more detail
on the use of nlsList function itself and the methods for the nlsList objects
that it creates.

The nls fits performed within nlsList will require starting estimates
for the parameters. Although it is sometimes possible to use a single set
of starting estimates for all the groups, we recommend using a selfStart

function, as described in §8.1.2, to automatically generate individual initial
estimates for each group.

A typical call to nlsList is

nlsList( model, data )

where model is a two-sided formula whose right-hand side consists of two
parts separated by the | operator. The first part defines the nonlinear
model, generally involving a selfStart function to be fitted to each subset
of data, and the second part specifies the grouping factor. Any nonlinear
model formula allowed in nls can also be used with nlsList. The data ar-
gument gives a data frame in which the variables in model can be evaluated.
The grouping factor can be omitted from the model formula when data is
a groupedData object.

To illustrate the use of nlsList, let us continue with the analysis of the
orange trees data, fitting a separate logistic curve to each tree and using
the selfStart function SSlogis to produce initial estimates.



348 8. Fitting Nonlinear Mixed-Effects Models

> fm1Oran.lis <-

+ nlsList(circumference ~ SSlogis(age, Asym, xmid, scal) | Tree,

+ data = Orange)

Because Orange is a groupedData object, the grouping factor Tree could have
been omitted from the model formula. When a selfStart function depends
on only one covariate, as does SSlogis, and data is a groupedData object, the
entire form of the model formula can be inferred from the display formula
stored with the groupedData object. In this case, only the selfStart function
and the groupedData object need to be passed to the nlsList function. For
example, we could use

> fm1Oran.lis <- nlsList( SSlogis, Orange )

to obtain the same nlsList fit as before.
The nlsList function can also be used with regular, non-self-starting

nonlinear functions, but in this case the same set of starting values, specified
in the start argument, will be used for every group. The use of common
starting estimates may not be a sensible choice in many applications, so
we strongly encourage the use of selfStart functions with nlsList. In the
orange trees example, the individual growth patterns are similar enough
that a common set of starting estimates can be used. For example, using
the same initial estimates as used to fit fm1Oran.nls in §8.1.1, we have

> fm1Oran.lis.noSS <-

+ nlsList( circumference ~ Asym/(1+exp(-(age-xmid)/scal)),

+ data = Orange,

+ start = c(Asym = 170, xmid = 700, scal = 500) )

Because the model fits fm1Oran.lis and fm1Oran.lis.noSS are derived from
different starting values, the parameter estimates will differ slightly.

Objects returned by nlsList are of class nlsList which inherits from class
lmList. Therefore, all summary and display methods, as well as methods
for extracting components from the fitted object, for class lmList can also
be applied to an nlsList object. Table 8.2 lists the most commonly used
methods for nlsList objects. We illustrate the use of some of these methods
below.

The print method gives minimal information about the individual nls
fits.

> fm1Oran.lis

Call:

Model: circumference ~ SSlogis(age, Asym, xmid, scal) | Tree

Data: Orange

Coefficients:

Asym xmid scal

3 158.83 734.85 400.95
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TABLE 8.2. Main nlsList methods.

augPred predictions augmented with observed values
coef coefficients from individual nls fits
fitted fitted values from individual nls fits
fixef average of individual nls coefficients
intervals confidence intervals on coefficients
nlme nonlinear mixed-effects model from nlsList fit
logLik sum of individual nls log-likelihoods
pairs scatter-plot matrix of coefficients or random effects
plot diagnostic Trellis plots
predict predictions for individual nls fits
print brief information about the lm fits
qqnorm normal probability plots
ranef deviations of coefficients from average
resid residuals from individual nls fits
summary more detailed information about nls fits
update update the individual nls fits

1 154.15 627.12 362.50

5 207.27 861.35 379.99

2 218.99 700.32 332.47

4 225.30 710.69 303.13

Degrees of freedom: 35 total; 20 residual

Residual standard error: 7.98

More detailed information on the coefficients is obtained with summary

> summary( fm1Oran.lis )

. . .

Coefficients:

Asym

Value Std. Error t value

3 158.83 19.235 8.2574

1 154.15 13.588 11.3446

5 207.27 22.028 9.4092

2 218.99 13.357 16.3959

4 225.30 11.838 19.0318

xmid

Value Std. Error t value

3 734.85 130.807 5.6178

1 627.12 92.854 6.7538

5 861.35 108.017 7.9742

2 700.32 61.342 11.4167

4 710.69 51.166 13.8899
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FIGURE 8.4. Ninety-five percent confidence intervals on the logistic model pa-
rameters for each tree in the orange trees data.

scal

Value Std. Error t value

3 400.95 94.776 4.2306

1 362.50 81.185 4.4652

5 379.99 66.761 5.6917

2 332.47 49.381 6.7327

4 303.13 41.608 7.2853

. . .

Although the estimates for all the parameters vary with tree, there ap-
pears to be relatively more variability in the Asym estimates. We can inves-
tigate this better with the intervals method.

> plot( intervals( fm1Oran.lis ), layout = c(3,1) ) # Figure 8.4

As mentioned in §6.2, confidence intervals for the same parameter in differ-
ent groups within an nlsList fit do not necessarily have the same length,
even with balanced data. This is evident in Figure 8.4.

The only parameter for which all the confidence intervals do not overlap
in Figure 8.4 is Asym, suggesting that it is the only parameter for which
random effects are needed to account for variation among trees.

The same plot method used for lmList objects is used to obtain diagnostic
plots for an nlsList object. The boxplots of the residuals by tree, obtained
with

> plot( fm1Oran.lis, Tree ~ resid(.), abline = 0 ) # Figure 8.5

and displayed in Figure 8.5, no longer indicate the “tree effect” observed
in Figure 8.3. The basic drawback of the nlsList model is that uses 15
parameters to account for the individual tree effects. A more parsimonious
representation is provided by the nonlinear mixed-effects model discussed
in §8.2.

As a second example to illustrate the use of the nlsList function, we
consider the theophylline data, which we used in §3.4. Recall that these
data, displayed in Figure 8.6, are the serum concentrations of theophylline
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FIGURE 8.5. Boxplots of residuals by tree for fm1Oran.lis.

measured on twelve subjects at eleven times up to 25 hours after receiving
an oral dose of the drug.

> Theoph[1:4,]

Grouped Data: conc ~ Time | Subject

Subject Wt Dose Time conc

1 1 79.6 4.02 0.00 0.74

2 1 79.6 4.02 0.25 2.84

3 1 79.6 4.02 0.57 6.57

4 1 79.6 4.02 1.12 10.50

The column Wt in Theoph gives the Subject’s weight (in kilograms).
As when modeling the indomethicin data in §6.2 and the phenobarbital

data in §6.4, we use a compartment model for these data. A first-order
open-compartment model expresses the theophylline concentration ct at
time t after an initial dose D as

ct =
Dkeka

Cl (ka − ke)
[exp (−ket) − exp (−kat)] . (8.2)

The parameters in the model are the elimination rate constant ke, the
absorption rate constant ka, and the clearance Cl . For the model to be
meaningful, all three parameters must be positive. To ensure ourselves of
positive estimates while keeping the optimization problem unconstrained,
we reparameterize model (8.2) in terms of the logarithm of the clearance
and the rate constants.

ct =
D exp (lKe + lKa − lCl)
exp (lKa) − exp (lKe)

{exp [− exp (lKe) t] − exp [− exp (lKa) t]} ,

(8.3)

where lKe = log(ke), lKa = log(ka), and lCl = log(Cl).
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FIGURE 8.6. Serum concentrations of theophylline versus time since oral admin-
istration of the drug in twelve subjects.

The selfStart function SSfol, described in Appendix C.5, provides a self-
starting implementation of (8.3). Because two covariates, dose and time,
are present in (8.3), and hence also in the argument sequence of SSfol, we
must specify the full model formula when calling nlsList.

> fm1Theo.lis <- nlsList( conc ~ SSfol(Dose, Time, lKe, lKa, lCl),

+ data = Theoph )

> fm1Theo.lis

Call:

Model: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) | Subject

Data: Theoph

Coefficients:

lKe lKa lCl

6 -2.3074 0.15171 -2.9733

7 -2.2803 -0.38617 -2.9643

8 -2.3863 0.31862 -3.0691

11 -2.3215 1.34779 -2.8604

3 -2.5081 0.89755 -3.2300

2 -2.2862 0.66417 -3.1063

4 -2.4365 0.15834 -3.2861

9 -2.4461 2.18201 -3.4208

12 -2.2483 -0.18292 -3.1701

10 -2.6042 -0.36309 -3.4283

1 -2.9196 0.57509 -3.9158
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FIGURE 8.7. Ninety-five percent confidence intervals on the parameters in the
first-order open-compartment model (8.3) for each subject in the theophylline
data.

5 -2.4254 0.38616 -3.1326

Degrees of freedom: 132 total; 96 residual

Residual standard error: 0.70019

The individual estimates suggest that the absorption rate constant is
more variable among subjects than either the elimination rate constant or
the clearance. As usual, we recommend using the plot of the confidence
intervals on the individual parameters to analyze their between-group vari-
ation.

> plot( intervals( fm1Theo.lis ), layout = c(3,1) ) # Figure 8.7

The individual confidence intervals in Figure 8.7 indicate that there is sub-
stantial subject-to-subject variation in the absorption rate constant and
moderate variation in the clearance. The elimination rate constant does
not seem to vary significantly with subject.

The main purpose of the preliminary analysis provided by nlsList is
to suggest a structure for the random effects to be used in a nonlinear
mixed-effects model. We must decide which random effects to include in
the model (intervals and its associated plot method are often useful for
that) and what covariance structure these random effects should have. The
pairs method, which is the same for lmList and nlsList objects, provides
one view of the random effects covariance structure.

> pairs( fm1Theo.lis, id = 0.1 ) # Figure 8.8
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FIGURE 8.8. Pairs plot for the random effects estimates corresponding to
fm1Theo.lis.

The scatter plots in Figure 8.8 suggest that Subject 1 has an unusually
low elimination rate constant and clearance and that Subject 9 has an
unusually high absorption rate constant. Overall, there do not appear to
be significant correlations between the individual parameter estimates.

8.2 Fitting Nonlinear Mixed-Effects Models with
nlme

The general formulation of a nonlinear mixed-effects model, and the esti-
mation methods used to fit it, are described in §7.1. This section concen-
trates on the capabilities available in the nlme library for fitting nonlinear
mixed-effects models with independent, homoscedastic within-group errors.
Fitting nlme models to single-level grouped data is described in §8.2.1. The
use of covariates to explain between-group variability and to reduce the
number of random effects in an nlme model is presented in §8.2.2. In §8.2.3,
we describe how to fit multilevel nonlinear mixed-effects models with nlme.

8.2.1 Fitting Single-Level nlme Models

Several optional arguments can be used with the nlme function, but a typical
call looks like

nlme( model, data, fixed, random, groups, start )
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The model argument is required and consists of either a two-sided formula
specifying the nonlinear model to be fitted, or an nlsList object. Any S
nonlinear formula can be used, giving the function considerable flexibility.
For example, in the orange trees example one could either write down the
logistic model explicitly

circumference ~ Asym/(1 + exp(-(age - xmid)/scal))

or use the selfStart function SSlogis

circumference ~ SSlogis(age, Asym, xmid, scal)

As with nls fits, there is an advantage of encapsulating the model ex-
pression in an S function when fitting an nlme model, in that it allows
analytic derivatives of the model function to be passed to nlme and used
in the optimization algorithm. The S function deriv can be used to create
model functions that return the value of the model and its derivatives as
a gradient attribute. If the value returned by the model function does not
have a gradient attribute, numerical derivatives are used in the optimiza-
tion.

The arguments fixed and random are formulas, or lists of formulas, defin-
ing the structures of the fixed and random effects in the model. In these
formulas a 1 on the right-hand side of a formula indicates that a single
parameter is associated with the effect, but any linear formula in S can
be used. This gives considerable flexibility to the model, as time-dependent
parameters can be incorporated easily (e.g., when a formula in the fixed list
involves a covariate that changes with time). Each parameter in the model
will usually have an associated fixed effect, but it may, or may not, have an
associated random effect. Because the nlme model assumes that all random
effects have expected value zero, the inclusion of a random effect without a
corresponding fixed effect would be unusual. Any covariates defined in the
fixed and random formulas can, alternatively, be directly incorporated in
the model formula. However, declaring the covariates in fixed and random

allows for more efficient calculation of derivatives and is useful for update

methods. Fixed is required when model is declared as a formula. By default,
when random is omitted, all fixed effects in the model are assumed to have
an associated random effect.

In the theophylline example, to have random effects only for the log of
the absorption rate constant, lKa, and the log-clearance, lCl, we use

fixed = list(lKe ~ 1, lKa ~ 1, lCl ~ 1),

random = list(lKa ~ 1, lCl ~ 1)

Model parameters with common right-hand side expressions in the fixed

or random formulas can be collapsed into a single formula, in which the
left-hand side lists the parameters separated by the + operator. For exam-
ple, fixed and random in the theophylline example can be expressed more
compactly as
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fixed = lKe + lKa + lCl ~ 1

random = lKa + lCl ~ 1

If we wanted to allow the log-clearance fixed effect to depend linearly on
the subject’s weight while retaining a single component for the other fixed
effects, we would use

fixed = list(lKe + lKa ~ 1, lCl ~ Wt)

Note that there would be two fixed effects associated with lCl in this case:
an intercept and a slope with respect to Wt.

Data names a data frame in which any variables used in model, fixed,
random, and groups are to be evaluated. By default, data is set to the envi-
ronment from which nlme was called.

The groups argument is a one-sided formula, or an S expression, which,
when evaluated in data, returns a factor with the group label of each ob-
servation. This argument does not need to be specified when object is an
nlsList object, or when data is a groupedData object, or when random is a
named list (in which case the name is used as the grouping factor).

The start argument provides a list, or a vector, of starting values for the
iterative algorithm. When given as a vector, it is used as starting estimates
for the fixed effects only. It is only required when model is given as a formula
and the model function is not a selfStart object. In this case, starting values
for the fixed effects must be specified. Starting estimates for the remaining
parameters are generated automatically. By default, the random effects are
initialized to zero.

Objects returned by nlme are of class nlme, which inherits from class lme.
As a result, all the methods available for lme objects can also be applied to
an nlme object. In fact, most methods are common to both classes. Table 8.3
lists the most important methods for class nlme. We illustrate the use of
these methods through the examples in the next sections.

Growth of Orange Trees

The nonlinear mixed-effects model corresponding to the logistic model 8.1,
with random effects for all parameters, is

yij =
φ1i

1 + exp [− (tij − φ2i) /φ3i]
+ εij ,

φi =

⎡⎣φ1i

φ2i

φ3i

⎤⎦ =

⎡⎣β1

β2

β3

⎤⎦+

⎡⎣b1i

b2i

b3i

⎤⎦ = β + bi,

bi ∼ N (0,Ψ) , εij ∼ N (
0, σ2

)
.

(8.4)

The model parameters φi have the same interpretation as in (8.1), but
are now allowed to vary with tree. The fixed effects, β, represent the av-
erage value of the individual parameters, φi, in the population of orange
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TABLE 8.3. Main nlme methods.

ACF empirical autocorrelation function of within-group residuals
anova likelihood ratio or Wald-type tests
augPred predictions augmented with observed values
coef estimated coefficients for different levels of grouping
fitted fitted values for different levels of grouping
fixef fixed-effects estimates
intervals confidence intervals on model parameters
logLik log-likelihood at convergence
pairs scatter-plot matrix of coefficients or random effects
plot diagnostic Trellis plots
predict predictions for different levels of grouping
print brief information about the fit
qqnorm normal probability plots
ranef random-effects estimates
resid residuals for different levels of grouping
summary more detailed information about the fit
update update the nlme fit
Variogram semivariogram of within-group residuals

trees and the random effects, bi, represent the deviations of the φi from
their population average. The random effects are assumed to be indepen-
dent for different trees and the within-group errors εij are assumed to be
independent for different i, j and to be independent of the random effects.

The nonlinear mixed-effects model (8.4) uses ten parameters to represent
the fixed effects (three parameters), the random-effects variance–covariance
structure (six parameters), and the within-group variance (one parameter).
These numbers remain unchanged if we increase the number of trees being
analyzed. In comparison, the number of parameters in the corresponding
nlsList model, described in §8.1.3, is equal to three times the number of
trees (15, in the orange trees example).

A nonlinear mixed-effects fit of model (8.4) can be obtained with

> ## no need to specify groups, as Orange is a groupedData object

> ## random is omitted - by default it is equal to fixed

> fm1Oran.nlme <-

+ nlme( circumference ~ SSlogis(age, Asym, xmid, scal),

+ data = Orange,

+ fixed = Asym + xmid + scal ~ 1,

+ start = fixef(fm1Oran.lis) )

but a much simpler, equivalent form is

> fm1Oran.nlme <- nlme( fm1Oran.lis )
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The fm1Oran.lis object stores information about the model function, the
parameters in the model, the groups formula, and the data used to fit the
model. These are retrieved by nlme, allowing a more compact call. Another
important advantage of using an nlsList object as the first argument to
nlme is that it automatically provides initial estimates for the fixed effects,
the random effects, and the random-effects covariance matrix.

We can now use the nlme methods to display the results and to assess
the quality of the fit. As with lme objects, the print method gives some
brief information about the fitted object.

> fm1Oran.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: circumference ~ SSlogis(age, Asym, xmid, scal)

Data: Orange

Log-likelihood: -129.99

Fixed: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Asym xmid scal

192.12 727.74 356.73

Random effects:

Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Level: Tree

Structure: General positive-definite

StdDev Corr

Asym 27.0302 Asym xmid

xmid 24.3761 -0.331

scal 36.7363 -0.992 0.447

Residual 7.3208

Number of Observations: 35

Number of Groups: 5

Note that the default estimation method in nlme is maximum likelihood
(ML), while the default in lme is restricted maximum likelihood (REML).
The reason for this, as described in §7.2.2, is because nested nlme models
which differ in either their fixed effects, or their random effects, cannot
be compared using their REML likelihoods, thus invalidating most REML
likelihood ratio tests of practical interest. In the linear case, REML likeli-
hoods of nested mixed-effects models with common fixed-effects structure
are comparable.

More detailed information about the fit is provided by the summary method.

> summary(fm1Oran.nlme)

Nonlinear mixed-effects model fit by maximum likelihood

Model: circumference ~ SSlogis(age, Asym, xmid, scal)

Data: Orange

AIC BIC logLik

279.98 295.53 -129.99
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Random effects:

Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Level: Tree

Structure: General positive-definite

StdDev Corr

Asym 27.0302 Asym xmid

xmid 24.3761 -0.331

scal 36.7363 -0.992 0.447

Residual 7.3208

Fixed effects: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Value Std.Error DF t-value p-value

Asym 192.12 14.045 28 13.679 <.0001

xmid 727.74 34.618 28 21.022 <.0001

scal 356.73 30.537 28 11.682 <.0001

Correlation:

Asym xmid

xmid 0.275

scal -0.194 0.666

. . .

It is interesting, at this point, to compare the nlme fit with the simple
nls fit that ignores the grouped structure of the data, obtained in §8.1.1.

> summary(fm1Oran.nls)

. . .

Parameters:

Value Std. Error t value

Asym 192.68 20.239 9.5203

xmid 728.71 107.272 6.7931

scal 353.49 81.460 4.3395

Residual standard error: 23.3721 on 32 degrees of freedom

. . .

The fixed-effects estimates are similar, but the standard errors are much
smaller in the nlme fit. The estimated within-group standard error is also
considerably smaller in the nlme fit. This is because the between-group
variability is not incorporated in the nls model, being absorbed in the
standard error. This pattern is generally observed when comparing mixed-
effects versus fixed-effects fits.

In the fm1Oran.nlme fit the estimated correlation of −0.992 between Asym

and xmid suggests that the estimated variance–covariance matrix is ill-
conditioned and that the random-effects structure may be over-parameter-
ized. The scatter-plot matrix of the estimated random effects, produced
by the pairs method, provides a useful diagnostic plot for assessing over-
parameterization problems.

> pairs( fm1Oran.nlme ) # Figure 8.9
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FIGURE 8.9. Pairs plot for the random-effects estimates corresponding to
fm1Oran.nlme.

The nearly perfect alignment between the Asym random effects and the scal

random effects further indicates that the model is over-parameterized.
The individual confidence intervals for the parameters in the nlsList

model described by fm1Oran.lis, displayed in Figure 8.4 and discussed
in §8.1.3, suggested that Asym was the only parameter requiring a ran-
dom effect to account for its variation among trees. We can fit the corre-
sponding model using the update method and compare it to the full model
fm1Oran.nlme using the anova method.

> fm2Oran.nlme <- update( fm1Oran.nlme, random = Asym ~ 1 )

> anova( fm1Oran.nlme, fm2Oran.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Oran.nlme 1 10 279.98 295.53 -129.99

fm2Oran.nlme 2 5 273.17 280.95 -131.58 1 vs 2 3.1896 0.6708

The large p-value for the likelihood ratio test confirms that the xmid and
scal random effects are not needed in the nlme model and that the simpler
model fm2Oran.nlme is to be preferred.

As in the linear case, we must check if the assumptions underlying the
nonlinear mixed-effects model appear valid for the model fitted to the data.
The two basic distributional assumptions are the same as for the lme model:

Assumption 1 : the within-group errors are independent and identi-
cally normally distributed, with mean zero and variance σ2, and they
are independent of the random effects.
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FIGURE 8.10. Scatter plot of standardized residuals versus fitted values for
fm1Oran.nlme.

Assumption 2 : the random effects are normally distributed, with
mean zero and covariance matrix Ψ (not depending on the group)
and are independent for different groups;

The plot and qqnorm methods provide the most useful tools for assessing
these assumptions. For example, a plot of the standardized residuals versus
the fitted values in Figure 8.10

> plot( fm1Oran.nlme ) # Figure 8.10

shows that the residuals are distributed symmetrically around zero, with
an approximately constant variance. It does not indicate any violations of
the assumptions for the within-group error:

The adequacy of the fitted model is better visualized by displaying the
fitted and observed values in the same plot. The augPred method, which
produces the augmented predictions, and its associated plot method are
used for that. For comparison, both the population predictions (obtained
by setting the random effects to zero) and the within-group predictions
(using the estimated random effects) are displayed in Figure 8.11, produced
with

> ## level = 0:1 requests fixed (0) and within-group (1) predictions

> plot( augPred(fm2Oran.nlme, level = 0:1), # Figure 8.11

+ layout = c(5,1) )

The tree-specific predictions follow the observed values closely, indicating
that the logistic mixed-effects model (8.4) explains the trunk circumference
growth in the orange trees data well.

The normal plot of the standardized residuals, shown in Figure 8.12,
does not indicate any violations of the normality assumption for the within-
group errors.
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FIGURE 8.11. Population predictions (fixed), within-group predictions (Tree),
and observed trunk circumferences (circles) versus age of tree, for the
fm2Oran.nlme model .

> qqnorm( fm2Oran.nlme, abline = c(0,1) ) #Figure 8.12

Because there are only five trees in the data, with just seven observa-
tions each, we cannot reliably test assumptions about the random-effects
distribution and the independence of the within-group errors.
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FIGURE 8.12. Normal probability plot of the standardized residuals from a non-
linear mixed-effects model fit fm1Oran.nlme to the orange data.
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Theophylline Kinetics

The nonlinear mixed-effects version of the first-order open-compartment
model (8.3), with all parameters as mixed-effects, is

cij =
Di exp (lKei + lKai − lCli)

exp (lKai) − exp (lKei)
×{exp [− exp (lKei) tij ] − exp [− exp (lKai) tij ]} + εij ,

φi =

⎡⎣lKei

lKai

lCl i

⎤⎦ =

⎡⎣β1

β2

β3

⎤⎦+

⎡⎣b1i

b2i

b3i

⎤⎦ = β + bi,

bi ∼ N (0,Ψ) , εij ∼ N (
0, σ2

)
,

(8.5)

where cij is the theophylline concentration for patient i measured at time
tij , with an initial dose Di. The pharmacokinetic parameters φi are in-
terpreted as in (8.3), but are now allowed to vary with subject. The fixed
effects, β, represent the population average of the φi and the random ef-
fects, bi, their deviations from the population average.

Fitting the nonlinear mixed-effects model (8.5) to the theophylline data
is done with the simple call

> fm1Theo.nlme <- nlme( fm1Theo.lis )

> fm1Theo.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSfol(Dose, Time, lKe, lKa, lCl)

Data: Theoph

Log-likelihood: -173.32

Fixed: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)

lKe lKa lCl

-2.4327 0.45146 -3.2145

Random effects:

Formula: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)

Level: Subject

Structure: General positive-definite

StdDev Corr

lKe 0.13104 lKe lKa

lKa 0.63783 0.012

lCl 0.25118 0.995 -0.089

Residual 0.68183

Number of Observations: 132

Number of Groups: 12

The estimated correlation between the lKe and lCl random effects is
near one, indicating that the estimated random-effects variance–covariance
matrix is ill-conditioned. We can investigate the precision of the correlation
estimates with the intervals method.
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> intervals( fm1Theo.nlme, which = "var-cov" )

Approximate 95% confidence intervals

Random Effects:

Level: Subject

lower est. upper

sd(lKe) 0.058102 0.131142 0.29600

sd(lKa) 0.397740 0.637838 1.02287

sd(lCl) 0.156811 0.251216 0.40246

cor(lKe,lKa) -0.399511 0.011723 0.41903

cor(lKe,lCl) -0.995248 0.994868 1.00000

cor(lKa,lCl) -0.520140 -0.089480 0.37746

Within-group standard error:

lower est. upper

0.59598 0.68183 0.78005

All three confidence intervals for the correlations include zero. The interval
on the correlation between lKe and lCl shows this quantity is not estimated
with any precision whatsoever. It must lie in the interval [−1, 1] and the
confidence interval is essentially that complete range.

As a first attempt at simplifying model (8.5), we investigate the as-
sumption that the random effects are independent, that is, the matrix Ψ
is diagonal. Structured random-effects variance—covariance matrices are
specified in nlme in the same way as in lme: by using a pdMat constructor to
specify the desired class of positive-definite matrix. The pdMat classes and
methods are described in §4.2.2 and the standard pdMat classes available in
the nlme library are listed in Table 4.3. By default, when no pdMat class is
specified, a general positive-definite matrix (pdSymm class) is used to rep-
resent the random-effects variance–covariance structure. Alternative pdMat
classes are specified by calling the corresponding constructor with the ran-
dom effects formula, or list of formulas, as its first argument. For example,
we specify a model with independent random effects for the theophylline
data with either

> fm2Theo.nlme <- update( fm1Theo.nlme,

+ random = pdDiag(list(lKe ~ 1, lKa ~ 1, lCl ~ 1)) )

or

> fm2Theo.nlme <- update( fm1Theo.nlme,

+ random = pdDiag(lKe + lKa + lCl ~ 1) )

> fm2Theo.nlme

. . .

Log-likelihood: -177.02

Fixed: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)

lKe lKa lCl

-2.4547 0.46554 -3.2272
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Random effects:

Formula: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)

Level: Subject

Structure: Diagonal

lKe lKa lCl Residual

StdDev: 1.9858e-05 0.64382 0.16692 0.70923

. . .

The very small estimated standard deviation for lKe suggests that the cor-
responding random effect could be omitted from the model.

> fm3Theo.nlme <-

+ update( fm2Theo.nlme, random = pdDiag(lKa + lCl ~ 1) )

We use the anova method to test the equivalence of the different nlme

models used so far for the theophylline data. By including fm3Theo.nlme as
the second model, we obtain the p-values comparing this model with each
of the other two.

> anova( fm1Theo.nlme, fm3Theo.nlme, fm2Theo.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1Theo.nlme 1 10 366.64 395.47 -173.32

fm3Theo.nlme 2 6 366.04 383.34 -177.02 1 vs 2 7.4046 0.1160

fm2Theo.nlme 3 7 368.05 388.23 -177.02 2 vs 3 0.0024 0.9611

The simpler fm3Theo.nlme model, with two independent random effects for
lKa and lCl, has the smallest AIC and BIC. Also, the large p-values for the
likelihood ratio tests comparing it to the other two models indicate that it
should be preferred.

The plot of the standardized residuals versus the fitted values in Fig-
ure 8.13 gives some indication that the within-group variability increases
with the drug concentration.

> plot( fm3Theo.nlme ) # Figure 8.13

The use of variance functions in nlme to model within-group heteroscedas-
ticity is described in §8.3.1. We postpone further investigation of the within-
group error assumptions in the theophylline until that section.

The qqnorm method is used to investigate the normality of the random
effects.

> qqnorm( fm3Theo.nlme, ~ ranef(.) ) # Figure 8.14

Figure 8.14 does not indicate any violations of the assumption of normality
for the random effects.

8.2.2 Using Covariates with nlme

The random effects in a mixed-effects model represent deviations of the
individual parameters from the fixed effects. In some applications, these
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FIGURE 8.13. Scatter plot of standardized residuals versus fitted values for
fm3Theo.nlme.
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deviations arise from unexplained intergroup variation but, frequently, they
can be at least partially explained by differences in covariate values among
groups. For example, differences in the absorption rate constant among
the subjects in the theophylline example of §8.2.1 may be attributed to
differences in age, weight, blood pressure, etc.

Including covariates in the model to explain intergroup variation gen-
erally reduces the number of random effects in the model and leads to a
better understanding of the mechanism producing the response. We have
seen this in the soybean and the phenobarbital examples in Chapter 6.

Some of the questions that need to be addressed in the covariate modeling
process are the following:

1. Among the candidate covariates, which are potentially useful in ex-
plaining the random-effects variation?

2. Which random effects have their variation best explained by covari-
ates?

3. How should the potentially useful covariates be tested for inclusion
in the model?

4. Should random effects be included in, or eliminated from, the modi-
fied model?

This section describes a model-building strategy for addressing these ques-
tions in the context of nonlinear mixed-effects models and using the capa-
bilities of the nlme library.

Our general approach to address questions 1 and 2 above is to start with
an nlme model with no covariates to explain random-effects variation, and
use plots of the estimated random effects versus the candidate covariates
to identify interesting patterns. Because the random effects accommodate
individual departures from the population mean, plotting the estimated
random effects against the candidate covariates provides useful information
for the model-building process. A systematic pattern in a given random
effect with respect to a covariate would indicate that the covariate should
be included in the model.

If no interesting patterns are observed, we keep the current model. Oth-
erwise, we choose the covariate-coefficient pair with the most promising
pattern and test for the inclusion of the covariate in the model. After a
covariate has been included in the model, we repeat the procedure for the
estimated random effects in the updated model and the remaining candi-
date covariates, searching for further useful covariates.

