1-1 Reprogrammability, multifunctionality.
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1-2 Forward kinematics: Position and orientation of the end effector in terms of the joint
variable

Inverse Kinematics: Joint variables in terms of position/orientation of the end effector.

Trajectory Planning: Planning the time history of the joint variables necessary for the
robot to execute a given task.

Workspace: The total volume swept out by the end-effector as the manipulator executes
all possible motions.

Accuracy: A measure of how close the manipulator can come to a given point within its
workspace,

Repeatability: A measure of how close a manipulator can return to a previously taught
point.

Resolution: The smallest increment of motion that can be sensed. The resolution is a
function of the distance travelled and the number of bits of encoded accuracy.

Joint Variables: The relative displacement between adjacent links, denoted #; for revolute
joins and d; for prismatic joints.

Spherical Wrist: RRR wrist configuration with joint axes intersecting at a common point.

End Effector: A gripper or tool used to perform the robot’s task.
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1-3 Geometry, power source, application area, method of control.

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



1-4 Depending on the pattern to be followed, articulated, spherical, or cartesian manipulators may
be used for applications such as welding, laying a bead of glue, eutting, grinding or sanding a
surface, spray painting, auto assembly, and anthropomorphic tasks. Cartesian manipulators
are also suited for table-top assembly and, as a gantry, for the transfer of material or cargo.
SCARA manipulators are useful for table-top assembly and pick-and-place applications.
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1-5 Non-servo robots: Materials handling, servicing a special purpose machine such as a press.
Point-to-point robots: Materials handling, spot welding, forging.

Continuous path: Arc welding, grinding and deburring, spray painting, assembly, sheep
shearing.
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1-6 Welding, painting, deburring, grinding, polishing.
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1-7 Automating inspection of goods for defects, monitoring unknown terrain, sorting ohjects by
color or shape, painting an object, picking up randomly placed ohjects.
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1-8 Handling fragile objects (glass, eggs, ete.), grinding, assembly defusing explosives, machining.
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1-9 Latest figures and projections may be found in the current edition of World Rebotics, published
by the International Federation of Roboties, or a similar publication.
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1-10 The key point of this question is the rapidly of change. An overnight change would not allow
time for workers to be retrained or to find other jobs, thus negating the beneficial effects of
inecreased productivity. This point can be discussed at length in a classroom setting.
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1-11 Here again the key point is in the extreme nature of allowing no robotic automation. While
no one would be put out of work by robots, the productivity and quality of goods produced
would soon lag behind that of other countries. The long term effect would likely be higher
unemployment than would result by phased automation. This point can alse be discussed in
a classroom setting.
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1-12 Applications involved reaching around or behind obstacles, assembly of a complex, intricate
object, defusing explosives, artificial limbs.
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1-13 Using the law of cosines: 2 = a2 4+ b2 — 2abcosh, let a = £ = b and ¢ = d. Then 42 =
202(1 — cos ). Hence,

d = {2(1—cosb).

With ¢ = 1 meter , 8 = 90°, d = /2 meters = 1.4142136 meters. On the other hand,

s = {# = T meters = 1.5707963 meters. Resolution = M where n = number of

5y - - -
bits of encoder accuracy. The linear resolution is ﬁ%—j = 0.003811 = 1.3811 x 1072 meters.

The rotational resolution is 53w = 53w = 517 = 0.001534 = 1.534 x 1073 meters.
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5 - .
1-14 Resolution = % = Lﬁgﬂgﬂﬂ = 0.6136cm.
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IR ORI Y | S _
1-15 ¢ = 0.bmeter f# =1 r = total fjl}f‘t‘“m*‘ = 2tm = 1.227 x 10— 2¢em.
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1-16 The position of the TCP is not measured directly but is computed from encoder measuring
joint positions. Thus, the accuracy is affected by computational errors, machining accuracy
in construction of robot parts, ete.
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1-17 If direct end-pointing sensing were used, less uncertainty could enter the measurement of the
end-effector position. Difficulties including introducing a vision system at the end-effector
and feeding back the end-effector position which could cause the control system to become
unstable.
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Ve haxr — hore A — +an—1 O | as sin b-
1-18 We have 0, = ¢ — a where ¢ = tan™"(y/x); a = tan (m)
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1-19 1.

r = ajcosfy +ascos(fy +6y) = cos (%) + cos (Q.R_W) 0.366025

iy 27
¥ = apsinfly +assin(f; +63) = sin (E) + sin (%) 1.3660254
2.
¥ = —sin#; —3sin(fy + 63)
1 = cosfy + 3eos(fy + Ha)
At #y = 2 = T
i o= - (sin ~ + 3sin %) — 37071068,
§ = cos% +3cosg = 0.7071068

3. machine prohblem

4. machine problem
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1-20 If both links are equal length then x = 0, y = 0 can be reached by infinitely many configura-
tions, namely #; = 180°, 8y = arbitrary.
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1-21 Moving a distal link with large mass will require more torque from all motors driving previous
links. In addition, since momentum is the product of mass and velocity, a massive link far
from the base may cause troublesome overshoot issues. We may reduce the mass of distal
links in two ways:

1. driving distal joints from motors mounted on previous links, thereby eliminating the
mass of the motor from the link mass. A consequence of this is the increased complexity
of design due to trasmission of motion from motors to the joint they drive.

)

. reducing the mass of the links themselves, either by selecting materials with less mass or
by strategically boring holes in the link to reduce mass. The downside of this approach
is seen in the control problem. For a robot whose links have small mass, picking up an
object will drastically affect the dynamics of the manipulator. For more massive robots,
manipulating small objects have less or negligible affect on the dynamics.
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2-1 We are considering free vectors. Consequently, we do not need to know points in space — only
direction and magnitude so we only need to know the rotation hetween the two coordinate
frames: the distance between the two origins is irrelevant.

/'
‘.\ //
o2
P
Y
We write a® = Rfa! and b* = R}b'. Now,
a2 0?2 = (a®)Th? = (RaH)T (RB') = (a')T RT Rb!

(al)TR—lel 25 ((T.l]Tbl = Gl i bl
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2-2 Notice that ||v]|? = vTv = |v|| = +VvTv. Therefore,

|Rv| = +441/(Rv)TRv=VvTRTRv

= VuTu = ||

;
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2-3 This follows from Problem 2-2 with v = p; — ps.
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T1i

2-4 Let R = [ry,rg, 3] where r; = rgi |. Then RTR = I implies
T3
-r‘f-rl ?‘f-r‘g '}‘:{T’g 1 00
-r‘f-rl rg 79 -f'grg = 010
rg T rg 79 'f‘gif’g 0 01

[al

Equating entries of the matrices shows that the column vectors of R are of unit length and
mutually orthogonal.
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2-5 a) For any matrices A and B, det(A”) = det(A4) and det(AB) = det(A)det(B). Thus, if R is
orthogonal
1= det(I) = det(RTR) = det(RT) det(R) = (R)?
which implies that
detR = +1.
b) For a right-handed coordinate system, r; x r9 = r3. This implies that
r12r23 — 713722 = T311  —Tr11723 + 713721 =732 T11722 — T12721 = 733,
Theretfore, expanding det R about column 3 gives
i1 T2 7Tl
detR = det | ri2 799 729
13 T23 Ta3
731(T12723 — T22713) — 73271128 — r21713) + T33(r11T22 — T21712)
= r31(ra1) + r32(raz) + raz(raa)
= ll?=1.
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2-6 Equation (2.3) is obvious. Equation (2.4} follows from

Coly — S84
S9Cy + cpsy

cos(0 + @)
sin(f + o)

cy —84 0
8 ¢4 0
0 0 1
—CpSs — CaSp 0

—8p84 + Cocy 0
0 1

—sin(# + @)

0
cos(0+ @) 0 | = R.p4s.
0 1

Equation (2.5) follows from (2.3) and (2.4) since

R.gR. _g=R.g g=R.o=1.

This can also be shown by noticing that

T _
RZ,9 -

R, _o.
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2-7 First, note that = € SO(n) means that 7» = 227 =TI and detz = 1.
a) The first property follows from
(z120)T (2120) = rg:rfml;lrg — 1:511:2 —!
S0

19 € SO(n) Yr1, 29 € SO(n)

b) By the associative property of matrix multiplication,
(1, 22)T3 = x1(T273).
for 1, r9, r3 € SO(n)
c) The n x n identity matrix satisfies the third property.

d) Since 27z = xa? = I, it follows that 27 = »~!
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2-8 For a rotation of # about the r axis we have

Q-
Yo -
N
20 -

Yo -

ksl

Y1
Z1
w1
1

=

= cosf
= cosd
= sin#

= —sinf

and all other dot products are zero. Substituting into the rotation matrix in Section 2.2.2

gives

Ry

For a rotation of # about the ¥ axis we have

Yo -
xro -

0

20 -

£Ip -

Y1

Iy
'Zt

ksl

Z1

1 0 0

0 cos@ —sind

0 sin® cosf

=1

= cosf
= cosf
= —sinf

= sin#

and all other dot products are zero. Again using the rotation matrix gives

R

cosf 0 sinf
0 1 0
—siné 0 cosé
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2-9 Let

A = “ 2}550(2),

From Cramer’s rule and the fact that A € SO(3) we have
-1 d —-b| _|a c
N A R
which implies that a = d and b = —c. Thus
]
c a

with det A = 1 = a? 4 ¢2. Define 6 = tan~!(¢/a). Then cosf = a and sinf = c.
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2-10

R

R RI"@R”H

y
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2-11

R = RzﬂRx@ Rr 1
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2-12

R

RE’.,&'RI'.,{Z) RLER:L?;:
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2-13

R = R*QRVHRrGRrﬂ
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2-14

0o 0 1 1 0 0 0 1 0
H = Ry%RI%: 0O 1 0 0 -1 0o 0 -1
-1 0 0 0 -1 0 -1 0 O
A%
4
z"; 7—"——-———"1- )'n
¥ |
R '
X
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2-1¢

10 0
R2=RIRY where R?=(RL'=]0 1/2 V3/2]|.
0 —v3/2 1/2

Therefore,

0
0
1

1 0 0 0 —1 0 0o -1
Ry = |0 1/2 3)2 10 |=|v32 12 0
0 —v3/2 1/2 10 0 1/2 —v3/2 0

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



2-16 If r11, 21 are not both zero, then
o cg =0 and rg; = —s55 #+ +1
® 739,733 are not both zero.

80, cp = £4/1 — 13, and 0 =Atan2( + /1 — r3;, ra1).
Follow a development similar to that provided for the Euler angles to find ¢, 8, and /.
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2-17 Straightforward; follow directions given in sentence preceding the equation.

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



2-18 Straightforward. Substitute for r;; in Equation (2.45) using the matrix elements given in
Equation (2.43).
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2-19 If A is an eigenvalue of R and k is a unit eigenvector corresponding to A then, Rk = Ak. Since
R is a rotation ||Rk|| = |/k|. This implies that |A\| = 1, i.e., the eigenvalues of R are on the
unit circle in the complex plane. Since the characteristic polynomial of R is of degree three
at least one eigenvalue of B must be real. Hence +1 or —1 is an eigenvalue of E. Now, since
+1 =det R = Ay A2A3 where {A1, Aa, A3} is the set of eigenvalues of R, it is easy to see that if
—1 is an eigenvalue then {A1, Ao, A3} = {—1, —1,+1}. In any case +1 is always an eigenvalue
of R.

The vector k defines the axis of rotation in the angle/axis representation of R.
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2-20

1 1 1 1 1

3 5~/ 3T A3

R — 1, 1 1 1 _ 1
3"3 37/ 3
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2-21 Straightforward.
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2-22

Rz.ﬁRy.cﬁRz.wRy_—gsz:.—G

1 0] 0 cos(¢) 0 sin(¢) -1 0o 0 cos(p) 0  —sin(¢) 1 0 0
=1 0 cos(8) —sin(f) 0 1 0 0o -1 0 0 1 0 0 cos(f)  sin(@)

0 sin(@) cos(f) —sinf{¢) 0  cos(d) 0 0o 1 sin(¢) 0 cos(¢) 0 —sin(#) cos(f)
— cos(2¢) —2cos(¢) sin(¢) sin(6) cos(@) sin(2¢)
= | —2cos(¢)sin(@)sin(d) —cos(#)? — cos(2¢) sin(§)? — cos(¢)? sin(26)
cos(#) sin(2¢) — cos(¢)? sin(26) cos(@)? cos(#)? — cos(@)? sin(#)? — sin(8)?
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2-23

00 1] £ o0 0 01
R = RyeR.15 = L O[22 g|=| ¢ ZO0
-1.0 0 0 01 22
rR) — vz 4
= cos ! m — cos! | -2 = 08.42°
2 2

1 Taa — Tag 0.7071068
k= Y ria — Tag = (0.50564481) | 1.7071068
ST el - 0.7071068
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2-24

0 0 1
0 11
Rl - V2 V2 0
— 1 1L
V2 /2
. . . .. 1 1 r
The direction of the r-axis is (0, —, ——_) ,
V2 V2
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2-25 Possible Euler angles:

XYZ
XYX
X7ZY
XZX

YZX
YZY
YXZ
YXY

ZXY
ZX7Z
ZYX
AV

We must be able to rotate about three different axes in order to specify an arbitrary rotation.
Therefore, it is not possible to have ZZY Euler angles, since the consecutive Z rotations are

rotations about the same axis.
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2-26 For any two complex numbers ¢y, ¢5 € C,
c1 =a+ib=|cy|| (cos @y 4 isinby)
co=e+if = |cz| (cos@y 4 isinba)
where ¢; =atan2(a, b) and 02 =atan2(e, f).
crey = |let]l||ez| (cos 81 + isin 6q)(cos By + isina)
= |le1]| [|e2]| [(cos 6y cos B2 — sin 6y sin 62) + i(sin 62 cos 61 + sin 61 cos 62)]
= el |lez]] [003(6‘1 + 62) +isin(f; + 92)]

=—multiplication of complex numbers corresponds to addition of angles.
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2-27 Group: {C, -}

Using complex exponential notation, ¢; = mi1ed% o = moe???, ¢q = mae?®,

1. Group is closed under group operation.

For all ej.es € C,
c1-cyg = m.lejglmzejez
— m-l??lgej[:91+92) — m.38j93
where my = mymy and 63 = 6; + 05.

