Microbial Quality Control of Pharmaceuticals

By

N. Samadi, Ph.D.

Department of Drug & Food Control

Subjects:

- 1. Analytical Microbiology
- Microbial limit tests and quality control of nonsterile
 pharmaceuticals
- 3. Antimicrobial Preservatives
- 4. Sterility and Sterility Assurance

References:

1. Hugo, W.B. and Russell, A.D., Pharmaceutical Microbiology, Blackwell, 2000.

2. Baird, R.M. and Bloomfield S.F., Microbial quality assurance in cosmetics, toiletries and non-sterile pharmaceuticals. 2nd ed., Taylor & Francis, London, 1996.

اين كتاب توسط خانم دكتر فضلي بزاز ترجمه شده است.

3. Denyer, S. and Baird, R., Guide to microbiological control in pharmaceuticals. Ellis Horwood, 2000.

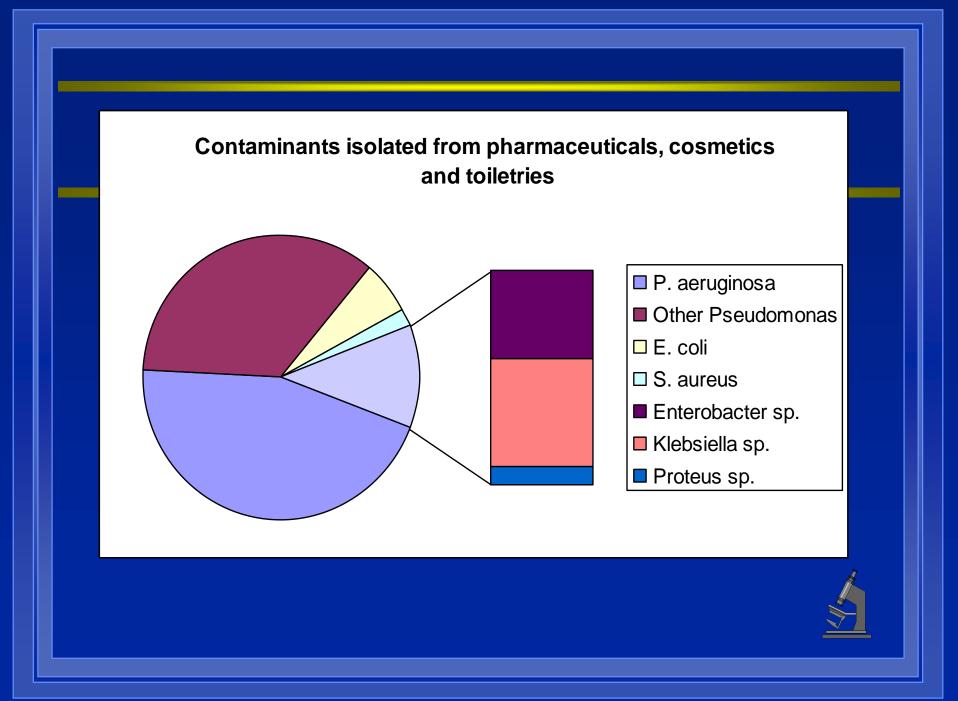
4. Clontz, L., Microbial Limit and Bioburden Tests, Interpharm Press Inc.: Buffalo, 1998.

5.United States Pharmacopeia (USP) (latest edition).

6. British Pharmacopeia (BP) (latest edition).

7. فارماكوپه ايران

8. Block, S.S. (ed) Disinfection, Sterilization and Preservation, 5th ed. Lippincott Williams & Wilkins, 2001.


9. Russell, A. D., Hugo, W. B. and Ayliffe, G. A. J (eds) Principles and Practice of Disinfection, Preservation and Sterilization, 3rd ed. Blackwell, 1999.

Introduction to: Microbial contamination of Pharmaceuticals

Contamination rates for manufactured pharmaceutical products (1959-1979)

Product type	Total percentage contaminated	Percentage contaminated with>10 ⁵ /g or ml
Aqueous	35	22
Gels	34	15
Oily	26	10
Dry	33	7
Spirits	3	3
total	32	18

Microbial contamination in pharmaceuticals is a potential hazard for two reasons:

Represents a health hazard to the patient

May cause product spoilage

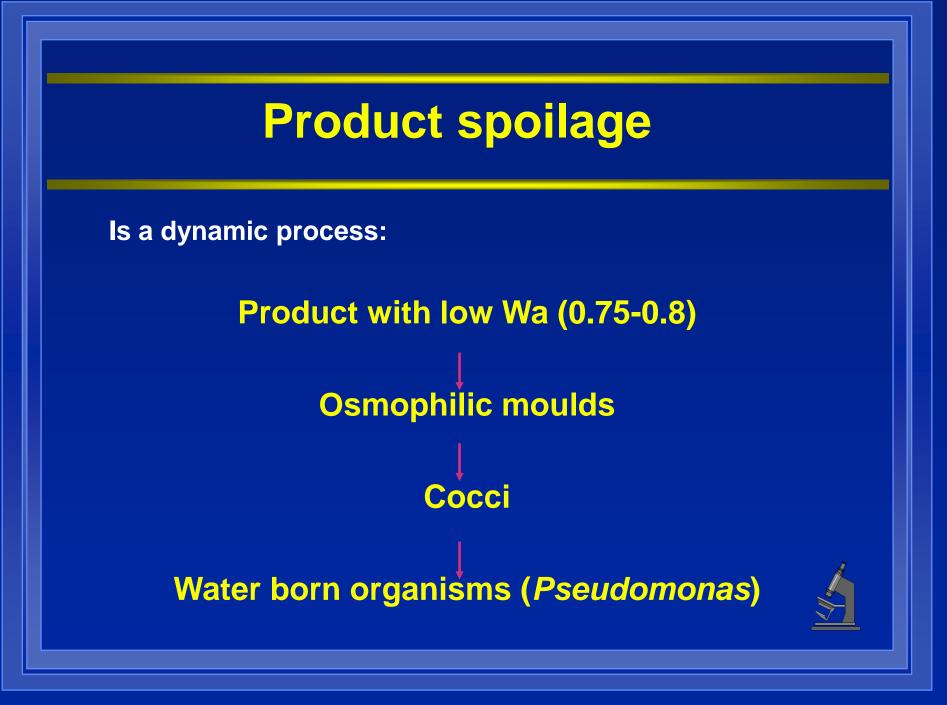
Infection risk depends on four factors:

1. Type of organisms: pathogen or opportunistic

2. Infective dose:

S. aureus , intact skin 10⁶ injured skin 10² E. coli, Salmonella , host resistance: 10⁷-10²

3. Host resistance to infection


4. Route of administration

Microbial contamination may result in:

- Degradation of active ingredients
- Degradation of Excipients (polymers, emulsifiers,...)
- Degradation of antimicrobial preservatives
- Fermentation & pH change
- Smell and color changes

Contamination reports result in:

- 1. Development and revision of microbial standards for non-sterile products (microbial limit tests)
- 2. Development of preservative systems
- 3. Environmental monitoring & control program

Microbial standards Non-sterile pharmaceuticals

Total viable counts (TBC+TYMC)
 Absence of specified microorganisms

Origin

≈ Preparations with natural origins: Salmonella sp.

Rout of administration:

- ≈ Oral suspensions & emulsions: E. coli
- ≈ Topical preparations: P. aeruginosa, S. aureus
- ≈ Vaginal & rectal preparations: mould & yeast

Population

Indicator microorganisms (FDA):

Harmful:

- microorganism or its toxin causes infection (illness)
 - ≈ Salmonella sp., Closteridia sp.

Objectionable:

- Causes illness or product instability
 - ≈ Pseudomonas putida

Opportunistic:

- causes illness in patients, infants,...
 - Environmental microflora; G+ Cocci, G+ Bacilli, yeast, mould

Herbal medicines (BP-Category 4)

Herbal medicinal products to which boiling water is added before use:

- ♦ TAVC: < 10⁷ bacteria and < 10⁵ fungi /g or ml
- $< 10^2 E. \ coli \ /g \ or \ ml$

Herbal medicinal products to which boiling water is not added before use:

- ♦ TAVC: < 10⁵ bacteria and < 10⁴ fungi /g or ml
- < 10³ enterobacteria and certain other Gram-negative bacteria /g or ml
- Absence of E. coli/g or ml
- Absence of Salmonella/g or ml

No.	Commercial name	TBC/g	TYMC/g	E. coli/g
1	Aliso tea	3.4 * 10 ⁶	3.6 * 10 ²	>10 ²
2	Casia tea	2.2 * 10 ⁷	1.2 * 10 ⁵	Absent
3	Fumaria tea	3.6 * 10 ³	<10	Absent
4	Hypericum tea	7.6 *10 ⁶	$7.0 * 10^2$	Absent
5	Thymus tea	2.9 * 10 ⁷	8.7 * 10 ⁵	>10 ²
6	Antidiabetic powder	7.6 * 10 ⁵	1.6 * 10 ³	Absent
7	Chahargol powder	2.2 * 10 ⁵	1.5 * 10 ⁴	Absent
8	Diuretic powder	2.3 * 10 ⁵	1.4 * 10 ²	Absent
9	Plantagel powder	$1.2 * 10^2$	<10	Absent

No.	Commercial name	TBC/g or ml	TYMC/g or ml	MPN coliform/g or ml
1	Alicum tablet	9.0 * 10 ⁴	<10	<1
2	Menthazine tablet	2.1 * 10 ⁶	<10	<1
3	Razine tablet	1.3 * 10 ⁵	<10	<1
4	Samilax tablet	6.4 * 10 ²	<10	<1
5	Sennamed tablet	3.8 * 10 ⁴	<10	<1
6	Thymex tablet	$1.2 * 10^5$	<10	<1
7	Thymex syrup	1.1 * 10 ⁵	<10	<1
8	Valiflore tablet	1.8 * 10 ⁵	<10	>1,<10
9	Ginco T D tablet	<10	<10	<1