The number of additional parameters to be estimated tends to grow
considerably with the inclusion of covariates and their associated random
effects in the model. If the number of covariate-coefficient combinations is
large, we suggest using a forward stepwise approach in which covariate-
coefficient pairs are included in the model one at a time and the potential
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importance of the remaining covariates is graphically assessed at each step.
The significance of the fixed-effects associated with a covariate included in
the model is assessed using the Wald-type tests that are described in §7.2.2
and are included in the output of the summary and anova methods for nlme
objects.

The inclusion of new random effects in the model when a covariate is
added is rare, but should be investigated. The more common situation is
that random effects can be eliminated from the model after covariates are
included to account for intergroup variation. In both cases we proceed by
comparing nested models using either likelihood ratio tests, or information
criterion statistics (AIC and BIC).

We illustrate the use of the proposed model-building strategy with two
examples, one from an experiment to evaluate the cold tolerance of grass
species and the other from a clinical study of the antiarrhytimic drug quini-
dine.

Carbon Dioxide Uptake

Potvin, Lechowicz and Tardif (1990) report data from a study of the cold
tolerance of a C4 grass species, Echinochloa crus-galli. A total of 12 four-
week-old plants, 6 from Québec and 6 from Mississippi, were divided into
two groups: control plants that were kept at 26◦C and chilled plants that
were subject to 14 h of chilling at 7◦C. After 10 h of recovery at 20◦C,
carbon dioxide (CO2) uptake rates (in µmol/m2s) were measured for each
plant at seven concentrations of ambient CO2 (µL/L). The objective of the
experiment was to evaluate the effect of plant type and chilling treatment on
the CO2 uptake. The CO2 data, displayed in Figure 8.15 (and in Figure 3.6,
p. 113), are available in the nlme library as the groupedData object CO2.
More details about these data are given in Appendix A.5.
> CO2

Grouped Data: uptake ~ conc | Plant

Plant Type Treatment conc uptake

1 Qn1 Quebec nonchilled 95 16.0

2 Qn1 Quebec nonchilled 175 30.4

. . .

83 Mc3 Mississippi chilled 675 18.9

84 Mc3 Mississippi chilled 1000 19.9

> plot(CO2, outer = ~Treatment*Type, layout = c(4,1)) # Figure 8.15

It is clear from Figure 8.15 that the CO2 uptake rates of Québec plants
are greater than those of Mississippi plants and that chilling the plants
reduces their CO2 uptake rates.

An asymptotic regression model with an offset is used in Potvin et al.
(1990) to represent the expected CO2 uptake rate U(c) as a function of the
ambient CO2 concentration c:

U(c) = φ1 {1 − exp [− exp (φ2) (c − φ3)]} , (8.6)
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FIGURE 8.15. CO2 uptake versus ambient CO2 by treatment and type for
Echinochloa crus-galli plants, 6 from Quebec and 6 from Mississippi. Half the
plants of each type were chilled overnight before the measurements were taken.

where φ1 is the asymptotic CO2 uptake rate, φ2 is the logarithm of the rate
constant, and φ3 is the maximum ambient concentration of CO2 at which
there is no uptake. The logarithm of the rate constant is used to enforce the
positivity of the estimated rate constant, while keeping the optimization
problem unconstrained.

The selfStart function SSasympOff gives a self-starting implementation of
model (8.6), which is used to automatically generate starting estimates for
the parameters in an nlsList fit.

> fm1CO2.lis <- nlsList( SSasympOff, CO2)

> fm1CO2.lis

Call:

Model: uptake ~ SSasympOff(conc, Asym, lrc, c0) | Plant

Data: CO2

Coefficients:

Asym lrc c0

Qn1 38.140 -4.3807 51.221

Qn2 42.872 -4.6658 55.856

. . .

Mc3 18.535 -3.4654 67.843

Mc1 21.787 -5.1422 -20.395

Degrees of freedom: 84 total; 48 residual

Residual standard error: 1.7982

with φ1 = Asym, φ2 = lrc, and φ3 = c0.
The plot of the individual confidence intervals from fm1CO2.lis (not

shown) indicates that there is substantial between-plant variation in the
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asymptote Asym and only moderate variation in the log-rate lrc and the
offset c0. We initially consider a nonlinear mixed-effects version of the CO2

uptake model (8.6) with all parameters as mixed effects and no treatment
covariates. The corresponding model for the CO2 uptake uij of plant i at
ambient CO2 concentration cij is

uij = φ1i {1 − exp [− exp (φ2i) (cij − φ3i)]} + εij ,

φi =

⎡⎣φ1i

φ2i

φ3i

⎤⎦ =

⎡⎣β1

β2

β3

⎤⎦+

⎡⎣b1i

b2i

b3i

⎤⎦ = β + bi,

bi ∼ N (0,Ψ) , εij ∼ N (
0, σ2

)
,

(8.7)

where φ1i, φ2i, and φ3i have the same interpretation as in model (8.6),
but are now allowed to vary with plant. The fixed effects, β, represent
the population average of the individual parameters, φi, and the random
effects, bi, represent the deviations of the φi from their population average.
The random effects are assumed to be independent for different plots and
the within-group errors εij are assumed to be independent for different i, j
and to be independent of the random effects.

The nlsList object fm1CO2.lis is used to produce starting estimates for
the nlme fit of model (8.7).

> fm1CO2.nlme <- nlme( fm1CO2.lis )

> fm1CO2.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: uptake ~ SSasympOff(conc, Asym, lrc, c0)

Data: CO2

Log-likelihood: -201.31

Fixed: list(Asym ~ 1, lrc ~ 1, c0 ~ 1)

Asym lrc c0

32.474 -4.6362 43.543

Random effects:

Formula: list(Asym ~ 1, lrc ~ 1, c0 ~ 1)

Level: Plant

Structure: General positive-definite

StdDev Corr

Asym 9.50999 Asym lrc

lrc 0.12828 -0.160

c0 10.40519 0.999 -0.139

Residual 1.76641

Number of Observations: 84

Number of Groups: 12

The very high correlation between Asym and c0 suggests that the random-
effects model is over-parameterized. The scatter plot matrix of the esti-
mated random effects (not shown) confirms that Asym and c0 are in almost
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FIGURE 8.16. Scatter plot of standardized residuals versus fitted values for
fm2CO2.nlme.

perfect linear alignment. A simpler model with just Asym and lrc as random
effects gives an equivalent fit of the data.

> fm2CO2.nlme <- update( fm1CO2.nlme, random = Asym + lrc ~ 1 )

> fm2CO2.nlme

. . .

Random effects:

Formula: list(Asym ~ 1, lrc ~ 1)

Level: Plant

Structure: General positive-definite

StdDev Corr

Asym 9.65939 Asym

lrc 0.19951 -0.777

Residual 1.80792

. . .

> anova( fm1CO2.nlme, fm2CO2.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm1CO2.nlme 1 10 422.62 446.93 -201.31

fm2CO2.nlme 2 7 419.52 436.53 -202.76 1 vs 2 2.8961 0.4079

The plot of the standardized residuals versus the fitted values in Fig-
ure 8.16 does not indicate any violations from the assumptions on the
within-group error. The residuals are distributed symmetrically around
zero, with uniform variance. Two large standardized residuals are observed
for plant Qc3 and one for plant Qc2.

> plot( fm2CO2.nlme,id = 0.05,cex = 0.8,adj = -0.5 ) # Figure 8.16

The normal plot of the within-group residuals, not shown, does not indicate
violations in the normality of the within-group errors.
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The primary question of interest for the CO2 data is the effect of plant
type and chilling treatment on the individual model parameters φi. The
random effects accommodate individual deviations from the fixed effects.
Plotting the estimated random effects against the candidate covariates pro-
vides useful information for choosing covariates to include in the model.
First, we need to extract the estimated random effects from the fitted
model and combine them with the covariates. The ranef method accom-
plishes that.

> fm2CO2.nlmeRE <- ranef( fm2CO2.nlme, augFrame = T )

> fm2CO2.nlmeRE

Asym lrc Type Treatment conc uptake

Qn1 6.17160 0.0483563 Quebec nonchilled 435 33.229

Qn2 10.53264 -0.1728531 Quebec nonchilled 435 35.157

Qn3 12.21810 -0.0579930 Quebec nonchilled 435 37.614

Qc1 3.35213 -0.0755880 Quebec chilled 435 29.971

Qc3 7.47431 -0.1924203 Quebec chilled 435 32.586

Qc2 7.92855 -0.1803391 Quebec chilled 435 32.700

Mn3 -4.07333 0.0334485 Mississippi nonchilled 435 24.114

Mn2 -0.14198 0.0056463 Mississippi nonchilled 435 27.343

Mn1 0.24056 -0.1938500 Mississippi nonchilled 435 26.400

Mc2 -18.79914 0.3193732 Mississippi chilled 435 12.143

Mc3 -13.11688 0.2994393 Mississippi chilled 435 17.300

Mc1 -11.78655 0.1667798 Mississippi chilled 435 18.000

> class( fm2CO2.nlmeRE )

[1] "ranef.lme" "data.frame"

The augFrame argument, when TRUE, indicates that summary values for all
the variables in the data frame should be returned along with the random
effects. The summary values are calculated as in the gsummary function
(§3.4). When a covariate is constant within a group, such as Treatment and
Type in the CO2 data, its unique values per group are returned. Otherwise,
if the covariate varies within the group and is numeric, such as conc and
uptake in CO2, the group means are returned; if it is a categorical variable
(factor or ordered), the most frequent values (modes) within each group are
returned.

The plot method for the ranef.lme class is the most useful tool for identi-
fying relationships between individual parameters and covariates. The form

argument is used to specify the desired covariates and plot type. A one-
sided formula on the right-hand side, with covariates separated by the *

operator, results in a dotplot of the estimated random effects versus all
combinations of the unique values of the variables named in the formula.
This plot is particularly useful for a moderate number of categorical covari-
ates (factor or ordered variables) with a relatively small number of levels,
as in the CO2 example.

> plot( fm2CO2.nlmeRE, form = ~ Type * Treatment ) # Figure 8.17
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FIGURE 8.17. Dotplots of estimated random effects corresponding to
fm2CO2.nlme versus all combinations of plant type and chilling treatment.

Figure 8.17 shows a strong relationship between the asymptotic update
rate and the covariates: Asym decreases when the plants are chilled and
is higher among Québec plants than Mississippi plants. The increase in
Asym from chilled to nonchilled plants is larger among Mississippi plants
than Québec plants, suggesting an interaction between Type and Treatment.
There is also some evidence of a Type:Treatment interaction on the log-
rate lrc, but it is less striking than in the case of Asym. We include both
covariates in the model to explain the Asym plant-to-plant variation. The
only change required in model (8.7) is in the formulation of φ1i.

φ1i = β1 + γ1x1i + γ2x2i + γ3x1ix2i + b1i,

x1i =
{ −1, Type of Plant i = Québec,

1, Type of Plant i = Mississippi,

x2i =
{ −1, Treatment of Plant i = nonchilled,

1, Treatment of Plant i = chilled,

(8.8)

where β1 represents the average asymptotic uptake rate, γ1 and γ2 rep-
resent, respectively, the plant type and chilling treatment main effects,
and γ3 represents the plant type–chilling treatment interaction. The para-
meterization used for x1i and x2i in (8.8) is consistent with the default
parameterization for factors in S.

> contrasts(CO2$Type)

[,1]

Quebec -1

Mississippi 1

> contrasts(CO2$Treatment)

[,1]

nonchilled -1

chilled 1

The update method is used to fit the model with the covariate terms,
which are specified through the fixed argument.
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> fm3CO2.nlme <- update( fm2CO2.nlme,

+ fixed = list(Asym ~ Type * Treatment, lrc + c0 ~ 1),

+ start = c(32.412, 0, 0, 0, -4.5603, 49.344) )

Because the fixed-effects model has been reformulated, new starting values
must be provided. We use the previous estimates for β1, β2 and β3 and set
the initial values for γ1, γ2 and γ3 to zero. The fixed effects are represented
internally in nlme in the same order they appear in fixed.

The summary method gives information about the significance of the in-
dividual fixed effects.

> summary( fm3CO2.nlme )

. . .

AIC BIC logLik

393.68 417.98 -186.84

Random effects:

Formula: list(Asym ~ 1, lrc ~ 1)

Level: Plant

Structure: General positive-definite

StdDev Corr

Asym.(Intercept) 2.92980 Asym.(

lrc 0.16373 -0.906

Residual 1.84957

Fixed effects: list(Asym ~ Type * Treatment, lrc + c0 ~ 1)

Value Std.Error DF t-value p-value

Asym.(Intercept) 32.447 0.9359 67 34.670 <.0001

Asym.Type -7.108 0.5981 67 -11.885 <.0001

Asym.Treatment -3.815 0.5884 67 -6.483 <.0001

Asym.Type:Treatment -1.197 0.5884 67 -2.033 0.046

lrc -4.589 0.0848 67 -54.108 <.0001

c0 49.479 4.4569 67 11.102 <.0001

. . .

The names of the fixed-effects terms include the parameter name. All fixed
effects introduced in the model to explain the variability in Asym are signif-
icantly different from zero at the 5% level, confirming the previous conclu-
sions from Figure 8.17. The joint significance of the fixed effects introduced
in the model can be tested with the anova method.

> anova( fm3CO2.nlme, Terms = 2:4 )

F-test for: Asym.Type, Asym.Treatment, Asym.Type:Treatment

numDF denDF F-value p-value

1 3 67 54.835 <.0001

As expected, the approximate F-test indicates that the added terms are
highly significant.

The inclusion of the experimental factors in the model resulted in a
reduction in the estimated standard deviation for the Asym random effects
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FIGURE 8.18. Dotplots of estimated random effects corresponding to
fm3CO2.nlme versus all combinations of plant type and chilling treatment.

from 9.66 to 2.93, indicating that a substantial part of the plant-to-plant
variation in the asymptotic uptake rate is explained by differences in plant
type and chilling treatment. The standard deviations for the lrc random
effects and the within-group error remained about the same.

We now investigate if any covariates should be included to account for
the variability in the lrc random effects.

> fm3CO2.nlmeRE <- ranef( fm3CO2.nlme, aug = T )

> plot( fm3CO2.nlmeRE, form = ~ Type * Treatment ) # Figure 8.18

No systematic pattern can be observed for the estimated Asym.(Intercept)

random effects in Figure 8.18, but it appears that the chilling treatment
has opposite effects on Québec and Mississippi plants, suggesting an in-
teraction. As before, we fit the augmented model with update, setting the
initial values for the new fixed effects in the model to zero, and test the
significance of the new terms using summary.

> fm3CO2.fix <- fixef( fm3CO2.nlme ) # for starting values

> fm4CO2.nlme <- update( fm3CO2.nlme,

+ fixed = list(Asym + lrc ~ Type * Treatment, c0 ~ 1),

+ start = c(fm3CO2.fix[1:5], 0, 0, 0, fm3CO2.fix[6]) )

> summary( fm4CO2.nlme )

. . .

Random effects:

Formula: list(Asym ~ 1, lrc ~ 1)

Level: Plant

Structure: General positive-definite

StdDev Corr

Asym.(Intercept) 2.349663 Asym.(

lrc.(Intercept) 0.079608 -0.92

Residual 1.791950

Fixed effects: list(Asym + lrc ~ Type * Treatment, c0 ~ 1)
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Value Std.Error DF t-value p-value

Asym.(Intercept) 32.342 0.7849 64 41.208 <.0001

Asym.Type -7.990 0.7785 64 -10.264 <.0001

Asym.Treatment -4.210 0.7781 64 -5.410 <.0001

Asym.Type:Treatment -2.725 0.7781 64 -3.502 0.0008

lrc.(Intercept) -4.509 0.0809 64 -55.743 <.0001

lrc.Type 0.133 0.0552 64 2.417 0.0185

lrc.Treatment 0.100 0.0551 64 1.812 0.0747

lrc.Type:Treatment 0.185 0.0554 64 3.345 0.0014

c0 50.512 4.3646 64 11.573 <.0001

. . .

The lrc.Type:Treatment coefficient is highly significant and the lrc.Type

coefficient is moderately significant. Even though lrc.Treatment is not sig-
nificant (at a 5% level) we keep it in the model because the Treatment

effect on lrc is involved in a highly significant interaction. The estimated
standard deviation for the lrc.(Intercept) random effect is about 50% of
the corresponding estimate in the fm3CO2.nlme fit. The remaining standard
deviations are about the same as in the previous fit.

After covariates have been introduced in the model to account for inter-
group variation, a natural question is which random effects, if any, are still
needed. The ratio between a random-effects standard deviation and the
absolute value of the corresponding fixed effect gives an idea of the relative
intergroup variability for the coefficient, which is often useful in deciding
which random effects should be tested for deletion from the model. For the
fm4CO2.nlme fit these ratios are 7.3% for Asym.(Intercept) and 1.8% for
lrc.(Intercept), suggesting that the latter should be tested for exclusion
first.

> fm5CO2.nlme <- update( fm4CO2.nlme, random = Asym ~ 1)

> anova( fm4CO2.nlme, fm5CO2.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm4CO2.nlme 1 13 388.42 420.02 -181.21

fm5CO2.nlme 2 11 387.06 413.79 -182.53 1 vs 2 2.6369 0.2675

The large p-value for the likelihood ratio test and the smaller AIC and BIC
values for fm5CO2.nlme indicate that no random effects are needed for lrc.

To test if a random effect is needed for the asymptotic uptake rate,
we need to fit a nonlinear fixed-effects model to the CO2 data. The nls

function can be used for that, though it is not designed to efficiently handle
parameters that are expressed as linear combinations of covariates. (The
gnls function, described in §8.3.3, is better suited for this type of model.)
To use nls, we must first create variables representing the contrasts of
interest

> CO2$type <- 2 * (as.integer(CO2$Type) - 1.5)

> CO2$treatment <- 2 * (as.integer(CO2$Treatment) - 1.5)

and then define all coefficients explicitly in the model formula.
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FIGURE 8.19. Plant-specific (Plant) and population average (fixed) predicted
CO2 uptake rates obtained from fm5CO2.nlme.

> fm1CO2.nls <- nls(uptake ~ SSasympOff(conc, Asym.Intercept +

+ Asym.Type * type + Asym.Treatment * treatment +

+ Asym.TypeTreatment * type * treatment, lrc.Intercept +

+ lrc.Type * type + lrc.Treatment * treatment +

+ lrc.TypeTreatment * type * treatment, c0), data = CO2,

+ start = c(Asym.Intercept = 32.371, Asym.Type = -8.0086,

+ Asym.Treatment = -4.2001, Asym.TypeTreatment = -2.7253,

+ lrc.Intercept = -4.5267, lrc.Type = 0.13112,

+ lrc.Treatment = 0.093928, lrc.TypeTreatment = 0.17941,

+ c0 = 50.126) )

The anova method can then be used to compare the models. (Note that the
nlme object must appear first in the calling sequence to anova, so that the
correct method is invoked.)

> anova( fm5CO2.nlme, fm1CO2.nls )

Model df AIC BIC logLik Test L.Ratio p-value

fm5CO2.nlme 1 11 387.06 413.79 -182.53

fm1CO2.nls 2 10 418.34 442.65 -199.17 1 vs 2 33.289 <.0001

The very significant p-value for the likelihood ratio test indicates that the
Asym.(Intercept) random effect is still needed in the model.

A final assessment of the quality of the fitted model is provided by the
plot of the augmented predictions included in Figure 8.19.

> plot( augPred(fm5CO2.nlme, level = 0:1), # Figure 8.19

+ layout = c(6,2) )

The plant-specific predictions are in good agreement with the observed
CO2 uptake rates, attesting to the adequacy of the asymptotic regression
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model. Note that the population average predictions vary with plant type
and chilling treatment.

Clinical Study of Quinidine

The Quinidine data were described in §3.4 where we explored the structure
of the data through summaries. Like the phenobarbital data analyzed in
§6.4, the quinidine data are routine clinical pharmacokinetic data charac-
terized by extensive dosage histories for each patient, but relatively sparse
information on concentration. Recall that a total of 361 quinidine concen-
tration measurements were made on 136 hospitalized patients under vary-
ing dosage regimens. The times since hospitalization at which the quinidine
concentrations were measured varied between 0.13 and 8095.5 hours. Most
patients have only a few concentration measurements: 34% have only one
and 80% have three or fewer. Only 5% of the patients have seven or more
observations.

Additional demographic and physiological data were collected for each
subject. The additional available covariates are described in Table 8.4.
Some of these covariates, such as age, body weight, and creatinine clear-
ance, were “time-varying.” That is, their value for a particular patient
could change during the course of the study. Others, such as race, re-
mained constant. One of the main objectives of the study was to investigate
relationships between the individual pharmacokinetic parameters and the
covariates. Statistical analyses of these data using alternative modeling ap-
proaches are given in Davidian and Gallant (1992) and in Wakefield (1996).

The model that has been suggested for the quinidine data is the one-
compartment open model with first-order absorption. This model can be
defined recursively as follows. Suppose that, at time t, a patient receives
a dose dt and prior to that time the last dose was given at time t′. The ex-
pected concentration in the serum compartment, Ct, and in the absorption

TABLE 8.4. Demographic and physiological covariates in the quinidine data.

Age (yr) 42–92
Glycoprotein concentration (mg/100 dL) 0.39–3.16
Body weight (kg) 41–119
Congestive heart failure no/mild, moderate, severe
Creatinine clearance (ml/min) < 50, ≥ 50
Ethanol abuse none, current, former
Height (in.) 60–79
Race Caucasian, Latin, Black
Smoking status no, yes



8.2 Fitting Nonlinear Mixed-Effects Models with nlme 379

compartment, Cat, are given by

Ct =Ct′ exp [−ke (t − t′)] +
Cat′ka

ka − ke

× {exp [−ke (t − t′)] − exp [−ka (t − t′)]} ,

Cat =Cat′ exp [−ka (t − t′)] +
dt

V
,

(8.9)

where V is the apparent volume of distribution, ka is the absorption rate
constant, and ke is the elimination rate constant.

When a patient receives the same dose d at regular time intervals ∆,
model (8.9) converges to the steady state model

Ct =
d ka

V (ka − ke)

[
1

1 − exp (−ke∆)
− 1

1 − exp (−ka∆)

]
,

Cat =
d

V [1 − exp (−ka∆)]
.

(8.10)

Finally, for a between-dosages time t, the model for the expected con-
centration Ct, given that the last dose was received at time t′, is identical
to (8.9).

Using the fact that the elimination rate constant ke is equal to the ratio
between the clearance (Cl) and the volume of distribution (V ), we can
reparameterize models (8.9) and (8.10) in terms of V , ka, and Cl .

To ensure that the estimates of V , ka, and Cl are positive, we can rewrite
models (8.9) and (8.10) in terms of lV = log(V ), lKa = log(ka) and
lCl = log(Cl).

The initial conditions for the recursive models (8.9) and (8.10) are C0 = 0
and Ca0 = d0/V , with d0 denoting the initial dose received by the pa-
tient. It is assumed in the model’s definition that the bioavailability of the
drug—the percentage of the administered dose that reaches the measure-
ment compartment—is equal to one.

The function quinModel in the nlme library implements the recursive
models (8.9) and (8.10) in S, parameterized in terms of lV , lKa and lCl .
This is not a self-starting model, so initial values for the fixed effects need
to be provided when calling nlme. We used values reported in the literature
as starting estimates for the fixed effects.

Preliminary analyses of the data, without using any covariates to ex-
plain intersubject variation, indicates that only lCl and lV need random
effects to account for their variability in the patient population, and that
the corresponding random effects can be assumed to be independent. The
corresponding model for the fixed and random effects is

lCl i = β1 + b1i, lV i = β2 + b2i, lKai = β3,

bi =
[
b1i

b2i

]
∼ N

(
0,

[
ψ1 0
0 ψ2

])
,

(8.11)
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which is fitted in S with

> fm1Quin.nlme <-

+ nlme(conc ~ quinModel(Subject, time, conc, dose, interval,

+ lV, lKa, lCl),

+ data = Quinidine, fixed = lV + lKa + lCl ~ 1,

+ random = pdDiag(lV + lCl ~ 1), groups = ~ Subject,

+ start = list(fixed = c(5, -0.3, 2)),

+ na.action = na.include, naPattern = ~ !is.na(conc) )

> fm1Quin.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ quinModel(Subject, time, conc, dose, interval, ...

Data: Quinidine

Log-likelihood: -495.77

Fixed: lV + lKa + lCl ~ 1

lV lKa lCl

5.3796 -0.20535 2.4687

Random effects:

Formula: list(lV ~ 1, lCl ~ 1)

Level: Subject

Structure: Diagonal

lV lCl Residual

StdDev: 0.31173 0.32276 0.73871

Number of Observations: 361

Number of Groups: 136

The na.action and naPattern arguments in this call to nlme are described
in §6.4.

To investigate which covariates may account for patient-to-patient vari-
ation in the pharmacokinetic parameters, we first extract the estimated
random effects, augmented with summary values for the available covari-
ates (the modal value is used for time-varying factors and the mean for
time-varying numeric variables).

> fm1Quin.nlmeRE <- ranef( fm1Quin.nlme, aug = T )

> fm1Quin.nlmeRE[1:3,]

lV lCl time conc dose interval Age Height

109 0.0005212 -0.0028369 61.58 0.50000 NA NA 70 67

70 0.0362214 0.3227614 1.50 0.60000 NA NA 68 69

23 -0.0254211 0.4402551 91.14 0.56667 NA NA 75 72

Weight Race Smoke Ethanol Heart Creatinine glyco

109 58 Caucasian no none No/Mild >= 50 0.46000

70 75 Caucasian no former No/Mild >= 50 1.15000

23 108 Caucasian yes none No/Mild >= 50 0.83667

The dotplot displays used to visualize the relationships between the es-
timated random effects and the covariates in the CO2 example do not scale
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up well when there are a large number of groups, or a large number of
covariates in the data, as in the quinidine study. Also, they cannot be used
with numeric covariates, like Weight and Age. The plot method for class
ranef allows a more flexible type of trellis display for these situations. Rela-
tionships between estimated random effects and factors are displayed using
boxplots, while scatter plots are used for displaying the relationships be-
tween the estimated random effects and numeric covariates. Specifying a
two-sided formula in the form argument, with the random effect on left-
hand side and the desired covariates, separated by the + operator, on the
right-hand side, indicates to the plot method that the more general trellis
display should be used. For example, to plot the estimated lCl random
effects against the available covariates we use

> plot( fm1Quin.nlmeRE, form = lCl ~ Age + Smoke + Ethanol +

+ Weight + Race + Height + glyco + Creatinine + Heart,

+ control = list(cex.axis = 0.7) ) # Figure 8.20

The resulting plot, shown in Figure 8.20, indicates that clearance de-
creases with glycoprotein concentration and age, and increases with creati-
nine clearance and weight. There is also evidence that clearance decreases
with severity of congestive heart failure and is smaller in Blacks than in
both Caucasians and Latins. The glycoprotein concentration is clearly the
most important covariate for explaining the lCl interindividual variation.
A straight line seems adequate to model the observed relationship.

Figure 8.21 presents the plots of the estimated lV random effects versus
the available covariates. None of the covariates seems helpful in explaining
the variability of this random effect and we do not pursue the modeling of
its variability any further.

Initially, only the glycoprotein concentration is included in the model to
explain the lCl random-effect variation according to a linear model. This
modification of model (8.11) is accomplished by writing

lCl ij = (β1 + b1i) + β2glycoij . (8.12)

Because the glycoprotein concentration may change with time on the same
patient, the random effects for lCl need to be indexed by both patient i
and time j. We fit the mixed-effects model corresponding to (8.12) with

> fm1Quin.fix <- fixef( fm1Quin.nlme) # for initial values

> fm2Quin.nlme <- update( fm1Quin.nlme,

+ fixed = list(lCl ~ glyco, lKa + lV ~ 1),

+ start = c(fm1Quin.fix[3], 0, fm1Quin.fix[2:1]) )

> summary( fm2Quin.nlme )

. . .

AIC BIC logLik

891.3 918.52 -438.65
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FIGURE 8.20. Estimated log-clearance random effects from model fm1Quin.nlme
versus demographic and physiological covariates in the quinidine data. A loess

smoother is included in the scatter plots of the continuous covariates to aid in
visualizing possible trends.

Random effects:

Formula: list(lV ~ 1, lCl ~ 1)

Level: Subject

Structure: Diagonal

lV lCl.(Intercept) Residual

StdDev: 0.26764 0.27037 0.63746

Fixed effects: list(lCl ~ glyco, lKa + lV ~ 1)

Value Std.Error DF t-value p-value

lCl.(Intercept) 3.1067 0.06473 222 47.997 <.0001

lCl.glyco -0.4914 0.04263 222 -11.527 <.0001

lKa -0.6662 0.30251 222 -2.202 0.0287

lV 5.3085 0.10244 222 51.818 <.0001

. . .
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FIGURE 8.21. Estimated log-volume random effects from model fm1Quin.nlme
versus demographic and physiological covariates in the quinidine data. A loess

smoother is included in the scatter plots of the continuous covariates to aid in
visualizing possible trends.

The estimated lCl.glyco fixed effect is very significant, indicating that the
glycoprotein concentration should be kept in the model.

To search for further variables to include in the model, we consider the
plots of the estimated lCl.(Intercept) random effects from the fm2Quin.nlme
fit versus the covariates, presented in Figure 8.22.

These plots indicate that the estimated lCl.(Intercept) random effects
increase with creatinine clearance, weight, and height, decrease with age
and severity of congestive heart failure, and are smaller in Blacks than
in Caucasians and Latins. The most relevant variable appears to be the
creatinine clearance, which is included in the model as a binary variable
taking value 0 when creatinine is < 50 and 1 when creatinine is ≥ 50.

> options( contrasts = c("contr.treatment", "contr.poly") )
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FIGURE 8.22. Estimated log-clearance random effects from model fm2Quin.nlme
versus demographic and physiological covariates in the quinidine data. A loess

smoother is included in the scatter plots of the continuous covariates to aid in
visualizing possible trends.

> fm2Quin.fix <- fixef( fm2Quin.nlme )

> fm3Quin.nlme <- update( fm2Quin.nlme,

+ fixed = list(lCl ~ glyco + Creatinine, lKa + lV ~ 1),

+ start = c(fm2Quin.fix[1:2], 0.2, fm2Quin.fix[3:4]) )

> summary( fm3Quin.nlme )

. . .