2. Associativity
For all ej.e9,e9 € C,

(cre2)es = (??116391 m_2e,?'92)mge;93
= mymomae’ (B14+62+03)
= m.lejgl (mzmSBJ (92+93j)

= ci(caey).

3. Identity element I = 1 + j0 = 179
For all e € C,

el = ¢ = Je

4. Inverse element

For all ¢; € C, let inverse ¢z € C be defined as ¢2 = ie_jgl.
! gt —jt Jo
c1ea = mp—elle =0 =1 =1
my
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2-28 Quaternion Q = g, + iq1 + jg2 + kg3 = (g0, ¢1, 2, q3)

— (cox? N
Ry — Q = (cos 3,ngsin 3, ny, sin 3, n; sin 3)

Now, ||k|| = \/m =1 because k = [nrn.yn.z]T is a unit vector.
1l = \/0052 o + (n2 + n2 + n2)sin? Y
2 * u = 9
0 5 0
— \/0052 3 + sin? 5
= Vi=1
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0 . i B PO P
2-29 Q = (g0, 91,92, q3) = (cos 5, Ny sin 3,71, sin 5, n. sin 5).
Find rotation matrix Ry s = find k. 6.

1. 8 =cos™!(2q0)

. L 4 .
515 SN E 511 Q

i
2. k= ['.ra.x,ny,n.g]f = [ bl }
2 2
3. Substitute values for k&, @ into

k2vg+cog  kpkyvg — k.89 kok.ve + kysg
Rro = | kokyvg+kosg  k2vg+cg  kykove — kosg
kxk’-g'b‘g - f{.‘ySH kykgt-‘g =+ :I’.’-xS[q k‘gt‘g + ¢g

where vg =versf = 1 — ¢g.
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2-30 Given R, find @ = (qo,q1,92.43).

1| Tr(R)—1
6 = cos ! { )
2
Ty | 732 — 123
k= n — = 13 — 31
v 2sin f
n r21 — T2

If ||k

= 1, then k' = sz—”
)

N _ _ B i B
g0 = COS 5,41 = Ny SN 5,2 = Ny SN 5,3 = N Sin 5
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2-31 X =xg+iry + jro+ krs = (20, 1)
Y =uyo+ i+ jyz + kys = (Yo, y)

Z=XY = (zo+iri+jrs+ kx3)(yo +iv1 + jyz + kys)

= ToYo — T1Y1 — Toys — T3ys + To(iyy + JY2 + kys) + volizy + jro + ki)
+i(zoys — x3ye) — j(x1ys — y1x3) + k(z1ye — y122)

= zoyo —rly+ 2oy +wr+xxy

= (:royo — 2Ty, (zoy + yox + & x y))

= (20,2)
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2-32 Given @ = (¢0,q) and ||q|| = 1,
show that @y = (1, 10,0, O]Tj = (dp, d) is the identity for unit quaternion multiplication.
We see that g =¢"'d =0, and d x ¢ = ¢ x d = [0,0,0].
Now, applyving the result from problem 2-30,

Q@r = (avdo —d"q. (aod+doq + q % d))

= (qodo, dogq)
= (20,9 =Q.
Similarly, we left-multiply by @7 and find that Q;Q = Q.
= QQr = QIQ=0Q

Therefore @y is the identity element.
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2-33 Q* = (qu.q"), where ¢* = [—ql.—q2, —¢3]".
Recall @ is a unit quaternion, so q['-“; + qf + qg + qf =1.

¢Tq = ¢ 4="N "% Td
(,ﬁ -1 = _qf _ fé _ f;;f .
q X q* = f(—rj;)rf:i + erd:i) - jf(—ql(j:s + rﬂg_-_{) 4 ‘i"-(ffl"jz + fﬂqz)
[0,0,0]"
= ¢ xq
Qe" = (r]:'}q[-] +1—q5, (909" + qoq + g ¥ (}*))

1,(0 + ¢ x q”))

(
= (L0.0.07) =0

Similarly, Q*Q = (qoqn +1— @ (qgog + qoq” + ¢* x q)) = (I .0, 0, (]]T).
= QQ" =Q"Q = Q.

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



2-34 Consider ((). [v2. vy, i':]"") Q=X

—ql
rg = 0—[vp vy, 0] | —q2 | = vaqn + vyq2 + V23
—q3
r = 04 qofve. vy, r:]-;- + [vz, vy, t';]-“- x [—ql, —q2, —qii]"r

'l;(fflﬂ'.x' — (3Uy + qQu.) + .:'I(q-'jf'.r + qovy — qv.) + !"(_(1‘2‘::' + qrvy + qov:)

Now, consider Q((). [v2, vy, r-:]'f') Q"=0QX =Y

Yo = qolveqi + vyqe +v.q3) — [ql. ¢2. qlﬂ]-"-‘r
= qoq1Vz + qoq2vy + Qq3U: — Qg1 + G130y — q1G20-
— 243V — 02Uy + q1gav. + qaq3v, — 193Uy — qodgst:
= 0

Yy = qor+roqg+gxr
= i(qfve + qo@vy + q@v: + 6ive + @120y + q1gav:)
+i(q0asvz + q3vy — Q1= + qL@2ve + @30y + G2q302)
= +k(—qog2vs + Qq1vy + Give + Q1q3ve + Ra3vy +giv.) F g x T

- 2l 2
gxx = i(—qus + Qqauy + qUs — @3V — qog3vy + q1qav:)
. 2 2
+ilqoasve + q3vy + @2q30: + q1qave — qiUy — qoqiv:)
9 9
+h(qraave + qoqivy — qv- — qoqave + @3ty — G3v-)

We now separate y by coefficients of 7, j. b and v, vy, v-.
9 2 9 2 2 2 2 2 2 2 2 2
Brta-a-a = @tatetaeg)-a-a-aa-ag
= 1-2¢-2¢3

Similarly, ¢ + 3 — ¢f — 3 = 1 — 2¢] — 2¢3
and gg + qg — qf — qf:)) =1- qf — 2(,.-.':,).

1 - 2(1.'5’ - 2(;3 2q1q2 — 2qoq3  2q2q3 + 2q0q2 U

=y=| 2002+ 290q3 1—2q] —2¢3 2¢2q3 — 2q0q vy, | = Ry
¢ ‘ 3 i a2 a2
2q1q3 — 2q0g2  2q2q3 + 2qoq1 1 — 2q7 — 2q5 v,

Hence, Y = Q(0, vy, vy, v.)Q* = (0, R,) where R, are the new rotated coordinates of v.
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2-35 Suppose point p has been expressed in frame n as p" = [z, y, z]*. Ignoring quaternions, we
know we can write the location of p in base frame coordinates as

P’ = RO T

Now, we apply the result from problem 2-33 which gives the following equivalence
(0,Ryp" = Q0,pMQ".

Since T' is just the vector between the two frames, we can now write the expression

(0,p°) = (0.7)+Q(0,p")Q"
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RT _RTq R d RTR RYd- RTa I o
_]_ _ _ _ _
T 0 1 }{01}_ 0 1 _{01}_‘{'
R d RT —RT4 RRT —RRTd+d I 0
_]__ _ _ _
i) _[0 1} 0 1 }_{ 0 1 }_[0 1}“‘

So H~! ig the inverse of H.
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T = Ty1TeaTers
100 0][10037]0 -1 00
ot otfforoo0o||l1 000
“lootrof|looro|l0o 010
000 1]]l0001][0 0071

"1 -1 0 3

1 o001

—lo o010

0 0 01
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0 1 0 0 -1 0 0 -1 1
0_ 00 10} o |-10 01 o 0 4
Hl’—‘lo 01‘H2’ 01 00 H2’100—
0 0 1 00 01 0 0 0
0 1 0 g_éffé 0 -1 0
0 00 -1 0 100__—10 0 1
L= 110 01 100_‘ 01 00
00 01 PR 00 01
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10 0 0 1 00 —5 01 0 —.5
o |0 1O 1| 5 |010 15 o |1 0 0 15
H1_0011‘H2_001 H3_00—13
00 01 000 00 0 1
01 0 0
. 1 0 0 0
2
Hy = 00 -1 1.9
00 1
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1 0 0 -3

. 0 -1 0 4
2 _

Hy = 0 0 —1 1.9

0 0 0 1

The homogeneous transformation from the block frame to the base frame is

0 -1 0 0
o _ |1 00 8
H2_001,1

0 00 1
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2-42 The earth rotates in the ecliptic plane about the sun, at a distance of approximately 150
million km. At the summer solstice (¢ = 0), the earth’s axis of rotation z.,.p, is tilted 23.5°
toward the sun. Let x..4;, point in direction of the motion of the earth, always lying in the
ecliptic plane and perpendicular to the vector from the sun to the earth. Let the z axis of
the sun zg,, pass through the center of the sun and be perpendicular to the ecliptic plane.
Noting that at ¢t = 0 the earth’s coordinate frame is coincident with the base frame, we write
the homogeneous transformation between the base frame and the sun frame as follows.

0
. Ryo35 0 I 150 x 109
base x,23.5
H.ﬁun - |i 0 1 } 0
0 |

Suppose the units of time to be days. Let # be the angle in degrees between gy, and the
ray from the center of the sun to the center of the earth. Since the earth makes a complete
revolution about the sun in 365.25 days, we write

o 360° — 90°

365.25
where —90° is the offset of # when t = 0. We are now prepared to write the homogeneous
transformation from the sun frame to the earth frame at any time ¢

150 x 108 cos @

sun _ | 1 150 x 10%sin @ Ri 235 0
earth — 0 0 |
0 1

The homogeneous transformation between the base frame and earth frame is given by

brbu.-'r _ ]I-'\xrse-brs:m

earth sun “tearth:
The instantaneous orientation of the earth frame w.r.t. the base frame is the product of the

rotation matrices given above

}_-‘y‘m'-*'r = RoonslIR, o35=1.

earth
This is as we expect, since the axis of the earth maintains the same tilt as the earth revolves

around the sun.

H = Rot,,Trans, ;Trans. 4Rot. g

Translation and Rotations about the same axis commute because the orientation of the axis
is preserved.

Translations commute because the orientation of the reference axes is preserved.

Tr',h R.i',n ,"':,rf R:,I‘?
1 .Ib -'R,r.n R: 0 1 : R
R.r.r\ 1 ‘.r,h R:.z‘a‘ ,"”:.d

-R.r.-:n I"’.d ,"“!b -R:.I?
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3-1 From Equation (3.13), we know that R has the form

Cg Ti2 T13
R = | sp 1o 1oy
0 s,

Ca

Since R is a rotation matrix the column vectors satisfy

9 2 9 2
rMp Ty = 1-s, =
2 2 2 2
"3 + ray = I -« a = Sa

Therefore there is a unigue angle ¢ such that

ra/ca = —ser  T/ca=cg
r13/sa = s¢1  T23/Sa = —Co
and the results follows.
In each of the following problems 3-2 to 3-7. the figure shows the D-H coordinate frames and

a table of D-H parameters that is used to generate the A matrices and the T matriz giving the
transformation between the base frame and the end-cffector frame.
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3-2
#3

link | a1 | o | d; | O;
1 ar | 01016
2 las| 0|06
3 ag 0 0| 64

—cy 0 asey

c1  —51 0 a 1€1 () 9
| s1oa 0 arsy | | s2 o 0 agssg
Ad=10 0 1 0 [0 0o 1 0
I 0 0 0 1 i 0 0 0 1
[ Cy —83 0 ascy |
| s1oa 0 ars
A=10 0 1 o
| 0 0 0 I
cr2a —s123 0 arer + asere + aszeros
](.]3 — A A Ag — 5123 €123 ( a;s) + 2812 + azsi123
0 0 ] 0
0 0 0 1
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X

1 0 0 0
_ 0 0 1 0
Av=14 1 o d
0 0 0 1
1 0
.. oo
."'“ = _-'1|;'1._) . U _]
0 0
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2,
"""'-“Jz Xq
z.
—
il Ve
link | a; | o | d; | 6;
1 0 1-90°|dy | O
2 0 0 do | 0
1 0 0 0
01 0 0
Ay =
2 00 1 d
00 0 1
0 0
1 dy
0 ds
0 1




link | a; o d; | 6
1 [0 ]90° |06
2 [0 [-90°|dy| 0
3 as 0 d 3 9;5
1 0 0 0 100 0
0 0.0 1 0| 010 0
T 10 4 |70 01 4
0 0 0 1 000 1
1 0 0 0
0 0 1 dy
2 A A — 2
ly=Adida=1, 4 ¢ do
0 0 0 1
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3-5

/11 =

As

T$ = AjAgAs =

1

0

I c3

53
0
0

link | a; oy d; | 0;
1|0 [90° [ 00
2 0 [-90°[dy | O
3 | ag 0 dy | 03
0 s 0 1 0 0 0
0 —c; 0 0 0 1 0
A= :
1 0 o] “? 0 -1 0 dy
0 0 1 0O 0 0 1
—s3 0 azes
c3 0 agssy
0 1 ds
0 0 1
ci3 —si3 0 sida + ageis
s13 c13 0 —cido + assis
0 1 ds
0 0 1
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where

o
-
-

dﬂ:
21
22

To3

r3q
730

733

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons

link | a; | oy | d; | 8;
1 0 (9] 0 |6&

2 las | 0|0 |8
3 ag | 0| 0|6y
s1 0 o —s2 0 ases cy —8y
-1 0 . S (&) 0 LEED] ‘; o S9 c3
(s () = () () ] 0 : 0 0
(i () () 1 0 0
riz g de
rog rog dy
rao 13y d.
0 0 1

€1C2C3 — 15253 = C1C23

—C1C283 — €1C3C2 = —C1523

51

20201 C2 1 G3C1C2C3 — A3€15253 = U201C2 + A3C1C23
C2€351 — 518253 = 1123

—C25153 — 35152 = —51523

-

(2C25] + A3CaC35] — (3515253 = A2C2S] + A351C23
C283 + €352 = S23

CaC3 — S92853 = (93

0

Q282 + a3ca83 + asc3s2 = a282 + a3sa3

azcs
LRER

0



i
link | a; oy d; ;
R e
2 [0 90° [dy | 90°
3 [0 0 |dg| —90°
e | Vo | B (Bt ) | o b ) J )
4|00 Lo} o [1O0OO0Of , f-1000
M=o 10 d |” P70 10d| 2710 01 dy
0o 0 0 1 0 0 0 1 0O 0 0 1
(Ve | e
o -1 0 0 a4
lo==2idata =00 =1 0 d
0O 0 0 1
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3-8

