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Preface

One of the best ways to learn computational economics is to do computational
economics. One of the best ways to do computational economics is to begin with
existing models and modify them as you experiment with them. This is the approach
used in this book.

In each chapter an economic model is presented. First the economics and
mathematics of the model is discussed and then the computational form of the model is
analyzed. This process enables one to learn the economics and the mathematics of the
problem area as well as the computational methods that are used in that area. For
example, in the economic growth area we make use of a Ramsey type model. The
economics of growth theory are first discussed along with the equations that model this
process. Then the software representation of the model is presented so that the reader can
see how the model can be solved on a computer. The student can then modify the model
in order to analyze its sensitivity to various parameters and functional specifications. In
the process of experimenting with the model one can gain an improved understanding of
both the software and of the economic modeling.

This book grew out of undergraduate and graduate level courses on computational
economics taught by us at the University of Texas, ISEG (Argentina) and the University
of Amsterdam. Also, a number of teaching assistants and undergraduate students
participated in the development of chapters, notably Daniel Gaynor and Genevieve
Solomon.

This book is intended for use by advanced undergraduates and professional
economists and even, as a first exposure to Computational Economics, for graduate
students. We expect the development in coming years of undergraduate courses with a
focus on economic modeling along the lines outlined in this book. Also, we envisage the
development of a two course sequence in Computational Economics in graduate
programs. The introductory course would have a broad economic modeling focus with
an approach similar to that used in some chapters of this book. The second course would
focus on algorithms and numerical methods.

Part of our motivation for writing this book is spelled out in a couple of

paragraphs that are taken from a paper the three of us wrote with the title “Computational



Preface
Economics: Help for the Underestimated Undergraduate”. ' These comments — though

written for that paper — apply equally as well to this book.

“The ubiquitous personal computer has filtered deeply through the lives of
college undergraduates; however undergraduate education in economics
has so far failed to take full advantage of this sweeping change. We are
underestimating the learning ability and insufficiently challenging a whole
generation of undergraduate students in economics. Our thesis is that
computational economics offers a way to improve this situation and to

bring new life into the teaching of economics in colleges and universities.

With its early focus on algorithms, computational economics seemed well-
suited for a relatively small group of graduate students and unlikely to
have much impact on undergraduates. However, that is changing as we
are discovering that computational economics provides an opportunity for
some students to move away from too much use of the lecture-exam
paradigm and more use of a laboratory-paper paradigm in teaching
undergraduate economics. This opens the door for more creative activity
on the part of the students by giving them models developed by previous
generations and challenging them to modify those models. The
modifications can be altering the models to make them applicable to the
student’s interest or finding weaknesses in the model that can be
strengthened by changes in the structure of the model. In the process the

students become much more involved in their own education.”

The organization of the chapters in the book reflects primarily the outline of the
courses at the University of Texas. The aim is to let the students find an area of
computational economics that interest them and to pursue that area. Since some of the
students are interested in microeconomics, others in macroeconomics and others in
finance an effort is made to give a quick and broad exposure to models across a range of
fields early in the semester. Then the range is covered again later in the semester in
greater depth. The book is structured to follow this pattern. In Part I there is a “once
over lightly” treatment of computational economics examples from a number of fields.

This is then repeated in greater depth and complexity in Part II. Part III covers an

! Kendrick, Mercado and Amman (2005).



Preface

advanced area that is of special interest to the authors, namely the solution of
macroeconomic models with stochastic control methods.

We would like to thank Alan Manne, Manfred Gilli and other reviewers for
comments on earlier drafts of this book that helped us to substantially improve it. Also,
we want to thank Provost Sheldon Ekland-Olson and Dean Brian Roberts of the
University of Texas for funding which was used to support preparation of some of the
materials in this book. In addition, we would like to thank Peter Dougherty of the
Princeton University Press for his encouragement of the development of this book over a
period of many years.

Thanks are due to a number of undergraduate and graduate students who took the
computational economics courses at the University of Texas and contributed ideas and
models which added to the quality of several of the chapters and who helped to create and
maintain the web sites, viz. Pichit Akrathit, Joe Breedlove, Michael Evanchik, Shyam
Gouri-Suresh, Miwa Hattori, Carter Hemphill, Kyle Hood, Seung-Rae Kim, Kevin Kline,

Paul Maksymonko, Juan Carlos Navarro and Huber Salas.



Introduction

One can think of learning computational economics by following one of three
different routes - via computational methods, via mathematical methods or via economic
areas. The computational methods route would focus on the use of a particular computer
software system like MATLAB or Mathematica and teach the students the capabilities of
those languages with examples from economics. The mathematical route would focus on
algorithms to solve various classes of mathematical models such as linear or nonlinear
programming models, differential or difference equations, and dynamic programming
models and provide examples of the use of each kind of model in economics. The
economic areas approach would focus on microeconomics, macroeconomics, finance,
game theory, environmental economics etc. and teach the students how to formulate and
solve economic models in each of these areas. For this book we have chosen the last of
these three approaches.

Thus this is a book about computational economics, but also about economic
modeling. As a student approaches a new area of interest we want to help him or her first
think through the economics of the subject. Then we develop this economics into a
mathematical model. Finally we specify the mathematical model as a computational
model in a particular software system. We believe that this process can be greatly
facilitated by encouraging the students to follow Professor Paul Samuelson’s advice and
“stand on the shoulders” of those who have gone before. This is done by beginning from
subject areas and problems that other economists have studied and learning how the
economics was converted to mathematics and then to computational models in those
areas.

Therefore this book is organized around economic topics rather than around
mathematical or computational topics. However, we did not put all the microeconomics
in the first section, then the macroeconomics etc. Rather the book is divided into two
rounds of relatively simple models and then more complex models as was discussed

above in the Preface.



Introduction
Software Systems

Students who begin studying computational economics frequently ask the
question, “What programming language should I learn?” > The answer given in this book
is to first become acquainted with a number of high-level languages such as GAMS,
Mathematica, MATLAB and Duali as well as the Solver in Excel and the Access
database software. Moreover, it is useful to become acquainted with each of these
software systems in the midst of solving the kind of economic models that are naturally
developed in each of these systems. Then later one can dig deeper into one or more of
the software systems and gain some level of mastery of it while writing a short mid-term
paper, a term paper or doing research. At a still later stage, students who find that they
have a continuing interest in computational economics would be well advised to progress
to lower level languages such as Visual Basic, Fortran, C, C++, C# or Java.

There are different types of software paradigms, each of them more or less
suitable to represent specific types of models. In this book, we present a selected set of
high-level software systems, each corresponding to a specific paradigm.

We start the book with relatively simple models represented in Excel
(“spreadsheet paradigm”) as a way of beginning with a software paradigm that is well
known and accessible to almost everybody, since this software system is available on
most PC’s. Excel is useful to solve small models that do not involve simultaneous
systems of equations; however, is not well designed for vector-matrix operations. For
this type of operations we will use MATLAB later in the book. However, Excel has a
nonlinear optimization solver which can handle constrained optimization problems and is
very handy to set up and solve interesting models such as a Ramsey type model of
economic growth and a small neural net.

Also, early in the book we introduce Access (“relational database paradigm™),
which like Excel is a very accessible software system. Access is well suited to develop
relatively simple relational databases and its use is illustrated with a prototype U.S.
database.

The “set driven” paradigm is introduced with GAMS. This software system,
particularly well suited to deal with medium and large size models involving from tens to
hundreds of variables and equations, allows us to specify problems in an organized and
compact way, defining sets to be used as indexes, and specifying scalars, parameters,

variables and equations in a parsimonious way. We solve with GAMS models of

2 For a discussion of some of the software systems used in economics see Amman and Kendrick (1999b).
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transportation, financial planning, general equilibrium, macroeconomics and global
warming.

The “vector matrix” paradigm is introduced with MATLAB. This software
system is useful to deal with models or problems involving intensive use of vector and
matrix operations, cell arrays and data structures, and also to deal with problems of
recursive structure requiring intensive use of “loops”. We use MATLAB to solve
problems of portfolio optimization, genetic algorithms, agent-based models and dynamic
programming.

The “symbolic math” paradigm is introduced with Mathematica. This software
system is particularly powerful to solve symbolic algebra and calculus problems, and we
use it to represent partial equilibrium and game theoretic problems.

Finally, in a Special Topics Section in Part III of the book, and by means of
macroeconomic applications we introduce Duali, a “dialog box driven” software
designed to solve stochastic control and dynamic policy analysis problems. The basic
code of this software is written in C, and contains a variety of simple and complex
quadratic linear dynamic programming algorithms.

Most economics departments and economics students already have many software
systems available on their computers and hopefully will also have the ability to acquire
most of the rest of those used in this book. We have provided in our web site at

http://www.eco.utexas.edu/compeco

the input files for the economic models that are used in this book. Also, this web site
contains pointers to software sources, supporting books and user guides. In an effort to
keep student cost down, we have endeavored to keep most of the models used in this
book small enough that they can be solved with the student versions of the software
systems.

With the exception of Duali, all of the software systems we use are commercial
products. In contrast, the Duali software is academic software which is under
development by two of us (Kendrick and Amman) and has no support staff or help desk.
It is designed to greatly reduce the learning curve for developing dynamic deterministic
and stochastic optimization models and is a most useful starting point into economic
research in these areas. However, it is early in its stages of development and must be

used with caution.
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Introduction
Numerical Methods

In this book we present not only a variety of models and software paradigms, but
also introductions to diverse numerical methods needed to solve them. As with the
software systems, we think that is useful to become acquainted with each of those
numerical methods in the midst of solving the kind of economic models that are naturally
involved with each of these methods.

A number of the models presented in the book are solved with linear
programming methods or nonlinear optimization methods based on gradient and/or
Newton methods. Thus we provide an introduction to these methods in appendices at the
end of the book. Other methods are introduced directly in particular chapters. Neural
nets are applied to a stock price prediction problem, Monte Carlo methods are applied to
a portfolio selection problem and genetic algorithms are applied to an evolutionary game
and to a portfolio selection problem. Quadratic linear dynamic programming is
illustrated with a simple macroeconomic policy analysis application. Finally, the Fair
and Taylor iterative method to solve rational expectations models, together with the
Amman and Kendrick method to solve optimal control models with forward looking

variables is applied to a prototype macro model developed by Taylor.
Teaching Methods

A description of the teaching methods used in the computational economics
courses at the University of Texas will help the reader to understand the way in which the
materials in this book have been developed. One aspect of these courses is that they
have a weekly cycle. As was described above, the first class each week is on the
economic theory and mathematical model of the subject for the week. The second class
is on the computational methods used to solve the model. The third class of the week is
not in a lecture room but rather in a computer laboratory where the students are ask to
solve the base model and then to modify (and solve) the model several times in order to
study its structure and operation. One week after the computer laboratory class the
students are asked to turn in a short paper a few pages in length that describes their own
experiments with the model during the week and the results obtained. The weekly
teaching cycle is reflected in this book with some suggested experiments listed at the end
of each chapter. However, the students are encouraged to strike out on their own — a

process which enhances both enjoyment and learning.

10
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Since the emphasis in these computational economics courses is on creativity,
there is both a mid-term paper and a final paper. The students are asked in the mid-term
paper to modify one of the models from the course or to select an existing model from the
GAMS library or another similar source and then to make minor improvements in the
model. In the final paper they are asked to carry this process forward and make major
modifications to an existing model or to create a model of their own.

Several alternative approaches to the one used in this book are available for the
study of computational economics. However, until now most books in this field have
focused on graduate level instruction while we are hoping to be helpful to both
undergraduates and graduate students. For an approach using the GAMS software
exclusively and focusing on linear and nonlinear programming methods see Thompson
and Thore (1992). For approaches using numerical methods see Judd (1998) who uses
several computer languages or Miranda and Fackler (2002) who use MATLAB. Varian
(1993a) and (1996) presents a variety of models in Mathematica. For a web site that
supports a course on applied macroeconomics using computational methods taught by
Prof. Harris Dellas at the University of Bern that is somewhat similar to the approach
taken in this book see

http://www.vwi.unibe.ch/amakro/L ectures/computer/

For books that focus on numerical methods in macroeconomics with some applications in
MATLAB see Marimon and Scott (1999) and Adda and Cooper (2003). For a book with
a collection of articles that consider a variety of numerical methods to solve
macroeconomic models see Hughes Hallett and McAdam (1999). For a handbook with a
collection of articles about computational economics see Amman, Kendrick and Rust
(1996). Also, you are encouraged to browse the Internet site of the Society for
Computational Economics at

http://comp-econ.org

where you will find information about meetings, journals and book series.

Given the array of materials that are becoming available for teaching
computational economics, we are hopeful that courses in this field will become a part of
the core curriculum in both undergraduate and graduate education in economics as
happened before with Mathematical Economics and Econometrics. Moreover, we hope
our book will motivate and help instructors in those areas to offer courses in
Computational Economics. We are aware of courses in Computational Economics that
have been offered in recent years at Stanford, Yale, Maryland, Ohio State, Bern, Harvard
and Texas and believe that some of these courses will migrate toward the core as courses

are added at other universities.

11
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Chapter 1
Growth Model in Excel

Most economists are familiar with the spreadsheet and even with the database
capabilities of the Excel software, but fewer are aware that Excel also contains powerful
solution procedures for solving both linear and nonlinear programming problems.
Because the Excel interface is so familiar to many and because the specification of
programming problems in Excel is relatively straightforward, there are times when Excel
is the software of choice for solving certain types of optimization problems. In
particular, when the models are small enough that the set driven nature of GAMS does
not give it an advantage over Excel, it may be advantageous to solve optimization
problems in Excel. To illustrate this we will use a one-sector growth model of the type
that is widely used in the economics literature.

The model we will use is the famous Ramsey model of economic growth. Models
of this type have been widely used in the economic growth literature. In particular, we
will follow the versions developed by Chakravarty (1962) and Taylor and Uhlig (1990).
We will employ a finite horizon version with a terminal capital stock constraint.

The model will first be introduced in a mathematical form and then in a
computational form.> The essential economics of the simple growth model used
in this chapter is a trade-off between consumption and investment. More
consumption in a time period means more utility in that time period but less
investment and therefore less capital stock and less production in future time
periods. So the key elements of the model are the production function with
capital being used to produce output, the capital accumulation relationship with
investment creating new capital and the utility function with consumption

resulting in utility.

3 Most models used in this book cannot be solved analytically so numerical methods are required.
However, even when analytical solutions can be obtained, as shown later in Appendix J, it is still useful to
obtain numerical solutions so that the code can be checked on simple models. Then the numerical methods
can be used with more confidence when they are applied to more complex models that cannot be solved

analytically.
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Chapter 1 Growth Model in Excel
1 Mathematical Form

The production side of the economy is specified in a stylized form by

means of an aggregate production function

(1) Y, =0 K
where
Y, = output in period ¢
= a technology parameter

0
K, = the capital stock in period ¢
a

= exponent of capital in the production function

This is the widely used Cobb-Douglas form of a production function except that
function usually includes both capital and labor inputs. However, for the sake of
simplicity, the production function in this model includes only capital.

Consider next the capital accumulation constraint

(2 K
where

C

. = consumption in period t
which says that the capital stock next period will be the same as this period plus
the difference between output and consumption which is saving or investment.
For the moment depreciation of the capital stock is ignored though you might
want to add that to the model in an experiment.

Also, the production function (1) can be substituted into the capital

accumulation equation (2) to obtain the equation

(3) Kt+1 =Kt +6 Kta _Ct

In addition, the model has an initial condition that specifies the size of the capital
stock in the initial period.

(4) K, given.

14



Chapter 1 Growth Model in Excel

The model also includes a terminal condition that fixes a minimum
amount of capital that must be left to the next generation after the time horizon

covered by the model.

(5) K, >K
where

K" = alower bound on the amount of capital required in the

terminal period, N .
Finally, the model has a criterion function that is the discounted value of

the utility that is obtained from consumption over all of the periods covered by the

model. It is written in two steps. First the utility in each period is defined as

(6) u(c

where
U(C,)= the utility in period t as a function of consumption

in that period

7 = a parameter in the utility function®

Then the sum of the discounted utilities is specified as

(7) J=Yp U(C)

where

J = the criterion value

S = the discount factor = L
I+p

p = the discount rate

and the substitution of Eq. (6) into Eq. (7) yields the criterion function

* This is a popular form of the utility function which is known as the “constant elasticity of intertemporal
substitution” function. Roughly speaking, think of the elasticity of intertemporal substitution as measuring
the degree of substitutability between consumption “today” and “tomorrow” or, in geometric terms,
measuring the curvature of the indifference curves corresponding to consumption at any two points in

time. For this function, the elasticity of substitution is constant and equal to 1/7 .
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Chapter 1 Growth Model in Excel

® J=Xp el

In summary, the model consists of the criterion function (8), the capital
accumulation equation (3) and the initial and terminal conditions (4) and (5) and

can be stated as find

(C,,C,-+-,Cy,) to maximize

®) J=yp
1=0 (1 - T)

subject to

3) K, =K +6 K'-C,

(4) K, given.

(5) K,>K

So the essential problem is to choose those levels of consumption, over the time
periods covered by the model that strike the right balance between consumption and
investment. Lower consumption in any given period means less utility in that period but
more savings and therefore larger capital stocks and more production in future years.

This growth model is a nonlinear programming problem because of the
nonlinearities in the criterion function (8) and the capital accumulation equation (3). It

can be stated and solved rather nicely in Excel as is discussed below.
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Chapter 1 Growth Model in Excel

2. Computational Form

Consider first a spreadsheet layout of the model as shown in Figure 1.1 below.

The corresponding Excel file is in the book web page.

EA Microsoft Excel - growth

Ej File Edit ‘iew Insert Format Tools Data  Window  Help L4
DeEdan RV aR-¢ QI -o ko -7
L12 - fe =SUMB12:012)

A B € D E F G H | J K L =
1 | Growth Model I
2
3
4 | Tire Period 0 1 2 3 4 q 3 7 g g

5 Consumption 0347 0351 0355 0353 03561 0384 0386 03k 0370
B Production 0570 0676 0532 0535 0594 04559 0OBOS  0OB11 0616
7

= Target

9 |Capital 70000 7223 7.448 FER 7HDE B3 8.373 BE12  BEA4 9100 5100

10

11 Total
%Unlny 1178 1.161 1.144 1126 1.108 1.080 1.072 1.054 1.035 I 9.970!

14

15 i
16 tau 05

17 beta 0.95

15 alpha 0.33

19 theta 0.3 .
an

W 4 b Wy growth/ [4] | i
Ready

Figure 1.1 Growth Model in Excel with Total Utility Highlighted

Notice first that the model horizon covers time periods numbered from zero through nine
so that period zero will be the initial period and period nine will be the terminal period.

The rows below the time periods displays the
consumption, C,
production, Y,
capital stock, K,
utility, U(C,)

in each time period. All of these values are calculated when the model is solved and we

shall show shortly how the calculations are structured. However, for now look only at

17



Chapter 1 Growth Model in Excel

the cell below the "Total" label, i.e. cell L12, which is highlighted in the bottom right
corner of the spreadsheet. It contains the value 9.97; however, we are not so much
interested in that value as in how it is obtained. Look at the formula bar at the top of the
spreadsheet which contains the expression
SUM (B12:J12)

This indicates that this cell contains the sum of the utility values for periods zero through
eight which are contained in the cells B12 through J12.

Actually, the value in each of the cells B12 through J12 is not, strictly speaking,
the utility for each period but rather the discounted utility for each period. This is

illustrated in Figure 1.2 below.

¥4 Microsoft Excel - growth

F—’j File Edit Wew Insert Format Tools Data  ‘Window Help .9 X
DeEat gAYV s BRa-< @ -4kl o -0,
02 - B =betaD4*(1/(1-tau))*DI1-tau)
A B G I E F G H | J K L =

1 | Growth Model i
2

3

4 |Tirme Period 0 1 2 3 4 & b 7 8 g

5 [Consumption  0.347 0.351 0.355 0.355 0,367 0.364 [.366 0.363 0.37/0

6 |Production 0570 0576 0582 0.585 0.694 0599 0.605 0B 0616

!

8 Target

Y [Capital 7.000 7.223 7.448 7676 7.906 8.135 8.373 g.612 8.854 9.100 4,100

10

i Total
EUtility 1.178 1.151' 1.144! 1.126 1.108 1.090 1.072 1.054 1.035 8.970

13

14

15 s
16 tau 0.5

17 beta 095

18 |alpha 033

19 'theta 03 .
an

W 4 » n)growth/ Kl | O
Ready

Figure 1.2 The Calculation of Discounted Utility in Each Period

The cell D12 in the utility row is highlighted and the expression which is used to
calculate the value in that cell is displayed in the formula bar as
= beta”D4* (1/(1-tau))*D5" (1-tau)

This is complicated so lets consider it one piece at a time. Begin with

18



Chapter 1 Growth Model in Excel

beta”D4
This means that beta is raised to the power of the number in cell D4. This makes use of
the “naming” capability for constants in Excel and is equivalent to 817~p4. The number
in cell D4 is two so this term becomes

ﬂ2
which is the discount factor squared. Beta is defined in line 17 of the spreadsheet as .98.

Also, since

1
p=——
I+p

we can infer that the discount rate, p, is equal to about .02.
Next consider the term
(1/(1-tau))*D5” (1-tau)

which can be rewritten as

1 Dslftau
1—tau

and since the cell D5 contains consumption we can further rewrite this expression as

1 Cl—‘r
-7
which is the same as the utility function in Eq. (6) above. So, the cell D12 contains the

mathematics
1

pcr

-7
which is the discounted utility for period t. Also, the parameter tau of the utility function
is defined in line 16 of the spreadsheet as being equal to 0.5.

In summary, line 12 of the spreadsheet is used to calculate the discounted utility
in each period and then to sum those values so as to obtained the total discounted utility
incell L12.  Thus the criterion function for the model is contained in line 12.

Next consider the constraints of the model. Begin with the expression for

production which is illustrated in Figure 1.3 below.
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Chapter 1 Growth Model in Excel

¥4 Microsoft Excel - growth E”E|E|
[!j Fle Edt Wew Insert Format Tools Data  Window Help . @ X
DeEaq &4V §BR- Q=i e -,
3] - fe =theta"DI"alpha

A B © D E F 5 H | J K L =
1 | Growth Model m
2
3
4 |Tirme Period 0 1 2 3 4 b B i g g

5 Consumption 0347 0351 0355 0355 0361 0384 0386 035 0370
%Productlon 0570 D.S?'EI D.582.| D&88 0594 05899 0805 0611 OB1B

= Target

9 |Capital F000 7223 T4A48 7B 7906 8133 B33 8812 8854 9100 2100
10

il Tatal

12 |Lhility 1178 1181 1144 11260 1108 1090 10720 1.054 1035 8.970
13

14

15 o
16 tau 05

17 |beta 093

18 alpha 033

19 [theta 0.3

O M}y growth / |« | din
Ready

Figure 1.3 The Calculation of Production in Each Period

In this figure cell D6 is highlighted and the formula bar contains the expression
theta*D9%alpha
which is the same as Eq. (1) above for production, i.e.
V=6 K’
since cell D9 contains the capital stock for period t and theta is defined near the bottom
of the spreadsheet in line 19 as being equal to 0.3 and alpha is defined in line 18 as being
equal to 0.33.
Next consider the expression for the capital accumulation constraint which is
shown in Figure 1.4 below where cell D9 is highlighted.

20



Chapter 1 Growth Model in Excel

4 Microsoft Fxcel - growth E‘ @f’gl

[!j Fle Edt Wew Insert Format Tools Data  Window Help . @ X
DeEaq &4V §BR- Q=i e -,
0% - fe =CH+theta™CI"alpha-Ch

A B © D E F 5 H | J K L =
1 | Growth Model m
2
3
4 |Tirme Period 0 1 2 3 4 b B i g g

5 Consumption 0347 0351 0355 0353 0361 0384 0386 035 0370
B Production 0570 0476 0532 0535 0594 0493  0OBOD5 OB 0616
7

= Target

9 |Capital oo 7223 TasEl FEME 7006 8138 B33 BE1Z BB 3100 2100

10

" Total

12 |Lhility 1178 1181 1144 11260 1108 1090 10720 1.054 1035 8.970

13

14

15 o
16 tau 0.5

17 |beta 093

18 alpha 033

19 theta 0.3 -
an

W 4+ v\ growth/ Kl | Ein
Ready

Figure 1.4 The Capital Accumulation Constraint

The expression in the formula bar this time, which is
C9 + theta*C9%alpha - C5
contains at its core the expression for production which we just developed above, i.e.
theta*C9%alpha
So we can translate the entire expression as
EQA'*K'_CL1
since row 9 contains the capital stock figures and row 5 contains the consumption figures.
As you can see, by comparing the expression above to the capital accumulation constraint
in Eq. (2) above with the time periods each decreased by one period, i.e.
K =K +Y -C
the timing in the spreadsheet calculations is slightly off for production but that slight
timing error may make the spread slightly easier to specify so we will leave the error for
the time being.
Also, notice at the end of row 9 in the spreadsheet that there is a target capital

stock. We will discuss this in detail when we describe how the model is actualy solved
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Chapter 1 Growth Model in Excel

in Excel. However, before we do that it is necessay to indicate how the initial condition
for capital stock is specified. This is shown below in Figure 1.5 where cell B9 is
highlighted.

3 Microsoft Excel - growth

[!j Fle Edt Wew Insert Format Tools Data  Window Help . @ X
DeEaq &4V §BR- &= -2l &l o -,
B9 hd a7

A B © D E F G H | J K L =
1 | Growth Model ml
2
3
4 | Tirne Period 0 1 2 3 4 q 3 7 g g

5 Consumption 0347 0351 0385 0358 0361 0384 0386 038 0370
B |Production 0570 0576 0582 0583 059 0529 0BDS 0BT 0B16
7

= Target
ﬂCapital | ?.DEID! 7223 7448 ARG 7906 8133 8373 4612 8854 9100 9100

10

11 Total

12 |Ltility 1.178 1.161 1.144 1.126 1.108 1.080 1.072 1.054 1.035 84970

13

14

15 o
16 tau 05

17 beta 0.95

18 alpha 033

19 theta 03 -
Aan

W 4 v Wy growth / [4] | [
Ready

Figure 1.5 The Initial Capital Stock

When cell B9 is highlighted the fomula bar does not show a mathematical expression like
those shown in the other cells in line 9, but rather just the number 7. This is the initial
capital stock which was specified in the mathematical statement of the models in Eq. (4)
as
K, given

So the initial capital stock is given and it has been specified as equal to 7 in this version
of the model.

The tour of the model in Excel given above is slightly confusing because it
discusses both the data elements which the user must provide and the variables which are
calcuated when the spreadsheet is solved. Now lets separate the two by looking again at

Figure 1.5. The user must supply the time period numbers in row 4, the initial capital
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stock in cell B9 and the parameter values tau, beta, alpha and theta in cells B16
through B19. Also, the user must supply the terminal capital stock target in cell L9.
Excel will compute all the rest. Then why are all those other numbers shown in Figure
1.5? Those other numbers have all been computed the last time the model was solved
and will be updated if you alter one of the inputs mentioned above and then solve the
model again.

So lets consider next how the model is solved. This is accomplished by selecting
the Tools menu and the Solver option from that menu. When you do this the dialog box

in Figure 1.6 will appear.’

Solver Parameters @

X

Set Targek Cell: 1 i Saolve I
Equal To: M ° .o
qual To * [Max Min Yalue of; | Close

By Chanaing Cells:

|$B$5:$J$5 E GlEss

Subject ko the Constraints:

$K$3 >= $L$9 | Add
=N

Opkions

Change

J Delete

Reset All

Help

il

Figure 1.6 Solver Dialog Box

Consider first the top line in this dialog box in the section called "Set Target Cell". The
edit box to the right of this capiton indicates that cell L12 has been chosen. This
corresponds to the total discounted utility on the right hand side of the utility line in the
spreadsheet. Just beneath this the user can specify whether the value in the cell is to be
maximized or minimized. In the growth model at hand we are seeking to maximize the
total discounted utility so "Max" is selected.

The next line is used to specify which cells are to be changed while seaching for
the solution to the model. In the growth model we are solving for the values of
consumption in each period that provide the best trade off between utility in that period

and saving which becomes future capital stocks and permits more production later.

> In case the dialog box does not appear, see Appendix C.
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Therefore, we specify here that the variables to be used in search for the optimum are
those in cells B5 to J5 which are the consumption values.

Next consider the box that is labelled "Subject to the Constraints" in which
appears the constraint

K9 >= L9
Since cell K9 contains the capital stock for period 9 and cell L9 contains the target capital
stock, this constraint requires that the terminal period capital stock which is computed by
the model be greater than or equal to the user specified target which in this case is set to
9.1, that is 30% higher than the intitial capital stock. This corresponds to the
mathematical constraint in Eq. (5) above, i.e.
K, 2K

where K, is the capital stock in the terminal period and K~ is the target capital stock.

Notice that it is not necessary in the Solver dialog box to specify all of the capital
accumulation constraints in line 9 of the spreadsheet as constraints. Rather they are
effectively linked together by the mathematical expressions so it is necessay to include
only cell K9 when specifying the constraints.

To solve the model one selects the Solve button in the Solver dialog box in Fig.
1.6. What happens behind the scenes in the Excel program next is the solution of the
nonlinear programming model that is represented by the growth model. A Newton
method or a conjugate gradient method can be used in Excel to solve the model. A brief
discussion of nonlinear optimization methods is provided in App F at the end of the book.

Clicking on the Options button in the Solver dialog box will display the Solver

Options dialog box shown in Figure 1.7.
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Figure 1.7 Solver Options Dialog Box

In this dialog box you will be able to change different parameters - i.e. maximum
time, number of iterations, precision, tolerance and convergence - that allow you to
control the performance of the nonlinear optimization method used by Excel. Notice that
the Assume Non-Negative option has been selected to constrain the solution values of the

model to non-negative values.

3. Results

When solving the growth model with the Excel Solver it is useful to remember the
essential tradeoff in the model. More consumption today means more utility today.
However, less consumption today means more saving and more investment today and
this means more capital stock in the future and therefore more output and more

consumption possibilities in the future.
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So the problem is to find just the right level of consumption in each time period

given the parameters of the model. The key parameters of the model are

S, beta discount factor 0.98
K target capital stock 9.1
0, theta production function parameter 0.30
a, alpha production function exponent 0.33
K, initial capital stock 7

7, tau utility function parameter 0.50

The discount factor is the most intuitive of these parameters. Recall that is is equal to

©  p-—
+p

Solving Eq. (9) for the discount rate, p, yields
1

(10) p=—-I
B

So when £ =.98

1
11 =——-1=1.02-1.00=.02
(b » 0.98

and when S =.95

1
12 =——-1=1.052-1.00=.052
(12 » 0.95

So to a reasonable approximation in the range of interest
(13) pB=~1.00-p

Thus a discount rate of six percent or .06 implies a discount factor of 0.94.
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Next consider that the criterion function in Eq. (8) includes the discount factor, 5,

raised to the power ¢, i.e.

J= ﬁ: ﬂt Ct(l—r)

1
= (1-7)

and consider how g’ varies with beta and t as shown in Table 1.1.

Values of S’ Corresponding to Each Time Period
P B Time Periods
0 1 2 3 4 5
.02 .98 1.00 0.98 0.96 0.94 0.92 0.90
.05 .95 1.00 0.95 0.90 0.86 0.81 0.77

Table 1.1 Values of Discount Term

Thus when the discount rate is 5 percent the term S’ becomes smaller much faster as the

time period increases than it does when the discount rate is 2 percent. So when the
discount rate is higher, future utility is "discounted" more heavily, i.e. given less weight
in the criterion function. Thus, if your discount rate is 2 percent you have relatively
more interest in your consumption in future years than if your discount rate is 5 percent.
Therefore, altering beta is one of the interesting experiments to do with this
model. As you increase the discount rate (and therefore decrease the discount factor
beta) you should expect to see more consumption early in the time horizon covered by
the model. An illustration of this result is shown in Figure 1.8 that contains plot lines

for three experiments corresponding to three different values of beta.
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Figure 1.8 Consumption Paths for Different Discount Factors

A second key parameter of the model also plays a role in this matter of time
preference of consumption and may affect your results in the experiments described
above. This parameter is the target capital stock, K . The relevant constraint of the

model is Eq. (5), i.e.

which requires that the capital stock in the terminal period exceed the target. This can be
thought of as a constraint which represents the interest of the next generation. Without
such a constraint, the optimal solution to the growth model will be to invest little or
nothing in the last years covered by the model and to make consumption very high in
those periods. So a constraint of this sort is normally added to numerical growth models.

There can be an interplay between the choice of discount rate and the choice of
the target capital stock. If you choose a high target capital stock, then changes in the
discount rate may not have much effect on the pattern of consumption over time since
consumption must in any event be very low in order to insure that there is enough
investment that the target capital stock can be met in the terminal period.

One of the most straightforward experiments with the model is to increase the
initial capital stock. This has the effect of permitting more consumption with less
investment and one would expect to see higher levels of both output and consumption in

the model solution.
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If you alter the 8 parameter in the production function in Eq. (1), i.e.

Y,=0 K

you are modifying the efficiency of the production process. For example, if you increase
€ more output can be produced with the same capital stock and you should find higher
levels of both output and consumption in the model solution. Similarly altering the «
parameter affects the efficiency of the production process.

The last parameter that can be modified is 7 - a parameter in the utility function.
Intuition here is a little hard to come by, but as 7 approaches zero the utility function
becomes linear and as 7 approaches one it becomes logarithmic so it may be useful to
think of 7 as a parameter which affects the curvature of the utility function or the degree
of diminishing marginal utility.

Notice that when you perform these experiments, if the changes you make in the
parameter values are relatively small, the Excel solver will easily converge to a new
solution. This may not be the case for significant changes. Thus in those model runs you
may have to “guess” and provide new values for the sequence of consumption values to
be used by the Excel solver as new starting values, or you may have to play with different
Solver Options to control the solver performance.

In contrast to numerical growth models, theoretical growth models are usually
solved for infinite horizons and do not have a terminal capital stock target. As an
approximation to this, some numerical growth models are solved for much longer time
horizons than the period of interest and the solution is used only for a shorter period.
Thus if one is interested in a twenty year period the model might be solved for forty or
sixty years so that the end conditions do not have much effect on the solution paths for
the first twenty years. When extending the time horizon, make sure that as you insert
more columns to the Excel spreadsheet the equations of the model are copied in a proper
maner, that the cell containing the sum of utilities is properly updated to cover the new
range and that the specifications of the target cell, changing cell and the constraint are
properly updated in the Solver dialog box.

An interesting experiment is to impose a terminal capital stock equal to the initial
capital stock and solve the model for different time horizons. The optimal capital stock

path for an experiment like this is shown in Figure 1.9.
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Figure 1.9 Capital Stock Paths

We can see that optimal values for the capital stock first increase then decrease.
If we keep extending the time horizon, we will generate a sequence of even higher arches
whose top parts will be flatter as they get closer to an upper limit value of about 10.5.
This behavior is known at the “turnpike property”. To understand this, we have to point
out that a model like the one presented in this chapter has a steady-state solution, a
solution that, given enough time, the consumption and capital stock levels would
converge to and stay there forever. It can be shown (see Appendix J) that for this model

the steady state capital stock is

_(1=8Y"
(0 Ko _(ﬂaﬁj

Substituting the corresponding parameter values we obtain K = 10.559. (To

confirm that this is indeed a steady-state solution, you may want to impose this value as
the initial and target capital stock values and solve the model with the Excel solver).
Thus, any finite optimal path will tend to reach the steady state value, stay there or close

to it as long as possible, and then leave it to go back to the target capital stock.
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4. Experiments

Computational economics is not a subject that is easy to learn with the traditional
lecture and exam style of teaching. Rather the crucial learning process is to first solve the
models that other scholars have used, then to repeatedly make minor modifications and
solve the model again in order to gain a clear understanding of how the model works and
its strengths and weaknesses. At a later stage substantial structural changes can be made
to the model so that it is more applicable to an economic situation of interest to the
student.

Perform a series of experiments by modifying one of the parameters
discussed above and observing the effects on the paths for capital stocks, output
and consumption. Though it might be interesting to change more than one
parameter at a time it is usually better when you are first studying a model to only
change one parameter at a time. Save your results from one run to the next so that
you can use Excel to plot the results across runs as in Figures 8 and 9.

A more challenging experiment that you may want to undertake (or may
not want to undertake at this stage) is to treat the technology parameter 6, as
stochastic. For example, you can define it as having a uniform distribution. To do
s0, you can use the Excel function RAND, which generates random numbers
uniformly distributed between zero and one. Be aware that you should generate a

random number for each time period.

5. Further Reading

Jones (1998) provides a systematic introduction to growth models. Azariadis
(1993) and Barro and Sala-i-Martin (1995), at a more advanced level, present a variety of
optimal growth Ramsey type models similar to the one developed in this chapter. Aghion
and Howitt (1997) present a systematic treatment of endogenous growth models. Ros
(2001) develops a presentation of growth models for developing countries. Mercado, Lin
and Kendrick (2003) present a GAMS version of a single-sector growth model like the
one used in this chapter and a multi-sector optimal growth model in GAMS that is an
extension of the Kendrick and Taylor (1971) model. See Judd (1998) Ch. 13 for

perturbation methods of solving growth models.
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Neural Nets in Excel

Much of economics is about finding optimal variables given parameters which
describe human behavior. For example in the optimal growth model that we solved with
Excel the goal was to find the optimal levels of the consumption and capital stock
variables given the parameters of the production function and the utility function.

In this chapter we invert this duality. We begin with the observed behavior and
attempt to find the parameters which permit the specified relationships to most closely fit
the data. Such is the subject matter of econometrics and estimation. However, we will
be looking at a type of estimation that has not been in the mainstream of econometrics but
that developed in other fields and is now increasingly being used to fit economic
relationships - namely neural nets.

Neural networks models are suitable to deal with problems in which relationships
among variables are not well known. Examples are problems in which information is
incomplete or output results are only approximations, as compared to more structured
problems handled for example with equation-based models. Neural networks are
particularly useful to deal with data sets whose underlying nonlinearities are not known
in advance.® Among the many possible applications are forecasting and identification of
clusters of data attributes.

The example we will use here is typical of the applications of neural nets to
economics and finance - how best to predict the future prices of a stock.” The stock we
use is that of the Ford Motor Company. We attempt to predict it by using the share
price of a group of related companies - companies that provide inputs to automobile
production and companies that produce competing vehicles.

The central notion of neural net analysis is that we can use a set of observations
from the past to predict future relationships. Thus we use the closing price of Ford stock

each week over a fourteen week period to "train" the model and then use the parameters

® One of the strengths of neural net methods is that they may approximate any functional shape.
7 Neural nets are not necessarily a better way to predict stock prices than standard econometric methods;
however stock prices offer a clear and motivating example for many students, thus we use that example

here.
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which emerge from the training to predict the Ford stock price in the fifteenth and
sixteenth week. This is done in an Excel spreadsheet using the Solver that we first used
in the growth model.

The chapter begins with an introduction to neural nets followed by the
specification of an automobile stock price model. Then we will introduce the data that is
used in the model, the representation of the model in Excel and the use of the Excel

Solver to find the best parameter values.

1. Neural Nets Models

Neural networks (or, more properly, artificial neural networks) are inspired by, or
up to a point analogous to, natural neural networks. They have three basic components:
processing elements (called nodes or neurons), an interconnection topology and a
learning scheme. From a computational point of view, a neural network is a parallel
distributed processing system. It processes input data through multiple parallel
processing elements, which do not store any data or decision results as is done in standard
computing. As successive sets of input data are processed, the network processing
functions “learn” or “adapt” assuming specific patterns which reflect the nature of those
inputs.

There are many alternative network architectures. Let’s look now in more detail
at the elements, architecture and workings of a neural network as shown in Figure 2.1.
This is known as backpropagation or as a feed forward model. This type of model is the

most commonly used.
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Figure 2.1 Neural Net Layers
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This is a simple network with one input layer with three neurons, one intermediate
layer with two neurons (usually named the “hidden layer”) and one output layer with just
one neuron. A key component of the network is the neuron, an elementary processing
unit which generates output given inputs. It is composed of two main parts: a
combination function and an activation function (Figure 2.2). The combination function
computes the net input to the neuron, usually as a weighted sum of the inputs. The

activation function is a function that generates output given the net input.

ACTIVATION
FUNCTION

COMBINATION
FUNCTION

Figure 2.2 Activation and Combination Functions
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It is standard procedure to constrain the output of a neuron to be within an
interval (0,1). To do so, different functional forms can be used for the activation
function, such as logistic functions, sigmoid functions, etc. Also, a threshold may be
used to determine when the neuron will “fire” an output as the activation function yields
a value above that threshold. Input layer neurons receive data (“signals”) from outside
and in general transmit them to the next layer without processing them. Output layer
neurons return data to the outside, and are sometimes set to apply their combination
functions only.

The learning process of the network consists of choosing values of the weights so
as to achieve a desired mapping from inputs to outputs. This is done by feeding the
network with a set of inputs, comparing the output (or outputs, in case of having more
than one network output) to a known target, computing the corresponding error and
sometimes applying an error function. Then weights are modified to improve the
performance. To do this, a variety of methods can be employed, such as the Newton
method or the conjugate gradient methods in Excel that are to be discussed later in this

chapter.
2. The Automobile Stock Market Model

We begin with the specification of the combination function for the output layer as
q

(1) v, =0,+2 0,4,
j=1

where ), is the output in period ¢ , a, is the hidden node value in period ¢ for node j

14

and the €, 's are parameters. There are g hidden nodes. In our model the ), variables

will be the share price of the Ford Motor Company stock in each of the fourteen weeks in

1997.
The 0's are among the parameters which we are seeking to find. Thea,, which

are the values in time period ¢ at hidden node j, are given by the expression

4q;
(2) a, = S[Z wﬁxi[]
i=1

35



Chapter 2 Neural Nets in Excel

where the x, are the inputs at node i in period ¢ . There are g; inputs at hidden node
J.

The x, are the share prices of the other companies in our example. The w), are
the parameters at the jth hidden node for the ith input and are the second set of
parameters that we are seeking to choose. Thus, in summary, we are given the share
prices of the other companies x, and the share price of the Ford stock ), and are seeking
to find the parameters € and w which permit our functions to most closely fit the data.

What functions are being used? The first function in Eq. (1) is a linear function
and the second function in Eq. (2), the function S, is a sigmoid function. The
mathematical form of this function is

3) S(2)=—

l+e

One can quickly see by examination that this function evaluated at z=0 is

1 1 1
4 S(0) = = =
@ © I+ 1+1 2

and that large negative values of z map to near zero, i.e.

=.007

T =

(5) S(-5)=

l+e

and that large positive values of z map to approximately one, i.e.

1_5 =.993
l+e

(6) S(5)=

So the function has the shape shown in Figure 2.3 below.
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Figure 2.3 The Sigmoid Function

This function is sometimes called the "squasher" and it is quickly apparent why.
Given any data set of numbers which range from very large negative numbers to very
large positive numbers this function will map those numbers to the zero-to-one interval
while maintaining their relative sizes.

The example we present here was developed by Joe Breedlove. This example
contains share prices from the automotive suppliers of Ford in 1997, i.e.

Bethlehem Steel

Owen's Glass

Goodyear Tire and Rubber
and the competing auto makers to Ford, i.e.

Chrysler

General Motors
to predict the share price of the

Ford Motor Company.
At that time stock prices were quoted as fractions rather as decimals and the data in the
spreadsheet reflect this fact. Also, the suppliers and competitors for the Ford Motor
Company have changed since 1997; however the example is useful as a starting place for
learning about neural nets.

The effect from the suppliers is aggregated into one hidden node and the effect

from the competitors is aggregated into the second hidden node as is shown in Figure 2.4.
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Figure 2.4 A Neural Net for Ford Motor Company Share Prices

So for the example at hand

(7) zp=wy X w, R g
and
1

(8) ay = | 4 ¢ (PIFIE w12 2w13%3)
) Z, =Wy, * X, + Wy, *x;
and

1
(10) dp = | 4 ¢ (W2 wdew22%ss)
Also
(1) V. =6,+6a,+06,a,

Thus the optimization problem in Excel is to find the values of

(12) Wi Wigs Wiy, Wy, Wy, 6,6, 6,
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Which minimize the square of the separation between the predicted and actual values of
the y's, i.e.

(13)

n

t=1

2

Norm:Z(yt —j/t)

where n is the number of observations which is fourteen for the example.

3. The Data

Closing stock prices for each week in the months of January, February and March
of 1997 for Ford and for the three suppliers (Bethlehem, Owen and Goodyear) and the

two competitors (Chrysler and GM) were used as shown in Table 2.1.

Week Ford Bethlehem Owen Goodyear | Chrysler GM

Closing y x1 x2 x3 x4 x5
Jan 3 32172 91/4 42172 52 3/8 34 5/8 57 7/8
Jan 10 33172 87/8 49 54 1/2 353/4 61 1/8
Jan 17 33 9 48 5/8 55 34 3/8 60 1/8
Jan 24 33 5/8 85/8 455/8 54 1/4 351/4 62 1/2
Jan 31 321/8 83/8 46 5/8 54 1/2 347/8 59
Feb 7 321/4 8 1/4 451/2 52172 34 1/8 56 3/4
Feb 14 323/4 73/4 44 3/4 53 5/8 34172 58 3/4
Feb 21 33 1/8 77/8 43 3/8 53 3/4 35 1/8 58 1/2
Feb 28 327/8 8 1/4 42 3/8 52 3/4 34 57 7/8
Mar 7 32 1/4 8 1/8 42 5/8 53 3/8 317/8 56 5/8
Mar 14 32 1/8 81/2 42 1/2 537/8 30 1/2 58
Mar 21 313/4 8 1/4 40 7/8 54172 30 1/4 57
Mar 27 307/8 8172 40 1/8 54 1/4 301/4 56 1/4
Mar 31 313/8 8 1/4 40 1/4 52 3/8 30 553/8

Table 2.1 Share Prices of Ford and Related Companies

As mentioned above, at that time stock prices were listed as fractional numbers, rather

than as decimal numbers, as is now the case.
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4. The Model Representation in Excel
Here we follow the representation of a neural net in Excel developed by Hans
Amman and combine this with the model of Ford share prices of Joe Breedlove. The

input file for Excel for this example can be obtained from the book web site. Once you

have downloaded the file you can begin by opening it in Excel as is shown in Figure 2.5.
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Figure 2.5 Spreadsheet for Neural Nets with Stock Prices

Skip down to the section on the data set beginning in line 17 and note that there

are fourteen observations consisting of the weekly closing share price y for Ford shares
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and the five inputs x1 through x5 for the other stocks. These observations are aggregated

using the sigmoid function into the hidden layers at1 and at2 using a formula like

atl =1 / (1 + Exp(-(D20*D5 + E20*D6 + F20*D7)))

where the D5, D6 and D7 are weights that are to be solved for and the D20, E20 and F20 are
the observations x1, x2 and x3. You can see this formula in the spreadsheet by selecting
the 120 cell and then looking at the expression in the formula bar at the top of the
spreadsheet. Alternatively, you can see all of the formulas in the spreadsheet by selecting
Tools:0ptions:Views
and then checking the
Formula
box.

Now back to the pata set section of the spreadsheet. Check the column at2
and you will find that it is similar to the column at1 except that it uses data from the
input data for x4 and x5 to compute the second of the two hidden layer values.

Consider next the output Layer column. It is computed using an expression of

the form

Output = theta0 + thetal * atl + theta2 * at2
where the thetas are weights which are computed in the optimization and that are shown
in the section on output weights near the top of the spreadsheet.

Next look at the Error column in the pata set section of the spreadsheet. This
column is simply the difference

Error = y — Output Layer

and the Norm column is the square of the elements in the Error column. The elements in

the Norm column are summed up in cell M35 at the bottom of the column.

Now we are ready for the optimization problem. It is seen by selecting

Tools:Solve
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and the following dialog box should appear.®

Solver Parameters

Set Target Cell: |5ﬂm =k, Solve I

Equal Ta CMax Mo O valusof: |0 Clase
By Changing Cells:

[$D45:4D$12 EY GUEss

Subject ko the Constraints:

Figure 2.6 The Solver Dialog Box

This dialog box indicates the optimization problem is to minimize the value in cell c15
(which on inspection is set equal to M35 which in turn is the sum of the elements in the
Norm column).

As was discussed earlier, the Excel Solver uses nonlinear optimization methods
(Newton method or conjugate gradient method - see Appendix F). The optimization is
done by changing the elements in the cells D5: D12 until the minimum of the function is
obtained. These cells are shown in Table 2.2 below beginning with the number -2.712

and going down the value column to the element 70.94.

¥ In case the dialog box does not appear, see Appendix C.
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Input | weights | value | start

vector |wll -2.712] -2.87
w12 1.314| 1.356
w13 -0.478| -0.49
w21 0.009| 0.019
w22 0.015| 0.035

Output |thetaO -61.31] -79.3

weights [thetal 39.87| 24.25

theta2 70.94( 93.77

Table 2.2 Parameters

The column to the right which is labeled start shows the numbers that were originally
used when searching for the optimal parameters. They are not used in the present
calculations but are stored there only to indicate which starting values were used. In fact
each time the model is solved the numbers in the value column are used as the starting
point and an effort is made to find values which will decrease the norm. So for a first
experiment you might try changing some of the elements in the value column, selecting

Tools:Solver
and then clicking on the solve button to solve the optimization problem and see if the
parameters return to the original values or converge to some others which have either a
smaller or larger norm.

A point of caution - at times the solution procedure will converge to a result with
a higher norm because neural net estimation problems are sometimes characterized by
nonconvexities and may have local optimal solutions that are not the same as the global
optimal solution. Sometimes the number of local solutions may be very large. Thus in
Excel it may be advisable to use a number of different starting values in order to check
for global convergence. When there are many local optima global optimization
algorithms such as genetic algorithms may be used to perform global exploration of the
solution space — see the chapters on genetic algorithms or see Goldberg (1989).

Also, you can experiment by changing some data elements in the y and x columns
either in an arbitrary manner or by looking up the share prices for these companies in
another time period and seeing whether the parameter values have remained the same.

Finally the spread sheet contains some forecast in the section called

Predictions. These predictions are made for six weeks after the last week for which
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data was collected to 'fit' or 'train' the model. Look at the formulas for cells B36 and c36

that are shown in Table 2.3, which is shown below.

Out-of-sample

Actual |Predictions

4/4/1997| 30 7/8 30.97

4/11/1997| 32 1/4 30.04]
4/18/1997| 34 1/4 31.14
4/25/1997| 34 1/4 31.16

5/2/1997| 34 3/4 31.74

5/9/1997| 36 5/8 31.87

Table 2.3 Predictions

If you select the cell just beneath the Prediction label you will see that the

predictions use expressions like

= D10 + D11*I36 + D12*J36

that translates to

Output = thetal0 + thetal * atl + theta2 * at2
Note in particular that these predictions are done from “out of sample” data, i.e. the data
that is used to fit the model is not used to make the predictions. Rather some elements of
the sample are reserved to test the model after it is fit to a subset of the data.
There is one other topic that needs to be mentioned about the Excel Solver. Select
Tools:Solver:Options

and the dialog box shown in Figure 2.7 will appear.
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Maz Time: ceconds | oK

|
Tterations: 100 Cancel |
|
|
|

Precision: 0.0000000001 Load Model. ..
Tolerance: 1 Yo Save Model,.,
Convergence: 0,001 Help

[ Assume Linear Maodel [ Use Aubomatic Scaling

[ Assume Mon-Megative [ Show Tteration Results
Eskimates Derivatives Search

" Tangenkt " Forward {* Newkan
{* Cuadrakic {* Central " Conjugate

Figure 2.7 The Solver Options Dialog Box

You can use this dialog box to control the number of iterations which the Solver
will use in trying to achieve convergence. Keep the number of iterations low when you
are first working with a new data set and then if convergence is not being achieved raise
this number as necessary. Also, a convergence value of 0.001 is probably close enough
for most of the work you do, but you may require a looser convergence by lowering this
setting to 0.01 in order to obtain convergence in 100 iterations. On the other hand you
may want to keep the convergence value at 0.001 and increase the number of iterations.

Probably the most important element in the Solver Options Dialog Box is Use
Automatic Scaling. In many neural net data sets the various series may be of very
different magnitudes. For example you might have an unemployment series with
numbers of the size of 0.04 and a consumption series with numbers like 625. In such a
case it is wise to check the automatic scaling option. If you do this, the Solver will
automatically scale all of your series so that they are roughly of the same magnitude and
thereby increase the probability that the Solver will be able to find an optimal set of

parameter estimates.
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5. Experiments

There are two kinds of experiments which come to mind with this spreadsheet.
As discussed above, at the simplest level you can change the data in the y and x columns
and see how the weights and predictions change. You could even use your own data of
some kind for doing this. Some students with greater interest in professional sports than
in the stock market have used offensive and defensive statistics from basketball teams to
predict the point spread in playoffs.

Also, you can change the number of input series x1 thru x5 by adding series such
as x6 and x7 for other automotive companies such as Toyota and Honda. However, this
is somewhat harder to do than the experiments discussed above since it involves making
changes in the formulas in the spreadsheet. On the other hand this is a very good way to

really learn how a neural net is represented and solved in a spreadsheet.

6. Further Reading

Sargent (1993) provides an introduction to neural nets. Garson (1998) presents
an introduction to and a systematic coverage of the use neural networks in the social
sciences. Beltratti, Margarita and Terna (1996) also present an introduction to neural

networks and develop a variety of models for economic and financial modeling.
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Partial Equilibrium in Mathematica

It is customary to begin the study of microeconomics with market behavior in a
partial equilibrium setting. This is done by analyzing the determination of price and
quantity in a single competitive market under the assumption that all other influences
from the rest of the economy remain constant. This study usually begins with the theory
of the consumer and the derivation of demand curves and then proceeds to the theory of
the firm and the derivation of supply curves. Following this demand and supply are
brought together to study market equilibrium. This is the standard approach we will
follow here. We will mainly be interested in the derivation of analytical results and
graphical representations, something for which Mathematica is a very useful tool due to

its power to deal with symbolic mathematics problems and to its plotting capabilities.

1. Utility and Production Functions

The starting point of consumer theory is the specification of preferences and their
representations by means of a utility function, while the starting point of the theory of the
firm is the specification of technology and its representation by means of a production
function. While many theoretical results are derived for very general forms of those
functions, in most examples, and also in applied work, it is common to work with a few
functional specifications. Leontief and Cobb-Douglas functions are probably the most
popular, and they can be used to represent preferences or technology. In the following
we will present each of them. We will focus on the two-good case since this case can be
easily handled in graphical representations, though the results can be generalized to more

goods and the results displayed analytically.
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1.1 Leontief Function

A Leontief function for a two good case is
(1) A (xl s Xy ) = min(alxl »dyX, )

where fis the function, g, and a, are parameters, and x,and x, are interpreted as goods

consumed, if we use the function to represent preferences as in consumer’s theory.
Alternatively, they may be interpreted as inputs if we use the function to represent
technology as in the theory of the firm. This function specifies that no substitution is
possible between goods or between inputs. The consumer will always spend all of his or
her income in fixed proportions between the two goods, and a similar behavior will be
displayed by the firm in connection with its inputs. As we will see later, this will imply a
peculiar form for the consumer’s indifference curves and for the firm’s production
isoquants.

The graphical representation of a function like this in Mathematica is
straightforward, and it is available in the Leontief.nb file in the book web site. You can
begin with that notebook file if you are already somewhat familiar with Mathematica. Or
if you are a first-time Mathematica user, we recommended that you type in the
commands. The instructions for running Mathematica are in Appendix B.

We begin by assigning values to the parameters ¢, and a,. In this case we assign

the value 1 to both of them. Start Mathematica and on the Untitled-1 window that opens
type

al =1
followed by Return and then
a2=1

followed by shift-Enter Mathematica acts as an interpreter and commands are
processed one at a time. When you use Return at the end of the line you effectively ask
Mathematica to postpone the processing while you proceed to enter another command on
the next line. When you use shift-Enter at the end of the line you ask Mathematica to
process all of the input since the last shift-Enter. Mathematica will then respond by

converting your input to

IN[1]:= al = 1
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The symbols IN[]:= in Mathematica denote input and the other expressions are the

input to be evaluated. The output statements corresponding to the input are

Out[1]:
Out[2]:

1 1
= e

Thus Mathematica displays as output the result of the assignments. Notice that separate
output is generated for each statement, no matter if we wrote the inputs in a single input
prompt or in separate ones. Notice also the sequential numbering of inputs and outputs.
The outputs of the previous evaluations are quite simple and redundant. To avoid
the display of output, we could have added a semicolon ““ ; ” at the end of the statement
whose output we wanted to suppress.
Next we assign to the variable Leontief the corresponding Mathematica function

Min[] which yields the numerically smallest of its arguments.

IN[3]:= Leontief = Min[al x1, a2 x2]

Notice that in Mathematica two symbols can be multiplied either by using the asterisk
operator as al*x1 or simply by juxtaposing the two symbols with a space between them
as al x1. When you finish typing the line above be sure to strike shift-Enter. This

will yield the output

OUT[3]:= Min[x1,x2]

Notice that Mathematica replaced the parameters a1 and a2 with their numerical values
of 1 while keeping everything else the same since the evaluation of the statement cannot
be carried out, for the time being, beyond this point.

Next we ask Mathematica to generate a three-dimensional plot of the function
within given numerical intervals for x,and x, using the Mathematica function
Plot3D[f, {x,xmin, xmax}, {y, ymin, ymax}] where f is the function to be plotted over

the variables x and y between their specified minimum and maximum values. So type

IN[6]:= Plot3D[Leontief, {x1,0,1},{x2,0,1}]
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Be careful not to misspell “Leontief” or Mathematica will give you more error messages
than you care to see. Also, be sure to end the line with shift-Enter. The resulting

graph is shown in Figure 3.1
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Figure 3.1 Leontief Function
Finally, with the statement
IN[8]:= ContourPlot [Leontief, {x1,0,1}, {x2,0,1}]

we obtain the contour plot of the Leontief function shown in Figure 3.2, which show us
the consumer’s indifference curves or, equivalently, the firm’s isoquants. Contour plots
produced by Mathematica are by default shaded, and regions with higher functional
values are lighter. Contour curves for the Leontief function form ninety degree angles.
Notice that the graph shows the kinks with some error as we get farther away from the

origin.
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L -

0.8

0.6

0.4

0.2

Figure 3.2 Leontief Function Contour Lines

Every time you run a program in Mathematica it is important to wipe out any
previous values associated with the parameters and variables of the problem. This could

have been achieved by adding the following statement at the beginning of the program
IN[]:= Clear(al,a2,xl,x2,Leontief];
1.2 Cobb-Douglas Function

A Cobb-Douglas function with constant returns to scale (we use a special case) is
1-
@ Sox,) = xf 277

where f is the function, x,and x,are goods or inputs, and p is a parameter. In consumer

theory p and I- p represent the consumer’s expenditure shares on each good. In the
theory of the firm, since the two exponents of the inputs add up to one, it implies that the
technology the functions represent displays constant returns-to-scale. Unlike the Leontief
function, this function allows for smooth substitution between goods or between inputs.
The Mathematica statements corresponding to the graphical representation of the
Cobb-Douglas function are shown below and are available in the cobbbouglas.nb file in

the book web site. This time we recommend that you open the input files and use it to
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follow the discussion. When you open the notebook file you will see a bunch or brackets
on the right hand side of the window. You can execute the program by selecting these

brackets and striking Shift-Enter. For example selecting the bracket opposite the lines

Clear[xl,x2, p1;

p = 0.7;

Ch = x1"p X2 (1-p);
Plot3D[CD, {x1,0,1},{x2,0,1}]

ContourPlot [CD, {x1,0,1}, {x2,0,1}]

And striking Shift-Enter causes they lines to be processed and results in their being
reprinted as
In[l]:=
Clear([xl,x2, p]1;
p = 0.7;
Ch = x1"p X2 (1-p);
Plot3D[CD, {x1,0,1},{x2,0,1}]

ContourPlot [CD, {x1,0,1}, {x2,0,1}]

with input prompt In[1] := now showing. In this way you can use the notebook files to
modify the input and rerun the program. For example you might have changed p from
0.7 to 0.8 and then selected the bracket to its right and type Shift-Enter. Be aware
however, that only that part of the program covered by the bracket you selected will be
rerun. Therefore if you want to redo the plots you must select one of the more inclusive
brackets on the right before striking shift-Enter.

The statements above follow the pattern presented in the previous section. We
named the function cp and we have assigned a value of 0.7 to the p parameter. Unlike
the program for the Leontief function, here we put all the statements together in one input
prompt, and suppressed output using semicolons at the end of the first three statements.
Notice that Mathematica allows you to enter Greek letter symbols like p. To do so, and
also to enter formulas in a mathematical form instead of the text form we used here, you
have to use a palette you can access from the File/Palettes/BasicInput main menu option.

Figures 3 and 4 show the corresponding three dimensional and contour graphs.
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Figure 3.3 Cobb-Douglas Function

Figure 3.4 Cobb-Douglas Function Contour Lines
If you are following along with Mathematica, you might close all the files you have

opened so far to reduce the clutter on your computer desktop and give yourself a fresh
start in the next section.
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3. Consumer Theory

The standard theory of consumer’s behavior poses the problem faced by the
consumer as one of maximizing utility subject to a budget constraint. That is, given a
bundle of goods, their prices and a certain amount of income, the consumer buys those
goods according to her preferences while trying to maximize her utility, a quantity that is
supposed to measure the level of consumer satisfaction.

In formal terms, and for a two-good example that can be easily generalized, the

problem can be stated as

3) max u(xl,xz)

subjectto  p,x, + p,x, =m

where u is the utility function, x,and x, are goods, p, and p, are prices and m is income.

From now on we will work with a Cobb-Douglas function. Thus, using (2) the

problem above can be restated as

max u=x/x,"

4) .
subjectto p,x, + p,x, =m
An equivalent but simpler expression of the utility function is obtained taking logs
(5) logu = p log(x, )+ (1— p) log(x,)

We start the Mathematica program of the consumer’s problem - available in the

Consumer.nb file - by inputting the utility function

In[]:= logu = p Log([xl] + (l1-p) Log[x2];

and the budget constraint

In[]:= bc =m - (pl x1 + p2 x2);

Notice that we give a name to the budget constraint then assign to it all its

elements. We soon will see the usefulness of doing that.
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The next step is to form the Lagrangian corresponding to the maximization

problem. Thus we write
In[]:= eql = L == logu + A bc

Notice that we assign to the variable eqL the expression
L == logu + A bc. The presence of the double equal symbol “==" indicates that the
expression is an equation, not an assignment to the variable 1. The corresponding output
is the content of the variable eqL with the expressions for 1ogu and bc being replaced by

their definitions.’

outl[]= L =(m - pl x1 - p2 x2)A+ p Log[xl] + (1-p) Log[x2].

If instead of writing the budget constraint in the way we did above, we write it in

a more standard way i.e.
In[]:= m = pl x1 + p2 x2;
to later write down the Lagrangian as
In[]:= eqL = L= logu +A (m - pl x1 - p2 x2)
the output generated by Mathematica would be
Out[]= L= pLog[xl] + (I-p) Log[x2]
Indeed, when evaluating the part of the input expression corresponding to
(m - pl x1 - p2 x2), Mathematica will replace the variable m with its definition.
Then this part of the expression would become (p1 x1 + p2 x2 - pl x1 - p2 x2).

Thus, it would be equal to zero. It was to avoid this kind of problem that we defined the

variable bc in the way we did above.

? It is common in Lagrangian functions to put the objective term first followed by the lambda and the
constraint. However, given the sequence of commands we used, Mathematica does things in reverse order.