Fixed effects: list(lCl ~ glyco + Creatinine, lKa + lV ~ 1)

Value Std.Error DF t-value p-value

lCl.(Intercept) 3.0291 0.06387 221 47.426 <.0001

lCl.glyco -0.4631 0.04117 221 -11.249 <.0001

lCl.Creatinine 0.1503 0.03175 221 4.732 <.0001

lKa -0.7458 0.29619 221 -2.518 0.0125

lV 5.2893 0.10625 221 49.784 <.0001

. . .
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The final model produced by this stepwise model-building approach in-
cludes an extra term for the patient’s body weight to explain the clearance
variation. The corresponding model for the log-clearance is expressed as

lCl ij = (β1 + b1i) + β4glycoij + β5Creatinineij + β6Weightij (8.13)

and is fit in S with

> fm3Quin.fix <- fixef( fm3Quin.nlme )

> fm4Quin.nlme <- update( fm3Quin.nlme,

+ fixed = list(lCl ~ glyco + Creatinine + Weight, lKa + lV ~ 1),

+ start = c(fm3Quin.fix[1:3], 0, fm3Quin.fix[4:5]) )

> summary( fm4Quin.nlme )

. . .

AIC BIC logLik

870.94 905.94 -426.47

Random effects:

Formula: list(lV ~ 1, lCl ~ 1)

Level: Subject

Structure: Diagonal

lV lCl.(Intercept) Residual

StdDev: 0.28154 0.24128 0.63083

Fixed effects: list(lCl~glyco + Creatinine + Weight, lKa+lV ~ 1)

Value Std.Error DF t-value p-value

lCl.(Intercept) 2.7883 0.15167 220 18.384 <.0001

lCl.glyco -0.4645 0.04100 220 -11.328 <.0001

lCl.Creatinine 0.1373 0.03264 220 4.207 <.0001

lCl.Weight 0.0031 0.00180 220 1.749 0.0816

lKa -0.7974 0.29959 220 -2.662 0.0083

lV 5.2833 0.10655 220 49.587 <.0001

. . .

The lCl.Weight coefficient is not significant at a 5% level, but it is signifi-
cant at a less conservative 10% level. Given the high level of noise and the
small number of observations per patient in the quinidine data, we consid-
ered a p-value of 8.2% to be small enough to justify the inclusion of Weight
in the model.

As reported in previous analyses of the quinidine data (Davidian and
Giltinan, 1995, §9.3), there is evidence that the variability in the con-
centration measurements increases with the quinidine concentration. We
postpone the investigation of heteroscedasticity in the quinidine data until
§8.3.1, when we describe the use of variance functions in nlme.

8.2.3 Fitting Multilevel nlme Models

Nonlinear mixed-effects models with nested grouping factors, called multi-
level nonlinear mixed-effects models, are described in §7.1.2. In this section
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we describe how to fit and analyze them with the nlme library. The Wafer

example of §4.2.3 is used to illustrate the various methods available in nlme
for multilevel NLME models.

As in the linear case, the only difference between a single-level and a
multilevel fit in nlme is in the specification of the random argument. In the
multilevel case, random must provide information about the nested grouping
structure and the random-effects model at each level of grouping. This is
generally accomplished by specifying random as a named list, with names
corresponding to the grouping factors. The order of nesting is assumed to
be the same as the order of the elements in the list, with the outermost
grouping factor appearing first and the innermost grouping factor appear-
ing last. Each element of the random list has the same structure as random

in a single-level call: it can be a formula, a list of formulas, a pdMat object,
or a list of pdMat objects. Most of the nlme extractors, such as resid and
ranef, include a level argument indicating the desired level(s) of grouping.

Manufacturing of Analog MOS Circuits

A multilevel linear mixed-effects analysis of the Wafer data is presented in
§4.2.3 to illustrate the multilevel capabilities of lme. The final multilevel
model obtained in that section to represent the intensity of current yijk at
the kth level of voltage vk in the jth site within the ith wafer is expressed,
for i = 1, . . . , 10, j = 1, . . . , 8, and k = 1, . . . , 5, as

yijk = (β0 + b0i + b0i,j) + (β1 + b1i + b1i,j) vk + (β2 + b2i + b2i,j) v2
k

+ β3 cos (ωvk) + β4 sin (ωvk) + εijk

bi =

⎡⎣ b0i

b1i

b2i

⎤⎦ ∼ N (0,Ψ1) , bi,j =

⎡⎣ b0i,j

b1i,j

b2i,j

⎤⎦ ∼ N (0,Ψ2) ,

εijk ∼ N (
0, σ2

)
.

(8.14)

where β0, β1, and β2 are the fixed effects in the quadratic model, β3 and
β4 are the fixed effects for the cosine wave of frequency ω, bi is the wafer-
level random effects vector, bi,j is the site within wafer-level random-effects
vector, and εijk is the within-group error. The bi are assumed to be inde-
pendent for different i, the bi,j are assumed to be independent for differ-
ent i, j and independent of the bi, and the εijk are assumed to be inde-
pendent for different i, j, k and independent of the random effects. The
wafer-level variance–covariance matrix Ψ1 is general positive-definite and
the site-within-wafer-level matrix Ψ2 is block-diagonal, with a 1 × 1 block
corresponding to the variance of b0i,j and a 2 × 2 block corresponding to
variance–covariance matrix of [b1i,j , b2i,j ]T .

Because its model function is nonlinear in the frequency ω, model (8.14)
is actually an example of a multilevel nonlinear mixed-effects model. It
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is treated as a linear model in §4.2.3 by holding ω fixed at a previously
estimated value. Some of the disadvantages of this approach are that no
precision can be attached to the estimate of ω and we cannot test if random
effects are needed to account for variation in ω, either at the wafer level, or
at the site-within-wafer level. In this section we treat (8.14) as a multilevel
NLME model, allowing ω to be estimated with the other parameters and
testing if random effects are needed to account for its variation in the data.

We can rewrite (8.14) in the usual two-stage NLME model formulation.

yijk = φ1ij + φ2ij cos (ωvk) + φ3ij sin (ωvk) + εijk,

φ1ij = (β0 + b0i + b0i,j) + (β1 + b1i + b1i,j) vk + (β2 + b2i + b2i,j) v2
k,

φ2ij = β3, φ3ij = β4,

(8.15)

where the fixed effects, β = (β1, . . . , β4), the random effects, bi, bi,j , and
the within-group errors, εijk, are defined as in (8.14). To illustrate some of
the multilevel capabilities in nlme, we initially fit model (8.15) with fixed
ω = 4.5679 as in §4.2.3. To get results that are comparable to the fm5Wafer

fit in §4.2.3, we need to set the estimation method in nlme to REML.

> fm1Wafer.nlmeR <- nlme( current ~ A + B * cos(4.5679 * voltage) +

+ C * sin(4.5679 * voltage), data = Wafer,

+ fixed = list(A ~ voltage + voltage^2, B + C ~ 1),

+ random = list(Wafer = A ~ voltage + voltage^2,

+ Site = pdBlocked(list(A~1, A~voltage+voltage^2-1))),

+ start = fixef(fm4Wafer), method = "REML")

> fm1Wafer.nlmeR

. . .

Fixed: list(A ~ voltage + voltage^2, B + C ~ 1)

A.(Intercept) A.voltage A.I(voltage^2) B C

-4.2554 5.6224 1.2585 -0.095557 0.10435

Random effects:

Formula: A ~ voltage + voltage^2 | Wafer

Structure: General positive-definite

StdDev Corr

A.(Intercept) 0.131805 A.(In) A.vltg

A.voltage 0.354743 -0.967

A.I(voltage^2) 0.049955 0.814 -0.935

Composite Structure: Blocked

Block 1: A.(Intercept)

Formula: A ~ 1 | Site %in% Wafer

A.(Intercept)

StdDev: 0.066563
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Block 2: A.voltage, A.I(voltage^2)

Formula: A ~ voltage + voltage^2 - 1 | Site %in% Wafer

Structure: General positive-definite

StdDev Corr

A.voltage 0.2674083 A.volt

A.I(voltage^2) 0.0556444 -0.973

Residual 0.0091086

. . .

The only difference in the multilevel model specification in random between
lme and nlme is the use of one-sided formulas in the former and two-sided
formulas in the latter. As expected, the estimation results for fm1Wafer.nlme
are almost identical to the ones for fm5Wafer.

Because only five distinct voltages are used in the MOS circuit exper-
iment, at most five different fixed effects can be used in a mixed-effects
model fitted to the Wafer data. This is true in general: the number of es-
timable fixed effects in a mixed-effects model cannot exceed the number of
distinct design points in the data used to fit it. Therefore, in order to allow
the frequency ω to be estimated from the data, we need to drop at least
one fixed effect from model (8.15).

Examining the fixed effects estimates in fm1Wafer.nlme we see that β̂3 �
−β̂4. We make the assumption that β3 = −β4 in (8.15), which, using the
identity cos(θ) − sin(θ) = cos(θ + π/4), gives the modified model

yijk = φ1ij + φ2ij cos (ωijvk + π/4) + εijk. (8.16)

To compensate for the restriction that β3 = −β4, we include random effects
for φ2ij at the wafer and site-within-wafer levels. Preliminary analyses of
the modified model indicated that random effects for ωij are needed at the
wafer level only. The corresponding model for the fixed and random effects
is

φ1ij = (β0 + b0i + b0i,j) + (β1 + b1i + b1i,j) vk + (β2 + b2i + b2i,j) v2
k,

φ2ij = β3 + b3i + b3i,j ,

ωij = β∗
4 + b4i,

bi =

⎡⎢⎢⎢⎢⎣
b0i

b1i

b2i

b3i

b4i

⎤⎥⎥⎥⎥⎦ ∼ N (0,Ψ1) , bi,j =

⎡⎢⎢⎣
b0i,j

b1i,j

b2i,j

b3i,j

⎤⎥⎥⎦ ∼ N (0,Ψ2) ,

εijk ∼ N (
0, σ2

)
.

(8.17)

Because of the large number of random effects at each grouping level, to
make the estimation problem more numerically stable, we make the sim-
plifying assumption that the random effects are independent. That is, we
assume that Ψ1 and Ψ2 are diagonal matrices.
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A maximum likelihood fit of model (8.16), with fixed and random-effects
structures given in (8.17), is obtained with

> fm2Wafer.nlme <- nlme( current ~ A + B * cos(w * voltage + pi/4),

+ data = Wafer, fixed = list(A ~ voltage + voltage^2, B + w ~ 1),

+ random = list(Wafer = pdDiag(list(A ~ voltage + voltage^2,

+ B + w ~ 1)),

+ Site = pdDiag(list(A ~ voltage+voltage^2, B ~ 1))),

+ start = c(fixef(fm1Wafer.nlme)[-5], 4.5679) )

> fm2Wafer.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: current ~ A + B * cos(w * voltage + pi/4)

Data: Wafer

Log-likelihood: 766.44

Fixed: list(A ~ voltage + voltage^2, B + w ~ 1)

A.(Intercept) A.voltage A.I(voltage^2) B w

-4.2653 5.6329 1.256 -0.14069 4.5937

Random effects:

Formula: list(A ~ voltage + voltage^2, B ~ 1, w ~ 1)

Level: Wafer

Structure: Diagonal

A.(Intercept) A.voltage A.I(voltage^2) B w

StdDev: 0.1332 0.34134 0.048243 0.0048037 0.014629

Formula: list(A ~ voltage + voltage^2, B ~ 1)

Level: Site %in% Wafer

Structure: Diagonal

A.(Intercept) A.voltage A.I(voltage^2) B Residual

StdDev: 0.084082 0.30872 0.067259 0.0067264 0.0008428

. . .

Even though models (8.15) and (8.16) are not nested, they can compared
using information criterion statistics. The anova method can be used for
that, but we must first obtain a maximum likelihood fit of model (8.15).

> fm1Wafer.nlme <- update( fm1Wafer.nlmeR, method = "ML" )

> anova( fm1Wafer.nlme, fm2Wafer.nlme, test = F )

Model df AIC BIC logLik

fm1Wafer.nlme 1 16 -1503.9 -1440.1 767.96

fm2Wafer.nlme 2 15 -1502.9 -1443.0 766.44

The more conservative BIC favors the model with fewer parameters,
fm2Wafer.nlme, while the more liberal AIC favors the model with larger
log-likelihood, fm1Wafer.nlme.

The intervals method is used to obtain confidence intervals on the fixed
effects and the variance components.

> intervals( fm2Wafer.nlme )

Approximate 95% confidence intervals
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Fixed effects:

lower est. upper

A.(Intercept) -4.35017 -4.26525 -4.18033

A.voltage 5.40994 5.63292 5.85589

A.I(voltage^2) 1.22254 1.25601 1.28948

B -0.14403 -0.14069 -0.13735

w 4.58451 4.59366 4.60281

Random Effects:

Level: Wafer

lower est. upper

sd(A.(Intercept)) 0.0693442 0.1331979 0.255849

sd(A.voltage) 0.1715436 0.3413426 0.679214

sd(A.I(voltage^2)) 0.0222685 0.0482433 0.104516

sd(B) 0.0022125 0.0048037 0.010430

sd(w) 0.0078146 0.0146290 0.027385

Level: Site

lower est. upper

sd(A.(Intercept)) 0.0664952 0.0840825 0.1063214

sd(A.voltage) 0.2442003 0.3087244 0.3902973

sd(A.I(voltage^2)) 0.0532046 0.0672589 0.0850257

sd(B) 0.0053128 0.0067264 0.0085162

Within-group standard error:

lower est. upper

0.00066588 0.0008428 0.0010667

The fixed effects and the within-group standard error are estimated with
more relative precision than the random-effects variance components. In
the random-effects variance components, the site-within-wafer standard
deviations are estimated with greater precision than the wafer standard
deviations.

The plot of the within-group residuals versus voltage by wafer, displayed
in Figure 8.23, and produced with

> plot( fm2Wafer.nlme, resid(.) ~ voltage | Wafer,

+ panel = function(x, y, ...) {
+ panel.grid()

+ panel.xyplot(x, y)

+ panel.loess(x, y, lty = 2)

+ panel.abline(0, 0)

+ } ) # Figure 8.23

does not reveal any periodic patterns as observed, for example, in Fig-
ure 4.27, indicating that the inclusion of a random effect for ω accounted
successfully for variations in frequency among wafers.
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FIGURE 8.23. Scatter plots of within-group residuals versus voltage by wafer
for the fm2Wafer.nlme fit. A loess smoother has been added to each panel to
enhance the visualization of the residual pattern.

The normal plots of the within-group residuals and of the estimated site-
within-wafer random effects, not shown here, do not indicate any violations
of the NLME model assumptions.

8.3 Extending the Basic nlme Model

The extended nonlinear mixed-effects model with heteroscedastic, corre-
lated within-group errors was introduced in §7.4.1. In this section, we de-
scribe the use of the nlme function for fitting such models. The use of
variance functions for modeling heteroscedasticity in NLME models are dis-
cussed and illustrated in §8.3.1. Correlation structures for modeling within-
group error dependence in NLME models are illustrated in §8.3.2. The gnls

function to fit the extended nonlinear regression model presented in §7.5.1
is described and illustrated in §8.3.3, together with its associated class and
methods.

8.3.1 Variance Functions in nlme

Variance functions are specified for an nlme model in the same way as for
an lme model: through the weights argument. Any of the varFunc classes
described in §5.2.1, and listed in Table 5.1, can also be used with nlme.
The same diagnostic plots discussed in §5.2.1 for identifying within-group
heteroscedasticity and assessing the adequacy of a variance function for lme
objects, can also be used with nlme objects. We revisit the theophylline
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example of §8.2.1 and the quinidine example of §8.2.2 to illustrate the use
of variance functions in nlme.

Theophylline Kinetics

The plot of the standardized residuals versus the fitted values for the fitted
object fm3Theo.nlme, displayed in Figure 8.13, suggests that the within-
group variance increases with the concentration of theophylline.

The definition of the first-order open-compartment model (8.2) implies
that the fitted value for the concentration at time t = 0 is ĉ0 = 0. There-
fore, a power variance function, a natural candidate for this type of het-
eroscedastic pattern, cannot be used in this example, as the corresponding
weights are undefined at t = 0. (Davidian and Giltinan (1995, §5.5, p. 145)
argue that the observations at t = 0 do not add any information for the
model and should be omitted from the data. We retain them here for illus-
tration.) The constant plus power variance function, described in §5.2 and
represented in the nlme library by the varConstPower class, accommodates
the problem with ĉ0 = 0 by adding a constant to the power of the fitted
value. In the theophylline example, the varConstPower variance function is
expressed as g(ĉij , δ) = δ1 + ĉδ2

ij . We incorporate it in the nlme fit using
> fm4Theo.nlme <- update( fm3Theo.nlme,

+ weights = varConstPower(power = 0.1) )

> fm4Theo.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: conc ~ SSfol(Dose, Time, lKe, lKa, lCl)

Data: Theoph

Log-likelihood: -167.68

Fixed: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)

lKe lKa lCl

-2.4538 0.43348 -3.2275

Random effects:

Formula: list(lKa ~ 1, lCl ~ 1)

Level: Subject

Structure: Diagonal

lKa lCl Residual

StdDev: 0.6387 0.16979 0.3155

Variance function:

Structure: Constant plus power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:

const power

0.71966 0.31408

An initial value for the power parameter (δ2) is specified in the call to the
varConstPower constructor to avoid convergence problems associated with
the default value power=0, for this example.
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FIGURE 8.24. Scatter plot of standardized residuals versus fitted values for
fm4Theo.nlme.

The anova method is used to assess the statistical significance of the
variance function.

> anova( fm3Theo.nlme, fm4Theo.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm3Theo.nlme 1 6 366.04 383.34 -177.02

fm4Theo.nlme 2 8 351.35 374.41 -167.68 1 vs 2 18.694 1e-04

The small p-value for the likelihood ratio test indicates that the incorpora-
tion of the variance function in the model produced a significant increase in
the log-likelihood. Both the AIC and the BIC also favor the fm4Theo.nlme

fit. The plot of the standardized residuals versus the fitted values, shown in
Figure 8.24, confirms the adequacy of the varConstPower variance function.

> plot( fm4Theo.nlme ) # Figure 8.24

Clinical Study of Quinidine

Figure 8.25 presents the scatter plot of the standardized residuals versus
the fitted values, corresponding to the final model for the quinidine data
in §8.2.2, represented by the fitted object fm4Quin.nlme.

> ## xlim used to hide an unusually high fitted value and enhance

> ## visualization of the heteroscedastic pattern

> plot( fm4Quin.nlme, xlim = c(0, 6.2) ) # Figure 8.25

As reported in previous analyses of the quinidine data (Davidian and
Giltinan, 1995, §9.3), and indicated in Figure 8.25, the variance of the
within-group errors appears to increase with the quinidine concentration.
The fitted values do not get sufficiently close to zero to cause problems in
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FIGURE 8.25. Scatter plot of standardized residuals versus fitted values for
fm4Quin.nlme.

the calculation of weights for the power variance function and we choose
the varPower class to model the within-group heteroscedasticity.

> fm5Quin.nlme <- update( fm4Quin.nlme, weights = varPower() )

> summary( fm5Quin.nlme )

. . .

Random effects:

Formula: list(lV ~ 1, lCl ~ 1)

Level: Subject

Structure: Diagonal

lV lCl.(Intercept) Residual

StdDev: 0.32475 0.25689 0.25548

Variance function:

Structure: Power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:

power

0.96616

Fixed effects: list(lCl ~ glyco + Creatinine + Weight, lKa + lV ~ 1)

Value Std.Error DF t-value p-value

lCl.(Intercept) 2.7076 0.15262 220 17.741 <.0001

lCl.glyco -0.4110 0.04487 220 -9.161 <.0001

lCl.Creatinine 0.1292 0.03494 220 3.696 0.0003

lCl.Weight 0.0033 0.00179 220 1.828 0.0689

lKa -0.4269 0.25518 220 -1.673 0.0958

lV 5.3700 0.08398 220 63.941 <.0001

. . .
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FIGURE 8.26. Scatter plot of standardized residuals versus fitted values for
fm5Quin.nlme.

> anova( fm4Quin.nlme, fm5Quin.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm4Quin.nlme 1 9 870.94 905.94 -426.47

fm5Quin.nlme 2 10 812.13 851.01 -396.06 1 vs 2 60.813 <.0001

The incorporation of the power variance function in the NLME model for
the quinidine data produced a significant increase in the log-likelihood, as
evidenced by the small p-value for the likelihood ratio statistics. The plot
of the standardized residuals versus fitted values, displayed in Figure 8.26,
gives further evidence of the adequacy of the variance function model.

> plot( fm5Quin.nlme, xlim = c(0, 6.2) ) # Figure 8.26

8.3.2 Correlation Structures in nlme

Just as in lme and gls, correlation structures are specified in nlme through
the correlation argument. All of the corStruct classes described in §5.3.3,
and listed in Table 5.3, can be used with nlme. As in the linear case, we
investigate the need for within-group correlation structures in the NLME
model by looking at plots of the empirical autocorrelation function (ACF)
and the sample semivariogram, and assess the adequacy of a particular
corStruct class by examining plots of the normalized residuals. We revisit
the ovary example of §5.3.4 to illustrate the use of correlation structures
with nlme.

Counts of Ovarian Follicles

The ovary example was analyzed in §5.3.4 using an LME model, by assum-
ing that the number of ovarian follicles was a periodic function of time with



396 8. Fitting Nonlinear Mixed-Effects Models

known frequency equal to 1. A more general model formulation assumes
that the frequency is an unknown parameter to be estimated from the data,
with a possible random effect associated with it. Because the frequency en-
ters the model nonlinearly, this becomes an NLME model, represented as

yij = φ0i + φ1i sin (2πφ2itij) + φ3i cos (2πφ2itij) + εij , (8.18)

where yij represents the number of follicles observed for mare i at time tij ,
φ0i, φ1i, and φ3i represent the intercept and the terms defining the ampli-
tude and the phase of the cosine wave for mare i, φ2i is the frequency of
cosine wave for mare i, and εij is the within-group error. We initially assume
that the within-group errors are independently distributed as N (0, σ2).

The final LME model used to fit the Ovary data in §5.3.4 used indepen-
dent random effects for the φ0i and φ1i coefficients in model (8.18). We
use this as a starting point for the random-effects model, incorporating
an extra independent random effect for the frequency φ2i. The fixed- and
random-effects models corresponding to (8.18) are then expressed as

φ0i = β0 + b0i, φ1i = β1 + b1i, φ2i = β2 + b2i, φ3i = β3,

bi =

⎡⎣ b0i

b1i

b2i

⎤⎦ ∼ N (0,Ψ) ,
(8.19)

where Ψ is diagonal. The random effects, bi, are assumed to be independent
for different i and to be independent of the within-group errors.

We fit model (8.18), with fixed- and random-effects structures given
by (8.19), using

> fm1Ovar.nlme <- nlme(follicles ~ A + B * sin(2 * pi * w * Time) +

+ C * cos(2 * pi * w *Time), data = Ovary,

+ fixed = A + B + C + w ~ 1, random = pdDiag(A + B + w ~ 1),

+ start = c(fixef(fm5Ovar.lme), 1))

> fm1Ovar.nlme

Nonlinear mixed-effects model fit by maximum likelihood

Model: follicles ~ A + B * sin(2 * pi * w * Time) +

C * cos(2 * pi * w * Time)

Data: Ovary

Log-likelihood: -803.83

Fixed: A + B + C + w ~ 1

A B C w

12.184 -3.376 -1.6812 0.93605

Random effects:

Formula: list(A ~ 1, B ~ 1, w ~ 1)

Level: Mare

Structure: Diagonal

A B w Residual

StdDev: 2.9051 2.0061 0.073598 2.9387

. . .
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The estimated fixed effects for fm5Ovar.lme are used as initial values for
β0, β1, and β3.

As mentioned in §5.3.4, the observations in the Ovary data were collected
at equally spaced calendar times, and then converted to an ovulation cycle
scale. Therefore, the empirical ACF can be used to investigate the correla-
tion at different lags. The ACF method can also be used with nlme objects.

> ACF( fm1Ovar.nlme )

lag ACF

1 0 1.0000000

2 1 0.3110027

3 2 0.0887701

4 3 -0.0668554

5 4 -0.0314934

6 5 -0.0810381

7 6 -0.0010647

8 7 0.0216463

9 8 0.0137578

10 9 0.0097497

11 10 -0.0377027

12 11 -0.0741284

13 12 -0.1504872

14 13 -0.1616297

15 14 -0.2395797

Because they are based on fewer residual pairs, empirical autocorrelations
at larger lags are less reliable. We can control the number of lags calculated
in ACF using the maxLag argument. We use it in the plot of empirical ACF,
displayed in Figure 8.27 and obtained with

> plot( ACF(fm1Ovar.nlme, maxLag = 10),

+ alpha = 0.05 ) # Figure 8.27

Figure 8.27 shows that only the lag-1 autocorrelation is significant at the
5% level, but the lag-2 autocorrelation, which is approximately equal to the
square of the lag-1 autocorrelation, is nearly significant. This suggests two
different candidate correlation structures for modeling the within-group
error covariance structure: AR(1) and MA(2). The two correlation models
are not nested, but can be compared using using the information criteria
provided by the anova method, AIC and BIC. The empirical lag-1 autocor-
relation is used as a starting value for the corAR1 coefficient.

> fm2Ovar.nlme <- update( fm1Ovar.nlme, corr = corAR1(0.311) )

> fm3Ovar.nlme <- update( fm1Ovar.nlme, corr = corARMA(p=0, q=2) )

> anova( fm2Ovar.nlme, fm3Ovar.nlme, test = F )

Model df AIC BIC logLik

fm2Ovar.nlme 1 9 1568.3 1601.9 -775.15

fm3Ovar.nlme 2 10 1572.1 1609.4 -776.07
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FIGURE 8.27. Empirical autocorrelation function corresponding to the standard-
ized residuals of the fm1Ovar.nlme fitted object.

The AR(1) model uses one fewer parameter than the MA(2) model to give
a larger log-likelihood and hence is the preferred model by both AIC and
BIC.

The approximate 95% confidence intervals for the variance components
in fm2Ovar.nlme, obtained with

> intervals( fm2Ovar.nlme )

. . .

Random Effects:

Level: Mare

lower est. upper

sd(A) 1.5465e+00 3.3083316 7.0772e+00

sd(B) 3.4902e-01 1.4257894 5.8245e+00

sd(w) 2.4457e-89 0.0020967 1.7974e+83

. . .

indicate that there is no precision in the estimate of the standard deviation
for the frequency φ2i and little precision in the estimate of the standard
deviation for φ1i. The incorporation of the within-group autocorrelation
structure into the NLME model seems to have reduced the need for ran-
dom effects in the model. This is not uncommon: the random-effects model
and the within-group correlation model compete with each other, in the
sense that fewer random effects may be needed when within-group corre-
lation structures are present, and viceversa. We test if the two variance
components can be dropped from the model using anova.

> fm4Ovar.nlme <- update( fm2Ovar.nlme, random = A ~ 1)

> anova( fm2Ovar.nlme, fm4Ovar.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Ovar.nlme 1 9 1568.3 1601.9 -775.15

fm4Ovar.nlme 2 7 1565.2 1591.4 -775.62 1 vs 2 0.94001 0.625

The high p-value for the likelihood ratio test suggests that the two models
give essentially equivalent fits so the simpler model is preferred.
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FIGURE 8.28. Empirical autocorrelation function corresponding to the normal-
ized residuals of the fm1Ovar.nlme fitted object.

An alternative, “intermediate” model between the AR(1) and MA(2)
correlation structures is the ARMA(1, 1) model. This structure has an ex-
ponentially decaying ACF for lags ≥ 2, but allows greater flexibility in
the lag-1 autocorrelation. Because the AR(1) model is nested within the
ARMA(1, 1) model, they can be compared via a likelihood ratio test.

> fm5Ovar.nlme <- update( fm4Ovar.nlme, corr = corARMA(p=1, q=1))

> anova( fm4Ovar.nlme, fm5Ovar.nlme )

Model df AIC BIC logLik Test L.Ratio p-value

fm4Ovar.nlme 1 7 1565.2 1591.4 -775.62

fm5Ovar.nlme 2 8 1562.1 1592.0 -773.07 1 vs 2 5.1134 0.0237

The ARMA(1, 1) gives a significantly better representation of the within-
group correlation, as indicated by the small p-value for the likelihood ratio
test.

The plot of the empirical ACF of the normalized residuals, displayed
in Figure 8.28, attests the the adequacy of the ARMA(1, 1) model for the
Ovary data. No significant autocorrelations are detected, indicating that the
normalized residuals behave like uncorrelated noise, as expected under the
appropriate correlation model.

> plot( ACF(fm5Ovar.nlme, maxLag = 10, resType = "n"),

+ alpha = 0.05 ) # Figure 8.28

It is illustrative, at this point, to compare the nlme fit represented by
fm5Ovar.nlme to the lme fit corresponding to fm5Ovar.lme of §5.3.4. To have
comparable log-likelihoods, we need to first obtain a maximum likelihood
version of fm5Ovar.lme.

> fm5Ovar.lmeML <- update( fm5Ovar.lme, method = "ML" )

> intervals( fm5Ovar.lmeML )

. . .

Random Effects:
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Level: Mare

lower est. upper

sd((Intercept)) 0.988120 2.45659 6.1074

sd(sin(2 * pi * Time)) 0.071055 0.85199 10.2158

. . .

The wide confidence interval for the standard deviation of the random
effect corresponding to sin(2*pi*Time) indicates that the fit is not very
sensitive to the value of this coefficient and perhaps it could be eliminated
from the model. We test this assumption using the likelihood ratio test.

> fm6Ovar.lmeML <- update( fm5Ovar.lmeML, random = ~1 )

> anova( fm5Ovar.lmeML, fm6Ovar.lmeML )

Model df AIC BIC logLik Test L.Ratio

fm5Ovar.lmeML 1 8 1562.7 1592.6 -773.37

fm6Ovar.lmeML 2 7 1561.0 1587.1 -773.51 1 vs 2 0.28057

p-value

fm5Ovar.lmeML

fm6Ovar.lmeML 0.5963

The large p-value for the test indicates that the two models are essentially
equivalent so the simpler model with a single random intercept is preferred.

The LME model represented by fm6Ovar.lmeML is nested within the NLME
model represented by fm5Ovar.nlme, corresponding to the case of β2 = 1.
Hence, we can test the assumption that the frequency of the ovulation cycle
is equal to 1 using the likelihood ratio test.