T§

33
d.

link | a; o d; | 0
1 0 90° 0 |6
2 1o 0 0 93
3 s 0 0|6y
4 0 | =901 0 |6,
5 0 0 0 | #s
6 0 0 u’ﬁ 9(,'

0 s 0 ey —s9 0 ases
0 —ep 0O 4,= | 52 © 0 asss
10 0 - 0 0 1 0
0o 0 1 0 0 0 1
cg 0 s34 0 s 0 55 0
sy 0 ¢4 0 A — s5 0 —cz 0
0 -1 0 0 e 0 1 0 0
0o 0 0 1 0 0 0 1

rin T2 Tz dy

rap Toe Ty d,,

r31 T2 T3z d.
0 0 0 1

c1lescseass — ssasa] — s185¢6

—c1[c5 860234 + Co5a34] + 515556
C18550234 + S105

asciey + azeieas + dglersseany + sies)
C18556 + S1C5060234 — 51565234
—C1S556 — S105560234

—€1C5 + 5155023

98109 + agsycoy — d [f']{'r, + s185099
S6C234 + C5865234

C65234 — C5565234

858214

azsy + ageasay + dgss sy

ey —sy 0 ages

fa= | 3 © 0 asss

B0 0 010

0 0 0 1

cg  —SG 0 0
. lse e 0 0
Ad=10 o 1 dg
0 0 0 |

The matrix T3 is given as in Problem 3-7. The matrix 7% is given by Equation (3.15) of the

text,

Therefore

—C6S5 S556 c5
il —C4C5C6 + 8456  C4C586 + €684 —C4S5
il —C186 — C5CS)  —CyC6 + C55486 — 5485
0 0 0

dy + dges
rJ’2 i ﬂ’;-,f'_|.‘}r,
u’[ — d{;h"_;,.‘i.-',
1
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3-9 Attaching a spherical wrist to the robot of Problem 3-7 gives
5 3
Iy = TgTy

The matrix 73} is given as in Problem 3-7. The matrix 7% is given by Equation (3.15) of the
text. Therefore

—CiSy 5556 cs dy + dges
'“f}i _ —CyC5C6 + S456¢  C4C5S6 1 Sy —C435 ff—_: — dgeyss
€186 — €5C651  —Cic6 + c58456  —s455  dy — dgsyss
0 0 0 1
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3-10

where:

m
12
13

.
ra
22

23

33
d.

] 0 51
s1 0 =
0 1 0
0 0 0
ey 0 —sy
54 0 Cy
0 -1 0
0 0 0

link | a; o di | 6
1 0 90° [ 13" |6,
2 8” 0 f'fg b'g
3 |8 a90° 0 |6
4 0 | =90° | dy | &
5 0 | 90° 0 |0
G 0 0 dfi 9{5

o —sy 0 8o

S ca 0 8so

Ay = 0 1 do
0o 0 0 1

e 0 55 0

85 0 —r 0
B=10 1 0 o
0o 0 o0 1

1';_-;

As

[c3 0 sy 8ey
sg 0 —eg 8sg
0 0 1 0
0 0 0 1

crleas(eqesc — s486) — sysesas] + s1]case + sycscg)
c1]—ea(eacsse + s406) + s556523] + s1[cace — s4¢55¢]

c1lcasseas + c5sa3] — 518485
dasy + dycisaz + dger(casseas + e5503) + s154 + s5] + 8eq[eas + 2]
—c1 [(‘.,-185 + S..l(':g('.‘g] + 51 [(':23 ((.’,1(?5(?5 + S;ISG) - 85(?582:3]

c1[syess6 — cycg] + si[—casleqesss + sic6) + s5s6503)

—c18485 + s1[cgs5ea + c5593)

—dycy + dysysay + dg[si(cysseas + c5sa3) — c15485] — 15485 + 8s1[ca3 + ]

sos(cycscs — s456) + s5c6e03

—soa(cycsse + s106) — S556C23

—c5C23 + €455523
13 — dycog + dg [—(:5(:23 + (.‘.‘135._‘523] + 8[._‘:‘2;5 + .‘;2]
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dyt — b — ,‘-""’f_@
UIT e |
Bz l
1% |
1\ I
: —
Wy d,

1. Given a desired position d = [d,.d,]" of the end-effector only, we can write the coordi-
nates of the end-effector as two equations in three unknowns.
d, = ajcos(fy)+ ascos(f) + 02) + ag cos(fy + 05 + 63)
dy = apsin(f)+ azsin(fy + 62) + agsin(0y + 02 + 03)

Therefore, this problem is underconstrained. In general, there are infinitely many solu-
tions to the inverse kinematics problem. Nore specifically,

oo solutions if d is inside workspace
there are< 1  solution if d is on workspace boundary
0  solutions if d is outside workspace.

2. Given a desired position d = [d,. u’y]r and orientation @, of the end-effector, we can write
the coordinates of the wrist center [w,,w,]’

wy = dy —agcos(fy)

wy = dy—agsin(fy).

Now we have reduced the problem to finding a solution for the first two links that will
reach the wrist center. The solutions for #; and s are given in Equations (1.7-1.8).

ty = 04— (01 + 02)

oo solutions if the wrist center is the origin
= solutions if the wrist center is inside the 2-link workspace
['here are . : . .
solution if the wrist center is on the 2-link workspace boundary
0 solutions if the wrist center is outside the 2-link workspace.
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3-12

'_
4+ —+ e'l__
/ ! !
AL
Y| K, 1

N

I. Given a desired position d = [d,,d,]" of the end-effector only, we can write the coordi-
nates of the end-effector as two equations in three unknowns.
d, = dycos(f)) + agcos(f) + 04)
d, = dysin(f) + agsin(f) + 03)
Therefore, this problem is underconstrained. In general, there are infinitely many solu-
tions to the inverse kinematics problem. Nore specifically,
oo solutions if d is inside workspace
there are ¢ 1 solution if d is on workspace boundary
0 solutions if d is outside workspace.

2. Given a desired position d = [d,, d,]" and orientation 6, of the end-effector, we can write

the coordinates of the wrist center [w,, w,]!
w, = d,—agcos(ly)
wy, = d, —agsin(dy).
Now we have reduced the problem to finding a solution for the first two links that will
reach the wrist center. Solving the geometric problem, we find
0, = Atan2(w,,w,)
dy = \/IH'_% + u‘;‘:}
0; = 0,—6

oo solutions if the wrist center is the origin
There are ¢ 1 solution if the wrist center is on or inside the 2-link workspace boundary
0 solutions if the wrist center is outside the 2-link workspace.
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Given d = (dy, dy, d.)L, we have

61 = JA t-}]ll?(fi‘a' ) {f”)
”'3 — (f: - ]
d3 = —1+ \/m :
f——ts——
"- -
ria
d
o
777
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dy

3-14 Given d = | d, | can be reached by setting
d.
d. dy
d, = do
d. dq

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons
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. o 31 32 33
R(i = (Rrj;)Jf R=U= e + r2181 1201 + 12251 ri3c1 + 12351
—Tr1181 + 12101 —7T2181 + Tre2c) —T13S|) + T23c)

I. If not both wuis + uos are zero, then

f"r, = Atan (—'J"|:;S| + 19907, :t\/] — (—'J"];;m + '!'2;;(’1)2)

a) If the positive square root is chosen

0y = Atan(ryy.rize; + rogsy)

O = Atan(+riis) —rajer, —siri2 + c1raa)
b) If the negative square root is chosen

0y = Atan(—rss, —rizcy + ra3s1)

s = Atan(—riis1 + r21c1. 81719 — €1192)

II1. If ]y = oy = 0
a) Ifr:;_»,;j =1

0= I'ag = 1130170881 + I"ag8] = €485 = S§485 — 55 — 0 95 = Oo

0y +0s = Atan(rs;,riicr +ro1s1) = Atan (31, —ra2)
b) fup=10=0c5=—1s5=00s=m
()4 — ”{; = Atan (—."_-” . —}’;;2) = Atan (—J‘|-| 1 — 2181, =120 — I’gg.ﬂ])
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link | a; | o | d; | 0
1 (o904 |0
90 | d5 | 90
0 0 |d;| 0
9 [0 |6
09 |06
G 0 0 | ds | 65
* denotes variable

BV

orf | e
=

0 0 1
R} = 010
-1 0 0
Given d and R
r-’;;
Pe = dy
dy
) 00 -1 11 T2 T3 =Tz —Taz —Tr3
g = (RY)'R = 01 0 rol roa 1oy = rol roa Ty
10 0 T3l Ta2 Tag ri1 T2 T3

Equate RS to matrix (4.4.1). Suppose that 733 and rog are unzero, then r13 # £1, 50 ¢g = r13.
sg = £y/1—rf; and # = Atan (n;;. V1= f'ﬁ). if s5 > 0, choose ¢ = Atan(ryy, roy) and

= Atan(—4y1,7r12). However, if ra3 = rog = 0, then ryg = +1, if

rig = +1 —=0.0+1"=Atan(—ry1.7r01) = Atan(—ry1.re0)
if
rig = —1 0=0,0+1¢ = Atan(—ra1.ro1) = Atan(—rap, ra2)
if
rg = =1,

there are an infinite number of solutions.
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3-17 machine problem
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S
Yo el |
e ,J>-\
> g
/ q\ [xc ’ Yt. v o]

\ \‘\/' \

e
We are given the desired position d and orientation R of the tool.

1. desired coordinates of the wrist center

0
ol =d-R| 0
dg
where dg is the distance from the wrist center to the origin of the tool frame.
2. inverse position kinematics
This problem is difficult to visualize; success will often depend on the quality of the
sketch made of the first three links, especially the “cheese wedge” region formed by the
upper arm, elbow, and lower arm. Making use of right triangles and the Pythagorean
theorem, we have

r? = zf + ,e,rf
iz = rr’% + rf%
and (2 = (ze — rh)2 42

Solving these three equations simultaneously vields a solution for the prismatic joint.

2 ‘ 2 g2
dy = \/{:(. —dy )+ 224 y2—d3
Again using a right triangle, we find a solution for #;.

0. Atan2(\/r? — d5. (zc — dy)) left arm

2 { Atan2( — \/r? — d3, (z. — dy)) right arm
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Yo ﬁ: Yo
T
We, vl AN .

N
/ | A R
¢
e, 6 =
B A C%/r > Xp
N

7

This results in a total of two seolutions. Finally, we project the first three links of the
manipulator onto the rg — yo plane to find solutions for waist angle .

¢ = atan2(z.,y.)

a = atan2(y/r? —d3,ds)

b — left arm
0 = .
¢+ a+ 7 right arm

3. inverse orientation kinematics

clee —8) 189
RG = §109 [&] 5159
— 89 0 (&)

found by multiplying 4 A3 Ay and extracting first 3 rows and columns
26 T
c1cerin + S1C2r21 — S2T31  C1C2712 + S1C2092 — S2r3z  C1C2T13 + 5102723 — S2733
= —s51711 + 1721 —s1r12 + e1ra —851713 + 1723
C182711 + 5182721 + 2731 152712 + 5152122732 €152713 + 5152723 + €27'33
Assume 73 # 0 and Roy # 0 then

C5 = 182713 + S189793 + Caray
and
s5 = £\/1— (cosaria + s1sar93 + corag)?
if 55 > 0 then
05 = Atan (('1'5"2"13 + s1sor23 + caraz. /1 — (crsors + sysaras + ('—zr':szs)g)
0y = Atan(cieoris + sjpcares — sorss, —s1713 + €1723)
O = Atan(epsary) + 5182121 + corgy, —C1527r12 — $152702 — €232
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if s5 < 0 then

A
05 = Atan ((‘l—f"-z?‘l:; + s189193 + Ccoraz, — \/I — (159113 + 5152103 + c2133)?
9_1 = A f-‘c‘l.ll(—r!] CoT13 — 81CaT9g + Soray, S1113 — €1 f'g;;)
9(5 = A f-‘c‘l.ll(—r!1.$2?'-11 — §1820191 — CaT'q1. C182112 + 8189799 + (.’-_)'J";_J,g)

if 713 = 193 = 0 then rqy = +1
if g3 = +1 65 = 6y abd 0y = 7
if s5 >0

0y = A l-il.ll((l‘l.&;g?"ll + §5182191 + Carg1, —C159712 — 518527199 — (”-_)?‘32)
if s5 <0

O = Atan(—ec1sari) — s152r21 — €2r31. €182712 + 8152192 + €2132)

ifrgg =—10s=m—0y and 0y, =0

if 55 >0
O = Atan(cyisory) + 8152191 + argl. —C1S2r12 — $152792 — €21'32)
if s5 <0

O = Atan(—cysary; — s182121 — €131, C152712 + 5152792 + c2r32)
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3-19

link | a; | a; | d; | 6
1 0 190° | dy | 67
2 a9 0 | da | 65
3 |ag| 0 | 0 |6;

* denotes variable

1. desired coordinates of the wrist center

T. = x0— dgosey

Ye Yo — dgcs s

Ze = X0 — Z0e
2. inverse position kinematics

h = ¢—a

. Ye
¢ = tan| =
T
ascoy + ancy
a = tan| ——
ds

Elbow Right

Ye agcag + aaca
#i = tan| — | —tan| ————
Te do

h = ¢+a
, y
Te
(aat‘za + azf‘z)
o = tan| ——
da

Elbow Left

k ase aae
6, — tan (”_) - (M)
In dg

by the 2-link planar sohition

2  —d)2 a2 _ g2
3 = Atan (d_:t\,r']__D‘Z) “*'hETE_D:SC_‘_I'{ o - 1] a3 i3
2a9as

8, = Atan(s,, z,—d;)— Atan{as + ascyjass;)
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3.

inverse orientation kinematics

3 _
R{} o

C1caC3 — €1 5283 —C10253 — €182C3 5]

