
Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 1

Version: 12 September 2003

3 DEPENDABILITY IMPAIRMENTS: FAULTS, ERRORS, AND FAILURES

3.1.1 FAULT CLASSIFICATION
3.1.2 Fault activity
3.1.3 Fault duration
3.1.4 Fault consistency
3.1.5 Fault intent
3.1.6 Fault count
3.1.7 Fault cause (single fault)
3.1.8 Fault cause (multiple faults)
3.1.9 Fault extent
3.1.10 Fault value
3.1.11 Fault observability and diagnosability
3.1.12 Fault coincidence
3.1.13 Fault creation phase
3.1.14 Fault source
3.1.15 Fault mechanism

3.2 FAILURE CLASSIFICATION
3.2.1 Failure behavior type
3.2.2 Failure hazards
3.2.3 Failure risks
3.2.4 Failure effects
3.2.5 Failure accountability

PROBLEMS AND EXERCISES

REFERENCES

Please send comments & suggestions to
Frank Dörenberg via email

textbook@nonstopsystems.com
For research and educational purposes, an electronic copy
of most of the referenced articles is available on request.

2

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 1

3 DEPENDABILITY IMPAIRMENTS
The purpose of any system is to provide its intended, expected, and agreed upon-service (i.e.,
functions, operations, and behavior). If the system does this in an acceptably correct and timely
manner, it is called dependable. The transition to a state in which the system is unable to deliver
its service in such manner, is referred to as a failure or outage.

Failures are the manifestations of this inability at the system boundary, i.e., at the service
interface with the users. Obviously, these manifestations are caused by effects and events that
are present or occur within the system. They may also enter into the system via specifications
that do not adequately capture that intended, expected, and agreed upon-service. All these
effects and events in effect pose prevent the system from being and staying dependable. Hence,
they are collectively referred to as impairments [Laprie85, IFIP10.4, Prasad96, Avizienis87/01],
and form the second branch of the dependability tree, see Figure 3-1.

Figure 3-1 Impairments: the second branch of the dependability tree

As the architects, developers, designers, assessors, and users of systems, we need to be able to
establish, evaluate, discuss, and communicate the hierarchical, causal relationships between
these impairments [Avizienis87]. We may need to know how they enter into the system, how they
are activated, and how they propagate to the system's service interface. We also need to be able
to specify the system's dependability goals and requirements. This includes the number and type
of impairments that the system must provide protection against. Also, without insight into how the
impairments occur and develop, it is hard to systematically evaluate means to prevent them,
reduce their severity, or model them, both quantitatively and qualitatively.

Obviously, we need a hierarchical framework of terminology and classification of impairments. As
known intuitively and from experience, undesirable events are typically the end result of a chain
of multiple events. System failure is such an undesirable event. A standard way of decomposing
the causal chain that leads up to this top-level failure event is: fault ⇒ error ⇒ failure
[Laprie85/90, Avizienis86, Meissner89, IEC61508]. This relationship is illustrated in Figure 3-2.
Many definitions of these terms exist, and they are sometimes used interchangeably.

All devices, components, and other system resources (incl. humans) have an internal state,
value, operational mode, or condition. We speak of an error, if this state deviates from the one
that is correct or desired. The latter is based on specification, computation, observation, theory, or
whatever determines "customer satisfaction". A system transitions to its “failed” state, when an
error prevents it from delivering the required service performance. I.e., a failure is the system-
level manifestation of an error: the error has propagated to the service interface of the system,

Dependability
Ability of a system to deliver

service that is acceptably
correct & timely

Means
Methods & techniques to

procure, assure, and assess
dependability

 fault prevention
 fault removal
 fault tolerance
 fault forecasting

Impairments

 faults
 errors
 failures

Events and effects that cause
a system not to deliver

acceptable service

Attributes
Properties that describe or

measure aspects of
dependability

 reliability
 safety
 maintainability
 availability
 integrity security
 confidentiality

2

and affects the system's users and environment. Conversely, a failure does not occur, as long as
the error does not propagate to the system boundary. The term “error” is sometimes reserved for
software, as well as associated data items and structures.

Figure 3-2 The causal relationship between faults, errors, and failures

The flaw, whether hypothesized or actually identified is the cause of an error. This adjudged
cause is referred to as a fault. It can occur within any subsystem or component. This applies
equally in the domains of software, electronic and mechanical hardware, optical, chemical, and
nuclear systems or system elements. Faults can be seemingly small, but the associated error(s)
and failure effects large. E.g., a simple inadvertent bit-flip caused by electromagnetic interference
in a gigabyte memory could change a positive bank account balance into a negative balance, or
change the direction of movement of control rods in a nuclear power plant. If a single fault causes
a failure, we speak of a single-point-failure (SPF). This primarily of concern in systems with
redundancy.

Example 3-1 (hardware)

Cosmic radiation causes a bit-flip in a cell of an SRAM-based Field Programmable Gate
Array (FPGA) that implements a flip-flop function. As a result, the Boolean output of
that flip-flop is stuck. This fault is activated as soon as the flip-flop's clock signal
attempts to transfer a changed flip-flop input to that output. The fault produces an
incorrect flip-flop state, which is an error. In turn, the flip-flop output is interpreted by
software as flag that indicates imminent collision with a nearby vehicle, and eventually
an alert is asserted to the vehicle's driver. I.e., this inadvertent alert appears at the
system's service interface: a failure has occurred. Note: per our definition, that same bit-
flip represents a failure at the level of the cell, if the flip-flop is considered as a system by
itself rather than as a component.

Example 3-2 (software)
Software: p 14 of 21 pp. Fundamental Concepts of Dependability; Therac coding fault,
error, failure.

Example 3-3 (interaction)
Interaction: p 14 of 21 pp. Fundamental Concepts of Dependability “inappropriate
human-system interaction by an operator during the operation of the system is an external
fault (from system point of view); the resulting altered processed data is an error, etc.”
“fault in operating manual Some to be prevented/handled, others

Example 3-4 (liveware)
A maintenance person cuts her hand on the sharp corner of a computer box, and
punctures a blood vessel. This physical change is a fault and causes the bio-system to lose
vital fluids, which is an error. The blood coagulates at the puncture and seals it. This

SYSTEM

propagation

to the service
output interface

at the system
boundary

activationfault
that is dormant

inside the
system

failure
of the system

to provide
acceptable

service

propagation

to other
components

error
in the state of

a system
component

error
in the state of

a system
component

activation

external fault
via the system boundary

(i.e., from another system via the input
service interface, or from the environment)

unacceptable
service to the
 users, e.g.,
other system(s)

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 3

containment prevents exsanguination. So, no failure occurs, though the bio-system may
show a temporary performance reduction or limitation.

Example 3-5 (specification)
A customer forgets to explicitly specify that the units to be used in its thruster control
system software must be standard metric kgms (kilogram, meter, second). However, as
on some previous programs, the supplier uses units in archaic British fps (feet, pound,
second). As a result, the control software expects input data for force control in feet
pounds instead of newtons (a factor of appr. 4.5 difference). Due to schedule and cost
pressures, this fault is not caught during design reviews, simulations, or testing. As a
result, the Mars Climate Observer interplanetary space probe of the customer (NASA) is
off by a catastrophic 100 km after the 500 million km voyage, and disintegrates in the
Martian atmosphere [Oberg99].

Example 3-5 (security)
Attack, external fault vulnerable system, default username/password combination
“guest/guest”, internal active fault intrusion = failure, if compromised security /
system depends on it

Any item or system comprises multiple interacting sub-systems or components. At the same time,
a system itself can be considered as a sub-system or component of a larger super-system. This
depends on how far we zoom into, or out of, the system under discussion. Hence, failure of a
sub-system appears as an external fault to a user system at the next level of the system
hierarchy, etc. This chain effect is illustrated in Figure 3-3. How far the iterative decomposition
should be carried through, depends on the system context and the reasons for investigating the
causal relationships. The tracing must contribute to understanding and …beyond which control
over root cause (physical) through design, component selection, process,

Figure 3-3 Causal relationship between faults, errors, and failures

As outlined above, a failure is the result of an error, which in turn is caused by a fault. The inverse
relationship, however, is conditional: a fault may cause one or more other faults or errors, and an
error may cause failure. A fault must be activated to cause an error: the faulty system resource
must be exercised. For example, irradiation or a supply voltage spike can corrupt the data at a
certain computer memory location. This fault cannot cause an error until that location is read and
the data used. A fault can also disappear without being present long enough to result in an error.
The system may contain time constants due to mechanical or chemical process inertia, or due to
analog or digital signal filtering. A corrupted memory location or register may be overwritten with a
correct value before the corrupted data is used or takes effect. Sometimes the faulty state is
(temporarily) the same as the correct state: even a broken clock tells the correct time twice a day.

It is possible that a fault or error has no perceptible effect on the system performance, so the
system remains non-failed. Similarly, system performance may be degraded (perceptibly or not),
but still be within specified limits. The system may include tolerance mechanisms that mask, or
detect and correct errors. In other words: failure-free does not imply fault-free. It must also be

sub-system:

system:

super-system:

fault ⇒ error(s) ⇒ failure
 ⇓

………………….………..fault ⇒ error(s) ⇒ failure
 ⇓

.………………….………….………………………….fault ⇒ error(s) ⇒ failure

4

noted that an error typically occurs at some physical or logical distance from where the fault
enters into, or resides within the system.

Activities in any of the system’s life-cycle phases can lead to a defect, omission, incorrectness, or
other flaw that enters into, or develops within that system [James00]. As illustrated in Figure 3-4,
the life-cycle covers system development and manufacture, through installation, operation,
maintenance, and disposal.

A fault in the physical (non-software) domain requires a physical change, such as dielectric
breakdown, a wire chafing through, or a flow-control valve seizing. Such changes can result from
selection of components that are not suitable for either the system application, or for the
operating environment. Other forms of environmental interference are caused by contaminants
such as corrosive or conductive fluids or vapor, sand or dust, and power or temperature
fluctuations. Another source of faults is the interaction with other systems, whether physical or via
data. Human induced faults can be either inadvertent, or deliberate (whether with malicious intent
or not) [Martin01].

Figure 3-4 Dependability means related to impairments ref this fig

Faults in the software domain, often referred to as “bugs”1, are related to the generation and
execution of software code. These faults can assume a sheer unlimited number of forms, ranging
from specification and design faults, coding faults, compiler flaws, logical errors, improper stack
sizing, improper initialization of variables, etc. A plethora of software related fault and failure
cases is captured in [Risks]. They are generally dependent on data values, data sequences,
timing [Storey96], or hardware resource allocation and management thereof. Though the timing of
software tasks is normally implemented with hardware counters and clock oscillators, the
initialization of these counters is usually done by software, as is timer interrupt handling. In
addition, the associated operating system or task scheduler is also a fallible software item, as is
timing-sensitive interaction between tasks. Any mutation in executable code is actually a physical

1 The first real computer bug (a moth caught in a relay) was found in 1945 in the Harvard Mark II computer by Grace

Hopper, one of the original programmers. She glued the bug into her logbook, which is now in the collection of the
Smithsonian National Museum of American History in Washington/DC. The term appears to have been in use to denote
a technical problems well before that event, e.g., the Oxford English Dictionary cites the following 1889 newspaper
quotation: "Mr. Edison, I was informed, had been up the two previous nights discovering 'a bug' in his phonograph."

environment application

interaction human
factors

specification manufacture

design operation &
utilization

implementation maintenance
& repair

error failure

mechanical
fault

hardware
fault

software
fault

Fault Avoidance Fault Removal

Fault Tolerance

Dependability
enhancement
techniques

physics &
chemistry

market
assessment

maturity of
technology

process
management

history &
lessons learned

Fault sources

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 5

fault. It can be caused by events such as memory corruption or a hard disk crash. Another source
of software faults is the installation of hardware modifications without altering the software
accordingly.

The “ultimate” fault is of importance in most commercial systems. It is the one that must be fixed
to restore the system’s performance, or be changed to prevent recurrence, even though the
underlying theoretical failure mechanisms may be intriguing. For instance, when estimating the
probability of system failure, it may suffice to go down to an integrated circuit’s behavior at pin
level, ignoring the IC’s internal behavior at gate level. An accident investigation of a car’s drive-
by-wire system might conclude that the ultimate cause is component damage due to
electromagnetic interference. In other analyses, this same damage might be identified as merely
the immediate cause. The ultimate cause could be traced to a flaw in the component selection or
screening process, an omission in the environmental section of a system specification, limited
coverage of testing and debugging, etc. From the latter point of view, any failure can ultimately be
construed as human-made. This is often not practical or insightful. It is important to make a
distinction between physical or component faults, and human-made faults such as those related
to specification, design, human-machine interaction, etc. Contrary to physical faults, the latter
tend to be unpredictable, the resulting errors unanticipated, and their manifestations unexpected
[Anderson81].

Many types of these impairments can occur during the life of a system. They must be identified
and classified, together with:

• how, and under which conditions they enter into the system
• where in the (sub)system in each of them occurs, or can occur
• if, and how they propagate through the system hierarchy
• what effect they have at the system boundary and beyond.

It is important to determine the scope of all the fault types that must be considered during system
specification and design or evaluation. There are many methods and techniques for the
prevention, containment, detection, removal, and handling of faults, recovery from them or
tolerating them. The coverage and efficacy (and cost) of these approaches is highly dependent
on the fault type and the number of sequential or simultaneous faults that must be
accommodated.