This causes no problem except making the output below slightly harder to comprehend at first.
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Once we form the Lagrangian, we compute the first order conditions of the

problem as follows

In[]:= focl = D[egL, x1]
foc2 = D[eqL, x2]
foc3 = D[egl, A]

The Mathematica function b computes the partial derivatives of a function. In this
case, we ask Mathematica to compute the partial derivatives of the expression eqL w.r.t.

the variable of choice. The corresponding outputs are

out[]= 0 == —pla-2

x1

1-p
Out[]= 0 == —p2A+

x2
Out[]= 0 ==m - pl x1 - p2 x2

From the system of equations formed by the first order conditions we can obtain
the goods’ demand functions. The Mathematica function solve allows us to do so.
Within this function, we first have to specify the equations and then the variables over

which they are solved.
In[]:= Solve[{focl, foc2, foc3}, {x1,x2,A}]

The previous statement generates the output

1 mp m-mp
out[]= Ao xlo x2S
m p p

Finally, we want to plot the good’s demand functions. Since the standard
procedure is to plot quantities in the horizontal axis and prices in the vertical axis, we
have to solve the demand functions for the corresponding prices. Starting with good 1,

the Mathematica statements are
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In[]:= pl = pm / x1;

PlOt[pl /. {p~0.7, mHO.l},
{x1,0.01,0.1},
AxesLabel - {"x1", "pl"},

PlotLabel - "Demand Curve for x1"]

In the first line of the P1ot [] function the replacement operator “/.” is used.

This operator, whose general form is “expression /. rules” applies a rule or list of
rules in an attempt to transform each subpart of an expression. In our case the
transformation rules are o — 0.7 and m - 0.1 which are used to give particular values
to the parameters p and m. To write the arrows, you must type —> as a pair of
characters, with no space in between.

The second line of the P1ot function contains the specification of the range for
the horizontal axis, writing first the name of the corresponding variable then the
minimum and the maximum values for the plot. Finally, the last two lines label the axes
and assign the plot a label by means of the options AxesLabel and PlotLabel. The plot

generated is shown in Figure 3.5.

pl Demand Curve for xl

x1

Figure 3.5 Demand Curve for x1

In an analogous way, we generate a plot for the demand function of good =2
which is shown in Figure 3.6.
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In[]:= P2 = (m - pm) / x2;

PlOt[p2 /. {p~0.7, mHO.l},
{x1,0.01,0.1},
AxesLabel - {"x2", "p2"},

PlotLabel - "Demand Curve for x2"]

p2 Demand Curve for x2
51
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Figure 3.6 Demand Curve for x2

3. The Theory of the Firm

The standard theory of firm’s behavior assumes that the main goal of the firm is
to maximize profits given technology and the prices of output and inputs. To develop a
simple example, let’s assume that the firm produces a single output x, with price p,,

using labor L as a single input and whose price is the wage w. Let’s assume also that the
production function is of the form 7 L” where T and b are parameters and let’s denote

profits by 7.
In formal terms the problem of the firm can be stated as

max 7= px,—wL

6
(©) subjectto x, =T L
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Substituting the production function into the profit function we obtain the first
input for the Mathematica representation of the problem - available in the Firm.nb file -

as
In[]:= pi =pl T L"b - w L;

Notice that we wrote pi instead of 7 since the Greek letter 7 is a reserved symbol in
Mathematica.

Next we solve the first order condition of the problem for . By means of the D[
] function we compute the partial derivative of the profit function w.r.t. the variable labor
then set the result equal to zero. Finally, we nest this operation within a solve[ ]

function.
In[]:= Solve[D[pi,L]1==0,L]

The resulting output is the labor demand function

1

W -1+b
outl[]= L—>
bplT

Next we assign the expression for the labor demand function to the temporary
variable tempL. To do so we use the replacement operator “/.”. The % symbol in the
statement below refers to the last result generated, and [ [1]] which refers to the first
solution from the output list, which in this case contains only one solution. Thus, tempL
will be equal to L where L is replaced by the solution generated in the previous output

line.

Substituting tempL - that is, the labor demand function - into the production
function in Eq. (6) we obtain the supply function for x1 which we assign to the temporary

variable tempxl.

In[]:= tempxl = T tempL”b
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The resulting output is

1 b

w -1+b
outl[]= T
bplT

Having obtained the good supply and the labor demand functions, we want to plot
them in the standard way, that is with price and wage in the vertical axis respectively.
Begin with the good supply function. In the next two statements we (1) create an
equation setting x1 equal to the expression contained in the temporary variable tempx1

and (2) assigning to the variable plotx1 the result of solving the equation for p1.

In[]:= egxl = x1 == tempxl;
plotxl = Solvelegxl,pl]

The result is the inverted good supply function where p1 appears as a function of

x1.

1 1-b

(xljb

wll 2

T

Out[]= {{fpl>———"—}1}
bT

Finally, we assign the result above to the temporary variable tempp1, give
numerical values to the parameters and generate the corresponding plot, obtaining the

graph shown in Figure 3.7.

In[]:= temppl = pl /. plotx1[[1]1]1;
Plot[temppl /. {b - 0.4, T - 1, w —» 100} ,
{x1,0.01,0.1},
AxesLabel - {"x1", "pl"},

PlotLabel - "Supply Curve for x1"]
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pl Supply Curve for x1

x1

Figure 3.7 Supply Curve for x1

In a similar way, with the statements below we generate the plot for the labor

demand curve shown in Figure 3.8.

In[]:= eql = L == templL;

plotL

Solvel[eqL, w];

tempw = w /. plotL[[1]]

Plot[tempw /. {b - 0.4, T - 1, pl - 1},
{L,0.01,0.1},

AxesLabel - {"L", "w"},

PlotLabel - "Labor Demand Curve"]

w Labor Demand Curve

0.02 0.04 0.06 0. .1

Figure 3.8 Labor Demand Curve

Now we are in a position to turn our attention to the market equilibrium.
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3. Market Equilibrium

Having derived demand and supply curves, it is time to put them together to
analyze the resulting market equilibrium. We will do so for the case of good x1. We
begin from the corresponding demand and supply curves obtained in the previous
sections with a slight modification: the variable p1 from the demand curve will be
renamed p1d, while the variable p1 from the supply curve will be renamed pis.

We begin the Mathematica representation of the model of partial market

equilibrium - available in the MarketEquil.nb file - with the statements

In[]:= pld = pm / x1;
pls = w (((x1 / T)~(1 / b))~(1-b)) / (b T);

Then we solve for the equilibrium quantity when demand equals supply
In[]:= equilxl = Solve[pld == pls,x1]

obtaining as output

1/by b
Ooutl[]= {{Xl—é( 5 ] }}

Then the equilibrium price can be obtained by substituting the solution for x1 into p1d

In[]:= equilpl = pld /. equilx1[[1]]
/by b

Out[]= m P
bmp

Next we assign values to the parameters and to the wage variable, and we
compute the corresponding numerical values for the equilibrium quantity and price. To

do so, we write the variables equilx1 and equlp1 without semicolons, since Mathematica
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will automatically replace each parameter with its value and perform the corresponding

calculations.
In[]:= o= 0.7;
m=0.1;
T =1;
b =10.4;
w = 100;
equilxl
equilpl
Outl[]= {{x1 - 0.0379196}}
Outl[]= 1.84601

Finally we plot jointly the demand and supply curves, obtaining the graph shown

in Figure 3.9

In[]:= Plot[{pld, pls},
{x1,0.01,0.1},
AxesLabel - {"x1", "pl"},

PlotLabel - "Market for x1"]

pl Market for x1

x1

Figure 3.9 Market for x1
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Once we obtained the graphical representation of market equilibrium, it is
interesting to perform some comparative static exercises. To do so, we use a statement of
the form

Plot [Evaluate[Table[ ] 1 ]

This statement nests three Mathematica functions. The function

Table[expr, {i, imin, imax, di}]

makes a list of the values of an expression expr with i running from imin to imax in

steps of di.. The function

Evaluate[expr]

causes the expression expr to be evaluated. Finally the function p1ot[ ] is the one we

have used before. Thus, the statement below

In[]:= Plot [Evaluate[Table[{pld ,pls },{T,1,1.2,0.1}11,
{x1,0.01,0.1},
AxesLabel - {"x1", "pl"},

PlotLabel - "Market for x1"]

will first generate a list of three elements, one corresponding to each value of the
technology parameter T, then evaluate the expression in each element of the list, and
finally generate the plot shown in Figure 3.10.

pl Market for xl
8,

x1
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Figure 3.10 Comparative Statics Changing Parameter T

Figure 3.11 shows the result of a similar experiment, but changing the demand

function share parameter o in the following way

{p,0.5,0.9,0.2}

pl Market for xl

x1

Figure 3.11 Comparative Static Changing Parameter p

Finally, we perform the same comparative static exercise now with an animated

plot using the following statement

In[]:= Table[Plot[{pld ,pls 1},
{x1,0.01,0.1},
PlotRange — {0,8},
AxesLabel - {"x1", "pl"},

PlotLabel - "Market for x1"1,{T,1,1.2,0.1}]

Notice that here we have a p1ot [ ] function nested within a Table[ ] function.
Thus, the table will contain a sequence of plots controlled by the evolution of the T
parameter. The output of the statement will be such a sequence. Double click on the first
graph of the sequence and you will see the resulting animation. You can control the
speed of the animation with the buttons that will appear at the bottom of the notebook.

Notice that here we fixed the range for the vertical axis with the option
pPlotRange. Otherwise, each plot may generate variable values for that range, creating

the false impression that the demand curve is shifting also (to see this, eliminate that
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option from the statement and see what happens). Also notice that if you perform other
comparative static exercises changing any of the parameters other than T, you may have
to adjust the P1otRange option accordingly as well as the range for x1, setting different

minimum and/or maximum values.

4. Experiments

A simple set of experiments would be to perform more comparative static
exercises changing some model parameters. You may also want to add parameters to the
model (e.g. taxes) and see how this affects the outcome of the comparative statics.

Another popular function used to represent preferences or technology is the
Constant Elasticity of Substitution (CES) function

1

f(xl,x2)=(xf‘ +x§’);

As we did we the Leontief and Cobb-Douglas functions, you may want to
generate the contour plot of this function and see what happens as the parameter o goes
from a value near zero to one near minus infinity.

Finally, you may want to develop an analysis analogous to the one we did in this
chapter substituting the CES function for the Cobb-Douglas function.

5. Further Readings

For an introduction to Mathematica see Wolfram (2003). Consumer theory and
the theory of the firm as well as competitive market equilibrium are at the core of most
microeconomics textbooks. Later in this book we will deal with duopoly models in

Mathematica and general equilibrium models in GAMS.
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Transportation in GAMS

The transportation problem was made famous among economists by the work of
Tjalling Koopmans (1951) and of Robert Dorfman, Paul Samuelson and Robert Solow
(1958) a number of whom won the Noble Prize in economics. This kind of model is a
most natural way to pose the problem of finding the most efficient place and manner of
producing goods and shipping them to customers. The model posits supplies of a good
at a number of plants and demands for that good at a number of markets and seeks to find
the amount that each plant should ship to each market in order to minimize the
transportation cost. Also, the transportation model is the foundation for much more
elaborate linear programming industrial models such as those for steel, oil, aluminum,
fertilizer and computers. These models focus not only on transportation but also on
production and investment.

We begin with a mathematical representation of the transportation problem and

then move to a discussion of how this model can be represented in the GAMS software.

1. Mathematical Representation

As an example (adapted from Dantzig (1963)) for this chapter we use the fishing
industry with canneries in Seattle and San Diego and markets in New York, Chicago and
Topeka (Kansas). In this model we seek to find the pattern of shipments from the
canneries to markets which will have the least transportation cost while satisfying the

fixed demand at the markets without shipping more from any cannery than its’ capacity.
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The model is stated mathematically as:

For the sets
! plants = {Seattle, San Diego}
J markets = {New York, Chicago, Topeka}

find the

x; shipments from plant i to market j

to minimize the transportation cost

(1) z:ZZnyv

where
¢y transportation cost from plant i to market j per unit shipped
The criterion function (1) is minimized subject to the constraints that no more be shipped

from each plant than its capacity

(2) injéai iel

jeJ
where
a. the capacity of plant i

l

and that no less be shipped to each market than its demand

3) Dox,zb jelJ

iel
where
b, the demand at market j

while requiring that all the shipments be non-negative.
4) x, 20 iel jelJ
Next we turn to the representation of this model in GAMS.
2. GAMS Representation
GAMS (General Algebraic Modeling System) was developed at the World Bank

by Alexander Meeraus and his colleagues. The user's guide for this system is by Brooke,
Kendrick, Meeraus and Raman (1998). GAMS was designed as a "set driven" high-level
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language that would facilitate the development of linear and nonlinear programming
models of industry, agriculture and finance. Thus it was not necessary to write a
separate equation for each commodity, time period, crop or equity but rather only to
create equations and variables indexed over sets of commodities, time periods, crops,
equities etc. In this way a model with thousands of equations could be represented in a
GAMS statement with only a few set specifications, variables and equations - all of
which might fit on a single page. This not only decreased the tedious, labor-intensive
part of model development but also substantially reduced the likelihood of errors in the
model specification.

Also, GAMS has become widely used because of the ability to represent in it any
model that can be expressed in algebra. In particular there are now many computable
general equilibrium, agricultural and financial models in GAMS as well as a wide variety
of other types of economic models. For a listing of several hundred GAMS models see
the GAMS library that comes with the software or access the library at

http://www.gams.com
These models can be downloaded and solved with the GAMS software.

Many readers of this book will be running GAMS on their home computers or in

a computer laboratory in a university. The instructions for fetching the input file and
running the program on a personal computer are contained in Appendix A at the end of
the book.

The GAMS program corresponding to the transportation problem is available at
the book web site under the name trnsport.gms as well as in the GAMS library under
that same name. (Notice that “transport” is misspelled in this filename.) Also, an
extended tutorial on this model is available in the GAMS User’s Guide, i.e. Brooke,
Kendrick, Meeraus and Raman (1998).

The GAMS language uses a syntax that is reasonably close to mathematics. For

example the criterion function for the transportation model is written in mathematics as

) z= Z Z Cy Xy

iel jeJ

and in GAMS as
cost.. z =e= sum((i,3), c(i,3) * x(i,3)) :

In mathematics equations are usually numbered while in GAMS they are named,
thus equation (5) gets the name cost and the two dots after cost tell GAMS that the
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name has been completed and the equation is about to begin. Also, GAMS has an
unusual way of representing an equal sign, namely =e=. The reason for this is that
GAMS also includes less-than-or-equal signs and greater-than-or-equal signs that will be
discussed below.

The GAMS language does not make a distinction between set names such as 1
and the indices of the elements which belong to the sets such as i. This results partly
from the fact that GAMS, unlike most programming languages, does not make a
distinction between upper and lower case letters. Thus one could imagine writing the

right hand side of the equation above in GAMS as
sum((I,J), c(i,3) * x(i,3)) 7

to indicate that the sum is over the sets 1T and J while the parameter ¢ and the variable x
are defined with the subscripts (i,3). However, that is not necessary in GAMS and the
user learns to read symbols like (i,73) in GAMS as sometimes representing set names
and sometimes representing indices.

Finally, in mathematics the simple juxtaposition of two symbols like ¢ and x
indicates that they are multiplied times one another while in GAMS, as in most other
programming languages, it is necessary to explicitly indicate multiplication with the
asterisk, i.e. *.

Similarly, the capacity constraint is written in mathematics as

(6) lejSai iel

jeJ

and in GAMS as
supply (i) .. sum (j, x(i,3)) =1= a(i) ;

So here equation (6) gets the name supply and the (i) that follows it indicates that there
is one constraint of this type for each element in the set 7, i.e. for each plant. Thus the
(i) next to the equation name in GAMS plays the same role as the symbols i € [ play in
the mathematics. Also notice that the less-than-or-equal-to sign, < in mathematics
becomes =1= where the 1 here indicates the letter 1 and not the number 1.

The transportation model as stated above could be for a model with two plants

and three markets or for a model with 50 plants and 200 markets since we have so far not
specified the sets / and J nor the parameters a, b and c¢. This is one of the powers of
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the GAMS language, i.e. one can write a model prototype which can be used for any of a
number of industries and then specialize it in the set specifications and the parameter
definitions to a particular industry in a chosen country.
So consider next how the sets are specified in the GAMS language. In this model
there are two plants and three markets. The set of plants is specified in mathematics as
I = {Seattle, San —Diego}
The equivalent GAMS statement is
i = / seattle, san-diego /
GAMS uses forward slashes as set delimiters while mathematics use braces.
Once the sets are specified then the data can be input using the parameter and
table keywords as shown below. Consider first the use of the parameter keyword to

input the capacity and demand data.

Parameter
a(i) capacity of plant i in cases
/ seattle 350
san-diego 600 /
b(j) demand at market j in cases
/ new-york 325
chicago 300
topeka 275 / ;

¢e_ 9

Observe that the parameter “a” is followed by the set over which it is defined, i.e. it is
written as “a (1) ”. As was mentioned earlier in the book, it is not necessary to include
the set here; however it is a useful precaution because when the set is provided the
GAMS complier can check to be sure that all the element names used in the input of the
parameter do indeed belong to that set.

Next consider the input of the distance data with the statement

Table d(i,j) distance in thousands of miles
new-york chicago topeka
seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4

Here the table keyword is used to input the matrix of transportation distances between

the markets and the plants.
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Next consider the scalar keyword that can be used to input a scalar quantity, in

this case, £, which is freight cost per case per thousand miles.

Scalar f freight in dollars per case per thousand miles /90/ ;

This scalar in turn can be used in a parameter statement to compute the transport cost per

case between each plant and market as shown below.

Parameter c(i,j) transport cost in thousands of dollars per case ;
C(llj) = f * d(llj) / 1000 ;

Notice here that the new element c (i, j) is first declared with a parameter statement and
then defined with a mathematical statement in which f is multiplied by d and divided by
1000. Here you see that the parameter keyword in GAMS is much more versatile than
just being used to input vectors.

The computation of the c (i, j) parameter above illustrates one theme in the use
of the GAMS language. The user is encouraged to enter the raw data for the model in the
GAMS statement and to show explicitly all the mathematical transformations which are
performed on that data before it become a part of the model equations.

Consider a word of warning about the data for the transportation model from the
GAMS library. Notice that the distances in Table d (i, j) above are listed as the same
from Seattle to New York and from San Diego to New York, i.e. 2,500 miles. This can
cause multiple optimal solutions to the model and this can be confusing. Therefore,
when first using this model it is probably wise to make these distances different. For
example one might change the number for the Seattle to New York distance from 2.5
(thousand miles) to 2.7 (thousand miles).

Next consider the variables and equations part of the GAMS representation that is

shown below.
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Variables
x(1i,J) shipment quantities in cases
z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations
cost define objective function
supply (1) observe supply limit at plant i
demand (7J) satisfy demand at market j ;
cost .. z =e= sum((i,3j), c(i,3)*x(1i,3)) =
supply (i) .. sum(j, x(i,3)) =1= a(i) ;
demand (j) .. sum (i, x(i,3)) =g= b(3) ;

The keyword variables is used to declare the variables and in the process one indicates

the sets over which the variables are defined. For example the variable x is defined for

the set of plants / and the set of markets J soitis listed as x(i,j). The restriction

that the shipment variables must be non-negative as shown in Equation (4) above is

carried in the Positive Variable x statement.

The names of the equations are listed after the Equations keyword along with the

sets over which they are defined. For example there is a supply equation for each plant

so that equation is defined as supply (i).

The final statements in the GAMS specification are listed below.

Model transport /all/ ;
Solve transport using lp minimizing z ;

Display x.1, x.m ;
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The Model keyword is used to give the model a name - in this case transport - and to
indicate the equations which are included in the model. One may either list a subset of
the equation names here or if the model consists of all the equations listed above then the
all keyword can be used. The model is then solved with the so1lve, using and
minimizing keywords. From a mathematical point of view, the transportation problem
is a particular case of what is known as “linear programming”, that is, a problem in which
one seeks to optimize a linear objective function subject to a set of linear constraints. For
an introduction to linear programming see Appendix G. The 1p in the solve statement
tells GAMS to use its linear programming solver to compute the solution to the model
and the z is the criterion value that is to be minimized. Since the model contains indexed
equations, GAMS will use a stacking method as discussed in Appendix H.

Finally, the display statement requests that the activity levels for the shipment
variables, i.e. x. 1 and the marginal values x.m for these same variables be displayed in
tables.

Learning all this syntax for a programming language may at first seem
complicated. However, the structure of the model helps to simplify things. Notice in the
complete GAMS statement of the model which follows this paragraph that the model is
defined in steps

first the sets

then the parameters
then the variables
then the equations

and finally the model and solve statements.
It takes a while to adjust to all the details but the overall structure and form of a GAMS

representation of a model can be grasped quickly.

The entire GAMS listing of the model is presented below.
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$Title A Transportation Problem

Sets
i canning plants / seattle, san-diego /
J markets / new-york, chicago,
Parameters
a(i) capacity of plant i in cases
/ seattle 350
san-diego 600 /
b(j) demand at market j in cases
/ new-york 325
chicago 300
topeka 275 / ;
Table d(i,J) distance in thousands of miles
new-york chicago
seattle 2.5 1.7
san-diego 2.5 1.8

Scalar £ freight in dollars per case per thousand miles

Parameter c(i,j) transport cost in thousands of dollars per case ;
c(i,j) = £ * d(i,3) / 1000
Variables
x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations
cost define objective function
supply (1) observe supply limit at plant i
demand (j) satisfy demand at market j

cost .. z =e= sum((i,]J), c(i,73)*x(1i,3))

supply (i) .. sum(j, x(i,3J)) =1= a(i)

demand (j) .. sum (i, x(i,3)) =g= b(3j)

Model transport /all/

Solve transport using
Display x.1, x.m ;

Chapter 4 Transportation Model in GAMS

lp minimizing z

(TRNSPORT, SEQ=1)

’

topeka / ;

topeka
1.8
1.4

’
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This completes the discussion of the input for the model. Next we turn to the way to

solve the model and a discussion of the results.

3. Results

As was discussed above, Appendix A contains instructions on how to access the
*.gms file from the GAMS library, how to solve the model and how to examine the
results by using the listing file, *.Ist. This last step can seem complicated at first because
the GAMS output files contain a substantial amount of information about the structure of
the model and its solution. However, it is simple enough to jump around in the file to
examine the key parts.

One should first locate the Solve Summary part of the output. To do this search
in the editor for the string "soLvErR sTaTus". When you do so you will see a section of
the output that looks like

S OLVE SUMMARY
MODEL TRANSPORT OBJECTIVE 7Z
TYPE LP DIRECTION MINIMIZE
SOLVER BDMLP FROM LINE 70
****x SOLVER STATUS 1 NORMAL COMPLETION
***x*x MODEL STATUS 1 OPTIMAL
***xx OBJECTIVE VALUE 153.6750

Each time after you solve a GAMS model you should check this section of the output to
be sure that the model was solved successfully. The words NORMAL COMPLETION here
indicate that is the case. If the solution procedure was not successful you will find words
like INFEASTBLE or UNBOUNDED. Be on guard against the fact that the GAMS output will
provide a solution to the model even when that solution is infeasible. However, the
solution provided would not be the optimal solution but rather the last one tried before it
was determined that the solution was infeasible. For this reason it is particularly
important to check the soLVER sTATUS and MODEL STATUS after each run and before the

solution variables are used.

77



Chapter 4 Transportation Model in GAMS

Next skip down the output across the sections labeled "---- EQu" until you get to
the sections labeled "---- var" which looks like
-—--- VAR X shipment quantities in cases

LOWER LEVEL UPPER MARGINAL

SEATTLE .NEW-YORK . 50.000 +INF
SEATTLE .CHICAGO . 300.000 +INF .
SEATTLE .TOPEKA . . +INF 0.036
SAN-DIEGO.NEW-YORK . 275.000 +INF .
SAN-DIEGO.CHICAGO . . +INF 0.009
SAN-DIEGO.TOPEKA . 275.000 +INF

The interesting part here is the activity level of the shipment variables x in the column
labeled LEvEL. This shows, among other things, that 50 cases were shipped from Seattle
to New York and 300 cases were shipped from Seattle to Chicago. This is the solution
of the model that we were looking for. These same results are shown a little further
down in the output in a section labeled vaRIABLE x.L which is the result of the display

statement in the GAMS input. That output is shown below.

- 72 VARIABLE X.L shipment quantities in cases
NEW-YORK CHICAGO TOPEKA

SEATTLE 50.000 300.000

SAN-DIEGO 275.000 275.000

This table is somewhat easier to read than the default output and thus you can see
the reason that most GAMS input files end with a series of display statements. These
tables are easily found since they are at the end of the long GAMS output so the user can
quickly scroll to the bottom of the file and find the key results. However, they will be
there only if you remember to add a display statement at the end of the GAMS input

statement.
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There is just one other key piece of the GAMS output file which we should look
at before we turn our attention elsewhere. It is in the "---- EQU" section that we
skipped over earlier and that you can quickly find by scrolling back up to it or by
searching for it with the editor. The part of interest is the equation-wise output for the

demand constraints that looks like

---- EQU DEMAND satisfy demand at market j
LOWER LEVEL UPPER MARGINAL
NEW-YORK 325.000 325.000 +INF 0.225
CHICAGO 300.000 300.000 +INF 0.153
TOPEKA 275.000 275.000 +INF 0.126

In this case we are interested in the MARGINAL column. These values are called "shadow
prices" or "dual" variables and have important economic meaning. They show us that
for each additional unit of demand at New York the objective function will have to
increase by .225 but by only .153 at Chicago and .126 at Topeka. These numbers are
like prices and indicate that it is substantially more expensive to supply fish to New York
than to Chicago or Topeka. Similar numbers in electric power models can be used by
regulators to determine the price of power in cities that are nearby or far away from
electric power generation facilities such as dams, nuclear plants or coal burning plants.
So in summary, when looking at the GAMS output you should first check to be
sure that the problem was solved satisfactorily. Then focus on the variables section and

finally take a look at the equation section.
4, Experiments

As a simple experiment, one might first change the number for the Seattle to New
York distance from 2.5 (thousand miles) to 2.7 (thousand miles) - to eliminate the
multiple solution problem discussed above - and then solve the model again. Or one
might decrease the demand at one or more markets or increase the supply at one or more
plants in order to analyze the effects on the optimal solution. However, when changing
the supply and demand parameters one must be careful to assure that the total supply is
greater than or equal to the total demand — otherwise the solution to the model will be

infeasible.
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A more complicated experiment is to add additional markets and/or plants. This
helps one to learn quickly how the sets are specified and the ripple effect this has on
required changes in the parameter and table statements. In the process one may
switch the model from a focus on fish to steel or fertilizer or glass or computers or
whatever industry is of interest.

Yet more complicated would be to add production cost at each plant. This could

be done by introducing a new parameter as follows:

Parameters
prodcost (i) production cost of plant i per case
/ seattle 15
san-diego 18 / ;

Then the criterion function would also need to be changed from

cost .. z =e= sum((i,3), c(i,d)*x(i,3)) ;

to

cost .. z =e= sum((i,3j), (c(i,]J) + prodcost(i))*x(i,3) )

Then the model can be used to analyze the effects of production differences at plants as
well as transportation cost differences between pairs of plants and markets.

If it is desirable to change the criterion from cost minimization to profit
maximization this can be done by introducing prices at each market. One way to do this
is by approximating a nonlinear demand function with a piecewise linear function. For

example the demand might be thought of in three segments with the total demand in
market ;j being equal to the sales in the three segments, viz

s=5+8,+85,;

The subscript j for the market is omitted here in order to simplify the notation in the

following development.
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The revenue generated by sales at this one market could then be written

rev = ps, + p,s, + p;S;

while being careful to insure that the parameters for the price in the first segment is
higher than the price in the second segment that is, in turn, higher than the price in the

third segment, i.e.
P> P> Ps

and putting an upper bound on sales in each of the first two segments, i.e.

s, < B,

s, <,

where f, is the upper bound in segment one and f, is the upper bound in segment 2.

Then the criterion value becomes the maximization of profit which is revenue

minus cost, that is

7T =reVv —cost

where

rev = Z(pl_,sl_, T P82t p3./'s3f)
jeJ

where

p,; = price in the kth segment in market j

s,; =sales in the kth segment in market j

and the cost includes the transportation and production cost.
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5. Further Reading

In the 1970’s and 80’s there was a project at the World Bank under the leadership
of Hollis Chenery and more directly of Ardy Stoutjesdijk which focused on the
development of a variety of industrial models for steel, fertilizer, pulp and paper and
other industries. These models used the GAMS language which was under development
at that time at the World Bank by Alexander Meeraus and his colleagues. One of those
models, namely the one on the Mexican steel industry, is a logical follow-on to the model
developed in this chapter, viz Kendrick, Meeraus and Alatorre (1984). Also, there is a
shorter, more intuitive, chapter on this model in Kendrick (1990) and various versions of
the model itself are available in the GAMS library.
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Databases in Access

Database systems have had very substantial impact on the way that both
businesses and government agencies manage production, sales, inventory and personnel.
Curiously though, they have as yet had relatively little impact on the way economists
develop and maintain the data which are used to measure the pulse of economic activity
in both macro and micro economic settings. It seems likely that this will change as a
new generation of economists who have cut their teeth on Mac's and PC's arrive on the
scene.

This chapter provides an introduction to the use of relational database systems
using the Access software. An example database developed by Kendrick (1982b) in
Access is used to illustrate the potential for relational database systems in economics.

At present most economic data is organized as sets of unrelated time series which
are maintained by different agencies. Thus to find the consumption data for the U.S.
economy one might go Bill Goffe's "Resources for Economists" page on the Internet (see
Goffe (2004)) and from there track down the macroeconomic databases and pull out the
consumption time series. From an econometricians point of view this may be a very
serviceable system. Thus to estimate a consumption function the user might download
the time series for consumption, income, taxes and interest rates into a spreadsheet such
as Excel or an estimation package. Then disposable income would be calculated from
the income and taxes series. Finally consumption would be regressed on disposable
income and interest rates.

However, there are many other uses of economic data than as inputs to regression
packages. Frequently the user does want to run a regression but rather to address a query
that depends upon the relationships between the data. If the data is stored and
organized, not as a set of unrelated time series, but rather as a relational database, such
queries can be answered quickly and easily. Moreover, once the data were organized in

relational forms this would also serve the econometricians very well by permitting easy
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control over aggregation and disaggregation and development of samples for use in
estimation packages.

This chapter begins with an introduction to the terminology of database systems.
The example database for the U.S. economy is outlined along with the specification of
this data in the Access software. Then the procedure for developing and using queries of

the database is discussed.
1. Domains, Relationships and Joins

The relationship is the key concept in database methodology. Yet it is as simple
as a table. For example, consider a table which shows the locations and production

levels of a set of plants as in Table 5.1.

Plant City Commaodity | Output
Inland | Gary Steel 4
ARCO | Houston Oil 73
Alcoa Rockdale | Aluminum 125

Table 5.1 Production Relationship

Thus the Inland Steel plant at Gary, Indiana produced 4 million tons of steel, the ARCO
refinery at Houston, Texas processed 73 thousand barrel of oil and the Alcoa aluminum
smelter at Rockdale, Texas produced 125 thousand tons of aluminum. In the language of

database systems this table would be called a relationship of the form

Production (Plant, City, Commodity, Output)

and the domains of the relationship would be the sets of plants, cities, commodities and
output levels used in the database.
The Production relationship above would have three elements and each element

would be a four-tuple, i.e.
Production = { (Inland, Gary, Steel, 4)

(ARCO, Houston, Oil, 73)
(Alcoa, Rockdale, Aluminum, 125) }
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So, in summary, the Production relationship is a set with elements, each of which is a
tuple.

Another key concept in relationship databases is that of the "join". In order to
illustrate a join we introduce two more relationships, City-State and State-Region as
shown in Tables 5.2 and 5.3.

City State
Gary Indiana

Houston Texas
Rockdale | Texas

Table 5.2 City-State Relationship

State Region
Indiana | Mid-West
Texas Gulf-Coast

Table 5.3 State-Region Relationship

The City-State and State-Region relationships have a common "domain", i.e. State. So
one can join these two relationships to create a new relationship which shows the region

of each city, i.e.

City Region
Gary Mid-West
Houston Gulf-Coast
Rockdale | Gulf-Coast

Table 5.4 City-Region Relationship
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Furthermore, one can then do an additional join of the Production and the City-
Region relationships using the common "City" domain to obtain a Regional Production

relationship which is shown in Table 5.5.

Region Commodity | Plant Output
Mid-West Steel Inland 4
Gulf-Coast | Oil ARCO 73
Gulf-Coast | Aluminum Alcoa 125

Table 5.5 Regional Production Relationship

This table could then be printed without the Plant domain to produce the desired result as
shown in Table 5.6.

Region Commodity | Output
Mid-West Steel 4
Gulf-Coast | Oil 73
Gulf-Coast | Aluminum 125

Table 5.6 Regional Production

All of this may seem like a lot of work to obtain a simple table. However, notice that the
State-Region relationship can be modified independently of the others. Thus an
economist would be free to create his or her own regional aggregation scheme and

develop queries based on that scheme.
2. An Example Database

An example database for the U.S. economy from Kendrick (1982b) is provided in
full in Appendix 5A at the end of this chapter. The Access file is available on the book
web site. That database was created as a simple illustration of how a relational database
might be constructed with data from the U.S. economy. The purpose was not be
comprehensive but rather to illustrate how one might fruitfully link together production,

ownership, labor relations, ownership, location and even politics in a single database.
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The U.S example database is a set of fourteen relationships which link together
commodities, productive units, plants, unions, companies, industries, sectors, cities,

states, regions, governors and political parties in the fashion outlined in Figure 5.1.

Region
Political Party Governor - State Sector
City
Industry
)
Commodity ——— Process __ Productive Unit ___ Plant —— Union
Corporation

Figure 5.1 Links between the Domains in the Example Database

The story which can be told about how these domains are linked is

plants contain productive units in which processes are used to produce commodities
plants belong to corporations

plants have workers who belong to unions

plants belong to industries which belong to sectors

plants are located in cities which are in states which are in regions

states have governors who belong to political parties

The same story can be told using the relationships instead of the domains. The
inputs to and outputs from production processes are described by
Input-Output (commodity, process, input-output coefficient)
and the level of production of each commodity by each process is given by
Production (commodity, process, year, production level).
The productive units which are used by each process are indicated in
Capacity Use (process, productive unit, capacity coefficient)

and the capacity of those productive units in each plant are shown in
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Capacity (productive unit, plant, year, capacity level).
The increase in this capacity in a given year at each plant is displayed in

Increment to Capacity (productive unit, plant, year, incremental capacity).

The plants are owned by corporations
Ownership (plant, corporation).
Also the plants have employees who belong to unions
Plant Employees (plant, union, number of employees).
Moreover the plants belong to industries
Industry Composition (plant, industry)
and the industries to sectors in the economy

Sector Composition (industry, sector).

The plants are located in cities
Plant Location (plant, city)
which are located in states
City Location (city, state)
which are in turn located in regions of the country
State Location (state, region).
The states have governors
State Governors (state, governor)
who are affiliated with political parties

Party Affiliation (governor, party).

One would not be able to tell such a simple story for a full and comprehensive
database of the U.S. economy, but this simple story and small database serve well our

purpose to introduce the use of relational databases in economics.
3. Representation of the Example Database in the Access Software

We turn now to how this relational database is represented and used in the Access
software. When you open this database in Access the first window you see will contain
a list of the tables (relationships) which makeup the database as is shown in Figure 5.2

below.
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Microsoft Access
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Figure 5.2 Tables in the U.S. Economy Example Database

Figure 5.2 shows the fourteen relationships which were discussed above.
Unfortunately they are in alphabetically rather than the conceptual order used above.
You can examine the tables one-by-one by double clicking on them and then comparing
them to the corresponding relationship in Appendix 5A. In particular take a look at the
Ownership and the Plant Employees tables since we will use both of them in the
explanation of the query below.

The principal use of databases is to answer queries, i.e. questions about the data in
the database. First we will take a look at a couple of existing queries and how they are
specified in Access. Select the "Queries" option in the objects bar on the “useco2000 :

Database” window and you will see the display shown below in Figure 5.3.
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Figure 5.3 Queries

This window shows that four queries have already been developed. After you
have seen how they work you will be in a position to develop queries of your own.
Consider first the Employees of Corporations query. Select it but be careful to single
click on it rather than to double click. This query answers the question of how many
employees of each corporation are members of each union. One cannot answer this
question directly by looking at the individual tables; however the question can be

answered by combining the information in the two relationships

Ownership (plant, corporation)
Plant Employees (plant, union, number of employees)
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The first tells us which corporation owns each plant and the second tells us how many
employees in each plant belong to each union. Thus if we combine the two we have a

new relationship which we call "Employees of Corporations" and that has the domains
Employees of Corporations (union, corporation, number of employees)

This is a "join" of the type we discussed at the beginning of the chapter since we are
joining two relationships together by using the common domain “plant”.

Look back to Fig. 5.3 above and notice that at the top of the Queries window there
is a Design button in the toolbar. Click that button and a window will open which shows

the design of the query as in Figure 5.4.

Microsoft Access
File Edit Yiew Insert Query Tools  Window  Help

E- E® -

| =¥ Employees of Corporations : Select Query = |
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” ownership
m *
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Field: |union

corporakion

emplovess (thousar

Table: |Plant Emplovees

ownership

Plant Emplovees

Sork:

Shiowe

Criteria:
o

Groups

Ready LM

Figure 5.4 Design of the Employees of Corporations Query
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The top part of this window includes the two relationships which are used in the query,
namely Plant Employees and Ownership. There is a small zigzag line which connects the
plant domain in the two relationships. This indicates that the join is to be performed over
this domain. You can move the Plant Employees and the Ownership table around by
clicking on the label at the top and dragging the table. This is a capability which will
come in handy later when you begin designing your own queries.

The bottom half of the window in Fig. 5.4 contains a table in which you see listed
the domains that will be in the new relationship that is created by the query. Also there
are check marks which allow you to suppress the display of any of the domains. We
need all of them for our query so leave all the check marks for the moment and close the
query design window by clicking on the "x" in the upper right hand corner.

Now you will be back at the "Query" window. Be sure that the Employees of
Corporations query is still selected and then click on the Open button in the toolbar at the
top of the dialog box. The window which is shown in Fig. 5.5 will appear.

Microsoft Access E| E|

File Edit Wiew Insert  Format  Records  Tools  wWindow  Help

E-Hy & iV YR #T

2! Employees of Corporations : Select Query |’._||’E|[g| |
carporation employees (thousands)

United State Steel

United State Steel

United State Steel

ALCOA

ALCOA

Atlantic Richfield Co.

Atlantic Richfield Co.

ALCOA,

ALCOA,

Inland Steel . —
General Motors

Record: 14 1 |k of 11

54

£ |

Datasheet Yiew FLIM

| W

Figure 5.5 Answer to the Employees of Corporations Query
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Notice here that the answer to a query is itself a relationship. You can quickly
see from the table that U. S. Steel has employees who belong to the machinists (IAM),
teamsters (IBT) and steel workers (USA) unions. Notice that there are also two lines in
the table which are almost identical

USA ALCOA 0.5

USA ALCOA 0.7
This happens because there are two plants in the database which are owned by ALCOA,
namely Rockdale and Point Comfort and there are members of the United Steel Workers
of America (USA) employed at both plants. From this you can see that it is sometimes
necessary to aggregate after a query is run before you have the answer in exactly the form
you want.

Next try designing a query of your own. We will use one the queries that is
already available in the database so that you can see how it should come out in case yours
does not work out as it should. We will take the simplest case. There are relationships
for the location of cities by state and for the location of states by region so use these two
to create a relationship which show the locations of cities by region. Thus we will use

the two relationships

City Location (city, state)

State Location (state, region)

to create a new relationship which we will call

City/Region2 (city, region)

The name "City/Region2" is used to distinguish the query from the one already in the
database called "City/Regionl1".

Here you see the principles of designing your own query. Begin by clicking on
the Query object in the objects bar and without selecting any of the existing queries click
on the "New" button in the toolbar at the top of the window. When you do this the

dialog box shown in Figure 5.6 will appear as shown below.
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Find Duplicates Query Wizard
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Figure 5.6 New Query Dialog Box

Though you may find it useful to use one of the Wizards later lets do it by hand

here. So select the "Design View" option and click on OK. The "Show Table" dialog

box will appear as in Figure 5.7.

Show Table

_apaciky 1980
Capacity Use
Cikby Location

Industry Composition
Inpuk-Cutput
ownership

Party Affiliation

Plant Emplovees
Plant Location
Production 1979
seckar composition
Stake Governors

Tables lQueries ] Bioth ]

Increment bo Capacity, 1931

|

(<

Figure 5.7 Show Table Dialog Box

One of the tables we want to use in the query is City Location, so click on it and

then click on the "Add" push button in the upper right hand corner of the dialog box. The

City Location table will appear in the top half of the query design dialog box. Next
select from the "Show Table" dialog box the State Location table (scroll down to find it if

necessary) and then click on the "Add" push button in the upper right hand corner of the
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Show Table dialog box. Then close the Show Table dialog box. Once you have done
this the window should look something like that shown in Figure 5.8.

Microsoft Access

File Edit Miew Insert  Query Tools  Window  Help

E- E®"

Table:
Sork:
Shiow:
Criteria:
ar:

Ready LM

Figure 5.8 Designing a Query

The City Location and State Location relationships should both be displayed in the top
half of the query design window as is shown in Figure 5.8.

Before we go further change the name of the query from the default to the choice
discussed above of "City/Region2". To do this select the File menu and the Save option.
A small dialog box will appear which will allow you to rename the query. Do so and
then close that small dialog box and you will be back at Fig. 5.8.

The next step is to establish the join. In Fig. 5.8 there is already a join between
the ID's in the two tables but we do not want this. So click on the line which connects the

two relationships and strike the "Delete" key so that the line disappears. You may have

95



Chapter 5 Databases in Access

trouble with this at first but keep trying until when you click on the line it becomes
slightly darker to indicate that it has been selected. Then you should be able to delete it
by striking the "Delete" key.

Next create a join between the "state" domain in the two relationships by clicking
on "state" in one of the tables and dragging to “state” in the other table. Once you have

done this the window should appear as shown in Fig. 5.9.

Microsoft Access

File Edit Miew Insert  Query Tools  Window  Help
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Table:
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Figure 5.9 A Join Between "State" in the Two Relationships
So the zigzag line between the "state" domains in the two relationships indicates that a

join has been established. This completes our work on the top part of the design window

and we can now turn our attention to the bottom part.
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Begin by clicking in the first column at the "Field" row. When you do so the

cursor will appear there along with a small arrow in the right hand side of the box. Click

on this box to cause a drop-down window to appear as is shown in Fig. 5.10.

Microsoft Access

File Edit Miew Insert  Query Tools  Window  Help

E- E®"

Table: || City Location,®
Sort: || City Location.ID
Show: || City Location. city
Criteria: || City Location, stake
ar: || Skate Location, *
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| Skate Location, skate
Skate Lacation.region

Ready LM

Figure 5.10 Drop-Down Window for Filling in the Field

Since we want the "city" domain in this first field select the line "City
Location.city" and the domain "city" will then appear in the box. Repeat this process for
the Field row in the next column but this time select "State Location.region" from the
drop-down window. Once you have done this the Query Design window should appear

as is shown in Figure 5.11.
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Figure 5.11 Completed Query Design

The query design process is now completed. This undoubtedly seems like a long and

complicated process but it goes very quickly once you have the hang of it.

Now we are ready to make use of the query which we have constructed. To do

this close the Query Design window by clicking on the "x" in the upper right hand corner.

When you do this the Query dialog box should appear as shown in Figure 5.12.
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Figure 5.12 Query Dialog Box Showing the New Query "City/Region2"

Now the Query dialog box contains the new query which we have created

"City/Region2". As mentioned earlier there was already a "city/regionl" query which

performs the same function and to which you can compare if you have had difficulties in

some of the above steps. However, for now ignore this and try the one we have created

by clicking on"City/Region2" and then clicking on the "Open" push box in the upper left

hand corner of the window. When you do so the result of the query should appear as

shown in Figure 5.13.
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Figure 5.13 Results of the Query

This is the desired result - a table which shows the region in which each city is located.
As was mentioned above this seems like much too much work to find out that
Houston is in the Gulf Coast region. However, once you have gained some facility with
Access the point and click nature of the interface makes it an efficient way to develop
queries. Moreover when you have a large database with many relationships and much

data the power of the methods becomes apparent.
4, Examples

There are a number of examples of the use of this database given in Kendrick
(1982b). Here it will suffice to describe a couple of them.
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The first example is from the field on energy economics. Imagine that as the
hurricane season approached emergency management officials want to know the amount
of refining capacity on the Atlantic and Gulf of Mexico coasts. This roughly
corresponds to the East-Coast and Gulf-Coast regions in the database so we clearly need
to begin from the relationship

State location (state, region)
and from there we need to work backward with the
City location (city, state)
relationship and to the
Plant location (plant, city)
relationship. Then we need to cap this off by using the
Capacity (productive unit, plant, year, capacity level)
relationship.

If we do a join from plant to plant in the last two of these relationships and from
city to city just above and then from state to state in the previous pair we will obtain a
new relationship which we call

Regional capacity (productive unit, region, year, capacity level)

that will contain the information shown in Table 5.7 below.

Region

Productive Unit East Coast | Gulf Coast | Mid-West | Units
Blast Furnace 2.0 2.5 mty
Steel Shop 2.35 2.8 mty
Rolling Mill 1.9 2.4 mty
Alumina Plant 0.8 mty
Aluminum Plant 1.1 mty
Primary Still 0.2 mbd
Catalytic Cracker 0.23 mbd
Auto Stamping 0.6 muy
Auto Assembly Line 0.6 muy

Table 5.7 Regional Capacity Relationship
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Then from this table we can quickly see that that the Primary Still capacity (which is the
best indicator of the refinery capacity) is 0.2 million barrels a day in the Gulf Coast
region.

You can look at the implementation of this query in the database by going to the
Query tab and then selecting the "prod unit/region/capacity" query. In particular, it is
useful to single click this query and then click on the "Design" button so that you can see
how the four relationships are used in the query and how they are linked by plant, city
and state to create the desired relationship.

A second example comes from politics. From time to time Presidential politics in
the U.S. are affected by difficulties in a particular industry. One example is the pressure
that the U.S. auto industry has felt from imports at some times. Suppose that in a
campaign a presidential candidate asks for a list of Democratic governors whose states
have more than 10,000 people employed in the automobile and steel industries.

Clearly for this query we need to work back from

Party affiliation (governor, party)

to

State governors (governor, state)
to

City location (city, state)
to

Plant location (plant, city)
Then we need to make use of the

Plant employees (plant, union, number of employees)
relationship while also making use of the

Industry composition (plant, industry)
relationship.

If we do all the required joins properly we should obtain a relationship which we

call
Employees by governor and party (industry, governor, party,
number of employees)
From this table we could then assembly the data required to answer the query.

These two examples provide an indication of how a relational database of the
economy might be used to provide quick answers to a wide variety of questions. In most
cases the answers to the questions could be provided in tables. In other cases the results
of the queries would be time series or cross sections of data which would then subjected

to further econometric analysis.
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5. Experiments

A beginning experiment might be to implement the last of the two examples listed
above; however, it is probably wise to begin with something simpler like the location of
cities by region as described above but doing this without following the steps in the book.

Once you gain some confidence with doing simple joins you are encouraged to
develop you own queries. If the existing relationships in the database are not sufficient,
then you may want to add some additional ones in order to be able to answer richer and
more interesting queries.

Finally, you might want to develop your own database with data from financial
markets, labor relations or environmental economics as suits your interest. If you have
had a summer job or an internship in a business or governmental agency you have likely
made use of some databases and might want to try your hand at developing a similar

database in Access or some other relational database software.

6. Further Reading

The classic book on relational database systems is Date (1977). To learn more
about Access 2000 see Andersen (1999).
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This appendix contains the relationships from the example U.S. economy
database from Kendrick (1982b).

Process
Commodity Pig iron Steel production | Steel production | Rolling flat steel
production pig iron intensive | scrap intensive products
Iron ore -1.6
Pig iron 1.0 -0.9 -0.7
Scrap iron -0.2 -0.4
Liquid steel 1.0 1.0 -1.2
Scrap 0.2
Flat steel 1.0
Alumina Aluminum Primary Catalytic
production production distillation cracking
Bauxite -1.4
Alumina 1.0 -1.2
Aluminum 1.0
Crude ol -1.0
Distillate 0.2 -1.0
Gasoline 0.3 0.6
Jet fuel 0.1 0.2
Auto body stamping | Auto assembly
Flat steel -1.2
Aluminum -0.2
Auto bodies 1.0 -1.0
Automobiles 1.0

Table 5A.1 Input-Output
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In the Input-Output relationship negative values indicate inputs and positive values
outputs. Thus in the pig iron production process 1.6 tons of iron ore are used to produce
1.0 tons of pig iron. Then in the next column 0.9 tons of that pig iron is used along with
0.2 tons of scrap to produce a ton of liquid steel. The activity analysis vectors here
follow in the tradition of Tjalling Koopmans (1951). Also for an introduction to use of
activity analysis in economics see Kendrick (1996).

Thus a process is akin to a cook's recipe in that it provides a list of ingredients and
how much is required of each as well as an indication of the final product or products.
However unlike the usual recipe for a cake, a process may have a single input and
multiple outputs, viz. the process above for primary distillation in an oil refinery where

crude oil input is transformed into distillate, gasoline and jet fuel.
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Process
Commodity Pig iron Steel production | Steel production | Rolling flat steel
production pig iron intensive | scrap intensive products
Pig iron - mty 86.8
Liquid steel - mty 55.5 53.0
Scrap - mty 18.0
Flat steel - mty 90.0
Alumina Aluminum Primary Catalytic
production production distillation cracking
Alumina - mty 20.0
Aluminum - mty 16.0
Distillate - thy 1.46
Gasoline - thy 2.19 2.43
Jet fuel - thy 0.73 0.73

Auto body stamping

Auto assembly

Auto bodies - muy

9.5

Automobiles - muy

9.35

Table 5A.2 Production

Note: mty = million tons per year

tby = trillion barrels per year

muy = million units per year
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Process
Productive Pig iron Steel production | Steel production Rolling flat steel
unit production pig iron intensive scrap intensive products
Blast furnace 1
Steel shop 1 1
Rolling mill 1
Alumina Aluminum Primary Catalytic

production production distillation cracking
Alumina plant 1
Aluminum plant 1
Primary still 1
Catalytic cracker 1

Auto body stamping

Auto assembly

Auto stamping plant

1

Auto assembly plant

Table 5A.3 Capacity Use

The Capacity Use relationship simply tells the productive unit in which each process

runs.

productive unit, namely the steel shop.

Notice that substitute processes like the two for steel production both use the same
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plant industry

Sparrows Point [steel

Rockdale aluminum

ARCO-Houston |oil

Point Comfort aluminum

Inland-Gary steel

Lansing automobile

Table 5A.4 Industry Composition

industry sector

steel primary metal

aluminum  [primary metal

oil petroleum and coal

automobile |transportation equipment

Table 5A.5 Sector Composition
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productive unit plant capacity level| units
blast furnace Sparrows Point 2.0 mty
blast furnace Inland-Gary 2.5 mty
steel shop Sparrows Point 2.35 mty
steel shop Inland-Gary 2.8 mty
rolling mill Sparrows Point 1.9 mty
rolling mill Inland-Gary 2.4 mty
alumina plant Point Comfort 0.8 mty
aluminum plant Point Comfort 0.6 mty
aluminum plant Rockdale 0.5 mty
primary still ARCO-Houston 0.2 mbd
catalytic cracker ARCO-Houston 0.23 mbd
auto stamping plant [Lansing 0.6 muy
auto assembly line |Lansing 0.6 muy

Table 5A.6 Capacity 1980
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productive unit plant increment to units
capacity
alumina plant Point Comfort 0.5 mty
aluminum plant Point Comfort 0.4 mty
auto assembly line |Lansing 0.0 muy
auto stamping plant [Lansing 0.0 muy
blast furnace Sparrows Point 0.5 mty
blast furnace Inland-Gary 0.0 mty
catalytic cracker ARCO-Houston 0.12 mbd
primary still ARCO-Houston 0.1 mbd
rolling mill Sparrows Point 0.4 mty
steel shop Sparrows Point 0.5 mty
aluminum plant Rockdale 0.0 mty
steel shop Inland-Gary 0.0 mty
rolling mill Inland-Gary 0.0 mty

Table 5A.7 Increment to Capacity 1981
Note: mty = million tons per year
mbd = million barrels per day

muy = million units per year

The table above is really about investment. However, it differs from the usual
notion of investment which is a certain number of dollars spent on a new plant or pieces
equipment. Rather the investment above is defined as an increment to capacity and is
measured in units of the principal input or output of the productive unit. Thus the blast
furnace capacity at Sparrows Point is increased by 0.5 million tons per year (an output)
and the primary still at ARCO-Houston is increased by 0.1 million barrels per day (an
input).
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plant corporation

Sparrows Point [United State Steel
Rockdale ALCOA
ARCO-Houston |Atlantic Richfield Co.

Point Comfort ALCOA

Inland-Gary Inland Steel
Lansing General Motors
Table 5A.8 Ownership
Union
Plant OCAW | UAW USA IBEW IBT IAM
Sparrows Point 1.2 0.3 0.05
Rockdale 0.5 0.05
ARCO-Houston 0.4 0.01
Point Comfort 0.7 0.2
Inland-Gary 0.4
Lansing 1.2

Table 5A.9 Plant Employees (in thousands of employees)

OCAW Oil, Chemical and Atomic Workers

UAW United Auto Workers

USA United Steel Workers of America

IBEW International Brotherhood of Electrical Workers
IBT International Brotherhood of Teamsters

IAM International Association of Machinists
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plant city
Sparrows Point [Sparrows Point
Rockdale Rockdale
ARCO-Houston |Houston

Point Comfort

Point Comfort

Inland-Gary Gary
Lansing Lansing
city state
Sparrows Point |Maryland
Rockdale Texas
Houston Texas

Point Comfort |Texas

Gary Indiana
Lansing Michigan
state region
Maryland |East Coast
Texas Gulf Coast
Indiana  |Mid-West
Michigan |Mid-West
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Table 5A.13 State Governors

Table 5A.14 Party Affiliation

Which relationships share a common domain?

Plant Location and City Location

City Location and State Location and

State Governor

State Governor and Party Affiliation
Ownership and Plant

Industry Composition and

Sector Composition

Input-Output and Production

Production and Capacity Use

Capacity Use and Capacity

Increment to Capacity and Capacity

Capacity and Plant Employees

Increment to Capacity and

Plant Employees

Industry Composition and

Plant Employees

state governor
Maryland |Harry Hughes
Texas William P. Clements, Jr.
Indiana  |Otis R. Bowen
Michigan |William G. Milliken
governor party
Harry Hughes Democrat
William P. Clements, Jr. |Republican
Otis R. Bowen Republican
William G. Milliken Republican
are linked by
are linked by
are linked by
are linked by
are linked by
are linked by
and
are linked by
are linked by
are linked by
and
are linked by
are linked by
are linked by

city

State
governor

corporation

industry
process
commodity
process
productive unit
productive unit
plant

plant

plant

plant
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Chapter 6

Thrift in GAMS
with
Genevieve Solomon

Many students face a tough financial problem — their expenses exceed their
income. Thus they must work to supplement their income and/or borrow money from
student loan funds. This familiar student situation provides a good setting to learn about
dynamic personal financial planning models.

Some students have financial assets such as stocks and bonds; however many
more students have few assets and substantial liabilities in the form of credit card debt
and student loans. Thus we provide in this chapter a model in which a student can hold
assets in either low interest bonds or higher interest stocks. Also, the student can hold
some assets in a checking account while paying living expenses out of that account and
depositing earnings from part time work into the account. If living expenses exceed
earnings then the student must either draw down stock and bond assets or else borrow
from a student loan fund at a low interest rate or from a credit card firm at a much higher
interest rate.

We begin the chapter with a simple version of the model with only bonds,
checking accounts and student loans and then advance to a more complex model later in

the chapter.
1. The Mathematics of the Thrift Model

Consider a student who has a checking account as well as some money saved in
government bonds. The dynamic equation for the bonds held by the student can be

written as
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(1) Sb,,, = (1+rb)Sb, — Xbc, + Xcb,

where

Sb = stock of bonds
rb = rate of interest on bonds
Xbc = transfer from bonds to checking account

Xcb = transfer from checking account to bonds

Thus the stock of bonds next period is equal to the stock of bonds this period multiplied
by one plus the interest rate on the bonds minus bonds that are cashed in ( Xbc ) plus new
bonds that are purchased ( Xcb).

As is shown below, the proceeds from the sales of bonds ( Xbc ) are deposited in
the student’s checking account. Thus the equation for his or her checking account can be

written as

) Sc,,, = (A +rc)Sc, + Xbc, — Xcb,

where

Sc = stock of funds in the checking account

rc = rate of interest on funds in the checking account
Likewise additional bonds can be purchased by withdrawing money from the checking
account, Xcb.

The bond and checking accounts are both asset accounts for the student. Also,
one can create a liability account in the form of a student loan equation that is the amount

the students owes to the bank. This equation is

(3) Ssl,,, = (1+rsl)Ssl, — Xesl, + Xsle,

where

Ssl = stock of student loans
rsl = rate of interest on student loans
Xcsl = transfer from checking account to student loans

Xslc = transfer from student loans to checking account
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In this equation Xcs!/ is the amount that the student withdraws from his or her checking
account to repay student loans and Xs/c is the amount of money borrowed from the
student’s loan account to deposit in the student’s checking account. Given these
additional flows to and from the student’s checking account we need to modify the
checking account state equation from Eq. (2) above by including two more terms so that

it becomes

4) Sc,., =(A+rc)Sc, + Xbc, — Xcb, — Xcsl, + Xsle,

Also the student has a part-time job and deposits these wages, Wa, into the checking
account and pays his or her living expenses, Le, from the account so we need to include

two more terms in the equations so that Eq. (4) becomes

(5) Sc,., =1 +rc)Sc, + Xbc, — Xcb, — Xcsl, + Xslc, + Wa, — Le,

The model then consists of the bond equation (1), the checking account equation

(5) and the student loan equation (3) and can be written in matrix form as

Xbc
Sb 1+7b 0 0 AY)) -1 1 0 O 0 0
Xcb Wa
(6)| Sc = 0 1+rc 0 Se|l+1 -1 -1 1 +1 -1
Xesl Le
Ssl 0 0 1+rsl || Ssl 0O 0 -1 1 0 0 !
t+1 t XSZC )

or in vector difference equation form as
(7) X, = Ax, +Bu, +Cz,

where the state vectors x, , the control vector u, and the exogenous vector z, are defined

as
Xb
S o "
C a

8 x, =| Sc = =
® ! " Xes! % [Le}

Ssl !

! Xsle
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and the matrices 4, B and C are

I+r6 0 0 -1 1 0 O 0 O
9) A=| 0 I+rc 0 B=|1 -1 -1 1 C=|1 -1
0 0 1+wrs/ 0 0 -11 0 0

Difference equations models like Eq. (7) are frequently called “system” equations and are
widely used in engineering and in economics to represent dynamic systems. Also, such
models often have a criterion function that is optimized subject to the system equations.

A common form of the criterion function is the quadratic tracking function. This
kind of criterion function is different than the usual utility maximization criterion used in
consumer theory, the cost minimization criterion sometimes used in production theory or
the terminal wealth maximization sometimes used in portfolio models. The quadratic
tracking criterion function includes desired paths for the state variables and for the
control variables and seeks to minimize the weighted squared separation between the
desired paths and the optimal paths. For example, an individual may wish to save over
the course of a lifetime for multiple purposes such as purchasing a house or car, paying
for college educations for children and providing retirement income. Also, the
individual may want to be sure to keep a target amount in a checking account. So the
desired time path for savings accounts, stock and bond holdings and for checking account
balances may be time-varying and have a complicated shape. Also, some goals may be
more important than others and thus have higher weights attached to them.

A static version of the quadratic tracking criterion function with only a single

state variable x and a single control variable u can be written

(10) J=w(x-3) +A(u—i)
where

J = criterion value

X = desired value of the state variable

u = desired value of the control variable
w = priority on the state variable
A

= priority on the control variable
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Since w and A are positive and the goal is to minimize J , one wants to have the
state variable x be as close as possible to its desired value X and the control variable u
be as close as possible to its desired value #. Thus it is obvious that the criterion

function in this case can be minimized by setting

(11) x

Il
=
N

Il
N

However, this is usually not possible because the state and control variables are related to
one another through the system equation. Thus, there is usually a trade-off between
having x as close as possible to X and u as close as possible to #. Furthermore this
tradeoff is affected by the priority parameters w and 4. Thus if w is large and A4 is
small the optimal solution will be to set x close to X and u not so close to .

The priority parameters w and A are also sometimes called penalty weights
depending on whether one is thinking of them positively as priorities or negatively as
penalties in a criterion function that is to be minimized. Both terms are used in this book
and elsewhere in the literature.

When the state variable and the control variable are not scalars but rather vectors

Eq. (10) can be written in vector-matrix form as

(12) Jz(x—fc) W(x—fc)+(u—ﬁ) A(u—ﬁ)

where

Xx = state vector

u = control vector

X = desired value of the state vector

u = desired value of the control vector

W = diagonal priority matrix for the state vector

A = diagonal priority matrix for the control vector

Consider only the first term on the right hand side of Eq. (12). For the case at hand it

can be written as

Sb—ShY[wb 0 0 Sb—Sb
(13) (x=%) W (x-%)=| Sc=S¢ || 0 we 0 || Sc-s¢
Ssi—Ssl || 0 0 wsl|| SsI—Ss/

where
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whb = priority for bonds
we = priority for checking account

wsl = priority for student loan account

Taking the transpose of the first vector on the right hand side of Eq. (13) and doing the

matrix vector multiplication of the remaining matrix and vector in that equation yields

wh(Sb—Sh)
(14) (x—%) W (x—%)=(Sb-Sh Sc—Sé Ssi-Ssi) we(Sc—S¢)
wsZ(Ssl—SSi)

or

!

(15) (x—fc) W(x—fc) = wb(Sb—Sg)2 erc(Sc—SE)2 + wsl(SSl—Ssi)2

Since the W matrix is diagonal the quadratic form on the left hand side of Eq. (15) is
equal to a weighted sum of squares of the differences between each state variable and its
desired value with the weights being the respective priorities.

From a similar set of mathematical statements it could be shown that the quadratic

form in the control variables in Eq. (12) is

A(u~ii) = Abe(Xbe — X&) +Ach(Xeb—Xcb)

(u—it)
(16) . )
+ Acesl (Xcsl — Xcsl ) + Aslc (Xslc - XSIE)

where
Abc = priority on transfers from bonds to checking

Acb = priority on transfers from checking to bonds
Acsl = priority on transfers from checking to student loan
Aslc = priority on transfers from student loan to checking

The priorities on the control variables in the A parameters work analogously to those on
the state variables, i.e. a large value for the priority indicates that the students wants to
hold that control variable close to its desired values. Of course, what really matters is
not the absolute values of the w and A priorities but their values relative to one another.

So the student who wants to assure that the state variables reach their desired values will
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assign relatively high priorities to the state variables with the w parameters and relatively
low priorities to the control variables with the A parameters.
In summary, we can write the quadratic tracking criterion function for a single

period as
(17) Jz(x—fc) W(x—fc)+(u—1j) A(u—ﬁ)

However, we want to use this criterion function in a multiperiod model, therefore we

need a dynamic version of Eq. (17) that can be written

!

(18) J:%(XN SR ) W (5 - )+

It is customary to include the 5 fractions in the criterion function so that when the

derivatives of this quadratic function are taken the first order conditions will not include a

two. Also, a distinction is made between the priorities on the state variables in the
terminal time period N , i.e. W, and those in all other time periods, W . This permits

different priorities to be attached to the state variables in the terminal period than in other
periods. Also the control vector for the terminal period u, does not appear in the

criterion since it does not affect the state until period N +1 and that period is not
included in the model.
In summary the dynamic control theory model seeks to find the control variables

(”0’”1"":“1\7—1)

that will minimize the criterion function

(19) Jzé(xN—)EN)'WN(xN—)?N)+%§[(xt—i,)’W(x,—)?t)+(ut—ﬁt)A(ut—ﬁ,)}

=0
subject to the systems equations (from Eq. (7))
(20)  x,, =4x, +Bu, +Cz,

with the initial conditions

(21)  x, given
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The student financial model described above can be specified in this form using the state,

control and exogenous variable vectors.