Environmental monitoring program

- 1. Cleaning and sanitization of environment (surfaces, instruments, air,...)
- 2. Training of personell

Microbial spoilage of pharmaceutical products:

Primary contamination (raw materials):

- 1. Water, non-preserved solutions (peppermint water): G-negatives
- 2. Organic solvents, alcohols: bacterial spores
- **3.** Dry powders & packaging materials: spores (G-positives & moulds)

Production contamination:

Production facilities

Environment :

♦ Dry surfaces → G+ Bacilli, Cocci, spores

♦ Wet surfaces — → G- Bacilli

♦ Air —→ loss of skin scales 10⁴/min, Cocci, spores

Bioburden of unused eucerin urea ointments

- All the samples examined immediately after purchase found to have total viable counts of lower than 10² cfu/g.
 - Staphylococcus aureus (77%),
 - Candida albicans (45.5%)
 - Escherichia coli (9.1%)
 - Pseudomonas aeruginos (4.5%)
- After two weeks storage, contamination levels increased such that about 36.4% of samples were found to have the total viable counts greater than 10² cfu/g
 - Staphylococcus aureus (86%)
 - Candida albicans (59%)
 - Escherichia coli (18.2%)
 - Salmonella sp. (9.1%)

Secondary contamination
 Contamination during use

Susceptible products are those with:

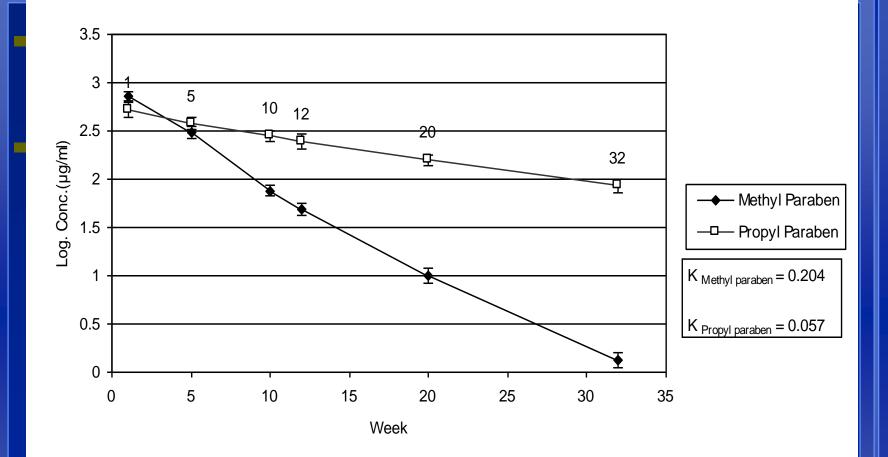
≈ Multiple dose containers

High water activity

Sugars, vitamins, fats,...

Development of a preservative system:

An ideal preservative specification:


- Spectrum of activity
- Safety
- Irritation, sensitization
- Rate of kill
- Cost
- Environmental impact
- Effect on the product
- Functionality within product

Class	Usual concentration (%)	Antimicrobial Spectrum
Acidic & Phenolics	0.05-0.1	
Benzoic Acid and Salts	0.05-0.2	<u>Antifungal Agent</u>
Sorbic Acid and Salts	0.5-1.0	
Boric Acid and Salts	0.2-0.5	
Phenol		
Cresol	0.1-0.5	
Chlorocresol	0.05-0.1	Broad Spectrum
Parabens	0.001-0.2	
<u>Mercurials</u>	0.001-0.1	Broad Spectrum and
Thimerosal	0.002-0.005	Synergist
Phenyl Mercuric Acetate & Nitrate	0.002-0.003	
Quaternary Ammonium		
<u>Compounds</u>	0.004-0.02	
Benzalkanium Chloride		
Cetylpyridinium Chloride Benzethonium Chloride	0.01-0.2	Broad Spectrum
Benzethomum Chionae	*	
Miscellaneous	15.0-20.0	
Alcohols		
Chlorobutanol	0.5	
Benzyl alcohol	0.5-5.0	
Phenoxy-2-ethanol	*	Broad Speatrum
Bromo-2-Nitroprpanediol-1,3		Broad Spectrum
Bromo-z-Mitroprpanedioi-1,3	*	

Effect of pH on Benzoic acid ionization, pKa=4.19

рН	% undissociated	% dissociated
	C ₆ H₅COOH	C ₆ H₅COO-
3.24	90	10
3.59	80	20
3.82	70	30
4.01	60	40
4.19	50	50
4.36	40	60
4.55	30	70
4.79	20	80
5.14	10	90 💆

Hydrolysis of methyl paraben and propyl paraben in magnesium hydroxide suspension (25±2 °C, 60±5% RH)

Partition coefficient

preservative	Mineral oil K _w °	Vegetable oil K _w °
chlorcresol	1.5	117
Methyl paraben	0.02	7.5
Propyl paraben	0.5	80
Butyl paraben	3.0	280
СТАВ	<1.0	<1.0

Emulsifiers

Suspensions

Containers