FAULT CLASSIFICATION
It is impractical to enumerate all possible variations of faults that can occur in a general system,
or even in a particular system, other than the most simplistic. To deal with this, we must
aggregate fault types into manageable classes or categories, each representing a major fault
attribute or model. Table 3-1 shows a general fault classification based on commonly used
attributes [Avizienis76/86, Laprie90, McElvany91, Powell92]. This table also lists the fault types
that each attribute distinguishes. They are described in the subsections below.

6

Fault Attribute Fault Types
Activity Dormant, Latent, Active
Duration Permanent, Transient, Intermittent
Consistency Symmetrical, Asymmetrical = failure?
Intent Benign, Malicious, Byzantine, Accidental, Intentional
Count Single, Multiple
Cause (single fault) Random, Deterministic, Generic
Cause (multiple faults) Independent, Correlated, Common-Mode
Extent Local, Global, Distributed
Value Fixed, Varying
Observability Observable, Not Observable
Diagnosability Diagnosable, Not Diagnosable
Coincidence Distinct, Coincident, Near-Coincident
Phase of creation Development, Manufacture, Operation, Support
Source Hardware, Software, Human Interface, Interaction;

Physical, Human-Made (= all)
Origin Internal, External
Mechanism Physical processes

Table 3-1 General Fault Classification

This classification must be done in the context of the architecture and design of the particular
system, its application, as well as the operating and maintenance environment of interest. The
same applies to the mapping of individual fault cases to fault classes. I.e., a particular fault case
in a system may map to a different class (or classes), based on the operational mode or mission
phase. Likewise, the same fault may map to different classes for different systems. Not all
classes apply, or are relevant to all systems: the classification must be tailored. Conversely, the
list of attribute classes may have to be expanded to reflect aspects of fault detection and
tolerance.

Fault Activity

Fault activity indicates whether a fault is producing an error or failure, and if so, whether the latter
is detected or observed. This combines the notions of fault propagation and detection. See Table
3-2.

Not Propagating Propagating
Not Detected Dormant Latent
Detected Active

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 7

Table 3-1 Fault activity classification

A fault is dormant, if it is not (yet) causing an error. It remains in this “lurking” state until the faulty
system element is exercised, utilized, or otherwise called upon. For example:

• A punctured spare tire, or a backup generator without fuel
• An control discrete that is stuck at the currently commanded state
• A corrupted location in Program Memory, corresponding to a subroutine or task that has not

yet been executed
• A broken fire detection sensor that remains undetected until tested, or the malfunction

becomes apparent when a fire occurs.

A dormant fault becomes active as soon as it has adverse effects, and its manifestations can be
detected. This may be through direct observation at the faulty system resource, or be inferred
from erroneous sub-system behavior and system performance. Note that the same fault may
have very different activation time, depending on the system. E.g., a bad memory location may be
accessed several times a second, or once a year.

Detection does not imply that the faulty element has been identified and located, only that its
presence has been noted (e.g., as reflected in an error flag, signal, or message). Many detection
mechanisms need a certain amount of time to reliably determine that a fault has occurred, once
its effects become observable to that detector. During this time the fault is latent. Not all faults
have manifestations that are detectable by the system. Such faults are also called latent.
Sometimes the terms latent and dormant are used interchangeably.

Multiple latent faults may accumulate undetected and compound over time until they eventually
manifest themselves simultaneously. This can defeat the fault tolerant capability of a system
[Somani94], or of the operator. This makes it important to reduce the detection latency: the time
between a fault becoming observable, and positive detection of the fault. The latency can be
reduced by periodically performing a system integrity check with adequate coverage
[McGough89]. However, most detection and monitoring schemes must apply a certain amount of
confirmation delay (persistence time or cycles) so as not to cause nuisance alerts.

Fault Duration

The duration attribute indicates how long a fault is present in a system. This implies that a
timescale is applied to classify this fault persistence. A distinction is made between permanent
faults, and temporary or transient faults. The threshold depends on the fault itself, as well as on
the system in which it occurs.

A permanent or hard fault has indefinite duration and is stable. However, “indefinite” is a relative
term. If truly indefinite, an irreversible physical change has taken place and a maintenance action
is required to remove the fault. E.g., repair or replacement of a damaged component or faulty
sub-system. The fault remains, even if its excitation disappears. Sometimes a seemingly hard
fault can be removed with a system reset or cold start. Even if a fault is not permanent, it can still
be perceived as such by the system’s fault detection mechanism or by the user. After a certain
confirmation persistence has expired, it may no longer matter whether the fault disappears, or it
cannot be reliably determined whether it has. Persistence thresholds are typically based on time
constants or bandwidth of the system, or the maximum time allowed before an uncontrolled fault
causes an unsafe condition. Examples of hard faults are broken drive belts, burnt-out light bulbs,
and crashed hard-drive heads, and software bugs. Sometimes the term “hard fault” is used if

8

repeated use of the same input and initial conditions always result in the same incorrect
response. However, this reflects determinism, rather than duration.

A temporary or transient fault is only present for a limited period of time. The functional ability of
the faulty element recovers without corrective action being taken: the fault disappears
spontaneously and no permanent damage is done [Anderson81, Sosnowsky94]. Transient faults
are also referred to as soft faults, glitches, upsets, or “hiccups”. They are the effect of a
temporary internal or external condition or stimulus. The causes are often environmental, such
temporary electromagnetic interference, electrical power drops or surges, mechanical shock, or
irradiation [Norman96, Ohlsson98, Cataldo01, Baumann01]. Some transients are caused by
(temporary) conditions that were not, or not adequately, anticipated and covered during the
specification and design of the system. Transient faults in digital computing systems typically
occur an order of magnitude more often than hard faults [Siewiorek92]. The transient duration of
a fault should not be confused with the transient magnitude of its excitation or effects.

Many applications include fault diagnostic functions that detect faults and identify (i.e., “isolate”)
the faulty system resource. It is important that such diagnostics be able to discriminate between
permanent and transient faults [Pizza98]. Often a different response is specified for these two
types. Making no distinction, or incorrectly declaring a transient fault “permanent” (or vice versa),
has implications for system operating and maintenance costs: replacing a basically healthy
resource that checks out OK when tested, unnecessarily interrupting revenue service, running the
risk of exhausting system resources such as spares that are still considered “not permanently
failed”, inadvertently operating with a resource that is truly faulty (even though healthy spares
may be available), etc.

A recurring transient fault is called intermittent. Such faults are only present occasionally and
inconsistently [Anderson81]. I.e., they occur irregularly and infrequently with respect to the
mission duration, and are hard to reproduce. They are often caused by hardware that is unstable,
or only marginally stable for certain operating conditions. This can be due to design,
manufacturing flaws, aging and wear, unexpected operating environment, etc. For example:

• the combination of vibration and a loose connection (e.g., chafed-through wiring, poorly
socketed component, bad solder joint, poor bonding inside an integrated circuit).

• a dirty or poorly seated connector (high contact resistance), causing reduced noise margin
on logic levels.

• excessive drift of a clock oscillator’s frequency, causing occasional brief loss of
synchronization between processing nodes.

• ever increasing processor clock-speeds, reducing noise margins
• hardware and software states that vary as a function of processing load or activity.

Software itself cannot fail intermittently, but marginal software process timing can cause
intermittent faults, as can hardware resource allocation problems. Intermittent faults are often
hard to trouble shoot due to their seemingly elusive, inconsistent, and unpredictable occurrence.
Intermittent errors can result from intermittent faults, or from hard faults that have activation
trigger conditions that occur intermittently. More complex systems often include extensive logging
of the fault circumstances (a snapshot of system state, mission phase, internal temperature and
voltages, the value of control inputs and outputs, etc.) to help correlate the fault to its cause.

Fault Consistency

Fault-tolerant computer architectures usually comprise three or more computing nodes. They can
be configured such that each node monitors the others, and their opinions are consolidated for
the purpose of reaching consensus on the identification and exclusion of a faulty node. Such

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 9

decisions require that the fault manifests itself in the same way to all2 observing nodes. This is
referred to as fault consistency.

A fault is symmetrical if its manifestations are seen identically by all non-failed observers.
Conversely, a fault is called asymmetrical if it produces different (i.e., inconsistent) symptoms for
different observers or users. This may lead to different conclusions and actions in those users.

A typical example of asymmetry is a data transmitter whose output is fanned out to several
receivers, effectively creating a number of transmitter-receiver pairs. Individually, the transmitter
and receivers may operate within their respective specifications, but combined (end-to-end) this is
not necessarily the case for all pairs. Similarly, asymmetry can result when several independent
data acquisition units (sensors) measure the same physical parameter and send their
measurements to multiple voters. If a sensor sends different values to different voters, the voter
outputs will be inconsistent.

Fault Intent

The fault intent indicates whether this behavior is devious, doing seemingly anything it can to
cause a system failure. In turn, this determines the type of fault tolerance that would be required.

A benign fault can be detected by any non-faulty observer. It does not matter if this is a single
observer, or a set of redundant observers that coordinate their fault detection. An example of
such a fault is a processing task that takes too long to complete. This can be detected and
tolerated with active redundancy.

Errors caused by a malicious fault may not be directly recognizable, and cause different
observers to see different symptoms, if any. Such asymmetrical faults can confuse and even
defeat the diagnostic capability of computing systems with standard, active redundancy. Worst
case, multiple faulty resources can seemingly collude to escape detection and corrupt the system
[Dolev83, Shin87, Barborak93, Lala94]. This may develop into:

• incrimination of healthy system resources,
• total disagreement between processing nodes (system crash), or
• agreement on the wrong conclusion; i.e., a system failure that is not contained and not

annunciated by the system itself.
Such effects can also occur at circuit level [Nanya89].

Depending on the system, it may be necessary to examine the nature of faults. This indicates
whether a fault develops accidentally during one of the system’s life-cycle phases, or as the
result of an intentional act. Intentional faults result from intrusions into, or damage to the system
during any life-cycle phase. These intrusions may be malicious, for the explicit purpose of causing
faults and their consequences. Examples of such faults are benign or malicious computer viruses,
jamming of radio transmissions or of network traffic (e.g., denial-of-service attacks), and the
destructive acts of vandals, terrorists, and otherwise disgruntled, disturbed, or hostile persons
(justifiably or not). Such faults, their sources, and protection against them, is the domain of
system security [Martin01]. This is further discussed in Chapter “Security”

2 depending on the system architecture, it may suffice that a majority of healthy nodes agree, rather than all. In a redundant

system with a sufficient number of nodes, schemes for multiple rounds of data exchange and voting can be implemented
such that asymmetrical and even arbitrary ("byzantine") faults can be handled. See section ###.

10

Fault Count

Fault count simply indicates the multiplicity of fault occurrence during the time period of interest.
It is the prime ingredient of fault statistics such as the actuary and predicted rate of occurrence. It
is also an important attribute for fault tolerant systems, as they can only tolerate a limited number
(and types) of faults before exhausting their redundancy.

In the case of a single fault, only one fault occurs, has occurred, or is hypothesized to occur.
This allows the particular fault to be treated in an isolated fashion, for the purpose of analysis or
fault tolerance.

Multiple faults take the form of repeated occurrence of the same fault, or the occurrence of
multiple, different faults. Related attributes are whether they are invoked by the same cause, and
whether they occur at the same time. See sections 3.1.7 (Fault Cause) and 3.1.11 (Fault
Coincidence). Both of these attributes determine if the multiple faults can be treated as separate,
statistically unrelated single faults.

Fault Cause (single fault)

The fault cause indicates whether the occurrence of a fault is random or a deterministic event.
By definition, random faults are non-deterministic. Occurrences of such faults have a statistical
distribution. The term “random” is used to label events, such as measurement of time to failure,
that can result in different outcomes, even though it repeated in the same manner every time. In
the end, every variation, failure, event, and uncertainty has an assignable root cause that can be
identified if sufficient effort is expended3 [Evans99]. A fault is deterministic if it happens with
statistical certainty, anytime a particular trigger condition or event takes place. I.e., there is an “if-
then” causal relationship.

Software cannot fail randomly. Software is time-invariant, and does not actually wear out, though
degrading of performance over time may be observed. This is called software aging, see Section
3.2.11 “Fault Source”. If software has a fault, then that fault is always present, whether
observable or not. The related error is produced deterministically, each time the fault is activated
or triggered by a particular data value, data sequence, timing with respect to other processes, or
access to hardware resources. However, as trigger conditions occur randomly, software failures
may appear to happen randomly as well.

If the faulty software is never executed, the fault will never produce an error or failure. So, it is
difficult to apply hardware-oriented terms like failure rates to software reliability [Gordon91,
Pfleeger92, Dunn86, Hecht86, Butler93]. What is generally meant by “reliable” software, is that
each software process generates “correct” internal states and outputs when supplied with valid
inputs or sequences thereof, and that the response to invalid inputs is pre-defined. Software is
“correct” if it operates as specified.

Fault Cause (multiple faults)

When multiple faults occur, it is important to know to what extent their causes are related. Two
faults are independent if they have unrelated causes. The probability that one occurs is

3 “Nothing in nature is random… A thing appears random only through the incompleteness of our knowledge”,

Baruch Spinoza, Dutch philosopher 1632-1677

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 11

unaffected by the occurrence of the other, and vice versa. In other words, the conditional
probability is equal to the unconditional probability, and the combined probability is equal to the
product of the probabilities of the individual faults. See Appendix “”Probability and Statistics”. In
contrast, correlated faults have a combined probability of occurrence that is significantly higher
than that for the same number of unrelated random faults [Pullum99]. The combined probability of
occurrence of dependent events is not equal to the product of the probabilities of the individual
events. If system performance is based on independence, this must be assured in the actual
implementation. This undesirable dependence can happen in two basic ways:

• One fault either directly causes an other one, or makes it more likely that the other occurs.
Worst case, this can turn into a cascade or avalanche effect.