(22) X =

and the matrices 4, B and C

1+7b
A=| 0
0

(23)

with the exogenous variable (z,,z,,--

0

1+rc

0

0
0

1+ rs/

2. The Evanchik Model

Xbc
Xcb
" | Xesl
Xslc

<
I

-, zy_, ) and initial state x, given.

A model of this form was developed by Michael Evanchik (1998) when he was an

undergraduate in the Computational Economics class at the University of Texas.

Evanchik’s model is slightly more complicated than the model described above in that it

includes three types of assets rather than two by adding equities to the bond and checking

accounts used above. Also, the model includes two liabilities rather than one since the

student can borrow not only from a student loan account but also from that most popular

source of student support - a credit card account. Thus the state vector for this model has

five variables, i.e.

(24) X =

"o ]

Se
Sc
Scc

Ssl )

where

Sb = stock of bonds

Se = stock of equities

Sc = stock of funds in the checking account

Sce = stock of credit card loans

Ssl = stock of student loans
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Correspondingly, the control vector includes more elements to permit a variety of

transfers among these accounts. The control vector is

Xbe
Xbc
Xbcc

Xbsl
Xec
Xecc
Xesl
Xcacc
Xesl
| Xcesl |

(25) , =

where
Xbe = transfer from bonds to equities

Xbc = transfer from bonds to checking account

Xbcc = transfer from bonds to credit card account

Xbsl = transfer from bonds to student loans

Xec = transfer from equities to checking account

Xecc = transfer from equities to credit card account

Xesl = transfer from equities to student loans

Xcacc = transfer from checking account to credit card account
Xcsl = transfer from checking account to student loan account

Xccesl = transfer from credit card account to student loan account
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There is one anomaly in the variable naming scheme above which has been introduced to
eliminate a source of confusion. The transfer which would have been labeled Xccc to be
consistent with all of the rest of the variable names has instead been labeled Xcacc to
make it clear that the transfer is from the checking account to the credit card account
rather than vice versa.

A GAMS version of the model was created by one of the authors of this chapter,
Genevieve Solomon, while she was a student in the same class a couple of years after
Michael Evanchik. She added a third exogenous variable to the two already in the

Evanchik model so that the exogenous variable vector for the model in this chapter is

Wa
(26) z,=| Le
Sh |,
where
Wa = wages

Le = living expenses
Sh = scholarship

The GAMS version of the thrift model has the useful property that it is possible to
put explicit upper bounds on the state and control variables. For example there are
frequently upper bounds on how much money a student can borrow per semester from the
student loan organization. Also, credit cards frequently have upper bounds on the

amount that a student can borrow.

3. The Model in GAMS

The GAMS program corresponding to the thrift problem is available at the book
web site. The first step for the GAMS version of the model is to define the sets. There
are four sets: state variables, control variables, exogenous variables and the time horizon.
These sets are declared and defined in GAMS as follows:
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Sets n states / Sb, Se, Sc, Scc, Ssl /
m controls /Xbe, Xbc, Xbcc, Xbsl, Xec,
Xecc, Xesl, Xcacc, Xcsl, Xccsl/
k exogenous / Wa, Le, Sh /
t horizon / 2000, 2001, 2002, 2003, 2004 /

Notice here how sets are specified in the GAMS language. In this model there are five
state variables. The set of states could be specified in mathematics as

N = {Sb, Se, Sc, Scc, Ssl}
The equivalent GAMS statement would be

n =/ Sb, Se, Sc, Scc, Ssl /
GAMS has forward slashes as set delimiters while mathematics has braces. This means
that you should be very careful not to use forward slashes in a GAMS model in text
statements like "dol1lars/ton" since the slash will confuse the GAMS compiler and may
result in an error. Also, we include in the statement for the set of state variables the
word “‘state” which is the text that is associated with the set n. Thus the complete

statement in GAMS for the set n is
n states / Sb, Se, Sc, Scc, Ssl /

Also, similar statements are used to declare and define the sets of controls variables m,
exogenous variables k and the set of time periods t.

Next three subsets of the time set are declared. In many computer languages a
distinction is made between “declaring” an element and “defining” it. That distinction is
also used here since the statements below are used to declare three sets that will be

defined later when the elements in the set will be determined.

tu(t) control horizon
ti(t) initial period
tz (t) terminal period ;

The control horizon, initial period and the terminal period sets will be important later for
the equations. Also, in these three statements the (t) is used to indicate that the
preceding set, viz. tu, is a subset of the set t.

Here in the body of this chapter we will introduce the parts of the GAMS
statement of the model one section at a time. Later you may want to look at the entire
GAMS statement of the model that is in Appendix 6A at the end of the chapter.

Next tables are created to represent the matrices in the systems equations, Eq. (20)
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A (one plus interest rates) (5x5)

B (direction of transfers) (5x10)

C (exogenous variable signs) (5x3)

w (state variable penalty matrix) (5x5)

wn (state variable penalty matrix for the terminal period) (5x5)

lambda (control variable penalty matrix) (10x10)
In doing this we also need an “a1lias” statement as follows:
Alias (n,np), (m,mp) ;

This alias statement simply makes a copy of the set n and calls it np (n prime) and of
the set m and calls it mp (m prime). This alias is necessary for setting up summations for
matrix operations in GAMS. Also the aliases will be needed when matrices are
transposed in later equations.

The next part of the input defines the time subsets, tu, ti and tz of the full time
set t. The first of these, tu, is the set of all time periods other than the terminal period
and is defined with the GAMS statements

tu(t) = yesS$S(ord(t) 1t card(t));

This statement makes use of two GAMS keywords ord and card that are operators

(3

defined on sets. “card” is an abbreviation for cardinal, which is the number of elements

in the set. Consider a set S in mathematics

S:{a,b,c,d}

The cardinality of this set is four since it has four elements. In contrast “ord” is an
abbreviation for ordinal, which represents the ordinal position of each element in the set.
Thus the element ¢ is in the third ordinal position in the set above.

So the GAMS statement defining the set tu can be read, “tu is the set of elements
whose ordinal position in the set t are strictly less than the cardinality of the set”. Thus,

recalling that the set t is

tu = / 2000, 2001, 2002, 2003, 2004 /
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we see that the set tu is

tu = / 2000, 2001, 2002, 2003 /
i.e. it is all the elements in the set t except the last element.

The second of the subsets of t is the set ti, which is the initial time period only.
It is defined with the GAMS statement

ti(t) = yesS$(ord(t) eq 1);
Thus the set ti contains the element which is in the first position in the set t, namely
“2000”.

The third subset of t is defined with the GAMS statement

tz(t) = not tu(t);
Thus tz is the set of all elements in the set t that are not in the set tu and that is only the
last element, namely “2004”.

Finally, just as a check, the elements of the full set and the three subsets are
displayed in the output file with the statement

Display t, ti, tz, tu;

When doing set manipulations in GAMS it is useful to display the results as a check

against errors.
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Once the sets are specified, then the data can be input using the "tab1e" and
"parameter" keywords as shown below. Consider first the use of the table keyword to

input the 4 matrix.

Table a(n,np) state vector matrix
Sb Se Sc Scc Ssl
Sb 1.05
Se 1.10
Sc 1.01
Scc 1.13
Ssl 1.03

_ 9

Observe that the parameter “a” is followed by the sets over which it is defined, i.e. it is

2

written as “a (n, np) . It is not necessary to include the sets here, however it is a useful
precaution because when the sets are provided the GAMS complier can check to be sure
that all the element names used in the input of the table do indeed belong to the
appropriate sets for the rows and columns of the table. Thus if the user misspells an
element in the table input GAMS will issue a warning.

Following the name of the table and its set is a line of text, i.e.

state vector matrix
The ability to use text like this phrase makes GAMS statements much easier to read and
understand. The convention in GAMS is that the absence of an explicit data entry in a
table results in that element of the matrix being set to zero. So all the elements in the 4
matrix others than those on the diagonal are set equal to zero.

Recall that the diagonal elements in the 4 matrix are one plus the appropriate
interest rate. So the interest rates on bonds is 5 percent, on equities is 10 percent and on
checking accounts is only 1 percent. (Of course bonds and equities have greater risk
than checking accounts. Comparative risk is not addressed in this model but is included
in the models on portfolio selection used later in this book.) One way to alter the model
to better represent the financial condition of a given individual is to change the interest

rates in this table to reflect the times and the person’s own financial situation.

127



Chapter 6 Thrift in GAMS

The input table for the B matrix in GAMS is

Table b(n,m) control vector matrix

Xbe Xbc Xbcc Xbsl Xec Xecc Xesl
Sb -1 -1 -1 -1
Se 1 -1 -1 -1
Sc 1
Scc -1 -1
Ssl -1 -1

Xcacc Xcsl Xccsl

Sb

Se

Sc -1 -1

Scc -1

Ssl -1 -1

This table is too wide to fit on a single page so the “+” symbol is used between the two
parts of the table in GAMS to indicate that additional columns of the table are input in a
second set of rows.

Consider first only the first four columns of the B matrix, which are all transfers
out of the bond account. The first two columns ( Xbe and Xbc ) are transfers to other
assets, i.e. bonds to equities and bonds to the checking account. Thus there is a minus
one in the bonds row and a plus one in the equities row and the checking account row
respectively. The next two columns ( Xbcc and Xbsl) are transfers from an asset
account (bonds) to liability accounts (credit card and student loan respectively) so there is
still a minus one in the bond row. However, there are also minus ones in the credit card
and student loan rows since these transfers have the effect of decreasing the amount of
credit card debt or of student loan debt through the action of selling bonds to payoff some

of these loan amounts.
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The input table for the C' matrix in GAMS is

Table c(n, k) exogenous vector matrix

Wa Le Sh
Sb
Se
Sc 1 -1 1
Scc
Ssl

The only entries in this matrix are in the checking account row since wages and
scholarships are deposited in this account and living expenses are withdrawn from it.
The criterion function priorities (penalty matrices) are input next. The matrix for

the priorities for the state vectors for all periods other than the terminal period, W, is

Table w(n,np) state vector matrix penalty matrix
Sb Se Sc Scc Ssl

Sb 100

Se 100

Sc 400

Scc 200

Ssl 0

This is a diagonal nxn matrix; however the set n and its alias np are used. This is not
essential here but it makes it easier to understand the notation that is used later in the
specification of the criterion function in GAMS.  Since the priority for the checking
account is set high at 400 one would expect to observe in the solution that the checking
account state variable Sc will track more closely to its desired value S¢ than will other

state variables to their respective desired values.
Next comes the input for the ¥/, matrix that is the state variable priority matrix

for the terminal period N .

Table wn(n,np) terminal state vector matrix penalty matrix

Sb Se Sc Scc Ssl
Sb 200
Se 200
Sc 800
Scc 200
Ssl 1
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These values are set twice as high as the priorities for the state variables in all other time

periods.

This is followed by the input for the A matrix that is the control variable priority

matrix for all time periods.

Table

Xbe
Xbc
Xbcc
Xbsl
Xec
Xecc
Xesl

Xcacc
Xcsl
Xccsl

lambda (m,mp) lambda matrix
Xbe Xbc Xbcc Xbsl Xec Xecc Xesl
20
1
20
20
20
20
20
Xcacc Xcsl Xcesl
1
1
20

All of these priorities are set to 20 except for those for transfers from the bond account to

the checking account, from the checking account to the credit card account and from the

checking account to the student loan account. Thus these three transfers are permitted to

deviate more from than their desired paths than are the other transfers.

Since the desired path for the state vectorX, (x, with a tilde over it) is time

varying it can be conveniently input with a table statement.

Table

Sb
Se
Sc
Scc
Ssl

xtilde (n, t) state vector desired paths

2000 2001 2002 2003
1000 1000 1000 1000
2000 2000 2000 2000

2004

1000
2000

Recall the GAMS convention that a blank input in a table is treated as a zero. Therefore

the desired path for bonds, equities and student loans are all set to zero. It is desired that

the checking account hold steady at about $1,000 and the student’s credit card debt also
hold steady but at around $2,000.
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Also the desired path for the control vectori, is time varying, so it can likewise

be input with a table statement.

Table utilde (m, t) control vector desired paths

2000 2001 2002 2003

Xbe

Xbc

Xbcc
Xbsl
Xec

Xecc
Xesl
Xcacc
Xcsl
Xccsl

Since this table in entirely blank the desired values for all the transfers in all time periods
are set to zero.

After the matrices in the systems equations and criterion function are input with
table statements, the next step is to input the initial period values of the state vector.

Since this is a vector it can be input with a parameter statement.

Parameter
xinit (n) initial value /
Sb 4000
Se 0
Sc 1000
Scc 0
Ssl 0/

As a first approximation, one can think of the parameter keyword in GAMS as the way
to input a vector of data and the table keyword as the way to input a matrix. Thus the
“xinit (n)” parameter was used above to input the vector that contains the initial values
of the state variables.

So the student begins with $4,000 in bonds, no equities and $1,000 in his or her
checking account. Also the student does not initially have any credit card debt or student
loan debt. This vector is particularly useful in the experiments with this model since the
most obvious thing to do to tailor the model to an individual’s personal situation is to

change the initial values for the state variables.
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Next comes the input for the exogenous variables z, that are time varying.

Since this is a vector that changes over time it can be input with a table statement , i.e.

Table z(k, t) exogenous variables

2000 2001 2002 2003 2004
Wa 15000 15000 15000 15000 15000
Le 20000 20000 20000 20000 20000
Sh 0 0 0 0 0

The student has wages from his or her part time job of $15,000 a year and has living
expenses of $20,000 a year and no scholarship help. Therefore the student must borrow
approximately $5,000 a year or draw down his or her assets. Like the initial conditions
this table is an obvious place for tailoring the model to an individual either by altering the
wages, living expenses and scholarship aid over time or inputting a pattern more closely
related to the individual own situation with respect to these exogenous variables. '’

The variables are the next thing to be assigned in the GAMS program.

Variables
u(m, t) control variable
I criterion ;

Positive Variables
x(n, t) state variable ;

Aside from the criterion variable 5 the only two sets of variables in the model are the
control variables u and the state variables x. The control variables can be either positive
or negative. For example if the variable Xbc is positive it is a transfer from the bond
account to the checking account and if it is negative it is a transfer from the checking
account to the bond account. On the other hand, the state variables must be positive. For
example scc is a liability account and is the credit card debt of the student. If this
amount were negative it would mean that the student was lending money to his or her
credit card company. While some students might like to do that at 13 percent, it is
unlikely that the credit card company would be willing to enter into such a deal.
Therefore the restriction that the state variables must be positive is imposed in GAMS

with the key words Positive variables.

' Thanks to one or our students, Vivek Shah, for helping to develop the time-varying exogenous variable

version of the thrift model.
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Next the equations are declared in GAMS with the statements

Equations criterion criterion definition

stateqg(n,t) state equation ;

So the only sets of equations in this model are the single equation for the criterion
function and the nx¢ state equations. Since there are five state variables and five time
periods then the model will have 25 state equations.

Next the equations are defined, beginning with the criterion function. Recall from
Eq. (19) that this equation is in three parts, the state variables for the terminal period, the
state variables for all other time periods and the control variables for all other time

periods, i.e.
, N
(19) J:%(xN—)EN) Wy (x, —% +EZ[ W(x,—%)+(u, —1,) A(ut—ﬁt)}
t=0

Consider for the moment only the first part, i.e. the state variables in the terminal time

period. This can be written with indices, rather than in vector-matrix form, as

(27) Z PHEN (xjN _;CJ‘N)

161 jeJ

This, in turn, can be represented in GAMS with the statement

criterion..
j =e=
.5*sum( (tz,n,np),
(x(n,tz) - xtilde(n,tz))*wn(n,np)* (x(np,tz) - xtilde(np,tz)) )

This code begins with the name of the equation, criterion, and the two dots (. .)
following the name signal to the GAMS compiler that the name has been completed and
the equation itself is to follow.

The sum in the mathematics in Eq. (27) is over the two sets / and J while the
sum in GAMS is over three sets (tz,n, np). Since the set tz in GAMS has only a single
element, namely the terminal period N in fact this sum in GAMS is really only over two

sets. Recall that n is the set for the state variables, which are the stocks of bonds,
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equities, checking account, credit card account and student loans. Also the set np in
GAMS is the alias of the set n, i.e. it is a copy of the set.
The second part of the criterion function, namely the state variable for all periods

other than the terminal period is written in mathematics with indices as

1 - ~
(28) EZZ Z(xit_xit)wit(xjt_'xjt)

teTu iel jeJ

where
Tu = set of all time periods except the terminal period

and this is written in GAMS as

+ .5*sum( (tu,n,np),
(X(n,tu) _ Xtilde(n,tu))*w(n,np)*(x(np,tu) - Xtilde(np/tu)) )

The sum here is indeed over the three sets, namely, tu, the set of all time periods other

than the terminal period, and n and np the state variable set and its alias.

The final piece of the criterion function is written in mathematics with indices as

1 - -
(29) 3 z z Z(uit _uit);i’it (ujt _ujt)

teTu iel jeJ

and in GAMS as

+ .5*sum( (tu,m,mp),
(u(m, tu) - utilde(m,tu)) *lambda (m,mp)* (u(mp, tu) - utilde (mp,tu)) ) ;

So this sum is over the time period set tu and also over the control variable set m and its
alias mp.

In addition to the criterion function the only other equations in the model are
those in the set of system equations. Recall that these equations are written

mathematically as

(20) X, = Ax,+Bu, +Cz,
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In GAMS they are written

stateg(n, t+l) ..
x(n,t+l) =e=

sum(np, (a(n,np) *x(np,t))) +

)
sum(m, (b(n,m)*u(m,t))) +
sum(k, (c(n,k)*z(k,t)));

The name of the equation in GAMS is stateq and it is defined for the sets n and t+1.
Recall that the set t is

(30) T = {2000, 2001,2002,2003, 2004}

Then the set t+1 in GAMS is defined as the set t less the first element in the set, namely

(31) {2001,2002,2003,2004}

Thus stateq is defined over all time periods in the model except for the first time period.
Finally it is necessary to specify the initial conditions for the state variables of the
model with the GAMS statement

x.fx(n,ti) = xinit(n):;

The suffix . £x is used in GAMS as an abbreviation for “fixed” . In this statement then
the state vector x is fixed in period ti, which is the initial period, to the values in the
vector xinit which is the parameter vector that contains the initial conditions for the
model.

Though it is not shown in the present version of the model, upper bounds on the
credit card account and the student loan account can be included in GAMS statement.
This is done at the end of the equations and before the solve statement with upper

bounds on variables. An example of this is shown below.

x.up('Scc',t)=5000;
x.up('Ssl',t)=7000;

The x.up means the upper bound for the variable x. So x.up ('scc',t) is an upper

bound on the credit card and the x.up ('ss1', t) is the upper bound on the student loan.

One can change these bounds to fit his or her own financial situation.
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Next a name is assigned to the model while also indicating the equations that are

included with the statement, in this case all of the equations

Model track /all/ ;

This is followed by a statement directing that the model be solved with a nonlinear

programming solver by minimizing j, the criterion function, i.e.

Solve track minimizing j using nlp ;

For an introduction to nonlinear optimization solvers see App. F and for a discussion of
the stacking method in GAMS that is used for indexed model like this one see App. H.

Finally a table of the results is obtained with the use of the statement

Display x.1, u.l ;

The suffix “.1” on the variables x and u is not the number one but rather the letter 1 and
is used to indicate the activity level of the variable.
Though it is not shown in the present model it is also possible to solve the model

by maximizing terminal wealth.

4. Results

As was discussed above, Appendix A at the end of the book contains instructions
on running GAMS. Recall from that discussion that examining the results from a GAMS
run can seem complicated at first because the GAMS output files contain a substantial
amount of information about the structure of the model and its solution. However, it is
simple enough to jump around in the file to examine the key parts.

First locate the Solve Summary part of the output. To do this search in the editor
for the string " soLvEr sTaTUS". When you do so you will see a section of the output
that looks like
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S OLVE SUMMARY
MODEL track OBJECTIVE j
TYPE NLP DIRECTION MINIMIZE
SOLVER CONOPT FROM LINE 166
***x*x SOLVER STATUS 1 NORMAL COMPLETION
**xx MODEL STATUS 2 LOCALLY OPTIMAL
***x*x OBJECTIVE VALUE 1377722382.8446

As was discussed earlier, each time after you solve a GAMS model you should check this
section of the output to be sure that the model was solved successfully. The words
“NORMAL COMPLETION” here indicate that is the case. If the solution procedure

was not successful you will find words like "INFEASTBLE" or "UNBOUNDED".
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Next skip down the output across the sections labeled "---- EQu" until you get to
the section labeled "---- VAR x state variable" which looks like

-——— VAR x state variable
LOWER LEVEL UPPER MARGINAL

Sb .2000 4000.000 4000.000 4000.000 4.2771E+5

Sb .2001 . 463.607 +INF .

Sb .2002 . 17.262 +INF -1.142E-9
Sb .2003 . 2.981 +INF -3.220E-9
Sb .2004 . . +INF 19101.665
Se .2000 . . . 24584.643
Se .2001 . 405.341 +INF EPS
Se .2002 . 39.804 +INF -1.291E-9
Se .2003 . 12.292 +INF -2.918E-9
Se .2004 . . +INF 18069.230
Sc .2000 1000.000 1000.000 1000.000 23323.625
Sc .2001 . 1107.581 +INF -1.062E-9
Sc .2002 . 1001.230 +INF -1.495E-9
Sc .2003 . 998.805 +INF -3.380E-9
Sc .2004 . 975.797 +INF EPS
Scc.2000 . . . -4.280E+5
Scc.2001 . 1766.529 +INF -9.31E-10
Scc.2002 . 1984.219 +INF

Scc.2003 . 1991.238 +INF .
Scc.2004 . 2096.163 +INF EPS
S5s1.2000 . . . -2.421E+4
Ss1.2001 . . +INF 39980.703
Ss1.2002 . 4018.936 +INF 1.1896E-9
S5s1.2003 . 9371.548 +INF 3.2469E-9
Ss1.2004 . 14850.699 +INF

The interesting part here is the activity level of the shipment variables x in the column
labeled "LEVEL". This shows, among other things, that there was 4000 in bonds in time
period 2000 and 463 in bonds in time period 2001. This is the solution of the model that
we were looking for. These same results are shown a little further down in the output in
a section labeled "---- 169 VARIABLE x.L state variable" which is the result
of the display statement in the GAMS input. That output is shown below.
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-—— 169 VARIABLE x.L state variable

2000 2001 2002 2003 2004
Sb 4000.000 463.607 17.262 2.981
Se 405.341 39.804 12.292
Sc 1000.000 1107.581 1001.230 998.805 975.797
Scc 1766.529 1984.219 1991.238 2096.163
Ssl 4018.936 9371.548 14850.699

This table is somewhat easier to read than the default output and thus you can see the
reason that most GAMS input files end with a series of display statements. These tables
are easily found since they are at the end of the long GAMS output so the user can
quickly scroll to the bottom of the file and find the key results. However, they will be
there only if you remember to add a display statement at the end of the GAMS input
statement. So in summary, when looking at the GAMS output you should first check to
be sure that the problem was solved satisfactorily. Then focus on the variables section.

Recall that the student starts with $4,000 in bonds and $1,000 in her checking
account and that the student has $15,000 per year in wages and $20,000 in living
expenses. Also, the desired path for the checking account is $1,000 and for the credit
card account is $2,000.

As the table of state variable results over time above shows, the bond account is
drawn down in the first two periods and the student also borrows roughly $2,000 on her
credit card. Then in the third time period borrowing begins from the student loan
account and reaches about $15,000 by the last period. So in order to finance the $5,000
shortfall each year over the four year period the student cashes in $4,000 in bonds,
borrows $2,000 on her credit card and borrows about $15,000 from the student loan fund.
Meanwhile the student continues to hold about $1,000 in her checking account in all time

periods.
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The transfers that are necessary to accomplish these results are shown in the

control variable time paths below.

-—— 169 VARIABLE u.L control variable

2000 2001 2002 2003
Xbe 201.984 -124.453 -55.584 -51.622
Xbc 3296.649 721.808 275.338 260.756
Xbcc 82.078 20.062 11.086 6.544
Xbsl 155.683 -147.892 -215.696 -212.548
Xec -37.151 160.543 69.351 64.660
Xecc -119.906 144.515 66.670 58.166
Xesl -46.301 -23.439 -160.112 -160.927
Xcacc -1655.095 -320.572 -53.610 -129.867
Xcsl -182.988 -3679.651 -4589.264 -4511.721
Xcesl 73.605 -167.954 -226.783 -219.093

There is a transfer of $3,296 from the bond account to the checking account, xbc, in the
first time period followed by a transfer of $721 in the second period. Also there is a
negative transfer of about -$1,600 from the checking account to the credit card account,
Xcacc, in the first time period. So this is actually a transfer of about $1,600 from the
credit card account to the student’s checking account. This in turn is followed by a
similar transfer of about $300 in the second time period.

Also, the borrowing from the student loan fund begins in the second time period
when about $3,600 is transferred from the student loan account to the checking account
via the variable xcs1. This is followed by transfers of approximately $4,500 of a similar

nature in the third and fourth time periods.
5. Experiments

The most useful experiment to do with this model is for the student to use it to
take a rough look at his or her own finances during college and graduate school. The
most important steps to accomplish this are to change the initial conditions in xinit and
the wages, living expenses and scholarship aid in the exogenous variables, z. Also, the
interest rates faced by the student are likely to be different than those used above and
should be modified to be realistic.

Finally the student may have very different desired paths for the state variables.

For example she may want to keep the bond account constant over the time horizon
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covered by the model or she may want to limit credit borrowing to a smaller amount than
was used in the model above.

There are other interesting experiments one can do simply by including bounds on
the variables. For example, one can put a lower bound on the checking account. Some
students have accounts where they are supposed to keep at least a minimum balance, viz
$800. Thus one can place a lower bound of $800 on the checking account. In GAMS
code the bound would look like the following:

xX.lo('Sc’,t)=800

More complicated experiments are to increase the time horizon covered by the
model say to about ten periods and thus to cover not only years in college but the first
years of employment when paying back student debt may become a priority. Another
possibility is to solve the model by maximizing terminal wealth instead of minimizing the
criterion function. Some of these last three experiments require changes in the
specification of the model and are more difficult; however, they are a good way to learn

more about GAMS and about financial planning.
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The GAMS Statement of the Thrift Model

*Student Finance Model in GAMS

*By Genevieve Solomon

*This version also has some modifications by David Kendrick

Sets n states / Sb, Se, Sc, Scc, Ssl /

m controls /Xbe,Xbc,Xbcc,Xbsl, Xec,Xecc, Xesl, Xcacc, Xcsl,Xcesl /

k exogenous / Wa, Le, Sh /

t horizon / 2000, 2001, 2002, 2003, 2004 /

tu(t) control horizon

ti(t) initial period

tz(t) terminal period ;
Alias (n,np), (m,mp) ;
tu(t) = yes$(ord(t) 1t card(t));
ti(t) = yesS$(ord(t) eq 1);
tz(t) = not tu(t);
Display t, ti, tz, tu;
Table a(n,np) state vector matrix

Sb Se Sc Scc Ssl

Sb 1.05
Se 1.10
Sc 1.01
Scc 1.13
Ssl 1.04
Table b(n,m) control vector matrix

Xbe Xbc Xbcc Xbsl Xec Xecc Xesl
Sb -1 -1 -1 -1
Se 1 -1 -1 -1
Sc 1
Scc -1 -1
Ssl -1 -1
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Sb
Se
Sc
Scc
Ssl

Xcacc

Table c(n, k)

Sb
Se
Sc
Scc
Ssl

Table w(n,np)

Sb
Se
Sc
Scc
Ssl

Table wn (n,np)

Sb
Se
Sc
Scc
Ssl

Wa

Sb
100

Sb
200
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Xcsl Xccsl

exogenous vector matrix

Le Sh

state vector matrix penalty matrix
Se Sc Scc Ssl
100

400
200

terminal state vector matrix penalty matrix
Se Sc Scc Ssl
200

800
200

Table lambda (m,mp) lambda matrix

Xbe
Xbc
Xbcc
Xbsl
Xec
Xecc
Xesl

Xbe
20

Xbc Xbcc Xbsl Xec Xecc Xesl

20
20
20
20
20
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2003

1000
2000

control vector desired paths

/

2003

2003
15000
20000

+
Xcacc Xcsl Xcesl
Xcacc 1
Xcsl 1
Xcecsl 20
Table xtilde(n,t) state vector desired paths
2000 2001 2002
Sb
Se
Sc 1000 1000 1000
Scc 2000 2000 2000
Ssl
Table utilde (m, t)
2000 2001 2002
Xbe
Xbc
Xbcc
Xbsl
Xec
Xecc
Xesl
Xcacc
Xcsl
Xccsl
Parameter
xinit (n) initial value
Sb 4000
Se 0
Sc 1000
Scc 0
Ssl 0/
Table z(k,t) exogenous variables
2000 2001 2002
Wa 15000 15000 15000
Le 20000 20000 20000
Sh 0 0 0
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2004

1000
2000

2004
15000
20000
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Variables u(m, t) control variable
criterion ;
Positive Variables X (n,t) state variable ;
Equations criterion criterion definition
stateqg(n,t) state equation ;
criterion..
j =e=
.5*sum( (tz,n,np),
(x(n,tz) - xtilde(n,tz))*wn(n,np)* (x(np,tz) - xtilde(np,tz)) ) +
.5*sum( (tu,n,np),
(x(n,tu) - xtilde(n,tu))*w(n,np)* (x(np,tu) - xtilde(np,tu)) ) +
.5*sum( (tu,m,mp),
(u(m, tu) -utilde(m,tu)) *lambda (m,mp) * (u (mp, tu) - utilde (mp,tu))):;
stateg(n, t+l) ..
x(n,t+l) =e=
sum(np, (a(n,np)*x(np,t))) +
sum(m, (b(n,m)*u(m,t))) +
sum(k, (c(n, k) *z(k,t)));

Model track /all/;
x.fx(n,ti) = xinit(n);

Solve track minimizing j using nlp;

Display x.1, u.l;

145



Chapter 7
Portfolio Model in MATLAB

The classic portfolio optimization problem, which was originally proposed by
Markowitz (1952), was to consider both the mean and the variance of a portfolio by
maximizing the mean while minimizing the variance. This was formulated as a
quadratic programming problem to maximize a weighted sum of the mean and the
negative of the variance. Thus one could consider the tradeoff between stocks with high
means and greater risk with their higher variances and stocks with low means and low
risk with lower variances. Also, one could consider building a diversified portfolio
which contained stocks that tended to move in opposite directions as represented by
negative covariance elements.

Our goal in this chapter is to use MATLAB to solve the optimal portfolio
problem. First, we will solve the problem using a simple Monte Carlo optimization
search program. This will be useful to provide a simple introduction to the MATLAB
programming language and at the same time to learn a little about a random search
procedure for optimization.

Then, we will move on to solve the portfolio optimization problem using a
MATLAB gradient optimization function. However, this code makes use of the
Optimization Toolbox and not all users of MATLAB have this Toolbox available to
them. Therefore, in Appendix 7C we provide a GAMS version of the same problem.
Also, for some readers the GAMS version may be somewhat easier to understand and it
can thereby serve them as a useful entry ramp to the MATLAB gradient optimization

program.11
1. The Mathematics

Consider a vector whose elements are the fractions of the portfolio which is

invested in each of the equities, i.e.

' Also some readers may want to solve models of higher dimension than those used in this chapter with
modified versions of both the MATLAB code and the GAMS code in order to compare the computational

speeds of the two software systems.
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(1) X=X,

where
x, = the fraction of the portfolio invested in equity i

for an example portfolio with three equities.

Also there is a vector x that contains the mean return on each of the equities, i.e.

H, 8
(2) =\ |=12
My 15

where
4, = the mean return on equity 1

Notice in this example that the second and third equities have the highest mean returns of
12 and 15, respectively. These data for the means in Eq. (2) and the covariances shown
below are for illustrative purposes and do not represent the return on particular equities or
groups of equities.

We can then use the inner product of these two vectors, i.e.

X

3) wx=lu o wllx
X3

to obtain the mean return for the portfolio.

The variance for the portfolio is given in the covariance matrix X, that is

o, O, O, 6 -5 4
4) X=|0, 0, O0y|=[-5 17 -11
0, O3, Oy 4 —-11 24

where
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o, = the covariance of the returns on equities i and

Notice in this example that the second and third equities, which have the highest
mean returns, also have the highest variances of 17 and 24 respectively. Also, note that
the off-diagonal elements in the covariance matrix have different signs. Thus, for
example, when the return on the first equity falls, the return on the second equity tends to
rise since the covariance is -5. Thus holding these two equities in the same portfolio
provides a cushion when the return on the first equity declines and the return on the
second equity rises.

The variance of the portfolio can then be written as

O On Op|l%
(5) =[x x, x]loy o, on|x

O3 O3 O35 ([ X

The Markowitz model considers both the mean and the variance of a portfolio by
maximizing the mean while minimizing the variance. Using the components of the mean
and variance of the portfolio from Egs. (3) and (5) one can write the criterion function for

the model as to maximize J in

(6) J = ,u'x—%ﬁx'Zx

where

J = criterion value
S = subjective weight on the variance of the return on the portfolio

The parameter £ provides the subjective weight on the variance. Thus an individual
with a high £ is risk averse and will choose a portfolio with equities which have
relatively small variances. The one-half in this expression is commonly used in quadratic
criterion functions; however it plays no essential role.

The constraint for this model simply requires that the fractions invested in each of

the equities add to one, i.e.

(7) D ox =1

iel

where
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I = the set of equities

Also there is a constraint which requires that the factions be nonnegative, i.e.

(8) x>0 iel

So, in summary, the model is to find those values of x, that will maximize J in Eq. (6)

subject to the constraints in Egs. (7) and (8).

The optimal portfolio model can also be posed in a related way that seeks to find
the fractional equity holdings that will minimize the weighted risk subject to a constraint
that the mean return on the portfolio should be above a specified level. The criterion

function for this model is

1.,
) J = Eﬁy 2y
where
y = vector of fractions of portfolio invested in each equity

subject to

(10) uy=z0
where

@ = desired minimum mean-return on portfolio

(1D 2=l

iel
(12) y,>0 iel

In summary, this second version of the model is to find those values of y, that will

minimize J in Eq. (9) subject to the constraints in Egs. (10) thru (12). The key
parameter in this formulation is &, the desired minimum mean-return for the portfolio.
As this parameter is increased the optimal portfolio will include more of the risky
equities.

This completes the statement of the mathematics of the two versions of the

models. Next we turn to the computational statement of the models in MATLAB.
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2. A Simple Monte Carlo Optimization Procedure in MATLAB

In order to provide a good opportunity to learn both the basics of the MATLAB
software and the basics of a Monte Carlo optimization search procedure we have chosen
a simple application to solve the first formulation of the Markowitz model. This
application is based on some programs developed by our students Paul Maksymonko,
Kevin Kline, and Carter Hemphill.'> The optimization procedure includes the generation
of a population of eight candidate portfolios in the first period. The portfolio that
performs best is then selected and stored. Then the next period portfolios are generated
as random variations around that portfolio. This process is repeated 100 times.

The basic structure of the program is a set of two for loops. The outside loop is
across time periods (or “runs”) and the inside loop is over candidates. These loops look

something like the following

nruns 100 ; popsize = 8;

for k = l:nruns;

for i = l:popsize;
end

end

Notice that the indentation in the code above makes it easy to see the
beginning and ending of each of the “for” loops. The indentation is not necessary
for the MATLAB compiler but can (and should) be used to make the code easier
to read.

The first step in the code is to initialize the number of time periods (or
runs) and the number of candidates in each time period with the MATLAB

statements

12 They developed some applications to be used as an introduction to an optimization method known as
Genetic Algorithms, a method particularly useful when dealing with non-convex problems. We will not
deal with that method here, though the application we will present has a resemblance to that method. The
approach used here is more like an evolutionary algorithm (EA) in that it uses real numbers rather than the
strings of bits in that are used in many genetic algorithms (GA). Later in the book we will provide an

introduction to genetic algorithms in a chapter on that subject.
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nruns = 100; popsize = 8;

This is later followed by the main for loop in the program which is over the time

periods (or runs). The structure of the for loop is

for k =l:nruns;
main body of the program
end

So the time index in this model is k and it runs from 1 to the number of runs.
Also note that each for loop in MATLAB extends until the matching end
statement is encountered. Thus it is useful when reading MATLAB code of this
type to examine the structure of the code by looking for matching for and end
statements. This is shown below in a pseudo code outline of the structure of the
program. The code is called “pseudo” because it could not be run on a computer

as it is but rather is intended to outline the basic structure of the program.

nruns = 100 ; ©popsize = 8;
initialize portfolio weights

for k = l:nruns;
generate returns, variance costs and criterion values

select best portfolio

for i = l:popsize;
generate new random portfolio weights (percentages)
for each candidate

end

end

print and graph the sequence of best candidates

After the number of runs and the population size are set the initialization section
of the code is used to set the initial portfolio weights for each candidate.

Then the k loop for the number of runs begins with the computation for
that time period of the returns and the variance costs for each of the portfolios.
These values are then used to calculate a vector which gives the criterion value
which was obtained for each of the eight candidates. This criterion vector is then

examined to find the index of the candidate with the highest criterion value. This

151



Chapter 7 Portfolio Model in MATLAB

best portfolio is then used in the second, nested, i loop for the candidates the
basis for the generation of the portfolio holding of the eight candidates in the next
period.

After the time period (or run) loop is repeated 100 times the sequence of
best portfolios in each period is printed and plotted.

With this overview of the program in mind consider next each of the

sections of the code.
3. Initialization of Counters, Parameters and Weights

This section of the code contains the initialization of the counters for the
number of runs (nruns), the population size (popsize) and the parameters of the
portfolio model (the risk aversion coefficient (beta), the vector of mean returns

(mu) and the covariance matrix (sigma)).

nruns = 100; ©popsize = 8;
beta = 2;
mu = [8 12 15]"';
sigma = [6 -5 4
-5 17 -11
4 -11 247;

There is also a constant

const = 0.1;

which will be used later to determine de degree of random variation around the
weights of the best candidate of a time period to generate the candidates of the
next period.

Finally, we create the vector of initial portfolios for the first time period

with the statement
pwm = (1/3) * ones(3,popsize);
Thus pwm stands for the portfolio weight matrix. The function ones () generates a

matrix of ones with three rows and a number of columns equal to the population

size. Thus, pwm Will contain eight column vectors with one portfolio each, all

152



Chapter 7 Portfolio Model in MATLAB

with weights set equal to 1/3. Thus the initial pwm looks like

33 33 33 33 33 33 33 33
pwm=|.33 33 33 33 33 33 33 .33
33 33 33 33 33 33 33 33

Notice here that it is not necessary in MATLAB to first declare a variable
and then define it. Declarations are used in many program languages to
determine the type of a variable, viz. whether it is an integer or a floating point
number and whether it is a scalar or a multidimensional array. Also, the
declaration is used to set aside enough space in memory to store the elements of
the variable before the numerical values of each element are defined in a separate

statement in the language. Thus, in the statement
mu = [8 12 15]"';

which is used above, the variable mu is both declared and defined by its context to
be a column vector with three elements. The vector is input as a row vector but
the transpose (') mark is used to convert it to a column vector.

The next step is the generation of the returns, variance cost and criterion

value for each portfolio.
4. Generation of Returns, Variance Costs and Criterion Values

The returns for every candidate are generated with the statement

pret = pwm' * mu;

where pret is an 8 element vector that contains the portfolio return for each of the
eight candidates. The original pwm matrix is 3 x 8 as we saw above; therefore, its
transpose which is used in the statement above is 8 x 3. This matrix in turn is
multiplied by the 3 element column vector mu to yield the 8 element column

vector pret.

Generating the variance costs for every candidate requires the use of a short loop
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for j = l:popsize;
pvar(j) = 0.5 * beta * pwm(:,j)' * sigma * pwm(:,7);
end

The notation (:,j) in the matrix pwm refers to all the elements of the jth column
of the matrix. Remember that each column in pwm corresponds to one portfolio.
Thus by the time the code has passed through this loop eight times the variance
costs for all the candidates are neatly stored in the pvar vector which has eight
elements (one for each candidate).

The criterion values for each candidate are just the difference between the

portfolios returns and the variance costs and are computed with the statement

pcrit = pret - pvar';

The vectors pret and pvar each have eight elements. Since the vector pvar is a
row vector it has to be transposed in the expression above. Thus from the
expression above pcrit is an 8 element column vector with the criterion value for
each of the portfolios. Thus this vector can be used to find the best candidate. Of
course in the first pass through this part of the code all portfolios are the same so

the criterion values will be the same for all of them.

5. Selection of the Best Portfolio

The next step is to find the portfolio which has the highest rate of return.

This is done with the statement
[top topi] = max(pcrit);
that uses the MATLAB function max to place in the scalar top the largest element
in the vector pcrit and the corresponding index in the scalar topi. If there is
more than one maximum, this function will choose only one.
The index is then used to put into the vector wnew the set of portfolio

weights used by this candidate with the statement

wnew = pwm(:,topi);
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Recall that the matrix pwm has three rows (one for each asset class) and eight
columns (one for each candidate) so the effect of the statement above is to put the
three elements from the topi column of the matrix into the vector wnew. The
portfolio weights for the best candidate and the criterion value in each time period

k are then stored in the matrices wbest and pcritvec using the statements

wbest (:,k) = wnew;
pcritvec(:,k) = top;

These arrays can then be used at the bottom of the code to plot the best portfolio

in each run and the corresponding criterion value.

6. Random Generation of New Portfolios

The candidates for the next period are created as random variations around
the portfolio weights of the best candidate from the previous period. The weights
from the best candidate have been stored in the vector wnew and that vector is

used in the for loop below to create eight new candidates.

for i = l:popsize-1;
wl = wnew(l) + rand * const;
w2 = wnew(2) + rand * const;
w3 = wnew(3) + rand * const;

temp = wl + w2 + w3;

wl = wl/temp;

w2 = w2/temp;

w3 = w3/temp;

pwnew (:,1) = [wl w2 w3]';

end

The MATLAB random number generator, rand, for uniform distributions
between zero and one is used here and is multiplied by a constant. This has the
effect of adding a given amount to the portfolio weight for each equity. The
weights are then normalized so they add up to one. The last statement in the loop
above, 1.e.

pwnew(:,3) = [wl;w2;w3];
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simply stores the weight vector for the jth candidate in the jth column of the new
portfolio weight matrix, pwnew. Thus by the time the loop has been completed
the portfolio weights for the first seven candidates have been stored in the pwnew
matrix.

The next step is to put the best portfolio from the previous run in the last

(eighth) column of the pwnew matrix using the statement

pwnew (:,popsize) = wnew ;

This has the effect of keeping the best solution from each run when generating the
new portfolios to be used for the next run.

Then the statement

pwm = pwnew

is used to replace the previous period matrix of portfolios by the newly generated
matrix. Following this statement is the last end statement in the code. This is the
end that corresponds to the for loop across time periods.

After the time period loop is completed the weights for the surviving

candidate and the criterion values are printed with the simple statements

wnew

top

The absence of a semicolon at the end of these statements dictates that the result
will be printed. Finally, the commands below generate a graph displaying the
values of the three assets percentage holdings for the best candidate in each time

period.

xaxis = [l:1:nruns]';
plot (xaxis,wsurv(:,:));
xlabel ('Runs') ;

ylabel ('"Weights') ;
legend('wl', 'w2', 'w3');

Also we have commented out an additional statement that can be used to
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plot the criterion value for all runs. It is

$plot (xaxis,pcritvec(:,:));

If you want to obtain this plot simply remove the leading % sign and rerun the
program.

The entire code of the program is contained below in Appendix 7A and is
also available in the book web site under the name mcportfol.m. The
instructions for running MATLAB are in Appendix L.

It is important to point out that every time you run the program,
particularly when changing the number of runs or the population size, you should
clean out the old commands and workspace to avoid displaying spurious results.
To do so, go to Edit in the top MATLAB menu. Then select Clear Command
Window and confirm with Yes that you want to do this. Then do the same for
Clear Command History and for Clear Workspace. Alternatively, adding the
sentence

clear all;

at the beginning of the program will clear the workspace.

Figure 7.1 shows the sequence of weights of the best portfolios at each
time period. The optimal portfolio weights for this experiment correspond to the
last time period and are: w1 =0.24, w2 =0.43 and w3 = 0.33.
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Figure 7.1 Best Portfolio at Each Time Period

Notice for this particular model and starting conditions that portfolios close to the
optimum are found within only about ten runs.

This small random search optimization routine is simple to program and
for the particular example problem is relatively effective in finding the optimal
solution. More important it serves our purpose of introducing the MATLAB
software with a relatively uncomplicated code that performs nicely on this simple
problem.

However, to see the shortcoming of this simple code you can try solving
the case where beta is set equal to zero. In this case the solution will be a
boundary solution since the optimal portfolio will be one in which the entire
portfolio is placed in the one equity with the highest mean return. The simple
code above has a difficult time finding this solution but the more complex
gradient method approach discussed in the next section finds that optimal solution

with relative ease.
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7. The Markowitz Model Using a MATLAB Optimization Function

We turn now to the solution of both versions of the Markowitz model
using a MATLAB function from the Optimization Toolbox. Therefore, before
beginning to work with this code, be sure that the version of MATLAB that you
are using includes the Optimization Toolbox.

The function to be used is fmincon. It is designed to find the minimum of
a function f(x) with linear inequality and equality constraints and with nonlinear
constraints. Thus our model can be solved with a nonlinear optimization solver
(see Appendix F). A simplified version of this function call for a model that has
only linear inequality constraints would be (this function call is used only for

exposition and will not necessarily work in a MATLAB program)
[x,fval] = fmincon(@func,x0,A,b)

where

x = the vector of optimal values

fval = the value of the criterion function at the optimum

fmincon = the name of the function from the Optimization
Toolbox

func = the name of the user supplied function that returns
the criterion value for the function

x0 = a vector of starting values to be used in the search for
the optimal value of the function

A = the matrix for the linear inequalities Ax <= D

b

the vector for the linear inequalities Ax <= Db

To use the fmincon function in this case the user would have to supply a function

func

that would return the value of the criterion function. Also the user should

provide a vector x0 of values that he or she thinks is close to the optimal value of
the function. This starting point is used by the Optimization Toolbox function as
a starting point in the search for the optimal value of the function. Also, the user

must supply the A matrix and the b vector for the linear inequality

Ax <= Db
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that constrains the solution to the model.
A somewhat more complicated version of the call to fmincon would
include in addition to the linear inequalities also linear equalities and upper and

lower bounds on the variables and would be of the form

[x,fval]l=fmincon (€Gfunc,x0,A, b, Aeq, beqg, 1b, ub) ;

where

Aeq = the matrix for the linear equalities RAeq x beqg
beq = the vector for the linear equalities Aeq x = beq
1lb = lower bound on the variables, i.e. lb <= x

ub = upper bound on the variables, i.e. x <= up

The actual call to fmincon is still more complicated in that it permits options to specify
nonlinear constraints and to pass the model parameters to the criterion function. For the first

version of the optimal portfolio model this function call is

[x,fval,exitflag, output]
=fmincon (@dcril, x0,Al,bl, Aeq, beqg, 1b,ub,nonlcon, options,beta,

N, mu, sigma) ;

where

exitflag = provides info on the condition of the function at exit
output = provides additional output from the function
dcril = the user supplied function that returns
the criterion value for the first version
of the model
x0 = a vector of starting values to be used in the search for
the optimal value of the function
Al = the matrix for the linear inequalities Al x <= bl
for the first version of the model
bl = the vector for the linear inequalities Al x <= Dbl
for the first version of the model

nonlcon = specification for the nonlinear constraints
options = options to pass to the function
beta,N,mu,sigma = additional arguments to be passed to the function
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For the second version of the model, where we minimize the variance subject to a
constraint on the portfolio return, the call to the fmincon function is identical to the one above
except that the user supplied function is named dcri2 and that the matrix and vector for the set
of linear inequalities are designated respectively as A2 and b2.

The MATLAB code for the optimal portfolio model, which was
programmed by Miwa Hattori, is shown in Appendix 7B and is also available in
the book web site under the name portfolio.m. Other than the call to the
function fmincon, the rest of the code is devoted primarily to preparing the
inputs to pass to the function and to providing the function which returns the

criterion value. So lets begin with the code to pass the parameters € and £ and

the number of equities in the portfolio, N. This is written

theta=10;
beta=2;
N=3;

The next section of the code is used to input the values of the mean-return vector x# and

the covariance matrix X and is

mu=[8; 12; 15];

sigma=[6 -5 4;
-5 17 -11;
4 =11 24];

Notice that each line of the vector mu is ended with a semicolon, so mu is input as a
column vector.

The next step is to provide the starting values that are to be used in the
search for the optimum shares in the portfolio. A reasonable starting point is to
divide the portfolio equally among the three equities. This is accomplished in the
MATLAB code with the statements

x0=ones (N, 1) /N;
yO0=ones (N, 1) /N;
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where
x0 = the vector of starting values to be used in the search for
the optimal value of the function in the first version
of the model
y0 = the vector of starting values to be used in the search for

the optimal value of the function in the second version
of the model

The MATLAB function ones (m, n) is used to create an n by m matrix of ones. So
in this case the function call ones (N, 1) creates an N vector of ones. All of the
elements of this vector are then divided by N, so in our case with three equities
the vector x0 will have three elements all of which are 0.33. Also the same will
be true for y0 which is used with the second version of the model.

Next consider the linear inequality constraints for the two versions of the
model. The first version has only a linear equality constraint and no linear

inequality constraints so this is input with the MATLAB statements

i.e. the matrix A1 and the vector b1 are empty and can be ignored by the function.
However this is not the case in the second version of the model which minimizes
the weighted variance subject to achieving at least a minimum mean return on the

portfolio, i.e.

(10) Wy=0

However, since MATLAB expects the inequality in less-than-or-equal form it is

necessary to multiply the constraint through by minus one to obtain

(13) 'y <0

Then the A2 matrix and the b2 vector for this constraint can be input to the code

with the statements

A2 = -mu';
b2 -theta;
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Since the vector mu was input above as a column vector it must be transposed with

the transpose operator (') here since we need it in the form of a row vector for this

constraint.
The equality constraints for the two versions of the model are the same

and are of the form

le.zl

iel

for the first version and

zzyizl

iel
for the second version. So the A matrix and b vector have the same structure for

both versions of the model and can be input with the statements

Aeq (1 11];

1;

Beg

The lower bounds on the variables are used to enforce the non-negativity
constraints and there are no upper bounds so the bounds for both versions of the

model are specified with the statements.

1b=[0;0;07;
ub=[1];

The final part of the model specification is the nonlinear constraints, of

which there are none, so this is written

nonlcon=[];

options = optimset ('MaxIter',60);

Also, the options variable is used to set the maximum number of iterations for
the nonlinear programming code to 60. If the code has difficulty converging on

the solution to your model it would be useful to raise this limit.
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With all this preparation done, one can now call the fmincon function for

the first versions of the model and print the key results with the statements

[x,fval,exitflag,output]
= fmincon (@dcril, x0,Al,bl, Aeq, beqg, lb,ub,nonlcon, options,beta,
N, mu, sigma) ;
fval
This MATLAB function will in turn call the user specified dcri1 function for the
first version of the model to obtain the value of the criterion function at each point

x in the search for the optimum. Recall that for the first version of the model the

criterion function in matrix form is, from Eq. (6) above

(6) J=ux —%ﬂx'Zx

which can be written in index form as

(14) J:Zﬂi i—%ﬂZinqjxj

iel iel jeJ

This can be rearranged slightly by moving the # and x, to obtain

(15) J:Z:ui i_%zxi[ﬂzaijxjj

iel iel jeJ

which is the form used in the dcri1 function below.

function [z] = dcril (x,beta,N,mu, sigma)
z=0;
for i=1:N;

temp=0;

for j=1:N;

temp=temp+BETA*sigma (i, J) *x(J);
end;
z=z+mu (i) *x (1) -0.5*x (1) *temp;
end;

Z2==2Zy
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Notice at the top of the function that the fmincon function passes to the dcril
function the current point x in the search for the optimum and the parameter of the
problem.

Notice at the bottom of the function that the negative value of z is returned
by the function. The reason is that the fmincon function — as its name indicates —
is used to find the minimum value of a function. Therefore to use it to find the
maximum, as we need here, it is necessary to reverse the sign of the criterion
value.

An equivalent but more compact formulation that shows the power of
MATLAB for matrix computation could be

function z = dcril (x,beta,N,mu,sigma) ;

z = —(mu'*x - 0.5*beta*x'*sigma*x) ;

The call to the fmincon function for the second version of the model,

followed by the command lines to print the results, is

[y,fval,exitflag, output]
=fmincon (@dcri2, y0,A2,b2, Aeq, beqg, 1b,ub,nonlcon, options, beta,
N, mu, sigma) ;
fval

The dcri2 function for the second version of the model is similar to the deril

function except simpler since it does not contain the mu parameters.

1, .,
J=§ﬂy2y

Also it is not necessary to use the negative sign at the bottom of the function since

we are seeking a minimum in this case.
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8. Experiments

The logical experiment to do with the Markowitz model is to change the
p risk preference parameter to see how the optimal portfolio changes. As S
increases one would expect the optimal portfolio to contain larger proportions of
stocks with lower variances and — most likely — with lower mean returns.

Another useful experiment is to change the pattern of the signs of the off-
diagonal elements in the £ matrix. In the original version used in this chapter
there is a mixture of positive and negative off diagonal elements. It would make
interesting experiments to selectively change the signs of these elements and
observe the results.

Finally, another useful experiment is to compare the outcomes of the
Monte Carlo code against the ones obtained with the optimization function. You
may want to increase the number of time periods and/or the population size, or
change the value of the constant const, and see how these changes affects the
outcome of the Monte Carlo code. Also, in the “random generation of new
portfolios” section, you may want to divide the constant const by the number of
runs index k and see how this affects the convergence path of the best weights to
the optimal portfolio.

Of course the reader may want to obtain data on a set of stocks and bonds
which are of particular interest to him or her and thus develop a personal version

of the optimal portfolio model.
9. Further Reading

For a variety of financial models in MATLAB see Brandimarte (2001).
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Appendix 7A
MATLAB Code for a Monte Carlo Portfolio Problem

%Monte Carlo portfolio program;
%$Program name: mcportfol.m
$Developed by Ruben Mercado with modifications by Scott Schwaitzberg

%$and David Kendrick
clear all;

%$initialization of counters, parameters and weights;

nruns = 100; popsize = 8;
beta = 2;
mu = [8 12 15]"';
sigma = [6 -5 4
-5 17 -11
4 -11 247];
const = 0.1;
pwm = (1/3) * ones(3,popsize);
for k = l:nruns;

% generation of vectors of returns, variance cost and crit function
pret = pwm' * mu;
for j = l:popsize;
pvar(j) = 0.5 * beta * pwm(:,J)"' * sigma * pwm(:,7J);
end
pcrit = pret - pvar';

% selection of the best portfolio;
[

top topi] = max(pcrit);
wnew = pwm(:,topi);
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% store best portfolio and the optimal criterion value for each run
wbest (:,k) = wnew;
pcritvec(:,k) = top;

[)

% random generation of popsize minus one new portfolios;

for 1 = l:popsize-1;
wl = wnew(l) + rand * const;
w2 = wnew(2) + rand * const;
w3 = wnew(3) + rand * const;

temp = wl + w2 + w3;

wl = wl/temp;

w2 = w2/temp;

w3 = w3/temp;

pwnew (:,1i) = [wl w2 w3]';

end

% put best portfolio for the run in the last column of the matrix
pwnew (:,popsize) = wnew ;
pwm = pwnew;

end
%print optimal weights and optimal criterion value
wnew

top

$print and graph optimal weights and criterion value

Swbest
xaxis = [l:1:nruns]’';
plot (xaxis,wbest(:,:));

xlabel ('Runs');

ylabel ('"Weights');
legend('wl', 'w2', 'w3");
$plot (xaxis,pcritvec(:,:));
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Appendix 7B
MATLAB Code for a Markowitz Optimal Portfolio Problem

o\

Title: Quadratic-Linear Programming for Mean Variance Portfolio
Analysis

Program name: portfolio.m

o° oo oe

by Miwa Hattori
Implementation of the mean-variance portfolio selection models
with two alternative formulations in Matlab:

o° oo oe

(1) maximizing expected mean return, net of variance costs and

oo

(2) minimizing the overall variance costs of portfolio.
clear all;

o\

% Preliminaries

theta=10; % Minimum mean-return on portfolio under formulation 2.
beta=2; % Subjective weight on returns variance of equities.
N=3; % Number of available equity types.

mu=[8; 12; 15];

o\

Column vector of mean annual returns on equities 1
through N (%) .

Table of covariances between returns on equities.

o o°

sigma=[6 -5 4;
-5 17 -11;
4 -11 24];

o\

Provide initial "guesses" for portfolio vectors.

o0 o°

o\

x0=ones (N, 1) /N; Column vector of fractions of portfolio invested in
equity i, initialized to 1/N.

y0=ones (N, 1) /N; Column vector of fractions of portfolio invested in

o° oo oe

equity i, initialized to 1/N.

o°  o°

Constraints for optimization
Matlab only has a function that solves a constrained nonlinear
MINIMIZATION problem. See Help file for function "fmincon".
fmincon finds a minimum of a multivariable function f (x)subject to
A*x<= b, Reg*x= beq, lb<= x <=ub where x, b, beq, 1lb, and

o° oo o°

ub are vectors, A and Aeq are murices.

o° oo oe

Al=[]; % Set of linear inequality constraints under formulation 1.
bl=[1;
A2=-mu'; % Set of linear inequality constraints under formulation 2:
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b2=-theta; % Desired minimum mean-return on portfolio y >= theta (%).
Aeg=[1 1 1]; % Set of linear equality constraints.
beqg=1; % Fractions x (i) must add to 1, fractions y(i) must add to 1.

1b=[0;0;01; % Non negativity constraints on x(i) and y (i)

ub=[1];

nonlcon=[]; % Non linear constraints-- none in this problem.
options=optimset ('MaxIter',60);

o\

oo

Definition of the criterion functions
Functions dcril, dcri2 are called. See files dcril.m, dcri2.m.

o°  o°

[x,fval,exitflag,output]=fmincon (@dcril, x0,Al,bl,Aeq,beq, 1lb,ub,nonlcon,
options,beta,N,mu, sigma) ;

X

fval
[y,fval,exitflag,output]=fmincon (@dcri2, y0,A2,b2,Aeq,beq, 1b,ub,nonlcon,
options,beta,N,mu, sigma) ;

Yy

fval

Title: Quadratic-Linear Progr for Mean Variance Portfolio Analysis

o°  o°

Function Name: dcril.m

o

by Miwa Hattori
The first formulation of the crit function for mean-variance port

o°  o°

selection model.

o

Defines the expected mean return, net of variance costs, which is

oo

to be maximized.

function z = dcril (x,beta,N,mu, sigma) ;

z=0;
for i=1:N;
temp=0;
for j=1:N;
temp = temp + beta*sigma(i,j)*x(j);
end;
z =z + mu(i)*x (i) - 0.5*x (i) *temp;

Matlab only has a subrou to solve constrained MINIMIZATION problems.

o° oo

We solve a maximization problem by minimizing the negative of the

o

objective function.
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oo

Title: Quadratic-Linear Programming for Mean Variance Portfolio
Analysis

o°  o°

Function Name: dcri2.m

o

by Miwa Hattori

The second formulation of the criterion function for mean-variance

o°  o°

portfolio selection model.

oo

Defines the overall variance costs of portfolio to be minimized.

function z = dcri2(y,beta,N,mu,sigma) ;
z=0;
for i=1:N;

temp=0;

for j=1:N;

temp = temp + beta*sigma (i, J)*y(J);
end;
z =z + 0.5%y (1) *temp;
end;
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Appendix 7C
GAMS Code for a Markowitz Optimal Portfolio Problem

The complete GAMS version of the model, which was programmed by
Seung-Rae Kim, is at the end of this Appendix. Here we will discuss the parts of
the model. The first part of the GAMS statement of the model is the specification

for the set of equities

Set i equities /equityl, equity2, equity3/;
While it is more common in GAMS to use an upper case letter for the set so that the
specification would be “Set I”” instead of “Set 1 there is an argument for using the lower
case specification as is done here. The argument is that in GAMS the symbols for sets

are used where the mathematics of the model would indicate a set and where the

mathematics would indicate an index. Thus the mathematical statement of Eq. (7), i.e.

(7) Dox =1

1s written in GAMS as

Of course, since GAMS does not distinguish between upper and lower case letters it

would be possible to write the GAMS statement as

This might be more aesthetically pleasing but could also be more confusing.
Just beneath the set specification statement in GAMS is an Alias statement of the
form

Alias (i,3) >
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This statement creates a set J which is a copy of the set 7. This kind of
statement is used in GAMS when there is a double summation over the elements
of a variable x (i, j) of the sort that is used in computing the variance of the

portfolio in this model.
Next the data are input using the scalar keyword for 8 and S, the

pParameters keyword for the vector x and the Table keyword for the matrix X

as follows:

Scalar theta desired minimum mean-return on portfolio (%) / 10 /

beta subjective weight on returns variance of equities / 2 /;

Parameters mu(i) mean annual returns on equities (%)
/ equityl 8
equity?2 12
equity3 15 / ;

Table sigma(i,j) covariance matrix of returns on equities
equityl equity?2 equity3
equityl 6 -5 4
equity?2 -5 17 -11
equity3 4 -11 24 ;

Then the variables are defined using the keyword “variables”

Variables
x (1) fraction of portfolio invested in equity i1 in formulation 1
y (1) fraction of portfolio invested in equity i in formulation 2
criterionl expected mean return on portfolio, net of variance cost

criterion2 variance-augmented total risk cost of portfolio ;

Positive Variable x, vy ;
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Also, the Positive Variable statement is used in GAMS to enforce the non-
negativity constraints on the x and y variables. Notice that the two versions of the
model using the x variables in the one version and the y variables in the other are
being developed simultaneously in the GAMS statement of the models, rather
than one after another.

Next comes the declaration of the equations with the statements

Equations dcril definition of criterionl
dcri?2 definition of criterion2
xsum fractions x (i) must add to 1.0
dmu desired minimum mean-return on portfolio y (i)
ysum fractions y (i) must add to 1.0 ;

Recall that the semicolon after the last line above is crucial in GAMS. It is easy
to forget this semicolon when developing a model in GAMS; however, forgetting
it usually results in errors in GAMS, since the compiler does not know where the
list of equation names ends and the definition of the equations begins.

Next are the definitions of the equations beginning with the criterion
function. However, since GAMS uses index rather than matrix notation, it is

useful to restate the matrix form of the criterion function from Eq. (6) above, i.e.

(6) J=ux —%ﬂx'Zx

in index form as

(14) Jzz,ui i—%ﬂZinqjxj

iel iel jeJ

where
4, = the mean return on equity 1

o, = the covariance of the returns on equities i and

This criterion is written in GAMS as

dcril.. criterionl =e= sum(i, mu(i)*x(i))

-.5*sum (i, x(i)*sum(j, beta*sigma(i,]j)*x(3)))
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Here we see the use of the alias [ and J sets for the double summation.
Similarly the criterion function for the second version of the model which is

written in matrix form as

|
) J = Eﬁy Xy
becomes
dcri2.. criterion2 =e= .5*sum(i, y(i)*sum(j, beta*sigma(i,Jj)*v(3)))

in the GAMS statement.
The rest of the constraints for the two versions of the model are stated in
GAMS as

Xxsum. . sum (i, x(i)) =e= 1.0 ;
dmu. . sum(i, mu(i)* y(i)) =g= theta ;
ysum. . sum(i, y(i)) =e= 1.0 ;

The first and third constraints above require that the fractional portfolio holdings
add to one. The middle constraint containing the € parameter is the restriction
on the portfolio return in the second version of the model.