> anova( fm6Ovar.lmeML, fm5Ovar.nlme )

Model df AIC BIC logLik Test L.Ratio

fm6Ovar.lmeML 1 7 1561.0 1587.1 -773.51

fm5Ovar.nlme 2 8 1562.1 1592.0 -773.07 1 vs 2 0.87881

p-value

fm6Ovar.lmeML

fm5Ovar.nlme 0.3485

There is no significant evidence that β2 �= 1. This conclusion is also sup-
ported by the approximate confidence interval for β2, which contains 1.

> intervals( fm5Ovar.nlme, which = "fixed" )

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

A 10.37917 12.15566 13.932151

B -3.91347 -2.87191 -1.830353

C -3.07594 -1.56879 -0.061645

w 0.81565 0.93111 1.046568
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8.3.3 Fitting Extended Nonlinear Regression Models with
gnls

The general formulation of the extended nonlinear regression model, as well
as the estimation methods used to fit it, have been described in §7.5.1 and
§7.5.2. In this section, we present and illustrate the capabilities available
in the nlme library for fitting and analyzing such models.

The gnls function fits the extended nonlinear regression model (7.34)
using maximum likelihood. It can be viewed either as a version of nlme

without the argument random, or as a version of nls with the arguments
weights and correlation. Several arguments are available in gls, but typical
calls are of the form

gnls(model, data, params, start, correlation) # correl. errors

gnls(model, data, params, start, weights) # heterosc. errors

gnls(model, data, params, start, correlation, weights) # both

The first argument, model, is a two-sided nonlinear formula specifying the
model for the expected value of the response. It uses the same syntax as
the model argument to nlme. Correlation and weights are used as in lme,
gls, and nlme to define, respectively, the correlation model and the variance
function model for the error term. Data specifies a data frame in which the
variables named in model, correlation, and weights can be evaluated. The
parameters in the model are specified via the params argument, which can
be either a two-sided linear formula, or a list of two-sided linear formulas.
The syntax for params is identical to that of the fixed argument to nlme.
Starting values for the model parameters are specified in start, which uses
the same syntax as the argument with the same name to nlme. Starting
values need not be given when the model function defined in model is a
self-starting model and the the right-hand side of the parameter formulas
in param do not include any covariates.

The fitted object returned by gnls is of class gnls, for which several
methods are available to display, plot, update, and further explore the
estimation results. Table 8.5 lists the most important gnls methods. The
syntax of the gnls methods is identical to the syntax of the gls methods,
described in §5.4. In fact, with the exception of coef, formula, logLik,
predict, and update, all methods listed in Table 8.5 are common to both
classes.

The use of the gnls function and its associated methods is described and
illustrated through the re-analysis of the hemodialyzer example introduced
in §5.2.2.

High-Flux Hemodialyzer Ultrafiltration Rates

The hemodialyzer ultrafiltration rates data were analyzed in §5.2.2 and §5.4
using an empirical polynomial model suggested by Littell et al. (1996). The
model originally proposed for these data by Vonesh and Carter (1992) is
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TABLE 8.5. Main gnls methods.

ACF empirical autocorrelation function of residuals
anova likelihood ratio or Wald-type tests
augPred predictions augmented with observed values
coef estimated coefficients for expected response model
fitted fitted values
intervals confidence intervals on model parameters
logLik log-likelihood at convergence
plot diagnostic Trellis plots
predict predicted values
print brief information about the fit
qqnorm normal probability plots
resid residuals
summary more detailed information about the fit
update update the gnls fit
Variogram semivariogram of residuals

an asymptotic regression model with an offset, identical to the one used for
the CO2 uptake data in §8.2.2. The model for the expected ultrafiltration
rate y at transmembrane pressure x is written as

E[y] = φ1 {1 − exp [− exp(φ2) (x − φ3)]} . (8.20)

The parameters in model (8.20) have a physiological interpretation: φ1 is
the maximum ultrafiltration rate that can be attained, φ2 is the logarithm
of the hydraulic permeability transport rate, and φ3 is the transmembrane
pressure required to offset the oncotic pressure.

Vonesh and Carter (1992) suggest using different parameters in (8.20)
for each blood flow rate level. We use the self-starting function SSasympOff

and the nlsList function to investigate which parameters in the asymptotic
regression model (8.20) depend on the blood flow rate.

> fm1Dial.lis <-

+ nlsList( rate ~ SSasympOff(pressure, Asym, lrc, c0) | QB,

+ data = Dialyzer )

> fm1Dial.lis

. . .

Coefficients:

Asym lrc c0

200 44.988 0.76493 0.22425

300 62.217 0.25282 0.22484

The coefficient estimates suggest that Asym (φ1) and lrc (log φ2) depend on
the blood flow rate level, but c0 (φ3) does not. The plot of the individual
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FIGURE 8.29. Ninety-five percent confidence intervals on the asymptotic regres-
sion model parameters for each level of blood flow rate (QB) in the dialyzer
data.

confidence intervals in Figure 8.29 confirms that only Asym and lrc vary
with blood flow level.

> plot( intervals(fm1Dial.lis) ) # Figure 8.29

The ultrafiltration rate yij at the jth transmembrane pressure xij for
the ith subject is represented by the nonlinear model

yij = (φ1 + γ1Qi) {1 − exp [− exp (φ2 + γ2Qi) (xij − φ3)]} + εij , (8.21)

where Qi is a binary variable taking values −1 for 200 dl/min hemodialyz-
ers and 1 for 300 dl/min hemodialyzers; φ1, φ2, and φ3 are, respectively,
the asymptotic ultrafiltration rate, the log-transport rate, and the trans-
membrane pressure offset averaged over the levels of Q; γi is the blood flow
effect associated with the coefficient φi; and εij is the error term, initially
assumed to be independently distributed N (0, σ2) random variables.

The nonlinear model (8.21) can be fitted with nls, but it is easier to
express the dependency of the asymptote and the log-rate on the blood
flow rate using gnls. The average of the fm1Dial.lis coefficients are used
as the initial estimates for φ1, φ2, and φ3, while the half differences between
the first two coefficients are used as initial estimates for γ1 and γ2.

> fm1Dial.gnls <- gnls( rate ~ SSasympOff(pressure, Asym, lrc, c0),

+ data = Dialyzer, params = list(Asym + lrc ~ QB, c0 ~ 1),

+ start = c(53.6, 8.6, 0.51, -0.26, 0.225) )

> fm1Dial.gnls

Generalized nonlinear least squares fit

Model: rate ~ SSasympOff(pressure, Asym, lrc, c0)

Data: Dialyzer

Log-likelihood: -382.65

Coefficients:

Asym.(Intercept) Asym.QB lrc.(Intercept) lrc.QB c0

53.606 8.62 0.50874 -0.25684 0.22449

Degrees of freedom: 140 total; 135 residual

Residual standard error: 3.7902
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To fit the same model in nls, we need first to create a binary variable
representing Q in (8.21) and then include all coefficients explicitly in the
model formula.

> Dialyzer$QBcontr <- 2 * (Dialyzer$QB == 300) - 1

> fm1Dial.nls <-

+ nls( rate ~ SSasympOff(pressure, Asym.Int + Asym.QB * QBcontr,

+ lrc.Int + lrc.QB * QBcontr, c0), data = Dialyzer,

+ start = c(Asym.Int = 53.6, Asym.QB = 8.6, lrc.Int = 0.51,

+ lrc.QB = -0.26, c0 = 0.225) )

> summary( fm1Dial.nls )

Formula: rate ~ SSasympOff(pressure, Asym.Int + Asym.QB * QBcontr,

lrc.Int + lrc.QB * QBcontr, c0)

Parameters:

Value Std. Error t value

Asym.Int 53.60660 0.705409 75.9937

Asym.QB 8.61999 0.679240 12.6906

lrc.Int 0.50872 0.055233 9.2105

lrc.QB -0.25683 0.045021 -5.7047

c0 0.22448 0.010623 21.1318

Residual standard error: 3.79022 on 135 degrees of freedom

> logLik( fm1Dial.nls )

[1] -382.65

As expected, the results are nearly identical.
The plot method is the primary tool for assessing the quality of a gnls

fit. It uses the same syntax as the other plot methods in the nlme library.
For example, the plot of the residuals versus the transmembrane pressure,
shown in Figure 8.30 and obtained with

> plot(fm1Dial.gnls, resid(.) ~ pressure, abline = 0) # Figure 8.30

indicates that the error variability increases with the transmembrane pres-
sure. This heteroscedastic pattern is also observed in the linear model fits
of the hemodialyzer data, presented in §5.2.2 and §5.4.

As in the previous analyses of the hemodialyzer data presented in §5.2.2
and §5.4, the power variance function, represented in nlme by the varPower
class, is used to model the heteroscedasticity in the ultrafiltration rates.

> fm2Dial.gnls <- update( fm1Dial.gnls,

+ weights = varPower(form = ~ pressure) )

> anova( fm1Dial.gnls, fm2Dial.gnls)

Model df AIC BIC logLik Test L.Ratio p-value

fm1Dial.gnls 1 6 777.29 794.94 -382.65

fm2Dial.gnls 2 7 748.47 769.07 -367.24 1 vs 2 30.815 <.0001

As expected, the likelihood ratio test strongly rejects the assumption of
homoscedasticity. The plot of the standard residuals for fm2Dial.gnls
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FIGURE 8.30. Plot of residuals versus transmembrane pressure for the homo-
scedastic fitted object fm1Dial.gls.

versus pressure, shown in Figure 8.31, indicates that the power variance
function successfully models the heteroscedasticity in the data.

The hemodialyzer ultrafiltration rates measurements made sequentially
on the same subject are correlated. Random effects can be used in an
NLME model to account for the within-group correlation, but we choose
here to model the within-subject dependence directly by incorporating a
correlation structure for the error term in the gnls model. Because the
measurements are equally spaced in time, the empirical autocorrelation
function can be used to investigate the within-subject correlation. The ACF

method is used to obtain the empirical ACF, with the time covariate and
the grouping factor specified via the form argument.

> ACF( fm2Dial.gnls, form = ~ 1 | Subject )

lag ACF

1 0 1.00000

2 1 0.71567

3 2 0.50454

4 3 0.29481

5 4 0.20975

6 5 0.13857

7 6 -0.00202

The empirical ACF values confirm the within-group correlation and indi-
cates that the correlation decreases with lag. As usual, it is more informa-
tive to look at a plot of the empirical ACF, displayed in Figure 8.32 and
obtained with
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FIGURE 8.31. Plot of standardized residuals versus transmembrane pressure for
the heteroscedastic fitted object fm2Dial.gnls.

> plot( ACF( fm2Dial.gnls, form = ~ 1 | Subject),

+ alpha = 0.05 ) # Figure 8.32

The autocorrelation pattern in Figure 8.32 suggests that an AR(1) model,
represented in nlme by the corAR1 class, may be appropriate to describe
the within-group correlation.

> fm3Dial.gnls <-

+ update(fm2Dial.gnls, corr = corAR1(0.716, form = ~ 1 | Subject))

> fm3Dial.gnls

. . .

Coefficients:

Asym.(Intercept) Asym.QB lrc.(Intercept) lrc.QB c0

55.111 8.1999 0.37193 -0.16974 0.21478

Correlation Structure: AR(1)

Formula: ~ 1 | Subject

Parameter estimate(s):

Phi

0.7444

Variance function:

Structure: Power of variance covariate

Formula: ~ pressure

Parameter estimates:

power

0.5723

Degrees of freedom: 140 total; 135 residual

Residual standard error: 3.1844
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FIGURE 8.32. Empirical autocorrelation function corresponding to the standard-
ized residuals of the fm2Dial.gnls fitted object.

The lag-1 empirical autocorrelation is used as initial value for the corAR1.
The variability in the estimates is assessed with the intervals method.

> intervals( fm3Dial.gnls )

. . .

Correlation structure:

lower est. upper

Phi 0.55913 0.7444 0.85886

. . .

The confidence interval on the autocorrelation parameter is bounded away
from zero, suggesting that the AR(1) model provides a significantly better
fit. We confirm this with the likelihood ratio test.
> anova( fm2Dial.gnls, fm3Dial.gnls )

Model df AIC BIC logLik Test L.Ratio p-value

fm2Dial.gnls 1 7 748.47 769.07 -367.24

fm3Dial.gnls 2 8 661.04 684.58 -322.52 1 vs 2 89.433 <.0001

The plot of the empirical ACF for the normalized residuals corresponding
to fm3Dial.gnls, displayed in Figure 8.33, does not show any significant
correlations, indicating that the AR(1) adequately represents the within-
subject dependence in the gnls model for the hemodialyzer data.

The plot of the standardized residuals versus the transmembrane pressure
in Figure 8.34 suggests a certain lack-of-fit for the asymptotic regression
model (8.21): the residuals for the highest two transmembrane pressures
are predominantly negative. This is consistent with the plot of the hemodi-
alyzer data, shown in Figure 5.1, and also with Figure 3 in Vonesh and
Carter (1992), which indicate that, for many subjects, the ultrafiltration
rates decrease for the highest two transmembrane pressures. The asymp-
totic regression model is monotonically increasing in the transmembrane
pressure and cannot properly accommodate the nonmonotonic behavior of
the ultrafiltration rates.
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FIGURE 8.33. Empirical autocorrelation function for the normalized residuals
corresponding to the fm3Dial.gnls fitted object.
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FIGURE 8.34. Plot of standardized residuals versus transmembrane pressure for
the fm3Dial.gnls fitted object.
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The gnls model corresponding to fm3Dial.gnls may be compared to
the best models obtained for the Dialyzer data in §5.2.2 and §5.4, cor-
responding, respectively, to the objects fm2Dial.lme and fm3Dial.gls. To
have comparable fits, we need to first obtain ML versions of fm2Dial.lme

and fm3Dial.gls.

> fm2Dial.lmeML <- update( fm2Dial.lme, method = "ML")

> fm3Dial.glsML <- update( fm3Dial.gls, method = "ML")

As the models are not nested, only the information criterion statistics can
be compared.

> anova( fm2Dial.lmeML, fm3Dial.glsML, fm3Dial.gnls, test = F )

Model df AIC BIC logLik

fm2Dial.lmeML 1 18 651.75 704.70 -307.87

fm3Dial.glsML 2 13 647.56 685.80 -310.78

fm3Dial.gnls 3 8 661.04 684.58 -322.52

The more conservative BIC favors the fm3Dial.gnls model because of the
fewer number of parameters it uses; the more liberal AIC favors
fm3Dial.glsML because of its larger log-likelihood value. In practice, the
choice of the “best model” should take into account other factors besides
the information criteria, such as the interpretability of the parameters.

8.4 Chapter Summary

This chapter describes the nonlinear modeling capabilities available in the
nlme library. A brief review of the nonlinear least-squares function nls in
S is presented and self-starting models for automatically producing start-
ing values for the coefficients in a nonlinear model are introduced and
illustrated. The nlsList function for fitting separate nonlinear regression
models to data partitioned according to the levels of a grouping factor is
described and its use for model building of nonlinear mixed-effects models
illustrated.

Nonlinear mixed-effects models are fitted with the nlme function. Data
from several real-life applications are used to illustrate the various capabil-
ities available in nlme for fitting and analyzing single and multilevel NLME
models. Variance functions and correlation structures to model the within-
group variance–covariance structure are used with nlme in the exact same
way as with lme, the linear mixed-effects modeling function. Several ex-
amples are used to illustrate the use of varFunc and corStruct classes with
nlme.

A new modeling function, gnls, for fitting the extended nonlinear model
with heteroscedastic, correlated errors is introduced. The gnls function can
be regarded as an extended version of nls which allows the use of varFunc
and corStruct objects to model the error variance–covariance structure, or
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as a simplified version of nlme, without random effects. The hemodialyzer
example is used to illustrate the use of gnls and its associated methods.

Exercises

1. Plots of the DNase data in §3.3.2 and in Appendix A.7 suggest a
sigmoidal relationship between the density and log(conc). Because
there are no data points at sufficiently high DNase concentrations to
define the upper part of the curve, the sigmoidal relationship is only
suggested and is not definite.

A common model for this type of assay data is the four-parameter
logistic model available as SSfpl (Appendix C.6).

(a) Create separate fits of the SSfpl model to each run using nlsList.
Note that the display formula, density ~conc | Run, defines the
primary covariate as conc but the model should be fit as a func-
tion of log(conc). You will either need to give explicit arguments
to the SSfpl function or define a new groupedData object with
a formula based on log(conc).

(b) Examine the plot of the residuals versus the fitted values from
this nlsList fit. Does the plot indicate nonconstant variance?

(c) Fit an NLME model to these data using random effects for each
model parameter and a general positive-definite Ψ. Perform the
usual checks on the model using diagnostic plots, summaries,
and intervals. Can the confidence intervals on the variance–
covariance parameters be evaluated?

(d) Davidian and Giltinan (1995, §5.2.4) conclude from a similar
analysis that the variance of the εij increases with increasing
optical density. They estimate a variance function that corre-
sponds to the varPower variance function. Update the previous
fit by adding weights = varPower(). Does this updated model
converge? If not, change the definition of the random effects so
that Ψ is diagonal.

(e) Compare the model fit with the varPower variance function to
one fit without it. Note that if you have fit the model with the
variance function by imposing a diagonal Ψ, you should refit
the model without the variance function but with a diagonal Ψ
before comparing. Does the addition of the varPower variance
function make a significant contribution to the model?

(f) Examine the confidence intervals on your best-fitting model to
this point. Are there parameters that can be modeled as purely
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fixed effects? (In our analysis the standard deviation of the ran-
dom effect for the xmid parameter turned out to be negligible.)
If you determine that some random effects are no longer needed,
remove them and refit the model.

(g) If you have modified the model to reduce the number of random
effects, refit with a general positive-definite Ψ rather than a
diagonal Ψ. Does this fit converge? If so, compare the fits with
diagonal Ψ and general positive-definite Ψ.

(h) Write a report on the analysis, including data plots and diag-
nostic plots where appropriate.

2. As shown in Figure 3.4 (p. 107), the relationship between deltaBP

and log(dose) in the phenybiguanide data PBG is roughly sigmoidal.
There is a strong indication that the effect of the Treatment is to shift
the curve to the right.

(a) Fit separate four-parameter logistic models (SSfpl, Appendix
C.6) to the data from each Treatment within each Rabbit using
nlsList. Recall from §3.2.1 that the primary covariate in the
display formula for PBG is dose but we want the model to be fit as
a function of log(dose). You will either need to specify the model
explicitly or to re-define the display formula for the data. Also
note that the grouping formula should be ~Rabbit/Treatment,
but the grouping in the display formula is ~Rabbit.

(b) Plot the confidence intervals on the coefficients. Which param-
eters appear to be constant across all Rabbit/Treatment combi-
nations? Does there appear to be a systematic shift in the xmid

parameter according to Treatment?

(c) Fit a two-level NLME model with a fixed effect for Treatment on
the xmid parameter and with random effects for Rabbit on the
B parameter and for Treatment within Rabbit on the B and xmid

parameters. Begin with a diagonal Ψ2 matrix. If that model
fit converges, update to a general positive-definite Ψ2 matrix
and compare the two fitted models with anova. Which model is
preferred?

(d) Summarize your preferred model. Is the fixed effect for Treatment
on xmid significant? Also check using the output from intervals.

(e) Plot the augmented predictions from your preferred model. Re-
member that if the display formula for the data has dose as the
primary covariate then you will need to use scales = list(x =

list(log = 2)) to get the symmetric shape of the logistic curve.
Adjust the layout argument for the plot so the panels are aligned
by Rabbit. Do these plots indicate deficiencies in the model?
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(f) Examine residual plots for other possible deficiencies in the model.
Also check plots of the random effects versus covariates to see if
important fixed effects have been omitted.

(g) Is it necessary to use a four-parameter logistic curve? Experi-
ment with fitting the three-parameter logistic model (SSlogis,
Appendix C.7) to see if a comparable fit can be obtained. Check
residual plots from your fitted models and comment.

3. The Glucose2 data described in Appendix A.10 consist of blood glu-
cose levels measured 14 times over a period of 5 hours on 7 volunteers
who took alcohol at time 0. The same experiment was repeated on a
second occasion with the same subjects but with a dietary additive
used for all subjects. These data are analyzed in Hand and Crow-
der (1996, Example 8.4, pp. 118–120), where the following empirical
model relating the expected glucose level to Time is proposed.

glucose = φ1 + φ2Time
3 exp (−φ3Time)

Note that there are two levels of grouping in the data: Subject and
Date within Subject.

(a) Plot the data at the Subject display level (use plot(Glucose2,

display = 1). Do there appear to be systematic differences be-
tween the two dates on which the experiments were conducted
(which could be associated with the dietary supplement)?

(b) There is no self-starting function representing the model for the
glucose level included in the nlme library. Use nlsList with start-
ing values start = c(phi1=5, phi2=-1, phi3=1) (derived from
Hand and Crowder (1996)) to fit separate models for each Subject

and for each Date within Subject. Plot the individual confidence
intervals for each of the two nlsList fits. Verify that phi1 and
phi2 seem to vary significantly for both levels of grouping, but
phi3 does not. (There is an unusual estimate of phi3 for Subject

6, Date 1 but all other confidence intervals overlap.)

(c) Fit a two-level NLME model with random effects for phi1 and
phi2, using as starting values for the fixed effects the estimates
from either of the nlsList fits (start = fixef(object), with
object replaced with the name of the nlsList object). Exam-
ine the confidence intervals on the variance–covariance compo-
nents; what can you say about the precision of the estimated
correlation coefficients?

(d) Refit the NLME model using diagonal Ψq matrices for both
grouping levels and compare the new fit to the previous one
using anova. Investigate if there are random effects that can be
dropped from the model using intervals. If so, refit the model
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with fewer random effects and compare it to the previous fit
using anova. Plot the residuals versus Time and comment on the
apparent adequacy of the empirical model.

(e) Plot the semivariogram of the standardized residuals correspond-
ing to the final NLME fit obtained in the last item. Use Time as
the covariate to define the distances in the semivariogram and
consider only distances≤ 22 (that is, use plot(Variogram(object,
form = ~Time, maxDist = 22))). Notice the increase in the semi-
variogram for smaller distances, which suggests that there the
within-group errors may be correlated.

(f) Hand and Crowder (1996) use a continuous AR1 model for
the within-group errors, with Time as the covariate. Update the
NLME fit adding a continuous AR1 correlation structure on Time

(corr = corCAR1(form = Time). Compare the fits using anova.
Examine the plot of the semivariogram of the normalized resid-
uals for the NLME with corCAR1 correlation structure and com-
ment on the adequacy of the within-group correlation model.

(g) The NLME model used by Hand and Crowder (1996) includes
random effects for phi1 and phi2 only at the Subject level and
uses a corCAR1 correlation structure on Time for the Date within
Subject errors, with errors from different Dates within the same
Subject assumed to be independent. Fit such model using
random = B1 + B2 ~ 1 | Subject,

corr = corCAR1(form = ~Time | Subject/Date)

and compare it to the multilevel NLME model obtained in the
previous item. Which one do you think gives a better fit?

(h) The main objective of the experiment was to determine if there
were significant differences between the blood glucose level pro-
files over time associated with the use of the dietary additive
(which is totally confounded with Dose in this case). Investigate
the significance of the dietary additive by refitting the NLME
model (with corCAR1 correlation) incorporating a “Date effect”
for each fixed effect (use fixed = phi1 + phi2 + phi3 Date).
You will need to give new starting values for the fixed effects
(use the previous fixed effects estimates for the Intercept terms
and 0 for the Date terms). Use summary to assess the significance
of the dietary additive effect; does it seem to make any differ-
ence on the blood glucose levels? Are your conclusions consistent
with the plot of the data?

4. An NLME analysis of the Theoph data is presented in §8.2.1. The
final nlme fit obtained in that section, fm3Theo.nlme, includes random
effects for the lKa and lCl coefficients and a diagonal Ψ.
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(a) Use the gnls function described in §8.3.3 to fit the SSfol model
to the theophylline concentrations with no random effects. Com-
pare this fit to fm3Theo.nlme using anova. Obtain the boxplots of
the residuals by Subject (plot(object, Subject~resid(.))) and
comment on the observed pattern.

(b) Print and plot the ACF of the standardized residuals for the gnls
fit (use form = ~1 | Subject to specify the grouping structure).
The decrease in the ACF with lag suggests that an AR1 model
may be adequate.

(c) Update the gnls fit incorporating an AR1 correlation structure,
using the lag-1 autocorrelation from the ACF output as an initial
estimate for the correlation parameter (corr = corAR1(0.725,

form = ~1 | Subject)). Compare this fit to the previous gnls

fit using anova. Is there significant evidence of autocorrelation?
Examine the plot of the ACF of the normalized residuals. Does
the AR1 model seem adequate?

(d) Compare the gnls fit with AR1 correlation structure to the
fm3Theo.nlme fit of §8.2.1 using anova with the argument test

set to FALSE (why?). Which model seems better?
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Appendix A
Data Used in Examples and Exercises

We have used several sets of data in our examples and exercises. In this
appendix we list all the data sets that are available as the NLMEDATA
library included with the nlme 3.1 distribution and we describe in greater
detail the data sets referenced in the text.

The title of each section in this appendix gives the name of the corre-
sponding groupedData object from the nlme library, followed by a short
description of the data. The formula stored with the data and a short de-
scription of each of the columns is also given.

We have adopted certain conventions for the ordering and naming of
columns in these descriptions. The first column provides the response, the
second column is the primary covariate, if present, and the next column
is the primary grouping factor. Other covariates and grouping factors, if
present, follow. Usually we use lowercase for the names of the response and
the primary covariate. One exception to this rule is the name Time for a
covariate. We try to avoid using the name time because it conflicts with a
standard S function.

Table A.1 lists the groupedData objects in the NLMEDATA library that is
part of the nlme distribution.
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TABLE A.1: Data sets included with the nlme library distribution. The
data sets whose names are shown in bold are described in this appendix.

Alfalfa Yields of three varieties of alfalfa
Assay Laboratory data on a biochemical assay
BodyWeight Rat weight over time for different diets
CO2 Carbon dioxide uptake by grass plants
Cephamadole Pharmacokinetic data
ChickWeight Growth of chicks on different diets
Dialyzer Performance of high-flux hemodialyzers
DNase Assay of DNase
Earthquake Severity of earthquakes
ergoStool Ergometrics experiment with stool types
Fatigue Metal fatique data
Gasoline Gasoline yields for different crude samples
Glucose Glucose levels over time
Glucose2 Glucose levels over time after alcohol ingestion
Gun Naval gun firing data from Hicks (1993)
IGF Assay data on Insulin-like Growth Factor
Indometh Pharmacokinetic data on indomethicin
Loblolly Growth of Loblolly pines
Machines Productivity of workers on machines
MathAchSchool School demographic data for MathAchieve
MathAchieve Mathematics achievement scores
Meat Tenderness of meat
Milk Milk production by diet
Muscle Muscle response by conc of CaCl2
Nitrendipene Assay of nitrendipene
Oats Yield under different fertilizers
Orange Growth of orange trees
Orthodont Orthodontic measurement over time
Ovary Number of large ovarian follicles over time
Oxboys Heights of boys in Oxford, England
Oxide Oxide coating on a semiconductor
PBG Change in blood pressure vs. dose of phenylbiguanide
PBIB A partially balanced incomplete block design
Phenobarb Neonatal pharmacokinetics of phenobarbitol
Pixel X-ray pixel intensities over time
Quinidine Pharmacokinetic study of quinidine
Rail Travel times of ultrasonic waves in railway rails
RatPupWeight Weights of rat pups by litter
Relaxin Assays of relaxin
Remifentanil Pharmacokinetics of remifentanil
Soybean Soybean growth by variety



A.2 Assay—Bioassay on Cell Culture Plate 425

TABLE A.1: (continued)

Spruce Spruce tree growth
Tetracycline1 Pharmacokinetics of tetracycline
Tetracycline2 Pharmacokinetics of tetracycline
Theoph Pharmacokinetics of theophylline
Wafer Current vs. voltage on semiconductor wafers
Wheat Yields by growing conditions
Wheat2 Yields from a randomized complete block design

Other data sets may be included with later versions of the library, which
will be made available at http://nlme.stat.wisc.edu.

A.1 Alfalfa—Split-Plot Experiment on Varieties of
Alfalfa

These data are described in Snedecor and Cochran (1980, §16.15) as an
example of a split-plot design. The treatment structure used in the ex-
periment was a 3×4 full factorial, with three varieties of alfalfa and four
dates of third cutting in 1943. The experimental units were arranged into
six blocks, each subdivided into four plots. The varieties of alfalfa (Cossac,
Ladak, and Ranger) were assigned randomly to the blocks and the dates
of third cutting (None, S1—September 1, S20—September 20, and O7—
October 7) were randomly assigned to the plots. All four dates were used
on each block. The data are presented in Figure A.1.

The display formula for these data is

Yield ~ Date | Block / Variety

based on the columns named:

Yield: the plot yield (T/acre).

Date: the third cutting date—None, S1, S20, or O7.

Block: a factor identifying the block—1 through 6.

Variety: alfalfa variety—Cossac, Ladak, or Ranger.

A.2 Assay—Bioassay on Cell Culture Plate

These data, courtesy of Rich Wolfe and David Lansky from Searle, Inc.,
come from a bioassay run on a 96-well cell culture plate. The assay is per-
formed using a split-block design. The 8 rows on the plate are labeled A–H
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FIGURE A.1. Plot yields in a split-plot experiment on alfalfa varieties and dates
of third cutting.

from top to bottom and the 12 columns on the plate are labeled 1–12 from
left to right. Only the central 60 wells of the plate are used for the bioassay
(the intersection of rows B–G and columns 2–11). There are two blocks in
the design: Block 1 contains columns 2–6 and Block 2 contains columns
7–11. Within each block, six samples are assigned randomly to rows and
five (serial) dilutions are assigned randomly to columns. The response vari-
able is the logarithm of the optical density. The cells are treated with a
compound that they metabolize to produce the stain. Only live cells can
make the stain, so the optical density is a measure of the number of cells
that are alive and healthy. The data are displayed in Figure 4.13 (p. 164).

Columns

The display formula for these data is

logDens ~ 1 | Block

based on the columns named:

logDens: log-optical density.

Block: a factor identifying the block where the wells are measured.

sample: a factor identifying the sample corresponding to the well, vary-
ing from “a” to “f.”
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dilut: a factor indicating the dilution applied to the well, varying from
1 to 5.

A.3 BodyWeight—Body Weight Growth in Rats

Hand and Crowder (1996) describe data on the body weights of rats mea-
sured over 64 days. These data also appear in Table 2.4 of Crowder and
Hand (1990). The body weights of the rats (in grams) are measured on day
1 and every seven days thereafter until day 64, with an extra measurement
on day 44. The experiment started several weeks before “day 1.” There are
three groups of rats, each on a different diet. A plot of the data is presented
in Figure 3.2 (p. 104).