• Multiple faults are caused by the same event. These are called common-cause or common-
mode faults.

[Lala94]
[Buchner94] Buchner, H.: "Occurrence of common mode failure", Reliability Engineering and
System Safety, Vol. 45, No. 1_2, 1994, pp. 201-204

Common-cause or common-mode faults (CMFs) occur if a single condition or event causes a
fault in multiple system elements. The invoked faults need not affect components that are
identical or redundant, nor is it necessary that they happen exactly at the same time, though it is
often assumed that their occurrences overlap.

The common fault causes can be very diverse, e.g.:
• Common requirements and design
• Common environment (internal or external): vibration, pressure, cooling, electromagnetic

interference (EMI), irradiation, explosion or fire, contamination by fluids, uncontained rupture
of rotating parts or of a pressure vessel, etc.

• Common, shared, or interconnected hardware: a processor and memory, time base or clock,
synchronization mechanism, data bus, or power supply

• Common operating system on a shared computing platform
• Common, shared, or interconnected application software
• Common input data, shared by multiple processes
• Common manufacturing process
• Common operation: operating procedures, Human-Machine interface
• Common maintenance and test procedures, or test equipment
• Common routing of redundant network lines (or control cables4) through the same conduit.

This type of fault can have serious consequences, if it causes an error and prevents detection of
that error. E.g., substrate fracture inside an integrated circuit that generates a sensor excitation
signal and at the same time monitors that signal. Fault tolerant systems contain redundant
resources to continue the system’s services and performance, despite the presence of a
(specified) limited number and type of faults. This redundancy may be exhausted at once, if a
single cause affects several or all of those resources.

Example 3-6 (hardware)

4 this was the case in the original McDonnel-Douglas DC-10 aircraft design.

12

The rotor disk of a jet engine disintegrates and the shrapnel severs all supply lines of the
aircraft’s redundant hydraulic system [Hughes89].

Example 3-7 (cascading)
A320: triple hydraulic, dispatch with one out, pump on second system fails, power
transfer motor/pump (no exchange of fluid) overloads

Example 3-7 (environmental)
A320: batch of temperature sensitive components end up installed in duel redundant
control computer subject to the same environmental conditions; first one fails, reversion
to second box, that fails shortly thereafter.

A special type of common-cause fault is the generic fault [Yount85, Poledna96]. As the name
suggests, it affects system resources that are identical or similar. Such faults are of particular
concern in fault tolerant systems that use redundant resources that are identical, e.g., multiple
computing nodes that concurrently execute the same software on identical hardware. A software
flaw may cause all nodes to perform the same, but wrong calculations at the same time. Despite
these errors, the redundant nodes remain in agreement. This defeats all fault tolerance
techniques that are based on the premise that a fault causes a difference between the redundant
resources.

The general approach for providing protection against generic faults and their consequences, is
to ensure that redundant resources fail independently: by having different (diverse) faults, errors,
and failures. This is generally achieved by applying design diversity, also known as
dissimilarity. This concept dates back about 175 years (!) to the era of Charles Babbage’s
calculating machine5. In the software domain dissimilarity is usually referred to as N-version
programming [Avizienis85/95, Voges88, Poledna96, add refs]. Dissimilarity is used where
component replication to tolerate faults is not feasible or effective, i.e., when identical copies
show identical faults (nearly) at the same time. Care must be taken not to compromise version-
independence when implementing mechanisms to limit divergence between versions, especially
as differences between non-failed versions may be legitimate. The level of achievable version-
independence is open for debate [Knight86, Knight90].

Caveat

The power of dissimilarity is based on the assumption that that it makes simultaneous
common-mode (generic) faults extremely (or at least sufficiently) improbable. However,
it must be realized that dissimilarity provides little or no advantage in protecting against
common-mode environmental faults (interference, temperature, vibration, power, etc.),
and flaws in common requirements that drive the design and implementation.
Dissimilarity also does not reduce the probability of simultaneous random faults, whether
version-independent or not. It may allow a shift away from proving absence of generic
faults, to demonstrating the ability to handle them. Such an architectural approach may
lead to a reduction in the required product certification and design assurance level.
Mechanisms put in place to ensure consistency, convergence and tracking between
dissimilar versions must be carefully evaluated for their effect on version-independence.

5 "The most certain and effectual check upon erors which arise in the process of computation, is to cause the same

computations to be made by separate and independent computers; and this check is rendered still more decisive if they
make their computations by different methods" [Lardner34].

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 13

Often, generic faults are referred to as residual design errors [Avizienis99]. However, their causes
can be found in system life-cycle phases other than design. For instance, all hardware
components of a particular type can have the same manufacturing flaw (i.e., a “bad lot”). The
system specification can have deficiencies that equally affect all systems designed in compliance
with this specification. This can be a specification error, ambiguity, or omission. Applying
dissimilarity at this level is usually impractical, as the redundant system elements are expected to
provide the same (correct) functionality and behavior. Of course, when the generic flaw is in a
common specification, this causes different implementations of the same fault.

Diversity can be applied at software, hardware component, system, and process level, e.g.:
 different programming languages, combined with identical or different processors
 same software source code but different compilers and assemblers
 different Hardware Design Languages (HDLs) for identical or different programmable logic

devices (PLDs)
 object oriented programming vs. functional (structured) programming
 fixed vs. floating point arithmetic
 different coordinate systems, e.g., Cartesian vs. Polar
 operating system based on a state machine vs. dynamic task scheduling
 electromagnetic vs. hydraulic actuation
 generation of aerodynamic control forces via airplane control surface deflection vs. engine

thrust vectoring
 data bus with copper wire vs. optic fiber (electromagnetic interference, cross-coupling)
 different algorithms for the same function
 integrated circuits with same form, fit, and function, but implemented with different

technologies, cell libraries, or processes.
 different circuits and devices to implement the same function, e.g., discrete components vs.

integrated circuits, or analog vs. digital
 different tools for requirements capture, design, development, implementation, test and

verification
 AC electrical power from a public utility company vs. from a diesel generator vs. from a

battery or solar powered inverter6.
 Operating environment: environment diversity [refs]

Obviously, the application of dissimilarity has a significant impact on the cost of the system. The
non-recurring development effort must be replicated (incl. Costly software verification and
validation), multiple manufacturing lines set up, qualification testing performed, service and
training manuals written, etc. The recurring cost also increases: more component and
subassembly part numbers must be tracked, different types of hardware or mechanical
components be procured and stocked (in smaller quantities than in a system with identical
redundancy, and often with limited choice), configuration management expanded, etc.
[Kanoun01].

3.2.6 Fault Extent

The fault extent describes the scope of a fault: how far it propagates through the system, and
which area of the system is affected. The boundary of this area is called the Fault Containment
Region (FCR). It is typically desirable that this boundary be as close to the fault site as possible.
Such containment often limits the (possibly damaging) effects of the fault, and also facilitates fault
handling strategies such as redundancy and management thereof.

6 A single lighning strike could damage the power connection to the public electricity network and to the backup generator. If

this happens at an unmanned (telecom) facility. If the power situation is not monitored, or the monitors are not tested, the
battery backup will be depleted and cause loss of the facility.

http://catless.ncl.ac.uk/Risks/

14

Faults can propagate in many ways. For instance, an electrical fault can propagate electrically, as
data, thermally (increased dissipation or even fire), or physically (smoke, molten isolation or
dielectric material), etc. Uncontained faults propagate outside the system boundary, to connected
systems, users, or the system environment in general.

The fault extent is local, if the fault does not propagate beyond the subsystem or module that
contains the faulty component. If the fault causes errors outside this subsystem, the fault extent is
called distributed or global. Hence, the fault extent depends on the system view: a system is
always a sub-system in a higher level system.

3.2.7 Fault Value

A faulty system may produce values (internally, or output) that do not fall within the set of
specified or expected values. Similarly, it may have an erroneous state or status. The fault value
indicates what this value is, and how it changes with time.

Obviously, a fixed fault value does not change. This is also referred to as a stationary, frozen,
or stuck value. How this value is reached depends on the component and particular fault in
question. It can be a jump, gradual drift or monotonic slew (also known as “creep-away” or “slow-
over”), oscillatory, or erratic movement. The terminal value can be:

• an extreme value, e.g., stuck at logical level 1 or 0, the maximum position of an actuator, the
supply voltage or electrical ground potential. This is also known to as a “hard-over”, and it is
generally assumed that a hard-over state or value is reached rapidly (with respect to the
system’s time-constants).

• the component’s value at moment of the fault occurrence: the value is “frozen”
• some predetermined or default value, due to the nature of the component, or forced by the

system upon fault detection.
• an arbitrary value.

A varying erroneous value changes anywhere between fixed or arbitrary limits. The rate of
change can be fixed or (erratically) varying in sign, magnitude, and rate.

3.2.8 Fault Observability and Diagnosability
A fault is observable or visible if a symptom of its existence is available to a monitoring
mechanism inside or outside the system. Some fault manifestations can be directly observed at
the affected system component. Others can be inferred from behavior and performance at higher
levels in the system hierarchy, i.e., from errors and failures. Fault observability is important, as it
is the prerequisite for fault detection.

In theory, any fault can be made directly observable if enough effort is spent on devising a
method. This is typically not practical from a technical and economical point of view, nor is it
necessary. In addition, observation mechanisms themselves are subject to faults and this
contributes to undependability of the overall system.

For instance, a loose wire bond inside an integrated circuit is observable by visual inspection
inside the component package. Obviously, providing such a level of detection outside the chip
manufacturing process is unthinkable. Exercising the chip during periodic system test could
surface the fault. In some systems it is critical that component faults are detected timely. This can
be done with redundancy techniques at component level or higher, or with special detectors. E.g.,
A/D, D/A+MUX

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 15

Closely related to observability, is fault diagnosability.Does not necessarily mean it cannot be
made diagnosable. WEBSEARCH
Def. ; vs observability vs isolation. Somani + ..
(Berlin) a [FT] system of n units is a one step t-diagnosable system if all faulty units within the
[redundant] system can be located without replacement [of what?], provided the number of faulty
units does not exceed t. [Preparata/Metze/Chien, 1967]: 2t+1 <= y, at least t units must test each
of the n units.

SIAM Journal on Computing, Volume 23, Number 5, pp. 895-905
© 1994 Society for Industrial and Applied Mathematics
Diagnosis of t/(t +1)-Diagnosable Systems, A. Das, K. Thulasiraman, V. K. Agarwal:
A classic PMC (Preparata, Metze, and Chien) multiprocessor system [F. P. Preparata, G. Metze,
and R. T. Chien, IEEE Trans. Electr. Comput., EC-16 (1967), pp. 848--854] composed of n units
is said to be t/(t+1)diagnosable [A. D. Friedman, A new measure of digital system diagnosis, in
Dig. 1975 Int. Symp. Fault-Tolerant Comput., 1975, pp. 167-170] if, given a syndrome (complete
collection of test results), the set of faulty units can be isolated to within a set of at most t+1 units,
assuming that at most t units in the system are faulty. This paper presents a methodology for
determining when a unit v can belong to an allowable fault set of cardinality at most t. Based on
this methodology, for a given syndrome in a t/(t+1)-diagnosable system, the authors establish a
necessary and sufficient condition for a vertex v to belong to an allowable fault set of cardinality
at most t and certain properties of t/(t+1)-diagnosable systems. This condition leads to an
$O(n^{3.5}) t/(t+1)$-diagnosis algorithm. This t/(t+1)-diagnosis algorithm complements the t/(t+1)-
diagnosability algorithm of Sullivan [The complexity of system-level fault diagnosis and
diagnosability, Ph.D. thesis, Yale University, New Haven, CT, 1986]

3.2.9 Fault Coincidence
The fault coincidence attribute indicates the separation in time of fault occurrences. As a fault
cannot coincide with itself, this attribute is reserved for multiple faults. These faults need not be
identical, nor affect the same component(s). Temporal separation does not imply causal
independence: common-cause faults need not happen at the same time, despite their correlation.

Coincident or simultaneous faults occur at exactly the same time. No assumptions are made
regarding their duration being identical. Distinct or separate faults do not occur at the same
time. However, their duration may still overlap. The distinction between “coincident” and “distinct”
is not as clear as it may seem. Strictly speaking, truly simultaneous events do not exist. Even if
they did exist, their exact simultaneity could never be determined with absolute certainty.

It makes more sense to consider near-simultaneous or near-coincident events [McGough83].
This “nearness” allows for a finite time window that can be (approximately) quantified, based on
the type of faults and the system at hand. If multiple faults occur within the span of such a
window, they are near enough to be treated as “coincident”.

Near-coincident faults must usually be considered for critical systems that are required to provide
extremely high reliability over long periods of time. Such systems employ redundancy to achieve
fault tolerance. The redundancy management often uses fault detection mechanisms that are
based on pair-wise comparison of the redundant resources. These monitors typically apply a
persistence time window to confirm the miscompare fault-condition. During this time window, the
system is vulnerable to a consecutive fault that affects another member of the same redundant
set of monitored parameters or resources. The faulty parameters may happen to be in
agreement. This can deceive the fault detection in such a way that either no fault is detected, or

16

the remaining “good” resources are incriminated. Either way, the faults continue to propagate and
the fault tolerance is defeated.

3.2.10 Fault Creation Phase
The life span of a system is divided into so-called life-cycle phases. Faults can (and do) enter
into, or develop within the system during any of these phases [Redmill97a]. Many life-cycle
models exist, e.g., [EIA63, NASA, SAE, IEC, ISO9004]. They typically distinguish phases and
activities corresponding to the five-phase listed below. The transition between the phases is
generally marked by a program decision milestone. It indicates that all tasks of the preceding
phase have been completed in a satisfactory manner. All phases influence the system
dependability and cost.