T

8203 + 283 — 8983 + 203 0
u1lp w12 w13
u = (Ré)l R = U2 U292 U2y
U3l U32 U33

ri(e1cacs — cpsasy) + rap(sicacy — sys283) + r31(s203 + cos3)
—rpa(creasy + crsocs) — rop(s1ea83 + sp5203) + rap(—s2s3 + cacy)
riisy — 2101

riz(cieacy — €1s283) + raa(s1cacy — s1s283) + r3a(s2cy + casy)
—r12(e1cas3 + c152c3) — roa(s1c2s3 + spsac3) + raa(—s283 + c2c3)
71251 — 122€]

riglercacs — crsasy) + rog(sicacy — s1s983) + raa(sacs + cosy)
—rglereass + cpsocs) — roz(s1e083 + sp52c3) + rag(—s2s3 + cacy)

ri3s] — roacy

Inverse orientation solutions

I. Suppose not both wuyg, uoy are zero

o

= Atan (u-:m /I - H%:g)

a) If the positive square root is chosen

0y = Atan(uyy.uzy)
s = Ata n(uay, uz2)

b) If the negative square root is chosen

By = Atan(—uys, —uas)

B = Atan(usy. —ugs)

II. If 13 = U9y = 0
a) And if ugs =1: 05 =0

0, +0; = A l'-il.ll(ull. l£21)

b) Orifusy=—-1:05=m

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
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3-20

u=RR

C1C23711 + 810237721 — 523731 C1023712 + 81€23T99 — 523732 €1023713 + §1023723 — 823733
- —C1823711 — S1523T21 — €373 —C1523712 — §1523722 — €373 —C1523713 — S§1523713 — $1523723 — €arag
=811+ c1ray =812+ C1rag —=s1713 + ey

If tyg = 1oy = 0 and wgq = 1

0y + 0 = Atan(epcasry) + speasra) — soar31. —C182371) — S1523791 — 23731 )
|f Ugy = — 1
Oy — g = Atan(—cieary) — spcogro) + S23ra1, —C1023712 — S1€23792 + 523732 )
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3-21
alo AYe
T
[.xt. Yf..-! A

N V,_, o /C

Equation (3.47) for #; would become
0 ¢ — left arm
1= .
¢+ a+m right arm

where

¢ = atan2(r..y.)

a = atan2(y/r? — d3.dy)

and Equation (3.49) for #> would become

Atan2( (ze —dy)) left arm
{)0 =
B Atan2( — Az —dy)) right arm

= |
S
-
(e
-
&,
[~
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4-1 straightforward.
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42

0 —a,
Sla)p = a. 0
| —ay  ap
[ i 5k
axp = y y
L Pz Py Pz

Therefore S(a)p = a x p.

Ay Pz —UgPy T+ Ayp-
—Qg Py = QzPz; — QzPzx
0 Pz —UyPy T dpPy

] = i(("ypz - azpy) - J(pr; — G-;p‘r) + k’(‘fzpy - aypa')

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
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4-3 Let R = (r1.7r2.73), where ry, ro. r3 are the column vectors of R. Let a = (a1.az.a3)? and
b = (by.ba.by)T be vectors. Then

Ra = ayry +asrs +asry
Rb byry + bora + byry

Multiplying these together and using the properties of the cross product vields

Rax Rb = (ayry + asro + azry) x (byry + bara + bary)
arhary < ro + ajbyry % ry

H'-_:b] e KT+ H-_)Ir);{?'g Xy

+ o+

asbyry < ry + asbary x ro

(a 1o — asby Jry X 1o+ (a 1y — asby Jry % ry + (”-_)f}_-; — H_-;;}_J)I‘-_; Xy

Since R is a rotation matrix, the column vectors satisfy

rpXry = T3
rmxXry = 12
roxXry = 1N

Making these substitutions yields

Ra x Rb = (asbs — asba)ry + (a1by — asby)rs + (a1hbs — ashy )ry
Ria x b)

I

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
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4-4 Set Y = SX. By commutativity of the inner product, XY = YTX, or XTSX = XTsTX,
Since S is skew-symmetric, ST + 5 = 0. Thus, for any vector X, we have

0=X'(S+8h)x = XTsx + XITstx —2xTsx

Therefore X7TSX = 0.
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e ekt ettt P ittt oetitE=Ss @t AR
I_;-”R;_g = o JE AU Ao I R U MR 0o T s )
: BBttt Ry (o8 T e ) s e v

[ —s8 —cf 0] [ & s 0] [0 -1 0]
dr il B et it 1 I ol
10 'Hrf} = Cy s60 0 s 0 = 1 0 0 =5 (il :]
i litamtrrof ittof i Kottt iR bR ol ol o]
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4-6

I 0 0
R.r.!ll'l = 0 0 -1
| 0 1 0
[ 0 1
S(Ra) = -1 0
2 1
Then
' [ 1 0
RS(@RY = [0 0
| 0 1
[ 0 1
= -1 0
2 1

0 0 =2 -1 1 0 0
-1 2 0 —1 0 0 1
0 1 1 0 0 —1 0
-2
-1 | = S(Ra)
0

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
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0
Rl = R\L'.E?Hy.{;;

Then
- . —s¢ 0 co
IR} R, ) 5¢ '
0~ R pT¥ R, oS(j)Rys= | sbcd 0 sOsé
do do :

—cledd 0 —soeld

> D iy = 00 1
GO 00 0

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
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4-8

1 0 0 0 *k:zSg .l-IySg
I+ S(k)sg + S%(k)vg = [ 010 ] + [ k. sg 0 —kysp ]
0 0 1 —kyse  kzse 0
(=k2 = E3)vg kykyvg kek.vg
+ ke kyvg (—k2 — k2)vg kyk.vp
kpkvg kyk.vg (—.'2?5 — k2)ug ]

Adding the three matrices and using k2 + k§ + k2 =1 yields (2.2.16).
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4.9 S(k)* = —S(k) can be verified by direct multiplication. To show (2.5.20), we compute using
Problem 2-25

dR

de

also from Problem 2-25

= S(k)cosf + S?(k)sin6

S(k)Rro = S(k)+ S%(k)sinf + S3(k)(1 — cosf)
S(k)cos @ + S%(k)sin @

Using the fact that S*(k) = —S(k).
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4-10 If S € so(3) then

Also
(lel(f}“-—;) p— E\_’I\f'(fﬁr) — E’(} — I

Hence e € S0(3).
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4-11
: 6* 63
Sk _ 0% 2 07 s
€ = I—f—%’—i—zrg —|—3'5—|—
62 . 93
= I+580+ 55+ (=) +-
6 6’5 o (0% o+ 6°
= + (9——+—+ )‘1‘5 (?—E"i‘ﬁ"i‘ )
= T4 S(k)sin@+ S?(k)(1 —cos#)
= I+ S(k)sind + S?(k)(vers (0)) = Ry.g
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4-12 From 4-11, we know that R € SO(3) satisfies 9% = SR. Therefore, a matrix S exists that
satisfies R = efl. To show S € s0(3), we must show ST + 5 = 0.

LdR

S=R1'==RT

de

where the final equality

R'R

d
(B R)
dR" rdR
— B R‘ e
st 48

So S € s0(3).

@
df
dR*

R
de

holds because matrix derivative is taken element by element.
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4-13 For the Euler angle transformation, we have
R=R. R, oR. .
From Equation (4.18), we know that

drR
—5 = SR

By the chain rule for differentiation, we have

. dR _dRd0 .
= = = SR,

Applying the product rule for differentiation to the Euler angle transformation, we have

R = R.R,R.+R.R,R.+ R.R,R.
= [U(T.f:f"l’!’)R:.ti\}Rsz + R [S(éj)Ry.H}R: + R:R, [“"”)Rzo}
= S(k)R.RyR. + S(R.905)R.RyR. + S(R.Ryok)R. Ry R.
[S(k) + S(R.05) + S(R.Rydk)| R
= S(w)R.

w = ¥k+ R.0j+ R.Ryok
= (cypsad — sp0)i+ (sysed + cyd)j + (¥ + cod)k.
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4-14 For the Euler angle transformation, we have
R=R.sRyoR:y.
Following the derivation for Problem 4-13 yields

R = [S(dk)+ S(R.05) + S(R.Ryiw)|R
= S(w)R.

Therefore,

w = qj)k + RZQJ - RzRy/z;";;):
— (C(;')Cg’lg'l’ — S@é)i + (%6-’ + casdz;;))j + (d) — sg&)k.
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4-1F

po = Rp+d
po = Rp
0 —1 0 3 —
= 1 0 0 1| = 3
0 0 1 0
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4-16 Suppose a, = distance from joint 2 to 0., and a, = length of link 1. Then o, = (74, ye, 20)"

where
Te = aicy + agciz
Yo = 151 + QeC12
z. = 0

Also

0 = 2=(0,01)7

on = (0,0,0)!
i oo T
O = ((I]_Cl + a.C12,a151 + a.S21, U)
0 = ((11(11, a1sy, 0)1
: , T
20 X (0 —0n) = (—a181 — acs12,ac01 + aee12, 0)
; oo T
Z1 X (OC e 01) = (7(13812.(10(112,0)
Therefore
—a151 — A1512 —UeS512 0
a16] + apc12 AeC12 0
P 0 0 0
o 0 0 0
0 0 0
1 1 1
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4-17 Since all three joins are revolute,

Jii = [z0x (03 —o0p) =1 x(03—01) 2z x (03— 09)
ascypeo ac109 + ascieas
og = 0] = ({l.(l.[}}j: 09 = | assica |1 o3 = | assico + azsicoy
1989 259 + 13593
0 51 51
0= 0 5= - g = —C
1 0 0
Therefore

—2851Cy — A351C23
xIrp X ((J;; —op) = a9c109 + asc1oos
0

—ci(azsy + agsiea
z1 X (03 — 01) —s1(asss + agsay)

oy + azcoy

—a3C1523
z9 % (03 —02) = — 1351523
azcay

and hence
=280 — (4351023 —028520] — (035930C] =130 593
J']] = (a9C1Co + a3c1Cay —(25]159 — 351523 —a38185923

0 209 + ayc93 3093

which agrees with (5.3.14). Next,

det Jyy (—agsica — agsieas)|(azea)(—aszsisy — agsysaz) + azsisaa(ascy + ageay))
—(ageiea + agepeas)[(ageas)(—azsacr — agsaser) + ageysag(azes + ageas)]
= ajaz(sacacay — $23¢3) + 203 (5203 — s23¢2C23)

= —ﬂ::;ﬂzjf".?-ﬂ:_i - f*szii"z:_’.-ﬂzj

= —agagzsz(azca + azeay)

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
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4-18
Og = 0; 0] = (U,O.dl)’[: 03 = (0, U_. (1'.)]_)]‘: 03 = (—(1'.252(?1, —(1282.5'1. (1'.1 + dg(fg)]‘

z = (0,0, 1)12 Z1 = (51«—C‘1~0)12 Z = (—3261-—5251-62)1

Zo x (03 e OO) = (S]_Sgdg. C]_Sng,O)T

zZ1 X (03 o 01) — (—C]_(','ng, 81(12(12. Szdg)T

Therefore
[ Sl.Sgdg *Clcgdg — 820 i
61.92(1.2 81('?2('172 —8951
. 0 Sgdg 2
. 0 S1 0
0 —C1 0
L1 0 0 |
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4-19 From (5.3.18), the singularities are given by oy — asag = 0. From (5.3.19). we have

ajay —agay = (—aps; —agsp)(arciz) + (apsiz)(aje) + aseyz)

2
= ays2

which agrees with (5.3.20).
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4-20 From Figure 3.7,

op = (0,0, U)!‘r: 03 = (—d3sy, dsey, U)T

20 =(0,0,00"; 2 =(0,0,1)"; 2= (=s1,¢1,0)"

[ —cyds 0 —sp ]|
—s1ds 0 ¢
;o z0 X (03 —o09) z1 z | 0 10
T 20 0 0| 0 0 0
0 0 0
1 0 0 |
Therefore
—c1dy 0 —sy
det | —d3sy 0 ¢ = Ads+ std3 = dy # 0

0 1 0
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4-21 For cartesian manipulator, all joints are prismatic and hence

. 203122_
7= [0 0 0]_

which has rank 3.

0
0
1
0
0
0

 —

oo o

1
0
0
0
0
0
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J = [J,....Jq
where

7(1@, (:1(13 159
dl. S1 (1’3 5159

- 0 . o —-Sldy — Cld.r . o Co

.]1 = 0 i Jz = —s y ']3 - 0

0 (& 0

1 0 0

[ s1sa(d. — 03..) + €2(dy — 03y)
—c1s1(dz — 03:) + ca(de — 032)

]4 - —C1C254 — 51Cy
L 5954
i (—s1c084 + crea)(d. — 032) — sasa(dy — 03y)
(—crea84 + s1ca)(d: — 032) + s254(dy — 032)
Js = (—c10a54 — s1c4)(dy — 03y) + (s10254 — c104)(dy — 032)
—C1C2€4 — 51C4
5954

(s102€455 + 18485 + s18205)(dy — 03y) + (820485 — ¢205)(dy — 03y)
—(c1e0¢485 — 815455 + c152¢5)(dz — 032) + (520455 — cacs)(dy — 03:)
Jo = 1020485 — 815485 + €152C5
51€2C455 + €15455 + 815205

— 8926455 + 205

where

Og = (dpdy-dz)T

03, Cl,ﬁgdg — 51(12
03 = Ogy = 5152(1'3 + Cld.z

03z cady
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Theref

(R SR|[R" -R'S] _[RR" -RR'S+SRR"] _[I 0]_,
0 R o R || o0 RRT o1
[R" -R'S|[R SR]_[R'R R'SR-R'SR| _[I 0]_,
0o RrY 0O R | | 0 R'R Lo 1|
fore,

R SR1' [ R —R!S

0 R Lo R
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4-24
det(B(a)) = %56 + 256 = s

Therefore B(a) is invertible whenever det(B(a)) = sg is nonzero.

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



4-25 1. Show that ¢ = JT¢ 4+ (I — JT.J)b is a solution to Equation 4.110.