The last part of the GAMS statement for the two versions of the model is

Model portfoliol / dcril, xsum / ;
Model portfolio2 / dcri2, dmu, ysum / ;

Solve portfoliol using nlp maximizing criterionl;

Solve portfolio2 using nlp minimizing criterion2;

Here we see a good example in GAMS of the use of Mode1 statements to specify
different versions of a model that can then be solved one after another with two
different solve statements. The two models are actually quadratic programming
models; however, GAMS does not have a specialized solver for this purpose and
the nonlinear programming solver called by the keyword n1p is appropriate. For
an introduction to this type of solver see Appendix F.

Below is the complete GAMS code for the Markowitz problem. The
GAMS library has a variety of optimal portfolio models which may be of interest
to the reader. They are called PORT and QP1 thru QP6. The PORT model was
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created by the Control Data Corporation and the QP models were created by
Erwin Kalvelagen at the GAMS Corporation.

$Title A Quadratic-Linear Program for Mean-Variance Portfolio Analysis
* Program by Seung-Rae Kim

$Ontext

These are mean-variance portfolio selection models with two
alternatives

formulations in GAMS: (1) maximizing expected mean return, net of

variance costs, & (2) minimizing the overall variance costs of
portfolio.
SOfftext

Set 1 equities /equityl, equity2, equity3/;
Alias (i,3) >

Scalar theta desired minimum mean-return on portfolio (%) / 10 /
beta subjective weight on returns variance of equities / 2 /;

Parameters mu(i) mean annual returns on equities (%)
/ equityl 8
equity?2 12
equity3 15 / ;

Table sigma(i,j) covariance matrix of returns on equities
equityl equity?2 equity3

equityl 6 -5 4

equity? -5 17 -11

equity3 4 -11 24 ;
Variables

x (i) fraction of portfolio invested in equity i in formulation 1
y(i) fraction of portfolio invested in equity i in formulation 2
criterionl expected mean return on portfolio, net of variance cost
criterion2 variance-augmented total risk cost of portfolio ;

Positive Variable x, vy ;

Equations dcril definition of criterionl
dcri?2 definition of criterion2
xsum fractions x (i) must add to 1.0
dmu desired minimum mean-return on portfolio y (i)
ysum fractions y (i) must add to 1.0 ;

176



dcril..

dcri2..

Xsum. .

dmu. .

ysum. .

Model
Model

Solve
Solve
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criterionl =e= sum (i, mu(i)*x(i))-.5*sum(i, x(i)*sum(j,
beta*sigma (i, J) *x(3))) ;
criterion2 =e= .5*sum (i, y(i)*sum(j, beta*sigma (i, J)*y(j)))

sum (i, x(i)) =e=
sum (i, mu(i)*y (i

sum (i, y(i)) =e=

portfoliol / dcril,
portfolioc2 / dcri2,

portfoliol using nlp
portfolio2 using nlp

1.0 ;

)) =g= theta ;
1.0 ;

xsum / ;

dmu, ysum / ;

maximizing criterionl;

minimizing criterion2;

’
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Chapter 8
General Equilibrium Models in GAMS

The analysis of economy-wide models is a particularly demanding topic in
economics, since it involves the study of interdependence. It implies a move to the realm
of multiple heterogeneous agents, sectors and institutions interacting in complex ways.
While there are some analytical methods and results available to help us in such endeavors,
computational methods become necessary when we move to medium or large size models
or when we deal with particularly complex ones.

This chapter provides an introduction to the art of economy-wide modeling. We
present a sequence of small models, we show how to implement them in GAMS and we
perform some experiments and suggest other experiments. We start with an Input-Output
model in which quantities produced are determined given technology and demand levels.
We follow with a Production Prices model that determines relative prices given technology
and a distributive variable. Then we move to a General Equilibrium model in which prices
and quantities are determined simultaneously given technology, preferences and
endowments. Finally, we introduce SAM based and Johansen style Computable General
Equilibrium models. We will present models in a sequence reflecting mainly their
computational complexity in terms of degree of non-linearity and size. The order of the
sequence does not mean historical or theoretical precedence of one type of model over the

others, or a ranking of practical relevance.

1. Input-Output Model

A good starting point for the study of interdependence in economics is the well
known Input-Output model pioneered by Nobel prize winner Wassily Leontief (1953).
One of the main goals of this type of model is the determination of direct and indirect levels
of production to satisfy a given increase in final demand.

Consider an economy with three industries (1, 2 and 3). Each of them produces a

single output, using as inputs part of its own production as well as part of the output from
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the other industries. It is clear, then, that each industry plays a dual role since it is both a
supplier of inputs and a user of outputs. Imagine that each product in this economy is also
used to satisfy an exogenously given level of demand from consumers. In formal terms, we

can represent the economy just described as follows

X =a, x +a, x,+a; x;+d,
(1) Xy =ay X+ Ay X, +ay Xy +d,

X, =a; X, +ay, x, +a,; x; +d,

where the x’s are production levels, the a; are the input-output coefficients (the

intermediate requirements from industry i per unit of output of industry j), and the d’s are
the levels of final demand from the consumers."> In matrix notation, we can write Eq. (1)

as
() x=Ax+d

where x is the vector of levels of production, d is the vector of final demands and 4 is the
input-output coefficients matrix.
A question can be posed for this economy. Given an example input-output

coefficients matrix

03 02 02
A=|0.1 04 0.5
04 0.1 0.2

and an example vector of final demands

1 One of the attractive features of input-output models is that in principle the data that is used to compute the
coefficients in the model can be obtained directly from sources such as the manufacturing censuses done in

many countries.
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what will be the required level of total production of each industry (direct and indirect) to

satisfy that final demand vector? The GAMS representation of this problem is

STITLE IO-1
* Input-Output Model

SCALARS

dl final demand for x1 /4/
d2 final demand for x2 /5/
d3 final demand for x3 /3/;

VARIABLES

x1 production level industry 1
x2 production level industry 2
x3 production level industry 3
J performance index;

EQUATIONS

egxl

egx?2

egx3

jd performance index definition;

jd.. j =E= 0;

egxl.. x1 =E= 0.3*x1 + 0.2*x2 + 0.2*x3 + di1;
egqx2.. x2 =E= 0.1*x1 + 0.4*x2 + 0.5*x3 + d2;
eqx3.. x3 =E= 0.4*x1 + 0.1*x2 + 0.2*x3 + d3;

MODEL IO /jd, eqgxl, egx2, eqx3/;
SOLVE IO MAXIMIZING J USING LP;
DISPLAY x1.1, x2.1, x3.1;

The GAMS files for this and the other models in this chapter are in the book web site under
the names listed in each $TITLE statement. Note that in this model, as discussed in
Appendix H “The Stacking Method in GAMS”, in order to solve a system of simultaneous
equations in GAMS it is necessary to add an additional variable (5) and equation (5d) and
to maximize or minimize the added variable. As is discussed in that appendix, GAMS has
procedures for optimizing but not for solving simultaneous equations. Therefore, the
method for solving simultaneous equations in this software system is to add to the model an
additional variable — j in this case — and an additional equation — jd in this case. Then the
additional variable is maximized or minimized in order to find the solution to the model.

Using this method the solution obtained is
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x, =16.821, x, =23.744, x, =15.128.

There are analytical methods available to deal with this problem.'* Indeed, the

analytical solution is obtained by solving Eq. (2) to obtain

3) x=(I-4)"d

where [ is the identity matrix."”> This formula can be easily handled for small models.
However, computational methods will be required to perform the matrix inversion as soon
as one moves to larger models. And these methods will become unavoidable as we move
to more complex problems. For example, imagine now that we have some restriction, like
a capacity constraint, on the maximum level of production of some products (say x, <22
and x, <14 ) and we want to know the maximum level of final demand of product 1 (d,)

that the economy can satisfy, given the final demand levels d, and d,. This can be easily

handled in GAMS. Here is the corresponding GAMS representation of the problem

$STITLE IO-2
* Input-Output Model with restrictions

SCALARS
d2 final demand for x2 /5/
d3 final demand for x3 /3/;

POSITIVE VARIABLES

x1 production level industry 1
x2 production level industry 2
x3 production level industry 3
dl final demand for x1;

VARIABLES

jJ performance index;

' See for example Chiang (1984) for an introduction to these methods.

1 Also, it is necessary that the I-A matrix be non-singular.
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EQUATIONS

egxl

eqgx2

egx3

resl restriction 1

res2 restriction 2

jd performance index definition;

Jd. . J =E= di;
egxl.. x1 =E= 0.3*x1 + 0.2*x2 + 0.2*x3 + di1;
egqx2.. x2 =E= 0.1*x1 + 0.4*x2 + 0.5*x3 + d2;
egqx3.. x3 =E= 0.4*x1 + 0.1*x2 + 0.2*x3 + d3;
resl.. x2 =L= 22;
res2.. x3 =L= 14;

MODEL IO /all/;
SOLVE IO MAXIMIZING j USING LP;
DISPLAY x1.1, x2.1, x3.1, dl.1;

Notice that we define and add two equations (res/ and res?2) corresponding to the
restrictions, set the performance index j equal tod,, and define d, as a variable (no longer

as a scalar). Also, to avoid negative values that make no economic sense we define all
variables except the performance index as positive variables. Solving the problem, we

obtain

x, =14.143, x, =22, x, =13.571, d, =2.786

in contrast with our original solution of

x,=16.821, x, =23.744, x,=15.128, d, = 4

Thus the level of final demand for good 1 is lower once the restrictions are in place and we
can achieve only 2.786. This is lower than in the original case since we set the values of

the restrictions below the solution levels previously obtained. On the contrary, if the
economy is able to lift those “bottlenecks” up to 30 for x, and 20 forx,, the demand of

goods produced by sector 1 that could be satisfied would be d, =7.8.
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2. Production Prices Model

So far we have been dealing with a model with two main types of agents
(consumers and industries), in which their interrelations are linear and where, given a
technology (the input-output coefficients matrix) we determine quantities produced and/or
demanded. Implicitly, relative prices are taken as given. We will move now to a nonlinear
model in which prices are determined given technology and a distributive variable. This
type of model was pioneered by David Ricardo (1817) at the beginning of the nineteenth
century and later formalized by Piero Sraffa (1972). One of its main goals is to allow us to
study issues of income distribution between wages and profits.

Let’s define

v = value of intermediate inputs
7 = profits

w = wage cost

p = price.

We can then write

(4) v+rT+w=p.

This equation simply requires that the total cost, that is the sum of the three
elements of cost, namely intermediate goods, capital and labor is equal to the price. Then

assuming that profits are equal to the profit rate» times the value of the intermediate inputs

we have

(5) v+vr+w=p
or

(6) v(l+r)+w=p

Then using the input output coefficients for the intermediate inputs, a simple three-good

production prices model can be formalized as
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(@, p+ay p,+ay p;) (L+r)+Lw=p,
(7) (@, py+ay, p,+a, p;) A+r)+Lw=p,
(a3 py+ay p,tag ps) (L+r)+Lw=p;

The a’s are, as before, input-output coefficients. Notice that subscripts of these coefficients
are reversed, that is, the input-output matrix is the transpose of the 4 matrix corresponding
to input-output Leontief type models. This is so because here we determine prices given
technology, while in Leontief models we determine quantities given technology.'® The I’s
are also input-output coefficients indicating the quantity of labor required for the
production of one unit of product. In addition the p ’s are relative prices, w is the wage per
unit of labor (assumed to be uniform for the whole economy) and r is the profit rate. The
profit rate is the same for every industry, implying that we are dealing with a long run
situation in which capital earns the same profit no matter the industry. Otherwise there
would be capital movements from industries with a low rate to industries with a higher rate
until that rate equalizes across industries.

The model above has five variables and three equations. Since all prices are relative
prices, we need to choose one of them as a numeraire in order for all the other price-like
variables to be expressed in terms of it. We can do this by fixing one variable (say, one
price).!” Once we have done this, to close the system of equations we are still left with a
degree of freedom regarding w and . We can thus fix, for example, the wage w."®

A GAMS representation of this model is provided below, where we have chosen a
particular set of values for the input-output coefficients, and where we set p, =1 and w =

0.

' To learn more about this, see Passinetti (1977).

' For Sraffa, the choice of the numeraire involved other issues dating back to Ricardo. Facing a change in the
relative price of a commodity, Ricardo wanted to be able to tell when the change originated in the conditions
affecting the production of that commodity or in the conditions of production of the commodity being used as
numeraire. To solve in part that problem, Sraffa built a numeraire that takes the form of a restriction
involving some of the model variables. This is a complex theoretical issue and we will not deal with it here.
See Sraffa (1972).

'8 Classical economists like Ricardo used to consider that w was determined by the minimum subsistence
level of the labor force. More modern approaches have considered that w was the outcome of the bargaining

process between workers’ unions and industrialists’ unions.
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STITLE ProdPri
* Production Prices Mo

SCALARS

L1 /0.2/
L2 /0.5/
L3 /0.3/;

VARIABLES
pl
P2
p3

r
J performance index;
EQUATIONS

eqgpl

eqp2

eqp3

Chapter 8 General Equilibrium Models in GAMS

del

jd performance index definition;

jd. . j =E= 0;
egpl.. (0.3*pl + 0.1*p
egp2.. (0.2*pl + 0.4*p
egp3.. (

w.fx = 0;

pl.fx = 1;

MODEL PPl /all/;

0.2*pl + 0.5*p2 + 0.2%*p3)

*

2 + 0.4*p3)
2 + 0.1*p3)

(1+r)
(1+r)
(1+x)

+ L1 * w =E= pl;
+ L2 * w =E= p2;
+ L3 * w =E= p3;

*

*

SOLVE PPl MAXIMIZING J USING NLP;

DISPLAY pl.l, p2.1, p3.
Notice that the statements
w.fx = 0;
pl.fx = 1;

are used to fix w and p1.

1, w.l, r.1l;

The solution for » is 0.25. It is interesting to observe what happens as we decrease

r. To do so, we now set r equal to different fixed values, that is, we substitute

r.fx

0.25 (and later r.£x=0.20, etc) for w.fx

0 in the GAMS representation

above. We will find that there is an inverse relationship between the wage w and the profit

rate r, such as the one shown in Table 8.1.
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r w
0.25 0.000
0.20 0.157
0.15 0.270
0.10 0.389
0.05 0.515
0.00 0.648

Table 8.1 Wages and Profits

In this example, not only wages, but also prices go up as » decreases. However, in
general, prices can go either way - some may go up, others down. However, if we choose
w as the numeraire, we will observe that as r increases, all prices increase, indicating that
the real wage will decrease no matter the weights used to compute the corresponding wage
deflator.

3. General Equilibrium Model

In the previous two sections we considered first a quantity model and then a price model.
Here we move to a model in which quantities and prices are determined simultaneously.
General equilibrium models of this type were pioneered by Leon Walras (1834-1910) (cf.
Walras, L., Elements of Pure Economics, Augustus M. Kelley Publishers (1969)) and
generalized by Nobel Prize winners Kenneth Arrow (Arrow and Hahn (1971)) and Gerard
Debreu (1986). One of the main goals of general equilibrium modeling is the study of
changes in prices and quantities when technology, preferences or endowments change.

Imagine that we have a very simple economy, with only one production sector, two
factors of production and a single household. The production sector produces a single good
g, (output supply) with a Cobb-Douglas constant returns to scale production technology

using two inputs: labor and capital. Technical progress () can affect total factor
productivity. The corresponding labor and capital demand functions (/, and &, ) are

derived combining the production function with the assumption of profit maximizing
behavior. Labor and capital supplies (/ and £, ) are given exogenously. The single

household provides labor and capital in exchange for the corresponding wage (w) and
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profit (r), spending all its income () in the demand for the single good (¢, ). So far, we

have three markets: labor, capital and good markets, and we impose market clearing

conditions specifying that supply equals demand. The model equations are listed below'

production function (Cobb-Douglas)

®) q,=b 1j k"
labor demand, supply and market clearing

) [, =—2% | =1, I =1,

capital demand, supply and market clearing

19 To obtain the expressions for the labor and capital demand functions, we maximize the profit function

T=pqs—wly —rky

subject to the production function

g, =b 1 ky"
Substituting the production function into the profit function, the first order conditions are

D a—”zpablg_1 ki =w=0
al,

or
I —=p(l-a)blik;*—r=0
) ok, p( Vb lg ky

Substituting the production function into I and II and rearranging terms we obtain, respectively, the labor and
capital demand functions

ld=7aq“'p and k,

w

_(-a)g, p
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household income

(1)

good demand

(12)

good market clearing

(13)
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QS =qd

This simple model has 10 variables and 10 equations. However, one of them is

redundant, since “Walras law” establishes that for n-markets we need n-1 equilibrium

conditions only. Also, since this model determines relative prices (p, w and ), we need to

fix one of them as the numeraire. Thus, by choosing one price as the numeraire (say we fix
p=1) and deleting the corresponding good market clearing equation (g, =g, ), we are

left with a 9-variable 9-equation well-defined model. We do not consider the performance

index 7 (that is used in the GAMS representation below) in the variable count nor the

performance index definition in the equation count.

The GAMS representation of the model is shown below. Arbitrary, but reasonable,

numbers have been chosen for the parameters and for the labor and capital stocks.

STITLE SIMPLEGE

SCALARS
a labor share / 0.7 /
b technology parameter / 1.2 /;

POSITIVE VARIABLES

as
ad
1d
1ls
kd
ks

good supply
good demand
labor demand
labor supply
capital demand
capital supply

p price

w wage

r profit

y income;
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VARIABLES

j performance index;

EQUATIONS

egs good supply equation (production function)
egd good demand equation

eld labor demand equation

els labor supply equation

ekd capital demand equation

eks capital supply equation

ey 1income equation

eml labor market clearing

emk capital market clearing

jd performance index definition;

jd. . j =E= 0;

egs. . gs =E= b * ld**a * kd**(l-a);
eld.. 1d =E= a * gs * p / w;

els.. ls =E= 2;

eml.. 1ld =E= 1ls;

ekd.. kd =E= (l-a)* gs * p / r;
eks.. ks =E= 1;

emk. . kd =E= ks;

ey.. y =E= w * 1d + r * kd;

eqgd. . qd =E=vy / p;

*lower bounds to avoid division by zero
p.lo = 0.001; w.lo = 0.001; r.lo = 0.001;

*numeraire

p.fx = 1;

MODEL SIMPLEGE /all/;
SOLVE SIMPLEGE MAXIMIZING J USING NLP;
DISPLAY gs.l, gd.l, 1d.1, 1s.l, kd.l, ks.l, p.1, w.l,

r.l,
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The solution values are

gs.L = 1.949 good supply
qd.L = 1.949 good demand
1d.L = 2.000 labor demand
ls.L = 2.000 labor supply
kd.L = 1.000 capital demand
ks.L = 1.000 capital supply
p.L = 1.000 price

w.L = 0.682 wage

r.L = 0.585 profit

y.L = 1.949 income

It is important to perform some basic checks on the workings of the model. For
instance, since we assumed market clearing, we have to verify that supply equals demand in
each market. Also, when increasing the value of the numeraire, all quantity variables
should remain the same, while nominal variables (prices and income) should increase
proportionally. Notice that this model, as the other models previously introduced, are
models of the “real” side of the economy, in the sense that money is not explicitly included
in them. Also, the result that real variables remain the same while nominal variables
change in proportion to the numeraire can be interpreted as meaning that money is neutral

in this model.

4. Computable General Equilibrium Models

So far we have presented very small models. However, applied economy-wide
models tend to be large, thus making the use of computational techniques unavoidable. In
this section we will introduce a slightly larger model than the General Equilibrium model
presented in section three, to have a flavor of what is like to deal with more than a handful
of variables and equations. Models like this are known in the literature as Computable
General Equilibrium (CGE) models. We will later go back to a small model to illustrate the
application of a linearization technique useful when dealing with relatively large nonlinear
models. The material in the remainder of this chapter is considerably more difficult than in

the previous sections. Also, the exposition moves at a more rapid pace.
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4.1 A SAM Based Model

We move now to a two-sector, two-factor and two-household model to illustrate
how to build a CGE model based on a Social Accounting Matrix (SAM). This model was
developed by Arne Drud at the World Bank and is discussed in Kendrick (1990).%

Following the research of Nobel prize winner Richard Stone (1961), a SAM
contains information on the flow of goods and payments between institutions in the
economy. In Table 8.2 we present a simple SAM where the table should be read following
the principle that columns pay rows and where each column adds up to the same number as

the corresponding row.

Factors Households Sectors
Labor Capital| Rural Urban| Food Clothing

Factors
Labor 75 85
Capital 50 60

Households
Rural 90 30
Urban 70 80

Sectors
Food 60 65
Clothing 60 85

Table 8.2 A Simple SAM

2 Drud implemented the model in Hercules, a system which allowed the modeler to develop CGE models by
providing basic information in the form of Social Accounting Matrices and by choosing from a menu the
functional forms for production functions and demand functions. Hercules is no longer in use; however
GAMS now provides a solver (MPSGE) which performs similar functions to those of Hercules (see
www.gams.com). These types of systems for model representation are very useful and especially time saving
for the experienced modeler. However, here we will present a direct GAMS representation of the Drud model

which is more suitable to introduce beginners to basic issues in computational model building.
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For example, the food industry pays 75 to labor and 50 to capital. Labor pays 90 to rural
households and 70 to urban households. Urban households spend 65 on food and 85 on
clothing.

Usually, a SAM can be constructed using a country’s official statistics such us the

national accounts. Based on the table above, Drud built the model shown in Table 8.3.

Quantity | Price, Share | Price-Quantity
or Payment
q p pbq
Sectors
Output q, = bch_l;{A Vs = DPs 4
I
a
Input cp = %5 s By s =PrCp
1z
Factors
Income Yy =Py dy
Transfer ly =y 4y
Household
Consumption Ly =g 4 | Lg = Py Cp
CPI po=11p" | v=ria
Linkage
Sectors Yy = Ztsh
h
Factors
Yy =21
Households ! Z .
Vi =Dty
7

Table 8.3 Drud’s Model
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The model contains three key types of variables: price (p), quantity (¢) and income
(»), all of them with a single subscript since they apply to a single institution (subscript f
indicates factor, # household and s sector). There are also two additional types of variables:
payment (¢) and commodity (c), with two subscripts since they represent flows of goods

and payment. The subscripts on the payment variables ¢ follow the SAM convention:
payments are from columns to rows (i.e. 7, indicates payment from sector s to factor f).

Commodity flows ¢ follow the more common forward subscript convention (i.e. ¢

indicates the flow of factor fto sector s, while c,, is the flow of purchased goods from

sector s to household #).

The output-quantity equations specify production functions with a Cobb-Douglas
technology where b is a technology parameter. The input-quantity equations are the
corresponding factor demand equations derived from the production functions and
imposing a zero profit condition. The CPI-price equations are price indexes for the rural
and urban households respectively. The a 's are share parameters derived from the SAM.

When expanded, the model has 38 variables and 36 equations. Take the amount of

labor and capital as given (that is, as exogenous variables). Choose one price as the
numeraire (say we fix p,,,,, =1). Delete the corresponding market clearing equation (in

this case, deleting the linkage equation y,,,,,.., = z trvan. sy Will do the job). Then we are
s

left with a model with 36 endogenous variables and 36 equations. The GAMS

representation of this model is shown below.

STITLE SAM
options limrow = 4;
SETS

i general index /labor, capital, rural, urban, food, clothing/
s (i) sectors /food, clothing/

f(i) factors /labor, capital/

h (i) households /rural, urban/;

ALIAS (i,1ip);

ALIAS (i,1iq);

PARAMETERS

b(s) technical coefficients

a(i,ip) share coefficients;
b('food') = 1.2; b('clothing') = 1;
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TABLE sam (i, ip)

labor capital rural urban food clothing
labor 75 85
capital 50 60
rural 90 30
urban 70 80
food 60 65
clothing 60 85 ;

a(i,ip)= sam(i,ip) / sum(iqg, sam(ig,ip)):
DISPLAY a;

POSITIVE VARIABLES
p (i) price

g(i) quantity

y (1) income
t(i,1ip) payment
c(i,ip) commodity ;

VARIABLES
j performance index;

EQUATIONS
eph (h)
eqgs (s)
eys (s)
eyf (f)
eyh (h)
etfs(f, s
ethf (h, £
etsh(s,h
eetsh (

f

S

4

ecfs s

)

)

)
s, h)
(£,s)
eeys (s)
eeyf (f)
eeyh (h)

jd performance index definition;

* performance index equation

Jd. . J =E= 0;

*sectors

egs (s) .. g(s) =E= b(s)* prod(f, c(f,s)**a(f,s));
ecfs(f,s).. c(f,s) =E= a(f,s) * g(s) * p(s) / p(f);
eys(s) .. y(s) =E= p(s) * q(s);

etfs(f,s).. t(f,s) =E= p(f) * c(f,s);
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*factors

eyf (f).. y(f) =E= p(f) * q(f);

ethf(h,f).. t(h,f)=E= a(h,f) * y(f);

*households

etsh(s,h).. t(s,h) =E= a(s,h) * y(h);

eph (h) .. p(h)=E= prod(s, p(s)**a(s,h));
eetsh(s,h) .. t(s,h)=E= p(s) * c(s,h);

eyh(h) .. y(h) =E= p(h) * g(h);

*linkage

eeys (s) .. y(s) =E= sum(h,t(s,h));

eeyf (f) .. y(f) =E= sum(s,t(f,s));
eeyvh('rural').. y('rural') =E= sum(f,t('rural',f));

*notice that we eliminate one linkage equations (Walras law)

*initial values to facilitate solver convergence
p.1(1) =1; g.l(i) =1; y.l(1) =1;

*lower bound to avoid division by zero
p.lo(f) = 0.001;

*lower bounds to avoid undefined derivative in exp functions
p.-lo(s) = 0.001; <c.lo(f,s) = 0.001;

*exogenous variables

g.fx('labor') = 2; qg.fx('capital') = 1;
*numeraire
p.fx('urban') = 1;

MODEL SAMDK /all/;
option iterlim = 10000;
SOLVE SAMDK MAXIMIZING J USING NLP;

PARAMETER REPORT;

REPORT (i, "price") = p.1(1);
REPORT (i, "quantity") = g.l(1i);
REPORT (i, "income") = y.1(1i);

DISPLAY REPORT; DISPLAY t.l, c.l;

The GAMS representation is similar to the simple General Equilibrium model
presented before. Here we make use of sets and subsets as indices, we use the ALTAS
command to redefine an index so we can use it to index a matrix, we input the SAM as a

table under the PARAMETER section, and we define indexed variables and equations. Notice
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that, in order to have a more compact representation, we were able to use a general index
“1” for variables, and later work with subsets of variables, but we did not do so for
equations. GAMS does not admit the use of subsets as indices of equations.

As in the previous example, we should check that only nominal variables change

(proportionally) when we change the numeraire.

4.2 A Johansen Style Model

CGE models tend to be large and nonlinear. As they grow in size, obtaining
convergence (that is, a numerical solution) is likely to become more difficult. An
alternative is to switch to a model representation pioneered by Leif Johansen (1960).
Johansen style models are solved in a linearized form where all the variables are rates of
growth. This method consists in transforming all the variables in the model into percentage
changes with respect to a base case.

For example, given an expression in levels like

(14) X=aYZ

if we first take logs, we obtain

(15) log X =loga+logY +log Z
and totally differentiating

(16) d(log X)=d(loga)+d(log Y)+d(log Z)

that is (since a is a constant)

- X _dv  dz
X Y Z

or

(18) X=y+z

. .. 21 .. .
where x, y and z variables are percentage deviations.” In a similar fashion, we can

transform

2! An alternative derivation without using logs is as follows:
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(19) X=aY’
into
(20) x=by.

Thus for an expression like

1) X=Y+Z

we totally differentiate

(22) dX =dY +dZ

then divide by the right hand side variable

(23) d_X:£+d_Z
X X X

Then multiply and divide each term on the right hand side by the variable in its numerator

and rearrange to obtain

(24) Rk S B

or
a_var zaz
X XY X Z
or
(25) xX=s,y+8s.z2

dX =YZda + aZdY + aYdZ
dX =aZdY +aYdZ
dX aZdY aYdZ

—_— +

X X X
dx dY dZ
—_——t —

X Y Z
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Y Y VA
wheres and s, are the shares s, =—= and s, =— .
X Y+Z X Y+Z
In short, the transformation of a model in levels into one in percentage changes can,
in many cases, be achieved by applying some simple rules. Given X, Y and Z as variables
in levels, a and b as parameters and x, y and z as variables in percentage deviations, some

useful rules are

(26) X=aYZ Dbecomes x=y+z
(27) X=aY’ becomes x=by
(28) X=Y+Z7 becomes x =5 y+s.2
Z
wheres and s, are the shares s, = and s, = .
! Y+Z Y+Z

Applying these rules to the simple General Equilibrium model presented in Section
3 and interpreting each variable not as levels but as percentage changes with respect to a

base case, we obtain the following GAMS representation

STITLE JohansenGE

SCALARS
a labor share / 0.7 /

VARIABLES
gs good supply
gd good demand
1d labor demand
1ls labor supply
kd capital demand
ks capital supply
price
wage

p

w

r profit
y income
]

performance index;

EQUATIONS
egs good supply equation (production function)
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eqd good demand equation

eld labor demand equation

els labor supply equation

ekd capital demand equation

eks capital supply equation

ey 1income equation

eml labor market clearing

emk capital market clearing

jd performance index definition;

jd. . j =E= 0;

egs. . gs =E= 1d * a + kd *(1l-a);
eld.. ld =E= gs + p - w;

els.. 1ls =E= 0;

eml.. 1ld =E= 1ls;

ekd.. kd =E= gs + p - r;

eks.. ks =E= 0;

emk. . kd =E= ks;

ey.. y =E= (0.7)*(w + 1d)+ 0.3 *(r + kd);
eqd. . aqd =E=y - p;

*numeraire

p.fx = 0;

MODEL JOHANSENGE /all/;
SOLVE JOHANSENGE MAXIMIZING J USING LP;
DISPLAY gs.l,gd.l,1d.1,1s.1,kd.1l,ks.1l,p.1,w.1l,r.1,y.1;

Notice that we eliminated the b parameter from the scalars section, since we do not
use it here. Also, notice that since percentage changes can be positive or negative, we no
longer define the model variables as positive variables as we did in the version of the model
where variables where in levels. Finally, notice that the values of the stock of labor and
capital and the numeraire are equal to zero, since they are percentage changes. The 0.7 and
0.3 coefficients that appear in equation “ey” are the corresponding share parameters
obtained when applying the third rule. Finally, we solve the model invoking a Linear
Programming solver, since the problem is a linear one.

An interesting exercise is to compare the results of the nonlinear model in levels
versus the linear model in percentage changes for a given change in an exogenous variable.
For example, say we increase the stock of capital by 20 percent. This means that in the
nonlinear model & goes from 1 to 1.2, while in the linear model it goes from zero to 0.2.
The results are shown in Table 8.4.

200



Chapter 8 General Equilibrium Models in GAMS

The Nonlinear The Linearized
Model Model
variable | solution k=1 percentage percentage change
solution k=1.2 change
q 1.949 2.059 5.6 6
[ 2 2 0 0
k 1 1.2 20 20
w 0.682 0.721 5.7 6
r 0.585 0.515 -12 -14
y 1.949 2.059 5.6 6

Table 8.4 Comparison of Nonlinear and Linearized Models

The differences between the last two columns give us an idea of the approximation
error of the linearized solution. We should expect this error to be larger the greater the
change in the exogenous variables. Also, notice that if we simultaneously change the value
of more than one exogenous variable for the linear version, the superposition principle will
apply: the combined effect of changes in more than one exogenous variable will be equal to
the sum of the individual effects

As we said above, solving nonlinear models may become problematic as they grow
in size. The problem we just linearized using Johansen’s technique is a very small one, and
we used it to provide a simple illustration of the methodology. For an application to a
larger model you are referred to Kendrick (1990), who provides a Johansen style GAMS
representation of a version of the ORANI model developed by Dixon, Parmenter, Sutton

and Vincent (1982) in Project Impact in Australia.
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6. Experiments

For the input-output model in Section 1 you may perform experiments changing the
levels of final demand, the values of some input-output coefficients or the nature of the
capacity constraint restrictions.

For the production prices model in Section 2, an interesting experiment would be to
pick one price as the numeraire (say p, =1) and a technology such that the proportions
between labor costs and total input costs is the same for each industry, that is, when the
input-output coefficients are proportional for all industries. For instance, when the input-

output matrix is

0.05 0.025 0.1
A= 01 0.05 02
02 01 04

and the labor coefficients vector is

1/7
L=2/7
4/17

you will observe that prices will not change as » and w change in an inverse relationship.

For the small general equilibrium model in Section 3 the economy-wide effects of
technological progress can be simulated by increasing the value of the b parameter. Also,
you could change the supply of labor or the supply of capital and see how the wage and the
profit levels are affected. If you do so, you will observe that quantities do not change, only
the wage and the profit rate do. Quantities would change if you specified elastic labor and
capital supply functions, instead of the fixed supplies assumed in the model. Also, we
imposed the market clearing condition in all three markets. However, it may well be the
case that that condition may not be appropriate for some markets because they are in
“disequilibrium”. That may happen, for example, because their prices are exogenously
fixed. For such cases we should follow an appropriate modeling strategy such as the ones
proposed, for example, by Malinvaud (1977).

Finally, for the SAM based CGE model in Section 4.1, you can perform interesting
experiments by changing the amount of labor or capital or the technology parameters.

Notice that you could also change the share parameters by changing some numbers in the
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SAM. If you do so, remember to maintain the corresponding balance between rows and
columns. Also, an interesting exercise would be to expand the model to incorporate foreign
trade as in Kendrick (1990).

7. Further Readings

Dervis, de Melo and Robinson (1982) and Dixon, Powell, Parmenter and Wilcoxen
(1992) provide extended textbook presentations of the different types of models introduced
in this chapter. For historical and analytical presentations of input-output and production
prices models see Pasinetti (1977) and for CGE models see Dixon and Parmenter (1996).
Shoven and Walley (1992) deal extensively with neoclassical type CGE models, while
Taylor (1990) presents neo-structuralist type CGE models. Roland-Holst, Reinert and
Shiells (1994) provide an analysis of the North American Free Trade Area. Lofgren, Lee
Harris and Robinson (2002) develop a standard CGE model in GAMS. For the use of a
dynamic CGE model in a control context to study income distribution changes, see Paez
(1999). For an approach to solving dynamic CGE models with stochastic control theory
methods see Kim (2004).
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Chapter 9

Cournot Duopoly in Mathematica

with

Daniel Gaynor

Students of economics are introduced first to the market structures of pure
competition and of monopoly. However, most real world examples are in the domain of
oligopolies that lie between these two extremes.

What distinguishes oligopolistic markets from either purely competitive markets
or monopoly markets is that in an oligopoly market there is an interdependency of actions
between firms. By interdependency, we mean that the choice of a given firm will affect
and be affected by the choices of the other firms. This issue of interdependency does not
exist in purely competitive markets or in monopolistic markets.

In a purely competitive industry, firms are assumed to be too small to influence
the market price and therefore the action of one firm has no way of influencing (or being
influenced by) the actions of another firm. Alternatively, a monopolist has tremendous
influence over the market price, but as a monopolist, the firm has no other firms whose
actions it can influence. In an oligopolistic industry, there are two or more firms
competing in the market, each of which has the ability to influence the market price and
therefore the choices of its competitors.

Problems involving interdependency of actions between multiple players are
called games and game theory is the study of these multi-player decision problems™. We
will use the Mathematica programming language to solve several alternative game
theoretic models of oligopoly market structure. All of these models will be called

quantity games since the strategic choice of the firms will be quantity. Alternative

22 For a more comprehensive introduction to game theory see Gibbons (1992). Some of the examples used

in the following are drawn from Gibbons' text.
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models of price competition, like the Bertrand model in which each player chooses a
price, will be discussed briefly, but not modeled. We will focus here on two-firm
oligopoly models, called duopolies, but the models can easily be extended to incorporate
a larger number of firms (which the student is encouraged to do in the Experiments
section).

While all of the problems discussed here can be solved with pen and paper, the
use of Mathematica opens the door to the solution of substantially more complex models.

The three topics covered here are game theory, oligopoly market structure and the
Mathematica programming language. Expertise in any of these individual areas should
enhance the learning of the other two areas. However, the material covered in all three of
these areas is kept at an introductory level and no previous knowledge is required. We
begin with a short introduction to game theory as a means of introducing the tools and
terminology that are required for our oligopoly models. Then we will examine two
popular models of oligopoly market behavior using Mathematica to derive their results
and discuss the intuition of the solutions. In this chapter we will discuss the Cournot

model and in the next chapter the Stackelberg model.
1. Game Theory

By identifying our oligopoly markets as games, we have already gone further than
you might think towards modeling and solving these models. After all, game theory tells
us how we can represent a game as well as how one should approach solving a game. In
addition to introducing some basic concepts of game theory, this section will discuss a
very simple but popular game called the Prisoners Dilemma. The Prisoners Dilemma
game is an extremely valuable tool because there is a direct parallel between this simple
game and the oligopoly games we plan to solve.

There are many types of games, but it is useful to distinguish between a few. To
begin, games can be either simultaneous move or sequential move. In a simultaneous
move game, all of the players choose their actions simultaneously without observing each
other’s actions. In a sequential move game there is an order to the play. More precisely,
a sequential move game is dynamic in that one player chooses an action, and then a
second player chooses an action only after observing the first player’s action.

A second classification of games is complete information versus incomplete information
games. All of the games presented in this chapter are complete information games or

games in which no firm has private information about itself that other firms do not have
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access to. Finally, it will be helpful to distinguish between games with discrete strategy
choices versus games with continuous strategy choices.

The first step in approaching a game is representing the game. There are two
ways of representing a game: the normal form (usually a two-way table, appropriate for
simultaneous move games) and the extensive form (usually a game tree, more appropriate
for sequential move games). We adopt here the normal-form representation of a
simultaneous play game. The three elements that constitute normal-form representation
of a game are: 1) the players participating in the game, 2) the strategies (or actions) that
are available to each of the players, and 3) the payoffs that each player would receive for
each possible combination of strategies chosen by the players. For two-player games in

which the strategy choices are discrete, normal-form games can be represented in table

format as the Prisoners Dilemma game in Table 9.1%°.
Player |1
- Mum Fink
S
< Mum -1, -1 -9, 0
C
o Fink 0, -9 -6 , -6

Table 9.1 The Prisoners’ Dilemma Game

Notice that Figure 9.1 completely represents the Prisoners Dilemma game
according to our definition of a normal-form representation. First there are two players
involved in the game - Player I and Player II. Second, Player I can choose between the
strategies Mum and Fink and similarly Player II can choose between the strategies Mum
or Fink. Finally, the payoffs from each of the possible combinations of Player I/Player 11
strategies are represented by the table’s payoff matrix. For example if Player I plays
Mum and Player II plays Fink, then Player I receives a payoff of negative nine (or nine
years in jail) and Player II receives a more favorable payoff of zero.

The story of the Prisoners Dilemma game is as follows. Two suspects of a crime
are detained by the authorities and interrogated separately. Each player can either offer
no information (Mum) or can blame the crime on the other player (Fink). Furthermore,
prisoners must choose their strategies without observing each other’s choice. If both

players choose Mum each only spends one year in jail (1 unit of negative utility). If each

3 See Gibbons (1992), p. 3.
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blames the other (Fink, Fink) then each spends six years in jail. If one player Finks and
the other player chooses Mum, then the player who finks goes free and the player who
chose Mum spends nine years in jail.

In order to solve the Prisoners Dilemma, we adopt the notion of Nash Equilibrium
Strategies. The strategies of a game’s players constitute a Pure Strategy Nash
equilibrium (called Nash equilibrium here-after)** if each player's chosen strategy is the
best response to the strategies played by all of the other players. In other words, a Nash
equilibrium occurs when every player chooses his strategy optimally given his
opponents’ chosen strategies.

Applying the concept of Nash equilibrium strategies to the Prisoners Dilemma we
can find the Nash equilibrium. Begin by considering how Player II would best respond to
Player I playing the strategy Mum. In this event, Player II could also play Mum and
spend a year in jail or Player II could play Fink and go free. So Player II’s best response
to Player I choosing Mum is Fink. Therefore, the strategy (Mum, Mum) does not
constitute a Nash equilibrium.

Does Player I choosing Mum and Player II choosing Fink (Mum, Fink) constitute
a Nash equilibrium? The answer is no, because while Fink is Player II’s best response to
Player I playing Mum, in order to be a Nash equilibrium it must also be the case that
Mum is Player I’s best response to Player II playing Fink. However, we see that if Player
II Finks, Player I’s best response is to Fink as well. Continuing with this logic you will
find that the only Pure Strategy Nash Equilibrium for this game is for both players to fink
on each other (Fink, Fink).

Through this example, we have barely scratched the surface of game theory.
However, we have addressed a few of the basics that will allow us to better understand
oligopoly market structure. First, we know the three elements that constitute a
simultaneous game are: the players of the game, the strategies (or choices) available to
each of these players, and each player's payoff for every possible combination of players’
strategies. A forth element which we will see is important in sequential move games is
determining the order of play. These are necessary for characterizing and solving any
game. Finally, our simple example illustrated the solution concept that we will employ in

our oligopoly problems - the pure strategy Nash equilibrium. The intuition of Nash

% In game theory there is a distinction between Pure Strategy Nash equilibria and Mixed Strategy
equilibria. This is a distinction that is beyond the scope of this chapter except to note that by Nash

equilibria we mean Pure Strategy Nash equilibria.
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equilibrium is that each player is choosing his best response or reaction to all of the other

players’ choices.
2. Static Models of Oligopoly Markets

Because models of oligopoly markets depend on how firms interact,
characteristics of the environment in which they interact, and potentially many other
factors, there is no single model of oligopoly market structure. The correct model will
depend on the characteristics of the industry being modeled. We focus here on two "one-
shot" quantity games that are the foundations for many more sophisticated models of
oligopoly markets. These models are one-shot in the sense that the game is only played a
single time, not repeatedly played every period. They are referred to as quantity games
because the strategic choices of the firms’ are their respective outputs (or quantities). As
we will see, quantity games have an interesting characteristic that we will exploit: If the
quantity choices are assumed to be continuous, then the payoffs will also be continuous.
Natural alternatives to quantity games are pricing games. Models of price competition
have a winner take all aspect where the firm who has the lowest price captures the entire
market (and the market is split in the event of a tie). Therefore, while the strategic
variable price is continuous, the payoffs (profits) are discontinuous. We do not consider
pricing models except to note that the solutions to such games will vary significantly

from the quantity games considered here.
3. Cournot Competition

The first model of oligopoly market structure that we will study is the model of
Cournot quantity competition named for the French mathematician, Augustin Cournot.
Cournot first presented the model in his book, Researches into the Mathematical
Principles of the Theory of Wealth, published in 1838 one hundred and twelve years
before John Nash formalized the concept of Nash equilibrium strategies.

To make the problem more tractable, but without loss of generality, we will
assume that the industry is a duopoly. Our story of a Cournot duopoly market is as
follows: There is a market consisting of two firms producing a homogenous good each at
a constant (not necessarily the same) marginal cost. We assume that each firm knows its
own cost as well as its competitor's cost and that they also know the market's demand

function
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0=f(pr)
where Q is quantity and p is price. Also we assume that they can derive the inverse

demand functions

p=2(0)
The problem faced by these two firms is that each must choose the quantity that it will
supply to the market without observing its competitor's output choice, and let the market
determine the price. This requires each firm to anticipate, when choosing its own
quantity, how the other firm will behave.

The game described above is a one-shot simultaneous move game and as such can
be represented as a normal form game. To do so we need to identify the three necessary
ingredients. First, we have the players; the two firms who we will denote Firm 1 and
Firm 2. Next, we must identify the firms’ strategic choice. As noted, the firms’ strategic
choice is quantity, which is assumed to be a continuous non-negative variable. Finally,
the payoffs to each of the players in the game is simply the profit that this firm earns
given its choice of quantity and the quantity chosen by the other firm.

To solve this game we will apply the same solution concept we used to solve the
Prisoners' Dilemma game. A pure strategy Nash equilibrium for this Cournot game is a
set of quantities

(0.0:)
in which each of the firms chooses its profit maximizing output given its forecasted
output choice of the other firm, and each firm's forecast of the other firm's output is
correct. Recall that in the discrete strategy prisoners' dilemma game, finding the Nash
equilibrium required us to consider each possible combination of strategies. However, in
the Cournot game each firm has a continuum of possible strategy choices and therefore
there are an infinite number of possible combinations of players' strategies. Fortunately,
in the continuous Cournot model, we can generalize the strategic behavior of the firms by
deriving what we will call a reaction (or alternatively a best response) function. As we
will see, calculus permits us to do this because our firms' payoffs (their profits) are
continuous functions of their own quantity choice as well as the other firm's quantity. To
see this more clearly, we will begin with a Mathematica program (react.nb) that is
available on the book web site. The program illustrates strategic behavior and the
solution to the Cournot model graphically. The focus of this experiment is to familiarize
the reader with the concept of a reaction function and to understand its connection to

determining Nash equilibria. The instructions for running Mathematica are in Appendix
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B. Turn to that appendix and run the react.nb file if you prefer to follow along the
Mathematica code while you are reading the rest of this chapter.

The first step in building the graphical model of the Cournot game is to model the
industry characteristics. Because the market is a duopoly, total market quantity, Q, is the
sum of firm 1's output choice, Q,, and firm 2's output choice, 0, , i.e.

(1) 0=0+0,
This simple assignment is made in Mathematica with the following input statement
IN[1:= Q =01 + Q2;

The symbols IN[]:= are the Mathematica prompt for input and the expression Q = Q1 +
Q2; is the user’s input. It is important to note that the equal sign in the input is used in
Mathematica for assigning names to expressions (or assigning values to variables). It
does not define a formula or equation. To create an equation, you must use two
consecutive equal signs (==). Also note the use of the semicolon at the end of the above
command. The semicolon is used to suppress the display of output created by
Mathematica for each input statement.

The other general market characteristic that we must specify at this time is the
functional form for the inverse market demand faced by the duopolists. In all of our

models we assume that the inverse demand curve is linear, i.e.

(2) Price=a—-bQ
or in Mathematica

IN[]:= Price = a — b*Q

Because the Cournot game is a simultaneous choice game, it does not matter whether we
consider firm 1's or firm 2's optimization problem first. Therefore we will consider firm
2's problem first.

Firm 2's profits are equal to the difference between the revenue from selling the
quantity Q, and the cost of selling this quantity. Revenue is firm 2's own quantity (Q>)
multiplied by the market price, i.e.

(3) Profit, = O, (Price—c,)
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where ¢, is firm 2’s constant unit cost. This can be written in Mathematica as

IN[1:= eqPr2 = Profit2 == Q2(P[Q1l,Q2] - c2) ;:

Notice that the price, P, is a function of the quantity decisions of the two firms, i.e. Q;
and Q,. The above statement creates a formula named eqPr2 that defines Profit2 (firm 2's
profits) to be equal to Q, multiplied by the difference between market price and the firm's
marginal cost. We have used the string

P[Q1,02]
here to indicate that the price is a function of both Q1 and Q2; however, Mathematica
does not recognize the functional dependency. Rather it just treats P[Q1,Q2] as string of
characters.

This is the general representation of firm 2's profits. However, because we have
specified that our industry is subject to a linear demand curve, we want to replace the
general form of the price function with the linear demand specified in the earlier
Mathematica statement

Price =a - bQ
While the practice of defining a generalized profit function and then substituting in a
specific functional form may seem cumbersome, it is a good programming practice
because it allows us to change the functional form of our market demand by editing a
single Mathematica statement.

Mathematically we obtain an expression for the profit of the second firm by
substitution of Eq. (2) into Eq. (3) to obtain

4) Profit, :Qz[a—bQ—cz]
and then substituting Eq. (1) into Eq. (4) to obtain

(5) Profit, =0, [ a-b(0,+0,) ¢, ]
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These steps are accomplished in Mathematica in the following way. First the
substitution of the specific linear demand function for the general form is done with the

Mathematica statement
IN[1:= eqgPr2 = Expand[% /. P[Q1l,Q2] -> Price]

In Mathematica, % refers to the last result generated (and %% refers to the 2nd to last
result generated etc.) and /. is the replacement identifier. So the above statement takes
the original profit equation (named eqPr2) and replaces the general form of the demand
equation P[Q1,02] with our explicit linear inverse demand expression "price" which is
specified above (Price = a - b*Q). Since no semicolon is used at the end of the

statement above, the output statement gives the result of this substitution.
oUT[]:= Profit2 == Q2 (a - c2 - b (QL + Q2))

This output is the equation for firm 2's profits or payoft as a function of the firms'
quantities.

To find firm 2's profit maximizing behavior, we take the derivative of its profit
function, Eq. (5), with respect to its choice variable, Q,, and set the expression equal to

Z€ro, 1.€.

oProfit,

© a0,

=a-—c, —b(Q1 +Q2)+Q2 (—b):O

In our Mathematica program this is accomplished below by defining a new equation,
which we will name focPr2 (first order condition for profit of firm 2). It is the derivative,
D[ ], of firm 2's profit (payoff) function with respect to its choice of its own quantity Q,.

IN[]:= focPr2 = D[egPr2, Q2]

This will produce the following output that is the derivative of equation eqpr2 (after the
substitution) with respect to Q2.

oUT[]:= 0 ==a-c2-bQ2-b (Q1 + Q2)
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This first order condition implicitly describes firm 2's optimal behavior. However, we
want to find an explicit solution for describing firm 2's optimal behavior.

This is done by solving the first order condition in Eq. (6) for Q, i.e.

(7) 2sz =a—-q _le
or

_a_%_bg
(8) 0, =——p

This is accomplished in Mathematica by using the solve statement to solve the first order
condition for 02 and then naming the output temp2. It is helpful to note that the output
from a solve statement is a list of solutions. Consequently, temp2 is the name of the list
of solutions. In the case below, the list temp2 has only one solution and therefore a

single element.

IN[]:= temp2 = Solve[focPr2, Q2]

- c2 - b 01
OUT[]:= ({o2 > 222082

It is clear from the first order condition above that firm 2's optimal choice of Q;
will depend on firm 1's optimal choice Q;. This is the key to game theoretic problems;
each party must consider what the other parties will do. Because firm 2's choice of Q; is
a function of firm 1's choice of Q;, we call the expression above firm 2's “Best Response”
or “Reaction Function”. As its name implies, this function dictates how firm 2 chooses
Q; as a best response (or in reaction) to firm 1's choice of Q;. In the simply linear case,
we can solve for firm 2's best response quantity (rR2 [01]) explicitly.

In the next line of code, we create an expression called React2 (firm 2's reaction
function) that represents firm 2's optimal response (R2 [01]) to firm 1's quantity choice
Q1.

IN[]:= React2 = R2[Q1] == Q2 /. temp2[[1]]

OUT[]:= R2[01] == >— sz_bb ol

The right hand side of this expression is simply the solution for Q, that we found above.

In other words, R2 [01] is equal to 02 where Q2 is replaced ( /. ) by the first solution (
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[[1]1] ) from the output list "temp2". R2[0Q1] is just another name for 02 that reflects the
fact that this quantity is chosen in response to Q1.
We conclude our examination of firm 2's behavior in the Cournot Duopoly model

by graphing the reaction function for firm 2 that has been derived from the model above.

IN[1:=

reactPlot =

Plot[{Q2 /. Solve[focPr2 /. {a -> 1, b -=> 1, c2 -> .5},02]1[I[111},
{Q1, 0, .55},
PlotRange -> {0, .55},
PlotStyle->{RGBColor([1,0,0],Thickness[0.010]},
AxesLabel->{"Q1","Q2"},

PlotLabel->"Reaction Curve" ]

This rather messy looking Mathematica command creates a plot that we name reactPlot

using the p1ot command. The syntax for the P1ot command is
Plot[f, {x, xmin, xmax}, option -> wvalue]

where f is the expression to be plotted, the list {x, xmin, xmax} specifies the minimum
and maximum values that the variable in the expression takes, and option -> value
statements are used to set any display attributes of the graph.

Starting from the second line of code above following the IN[] := statement, the
Plot [] command is used to create the plot. The function, f that we want to plot is an
expression that represents the values that 02 takes - expressed in terms of the variable 01

and the model's parameters, i.e.
Q2 /. Solve[focPr2 /. {a -> 1, b -> 1, c2 -> .5},02]1[[1]1]

Our identification of firm 2's reaction equation has shown that in the linear demand case
we can find such an expression by solving the first order condition, focpr2, for Q2.
Therefore, this line of code tells Mathematica that we want to plot the values of the
variable 02, where an expression for 02 is found from solving the first order condition of

firm 2's profit function for the variable 02, i.e.

Solve[focPr2, Q2]
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Within this solve statement there is a replacement command (/.) followed by a list ( {,} )
of replacements. These replacements specify the specific numerical values the models
parameters are assumed to take in this example.

The next line of this plot command {01, 0, .55} specifies the range of values for
the variable 01 in the expression for 92. The remaining lines of code specify display
options for the Mathematica plot. Options are used to control the plot color and
thickness, axes labels, and plot labels. The resulting plot shows what quantity, Q,, is firm

2's best response to any given quantity of by firm 1 (Qy).

22
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Figure 9.1 Reaction Curve of Q, to Q

Thus if firm 1 chooses Q; = 0.3 then firm two's optimal reaction is to choose Q, = 0.1.

Next we turn to the optimization problem for firm 1. It solves a problem that is
identical to firm 2’s except for the fact that firm 1 solves for his own quantity Q; and has
a marginal cost of ¢;. The solution to firm 1's reaction function is

- cl- 2
OUT[]:= R1[02] —- 2528

We can plot this relationship for firm 1 assuming the same parameter values and

over the same interval of values as we did with firm 2.
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IN[]:=
reactPlot =
Plot[{Q2 /. Solve[focPrl /.{a -> 1, b -> 1, cl -> .5}, Q21[I[111},
{Q1, 0, .55},
PlotRange -> {0, .55},
PlotStyle->{RGBColor[0,0,1],Thickness[0.001]},
AxesLabel->{"Q1","Q2"},

PlotLabel->"Reaction Curve"]

In the graphical illustration of the Cournot solution shown below we are assuming that
the firms have identical cost structures (c; = ¢; = 0.5). This plot shows what quantity, Q;,

is firm 1's best response to any given quantity choice by firm 2 (Q>).
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Figure 9.2 Reaction Curve of Q; to Q;

At this point we have plots showing how each firm should best respond to it
competitors various choices of output. According to our definition of Nash equilibria, a
Nash equilibrium of this game is a set of strategies in which each firm is choosing an
output that is a best response to the other firm's output choice. Or more succinctly, at a
Nash equilibrium, both players will be on their reaction functions. Before looking at this
graphically, however, it is useful to see how the costs affect the solutions to our simple
Cournot model. The simplest and most intuitive way to investigate this consideration is

with another Mathematica plot.
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IN[1:=

reactPlot =

Plot[{Q2 /. Solve[focPrl /.{a -> 1, b -> 1, cl -> .5}, Q2]1[I[1]1],
Q2 /. SolvelfocPrl /.{a -> 1, b -> 1, cl -> .6}, Q21[[111},

{Q1, 0, .55},

PlotRange -> {0, .55},

PlotStyle->{
{RGBColor([0,0,1],Thickness[0.001],},
{RGBColor[0,0,1],Thickness[0.001],Dashing[{.03,.02}]}
y

AxesLabel->{"Q1","Q2"},

PlotLabel->"Reaction Curves"]

Notice the syntax of the Mathematica statement above. Because we are plotting two
reaction functions the first element in the p1ot [] command becomes a list of expressions
{£1, f£2} where the first element in the list is firm 1's reaction function when its
marginal cost is 0.5 and the second is firm 1's reaction plot when its own marginal cost is
0.6. In the above,
RGBColor[0,0,1], Thickness[0.001]
indicates that the first plot will be a solid blue line®® which is 0.001 thick and
RGBColor[0,0,1], Dashing[{.03,.02}]
indicates that the second line will be blue and have dashes of length .03 and spacing of
.02. With the above statement we create a graphic that plots firm 1's reaction curve with
the original parameter specifications and a marginal cost of 0.5 and then contains a
second dashed plot that shows firm 1's reaction curve with a slightly higher marginal cost
of 0.6. The color will show only in some printings of this book but will show in the

online plot.

 Syntax: RGBColor[red, green, blue] where color intensities range from zero to one.
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Figure 9.3 Sensitivity Analysis for the Reaction Curve of Q; to Q;

From this graphical sensitivity analysis of firm 1's reaction functions we can see that
higher unit costs, in the dashed line, will shift a firm's reaction function downward. That
is, for a given output choice by firm 2, firm 1's best response quantity will be decreased
for higher values of its own marginal cost. It is easy to see that firm 2's marginal cost, ¢,
will have no effect on firm 1's reaction function since the Mathematica variable c2 does
not appear in firm 1's reaction function. Similarly, firm 1's marginal cost has no effect on
firm 2's reaction function.

Our plots of the firms' reaction functions illustrate how each firm will choose its
optimal quantity in response to the quantity choice of the other firm. If we knew firm 1's
choice of Q; we could solve firm two's reaction function for its optimal choice of Q5.
Similarly, if we knew firm 2's choice Q, we could solve firm one's reaction function for
its optimal choice of Q;. The difficulty with the Cournot game is that the players
simultaneously choose their respective quantities. Therefore, the solution to the
simultaneous move Cournot game is found by solving both firms' reaction functions
simultaneously for the quantities Q; and Q,. Intuitively, the Nash equilibrium solution to
the Cournot game has each firm choosing its best response quantity in reaction to the
hypothesized quantity of the other firm*®. To show the graphical solution to the Cournot

model we plot both firms' reaction functions in a graph.

%6 See Gibbons (1992), p. 62.

218



Chapter 9 Cournot Duopoly in Mathematica

IN[1:=
reactPlot =
Plot[{Q2 /. Solve[focPrl /.{a -> 1, b -> 1, cl -> .5}, Q2]1[I[1]11],
Q2 /. Solve[focPr2 /.{a -> 1, b -> 1, c2 -> .5}, Q21[[111},
{Q1, 0, .55},
PlotRange -> {0, .55},
PlotStyle-> {
{RGBColor[0,0,1],Thickness[0.001]},
{RGBColor[1l,0,0],Thickness[0.010]}
by
AxesLabel->{"Ql1","Q2"},

PlotLabel->"Reaction Curves"]

The Mathematica statement given above produces a graph showing the

equilibrium strategies.

RBeaction Curves
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Figure 9.4 The Two Reaction Curves

At the point where the two firms' reaction functions intersect, each firm is choosing their
respective profit maximizing output given their belief about the other firm's output choice
and each of the firm's beliefs about the other is correct. This is the definition of a Pure
Strategy Nash equilibrium.

This completes our use of the react.nb Mathematica file. While the graphical
model above illustrates the behavior of the Cournot game's players in an intuitive way
and clearly demonstrates how the Nash equilibrium is determined, we desire more from
our model than intuition. The next Mathematica program (cournot.nb) is a model of the

same Cournot duopoly. But in addition to a graphical solution, we will derive the
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analytic solution to this problem. Solving for the Cournot-Nash quantities will permit us
to determine the market supply and consequently the market price. In addition, with the
Nash equilibrium quantities and the corresponding market price we can derive the firms'
profit levels. All of this information is useful if we want to make comparisons between
models of different market structures.

In the file cournot.nb we derive each firm's reaction function just as in the
previous model. However, after identifying the firms' reaction functions, rather than
using a plot to find the Cournot-Nash solution, we will solve for the optimal quantities
directly. Recall from our graphical example that the Nash equilibrium strategy set was
defined by the intersection of the two firms' reaction functions. Also recall that our
definition of a Nash equilibrium requires that all players simultaneously give their best
response to each other’s choices. Clearly, the Nash equilibrium strategies can be found
by simultaneously solving the set of reaction functions for the models strategic output
choices.

To solve for the optimal quantities we add the following Mathematica statement,

IN[1:=
cournotQ =
Simplify[Solve[{Reactl /. R1[Q2] -> 01,
React2 /. R2[Q1l] -> Q2},{Q1l, Q2}1]

The above command renames each of the firms' reaction quantities Ri [QJ ] with the
firm’s actual chosen quantity oi and then solves the two equations simultaneously for the
choice variables 01 and 02. The resulting output from the command is the Nash
equilibrium strategy.

a - 2cl + c2 a+cl - 2 c2
OUT[]:= ({01 -> 35 , Q2 -> 35 b}
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In order to save these results we create two new Mathematica variables, 01c and g2c¢ for

each of the respective firms Cournot quantities.

Qlc = 01 /.%[[111 ;
Q2c = Q2 /.%%[[11]1 ;

IN[]:
IN[]:

The interpretation of these statements is; 01c is defined as the variable 01 where Q1 is
replaced with the values from the first solution of the previous Mathematica output and
similarly for g2c.

In a similar manner we derive and store the Cournot market output, the Cournot

market price, firm 1's profits, and firm 2's profits respectively.

IN[1:= Qcour = Q /.{Ql -> Qlc, Q2 -> Q2c}

a+cl - 2 c2 a -2 cl + c2

ouT[l:= 3D + 3 b

In the above statement, the Cournot market output, ocour, is defined to be the market
output, 0, which was defined to be 01 + 02 where we replace the 01 with firm 1's
Cournot quantity 01c and replace 02 with firm 2's Cournot quantity o2c.

The Cournot market price, Pcour, is found by substituting the firms' Cournot
outputs, 01c and Q2c, in place of 01 and 02 into the inverse demand function price

which was defined at the start of the program, i.e.
IN[]:= Pcour = Simplify[Price /.{Ql -> Qlc, Q2 -> Q2c}]

OUT[]:= a + c% + c2

The Mathematica simplify command is used in the above input statement to provide a

simplified output expression.
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With the market price determined, calculating firms' profits is straightforward.
Firm 1's Cournot profit, designated pielc, is the firm's Cournot output, 01c, multiplied by

the difference between the price and firm 1's unit cost, i.e. (Pcour - c1).
IN[1:= pielc = Simplify[Qlc* (Pcour - cl)]

2
(a - 2 cl + c2)

OUT[]:= 55

A similar expression calculates firm 2's Cournot level of profits, pie2c.

IN[1:= pie2c = Simplify[Q2c* (Pcour - c2)]

(a + cl —2c2)2

oUT[]:= 5 5

4. Experiments

In this chapter we develop a series of experiments that cover many of the aspects
of the models presented. However, one set of experiments to consider is the use of
alternative cost functions and another is to consider modeling alternative market

structures.
5. Further Reading

For an introduction to Mathematica see Wolfram (2003). For a more comprehensive
introduction to game theory see Gibbons (1992). Some of the examples used in this
chapter are drawn from that book so the reader will find continuity between this chapter
and Gibbons book. For an introduction to the use of Mathematica in game theory see
Dickhaut and Kaplan (1993). For a study on the use of Mathematica to simulate the

effects of mergers among noncooperative oligopolists see Froeb and Werden (1996).

We turn next to a different approach to solving the oligopoly problem, namely the
Stackelberg Leadership model.
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Daniel Gaynor

Stackelberg quantity games are similar to Cournot games in that both are quantity
competitions”’. In the Stackelberg game, however, firms do not choose quantities
simultaneously. Rather, this is a two-stage model in which a dominant firm (or
Stackelberg leader) moves first by choosing its level of output in the first stage. After
observing the leader's move the other firm chooses its best response output in the second
stage. As we will see, the sequential play will require a different methodology and

produce different results than those of the simultaneous move Cournot game.
1. The Stackelberg Leadership Model

As is typical with sequential games, we will solve the Stackelberg game
backwards. Thus we begin to solve the problem by characterizing how the Stackelberg
follower (firm 2) will respond to the Stackelberg leader's choice of quantity. An intuition
for this backward approach is that in order for the Stackelberg leader to make an optimal
decision about his output choice, he must first consider how the Stackelberg follower will
respond to his choice in the second period. Because firm 1, our Stackelberg leader, has
the same information as firm 2, the follower, firm 1 can solve firm 2's optimization
problem just as well as firm 2 can. Therefore, the Stackelberg leader will solve for the
Stackelberg follower's reaction function and then anticipate firm 2’s second period

response when making its own output choice in the first period.