The system concept and planning phase of commercial systems typically begins with the
identification of customer needs and expectations, and of market opportunity. System concepts
are formulated. Plans are made for the execution of subsequent phases, and the required
resources are identified and approved. Risks are identified and mitigated in the area of
technology, program schedule, cost, etc.

The system development phase of system requirements are captured, analyzed, and managed.
Based on this, several system architecture alternatives are evaluated for suitability and feasibility.
The selected alternative is the basis for preliminary and detailed design of hardware, software,
and mechanical subsystems. Often prototypes and simulations are used to validate concepts and
designs.

The designs are verified against the requirements prior to implementation. The latter involves
selecting components for the circuit design, as well as laying out circuit boards. Software
implementation covers the application software and the operating system. The implemented
subsystems are integrated and tested at subsystem and system level. The development phase is
an iterative process, especially for complex systems. This phase usually includes the
development of test equipment or tools that are used during the system development or
manufacturing and support phases. Quality Assurance techniques must be applied throughout
the development, as must design for testability.

The system development phase must pay close attention to the Human-Machine Interface (HMI),
as the system will be installed, operated, and maintained by humans.3.2.12
[Strigini01] The reliability of diverse systems: a contribution using modeling of the fault creation
process

The manufacturing phase includes the procurement, fabrication and screening of components,
tools, and test equipment. The components are subsequently installed in subassemblies and
combined into the system level assembly. If necessary, adjustments are made or calibration
“tuning” is performed prior to testing the system. The latter may involve burn-in testing such as
temperature cycling and vibration (so-called shake-and-bake), to weed out “weak” systems or
components. Early in this phase, production equipment is finalized and quality processes are
established. The completed system is delivered to the customer or end-user in the field, often
subject to an acceptance test.

During the operation and support phase the system is deployed: it is installed in its fixed or
mobile location, and checked out. Subsequently it is utilized: it performs its mission, including
interaction with users, operators, other systems and the environment. This may involve operating
manuals and operator training. System and customer support covers training of operators and
maintenance personnel as well as the performance of maintenance actions. Maintenance is

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 17

performed to restore system performance via repair or replacement of faulty components, or
installing modifications and upgrades. This involves procedures and documentation (manuals), as
well as hardware, software, and mechanical components. Replacement of parts is subject to
installation faults similar to those that can occur during the original system manufacture.
Upgrades and modifications (e.g., to solve component obsolescence when “drop in” replacement
parts can no longer be economically procured) are also subject to development and installation
faults [Kuhn97]. Experience with the fielded system can be fed back to any of the preceding
phases to improve the system.

Eventually, all systems reach the end of their useful life (utility), technological life (obsolescence),
or economical life (operation and support). They are then retired, decommissioned, discarded, or
replaced, or otherwise permanently taken out of service. This is referred to as the disposal
phase [ISO14040]. The system’s ability to provide expected or required services is no longer an
issue. However, parts of a retired system may end up being re-used in other systems. This
applies to hardware and software components as well their requirements and design. In addition,
a system may contain “hazardous waste material” causing its disposal to have environmental
implications.

3.2.11 Fault Source
The fault source indicates whether a fault is a hardware fault, a software fault, or related to the
human interface between the system and the operator, user, or maintainer. As software
executes on, and interacts with hardware, the underlying cause of a software error may actually
be a hardware error (an incorrect or undesired state) or fault. Conversely, flawed software can
invoke a hardware fault or error. It is difficult to foresee all such possible interactions and
dependencies during the development of complex systems [Littlewood93]. Correction of a
software problem may actually require a hardware change, and vice versa.

Generally, software is deemed reliable if it generates correct internal states and outputs, when it
is supplied with valid inputs or sequences thereof, and that the response to invalid inputs is
deterministic. Software is “correct” if it operates as specified. This, by the way, does not imply that
the specification on which the software design is based, is valid and correct.

Software, as captured in executable code, does not degrade with age. It is time-invariant and
does not wear out, if left untouched. However, the real-time service performance provided by the
combination of the operating system, middleware7, and application software may worsen over
time [Eick01, Yurcik01]. This is called software aging. It is caused by progressive depletion and
exhaustion of computing resources such as swap space and free memory, due to flawed dynamic
allocations and de-allocations of those resources. Examples are:

 memory fragmentation. When a typical memory management function such as a
processor’s Memory Management Unit (MMU) receives a memory allocation request, it
assigns the next block of available contiguous memory that is large enough to fit the
request. When that memory is de-allocated, it is released as a contiguous block. There are
situations where many allocations and de-allocations of various block sizes are performed
that overlap in time. This may result in a memory structure in which there are fewer and
fewer large contiguous blocks available, even when the total amount of free memory is
large: the memory is fragmented. If this happens, only small(er) allocation requests can be

7 Middleware is an abstraction layer between the operating system and the application software, to mask heterogeneity of

networks and hardware, especially in systems that are distributed (location, concurrency, replication, mobility, faults). This
effectivey raises the Application Programming Interface (API) level, and may help avoiding faults in the aplication software.
It may be used to mask heterogeneity of operating systems and programming languages as well [Bakken02].

18

satisfied, and the memory management function takes more and more time to find a
sufficiently large block of free memory (e.g., on a hard disk).
 memory leakage occurs when an allocated memory block is not freed, even though it
should have been released, if it will never be used again by the process to which it was
originally allocated. E.g., dynamic memory is allocated to a program such as application
code or a library. However for some reason, the associated allocated memory block is not
released when the program is terminated by the operating system. Hence, the block cannot
be allocated again. An example of this is an unreleased file-lock. If such leakage occurs
repeatedly, the amount of unusable memory grows. “Garbage collection” techniques can be
used to automatically recycle memory blocks for which it is certain that their continued
allocation is no longer needed. This is done in languages such as Java and ADA95.
Memory leakage is a special case of untimely release of allocated hardware resources, to
the exclusion of access by other users. This so-called “hogging” can also happen with
processor time, input/output peripherals or data bus access, etc.
 false-sharing can occur when multiple processors access (read or write) different words
that are located in the same cache block. If a processor accesses the same data item again,
it may no longer be in that cache block, due to an intervening access to that same cache
block by another processor.

Memory fragmentation and leakage should not be confused with bloating: excessive use of
memory and CPU time. This is often caused by “vapor ware”: new versions of popular PC
application software that tend to have many useless “new and improved” features, and each
upgrade tends to further expand, so as to use up whatever computing resources are available,
both storage space and processor throughput.

Trivedi.Software failure due to resource exhaustion:…The estimation of the rate of resource
exhaustion and consequently the expected time of software failure has been the focus of
research on “software rejuvenation” [Trivedi00, refs] techniques. Periodically restarting a
process/rebooting a node, or doing a prediction-based rejuvenation based on the observed rate
of resource exhaustion may help prevent the software from crashing (operating system,
middleware, application). For more details please see ISSRE ’98 paper and the ISSRE ’99
paper.Software Aging: deterioration in the availability of OS resources, data corruption and
numerical error accumulation. Software Rejuvenation: a proactive fault management technique
aimed at cleaning up the system internal state to prevent the occurrence of more severe crash
failures in the future. Though can become inadequate over time if utilization profile changes or
functional demands change. Must be considered in embedded environment [unless “static
software”] Cannot be viewed separately from hardware processing, esp. if real-time system. Must
consider combined h/w & software [ref] + new faults introduced when “upgrading” or fixing bugs.
(not properly done regression testing)

abstraction layer between the O/S and the application software

Software also does not fail randomly. However, software errors
This contrasts with user experience and often wellpublished occasions of software errors [ref].
Although software errors are essentially due to design and specification errors they frequently
manifest themselves in an apparently random fashion and can be modeled as a stochastic
process similar to hardware [Chapter 4 in Lyu]. Encountering those data/sequences.

Defect trigger distribution Software faults: a.k.a. “bugs”.
Sometimes classified based on the elusiveness (reproducibility) of their activation conditions, . In
analogy with phenomena in nuclear physics, a distinction is made between Heisen-bugs [Gray86]
and Bohr-bugs.

Trivedi: software-reliability.com
Bohrbugs: Software faults should ideally have been removed during the debugging phase. Even
though software may have been thoroughly tested, it still may have some design
[+implementation] faults that are yet to be revealed. In fact, such faults may exist even in mature

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 19

software such as commercial operating systems. This is particularly true when software such as
the operating system is composed of old as well as relatively new parts due to updates, new
features, etc. If the failing operation can be safely skipped, the software can recover. Otherwise, if
that operation is crucial, the software will fail. The only way out is design diversity wherein
applications providing the same functionality but using different design/implementations can take
over. For more on design diversity and fault-tolerant software click here.

Heisenbugs: Obvious design [+implementation] faults in software are likely to have been
detected and removed during testing and subsequently as a result of feedback during field use.
However, even mature software can be expected to have what are known as
“Heisenbugs”[GRAY 1986]. These are bugs in the software that are revealed only during specific
collusions of events. For instance a sequence of operations may leave the software in a state that
results in an error on an operation executed next. Synchronization oversights in multithreaded
software are another example, where errors occur during some executions, but do not occur
when repeated. Such errors are said to be caused by transient faults. Simply retrying a failed
operation, or if the application process has crashed, restarting the process (the restarting could
be done by middleware providing Software Implemented Fault Tolerance, SIFT) might resolve the
problem.

Errors are caused by the software’s data, data-sequence, and (inter-)process timing [+
data/parameter exchange mechanism + access to hardware resources] dependencies. It is fair to
assume that software itself is time invariant: it does not degrade. Data and timing conditions that
evoke a software error, will evoke that error each time these same conditions occur. Hence, it is
the probability of encountering these specific conditions that determines the software “reliability”.

Life testing for flight-critical reliability levels of 10-9 [10E-9 issue comes from where?] per flight
hour is impractical or infeasible [Butler93], large, complex. The test time would be so large that
even parallel testing of 10 or 100 systems would not reduce this to acceptable levels [and may
never excite the fault]. This type of testing is also cost prohibitive, based on the price of such
systems and of the required test environment. Unlike hardware, accelerated testing of software
cannot be done for real-time systems like Flight Control computers. They have typical processes
iteration rates of 1 – 100 Hz, and their throughput margins do not allow significantly faster
processing. Real hardware-in-the-loop: inertias. Limitations are also posed by the generation of
input test-vectors, and the evaluation of the responses (the reader may verify how many years it
takes8 to check all possible combinations of two 32-bit words at 1 nanosecond per comparison).
This leaves Fault Avoidance [does not protect!] and Fault Tolerance as the way to protect against
“incorrect” software. Self-Testing (BIT) can be used to determine the integrity of the program
memory devices. This contributes to system reliability by detecting the effects of incorrect
installation, spontaneous de-programming, radiation damage, etc.

Quality, metric per SLOC: [Stark94]

8 232x 232 comparisons, 3.15x107 sec/year, 109 comparisons/sec → 585 years

20

Software fault-mechanism: poorly modeled & understood (as compared to hardware). No physical
change. Permanent.
Software quality: number of defects shipped.
Software reliability modeling & prediction issues are discussed in Chapter 4.

Sheer unlimited number of forms, e.g., spec faults, coding faults, logical errors, stack overflows,
improperly initialized variables, etc. Systematic/systemic?, latent. Data dependent, data sequence
dependent, timing dependencies. [Storey96].There are many types of software faults, e.g.
[Beizer90, Sullivan91/92 Littlewood92]: Examples shown in Figure 3-X.

Requirements

Implementation

Design

Integration & Test

Operating environment

Maintenance

Software faults & sources

 structural
 many dependencies on other
pieces of code

 too many GOTOs and GOSUBs
(old fashioned "spaghetti" code)

 exception handling
 algorithmic
 incorrect data conversion
 arithmetic
 logic decisions, loop operations
 semantics
 overlooked "impossible" cases (incl.
overflow exceptions, table limits)

 undefined and unanticipated states
 no handling of rare but legitimate
operational scenarios (robustness)
or exceptions

 relevant "don't care" cases
 insufficient buffer or stack size
 interfaces between software
modules (parameter passing)

 incomplete/incorrect initialization
 wrong algorithm used (without
crashing the program)

 inadequate end-to-end resolution
and accuracy of computations

 load dependent bugs
 resource management

 no de-allocation ("leakage")
 attempted use after de-allocation
 buffer overruns
 processing time
 address space
 time & space partitioning
violations

 use of variables before initialization
 out-of-order execution and
completion of instructions

 task/thread timing/synchronization
 incorrect execution of arithmetic
function

 upgraded hardware (e.g., processor
speed) without changing driver
erroneous parameter inputs by user

 incorrect (based on a system spec
that is flawed or that incorrectly
captures (changing) customer/user
needs, or is incorrectly translated to
software requirements)

 incomplete
 ambiguous, unclear, overly complex
 inadequate/obsolete
 superfluous (features)

 change & version management
 overlooked module dependencies
 outdated version of linked objects
(regression)

 introduction of a fault when
fixing an earlier one, or when
upgrading

 legacy code or re-used code
developed for different environment
and interfaces

 hand-optimization for code size or
execution time

 syntax (usually found by compiler)
 coding typos that are "legal"
(instructions, constants, variables)

 module interfaces incorrectly
defined or used

 missing lines of code
 flaw in declaration of data or data
structure

 untested test
 inadequate regression testing
 inadequate test criteria
 incomplete/incorrect build/link to
libraries & modules

 flawed list
 tool error

 use of undocumented/tested
freeware or shareware
hardware/software interfaces

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 21

Figure 3-X Taxonomy of software faults and their sources

The classical distinction between hardware and software is less clear in “hardware-implemented
software” or “hardware-near-software”. This refers to the embodiment of (complex) algorithmic
functions into hardware devices such as complex Programmable Array Logic (PALs) or high-
density Programmable Logic Devices (PLDs) such as large Field Programmable Gate Arrays
(FPGAs) and complex9 PLDs (CPLDs), certain Application Specific Integrated Circuits (ASICs),
and high gate-count processors [Wichman93]. In many cases this involves design and
implementation via Hardware Description “programming” Languages (HDLs), and the use of
software tools for design, synthesis, simulation, and test. I.e., a development process that is very
similar to that of regular software [DO254]. As with complex software, it may not be feasible to
guarantee correctness of a complex device. Its operation, failure modes, and failure effects are
difficult to comprehend without the aid of analytical methods (and sometimes even with such
aids). Its development must be subject to the same rigorous assurance measures as would have
to be used for an equivalent software implementation.