& = Jq
= J(JTE+ (I = TT)b)
JITE+ (S = JITI)b
= 16+ (J—1J)b
= ¢

2. Show that b = 0 minimizes the joint velocities.

lill = [[74€ + (1 = T+ )b
By the triangle inequality, we have

gl < |7 + |2 = T
= [Tl + =T el

Since |[(I — JT.J)|| = 0, choosing b = 0 minimizes ||¢||.
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4-26 Begin with the singular-value decomposition for J. Following the development in the ap-
pendix, we have

J=Uxvl =us, v

m*

Note that ¥X7 = 332, is symmetric and that U and V' are orthogonal matrices.
Jr o= Jtaah)!

e T T _l
= U_.-"Zml"::’: .}! (( r"'lvzml'!u‘iI ){{rz’”l;'{’ :] : )

= VUt (U, v veneT)

= VXU (r_..-'z‘f”r,r—' ) -
= V2, U 'Us; Ut

= Vpylu

= VuSlut

= [ValViu][E5l0) 0T
= vyrul
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4-27 To complete this problem we will use the fact that, for a square matrix A, (A7)~ = (41T,

2
ll4

i'q

(J+e) " (Tre)

[;‘1'(7; i) 15] "'[;'1'(7”1 ) lc]
1 L
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4-28 Note that X7 = Y2 is symmetric and that U and V are orthogonal matrices.
T 7 1Ty—1 T T 7\
It e = ¢ (f_..-'m-- yoxvT) ) ¢
- gy ]
= (usviveut) e

- g"'(1_..-'22"(_.-'—')_'5

I
Iy
—
=
~
1
: > 3R
~
4
|
—
Sy
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5-6 Assuming all joints are revolute, Q = 1°.
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5-7 Let 0;(q) — 0;(f) = [x(q), y(q), 2(¢)]T. Now,
loi(q) = oi (NI = 2(q)* + w(a)* + z(q)*.
and
1 9 1 ‘ : 2
Uar,i(q) = 56 loi(q) — oi(f)]I” = §Cf[~1‘(<ﬂ2 +y(q)® + 2(q)?).
Therefore,
!"m't.f'(gj = —V{/'r(:!'(,i(q)
1 -
- —QQ[Q-F(G)-Q.U(G’)-23(‘-}’)]1

= —Gle(q).y(q). z(q)]"
= —(i(0ilq) = 0ilf))
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5-8 Let A denote the line segment passing through a; and as.
Let P denote the line passing through p that is perpendicular to A.
Define the point @ to be the intersection of A and P.

a; =ay+t;(aa —ay) forsomet; € R

Since line segment A does not extend beyond aq or as. t| is bounded.

t, €1[0,1]

Since AL B, we know the dot product of the two lines is zero.

(az —a1) - (al —p) 0
(az —a1) - ((a1 —p) +ti(az —a1)) = 0

We can solve for £, by choosing any of the n components of p, a;,as. For example, using the
first component, we have:

(p(1) — a1(1))(a2(1) — a1 (1))
(az(1) — a1(1))? '
— If ¢, € [0,1], then @, is on line segment A and the minimum distance to point p is
lar —pl .
— If ¢, ¢ [0,1], then aj is not on line segment A. Therefore the minimum distance to
point p is the smaller of the distances from p to ¢; and from p to as. That is,

t, =

mind||ay — pl|, |laz — p||}.
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5-9 For a polygon in the plane with vertices a;.i = 1...n, let A;,i = 1...(n — 1) be the line
segment between vertices a; and a; 1 and let A, be the line segment between a, and a;.
Repeat the algorithm given in problem 5-8 to determine the minimum distance d; between
point p and each line segment A;.
= The shortest distance between point p and the polyvgon is min{d;.do. .. .. dyn}.
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5-10 Let G; denote the ith flat face of the polygon and num; the number of vertices that define
face G;. Let a;5,7 = 1...num; denote the n; vertices defining face Gj.

For each face G;, at least three vertices are not colinear. We will call these three vertices
v1,v2, v3. These points define the plane p; in which face G; lies. We can find the equation of
this plane by computing four determinants

1 1
1 vg vglz+|wvn 1 v3glg+|vy vo 1llx—|vy v wv3|=0
1 1

and the vector n; normal to the plane by taking the cross product
n; = (v —v1) x (vg —vy).

We will proceed according to the following algorithm.

1. Compute the perpendicular distances from p to each of the faces.
2. Compute the perpendicular distances from p to each of the edges.

3. Compute the distances from p to each of the vertices.

1. For each face Gj, solve for the point of intersection int; of the plane p; with the line
defined by the normal vector n; and passing through p. We must now check whether
int; is inside or outside face GG;. To do this, we may construct lines from int; to each of
the vertices a;;.

— If the sum of the angles of these lines (with a common reference of any line in the
plane) is an integer multiple of 27, the point int; lies inside the face.

— If the sum of the angles is not an integer multiple of 27, the point lies outside the
face.

If any of the normal intersection points int; lie inside their respective faces, we note the
distance ||p — int;|.
2. For each edge, we follow the algorithm for Problem 5-8. If the perpendicular intersection

of a line through p with the line containing the edge occurs within the edge’s vertices,
we note the distance.

3. Finally, we compute the distances between p and each of the vertices.

The minimum distance between point p and the polygon is the smallest of these distances.
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5-11 Distance p(o;(q)) is a function of the location in space o;(q). Consider writing this as p(x).
where & is a vector in three dimensions. Then we can treat the gradient ¥V as the partial

derivative with respect to the vector x ?;JT The result now follows from the chain rule for

differentiation.

2
ol o
F = i).r|:'2m ({J @) /J[]):‘

1 _ | 1) _
— —;uﬁ(p l(,r)— —))—(p 1(,:'))
& 0 (]

Therefore,

' S L P Y
-'Lr‘f'.b\i((j') =1 (ﬂ(f:’é(q}} ﬂ!’_l) p'j((.h_(q))vﬂ(”r(‘”)-
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[, ]
T
b

obstacle 1

obstacle 2

— Assume the robot has three degrees of freedom, and thus three “joint variables” ¢ =
{x,4,0}. The robot is able to translate {2, y} (think of this as two prismatic joints) and
rotate {#} (think of this as a single revolute joint).

1. artificial workspace forces
To avoid overlap of the regions of influence, we chose py = /18 for both obstacles. In
its given configuration, the robot is influenced only by obstacle 1. We construct the
repulsive potential field and artificial workspace forces according to Equations (5.5) and

(5.6).
1 1 1\? ) =
Uenste) = { ¥y ~Fs) Plas@) < VI8
0 plai(q)) > V1
1 1\ . o TR
o = | (ot — o) ko) laa) < VIS
0 plai(q)) = V18
where
plai(q)) = llai(q) — bl
ai(q) — b
V{J(('If(('{)) m

For obstacle 1, b = [3,3]" in the equations above; for obstacle 2, b = [~3, =3]T. At time
t =0 we have ay(q) = [0,0]%,a2(q) = [1,0%,a3(q) = [1,1]*, and ay(q) = [0,1)7. These
yield

= VI8 Vplmlg) = =EF
V13 Vp(az(q)

plas(q)

= V13 Vplas(q)

plai(q))

plaz(q)) =
(7))
(@)

C—
|
]
=
2
q

I
<_ .
o] =
(]

\

i

o

8

=

plas(q

plas(q ) = B3
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5-13 through 5-16 are machine problems.
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5-13 through 5-16 are machine problems.
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[y |

|

1 oty 2t

0 1 2ty 3t 4

det 1ty oty T_? = (tr —to)
| 0 1 2ty 3t}
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5-18 The problem is somewhat open-ended. Students should discuss issues related to matching
the velocity of the conveyor, planning a straight line path, etc.
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5-19 Using formulas given. the constants for the cubic polyvnomial are:

ag = o
a — 0
(3g1 — 3q0 — 2)
5] _—
- 4
(g0 —q1+1)
ag = —

1
The cubic polynomial for position is:

q;»j(f) = ag+ai(t—to)+as(t — fo)z + as(t — To)a
(Bq1 — -;’*qo —2) (g0 — 0 +1) (t— to)?

t—1t)?
1 ( o)+ 1

= o+
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5-20 For t € [2 — 13, 2], the parabolic trajectory and speed are given by:

q(f) = by +bt+ bgfz
q(f) = by + 2bot.

Using the boundary condition ¢(2) = 1, we find that
[)1 =1- 4152.

For t € [ty,2 — t3], the linear trajectory and speed are given by:
q(t) = q(t)+Vt
i = V.

At time t = 2 — t3, the speeds of the parabolic and linear segments must match
q(.z — Tb) = (l — 4()2) + 2b2(tb) =V

which implies

V-1

by = .
27 21,4

Using the boundary condition at g(2) = ¢, for the parabolic trajectory,

9) — o D — 4
q(2) = by -172% — +2=aq
which implies
V-1
bp=qp—2+4 .
0 =n =St Ay

At time t = 2 — tp, the trajectories of the parabolic and linear segments must match

a2 —ty) =bo+b[(2—t)? —42—t)] + (2—t;) = q(ty) +V(2—1})

o, 4V -1 V-1 ‘ 2 _ e _
(QI_2+421Lb4)+(2fb4) [(2-1)* —4(2—1t5)] = q(ts) +V(2—1t)

which may be solved to find slope t; as a function of blend time V. From the development in
the book, we know that

o — 41 + 2V
tb —_— #.

Setting equal the two expressions for t;, we can solve for V' and then for t;.

Go + 1" t e 0,1
q(t) = § LU=V 4 Vi ¢ [ty,2 — 1)
by + bt + bat? t€[2—t,2]
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5-21 For ty —t, <t < ty, the desired parabolic trajectory and speed are given by:

bg + byt + bgfz
b]_ + .szf

q(t)
q(t)

Using the boundary condition ¢(t;) = 0 we find that
b = *szff
For t € [ty,2 — 3], the linear trajectory and speed are given by:

alt) = qlty) + Ve
it = V.

At time t =ty — t;. the speeds of the parabolic and linear trajectories must match

(j(ff — tb) =b + ng(tf — tb) =V

which gives us

_V

by —

2 2ty
Vit

bl = —f
tp

Using the boundary condition q(t;) = q; for the parabolic trajectory we find

72
t)=h 4 —
q(ts) = bat 5, = U

which implies

Vi3
by = qr — - f .
0 Qf 2“}
Let o = ;—b

Then for t; —t, <t <ty the trajectory is given by

v

t) = 12 4 att
q( =45~ gty Talft =55
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5-22 and 5-23 are machine problems.
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5-22 and 5-23 are machine problems.
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6-1 From the block diagram of Figure 6.6

I’?n .
C"‘)m _ (i) m _ K "
v s) 1+ porpefe o~ S[Ls + R)(Ums + Br) + KoKl
and
—l,ﬁ‘
Om  _ TmstBr)  _ (Ls+ R)/r
Te 1 + % q[(Lq + T)(JFHS + Bm) + I{b]—{m]
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6-2 Divide Equations (6.11) and (6.12) by R and set the ratio % = 0 to get the reduced order
system

@m. I\/—m /R @m 71/7‘

7 - S(Jmﬁ + Bm + I\’bI\/—rn/R) ‘ Te - S(Jm.S + Bm + I\/—bK—m/R)
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g os) . . Ofs) . - . . .
6-3 Compute ﬁ with D(s) = 0 and TJ\ with ©9(s) = 0 and combine the resulting transfer

functions using the Principle of Superposition.
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6-4 The tracking error is computed as

E(s) = ©%s)—0(s)

Kp+Kps 1
— 0ls) - %ad(s)—ms)u(s)
B Js? + Bs dy 1 )
= —EZ(%} (S] {‘1) + Q{“)fi){s}

The Final Value Theorem says that, if F'(s) is the Laplace transform of f(t), then

(Iim f(t) = lim F(s)
whenever both limits are well defined. Consult any textbook on control systems for a more
detailed statement. The steady state error is defined as
e = lim e(t) = Lim (09(t) — 0(1))
t—no t—oo .
Thus, from the Final Value Theorem, we have e;s = limg_.g F(s) where E(s) is given by
(6.20). Substituting (6.21) and (6.22) into (6.20) and computing the limit gives (6.23).
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6-5 Equations (6.28) and (6.29) follow exactly as in Problem 6-3 using superposition and block
diagram reduction from Figure 6.12.
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6-6 The Routh-Hurwitz criterion can be used to derive the following general result. Any linear
third-order system with characteristic polynomial (s) = s* + ass? + a1s + ap is asymptot-
ically stable if and only if ag.ay. a2 are positive and asa; > ag. Applying this result to the
characteristic polynomial (6.29) gives

(B+ Kp) Kp . Ky

J J J

which reduces to (6.30) after multiplying through by .J.
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6-7 Use Matlab/Simulink to generate the system of Figure 6.14 and simulate the system with
various parameter values.
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6-8 From Figure 6.16 we have
O = G(s)(H(s)(09—0)+ F(s)07)
Solving for © gives

_ G(s)H(s) + G(s) F(s)

© I+ G(s)H(s)

Substituting in the expressions for G(s), H(s). and F'(s) yields (6.32).
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6-9 From Figure 6.17 we have, (suppressing the argument s),

O =G{D+ H®!-0)+Fre’}
Solving for © gives

G GH +GF
et 1rcH

(o]

Therefore the error E = 09 — © satisfies

EF = 0'-86

"~ —|—GGH + G’i@? =4
- _L{T(;HDJ“LE;JZ@(!
*1+1(:HD

since 1| — GF = 0. Substituting the expressions for G and H into the above equation gives

(6.35).
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6-10 From block diagram (Figure 6.21)

k

66‘ PmpPe k
; k? , — |2
U oy .
J. DPmpe PmPre

The open-loop characteristic polynomial is

pmpe —k? = (Jes® + Bps + k) Jps? + Bps + k) — k2
= J('Jm'54 + (Jme + JmBﬁ)SS + (‘ls(Jm + Jef) + Bth‘)Sz + k(B(‘ + Bm)s

If B,, = By = 0 the characteristic polynomial reduces to Jp.J,, 5% + k(.J,, + J;)s%.
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6-11 Using A4, b, and ¢ given by Equations (6.51) and (6.52), we have

(s —A) = adj(sl — A)

1
det(sl — A)

Carrying out the calculations give,

. B B, k
s4+( +—f) S+ (—+
I Je Im

det(sl — A) =
and

AsI— A =

BC’Bm + ]\,) 2+ (
— | S
ImJe Jo Jo T

k

kBg‘

+ kBY?! )
S
Jé'Jm

which is identical to (6.45).