27 See Varian (1993b), pp. 448-454.
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In this model we use the same specification for market demand that was used in
the Cournot model. See the Mathematica file stack.nb that, as is discussed in Appendix
B, is accessed in the same way as the previous Mathematica files. The model of the
Stackelberg follower's 2™ period behavior is identical to firm 2's behavior in the Cournot
model with only a subtle difference. Recall from the Cournot game that firm 2's reaction
function was interpreted as firm 2's best response to firm 1's hypothesized output Q;. In
the Stackelberg game, firm 2 knows Q; for certain since it observed Q, at the end of stage

1. Therefore, firm 2 will respond to firm 1's observed output Q; by producing:

IN[1:= 0Q2s = Simplify[R2[Q1] /. Solve[React2, R2[Q11] [[1]] ]

a - c2 - b 0l
2 b

OUT[]:=

It is important to recognize that in the statement above r2 [01] is a reaction function for
firm 2, named React2, which is the same reaction function for firm 2 that was found in
the Cournot game. Since firm 2, the Stackelberg follower, has already observe firm 1's
output choice, 01, firm 2 will best respond by choosing the output 02s.

The Mathematica statement takes firm 2's reaction equation in the form

lhs ==rhs

(left hand side = right hand side) that is named React2, and transforms it into an
expression, named Q2s, which can later be substituted into firm 1's optimization problem.
This is accomplished by defining an expression for the output of firm 2 in the Stackelberg
game, 02s, to be equal to the variable R2 [01] where R2[01] is replaced (/.) with the
expression representing the solution for the variable R2 [01] from firm 2's reaction
equation, React2. The solve command finds the expression for the variable rR2 [01] and
the simp1lify command is used again to simplify the output expression. The [[1]] term
in the input statement tells Mathematica to use the first solution found by the solve
command. Although there is a unique solution to the above Solve statement, this term is
still required.
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After solving firm 2's optimization problem, we step back to the first stage and
solve the Stackelberg leader's (firm 1's) optimization problem. As we did in the Cournot
Model, we begin by specifying the general form of firm 1's profit function and then

replace the general demand function with our specific linear demand function.

IN[1:= eqPrl = piels == Q1*(P[Q1l,Q2]-cl)
oUT[]:= piels == Q1 (-cl + P[Ql, Q2])
IN[1:= eqPrl = %/. P[Ql,Q2] -> Price
oUT[]:= piels == Q1 (a - cl - b (Q1l + Q2))

However, at this point the model makes a departure from the Cournot model. Because
firm 1 can solve for firm 2's best response quantity as well as firm 2 can, firm 1 will
anticipate firm 2's reaction to any choice of Q;. Therefore, firm 1 can substitute firm 2's
reaction output (which expresses firm 2's optimal choice of Q, as a function of firm 1's
quantity Q) in place of Q, leaving a profit function for firm 1 which is a function of only

its own quantity. This is accomplished with the following command

IN[1:= eqPrl = Simplify[%/. Q2 -> Q2s]

. . _Ql(a -2 cl +c2 - Db Ql)
ouT[l:= piels == >

The above input statement redefines the equation for the profits of firm 1 (eqpr1) to be
the equation from the previous output statement with the variable 02 replaced with the
expression for 92s which was calculated earlier. At this point the equation representing
the Stackelberg leader’s profits is only a function of its own quantity choice, Q;.
Observing the previous output statement, it is easy to see that the Stackelberg
leader's optimal choice of quantity can then be found by differentiating the profit function
above with respect to that firms’ choice of quantity Q;. The Mathematica statement
below uses the derivative command, p[1, to differentiate firm 1's profit equation, eqpri,

with respect to the variable Q1.

IN[]:= focPrl = Simplify[D[egPrl, Q1]]

ouUT[]:= 0 == a/2 - cl + c2/2 - b Q1.
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The Stackelberg leader's output choice, Q;, can then be found by solving the
above first order condition for the variable Q. In the statement below, the solve
command finds this expression for the variable o1, simplifies the expression, and then
names the expression Q1s (the optimal quantity of firm 1 playing the Stackelberg game).
The solution to the Stackelberg game has the Stackelberg leader (firm 1) choosing its

optimal quantity:

IN[1:= Qls = Simplify[Ql /.Solvel[focPrl, Q1]1([[1]]]
a - 2cl + c2
ouT[1:= > B

Firm 2 (the follower) then takes firm 1's quantity choice as given and reacts by choosing:

IN[]:= Q2s = Simplify[Q2s /. Q1 ->Qls]

a+ 2cl - 3 c2
ouUT[]:= 75

The above statement simply takes the expression for 92s and replaces the variable 01
with our expression for 01s in terms of the models parameters.
The resulting market quantity and market price are then calculated by substituting

the firms' optimal quantities into the quantity and price equations.

IN[]:= Ostack = Q /. {Q1 -> Qls, Q2 -> Q02s}
3a-2¢cl -c2

ouT[1:= T b

IN[1:= Pstack = Simplify[Price /. Q -> %]

+ 2 1 + c2
ouT[]: a —

The syntax for the expressions above corresponds with the syntax for the expressions

representing Cournot market output and price found earlier.
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Once again, with the market price determined, it is possible to calculate firms'
profits. Firm 1's Stackelberg profits, designated piels, is the firm's Stackelberg output,
01s, multiplied by the difference between unit price and firm 1's unit cost

(Pstack - cl).
IN[1:= piels = Simplify[Qls* (Pstack — cl)]

2
(a - 2 cl + c2)
oUT[]:= 5 b

Similarly, firm 2's profits from playing a Stackelberg game, pie2s, are;

IN[1:= pie2s = Simplify[Q2s* (Pstack — c2)]

(a + 2 cl - 3 02)2

oUT[]:= 16 b

2. Comparison of Cournot and Stackelberg Models

In this final section we look at a Mathematica program that considers alternative
oligopoly models and asks how our model specification might affect our predicted
solutions. The point of this experiment is not only to illustrate that different models will
generally lead to different solutions but to impress upon the reader the importance of
choosing the correct model for the industry. Does the industry you want to model have a
dominant firm that appears to lead the industry? If so, it might be more appropriate to
model this industry as a Stackelberg oligopoly rather than a Cournot oligopoly. Do the
firms in the industry produce a nearly homogenous good? If not, neither the Cournot nor
the Stackelberg models will likely be an appropriate choice for modeling.

For the purposes of this experiment, we look at a duopoly industry with the same
linear demand curve as in the previous programs. The only variation is that in the current
model we make an additional simplifying assumption. In addition to our previous
assumption that firms have constant marginal costs of production, we now assume that
these costs are the same for both firms (¢c; = ¢, =c). Because of this assumption, the
reader should be warned that our purpose is not to propose any quantitative differences

between the models (although some qualitative differences will become apparent).
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Rather our purpose is to drive home the message that modeling oligopoly markets is an
art and a science. Modeling is the science. Choosing the right model is the art.

We investigate this special case of symmetric costs (i.e. marginal costs are the
same constant number for all firms) by considering three alternative models' solutions.
Our benchmark solution will be the collusive monopoly outcome. Unlike the non-
cooperative Cournot and Stackelberg games, the collusive outcome assumes that the two
firms agree to behave as a monopoly industry by restricting market output to the
monopoly level with each firm producing half of the monopoly market output thereby
splitting monopoly market profits. We use this as our benchmark because it is the most
profitable possible outcome. We then return to our now familiar models of Cournot and
Stackelberg Competition and ask: How do the predictions from these models differ from
each other and how different are they from the collusive outcome?

In order to account for the collusive outcome, we take a slightly different

approach to the general setup for this program than in the other Mathematica programs.

In[]:= SetAttributes[a, Constant]
SetAttributes[b, Constant]

SetAttributes[c, Constant]

In[]:= Clear[a,b, c, templ, temp2];

Clear[Q,0Q1,02,eqgPrl, eqPr2, focPrl, focPr2,R2,pielc,pie2c];

In[]:= Price = a - b*(Q) ;

Notice that the setup still contains the setAttributes commands, the Clear commands
to clear any previously stored values, and our specification of our inverse demand
relationship. Noticeably absent, however, is the definition of market quantity as the sum
of firm 1's output and firm 2's output (Q = Q; + Q). This omission is intentional because
we first want to consider the collusive (monopoly) outcome. This requires that we model
the industry not as a duopoly, but rather as a monopoly and then divide the monopoly

outcome between the firms.
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As noted above, solving for the collusive outcome amounts to solving for the
monopoly market output and then distributing this output evenly between the firms. To
accomplish this, we develop an expression for the monopolists profit function.

IN[1:= egPrM = ProfitM == Q(P[Q] - c) ;

egPrM = Expand[%/. P[Q] -> Price]

ouT[1:= ProfitM == Q (a - ¢ - b Q)
Differentiate the profit function with respect to the choice variable, quantity (Q).

IN[1:= focPrM = D[egPrM, Q]

oUT[]:= 0==a-c-2Db2gQ

Then solve for the profit maximizing market quantity and name this quantity om,.

IN[1:= Om = Simplify[Q/. Solve[focPrM,Q][[1]]]

OUT[]:= T

Because we assume that this collusive market output is distributed evenly between the

duopolists, simply divide the market output, om., by two in order to find each firm's

output.
IN[]:= Qlm = Qm/2
a-c
oUT[]:= 75
IN[]:= Q2m = Om/2
a -c¢
ouT[1:= 7 b
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We complete the Collusive Solution section of the code by calculating the
collusive market price, Pmon, and the collusive profits of one of the representative firms
(pielm). Because both firms are assumed to split the market evenly, profits will be equal

between the two firms.

IN[1:= Pmon = Simplify[Price /. Q -> Qm]
oUT[]:= .
IN[]:= pielm = Simplify[Qlm* (Pmon - c)]
2
(a - ¢
ouT:= s

Before continuing on to the Cournot and Stackelberg models we need to insert the

definition for total market quantity that we had earlier omitted;

IN[]:= 0 =01 +02;

The next two sections of code model the Cournot Game and then the Stackelberg
Duopoly Game. These models and their associated code are nearly identical to the
Cournot and Stackelberg models considered earlier with the noted exception that the
constant marginal cost of production is now the same for both firms (and is denoted c in
the code).

In the last section of this code we take a closer look at the solutions to the models
of our symmetric cost industry and make some analytic and graphic comparisons between
the collusive, the Cournot and the Stackelberg outcomes.

The first set of comparisons that we make considers the overall size of the market
that the alternative models predict. The v in the first input statement below is a
Mathematica operator to return a numerical value. Also by the precedence rules the term

in the first input statement below is (Qcour/Qm) — 1

IN[]:= sizeQc = N[ (Qcour/Qm-1)*100]
ouT[]:= 33.3333

IN[]:= sizeQs = N[ (Qstack/QOm-1)*100]
Out[]:= 50.
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The first statement above compares the size of the Cournot market output in our
symmetric cost model with the collusive outcome and shows that in the Cournot model
output is 33.3% larger than the most profitable collusive market size. The second input
statement above makes a similar comparison between the Stackelberg market output and
the collusive market size and shows that the Stackelberg market output is even larger —
50% larger than the collusive market size.

The next set of statements compares the size of the individual firms' outputs that

the alternative models predict.

IN[1:= sizeQlc = N[(Qlc/Qlm-1)*100]
ouT[]:= 33.3333

IN[1:= sizeQ2c = N[ (Q2c/Q2m-1)*100]
ouT[]:= 33.3333

IN[1:= sizeQls = N[(Qls/Qlm-1)*100]
oUT[]:= 100.

IN[1:= sizeQ2s = N[ (02s/02m-1)*100]
oUT[]:= 0

The first two input statements above compare firm 1's and firm 2's market output from
the Cournot game against their collusive output levels and show that both produce 33.3%
more in the Cournot model than the collusive outcome. The last two input statements
making similar comparisons of the firms' market outputs from the Stackelberg game
against their collusive output. In our symmetric costs industry we find that the
Stackelberg leader (firm 1) produces twice the collusive output and the Stackelberg

follower (firm 2) produces the same output as in the collusive game.

231



Chapter 10 Stackelberg Duopoly in Mathematica

At this point we have shown that the collusive (monopoly) outcome has the
smallest market size and therefore the highest market price. Similarly it is now clear that
the Stackelberg model has the largest market size and consequently the lowest market

price. What is still unclear is how industry and firms' profits compare. The first set of

Mathematica statements below compare Cournot profits to the collusive shared monopoly

profits.

IN[1:=
oUT[]:=
IN[1:=
oUT[]:=

sizePielc
-11.1111
sizePie2c

-11.1111

= N[ (pielc/pielm-1)*100]

= N[ (pie2c/pie2m-1)*100]

Here we find that the Cournot profits for both firms are 11.1% lower than the profits that

would be achieved if the firms were to collude by acting as a monopolist.

The next set of statements compares the Stackelberg profits to collusive profits.

IN[1:=
oUT[]:=
IN[1:=
oUT[]:=
IN[1:=
ouUT[]:=

sizePies
-25.
sizePiels
0
sizePiels

-50.

= N[ ((piels + pie2s)/(2*pielm)-1)*100]

= N[ (piels/pielm-1)*100]

= N[ (pie2s/pie2m-1)*100]

The first statistic (that we call sizePies) compares industry profits of the Stackelberg

and collusive outcomes. The other input statements compare the profits between these

alternative outcomes for firm 1 and firm 2 respectively. Notice that industry profits for
this Stackelberg game are 25% lower than the monopoly profit level for the industry.

Therefore, industry profits are lower in the Stackelberg game than they were in the

Cournot game. However, despite having less industry profits in the Stackelberg game,
we find that the Stackelberg leader (firm 1) is able to achieve higher profits in than in the

Cournot game. In fact, in this symmetric cost industry, we find that the Stackelberg

leader earns the same profits as in the collusive outcome.
Given that collusive and Stackelberg profits are the same for firm 1, why doesn't
the Stackelberg leader produce at half the monopoly output? Because in such a one-shot

game, firm 2 would cheat and produce more than its collusive share. It is left to the
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reader to show what quantity firm 2 would produce after observing firm 1 produce half
the monopoly market output.
The results presented above are also summarized in the Mathematica program

with a series of pie charts.

OUTPUT: firm 1 = Blue

Cournot SJtackelberg Collusive

wl sk

Profit: firm 1 = green

Cournot otackelberg Collusive

Se

Figure 10.1 Pie Charts for Output and Profit

The Mathematica code that generates these sets of pie charts and the plots that
follow is longer and more complicated than the code statements used throughout this
paper and therefore omitted here to avoid confusing the reader. However, all of the code
is presented in the files and the adventurous reader is encouraged to study it with the aid

of a Mathematica reference manual.
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The program combine.nb concludes with a series of plots illustrating the
solutions to the Cournot and Stackelberg game. The first of these plots (Fig. 10.2)
represents the firms' isoprofit curves. This is a contour mapping (similar to a geographic
map) that shows how the two firms' profits vary for different combinations of output by

the two firms.

i
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Figure 10.2 Contour Maps of Two Firms’ Profits
Each isoprofit curve represents a different level of profits and the level of profits

increase as the curves shift towards their respective axis. In the plot above, firm 2's

isoprofit curves are red and firm 1's isoprofit curves are blue.
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In the final plot, the isoprofit curves are combined with the plot of the reaction

functions that we considered earlier.
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Figure 10.3 Isoprofit Curves Combined with Reaction Function
3. Experiments

In this chapter we develop a series of experiments that cover many of the aspects
of the models presented. However, one set of experiments is to consider modeling
alternative market structures.
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Chapter 11
Genetic Algorithms and Evolutionary Games in MATLAB

Genetic algorithms are search procedures based on the logic of natural selection and
genetics. The central concept of genetic algorithms is “survival”. A group of individuals
- each one represented, for their computational implementation, by a string of characters,
usually based on a binary code - compete with one another and the “most fit” survives to
give birth to a next generation of related individuals. This process continues through a
number of generations leaving at the end the “most fit” individual.

One application of genetic algorithms is to evolutionary game theory. In this
chapter we present an example from this field, namely an iterated prisoner’s dilemma
problem.”® First we illustrate some basic concepts of genetic algorithms and evolutionary
games using very simple examples. Next we show how to work with binary
representations in MATLAB. Then we present a basic MATLAB program and perform
some experiments. A more sophisticated MATLAB program of genetic algorithms which
builds on the one in this chapter will be presented later in the Genetic Algorithms and
Portfolio Model in MATLAB chapter.

1. Introduction to Genetic Algorithms

There are different types of genetic algorithms. Here we will introduce one of the
most commonly used. The algorithm starts with the generation of the initial population, and
then we have a repetitive process that evaluates the fitness, selects, crosses, mutates and
replaces the old population. This process will be stopped when we reach the required
precision after a number of generations. In this section we will present a simple example.

We will later suggest ways of introducing more complex procedures.

%% The use of this example was initially motivated by the work of our student Shyam Gouri Suresh.
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Let’s assume that we start from a given initial population of only four individuals.
Each individual’s characteristics are represented by a string of five binary digits
(chromosomes).
Initial population

1) 00000

2) 10101

3) 11010

4) 11100

We are all used to dealing with decimal representation of numbers. For example, a number

like 142 (one hundred and forty two) is constructed in the following way

(1) 10> +(4) 10" +(2) 10° =
100+ 4 +2 =142 '

A binary representation works in a similar way, but with a different base: two instead of
ten. Thus, a string of characters such as the second individual in the initial population

above, i.e. 10101, can be interpreted as representing the number 21 (twenty one), since

(1) 2*+(0) 2°+(1) 2°+(0) 2'+(1) 2° =
16 + 0 + 4 + 0 + 1 = 21

The usefulness of this kind of representation will be appreciated soon in the crossover and

mutation steps.
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Given the initial population, we need some fitness criteria in order to select the
“best” individuals. This criterion depends on the specific problem under consideration, and
it is usually represented by a mathematical function to be applied to each individual. For
the sake of simplicity, let’s assume here that the fittest individuals will be those with the
highest numerical values associated with their characteristics (their “chromosomes”).
Thus, the third and fourth individuals in the initial population above would be selected for
reproduction, and they would form a couple. This couple will have four children which
will replace the entire previous generation of individuals. Each new individual will be
generated in the following way: first there will be a crossover of the last two genes in the

strings of the selected couple as follows

Couple Crossover
3) 11010 11000
4) 11100 11110

and then there will be a mutation of the last gene for each of the crossover results. That is

Crossover Mutation
11000 11000
11001
11110 11110
11111

Thus, from the mutation column above, the second generation ordered in an ascendant way

according to numerical value, will be

Generation 2
1) 11000
2) 11001
3) 11110
4) 11111
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We now select again the two fittest individuals, obviously the third and fourth.
Then we can again apply the same crossover and mutation procedures. The result is shown

below.

Couple Crossover Mutation
11111

3) 11110 11111 11110

4) 11111 11110 11110
11111

Thus, the third generation, ordered in ascendant way according to numerical value,
is
Generation 3
1) 11110
2) 11110
3) 11111
4) 11111

Observe that we have reached the highest possible values for the third and fourth
individuals, which will be selected as the parents of the next generation. Actually, if we
repeat the crossover, mutation and selection steps from now on, we will find that all the
next generations will be identical to generation 3. Thus, we can conclude that we have
reached an optimum, that is, the fittest individual given the characteristics of our problem.

The example presented above is simple; yet it provides a basis from which we can
introduce several modifications to have an idea of what the actual practice in the field of
genetic algorithms is like. For example, the size of the population could be larger or the
string of characters corresponding to each individual could be longer. The initial
population could be generated stochastically. The fitness criteria, as we mentioned above,
could be of a different nature from the one used here, and represented by a specific fitness
function. Given a larger population, more than one couple could be selected to be the
parents of the next generation. To this end, a stochastic procedure could be used to form
couples out of a pool, also determined with some degree of randomness, of the fittest
individuals. The crossover point - the last two genes in our example - could also be
randomly determined at each generation, as well as the mutating genes, which we

arbitrarily chose to be only and always the last one.
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Before we introduce the code for our model, we will present a simple example of an
evolutionary game and later introduce a number of MATLAB functions that can be used for

manipulating binary representations.

2. A Simple Example of Evolutionary Game

An evolutionary game is a game in which strategies evolve through a process of
dynamic selection. As an example, we will present here a simple version of the game
known as iterated prisoner’s dilemma. The prisoner’s dilemma was introduced and
analyzed earlier in the Cournot Duopoly in Mathematica chapter. Our game will have the

representation shown in Table 11.1, where D means defect and C means cooperate.

Player |1
- D C
3 D 1 1 5 0
% 7 ’
o C 0, 5 3, 3

Table 11.1 Game Representation

Thus if the two individuals cooperate with one another they will each receive a gain
of three but if they both defect they will each receive a gain of only one. In contrast, if
Player I decides to cooperate but Player II defects, then Player I will make a gain of zero
and Player II will make a gain of five.

We will assume that this game will be played many times by successive generations
of individuals. Each individual will be represented by a chromosome of 24 bit length.

Each gene of the chromosome will represent an action (0 for defect, 1 for cooperate). Thus,
each individual chromosome will be interpreted as a strategy, which is a sequence of
actions.

Within a given generation, each individual will play 24 times against each member
of her generation following the strategy implied by her chromosomes, and her resulting
payoffs will be accumulated. At the end of each generation round, the two individuals with
the highest accumulated payoffs will be selected to be the parents of the next generation.
Children will be born out of the crossover and mutation of parents’ chromosomes. The
process will be repeated for a number of generations.
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Notice that, given the simple formulation of this iterated game, individuals will not
think and act strategically. They will just follow their strategies regardless of their
opponent’s actions. In this sense they are very stubborn and simple-minded agents.

However, we know that the most efficient individual action for the prisoner’s
dilemma game is to defect, and that the unique Nash equilibrium is (D,D). The question for
our experiments is: Would this population of simple-minded agents evolve in such a way
that only defectors will survive? That is, will the selective evolution of the population
generate an outcome similar to the one that would be reached by rational and strategic-
thinking players which, by the way, implies that everybody will be worse-off than in the

case in which everybody cooperates?

3. Working with Binary Representations in MATLAB

When using binary variables to code genetic algorithms, the key concept to
keep in mind is that the variables can be specified as integers but can also be
thought of as strings of binary variables. Then for example, the integer 25 would be
represented in an 8-bit binary string as

00011001
that is as

0(27)+0(2°)+0(2°)+1(2")+1(2°)+0(2%)+0(2")+1(2")

= 0(128)+0(64)+0(32)+1(16)+1(8)+0(4)+ 0(2)+1(1)

=25
Thus we can create an integer variable in the program, say genepool = 25 ,and
use that to represent both a player’s strategy (or, as we will see in the Genetic
Algorithms and Portfolio Models chapter, an economic variable such as the
percentage weight of an asset in a portfolio) and at the same time manipulate it as a
bit string in a genetic algorithm code.

MATLAB provides a variety of functions to manipulate the binary
representations of numbers. The functions dec2bin, bitor, bitand, bitshift and
bitcmp are used in the genetic algorithm code in this chapter and in the Genetic
Algorithms and Portfolio Models chapter.

The function dec2bin converts a decimal integer to a binary string. For
example, the statement

x = dec2bin (6);
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returns the binary string 110 which corresponds to the decimal number six, while

x = dec2bin(6,8);
returns a binary representation of the decimal number six with at least eight
characters, that is

00000110.

The function bitor returns the decimal bit-wise OR of two nonnegative
integer numbers. That is, it compares bit-to-bit each binary position of the two
numbers generating a 1 whenever it finds the combination (1,1), (1,0) or (0,1) and
generating a 0 when it finds the combination (0,0). For example, the 4-bit
representation of the numbers 7 and 9 are respectively

0111 and 1001
and the bitwise OR operation on these numbers yields 1111, which corresponds to
the decimal representation 15. Thus the statement

x = bitor(7,9);
returns the number 15.

The function bitand returns the bit-wise AND of two nonnegative integer
numbers. Comparing bit-to-bit the binary representation of two numbers generates a
0 whenever it finds the combination (0,0) or (0,1) or (1,0) and generates a 1 when it
finds the combination (1,1). Thus the statement

x = bitand(7,9);
returns the decimal number 1.

The function bitshift

x = bitshift (A, k);
returns the value of the nonnegative integer A shifted by k bits (to the left when k is
positive, to the right when k is negative and filled with zeroes in the new spaces).
For example, when A = 14 its binary representation is 01110. Thus the statement

x = bitshift(14,1);
corresponds to the binary representation 11100 and returns the decimal value 28. If
the shift causes x to overflow, the overflowing bits are dropped.

Finally, the function bitcmp

x = bitcmp (A,n);
returns the bit complement of A in the form of an n-bit floating point integer, i.e.
each 0 is replaced with a 1 and vice versa. Thus, the statement

x = bitcmp (28,5);
where 28 is represented with 5 binary digits as 11100 and its complement is 00011

and thus the function returns the decimal value 3.
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4. Overview of the MATLAB Code

There is a Genetic Algorithm and Direct Search Toolbox for use with MATLAB
which includes routines for solving optimization problems using genetic algorithms, and
where the user can directly specify some overall characteristics of his or her problem (i.e.
population size, fitness criteria, number of generations, etc.) without having to pay special
attention to the workings and implementation of the genetic algorithm. However, to
provide an opportunity to learn some basic concepts about genetic algorithms and to go
deeper into learning the MATLAB software we introduced earlier in the Portfolio Model
chapter, we are basing this chapter on a genetic algorithm code initially developed by one
of our students, Huber Salas.

While in an earlier chapter we introduced relatively simple MATLAB programs,
here we advance to a program that calls a number of built-in MATLAB functions and uses
a number of M-files. MATLAB has two kinds of M-files that can be written by users: (1)
scripts which do not accept input arguments and (2) functions that do accept input
arguments.”” They contain a series of statements and can be stored in an independent
MATLARB file. The functions receive a number of input variables, process them, and return
one or more output variables. The name of the main program we will present here is
gagame.m, 1.e. it is a genetic algorithm evolutionary game problem. This program and all
the functions it calls are available in the book web page.

The basic structure of the program, shown below, consists of three main parts. The
first part contains the initialization of counters and parameters and a function call to
initialize the population. The second part is a for loop across generations that in turn
contains several function calls. Finally, the third part contains commands to print and

graph the main results.

¥ For a discussion of MATLAB M-files see the manual “Getting Started with MATLAB” in the MATLAB

Help menu options.
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Q

% initialization of counters and parameters;
nruns = 100; popsize = 8;

clen = 24; pmut = 0.5;

% generation of chromosome strings of initial population
genepool= initpoprand gagame (popsize);

for k = 1l:nruns;

% computation of fitness function and fittest individual

[fit, bestind, bestfit] = fitness gagame (genepool,popsize,clen);
bestind;

fbest (k) = bestfit;

=
o
0]
@)
o+
o~
Il

% selection of parents;
[parent0,parentl] = parentsdet (fit, genepool);

% crossover of parents chromosome strings
[childO,childl] = crossover (clen,parent0,parentl);
% mutation of children chromosome strings
for h = 1:2:popsize;
childOmut = mutation (pmut,clen,childO);
genenew (h) = childOmut;
childlmut = mutation (pmut,clen,childl);
genenew (h+1) = childlmut;
end
genepool = genenew;
end
% print and graph fittest individual;
dec2bin (wbest (nruns),clen)
fbest = fbest / (clen * (popsize - 1));

figure (1) ;

xaxis = [l:1l:nruns]’';
plot (xaxis,wbest) ;
figure (2);

xaxis = [l:1l:nruns]’';

plot (xaxis, fbest) ;

In the initialization of counters and parameters section we set the number of
runs nruns and the population size popsize. We also set the length of the
chromosome string clen and the probability of a child mutation pmut.

We then call the function inipoprand gagame to initialize the vector
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genepool which will contain a number of individuals equal to the population size,
each individual represented by a 24-bit chromosome string. So, in our example,
genepool is a vector of 24 bit chromosomes with an element for each of the eight
individuals in the population.

Then we move on to the main for loop in the program, running from 1 to the
number of runs. This loop contains a sequence of function calls. It starts with a call
to the fitness gagame function to compute the fitness function for each individual
and to select the fittest individual, which at each run will be stored in the xth
element of the vector wbest while the corresponding criterion value will be stored
in the kth element of the vector fbest. Thus, at the end of the runs, these vectors
will contain the sequence of optimal chromosome strings and optimal criterion
values respectively.

Next the function parentsdet, using the fitness function previously
computed, will select two parents (parent0 and parent1) who will form a couple.
This is followed by a call to the function crossover which will generate two
children (chi1do and child1) as the product of the crossover of the chromosome
strings of the two parents.

Next comes a for loop whose index goes from 1 to popsize in increments of
two. In this loop, out of the two newborn children a new generation will be created
through mutations of their chromosomes. Half of the new generation will come out
of mutations of the first child (chi1d0) and the other half will come out of
mutations of the second child (chi1d1). At every pass through the h loop the
function mutation is called twice. This has the effect of generating two mutated
children, and their 24-bit chromosome representations are stored in subsequent cells
of the genenew vector.

Once the new generation is created, the new vector genenew replaces the old
vector genepool and the main loop of the program starts over again.

After the main loop goes through the established number of runs, the

statement

dec2bin (wbest (nruns) ,clen)

prints the last element of the vector wbest which contains the chromosome string of
the fittest individual. Then the statement
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fbest = fbest / (clen * (popsize - 1));

is used to compute the average value of the optimal criterion value at each run.
Notice here that fbest is a vector and (clen * (popsize - 1)) is a scalar so that
the division operation is repeated for each element in the vector. Finally, the vector
of fittest individuals wbest and the vector of optimal criterion values fbest are
plotted.

This provides an overview of the program. It is important to point out that
every time you run the program, particularly when changing the number of
generations or the population size, you should clean out the old commands and
workspace to avoid displaying spurious results. To do so, go to Edit in the top
MATLAB menu. Then select Clear Command Window and confirm with Yes that
you want to do this. Then do the same for Clear Command History and for Clear
Workspace.

We will now present each function in detail.

5. Functions

5.1 Initpoprand_gagame

This function is simple in that all it does is to assign a random number to
each individual string of chromosomes. Thus the MATLAB code for this
initialization function is

function genepool= initpoprand gagame (popsize,clen);

for k1 = l:popsize;

genepool (k1) = ceil(rand * (2%clen)-1)));

dec2bin (genepool (kl), clen)
end

The header statement for the function, i.e.

function genepool = initpoprand gagame (popsize,clen);

tells us that the name of the function is initpoprand gagame, that the arguments
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popsize and clen will be passed to the function and the result genepool will be
returned by the function.
Then a loop going from 1 to popsize is used to assign a random value to

each element of the genepool vector. The statement

genepool (k1) = ceil(rand * (27clen)-1)));

assigns to each element of the vector the ceiling (the nearest higher integer value) of
the result of multiplying the variable rand (a zero-one uniform distribution random
number generator) times the number (2~clen)-1. This last number will be equal
to the highest possible value represented with a binary string of length equal to
clen. Forexample, if clen equals three, that number will be equal to two to the
power of three, i.e. eight, minus one. Thus the number is seven, whose binary
representation is 111.

The statement

dec2bin (genepool (kl),clen)

does not play an essential role in the function since it only serves to print a binary
representation of genepool for debugging purposes. Since there is no semicolon at
the end, this statement will return and print the 24-bit binary representation of each
element of genepool. Finally, notice that an end statement is not necessary at the
end of a MATLAB function, unlike the cases of for loops or conditional if

statements.

5.2 Fitness_gagame

This fitness gagame function contains the game to be played and a
procedure to select the fittest individual which is similar to the one used in the
portfolio chapter earlier in the book. The first part of the function consists of three
nested loops: the first one for playerl, the second one for player2, and the third one
for games. Thus, each player selected in the first loop will play against each other
player selected in the second loop. These two players will play 24 games, playing
in each game the action determined by the corresponding gene in their chromosome

sequence. The statements for the first part of the function are shown below.
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function [fit,bestind,bestfit] = fitness gagame (genepool,popsize,clen);
payoffs (l,popsize) = 0;

% Loop for playerl
for k1 = l:popsize;

strategypl = genepool (kl);

% Loop for opponents (player?2)
for k2 = l:popsize;
strategyp2 = genepool (k2);

if (k1 ~= k2)
mask = 1;

%$Loop for games
for k3 = 1l:clen;
bitand (strategypl,mask) ;

actionpl

actionp?2 bitand (strategyp2,mask) ;
mask = bitshift (mask,1);
% defect, defect
if (actionpl == 0) & (actionp2 == 0)
payoffs(kl) = payoffs(kl) + 1;
end
% cooperate, defect
if (actionpl > 0) & (actionp2 == 0)
payoffs(kl) = payoffs(kl) + O;
end
% defect, cooperate
if (actionpl == 0) & (actionp2 > 0)
payoffs(kl) = payoffs(kl) + 5;
end
% cooperate, cooperate
if (actionpl > 0) & (actionp2 > 0)
payoffs(kl) = payoffs(kl) + 3;
end
end % end loop games

[}

end % end if

end % end loop opponents

end % end loop playerl
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The function begins with the statement

payoffs(l,popsize) = 0;

which initializes to zero a vector that will contain the accumulated payoffs of
playerl.

This is followed by the beginning of the k1 loop for player 1. The statement
at the beginning of this loop

strategypl = genepool (kl);
and the statement at the beginning of the loop for player 2
strategyp2 = genepool (k2);
assign to the temporary variables strategypl and strategyp2 the chromosomes

of player 1 and player 2 respectively, that is the strategies each player will play.

Next, at the beginning of the loop for games, the statements

actionpl = bitand(strategypl,mask);

actionp?2 bitand(strategyp2,mask) ;
select the actions to be played at each game out the strategies of each player. The
variable mask was previously initialized with the value 1. Thus, its 24-bit binary

representation will be

00000000 00000000 00000001

Remember that the function bitand returns the bit-wise AND of two
nonnegative integer numbers. Thus, comparing bit-to-bit the binary representation
of two numbers, it generates a 0 whenever it finds the combination (0,0) or (0,1) or
(1,0) and generates a 1 when it finds the combination (1,1). Thus the temporary
variables actionpl and actionp2 will contain the first gene of each player’s
chromosome, that is the first action to be played in the first game. For example, if

the chromosome of player 1 is
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01010101 11111111 00001111

the result of the bitand operation will be

00000000 00000000 00000001

and the content of the actionp1l variable will be the number 1, so that the player

will cooperate. The statement

mask = bitshift (mask,1);

shifts the mask one position to the left, resulting in

00000000 00000000 00000010

Thus, at each pass of the loop, the number 1 will shift one position to the left
so that the next action will be selected. The remaining of the loop for games, i.e.
the k3 loop, accumulates the payoffs for player 1 depending on the result of the
game. Each of the four possible outcomes is evaluated. For example, in the case

player 1 plays 0 (defect) and player 2 plays 1 (cooperate) the sentences

Q

% defect, cooperate
if (actionpl == 0) & (actionp2 > 0)
payoffs(kl) = payoffs(kl) + 5;

add 5 to the element of the payoffs vector corresponding to the game being
played.

Once the main loop of the function - the loop for player 1 - is completed for
all players, the second part of the function selects the fittest individual in the

generation, which is the one with the highest payoffs. It begins with the statement

fit = payoffs;

to assign the variable payof£s to the temporary variable £it. The statement
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[top topi] = max(fit);

then returns the value (top) and the index (topi) corresponding to the maximum value in
the fitness vector fit. Finally, the topi index is used to assign to the “best individual”

vector, bestind, the corresponding chromosome with the statement

bestind = genepool (topi);

while the corresponding value of the criterion function vector is assigned to the variable
bestfit with the statement

bestfit = top;

With the fitness now determined we turn next to the selection of parents.

5.3 Parentsdet

The parentsdet (parents deterministic) function is a simple deterministic function
that selects the two individuals that will be the parents of a new generation. The simple
selection method used in the present function will be to select the two individuals with the

highest criterion value or fitness.

function [parentO,parentl] = parentsdet (fit,genepool);
[top topi] = max(fit);

parent0 = genepool (topi);

fit (topi) = 0;

[top topi] = max(fit);

parentl = genepool (topi);

As in the previous function, the statement
[top topi] = max(fit);
returns the index topi corresponding to the maximum value of the fit vector that is the

fittest individual. Using that index, the corresponding chromosome string of the first

parent is stored in the variable parent0. To select the second parent, we set to zero the
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fitness value of the previous maximum and proceed in the same manner as before now to
select the second parent (parent1). We will see later, in the chapter Genetic Algorithms
and Portfolio Model in MATLAB, in the parentsrand function, how to implement a more
sophisticated random procedure for parent selection in which more fit parents have a

“higher chance” of generating off springs.
5.4 Crossover
The crossover mixes the chromosome information of the two parents to

create two children. We will consider here only the case of a single crossover. The

function code is shown below.

function [childO,childl] = crossover (clen,parentO,parentl);
crossov = ceil (rand* (clen));
maska = 1;
for k = 1: (crossov-1)
maska = bitshift (maska,l);

maska = maska + 1;

end

child0 = bitor (bitand(parent0, maska),
bitand(parentl,bitcmp (maska,clen)));

childl = bitor (bitand(parentl, maska), bitand(parentO,
bitcmp (maska,clen)));

To determine the crossover point we use the statement

crossov = ceil (rand *(clen));

Remember that the c1en variable contains the chromosome length of the individual
(24 bits). Then, multiplying clen times the uniform zero-one random number
generator function rand we are randomly choosing the crossover point. Since that
point has to be an integer number, we apply the function ceil to the result which
rounds off the result to the nearest higher integer.

Next we assign the initial value 1 to the mask variable maska.
00000000 00000000 00000001

Then we pass through a loop that goes from 1 to the crossover point. At
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each pass, we shift the 1 one position to the left

00000000 00000000 00000010

and we add the value one to the result, thus switching the rightmost bit from zero to

one.

00000000 00000000 00000011

Thus if the crossover point was 12, we will end up with the mask

00000000 00001111 11111111

Next we generate the first child with the statement

child0 = bitor (bitand(parent0, maska),
bitand(parentl, bitcmp (maska,clen)));

For example, consider the case where parent0 has the chromosome string

00010001 00010001 00010001

In this case the statement

bitand (parent0, maska)

would apply the mask

00000000 00001111 11111111

and create the chromosome string

00000000 00000001 00010001

Also assume that parent1 has the following chromosome string

10001000 10001000 10001000
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Thus the statement

bitand(parentl, bitcmp (maska,clen)));

would apply the complement of maska, that is

11111111 11110000 00000000

to parentl with the bitand operation to obtain

10001000 10000000 00000000

Finally, the application of the bitor function to the chromosome strings

00000000 00000001 00010001
10001000 10000000 00000000

will generate the result

10001000 10000001 00010001

which will be the chromosome string of the first child (chi1d0). The second child
is obtained in a similar fashion, reversing the position of the parents in the

corresponding statement.

5.5 Mutation

The mutation function generates a random mutation in a single bit of the

chromosome string of a child. The code is shown below.

function f = mutation (pmut,clen,child)
tt = 1;
if (rand < pmut)
idx = round(rand* (clen-1));
tt = bitshift(tt,idx);
temp = bitand(child,bitcmp(tt,clen));
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if (temp==child)
child = child + tt;
else
child = temp;
end
end
f = child;

Recall that pmut is the probability of a child mutation. The tt variable is initially
set to one and will be bit shifted to create the mutation at the desired point in the
chromosome. The scalar integer idx is the index of the location that is one less than
where the mutation will occur. It is determined by rounding off the randomly
generated location using the zero-one uniform random variable rand and the length
of the chromosome clen less one.

Consider for example a case where the index variable is set to three. Also,

recall that the variable tt is set to one. Thus the bitshift function call

tt = bitshift (tt,idx);

shifts the tt binary variable three positions to the left so that it becomes
1000

and the mutation is going to be done in the fourth position. Then the mutation is

done with the statement

temp = bitand(child,bitcmp(tt,clen));

and the result is stored it in the temp variable. Consider first just the bitcmp part of

this statement. It yields the 24-bit complement to the tt variable, which is

11111111 11111111 11110111

Then the bitand operation is applied to this bit string and the child variable to
obtain the mutated string, which is stored in the temp variable.

The bitand operation produces the desired mutation if the bit to be changed
was a one. However, it does not produce the correct result if the bit to be changed

was a zero. Therefore it is necessary to add the following lines of code
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if (temp==child)
child=child+tt;
else
child=temp;
end

In the case where the bit to be changed was a zero the bitand operation above will
have produced no change in the chromosome and it is necessary to accomplish that
by adding an integer amount tt to the variable. In our case the binary
representation of the tt variable was

1000
so its integer value is 16. Then when 16 is added to the chi1d variable it produces
the desired mutation by changing the zero bit in the fourth location to a one bit.

On the other hand if the temp variable is not equal to the chiid variable - as
occurs when the bit to be changed is a one - then it is only necessary to set the
child variable equal to the temp variable.

This completes the discussion of the mutation function and indeed the
discussion of all the functions and leaves us free to turn our attention to the results

obtained by using the program.

6. Results

Figure 11.1 below shows the results of running the main program gagame .m with a
number of runs equal to 100 and a population size of 8, starting from a random initial
population. The first graph shows the decimal representation of the chromosome of the
fittest individual at each run. We can observe that after about ten runs this value converges

to zero and stays there. This corresponds to the chromosome

00000000 00000000 00000000.

Thus, the optimal strategy that results from the simulation is to always defect. The
second graph shows the evolution of the corresponding average payoffs. We can see how
these payoffs converge to a value near one, which is the value corresponding to the Nash

equilibrium of the game.
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Figure 11.1 Evolutionary Game with Random Initial Population

Figure 11.2 shows the results of an experiment in which the initial population is

composed entirely of cooperators. That is, individuals with a chromosome equal to

ITI11111 11111111 11111111

To run this experiment, in the initpoprand.m function we have to replace the

statement

genepool (k1) = ceil(rand * (2%clen)-1);
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genepool (k1)

Decimal Representation of Chromosome

Average Payoffs

18

=
2]

[N
N

[y
N

=
o

[

3.5

= (2”clen)-1;

x 10°

Runs

90

100

0 10 20 30 40 50 60 70 80
Runs

90

100

Figure 11.2 Evolutionary Game with Initial Population of Cooperators

We can see in Fig. 2 that the results converge, at a slower pace than in the previous

experiments, to the same outcome. The fittest individuals will be defectors, born out of

mutations and successive selections across generations. Interestingly, a population of all
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cooperators, thus achieving the higher possible payoffs, when suffering even mild
mutations such as the ones implied by our MATLB code, will end up transformed into one

of all defectors with an inferior standard of living.

8. Experiments

The simplest experiments with this genetic algorithm would be to change the
number of model iterations and/or population size to see how this affects the
outcome. You may also want to try an experiment in which the initial population is
composed of all defectors and see if they ever become all cooperators.

A more challenging set of experiments will be to introduce further
refinements in the code to move closer to the actual practice in the field of genetic
algorithms, such as the random selection of parents and the selection of more than
one couple to be the parents of the next generation. Before doing so, you are
encouraged to read the chapter Genetic Algorithms and Portfolio Model in
MATLAB where these refinements are introduced.

More interesting experiments that would get you closer to the practice in the
filed of evolutionary games involve some sort of strategic thinking and behavior on
the part of players. Instead of being taken regardless of the opponent’s actions, a
player’s actions will be determined for example as reactions to the opponent past
behavior (Axelrod (1997)). Also it would be interesting to explore the evolutionary
dynamics of a spatial model of local interaction in which each individual plays the
prisoner’s dilemma with her neighbors (Nowak and May (1992) and (1993)).

In both these cases - more sophisticated strategies or local interaction - it is
found that the evolutionary behavior differs from the convergence to all defectors
we found in this chapter. Indeed, it is usually the case that the evolution converges
to cooperation or even displays complex patterns of cyclical behavior.

Since the MATLAB representation of these models may be more demanding
than the one presented in this chapter, before moving in this direction you are
encouraged to read the chapter on Agent-Based Models in MATLAB to learn about
more sophisticated modeling techniques which may be useful to program problems

of this nature.
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8. Further Reading

A classic reference in the genetic algorithms literature is Goldberg (1989).
For introductions to evolutionary games see the Stanford Encyclopedia of
Philosophy (2005) and Axelrod (1997).
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Chapter 12
Genetic Algorithms and Portfolio Models in MATLAB

In this chapter we present an example that builds on the Markowitz optimal
portfolio model we used earlier in the Portfolio Model in MATLAB chapter. In that
chapter we used two different methods to solve the Markowitz problem: first a Monte
Carlo optimization search method then a MATLAB gradient optimization function. Here
we will use a genetic algorithm based on the one we presented earlier in the Genetic
Algorithms and Evolutionary Games in MATLAB chapter.

First we solve the same convex problem we solved in the Portfolio Model chapter.
It has a unique global maximum - given the quadratic nature of the criterion function to
be optimized. Later in this chapter we will introduce a more difficult but more realistic
problem by means of including brokerage fees which may result in non-convexities and
thus in a number of local maxima. It is for this kind of problems that genetic algorithms
are particularly useful since they are global optimization algorithms. They perform a
global exploration of the optimization space and are less likely to be trapped by local

minima or maxima than is the case for other standard optimization procedures.

1. Overview of the MATLAB Code

Remember that the Markowitz problem was stated in an earlier chapter as to find

X to maximize J in

(1) J:,u'x—%ﬂx'Zx

subject to the constraints

) D ox =1

iel

3) x>0 iel
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where

J = criterion value
£ = subjective weight on the variance of the return on the portfolio
x, = the fraction of the portfolio invested in equity i

I = the set of equities

xl
x=|x,
X3
H, 8
u=| | =12
My 15
o, O, O 6 -5 4
X=|0, 0, 0,|=[-5 17 -11
0, O3 Oy 4 —11 24

The name of the main program we will present to solve the Markowitz problem is
gaportfoll.m, i.e.itis a genetic algorithm portfolio problem. This program and all the
functions it calls are available in the book web page.

The basic structure of the program, shown below, is analogous to the program
gagame .m presented earlier in the Genetic Algorithms and Evolutionary Games chapter.
The program consists of three main parts. The first part contains the initialization of
counters and parameters and a function call to initialize the population. The second part
is a for loop across generations that in turn contains several function calls. Finally, the

third part contains commands to print and graph the main results.
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[

% initialization of counters and parameters;

nruns = 100; popsize = 8;
beta = 2;
mu = [8 12 15]"';
sigma = [6 -5 4;
-5 17 -11;
4 -11 247;
num = 3; clen = num * 8; pmut = 0.5;

o)

% generation of chromosome strings of initial population
genepool= initpopdet (popsize);

for k

l:nruns;

transformation of chromosome string into normalized n-asset
portfolio
pwm = normport (genepool,popsize,clen,num);

% computation of fitness function and fittest individual
[fit, bestind, bestfit] =
fitness gaportfol (pwm,mu,popsize,beta, sigma);
wbest (:,k) = bestind;
fbest (k) = bestfit;

% selection of parents;
[parent0,parentl] = parentsdet (fit, genepool);

% crossover of parents chromosome strings
[childO,childl] = crossover (clen,parent0,parentl);
% mutation of children chromosome strings
for h = 1:2:popsize;
childOmut = mutation (pmut,clen,childO);
genenew (h) = childOmut;
childlmut = mutation (pmut,clen,childl);
genenew (h+1) = childlmut;
end
genepool= genenew;
end
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[

% print and graph optimal weights and criterion;
wbest

fbest

figure(1l);

xaxis = [l:1:nruns]’';

plot (xaxis,wbest (:,:));

figure(2);

xaxis = [l:1:nruns]’';

plot (xaxis, fbest (:,:));

In the initialization of counters and parameters section we set the number of
runs nruns, the population size popsize, the parameters of the portfolio model
(the risk aversion coefficient beta, the vector of mean returns mu and the
variance-covariance matrix sigma) and the number of assets num. We also set the
length of the chromosome string clen to be used to represent each portfolio as
equal to the number of assets num times eight, that is, 24 bits. Finally, we set the
probability of a child mutation pmut.

We then call the function inipopdet to initialize the vector genepool
which will contain a number of portfolios equal to the population size, each
portfolio represented by a 24-bit chromosome string. So, in our example,
genepool is a vector of 24 bit chromosomes with an element for each of the eight
individuals in the population.

Then we move on to the main for loop in the program, running from 1 to
the number of runs. This loop contains a sequence of function calls. It starts with
a call to the function normport to transform each 24-bit chromosome string
corresponding to a portfolio into an equivalent normalized weight three-asset
portfolio. The vector genepool may be thought of either as (1 x popsize) vector
of integers or as a (1 x popsize) vector of 24 bit strings. Thus the normport
function transforms the (1 X popsize) vector genepool into the (3 X popsize)
portfolio weight matrix pwm which will contain, in each column, the normalized
weights of each three-asset portfolio.

Next follows a call to the fitness gaportfol function to compute the
fitness function for each individual (each portfolio) and to select the fittest
individual, which at each run will be stored in the kth column of the matrix wbest
while the corresponding criterion value will be stored in the kth element of the
vector fbest. Thus, at the end of the runs, these matrix and vector will contain
the sequence of optimal portfolios and optimal criterion values respectively.

Next the function parentsdet, using the fitness function previously
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computed, will select two parents (parent0 and parent1) who will form a
couple. This is followed by a call to the function crossover which will generate
two children (chi1do and child1) as the product of the crossover of the
chromosome strings of the two parents.

Next comes a for loop whose index goes from 1 to popsize in increments
of two. In this loop, out of the two newborn children a new generation will be
created through mutations of their chromosomes. Half of the new generation will
come out of mutations of the first child (chi1d0) and the other half will come out
of mutations of the second child (chi1d1). At every pass through the loop the
function mutation is called which generates a mutated child, and its 24-bit
chromosome representation is stored in a cell of the genenew vector. Once the
new generation is created, the new vector genenew replaces the old vector
genepool and the main loop of the program starts over again.

Finally, once the main loop goes through the established number of runs, the
matrix of fittest individuals wbest and the vector of optimal criterion values
fbest are printed and plotted.

This provides an overview of the program. It is important to point out that
every time you run the program, particularly when changing the number of
generations or the population size, you should clean out the old commands and
workspace to avoid displaying spurious results. To do so, go to Edit in the top
MATLAB menu. Then select Clear Command Window and confirm with Yes
that you want to do this. Then do the same for Clear Command History and for
Clear Workspace.

We will now present each function in detail.
4. Functions
4.1 Initpopdet

This function is simple in that all it does is to assigns the same portfolio
weights (33%) to each asset in each portfolio as in the experiments performed in
the Portfolio Model chapter so that we can easily compare results. However, the

function is made more complicated by the necessity to represent a row vector of

the three weights, i.e.
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[33 33 33]

with a single 24 bit string such that each 8 bit segment of the string represents the
number 33, i.e. 00100001. Thus the 24 bit string is

00100001 00100001 00100001

This string has ones in the positions 0, 5, 8, 13, 16 and 21 (counting from the right

to left beginning with zero). Therefore the integer value of this string is
(1) 2"+ (1) 2'°+(1) 2" +(1) 2°+(1) 2°+(1) 2°
w = 272142716+27°13+2°8+2°5+2°0;

Thus the MATLAB for this initialization function is

function genepool = initpopdet (popsize);
w = 27°21+2716+2713+278+2"5+2"0;
dec2bin (w, 24)

genepool = w * ones(l,popsize);

The header statement for the function, i.e.

function genepool = initpopdet (popsize);

tells us that the name of the function is initpopdet, that the argument popsize
will be passed to the function and the result genepool will be returned by the
function.

After w 1s defined in the first statement in the function, the statement

dec2bin (w, 24)

appears. It does not play an essential role in the function since it only serves to
print a binary representation of w for debugging purposes. Since there is no
semicolon at the end, this statement will return and print the 24-bit binary
representation of w. Finally, a (1 X popsize) vector of ones will be multiplied by

the previously created cell w to obtain the initial population vector genepool. So
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in the case at hand genepool is a vector of eight 24 bit strings. Finally, notice
that an end statement is not necessary at the end of the function.

We will see later, in the initpoprand gaportfol function, how to
replace this rudimentary function by a more sophisticated random procedure to

initialize the population.
4.2 Normport

This function takes the 24-bit chromosome string corresponding to each
portfolio and creates an equivalent normalized three-asset portfolio
representation. Thus, it transforms the (1 X popsize) vector genepool into the (3
X popsize) portfolio weight matrix pwm which will contain, in each column, the
normalized weights (that is, the weights will add to one) of each three-asset

portfolio. The complete function is listed below.

function pwm = normport (genepool,popsize,clen,num) ;
genetemp = genepool;
for i = l:popsize;
n = ceil (clen/num) ;
mask = 2"n-1; % note that this is 2”n minus one
port = zeros(l,num);
for 3 = l:num
port (num-j+1) = bitand(genetemp (i),mask);
genetemp (i)= bitshift (genetemp (i), -n);
end
port = port/sum(port);
pwm(:,1i) = port';
end

Since we are using a chromosome with 24 bits and have 3 assets in the
portfolio, we have eight bits to specify the proportion of the portfolio held in each
of the assets. Since eight bits permits us to specify integers from 0 to 255 we will
have an accuracy of about half a percent in the solution to the portfolio problem.
So the first step after creating the temporary variable genetemp is to determine
the number of bits, n, used for each equity by dividing the chromosome length by

the number of equities. This is done with the statement

n = ceil(clen/num);
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where ceil is a MATLAB function that returns an integer that is the ceiling, i.e.
the round off of a decimal to the nearest integer greater than the number. Also
recall that clen is the chromosome length, 24, and num is the number of assets in
the portfolio, 3, so in our case this becomes ceil (24/3) or eight. This statement
assures that there will be an integer number of bits to represent the percentage of
each stock held in the portfolio.

The next step is to pull out the n bits in the chromosome that correspond to
the proportion for each equity. This is done by creating a mask in which the
lower order n elements are ones and all other bits are zero. This is done with the

statement

mask = 2°n-1;

Keep in mind the precedence rules so this is 2" minus one. Thus in our case
with n equal to 8, mask is an integer variable with value 255 and its binary

representation is the 24-bit string

00000000 00000000 11111111

So we can use a bitand operation with this mask to pick off eight bit sections of
the chromosome.

The next step is to initialize the vector which carries the percentage
allocation of elements in the portfolio. In our case this is a three element vector

of integers that is initialized with the statement

port = zeros (l,num);

This vector is then used in a for j loop over the number of equities in the

portfolio to get the bit string for each element in the portfolio as follows

for j=1l:num
port (num-j+1) = bitand(genetemp (i), mask);
genetemp (i) = bitshift (genetemp (i), -n);
end

The mask variable is used on each pass through the for loop to put the lower
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order eight bit section of the chromosome into the variable port. Also in each
pass the chromosome is shifted to the right by eight bits and filled with zeroes in
the left most eight bits using the bitshift operation.

Thus if we begin with a chromosome like the following
00000110 11000000 11100111
The first pass through the loop would put the bit string
00000000 00000000 11100111
into the variable port (3) and the second pass would put the bit string
00000000 00000000 11000000
into the variable port (2), etc.
Since the port variables are now integers with values between zero and
255 they must be normalized by the sum of their values to convert them to
percentages of the portfolio. This is done with statement

port = port/sum(port);

Finally, the transposed of the three-element vector port is stored in the

corresponding column of the matrix pwm with the statement

pwnm(:,1) = port';
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4.3 Fitness_gaportfol

This fitness_gaportfol function uses a procedure similar to the one used in
the Portfolio Model chapter earlier in the book.

function [fit,bestind,bestfit] =
fitness gaportfol (pwm,mu, popsize,beta, sigma);
pret = pwm' * mu;
for j = l:popsize;
pvar(j) = 0.5 * beta * pwm(:,]J)"' * sigma * pwm(:,7J);
end
fit = pret - pvar';
[top topi] = max(fit);
bestind = pwm(:, topi);
bestfit = top;

It begins with a statement to compute the vector of returns pret as the
product of the portfolios times the corresponding returns. Then statements are
included to compute the vector of portfolio variance costs pvar and the
corresponding criterion function vector, or fitness vector £it. So in our case the
vector fit is an 8 element vector that provides the fitness level for each of the
individuals in the population.

The statement

[top topi] = max(fit);

then returns the value (top) and the index (topi) corresponding to the maximum value in
the fitness vector fit. Finally, the topi index is used to assign to the “best individual”

vector, bestind, the corresponding normalized three-asset vector with the statement

bestind = pwm(:,topi);

while the corresponding value of the criterion function vector is assigned to the variable

bestfit with the statement

bestfit = top;
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With the fitness now determined we turn next to the selection of parents, crossover and

mutation.
4.5 Parentsdet, Crossover and Mutation
These functions are exactly the same as the ones used in the Genetic Algorithms

and Evolutionary Games chapter. They even have the same variable names. Thus they

can be used by both the program in that chapter and the programs in this chapter.

5. Results

Figure 12.1 below shows the results of running the main program gaportfol.m
with a number of runs equal to 100 and a population size of 8. The optimal values of the
portfolio weights for the last run are wl =0.26, w2 = 0.42 and w3 = 0.32, which is

slightly different than the results we obtained in the earlier chapter on portfolio models.
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Figure 12.1 Genetic Algorithm Portfolio Example

We can see how, after starting from initial values equal to 0.33 the weights

100

converge to the optimal values. We can see also how the criterion value converges to a

value of 9.44.
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6. Refinements

The program gaportfoll.m and its functions give us a basic idea of the work
with genetic algorithms. However, some of its functions are quite rudimentary and they
do not take us beyond what we learnt in the chapter on Genetic Algorithms and
Evolutionary Games. In this section we will introduce some alternative and more
sophisticated functions and main program structure. They can also be used to develop a
more sophisticated version of the gagame . m program presented in the Genetic Algorithms

and Evolutionary Games chapter.

6.1 Initpoprand_gaportfol

With the initpopdet function we generated, in a deterministic way, an initial
vector of portfolios all with the same weights. However, it is customary in the field of
genetic algorithms to generate the initial population randomly. To do so, we will
introduce the initpoprand gaportfol function shown below. In the chapter on Genetic
Algorithms and Evolutionary Games we also generated the initial population randomly -
in the initpoprand gagame function - but with a different procedure. Here we present

an alternative.

function genepool = initpoprand gaportfol (clen,popsize);
mask = 1;
genepool = zeros (l,popsize);

for j = l:popsize
for i = l:clen
if (rand < 0.5)
genepool (j)= bitor (genepool (j),mask);

end

genepool (j) = bitshift (genepool(j),1);
end
genepool (j) = bitshift (genepool(j),-1);

end

The key elements of this function are a set of two nested for loops and an
if statement. The index of the for loop over individuals in the population is
and the index over the bits in the binary representation of the chromosome for
each individual is i. Also the i loop runs from 1 to clen which is the number of

binary elements in the chromosome. In the present case this is 24.
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Also each bit in the chromosome for individual 7 will be modified, i.e.
switched from zero to one with probability one half since rand is a zero-one
uniform distribution random number generator.

Next focus for the moment only on the portion inside the for loop for the
number of bits. The key element in this segment of code is the bitor operation.
We know from the above that genepool (3) has been initialized to zero and the
variable mask has been initialized to one, therefore the bitor operation applied to

these two strings will yield

00000000 00000000 00000001

on the first pass through the i loop if the call to rand yields a value that is less
than 0.5. Also we know that this will occur half the time.

Then following the i f statement the operation bitshift is used to shift
the binary string genepoo1l one position to the left and to put a zero in the right
most (lowest order) position. Thus after the bitshift operation the string above

becomes

0000000 00000000 00000010

Thus in the i loop the bits in the genepool (§) string are considered one by one
and changed from 0 to 1 with probability 0.5. Finally, one can see in the above
code that bitshift isused to move the bit string one step back to the right after
the end of the i loop. Otherwise the last bit in the string will always be equal to
Zero.

To use this function, we have to substitute in the program gaportfol.m the
following statement for the call to the function initpopdet in the “generation of

chromosome string of initial population” section

genepool = initpoprand gaportfol (clen,popsize);

Figure 12.2 shows the results of running program gaportfol2.m, which is

program gaportfoll.m with this function.
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Figure 12.2 Genetic Algorithm with Initpoprand gaportfol Function

The optimal portfolio weights are here w1l = 0.24, w2 = 0.43 and w3 = 0.33,
which is slightly different than the results obtained in the earlier chapter on portfolio
models. Also, as expected, the path of the optimal weights starts from random locations
instead of starting from the 0.33 value as in Figure 12.1. The criterion value, after

decreasing during the initial runs, converges to a value of 9.45.
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6.2 Parentsrand

In programs gaportfoll.mand gaportfol2.m we used the function parentsdet
to select the two parents of a new generation. That was a deterministic procedure where
we picked as parents the two individuals with the highest and next to the highest value of
the fitness function. However, the usual practice in the genetic algorithms field is to
introduce some randomness in the selection of parents. The function parentsrand
(parents random) we will present in this section is a first step in that direction.

The method to be used can be thought of as a cross between a pie chart
and a roulette wheel. Consider a case in which there are five individuals in the
population and all five have the same fitness level of 40. We could then use a pie
chart to represent the percentage of the total fitness of the population of 200
which is held by each individual as shown in Figure 12.3.

o1
|2
o3
04
E5

Figure 12.3 A Balanced Pie Chart / Roulette Wheel

One could also think of this pie chart as a roulette wheel which is spun each time
a mate is to be selected. Since all the slices of the pie are the same size the
probability of each individual being selected as a mate would be the same.

However, consider instead a case in which the fitness of each of the five
individuals is different, say 20, 60, 30, 20, and 70. Then the pie chart
representing the percentage of the total fitness held by each of the individuals
would look like Figure 12.4.
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Figure 12.4 An Unbalanced Pie Chart / Roulette Wheel

In this case each time the roulette wheel is spun there would be decidedly
different probabilities that each individual would be chosen.

The function code is shown below.

function f = parentsrand(fit,popsize,genepool) ;

cumfit = sum(fit);

val = 0;

spin val = rand * cumfit;
j=1;

while ((val < spin val) & (j < popsize))
val = val + fit(3j);
J=3+1

end

f = genepool (3);

The variable cumfit is the cumulative value of the individual fitness
variables, i.e. the sum of the fitness levels of the members of the population. The
variable val is used to move around the roulette wheel as it is spun and the
variable spin val carries the information about how far the roulette wheel travels
before it stops. The variable rand provides a number from the zero to one
interval of a uniform distribution Therefore each time the roulette function is
called spin_val takes on a different value that ranges uniformly from zero to the
sum of the fitness levels. However, the slices of the roulette wheel are not all the
same size; rather they represent the relative fitness of the individuals. So more fit

individuals are more likely to be chosen.
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The selection occurs in the while loop which repeats until the variable
val exceeds spin_val or until the loop index j exceeds the population size.
Also, each time through the loop the variable va1 is augmented by the fitness
level of individual j. After the completion of the while loop the index of the
selected individual is then used to select the corresponding chromosome string
from the vector gen and this information is transferred to the variable £ which
will be the output of the function.

One thing to notice about this procedure is that it is “sampling with
replacement”, i.e. when a mate is chosen that individual is not removed from the
population but rather is left in the population and is eligible to be chosen on
subsequent calls to the function.