The system development phase must pay close attention to the Human-Machine Interface (HMI),
as the system will be installed, operated, and maintained by humans. This requires physical
access to, and interaction with the system while it is installed in its operating environment. The
interaction involves tools and test equipment, data entry and control devices, actuators, aural and
visual annunciators such as displays (incl. symbology), operating procedures, etc. The operator
or user also has mental interaction with the system, e.g., by directing its functionality (task
distribution and structure) and interpreting its behavior. Cognitive aspects of automation must be
devised carefully, as they are prone to causing confusion about active operational modes and
changes thereof: “how do I make it do …”, “what is it doing?”, “why did it do that?”, “what is it
going to do next?”, “why is it doing this again?” [Wiener88, Hughes95, Leveson97]. Human
Factors Engineering (HFE) and Human-Computer Interface (HCI) design involves many sciences
and engineering disciplines, as illustrated in Figure 3-2 [Fogel63, Donchin95]. [Gertman94]
Human Reliability & safety Analysis Data Handbook; [Kuhn97] 50% of telephone US, one of the
worlds largest distributed systems, outage time (freq?) caused by humans, procedures etc…

9 A device’s gate count does not necessarily correlate to its level of complexity.

Computer
Science

Mathematics

Industrial
Engineering

Anthropology

PhysiologyPsychology

Person-
Machine
System

Operations
Research

Probability
Theory

Information-
Communication

Theory
Artificial

Intelligence

Decision
Theory

Mental
Models

Cognition

Vision

Hearing/
Acoustic

Perceptions/
Psychophysics

Workplace
Layout

Interactive
Systems

Learning

Vibration
Tolerance

Manual
Control

Heat
Stress

Seating

Antropometry

Motion
Study

Biochemistry

Impact
Tolerance

Auditory
Displays

Visual
Displays

Biomechanics

Impact of
Automation

Radiation
Protection

User Interface
Design

Life
Support

Restraints

Decision
Aids

User
Models

Goal/Task
Analysis

Time
Study

Experimental
Design

Expert
Systems

Applied
Acoustics

Activity
Sampling

Predetermined
Time Systems

From: [Fogel63]

22

Figure 3-2 Relationship of Human Factors to other areas of science and technology

The HMI is especially important in control situations for complex, safety-critical systems such as
airplanes, air traffic control, and nuclear power plants [Redmill97b, ISO13407]. Systematic
consideration of human participation and interaction is generally is lacking in the development of
information technology (IT) systems [Hansen01].

Fault Origin
The fault origin indicates whether the fault is internal or external, with respect to the system
boundary.

External: Interference, HMI-interaction, inputs, environmental.

Internal: open/short, threshold change, physical phenomena inside the system, heat from
dissipation
Intruders: external, even though they may be inside the organization, eg authorized users

Fault Mechanism
A fault mechanism is the process by which stresses can damage hardware and mechanical
items. When considering a particular item by itself, this is often also referred to as the failure
mechanism. A fault mechanism is called overstress when it is caused by a single stress event
that exceeds the item’s intrinsic strength. We speak of wear-out when damage accumulates
incrementally until it exceeds the item’s endurance limits. In a well-designed system with
appropriately selected components, overstress and wear-out faults should no occur within the
intended usage life of that system. Stresses that cause a component to fail need not be
permanent or irreversible. E.g., excessive flexing or twisting of interconnection wiring (ribbon
cables, flex leads, etc.) may cause excessive crosstalk or short-circuiting that completely
disappears without permanent damage when the mechanical load is removed. Connectors are
also prone to temporary fault mechanisms [Mroczkowski92].

All physical materials, whether in mechanical or solid-state devices, are subject to mechanical
failure mechanisms. Abroad taxonomy of such mechanisms is shown in Figure 4-3
[Dasgupta91/92a/92b/93a/93b, Li93, Engel93, NSWC94, CPE95]. The trend towards shrinking of
device features does not only apply to electronic components. More and more, Micro-Mechanical
Devices (MMDs) and Micro-Electro-Mechanical Systems (MEMS) are being developed for a
growing number of applications such as medical implants (tiny pumps that administer medicine)
and micro-sieves for blood screening, solid-state chemical sensors, and small accelerometers in
automobile airbag deployment controllers. As the device features are reduced, even minute

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 23

defects incurred during manufacture and application stresses may become relatively more
important. Fault mechanisms specifically for solid-state devices and materials are shown in
Figure 4-4 [Sadlon93, Hu94, Young94, Al-Sheikhly95, Diaz95, Knepley99, Baumann01,
Clement01].

SEUs/MBU/ references, why/where need to be considered, spacecraft, satellites solar wind,
avionics; latitude/altitude; on ground also [Cataldo01].

Mechanical
Fault

Mechanisms

Distortion Fatigue and
Fracture

Wear-out Corrosion

 buckling
 yielding
 creep
 creep buckling
 warping
 elastic deformation (temporary)
 plastic deformation (permanent)
 thermal relaxation
 brinnelling

 ductile fracture
 brittle fracture
 fatigue fracture
 low/high cycle fatigue
 residual stress fracture
 embrittlement fracture
 thermal fatigue fracture
 torsional fatigue
 fretting fatigue

 abrasive wear (erosive,
grinding, gouging)
 adhesive wear (galling)
 subsurface-origin fatigue
 surface origin fatigue (pitting)
 subcase-origin fatigue (spalling)
 cavitation
 fretting wear
 scoring

 corrosion fatigue
 stress corrosion
 galvanic corrosion
 crevice corrosion
 pitting corrosion
 biological corrosion
 fretting corrosion
 chemical attack

from [CPE95]

Figure 4-3 Taxonomy of mechanical fault mechanisms

Solid-State
Fault

Mechanisms

Wearout
Mechanisms

Mechanical

Electrical

Chemical

Fatigue crack initiation (e.g., of die)
 Fatigue crack propagation
Creep

Gate oxide breakdown (time dependent)
 Slow trapping
 Surface-charge spreading
 Hot electrons, hot-carrier effects
 Hillock formation
 Contact spiking
 Electromigration of metal

Diffusion
 Interdiffusion
 Corrosion (e.g., electrolytic, moisture)
 Stress corrosion (e.g., of bond wire)
 Dendritic growth
“Purple plague”

 Neutrons
 Charged particles
Ions

Overstress
Mechanisms

Mechanical

Electrical

Chemical

State Changes Radiation

Large elastic deformation
 Yield
 Buckling
 Ductile fracture
Interfacial de-adhesion

Electromagnetic interference damage
 Electrical overstress (voltage, current)
 Gate oxide breakdown (electrostatic

 discharge, ESD)
Secondary breakdown

Ionic contamination (oxide failure)

Figure 4-4 Taxonomy of fault-mechanisms of solid-state devices

24

3.2.12 FAILURE CLASSIFICATION
A failure mode is the manner in which an item has failed (observation), or can fail (conjecture).
Simple devices may have only one or two failure modes. For instance, a relay can fail “open” or
“closed”. More complex functions, or devices such as microprocessors, can have a vast number
of intractable failure modes. These may have to be lumped so they can be treated in a practical
manner.

The failure modes affect the correctness and timing of service that is delivered by the failed item
or by the system that contains it. This in turn impacts all users and user-systems that directly or
indirectly depend on this service. In addition, system malfunctions may cause damage to people
and objects that do not directly participate in the normal operation of the system: manufacturers
and designers, bystanders, underwriters, nature, society at large, etc. The actual or perceived
consequences are called the failure effects [ARP4761, Walter95].

Failures can be categorized according to attributes such as:
 Behavior type
 Hazards and Risks
 Failure accountability
 Failure effects and control mechanisms

3.2.13 Failure Behavior Type
The failure behavior type indicates the correctness, timeliness, and level of the functionality
delivered by the system, when faults and errors propagate to the system boundary:

 Omission
 Commission
 Incorrect results
 Fail-silent
 Fail-stop
 Fail-active
 Fail-passive or fail-neutral
 Graceful degradation or fail-soft
 Arbitrary or Byzantine

Classified based on:
 Correctness of the time at which results are produced or service is delivered

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 25

 Correctness of the produced results
 Completeness and level of performance of the functionality provided

[Cristian91/95, Hadzilacos93]

Response; server “liveness”: client eventually receives a response or reply to a request.

Figure 4-5 Taxonomy of failure behaviors

Failure
Behavior

Timing Value Functionality

Correctness of the time at
which results are produced

 early
 late
 infinitely late
 omission:

 fail-silent
 fail-stop, crash

 commission

Combined

 limited
 arbitrary

 unrestricted, uncontrolled
 Byzantine

Combination of timing, value,
and functionality failure

Correctness of produced results

 with respect to normal range:
 inside ("value")
 outside ("constraint")

 static/dynamic/default
 fail-active
 fail-passive
fail-neutral

 full/basic/emergency
 graceful-degradation
 fail-soft

Completeness of provided
functions

26

Timing of service delivery = early/commission/omission/late; omission= silent/stop/controlled?

Real-time systems (RTS) are characterized by data manipulations and data transfers that must
meet temporal completion deadline(s). In other words, an RTS is:

any processing system
that must respond to externally generated stimuli

within a finite period that is specified, agreed-upon, or expected

Hence, dependability of such systems is not only determined by correctness of logical and value
results, but also by the timeliness of the delivered service. E.g., failure to respond in time may be
just as bad as giving the wrong response. Real-time systems are typically embedded systems, as
they are a subsystem of a larger engineered system. They can be classified based on the
severity or “hardness” of deadlines and the length of response times [Burns01]:

 soft: deadlines are important, but it is acceptable to occasionally miss them. E.g., a network
or database server that increase access response times to one or more users in order to
accommodate more users. I.e., there is a benefit associated with missing the deadline.
 firm: a soft RTS that does not benefit from late delivery of service, e.g., displaying text that is
entered via an operator console or keyboard.
 hard: responses must occur within the imposed deadlines. This is typical for closed-loop
control systems. A hard RTS generally has a deadline period or “window” with a lower bound
and an upper bound. Early or unexpected responses, even with a correct value, are also
considered failures.
 real: a hard RTS with very short response times, e.g., missile actuator control system.

A single system may contain subsystems or functions that have different real-time hardness
levels. Embedded processors and controllers

Value = constraint/value? See “faults”. We identify two classes of object failures: responsive and
non-responsive. With responsive failures, a faulty object responds to every operation, but its
responses may be incorrect. With non-responsive failures, a faulty object may also “hang” without
responding. In each class, we define crash, omission, and arbitrary modes of failure.
Value:
Incorrect results: computations, or other forms of processing in the system, cause value faults
that propagate to the system boundary; the faults may occur even if the system is supplied with
correct input data. The incorrect results can be static (stuck or frozen), or dynamic. The latter can
be arbitrary, oscillatory, “jumpy”, etc. In real-time control systems, timing fault (early or late) must
also be considered as value faults.

 A constraint of run-time assertion instructions is not satisfied
 attempt to follow a null pointer (software pointer that points to nowhere), when trying to
access non-existent array elements
 lack of computational precision (cumulative)
 An exception can be raised either by a language-defined primitive operations, e.g.,
constraint-error on arithmetic or an index out of bounds

Omission failures: the system does not complete all of its tasks in a timely fashion (i.e., by a
specified deadline), performs them only partially, or not at all. The latter is also known as a
“system crash”. As a result, the system may temporarily or permanently generate no outputs
(send-omission). However, if and when the system does generate outputs, they are correct and
on time.

Commission failures: the system, such as a processing node, produces an event (e.g., an
output signal, a message, or a computational result) when none should have been produced
[Broster01]. This failure category also covers events that are produced too early, which can cause
problems in systems with real-time constraints, including data buses (setup times of clocked

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 27

signals). Systems where results (iterations) must be produced at regular intervals (with
tolerances), vs. systems in which certain maximum reaction time applies (e.g., transactions), or
reaction time window (e.g., data line/signal set-up on data/address bus).

A unit is called fail-silent if it can only exhibit omission failures. That is, internal faults never
cause an incorrect result to be sent out: the unit either delivers correct performance or ceases all
activities at its interfaces, independent of the continuation of internal activities. When the unit
resumes generating outputs, they are correct. A variation of this behavior is that no “bad but un-
flagged” outputs ever leave the unit: the unit always correctly indicates (“flags”) the correctness
and timeliness of all outputs to user-systems. In other words, in case of failure, the unit either
produces no output, or produces an output to indicate failure. Such behavior is usually easy to
detect by user-systems, and a desirable attribute of building blocks for fault-tolerant systems.
When used at the level of execution of elementary software instructions, and in communication or
transaction tasks, this all-or-nothing property of fail-silent failures is referred to as atomicity (i.e.,
indivisibility, as “atomic” literally means un-cuttable).