Columns

The display formula for these data is

weight ~ Time | Rat

based on the columns named:

weight: body weight of the rat (grams).

Time: time at which the measurement is made (days).

Rat: a factor identifying the rat whose weight is measured.

Diet: a factor indicating the diet the rat receives.

A.4 Cefamandole—Pharmacokinetics of
Cefamandole

Davidian and Giltinan (1995, §1.1, p. 2) describe data, shown in Figure A.2,
obtained during a pilot study to investigate the pharmacokinetics of the
drug cefamandole. Plasma concentrations of the drug were measured on six
healthy volunteers at 14 time points following an intraveneous dose of 15
mg/kg body weight of cefamandole.

Columns

The display formula for these data is

conc ~ Time | Subject

based on the columns named:

conc: observed plasma concentration of cefamandole (mcg/ml).
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FIGURE A.2. Plasma concentration of cefamandole versus time post-injection
for six healthy volunteers.

Time: time at which the sample was drawn (minutes post-injection).

Subject: a factor giving the subject from which the sample was drawn.

Models

Davidian and Giltinan (1995) use the biexponential model SSbiexp (§C.4,
p. 514) with these data.

A.5 CO2—Carbon Dioxide Uptake

Potvin et al. (1990) describe an experiment on the cold tolerance of a C4

grass species, Echinochloa crus-galli. The CO2 uptake of six plants from
Québec and six plants from Mississippi was measured at several levels
of ambient CO2 concentration. Half the plants of each type were chilled
overnight before the experiment was conducted. The data are shown in
Figure 8.15 (p. 369).

Columns

The display formula for these data is

uptake ~ conc | Plant
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based on the columns named:

uptake: carbon dioxide uptake rate (µmol/m2 sec).

conc: ambient concentration of carbon dioxide (mL/L).

Plant: a factor giving a unique identifier for each plant.

Type: origin of the plant, Québec or Mississippi.

Treatment: treatment, chilled or nonchilled.

Models

Potvin et al. (1990) suggest using a modified form of the asymptotic re-
gression model SSasymp (§C.1, p. 511), which we have coded as SSasympOff

(§C.2, p. 512).

A.6 Dialyzer—High-Flux Hemodialyzer

Vonesh and Carter (1992) describe data measured on high-flux hemodialyz-
ers to assess their in vivo ultrafiltration characteristics. The ultrafiltration
rates (in mL/hr) of 20 high-flux dialyzers were measured at seven different
transmembrane pressures (in dmHg). The in vitro evaluation of the dia-
lyzers used bovine blood at flow rates of either 200 dl/min or 300 dl/min.
The data, shown in Figure 5.1 (p. 215), are also analyzed in Littell et al.
(1996, §8.2).

Columns

The display formula for these data is

rate ~ pressure | Subject

based on the columns named:

rate: hemodialyzer ultrafiltration rate (mL/hr).

pressure: transmembrane pressure (dmHg).

Subject: a factor giving a unique identifier for each subject.

QB: bovine blood flow rate (dL/min)—200 or 300.

index: index of observation within subject—1 through 7.

A.7 DNase—Assay Data for the Protein DNase

Davidian and Giltinan (1995, §5.2.4, p. 134) describe data, shown in Fig-
ure 3.8 (p. 115), obtained during the development of an ELISA assay for
the recombinant protein DNase in rat serum.



430 Appendix A. Data Used in Examples and Exercises

Columns

The display formula for these data is

density ~ conc | Run

based on the columns named:

density: the measured optical density in the assay. Duplicate optical
density measurements were obtained.

conc: the known concentration of the protein.

Run: a factor giving the run from which the data were obtained.

Models

Davidian and Giltinan (1995) use the four-parameter logistic model, SSfpl
(§C.6, p. 517) with these data, modeling the optical density as a logistic
function of the logarithm of the concentration.

A.8 Earthquake—Earthquake Intensity

These data, shown in Figure A.3, are measurements recorded at available
seismometer locations for 23 large earthquakes in western North America
between 1940 and 1980. They were originally given in Joyner and Boore
(1981); are mentioned in Brillinger (1987); and are analyzed in §11.4 of
Davidian and Giltinan (1995).

Columns

The display formula for these data is

accel ~ distance | Quake

based on the columns named:

accel: maximum horizontal acceleration observed (g).

distance: the distance from the seismological measuring station to the
epicenter of the earthquake (km).

Quake: a factor indicating the earthquake on which the measurements
were made.

Richter: the intensity of the earthquake on the Richter scale.

soil: soil condition at the measuring station—either soil or rock.
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FIGURE A.3. Lateral acceleration versus distance from the epicenter for 23 large
earthquakes in western North America. Both the acceleration and the distance
are on a logarithmic scale. Earthquakes of greatest intensity as measured on the
Richter scale are in the uppermost panels.

A.9 ergoStool—Ergometrics Experiment with Stool
Types

Devore (2000, Exercise 11.9, p. 447) cites data from an article in Ergo-
metrics (1993, pp. 519-535) on “The Effects of a Pneumatic Stool and
a One-Legged Stool on Lower Limb Joint Load and Muscular Activity.”
These data are shown in Figure 1.5 (p. 13).

The display formula for these data is

effort ~ Type | Subject
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FIGURE A.4. Blood glucose levels of seven subjects measured over a period of 5
hours on two different occasions. In both dates the subjects took alcohol at time
0, but on the second occasion a dietary additive was used.

based on the columns named:

effort: effort to arise from a stool

Type: a factor giving the stool type

Subject: a factor giving a unique identifier for the subject in the exper-
iment

A.10 Glucose2—Glucose Levels Following Alcohol
Ingestion

Hand and Crowder (1996, Table A.14, pp. 180–181) describe data on the
blood glucose levels measured at 14 time points over 5 hours for 7 volunteers
who took alcohol at time 0. The same experiment was repeated on a second
date with the same subjects but with a dietary additive used for all subjects.
A plot of the data is presented in Figure A.4.

Columns

The display formula for these data is

glucose ~ Time | Subject/Date
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based on the columns named:

weight: blood glucose level (in mg/dl).

Time: time since alcohol ingestion (in min/10).

Subject: a factor identifying the subject whose glucose level is mea-
sured.

Date: a factor indicating the occasion in which the experiment was con-
ducted.

A.11 IGF—Radioimmunoassay of IGF-I Protein

Davidian and Giltinan (1995, §3.2.1, p. 65) describe data, shown in Fig-
ure 4.6 (p. 144), obtained during quality control radioimmunoassays for ten
different lots of radioactive tracer used to calibrate the Insulin-like Growth
Factor (IGF-I) protein concentration measurements.

Columns

The display formula for these data is

conc ~ age | Lot

based on the columns named:

conc: the estimated concentration of IGF-I protein, in ng/ml.

age: the age (in days) of the radioactive tracer.

Lot: a factor giving the radioactive tracer lot.

A.12 Indometh—Indomethicin Kinetics

Kwan et al. (1976) present data on the plasma concentrations of indome-
thicin following intravenous injection. There are six different subjects in the
experiment. The sampling times, ranging from 15 minutes post-injection to
8 hours post-injection, are the same for each subject. The data, presented
in Figure 6.3 (p. 277), are analyzed in Davidian and Giltinan (1995, §2.1)

The display formula for these data is

conc ~ time | Subject

based on the columns named:

conc: observed plasma concentration of indomethicin (mcg/ml).

time: time at which the sample was drawn (hours post-injection).

Subject: a factor indicating the subject from whom the sample is drawn.
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FIGURE A.5. Height of Loblolly pine trees over time

Models

Davidian and Giltinan (1995) use the biexponential model SSbiexp (§C.4,
p. 514) with these data.

A.13 Loblolly—Growth of Loblolly Pine Trees

Kung (1986) presents data, shown in Figure A.5, on the growth of Loblolly
pine trees.

The display formula for these data is

height ~ age | Seed

based on the columns named:

height: height of the tree (ft).

age: age of the tree (yr).

Seed: a factor indicating the seed source for the tree.
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A.14 Machines—Productivity Scores for Machines
and Workers

Data on an experiment to compare three brands of machines used in an in-
dustrial process are presented in Milliken and Johnson (1992, §23.1, p. 285).
Six workers were chosen randomly among the employees of a factory to op-
erate each machine three times. The response is an overall productivity
score taking into account the number and quality of components produced.
These data, shown in Figure 1.9 (p. 22), are analyzed in Milliken and John-
son (1992) with an ANOVA model.

The display formula for these data is

score ~ Machine | Worker

based on the columns named:

score: productivity score.

Machine: a factor identifying the machine brand—A, B, or C.

Worker: a factor giving the unique identifier for each worker.

A.15 Oats—Split-plot Experiment on Varieties of
Oats

These data have been introduced by Yates (1935) as an example of a split-
plot design. The treatment structure used in the experiment was a 3×4
full factorial, with three varieties of oats and four concentrations of nitro-
gen. The experimental units were arranged into six blocks, each with three
whole-plots subdivided into four subplots. The varieties of oats were as-
signed randomly to the whole-plots and the concentrations of nitrogen to
the subplots. All four concentrations of nitrogen were used on each whole-
plot.

The data, presented in Figure 1.20 (p. 47), are analyzed in Venables and
Ripley (1999, §6.11).

The display formula for these data is

yield ~ nitro | Block

based on the columns named:

yield: the subplot yield (bushels/acre).

nitro: nitrogen concentration (cwt/acre)—0.0, 0.2, 0.4, or 0.6.

Block: a factor identifying the block—I through VI.

Variety: oats variety—Golden Rain, Marvellous, or Victory.
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A.16 Orange—Growth of Orange Trees

Draper and Smith (1998, Exercise 24.N, p. 559) present data on the growth
of a group of orange trees. These data are plotted in Figure 8.1 (p. 339).

The display formula for these data is

circumference ~ age | Tree

based on the columns named:

circumference: circumference of the tree (mm)

age: time in days past the arbitrary origin of December 31, 1968.

Tree: a factor identifying the tree on which the measurement is made.

Models

The logistic growth model, SSlogis (§C.7, p. 519) provides a reasonable fit
to these data.

A.17 Orthodont—Orthodontic Growth Data

Investigators at the University of North Carolina Dental School followed
the growth of 27 children (16 males, 11 females) from age 8 until age 14.
Every two years they measured the distance between the pituitary and
the pterygomaxillary fissure, two points that are easily identified on x-ray
exposures of the side of the head. These data are reported in Potthoff and
Roy (1964) and plotted in Figure 1.11 (p. 31).

The display formula for these data is

distance ~ age | Subject

based on the columns named:

distance: the distance from the center of the pituitary to the pterygo-
maxillary fissure (mm).

age: the age of the subject when the measurement is made (years).

Subject: a factor identifying the subject on whom the measurement was
made.

Sex: a factor indicating if the subject is male or female.

Models:

Based on the relationship shown in Figure 1.11 we begin with a simple
linear relationship between distance and age
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A.18 Ovary—Counts of Ovarian Follicles

Pierson and Ginther (1987) report on a study of the number of large ovarian
follicles detected in different mares at several times in their estrus cycles.
These data are shown in Figure 5.10 (p. 240).

The display formula for these data is

follicles ~ Time | Mare

based on the columns named:

follicles: the number of ovarian follicles greater than 10 mm in diam-
eter.

Time: time in the estrus cycle. The data were recorded daily from 3 days
before ovulation until 3 days after the next ovulation. The measure-
ment times for each mare are scaled so that the ovulations for each
mare occur at times 0 and 1.

Mare: a factor indicating the mare on which the measurement is made.

A.19 Oxboys—Heights of Boys in Oxford

These data are described in Goldstein (1987) as data on the height of
a selection of boys from Oxford, England versus a standardized age. We
display the data in Figure 3.1 (p. 99).

The display formula for these data is
height ~ age | Subject

based on the columns named:

height: height of the boy (cm)

age: standardized age (dimensionless)

Subject: a factor giving a unique identifier for each boy in the experi-
ment

Occasion: an ordered factor—the result of converting age from a con-
tinuous variable to a count so these slightly unbalanced data can be
analyzed as balanced.

A.20 Oxide—Variability in Semiconductor
Manufacturing

These data are described in Littell et al. (1996, §4.4, p. 155) as coming “from
a passive data collection study in the semiconductor industry where the ob-
jective is to estimate the variance components to determine the assignable
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causes of the observed variability.” The observed response is the thickness
of the oxide layer on silicon wafers, measured at three different sites of each
of three wafers selected from each of eight lots sampled from the population
of lots. We display the data in Figure 4.14 (p. 168).

The display formula for these data is

Thickness ~ 1 | Lot/Wafer

based on the columns named:

Thickness: thickness of the oxide layer.

Lot: a factor giving a unique identifier for each lot.

Wafer: a factor giving a unique identifier for each wafer within a lot.

A.21 PBG—Effect of Phenylbiguanide on Blood
Pressure

Data on an experiment to examine the effect of a antagonist MDL 72222 on
the change in blood pressure experienced with increasing dosage of phenyl-
biguanide are described in Ludbrook (1994) and analyzed in Venables and
Ripley (1999, §8.8). Each of five rabbits was exposed to increasing doses of
phenylbiguanide after having either a placebo or the HD5-antagonist MDL
72222 administered. The data are shown in Figure 3.4 (p. 107).

The display formula for these data is

deltaBP ~ dose | Rabbit

based on the columns named:

deltaBP: change in blood pressure (mmHg).

dose: dose of phenylbiguanide (µg).

Rabbit: a factor identifying the test animal.

Treatment: a factor identifying whether the observation was made after
administration of placebo or the HD5-antagonist MDL 72222.

Models

The form of the response suggests a logistic model SSlogis (§C.7, p. 519)
for the change in blood pressure as function of the logarithm of the con-
centration of PBG.
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FIGURE A.6. Data on the response in an experiment conducted using fifteen
treatments in fifteen blocks of size four. The responses are shown by block with
different characters indicating different treatments.

A.22 PBIB—A Partially Balanced Incomplete
Block Design

Data from a partially balanced incomplete block design in which there
were fifteen treatments used in fifteen blocks of size four. The blocking is
incomplete in that only a subset of the treatments can be used in each block.
It is partially balanced in that every pair of treatments occurs together in
a block the same number of times.

These data were described in Cochran and Cox (1957, p. 456). They are
also used as data set 1.5.1 in Littell et al. (1996, §1.5.1). The data are
shown in Figure A.6.

The display formula for these data is

response ~ Treatment | Block

based on the columns named:

response: the continuous response in the experiment

Treatment: the treatment factor

Block: the block
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A.23 Phenobarb—Phenobarbitol Kinetics

Data from a pharmacokinetics study of phenobarbital in neonatal infants.
During the first few days of life the infants receive multiple doses of pheno-
barbital for prevention of seizures. At irregular intervals blood samples are
drawn and serum phenobarbital concentrations are determined. The data,
displayed in Figure 6.15 (p. 296), were originally given in Grasela and Donn
(1985) and are analyzed in Boeckmann et al. (1994) and in Davidian and
Giltinan (1995, §6.6).

The display formula for these data is

conc ~ time | Subject

based on the columns named:

conc: phenobarbital concentration in the serum (µg/L).

time: time when the sample is drawn or drug administered (hr).

Subject: a factor identifying the infant.

Wt: birth weight of the infant (kg).

Apgar: the 5-minute Apgar score for the infant. This is an indication of
health of the newborn infant. The scale is 1 – 10.

ApgarInd: a factor indicating whether the 5-minute Apgar score is < 5
or ≥ 5.

dose: dose of drug administered (µg/kg).

Models

A one-compartments open model with intravenous administration and first-
order elimination, described in §6.4, is used for these data

A.24 Pixel—Pixel Intensity in Lymphnodes

These data are from an experiment conducted by Deborah Darien, De-
partment of Medical Sciences, School of Veterinary Medicine, University of
Wisconsin, Madison. The mean pixel intensity of the right and left lymphn-
odes in the axillary region obtained from CT scans of 10 dogs were recorded
over a period of 14 days after intravenous application of a contrast. The
data are shown in Figure 1.17 (p. 42).

The display formula for these data is

pixel ~ day | Dog

based on the columns named:
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pixel: mean pixel intensity of lymphnode in the CT scan.

day: number of days since contrast administration.

Dog: a factor giving the unique identifier for each dog.

Side: a factor indicating the side on which the measurement was made.

A.25 Quinidine—Quinidine Kinetics

Verme, Ludden, Clementi and Harris (1992) analyze routine clinical data on
patients receiving the drug quinidine as a treatment for cardiac arrythmia
(atrial fibrillation of ventricular arrythmias). All patients were receiving
oral quinidine doses. At irregular intervals blood samples were drawn and
serum concentrations of quinidine were determined. These data, shown in
Figure A.7, are analyzed in several publications, including Davidian and
Giltinan (1995, §9.3).

The display formula for these data is

conc ~ time | Subject

based on the columns named:

conc: serum quinidine concentration (mg/L).

time: time (hr) at which the drug was administered or the blood sample
drawn. This is measured from the time the patient entered the study.

Subject: a factor identifying the patient on whom the data were col-
lected.

dose: dose of drug administered (mg). Although there were two dif-
ferent forms of quinidine administered, the doses were adjusted for
differences in salt content by conversion to milligrams of quinidine
base.

interval: when the drug has been given at regular intervals for a suf-
ficiently long period of time to assume steady state behavior, the
interval is recorded.

Age: age of the subject on entry to the study (yr).

Height: height of the subject on entry to the study (in.).

Weight: body weight of the subject (kg).

Race: a factor identifying the race—Caucasian, Black, or Latin.
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FIGURE A.7. Serum concentrations of quinidine in 136 hospitalized patients
under varying dosage regimens versus time since entering the study.

Smoke: a factor giving smoking status at the time of the measurement—
no or yes.

Ethanol: a factor giving ethanol (alcohol) abuse status at the time of
the measurement—none, current, or former.

Heart: a factor indicating congestive heart failure for the subject—
none/mild, moderate, or severe.

Creatinine: a factor in eight levels coding the creatinine clearance and
other measurements. Creatinine clearance is divided into those greater
than 50 mg/min and those less than 50 mg/min.
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glyco: alpha-1 acid glycoprotein concentration (mg/dL). Often mea-
sured at the same time as the quinidine concentration.

Models

A model for these data is described in §8.2.2.

A.26 Rail—Evaluation of Stress in Rails

Devore (2000, Example 10.10, p. 427) cites data from an article in Mate-
rials Evaluation on “a study of travel time for a certain type of wave that
results from longitudinal stress of rails used for railroad track.” The data
are displayed in Figure 1.1 (p. 4).

The display formula for these data is

travel ~ 1 | Rail

based on the columns named:

travel: travel time for ultrasonic head-waves in the rail (nanoseconds).
The value given is the original travel time minus 36,100 nanoseconds.

Rail: a factor giving the number of the rail on which the measurement
was made.

A.27 Soybean—Soybean Leaf Weight over Time

These data, shown in Figure 6.10 (p. 288), are described in Davidian and
Giltinan (1995, §1.1.3, p. 7) as “Data from an experiment to compare
growth patterns of two genotypes of soybeans: Plant Introduction #416937
(P), an experimental strain, and Forrest (F), a commercial variety.”

The display formula for these data is

weight ~ Time | Plot

based on the columns named:

weight: average leaf weight per plant (g).

Time: time the sample was taken (days after planting).

Plot: a factor giving a unique identifier for each plot.

Variety: a factor indicating the variety; Forrest (F) or Plant Introduc-
tion #416937 (P)

Year: the year the plot was planted.
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Models

The form of the response suggests a logistic model, SSlogis ( §C.7, p. 519).

A.28 Spruce—Growth of Spruce Trees

Diggle et al. (1994, Example 1.3, page 5) describe data on the growth of
spruce trees that have been exposed to an ozone-rich atmosphere or to a
normal atmosphere. These data are plotted in Figures A.8–A.10. The
display formula for these data is

logSize ~ days | Tree

based on the columns named:

logSize: the logarithm of an estimate of the volume of the tree trunk

days: number of days since the beginning of the experiment

Tree: a factor giving a unique identifier for each tree

Plot: a factor identifying the plot in which the tree was grown. The
levels of this factor are Ozone1, Ozone2, Normal1, and Normal2.

Treatment a factor indicating whether the tree was grown in an ozone-
rich atmosphere or a normal atmosphere.

A.29 Theoph—Theophylline Kinetics

Boeckmann et al. (1994) report data from a study by Dr. Robert Upton of
the kinetics of the anti-asthmatic drug theophylline. Twelve subjects were
given oral doses of theophylline then serum concentrations were measured
at 11 time points over the next 25 hours. Davidian and Giltinan (1995) also
analyze these data, shown in Figure 8.6 (p. 352).

The display formula for these data is

conc ~ Time | Subject

based on the columns named:

conc: theophylline concentration in the sample (mg/L).

Time: time since drug administration when the sample was drawn (hr).

Subject: a factor identifying the subject.

Wt: weight of the subject (kg).

Dose: dose administered to the subject (mg/kg).
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FIGURE A.8. Growth measures in the logarithm of an estimate of the volume of
the spruce tree trunk versus time. These 27 trees were in the first plot that was
exposed to an ozone-rich atmosphere throughout the experiment
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FIGURE A.9. Growth measures in the logarithm of an estimate of the volume
of the spruce tree trunk versus time. These 27 trees were in the second plot that
was exposed to an ozone-rich atmosphere throughout the experiment
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FIGURE A.10. Growth measures in the logarithm of an estimate of the volume
of the spruce tree trunk versus time. These 25 trees were in the first and second
plots that were exposed to an normal atmosphere throughout the experiment
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Models:

Both Boeckmann et al. (1994) and Davidian and Giltinan (1995) use a two-
compartment open pharmacokinetic model, which we code as SSfol (§C.5,
p. 516), for these data.

A.30 Wafer—Modeling of Analog MOS Circuits

In an experiment conducted at the Microelectronics Division of Lucent
Technologies to study the variability in the manufacturing of analog MOS
circuits, the intensities of the current at five ascending voltages were col-
lected on n-channel devices. Measurements were made on eight sites of each
of ten wafers. Figure 3.11 (p. 118) shows the response curves for each site,
by wafer.

The display formula for these data is

current ~ voltage | Wafer/Site

based on the columns named:

current: the intensity of current (mA).

voltage: the voltage applied to the device (V).

Wafer: a factor giving a unique identifier for each wafer.

Site: a factor giving an identifier for each site within a wafer.

A.31 Wheat2—Wheat Yield Trials

Stroup and Baenziger (1994) report data on an agronomic yield trial to
compare 56 different varieties of wheat. The experimental units were orga-
nized according to a randomized complete block design with four blocks.
All 56 varieties of wheat were used in each block. The latitude and longi-
tude of each experimental unit in the trial were also recorded. The data,
shown in Figure 5.22 (p. 261), are also analyzed in Littell et al. (1996,
§9.6.2).

Columns

The display formula for these data is

yield ~ variety | Block

based on the columns named:

yield: wheat yield.
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variety: a factor giving the unique identifier for each wheat variety.

Block: a factor giving a unique identifier for each block in the experi-
ment.

latitude: latitude of the experimental unit.

longitude: longitude of the experimental unit.



Appendix B
S Functions and Classes

There are over 300 different functions and classes defined in the nlme library.
In this appendix we reproduce the on-line documentation for those func-
tions and classes that are most frequently used in the examples in the
text. The documentation for all the functions and classes in the library is
available with the library.

ACF Autocorrelation Function

ACF(object, maxLag, ...)

Arguments

object Any object from which an autocorrelation function
can be obtained. Generally an object resulting from
a model fit, from which residuals can be extracted.

maxLag Maximum lag for which the autocorrelation should
be calculated.

... Some methods for this generic require additional argu-
ments.

Description

This function is generic; method functions can be written to handle
specific classes of objects. Classes that already have methods for this
function include gls and lme.
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Value

Will depend on the method function used; see the appropriate docu-
mentation.

See Also

ACF.gls, ACF.lme

ACF.lme Autocorrelation Function for lme Residuals

ACF(object, maxLag, resType)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

maxLag An optional integer giving the maximum lag for which
the autocorrelation should be calculated. Defaults to
maximum lag in the within-group residuals.

resType An optional character string specifying the type of
residuals to be used. If "response", the “raw” resid-
uals (observed – fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by
the corresponding standard errors) are used; else, if
"normalized", the normalized residuals (standard-
ized residuals premultiplied by the inverse square-
root factor of the estimated error correlation matrix)
are used. Partial matching of arguments is used, so
only the first character needs to be provided. Defaults
to "pearson".

Description

This method function calculates the empirical autocorrelation func-
tion (Box et al., 1994) for the within-group residuals from an lme fit.
The autocorrelation values are calculated using pairs of residuals within
the innermost group level. The autocorrelation function is useful for in-
vestigating serial correlation models for equally spaced data.

Value

A data frame with columns lag and ACF representing, respectively, the
lag between residuals within a pair and the corresponding empirical
autocorrelation. The returned value inherits from class ACF.
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See Also

ACF.gls, plot.ACF

Examples

fm1 <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

random = ~ sin(2*pi*Time) | Mare)

ACF(fm1, maxLag = 11)

anova.lme Compare Likelihoods of Fitted Objects

anova(object, ..., test, type, adjustSigma, Terms, L,
verbose)

Arguments

object A fitted model object inheriting from class lme,
representing a mixed-effects model.

... Other optional fitted model objects inheriting from
classes gls, gnls, lm, lme, lmList, nlme, nlsList,
or nls.

test An optional logical value controlling whether likeli-
hood ratio tests should be used to compare the fitted
models represented by object and the objects in ....
Defaults to TRUE.

type An optional character string specifying the type of
sum of squares to be used in F-tests for the terms in
the model. If "sequential", the sequential sum of
squares obtained by including the terms in the order
they appear in the model is used; else, if "marginal",
the marginal sum of squares obtained by deleting a
term from the model at a time is used. This argu-
ment is only used when a single fitted object is passed
to the function. Partial matching of arguments is
used, so only the first character needs to be provided.
Defaults to "sequential".

adjustSigma An optional logical value. If TRUE and the estimation
method used to obtain object was maximum like-
lihood, the residual standard error is multiplied by√

nobs/(nobs − npar), converting it to a REML-like
estimate. This argument is only used when a sin-
gle fitted object is passed to the function. Default
is TRUE.
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Terms An optional integer or character vector specifying
which terms in the model should be jointly tested to
be zero using a Wald F-test. If given as a character
vector, its elements must correspond to term names;
else, if given as an integer vector, its elements must
correspond to the order in which terms are included
in the model. This argument is only used when a sin-
gle fitted object is passed to the function. Default is
NULL.

L An optional numeric vector or array specifying linear
combinations of the coefficients in the model that
should be tested to be zero. If given as an array,
its rows define the linear combinations to be tested.
If names are assigned to the vector elements (array
columns), they must correspond to names of the co-
efficients and will be used to map the linear com-
bination(s) to the coefficients; else, if no names are
available, the vector elements (array columns) are as-
sumed in the same order as the coefficients appear in
the model. This argument is only used when a sin-
gle fitted object is passed to the function. Default is
NULL.

verbose An optional logical value. If TRUE, the calling se-
quences for each fitted model object are printed with
the rest of the output, being omitted if verbose =
FALSE. Defaults to FALSE.

Description

When only one fitted model object is present, a data frame with the
sums of squares, numerator degrees of freedom, denominator degrees
of freedom, F-values, and p-values for Wald tests for the terms in the
model (when Terms and L are NULL), a combination of model terms
(when Terms in not NULL), or linear combinations of the model coef-
ficients (when L is not NULL). Otherwise, when multiple fitted objects
are being compared, a data frame with the degrees of freedom, the (re-
stricted) log-likelihood, the Akaike Information Criterion (AIC), and
the Bayesian Information Criterion (BIC) of each object is returned.
If test=TRUE, whenever two consecutive objects have different number
of degrees of freedom, a likelihood ratio statistic, with the associated
p-value is included in the returned data frame.

Value

A data frame inheriting from class anova.lme.
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Note

Likelihood comparisons are not meaningful for objects fit using
restricted maximum likelihood and with different fixed effects.

See Also

gls, gnls, nlme, lme, AIC, BIC, print.anova.lme

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

anova(fm1)

fm2 <- update(fm1, random = pdDiag(~age))

anova(fm1, fm2)

coef.lme Extract lme Coefficients

coef(object, augFrame, level, data, which, FUN,
omitGroupingFactor)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

augFrame An optional logical value. If TRUE, the returned data
frame is augmented with variables defined in data;
else, if FALSE, only the coefficients are returned.
Defaults to FALSE.

level An optional positive integer giving the level of group-
ing to be used in extracting the coefficients from an
object with multiple nested grouping levels. Defaults
to the highest or innermost level of grouping.

data An optional data frame with the variables to be used
for augmenting the returned data frame when
augFrame = TRUE. Defaults to the data frame used
to fit object.

which An optional positive integer or character vector spec-
ifying which columns of data should be used in the
augmentation of the returned data frame. Defaults
to all columns in data.
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FUN An optional summary function or a list of summary
functions to be applied to group-varying variables,
when collapsing data by groups. Group-invariant vari-
ables are always summarized by the unique value that
they assume within that group. If FUN is a single func-
tion it will be applied to each noninvariant variable
by group to produce the summary for that variable. If
FUN is a list of functions, the names in the list should
designate classes of variables in the frame such as
ordered, factor, or numeric. The indicated func-
tion will be applied to any group-varying variables of
that class. The default functions to be used are mean
for numeric factors, and Mode for both factor and
ordered. The Mode function, defined internally in
gsummary, returns the modal or most popular value
of the variable. It is different from the mode function
that returns the S-language mode of the variable.

omitGroupingFactor

An optional logical value. When TRUE the grouping
factor itself will be omitted from the groupwise sum-
mary of data, but the levels of the grouping factor
will continue to be used as the row names for the
returned data frame. Defaults to FALSE.

Description

The estimated coefficients at level i are obtained by adding together the
fixed-effects estimates and the corresponding random-effects estimates
at grouping levels less or equal to i. The resulting estimates are returned
as a data frame, with rows corresponding to groups and columns to
coefficients. Optionally, the returned data frame may be augmented
with covariates summarized over groups.

Value

A data frame inheriting from class coef.lme with the estimated coeffi-
cients at level level and, optionally, other covariates summarized over
groups. The returned object also inherits from classes ranef.lme and
data.frame.