To use this function, we have to replace in the program gaportfol.m the call to
the function parentsdet with the call to the function parentsrand in the “selection of

parents” section in the following two statements:

parent0 parentsrand (fit, popsize,genepool) ;

parentl = parentsrand(fit,popsize,genepool);
Figure 12.5 shows the results of running program gaportfol3.m, which is

program gaportfoll.m with this function and also using the initpoprand gaportfol
function as explained in the previous section.
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Figure 12.5 Genetic Algorithm with parentsrand and initpoprand gaportfol

We see here that the patterns of optimal portfolio weights and criterion values, at
variance with Figures 1 and 2, are very unstable. Why? The reason may be that here we
are choosing the two parents with some randomness, while in the other two cases we
always chose the two best performing individuals and with them formed a couple. This
result is important to make the point that genetic algorithms are designed to perform a

wide exploration of the solution space. Thus, they usually work with large populations
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and a large number of runs. If we increase those values we will observe some
performance improvement, i.e. with 100 runs as before but now with a population of 500
instead of 8. However, before doing so it will be convenient to adjust the program

gaportfol3.mto widen the pool of best couples as we will see in the next section.

6.3 Selecting More Than One “Best” Couple

In the program gaportfol3.m we introduced randomness in the
initialization of the population and in the selection of parents. However, we kept
using the same procedure we used in the previous programs for the process of
parents selection, that is, we just selected the couple with the highest criterion
value to give birth to the entire new generation. However, to make a better use of
the random selection of parents process introduced in the previous section, that is,
to widen the search space of an optimum thus reducing the changes of being
trapped in a local optimum, it may be convenient to obtain the new generation of
children from more than just one couple. This can be accomplished, for example,
by extending the range of the children’s generation loop in the “mutation of

children chromosome strings” section from program gaportfol3.m

o)

% mutation of children chromosome strings
for h = 1:2:popsize;
childOmut = mutation (pmut,clen,childQ);
genenew (h) = childOmut;
childlmut = mutation (pmut,clen,childl);
genenew (h+1) = childlmut;

end

to make it cover the two previous sections also, namely to include also the calls to

the parentsrand and crossover functions.
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for h = 1:2:popsize;
% selection of parents;
parent0 = parentsrand(fit,popsize,genepool);

parentl = parentsrand(fit,popsize,genepool) ;

% crossover of parents’ chromosome strings
[childO,childl] = crossover (clen,parent0,parentl);

o)

% mutation of children chromosome strings
childOmut = mutation (pmut,clen,childO);
genenew (h) = childOmut;
childlmut = mutation (pmut,clen,childl);
genenew (h+1) = childlmut;

end

With this change, at each pass of the loop, each “best” couple randomly
selected in the “selection of parents” section will give birth to only two children
who in time will experience mutations. Figure 12.6 below shows the result of an
experiment with program gaportfol4.m, which incorporates this change, and for
100 runs with a population of 500.
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Figure 12.6 Example with Many “Best” Couples

We see that the performance improves in the sense that the weights and
the criterion values follow a more discernible pattern, but it is still more unstable
than in Figures 1 and 2. However, as we said above, the risk of being trapped in a

local optimum in the case a number of them exists is expected to be lower.
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7. A More Difficult Portfolio Problem

So far we have been working with a Markowitz type portfolio
optimization problem with a quadratic criterion function. This is by nature a
convex problem with a single optimum. However, genetic algorithms are usually
employed to solve more complex problems, that may have a number of local
optima and be difficult for local optimization methods such as gradient or Newton
methods to solve, but easier for global optimization methods such as genetic
algorithms.™

In the previous convex problem the criterion (fitness) value was the mean
return (revenue) minus the variance cost, ignoring the brokerage cost for
purchasing equities. In this problem we change that to the profit minus the
variance cost where the profit is the mean return less the brokerage fee.

Moreover we use a realistic form of the brokerage fee that includes both a fixed
and a marginal cost for the purchase of each type of equity. This has the effect of
making the average cost of purchasing equities decline with the number of
equities purchases and this in turn raises the possibility that the optimization
problem may have local optima. Also we have imposed the restriction that the
individual must purchase a percentage above some lower bound of each type of
equity. Thus if the selection of parents, crossovers and mutations generate a
portfolio in which one or more equities are below the lower bound this amount is
reset to zero and the small amount is redistributed to the other stocks.

The code itself for this second problem is similar to that for the problem in
the previous section with the exception of the fitness gaportfol function
which will now be replaced with the fitnessnc function. This function has two
main parts. The first one, dealing with the portfolio redistribution, is shown

below.

3 For some other approaches to global optimization see Goffe (1996) and Tucci (2002).
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function [fit,bestind,bestfit] =
fitnessnc (pwm, mu, popsize,beta, sigma, num) ;
% Portfolio Redistribution
for j = l:popsize;

cond = ones (num, popsize);
counter = num;

acum = 0;

for i = 1l:num;

if pwm(i,j) < 0.1

acum = acum + pwm(i,Jj);
pwm(i,j) = 0;
cond(i,j) = 0;
counter = counter - 1;
end
end
for i = l:num;

if counter > 0
if cond(i,j) == 1;
pwm(i,j) = pwm(i,j) + (acum / counter);
end
end
end

end

There is a main for loop, running across portfolios from 1 to popsize - the
population size - and two inside loops running across each portfolio from 1 to num - the
number of equities. The main loop begins by defining three auxiliary variables that will
be reset at each pass of the loop through each portfolio. The variable cond is defined as
comprised of ones and with the same dimensions as the variable pwm. It is initialized with
ones and will be used to mark with ones those equities whose amount is above the
allowed lower bound and with zeroes otherwise. The variable counter will be used to
count the number of equities in each portfolio whose amount is above the lower bound.
The variable acum will contain the accumulated amount of stocks below the lower bound

in each portfolio.
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The first inside loop follows. When the amount of an equity in the portfolio is
below the lower bound - set to 0.1 in the present example - that amount is accumulated to
be later redistributed. Then, that equity’s participation in the portfolio is set to zero and
marked with a zero in its corresponding location in the cond matrix. Finally, the counter
of the number of equities above the lower bound in the portfolio is decreased in one unit.

The second inside loop begins by checking that the variable counter is different
from zero to later avoid a possible division by zero. Then a conditional statement checks
if the corresponding equity is marked with a one, thus being above the lower bound. In
this case, the corresponding proportional amount of previously accumulated stocks to be
redistributed is added to that equity.

The second main part of the function, dealing with the computation of portfolio
returns and the selection of the best portfolio is shown below. It is very similar to the
fitness gaportfol function corresponding to the convex example, with some minor

differences.

% Computation of portfolio returns and best portfolio
fc = 0.2 * ones (1l,num);

mc = 0.05 * ones(l,num);

pret = pwm' * mu;

for j = l:popsize;
pvar(j) = 0.5 * beta * pwm(:,3)' * sigma * pwm(:,7J);
end
for j = l:popsize;
pbrok(j) = fc * cond(:,]j) + mc * pwm(:,7);
end
fit = pret - pvar' - pbrok';
[top topi] = max(fit);

bestind = pwm(:, topi);
bestfit = top;

The first difference is that it is necessary to define vectors of fixed and
marginal cost terms for the brokerages fees. This is done in the initialization

section of the function with the statements

fc
mc = 0.05 * ones(1l,num);

0.2 * ones(1l,num);

Thus in these vectors we allow for different fixed costs and marginal costs for the

various types of equities. However, we have treated these costs as the same for
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across equities in the present example. We have purposely made the fixed cost
relatively large in order to increase the likelihood that the problem will have local

optima. Then we compute the brokerage cost for each portfolio with the loop

for j = l:popsize;
pbrok(j) = fc * cond(:,]j) + mc * pwm(:,]);
end

where pwm 1is the matrix containing each vector of portfolio weights and where
cond is the matrix containing each vector of portfolio marks, with ones for
equities above the lower bound and zeros otherwise. Thus, the fixed cost will be
charged on portfolios above the lower bound only. Finally, as in the

fitness gaportfol function, we compute the fitness of each individual (now
including the brokerage cost) and select the fittest one.

To solve this nonconvex example we use a modified version of the
program gaportfol4.m, which we will name gaportfol5.m. In the
“computation of fitness function and fittest individual” section of the
gaportfold.m, we have to replace the previous fitness gaportfol function

call with the statement

[fit, bestind, bestfit] =

fitnessnc (pwm, mu, popsize,beta, sigma, num) ;

Figure 12.7 shows the result of running the program gaportfol5.m.
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Figure 12.7 Nonconvex Problem
The results are similar to those shown in Figure 12.6. However, they may

change significantly if we introduce substantial changes in the fixed costs and/or

in the equities lower bound.
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8. Experiments

Just as in the Portfolio Model chapter, the simplest experiments with this
genetic algorithm code are to change the means and/or variances of the portfolio
and/or the brokerage costs and see how the weights of the best portfolios change
in response. Another simple experiment would be to change the number of model
iterations and/or population size to see how this affects the outcome.

A more interesting set of experiments will be to introduce further
refinements in the code to move closer to the actual practice in the field of genetic
algorithms. A first refinement would be to introduce mutations in more than one
bit in the children’s chromosomes in the mutation function. A second
refinement would be to introduce more than a single crossover point in the

crossover function.

9. Further Reading

A classic reference in the genetic algorithm literature is Goldberg (1989).

For financial applications, see Bauer (1994).
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Macroeconomics in GAMS®!

Macroeconomic models study the behavior of economic systems from an
aggregate point of view. They try to capture the interdependence between consumption
and investment expenditure, fiscal and monetary policy variables, the price level, the
aggregate supply and the level of employment. From a modeling point of view, we can
say that there are three main classes of macroeconomic models: standard models, rational
expectations models and intertemporal optimization models. Standard models like the
one used in this chapter, which are also known as IS-LM models, specify aggregate
relationships to explain the behavior of macroeconomic variables. Also, they usually
assume that economic agents form expectations in an adaptive way. Rational
expectations models also work with aggregate relationships, but they assume that the
economic agents display forward looking behavior. That is, in order to form
expectations, those agents are assumed to make use of all the available information,
including the model of the economy that policymakers use to model their behavior.
Finally, intertemporal optimization models share with rational expectations models the
same assumptions in connection with expectation formation, but try to base their
modeling of macroeconomic behavior on more explicit “microfoundations”.

IS-LM models are the backbone of almost all introductory and intermediate
macroeconomics textbooks and have been for a long time the main workhorse in the field

of empirical macroeconomics, as is the case, for example, of the Fair model

3! This chapter draws extensively on both the verbal and the mathematical development in Mercado,
Kendrick and Amman (1998). Kluwer Academic Publishers have kindly granted us permission to reuse

here substantial materials from our previously published paper.
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(http:/fairmodel.econ.yale.edu/).** An example of a well-known rational expectations

model is the Taylor (1993) model. Finally, intertemporal optimization models are still
relatively small and are not used very much in large scale empirical applications or policy
analysis. They are mainly used for teaching at the graduate level, for experimental
purposes or for policy analysis exercises at a relatively small scale. One of the most
influential models of this type is the one by Rotemberg and Woodford (1997).

The solution methods of the models mentioned above critically depend on the
assumption regarding expectations formation. For example, models with backward
looking expectations, like those in the standard-type IS-LM model to be presented in this
chapter, are solved using a given set of initial conditions for the lagged variables and
paths for policy and exogenous variables. As we will see later in the book, this is not the
case for rational expectations and intertemporal optimization models, since they share the
assumption of forward looking behavior and present what is technically known as “two-
point boundary value problems”. To be solved they require both initial and terminal

conditions or specific iterative procedures.
1. The Hall and Taylor Model

In this chapter we will introduce the Hall and Taylor (1997) model, a well known
textbook standard model, and we will illustrate how to represent and simulate this model
in GAMS. This is a twelve-equation nonlinear dynamic model for an open economy with
flexible exchange rates. It is well suited to teach simulation and policy analysis at the
undergraduate level. The core of this model can be seen as a standard [S-LM-Open
Economy sub-model for the aggregate demand of the economy together with an
“expectations augmented” Phillips Curve, that is, the aggregate supply. The Hall and

Taylor model contains the equations, variables and parameters listed below.

Equations

IS-LM

(1) GDP identity Y=C+I+G+X
(2) Disposable Income Y =(1-1)Y

(3) Consumption C=a+bY*

(4) Investment I =e—dR

32 The antecedents of these models go back to the work of Keynes (1936) and Hicks (1937).
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(5) Money Demand M/P=kY —hR

Expectations Augmented Phillips Curve

(6) Expected Inflation n°=ar  + pr,
(7) Inflation Rate r=n"+f{r,-Y,)/Y,}
(8) Price Level P=P (1+7)

Foreign Account
(9) Real Exchange Rate EP/P, =q+VR

(10) Net Exports X=g-mY-nEP/P,

Government Deficit and Unemployment
(11) Government Deficit G,=G-tY

(12) Unemployment Rate U =U,, — ,u{(Y— Y, )/YN}

Endogenous Variables Policy Variables
C : Consumption G : Government Expenditure
E : Nominal Exchange Rate M : Money Stock

(foreign currency / domestic currency)
. Government Deficit
Investment
- Domestic Price Level
- Real Interest Rate Exogenous Variables
- Unemployment Rate P,,: Foreign Price Level
- Net Exports Uy: “Natural” Rate of Unemployment
GDP Yn: Potential GDP
- Disposable Income
Inflation Rate
- Expected Inflation

LA LN SR YT

Parameters
a=220; b=10.7754; d=2000; e=1000; f =0.8; g=600; h=1000; k=0.1583;
m=0.1; n=100; ¢q=0.75; t=0.1875;, v=5;, a=04;, =0.2; u=10.33;
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The model is dynamic - all variables without subscripts correspond to time “t”,
those with “-1” subscripts correspond to “t-1”, and so on. Also the model is nonlinear -
nonlinearities appear in equation (5), (8), (9) and (10). As we will see later, its dynamic
behavior displays the “natural rate” property: nominal shocks may affect real variables in

the short-run, but not in the long run.

Egs. (1) to (5) are standard in most macroeconomics textbooks. Eq. (1) is an
identity that states that GDP always equals the sum of its main components:
consumption, investment, government spending and net exports (exports minus imports).
Eq. (2) determines disposable income as equal to GDP net of taxes. Eq. (3) is a standard
consumption function in which current consumption depends on current income. Eq. (4)
determines investment as an inverse function of the real interest rate. Finally, Eq. (5)
defines real money balances as a positive function of income (money demand for
transaction purposes) and a negative function of the interest rate (the opportunity cost of
holding money instead of interest bearing assets).

Egs. (6) to (8) correspond to an expectations augmented Phillips curve. Eq. (6)
gives the expected inflation as a function of the past inflation in the last two periods
(years). Eq. (7) determines the inflation rate as a positive function of the expected
inflation rate and the GDP gap (the difference between actual GDP in the previous year
and potential GDP). A positive gap means an overheated economy thus inflationary
pressure. A negative gap means recession thus deflationary pressure. Eq (8) just defines
the price level as a function of the price level the previous year and the inflation rate.

Egs. (9) and (10) are foreign account equations. Notice that the nominal
exchange rate E is defined as foreign currency / domestic currency. Thus an increase
(decrease) in E is a nominal appreciation (depreciation) of the domestic currency. Eq. (9)
determines the real exchange rate (the nominal exchange rage times the domestic price
level divided the foreign price level) as a positive function of the interest rate. Thus, for
example, an increase in the US interest rate (implicitly assuming that the interest rate in
the rest of the world remains the same) will cause capital inflows and an appreciation of
the dollar. Eq. (10) gives net exports as a function of GDP and the real exchange rate.
Changes in GDP affect the demand for imports while exports do not change as much.
Thus net exports will change. The real exchange rate is the relative price between
domestic and foreign products. Thus its changes will affect imports and exports.

Finally, Egs. (11) and (12) give the government deficit and the unemployment

rate, and they have not feedbacks on the rest of the model.
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It is usual to develop a compact graphical representation of a model like this in
two graphs: and IS-LM graph and an aggregate demand-aggregate supply graph. To
derive the IS schedule we substitute Eq. (2) into Eq. (3), Eq. (9) into Eq. (10), then Egs.
(3), (4) and (10) into Eq. (1). Solving the resulting equation for the interest rate we

obtain

a+e+g—nq_1—(b—t)+mY+ 1 G
d+nv d+nv d+nv

(13) R=

This equation shows R as a function of Y (given G) and represents all the
combinations of interest rate and income for which spending balances. To derive the LM

schedule we just solve for R Eq. (5), obtaining

k
14y R="y--=
(14) PR

This equation also shows R as a function of Y (given M and P) and represents all
combinations of interest rate and income for which the money market is in equilibrium.
Finally, the graphical representation of both schedules in the (R,Y) space is shown in
Figure 13.1. Given the model coefficient values, the IS curve will be downward slopping
and the LM curve will be upward slopping. The intersection of the two schedules

determines the equilibrium interest rate and income.

Ro

Figure 13.1 IS-LM Graph
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The aggregate demand (AD) schedule represents the IS-LM part of the model in a
different space: the price level (P) and income (Y) space. It shows how much people will
demand at a given level or prices. It can be obtained combining Egs. (13) and (14) and
the result, given the values of the model coefficients, is a downward slopping nonlinear
schedule with P as a function of Y as shown below in Figure 13.2. The aggregate supply
is an Expectations Augmented Phillips Curve embodied in Egs. (6), (7) and (8). To
capture its behavior, we represent it in the (P,Y) space by means of two lines. The Yx
vertical line represents the long-run aggregate supply that is the potential or “natural”
income level, which is assumed to be constant in the short-run. Finally, the horizontal
line or “price line” (P) represents the short-run aggregate supply, which is supposed to be
perfectly elastic, though in other textbook presentations it is assumed to be upward

slopping. Figure 13.2 shows the graphical representation of aggregate demand and

supply.

AD Yn

Po P

Yo Y
Figure 13.2 Aggregate Demand - Aggregate Supply Graph

The analysis of the effects of an increase in the money supply (M) will help us to
understand the workings of the model in qualitative terms. An increase in the money
supply will bring about disequilibrium in the money market, shifting the LM schedule to
the right, thus bringing down R and increasing Y. This implies that the AD schedule also
shifts to the right, as it is shown in Figure 13.3.
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Figure 13.3 Qualitative Effects of an Increase in the Money Supply

In the short run prices are sticky, thus the economy moves from point A to point
B. However, in the medium run, since there is a positive GDP gap, the inflation rate

becomes positive and prices begin to increase, as can be seen in equation (7).

(7) Inflation Rate r=rx'+f{(Y, =)/}

This process continues given that agents’ expectations will change due to past changes in

the inflation rate, as shown in equation (6).

(6) Expected Inflation nt=ar  + pr,.

As prices increase, real money balances decrease (see equation (5) below) shifting the
LM schedule to the left.

(5) Money Demand M/P=kY-hR.

Finally, the economy moves from point B to point C. We can see then that the increase
in the money supply was neutral in the long-run with respect to real variables, but not in

the short-run.
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2. The Hall and Taylor Model in GAMS

Different strategies can be followed when one is confronted with the problem of
solving and performing policy experiments with a model like this. In the following, we
will review some of them.

Usually, the first step in the analysis of a model like Hall and Taylor’s is to find
the steady-state values of the endogenous variables for a given set of constant values of
the policy and exogenous variables. This requires the transformation of the model from
dynamic to static. Solving a nonlinear system of equations, even when it is static, is not
easy. In general, we have to rely on numerical techniques which may or may not deliver
a solution, even if it exists, depending on the initial conditions provided. However, the
model of our interest does not contain many or very strong nonlinearities, making the
task of finding a solution relatively easy.

To solve for the steady-state, we have to eliminate all time subscripts and solve
the resulting static nonlinear model. This does not present any challenge to GAMS users,
even for beginners. Since this model is relatively straightforward we will not discuss it
further here but rather turn our attention to the dynamic nonlinear model that is of greater
interest. The file for this model is htsim.gms on the web site. It is also contained in
Appendix 11A at the end of this chapter. We will discuss here in the body of the chapter
two unusual aspects of the GAMS representations of this model. However, before doing

so it is useful to look at the main seT specification of the model, namely
SETS T EXTENDED HORIZON / 0%15 /

Thus the model includes sixteen time periods — zero, one, two through fifteen. Also,
keep in mind that GAMS is not case specific and one will find the set of time periods
specified in the GAMS statement at times as T and at other times as t; however they are
the same.

Next we consider the way the dynamic variables and equations of the Hall and
Taylor model are represented in GAMS. This is shown below. Note that to avoid
notational conflicts in the GAMS statement, the mathematical parameters e, g, m and ¢
have been renamed as ee, gg, mm and tax, respectively. Also, variables and parameters
names denoted with Greek symbols in the mathematical statement of the model will be
renamed in the GAMS statement, since GAMS does not handle such notation. Finally,

the listing below does not include all the variable names or equations names that are in
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the GAMS version of the model, but rather only a few. The list below does however,

contain all the equations.

VARIABLES

Y (t) gdp

Yd (t) disposable income

EQUATIONS

eql (t) gdp identity

eqg2 (t) disposable income

eql (t+2) Y (t+2) =E= C(t+2) + I(t+2) + G(t+2) + X(t+2) ;

eq2 (t+2) Yd(t+2) =E= (1 - tax) * Y(t+2) ;

eg3 (t+2) C(t+2) =E= a + b * Yd(t+2) ;

eqgd (t+2) I(t+2) =E= ee - d * R(t+2) ;

egb (t+2) .. M(t+2) / P(t+2) =E= k * Y(t+2) - h * R(t+2) ;

eqgb6 (t+2) piex (t+2)=E= alpha * pi(t+l) + beta * pi(t) ;

eq7 (t+2) pi(t+2) =E= piex (t+2) + f£*(Y(t+1)-Yn(t+2))/Yn (t+2) ;
eq8 (t+2) P(t+2) =E= P(t+1l) * (1 + pi(t+2)) ;

eqg9 (t+2) .. E(t+2) * P(t+2) / Pw(t+2) =E= g + v * R(t+2) ;
eql0(t+2) .. X (t+2) =E= gg - mm*Y (t+2) - n* (E(t+2) *P(t+2) /Pw(t+2));
eqll (t+2).. Gd(t+2) =E= G(t+2) - tax * Y (t+2) ;

eql2 (t+2) .. U(t+2) =E= Un (t+2) - mu* (Y (t+2)-Yn (t+2))/Yn (t+2) ;

Notice that all variables and equations are defined over the set t. However, the
model equations are specified over the set t+2 and contain variables defined over the
sets t+2, t+1 and t, instead of following the corresponding original indices t, t-1 and
t-2 respectively. This is due to the way in which GAMS handles the assignment of
values to lagged variables.

For example, we could define the set t as:

SETS t /0,1,2,3/
and then write equation 6 with time subscripts as in its original formulation:

eqgo6 (t) .. piex(t) =E= alpha * pi(t-1) + beta * pi(t-2) ;

Then, when solving the model, GAMS would assign the default value zero to expressions

like pi (t-1) and pi (t-2), since -1 and -2 do not belong to the set t. Therefore, we
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would not be able to assign to the inflation rate initial values other than zero, even if we
wished to do so.

Thus, when dealing with models containing lagged variables in GAMS, we follow
the following rule of thumb: for a solution horizon of duration t, specify equations
starting from the longest lag. In Hall and Taylor’s model, the longest lag is equal to 2.
Notice how we wrote the model equations containing lags - egs. 6, 7 and 8 - where we
have variables with subscripts equal to t, t+1 and t+2. At the same time, in equations
containing no lags, all variables have subscripts equal to (t+2). By operating in this
way we “keep” the first two time periods (t and t+1) free to assign initial values and let
GAMS find a solution for the remaining periods. More details on this are provided in
Appendix D.

To complete the GAMS specification of Hall and Taylor’s model, besides
defining — as we did above — the extended horizon for simulations, we have to provide

initial conditions for output and inflation.

SETS t EXTENDED HORIZON / 0*15 /

t0(t) PERIOD ZERO
tl(t) PERIOD ONE;
t0(t) = YESS(ORD(t) EQ 1);
tl(t) = YESS(ORD(t) EQ 2);

With this specification, we are defining a fifteen-period time index as the set t.
Then, we declare and define the subsets t0 and t1 and assign to them, respectively, the
first and second elements of the t set - that is, the elements in the “ordinal 1” and
“ordinal 2” places. Thus the GAMS statement

t0(t) = YESS(ORD(t) EQ 1);

can be read as “assign to the set t0 the elements of the set t such that the ordinal position
of element t is equal to one”. The s operator in GAMS can be read as a “such that”
operator in this context.

The specification for the sets t0 and t1 used above is useful in case one decides
to change the extension of the simulation horizon, since we would not have to change the

definition of the initial conditions subsets.
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In the same way, we can also define terminal conditions subsets. These
conditions become necessary in models containing rational expectations, as we will see
later in the book. For instance, terminal conditions for the last and the previous-to-the-
last period can be written by defining two new subsets - for example, tf (t) and t£1 (t)

- of the set t and then adding the following two expressions:

tf(t) = YES$(ORD(t) EQ CARD(t));
tfl(t) = YESS(ORD(t) EQ (CARD(t) - 1))

where, as before, orD (t) means “ordinal” and where CARD (t) means the cardinality, i.e.
the number of elements in the set.

Next we turn our attention from the specification of the dynamics of the model in
GAMS to the specification of the policy variable time paths. This is unusual in that the
policy variables are specified in percent deviations from base levels rather than in levels.
This is accomplished by providing statements which set the percent difference. An

example is the statements that are used for monetary policy. They are

SETS
TS1(T) periods for shock 1 / 4*15 / ;

that creates a set Ts1 over which the policy change is defined and

Mper (TS1) = 0.0 ;

that sets the percentage change. Thus to create a solution where the money supply is 3
percent above the base level in periods 4 thru 15 one would modify the statement above

to
Mper (TS1) = 0.03 ;

Alternatively, the user might want to have two periods in which the policies were above
and then below that the base level. This would be done by first creating the two sets of
time periods with GAMS statements of the form

SETS
TSPER1 (T) Quarters in period 1 / 5*%8 /
TSPER2 (T) Quarters in period 2 / 10*13 / ;
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Followed by statements to set the percent deviations, i.e.
Mper (TSPERL) = 0.03 ;
Mper (TSPER2) = -0.02 ;

Then the money supply would be 3 percent above the base level in quarters 5 thru 8 and 2
percent below the base level in quarters 10 thru 12. However, when doing this be careful
not to use quarters beyond those included in the set T.

The initial conditions for output and inflation are defined as:

Y.fx(tl) = inil; Pi.fx(t0) = ini2; Pi.fx(tl) = ini3;

where £0 and t1 mean “period 0 and “period 1” respectively, “. £x ” tells GAMS to
keep the assigned values fixed during the execution of the program and inil to ini3 are
given initial values.

In this model, in order to solve a system of equations in GAMS, it will be
necessary to add an additional variable (J7) and an additional equation (Jp) and to

maximize or minimize the added variable. Thus the soLVE statement will be
SOLVE NONLDYN MINIMIZING J USING NLP;

Also, since the model contains indexed equations a stacking method is used in GAMS as
discussed in Appendix H. Finally, since Hall and Taylor’s is a nonlinear model, we have
to invoke a nonlinear programming (NLP) solver. For an introduction to this type of
solvers see Appendix F.

To perform simulations with this model we change the values of the policy
variables or the parameter values, as discussed above, and compare the different dynamic
solution paths obtained for the endogenous variables.

The graphical analysis we performed earlier gave us a useful representation of the
qualitative behavior of the key variables of the economy. However, to deal with more
variables and to obtain precise quantitative results, we have to simulate the model
computationally. Figure 13.4 displays the results of two experiments: a first experiment
where we start from an equilibrium position and then increase the money supply by 10%
and a second experiment where we start from equilibrium and we increase government
expenditure by 10%. Both increases are assumed to take place in period four and be
permanent, that is, once they happen they are not reversed. Figure 13.4 shows the

solution paths for income, the inflation rate, the interest rate and the nominal exchange
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rate. The value of the variables between periods zero and three corresponds to the model
steady state values. The continuous line corresponds to the money supply experiment,
while the dotted line corresponds to the government expenditure experiment. GDP
values are in billions of dollars. For the real interest rate and the inflation rate a value of
0.01 corresponds to 1%. The nominal exchange rate values correspond to an index value

set equal to one in the steady state.

GDP (Y) real interest rate (R)
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Figure 13.4 Effects of a 10% increase in the Money Supply and in Gov. Expenditure

We can observe how, as expected, the change in money supply has short-run but
no long-run real effects, while the change in government expenditure has short and long-
run real effects. We can also see how the trajectories to the new equilibrium positions are
oscillatory, with temporary over and under-shooting of the final equilibrium positions.

The essential elements of the function of monetary policy can be seen in the
results in Fig. 4. Consider the case where money supply is increased by 10% as is shown
in the solid lines. This has the effect at first of decreasing the interest rate as in shown in
the upper right diagram. The decrease in the interest rate in turn causes an increase in
investment and therefore GDP as shown in the upper left hand graph. As GDP increases

above potential, inflation increases as shown in the bottom left hand graph. The increase
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in inflation raises the price level and this has the effect of decreasing the real money

supply in the money demand equation

(5) M/P=kY -hR.

This in turn causes an increase in the real interest rate beginning in period 5 as shown in
the upper right hand graph. The rise in the interest rate then decreases investment and
therefore GDP begins to fall in period 5 as shown in the upper left hand graph. This
oscillatory process continues until GDP returns to the potential GDP level and inflation
returns to zero.

In the GAMS program htsim.gms you will also find ways of changing more
policy or exogenous variables to perform other experiments. For example, you will be
able to simulate a change in potential GDP, or a change in the foreign price level.”® You
may also want to change the tax rate, which in the program is defined as a scalar, or any
other model parameter.*

Having learned how to perform model simulations, we can now move to the realm
of optimal policy analysis. This analysis is, in a way, the reverse of simulation. Instead

of determining the paths of the endogenous variables given values for the policy

33 If you change the foreign price level, you will notice that the nominal exchange rate also changes in an
opposite and neutralizing way so that nothing else happens. From Eq. (9) we know that the real exchange
rate is determined by the interest rate. We also know that the domestic price level is sticky in the short run.
Thus a change in the foreign price level has to be compensated by a change in the nominal exchange rate.
You will observe a similar behavior, but in the long run, in the case of a change in the money supply. Since
this change affects the domestic price level but not the real interest rate in the long run, thus the nominal
exchange rate will change to compensate the change in the domestic price level. Only in the case of a
permanent change in the real interest rate (i.e. due to a change in government spending) will the nominal
exchange rate and the domestic price level not move in a compensatory way.

3 Hall and Taylor’s textbook comes with a “black box” software named Macrosolve which allows you to
perform experiments with the model changing some policy or exogenous variables. The GAMS program
presented in this chapter replicates many results from Macrosolve. A change in the tax rate, since it is a
model parameter, will change the steady-state solution of the model, as would be the case with any other
model parameter such as the marginal propensity to consume, etc. However, for the particular experiment
of changing the tax rate, Macrosolve gives steady-state invariant results. Our GAMS program doesn’t.
Thus, for that particular experiment, in case you wish to compare results, you will find that they differ.

Notice that there is nothing wrong in one case or the other, just two different simulation methods.
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variables, we now want to determine the optimal path for the policy variables given target
paths and relative weights for target variables. This can easily be done by adding a loss
function as an extra equation to the model and by redefining the policy variables of
interest as endogenous variables. For example, in the GAMS statement above, we can
substitute the following quadratic loss function for the previous Jp equation and the Loss

variable for the previous J variable, i.e.

egloss.. Loss =E= 0.5 * sum(t, Wy * POWER((Y(t)-Ytar(t)), 2 )
+ Wp * POWER((P(t)-Ptar(t)), 2 );

where vtar and Ptar are pre-specified target values for output and the price level and
where wy and wp are weights on the deviations from target values of output and the price
level respectively.

Since the variables entering the loss function (GDP and the price level) are
measured in different units, it is convenient to impose some normalization on the
weights. For instance, if ytar is 6000 and ptar is 1, then to equally penalize deviations
from target we could set wy equal to 1 and then obtain the corresponding normalized wp
as:

Wp = 60002 / 1% = 3600000.

Then, if we decide to penalize deviations from vtar twice as much as for
deviations from ptar, we will choose Wy = 2 andwp = 3600000, 0rwy = 1 and Wwp =
1800000, etc. For a full discussion of weighting procedures see Park (1997).

If we now redefine, for example, the money supply M(t) as an endogenous
variable and we ask GAMS to solve the model minimizing the variable “Loss”, we will
obtain the corresponding optimal path for M(t). This is a typical and basic experiment in
policy analysis. However, this analysis can be made more sophisticated in a variety of
ways, for example by introducing stochastic elements and learning mechanisms. To do
s0, it may be convenient to move from GAMS to a more specialized software such as
Duali. We will do that later in this book.

3. Experiments
In this chapter we simulated the effects of permanent changes in the money

supply and in government expenditure. You may want to simulate temporary changes,

that is, changes that last for only a few periods. To be acquainted with the dynamics of
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the Hall and Taylor model, you should continue performing simulations of shocks to the
model exogenous variables, i.e. potential GDP or the foreign price level, asking yourself
if the observed effects make economic sense.

You may want to expand the model allowing for shocks to the domestic price
level. This price shock may have different sources: changes in the price of an input to the
economy (i.e. oil), a wage increase passed on by firms in the form of increased prices,

etc. You can represent it as an exogenous variable Z added to Eq. (7) so that it becomes

”:”e+f{(K1_YN)/YN}+Z

Thus, this shock will be a shift factor in the short-run aggregate supply or
horizontal price line. Notice that to properly introduce this new variable in the GAMS
program you will have to define it as a parameter in the same fashion as we did potential
GDP or the foreign price level and add it to the corresponding equation. You may want
to try experiments in which this variable changes only temporarily. Notice also that this
variable will be implicitly defined in percentage changes and not in levels.

Also, you may try to introduce changes in the model policy variables in order to
counteract shocks to exogenous variables to bring the economy back to the initial
equilibrium position, particularly in connection with the values of real variables. This is
a rudimentary but useful way of undertaking policy analysis. Finally, you may want to
perform a more sophisticated policy analysis shocking the economy with diverse shocks
and working with a loss function as suggested at the end of this chapter, or you may
decide to move on to the Macroeconomics in Duali chapter in this book where that kind

of analysis is performed with a more specialized software.
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Appendix 13A
Hall and Taylor in GAMS

STITLE htsim: HALL-TAYLOR SIMULATION
OPTION SYSOUT OFF';

OPTION LIMROW = 7;

OPTION LIMCOL 0;

OPTION SOLPRINT = OFF;

SOFFSYMXREF OFFSYMLIST

KRR AR AR AR A AR A AR A AR AR A AR A A KRR A KR A A AR A AR AN A A A A AR A AR A I A A A A A I A A A A A kA kA kA hk kA k%

* SECTION 1 : DEFINITION OF PARAMETER VALUES FOR THE ORIGINAL
* NONLINEAR HALL-TAYLOR MODEL

R I I b b b b b S I I 2 b b b b ab b i A 2 b b b b b b b 4 2 b b b b b b S I b b b b (b b b S e 2 b b b b b b i d 2 b b b b b (e i db O 4
SCALARS

a minimum consumption / 220 /

b marg prop to consume / 0.7754 /

d interest elast of invest. / 2000 /

ee maximum investment / 1000 /

f coeff. on excess aggr dem. / 0.8 /

gg maximum net exports / 600 /

h interest elast of mon dem. / 1000 /

k income elast of money dem. / 0.1583 /

mm income elast of net exp / 0.1/

n real ex rate elast of net exp / 100 /

q constant / 0.75 /

tax tax rate / 0.1875 /

v constant / 5/

alpha coeff. on 1 lagged inflation / 0.4 /

beta coeff. on 2 lagged inflation / 0.2/

mu elast. of empl. wrt GDP / 0.33 /

LR I b I S I S b I S b I S b I S b I S S S b S S R S S S S R S IR S R I S b S R I S b I S b b S b I S R S S R S 2h S b S

* SECTION 2: DEFINITION OF TEMPORAL HORIZON FOR SIMILATION

R IR IR I e dh b b db Sb b dh b b db S b S dh b b db S b dh b b S b b 2 dh b b dR b b d dh b dh b b dh b b dh b b S dh b b S b b S Sb b b 2 b b b dh o 4
* If you change the extension of the horizon, make the necessary

* adjustments in the section of shocks' definition (Section 3)

SETS T EXTENDED HORIZON / 0*15 /
TO (T) PERIOD ZERO
T1(T) PERIOD ONE ;

TO(T) = YESS(ORD(T) EQ 1);
T1(T) YES$ (ORD(T) EQ 2);
DISPLAY TO, TI1;
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* SECTION 3 : DEFINITION OF CHANGES IN POLICY AND EXOGENOUS VARIABLES

LR I b I S b I S b I S b I S b I S b I S S S S S R S S S S IR S R S R S IR I S R I S b I S b S I S R S b S Sb R S b S

PARAMETERS

* definition of policy and exogenous variables (in percentage changes)
Mper (T) money stock (in % change)

Gper (T) Gov. expenditure (in % change)

Ynper (T) potential GDP (in % change)

Pwper (T) foreign prices (in % change)

* definition of policy and exogenous variables (in levels)

M(T) money stock (in levels)

G(T) Gov. expenditure (in levels)
Yn (T) potential GDP (in levels)

Pw (T) foreign prices (in levels) ;

* default values for policy and exogenous variables
Mper (T) = 0 ; Gper(T) = 0 ; Ynper(T) = 0 ; Pwper(T) = 0 ;
M(T) = 900 ; G(T) = 1200 ; Y¥Yn(T) = 6000 ; Pw(T) =1 ;

LR R R I S I S b I S b I Sb 2 S S R S b b S b S b S 4

* CHANGE IN MONEY SUPPLY

LRI R I S e S b I S b I S b I S S 2 S b S 2b S 4

SETS
TS1(T) periods for shock 1 / 4*15 / ;
Mper (TS1) = 0.0 ;

LRI R e S b I S b I S b I S b I b b I S S S R S db S db R S b S b S b

* CHANGE IN GOVERNMENT EXPENDITURE

KRR AKRKAAKRKA A KRR AR AR A A AR A AR A A A A Ak hAk Ak hAk Ak kA k), kx%

SETS
TS2 (T) periods for shock 2 / 4*15 / ;
Gper (TS2) = 0.0;

LRI R I S b e S b I S b I S I I S R I S I S S S I I S R I S I I S R Sh b I S b I S R S dh S db b S db R S b S 4

* CHANGE IN POTENTIAL GNP (notice that the natural rate of

* unemployment remains the same)
R I I e b b I b b I e Ih b b 2 b b S b b 2h b I 2 Sh b b S Sh b 2 b b b 2b b b 2 Sh b b 2 b b b Sh b b b b I b Sh I b ah e

SETS
TS3(T) periods for shock 3 / 4*15 / ;
Ynper (TS3) = 0.0;

BRI I A b i I S b I S b I b b B S b A b i 4

* CHANGE IN FOREIGN PRICES

khkkkh Ak kA k kA khkhkrkhkrkhkrkhkrkkxkx%

SETS
TS4 (T) periods for shock 4 / 4*15 / ;
Pwper (TS4) = 0.0;

o)

* Transformation of shocks in % changes into shocks in levels

M(TS1l) = 900 * (1 + Mper(TSl)) ;
G(TsS2) = 1200 * (1 + Gper(TS2)) ;
Yn (TS3) = 6000 * (1 + Ynper(TS3)) ;
Pw (TS4) = 1 * (1 + Pwper(TsS4)) ;
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* reporting policy and exogenous variables values
PARAMETER REPORTEX POLICY AND EXOGENOUS VARIABLES VALUES;

REPORTEX (T, "Money") = M(T);

REPORTEX (T, "Gov. Exp.") = G(T);
REPORTEX (T, "Pot. GDP") = ¥Yn(T):;
REPORTEX (T, "Fgn Price") = Pw(T);

KK R AR R AR AR AR A AR A A A A AR A AR A AR AR A A AR A AR AR A AR A AR A AR A AR A AR A Ak A Ak Ak kA Ak kA Ak kA k)%

* SECTION 4:

COMPUTATION OF SOLUTION

KRR AR AR AR A AR A AR A AR A AR AR A A KR A A IR A A A A AN A AN A AR A I A A AR A I A A A A A A A A A Ak Ak kA hk Ak k%

PARAMETERS
Un (T)

Un(T) = 0.05

VARIABLES
Y (T)
Yd(T)
C(T)
I(T)
R(T)
P(T)
pi(T)
piex (T)
E(T)

X (T)

Gd (T)
U(T)

J

EQUATIONS
eql (T)

natural rate of unemployment ;

’

gdp

disposable income
consumption
investment

interest rate

price level

inflation rate
expected inflation rate
nominal exchange rate
net exports
government deficit
unemployment rate
performance index

gdp identity
disposable income
consumption
investment

money demand
expected inflation
inflation rate
price level

real exchange rate
net exports
government deficit
unemployment rate
performance index ;
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JD.. J =E= 0 ;

eql (t+2) .. Y (t+2) =E= C(t+2) + I(t+2) + G(t+2) + X(t+2) ;

eqg2 (t+2) .. Yd(t+2) =E= (1 - tax) * Y(t+2) ;

eq3 (t+2) .. C(t+2) =E= a + b * yYd(t+2) ;

eqg4d (t+2) .. I(t+2) =E= ee - d * R(t+2) ;

egb (t+2) .. M(t+2) / P(t+2) =E= k * Y(t+2) - h * R(t+2) ;

eqgo6 (t+2) .. piex (t+2)=E= alpha * pi(t+l) + beta * pi(t) ;

eq7 (t+2).. pi(t+2) =E= piex (t+2) + £* (Y (t+1)-Yn(t+2))/Yn(t+2) ;
eg8 (t+2) .. P(t+2) =E= P(t+1l) * (1 + pi(t+2)) ;

eq9 (t+2) .. E(t+2) * P(t+2) / Pw(t+2) =E= g + v * R(t+2) ;
eqlO(t+2) .. X(t+2) =E= gg - mm*Y (t+2) - n* (E(t+2) *P(t+2) /Pw(t+2));
eqgll (t+2) .. Gd(t+2) =E= G(t+2) - tax * Y(t+2) ;

eql2(t+2) .. U(t+2) =E= Un (t+2) - mu* (Y (t+2)-Yn (t+2))/Yn(t+2) ;

KK R AR R AR AR AR A AR A AR A AR A AR A AR A AR A AR A AR AR A AR A AR A AR A AR A AR A Ak A Ak Ak kA Ak kA Ak Ak k%

* In what follows, we assign initial variables' wvalues and lower bounds
* WARNING: The order of declaration of assignments is very important

* Successive assignments to a same variable undo the previous ones
R R R I b b b b b I b b b I b b b b b 2h A b e b b b b b b 2 dh b b dh ah b 2 Sh b b 2 b b I 2h b b 2 b b e b b b b b b Sb b b dh b i b dh i 4

* Guess of initial values for the solution algorithm.

*  Without them, the problem may be declared "infeasible"

* That is, the algorithm will converge to a solution from some initial
* positions but not from others

* This is common in nonlinear problems

R.L(T+2) = 0.09 ; Y.L(T+2) = 6500 ; E.L(T+2) = 1.2; C.L(T+2) = 4500 ;
I.L(T+2) = 900 ; X.L(T+2) = -100 ; Gd.L(T+2) = 75 ; U.L(T+2) = 0.07 ;
Yd.L(T+2)= 4875 ; pi.L(T+2) = 0.1 ; piex.L(T+2)=0.2 ; P.L(T+2) = 1.1 ;

* lower bound for p, to avoid division by zero
P.LO(T+2) = 0.0001 ;

* fixing initial steady-state values for lagged endogenous variables
P.FX(T1) =1 ; pi.FX(TO0) =0 ; pi.FX(T1l) = 0 ; Y.FX(T1) = 6000 ;
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MODEL NONLDYN /egl, eq2, eq3, eg4, eq5, eqg6,
eq7, egq8, eq9, eql0, eqll, eql2, JD / ;

SOLVE NONLDYN MINIMIZING J USING NLP;

* Reporting solution wvalues
PARAMETER REPORTS SOLUTION VALUES IN LEVELS;

REPORTS (T, "GDP") = Y.L(T):;
REPORTS (T, "Inflation") = pi.L(T);
REPORTS (T, "Int.Rate") = R.L(T);
REPORTS (T, "Exch.Rate") = E.L(T);
REPORTS (T, "Gov.Def") = Gd.L(T);
REPORTS (T, "Unemploy") = U.L(T);

* Showing final results
DISPLAY REPORTEX;
DISPLAY REPORTS;
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Chapter 14
Agent-based Model in MATLAB

Agent-based Computational Economics is one of the newer fields in economics.
Agent-based models simulate the behavior of multiple heterogeneous agents interacting
in a variety of ways. While the modeling of economic agents has a long tradition in
economics, agent-based modeling departs from it in a number of ways. For example,
when modeling a market economy, the standard neoclassical competitive general
equilibrium approach usually assumes that agents have fixed preferences, perfect and
complete information, no reproductive behavior, and also that trade is organized by a
central auctioneer that given all agents preferences and endowments computes the set of
equilibrium prices. Thus, agents are price-takers and do not engage in trade at prices
other than those given by the central auctioneer. Also space, that is geography, is usually
an absent dimension in that approach. In contrast, agent-based models allow agents to
display a number of more realistic characteristics and behaviors, i.e. changing
preferences, bounded rationality and memory, imperfect and incomplete information, and
local trade - agents may interact with neighbors in a geographically defined space and
prices emerge from these decentralized interactions.

In this chapter we will introduce a famous agent-based model known as the
Sugarscape model, developed by Joshua M. Epstein and Robert Axtell (1996). This is a
model designed to simulate a variety of social phenomena such as population dynamics,
migration, interaction with the environment, trade, group formation, combat and
transmission of culture. We will learn how to represent and simulate the simplest version
of this model in MATLAB. To do this, the knowledge of basic MATLAB operations and
data types - vectors and matrices, with the addition of data types named structures and
cell arrays that we will explain below - will suffice. However, more sophisticated
simulations may require the use of object oriented programming techniques, something
also available in MATLAB - see “MATLAB Classes and Objects” in the “Programming
and Data Types” section of the MATLAB help navigator - as well as in lower level object

oriented programming languages such as C++, C# or Java.
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1. The Sugarscape Model: Introduction

The version of the classic Sugarscape model that we use in this chapter can be
thought of as two major cities located near one another like Dallas and Fort Worth in
Texas or Minneapolis and St. Paul in Minnesota. There is an original distribution of
stores of a certain type in this terrain; for example, coffee houses such as Starbucks or
perhaps mailing and business services stores such as UPS Stores. The franchise owners
at each location work with varying degrees of efficiency and thus have different costs.
They thus require different levels of revenues in order to continue to make a profit. Their
profit each period is added to their accumulated wealth; however, if this wealth goes to
zero the franchise is shut down. The surviving franchise owners each period look around
for a nearby location that would be more favorable and move the store if they find a
higher revenue location. However, some of the franchise owners scout longer distances
away from their present store than others.

More formally, the Sugarscape model consists of two main elements: a terrain
where events unfold named “sugarscape”, which contains the spatial distribution of a
generalized resource named “sugar” which can be thought of as the customer potential or
revenue level at that location. The agents have metabolism levels and must eat to
survive. This metabolism may be thought of as the cost of running the business in each
period. Thus the difference between the sugar that the agents obtain at their location in
each period and their metabolism level is like the profit of the enterprise in each period.
This profit is accumulated as wealth from period to period; however, if the wealth level
goes to zero in any period the agent dies, i.e. goes out of business. Thus, the agents are
characterized by a set of fixed states (genetic characteristics such as metabolism and
length of vision) and variable states (such as location and wealth) and move around the
sugarscape following simple rules of behavior.

The sugarscape is represented by a two-dimensional coordinate grid or lattice. At
every point of the grid given by the coordinates (x,y) there is a sugar level. Thus, we can
easily represent the sugarscape in MATLAB by means of a matrix. For example, if we
want to create and display a (50x50) sugarscape with a level of sugar equal to 4 units in
the southwest quadrant and a level of 2 units elsewhere, we can do it with the following

statements

311



Chapter 14 Agent-based Model in MATLAB

for 1 = 1: 50;
for 3 = 1: 50;
if (1 > 25 & j < 25)
s(i,3) = 4;
else

|
N
~.

s(i,3)
end
end
end
image (s) ;

In the statements above image (s) is a MATLAB function that displays the array s.
Figure 14.1 below shows the result, where the lighter region corresponds to the

value 4 and the darker region corresponds to the value 2.

Figure 14.1 Sugarscape with Two Levels of Sugar

To represent agents, we can use another data type available in MATLAB called a
structure. A structure is an array with “data containers” named “fields”. These fields can
contain any kind of data. For example, let’s assume that every agent is characterized by
two states: active, which signals if the agent is alive or not, with values equal to 1 and 0
respectively, and metabolism, that is the amount of sugar each agent has to eat per time

period to survive. The statements
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a str.active = 1;

a str.metabolism = 4;

create the simple 1x1 structure a_str containing two fields. If we use the statements

a_str(2).active = 1;
a str(2) .metabolism = 3;

then a_str becomes a 1x2 array with two fields. Let’s assume that we want to create and
display a random population of agents - say all those for whom the corresponding value
from a [0,1] uniform distribution is lower than 0.2 - on a 50x50 grid. Also, we will
assume that there can only be one agent on each location. We can achieve this with the

following statements

for i = 1:50;
for j = 1:50;
if (rand < 0.2)
a str(i,Jj).active = 1; %put an agent on this location
a str(i,Jj) .metabolism = 3;
else
a str(i,Jj).active = 0; %keep this location empty
a str(i,Jj) .metabolism = 0;
end
end
end

With these statements we can create a structure with 2,500 elements, each with two
fields.

If we want to display the location of every agent on the grid, we can do it with the
following statements, where we transfer the elements of the field active into the a
matrix, and where the MATLAB function spy (a) displays all the nonzero elements in

matrix a.

for i = 1:50;
for 3 = 1:50;
a(i,j) = a_str(i,Jj).active;
end
end
spy (a) ;
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The result, with a number of agents equal to 474, is shown in Figure 14.2 below,

where nz means the number of non-zero elements.

10+
15+
[
H .0 L]
20+ o 00 o ° ° oo o ®
[ ]
251 “ o
30+
.
L]
351° 8
40+ o

L]
g
45 e ee e @ os!

50 ee L ® o o0

Figure 14.2 Agents Locations

Now that we have introduced the basic building blocks of the Sugarscape model

and its MATLAB representation, we can move on to a more detailed presentation.
2. The Sugarscape Model

Next we present a more complex topography for the sugarscape and also more
complex agent characteristics. We will also define rules that will govern the
autonomous growth of sugar in the sugarscape and the movement of the agents on it.

We will assume that the sugarscape is characterized by two mountains of sugar,
one in the southeast portion of the grid, and the other in the northwest, and that these two
mountains are symmetric. Thus, for a 50x50 grid, we will assume that one peak of the
sugarscape is approximately on the (0.75 * 50, 0.25 * 50) coordinate, while the other is
on the (0.25 * 50, 0.75 * 50) coordinate. From the peaks down, the level of sugar at each
location will follow decreasing paths.

We will also specify a very simple growback rule for the sugarscape:

Sugarscape rule G, : Grow back to full capacity immediately.
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Thus, at each run of the model, the level of sugar grows back to its initial level. The
symbol G, here is a fancy way to specify how rapidly the amount of sugar (revenue)
grows back in each time period. Epstein and Axtell (1996) use a variety of such rules.

We will also assume that the sugarscape is what in geometry is know as a Torus,
or in a more familiar way, that it corresponds to the surface of a donut. This means, for
example, that an agent moving to the south on column 6, after reaching row 50 will
appear on the sugarscape from the north in the coordinate (1,6), and an agent moving to
the east on row 6, after reaching column 50 will appear on the sugarscape from the west
on the coordinate (6,1). Analogous patterns will be followed by agents moving north or
west.

Turning now to the agents, we will assume that each agent has four
characteristics, two of them fixed and the other two variable. The fixed ones are
metabolism - the amount of sugar the agent has to consume at each time period to stay
alive - and vision - the number of sites in the sugarscape each agent can see. We will
assume that agents can see only in four directions: north, south, east and west. Thus, they
can not see in diagonal directions. The level of vision is the maximum number of sites
each agent can see in a given direction. Metabolism and vision are genetic characteristics
randomly distributed among agents.

The variable characteristics of agents are location on the sugarscape and wealth,
with the later understood as the agents stock of sugar. We will assume that agents are
randomly born around the sugarscape at the beginning of the simulation. Each agent will
start its life with a level of wealth equal to the level of sugar in the sugarscape location
were it was born.

We will specify a rule that will govern the behavior of each agent on the

sugarscape:

Agent movement rule M:
- Look out as far as vision permits in the four principal directions and identify
the unoccupied site(s) having the most sugar
- Ifthe greatest sugar value appears on multiple sites then select the nearest one
- Move to this site

- Collect all the sugar at this new position

Once sugar is collected, the agent’s wealth is incremented by the sugar collected
and decremented by its metabolic rate. An agent lives forever, unless its wealth is below

its metabolic rate. In this case, it dies and is removed from the sugarscape. In principle,
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all agents should apply this rule simultaneously. However, since the simulation is run on
a serial computer, only one agent will be active at any instant. In this case, it is
recommended to randomize agents’ order of movement, and we will do this in the
MATLAB code. We will also randomize step one of the rule, that is, the order in which
each agent searches the four directions.

Having presented the building blocks of the simplest version of the Sugarscape

model, we now turn to its MATLAB representation.
3. The Sugarscape Model in MATLAB

The MATLAB representation consists of a main program named sugarscapel.m
and a number of functions, all of which are available from the book web site. Below is

the code of the main program.
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%$Initialize model parameters

nruns = 6;

size = 50; %even number

metabolismv = 4;

visionv = 6; %set always smaller than size

maxsugar = 20;

$Initialize sugarscape and display

s = initsugarscape (nruns, size, maxsugar);

$Initialize agents population

a_str = initagents(size, s, visionv, metabolismv);

%$Main loop (runs)
for runs = l:nruns;
Q

% Display agents’ locations
dispagentloc(a_str, size, nruns, runs);

% Select agents in a random order and move around the sugarscape %
% following rule M
for i = randperm(size);
for j = randperm(size);
if (a_str(i,j).active == 1) %is there an agent on this

%location?
%$Agent explores sugarscape in random directions and

%$selects best location

temps = s(i,J);

tempi = i;

tempj = j;

for k = a _str(i,Jj).vision : -1 : 1;

[temps, tempi, temp]j] =

see(i,j,k,a _str,s,size, temps, tempi, tempj) ;
end
%$Agent moves to best location, updates sugar stock and
%eats sugar

a_str moveagent (a_str, s, 1, j, temps, tempi, tempj);
if

for j

end

o°  o°

end

o\

end for i

oo

end for runs

The program begins with the initialization of the model parameters - the number

of runs, the size of the sugarscape, the maximum value of metabolism and vision of the

agents, and the maximum level of sugar in the sugarscape. Then follows a call to the
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function named initsugarscape, which will return a matrix named s containing the
sugar levels in the sugarscape. Next a call to the function initagents returns the data
structure a_str which will contain the agents’ population.

Then follows the main loop of the program corresponding to the number of runs
- each run represents a time period - of the simulation. At each pass of the loop, the
locations of the agents on the sugarscape are displayed as a way of visualizing their
movements. This is achieved by calling the function dispagentloc.

Then each agent, in a random order, explores the sugarscape, selects the best
location, updates its wealth and eats sugar to survive. This section of the program begins

with the following statements.

for i = randperm(size);

for j = randperm(size);

The randperm (n) function performs a random permutation of the elements of the
set (1,2,...,n). Thus the randperm (size) MATLAB function creates a vector with a
number of elements equal to size and performs a random permutation of those
elements. Thus, once the two for loops - one for i and the other for 5 - are completed,

the whole population of agents will have moved but in a random order. The conditional

if (a_str(i,j).active == 1) %is there an agent on this location?

checks if there is an active agent in the (i, j) location being examined, where a 1 in the
field active of the agent data structure denotes that there is an agent, while a 0 denotes
the opposite. Then, if there is an active agent in the location, the program proceeds to
apply the agent’s rule of movement, while if that is not the case it proceed to examine
another location looking for an active agent. The agent’s rule of movement is

implemented with the statements below

318



Chapter 14 Agent-based Model in MATLAB

%$Agent explores sugarscape in random directions and

$selects best location

temps = s (i, J);

tempi = 1i;

tempj = j;

for k = a _str(i,j).vision : -1 : 1;

[temps, tempi, tempj] =
see(i,j,k,a_str,s,size, temps, tempi, tempj) ;

end

%$Agent moves to best location, updates sugar stock and
%eats sugar
a str = moveagent(a str, s, i, Jj, temps, tempi, tempj):

The statements begin with the setting of three temporary variables. The variable
temps contains the level of sugar in the agent’s current location, while tempi and tempj
contain the location’s coordinates. Then follows a loop that goes from the agent’s
maximum level of vision to 1, in decrements of one unit. At each pass of this loop, the
function see is called. This function will see around the agent’s neighborhood in the
north, south, east and west directions, from the farthest position the agent can see to its
immediate surroundings, and will return the maximum level of sugar in the variable
temps and its location coordinates in the variables tempi and tempj respectively.
Finally, once the loop is completed, the function moveagent is called to move the agent
to the new location and to update its stock of wealth.

From this overview of the main program we turn next to descriptions of the

functions.
3. Functions

3.1 Initsugarscape

The “initsugarscape” function initializes the level of sugar at each location of the
sugarscape. To better understand the procedure used, we will begin with simpler
examples. Suppose that we want to generate an 11x11sugarscape s1 with a single
mountain with a peak in the center. The corresponding statements are shown below,
where i and 5 are the matrix coordinates varying from 1 to 11. The vectors x and y are

two identical eleven-element vectors containing the values [-5 -4 -3-2-10123 4 5].
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%Generate sugarscape with one peak in the center
x = -5:5;
y = -5:5;
maxsugar = 20;
for i = 1:11;
for 3 = 1:11;

if (x(1) == 0 & y(3) == 0)
sl(i,Jj) = maxsugar;
else
sl(i,J) = maxsugar / (abs(x(i)) + abs(y(3))):
end
end

end

The value of each element in the s1 matrix is computed dividing the given
maximum level of sugar by the sum of the absolute value of the corresponding elements
in the x and y vectors as shown below:

sl(i,J) = maxsugar / (abs(x(i)) + abs(y(3))):
where abs is the absolute value. The peak of the mountain will be where the
corresponding elements of the x and y vectors equal zero. Thus, the value of s1 (6, 6),
which will be located at the center of the sugarscape, will be equal to maxsugar - making
a minor adjustment to avoid the division by zero. And the values on the corners - i.e.
s1(1,1) - will be equal to (maxsugar/10). All the other values would be, in a decreasing

order, between maxsugar and (maxsugar/10) as shown in Figure 14.3 below.

Figure 14.3 Sugarscape with a Center Peak
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Now, if we want to generate a sugarscape with a peak in the southeast instead of

the center, the values of x and y should be shifted to

x=[9 -8-7-6-5-4-3-2-101]
and
y=[-3-2-1 01 23 4567

In this case, the peak of the sugarscape will be in the s1 (10, 4) location, as shown

in Figure 14.4 below.

Figure 14.4 Sugarscape with a South-West Peak

The initsugarscape function initializes the level of sugar at each location of the
sugarscape. This particular function will generate a topography characterized by two
mountains of sugar, one in the southwest portion of the grid, and the other in the
northeast. These two mountains are symmetric. From the peaks down, the level of sugar
will follow decreasing paths. The function code is available in file initsugarscape.m,

This function begins by generating a sugarscape s1 containing a single peak in the
southwest. To do so, the “Generate sugarscape with one southwest peak” section of the

function, reproduced below, applies a similar procedure to the one just described.
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%Generate sugarscape with one south west peak

x = —ceil (0.75*%size) : size-ceil(0.75*size)-1;
y = -ceil (0.25*size) : size-ceil (0.25*size)-1;
for i = 1l:size;
for j = l:size;
if (x(1) == 0 & y(3) == 0)
sl(i,Jj) = maxsugar;
else
sl(i,J) = maxsugar / (abs(x(i)) + abs(y(3))):
end
end
end

For example, for a value of size equal to 50, it begins by generating a 50-element

vector x. The statement

X = —ceil (0.75*size) : size - ceil(0.75*size) - 1;

is used to create a 50 element vector of integers as follows. The values in the vector
begin at minus the ceiling of the product (0.75 * 50), i.e. the next integer above 37.5,
namely -38. They end at the value (50 - 38 -1), i.e. 11. So x will be a 50 element vector

with the values

[-38,-37,+,~1,0,1,---,10,11]

Thus, the value zero will be in the 39" position of the x vector. In a similar way
the vector y, which goes from -13 to 36, is generated with the value zero in its 14"
position.

After doing this, each element of the sugarscape matrix s1 is generated. The result
will be a sugarscape with a peak in the s1 (39, 14) location, i.e. in the southwest corner

of the array.

Once the first mountain is generated, a symmetric one is obtained by transposing

the matrix s1 with the statement

s2 = sl';
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Then, the statement
s = sl + s2;

generates the two-peak sugarscape. The following two statements
maxrow = max(s);

max (maxrow)
compute the row containing the maximum value in the matrix s and print the maximum
value in this row. This may seem redundant, since we set the parameter maxsugar at the
beginning of the program. That value is indeed the maximum for the peaks in s1 and s2.
But the peaks in s will be a bit higher since to each original peak we will be adding the
value of the corresponding cell in the symmetric matrix, which will be a low value given
its distance from the peak.

The final statements below display the image of the sugarscape shown in Fig.

14.5.
figure (1) ;
imagesc (s);

axis square;

The statement figure (1) generates a figure where an image will be displayed.
The statement imagesc (s) scales the data in matrix s to the full range of colors and
displays the corresponding image of the sugarscape matrix s. Finally, the statement axis
square makes the image square. The result is the figure with two centers of economic

activity as shown below.
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Figure 14.5 Two-peak Sugarscape
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Next we turn from the code for the sugarscape to the code for the agents.

3.2 Initagents
The function “initagents” generates a random initial population of agents. Its code

1s shown below.

function a str = initagents(size, s, visionv, metabolismv);
for i = l:size;
for j = l:size;
if (rand < 0.2)
a str(i,Jj).active = 1; %put an agent on this location
a str(i,Jj) .metabolism = ceil (rand * metabolismv);
a str(i,Jj).vision = ceil(rand * visionv);
a str(i,j).wealth = s(i,3J);
else
a str(i,Jj).active = 0; %keep this location empty
a str(i,j).metabolism = 0;
a str(i,Jj) .vision = 0;
a str(i,Jj).wealth = 0;
end
end
end

The information about agents is stored in the data structure a_str with four fields.
The field active contains a 1 or 0 depending of the situation of the agent in a specific
location (active, that is alive; or inactive, that is dead). A location with an inactive agent
is treated in the main program and other functions as an empty location. If the values
generated by the uniform distribution MATLAB function rand are below 0.2, an agent is
born.

The fields metabolism and vision contain the corresponding integers randomly
distributed between 1 and the maximum level of each characteristic. The MATLAB
function ceil is used to round the randomly created vision and metabolism variables
up to the next integer. The field wealth is initialized as equal to the amount of sugar in

the location of the sugarscape where the agent was born.
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3.3 Dispagentloc (display agent location)
This simple function transforms the field agent from the agents data structure
into a matrix named a and displays agents’ locations, since MATLAB does not allows

one to display that field directly. The code of the function is shown below.

function a = dispagentloc(a_str, size, nruns, runs);

for i = l:size;
for j = l:size;
a(i,j) = a_str(i,j).active;
end
end
figure(2);
subplot (ceil (sgrt (nruns)),ceil (sqgrt (nruns) ), runs), spyl(a);

axis square;

The statement figure (2) tells MATLAB to display a second figure with the agent’s
locations - remember that a first figure was created before to display the sugarscape.