Fail-stop is the extreme case of fail-silent behavior: all faults cause a permanent omission failure.
That is, a faulty process stops before writing (permanent) data, or communicating with other
processes [Schneider84, Chandra98]. This is also referred to as halt-on-failure behavior. In
some literature, the terms fail-silent and fail-stop are used interchangeably. In certain application
domains such as that of control systems, a fail-silent or fail-stop system is also referred to as fail-
passive or fail-neutral, if the system automatically disengages, goes off-line, reverts to a bypass
mode, or forces its actuators to a bypass mode. Sometimes it is referred to as a crash failure. A
system that is not fail-stop, by definition continues to generate incorrect results in the presence of
a particular fault or any fault. Such a system is therefore called fail-active.

Caveat

The descriptors “active”, “passive”, “silent”, and “stop” only apply to the system
behavior in the presence of one or more faults. They do not characterize the
consequences of that behavior! In no way do any of these failure types imply the
presence or absence of hazardous or unsafe conditions as a result of the failure. E.g., a
desktop computer that erroneously turns into a random number generator is probably
quite safe (though the annoyed and disgruntled user may not be); similar behavior of a
control computer in a petrochemical plant most likely is not safe. A system is called fail-
safe if its failure does not cause (unacceptable) hazards. This typically requires a system
design in which only multiple, independent design errors remain as the only reasonably
probable causes of a catastrophic failure consequences. By definition, critical systems are
never fail-safe, even if they are fail-passive. Section ## discusses the issue of hazards and
risks in more detail.

For many systems, the preferred failure behavior is retention of degraded-but-correct functionality
and performance, rather than incorrect or total loss of functionality. That is, the system continues
to provide primary functions despite one or more faults, and loss of the shedded functionality is
not hazardous. The resulting situation may be a nuisance, increase operator workload or required
vigilance, or reduce productivity. Such behavior is called graceful degradation or fail-soft, and
is especially preferred for (safety) critical applications, where it is part of the specification and
design [Herlihy91]. Take for example a monitoring system that sheds certain automatic protection
modes upon failure of a particular sensor, and annunciates this to the operators. A process
control computer may have a problem with its main application processor, and activate simplistic
closed-loop control modes on the I/O processor. A faulty network or web server may continue to
operate, but provide limited throughput or increased response time. Another example is a

28

mechanical actuation system with two independently controlled motors whose outputs are
velocity-summed through differential gearing. If one control computer channel fails such that its
motor stops, the other channel of the drive system can still provide actuation without loss of
torque, but at half speed (provided the motor of the failed channel cannot be back-driven).

When no a priori assumptions are made, or can be made, regarding the malicious characteristics
of faulty components we speak of Byzantine faults and failures. They exhibit unrestricted,
uncontrolled, arbitrary, deceptive misbehavior (timing, value, state, functionality). This type of
pernicious fault is called “Byzantine”, in analogy with the so-called Byzantine Generals Problem
[Lamport82, Walter88, Barborak93, Vaidya95, Malkhi97, Postma98, Castro99]. Consistency of
replicated data in a multi-server system, as seen by the server clients. Distributed replicated data service to
improve availability and reliability of important data used over a network; problem: keeping all servers
[data copies] in a distributed system up to date and correct. Application in systems requiring consensus,
most distributed systems.

Byzantine Generals Problem

This problem refers to a scenario in which a number of Byzantine army divisions are
besieging a town. The commanding generals (redundant processing nodes) have to reach
agreement (global consensus) on whether to attack or to retreat (agree on mode switching
or on computed parameter values). Each general has a messenger (data-link) to send his
own, local opinion to each of the other generals, as well as relay the opinions received
from those generals. The sending generals and messengers can be loyal or treacherous
(originating or conveying wrong, distorted, or inconsistent messages to different generals,
impersonate other generals). Receiving generals (monitors) can have interpretation
problems.

The provable, classical solution to the Byzantine problem requires a system comprising at
least 3m+1 nodes, where m is the maximum number of failing “generals” that must be
tolerated. I.e., a minimum of 4 nodes! This is higher than the 2m+1 required in simple
majority voting schemes that cannot provide Byzantine resilience [ref + illustrate
impossibility].

EXAMPLE

Multiple rounds of interactive voting are needed to reach global consensus and to identify
a “malicious” node. At least 2m+1 communication paths are required, and at least m+1
rounds of communication.

Exact agreement vs approximate agreement (not suitable for binary parameters or
decisions [refs]

Various protocols are used to arrive at consensus between healthy processing nodes:
 Authenticated Byzantine Agreement Protocol (ABAP) [Lamport##], using non-

forgeable signed messages to achieve agreement on a single value.
 Degradable Byzantine Agreement Protocol (DBAP) [Vaidya95] same as ABA, up

to a certain number of faults u < m. After that, the agreement rules are relaxed and
all healthy nodes agree on at most 2 values: one group of healthy nodes agrees on
one value, the other healthy nodes agree on a default value. Here, m is largest
number of faults for which ABA can be achieved, and u is largest number of faults
for which DBA can be achieved. This is called m/u Degradable Agreement. It
requires at least 2m+u+1 nodes.

 Quorum-based Byzantine Agreement Protocol (QBAP) [Malkhi97] called b-
masking quorum

[Rajagopal, J.]

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 29

It is clear from the above enumeration that “fail-stop” and “Byzantine” are opposite extremes of
the spectrum of failure behavior models. The fail-silent model is a idealistic design goal, but
typically too simplistic for use in the design and evaluation of highly complex systems, especially
in safety-critical applications that involve complex software [Schneider84, Chandra98]. Byzantine
models (and the associated protection mechanisms) sometimes focus on malicious behavior that
is much less probable in real systems than the combination of conditions required for such
conditions to occur BS! Check Kim00. This is then done the detriment of paying attention to more
likely undesirable non-Byzantine events [Kim00].

Caveat

It is important to realize that the characterization of a system with the above categories of
failure behavior is meaningless, unless this is accompanied by a statement of the type and
number of faults for which the particular behavior applies. E.g., a system may be fail-stop
to any single hardware fault but not to a software fault. Or, the system is fail-stop to any
single fault, but certain subsequent faults may defeat the mechanism that provides the
fail-stop behavior.

If stated failure behavior applies with multiple faults in the system and there is a fault
handling mechanism, then the minimum time between subsequent faults may have to be
stated, as well as their sequence. Obviously, systems that use majority-voting cannot be
expected to handle the scenario in which the majority of voted parameters become faulty
at (nearly) the same time, but are in agreement with each other.

Fail-Operational behavior does not appear in the above listing, as it implies that the system is
fault tolerant and continues to deliver correct performance, despite the presence of a certain
predetermined number and type of faults or errors in the system. I.e., there is no failure at system
level, and, hence, no failure behavior to be characterized. It should also be noted that absence of
operation by no means implies safety, as is the case for heart pacemakers and control systems
for processes that are destructively unstable without computer control. Similarly, safety does not
imply that system failure occurs very infrequently.

3.2.14 Failure Effects
Failure modes are ways in which a system can fail or has failed. The actual or perceived
consequences of those failure modes are called the failure effects [ARP4761, Walter95.
Obviously we are primarily interested in undesired consequences. Failure effects = system
behavior in presence of failure. Entirely system (and combo with user) specific.

The safety of system components, and to identify design modifications and corrective actions
needed to mitigate the effects of a failure on the system. It is used in planning system
maintenance activities, subsystem design, and as a framework for system failure detection and
isolation. In the military, aerospace and nuclear industries, where safety issues are of prime
importance, FMECA has become an essential process in the design of systems from early in the
development stage to design and test.

30

Its [FMECA] primary purpose is to identify all catastrophic, critical and safety related failure
modes at the earliest possible time [in the product development process] so they can be
eliminated or minimized [controlled] through design changes.

Hazards are actual or potential, unplanned (but not necessarily unexpected) undesired conditions
or events that could result from system failure, design inadequacies, environmental conditions, or
personnel error (“operator failure”). Format as for Rel def?

Two major aspects of hazards must be considered:
 severity, which is the worst credible known or potential consequence that could ultimately
result from system malfunction.
 probability, which is the expected or actual likelihood that a system failure with hazardous
consequences of a particular severity level will occur.

Combined, these two attributes are referred to as risk:

 Risk = (Severity of mishap consequences) x (Expected number of mishaps)
 = (Severity) x (Expected mishap frequency per unit of exposure) x (Amount of exposure)

Software risks: [Littlewood92, Leveson95]
Computer risks: [Neumann95]

Sometimes failure conditions are also called risks. The concept of “risk” is discussed in the next
section???

System failures that cause uncontrolled hazards are referred to as unsafe.

Safety is the relative freedom from being the cause or subject of uncontrolled hazards. Hence, it
is a state in which the real or perceived risk is lower than the upper limit of what are deemed
acceptable risk levels.

From risk/hazard/safety. The occurrence of a physical mishap event generally requires three
elements [Ciemens81]:

the accumulation, release, and transfer of unwanted energy
to a vulnerable target

in the absence of adequate barriers

These three elements of a mishap event also point the way to strategies for energy flow control
and protection of the target. Energy can be in the form of heat, shock or vibration,
electromagnetic fields [Fuller95, Shooman93, EN292], electrical power, nuclear or particle
radiation (ionizing, non-ionizing), kinetic energy (linear or rotational), potential energy (pressure,
spring loading, mass-at-height), chemical (corrosive, toxic, medication), etc.

This concept of energy flows can easily be expanded to include unwanted data flows. Data:
uncontained, prevent warning/detection, scalpel brain surgeon robot, x-ray imaging controller
radiation [thera5], flight control w. control surface deflection control, crossroad with traffic lights;
non-phys: bank funds transfer / transaction; privacy, billing off by factor of million, tax
assessments, name confusion leading to false arrests, (some correctable) [Neumann92/95]

Controls are the means and mechanisms that are in place (or are required) to reduce the risks of
hazardous system failure to an acceptable level. Some control mechanisms act on the hazard
itself, whereas others control the losses or damage by protecting the target [IEC61508]:

• System architecture and design that contains a backup or other form of redundancy, or
includes a failure path that directs failures in a way that limits the safety impact. E.g., rip-stop
textiles and similar techniques applied in mechanical and civil engineering objects.

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 31

• Warning devices. They annunciate impending or actual hazards to user-systems or the
operator.

• Safety devices. These contrivances are intended to prevent injury, damage, or hazardous
operation. They contain or absorb the harmful energy, prevent build up of dangerous energy
levels, form a barrier for that energy, or divert it away from vulnerable targets. E.g., pressure
relief valves, protective shrouds around the fan blades in jet engines, radiation containment
buildings, fuses, protective clothing, interlocking switches on heavy machinery, and brakes.
These devices must be checked regularly for latent faults.

• Standard and emergency operating procedures, and training. These are typically not
acceptable as the sole means of control for catastrophic hazards.

• Modification of the energy release-path

[Ashley01] Concorde’s comeback

The release of energy can be modified by providing a safer path, e.g., using a fuse or frangible
structure, or testing a radar transmitter with a dummy-load instead of an actual antenna. Barriers
are safety devices and features that contain or divert the energy, or protect the target. This
reduces the probability of energy release, and reduces the severity of the consequences of a
release. Physical barriers can be placed around the energy source (containment structure, shield
or shroud), or around the target (hardening, conditioning, absorbing). The energy and target can
also be kept separate by a temporal barrier, e.g., a slow release at safe levels, or sufficient
warning time for evacuation. Spatial barriers provide a distance between the energy and the
target, such that the energy is sufficiently dissipated or diluting by the time it reaches the target. It
is usually necessary to periodically check safety devices and features for latent faults. Barriers
can also be provided by following procedures for responses to cautions and warnings. Such
procedures are based on knowledge, skills, supervision, and training. As single barriers are not
always effective, multiple barriers are common. The number of barriers depends on the level and
acceptability of the risk that is associated with the hazardous events.

Logical barriers Partitioning (h/w, s/w, containment) + refs (for data “energy”); partitioning
violation & protection [MMU normally provides space partitioning protection, but its failure may
cause uncontained violation.
[Rushby99]

• Logical Barriers: network firewalls damage confinement and assessment – diagnosis and
evaluation of error spreading

• firewalling – structure of the system preventing error spread
• modular decomposition – reduces possibility of error spread
• atomic transactions – moving the system from one consistent state to another

 protection mechanisms – access permissions for specified operations

3.2.15 Failure Accountability
Failure accountability indicates who has to fix the failed system, or has to “pay” for accepting or
correcting the damage ensuing from system failure, whether this damage is physical,
psychological, environmental, or financial. This may involve contractual obligations for the
assumption of warranty and repair costs by the system manufacturers who guarantees a certain
minimum or average fault-free operating period. The accountability often depends on actual or
perceived negligence and, in certain aberrant societies, which associated person or business
entity has a large financial basis or “deep pockets”.

32

 PROBLEMS AND EXERCISES

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 33

3.3 REFERENCES

[ACAMJ25] FAA/JAA Advisory Circular/Advisory Material Joint AC/AMJ 25.1309: “System Design and
Analysis”, Draft Diamond Revised, April 1998, 39 pp. [25.1309-1b to be published]

[Al-Sheikhly94] Al-Sheikhly, M., Christou, A.: “How radiation affects polymeric materials”, IEEE Trans. On
Reliability, Vol. R-43, No. 4, December 1994, pp. 551-556

[Anderson81] Anderson, T., Lee, P.A.: “Fault Tolerance, Principles and Practice”, Prentice-Hall, 1981, 369
pp., ISBN 0-13-308254-7

[ARP4761] Section 2.2 “Definitions” of SAE Aerospace Recommended Practice ARP4761 “Guidelines
and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and
Equipment”, Society of Automotive Engineers (SAE), December 1996, 331 pp.