']mjé’54 + (Jl’Bm + JmBl’)SB + U\:(Jm + ]{) + Bme)SQ + A»(B{ + Bm)s
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There is no published solution for Problem 6.12.
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6-13 Both (6.59) and (6.67) are found by direct calculation. It is instructive to write a Mathematica
function to compute these terms symbolically. In the case of (6.59) we have

k
! ’ k Bt Bk
: —Dek 11 K . D

et 0 0 T, T T T ( 1 ) (+ 1 ) ( k2 ) k2
et L 2 = CE= —_— — | = —=
- 1 —Bm -k , B 2 72 1 72

0+ o H+5 T Tom 272 ) T A

1L =Bw =k Bi kBw | kBm _ By

J'm J1n H Ig Jm ‘]m ﬁm_

Equation (6.67) is derived similarly.
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G-14 Integrator Wind up — If integral control is used, the integrator can build up large values when
the actuator saturates.

Anti-wind up — Turn of the integral control when actuator saturates.
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6-15 Adding the first-order dynamics of a permanent-magnet DC motor to the flexible-joint model
(6.39)-(6.40) gives
Tebe + Beby + k(6 — 0n) = 0
ngm + Bmam - k(el - em) = u
uw = knl
LI -+ rl = V- kbém
where [ is the motor current, V' is the input voltage, L is the armature inductance, R is

the armature resistance and k,,, k, are the torque and back-emf constants, respectively. The
system is thus fifth-order. Defining state variables

= O wa=0p 03="0,; x4 =0, x5=1

yields the state equations

i 0 1 0 0 0 x 0
S I S R R
i | = 0 0 0 1 0 rs [+ 0|V
: k k Bm  km 3

:?4 - -]Nl O - JU]. - JTYI J’fﬂ ’l 4 E)

5 0 0 0 & _Z2 x5 I

With output ¥y = ¢ = =1, the output equation is

€T
Tg
y=[1,0,0,0,0] | 23
A
&€y

It is now straightforward to compute the determinants

(&
cA
det [b, Ab, A%b, A%b, A*B] and  det | A2
cA?
cA?

and show that they are nonzero - hence the system is controllable and observable.
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6-16 Choose state variables

]
"]

Then the state equations can be written

i R K V
La -z Y -7 T
r = O | = 0 O 1 T+ 0
) K Bm —TTe
9?-”' Jrn 0 - J‘rn Jrn

In state space, equation is a linear third order system.
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6-17 (a) The open loop transfer function is given by Equation (6.45):

Bo(s) 100

U(s) — 20s*+ 7s3 4+ 1200.552 4 1505
There are 2 real poles at s = 0, s = —0.125 and a pair of complex poles at s =
—0.1125 £ 7.7449;.
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6-18 For the system described by

Jign = T
.]2(j‘_) = T

choose state variables
T1=(q1; T2 = (q1; T3 = q2; T4 = 2

Then in state space, we have

01 0 0 0
P 00 0 0| n 1
T oo o1 T o|”
00 0 0 1
It is easy to see that the matrix
0O 1 0 0
; ‘ 1 0 0 0
21 43711 _
[b, Ab, A°b, A°b] = 010 0
1 0 0 0

has rank 2 and, therefore, the system is uncontrollable.
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6-19 Controllability follows from the calculation
1 7
rank [b Ab] = rank | 5 =2
With £ = [ky, k2] and u = kz, the closed loop system matrix is given by

A+bk = |: 1+k  —3+ke :|

1—2k —2—2k
The characteristic polynomial is

det(s] — A —bk) = 52+ (14 2ky — ky)s+ (1 — 8ky — 3ka) = 2+ 4s+4
Therefore equating coefficients gives

1—lky+2ky = 4

1—8ky —3ky = 4
Solving for ky and ks vields
_ —15 21

ki = , ko = —
T 2719

and therefore the state feedback control becomes:

u = 7151‘ +§T
B TR A T

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



6-20 In this case the closed loop system matrix is

-1 0
A-bk = |i—rt-'l 2_!{2:|

and so the characteristic equation is

det(AMl — A+bk) = (A+1)(A=24ky))=0
Thus we see that A = —1 is a closed loop pole for any choice of feedback gains ki, ks. The
choice ks = 4 places one pole at s = —2 but it is not possible to place both poles at s = —2.

However, the closed loop system is stable.
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6-21 In this case, a similar calculation as ahove shows that there is always a pole at s = +1 for
any choice of gains k1 and ka. Therefore, the system cannot be stabilized.
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6-22 Choose the feedforward transfer F'(s) and PD compensator C'(s), respectively. as
F(s) = 2% + 5 : C(s)= K, + Kps
The desired closed-loop characteristic polynomial, with w = 10 and ¢ = 0.707, is
§ 4 2ws +w® =57+ 14.14s + 100

With G(s) = )—,l+—\ and PD compensator, the closed loop characteristic polynomial is 252 +
(24 Kp)s + Kp. Thus, equating coefficients, leads to the PD gains

f.\‘p = 200: f.\‘;) = 206.8
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7-1 A direct calculation shows

(r1+ dr1 — 2 — o)L (1 4 011 — 1o — 1)

(rqy — 7o+ 0y — drg)(ry — ro + 91y — d79)

= (r—ra)t (11772)+2(71772) (0117012)+(6?‘17(5-?‘2)7‘(6-7‘1761‘2)
(ry = r2) " (ry — r2) 4+ 2(ry — 72)" (571 — rp)

if we neglect the second-order terms in dr1, dra. Therefore, from Equation (7.17) we have
52:(7‘17?2 (?17?2 +2(17?2) (0?17(572)

Equation (7.18) follows since (r) — 7'2)’1‘(7'1 —1g) = {2
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7-2 Euler’s equation can be expressed as
To+wxIw=0

where

Ioe;. O 0 Wy -|
0 Iy, O y W= | Wy
Lo 0 ] [e]

Computing the cross product yields the three equations

I =

I‘r‘r + (I;;;; = Iyyw‘yu):) —
Iyy + (III - Iz::w::w"r)
IZZ + (Iyy - I‘m.wl‘wy) =
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7-3 Referring to Figure 7.6 we have

b
/(J + 2%)dm /// y? + 22) pdrdydz

= g{)ab((b + c?)

Computing the remaining terms similarly we have

[ [(y? + 2%)dm — [ zydm — [ 2zdm -|
I = — [xydm  [(2® + 2%)dm —f yzd"m..
[ — [ zzdm — [yzdm  — [(2* +y?)dm J
" %abc(bz +c2) —a?b’c/4 —a?bc? /4 -|
= p —(1.2b2‘(:/4 Tabe(a® + ¢?) ab2 2/4
L —a?bc? /4 —ab*?/4 3 Labe(a® + b?)
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7-4 From (7.83) we have det D = dy1das — dyadn

= (mylc} + mald 4+ molcs + 2molybey cos gy + Iy + In)(males + 1)
(m.gf(:% + mgbyley cos gy + 15)?
= m.lm.chg + .’T?lf(f%fg + 77125%[2 + msz + s + mgf%fcg(l — cos? g2) + !7?.21&,-%11

Since 0 > 1 — cos? g3 = 1 we have det D > 0.

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



7-5 One way to argue that the inertia matrix of an arbitrary n-DOF robot is positive definite is
by a consideration of kinetic energy. The kinetic energy of an arbitrary robot is

K= %r}r.f D(q)q

The kinetic energy must be positive for nonzero velocities ¢. If D(q) were not sign definite
there would be a nonzero velocity vector ¢ such that ¢! D(q)¢ = 0 which is a contradiction.
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7-6 By symmetry of the inertia matrix we have

Dy B Dy | Dy
Z{dq} G = )Z{d({z Bq; | 1%

i.j

Since the summation runs over all i, 7 we can interchange ¢ and j in the second term to obtain
the result

O’dw _ dd.kj O‘dkz
Z{&q} G = )Z{dgz dj 4i4;
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-
=i

(a) The inertia tensors are

1
0 0 £ 0
Ji=] 0 5 0 =10 %
0 0 4 0 0
(b) The inertia matrix is
my 0 0
D = 0 mao+my 0
0 0

my + mo + ma

0 &5 0 0
0 Js=]0 5 0
1 ) n 1

(c¢) Since the inertia matrix is constant, all Christoffel symbols are zero.

(d) From the Euler-Langrange equations, we have

ms 0 0 1
0 mo+mgy 0 o
0 0 my + mo + my g1

For Problems 7-8 to 7-11, download the Robotica package from

http://decision.csl.uinc.edu/ spong/Robotica/.

glmy + ma + my)

f1
+ 0 = fo
0 Ia

Use Robotica to compute the Euler-Lagrange equations of motion in symbolic form.

Mark W. Spong, Seth Hutchinson, and M

. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



For Problems 7-8 to 7-11. download the Robotica package from
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7-12 With the kinetic energy given by

1 T o
K = §Zdij(Q)Qin
ij

we compute

oK

T
P = [ = dyjd;
qu jz_; 247

Now

n
> dpr
k=1

mn n

k=1 j=1

= > @) drjdy = dijddr = 2K
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Tn

H = > gpp—L=2K—(K-V)=K=+V
k=1

(b) From

mn

H = Y g~ L

k=1
we have
. JdH
G = J
and
OH JL d OL .
x = —KHI: u;_.—mynzuk—pk

The last two inequalities coming from the Euler-Lagrange equations and the definition
of pr, respectively.
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7-14 Proof 1) The total derivative dH /dt is given by

dH "OH  OH .
W Z Pt

o (Hz’ + -
Pt Aqy. Ipy.

From Hamilton’s equation this becomes

!
% = > (T = Pr) b
k=1
T
= Z Gt =G T
k=1

Proof 2) From
1. -
H = 1\’+1f':54f1)g+v(q)

we have

1 ... 2174
g 1 D(j—l—(I
dt

— .']'D . o
it 2 dq

using the Euler-Lagrange equations, this becomes

dH o 1.y, - .
DR : - DTV
T qg T+ 54 (D —2C)q

= (QTT

by the skew-symmetry property. The units of dH/dt are power.
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8-1 Since J is a constant, diagonal matrix, M(q) = D(q) + .J inherits the properties of D(q).
The skew-symmetry and passivity properties both follow from M = D. Likewise the addi-
tional term in the dynamic equations (8.6) is Jg, which is linear in .J; hence linearity in the
parameters is preserved. M is positive definite since it is the sum of two positive definite
matrices.

Write J = diag{.J;...... Jn}. where J; are the positive, elements of the diagonal of .J. Let A,
and Ay, be the minimum and maximum values, respectively, of .Jy,.....J,,. Then

/\J|Inxn S ] S /\J,,Inxn
Therefore

{)‘l + /\J| )INXH < D(fj) +.J < {/\u + f\.f,,}!ruxu
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8-2 From (8.15) and (8.16) the Lagrangian L is

L. . Loy o1 T .
L = 54l D(g)ii + 563 Ji2 — Plar) = 5(a — @) K (a1 — 2)

Thus we have

d oL . . .

— D(qi)q1 + D(q1)q

dt g

dL I .p,0D 0V .

e LY Bt S " O

dqi 2{“ dqi g Yo — )

d L JdL

— = Jio: — = K{(q) — ¢

dt Ogo 92 dgo = @)

Therefore, with
. . - | 0D oV
Clar.d)an = D — =di —: 9(q1) = —
270 dqy ) dqy

the Euler-Lagrange equations for this system are

D(q1)i + Claqr,qu)qr + 9(q1) + K(q1 —q2) = 0
J(jg e I‘f(ql e QQ) = T
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8-3 Computing V from (8.20) using the skew-syvmmetry property and (8.18) with the gravity term
glq1) = 0, we obtain

Vo=~ Kago

Thus V' < 0 as long as ¢2 # 0. If go = 0, then the second equation in (8.18) implies
K(g2—q1) = Kpge. By taking derivatives on both sides, since q?_;i is constant, we have ¢; = 0,
¢ = 0. Therefore from (8.18) we have g1 = g2 and, hence, g2 = 0. Asymptotic stability follows
from Lasalle’s Theorem.
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8-4 In the steady state, g = g2 was shown in Problem 8-3. If gravity is present then the steady

state equation becomes

glq) + K(g1 —q2) =0
from (8.18). Given a desired position q'{. we can modify the desired set point for the motor

angle ¢o to satisfy the above equation as

|
d d d
G2 =4qp + .',—\-!’!(fn )
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85 The linear approximation of (8.18) is essentially a multivariable equivalent of the model (6.39)-
(6.40) with the damping terms set to zero. As the root locus analysis shows in Figure 6.25,
the system with PD-control using the link variables is unstable for all values of the gains.
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8-6 Use Matlab/Simulink.
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8-7 Use Matlab/Simulink.
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8-8 Substituting (8.45) into (8.44) gives
M(q)i+ C(a.4)q + 9(a) = M(q)ag + C(g.4)d + a()
Suppressing arguments for simplicity we have
Mg = ﬂ.ﬁf(.f.q +Cq+q
= ﬂ]ﬂ.q — Mag + Mag + Cq+§

= May+ Mag +Cq+ g

Multiplying both sides by M~! gives Equations (8.46) and (8.47).
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8-9 Use Matlab/Simulink
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8-10 Returning to the expression in Problem 8-8 ahove we have
Mi = Mag+Ci+3§
Adding and subtracting f'ti’(j on the left-hand side gives
Mi—Mi = Ma,+Ci+3
Rearranging this equation and using linearity in the parameters yields
M(@G—ay) = Mi+Ci+g
= Yi(q,4q. q)é

Multiplying both sides by M gives Equation (R.77).
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8-11 From (8.78) and (8.82)

¢ = Ae+ Bdo
V = ErTPf:—i—éTFé

we have
V = éI'Petel Pet200T0
— (Ae + B Pe 4 T P(Ae + BOE) + 207 T4
= T(ATP + PA)e + 267 (@7 B” Pe + I'f)
— —'Qe + 267 (87 BT Pe + TH)
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8-12  (a) The state space is four dimensional.