Consider next the line of code
subplot (ceil (sgrt (nruns)),ceil (sqgrt (nruns)),runs), spy(s);

and notice that this one line contains two separate MATLAB statements, i.e. the function

calls

subplot ()
and

spy ()

The call to subplot divides the window into a number of panes and the call to spy plots
the active pane. These statements thus allow us to display multiple images in a single
figure such as the images of agents’ locations in successive runs of the program. The
MATLAB function

subplot (m,n,p) ;
creates an axes in the pth pane of a figure divided into an m-by-n matrix of rectangular

panes. For example, if we set the number of runs parameter in the main program equal to

8, then the statement
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subplot (ceil (sgrt (nruns)),ceil (sgrt (nruns)),nruns), spy(s);

where ceil (sqrt (nruns) is the ceiling (i.e. the integer above) the square root of the
number of runs, will divide the figure (window) into a matrix with 3 rows and 3 columns

of panes to accommodate the images of the agent’s locations in successive runs.

3.4 See and Neighbor

The see and neighbor functions explore the neighborhood an agent can see
according to its level of vision in four directions - north, south, east and west - each
direction selected in a random order. Remember that the location coordinates of the
agent are given by (i,3) and that the agent’s level of vision is equal to k. For each
integer between k and 1 - that is, going from the outermost part of the neighborhood to its
center - the function will check the level of sugar in each of the four directions. Every
time the level of sugar in a location being examined is greater than the level of sugar in
the agent’s location, the level and coordinates of the higher value found will be stored in
the temporary variables temps, tempi and tempj respectively. Thus, at the end of the
exploration, these variables will contain the highest level of sugar found and its location.

Imagine that we begin by exploring the neighborhood in the south direction for a
level of vision equal to k and from the location (i, j). Thus, we want to examine the
location (i+k,3). If (i+k <= size), where size is the dimension of the sugarscape,
there is no problem. However if (i+k > size), we have to remember that in Section 2
above we define the sugarscape as a Torus. Then, in this case the location to be examined
will be (i+k-size, j). For example, if we start from the location (48,2) withk = 6,
then the location to be examined will be (4, 2). Thus, to summarize, we could write the
following pseudo code, where neighbor will be a function that will check the level of

sugar in the location (u,v).

if (1 + k > size)

u=1+ k - size;

v =3

neighbor (u,v) ;
else

u =1 + k;

v =3

neighbor (u,v) ;
end
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Now, in the case when we want to examine the north direction, the code should be

if (i - k < 1) %or equivalently if(k - i > -1)
u=1 - k + size;
v =3
neighbor (u,v) ;
else
u=1i - k;
v =35
neighbor (u,v) ;
end

Analogous codes could be written for the cases of the east and west directions.
However, we want to write a general code encompassing all the four cases. That is,

something of the form

if ( (1) > (2) )
u = (3);
v = (4);

neighbor (u,v) ;
else

u = (35);

v = (6);

neighbor (u,v) ;
end

To do so, we proceed as follows. We define the following four vectors, each with

six elements:

south = [i+k size i+k-size j itk 31
north = [k-1 -1 i-kt+size j i-k 31
east = [Jj+k size i jtk-size i J+k];
west = [k-j7 -1 i j-kt+size 1 j-k1;

Next we make use of a MATLAB object named “cell array”. A cell array is an
array whose elements are also arrays. For our case, think of it as a matrix whose
elements are vectors instead of numbers. The following statements create a cell array of
dimension 1x4 whose elements are the vectors south, north, east and west. Notice that the

indexes of a cell array are between braces.

c{1l} = south; c{2} = north; c{3} = east; c{4} = west;
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Now, for example, if we want to access the third element of the north vector, we

can do it using a double indexing notation such as
c{2}(3);

Then, a general code to explore the neighborhood of an agent, selecting four

directions of search in a random manner, can be written as:

for m = randperm(4);
if (c{m} (1) > c{m} (2))
u = c{m} (3);
v = c{m} (4);
[temps, tempi, tempj] =
neighbor(u,v,a str, s, temps, tempi, tempj) ;
else

u c{m} (5);
c{m} (6);

[temps, tempi, tempj] =

\4

neighbor(u,v,a_str, s, temps, tempi, tempj) ;
end
end

To check this go through the south and then the north cases and you should get the same
results as those shown above.

We turn now to explain the workings of the neighbor function, which is a very
simple one. As can be seen in the code above this function receives as inputs, among
other arguments, the variables temps, tempi, and tempj and returns the same variables as
outputs. Remember that temps contains the level of sugar in a given location and tempi
and temp7j contain the coordinates of the location. The code of the neighbor function 1s

shown below.
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function [temps, tempi, temp]j] =
neighbor(u,v,a str, s, temps, tempi, tempj);

if (a_str(u,v).active == 0)

if (s(u,v) >= temps)

temps = s(u,v);
tempi = u;
temp] = v;

end
end

Thus, the function first checks whether the (u, v) location is free so that an agent can
move there. If that is the case, it checks to see whether or not the level of sugar in the
(u,v) location of the sugarscape is greater than or equal to the one previously found and
stored in the variable temps. If so, it puts the new level found in the temps variable, and
its corresponding (u, v) coordinates in the variables tempi and temp.

To conclude this section, we reproduce below the entire code of the see function.

function [temps, tempi, temp]j] =
see(i,j,k,a _str,s,size, temps, tempi, tempj) ;

south = [i+k size i+k-size 3j i+k J1;
north = [k-1 -1 di-k+size 3j 1i-k 3JI;
east = [J+k size 1 Jt+k-size i J+k];
west = [k-7 -1 i J-k+size 1 J-k];

c{l} = south; c{2} = north; c¢{3} = east; c{4} = west;

for m = randperm(4);
if (c{m} (1) > c{m} (2))
u = c{m}(3);
c{m} (4);
[temps, tempi, temp]j] =

neighbor(u,v,a str, s, temps, tempi, tempj) ;
else
u = c{m} (5);
v = c{m} (6);
[temps, tempi, tempj] =
neighbor(u,v,a_str, s, temps, tempi, tempj) ;
end
end
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3.5 Moveagent
Once the neighborhood of the agent has been examined, it is time to move the
agent to the best location found, update its wealth and let it eat sugar. This is what the

moveagent function shown below does.
function a str = moveagent(a str, s, i, j, temps, tempi, tempj);

if (temps > s(i,3j))
% Agent moves to best location and updates wealth

©

_str(tempi,tempj) = a str(i,j);
%Set old location to unoccupied
a str(i,Jj).active = 0;
a str(i,Jj).vision = 0;
a str(i,Jj).metabolism = 0;
a str(i,Jj).wealth = 0;
% update wealth at new location
a_ str(tempi, tempj) .wealth = a str(tempi, tempj).wealth + temps -
a str(tempi, tempj) .metabolism;
% 1f wealth is less than zero set location to unoccupied
if (a_str(tempi, tempj) .wealth <= 0)
a str(tempi, tempj) .active = 0;
a_str(tempi, tempj) .vision = 0;
a_str(tempi, tempj) .metabolism = 0;
a str(tempi, tempj) .wealth = 0;
end
else
% Agent stays in position and updates wealth
a str(i,Jj).wealth = a str(i,j).wealth + temps -
a str(i,Jj) .metabolism;
if (a_str(i,j).wealth <= 0)
a str(i,Jj).active = 0;
(1,3) 0;
a str(i,Jj).metabolism = 0;
(1,3)

a_str .vision

a str(i,Jj).wealth = 0;

end
end

If a new and better location than the one previously occupied by the agent is

found, that is, if the statement below is true

if (temps > s(i,7J))
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then the agent moves to the new location whose coordinates are stored in the variables
tempi and tempj. The old location is set to unoccupied, and the agent’s wealth is updated
adding to its previous wealth the amount of sugar found in the new location and
subtracting the sugar to be consumed according to its metabolic rate. If the resulting
level of wealth is less or equal than zero then the agent dies and all its fields are set to
Zero.

In the case that no better location was found, the agent stays into place, updates its
wealth and eats sugar. Again, if the resulting level of wealth is less or equal to zero, the

agent dies.

4. Results

We are now ready to analyze the behavior of the population of agents in the
sugarscape given the topography, the growback rule G, and the agents’ rule of
movement M. The agents’ locations for six successive runs, for a maximum vision of 6
and a maximum metabolism equal to 4, are shown in Figure 14.6 below. The order of
graphs corresponding to the successive runs goes from left to right then down to the next

Trow.
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Figure 14.6 Agents’ Locations for Six Runs

We can observe that in the first run there is a total population of 538 agents (nz
means non-zero elements) randomly distributed on the sugarscape. As one would expect,
during each run some agents die and others move toward the peaks of the sugarscape.
For this experiment, the average metabolism of the population goes from 3.5 in the first
run to 2 in the sixth run while the average vision goes from 3.5 to 3.8. Thus, as one
should expect, lower metabolism and higher vision increase the chances of survival. We
can see also that the population tends to reach a stable size and spatial configuration.

Figure 14.7 below shows the carrying capacity of the sugarscape - that is what
population size the sugarscape can support - as a function of the maximum level of vision
and metabolism of the agents. For each level of vision and metabolism, the average
value of ten simulations of six runs each is presented. We can observe how a larger

vision and a smaller metabolism tend to increase the carrying capacity of the sugarscape.
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Figure 14.7 Carrying Capacity

5. Experiments

A simple experiment would be to add moving cost proportional to the distance
moved. This will tend to slow down the convergence to the hilltop locations.
Also, the Sugarscape model can be extended in a number of ways so that many

experiments of increasing grade of complexity can be performed. A first step in that
direction would be to replace the Sugarscape rule G, used above with the following one:

Sugarscape growback rule G, : At each lattice position, sugar grows back at a rate of

units per time interval up to the capacity at that position.

To introduce this rule, you may want to start by transforming the sugarscape
matrix s into a structure with two fields, one containing the capacity and the other the
current level of sugar. Then, you can check how different growback rules affect the

results.
You may also try to work with agents with finite lives, where their maximum age

is a random integer drawn from a given interval [a,b]. Then, you may introduce an agent

replacement rule such as the following one
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Agent replacement rule R, ,,: When an agent dies it is replaced by an agent of age 0

having random genetic attributes, random position on the sugarscape, random initial

endowment, and a maximum age randomly selected from the range [a,b].

Epstein and Axtell (1996) present a number of rules for pollution formation, agent
mating, agent inheritance, trade, credit, etc., that can be implemented in the Sugarscape

model. To learn about the specifics of these rules you are referred to their book.
6. Further Reading

For a comprehensive presentation of the Sugarscape model see Epstein and Axtell
(1996). See also the web page of the Sugarscape model at the Brookings Institution at

www.brook.edu/es/dynamics/sugarscape/default.htm . For an online guide to agent-

based modeling see Axelrod and Tesfatsion (2004). For an approach to estimating agent
based models see Gilli and Winker (2003).

For a recent conference keynote address on agent based modeling and an
application to finance see LeBaron (2004). Also see his survey paper on agent based
computational finance (LeBaron (2005)) which will appear in the Judd and Tesfatsion
(2005) volume containing many state-of-the-art papers on agent based modeling. For a
comprehensive site with resources on Agent-Based Computational Economics, see the

web site developed by Leigh Tesfatsion at www.econ.iastate.edu/tesfatsi/ace.htm . For a

review of agent-based modeling as an approach to economic theory, see Tesfatsion
(2005).
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Global Warming in GAMS

The basic economics and chemistry of global warming are that an increase in
output causes an increase in CO, emission which in turn causes an increase in the

concentration of CO, in the atmosphere. This increase in CO, concentration permits

the sun’s rays to come into the earth’s atmosphere but captures some of them as they are

reflected back thereby increasing the temperature of the earth. The increased temperature

results in a decrease in output. Several of the elements in this chain of causation are
controversial; however this simple line of reasoning is a useful place to begin.
In this chapter we use the classic global warming model of Nordhaus (1992) to

study the dynamics of global warming. A simple flowchart for that model, reflecting the

discussion above, is shown in Figure 15.1.

Temperature, T

Output, Q

Emissions, E

CO2 Concentration, M

Figure 15.1 Basic Flowchart of Global Warming

335



Chapter 15 Global Warming in GAMS

Economic policy can be used in intervene in this cycle. The most common

intervention is a “carbon” tax which raises the price of fossil fuels like coal, oil and
natural gas and thereby decreases the effective emission of CO, and other greenhouse

gases. This decreases the CO, concentration and therefore the temperature. This in turn

tends to increase output. However the tax also decreases the efficiency of the economy,
thereby providing a tendency to decrease output. This tradeoff is shown in Figure 15.2.

Thus the basic structure of this dynamic model is one in which the economic externality
is a stock variable, i.e. the CO, concentration, and the policy variable is used to control a

flow, namely the CO, emissions.

A

Output, Q N Carbon Tax

Temperature, T Emissions, E

CO2 Concentration, M

Figure 15.2 Policy Interventions with a Carbon Tax

The tradeoff was embedded by Nordhaus in a one-sector growth model, similar to
the Excel growth model used earlier in this book, thereby creating an economic model of
global warming. However, he developed the model in GAMS rather than in Excel as is
discussed in the following sections. We begin with a discussion of the model in

mathematics and then turn to a discussion of the model in GAMS.
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1. The Mathematical Model

The best place to start is with the production function which is in the classic

Cobb-Douglas form with output produced by capital and labor. This function is written

(1) O(1)=Q(e) A()K (¢ L(2)
where
O(t)= output in period ¢
Q(¢)= climate impacts (see below)
A()= technology in period ¢

K ()= capital in period ¢
L(t)= labor force in period ¢

y = elasticity of output with respect to capital

The unusual aspect of this production function is the presence of the QQ term which is
used (1) to model the impact of temperature changes on output and (2) the efficiency-loss
effects of the carbon tax. Also, as we will see later in more detail, in this model no
distinction is made between labor force and population.

We will return to a discussion of the Q2 term later; however for now lets move on
to the effect of output on greenhouse gas emissions (mostly CO, ) that is modeled with the

equation

@ E(t)=[1-u(1)]o(1)0(r)
where
E (t)= green house gas emissions

7, (t) = emission control rate — the fractional reduction of emissions

G(t): ratio of greenhouse gas emissions to output

The p variable is the percentage of greenhouse gas emissions which is prevented from

entering the atmosphere. So it might be thought of as the action of devices to reduce the
CO, in the smoke from the tall stacks of power plants or to sequester the carbon

underground or underwater before it enters the atmosphere. Alternatively, it can be
viewed as a proxy for a carbon tax which reduces the use of fossil fuels and thereby the

effective emissions.
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Next consider the effect of the emissions on the CO, concentration in the

atmosphere, which is modeled with the equation

(3) M (t)=PE(t)+(1-6, )M (t-1)
where
M (t)= CO, concentration relative to pre-industrial times

S = marginal atmospheric retention ratio
0,, = rate of transfer from the rapidly mixing reservoirs to the deep ocean

The two parameters in this equation ( # andJ,, ) divide the non-intervention optimist
from the intervention pessimist on global warming. The f parameter is the proportion
of emissions that add to the CO, concentration in the atmosphere. The 0,, parameter is
a measure of the atmosphere’s ability to breakdown the CO, . If J,, is large, then the
decay rate of CO, in the atmosphere is high and that mitigates the effect of higher
emission rates. So the optimists like to believe that £ is small and J,, is large.

The increase in the atmospheric concentration of CO, in Eq. (3) in turn drives

changes in temperature. This is done in two steps in the model. In the first step the

increase in atmospheric concentration M increases the forcing term F' in the equation

logM(t)

—4.1| —390
(4) F(t)=4.1 o2 +FO(t)

where
F (t) = forcing term of greenhouse gas concentration on temperature

F O(t) = exogenous forcing from other greenhouse gases

This first term on the right hand side of Eq. (4) models the effect of the CO,

concentration on the forcing term. The equation also includes a separate exogenous term
for the effects of all other greenhouse gases on the forcing term.

The forcing term then influences the temperature. However, temperature is
broken into two separate variables in this model — (1) the temperature of the atmosphere
and upper oceans and (2) the temperature of the deep oceans. For simplicity of

exposition, we will refer to the first of these two as just the temperature of the
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atmosphere, though the reader should keep in mind that it is actually the temperature of
the atmosphere and the upper oceans.

The forcing term F drives the temperature of the atmosphere and also the two
temperatures have feedback effects on one another. The expression for the temperature

of the atmosphere is

1

S o o s TR

where
( )— temperature of the atmosphere and upper oceans
T, (¢)= temperature of the deep oceans
R, = thermal capacity of the atmosphere and upper oceans
R, = thermal capacity of the deep oceans

F(t ( )= radiative forcing in the atmosphere from green house gases

A =the climate feedback parameter
% = the transfer rate from the upper layer to the lower layer
2

This function appears complicated at first; however, taking it piece by piece makes it
easier to understand. Consider first a simpler version of Eq. (5) with only the lagged 7]

term and the F term, i.e.

© 1050053 fir-anen)

1
This is just a dynamic equation of the temperature of the atmosphere driven by the

forcing term and mitigated by the climate feedback parameter 4. The other term in Eq.
(5) 1s the difference between the atmosphere temperature 7, and the deep oceans

temperature 7, , 1.e.

o (& )me--nen)

7

Thus, because of the negative sign in front of the term in Eq. (7), the greater the
difference between the two temperatures the less the atmosphere temperature will

increase from one period to the next. So if the deep ocean is much cooler than the
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atmosphere it will absorb heat and result in less increase in the atmosphere temperature.

This can also be seen in the equation for the temperature of the deep oceans, i.e.

(8) Tz(t)=Z}(t—1)+[%j{[f—jj[ﬂ(t—l)—Tz(t—l)]}

2

In this case there is a positive effect of the temperature difference between the two layers.

Thus an increase in the difference between the atmosphere and deep oceans temperatures

in period 7 —1 results in a more rapid increase in the deep ocean temperature in period ¢.
Next we need to close the loop of causation in the model from temperature back

to output. First, recall the use of the Q term in the production function in Eq. (1), i.e.
(1) O(t)=Q(e) A()K (¢ L(2)

The Q term in the Nordhaus model is driven by the d variable which is defined as

) d(1)=q {Tl (t%T

where
d (t)= fractional loss of global output from greenhouse warming

a, = a constant

Thus, as the temperature of the atmosphere rises, the fractional loss of global output
increases in a nonlinear way.

The d term, in turn, appears in the denominator of the € term as follows

(10) Q(t):ll_%c((tt))

where
TC (t) = fractional cost to global output from green house gas emission controls

So as temperature increases the d term increases and thus the () term decreases and
output declines. Also, the definition of the Q term includes the term 7C which
represents the efficiency loss in output that is caused by the use of the carbon taxes. This

loss is represented in the model with the equation
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(11) TC(t)=bu(t)

Thus as the carbon tax increases and y, the fractional reduction of emissions, increases

the efficiency loss term 7C increases. Also, from Eq. (10), as this loss increases the Q
term decreases.

So in summary, the Q term is indirectly affected by two variables, 4 and T —
both of which cause it to fall as they increase. The first variables is the fractional
reduction of emissions, x, operating through the 7C variable and the second is
temperature, 7', operating through the d variable. However, the 4 and 7 variables are
related in an inverse fashion to one another in the model. As the carbon tax underlying
M increases the temperature 7" declines. This is the essential tradeoff in the model —
higher carbon taxes reduce emissions, decrease temperature and increase output;
however, they also impose efficiency loss on the economy and thus reduce output.

There is also a second basic tradeoff at work in the model. This comes from the
fact that this model is basically a one-sector growth model of the Ramsey type that was
modeled in Excel earlier in this book. The tradeoff in the growth model is between

consumption and investment and is embodied in the equations

(12) O(t)=C(t)+1(t)
(13) K(t)=(1-6,)K(t=1)+1(t)
where

C ()= total consumption in period ¢
I(t)= investment in period ¢

0, = rate of depreciation of the capital stock

Thus as consumption rises investment must fall and as investment falls capital

accumulation declines and thus output declines.
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This is in turn linked to the criterion function of the model which is to maximize

discounted utility
(14) maxZU[c P(t)](1+p)"

where
U [ ]= utility function

P(t)= population in period ¢
p = pure rate of social time preference

¢(t) = per capita consumption in period ¢

Also, the utility in each period is a nonlinear function of per capita consumption

(actually, in this model, it is consumption per member of the labor force)

(15) c(t)=C(t)/L(1)
where the utility function is the same general form as was used in the growth

model in Excel, i.e.
(16) Ule().L(e)]=L(0){[c()] “-1}/(1-a)

In summary, this tradeoff is that as total consumption increases it increases per capita
consumption and thus utility; however this is achieved by reducing investment and thus
capital accumulation and thus reduces future output.

This completes the statement of the model. However, since the model is

somewhat long it is useful to restate it in a summary fashion.
2. The Model in Summary
We begin with the criterion function and continue with the constraints

Criterion Function (from Eq. 14)
(17) maxZU[c L(t)](1+p)"
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Utility Function (from Eq. 16)

(18) Ule().L(6)]=L(0){[c()] “-1}/(1-a)

Production Function (from Eq. 1)
(19) O(t)=Q(e) A()K (¢ L(1)

Output Division (from Eq. 12)
(20) 0(1)=C(1)+1(r)

Per Capita Consumption (from Eq. 15)
(21) c(t)=C(t)/L(1)

Capital Accumulation (from Eq. 13)
22) K(1)=(1-6,)K (t-1)+I(1)

Emissions (from Eq. 2)
(23) E(t)=[1-u(1)]o(1)Q(r)

CO, Concentration (from Eq. 3)
(24) M (1)= BE(t)+(1-8, )M (1-1)

Temperature in the Atmosphere and Upper Oceans (from Eq. 5)

@ 10161+ 4 a2 ren-ni-u)

1

Temperature in the Deep Oceans (from Eq. 8)

(26) J;(z)=T2(t—1)+[Rij{[%j[Tl(z—1)—1;(r—1)]}

2 2

Forcing Term (from Eq. 4)
logM (t)

—41]—290
(27) F(1)=4.1 oz +FO(1)
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Fractional Loss of Output From Greenhouse Warming (from Eq. 9)

(28) d(1)=q {Tl (t%}z

Fractional Cost to Output from Controls — Carbon Taxes (from Eq. 11)
(29) TC(t)=bu(r)”

Climate and Emission Control Impact (from Eq. 10)

(30) () :%C((tt))

3. The Model in GAMS

The GAMS representation of Nordhaus’s DICE model is in the file dice.gms and
is listed in Appendix 15A. This implementation of the model uses 40 time periods each
of which are ten years long, thus the model covers a time horizon of 400 years. It is not
uncommon in dynamic models to have more than one year per time period; however, it
does require some adjustments. For example, the capital accumulation equations is

changed from

K(1)=(1-8,)K (t-1)+ (1)

to
K(1)=(1-8)" K(1=1)+101(z)

Since the depreciation rate is annual it is necessary to raise it to a power that is equal to
the number of years per time period. Also, the flow variables, like investment in this
equation, are in annual terms and must be multiplied by the number of years per time
period in order to use them appropriately in accumulation equations.

Also, some of the other equations in the GAMS statement of the model are in a
slightly different form than in the mathematics used above. In particular, the production
function and the emission equations used in the GAMS statement are obtained by

substitution of some equations.
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The production function is created by substituting Egs. (28) and (29) into Eq. (30)

to obtain

31) Q1) = L=bu(t)” .
a1
+a1

or

(32) Q(r)= L=bu(e)”

(19) 0(1)=Q(0) A()K (¢ L(2)
to obtain
(33) o(n=—=2D" 4k ey L)

(34) O(t)=A(t)L(t) 7 K (¢)

which is the form of the production function used in the GAMS statement.
Also, the emissions equation used in the GAMS representation is obtained by
using Eq. (23), i.e.

(35) E()=[1-#(1)]o()0()
and substituting the production function from Eq. (19) into it to obtain

G0 E()=[1-x()]o (@) 40K (1) L(1)”
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Then Eq. (36) is rearranged to obtain
67) E()=o(0)[1-#(0)]() 4(0)L(1) 7 K (1)
and Q to set to one to obtain

69) E()=o(0)[1-#()]A0)L()” K (Y

This last step of setting QO to one is surprising so the user may want to restore a non-
unitary Q to that equation in the GAMS representation.
The parameter o is treated as time varying in the equation

(39) o(t)=o,et"

with

(40) gg(t)z(g%j(l—e"‘a’)
where

o, = initial CO,-equivalent emission-GNP ratio
g, (t) = cumulative improvement of energy efficiency
g., = growth of o per decade

o, = decline rate of technological change per decade

The total factor productivity parameter in the production function is treated in a

similar fashion with the equations

(41) A(1) = 4,e%")

with

(42) g,(1)= (g% )(1—6‘*’)
where

A, = initial level of total factor productivity
g, (¢) = growth rate of productivity from 0 to T’

g,, = initial growth rate of technology per decade

346



Chapter 15 Global Warming in GAMS

Also the rate of growth of the labor force is treated in the same way with the

equations

(43) L(t)=Le*"

with

(44) &.(0)=(5 J(1-¢)
where

L, = 1965 world population in millions
g, () = growth rate of labor from 0 to ¢

g,, = growth rate of population per decade

Finally the exogenous forcing term for other greenhouse gases is set using the

equations

FO(t) =0.2604+0.125¢-0.0034¢>  fort<15

(45)
FO(t) =142 fort>15

Thus this term increases in a quadratic way from 0.2604 to 1.42 over the first fifteen
years and then remains constant at 1.42.

If you have already read the previous chapters in this book dealing with models in
GAMS, particularly the dynamic models, the GAMS representation of the Nordhaus
model provided in Appendix15A will seem familiar terrain. If you have not read the
previous chapters with GAMS models, you are encouraged do so and to take a look at
Appendix H on Stacking Method in GAMS and Appendix F on Introduction to Nonlinear

Optimization Solvers.
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4. Results

In the 1992 Science article Nordhaus compares five solutions of the model, which
are shown in Table 15.1. The first solution is a “no-controls” result in which x is set

Case Policy Base Value | Dollar Difference | Percent Difference
1 | No-controls 731.694 0 0.000
2 | Optimal Policy 731.893 199 0.027
3 | Stabilize emissions 726.531 -5163 -0.706
4 | Stabilize climate 701.764 -29930 -4.091
5 | Geoengineering 735.787 4093 0.559

Table 15.1 Solutions of the Model

to zero, i.¢. there is no removal of emissions relative to the uncontrolled level. The
second solution is the full optimal control solution that provides a slight (0.027%)
improvement in total discounted utility over the horizon covered by the model.

The third solution is to fix emissions at around 10% above the uncontrolled level
after 1995. This requires setting u equal to 0.1 after 1995 and can be implemented in
the GAMS statement of the model by using a MIU.FX statement before the SOLVE
statement. As is seen in Table 1 this results in a decrease in total discounted utility by
about seven-tenths of a percent.

A more drastic policy is to stabilize climate as is shown in the fourth solution.
This solution limits the temperature increase to 0.2°C per decade after 1985 with an
upper limit of a total increase of 1.5°C from 1990. This results in a decrease of about 4
percent in total discounted utility relative to the uncontrolled solution.

The final solution considers the effects on introducing a hypothetical technology
that provides costless mitigation of climate change. Examples cited by Nordhaus include
shooting smart mirrors into space or seeding the ocean with iron to accelerate carbon

sequestration.
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5. Experiments

The obvious experiments with this model are to attempt to replicate some of the

solutions shown in Table 1; however, there are a number of other experiments of interest.
One such experiment is to decrease the size of parameter a, in Eq. (28).

(28) d(1)=q {Tl (t%}z

This experiment recognizes that there is considerable controversy about the magnitude of
the effect of increases in temperature on economic output. In fact, some Russians seem
to have concluded that because of the northerly location of most of their country that
slight temperature increases might actually result in increases rather than in decreases of
national GDP.

Another experiment would be to increase the parameter ,, in the CO,

concentration equation
(24) M (t)=BE(t)+(1-6, )M (1-1)

to reflect a feeling that the atmosphere is able to breakdown more of the CO, than the

original parameter value reflects.
6. Further Reading

As was mentioned above, this chapter is based on the article by Nordhaus in
Science in 1992 about the DICE model. That model has the virtue of being relatively
simple and is thus useful for this chapter. For a later model see the RICE model by
Nordhaus and Boyer (2000). For a model that is used to analyze the costs of CO2
emissions limits see Manne and Richels (1992). For an alternative to the [IPCC CO2
emission projections see Eckaus (1994). For a general equilibrium model approach to
the analysis of reducing carbon emissions see Blitzer, Eckaus, Lahiri and Meeraus
(1992).

For a model that uses the GAMS software and focuses on the role of the
developing countries in global warming - particularly India and China - see Duraiappah

(1993). For particular reference to the effects of greenhouse gases in agriculture and
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forestry see McCarl and Schneider (2001). For a discussion of climate policy change
after the Kyoto treaty see McKibbin and Wilcoxen (2002).

For an example of the analysis of water pollution control with a GAMS model see
Letson (1992). Those interested in environmental models for various sectors of the
economy can finds models of the plastics sector in China, the pulp and paper sector in
India, the shrimp industry in Thailand and the livestock sector in Botswana in Duraiappah
(2003).
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Appendix 15A

The GAMS Representation of the Global Warming Model

Soffsymxref offsymlist

* Explaining the DICE, Cowles Foundation Discussion Paper, January 1991

* The calibration is to a 60-period run for the transversality

*

sets t time periods /1*40/
tfirst(t) first period
tlast (t) last period

scalars bet
r
glo
dlab
deltam
ga0
dela
sig0
gsigma
dk
gama
m0
tl10
t0
atret
g0
110
kO
cl
lam
c3
c4
a0
al
bl
b2
phik
phim
phite

elasticity of marginal utility /0/

rate of social time preference per year /0.03/

growth rate of population per decade /0.223/

decline rate of population growth per decade /0.195/
removal rate carbon per decade /0.0833/

initial growth rate for technology per decade /0.15/

decline rate of technological change per year /0.11/
co2-equivalent emissions-gnp ratio /0.519/
growth of sigma per decade / - 0.1168 /

depreciation rate on capital per year /0.10/
capital elasticity in production function /0.25/
co2-equivalent concentrations 1965 billions t ¢ /677/

lower stratum temperature (c) 1965 /0.10/
atmospheric temperature (c) 1965 /0.2/

marginal atmosphere retension rate /0.64/

1965 world gross output trillion 89 USS$ /8.519/

1965 world population million /3369/

1965 value capital trillion 1989 USS /16.03/
climate-equation coefficient for upper level /0.226/
climate feedback factor /1.41/

transfer coefficient upper to lower stratum /0.440/
transfer coefficient for lower level /0.02/

initial level of total factor productivity /0.00963/
damage coeff for co2 doubling(fraction GWP) /0.0133/
intercept control cost function /0.0686/

exponent of control cost function /2.887/
transversality coeff capital ($ per unit) /140/
transversality coeff carbon ($ per unit) / - 9.0 /
transversality coeff temperature ($ per unit)/ - 7000 /
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parameters 1(t) level of population and labour
al(t) level of total factor productivity
sigma (t) co2-equvalent-emissions output ratio
rr(t) discount factor
ga(t) growth rate of productivity from 0 to t

forcoth (t) exogenous forcing for other greenhouse gases
gl(t) growth rate of labour 0 to t

gsig(t) cumulative improvement of energy-efficiency
dum(t) dummy variable 0 except last period ;

tfirst(t) = yesS$(ord(t) eq 1);
tlast(t) = yesS$S(ord(t) eqg card(t));
display tfirst, tlast;

gl (t) (gl0/dlab) * (l-exp (-dlab* (ord(t)-1)));
1(t) = 110*exp(gl(t)):;

ga(t) = (galO/dela)* (l-exp(-dela* (ord(t)-1)));

al(t) = alO*exp(ga(t)):;

gsig(t) = (gsigma/dela)* (l-exp (-dela* (ord(t)-1)));

sigma (t) = sigO0*exp(gsig(t)):

dum(t) = 1$(ord(t) eq card(t)):;

rr(t) = (l+r)**(10*(l-oxrd(t)));

forcoth(t) = 1.42;

forcoth(t) $(ord(t) 1t 15) = 0.2604 + 0.125*ord (t)

- 0.0034*ord(t)**2;

variables miu(t) emission control rate GHGs

forc(t) radiative forcing, W per m2

te (t) temperature, atmosphere C

tl(t) temperature, lower ocean C

m(t) co2 equivalent concentration bill t
e(t) co2 equivalent emissions bill t
c(t) consumption trillion USS$

k(t) capital stock trillion USS$

cpc(t) per-capita consumption 1000s USS
pcy(t) per-capita income 1000s USS

i(t) investment trillion USS

s (t) savings rate as fraction of GWP

ri(t) real interest rate per annum

trans (t) transversality variable last period
y(t) output

utility;
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positive variables miu,

equations

* Equations of the model

kk(t) ..

kkO (tfirst) ..

kc(tlast) ..

ee(t) ..

force (t) ..

mmO (tfirst) ..

mm(t+1) ..

tteO(tfirst)..

tte (t+1) ..

tleO(tfirst)..

tle(t+1) ..

yy(t) ..

seq(t) ..
rieg(t) ..

util
yy (t
cc(t
kk(t
kkO (t)
kc(t

cpce (t)
pcye (t)
ee (t)

seqg(t)

)
)
)
)

rieg(t)

force (t)

mm (t)

mmO (t)
tte(t)
ttel (t)
tle(t)

transe (t)

tleO(t)
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e, te, m, y, c, k, i;

objective function

output equation

consumption equation

capital balance equation

initial condition for k

terminal condition for k

per-capita consumption definition

per-capita income definition

emissions process

savings rate equation

interest rate equation
radiative forcing equation

co2 distribution equation

initial condition for m

temperature-climate equation for atmosphere
initial condition for atmospheric temperatur

temperature-climate equation for lower oceans

transversality condition

initial condition for lower ocean ;

k(t+1l) =1= (1-dk)**10*k(t) + 10*i(t) -
k(tfirst) =e= kO ;

r*k(tlast) =1= 1i(tlast) ;

e(t) =g= 10*sigma(t)*

(1 - miu(t))*al(t)*1(t)** (1 - gama) *k(t)**gama ;
forc(t) =e= 4.1*(log(m(t)/590)/log(2)) + forcoth(t) ;
m(tfirst) =e= m0 ;
m(t+l) =e= 590 + atret*e(t) + (l-deltam)* (m(t) - 590)
te(tfirst) =e= t0 ;
te(t+l) =e= te(t)+cl*(forc(t)-lam*te(t)

- c3*(te(t)-tl(t))) -
tl(tfirst) =e= tl1l0 ;
tl(t+l) =e= tl(t) + cd*(te(t) - tl(t));
y(t) =e= al(t)*1l(t)**(l-gama) *k(t) **gama
*(1-bl* (miu(t) **b2))/ (1+(al/9)*sqgr(te(t)));
s(t) =e= 1(t)/(.001l+y(t))
ri(t) =e= gama*y(t)/k(t) - (1-(1-dk)**10)/10 ;

e

’
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cc(t) .. c(t) =e= y(t) - 1i(t) ;

cpce (t) .. cpc(t) =e= c(t)*1000/1(t)

pcye (t) .. pcy(t) =e= y(t)*1000/1(t) ;

transe (tlast).. trans(tlast) =e= rr(tlast) *(phik*k(tlast)

+ phim *m(tlast)+phite*te(tlast));

util.. utility =e= sum(t,10*rr(t)*1(t)*log(c(t)/1(t))
/0.55+trans (t) *dum(t)) ;

* Upper and lower bounds; general conditions imposed for stability

miu.up(t) = 0.99;
miu.lo(t) = 0.01;
k.lo(t) = 1;
te.up(t) = 20;
m.lo(t) = 600 ;
c.lo(t) = 2;

* Upper and lower bounds for historical constraints

miu.fx('1') = 0.0;
miu.fx('2') = 0.0;
miu.fx('3') = 0.0;

* Solution options

option iterlim = 99999;
option reslim = 99999;
option solprint = off;

option limrow

’

0
option limcol = 0;

model co2 /all/ ;
solve co2 maximising utility using nlp ;

* Display of results
display y.1l, c¢.1, s.1, k.1, miu.l, e.l, m.1l, te.l, forc.l, ri.l ;

display cc.m, ee.m, kk.m, mm.m, tte.m, cpc.l, tl.1l, pcy.l, 1.1 ;
display sigma, rr, 1, al, dum, forcoth ;
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Chapter 16
Dynamic Optimization in MATLAB

Dynamic optimization encompasses a group of mathematical techniques used in
economics to model the intertemporal behavior of economic agents under the assumption
of forward looking optimizing behavior. For example, it can be used to model the
behavior of a policymaker who tries to determine the optimal path of policy variables in
order to achieve some specified targets for GDP or the inflation rate; to model the
behavior of firms that are assumed to choose the optimal path of investment in order to
maximize intertemporal profits or their present value; to model the behavior of
consumers who are assumed to face intertemporal choices between present and future
consumption; etc.

In general terms, dynamic optimization deals with the problem of obtaining a
sequence of optimal choices under given dynamic constraints. Calculus of variations,
optimal control and dynamic programming are the most commonly used techniques for
dynamic optimization. In this chapter, we will focus on what is known as discrete time
dynamic programming, a technique particularly suited for computational implementation
given its recursive structure. Specifically, we will deal with a special case of dynamic
optimization that is known as the Quadratic Linear Problem (QLP), a very popular kind
of problem in which the goal is to optimize an intertemporal quadratic objective function
subject to dynamic linear constraints that hold as equalities.” *® The QLP is used here
for a deterministic model because it is also well adapted and widely used for the types of
stochastic models that we will progress to. We have already dealt with a QLP earlier in
the book in the chapter on Thrift in GAMS. However, in that chapter we did not exploit

the recursive nature of the typical QLP. There, we solved the problem with nonlinear

33 Though the choice of the quadratic criterion can be somewhat limiting many nonlinear models can be
usefully approximated by QLP models and then solved with successive approximations.

36 For dynamic models in which there are inequalities, mathematical programming methods like those used
with GAMS in the chapter on global warming are more appropriate than the Riccati methods discussed in
this chapter. On the other hand the quadratic linear control theory models with equality constraints are
most useful when one wants to deal with stochastic elements in the form of additive noise terms and

uncertain parameters.
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programming in GAMS. That approach can easily deal with inequality constraints;
however, it does not use a recursive solution method. Rather it uses a “stacking” method
which transforms a dynamic problem into a larger static one.

In this chapter we turn to MATLAB which uses a vector-matrix paradigm more
suitable to deal with the standard QLP since, as we will see below, the solution of these
problems involves a series of vector and matrix operations. We have already introduced
MATLAB in earlier chapters. In Appendix 16A we provide the listing and in the book
web site we provide the file for the MATLAB representation of the model we will
develop in this chapter. This code was based on an earlier code in GAUSS by Hans
Amman and was created in MATLAB by Huber Salas and Miwa Hattori.

This chapter begins with a brief introduction to the mathematics of QLP. Then, as
a simple example, a small macroeconometric model is introduced. Finally, the model is
input to MATLAB and solved.

1. Introduction to Dynamic Programming

The dynamic programming approach, developed by Richard Bellman (1957), can
be illustrated with a simple example. The diagram in Figure 16.1 represents different
ways of going from node x;, to x,, applying a specific action u to move from one node to
another. As a concrete example, we can interpret the nodes as towns and the actions as
means of transportation (car, plane, train, etc.). Each town has associated a cost (e.g.
room and board). Also each means of transportation has a cost associated to it. The
problem is to find the minimum cost path or, more precisely in the case of dynamic
programming, a feedback rule to determine the optimal action u as a function of the node

we are at.
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X21=3
u=2
u=1
X11=0 p X22=1
u=2
X23=2 |

Figure 16.1 Dynamic Programming Example

In a more general formulation, we can think of the diagram in Figure 16.1 as
representing the time path of a system that can be driven from one state (node) to another
by manipulating controls (the u’s). Going back to a more concrete example, now in time
and not in space as above, you can think of a macroeconomic example in which the state
variable is the inflation rate, or alternatively the level of GDP, and the control variable is
the money supply. The problem would be the one faced by the monetary authority
trying, at a minimum cost for society, to drive inflation down, or the GDP level up, facing
a number of alternative economic paths to achieve that goal.

To solve the problem, the dynamic programming approach uses a recursive

method that works backwards. For the example at hand, the method works as follows.

1) Compute the cost J of each segment in the last stage (that is, add the cost of x,, and

the cost of the corresponding ). There are obviously three values:
J(,x0) =55 J(xy,x,) =4 J(x35,x,) =2

2) Compute the cost of each feasible optimal sequence of segments from the x, nodes:
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J(xy,%,) =min{J(x,,,x,,) + cost of segment (x,,,X;,);
J(x;,,x,,)+ cost of segment (x,,,x;,) }

=min{5+6; 4+3} =7

which implies that the optimal sequence of controls to go from x,, to x,, is [u(x,,,x;,),
u(x;,,x,,)]. Obviously, the optimal sequence (x,,,x,,) 1s [u(x,,,X;;),u(x;;,X,,) ] (the
only feasible) with J(x,,,x,,) =7, while for (x,;,x,,) is [u(x,;,X;;) u(xy;,x,,) ] with
J(Xy3,%4)=6.

3) Compute the cost of the optimal feasible sequence of segments fromx,, :

J(x,,,x,) =min{J(x,,,x,, )+ cost of segment (x,,,x,,);
J(x,,,x,,)+ cost of segment (x,,,x,,);
J(xy,x,,)+ cost of segment (x,,,x,;) }

=min{7+5; 7+2; 6+4} =9
Thus the optimal sequence of controls for the problem is
[u(x)), X0 ), u(Xy s X3 ) u(X55,X%,,) ]
2. A Simple Quadratic Linear Problem

In most economic applications we find problems in which we represent an
economic agent, institution or the economy as a whole as a system of state variables that
evolves through time. This system can be manipulated by means of a set of control
variables in order to minimize (or maximize) an intertemporal cost (or value) function. A
very typical problem is one in which the cost function is quadratic and the economic
system is represented by linear equations. For a very simple one-state one-control case,
the problem is expressed as one of finding the controls (uk )jf;(} to minimize a quadratic

criterion function J of the form:

subject to the dynamic equation:
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) X, =ax, +bu,
and the initial condition
(3) Xo

where:

x = state variable
u = control variable
a = state parameter

b = control parameter

As we already know, the dynamic programming approach works by solving the
problem backward in time, determining optimal feedback rules for choosing the control
vector as a function of the state vector at each stage - each time period - of the problem.
Thus it transforms the original optimization problem into a sequence of sub-problems. Its
crucial notion is the optimal cost-to-go, which is the cost along the minimum-cost path
from a given time period to the terminal period of the problem. For QLP, the cost-to-go
is a quadratic function of the state of the system at time k, which for our particular

problem is

. 1
4 J(x) =%
2
Starting from the terminal period, the cost is
* l 2
(%) J (xN):ExN'

The optimal cost-to-go at period N-/ will be the minimum of the optimal cost-to-
go at state x,, in time N and the cost incurred in time period N-/

(8) J' (N =1) =min{/" (M) + L, (x,, )}

Un—
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where L, , is the cost function J for N-7 in Eq. (1). Thus we have

9) J(N-1)= min{;va + ;x,z\,_l}

Uy—

To carry on the minimization we need, in Eq. (9), all variables expressed at time
N-1. Substituting Eq. (2) for x,, into (9) and expanding we obtain

(10) J(N-1)= min{;xfwaz + Xy Uy ab+ ;uf\,lbz + ;val}

Un_y

The first order condition for the minimization is

ol (v - 1)}

=xy ab+u, b =0
Ouy_,

(11)

Solving (11) for u, , we obtain a feedback rule that gives us the optimal control

as a function of the state
(12) Uy =Gy Xy
where G, _,, known as the feedback gain coefficient, is

a
(13) Gy, = _Z

If we repeat the procedure for J*(N —2), etc., we will observe that a general form

for the feedback rule emerges

(14) u, =Gx, = _%xk

Thus, the feedback rule (14) tells us what the optimal action to take is at each
point in time depending of the state of the system. For our particular problem the

feedback gain coefficient is a constant. However, as we will se later, this is not the case
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for more general problems.

To obtain the solution paths for the controls and the states, we have to start from
the initial condition (3) to obtain the optimal control from Eq. (14). Then we can solve
Eq. (2) to obtain the next optimal state and go back to Eq. (14) to obtain the optimal
control and so on. Thus we can see that the solution paths are obtained from a “forward
loop”. Knowing the optimal states, we can compute the corresponding criterion value
from Eq. (1).

The MATLAB representation of the solution procedure of the simple problem we
presented is straightforward, and it is available in the book web site in file glpsimple.m.
We begin by initializing the problem for four periods (from zero to three), and we assign
values for the parameters and the initial condition. We also set to zero what will be the
vectors containing the optimal states and controls, the variable sum which will contain

the criterion value, and the index variable k.

t 3; a = 0.7; b = -0.3; x0 = -1;
u = zeros(l,t); x = zeros(l,t);
sum = 0; k = 0;

Next we write the forward loop.

xold = x0;

while k <= t;
glarge = - a / b;
uopt = glarge * xold;

xnew = a * xold + b * uopt;
sum = sum + 0.5 * xo0ld"2;

x(1,k+1) = xold;
u(l,k+l) = uopt;
xo0ld = xnew;
k = k+1;

end;

The loop begins with the assigment of the initial condition to the xo1d variable,
and it will run as long as k <= t. At each pass, the values of the feedback gain
coefficient glarge, the optimal control uopt and the optimal state xnew are computed
and stored in the corresponding positions of vectors x and u, and the corresponding value
of the criterion function is computed and added to the sum variable. Finally, the results

are printed, previously transposing the vectors so that the results are displayed in colums.
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u = u
x = x'
Criterion = sum

The solution values for the optimal states and controls are shown in Table 16.1.

k X u
0 -1 -2.3333
1 0 0
2 0 0
3 0 0

Table 16.1 Optimal States and Controls

Notice that the value of x is driven to zero in just one period and with a single
control action. Even if we extend the number of periods, and whatever initial condition
we use, just one single control action will suffice. Why? The answer lies in the fact that
the control variable is not a part of the criterion function to be minimized. Thus, there is
no cost associated to the use of the control and this one can immediately jump to any
necessary value to bring the state variable to zero. However, in most cases this variable
will be included into the criterion function. Moreover, both the state variable and the
control variable will have associated specific weights in the function to represent relative
priorities in terms of the cost of having the state variable off-target versus the cost of
using the control.

In the next section we will present a more comprehensive and general problem. It
will be a many-state many-control problem. There will be weights on states and controls
and also cross terms in the criterion function. And the system of equations will contain
constant terms. We will see that the main logic to obtain a solution is the same we used
in this section. However, some new elements will appear as a part of it such as Riccati
matrices and vectors, and the solution procedure will involve a backward loop together

with a forward loop similar to the one we presented in this section.
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3. A More General Quadratic Linear Problem

The Quadratic Linear Problem (QLP) has linear system equations and a quadratic

criterion and may be written as find

N-1
(uk )k:O
to minimize the criterion
1 “ 1
(15 J= EXN Wyxy +wix, + ( x,Wx, + wyx, +x, Fu, +— 5 u, A u, + i’ukj
k=0

subject to the system equations

(16) X,,, =Ax, +Bu, +c k=01,---,N-1

and the initial conditions

(17) X, given

where
X, = State vector

u, = control vector

W, = state vector priority matrix

F, =cross state — control priority matrix
A, = control vector priority matrix

A, B, and c = parameter matrices and vectors

Also the notation
N-1
(“k )k:O

means the set of control vectors from period zero through period N - 1, that is
(g,uy 1y, uy_,). Period N is the terminal period of the model. Thus the problem is to

find the time paths for the m control variables in each period for the time periods from 0

to N - / to minimize the quadratic form (15) while starting at the initial conditions (17)
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and following the difference equations (16). The derivation of the solution for this model
is described in detail in Chapter 2 of Kendrick (1981). Here we will provide an outline of
the procedure.

We know that for QLP, the cost-to-go is a quadratic function of the state of the

system at time &, which for our problem is
. 1, ,
(18) J (xk)zakakxk T PeX TV

where K, and p, are called the Riccati matrix and vector respectively, and where v, is a

scalar. Starting from the terminal period we have

; 1, ,
(19) J (xN)ZExNKNxN+pNxN+vN.

From Eq. (15), the cost at the terminal period is
| '
(20) ExN Wyxy +wy xy

Thus, from Egs. (19) and (20) we obtain the result that v,, = 0 and the terminal

conditions
(21 Ky =Wy
(22) Py =Wy

The optimal cost-to-go at period N-/ will be the minimum of the optimal cost-to-
go at state x, in time N and the cost incurred in time period N-/

(23) J(N=1)=min{J"(N)+Ly_, (xy_.uy.,)}

Uy

where L, , is the cost function J for N-7 in Eq. (15). Analogously, the optimal cost-to-

go at period N-2 will be

(24) J(N=2)=min{J" (N=1)+ Ly, (xy_.uy,)}

Uy
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and so on. Carrying out the corresponding substitutions in Egs. (23) and (24),
minimizing, solving the first order conditions with respect to the control vectors and
rearranging, we will observe the emergence of a general solution which has the form of a
feedback rule

25) u, = Gx, +g,

where

(26) G, =-{Bk, B +A|'[F,+BK, 4]

27) g =-BK,.B +AJ'[B (K, 0 +pin)+ 4]

and where the expressions for the Riccati matrix and vector are
(28) K, =AK, A+W,~[4K, B+F|[BK, B+ N]'[F'+BK,, 4]

(29) p, = _[A’KkHB + F] [B'K/mB + A, Tl [B’(Kkﬂc + Pra )"’ ;’”k]+ Al(K/mC + P )+ Wy -

These equations look formidable but they essentially involve only the matrices and vector
A, B and ¢ from the system equations (16) and the matrices W and A from the criterion

function (15) in addition to the lead values of the Riccati matrix K, and the Riccati

vector p, ., .

To obtain the solution paths for the controls and the states, we have to start at the
end and work backward. We will follow that procedure here by beginning with the
terminal conditions and working back to the initial period while solving for the Riccati
matrices and vectors. Then we will use the initial conditions, the feedback rule and the
system equations to solve forward in time while computing the state and control
variables.

Thus we begin by integrating backward in time starting with the terminal

conditions
(30) K, =W,
G py=wy
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The backward integration is done by solving the Riccati matrix and vector equations
(32) K, =A4K, A+W, - [A,KlmB + F] [B,KkHB +A;c]_1 [F’ + B’KkﬂA]

(33) pp = _[A’KkHB + F] [B,Kk+1B + A, ]_I[B,(Kkﬂc + pk+1)+ ﬂk]—’_ A,(Kkﬂc + pk+1)+ Wi

As will be shown later in the computational section of this chapter, these

calculations can be programmed into MATLAB and solved in a very straightforward
way. Using Eqgs. (30) thru (33) the procedure is to begin with K, which is obtained from

Eq. (30). This matrix is then used first in Eq (32) to compute K, ,, then K, , is used in
that equation again to compute K, , etc until the K, matrix has been computed. A
similar procedure is used to calculate the Riccati vectors p, using Eqgs. (31) and (33).

Once all the Riccati matrices and vectors have been computed, then a forward
integration loop is started. In this loop the feedback gain matrix G, and vector g, from

Egs. (26) and (27) are computed for each time period using those expressions, i.e.

(34) G, =-|pk,,B +A|'[F,+BK,, 4]
and
(35) 8 = _[B,KkHB + A;}l[B’(Kknc + pk+1)+ ﬂk]

These expressions - like those for the Riccati matrix and vector above are somewhat
complicated but are easily programmed and solved in MATLAB.

The feedback gain matrix and vector are then used in the feedback rule
(36) u, = Gx, + g,

along with the initial condition, x,, to compute the control vector, u,. This value and

the initial state, x,, are then used in the system equations from Eq. (16) 1.e.

(37) X, =Ax, +Bu, +c
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to compute the value of the state vector for the next period, x,. Then the process is

repeated beginning with Egs. (34) and (35) and using Egs. (36) and (37) until the control
vectors, u, , and the state vectors, x,, have been computed for all time periods.

Also, in each pass through the forward loop the criterion value for that period is
computed and added to the amount already accumulated using part of the criterion

function, which is shown here in the tracking version rather than in the quadratic form,
37

1e.,

1 N - 1 Y -
(33) E(xk_xk)VVk(xk_xk)+5(uk_uk)Ak(uk_uk)
where

X, =desired state vector

u, =desired control vector

We shall see shortly how intuitive it is to represent the mathematics of the
solution procedure in MATLAB. Before doing so, we will comment on other types of
problems and solution procedures that arise when we move from the deterministic
framework of the standard QLP problem to an environment in which uncertainty is taken
into account.

The simplest way of introducing uncertainty is by assuming that it takes the form
of additive uncertainty. That is, assuming that the system of linear equations is shocked
in each period by additive noise. When we do this, the mathematical representation of
the QLP problem is modified in two ways. First, the objective function is now an

expected value, thus Eq. (15) becomes:

(39
1 1 ’ - 1 ! ! [ 1 ’ 1
E{J}:E EXNWNXN + Wy Xy +z EXkaXk +w,x, +x, Fu, +EukAkuk +Au,
k=0

where E is the mathematical expectation operator. Second, the system of equations now
has an additive noise term denoted by &, , that is:

37 Later in the chapter we discuss the transformation of the quadratic tracking version of the criterion

function to the quadratic form.
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(40) X, =Ax, +Bu, +c+¢,
with
E{fk}zo E{fké/i}:Qk E{ékéijk}:()

However, it can be shown that the solution procedure for this stochastic problem
is the same as the one for the QLP problem (Egs. (30) to (36)).® This is why the
solution procedure when additive uncertainty is present is named Certainty Equivalent
(CE). Notice that this does not mean that the observed optimal paths for the states and
the controls will be the same in a QLP and a CE simulation, since in the CE simulation
the system of equations will be shocked by additive noise at each time period.

Consider now the case of multiplicative uncertainty. In this case, we have
information about the variances and covariances of the dynamic equations parameters
(matrices 4, B and vector c¢) and we want to exploit that knowledge when computing the
optimal values of the controls to be applied period after period. In formal terms
equations (39) and (40) still characterize the problem. However, it can be shown that the
solution procedure is now somewhat different from the one corresponding to Egs. (30)
thru (36). Indeed, the expectations operator will appear now in those equations, as shown
in Egs. (43) - (46) below.

@) Ky =W,
(42)  py=wy

(43) K, =E\AK, A+ W, —|EU'K, Bi+ F][EB'K,,Bj+ A ] [F'+ E{B'K ., 4]

(44)
P = _[E{A’Kk+1B}+ F] [E{B,KknB}"' A ]I[E{B’ t+1c}+ E{B} Piat /11{} + E{A’Kkﬂc}—'— E{A} Pra T W

(45) =—[E(BK.B)+A, | [F+E{BK,,A4}]

(46)  =-[E{BK, B} +A,] [E{B’Kk+lc}+E{B}' pk+1+/1k}

¥ See Kendrick (1981), Ch. 5.
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Notice that there are now several terms involving the expectations of matrix
products. To compute these expectations, following Chapter 6 in Kendrick (1981) we

have to proceed as follows. In general terms, define:
(47) D=AKB
where D, A, K, B are all matrices, 4 and B are random and K is deterministic. Thus
(48) E{D}=E{AKB}.
A single element in D is d;. Then:
49) E{d}=E{dKb}

where g, is the ith column of 4 and b, is the jth column of B. It can be shown that

(50) E{d,}=(E{a}) KE|b,} +ﬂ’[K2bk,a,]

where
(51) Eb/a,.=E{[b,»—E{b,-}][az--E{az-}]'}

is the covariance matrix for the jth column of B and the ith column of 4 and tr['] is the

trace operator, i.e., the sum of the diagonal elements of the matrix in brackets.

To obtain the optimal paths for the controls and the states, we have to apply Egs.
(41) thru (46) in the same manner with backward and forward loops as we did for the
deterministic QLP case presented earlier.

When a procedure like the one presented above is used to solve a problem in
which multiplicative uncertainty is present, we say that we have an Open Loop Feedback
without update problem (OLF w/o update). Why do we say “without update”? In more
complex simulations like the ones to be presented in Section 4 of the next chapter, given
the knowledge of the variances and covariances of the state equations parameters, we can
consider a passive learning process. To do so, in each time period of the solution a

projection-updating mechanism - usually a Kalman filter - is added to the solution
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method of the optimization problem in order to obtain, in each period, updated values of
next period parameters and of their variance-covariance matrix. You will have a better
idea of this once you get to Section 4 of the next chapter. Details of the mathematical
form of these procedures are in Kendrick (1981) (2002).

In the following we turn to the MATLAB representation of the QLP solution
procedure. Before doing so, in the next section we will introduce a small macroeconomic
model to use as an example. CE, OLF and parameter updating procedures and examples
will be introduced in the next chapter using Duali, a high-level software especially

designed to deal with these types of problems.
4. The Macroeconomic Model

The model is based on the work of Chow (1967) and Abel (1975) and is a very
simple model with two state variables and two control variables that was used early in the
control literature to perform some policy experiments. It was not chosen because of its
nice properties but rather because it is very easy to implement in MATLAB and thus
provides a good starting point to handle the more complex and realistic models like the

ones to be presented in the next two chapters. The two state variables are

C, = consumption
Ik

= investment

and the control variables are

G, = government expenditures

M, = money supply

The reduced form of the model when estimated with data for the period 1954-1I to
1963-1V as reported in Kendrick (1982a), is

(52)  C,, =0.914C, —0.0161, +0.305G, +0.424M, —59.437
(53) I, =0.097C, +.4241, —0.101G, +1.459M, —184.766

Notice that the model exhibits "crowding out" behavior since the sign on the government
expenditure variable in the investment equation is negative.

The model can be written in the notation of the system equations (16) above as
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(16) X, =Ax, + Bu, +c¢ k=01,---,N-1
with
Ck _ G,
Xi I, u, = M,
_[0.914 -0.016 5 0.305 0.424 [ -59.437
10.097 0.424 1 -0.101 1.459 | —184.766

The initial conditions for the model are given by the values of consumption and

investment respectively in 1964-1 as

“ [387.9
(4 Y=l 853

The criterion for the model is of the form

1 -\ ~
(55) JZE(XN_XN)WN(XN_'XN)

This is called a "tracking function" since it is minimized by having the optimal state and
control vectors x, and u, track as closely as possible the desired state and control vectors

X, and i, . So the decision maker chooses the optimal time paths for the desired states

and controls and then solves the model to compute the optimal controls which come as
close as possible to these desired paths while satisfying the dynamic relationships in the
system equations (16).

Compare Eq (55) to the criterion which was discussed in the mathematics section
of this chapter, i.e. Eq. (15)

1 <« (1 1
(15 J= Ex;vWNxN + Wyxy + Z (Ex,'j/kak +wox, +x, Fu, +5u,'(Akuk + /1/:“/(]
k=0
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Equations (55) and (15) are similar since they are both quadratic functions. In fact Eq.
(55) can be transformed to the form of Eq. (15) by expanding the quadratic terms. This

results in the following relationship between the matrices of Egs. (15) and (55).

(56) W, =W,
(57)  w, =%,
(58) F=0

(59) A, =A,

(60) A =-Ad,

In the MATLAB statement we will input the data using the matrices and vectors
in the tracking function (55) and then compute the matrices and vectors for the quadratic
form (15) that was used to derive the algorithm which is implemented in the code.

The data for Eq. (5§5) which are taken from Kendrick (1982a) are as follows:

387.9
61) %, =(1.0075)"

| 85.3

[110.4
62) i, =(1.0075)"
(©2) i, =(1.0075) _147.17}

These two equations indicate that the desired paths for both the states and controls grow
at approximately 3 percent per year or 0.75 percent per quarter over the time horizon
covered by the model.

The priorities (penalty weights) in the objective function (55) are given below.

©) - 625 0 . 0.0625 0
N oo 100 A I 1

6 A=l "V
10 0.444

All of these priorities are the same (relative to the square of the size of the variables)
except those for the terminal state variables in WN where the priorities are 100 times as
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great. This is done to represent the fact that politicians usually care more about the state
of the economy in the period just before an election than they do at other times.

This completes the statement of the model. Now we are ready to incorporate
both the mathematics and the model into the MATLAB representation.

5. The MATLAB Representation

In this section we discuss the MATLAB representation a few statements at a time.
The complete listing is in Appendix 16A. The code statement is begun with the
dimensions of the model. This version has seven time periods, two state variables and

two control variables.

One of the nice features of the MATLAB language in comparison to older languages
such as Fortran and C is that the dimensioning of matrices is done automatically by the

code. Therefore it is not necessary to use something like
Dimension A(2,2), B(2,2), c(2,1)

Rather one can just input the matrices 4 and B and the vector ¢ as shown below and

the MATLAB system takes care of the memory management.

a = [0.914 -0.016;
0.097 0.424];
b = [0.305 0.424;
-0.101 1.459]1;
c = [-59.437;
-184.766];

Notice that the semicolon is used to mark the end of a row in the matrix input.

Likewise we can input the initial conditions, x,, for the state and the base values
for the desired states and controls as vectors. The base values for the states are called
xtar to indicate that they represent target values for the states, x. Likewise for the

control targets which are called utar.

x0 = [387.9;
85.31;
xtar = [387.9;
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85.31;
utar = [110.4;
147.177;

Finally the criterion function matrices are input.

w = [0.0625 0;

0 115
wn = [6.25 O0;
0 1001;
£f =10 0;
0 01;
lambda = [1 0;
0 0.44471;

Now all the data have been input and we are ready to start the matrix Riccati loop.
In preparation for doing so we need to initialize the Riccati matrix K, ,, and vector p, ;.

These are called ko1d and pold to distinguish them from K, and p, which will be called

knew and pnew respectively. Since the Riccati loop proceeds from the last time period
toward the first, period k£ +1 values are the old values and period £ values are the new

values.
% The Riccati Loop
kold = wn; % Boundary condition
pold = -wn*xtar*(1.0075)"t; % Boundary condition

Recall from Egs (18) and (19), which were the terminal conditions for the Riccati

equations, that

(0) K, =W,
G py=wy

Also remember that we need to use input data for the tracking function Eq. (55) and
transform it for use in quadratic form Eq. (15). Thus we need to use the transformations

from Eqgs. (56) and (57) which become for the terminal period

(56) W, =W,
(57)  wy=-W,%,
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Substitution of Eq. (56) into Eq. (30) and Eq. (57) into Eq. (31) yields

(65) Ky =W,
(66) py = _WN)NCN

In Eq. (66) the desired value for the state is based on the initial period target values
grown over the time horizon covered by the model at a rate of 3 percent per year or 0.75

percent per quarter so that

67) %, =(1.0075)"%,

Substitution of Eq. (67) into Eq. (66) then provides the relationship which is used
in the MATLAB representation namely

68) p, =-W,%,(1.0075)"

This is written in MATLAB as

pold = -wn*xtar* (1.0075)"t; % Boundary condition

where t is the number of time periods in the MATLAB representation.
Next we need to compute and store the Riccati matrices K, and for all time
periods as we integrate backward from the terminal time period to the initial time period.

So we need to store a series of (n, n) matrices. We do this by using a three dimensional
matrix with dimensions (n, n, t) for the Riccati matrices K, and (n, t) for the Riccati

vectors p, . This is specified in MATLAB with the statements.

kstore = zeros(n,n,t); % storage for dynamic Riccati matrices
pstore zeros(n,t); % storage for dynamic Riccati vectors
So kstore will be our place to store all the Riccati matrices and pstore will be used to
store the Riccati vectors. These matrices are filled with zeroes as they are created and
later we will replace the zeros with the computed values.

Also, we need to create a place to store the optimal controls and states and that is

accomplished with the MATLAB statements below. Here again the arrays are filled
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with zeroes as they are created and then will be filled with the computed values later.