[Al-Sheikhly94] Al-Sheikhly, M., Christou, A.: “Tutorial – how radiation affects polymeric materials”, IEEE
Trans. on Reliability, Vol. R-43, No. 4, December 1994, pp. 551-556

[Ashley01] Ashley, S.: “Concorde’s comeback”, American Scientific, August 2001, pp. 12, 13
[Avizienis76] Avizienis, A.: “Fault tolerant systems”, IEEE Trans. on Computers, Vol. C-25, Vol. 12, pp.

1304-1312
[Avizienis85] Avizienis, A.: “The N-version approach to fault-tolerant software”, IEEE Trans. on Software

Engineering, Vol. SE-11, No. 12, December 1985, pp. 1491-1501
[Avizienis86] Avizienis, A., Laprie, J.-C.: “Dependable Computing: From Concepts to Design Diversity”,

Proc. Of the IEEE, Vol. 74, No. 5, May 1986, pp. 629-638
[Avizienis87] Avizienis, A.: “A Design Paradigm for Fault-Tolerant Systems”, Proc. 7th AIAA/IEEE Digital

Avionics Systems Conf. (DASC), Washington/DC, USA, November 1987, pp. X-Y
[Avizienis95] Avizienis, A.A.: “ The Methodology of N-Version Programming”, Chapter 2 of “Software Fault

Tolerance”, Lyu, M. (editor), John Wiley & Sons Ltd, 1995, pp. 23-46
[Avizienis99] Avizienis, A., He, Y.: “Microprocessor Entomology: A Taxonomy of Design Faults in COTS

Microprocessors”, pp. 3-23 of “Dependable Computing for Critical Applications – Vol. 7”
(Proc. Of the 7th Int’l IFIP Conf. On Dependable Computing for Critical Applications, San
Jose/CA, USA, January 1999), October 1999, 424 pages, ISBN 0-7695-0284-9

[Avizienis00] Avizienis, A., Laprie, J.-C., Randell, B.: “Fundamental concepts of dependability”, Proc. 3rd

IEEE Information Survivability Workshop (ISW2000), Boston/MA, USA, 2000, 6 pp.
[Bakken02] Bakken, D.E.: “Middleware”, to appear in Encyclopedia of Distributed Computing, Kluwer

Academic Press, 2002, 5 pp.
[Barborak93] Barborak, M., Malek, M., Dahbura, A.: “The Consensus Problem in Fault-Tolerant

Computing”, ACM Computing Surveys, Vol. 25, No. 2, June 1993, pp. 171-220
[Baumann01] Baumann, R.: “Soft errors in advanced semiconductor devices Part 1: the three sources of

radiation”, IEEE Trans. on Device and Materials reliability, Vol. 1, No. 1, 2001, 7 pp.
[Broster01] Broster, I., Burns, A.: “The babbling idiot in event-triggered real-time systems”, Proc. Of the

Work-In-Progress Session, 22nd IEEE Real-Time Systems Symp., 2001, 4 pp.
[Burns01] Burns, A., Wellings, A.: “Real-Time Systems and Programming Languages”, 3rd Edition,

Addison Wesley, 2001, 611 pp., ISBN 0201729881
[Butler93] Butler, R.W., Finelli, G.B.: “The Infeasibility of Quantifying the Reliability of Life-Critical Real-

Time Software”, IEEE Trans. on Software Engineering, Vol. SE-19, No. 1, Jan. 1993, pp. 3-12
[Castro99] Castro, M., Liskov, B.: “Practical Byzantine Fault Tolerance”, Proc. 3rd ACM Symp. on

Operating Systems Design and Implementation, New Orleans/LA, USA, February 1999, pp.
173-186

[Cataldo01] Cataldo, A.: “SRAM soft errors cause hard network problems”, Electronic Engineering Times,
20 August 2001, pp. 1, 92

[Chandra98] Chandra, S., Chen, P.M.: “How fail-stop are faulty processes?”, Proc. 28th Annual Int’l Symp.
on Fault Tolerant Computing (FTCS-28), Munich, Germany, June 1998, 10 pp.

[Ciemens81] Ciemens, P.L.: p. 12 of “A Compendium of Hazard Identification & Evaluation Techniques for
System Safety Application”, Sverdrup Technology, Inc., November 1981

[Clement01] Clement, J.J.: “Electromigration modeling for integrated circuit interconnect reliability
analysis”, IEEE Trans. on Device and Materials Reliability, Vol. 1, No. 1, 2001, 10 pp.

[Cristian91] Cristian, F.: “Understanding Fault-Tolerant Distributed Systems”, Communications of the
ACM (CACM), Volume 34, No. 3, March 1991, pp. 56-78

34

[Cristian95] Cristian, F., Aghili, H., Strong, R., Dolev, D.: “Atomic broadcast: From simple message
diffusion to Byzantine agreement”, Information and Control, Vol. 118, No. 1, January 1995;
revision of same title in Proc. 15th Int’l Conf. On Fault-tolerant Computing (FTCS-15), Ann
Harbor/MI, USA, 1985

[Dasgupta91] Dasgupta, A., Pecht, M.: “Material Failure Mechanism and Damage Models”, IEEE Trans. on
Reliability, Vol. 40, No. 5, December 1991, pp. 531-536

[Dasgupta92a] Dasgupta, A., Hu, J.M..: “Failure-Mechanism Models for Excessive Elastic Deformation”,
IEEE Trans. on Reliability, Vol. 41, No. 1, March 1992, pp. 149-154

[Dasgupta92b] Dasgupta, A., Hu, J.M..: “Failure-Mechanism Models for Brittle Fraction”, IEEE Trans. on
Reliability, Vol. 41, No. 3, September 1992, pp. 328-335

[Dasgupta93a] Dasgupta, A., Haslach, H.W.: “Mechanical Design Failure Models for Buckling”, IEEE Trans.
on Reliability, Vol. 42, No. 1, March 1993, pp. 9-16

[Dasgupta93b] Dasgupta, A.: “Failure mechanism models for cyclic fatigue “, IEEE Trans. on Reliability, Vol.
R-42, No. 4, December 1993, pp. 548-555

[Diaz95] Diaz, C., Kang, S.M., Duvvury, C.: “Electrical overstress and electrostatic discharge”, IEEE
Trans. on Reliability, Vol. R-44, No. 1., March 1995, pp. 2-5

[Dolev83] Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: “Reaching approximate
agreement in the presence of faults”, Proc. 3rd IEEE Symp. on Reliability in Distributed
Software and Database Systems, Clearwater Beach/FL, USA, Oct. 1983, pp. 145-154; Also:
J. of the ACM, Vol. 33, No. 3, July 1986, pp. 499-516

[Donchin95] Donchin, Y., Gopher, D., Olin, M., Badihi, Y., Biesky, M., Sprung, C., Pizov, R., Cotev, S.: “A
look into the Nature and Causes of Human Errors in the Intensive Care Unit”, Critical Care
Medicine, Vol. 23, No. 2, pp. 294-300

[DO254] RTCA Document DO-254 “Design Assurance Guidance for Airborne Electronic Hardware”
(Radio Technical Commission for Aeronautics) RTCA, Inc., 19 April 2000, 137 pp.

[Dunn86] Dunn, W.R.: “Software Reliability: measures and effects in Flight Critical Digital Avionics
Systems”, Proc. 7th AIAA/IEEE Digital Avionics Systems Conf. (DASC), Fort Worth/TX, USA,
October 1986, pp. 664-669

[EIA632] “Processes for Engineering a System”, ANSI/EIA-632-98, Electronic Industry Alliance,
January 18, 1999

[Eick01] Eick, S., Graves, T., Karr, A., Marron, J., Mockus, A.: “Does code decay? Assessing the
evidence from Change Management data”, IEEE Trans. on Software Engineering, Vol. SE-
27, No. 1, January 2001, pp. 1-12

[EN292] European Machinery Directive EN292-1 and -2: “Safety of Machinery, Basic concepts,
general principles of design”, January 1995; also ISO 12100-1 and -2

[Engel93] Engel, P.A.: “Failure models for mechanical wear modes and mechanisms”, IEEE Trans. on
Reliability, Vol. R-42, No. 2, June 1993, pp. 262-267

[Evans99] Evans, R.A.: “The Language of Statistics & Engineering”, Proc. 1999 Annual Reliability and
Maintainability Symp. (RAMS), Washington/DC, USA, January 1999, pp. xi-xii

[Fogel63] Fogel, L.J.: “Biotechnology: Concepts and Applications”, Prentice-Hall, 1963, 826 pp., Library
of Congress Nr. 63010246/L/r83

[Frank00] Frank, M.V.: “Theory and Applications of Risk Assessment in Aerospace”, presented at IEEE
Reliability Society, San Diego Chapter, Safety Factor Associates, Inc., 19 June 2000, 77
slides

[Fuller95] Fuller, G.L.: “Understanding HIRF – High Intensity Radiated Fields”, Avionics
Communications, Inc., 1995, 123 pp., ISBN 1-885544-05-7

[Gertman94] [Gertman94] Gertman, D.I., Blackman, H.S.: “Human Reliability & Safety Analysis Data
Handbook”, John Wiley & Sons, 3rd ed., 1994, 472 pp., ISBN 0-47159-110-6

[Gordon91] Gordon, A.M.: “A practical Approach to Achieving Software Reliability”, Computing & Control
Engineering Journal, November 1991, pp. 289-29

[Gray86] Gray, J.: “Why do Computers Stop and What Can be Done About it?”, Proc. of 5th Symp. on
Reliability in Distributed Software and Database Systems, January 1986, pp. 3-12,

[Hansen01] Hansen, C.K. (ed.): “The status of reliability engineering technology in 2001”, IEEE Reliability
Society Newsletter, January 2001, pp. 21-29

[Hadzilacos93] Hadzilacos, V., Toueg, S.: “Fault-tolerant Broadcasts and Related Problems”, Chapter 5 (pp.
97-145) in “Distributed Systems”, Mullender, S.J. (editor), Addison-Wesley/ACM Press, 1993,
ISBN 0-201-62427-3, 601 pp.

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 35

[Hecht86] Hecht, H., Hecht, M.: “Software Reliability in the System Context”, IEEE Trans. on Software
Engineering, Vol. SE-12, No. 1, January 1986, pp. 51-58

[Herlihy91] Herlihy, M.P.; Wing, J.M., “Specifying graceful degradation”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 2, No. 1, Jan. 1991, pp. 93-04,

[Hughes89] Hughes, D., Dornheim, M.A.: “United DC-10 crashes in Sioux City, Iowa”, Aviation Week &
Space Technology, 24 July 1989, pp. 96, 97

[Hughes95] Hughes, D., Dornheim, M.A.: “Accidents direct focus on cockpit automation”, Aviation Week &
Space Technology, January 30, 1995, pp. 52-54

[Icarus94] Icarus Committee of the Flight Safety Foundation: “The Dollars and Sense of Risk
Management and Airline Safety”, Flight Safety Digest, Vol. 13, No. 12, December 1994, pp.
1-6

[IEC61508] “Functional Safety of Electrical/Electronic Programmable Electronic Safety-Related Systems”,
International Electrotechnical Commission (IEC), Geneva, Switzerland, 1998

[IFIP10.4] Working Group 10.4 “Dependable Computing and Fault Tolerance” of Technical Committee
10 “Computer Systems Technology” of the International Federation of Information Processing
(IFIP)

[ISO13407] International Standards Organization (ISO) Standard 13407:1999: “Human-Centered Design
Process for Interactive Systems”, June 1999, 26 pp.

[ISO9004] International Standards Organization (ISO) Standard 9004, Figure 1,: “Quality Management
Systems – Guidelines for Performance Improvement”, December 2000, 66 pp.

[ISO14040] International Standards Organization (ISO) Standard 14040 “Environmental Management –
Life Cycle Assessment – Principles and Framework”, 1st Edition, June 1997, 17 pp.

[James00] James, M.N.: “Failure as a design criterion”, class notes for first module of DSGN118 “Design
as a generic tool” course, http://www.tech.plymouth.ac.uk/sme/FailureCases/Failure.htm,
University of Plymouth, 2000, 18 pp.

[Kanoun01] Kanoun, K.: “Real-world design diversity: a case study on cost”, IEEE Software, July/August
2001, pp. 29-33

[Kim00] Kim, K.H.: “Issues insufficiently resolved in Century 20 in the fault-tolerant distributed
computing field”, Proc. 19th IEEE Symp. on Reliable Distributed Systems (SRDS), Nürnberg,
Germany, October 2000, pp. 106-115

[Knepley99] Knepley, J.W.: “Understanding electronic part failure mechanisms”, Tutorial at 1999 Annual
Reliability & Maintainability Symp. (RAMS), Washington/DC, USA, January 1999, 22 pp.