(b) Choose state and control variables

T 1
ro 7 [ u }
r = = U=
r3 Y2 2
ry U2
Then
[ o 0 0
—3,1‘|J‘;_1 — Ié 1 T
v 4 + 0 o |
| —xgcosry — 3(x — x3) —3xq cos? 1y
= flz)+ G(x)u

for obvious definitions of f(x), G(x).
(¢) The inverse dynamics control law is then
=G - Fax)
1 31wy + I3 — T3xy COST| — €Ty + 373 4 v — T30

1 + _;-: cos2 T Z_):.rl,r;'; cos? ry] + :'; cos? rp +agcosxy + 3axyp — ry) + @y cos? rpv) + vo

where

I

—10x9 — 1001 + 1
—10x4 — 10023 + 1o

(&)

(8]
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8-13 Mimic the proof of Theorem 3.
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8-14 Thanks to Martin Corless for supplying this proof. Let

0<M< XM7Y and  |[M7Y| = Mpae (MY < DT

where A and Aq denote minimum eigenvalue and maximum eigenvalue, respectively.
Since

E=— Mo,
M+ M

its maximum eigenvalue satisfies

2 mar —'" - 2.1 —
Amaz(E) = A—' ) - 1< = —1=AX
M+ M M+ M
where
- M-M
Nim ==
M+ M

In a similar fashion one can show that A,,;,(E) > —A. Using the symmetry of £ we now

obtain that
EI? = Amaz(ETE) = Anaz(E?) < A2

Hence ||E|| < A < 1.

e Note that A and M can also be obtained from

M| = Amar(M) < 1/M and — Apin(M) > 1/71.

So, the above results can also be expressed in terms of bounds on A, (M) and Ay,,0. (M).
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9-1 The two-link RR Jacobian matrix is given by

7= —{a1851 — a9S813 —da2512
aycy + agci2 az¢C12

The joint torque necessary to balance an end-effector force F' = (—1,—1)" is given by

r = J'F
| —arsy —azsia ajep +azerz L
—a2519 a9C12 *1

ai(s1 —c1) + as(s12 — ¢12)

B [ ﬂz(Slz — €12) ]
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9-2 The solution proceeds as in Problem 9-1. The torque required to balance an end-effector force
Fis given by 7 = JUF, where now .J represents the Jacobian of the robot with remote drive.
The = — y coordinates of the end-effector in terms of the absolute angles #; and # are easily
seen to he

ro=  a1cy + aseo

Yy = 5] + o8
The velocities therefore are

T = —a].t;]()[—({g.‘:gl()g

y = (!]r"|(;]]+{ig(‘2(j2

Thus, the Jacobian is given by

=11 5] — (1959

aycy aocs
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9-3 Square peg in square hole

Natural constraints | Artificial constraints
vy = 0 =0
vy =0 fy=0
}(w =0 UV = Vg
wy =0 Ty = 0
w, =0 T, =0
w, =0 7. =0
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9-4 Opening a box with a hinged lid

Natural constraints | Artificial constraints
v, =10 Wy = Wy
vy, =0 T, = Iy
v, =0 f.=0
wy =0 il
w. =0 Ty =0
Tl T, =0
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9-5 This is somewhat open ended and is a good question for classroom discussion. The notions
of wedging and jamming are important to consider for this problem. The two manipulators
should produce a straight-line motion and avoid rotating the drawer. Natural and artificial
constraints are similar to the peg-in-hole problem.
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9-6 Each task should be decomposed into single-DOF directions according to the compliance
frame. In each direction the environment can be classified according to whether or not a
significant inertia is to be moved, or significant compliance exits, and so on.

. Turning a crank can be considered as inertial tangent to the circle defined by the crank
rotation and capacitive along the crank direction.
2. Inserting a peg in a hole can be considered capacitive in directions with position con-
straints and inertial in other directions.
3. Polishing the hood of a car can be considered capacitive normal to the hood and inertial
tangent to the hood.

4. Cutting cloth can be considered resistive in the cutting direction.

5. Shearing a sheep can be considered capacitive normal to the sheep and resistive in the
shearing (tangent) direction.
G. Placing stamps on envelopes can be considered capacitive normal to the envelope.

7. Cutting meat can be considered resistive or capacitive in the cutting direction.
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10-1 By definition,
"L Oh
Lfyrl T = Z Wq )
j=1
Therefore, we have

T

0 “. Oh
LiL,h = Zi')-lfs Zafh fi
=1 9T.

i=1

- i: i: 9?h . dh. dg; f.
B D0z, ()if ! r);rJ- dx; )7

i=1 j=1

Likewise, by interchanging f and g above we have

: - 9?h (')h of;
LyLih = j ;) ¥
gl it Z Z (()1 r).{), ();Ir.‘l); 043’-‘:’) !

i=1 j=1

Therefore, using the fact that

52h B d?h
Oxidr; N Ox j0r;
we have
o c)h d{;; of; _

i=1 j=1
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10-2 If h =z — ¢(x,y), then

od  Od
dh = — 1
! ( dr Oy )

If X1, Xo are given by Equation (10.15) then

b— A

1910, 19/0)

. — _ - b
Lx, h ~ 9 -1 Dy 0+ 1 f(z,y,0(x,y))
D
= flx,y, d))—d—c:O
Ox

since ¢ satisfies Equation (10.10). Similarly,

D
h = g(ryd))—(_)—c:()

L,
X 3y

2
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10-3 If A(z,y,2) =0 and 9h/@z # 0 then, by the implicit function theorem we may solve for = as
r = &(x,y). Furthermore,

0 _ o fon
or dx ) 0z
00 _ _on fon
dy dy/ 0z
Now
oh  Oh dh oo Oh
Loh = 5ot/ =5a: T/ =

which implies

O

dx
since g—}f # 0. The second equation is shown similarly.
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10-4 By repeated application of Lemma 10.1, we have [ Ty = (=1) LgTiyy. Thus fori < n-—1,

“ad(g)
Lady 971 = 0 and L) Ty = (=1)" LT, # 0.

7

“’f}(!ﬂ Yg)
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10-5 The vector fields f and g are given by

S+ |0
- [ e[2]

The dimension of the state space is n = 2 and therefore the necessary and sufficient conditions
for local feedback linearizability are rank{g,[f, g]} = 2 and involutivity of the set {g}. Now,
any distribution spanned by a single vector field is involutive and so for second order systems
the rank condition alone is necessary and sufficient for local feedback linearizability. Since g
is constant, the Lie Bracket [f, g] is given by

o 322 ] -
(9] = af;g[ggl 3%““[—3’1@}

Therefore
0 1
i =] ]

which has rank 2 for all . Therefore the system is globally feedback linearizable since the
rank condition holds globally. To find the change of coordinates we must solve the PDE’s

Ly =0
with the additional condition that L, # 0. The first equation says, in effect that

ol

—— =10
81‘2

while the additional condition implies

6?[‘1

Thus we may take the simplest solution 77 = #; and compute 75 from
3
Ty = Lle =ry+ 2
Therefore, the change of variables is

Z1 = I

3
z2 = I]+ X
The feedback linearizing control is found from

2r7dy + dg

= 2?%(1% + 19) + zﬁ +u=mwv

g

Solving for u gives

u=uv— [203(2} + x9) + 23]
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10-6 Choosing ¢; and ¢o as generalized coordinates, the kinetic energy is
1. ., 1

K = ifqi + §Jq§

The potential energy is

1 .
Vo= MgL(1 —cosq) + 5hk(ar - 0w)°

The Lagrangian is

1

‘ 1 .-
5.}@ ~ MgL(1 — cosq1) — 5k(a1 — P)*

L = K-V= %mg +

Therefore we compute

adL adL
— = [q: — = Jp
Iq1 ! ) !
d OL _ T d OL i
aog M dtag TP
dL
— = —MgLsing; — k(q1 — ¢q2)
dq
dL
=~ Loy —a
Ot (g1 —q2)

Therefore the equations of motion, ignoring damping, are given by

Igy+ MgLsing + k(g —q2) = 0
Jijo — k(g —q2) = w

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



10-7 TIf there are damping terms Bjg, and Bage on the link and motor, respectively, the equations
of motion are
Igl + qul -+ ﬂ[gL sin q1 + ;lﬂ(ql - qg) =0
Jgo + Bags — k(ql —q) = u
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10-8

0 i)

0 Mgl iy Ty — E(zq — r3)
g=1,1: f= : - r{

0 T4

1 k

T (@1 — x3)

Therefore, since g is a constant vector field

dg of af
1l = gl==] —=—g=——
a I(g) [f {}] dx / (‘;?..*.'g o g
Now,
0 1 0 0
ﬂ B # Ccos 1| — % 0 % 0
dr 0 0 0 1
k k

and so we have

0
ads(g) = 01
Y
0
Similarly,
0
2/ ¢ : —af *
adj(f) = [f.ads(9)] = —ads(g) = | T
4
and
_k
of 0’
u.djé(g) = [f, a.dff(',f})]Z(,:)—:rf;.(lfo(;;): %
0
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10-9

.oy oIy
Ly = Toz, 0= Ory e
LifgTh = _3@_0_} Oxs =0

kEoly koY 0 — oIy

o= ——Lt_ Tl g—=Z1_p
(9)~1 I1J0xy  JoOxy Oz

L _»
adf

Since

ol

oz, Y

Finally

kT, | k0T aT,

I —rhol o — Y
ad TTom T o2, 7 ke

f(g

i =

since

o1y
8:17 3
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10-10

'TQ = Lle = (I,U.O,U)f )

Ty = L;T=(0,1,0,0)f = _'”I’QL Sina - %‘.,._1 )

— Mgl . ;
Ty = LTy = ( f’L(-m.plé_(1.%(}é.o) f

_ (Mgl kK
= 7 CoSTq ; Tro [.u

—MgL y ﬁl‘( )
= cosry 19 — —=(ro —
I | 2 I ra |
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10-11

, 1 J7T) k
LTy 71"),!'_; 1J
LTy = ( [1{” sinay - o, 1;'{” cos Ty — r;,(}_ %) f
MqglL . Mgl k —MgL k
= ;’I sin g ;f: — ( ;’I cosry + 7) ( ]” sinary — ?[.r] o ,r_-;_])
+ﬁ(-f| —rg)
_ MgL i |22 4 Mgl cos oy 4+ k N k. ) k N k N MqgL cos
= 7 sy |a5 i 08 .1 i ] (ry — g ] 7 7 081
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10-12 The coordinate transformation is

vy = I
Yya = &2
MgL ko )
Y = SINTry — —(r1 — &
Y3 i 1 i 1 3
~MgL k
yo = —p—coszy - xy — (22 —x4)

Therefore the inverse transformation is

L = N

2 = Y2

! + Mgl sin ) + "
ry = — v sinz] + —x
3 o\ Y3 i Lt 70

I MgL

= E’.@/B—I— I

LI, Mol
== — | Y: S111
Y1 I Y3 i SH1 Y1

I( MgL k )
ry = —\ys+ cosxy - xro2+ —x9

siny1 + y1

k I 1

1 MgL
= Y+ 7\t COS Y1 - Y2

k I
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10-13 This is an open-ended design problem. Use Matlab’s pole placement or LQR routines to

generate linear feedback gains.
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10-14 In the case of a single-link rigid robot with a permanent-magnet DC motor we can write the
dyvnamics equations of motion as

10+ Mglsin(0) = u
LI+ RI = V—K,0
u = KI

Define state and control variables as

I ()
o | =0 |:u=V
I 1

and write the equations of motion as

| = ]

) K Mgt

To = T,r;; - T:—am{.z‘l)
. Ky, R 1
rg = —T.F'Q — I,r;; - I”

The transformed state variables under which the above system can be feedback linearized are

21 =
2 = I
K Maqgl .
zq = T.r—; — sin(y)

The feedback linearizing control law w« is found from

s = Ky Mol )i
Zy = fd'; !r Cos J]}‘H
K K, R Mgt \2g + K1
= —— =Ty — —I: - - 0=l )T —_——UuUu=17
7 LI_J Lr,; i cos(xy Jao }'L“ t

which results in
21 = zZ2
22 = 23
23 = 1

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



10-15 From Equation (10.73) we see that, as k — oc,

T3 — Y1 =11

Ty — Yo = T2
The physical interpretation is that, as the joint stiffness tends to infinity, the link and motor
position and velocity coincide. This makes sense because the shaft connecting the motor and
link becomes a single DOF rigid body. Examining Equation (10.54), if we eliminate the spring
torque k(q; — ¢2) and set §o = ¢, we recover the equations for a single-link rigid-joint robot

(I + J)j+ Mglsin(q) = u
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10-16 With spring force F = ¢(q1 — ¢2) the equations of motion (10.54) become

Tgi+ Mglsin(q1) +o(gr—q2) = 0
JGg — ol — ) = w

Thus the corresponding vector fields f, and g are

0 I3

= 0 P ‘quL sinr] — %q”)(rl —73)
0 Ty
% %(f)([l‘l - Tg)

Let ¢ denote :’J'—ff s—zy—uws- Then a straightforward calculation shows that the distribution

lg,adsg. adfeg, ad?g} is modified as

0 0 0 £
. 0 0 L 0
: g2 137 _ TTY
lg, ady(g), ad¢(g),ads(9)] = | PO Y
L0 —RHd 0

which has rank four (and hence is feedback linearizable) provided ¢’ # 0. The coordinate
transformation and feedback linearizing control can be obtained by replacing k(zy — 23) in
Equations (10.65)-(10.66) by ¢(x; — x3) and replacing £ in Equations (10.68) and (10.69) by

!
.
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10-17 With y = g = x1,we note that the vector field f in Equation (10.56) can be written as

i xry ) [ T ) 0
MglL k k
. sin(zq) — — (21 — 23) ——(z1 — x3) Mgl .
1 1 I — sin(zy)
f) = . - , :
€ry €Ty
k ! 0
j(.’l’l - 13) 7(’[‘1 - 13) 0
= Az +d(y)
where
0
0O 1 0 0 )
A= *§ 0 % 0 oy) = *ﬂffll sin(y)
"l o o 0o 1]|®¥WT
E o k£ o 0
J J 0

Therefore, the flexible joint robot model can be written as

T = Ar+ oly)+ bu
y = Cr

Therefore, with the observer equation defined as

& o= Ai+ oly) + bu+ Ly — Cx)
the estimation error e = x — I is easily seen to satisfy
¢ = (A~ LC)e

and, therefore, observability of the pair (C', A) is sufficient to design an observer to estimate
q1. q2. g2 given only measurement of gy.
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10-18 With gy and go given by

0 r cos(f)

0| rsin(f)
g1 = 1| 927 0

0 0

and with ¢ = (z,y,6, (;})1 we have, since ¢y is constant, that

o 992
l91.92] = 9 9
[0 0 —rsin(f) 0 0
B 0 0 rcos(d) O 0
N 0 0 0 0 1
o0 o o]flo
[ —rsind
B rcos(f)
- 0
i 0
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10-19 A direct calculation shows that g, and gg are both orthogonal to w; and ws. Since g; is
constant, the Lie Bracket [gq, go] is

lo1.92] = %91
[0 0 —sin(f) 0 0
B 0 0 cos(f) 0 0
- 00 0 L sec? (o) 0
00 0 0 1
i 0
_ 0
- L sec? ()
0

which cannot be expressed as a linear combination of g; and gs.
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10-20 This follows simply from the definition of the cross product with some rearranging of terms.