See Also

lme, fixef.lme, ranef.lme, plot.ranef.lme, gsummary

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
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coef(fm1)

coef(fm1, augFrame = TRUE)

coef.lmList Extract lmList Coefficients

coef(object, augFrame, data, which, FUN,
omitGroupingFactor)

Arguments

object An object inheriting from class lmList, representing
a list of lm objects with a common model.

augFrame An optional logical value. If TRUE, the returned data
frame is augmented with variables defined in the data
frame used to produce object; else, if FALSE, only
the coefficients are returned. Defaults to FALSE.

data An optional data frame with the variables to be used
for augmenting the returned data frame when
augFrame = TRUE. Defaults to the data frame used
to fit object.

which An optional positive integer or character vector spec-
ifying which columns of the data frame used to pro-
duce object should be used in the augmentation of
the returned data frame. Defaults to all variables in
the data.

FUN An optional summary function or a list of summary
functions to be applied to group-varying variables,
when collapsing the data by groups. Group-invariant
variables are always summarized by the unique value
that they assume within that group. If FUN is a sin-
gle function it will be applied to each noninvariant
variable by group to produce the summary for that
variable. If FUN is a list of functions, the names in
the list should designate classes of variables in the
frame such as ordered, factor, or numeric. The in-
dicated function will be applied to any group-varying
variables of that class. The default functions to be
used are mean for numeric factors, and Mode for both
factor and ordered. The Mode function, defined in-
ternally in gsummary, returns the modal or most pop-
ular value of the variable. It is different from the
mode function that returns the S-language mode of
the variable.
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omitGroupingFactor

An optional logical value. When TRUE the grouping
factor itself will be omitted from the groupwise sum-
mary of data but the levels of the grouping factor
will continue to be used as the row names for the
returned data frame. Defaults to FALSE.

Description

The coefficients of each lm object in the object list are extracted and
organized into a data frame, with rows corresponding to the lm com-
ponents and columns corresponding to the coefficients. Optionally, the
returned data frame may be augmented with covariates summarized
over the groups associated with the lm components.

Value

A data frame inheriting from class coef.lmList with the estimated co-
efficients for each lm component of object and, optionally, other co-
variates summarized over the groups corresponding to the lm compo-
nents. The returned object also inherits from classes ranef.lmList and
data.frame.

See Also

lmList, fixed.effects.lmList, ranef.lmList,
plot.ranef.lmList, gsummary

Examples

fm1 <- lmList(distance ~ age|Subject, data = Orthodont)

coef(fm1)

coef(fm1, augFrame = TRUE)

fitted.lme Extract lme Fitted Values

fitted(object, level, asList)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

level An optional integer vector giving the level(s) of group-
ing to be used in extracting the fitted values from
object. Level values increase from outermost to in-
nermost grouping, with level zero corresponding to
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the population fitted values. Defaults to the highest
or innermost level of grouping.

asList An optional logical value. If TRUE and a single value
is given in level, the returned object is a list with
the fitted values split by groups; else the returned
value is either a vector or a data frame, according to
the length of level. Defaults to FALSE.

Description

The fitted values at level i are obtained by adding together the popula-
tion-fitted values (based only on the fixed-effects estimates) and the
estimated contributions of the random effects to the fitted values at
grouping levels less or equal to i. The resulting values estimate the
best linear unbiased predictions (BLUPs) at level i.

Value

If a single level of grouping is specified in level, the returned value is
either a list with the fitted values split by groups (asList = TRUE) or
a vector with the fitted values (asList = FALSE); else, when multiple
grouping levels are specified in level, the returned object is a data
frame with columns given by the fitted values at different levels and
the grouping factors.

See Also

lme, residuals.lme

Examples

fm1 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)

fitted(fm1, level = 0:1)

fixef Extract Fixed Effects

fixef(object, ...)
fixed.effects(object, ...)

Arguments

object Any fitted model object from which fixed-effects
estimates can be extracted.

... Some methods for this generic function require addi-
tional arguments.
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Description

This function is generic; method functions can be written to handle
specific classes of objects. Classes that already have methods for this
function include lmList and lme.

Value

Will depend on the method function used; see the appropriate docu-
mentation.

See Also

fixef.lmList, fixef.lme

gapply Apply a Function by Groups

gapply(object, which, FUN, form, level, groups, ...)

Arguments

object An object to which the function will be applied, usu-
ally a groupedData object or a data.frame. Must
inherit from class data.frame.

which An optional character or positive integer vector spec-
ifying which columns of object should be used with
FUN. Defaults to all columns in object.

FUN Function to apply to the distinct sets of rows of the
data frame object defined by the values of groups.

form An optional one-sided formula that defines the groups.
When this formula is given the right-hand side is eval-
uated in object, converted to a factor if necessary,
and the unique levels are used to define the groups.
Defaults to formula(object).

level An optional positive integer giving the level of group-
ing to be used in an object with multiple nested
grouping levels. Defaults to the highest or innermost
level of grouping.

groups An optional factor that will be used to split the rows
into groups. Defaults to getGroups(object, form,
level).

... Optional additional arguments to the summary func-
tion FUN. Often it is helpful to specify na.rm = TRUE.
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Description

Applies the function to the distinct sets of rows of the data frame
defined by groups.

Value

Returns a data frame with as many rows as there are levels in the
groups argument.

See Also

gsummary

Examples

## Find number of nonmissing "conc" observations for each Subject

gapply( Quinidine, FUN = function(x) sum(!is.na(x$conc)) )

getGroups Extract Grouping Factors from an Object

getGroups(object, form, level, data)

Arguments

object Any object.
form An optional formula with a conditioning expression

on its right hand side (i.e., an expression involving
the | operator). Defaults to formula(object).

level A positive integer vector with the level(s) of grouping
to be used when multiple nested levels of grouping are
present. This argument is optional for most methods
of this generic function and defaults to all levels of
nesting.

data A data frame in which to interpret the variables named
in form. Optional for most methods.

Description

This function is generic; method functions can be written to handle
specific classes of objects. Classes that already have methods for this
function include corStruct, data.frame, gls, lme, lmList, and varFunc.

Value

Will depend on the method function used; see the appropriate docu-
mentation.
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See Also

getGroupsFormula, getGroups.data.frame, getGroups.gls,
getGroups.lmList, getGroups.lme

gls Fit Linear Model Using Generalized Least Squares

gls(model, data, correlation, weights, subset, method,
na.action, control, verbose)

Arguments

model A two-sided linear formula object describing the
model, with the response on the left of a ˜ opera-
tor and the terms, separated by + operators, on the
right.

data An optional data frame containing the variables
named in model, correlation, weights, and subset.
By default the variables are taken from the environ-
ment from which gls is called.

correlation An optional corStruct object describing the within-
group correlation structure. See the documentation
of corClasses for a description of the available
corStruct classes. If a grouping variable is to be used,
it must be specified in the form argument to the
corStruct constructor. Defaults to NULL, correspond-
ing to uncorrelated errors.

weights An optional varFunc object or one-sided formula de-
scribing the within-group heteroscedasticity structure.
If given as a formula, it is used as the argument to
varFixed, corresponding to fixed variance weights.
See the documentation on varClasses for a descrip-
tion of the available varFunc classes. Defaults to NULL,
corresponding to homoscesdatic errors.

subset An optional expression indicating which subset of the
rows of data should be used in the fit. This can be a
logical vector, or a numeric vector indicating which
observation numbers are to be included, or a char-
acter vector of the row names to be included. All
observations are included by default.

method A character string. If "REML" the model is fit by max-
imizing the restricted log-likelihood. If "ML" the log-
likelihood is maximized. Defaults to "REML".
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na.action A function that indicates what should happen when
the data contain NAs. The default action (na.fail)
causes gls to print an error message and terminate
if there are any incomplete observations.

control A list of control values for the estimation algorithm
to replace the default values returned by the function
glsControl. Defaults to an empty list.

verbose An optional logical value. If TRUE information on the
evolution of the iterative algorithm is printed. De-
fault is FALSE.

Description

This function fits a linear model using generalized least squares. The
errors are allowed to be correlated and/or have unequal variances.

Value

An object of class gls representing the linear model fit. Generic func-
tions such as print, plot, and summary have methods to show the
results of the fit. See glsObject for the components of the fit. The
functions resid, coef, and fitted can be used to extract some of its
components.

References

The different correlation structures available for the correlation ar-
gument are described in Box et al. (1994), Littell et al. (1996), and
Venables and Ripley (1999). The use of variance functions for linear
and nonlinear models is presented in detail in Carroll and Ruppert
(1988) and Davidian and Giltinan (1995).

See Also

glsControl, glsObject, varFunc, corClasses, varClasses

Examples

# AR(1) errors within each Mare

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

correlation = corAR1(form = ~ 1 | Mare))

# variance increases as a power of the absolute fitted values

fm2 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

weights = varPower())
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gnls
Fit Nonlinear Model Using Generalized Least

Squares

gnls(model, data, params, start, correlation, weights,
subset, na.action, naPattern, control, verbose)

Arguments

model A two-sided formula object describing the model, with
the response on the left of a ~ operator and a non-
linear expression involving parameters and covariates
on the right. If data is given, all names used in the
formula should be defined as parameters or variables
in the data frame.

data An optional data frame containing the variables used
in model, correlation, weights, subset, and na-
Pattern. By default the variables are taken from the
environment from which gnls is called.

params An optional two-sided linear formula of the form
p1+· · · +pn~x1+· · · +xm, or list of two-sided formulas of
the form p1~x1+· · · +xm, with possibly different mod-
els for each parameter. The p1,...,pn represent pa-
rameters included on the right-hand side of model
and x1+· · · +xm define a linear model for the parame-
ters (when the left-hand side of the formula contains
several parameters, they are all assumed to follow
the same linear model described by the right-hand
side expression). A 1 on the right-hand side of the
formula(s) indicates a single fixed effect for the cor-
responding parameter(s). By default, the parameters
are obtained from the names of start.

start An optional named list, or numeric vector, with the
initial values for the parameters in model. It can be
omitted when a selfStarting function is used in
model, in which case the starting estimates will be
obtained from a single call to the nls function.

correlation An optional corStruct object describing the within-
group correlation structure. See the documentation
of corClasses for a description of the available
corStruct classes. If a grouping variable is to be used,
it must be specified in the form argument to the
corStruct constructor. Defaults to NULL, correspond-
ing to uncorrelated errors.
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weights An optional varFunc object or one-sided formula de-
scribing the within-group heteroscedastic structure.
If given as a formula, it is used as the argument to
varFixed, corresponding to fixed variance weights.
See the documentation on varClasses for a descrip-
tion of the available varFunc classes. Defaults to NULL,
corresponding to homoscesdatic errors.

subset An optional expression indicating which subset of the
rows of data should be used in the fit. This can be a
logical vector, or a numeric vector indicating which
observation numbers are to be included, or a char-
acter vector of the row names to be included. All
observations are included by default.

na.action A function that indicates what should happen when
the data contain NAs. The default action (na.fail)
causes gnls to print an error message and terminate
if there are any incomplete observations.

naPattern An expression or formula object, specifying which re-
turned values are to be regarded as missing.

control A list of control values for the estimation algorithm
to replace the default values returned by the function
gnlsControl. Defaults to an empty list.

verbose An optional logical value. If TRUE information on the
evolution of the iterative algorithm is printed. De-
fault is FALSE.

Description

This function fits a nonlinear model using generalized least squares.
The errors are allowed to be correlated and/or have unequal variances.

Value

An object of class gnls, also inheriting from class gls, representing the
nonlinear model fit. Generic functions such as print, plot and summary
have methods to show the results of the fit. See gnlsObject for the
components of the fit. The functions resid, coef, and fitted can be
used to extract some of its components.

References

The different correlation structures available for the correlation ar-
gument are described in Box et al. (1994), Littell et al. (1996), and
Venables and Ripley (1999). The use of variance functions for linear
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and nonlinear models is presented in detail in Carroll and Ruppert
(1988) and Davidian and Giltinan (1995).

See Also

gnlsControl, gnlsObject, varFunc, corClasses, varClasses

Examples

# variance increases with a power of the absolute fitted values

fm1 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,

weights = varPower())

# errors follow an auto-regressive process of order 1

fm2 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,

correlation = corAR1())

groupedData Construct a groupedData Object

groupedData(formula, data, order.groups, FUN, outer, inner,
labels, units)

Arguments

formula A formula of the form resp ˜ cov | group where
resp is the response, cov is the primary covariate,
and group is the grouping factor. The expression 1
can be used for the primary covariate when there is
no other suitable candidate. Multiple nested group-
ing factors can be listed separated by the / symbol as
in fact1/fact2. In an expression like this the fact2
factor is nested within the fact1 factor.

data A data frame in which the expressions in formula
can be evaluated. The resulting groupedData object
will consist of the same data values in the same order,
but with additional attributes.

order.groups An optional logical value, or list of logical values, in-
dicating if the grouping factors should be converted
to ordered factors according to the function FUN ap-
plied to the response from each group. If multiple
levels of grouping are present, this argument can be
either a single logical value (which will be repeated
for all grouping levels) or a list of logical values. If
no names are assigned to the list elements, they are
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assumed in the same order as the group levels (outer-
most to innermost grouping). Ordering within a level
of grouping is done within the levels of the grouping
factors which are outer to it. Changing the grouping
factor to an ordered factor does not affect the order-
ing of the rows in the data frame, but it does affect
the order of the panels in a trellis display of the data
or models fitted to the data. Defaults to TRUE.

FUN An optional summary function that will be applied
to the values of the response for each level of the
grouping factor, when order.groups = TRUE, to de-
termine the ordering. Defaults to the max function.

outer An optional one-sided formula, or list of one-sided
formulas, indicating covariates that are outer to the
grouping factor(s). If multiple levels of grouping are
present, this argument can be either a single one-
sided formula, or a list of one-sided formulas. If no
names are assigned to the list elements, they are as-
sumed in the same order as the group levels (out-
ermost to innermost grouping). An outer covariate
is invariant within the sets of rows defined by the
grouping factor. Ordering of the groups is done in
such a way as to preserve adjacency of groups with
the same value of the outer variables. When plotting
a groupedData object, the argument outer = TRUE
causes the panels to be determined by the outer for-
mula. The points within the panels are associated by
level of the grouping factor. Defaults to NULL, mean-
ing that no outer covariates are present.

inner An optional one-sided formula, or list of one-sided
formulas, indicating covariates that are inner to the
grouping factor(s). If multiple levels of grouping are
present, this argument can be either a single one-
sided formula, or a list of one-sided formulas. If no
names are assigned to the list elements, they are as-
sumed in the same order as the group levels (outer-
most to innermost grouping). An inner covariate can
change within the sets of rows defined by the group-
ing factor. An inner formula can be used to associate
points in a plot of a groupedData object. Defaults to
NULL, meaning that no inner covariates are present.

labels An optional list of character strings giving labels for
the response and the primary covariate. The label
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for the primary covariate is named x and that for the
response is named y. Either label can be omitted.

units An optional list of character strings giving the units
for the response and the primary covariate. The units
string for the primary covariate is named x and that
for the response is named y. Either units string can
be omitted.

Description

An object of the groupedData class is constructed from the formula and
data by attaching the formula as an attribute of the data, along with
any of outer, inner, labels, and units that are given. If
order.groups is TRUE the grouping factor is converted to an ordered
factor with the ordering determined by FUN. Depending on the num-
ber of grouping levels and the type of primary covariate, the returned
object will be of one of three classes: nfnGroupedData—numeric co-
variate, single level of nesting; nffGroupedData—factor covariate, single
level of nesting; and nmGroupedData—multiple levels of nesting. Sev-
eral modeling and plotting functions can use the formula stored with
a groupedData object to construct default plots and models.

Value

An object of one of the classes nfnGroupedData, nffGroupedData, or nm-
GroupedData, also inheriting from classes groupedData and data.frame.

See Also

formula, gapply, gsummary, lme

Examples

Orth.new <- # create a new copy of the groupedData object

groupedData( distance ~ age | Subject,

data = as.data.frame( Orthodont ),

FUN = mean,

outer = ~ Sex,

labels = list(x = "Age",

y = "Distance from pituitary to pterygomaxillary fissure"),

units = list( x = "(yr)", y = "(mm)") )

plot( Orth.new ) # trellis plot by Subject

formula( Orth.new ) # extractor for the formula

gsummary( Orth.new ) # apply summary by Subject

fm1 <- lme( Orth.new ) # fixed and groups formulae extracted

# from object
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gsummary Summarize by Groups

gsummary(object, FUN, omitGroupingFactor, form, level,
groups, invariantsOnly, ...)

Arguments

object An object to be summarized, usually a groupedData
object or a data.frame.

FUN An optional summary function or a list of summary
functions to be applied to each variable in the frame.
The function or functions are applied only to vari-
ables in object that vary within the groups defined
by groups. Invariant variables are always summa-
rized by group using the unique value that they as-
sume within that group. If FUN is a single function
it will be applied to each noninvariant variable by
group to produce the summary for that variable. If
FUN is a list of functions, the names in the list should
designate classes of variables in the frame such as
ordered, factor, or numeric. The indicated func-
tion will be applied to any non-invariant variables of
that class. The default functions to be used are mean
for numeric factors, and Mode for both factor and
ordered. The Mode function, defined internally in
gsummary, returns the modal or most popular value
of the variable. It is different from the mode function
that returns the S-language mode of the variable.

omitGroupingFactor

An optional logical value. When TRUE the grouping
factor itself will be omitted from the groupwise sum-
mary, but the levels of the grouping factor will con-
tinue to be used as the row names for the data frame
that is produced by the summary. Defaults to FALSE.

form An optional one-sided formula that defines the groups.
When this formula is given, the right-hand side is
evaluated in object, converted to a factor if neces-
sary, and the unique levels are used to define the
groups. Defaults to formula(object).

level An optional positive integer giving the level of group-
ing to be used in an object with multiple nested
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grouping levels. Defaults to the highest or innermost
level of grouping.

groups An optional factor that will be used to split the rows
into groups. Defaults to getGroups(object, form,
level).

invariantsOnly

An optional logical value. When TRUE only those co-
variates that are invariant within each group will
be summarized. The summary value for the group
is always the unique value taken on by that covari-
ate within the group. The columns in the summary
are of the same class as the corresponding columns
in object. By definition, the grouping factor itself
must be an invariant. When combined with omit-
GroupingFactor = TRUE, this option can be used to
discover is there are invariant covariates in the data
frame. Defaults to FALSE.

... Optional additional arguments to the summary func-
tions that are invoked on the variables by group.
Often it is helpful to specify na.rm = TRUE.

Description

Provide a summary of the variables in a data frame by groups of rows.
This is most useful with a groupedData object to examine the variables
by group.

Value

A data.frame with one row for each level of the grouping factor. The
number of columns is at most the number of columns in object.

See Also

summary, groupedData, getGroups

Examples

gsummary( Orthodont ) # default summary by Subject

## gsummary with invariantsOnly = TRUE and

## omitGroupingFactor = TRUE determines whether there

## are covariates like Sex that are invariant within

## the repeated observations on the same Subject.

gsummary( Orthodont, inv = TRUE, omit = TRUE )
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intervals Confidence Intervals on Coefficients

intervals(object, level, ...)

Arguments

object A fitted model object from which parameter esti-
mates can be extracted.

level An optional numeric value for the interval confidence
level. Defaults to 0.95.

... Some methods for the generic may require additional
arguments.

Description

Confidence intervals on the parameters associated with the model rep-
resented by object are obtained. This function is generic; method func-
tions can be written to handle specific classes of objects. Classes which
already have methods for this function include: gls, lme, and lmList.

Value

Will depend on the method function used; see the appropriate docu-
mentation.

See Also

intervals.gls, intervals.lme, intervals.lmList

intervals.lme Confidence Intervals on lme Parameters

intervals(object, level, which)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

level An optional numeric value with the confidence level
for the intervals. Defaults to 0.95.
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which An optional character string specifying the subset of
parameters for which to construct the confidence in-
tervals. Possible values are "all" for all parameters,
"var-cov" for the variance–covariance parameters
only, and "fixed" for the fixed effects only. Defaults
to "all".

Description

Approximate confidence intervals for the parameters in the linear mixed-
effects model represented by object are obtained, using a normal ap-
proximation to the distribution of the (restricted) maximum likelihood
estimators (the estimators are assumed to have a normal distribution
centered at the true parameter values and with covariance matrix equal
to the negative inverse Hessian matrix of the (restricted) log-likelihood
evaluated at the estimated parameters). Confidence intervals are ob-
tained in an unconstrained scale first, using the normal approximation,
and, if necessary, transformed to the constrained scale. The pdNatural
parametrization is used for general positive-definite matrices.

Value

A list with components given by data frames with rows correspond-
ing to parameters and columns lower, est., and upper representing,
respectively, lower confidence limits, the estimated values, and upper
confidence limits for the parameters. Possible components are:

fixed Fixed effects, only present when which is not equal
to "var-cov".

reStruct Random-effects variance–covariance parameters, only
present when which is not equal to "fixed".

corStruct Within-group correlation parameters, only present
when which is not equal to "fixed" and a correlation
structure is used in object.

varFunc Within-group variance function parameters, only pre-
sent when which is not equal to "fixed" and a vari-
ance function structure is used in object.

sigma Within-group standard deviation.

See Also

lme, print.intervals.lme, pdNatural

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

intervals(fm1)
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intervals.lmList Confidence Intervals on lmList Coefficients

intervals(object, level, pool)

Arguments

object An object inheriting from class lmList, representing
a list of lm objects with a common model.

level An optional numeric value with the confidence level
for the intervals. Defaults to 0.95.

pool An optional logical value indicating whether a pooled
estimate of the residual standard error should be
used. Default is attr(object, "pool").

Description

Confidence intervals on the linear model coefficients are obtained for
each lm component of object and organized into a three-dimensional
array. The first dimension corresponding to the names of the object
components. The second dimension is given by lower, est., and upper
corresponding, respectively, to the lower confidence limit, estimated
coefficient, and upper confidence limit. The third dimension is given
by the coefficients names.

Value

A three-dimensional array with the confidence intervals and estimates
for the coefficients of each lm component of object.

See Also

lmList, plot.intervals.lmList

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)

intervals(fm1)
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lme Linear Mixed-Effects Models

lme(fixed, data, random, correlation, weights, subset,
method, na.action, control)

Arguments

fixed A two-sided linear formula object describing the fixed-
effects part of the model, with the response on the left
of a ˜ operator and the terms, separated by + opera-
tors, on the right, an lmList object, or a grouped-
Data object. The method functions lme.lmList and
lme.groupedData are documented separately.

data An optional data frame containing the variables
named in fixed, random, correlation, weights, and
subset. By default the variables are taken from the
environment from which lme is called.

random Optionally, any of the following: (i) a one-sided for-
mula of the form ~x1+· · · +xn | g1/· · · /gm, with
x1+· · · +xn specifying the model for the random ef-
fects and g1/· · · /gm the grouping structure (m may
be equal to 1, in which case no / is required). The
random-effects formula will be repeated for all levels
of grouping, in the case of multiple levels of grouping;
(ii) a list of one-sided formulas of the form ~x1+· · · +xn
| g, with possibly different random-effects models for
each grouping level. The order of nesting will be as-
sumed the same as the order of the elements in the
list; (iii) a one-sided formula of the form ~x1+· · · +xn,
or a pdMat object with a formula (i.e., a non-NULL
value for formula(object)), or a list of such formu-
las or pdMat objects. In this case, the grouping struc-
ture formula will be derived from the data used to fit
the linear mixed-effects model, which should inherit
from class groupedData; (iv) a named list of formulas
or pdMat objects as in (iii), with the grouping fac-
tors as names. The order of nesting will be assumed
the same as the order of the order of the elements in
the list; (v) an reStruct object. See the documenta-
tion on pdClasses for a description of the available
pdMat classes. Defaults to a formula consisting of the
right-hand side of fixed.
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correlation An optional corStruct object describing the within-
group correlation structure. See the documentation
of corClasses for a description of the available
corStruct classes. Defaults to NULL, corresponding to
no within-group correlations.

weights An optional varFunc object or one-sided formula de-
scribing the within-group heteroscedasticity structure.
If given as a formula, it is used as the argument to
varFixed, corresponding to fixed variance weights.
See the documentation on varClasses for a descrip-
tion of the available varFunc classes. Defaults to NULL,
corresponding to homocesdatic within-group errors.

subset An optional expression indicating the subset of the
rows of data that should be used in the fit. This can
be a logical vector, or a numeric vector indicating
which observation numbers are to be included, or a
character vector of the row names to be included. All
observations are included by default.

method A character string. If "REML" the model is fit by max-
imizing the restricted log-likelihood. If "ML" the log-
likelihood is maximized. Defaults to "REML".

na.action A function that indicates what should happen when
the data contain NAs. The default action (na.fail)
causes lme to print an error message and terminate
if there are any incomplete observations.

control A list of control values for the estimation algorithm
to replace the default values returned by the function
lmeControl. Defaults to an empty list.

Description

This generic function fits a linear mixed-effects model in the formu-
lation described in Laird and Ware (1982), but allowing for nested
random effects. The within-group errors are allowed to be correlated
and/or have unequal variances.

Value

An object of class lme representing the linear mixed-effects model fit.
Generic functions such as print, plot and summary have methods to
show the results of the fit. See lmeObject for the components of the
fit. The functions resid, coef, fitted, fixef, and ranef can be used
to extract some of its components.
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See Also

lmeControl, lme.lmList, lme.groupedData, lmeObject, lmList,
reStruct, reStruct, varFunc, pdClasses, corClasses, varClasses

Examples

fm1 <- lme(distance ~ age, data = Orthodont) # random is ~ age

fm2 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)

lmeControl Control Values for lme Fit

lmeControl(maxIter, msMaxIter, tolerance, niterEM, msTol,
msScale, msVerbose, returnObject, gradHess,
apVar, .relStep, natural)

Arguments

maxIter Maximum number of iterations for the lme optimiza-
tion algorithm. Default is 50.

msMaxIter Maximum number of iterations for the ms optimiza-
tion step inside the lme optimization. Default is 50.

tolerance Tolerance for the convergence criterion in the lme
algorithm. Default is 1e-6.

niterEM Number of iterations for the EM algorithm used to
refine the initial estimates of the random-effects var-
iance–covariance coefficients. Default is 25.

msTol Tolerance for the convergence criterion in ms, passed
as the rel.tolerance argument to the function (see
documentation on ms). Default is 1e-7.

msScale Scale function passed as the scale argument to the
ms function (see documentation on that function).
Default is lmeScale.

msVerbose A logical value passed as the trace argument to
ms (see documentation on that function). Default is
FALSE.

returnObject A logical value indicating whether the fitted object
should be returned when the maximum number of
iterations is reached without convergence of the al-
gorithm. Default is FALSE.
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gradHess A logical value indicating whether numerical gradi-
ent vectors and Hessian matrices of the log-likelihood
function should be used in the ms optimization. This
option is only available when the correlation struc-
ture (corStruct) and the variance function struc-
ture (varFunc) have no “varying” parameters and
the pdMat classes used in the random effects struc-
ture are pdSymm (general positive-definite), pdDiag
(diagonal), pdIdent (multiple of the identity), or
pdCompSymm (compound symmetry). Default is TRUE.

apVar A logical value indicating whether the approximate
covariance matrix of the variance–covariance param-
eters should be calculated. Default is TRUE.

.relStep Relative step for numerical derivatives calculations.
Default is .Machine$double.eps (̂1/3).

natural A logical value indicating whether the pdNatural
parameterization should be used for general positive-
definite matrices (pdSymm) in reStruct, when the
approximate covariance matrix of the estimators is
calculated. Default is TRUE.

Description

The values supplied in the function call replace the defaults and a list
with all possible arguments is returned. The returned list is used as
the control argument to the lme function.

Value

A list with components for each of the possible arguments.

See Also

lme, ms, lmeScale

Examples

# decrease the maximum number iterations in the ms call and

# request that information on the evolution of the ms iterations

# be printed

lmeControl(msMaxIter = 20, msVerbose = TRUE)
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lmList List of lm Objects with a Common Model

lmList(object, data, level, na.action, pool)

Arguments

object Either a linear formula object of the form
y ~ x1+ · · ·+xn | g or a groupedData object. In
the formula, y represents the response, x1,...,xn
the covariates, and g the grouping factor specifying
the partitioning of the data according to which differ-
ent lm fits should be performed. The grouping factor
g may be omitted from the formula, in which case the
grouping structure will be obtained from data, which
must inherit from class groupedData. The method
function lmList.groupedData is documented sepa-
rately.

data A data frame in which to interpret the variables named
in object.

level An optional integer specifying the level of grouping
to be used when multiple nested levels of grouping
are present.

na.action A function that indicates what should happen when
the data contain NAs. The default action (na.fail)
causes lmList to print an error message and termi-
nate if there are any incomplete observations.

pool An optional logical value that is preserved as an at-
tribute of the returned value. This will be used as
the default for pool in calculations of standard devi-
ations or standard errors for summaries.

Description

Data is partitioned according to the levels of the grouping factor g and
individual lm fits are obtained for each data partition, using the model
defined in object.

Value

A list of lm objects with as many components as the number of groups
defined by the grouping factor. Generic functions such as coef, fixef,
lme, pairs, plot, predict, ranef, summary, and update have methods
that can be applied to an lmList object.
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See Also

lm, lme.lmList.

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)

logLik Extract Log-Likelihood

logLik(object, ...)

Arguments

object Any object from which a log-likelihood, or a contri-
bution to a log-likelihood, can be extracted.

... Some methods for this generic function require addi-
tional arguments.

Description

This function is generic; method functions can be written to handle
specific classes of objects. Classes which already have methods for this
function include: corStruct, gls, lm, lme, lmList, lmeStruct, reStruct, and
varFunc.