[Knight86] Knight, J.C., Leveson, N.G. “An Experimental Evaluation of the Assumption of Independence
in Multi-Version Programming”, IEEE Transactions on Software Engineering, Vol. SE-12, No.
1, January 1986, pp. 96-109

[Knight90] Knight, J.C., Leveson, N.G., “A Reply to the Criticisms of the Knight and Leveson
Experiment”, ACM Software Engineering Notes, Vol. 15, No. 1, January 1990, pp. 24-35

[Krantz71] Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: “Foundations of Measurement, Volume 1:
Additive and Polynomial Representations”, Academic Press, 1971, ISBN 0124254012

[Kuhn97] Kuhn, D.R.: “Sources of Failure in the Public Switched Telephone Networks”, IEEE
Computer, Vol. 30, No. 4, April 1997, pp. 31-36

[Kuamoto96] Kumamoto, H., Henley, E.J.: “Probabilistic Risk Assessment and Management for Engineers
and Scientists”, 2nd Ed., IEEE Press, 1996, 592 pp., ISBN 0-7803-1004-7

[Lala94] Lala, J.H., Harper, R.E.: “Architectural principles for safety-critical real-time applications”,
Proceedings of the IEEE, Vol. 82, No. 1, January 1994, pp. 25-40

[Lamport82] Lamport, L., Shostak, R., Pease, M.: “The Byzantine Generals Problem”, ACM Trans. on
Programming Languages and Systems, Vol. 4, No. 3, July 1982, pp. 382-401

[Laprie85] Laprie, J.-C.: “Dependable Computing and Fault Tolerance: Concepts and Terminology”,
Proc. 15th Fault Tolerant Computing Systems Conf. (FTCS-85), Ann Arbor/MI, USA, June
1985, pp. 2-11

[Lardner34] Lardner, D.: “Babbage’s Calculating Engines”, Edinburgh Review, No. CXX, July 1834; also:
pp. 174-185 of Chapter 4 of “Charles Babbage and his Calculating Engines”, Morrison, P.,
Morrison, E. (Eds.), Dover Publications, Inc., Lib. of Congress Nr. 61-19855

[Leveson95] Leveson, N.G.: “Safeware: System Safety and Computers”, Addison-Wesley, 1995, 704 pp.,
ISBN: 0-201-11972-2

36

[Leveson97] Leveson, N.G., Palmer, E.: “Designing Automation to Reduce Operator Errors”, Proc. of the
1997 IEEE International Conference on Systems, Man and Cybernetics, Orlando/FL, October
1997, 7 pp.

[Li93] Li, J., Dasgupta, A.: “Failure mechanism models for creep and creep rupture”, IEEE Trans. on
Reliability, Vol. R-42, No. 3, September 1993, pp. 339-353

[Lin90] Lin, T.-H., Shin, K.G.: “A Bayesian approach to fault classification”, Proc. ACM Joint Int’l
Conf. on Measurement and Modeling of Computer Systems, Univ. of Colorado, Boulder/CO,
USA, 1990, pp. 58-66

[Littlewood92] Littlewood, B., Strigini, L.: “The Risks of Software”, Scientific American, November 1992, pp.
62-75

[Littlewood93] Littlewood, B., Strigini, L.: “Validation of Ultrahigh Dependability for Software-based
Systems”, Communications of the ACM, Vol. 36, No. 11, November 1993, pp. 69-80

[Malkhi97] Malkhi, D., Reiter, M.: “Byzantine Quorum Systems”, Proc. 29th Annual ACM Symp. on the
Theory of Computing (STOC), El Paso/TX, USA, May 1997, pp. 569-578

[Martin01] Martin, R.A. :”Managing vulnerabilities in networked systems”, IEEE Computer, November
2001, pp. 32-38

[McElvany91] McElvany-Hugue, M., “Fault type enumeration and classification”, ONR Report ONR-910915-
MCM-TR9105, November 11, 1995, 27 pp.

[McGough83] McGough, J.: “Effects of Near-Coincident Faults in Multiprocessor Systems”, Proc. of the 4th

IEEE/AIAA Digital Avionics Systems Conf. (DASC), Seattle/WA, USA, Oct.-Nov. 1983, pp.
16.6.1-16.6.7

[McGough89] McGough, J.: “Latent Faults”, Chapter 10 Digital Systems Validation Handbook – Vol. II,
DOT/FAA/CT-88/10, February 1989, pp. 10.1-10.37

[Meissner89] Meissner, C.W., Dunham, J.R., Crim, G. (Eds): “NASA-LaRC Flight-Critical Digital Systems
Technology Workshop”, NASA Conference Publication CP-10028, April 1989, 185 pp.

[Mroczkowski92] Mroczkowski, R.S., Maynard, J.M.: “Estimating the reliability of connectors”, IEEE Trans. on
Reliability, Vol. R-40, No. 5, December 1991, pp. 507-512

[Mulazzani85] Mulazzani, M.: “Reliability versus safety”, Proc. IFAC SAFECOMP ’85 Conf., Como/Italy,
1985, pp. 141-146

[Nanya89] Nanya, T, Goosen, H., “The Byzantine Hardware Fault Model”, IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, Vol. 8, No. 11, November 1989, pp. 1226-
1231

[Neumann92] Neumann, P.G.: “Aggravation by computer life, death, and taxes”, Communications of the
ACM, Vol. 35, No. 7, July 1992, p. 122

[Neumann95] Neumann, P.G.: “Computer-Related Risks”, ACM Press / Addison Wesley, 1995, 384 pp.,
ISBN 0-201-55805-X

[Normand96] Normand, E.: “Single-Event Effects in Avionics”, IEEE Trans. on Nuclear Science, Vol. 43,
No. 2, April 1996, pp. 461-474

[Oberg99] Oberg, J.: “Why the Mars Probe went off course”, IEEE Spectrum, December, 1999, pp. 34-
39

[Ohlsson98] Ohlsson, M., Dyreklev, P., Johansson, K., Alfke, P.: “Neutron single event upsets in SRAM-
based FPGAs”, Proc. IEEE Nuclear and Space Radiation Effects Conference, 1998
(NSREC98), Newport Beach/CA, USA, 1998, 4 pp.

[Pfleeger92] Pfleeger, S.L.: “Measuring software reliability”, IEEE Spectrum, August 1992, pp. 56-60
[Pizza98] Pizza, M., Strigini, L., Bondavalli, A., Di Giandomenico, F.: “Optimal discrimination between

transient and permanent faults”, Proc. 3rd IEE High-Assurance Systems Engineering Symp.
(HASE), 1998, 10 pp.

[Poledna96] Poledna, S.: “Fault-tolerant real-time systems – the problem of replica determinism”, 1996,
Kluwer Academic Publ., 147 pp., ISBN 0-7923-9657-X

[Postma98] Postma, A.: “Classes of Byzantine fault-tolerant algorithms for dependable distributed
systems”, PhD thesis, University of Twenthe, The Netherlands, February 1998, 315 pp., ISBN
90-365-1081-3

[Powell92] Powell, D.: “Failure mode assumptions and assumption coverage”, Proc. 22nd IEEE Int’l
Symp. on Fault Tolerant Computing (FTCS-22), Boston/MA, USA, July 1992, pp. 386-395

[Prasad96] Prasad, D., McDermid, J., Wand, I.: “Dependability terminology: similarities and differences”,
IEEE Aerospace and Electronic Systems Magazine, January 1996, pp. 14-20

Chapter 3 Faults, Errors, and Failures

1999-2003 Frank Dörenberg 37

[Pullum99] Pullum, L.L.: “Software Fault Tolerance”, Tutorial Notes of the 1999 Annual Reliability &
Maintainability Symp. (ARMS), Washington/DC, USA, January 1999, 22 pp., ISSN 0897-5000

[Redmill97a] Redmill, F., Dale, C. (Eds.): “Life Cycle Management for Dependability”, Springer-Verlag,
1997, 235 pp., ISBN 3-540-76073-3

[Redmill97b] Redmill, F., Rajan, J. (Eds.): “Human Factors in Safety-Critical Systems”, Butterworth-
Heinemann Publ., 1997, 320 pp., ISBN 0-7506-2715-8

[Risks] “The Risk Digest”, on-line digest from the Forum On Risks To The Public In Computers And
Related Systems, under auspices of the Association for Computing Machinery (ACM)
Committee on Computers and Public Policy, Annual volumes since 1985;
http://catless.ncl.ac.uk/Risks/

[Roland90] Roland, H.E., Moriarty, B.: Chapter 1 of “System Safety Engineering and Management”, 2nd

edition, John Wiley & Sons, 1990, 367 pp., ISBN 0-471-61861-0
[Rushby93] Rushby, J.: “Formal Methods and the Certification of Critical Systems”, Computer Science

Lab. of SRI Int’l Tech. Report CSL-93-7, Dec. 1993; also published as: “Formal Methods and
Digital Systems Validation for Airborne Systems”, NASA Contractor Report CR-4551

[Rushby99] Rushby, J.: “Partitioning in Avionics Architectures: Requirements, Mechanisms, and
Assurance”, NASA Contractor Report NASA/CR-1999-209347, 1999, 75 pp.

[Schneider84] Schneider, F.B.: “Byzantine Generals in Action: implementing fail-stop processors”, ACM
Transactions on Computers, Vol. 2, No. 2, May 1984, pp. 145-154

[Shin87] Shin, K.G., Ramanathan, P.: “Diagnosis of Processors with Byzantine Faults in a Distributed
Computing System”, Proc. IEEE 17th Int’l Symp. on Fault-Tolerant Computing (FTCS),
Pittsburg/PA, USA, July 1987, pp. 55-60

[Shooman93] Shooman, M.L.: “A study of occurrence rates of EMI to aircraft with a focus on HIRF”, Proc.
12th AIAA/IEEE Digital Avionics Systems Conf. (DASC), Seattle/WA, USA, October 1993, pp.
191-194

[Siewiorek92] Siewiorek, D.P., Swarz, R.S. (Eds.): Chapter 2 in “Reliable Computer Systems – Design and
Evaluation”, 2nd ed., Digital Press, 1992, 908 pp., ISBN 1-55558-075-0

[Somani94] Somani, A.K, Sharma, T., Nguyen, P.H.: “Reliability computation of systems with latent
failures and monitoring”, Proc. 1994 Annual Reliability And Maintainability Symp. (RAMS),
Annaheim/CA, USA, January 1994, pp. 195-200

[Sosnowsky94] Sosnowsky, J.: “Transient fault tolerance in digital systems “, IEEE Micro, Vol. 14, No. 1,
February 1994, pp. 24-35

[Stark94] Stark, G.E.: “Technologies for improving the dependability of software-intensive systems: a
review of NASA experience and needs”, Proc. 1994 Annual Reliability and Maintainability
Symp. (RAMS), 14 pp.

[Storey96] Storey, N.: p. 123 of “Safety-critical computer systems”, 1996, Addison-Wesley, 453 pp.,
ISBN 0-201-42787-7

[Strigini01] Strigini, L., Popov, P.: “The reliability of diverse systems: a contribution using Modeling of
the fault creation process”, CSR Technical Report, January 2001, 32 pp.

[Sullivan91] Sullivan, M.S., Chillarege, R.: “Software defects and their impact on System Availability – A
study on field failures in Operating Systems”, Proc. 21st Int’l Symp. on Fault Tolerant
Computing (FTCS), Montreal, Canada, 1991, pp. 2-9

[Sullivan92] Sullivan, M.S., Chillarege, R.: “A Comparison of Software Defects in Database Management
Systems and Operating Systems”, Proc. 22nd Int’l Symp. on Fault Tolerant Computing
(FTCS), Boston/MA, USA, July 1992, pp. 475-484

[Trivedi00] Trivedi, K.S., Vaidyanathan, K., Go¡seva-Popstojanova, K.: “Modeling and analysis of
software aging and rejuvenation”, Proc. 33rd Annual Simulation Symp., Washington/D.C.,
USA, April 2000, 10 pp.

[Vaidya95] Vaidya, N.H., Pradhan, D.K.: “Degradable Byzantine Agreement”, IEEE Trans. on
Computers, Vol. 44, No. 1, January 1995, p. 146-150

[Voges88] Voges, U. (Ed.): “Software Diversity in Computerized Control Systems”, (Dependable
Computing and Fault-Tolerant Systems Vol. 2), Springer Verlag, 1988, 216 pp., ISBN 0-387-
82014-0

[Walter88] Walter, C.J.: “MAFT: an Architecture for Reliable Fly-By-Wire Flight Control”, Proc. 8th Digital
Avionics Systems Conf. (DASC), San Jose/CA, USA, October 1988, 7 pp.

[Walter95] Walter, C.J., Monaghan, T.P.: “Dependability Framework for Critical Military Systems Using
Commercial Standards”, presented at the 14th AIAA/IEEE Digital Avionics Systems Conf.
(DASC), Boston/MA, USA, November 1995, 6 pp.

http://catless.ncl.ac.uk/Risks/

38

[Wichman93] Wichman, B.A.,: “Microprocessor Design Faults”, Microprocessors and Microsystems, Vol.
17, No. 7, 1993, pp. 399-401

[Wiener88] Wiener, E.L., Nagel, D.C.: “Human Factors in Aviation”, Academic Press, 1988, 684 pp.,
ISBN 0-12-750031-6

[Young94] Young, D., Christou, A.: "Failure mechanism models for electromigration", IEEE Trans. on
Reliability, Vol. R-43, No. 2, June 1994, pp. 186-192

[Yount85] Yount, L.J.: “Generic Fault-Tolerance Techniques for Critical Avionics Systems”, Proc. AIAA
Guidance, Navigation and Control Conf., Snowmass/CO, USA, August 1985, 5 pp.

[Yurcik01] Yurcik, W., Doss, D.: "Achieving fault-tolerant software with rejuvenation and
reconfiguration", IEEE Software, Vol. 18, No. 4, July/August 2001, pp. 48-52

	Version: 12 September 2003
	DEPENDABILITY IMPAIRMENTS: FAULTS, ERRORS, AND FAILURES
	PROBLEMS AND EXERCISES
	REFERENCES

	Fault Attribute
	Fault Types
	
	
	
	
	
	Caveat
	Byzantine Generals Problem

	[Rushby99]