- . . k -
wxu = W] w2 Wi = e‘(u.‘-‘gu;g - w';{!f;g] - _}{w‘| Uy — ..L'_';H|] -+ JL'(uJ[H-‘g - w'gi“]
uyp  uz Uy |

0 —w3y wa
= ws ) + 0 o + —wy | ug
—w9 W 0
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10-23 With v; = asin(wt) and vy = beos(wt), the first two equations in (10.119) can be explicitly
integrated as

ot
r(t) = x(0)+ / asin(wr)dr = i(l — cos(wt))
Jo w
ot
ralt) = x2(0) + / beos(wTt)dr = —j.'s'i]l(u,‘f)
Jo w
Att = ‘:—_ we have ”{i__) = r1(0) and .i"g(%) = x9(0).

From the third equation in (10.119) we have

Ty = ib sin(wt)(1 — cos(wt))

W
Hence. it is straightforward to compute by direct integration

) = aa(0) + 27

J';;(

35

and the result follows with ¢« = w = 7 and b = 10.
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11-1

A

e

u = ka°

v = ky°
a) (25,25,50)° —  (5,5) = (u,v)
b) (—25,-25.50)° — (=5,-5)
c)  (20,5,—50)° invisible (behind the image plane)
d) (15,10,25)¢ —  (6,4)
e) (0,050 ~ (0,0)
f) (0,0,100)° — (0,0)
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(e.»“‘&! F

—_— o O

e
SN
— =

(10, —20) = (u,v)

invisible (behind image plane)
(2.5, —75)

(%, -50)

invisible

invisible
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"

From the transformation, we have
(2,92,22) = (21— B,y,2)

We know that uy, y1. Ay and us, vo, Ao. We want to find depth zy.

. Al P R0
Ky = — Ky=—=—
21 z9 Z1

1 U1 . U
1= T2= -

k1 ko

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



rd I
¢ i
r
)i
/ e
LM‘}L( .f i L
(o wadihaney ¥4 &
—
)Lu.st -"
A /
E— — IB 1ias

il

Let TT be a plane defined by any two points on the 3D line and the center of the projection.
The intersection of the image plane and plane IT is a straight line.

Degenerate cases:
{=]
1. Plane II is parallel to and does not intersect the image plane. For this case to arise, the
3D line must be parallel to the image plane and lie behind the image plane.

2. If the 3D line passes through the center of projection, there are infinite possible planes
I1. In this case, the 3D line appears as a single point in the image.
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11-5 We are given two lines that are parallel in the camera frame.

[ ¢ ] [ 2y ]
Li:|v | = | wn|+70
B2 | 21
[ ¢ [ o ]

Lo: |y | = | w|+U
P zZo

where U = [l_.-"\rl_.-"_uU:]T is a unit vector.

From our equations relating points in the camera frame to coordinate in the image frame

a0 il
IS T = v
z° A
we have
- -
x y
U= — = —\/\,
-~ -

Substitute our lines:

(i +UL)
G +202)

A

u =

Now take the limits as v — oc.

rs T
Af.b._ (:t + b )
Use = lim M/\: lim AY Ty
¥=oo (25 +yUz) e (z— Es Uz)
Uy
— Uz)\

Similarly, we can find

—_— {J:r

a1 = y
Vno G A

z

The coordinate (tieg, Ve ) 15 the vanishing point.

Remarks:

1. (#ao, Voo ) does not depend on x;, ;. or z;! This implies that any line with unit direction

U will pass through {#ee, Vs ).

2. (Upg, Vae ) does not exist when U7, = 0. Why? When U, = 0 the plane containing the 3D
lines is parallel to the image plane. In this case, the two parallel lines remain parallel in
the image; they never intersect.

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



11-6 All horizontal lines will have U, = 0. From Problem 11-5, we substitute into the expressions

for the vanishing point to see that all such lines converge to a point with v = 0. Therefore,
all horizontal lines vanish at a point along the line v = 0 in the image.
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11-7 From problem 11-5 we have

U: Uy
U, U,

Uoo = A

Since U is a unit vector, we also know
UZ4+U;+U2 = 1.

Now substitute

2
o AN = (VRO 4N
/\5 } By
= U+ U +U7)
S
/\2

Rearranging terms yields

A
\/ uZ, + v + A2

{T
S = =

Substituting this formula for U. back into the expressions for u., and v.,, we get

U T
A7y ey

us, +v3, + A
U, — Voo

ud 4+ v 4+ A2
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Consider three such pairs of parallel lines with planes P, P>, P5 all parallel. Since the planes
are parallel, they share a common normal, N,

Nz

N=1 N,
[~
From our formulas for vanishing points, we know
Uooi = A %:u L‘rri — Uooi Ui

) s = : A
T )\@ U,. — UVooilUsi
‘ool — U.; yi A .

Since N is normal to any of the lines, we know U; - N = 0 for all 1.

Uy N =0= UyuNy + UuN, + U;N, = 0
Ung ‘Lr_‘z i AT Vooi [}rz 2N ] J
N, + PN, + Uy = 0

When U; # 0, we have

Nz N .
()‘) Uoci + (/\J) Vooi + N, = 0

which is the equation of a 2D line of the form au. + bvc + ¢ = 0 (in the image plane).
Therefore, all vanishing points (e, Voo ;) lie along this line.
Remark: When U,; = 0, the plane is parallel to the image plane and the parallel lines do not

converge in the image.
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11-9 1. To show that ZV,C'V, = % it is sufficient to show ('T-"}, -("T"}, = (. Since vectors
a = (aj,az,a3).b = (b1, b2, b3), andec = (¢, 2, c3) define the edges of the cube, we know
they are perpendicular, thus a-b=5b.-¢c = a-c¢ = 0. From our formulas for vanishing
points, we have that

T ay a3 1 and ¢V — b oba g
OV, = A2, 2, 1) and T, = A, 12,1).

V..U, = A apby N asho 1
azby  agby

2

= (arba + asba + asbs)
azby
A2
= (a-b)
agby
= (.

Therefore, C'V, LC'V, which implies ZV,('V, = Z. Similar proofs hold for the other two
angles in the problem statement.

Iz

. To show V,V. is perpendicular to the plane, it is sufficient to show that two distinct
vectors in the plane are perpendicular to V,V,. That is, the dot products to two distinct
vectors in the plane with 1.-},_';-";\ are both zero.

One such vector is the altitude h,. which is perpendicular to V, ¥, by definition. Another
such vector is C'V,.
By vector addition C'Vj, + V, V. = CV.. so V,V. = CV, — CVj,. We have

Ve ViVe = CV,- ((_-q..; — W, )

1

—

= 0-0.

Therefore, C'V,, another vector in the plane, is also perpendicular to V,V.. We conclude
that V, V. is perpendicular to the plane, and hence is the vector normal to the plane.

3. From the previous part, we know that V,V. is normal to plane P,. The vector N =
(0,0.1) is normal to the image plane. To show that plane P, is perpendicular to the
image plane, it is sufficient to show that the respective normal vectors are perpendicular.

V. N

(e — up)0 4+ (ve — vp)0 + (0)1
= 0

Therefore, the image plane is perpendicular to plane P,.

4. The orthocenter of the triangle V,V, V. is (0,0, A). It lies on the camera’s z axis.
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11-10 The fun solution.
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11-11

unage

center of

projection ~

plane parallel
to unage plane

Consider rays from the center of projection to every point on the circle. Taken together. these

rays form a cone. The locus of the intersection of the cone with the image plane is a circle in

the image.
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11-12
N
> (@i — w)*p(xi)
— Z(xf — Qux; + p2)P(xy)
= Z.rfP(Jg) — ZQ,UI;’_P(:I?i) + Z,u?P(:ri)
= ZI?P(JQ) — 2 Z;riP(;ri) + 142 Z P(z;)
S - N \1,

7

1
= > aiPla) — 24 +
= ZI;)P(IQ) — u?
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11-13 Students simply need to know the formulas for the row and column centroids.

mig  2oreL(ri0) mpy 2 e cIlr,c)

T S, Ime) me S, Z(ro)

Equation (11.21) is found by substituting rmg0 for 3> rZ(r.c) and emg0 for 3, cZ(r.c).
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11-14 Py(z) is the pdf for background pixels, which are low intensity (high z values).
Py(z) is the pdf for object pixels, which are high intensity (high z values).
Given a chosen threshold value t,

— the probability that a background pixel is misclassified as an object pixel is [™ Py(z)dz

— the probability that an object pixel is misclassified as a background pixel is fix Py(z)dz=.
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11-15 We can write the total probability of error as Eyrq = fi% P (z)d.erftOC Fy(z)dz. To minimize
FEiotai, 80 set its derivative with respect to ¢t equal to zero. Using the Fundametnal Theorem

of Calculus, we find

d
0 = EETOTCE(’
d [t d [
= E/%PI(Z)(&—'—E Py(z)dz
d [t
= A+ f _Py(2)d
dt o

= Pl(f) — Po(T).

Therefore, the total probability of error is minimized when Py(t) = Py(t).

It is a fair assumption that the measured pixel intensity is the sum of a true intensity plus
a noise term (which we assume to be additive Gaussian noise). Since all of the pixel values
are manufactured by the same process, it’s reasonable to assume that the same sort of noise
will be introduced for each pixel. Therefore, we get two independent, identically distributed
(02 = 07) Gaussian random variables Py(t) and P (). So the pdfs are of the form

1 _ (z=p)?
Plz) = —e 2.7 .
Vamo

We know the total probability of error is minimized when Py (t) = Fy(t), so we substitute the
above Gaussian pdf with variances equal. Working through the math leads to the conclusion
(t—p1)% = (t— p1o)?. Due to the even power, this does not imply that £ — i1 =t — 9. Rather,

it implies [t — p1| = |t — pol, so t is equidistant from g1 and pg. So we choose
f* _ 1231 + Ho
4) N

&
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12-1

[ A g w1, pLE u? 1
— — O — — — {.']
21 Z1 A A
0 Ao M+ sf 1y
i = - —Uq
J = Z1 Z1 A A
;= 2 2
A 0 o UV A° 4+ u5
_ s _ 2
Z9 Z9 A A
0 A ve AN 4o UV
—— = = — — U
i ) R1)) A A .
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12-2 If the four rows of L are linearly independent, then L is rank 4, and its null space has rank
2. In general, the rank of the null space of L in problem 12-1 is given by 6 — rank L.
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12-3 For this problem. we shall let the coordinate frame of the left camera be the reference frame.
Thus, the coordinates of the fixed point (r,y. z) are expressed relative to the (moving) left
camera frame. It is common in stereo vision systems to choose a configuraion in which the
position and orientation of the right camera w.r.t. the left camera is given by

1 00 B

(10 1.0 0
H; = 001 0
000 1

in which B is called the baseline distance (see problem 11-3).

Suppose the left camera is moving with velocity & = (v, w;). The interaction matrix for u;, v
is just the usual interaction matrix for a point.

As we have seen in Chapter 4, if the two cameras are rigidly attached (i.e., their coordinate
frames are rigidly attached), their angular velocities are the same, i.e., w; = w,. The velocity
of the origin of the right camera frame is given by v, = w x [B,0, (J]f + vy which gives

Vrg 0 Vi
Upy = Bw. + Uty
Urz —Buw y LB

The coordinates of the fixed point w.r.t. the coordinate frame of the right camera are given
by (@ — B,y, z), since the left and right frames are related by a pure translation along the
x-axis. The velocity of the fixed point relative to the moving right camera frame is therefore
given by

T Wy r—B Ve

Y e B Hol Wy X y T Ury

5 w'; z Uy z
Yz — Wy — UVlp

—(x — B)w.: + 2wy — vy — Bw;
(.f' = B)'-‘-'_u - Ywp — Uz + Bv‘:_r;

which can be written as the system of three equations

T = Yyw:— 2wy — UV
f;‘ = —TIW: + 2wy — r';!_,
: o= Ty — Yap — U

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Modeling and Control
Copyright © 2006 by John Wiley & Sons



There 1s no published solution for Problem 12 .4.
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12-5 Suppose the end effector frame is moving with velocity £ = (v.w). Then, the origin of the
frame has velocity v, since angular velocity of the end-effector frame does not induce motion
of the frame’s orign. Therefore. we have

r = Uy
y = Uy
P = w

We use the quotient rule for differentiation with the equations of perspective projection to

obtain
d \r z& — 12
= ——=A\——5—
dt = 22
and
d \i 1y — Yz
ANy _\zi—y

N r.’f? 22

By solving the perspective projection equations for @ and y we obtain

1

=z v
r= —, y=—
/\

A

and substituting thees results into the above derivatives we obtain

. i — 13 A uz A u
i = )\7:2 = :—2(:.",!- o Ti':} = ?{r',r — Xi':}
A u
v o= ?(!"” — Xf':}
Writing this in matrix form gives
Uy
A g
20 L ooo0l|| W
[ it ] _| = 2 v
‘ 02 -2 000 -
< = Wy
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12-6 This problem is somewhat open ended. Derivations and discussion of this issue can be found
in the following reference.

e . Chaumette, “Image moments: a general and useful set of features for visual servoing,”
IEEE Trans. on Roboties, 20(4):713-723. August 2004,

e O, Tahri. F. Chaumette, “Point-based and region-based image moments for visual ser-
voing of planar objects.” IEEE Trans. on Robotics, 21(6), December 2005.
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12-7 through 12-11 These problems are all simulation problems.
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