Value

Will depend on the method function used; see the appropriate docu-
mentation.

nlme Nonlinear Mixed-Effects Models

nlme(model, data, fixed, random, groups, start,
correlation, weights, subset, method, na.action,
naPattern, control, verbose)
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Arguments

model A nonlinear model formula, with the response on the
left of a ˜ operator and an expression involving pa-
rameters and covariates on the right, or an nlsList
object. If data is given, all names used in the formula
should be defined as parameters or variables in the
data frame. The method function nlme.nlsList is
documented separately.

data An optional data frame containing the variables
named in model, fixed, random, correlation,
weights, subset, and naPattern. By default the
variables are taken from the environment from which
nlme is called.

fixed A two-sided linear formula of the form
f1+ · · ·+fn ~ x1+ · · ·+xm, or a list of two-sided for-
mulas of the form f1 ~ x1+ · · ·+xm, with possibly
different models for different parameters. The names
of the parameters, f1,...,fn, are included on the
right-hand side of model and the x1+ · · ·+xm expres-
sions define linear models for these parameters (when
the left-hand side of the formula contains several pa-
rameters, they all are assumed to follow the same lin-
ear model, described by the right-hand side expres-
sion). A 1 on the right-hand side of the formula(s)
indicates a single fixed effects for the corresponding
parameter(s).

random Optionally, any of the following: (i) a two-sided for-
mula of the form r1+ · · ·+rn ~ x1+ · · ·+xm|g1/· · ·
/gQ, with r1,...,rn naming parameters included on
the right-hand side of model, x1+ · · ·+xm specifying
the random-effects model for these parameters and
g1/· · · /gQ the grouping structure (Q may be equal to
1, in which case no / is required). The random-effects
formula will be repeated for all levels of grouping, in
the case of multiple levels of grouping; (ii) a two-sided
formula of the form r1+ · · ·+rn ~ x1+ · · ·+xm, a
list of two-sided formulas of the form r1~x1+ · · ·+xm,
with possibly different random-effects models for dif-
ferent parameters, a pdMat object with a two-sided
formula, or list of two-sided formulas (i.e., a non-NULL
value for formula(random)), or a list of pdMat ob-
jects with two-sided formulas, or lists of two-sided
formulas. In this case, the grouping structure for-
mula will be given in groups, or derived from the
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data used to fit the nonlinear mixed-effects model,
which should inherit from class groupedData; (iii) a
named list of formulas, lists of formulas, or pdMat ob-
jects as in (ii), with the grouping factors as names.
The order of nesting will be assumed the same as
the order of the order of the elements in the list;
(iv) an reStruct object. See the documentation on
pdClasses for a description of the available pdMat
classes. Defaults to fixed, resulting in all fixed effects
having also random effects.

groups An optional one-sided formula of the form ~g1 (sin-
gle level of nesting) or ~g1/· · · /gQ (multiple levels
of nesting), specifying the partitions of the data over
which the random effects vary. g1,...,gQ must eval-
uate to factors in data. The order of nesting, when
multiple levels are present, is taken from left to right
(i.e., g1 is the first level, g2 the second, etc.).

start An optional numeric vector, or list of initial estimates
for the fixed effects and random effects. If declared as
a numeric vector, it is converted internally to a list
with a single component fixed, given by the vector.
The fixed component is required, unless the model
function inherits from class selfStart, in which case
initial values will be derived from a call to nlsList.
An optional random component is used to specify ini-
tial values for the random effects and should consist
of a matrix, or a list of matrices with length equal to
the number of grouping levels. Each matrix should
have as many rows as the number of groups at the
corresponding level and as many columns as the num-
ber of random effects in that level.

correlation An optional corStruct object describing the within-
group correlation structure. See the documentation
of corClasses for a description of the available
corStruct classes. Defaults to NULL, corresponding to
no within-group correlations.

weights An optional varFunc object or one-sided formula de-
scribing the within-group heteroscedasticity structure.
If given as a formula, it is used as the argument to
varFixed, corresponding to fixed variance weights.
See the documentation on varClasses for a descrip-
tion of the available varFunc classes. Defaults to NULL,
corresponding to homoscesdatic within-group errors.
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subset An optional expression indicating the subset of the
rows of data that should be used in the fit. This can
be a logical vector, or a numeric vector indicating
which observation numbers are to be included, or a
character vector of the row names to be included. All
observations are included by default.

method A character string. If "REML" the model is fit by max-
imizing the restricted log-likelihood. If "ML" the log-
likelihood is maximized. Defaults to "ML".

na.action A function that indicates what should happen when
the data contain NAs. The default action (na.fail)
causes nlme to print an error message and terminate
if there are any incomplete observations.

naPattern An expression or formula object, specifying which re-
turned values are to be regarded as missing.

control A list of control values for the estimation algorithm
to replace the default values returned by the function
nlmeControl. Defaults to an empty list.

verbose An optional logical value. If TRUE information on the
evolution of the iterative algorithm is printed. De-
fault is FALSE.

Description

This generic function fits a nonlinear mixed-effects model in the formu-
lation described in Lindstrom and Bates (1990), but allowing for nested
random effects. The within-group errors are allowed to be correlated
and/or have unequal variances.

Value

An object of class nlme representing the nonlinear mixed-effects model
fit. Generic functions such as print, plot and summary have methods
to show the results of the fit. See nlmeObject for the components of
the fit. The functions resid, coef, fitted, fixef, and ranef can be
used to extract some of its components.

See Also

nlmeControl, nlme.nlsList, nlmeObject, nlsList, reStruct,
varFunc, pdClasses, corClasses, varClasses

Examples

## all parameters as fixed and random effects
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fm1 <- nlme(weight ~ SSlogis(Time, Asym, xmid, scal),

data = Soybean, fixed = Asym + xmid + scal ~ 1,

start = c(18, 52, 7.5))

## only Asym and xmid as random, with a diagonal covariance

fm2 <- nlme(weight ~ SSlogis(Time, Asym, xmid, scal),

data = Soybean, fixed = Asym + xmid + scal ~ 1,

random = pdDiag(Asym + xmid ~ 1),

start = c(18, 52, 7.5))

nlmeControl Control Values for nlme Fit

nlmeControl(maxIter, pnlsMaxIter, msMaxIter, minScale,
tolerance, niterEM, pnlsTol, msTol, msScale,
returnObject, msVerbose, gradHess, apVar,
.relStep, natural)

Arguments

maxIter Maximum number of iterations for the nlme opti-
mization algorithm. Default is 50.

pnlsMaxIter Maximum number of iterations for the PNLS opti-
mization step inside the nlme optimization. Default
is 7.

msMaxIter Maximum number of iterations for the ms optimiza-
tion step inside the nlme optimization. Default is 50.

minScale Minimum factor by which to shrink the default step
size in an attempt to decrease the sum of squares in
the PNLS step. Default 0.001.

tolerance Tolerance for the convergence criterion in the nlme
algorithm. Default is 1e-6.

niterEM Number of iterations for the EM algorithm used to
refine the initial estimates of the random-effects var-
iance–covariance coefficients. Default is 25.

pnlsTol Tolerance for the convergence criterion in PNLS step.
Default is 1e-3.

msTol Tolerance for the convergence criterion in ms, passed
as the rel.tolerance argument to the function (see
documentation on ms). Default is 1e-7.

msScale Scale function passed as the scale argument to the
ms function (see documentation on that function).
Default is lmeScale.
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returnObject A logical value indicating whether the fitted object
should be returned when the maximum number of
iterations is reached without convergence of the al-
gorithm. Default is FALSE.

msVerbose A logical value passed as the trace argument to
ms (see documentation on that function). Default is
FALSE.

gradHess A logical value indicating whether numerical gradi-
ent vectors and Hessian matrices of the log-likelihood
function should be used in the ms optimization. This
option is only available when the correlation struc-
ture (corStruct) and the variance function struc-
ture (varFunc) have no “varying” parameters and
the pdMat classes used in the random effects struc-
ture are pdSymm (general positive-definite), pdDiag
(diagonal), pdIdent (multiple of the identity), or
pdCompSymm (compound symmetry). Default is TRUE.

apVar A logical value indicating whether the approximate
covariance matrix of the variance–covariance param-
eters should be calculated. Default is TRUE.

.relStep Relative step for numerical derivatives calculations.
Default is .Machine$double.eps (̂1/3).

natural A logical value indicating whether the pdNatural pa-
rameterization should be used for general positive-
definite matrices (pdSymm) in reStruct, when the
approximate covariance matrix of the estimators is
calculated. Default is TRUE.

Description

The values supplied in the function call replace the defaults and a list
with all possible arguments is returned. The returned list is used as
the control argument to the nlme function.

Value

A list with components for each of the possible arguments.

See Also

nlme, ms, nlmeStruct

Examples

# decrease the maximum number iterations in the ms call and
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# request that information on the evolution of the ms iterations

# be printed

nlmeControl(msMaxIter = 20, msVerbose = TRUE)

nlsList List of nls Objects with a Common Model

nlsList(model, data, start, control, level, na.action,
pool)

Arguments

model Either a nonlinear model formula, with the response
on the left of a ˜operator and an expression involving
parameters, covariates, and a grouping factor sepa-
rated by the | operator on the right, or a selfStart
function. The method function nlsList.selfStart
is documented separately.

data A data frame in which to interpret the variables
named in model.

start An optional named list with initial values for the pa-
rameters to be estimated in model. It is passed as
the start argument to each nls call and is required
when the nonlinear function in model does not inherit
from class selfStart.

control A list of control values passed as the control argu-
ment to nls. Defaults to an empty list.

level An optional integer specifying the level of grouping
to be used when multiple nested levels of grouping
are present.

na.action A function that indicates what should happen when
the data contain NAs. The default action (na.fail)
causes nlsList to print an error message and termi-
nate if there are any incomplete observations.

pool An optional logical value that is preserved as an at-
tribute of the returned value. This will be used as
the default for pool in calculations of standard devi-
ations or standard errors for summaries.

Description

Data is partitioned according to the levels of the grouping factor defined
in model and individual nls fits are obtained for each data partition,
using the model defined in model.
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Value

A list of nls objects with as many components as the number of groups
defined by the grouping factor. Generic functions such as coef, fixef,
lme, pairs, plot, predict, ranef, summary, and update have methods
that can be applied to an nlsList object.

See Also

nls, nlme.nlsList.

Examples

fm1 <- nlsList(uptake ~ SSasympOff(conc, Asym, lrc, c0),

data = CO2, start = c(Asym = 30, lrc = -4.5, c0 = 52))

fm1

pairs.lme Pairs Plot of an lme Object

pairs(object, form, label, id, idLabels, grid, ...)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

form An optional one-sided formula specifying the desired
type of plot. Any variable present in the original data
frame used to obtain object can be referenced. In
addition, object itself can be referenced in the for-
mula using the symbol ".". Conditional expressions
on the right of a | operator can be used to define
separate panels in a trellis display. The expression
on the right-hand side of form, and to the left of
the | operator, must evaluate to a data frame with
at least two columns. Default is ˜ coef(.) , corre-
sponding to a pairs plot of the coefficients evaluated
at the innermost level of nesting.

id An optional numeric value, or one-sided formula. If
given as a value, it is used as a significance level for
an outlier test based on the Mahalanobis distances of
the estimated random effects. Groups with random
effects distances greater than the 1−value percentile
of the appropriate chi-square distribution are identi-
fied in the plot using idLabels. If given as a one-
sided formula, its right-hand side must evaluate to a
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logical, integer, or character vector which is used to
identify points in the plot. If missing, no points are
identified.

idLabels An optional vector, or one-sided formula. If given as a
vector, it is converted to character and used to label
the points identified according to id. If given as a
one-sided formula, its right-hand side must evaluate
to a vector which is converted to character and used
to label the identified points. Default is the innermost
grouping factor.

grid An optional logical value indicating whether a grid
should be added to plot. Default is FALSE.

... Optional arguments passed to the trellis plot func-
tion.

Description

Diagnostic plots for the linear mixed-effects fit are obtained. The form
argument gives considerable flexibility in the type of plot specification.
A conditioning expression (on the right side of a | operator) always
implies that different panels are used for each level of the conditioning
factor, according to a trellis display. The expression on the right-hand
side of the formula, before a | operator, must evaluate to a data frame
with at least two columns. If the data frame has two columns, a scatter
plot of the two variables is displayed (the trellis function xyplot is
used). Otherwise, if more than two columns are present, a scatter plot
matrix with pairwise scatter plots of the columns in the data frame is
displayed (the trellis function splom is used).

Value

A diagnostic trellis plot.

See Also

lme, xyplot, splom

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

# scatter plot of coefficients by gender, identifying

# unusual subjects

pairs(fm1, ~coef(., augFrame = T) | Sex, id = 0.1, adj = -0.5)

# scatter plot of estimated random effects

pairs(fm1, ~ranef(.))
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plot.lme Plot an lme Object

plot(object, form, abline, id, idLabels, idResType, grid,
...)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

form An optional formula specifying the desired type of
plot. Any variable present in the original data frame
used to obtain object can be referenced. In addition,
object itself can be referenced in the formula using
the symbol ".". Conditional expressions on the right
of a | operator can be used to define separate pan-
els in a trellis display. Default is resid(., type =
"p") ˜ fitted(.) , corresponding to a plot of the
standardized residuals versus fitted values, both eval-
uated at the innermost level of nesting.

abline An optional numeric value, or numeric vector of length
two. If given as a single value, a horizontal line will
be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and
slope for a line added to the plot. If missing, no lines
are added to the plot.

id An optional numeric value, or one-sided formula. If
given as a value, it is used as a significance level for
a two-sided outlier test for the standardized, or nor-
malized residuals. Observations with absolute stan-
dardized (normalized) residuals greater than the 1−
value/2 quantile of the standard normal distribution
are identified in the plot using idLabels. If given as
a one-sided formula, its right-hand side must evalu-
ate to a logical, integer, or character vector which is
used to identify observations in the plot. If missing,
no observations are identified.

idLabels An optional vector, or one-sided formula. If given as
a vector, it is converted to character and used to label
the observations identified according to id. If given
as a one-sided formula, its right-hand side must eval-
uate to a vector that is converted to character and
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used to label the identified observations. Default is
the innermost grouping factor.

idResType An optional character string specifying the type of
residuals to be used in identifying outliers, when id
is a numeric value. If "pearson", the standardized
residuals (raw residuals divided by the correspond-
ing standard errors) are used; else, if "normalized",
the normalized residuals (standardized residuals pre-
multiplied by the inverse square-root factor of the
estimated error correlation matrix) are used. Partial
matching of arguments is used, so only the first char-
acter needs to be provided. Defaults to "pearson".

Description

Diagnostic plots for the linear mixed-effects fit are obtained. The form
argument gives considerable flexibility in the type of plot specification.
A conditioning expression (on the right side of a | operator) always
implies that different panels are used for each level of the conditioning
factor, according to a trellis display. If form is a one-sided formula,
histograms of the variable on the right-hand side of the formula, before
a | operator, are displayed (the trellis function histogram is used).
If form is two-sided and both its left- and right-hand side variables
are numeric, scatter plots are displayed (the trellis function xyplot
is used). Finally, if form is two-sided and its left-hand side variable
is a factor, boxplots of the right-hand side variable by the levels of
the left-hand side variable are displayed (the trellis function bwplot is
used).

Value

A diagnostic trellis plot.

See Also

lme, xyplot, bwplot, histogram

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

# standardized residuals versus fitted values by gender

plot(fm1, resid(., type = "p") ~ fitted(.) | Sex, abline = 0)

# box-plots of residuals by Subject

plot(fm1, Subject ~ resid(.))

# observed versus fitted values by Subject

plot(fm1, distance ~ fitted(.) | Subject, abline = c(0,1))



490 Appendix B. S Functions and Classes

plot.nfnGroupedData Plot an nfnGroupedData Object

plot(x, outer, inner, innerGroups, xlab, ylab, strip,
aspect, panel, key, grid, ...)

Arguments

x An object inheriting from class nfnGroupedData, rep-
resenting a groupedData object with a numeric pri-
mary covariate and a single grouping level.

outer An optional logical value or one-sided formula, indi-
cating covariates that are outer to the grouping fac-
tor, which are used to determine the panels of the
trellis plot. If equal to TRUE, attr(object, "outer")
is used to indicate the outer covariates. An outer co-
variate is invariant within the sets of rows defined
by the grouping factor. Ordering of the groups is
done in such a way as to preserve adjacency of groups
with the same value of the outer variables. Defaults
to NULL, meaning that no outer covariates are to be
used.

inner An optional logical value or one-sided formula, indi-
cating a covariate that is inner to the grouping factor,
which is used to associate points within each panel
of the trellis plot. If equal to TRUE, attr(object,
"inner") is used to indicate the inner covariate. An
inner covariate can change within the sets of rows de-
fined by the grouping factor. Defaults to NULL, mean-
ing that no inner covariate is present.

innerGroups An optional one-sided formula specifying a factor to
be used for grouping the levels of the inner covariate.
Different colors, or line types, are used for each level
of the innerGroups factor. Default is NULL, meaning
that no innerGroups covariate is present.

xlab, ylab Optional character strings with the labels for the
plot. Default is the corresponding elements of attr(
object, "labels") and attr(object, "units")
pasted together.

strip An optional function passed as the strip argument
to the xyplot function. Default is strip.default(
..., style = 1) (see trellis.args).
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aspect An optional character string indicating the aspect ra-
tio for the plot passed as the aspect argument to the
xyplot function. Default is "xy" (see trellis.args).

panel An optional function used to generate the individ-
ual panels in the trellis display, passed as the panel
argument to the xyplot function.

key An optional logical function or function. If TRUE and
innerGroups is non-NULL, a legend for the different
innerGroups levels is included at the top of the plot.
If given as a function, it is passed as the key ar-
gument to the xyplot function. Default is TRUE if
innerGroups is non-NULL and FALSE otherwise.

grid An optional logical value indicating whether a grid
should be added to plot. Default is TRUE.

... Optional arguments passed to the xyplot function.

Description

A trellis plot of the response versus the primary covariate is gener-
ated. If outer variables are specified, the combination of their levels
are used to determine the panels of the trellis display. Otherwise, the
levels of the grouping variable determine the panels. A scatter plot of
the response versus the primary covariate is displayed in each panel,
with observations corresponding to same inner group joined by line
segments. The trellis function xyplot is used.

Value

A trellis plot of the response versus the primary covariate.

See Also

groupedData, xyplot

Examples

# different panels per Subject

plot(Orthodont)

# different panels per gender

plot(Orthodont, outer = TRUE)
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plot.nmGroupedData Plot an nmGroupedData Object

plot(x, collapseLevel, displayLevel, outer, inner,
preserve, FUN, subset, grid, ...)

Arguments

x An object inheriting from class nmGroupedData, rep-
resenting a groupedData object with multiple group-
ing factors.

collapseLevel An optional positive integer or character string indi-
cating the grouping level to use when collapsing the
data. Level values increase from outermost to inner-
most grouping. Default is the highest or innermost
level of grouping.

displayLevel An optional positive integer or character string indi-
cating the grouping level to use for determining the
panels in the trellis display, when outer is missing.
Default is collapseLevel.

outer An optional logical value or one-sided formula, indi-
cating covariates that are outer to the displayLevel
grouping factor, which are used to determine the pan-
els of the trellis plot. If equal to TRUE, the display-
Level element attr(object, "outer") is used to
indicate the outer covariates. An outer covariate is
invariant within the sets of rows defined by the group-
ing factor. Ordering of the groups is done in such a
way as to preserve adjacency of groups with the same
value of the outer variables. Defaults to NULL, mean-
ing that no outer covariates are to be used.

inner An optional logical value or one-sided formula, indi-
cating a covariate that is inner to the displayLevel
grouping factor, which is used to associate points
within each panel of the trellis plot. If equal to TRUE,
attr(object, "outer") is used to indicate the in-
ner covariate. An inner covariate can change within
the sets of rows defined by the grouping factor. De-
faults to NULL, meaning that no inner covariate is
present.

preserve An optional one-sided formula indicating a covari-
ate whose levels should be preserved when collapsing
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the data according to the collapseLevel grouping
factor. The collapsing factor is obtained by pasting
together the levels of the collapseLevel grouping
factor and the values of the covariate to be preserved.
Default is NULL, meaning that no covariates need to
be preserved.

FUN An optional summary function or a list of summary
functions to be used for collapsing the data. The
function or functions are applied only to variables
in object that vary within the groups defined by
collapseLevel. Invariant variables are always sum-
marized by group using the unique value that they
assume within that group. If FUN is a single func-
tion it will be applied to each noninvariant variable
by group to produce the summary for that variable.
If FUN is a list of functions, the names in the list
should designate classes of variables in the data such
as ordered, factor, or numeric. The indicated func-
tion will be applied to any noninvariant variables of
that class. The default functions to be used are mean
for numeric factors, and Mode for both factor and
ordered. The Mode function, defined internally in
gsummary, returns the modal or most popular value
of the variable. It is different from the mode function
that returns the S-language mode of the variable.

subset An optional named list. Names can be either posi-
tive integers representing grouping levels, or names
of grouping factors. Each element in the list is a vec-
tor indicating the levels of the corresponding group-
ing factor to be used for plotting the data. Default is
NULL, meaning that all levels are used.

grid An optional logical value indicating whether a grid
should be added to plot. Default is TRUE.

... Optional arguments passed to the trellis plot func-
tion.

Description

The groupedData object is summarized by the values of the display-
Level grouping factor (or the combination of its values and the values
of the covariate indicated in preserve, if any is present). The collapsed
data is used to produce a new groupedData object, with grouping
factor given by the displayLevel factor, which is plotted using the
appropriate plot method for groupedData objects with single level of
grouping.
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Value

A trellis display of the data collapsed over the values of the collapse-
Level grouping factor and grouped according to the displayLevel
grouping factor.

See Also

groupedData, collapse.groupedData, plot.nfnGroupedData,
plot.nffGroupedData

Examples

# no collapsing, panels by Dog

plot(Pixel, display = "Dog", inner = ~Side)

# collapsing by Dog, preserving day

plot(Pixel, collapse = "Dog", preserve = ~day)

plot.Variogram Plot a Variogram Object

plot(object, smooth, showModel, sigma, span, xlab, ylab,
type, ylim, ...)

Arguments

object An object inheriting from class Variogram, consisting
of a data frame with two columns named variog and
dist, representing the semivariogram values and the
corresponding distances.

smooth An optional logical value controlling whether a loess
smoother should be added to the plot. Defaults to
TRUE, when showModel is FALSE.

showModel An optional logical value controlling whether the semi-
variogram corresponding to an "modelVariog" at-
tribute of object, if any is present, should be added
to the plot. Defaults to TRUE, when the "modelVariog"
attribute is present.

sigma An optional numeric value used as the height of a
horizontal line displayed in the plot. Can be used to
represent the process standard deviation. Default is
NULL, implying that no horizontal line is drawn.

span An optional numeric value with the smoothing pa-
rameter for the loess fit. Default is 0.6.



predict.lme 495

xlab,ylab Optional character strings with the x- and y-axis la-
bels. Default respectively to "Distance" and "Semi-
variogram".

type An optional character indicating the type of plot. De-
faults to "p".

ylim An optional numeric vector with the limits for the
y-axis. Defaults to c(0, max(object$variog)).

... Optional arguments passed to the trellis xyplot func-
tion.

Description

An xyplot of the semivariogram versus the distances is produced. If
smooth = TRUE, a loess smoother is added to the plot. If showModel
= TRUE and object includes an "modelVariog" attribute, the corre-
sponding semivariogram is added to the plot.

Value

An xyplot trellis plot.

See Also

Variogram, xyplot, loess

Examples

fm1 <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary)

plot(Variogram(fm1, form = ~ Time | Mare, maxDist = 0.7))

predict.lme Predictions from an lme Object

predict(object, newdata, level, asList, na.action)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

newdata An optional data frame to be used for obtaining the
predictions. All variables used in the fixed- and
random-effects models, as well as the grouping fac-
tors, must be present in the data frame. If missing,
the fitted values are returned.
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level An optional integer vector giving the level(s) of group-
ing to be used in obtaining the predictions. Level val-
ues increase from outermost to innermost grouping,
with level zero corresponding to the population pre-
dictions. Defaults to the highest or innermost level of
grouping.

asList An optional logical value. If TRUE and a single value is
given in level, the returned object is a list with the
predictions split by groups; else the returned value
is either a vector or a data frame, according to the
length of level.

na.action A function that indicates what should happen when
newdata contains NAs. The default action (na.fail)
causes the function to print an error message and
terminate if there are any incomplete observations.

Description

The predictions at level i are obtained by adding together the popu-
lation predictions (based only on the fixed-effects estimates) and the
estimated contributions of the random effects to the predictions at
grouping levels less or equal to i. The resulting values estimate the
best linear unbiased predictions (BLUPs) at level i. If group values not
included in the original grouping factors are present in newdata, the
corresponding predictions will be set to NA for levels greater or equal
to the level at which the unknown groups occur.

Value

If a single level of grouping is specified in level, the returned value is
either a list with the predictions split by groups (asList = TRUE) or
a vector with the predictions (asList = FALSE); else, when multiple
grouping levels are specified in level, the returned object is a data
frame with columns given by the predictions at different levels and the
grouping factors.

See Also

lme, fitted.lme

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

newOrth <- data.frame(Sex = c("Male","Male","Female","Female",

"Male","Male"),

age = c(15, 20, 10, 12, 2, 4),

Subject = c("M01","M01","F30","F30","M04",
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"M04"))

predict(fm1, newOrth, level = 0:1)

qqnorm.lme
Normal Plot of Residuals or Random Effects from

an lme Object

qqnorm(object, form, abline, id, idLabels, grid, ...)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

form An optional one-sided formula specifying the desired
type of plot. Any variable present in the original data
frame used to obtain object can be referenced. In
addition, object itself can be referenced in the for-
mula using the symbol ".". Conditional expressions
on the right of a | operator can be used to define
separate panels in a trellis display. The expression
on the right-hand side of form and to the left of a
| operator must evaluate to a residuals vector, or a
random effects matrix. Default is ˜ resid(., type
= "p"), corresponding to a normal plot of the stan-
dardized residuals evaluated at the innermost level of
nesting.

abline An optional numeric value, or numeric vector of length
two. If given as a single value, a horizontal line will
be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and
slope for a line added to the plot. If missing, no lines
are added to the plot.

id An optional numeric value, or one-sided formula. If
given as a value, it is used as a significance level for a
two-sided outlier test for the standardized residuals
(random effects). Observations with absolute stan-
dardized residuals (random effects) greater than the
1−value/2 quantile of the standard normal distribu-
tion are identified in the plot using idLabels. If given
as a one-sided formula, its right-hand side must eval-
uate to a logical, integer, or character vector which is
used to identify observations in the plot. If missing,
no observations are identified.
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idLabels An optional vector, or one-sided formula. If given as
a vector, it is converted to character and used to label
the observations identified according to id. If given
as a one-sided formula, its right-hand side must eval-
uate to a vector that is converted to character and
used to label the identified observations. Default is
the innermost grouping factor.

grid An optional logical value indicating whether a grid
should be added to plot. Default is FALSE.

... Optional arguments passed to the trellis plot func-
tion.

Description

Diagnostic plots for assessing the normality of residuals and random
effects in the linear mixed-effects fit are obtained. The form argument
gives considerable flexibility in the type of plot specification. A con-
ditioning expression (on the right side of a | operator) always implies
that different panels are used for each level of the conditioning factor,
according to a trellis display.

Value

A diagnostic trellis plot for assessing normality of residuals or random
effects.

See Also

lme, plot.lme

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

# normal plot of standardized residuals by gender

qqnorm(fm1, ~ resid(., type = "p") | Sex, abline = c(0, 1))

# normal plots of random effects

qqnorm(fm1, ~ranef(.))

ranef Extract Random Effects

ranef(object, ...)
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Arguments

object Any fitted model object from which random effects
estimates can be extracted.

... Some methods for this generic function require addi-
tional arguments.

Description

This function is generic; method functions can be written to handle
specific classes of objects. Classes that already have methods for this
function include lmList and lme.

Value

Will depend on the method function used; see the appropriate docu-
mentation.

See Also

ranef.lmList, ranef.lme

ranef.lme Extract lme Random Effects

ranef(object, augFrame, level, data, which, FUN, standard,
omitGroupingFactor)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

augFrame An optional logical value. If TRUE, the returned data
frame is augmented with variables defined in data;
else, if FALSE, only the coefficients are returned. De-
faults to FALSE.

level An optional vector of positive integers giving the lev-
els of grouping to be used in extracting the random
effects from an object with multiple nested grouping
levels. Defaults to all levels of grouping.

data An optional data frame with the variables to be used
for augmenting the returned data frame when
augFrame = TRUE. Defaults to the data frame used
to fit object.
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which An optional positive integer vector specifying which
columns of data should be used in the augmentation
of the returned data frame. Defaults to all columns
in data.

FUN An optional summary function or a list of summary
functions to be applied to group-varying variables,
when collapsing data by groups. Group-invariant vari-
ables are always summarized by the unique value that
they assume within that group. If FUN is a single func-
tion it will be applied to each noninvariant variable
by group to produce the summary for that variable. If
FUN is a list of functions, the names in the list should
designate classes of variables in the frame such as
ordered, factor, or numeric. The indicated func-
tion will be applied to any group-varying variables of
that class. The default functions to be used are mean
for numeric factors, and Mode for both factor and
ordered. The Mode function, defined internally in
gsummary, returns the modal or most popular value
of the variable. It is different from the mode function
that returns the S-language mode of the variable.

standard An optional logical value indicating whether the esti-
mated random effects should be “standardized”(i.e.,
divided by the corresponding estimated standard er-
ror). Defaults to FALSE.

omitGroupingFactor

An optional logical value. When TRUE, the grouping
factor itself will be omitted from the groupwise sum-
mary of data, but the levels of the grouping factor
will continue to be used as the row names for the
returned data frame. Defaults to FALSE.

Description

The estimated random effects at level i are represented as a data frame
with rows given by the different groups at that level and columns given
by the random effects. If a single level of grouping is specified, the
returned object is a data frame; else, the returned object is a list of such
data frames. Optionally, the returned data frame(s) may be augmented
with covariates summarized over groups.

Value

A data frame, or list of data frames, with the estimated random ef-
fects at the grouping level(s) specified in level and, optionally, other
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covariates summarized over groups. The returned object inherits from
classes ranef.lme and data.frame.

See Also

lme, fixed.effects.lme, coef.lme, plot.ranef.lme, gsummary

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

ranef(fm1)

ranef(fm1, augFrame = TRUE)

ranef.lmList Extract lmList Random Effects

ranef(object, augFrame, data, which, FUN, standard,
omitGroupingFactor)

Arguments

object An object inheriting from class lmList, representing
a list of lm objects with a common model.

augFrame An optional logical value. If TRUE, the returned data
frame is augmented with variables defined in the data
frame used to produce object; else, if FALSE, only
the random effects are returned. Defaults to FALSE.

data An optional data frame with the variables to be used
for augmenting the returned data frame when
augFrame = TRUE. Defaults to the data frame used
to fit object.

which An optional positive integer or character vector spec-
ifying which columns of the data frame used to pro-
duce object should be used in the augmentation of
the returned data frame. Defaults to all variables in
the data.

FUN An optional summary function or a list of summary
functions to be applied to group-varying variables,
when collapsing the data by groups. Group-invariant
variables are always summarized by the unique value
that they assume within that group. If FUN is a sin-
gle function it will be applied to each noninvariant
variable by group to produce the summary for that
variable. If FUN is a list of functions, the names in
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the list should designate classes of variables in the
frame such as ordered, factor, or numeric. The in-
dicated function will be applied to any group-varying
variables of that class. The default functions to be
used are mean for numeric factors, and Mode for both
factor and ordered. The Mode function, defined in-
ternally in gsummary, returns the modal or most pop-
ular value of the variable. It is different from the
mode function that returns the S-language mode of
the variable.

standard An optional logical value indicating whether the esti-
mated random effects should be “standardized” (i.e.,
divided by the corresponding estimated standard er-
ror). Defaults to FALSE.

omitGroupingFactor

An optional logical value. When TRUE, the grouping
factor itself will be omitted from the groupwise sum-
mary of data, but the levels of the grouping factor
will continue to be used as the row names for the
returned data frame. Defaults to FALSE.

Description

A data frame containing the differences between the coefficients of the
individual lm fits and the average coefficients.

Value

A data frame with the differences between the individual lm coefficients
in object and their average. Optionally, the returned data frame may
be augmented with covariates summarized over groups or the differ-
ences may be standardized.

See Also

lmList, fixef.lmList

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)

ranef(fm1)

ranef(fm1, standard = TRUE)

ranef(fm1, augFrame = TRUE)
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residuals.lme Extract lme Residuals

residuals(object, level, type, asList)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

level An optional integer vector giving the level(s) of group-
ing to be used in extracting the residuals from object.
Level values increase from outermost to innermost
grouping, with level zero corresponding to the popu-
lation residuals. Defaults to the highest or innermost
level of grouping.

type An optional character string specifying the type of
residuals to be used. If "response", the “raw” resid-
uals (observed – fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by
the corresponding standard errors) are used; else, if
"normalized", the normalized residuals (standard-
ized residuals premultiplied by the inverse square-
root factor of the estimated error correlation matrix)
are used. Partial matching of arguments is used, so
only the first character needs to be provided. Defaults
to "pearson".

asList An optional logical value. If TRUE and a single value
is given in level, the returned object is a list with
the residuals split by groups; else the returned value
is either a vector or a data frame, according to the
length of level. Defaults to FALSE.

Description

The residuals at level i are obtained by subtracting the fitted levels
at that level from the response vector (and dividing by the estimated
within-group standard error, if type="pearson"). The fitted values at
level i are obtained by adding together the population-fitted values
(based only on the fixed-effects estimates) and the estimated contribu-
tions of the random effects to the fitted values at grouping levels less
or equal to i.
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Value

If a single level of grouping is specified in level, the returned value
is either a list with the residuals split by groups (asList = TRUE)
or a vector with the residuals (asList = FALSE); else, when multiple
grouping levels are specified in level, the returned object is a data
frame with columns given by the residuals at different levels and the
grouping factors.

See Also

lme, fitted.lme

Examples

fm1 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)

residuals(fm1, level = 0:1)

selfStart Construct Self-Starting Nonlinear Models

selfStart(model, initial, parameters, template)

Description

This function is generic; methods functions can be written to handle
specific classes of objects. Available methods include selfStart.de-
fault and selfStart.formula. See the documentation on the appro-
priate method function.

Value

A function object of the selfStart class.

See Also

selfStart.default, selfStart.formula
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selfStart.default Construct Self-Starting Nonlinear Models

selfStart(model, initial, parameters, template)

Arguments

model A function object defining a nonlinear model.

initial A function object, taking three arguments: mCall,
data, and LHS, representing, respectively, a matched
call to the function model, a data frame in which to
interpret the variables in mCall, and the expression
from the left-hand side of the model formula in the
call to nls. This function should return initial values
for the parameters in model.

parameters, template

These arguments are included for consistency with
the generic function, but are not used in the default
method. See the documentation on selfStart.for-
mula.

Description

A method for the generic function selfStart for formula objects.

Value

A function object of class selfStart, corresponding to a self-starting non-
linear model function. An initial attribute (defined by the initial
argument) is added to the function to calculate starting estimates for
the parameters in the model automatically.

See Also

selfStart.formula

Examples

# ‘first.order.log.model’ is a function object defining a first

# order compartment model

# ‘first.order.log.initial’ is a function object which calculates

# initial values for the parameters in ‘first.order.log.model’

# self-starting first order compartment model

SSfol <- selfStart(first.order.log.model,

first.order.log.initial)
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selfStart.formula Construct Self-Starting Nonlinear Models

selfStart(model, initial, parameters, template)

Arguments

model A nonlinear formula object of the form ẽxpression.

initial A function object, taking three arguments: mCall,
data, and LHS, representing, respectively, a matched
call to the function model, a data frame in which to
interpret the variables in mCall, and the expression
from the left-hand side of the model formula in the
call to nls. This function should return initial values
for the parameters in model.

parameters A character vector specifying the terms on the right-
hand side of model for which initial estimates should
be calculated. Passed as the namevec argument to
the deriv function.

template An optional prototype for the calling sequence of the
returned object, passed as the function.arg argu-
ment to the deriv function. By default, a template is
generated with the covariates in model coming first
and the parameters in model coming last in the call-
ing sequence.

Description

A method for the generic function selfStart for formula objects.

Value

A function object of class selfStart, obtained by applying deriv to the
right-hand side of the model formula. An initial attribute (defined by
the initial argument) is added to the function to calculate starting
estimates for the parameters in the model automatically.

See Also

selfStart.default, deriv

Examples

## self-starting logistic model

SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),
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function(mCall, data, LHS)

{

xy <- sortedXyData(mCall[["x"]], LHS, data)

if(nrow(xy) < 4) {

stop("Too few distinct x values to fit a logistic")

}

z <- xy[["y"]]

if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes

z <- z/(1.05 * max(z)) # scale to within unit height

xy[["z"]] <- log(z/(1 - z)) # logit transformation

aux <- coef(lm(x ~ z, xy))

parameters(xy) <- list(xmid = aux[1], scal = aux[2])

pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),

data = xy, algorithm = "plinear")))

value <- c(pars[3], pars[1], pars[2])

names(value) <- mCall[c("Asym", "xmid", "scal")]

value

}, c("Asym", "xmid", "scal"))

Variogram Calculate Semivariogram

Variogram(object, distance, ...)

Description

This function is generic; method functions can be written to handle
specific classes of objects. Classes that already have methods for this
function include default, gls and lme. See the appropriate method doc-
umentation for a description of the arguments.

Value

Will depend on the method function used; see the appropriate docu-
mentation.

See Also

Variogram.default,Variogram.gls, Variogram.lme,
plot.Variogram
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Variogram.lme
Calculate Semivariogram for Residuals from an

lme Object

Variogram(object, distance, form, resType, data,
na.action, maxDist, length.out, collapse, nint,
breaks, robust, metric)

Arguments

object An object inheriting from class lme, representing a
fitted linear mixed-effects model.

distance An optional numeric vector with the distances be-
tween residual pairs. If a grouping variable is present,
only the distances between residual pairs within the
same group should be given. If missing, the distances
are calculated based on the values of the arguments
form, data, and metric, unless object includes a
corSpatial element, in which case the associated co-
variate (obtained with the getCovariate method) is
used.

form An optional one-sided formula specifying the covari-
ate(s) to be used for calculating the distances be-
tween residual pairs and, optionally, a grouping fac-
tor for partitioning the residuals (which must appear
to the right of a | operator in form). Default is 1̃, im-
plying that the observation order within the groups
is used to obtain the distances.

resType An optional character string specifying the type of
residuals to be used. If "response", the “raw” resid-
uals (observed – fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by
the corresponding standard errors) are used; else, if
"normalized", the normalized residuals (standard-
ized residuals premultiplied by the inverse squareroot
factor of the estimated error correlation matrix) are
used. Partial matching of arguments is used, so only
the first character needs to be provided. Defaults to
"pearson".

data An optional data frame in which to interpret the vari-
ables in form. By default, the same data used to fit
object is used.

na.action A function that indicates what should happen when
the data contain NAs. The default action (na.fail)
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causes an error message to be printed and the func-
tion to terminate, if there are any incomplete obser-
vations.

maxDist An optional numeric value for the maximum distance
used for calculating the semivariogram between two
residuals. By default all residual pairs are included.

length.out An optional integer value. When object includes a
corSpatial element, its semivariogram values are
calculated and this argument is used as the
length.out argument to the corresponding
Variogram method. Defaults to 50.

collapse An optional character string specifying the type of
collapsing to be applied to the individual semivar-
iogram values. If equal to "quantiles", the semi-
variogram values are split according to quantiles of
the distance distribution, with equal number of ob-
servations per group, with possibly varying distance
interval lengths. Else, if "fixed", the semivariogram
values are divided according to distance intervals of
equal lengths, with possibly different number of ob-
servations per interval. Else, if "none", no collapsing
is used and the individual semivariogram values are
returned. Defaults to "quantiles".

nint An optional integer with the number of intervals to
be used when collapsing the semivariogram values.
Defaults to 20.

robust An optional logical value specifying if a robust semi-
variogram estimator should be used when collapsing
the individual values. If TRUE the robust estimator is
used. Defaults to FALSE.

breaks An optional numeric vector with the breakpoints for
the distance intervals to be used in collapsing the
semivariogram values. If not missing, the option spec-
ified in collapse is ignored.

metric An optional character string specifying the distance
metric to be used. The currently available options
are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and
"manhattan" for the sum of the absolute differences.
Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults
to "euclidean".
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Description

This method function calculates the semivariogram for the within-
group residuals from an lme fit. The semivariogram values are calcu-
lated for pairs of residuals within the same group. If collapse is dif-
ferent from "none", the individual semivariogram values are collapsed
using either a robust estimator (robust = TRUE) defined in Cressie
(1993), or the average of the values within the same distance interval.
The semivariogram is useful for modeling the error term correlation
structure.

Value

A data frame with columns variog and dist representing, respectively,
the semivariogram values and the corresponding distances. If the semi-
variogram values are collapsed, an extra column, n.pairs, with the
number of residual pairs used in each semivariogram calculation, is in-
cluded in the returned data frame. If object includes a corSpatial
element, a data frame with its corresponding semivariogram is included
in the returned value, as an attribute "modelVariog". The returned
value inherits from class Variogram.

See Also

lme, Variogram.default, Variogram.gls, plot.Variogram

Examples

fm1 <- lme(weight ~ Time * Diet, BodyWeight, ~ Time | Rat)

Variogram(fm1, form = ~ Time | Rat, nint = 10, robust = TRUE)



Appendix C
A Collection of Self-Starting Nonlinear
Regression Models

We have mentioned several self-starting nonlinear regression models in the
text. In this appendix we describe each of the self-starting models included
with the nlme library. For each model we give the model formula, a descrip-
tion of the parameters, and the strategy used to obtain starting estimates.

C.1 SSasymp—The Asymptotic Regression Model

The asymptotic regression model is used to model a response y that ap-
proaches a horizontal asymptote as x → ∞. We write it as

y(x) = φ1 + (φ2 − φ1) exp[− exp(φ3)x], (C.1)

so that φ1 is the asymptote as x → ∞ and φ2 is y(0). These parameters
are shown in Figure C.1. The parameter φ3 is the logarithm of the rate
constant. We use the logarithm to enforce positivity of the rate constant so
the model does approach an asymptote. The corresponding half-life t0.5 =
log 2/ exp(φ3) is illustrated in Figure C.1.

C.1.1 Starting Estimates for SSasymp

Starting values for the asymptotic regression model are obtained by:

1. Using NLSstRtAsymptote to get an estimate φ
(0)
1 of the asymptote.

2. Regressing log(|y − φ
(0)
1 |) on t. The estimated slope is − exp(φ(0)

3 ).
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FIGURE C.1. The asymptotic regression model showing the parameters φ1, the
asymptotic response as x → ∞, φ2, the response at x = 0, and t0.5, the half-life.

3. Using an algorithm for partially linear models (Bates and Chambers,
1992, §10.2.5) to refine estimates of φ1, φ2, and φ3 in

y(x) = φ1 + (φ2 − φ1) exp[exp(φ3)x].

Because φ1 and φ2 occur linearly in the model expression, the least
squares fit iterates over a single parameter.

These estimates are the final nonlinear regression estimates.

C.2 SSasympOff—Asymptotic Regression with an
Offset

This is an alternative form of the asymptotic regression model that provides
a more stable parameterization for the CO2 data. It is written

y(x) = φ1{1 − exp[− exp(φ2) × (x − φ3)]}. (C.2)

As in SSasymp, φ1 is the asymptote as x → ∞. In this formulation φ2 is
the logarithm of the rate constant, corresponding to a half-life of t0.5 =
log 2/ exp(φ2), and φ3 is the value of x at which y = 0. The parameters φ1,
t0.5, and φ3 are shown in Figure C.2.

C.2.1 Starting Estimates for SSasympOff

First we fit SSasymp then we transform the parameters to the formulation
used in SSasympOff. If omega is the vector of parameters from SSasymp and
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FIGURE C.2. The asymptotic regression model with an offset showing the pa-
rameters φ1, the asymptote as x → ∞, t0.5, the half-life, and φ3, the value of x
for which y = 0.

φ is the vector of parameters for SSasympOff, the correspondence is

φ1 = ω1,

φ2 = ω3,

φ3 = exp(−ω3) log[−(ω2 − ω1)/ω1].

These estimates are the final nonlinear regression estimates.

C.3 SSasympOrig—Asymptotic Regression
Through the Origin

This form of the asymptotic regression model is constrained to pass through
the origin. It is called the BOD model in Bates and Watts (1988) where it is
used to model Biochemical Oxygen Demand curves. The model is written

y(x) = φ1[1 − exp(− exp(φ2)x]. (C.3)

As in SSasympOff, φ1 is the asymptote as x → ∞ and φ2 is the logarithm of
the rate constant, corresponding to a half-life of t0.5 = log 2/ exp(φ2). The
parameters φ1 and t0.5 are shown in Figure C.3.

C.3.1 Starting Estimates for SSasympOrig

Starting values for this regression model are obtained by:
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FIGURE C.3. The asymptotic regression model through the origin showing the
parameters φ1, the asymptote as x → ∞ and t0.5, the half-life.

1. Using NLSstRtAsymptote to get an estimate φ
(0)
1 of the asymptote.

2. Obtaining an initial estimate of φ2 as

φ
(0)
2 = log abs

n∑
i=1

[
log(1 − yi/φ

(0)
1 )/xi

]
/n.

3. Using an algorithm for partially linear models to refine the estimates
of φ1 and φ2. Because φ1 occurs linearly in the model expression, the
least squares fit iterates over a single parameter.

These estimates are the final nonlinear regression estimates.

C.4 SSbiexp—Biexponential Model

The biexponential model is a linear combination of two negative exponen-
tial terms

y(x) = φ1 exp [− exp(φ2)x] + φ3 exp [− exp(φ4)x] . (C.4)

The parameters φ1 and φ3 are the coefficients of the linear combination,
and the parameters φ2 and φ4 are the logarithms of the rate constants.
The two sets of parameters (φ1, φ2) and (φ3, φ4) are exchangeable, meaning
that the values of the pairs can be exchanged without changing the value of
y(x). We create an identifiable parameterization by requiring that φ2 > φ4.

A representative biexponential model, along with its constituent expo-
nential curves, is shown in Figure C.4.
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FIGURE C.4. A biexponential model showing the linear combination of the ex-
ponentials (solid line) and its constituent exponential curves (dashed line and
dotted line). The dashed line is 3.5 exp(−4x) and the dotted line is 1.5 exp(−x).

C.4.1 Starting Estimates for SSbiexp

The starting estimates for the biexponential model are determined by curve
peeling, which involves:

1. Choosing half the data with the largest x values and fitting the simple
linear regression model

log abs(y) = a + bx.

2. Setting φ
(0)
3 = exp a and φ

(0)
4 = log abs(b) and calculating the residu-

als ri = yi − φ
(0)
3 exp[− exp(φ(0)

4 )xi] for the half of the data with the
smallest x values. Fit the simple linear regression model

log abs(r) = a + bx.

3. Setting φ
(0)
2 = log abs(b) and using an algorithm for partially linear

models to refine the estimates of φ1, φ2, φ3, and φ4. Because the
model is linear in φ1 and φ3, the only starting estimates used in this
step are those for φ2 and φ4 and the iterations are with respect to
these two parameters.

The estimates obtained this way are the final nonlinear regression esti-
mates.
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FIGURE C.5. A sample response curve from a first-order open-compartment
model. The parameters correspond to an elimination rate constant of 1, an ab-
sorption rate constant of 3, and a clearance of 0.1. The dose is 1.

C.5 SSfol—First-Order Compartment Model

This model is derived from a compartment model in pharmacokinetics de-
scribing the concentration of a drug in the serum following a single oral
dose. The model is based on first-order kinetics for the absorption of the
drug from the digestive system and for the elimination of the drug from
the circulatory system. Because the drug is eliminated from the circula-
tory system, the system of compartments is called an open system, and the
model is a first-order open compartment model. It is written

y(x) =
D exp(φ1) exp(φ2)

exp(φ3) [exp(φ2) − exp(φ1)]
{exp [− exp(φ1)x] − exp [− exp(φ2)x]} ,

(C.5)

where D is the dose, φ1 is the logarithm of the elimination rate constant,
φ2 is the logarithm of the absorption rate constant, and φ3 is the logarithm
of the clearance.

A sample response curve from a first-order open compartment model is
shown in Figure C.5

C.5.1 Starting Estimates for SSfol

The starting estimates for the SSfol model are also determined by curve
peeling. The steps are:
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1. Determine the position of the maximum response. Fit the simple
linear regression model

log(y) = a + bx

to the data with x values greater than or equal to the position of the
maximum response. Set φ

(0)
1 = log abs(b) and φ

(0)
2 = φ

(0)
1 + 1.

2. Use an algorithm for partially linear models to fit the nonlinear re-
gression model

y(x) = k{exp[− exp(φ1)x] − exp[− exp(φ2)x]}

refining the estimates of φ1 and φ2.

3. Use the current estimates of φ1 and φ2 and an algorithm for partially
linear models to fit

y(x) = kD
exp[− exp(φ1)x] − exp[exp(φ2)x)]

exp(φ1) − exp(φ2)
.

Set φ3 = φ1 + φ2 − log k.

These estimates are the final nonlinear regression estimates.

C.6 SSfpl—Four-Parameter Logistic Model

The four-parameter logistic model relates a response y to an input x via a
sigmoidal or “S-shaped” function. We write it as

y(x) = φ1 +
φ2 − φ1

1 + exp [(φ3 − x) /φ4]
. (C.6)

We require that φ4 > 0 so the parameters are:

• φ1 the horizontal asymptote as x → ∞
• φ2 the horizontal asymptote as x → −∞
• φ3 the x value at the inflection point. At this value of x the response

is midway between the asymptotes.

• φ4 a scale parameter on the x-axis. When x = φ3 + φ4 the response
is φ1 + (φ2 − φ1)/(1 + e−1) or roughly three-quarters of the distance
from φ1 to φ2.

These parameters are shown in Figure C.6
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FIGURE C.6. The four-parameter logistic model. The parameters are the hori-
zontal asymptote φ1 as x → −∞, the horizontal asymptote φ2 as x → ∞, the x
value at the inflection point (φ3), and a scale parameter φ4.

C.6.1 Starting Estimates for SSfpl

The steps in determining starting estimates for the SSfpl model are:

1. Use NLSstClosestX to determine φ
(0)
3 as the x value corresponding a

response at the midpoint of the range of the responses.

2. Use an algorithm for partially linear models to fit A, B, and � while
holding φ3 fixed in the nonlinear regression model

y(x) = A +
B

1 + exp[(φ3 − x)/ exp �]
.

The purpose of this fit is to refine the estimate of �, the logarithm of
the scale parameter φ4. We start � at zero.

3. Use the refined estimate of � and an algorithm for partially linear
models to fit

y(x) = A +
B

1 + exp[(φ3 − x)/ exp �]

with respect to A, B, φ3 and �. The estimates are then φ1 = A,
φ2 = A + B, φ4 = exp � and φ3.

These estimates are the final nonlinear regression estimates.
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FIGURE C.7. The simple logistic model showing the parameters φ1, the horizon-
tal asymptote as x → ∞, φ2, the value of x for which y = φ1/2, and φ3, a scale
parameter on the x-axis. If φ3 < 0 the curve will be monotone decreasing instead
of monotone increasing and φ1 will be the horizontal asymptote as x → −∞.

C.7 SSlogis—Simple Logistic Model

The simple logistic model is a special case of the four-parameter logistic
model in which one of the horizontal asymptotes is zero. We write it as

y(x) =
φ1

1 + exp [(φ2 − x)/φ3]
. (C.7)

For this model we do not require that the scale parameter φ3 be positive.
If φ3 > 0 then φ1 is the horizontal asymptote as x → ∞ and 0 is the
horizontal asymptote as x → −∞. If φ3 < 0, these roles are reversed. The
parameter φ2 is the x value at which the response is φ1/2. It is the inflection
point of the curve. The scale parameter φ3 represents the distance on the
x-axis between this inflection point and the point where the response is
φ1/

(
1 + e−1

) ≈ 0.73φ1. These parameters are shown in Figure C.7.

C.7.1 Starting Estimates for SSlogis

The starting estimates are determined by:

1. Scaling and, if necessary, shifting the responses y so the transformed
responses y′ are strictly within the interval (0, 1).

2. Taking the logistic transformation

z = log[y′/(1 − y′)]
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FIGURE C.8. The Michaelis–Menten model used in enzyme kinetics. The pa-
rameters are φ1, the horizontal asymptote as x → ∞ and φ2, the value of x at
which the response is φ1/2.

and fitting the simple linear regression model

x = a + bz.

3. Use φ
(0)
2 = a and φ

(0)
3 = b and an algorithm for partially linear models

to fit

y =
φ1

1 + exp[(φ2 − x)/φ3]
.

The resulting estimates are the final nonlinear regression estimates.

C.8 SSmicmen—Michaelis–Menten Model

The Michaelis–Menten model is used in enzyme kinetics to relate the initial
rate of an enzymatic reaction to the concentration of the substrate. It is
written

y(x) =
φ1x

φ2 + x
, (C.8)

where φ1 is the horizontal asymptote as x → ∞ and φ2, the Michaelis
parameter, is the value of x at which the response is φ1/2.

These parameters are shown in Figure C.8
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C.8.1 Starting Estimates for SSmicmen

The starting estimates are obtained by:

1. Fitting a simple linear regression model

1
y

= a + b
1
x

for the inverse response as a function of the inverse of x.

2. Setting φ
(0)
2 = abs(b/a) and using an algorithm for partially linear

models to fit

y =
φ1x

φ2 + x
.

The resulting estimates are the final nonlinear regression estimates.
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correlation structures, 205, 226
AR, 228
ARMA, 228
compound symmetry, 227
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nlme objects, 361
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first-order open-compartment model,
351, 516
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fixed effects, 58
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gapply, 120, 460
Gauss–Newton algorithm, 325, 331
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generalized least squares, 201
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generalized nonlinear least squares,
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gls, 205, 249–267, 462

methods, 250
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with variance functions, 251

GLS model, 203–205
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gnls, 332, 401–409, 464

methods, 402
GNLS model, 333

approximate distributions of
estimates, 335

gradient attribute, 339
grouped data, 97
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groupedData
balancedGrouped, 109
constructor, 101, 108
display formula, 98
inner factor, 107
outer factor, 104

groupedData, 466
growth curve data, 30
gsummary, 106, 121, 469

heteroscedasticity, 178, 201, 291

IGF, see datasets
Indometh, see datasets
information matrix, 82, 323
initial attribute, 344
intervals, 471

gnls objects, 403
lmList objects, 142, 473
lme objects, 156, 471
nlme objects, 363
nlsList objects, 281, 350

isotropic correlation, 226, 231

Laird-Ware model, see linear mixed-
effects model

likelihood
components of, 71
extended LME model, 203
extended NLME model

adaptive Gaussian approxima-
tion, 332

Laplacian approximation, 331
LME approximation, 331

GLS model, 204
multilevel LME model, 77
multilevel NLME model

adaptive Gaussian approxima-
tion, 321

Laplacian approximation, 318
LME approximation, 314

optimization, 79
profiled, 65
pseudo, 207
QR decompositions with, 68
restricted, 75
single-level LME model, 62
single-level NLME model

adaptive Gaussian approxima-
tion, 321

Laplacian approximation, 315
LME approximation, 313

likelihood ratio tests, 83
Lindstrom and Bates algorithm, 313,

330
LME step, 313
PNLS step, 313

Lindstrom and Bates model, see non-
linear mixed-effects model

linear mixed-effects model
extended, 202–203
multilevel, 40, 60
single-level, 28, 58

lm, 5, 134–138
lme, 8, 146–174, 474
fixed and random, 146
confidence intervals, 156
maximum likelihood estimation, 150
methods, 147
multilevel, 167–174

coefficients, 170
predictions, 174

REML estimation, 150
single-level, 146–166
split-plot analysis, 160
with lmList object, 147
with variance functions, 214

LME model, see linear mixed-effects
model
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lmeControl, 476
lmList, 32, 139–146, 478

confidence intervals, 142
methods, 140

Loblolly, see datasets
logistic model, 274, 338, 519
logLik, 479

MA, see moving average model
Machines, see datasets
Manhattan distance, 230
matrix logarithm, 78
maximum likelihood estimators

approximate distribution, 81
LME model, 66

mechanistic model, 274
Michaelis–Menten model, 520
MLE, see maximum likelihood

estimators
model

asymptotic regression, 301, 511
with an offset, 368

asymptotic regression through the
origin, 513

asymptotic regression with an
offset, 512

biexponential, 278, 514
empirical, 274
first-order open-compartment, 351,

516
four-parameter logistic, 410, 517
logistic, 274, 289, 338
logistic regression, 519
mechanistic, 274
Michaelis–Menten, 520
one-compartment, 295
one-compartment open with first-

order absorption, 378
two-compartment, 278

moving average model, 229
multilevel model

likelihood, 77
linear mixed-effects, 40, 60
lme fit, 167
nonlinear mixed-effects, 309

naPattern argument to nlme, 298,
380

Newton–Raphson algorithm, 79

nlme library
obtaining, viii

nlme, 283, 479
fixed and random, 355
covariate modeling, 365–385
extended NLME model, 391
maximum likelihood estimation, 358
methods, 357
multilevel, 385–391
REML estimation, 387
single-level, 354–365
with nlsList object, 357
with variance functions, 391

NLME model, see nonlinear mixed-
effects model

nlmeControl, 483
nls, 279, 338–342
nlsList, 280, 347–354, 485

methods, 349
nonidentifiability, 204
nonlinear least squares, 278
nonlinear mixed-effects model, 282

approximate distributions of
estimates, 322

Bayesian hierarchical, 311
compared to LME model, 273–277
extended, 328–332
likelihood estimation, 312
multilevel, 309–310
nonparametric maximum likelihood,

311
single-level, 306–309

nonlinear regression model, 278
NONMEM software, 310
normal plot

of random effects, 188
of residuals, 179, 180

nugget effect, 231

Oats, see datasets
one-compartment open model with

first-order absorption, 378
one-way ANOVA, 4–11

fixed-effects model, 6
random-effects model, 7

Orange, see datasets
Orthodont, see datasets
orthogonal-triangular decomposition,

see QR decomposition
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Ovary, see datasets
Oxboys, see datasets
Oxide, see datasets

pairs

lmList objects, 141
lme objects, 188, 190, 486
nlme objects, 359

partially linear models, 342
PBG, see datasets
PBIB, see datasets
pdMat, 157

classes, 158
pdBlocked, 162
pdCompSymm, 161
pdDiag, 158, 283, 364
pdIdent, 164

peeling, 278
penalized nonlinear least squares, 313
Phenobarb, see datasets
Pixel, see datasets
plot

Variogram objects, 494
gnls objects, 404
groupedData object, 492
groupedData objects, 105, 490
lme objects, 175, 488
lm objects, 135
nls objects, 341
nlsList objects, 350

positive-definite matrix, see variance–
covariance

precision factor, 313
predictions

lme objects, 150, 495
augmented, 39, 361
BLUP, 37, 71, 94
multilevel model, 174
NLME model, 323
random effects, 37
response, 37, 94

pseudo-likelihood, 207

qqnorm

gls objects, 253
lme objects, 179, 180, 497
nlme objects, 361
random effects, 188

QR decomposition, 66, 326

Quasi–Newton algorithm, 79
Quinidine, see datasets

Rail, see datasets
random effects

crossed, 163
multilevel, 60
overparameterization, 156
single-level, 58

randomized block design, 12–21
ranef, 498

lmList objects, 501
lme objects, 499

rate constant, 278, 351, 379
relative precision factor, 59

parameterization for, 78
REML, see restricted maximum

likelihood
residuals

normalized, 239
Pearson, 149
response, 149

residuals S function, 503
restricted maximum likelihood

LME model, 75
NLME model, 314

SBC, see BIC
scatter-plot matrix, 359
Schwarz’s Bayesian Criterion, see BIC
self-starting models, 342–347

available in nlme library, 346
SSasymp, 301, 511
SSasympOff, 369, 512
SSasympOrig, 513
SSbiexp, 279, 514
SSfol, 352, 516
SSfpl, 410, 517
SSlogis, 288, 347, 519
SSmicmen, 520

selfStart, 343
constructor, 504, 505

formula objects, 506
functions, 346

semivariogram, 230
robust, 231

serial correlation, 226–230
shrinkage estimates, 152
Soybean, see datasets
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spatial correlation, 230–232
exponential, 232
Gaussian, 232
linear, 232
rational quadratic, 232
spherical, 232

spatial data, 226
split-plot, 45–52
Spruce, see datasets
starting estimates, 340

Theoph, see datasets
time-series data, 226
time-varying covariate, 378
trellis

aspect ratio, 111
display of grouped data, 110
display of multilevel data, 116
panel function, 114
plot layout, 110

two-stage model, 309, 333

unbalanced data, 25

varFunc, 208–225
classes, 208
varComb, 213
varConstPower, 212, 220, 392

varExp, 211
varFixed, 208
varIdent, 209
varPower, 210, 217, 290
varReg, 268

variance covariate, 206
variance functions, 206–225

with gls, 251
with lme, 214
with nlme, 391

variance weights, 208
variance–covariance

components, 93
of random effects, 58
of response, 66
of within-group error, 202
pdMat classes, 157

Variogram, 245, 264, 507
lme objects, 508

varWeights, 208
volume of distribution, 295

Wafer, see datasets
Wheat2, see datasets
within-group error

assumptions, 58
correlation, 202
heteroscedasticity, 202
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