This is done with the following statements.

c
Il

zeros (m, t+1);
X = zeros(n,t+l);

The time dimension of these arrays is set to t+1 rather than to t to accommodate
the fact that the x array must holds values for period zero as well as for the last period.
As a final step before we begin the backward recursion we need to store the

terminal values of kold in the matrix t of kstore and pold in column t of pstore.

kstore(:,:,t) = kold(:,:);
pstore(l:n,t)

pold;

This completes all the set up required before we began the backward recursion to
compute the Riccati matrices and vectors. The loop itself is begun with the MATLAB

statements

k = t-1;
while k >= 1;

Here the running index « is going to be used for time periods. It is initialized to t-1
because we have already done the calculations for the terminal period t and are ready to
do them for period t-1. Then the while command is used to indicate that the loop
operation should continue so long as k is greater than or equal to 1. Later on at the

bottom of this loop we will find the statements

end; % End of the Riccati loop
that decrease k by one each time the calculation passes thorough the loop. Also the end

statement indicates the point to which the calculation jumps once the condition in the

while statement no longer holds true.
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The next step is to compute the desired paths for the state and control vectors
which are called utark and xtark for u target and x target respectively for all the time

periods. Those variables are then used in turn in Egs. (57) and (60), i.e.

(57w, =-WZE,
(60) 4 = _Akgk

to compute w, which is called wsmall and 4, which is called 1ambdas.

utark = (1.0075%k) .*utar; % Time dependent targets
xtark = (1.0075%k) .*xtar;

wsmall = -w*xtark;

lambdas = -lambda*utark;

Now we are finally in position to compute the Riccati matrix using Eq. (32)

(32) K,=AK, A+W,-[AK, B+F]|[BK, B+A,]'[F'+BK, Al

The representation in MATLAB of this equation is

knew = a'*kold*a+w-(a'*kold*b+f) *inv (b'*kold*b+lambda')* (f'+b'*kold*a) ;

This is a good demonstration of the power of MATLAB to represent a complex
expression in a form that is very close to the mathematical representation. The

differences between the mathematical and MATLAB representations are quickly
apparent. For the inverse of a matrix enclosed in parentheses mathematics uses ( )™

while MATLAB uses the function inv( ). MATLAB does not include the Greek

alphabet so the mathematical symbol A is represented in MATLAB as lambda. Also, as
was discussed earlier, the Riccati matrices K, and K, ,, are represented as knew and

kold, respectively.

Similarly the equation for the Riccati vectors in mathematics is

Pr = _[A!KknB + F] [B'KkuB + A ]71
(33)
[B'(Kkﬁ—lc + pk+1)+ /11{]*‘ A’(Kk+lc + pk+1)+ Wi
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and its MATLAB representation is

pnew=
-(a'*kold*b+f) *inv (b'*kold*b+lambda’') * (b'* (kold*c+pold) +lambdas) +. ..
a'*(kold*ct+pold) +twsmall;

Note that the . .. notation is use in MATLAB to signal to the complier that the rest of the
equation continues on the following line.
Having now used kold and pold we need to transfer knew and pnew respectively

to them for use in the next pass through the while loop. This is done with

kold = knew; % Setup next period
pold

pnew;

Then the Riccati matrix and vector for period k can be placed in the storage arrays that

hold these matrices and vectors for all time periods, i.e.

kstore(:,:,k) = knew(:,:);

pstore(l:n,k) = pnew;

Now we are at the bottom of the backward loop and, as promised above, this loop

is ended with a statement to decrease k by one and then to end the while loop.

No sooner do we finish to backward loop than it is time to start the forward loop

with the statements.

while k <= t-1;

utark = (1.0075%k) .*utar;
xtark = (1.0075%k) .*xtar;
wsmall = -w*xtark;

lambdas = -lambda*utark;
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After k is set to zero the state vector is initialized using x0 and then the desired paths for
the states and controls are computed and used to calculate w, and A, which are

represented in MATLAB as wsmal1l and 1ambdas. Notice that the while loop this time
uses a less than or equal to. At the bottom of this forward while loop we find the

statements

k = k+1;
end;

that increment the x and provide the close for the while loop.
Now we are to the stage where we want to make use of the Riccati matrices and

vectors which we computed and stored away in the backward loop.

kold(:,:) = kstore(:,:,k+1);
pold = pstore(l:n,k+1);

The elements for the Riccati matrix are pulled from storage in kstore and the Riccati

vector are pulled from pstore.
Once the K, matrix is available in ko1d it can be used in the computation of the

feedback gain matrix, G, , as described in Eq. (34)

(34) G =-BK, B +A['|F,+BK, 4]

The MATLAB representation of this mathematical expression is
glarge = —-inv (b'*kold*b+lambda') * (f'+b'*kold*a);

Here again we see how closely the mathematical and MATLAB representations parallel
one another and how much this aids the user in being sure that the mathematics of the
solution procedure are correctly mimicked in the computer code.

Similarly the mathematical expression for the feedback gain vector is

(35) 8 = _[B,KkﬂB + A;c }l[B’(Kk+1C + pk+1)+ ﬂ“k]

and the MATLAB representation is

gsmall = —-inv (b'*kold*b+lambda') * (b'* (kold*c+pold)+lambdas) ;
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Once the feedback gain matrix and vector have been computed they can be used
in the feedback rule (36) along with the state vector x, to compute the control vector u, .

(36) u, = Gpx, + g,
uopt = glarge*xold + gsmall;

Finally, the system equation (37) is used along with x, and u, to compute x,,,
37) X, =Ax, + Bu, +c

xnew = a*xold + b*uopt + c;

Next we need to compute the portion of the cost terms in the criterion function

that are incurred during period k. This is done with the mathematical expression

i 1 '

1 - - - -
(38) E(Xk_xk)n/k(xk_xk)-i_z(uk_uk)Ak(uk_uk)

and the corresponding MATLAB expression

sum = sum + 0.5* (xold-xtark) '*w* (xold-xtark) + 0.5* (uopt-...
utark) '*lambda* (uopt-utark) ;

The variable sum was set to zero at the top of the forward loop and is added to with each

pass through the loop.

Then the values of the state and control vectors are stored

x(l:n,k+1) = xold;
u(l:m,k+1 )= uopt;

and xo1d is set to xnew for the next pass through the forward loop. Also the x index is

incremented.

xold = xnew;
k = k+1;
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Then the forward loop is closed with the statement

end;

One more small bit of clean up is required before we are through with the
computations. We need to store the last state vector and to add on the portion of the cost
function for the terminal period. This is done using a portion of the mathematics from
Eq. (55), 1.e.

1 _ VoA ~
E(xzv _XN) WN(XN _xzv)

These two steps are represented in MATLAB as

x(l:n,t+1l) = xold;

utark = (1.0075%k) .*utar;

xtark = (1.0075%k) .*xtar;

sum = sum + 0.5* (xold-xtark) '*wn* (xold-xtark);

The results for the optimal controls, states and criterion value are then printed

with the statements

u=u'; % The optimal control vector

u

x = x'; % The optimal state vector

X

Criterion = sum % The value of the criterion function

In the preceding we have shown almost all the lines of the MATLAB code for this
solution procedure and model. While it is nice to learn to code a few lines at a time, it is
not nice to view it that way after you have gained some familiarity with it. Therefore
Appendix 16A includes the complete listing of the MATLAB input file.

6. Experiments

The macroeconomic model used as an example here is delightfully small while

you are learning how to represent and solve it in MATLAB, but after you have used it for
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a bit you will discover that it has sharp limitations. Therefore, it is suggested that you
modify it according to your taste while you are experimenting with it.
One limitation is that the coefficients on the control variable are so small that

there is not much latitude to alter the state variable paths.

(52)  C,, =0.914C, —0.016], +0.305G, +0.424M, —59.437
(53) I, =0.097C, +.4241, —0.101G, +1.459M, —184.766

The coefficients of G, in Egs. (52) and (53) are 0.305 and -0.101 respectively. So you

might want to increase the magnitude of these coefficients in order to make the model
more responsive to fiscal policy. Alternatively, if you want more clout for monetary
policy you might increase the size of the coefficients on M .

Also, some of you will not like the fact that government spending 'crowds out'
investment, so you may want to change the coefficient on government expenditure in the
investment equation from negative to positive.

Econometricians will be somewhat dismayed that we are suggesting that
coefficients be altered since these are, after all, estimated from data and should not be
changed willy-nilly. While we agree that one should be careful about empirical work,
the spirit here is to learn about the dynamic response of the model. The estimation of
this model on data from different time periods will indeed yield different parameter
estimates and small changes in specification will also result in changes in the parameter
values. So for purposes of this kind of experiment we would encourage the user to try
some parameter modifications in order to see how that changes the optimal state and
control variables.

Aside from these limitations, the model is reasonably good for becoming
acquainted with the use of optimal control theory to determined macroeconomics
policies. For this purpose the user is encouraged to alter either the desired paths of states
and controls or to alter the priorities W, and A, to see how this affects the results. For
example, some users will want to assign high priority to consumption and others will
prefer to do so for investment. Some users will want to change the desired path for
government expenditures so that it declines rather than rises and then provide a high
priority weight in the (1,1) element in A, to insure that this result is obtained. Some
users will want to insure that the economy follows the desired paths in all periods and
others will want instead to use high priorities only on the terminal period to be sure that

the economy is in good shape just before the next election.
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7. Further Readings

For a general treatment of dynamic programming methods and their applications
to economics see Sargent (1987) and Adda and Cooper (2003). More advanced
treatments can be found in Bertsekas (1995) and Stokey and Lucas (1989). For detailed
derivations of the QLP, CE and OLF procedures and for projection-updating
mechanisms, see Kendrick (1981) (2002). For a book on econometric and financial
analysis with GAUSS, a language that is similar to MATLAB and which is widely used

in econometrics, see Lin (2001).
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Appendix 16A
MATLAB Representation of the Abel Model

Title: Quadratic-Linear Tracking problem for Abel

Program name: glpabel.m

Based on the Chapter 4 of Stochastic Control for Economic Models
example by David Kendrick.

GAUSS version by Hans Amman, modified to MATLAB by Huber Salas
with subsequent changes by Miwa Hattori and David Kendrick

to implement a deterministic,

two-control version of the Abel (1975) model (Jan 2005)

Computes the optimal cost-to-go, control and state vectors.

Preliminaries

t=7; n=2; m=2;
a = [0.914 -0.016;
0.097 0.424];
b = [0.305 0.424;
-0.101 1.459];
c = [-59.437;
-184.766];
x0 = [387.9;
85.3];
xtar = [387.9;
85.31;
utar = [110.4;
147.171;
w = [0.0625 0;
0 117
wn = [6.25 0;
0 1001;
f = [0 0;
0 01,
lambda = [1 0;
0 0.4447;
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The Riccati Loop

kold = wn; % Boundary condition

pold = -wn*xtar* (1.0075)"t; % Boundary condition

kstore = zeros(n,n,t); % storage for dynamic Riccati matrices
pstore = zeros(n,t); % storage for dynamic Riccati vectors
u = zeros(m,t+1l);

x = zeros(n,t+1l);
kstore(:,:,t) = kold(:,:);
pstore(l:n,t) = pold;
k = t-1;
while k >= 1;
utark = (1.0075%k) .*utar; % Time dependent targets
xtark = (1.0075%k) .*xtar;
wsmall = -w*xtark;
lambdas = -lambda*utark;

knew = a'*kold*a+w-
(a'*kold*b+f) *inv (b'*kold*b+lambda') * (£'+b'*kold*a) ;
% Computing the Riccati matrices

pnew =

-(a'*kold*b+f) *inv (b'*kold*b+lambda’') * (b'* (kold*c+pold) +lambdas) +...

a'*(kold*ct+pold) +twsmall;
% Computing the tracking equation

o)

knew; % Setup next period

kold
pold = pnew;
kstore (:, :, k)

knew (:, :);

pstore(l:n, k) = pnew;
k = k-1;
end; % End of the Riccati loop
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while k <
utark =
xtark =

wsmall
lambdas

kold(:,
pold =

glarge
gsmall

uopt =

Xxnew

orward loop

= t-1;
(1.0075%k) . *utar;
(1.0075%k) . *xtar;

= —-w*xtark;
= -lambda*utark;

:) = kstore(:,:,k+1);
pstore(l:n,k+1);
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= -inv(b'*kold*b+lambda’') * (f'+b'*kold*a) ;
= -inv(b'*kold*b+lambda’') * (b'* (kold*c+pold) +lambdas) ;

glarge*xold+gsmall;
a*xold+b*uopt+c;

sum = sum+0.5* (xold-xtark) '*w* (xold-xtark)
+0.5* (uopt-utark) '*lambda* (uopt-utark) ;

x(l:n,k+1) = xold;
u(l:m,k+1l) = uopt;
xo0ld = xnew;
k = k+1;
end; %
% The Last Period
x(l:n,t+1l) = xold;
utark = (1.0075%k) .*utar;

xtark = (

1.0075%k) . *xtar;

End of the forward loop

sum = sum+0.5* (xold-xtark) '*wn* (xold-xtark);
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oo

Print the solution

o°  o°

u=u'; % The optimal control vector

u

x = x'; % The optimal state vector

X

Criterion = sum % The value of the criterion function
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This third part of the book is different than the first two. The first two parts
covered a wide variety of topics in a way that provides an introduction to the
computational methods used in those fields. In contrast, this part zeroes in on a narrow
area of computational economic research that is of particular interest to us. The area is
the application of stochastic control theory methods to macroeconomic stabilization
models. In the past we have done three kinds of work in this area: analytical (viz.
Mercado (2004)), computational with the MATLAB software (viz. Amman and Kendrick
(2003)) and computational with the Duali software (viz Amman and Kendrick (1999d)).
Here we focus on the third of these three types of research since the Duali software
provides a low-entry cost way to begin work in this field. However, the Duali software
represents a sharp contrast to the software used in the first two parts of this book. The
software systems used earlier in the book are all high quality commercial software. In
contrast, the Duali software is experimental software that is under development by two of
us (Amman and Kendrick).

The Duali software is intended to provide a point and click interface for a
stochastic control program that can be used to solve models with a quadratic tracking
criterion function, linear systems equations and stochastic specifications that may include
additive and multiplicative noise terms, measurement errors and uncertainty about initial
conditions. It is not a commercial product and has not had the extensive testing that is a
part of such products. Rather it is an academic piece of software for which there is no
support staff or help line. Also, the software has not yet even reached the “beta” stage
and thus is prone to crashes. It therefore must be used with care since it can cause one to
lose not only Duali input files but also input files for other applications that are running
concurrently with Duali.

On the other hand, this software has been used successfully by many
undergraduate and graduate students in classes at the University of Texas and has
provided an easy “on ramp” for many students into the field of stochastic control. In
addition, it has been used by a number of graduate students in developing some parts of
their Ph.D. dissertation research. Therefore, we suggest that if you decide to move
forward into this part of the book the gains may be substantial, but you should proceed

with considerable caution.
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If you choose to go forward, it is best to begin by making use of the User’s Guide

for the Duali software which can be found by going to the book web site at

http://www.eco.utexas.edu/compeco

and proceeding to the Software section of the web site. The User’s Guide will introduce
you to the capabilities of Duali and take you through the steps to setup and solve a simple
macroeconomic model. Once you have done that, the material in this third part of the

book will follow logically.
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Stochastic Control in Duali®

In an earlier chapter we presented the Hall and Taylor macroeconomic model, a
standard nonlinear dynamic model for an open economy with flexible exchange rates.
There we represented and simulated the model in GAMS, and we also introduced a basic
form of optimal policy analysis. Working with the same model, in this chapter we will
take some steps forward in the realm of policy analysis providing an introduction to the
field of stochastic control.

A stochastic control problem can be posed as one in which a policymaker,
manipulating a set of control variables, tries to influence the dynamics of an economic
system in order to achieve some targets. For example, in a macroeconomic setting, the
policymaker may use some controls - policy variables such as the money stock or
government expenditure - to influence the behavior of the economy in order to maintain
some target variables such as unemployment and inflation as close as possible to their
desired paths. The economic model is usually represented in state-space form, that is, as
a first-order system of dynamic equations. The policymaker has an objective function -
usually a quadratic one - which specifies the target variables, the desired paths and the
relative weights put on the achievement of each target.

The solution of deterministic and stochastic control problems quickly becomes
very involved. Thus, to make our task feasible, we have to rely on computational
methods and specialized software. Duali*” is software that can receive as inputs the
desired paths and corresponding weights for target and policy variables and the state-
space representation of the economic model. It can then be used to generate simulation
results and to compute the optimal policy rule and the implied solution paths for policy

and target variables using the methods described earlier in the chapter on Dynamic

3% This Chapter draws extensively on both the verbal and mathematical development in Mercado and
Kendrick (1999). Kluwer Academic Publishers have kindly granted us permission to reuse here substantial
materials from our previously published paper.

% See Amman and Kendrick (1999a). Special care should be taken when doing the experiments in this
book which use Duali. If you have not already read about the Duali software in the introduction to this part

of the book, please go back and do so.
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Optimization. In what follows, we will use Duali to perform first deterministic and then
stochastic control experiments with the state-space representation of Hall and Taylor’s

model.
1. The Hall and Taylor Model in State-Space Form

Much undergraduate study of macroeconomics makes use of dynamic nonlinear
models in levels; for example the levels of government expenditure and the money
supply are used to determine the levels of consumption, investment, output, interest rates
and net exports. In contrast, much empirical macroeconomic research centers on
dynamic /inear models in percentage deviations of variables from their steady state
values. In these empirical models one alters the percent deviation of government
expenditures and the money supply from their steady state levels and analyzes the
resulting deviations of consumption, investment, output, interest rates and net exports
from their steady state levels. However, the bridge between these two types of models is
frequently not clear.

Therefore, for this chapter we have begun with the dynamic nonlinear Hall and
Taylor model in levels that we used with GAMS earlier in the book and have transformed
it into a linearized model in percentage deviations of variables from their steady state
values in a similar fashion to the approach we used in the chapter that includes the
Johansen type CGE model. Also, we will use here a four-equation linear version of the
original Hall and Taylor twelve-equation nonlinear model which will capture the
essential behavior of the original model. Thus, our four-equation model’s variables will
be

Endogenous Variables

s

Y = GDP

R = Real Interest Rate

plev’ = Domestic Price Level

E = Nominal Exchange Rate
Policy Variables

M’ = Money Stock

G = Government Expenditure
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Exogenous Variables
plevw” = Foreign Price Level

YN = Potential GDP

The asterisks indicate “percent deviations”, for example, Y is the percent deviation of
output from its steady state value. This variable structure is one of the most common
ways in which textbook macroeconomic models are presented. To transform the original
twelve-equation nonlinear model we first collapsed it, by equation substitution, into a
four-equation version. We then linearized these equations and represented the resulting
model in matrix form. Next we solved the model for its reduced form representation,
obtaining a third-order system of difference equations. Finally, we reduced that system
to a first-order system, that is, to its state-space form. Details on these transformations
are provided in Appendix E.

The model’s state-space representation is

(1) X, = Ax, + Bu, +Cz,

where x is an augmented state vector defined as

where

and where XL and XLL are equal to the vector X lagged once and twice respectively. We
define the x vector in this way by augmenting the original state vector with lagged values
in order to reduce the linearized model from a third-order representation to a first-order
representation (see Kendrick (2002), Ch. 2). The control vector and the exogenous

variables vector are defined as
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plevw’ }

Also, the parameter matrices in the system equations are

[-0.346 0

7.811
0.8
1.154
1

S O O O o o O

0

S O O O o o = o O

—-0.606
13.669
1.4
2.019
0

S O O O o = O

[ 0.433

0
—2.442
0

S O O O o o O

0
0
0

0
0
0
0
1
0
0
0
0

0.231]

-9.763 4.386

0
1.097
0

S O O O o o O

S O = O O O O o o o o o

0.087
-1.953
-0.2
—-0.288
0

S = O O O O O

—_ O O O O O O o o o o o
S O O O O O O o o o o o

0.346
—7.811
—-0.800
-1.154

S O O O O o O

S O O O O O o o = o o o

0.087
—-1.953
-0.2
—-0.288

S O O O o o O

S O O O O O O o o o o o
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where each of these matrices values is derived from the corresponding combination of
parameter values in the original twelve-equation nonlinear Hall and Taylor model. See

Appendix E for these derivations.
2. Introduction to Optimal Policy Analysis Methods with Duali

In an earlier chapter we used GAMS to study the responses of Hall and Taylor’s
model to changes in the policy variables. Optimal policy analysis employs a sort of
“reverse” analysis. It begins by posing this question: how should policy variables be set
in order for the target variables to follow pre-specified paths?

The most popular way of stating this problem is as a Quadratic Linear Problem
(QLP). We have already introduced this type of problem in the Thrift Model chapter and

the Dynamic Optimization chapter. In formal terms, we express our problem here as one
of finding the controls (u)fi , to minimize a quadratic “tracking” criterion function J of the

form:

=

-1

1 -7 - 1 Z T - ~ -
) Jzi[xzv_xzv] WN[xN—xN}rE ([xk—xk] W, [xk—xk}{uk—uk] A, [uk—uk])

=~
Il

0

subject to the state-state representation of the economic model given by Eq. (1), where
xand u are desired paths for the state and controls variables respectively and W and A

are weighting matrices for states and controls respectively.

The quadratic nature of the criterion function implies that deviations above and
below target are penalized equally, and that large deviations are more than proportionally
penalized relative to small deviations. This particular form of the criterion function is not
the only possible one, but is the most popular.*!

For simplicity in the following we will drop the asterisk from the variables. Thus
we will use Y, R, plev and E instead of Y, R*, plev’ and E” to indicate the state
variables. However, we are referring to the variables as percent deviations rather than as

levels.

*! For a discussion of the properties of different criterion functions, see Blanchard and Fischer (1989),

Chapter 11.
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We will assume that the policy goal is to stabilize Y, R, plev and E around steady-
state values (that is, around zero). High and equal weights** will be put on stabilizing ¥
and plev, lower and equal weights on R and E, and even lower and equal weights on the
policy variables M and G. Neither the desired paths nor the weighting matrices (shown

below) will vary with time.
100

50
100

W - 0 A:[zs }
0 25

Let’s assume, for example, that the economy is going through a recession
provoked by a temporary adverse shock to net exports that causes Y to be 4% below its
steady-state value. Given the weight structure adopted above, what would be the optimal
paths for government expenditure (G) and the money supply (M) in order to bring the
economy back to its steady-state? How do the optimal paths for the state variables
compare against what would be the autonomous response of the system to that kind of
shock? To answer these questions, we perform two experiments: (1) an experiment to

obtain the optimal paths and (2) an experiment to get the autonomous response of the

*2 There is a conceptual difference between the weights used here and those that arises when the variables
of interest are in levels rather than in percent deviations and also where the variables are expressed in
different units of measurement. For instance, if GDP is measured in dollars and prices are measured by an
arbitrary price index, equal weights on these two variables will probably imply different policy priorities
and vice versa. Since all variables in the state-space representation of Hall and Taylor’s model are in
percent deviations from steady-state, weighs and priorities can be considered as equivalent within certain
limits. However, it should be clear that, for example, an interest rate 50% below steady-state values is
something feasible, while a level of GDP 50% below steady-state is not. In such a case, there is not an

analogy between weights and priorities. See Park (1997).
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economy. To run this simulation, use program ht-01.dui making the appropriate
changes. (See the “Model Description” item in the “Specification” menu in Duali once
the ht-01.dui file is opened in the application.)

To perform the first experiment in Duali, we have to set the problem as a
deterministic one, set all the desired paths for states and controls equal to zero, impose
the corresponding weights on states and controls, set an initial value for Y equal to -0.04,
and solve the problem. Let’s see in more detail how to do this.

Below is the initial screen of the Duali software. The File and Edit menus are
standard. The Specification and Data menus contain sub-menus related to the structure of
the problem to be solved. The Solve menu presents options for different solution
methods and the Results menu enables one to display the tables and graphs of the results.
The Transformations menu contains several options to change the original structure of the
problem, and the Preferences menu contains options related to the format of the display

of results and to some specific types of experiments.

|EZ puali - (untitled)

File Edit Specification Data Solve Results  Transformations  Preferences Character Help

Figure 17.1 Duali Main Window

We begin by opening the ht-01.dui file using the File menu. Then select
Specification:Stochastic Terms and notice that the problem is set as deterministic, as

shown in Fig. 17. 2.

| Stochastic Terms |"5_<|

Stochastic Terms

& Deterministic

" Stochastic with Additive Moize

7 Stochastic with Parameter Lncertainty
—

Stochastic with Measurement Error

Cancel

Figure 17.2 Stochastic Terms Dialog Box
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Then, from the Specification:Functional Form option we obtain the dialog box

shown below.

Form Specifications

Criterion System Equations
Form Form
&+ Quadratic Tracking * % Regular®
" Quadratic Form " Pindyck
Time ¥arying Elements Forward Variables
W State Priority Lambda Control Priority = Mo *
f« Constant ~ Yes
" Terminal Diff * ' Constant* i .
~ Time Varying ~ Time ¥arying Time ¥arying Elements
Policy to Parameter
xdes Desired States udes Desired Controls * No™*
+ Constant = Constant ™ Yes
 Time Varying * " Time Varying * z Exogq Variables

f* Constant
Cancel ~ Time Varying

* Required Options YWhen Using the DUAL or DUALPC Code

Figure 17.3 Form Specifications Dialog Box

In Fig. 17. 3 look at the Criterion side of the dialog box and at the Form section in
that side. There one can see that the problem is a Quadratic-Tracking problem. In fact,
we will try to minimize deviations of target variables from zero, since the model
variables are already expressed in percent deviations from steady-state values. The W
State Priority and Lambda Control Priority sections show that the weights on state and
control variables will be constant, that is, the same value for all periods. Desired state
and control variables will also be constant (all zeroes). The right hand side of the dialog
box shows the specification for the System Equations. In particular, the Form section
shows that the problem is written in (1) regular form, that is the standard state-space
representation, (2) it does not contain forward variables (as will be the case of models
with rational expectations discussed later) and (3) the policy variables do not affect the
model parameters in this particular model. Finally, the exogenous variables remain
constant over the time periods.

From the Data:Size menu we obtain the dialog box below.
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Model Size E3]
State Variables Control Yariables Exogenous Variables
hz 2 2
Initial Period Terminal Period
0 15

Add for Forward Yariables - -----

Maximum Lead Iteration Limit Conwvergence Tolerance

If smaller than 6 decimal
digits enter in E format
Uncertain Parameters Monte Carlo Huns

I 4

Add this as well for OLF and DUAL - - - -

Observation Yariables

—

Add for OLF - - - - - - —-— - - —-

Figure 17.4 Model Size Dialog Box

The model is specified as containing twelve state variables (actually, four
contemporaneous and eight lagged), two control variables and two exogenous variables,
and the simulation covers sixteen periods.

The Data: Acronyms menu option contains the assignment of labels to the model
variables and to the time periods. The Data:Equations section contains the numerical
values for matrices 4, B, C and for the initial state variable values while the
Data:Criterion section contains the values for the " and A weighting matrices and the
desired paths values for state and control variables.

Choosing the menu option Solve:QLP the problem is solved as a Quadratic Linear
Problem using the solution procedure described in the chapter on Dynamic Optimization.
The numerical results are then displayed automatically. The Results menu options allow
us to define different display, plotting and printing options.

The results of this experiment to obtain the optimal states are shown in Figure
17.5. Also, the graphs in that figure show the autonomous state and control paths. In
order to obtain the autonomous path of the system we impose zero weights on the state
variables, very high and equal weights on the controls and, as in the first experiment
above, set an initial value for Y equal to -0.04. This has the effect of leaving the state
variables free to take on any values while restricting the policy variables not to deviate

from their steady state values.

399



Chapter 17 Stochastic Control in Duali

The vertical axes in Fig. 17. 5 show the percent deviations from steady-state
values while the horizontal axes show the time periods. In these plots a value of 0.02
means “2% above steady-state”. It does not mean “2% increase with respect to the
previous period”. Thus, a 10% permanent increase in M means that the money stock is
increased by 0.1 at the initial period and kept constant at the new level from then on.

Since all variables (endogenous, policy and exogenous) are in percent deviations, their
steady-state values are all zeroes.

GDP (Y) real interest rate (R)
0.04 -

......

o

- T
N+
w +

4567 89101NRBUB
‘ ------- Autonomous Optimal

price level (plev) nominal exchange rate

0 2 4 6 8 n 2 1 0 2 4 6 8 n 2 1

Figure 17.5 Autonomous Response vs. Optimal Control Experiments

The optimal solution paths for the states outperform the autonomous responses of
the system for all four target variables. This comes as no surprise, though it may not
always be the case. Indeed, remember that the optimal solutions are obtained from the
minimization of an overall loss function. On some occasions, depending on the weight

structure, it may be better to not do as well as the autonomous response for some targets
in order to obtain more valuable gains from others.
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Why does the autonomous path of the economy display the observed behavior?
Here is how Hall and Taylor explain it: **

“With real GDP below potential GDP after the drop in net exports, the price level
will begin to fall. Firms will have found that the demand for their products has fallen off
and they will start to cut their prices (...). The lower price level causes the interest rate to
fall.** With a lower interest rate, investment spending and net exports will increase.*” The
increase in investment and net exports will tend to offset the original decline in net
exports. This process of gradual price adjustment will continue as long as real GDP is
below potential GDP.”

What explains the observed optimal path of the four variables of interest? We can
see in Fig. 17. 5 that Y is brought up very quickly, going from 4% below steady-state to
3% above steady-state and then decays slowly to its steady-state value. This performance
could be attributed to the more than 6% increase in G that can be observed in the optimal

policy variables’ paths (Figure 17.6).

Optimal M and G
0.07 —+

0.06 -
0.05 1%
004 +'

003 1 %
002 1
001+

_001 7\/

-0.02 Attt
0 2 4 6 8 n 2 u“u

‘ OptimalM - - ----- Optimal G

Figure 17.6 Optimal Policy Variables Paths

Meanwhile in Fig. 17. 5, R experiences almost no variation when compared to the
big drop of almost 35% implied by the autonomous behavior of the system. Once again,

the increase in G puts an upward pressure on the interest rate, thus keeping it from

* Hall and Taylor (1997), page 232.

* Since less money is demanded by people for transactions purposes.

* Since the price level falls much less than the real interest rate during the first periods of the adjustment,
the nominal exchange rate has to fall too, as can be derived from equation 9 in the original Hall and
Taylor’s model. This implies that the real exchange rate will fall, then causing net exports (see equation 10)

to rise.
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falling. Finally, the nominal exchange rate has to go up to compensate for the fall in
prices, given that the real interest rate does not change much.

We can also see in Fig. 17. 6 that monetary policy plays a minor role when
compared to fiscal policy.* Even though we put the same weights on both variables,
government expenditure appears to be more effective in bringing the economy out of its
recession given the weight structure we put on the target variables.

It is interesting to analyze the different combinations of behavior of variables that
the policy maker can achieve given a model and a criterion function. The curve showing
those combinations is known as the policy frontier.*’ For instance, we may want to
depict the trade-off between the standard deviations of Y and plev in Hall and Taylor’s
model when, as above, Y is shocked by a negative 4% in period zero. To obtain the
corresponding policy frontier, we have to vary the relative weights on Y and plev,
perform one simulation for each weight combination and compute the corresponding
standard deviations. The results of six such experiments, keeping the same weights on
the remaining states and controls as in the above simulation, are shown in Table 17.1 and
Figure 17.7.

Experiment | WeightonY | Weigh on plev STDY STD plev
1 100 0 0.0479 0.0500
2 80 20 0.0489 0.0466
3 60 40 0.0499 0.0440
4 40 60 0.0509 0.0419
5 20 80 0.0520 0.0401
6 0 100 0.0531 0.0386

Table 17.1 Optimal Policy Frontier

* Notice that the optimal values for the policy variables are computed for periods 0 to 14 only. Given that
we are working with a state-space representation of the model, policy variables can only influence the next
period state variables. That is, the controls at period 0 are chosen, with a feedback-rule, as a function of
period O states, but they determine period 1 states, and so on. See Kendrick (1981).

" See Hall and Taylor (1997), Chapter 17.
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Policy Frontier for Y and plev
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Figure 17.7 Optimal Policy Frontier Graph

The policy frontier for ¥ and plev is clearly shown in the graph above, where each
diamond represents the result of an experiment. The higher the weight on Y relative to
that of plev, the lower its standard deviation, and vice versa. The flatness of the curve
indicates that it is easier to achieve a reduction in the percent deviation from target for
plev than for Y. Of course, shape and location of this particular policy frontier are
conditional on the weight structure imposed on the model’s other variables. For example,
if we increase the weigh on the policy variables, the policy frontier will shift up and to
the right, farther away from the origin (the (0,0) point of zero deviations for Y and plev).
This will be due to the more restricted possibilities for actively using the policy variables

to reach the targets for Y and plev.

3. Stochastic Control

We will now begin to take uncertainty into account. Indeed, macroeconomic
models are only empirical approximations to reality. Thus, we want to consider that there
are random shocks hitting the economy every time period (additive uncertainty), that the
model parameters are just estimated values with associates variances and covariances
(multiplicative uncertainty), and that the actual values of the model’s variables and initial

.. . . 48
conditions are never known with certainty (measurement error).

* See Kendrick (1981).
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Stochastic control methods artificially generate a dynamic stochastic environment
through random shocks generation. They use specific procedures for choosing the
optimal values for each period policy variables: Certainty Equivalence (CE) when there is
additive uncertainty only, Open Loop Feedback (OLF) when there is parameter
uncertainty, and DUAL (adaptive control) when there is active learning. Also there are
specific mechanisms of updating of parameter estimates. In that way, these methods
allow us to perform sophisticated simulations.

In this section, we will perform experiments incorporating some forms of additive
and multiplicative uncertainty into Hall and Taylor’s model. We will proceed in three
steps. First, we will analyze the differences in qualitative behavior of the policy variables
when some different procedures for choosing their optimal values are used (specifically,
CE versus OLF w/o update). Second, we will compare the quantitative performances of
the CE and OLF procedures within artificially generated stochastic environments
including passive learning mechanisms. Finally, we will compute an optimal policy
frontier.

Years ago William Brainard (1969) showed that, for a static model, the existence
of parameter uncertainty causes the optimal policy variable to be used in a more
conservative way as compared to the case of no parameter uncertainty. However, this
finding cannot be translated to the case of dynamic models. The existence of dynamics
makes the situation much more complex and opens new possibilities for policy
management. One of the earliest applications of an OLF procedure in a dynamic setting
was by Tinsley, Craine and Havenner (1974). Some analytical results have been
provided by Chow (1973), Turnovsky (1975), Shupp (1976), Craine (1979) and more
recently by Mercado and Kendrick (2000) and Mercado (2004) in connection with the
qualitative behavior of the policy variables when the OLF procedure is used in a model
with one state and one or two controls. There are no straightforward theoretical results
for the case of models with several states and controls.

As shown earlier in the chapter on Dynamic Optimization, the procedure for
choosing the controls in the presence of parameter uncertainty (OLF) differs from the
standard deterministic QLP procedure or its “certainty equivalent” (CE) in that in the first
case the variances and covariances associated with the model parameters have to be taken

into account.
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To illustrate some possible outcomes, and to show a first contrast between
patterns of behavior generated by QLP and OLF w/o update procedures®, we will
perform an experiment with Hall and Taylor’s model. As in the previous section, we will
assume that Y is 4% below its steady-state value at time zero and we will keep the same
weight structure and desired paths. We will also assume that there is uncertainty in
connection with six out of the eight control parameters in the B matrix, and that the
standard deviation of each of these parameters is equal to 20%.

To carry out the experiment, we use the program ht-02.dui. This program is
basically the same as ht-01.dui, with some changes that we discuss below. From the
Specification:Stochastic Terms option we see that the problem is set as stochastic with

parameter uncertainty.

Stochastic Terms [zl

Stochastic Terms

" Deterministic

™ Stochastic with Additive Moise

o Stochastic with Parameter Uncertainty
~

Stochastic with Measurement Ermor

Cancel

Figure 17.8 Stochastic Terms Dialog Box

Then, from the Data:Size option, we see that we defined 6 uncertain parameters
and use 1 Monte Carlo run, as shown in the dialog box below.

* For a detailed discussion of the OLF without update procedure see Ch. 5 “Open Loop Feedback without
Update” in Amman and Kendrick (1999a).
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Model Size <]
State Variables Control Variables Exogenous Yariables
Initial Period Terminal Period

Add for Forward Variables - - - ---

Maximum Lead Iteration Limit Conwvergence Tolerance

I -

Add For OLF - — - — - —— = — - — — - If_s!'naller th_an 6 decimal
digits enter in E format
Uncertain Parameters Monte Carlo Runs

Com— D—

Add this as well for OLF and DUAL - - - -

Observation VYariables

—

Figure 17.9 Model Size Dialog Box

From the Specification:Source of Random Terms main menu option, we select the
Read In option, as shown below.

Source of Random Terms r5_<|

Source of Random Terms
t~ RHead In

" Generate internally

If generated internally . . .

Initial Values

[ WUncertain Parameters
or [ Certain But Different From Mean

[ Uncertain State Variables - if meas error

Moise Terms for All Periods

[ Swstemnm Equations

[ Measurement Equations
[ Time-Varying Parameter Eq Cancel

Figure 17.10 Source of Random Terms Dialog Box
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However, we set those random terms all equal to zero. To do so, we go to the
Data:Additive Noise Terms main menu option and, as shown below, select the XSIS

option.

Stoch Elem: Additive Noises X

" 0, Additve Moize Covarance

(¥ %55, Additive Moize Terms

k. | Cancel

Figure 17.11 Stochastic Elements Additive Noises Dialog Box

When doing so, a dialog box containing the matrix of additive noise terms will display,
and we will see that all its element are set to zero.

The information related to the uncertain parameter is provided in Duali by means
of one vector and two matrices. The theta vector of the initial values of uncertain
parameters (THO) contains the uncertain parameters values. The matrix that indicates
which parameters in the model are treated as uncertain (ITHN) provides a mapping from
the position in the THO vector to position in the system equations matrices. The first
column indicates the matrix (0 for the 4 matrix, 1 for the B matrix and 2 for the ¢ vector)
and the second and third columns indicate the row and column number of the parameter
in the matrix. Finally, SITTO is the variance-covariance matrix corresponding to the

uncertain parameters.

[ b, =0.433 (11 1]
b;, =0.231 112
3) — by, =-9763 ITHN - 121 ’
by, = 4.386 122
by =—2.442 141
| by, = 1097 | 1142
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3.81264
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076947 ’
0.23853
0.04813 |

All three matrices will remain constant during the simulation. The elements in SITTO are

computed by taking 20% of the corresponding element in THO and then squaring the

result. Thus, for the b;; coefficient this is

[(0.2) (0.433)]> = 0.00749.

From the Data:Parameter Uncertainty menu option we obtain the dialog box

below. When selecting each of the first three options, the corresponding vector or matrix

will be displayed.

Stoch Elem: Uncertain Parameters

" THO, Theta Means
 SITTO. Theta Covariance

" ITHN, Theta to A, B and c Mapping

Adwvanced Specification
If Using Initial Theta Certain but
Different From Mean

" THODIFF, ThetaO Different

(<]

Cancel

Figure 17.12 Stochastic Elements Uncertain Parameters Dialog Box

The graphs below in Figure 17.13 show the results obtained for government

expenditure and for the money supply when selecting the main menu option Solve: OLF
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(w/o update). They also contrast these results with those corresponding to the
deterministic (QLP) solution as obtained in section 2 of this chapter using the program

ht-01.dui.

government expenditure (G) 0,004 money supply (M)

0.002 +

0.08 -

0.06 | i
-0.002 4
-0.004 4\
-0.006 1)
-0.008 |
-0.01 1

0012 |
-0.02 Attt 0014
0 2 4 6 8 D L 1 0 2 4 6 8 1 L u

QLP «---n-- OLF w/o update | \ QLP ------- OLF w/o update

0.04 +

002 +

Figure 17.13 Optimal Policy Variables Paths (QLP vs. OLF w/o update)

As can be seen in the graphs above, the use of government expenditure is slightly more
“cautious” with the OLF w/o update procedure in the first few periods. This is in line
with the Brainard result mentioned before. However, the reverse is true for the case of
the money supply, which is used “more aggressively” with OLF w/o update. Thus, we
can see how going from a univariate to a multivariate setting may have important
consequences, as is also the case of a change from static to dynamic models.

It is interesting to explore the consequences of increasing the level of uncertainty
of the model parameter’s corresponding to one of the policy variables. For example, let’s
assume that we now double the standard deviation of the parameters corresponding to
government expenditure (parameters b, from 0.00213 to 0.00853, b, from 0.76947 to
3.07791 and b4, from 0.04813 to 0.19254 while leaving the other elements of SITTO
unchanged) i.e. increasing the variance of these three parameters that are associated with

government expenditures from 20% to 40%. Then, the SITTO matrix becomes:

[0.00749
0.00853
3.81264
3.07791
0.23853
0.19254

4) SITTO =
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The graphs below contrast the behavior of the policy variables for this experiment
(named OLF w/o update-B) against their behavior shown by the same variables in the
experiment analyzed above (named, as above, OLF w/o update). To run this experiment,

use file ht-02.dui, introducing the corresponding changes in the SITTO matrix.

0.08 government expenditure (G) money supply (M)

0.06 -
004 N\°

002 + N

-0.02 1+
0 2 4 6 8 n » wu 0 2 4 6 8 1 1 u
OLFB ------- OLF w/o update

OLF-B ------- OLF w/o update ‘ ‘

Figure 17.14 Optimal Policy Variables Paths (Increased Uncertainty)

As one could expect, the increase in the relative uncertainty of government
expenditure parameters induces a more cautious use of that policy variable, at least
during the first periods. At the same time the money supply, now with a relatively lower
associated uncertainty, is used more actively, also during the first periods. Though these
findings seem plausible, they do not reflect any theoretical result, since such results are
not yet available. As with the previous experiment, we could perhaps find different

results for a different model.
4. Stochastic Control with Parameter Updating

We will now move towards a more complex stochastic environment. As in the
previous section, we will assume that that some of the model parameters are uncertain,
but now we will also assume that the model is constantly shocked by additive noise, that
the true model is not known to the policy maker, and also that a passive-learning process
takes place. We will perform several Monte Carlo runs to contrast the performance of
two procedures: CE and OLF.
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The general structure of each Monte Carlo run will be as follows. At time zero, a
vector of model parameters will be drawn from a normal distribution whose mean and

variances are those of matrices THO and SITTO. Then, at each time “t”, we will have:

1) random generation of a vector of an additive shocks

2) computation of the optimal controls for periods k to N (terminal period)

3) propagation of the system one period forward (from period k to period k+1)
applying the vector of controls (for period k only) computed in step 2.

4) updating of the next period parameter estimates (both means and

variance-covariance elements)

For choosing the optimal control at each period (step 2) we will use either a
Certainty Equivalence (CE) procedure or, alternatively, an Open Loop Feedback
procedure (OLF). For the projection-updating mechanism (step 4) we will use a Kalman
filter.

Thus, each Monte Carlo run begins with a vector of parameter estimates that is
different from their “true” value. Using this parameter vector, the policy maker computes
(with a CE or an OLF procedure) the optimal values of the controls, and then she applies
those values corresponding to time k only. However, the response of the economic
system (its forward movement from time k to time k+1) will be generated by the
computer using the “true” parameter values which are unknown to the policy maker.
Then, at period k+1 a new observation is made of the state vector, which is used to
compute updated parameter estimates with a Kalman filter. After a number of time
periods, the sequence of updated estimates should begin to converge to their “true” value.

As in the previous section, we will assume that there is uncertainty in connection
with six of the control parameters in the B matrix, and that the standard deviation of each
of these parameters is equal to 20%. Then, matrices THO, SITTO and ITHN will be the
same as in Eq (3). We will also assume that GDP (Y) and the price level (plev) are hit by
additive shocks with 2% standard deviation, while the real interest rate (R) and the
nominal exchange rate (E) experience shocks with 5% standard deviation. Thus, the

. . . .. . . 50
variance-covariance matrix of additive noises (Q), will be as follows:

3 We want the shocks to affect contemporaneous variables only, and not their lagged values. However, if
we set to zero the elements of the Q matrix corresponding to lagged variables, Duali will give us an error

message. That is why we set those elements equal to the minimum possible value (0.000000001).
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[0.0004
0.0025
0.0004
0.0025
0.1
017"
017
0.1
0.1
017"
0.1

0.1

We will perform 100 Monte Carlo runs to compare the performance of the CE
procedure against the OLF procedure. To do so, we will use the file ht-03.dui. This
file is similar to the ht-02.dui file used in the previous sections, with some
modifications. If we select the Data:Additive Noise Terms:Additive Noise Covariance
menu options we will see the O matrix shown above. In the Specification:Data:Size
menu option we have to specify the number of Monte Carlo runs. That option is set to 3.
It may be better to make a first run like this with a small number of Monte Carlo runs to
gain familiarity with the procedure. However, to perform a more serious experiment, we
set it equal to 100. Be aware that this may take some minutes to run, depending on the
computer. Then, in the Specification:Source of Random Terms option, we check the
options (1) Generate Internally, (2) Uncertain Parameters and (3) System Equations as

shown in the dialog box below.
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Source of Random Terms |

Source of Handom Terms
T Read In

* Generate internally

If generated internally . _ .

Initial Values

I+ Uncertain Parameters
or [ Certain But Different From Mean

™ Uncertain State Yariables - if meas error

Moise Terms for All Periods
[+ Swstem Equations

I Measurement Equations

i

[ Time-Varying Parameter Eq Cancel

Figure 17.15 Source of Random Terms Dialog Box

We then chose the Solve:Compare Print option, obtaining a dialog box like the

one shown below where we see that the options CE and OLF have been selected.

Method Ed

HCFR. Handcrafted Feedback Rule

A7

CE. Certainty Equivalence

CE'WO, Certainty E quiv wéo Updating

1 71

OLF, Open Loop Feedback

OLIM, Open Loop Feedback. with [nsight

L1 |

DAL, Adaptive [not et implermented)

Ok, | Cancel

Figure 17.16 Method Dialog Box

When we click OK, we will be asked to provide a debug file name. After doing

so, a dialog box like the one shown below will be displayed.
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Debug Print Options for OLF

Surnrmary ] Inputs ] Intermediates ] Results ] Averages ]

I Al
[ Only inputs and results surnmany
v Only results summary

KMonte Carla
Turm on zelected print only in the following runs

[T Only the first run

[ Only run nurmber y

Ok | Cancel

Figure 17.17 Debug Print Options Dialog Box

In this dialog box we have many options to build a very detailed solution report
with summary, intermediate and final results, among other things. We just check the
“Only results summary” option, leaving all the others blank and then click OK. Duali
will start solving the problem. In the meantime, two dialog boxes named Method Count
and Average Criterion Values will be displayed. We click OK for each of them. Finally,
once the run is completed, the results will be stored in the file we specified as the debug
print file. It is best to exit from Duali before examining the results file in an editor.
When doing Monte Carlo runs in Duali it is important to look for the results in the debug
print file and not in the Display results on line since the Display numbers are only for the

last Monte Carlo run and not for the averages across all the runs.
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The results in the debug print file corresponding to our 100 Monte Carlo runs are
shown in Table 17.2.

CE OLF
Average Criterion Value 5.60 | 5.59
Runs with Lowest Criterion 47 53

Table 17.2 Monte Carlo Results

The Open Loop Feedback procedure does slightly better than the Certainty Equivalence,
not only in connection with the average criterion value, but also in terms of the number of
Monte Carlo runs with the lowest criterion. As can be appreciated in the graph below,
where each diamond represents the value of the criterion function for one Monte Carlo
run, most of the diamonds are close to the 45 degree line, indicating a similar
performance for both procedures. There are no significant outliers that could be

introducing a bias in the computed average criterion values.

Scatter Diagram Value of Criterion Function
- CE versus OLF

14
12 +

Certainty Equivalence

o N A O
I I I I
T T T T

0 2 4 6 8 10 12 14
Open Loop Feedback

Figure 17.18 Scatter Diagram Value of Criterion Function

These results are against what one would intuitively expect, since in the presence
of parameter uncertainty OLF might be expected to do not only slightly but significantly
better than CE. However, we have to mention that there are no theoretical results yet
developed in connection with the relative performance of CE versus OLF. The
experimental results are conditioned on the model structure, its parameter mean and

variance values, and may well change (in any direction) in a different context. For
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example, working with a different model Amman and Kendrick (1999d) find OLF results
that are substantially better than the CE results. Also, Lee (1998) obtains similar results

from a substantially larger model.
5. Experiments

In Section 2 of this chapter we analyzed the autonomous and optimal policy
responses to a negative shock in net exports. You may want to analyze other shocks
implying different initial conditions for the model endogenous variables. Or you may
analyze the effects of changes in the exogenous variables and the corresponding optimal
policy responses. Also, you may want to put a very high weight (priority) on the money
supply or government expenditure so that in fact only one policy variable will be use to
control the system. Then, you may contrast these cases against the analysis performed in
this chapter in which both controls were assigned equal weights. Finally, you may want
to assign different sets of equal values to the weights on the control variables for the
experiment presented in this chapter, to observe the displacement effects that these
changes have on the optimal policy frontier.

In Section 3 of this chapter we analyzed the optimal response of the policy
variables when parameter uncertainty was taken into account. In particular, we
increased the relative uncertainty of government expenditure parameters and we found
that this induced a more cautious use of that policy variable during the first periods. You
may want to continue increasing the level of uncertainty of those parameters and see the
pattern of responses in the policy variables. Or you may increase the relative uncertainty

of the money supply parameters.
6. Further Reading

For one of the first applications of control theory methods to macroeconomics
models see Pindyck (1973). Chow (1975) provides an introduction to the analysis and
control of dynamic economic systems. Kendrick (1981) presents a systematic treatment
of stochastic control for economic models, with particular focus on passive and active
learning methods. Holly and Hughes-Hallett (1989) also present a systematic treatment
of optimal control methods, with special treatment of expectations and uncertainty.
Sengupta and Fanchon (1997) present methods and a wide range of applications of

control theory in economics. Chiarella and Flaschel (2000) provide a nonlinear dynamics
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approach to macroeconomics. For a related global dynamics approach to analyzing
overlapping generation models see Gomis and Haro (2003).

Kendrick (2005) reviews the historical development and likely future paths in the
field of stochastic control in economics.

For a most interesting visual approach to the use of control theory methods in
economics that uses the Simulink system with MATLAB see Herbert and Bell (1997).
For an observer approach to control methods in economics see Herbert (1998).

Amman and Kendrick (1999a) provide a users’ guide to Duali, with a variety of

tutorial level chapters dealing with different control methods and models.

417



Chapter 18

Rational Expectations Macro in Duali

In macroeconomics, the way in which expectations are modeled has a significant
effect on model solution and simulation strategies. Some macroeconomic models include
the assumption that economic agents form their expectations in a backward-looking
adaptive way. That is, in order to form expectations in connection with the likely future
value of a given macroeconomic variable, economic agents take into account the recent
evolution of that variable, and perhaps of other closely related variables. For example, in
the chapter on the Hall and Taylor Model in GAMS, we saw that the expected inflation
rate was obtained as a weighted sum of the observed inflation rates in the previous two
quarters. From a modeling point of view, that meant that contemporary model
expectational variables can be replaced by some combination of lagged variables.

In contrast, the assumption of rational expectations asserts that economic
outcomes are not systematically different from economic agents’ expectations about
those outcomes. This implies that macroeconomic models should embed the notion that
economic agents make use of all available information when forming their expectations.
Included in agents’ information set is thus the model of the economy that the modeler is
using to capture their behavior. This assumption has a significant impact in terms of
modeling and simulation since under it, agents’ expectations are a function of the whole
macroeconomic model solution while, at the same time, that solution is a function of
agents’ expectations. Also, model dynamics becomes more complex, since expectational
variables are “forward looking” variables that sometimes will display a “jumping”
behavior, instantaneously adjusting to changes in policy or exogenous variables. Finally,
policy analysis will also be more demanding, since policymakers will have to take into
account the agents’ anticipatory behavior to their policy announcements and actions.

In this chapter, we will perform simulations and policy experiments in the Duali
software with John Taylor’s rational expectations model. This is a prototype one-country
model which is very useful as a training ground in the computational modeling of rational
expectations. It is also a good introduction to the empirical multicountry models
developed by Taylor (1993).
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1. John Taylor’s Closed Economy Model

John Taylor’s closed economy model is a small prototype linear model with
staggered contracts and rational expectations variables that generate an interesting pattern

of dynamic behavior. It contains the equations, variables and parameters listed below.

Equations

2 2 2
(1.1) X :%Z wm""%z ﬁt+i+%z j’m‘
pary , ,

2
(12) w=>x_

(1.3) p,=6w
14) y,=-dr +g,

(1.5) m,—p, =—bi, +ay,
(1.6) r =i —p

Variables
X = contract wage
w = average wage
p = price level
y = output
i =nominal interest rate
r = real interest rate

m = money stock

g = government expenditure’’

A 2

where means expectation through period t.

Parameters
0=05 y=1, 6 =1, a=1;, b=4;, d=1.2.

The variables (all except i, and r,) are logarithms and are deviations from means or

secular trends.

> In the original Taylor model, government expenditure appears implicitly as a shift factor in Eq. (1.4).

Here, we make it an explicit variable in that equation.
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Eq. (1.1) is a staggered-wage setting equation. It is supposed that a wage decision
lasts three years, with one third of the wages being negotiated each year. At any given
time t, the contract wage depends on expectations of the values at times t, t+1 and t+2 of
wages paid to other workers, the price level and real output. Eq. (1.2) gives the average
wage in the economy as the average of the contract wage in the current period and the
two previous periods. Eq. (1.3) reflects mark-up pricing behavior by firms, that is, prices
are set proportionally to the average wage. Eq. (1.4) defines a standard IS schedule,
while Eq. (1.5) is the money demand equation defining an LM schedule. Finally, Eq.
(1.6) gives the real interest rate as the nominal interest rate deflated by the rationally
expected inflation rate where the expected inflation rate is defined as #, =p,,,—p, .

The model has 6 equations and 6 endogenous variables. It contains two policy
variables: the money stock and government expenditure. The model is dynamic and
linear, and has the “natural rate” property, in the sense that nominal shocks may affect

real variables in the short-run, but not in the long run.
2. Solving Optimal Control Rational Expectations Problems in Duali

As a rational expectations model, Taylor’s model requires specific solution
methods different from those applied to standard models. Many methods have been
developed over the last two decades for solving rational expectations models. See for
example Blanchard and Kahn (1980), Wallis (1980), Fair and Taylor (1983), Anderson
and Moore (1985), Oudiz and Sachs (1985), Fisher, Holly and Hughes-Hallett (1986),
Pesaran (1987), Juillard (1996), Zadrozny and Chen (1999), Binder and Pesaran (2000),
and Sims (2002). Some of those methods are analytical and they usually involve, for the
case of linear models, the passage from the model structural form to a “pseudo-reduced
form” in which the expectational variables are no longer present. Other methods are
numerical. Also, as shown in Holly and Hughes-Hallett (1989) Ch. 7, the analysis of
models’ dynamic properties such as the computation of eigenvalues and the condition of
dynamic controllability become more involved in rational expectation models.

To solve optimal control problems containing rational expectations models, Duali
uses a dynamic programming algorithm like the one presented in the Dynamic
Optimization chapter, combined with the numerical method developed by Ray Fair and
John Taylor to solve rational expectations models. The Fair and Taylor (1983) method is
an iterative procedure that starts by solving the model for a set of arbitrary values -

usually zeroes - for the path of each forward looking variable. Then, after each iteration,
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the values of the forward looking variables are updated with the solution values of the
corresponding endogenous variable in the previous iteration. The process stops when
convergence is obtained, that is, when the difference between the forward variables
values in two successive iterations is smaller than a given tolerance value.

For example, suppose that we have a simple single equation model like the one

shown below, in which the future value of a variable (x,,, ) is a function of its current

value (x,) and also of its future expected value conditioned on the information available
attime ¢z (x°, ).

t+1 |t

e

X, = ax, +bx;, I

Suppose also that the solution horizon covers only six periods, that a = 0.4, b =
0.1, and that the initial value for x, is one. The Excel spreadsheet in Figure 18.1 below

shows the results for the first four iterations, where we use E to denote expected value.

B3 Microsoft Excel - MaTayDuali Figure 2.1

Ej File Edit Wiew Insert Farmat  Tools Data  WWindow  Help - -8 X
FEHS 2 e 7 A -0 - B I U SEEEHEH 3% E A T
Cs - A1
A B [ O |El F G H | J K LM N o P |ro
1 |Fair-Taylor Rational Expectations Solution Method —
2
3 a b
4 0.4 0.1
5
6 | period first iteration second iteration third iteration fourth iteration
7 Xit+1) | Xit) EQXt+1)}  X{t+1) [X{t)  EDGts1}  Xi+1)  Xit) EQXt+1)}  X(t+1) [ X(t) EQX(t+1)}
g
4 1 04 i1 0 0.44 1 04 0.444 1 0.44 0.4444 1 0.444
10 2 0.16 0.4 0 0192 044 016 01868 0444 0.192 0.1974| 0.4444 0.1968
11 5 0064 016 0 00832 0192 0.064 0.087 0.1968  0.0832 0.0877| 0.1974  0.087
12 4 0.0255 0.064 0 0.0358|0.0832 0.0256 00384 0.057| 0.0358 0.038%| 0.0877 0.0384
13 & 0.0102 0.0256 0 0.0154|0.0358 0.0102 00169 0.0354| 0D.0154 0.0173] 0.0389 0.0169
14 B 0.0041 0.0102 0 0.0065| 0.0154 0.0041 0.0074 0.0169 0.0066 0.0076| 0.0173 0.0074
15
16 |example of iteration structure: e
17 |zecond iteration:  cell F1 = $a%4"g14+5b%4"h14 cell G14 = F13 cell H14 = B14
13 -
W 4 » M) Sheetl  Sheet? / Sheeta / | «] | BN
Ready

Figure 18.1: Fair-Taylor Method Example

Notice that four iterations of the model solution are shown in the spreadsheet and
that there are three columns of variables shown at each iteration, namely x (t+1), x (t)

and E (x (t+1) ). The logic of the procedure is easy to follow. In the first iteration,
column D is set to zero. Given those values and the initial value forx, in cell C9, the
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model is solved for each of the remaining five time periods. The results in column B are
then copied to column H in the second iteration and the model is solved again. The
results are copied from column F to column L and so on. Notice how fast the results
converge for this particular model and parameter values - the difference between columns
P and N in the fourth iteration is quite small. What makes the Fair and Taylor method
attractive is its simplicity, and the fact that it can be applied to multiple equation linear
and nonlinear models.

Duali contains a method developed by Amman and Kendrick (1996) to solve
optimal control problems with rational expectations. This procedure, which is described

below, uses the Fair and Taylor method as an intermediate step.
The problem is expressed as one of finding the controls ()" to minimize a

quadratic “tracking” criterion function J of the form:

1 N-1

e Jz{g[xN [0 CE N P 3 [ O T I PO ])}

t=0

subject, as a constraint, to the state-space representation of the economic model, also known
as the regular form:

(2.2) X, = Ax, + Bu, + Cz,+ D)x’

t+1 |t

e
+D 2X142 | ¢
where x, u and z are state, control and exogenous variables respectively, Xand # are

desired paths for the state and controls variables, and x|,

is a “forward looking”
variable equal to the expected value of the state variable at period #+/ conditioned on the
information available at time . Also 4, B, C, D, and D, are matrices. In this example,
the maximum lead for the forward looking variables is two periods, but it could of course
be larger.

A way of formalizing the rational expectations hypothesis is, for a deterministic

environment

(2.3) X5, =X

t+1 ¢ t+1

and, for a stochastic environment and where £ is the mathematical expectation operator
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7t +1

(2.4) X, = E x

Denote the expected value of the state variable at iteration v as x;, B At the first

iteration - iteration zero - the Amman and Kendrick procedure begins by setting

x* =0 for all ¢, and solving the resulting quadratic linear problem with a

_ .0
t+1\t_x

t+1
standard method such as the one presented earlier in the book in the chapter on Dynamic
Optimization. The optimal state variables for the solution obtained - the “no lead”
solution - are denoted as x"*. Then, the expected values of the forward looking variables
are set equal to the solution for this first iteration, that is:

el _ _NL el  _ _NL
(2.5) X =X and x7,  =x., forallz.

Thus, the system of equations corresponding to the first iteration is now:

(2.6) x),, = Ax + Bu! +Cz, + Dx  + Dyx"

t+1 t+ | t+2 |t

Notice that the terms:
2.7 Cz, + Dx’!

t+1 |

+Dx"

+2 |t

are all known. This allows us to write the system of equations as:

(2.8) x!, = Ax' + Bu! + CZ!
where:
Zl‘
(2.9) C= [C D, Dz] and Etl = xte+11 |1
xel

Again, we have a quadratic linear problem which can be solved with standard
methods. Once we do so, we will have another set of solution values for the state
variables which will be used as the values of the forward-looking variables in the next

iteration, and so on. The procedure will stop when convergence is obtained.
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3. The Taylor Model in Duali

In the following we will focus on the implementation of Taylor’s model in Duali
to perform simulations and optimal policy analysis. First we will transform the model
equations to make them more suitable for a matrix representation. As presented in

Section 1, the model was:

2 2 2
(11) xt:%Z wt+i+%2ﬁt+i+%z)’>t+i
=0 ; ;

2
(12) w=>x_
(13)  p,=0w,
14) y=-dr +g,
(1.5) m,—p, =—bi, +ay,
(1.6) r =i —p

Expanding the summation signs, renaming some variables, and substituting the

corresponding numerical values for the model parameters, we obtain the model below.

x™=0.16w, +0.16p, +0.3y,+0.16W,,, +0.16p,,, + 0.3, ,

(31) - Az+l - g
+0.16W,,, +0.16p,,, +0.39,.,

(32)  w,=0.3x"+0.3x["+0.3xI"

(3.3) p=w

B4) y,=-12r+g,,

(35) i, =025y,+0.25p, —0.25m,,
(3.6) 1, =i, +p, =P

3.7) xIM=x"

Notice that x,”" is the contract wage in Taylor’s model, which we re-labeled here in Egs.
(3.1) and (3.2) to avoid notational confusion with x, , which will be the vector of stacked
variables of the model matrix representation. Also notice that since in Taylor’s model

expectations are conditional on the information available at time t, we can write:

(3.8) Wy =W, Pu=P» Y=Y
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This is why the variables in the first three right-hand side terms in Eq. (3.1) are actual
values and not expected values, as is the case in the remaining terms.

In Eq. (3.2) there is a new variable x/”" which is defined in Eq. (3.7) as equal to
lagged x,”", that is, x;”,. Therefore, the variable x/ in Eq. (3.2) will be equal to x", .
In this way, using the same method we employed in the Hall and Taylor in Duali chapter,
we produce a one-lag-order reduction of Eq. (1.2). Since this is the only lagged equation
in the model, we are left with a first order model representation suitable to be used in
optimal control experiments.

In Eq. (3.5) we moved the interest rate i to the left-hand side to make its role as a
state variable explicit. Finally, in Taylor’s model, m and g appear as contemporaneous to
the endogenous variables. By assuming that there is a one period lag between a policy
decision and its implementation, we can redefine these two control variables in Egs. (3.4)
and (3.5) as m,; and g, ;, since Duali, as well as the optimal control literature, works with
one-lag policy variables.

We will now represent the model in what is known as the Pindyck or “I-A” form,
which is an equivalent representation to the form presented in Eq. (2.2). The Pindyck

form of Taylor’s model can be written as shown below in Eq. (3.9).>

_ A ..e A L€ A ..e
(3.9 x, =Ayx, + Ax, +Bu, ,+Cz, +Dx;, +Dyx;,,, +Dyx; ),
where
cw
xf
W[
P m,_,
(3.10) X =y, U= )
) 8
lt
K
Xl

52 In Taylor’s model, expectations are conditioned on the information available at “t”. In Duali, when a

model is written in the Pindyck form, expectations are conditioned at “t-1”. This change in the timing of
the information will not appear as problematic for the Taylor model, since Duali will replicate the results
obtained by the original Taylor simulations. However, different assumptions concerning the information

set timing may be relevant for other models.
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0  0.1666 0.1666 03333 0 0 0
03333 0 0 0 0 0 03333
0 1 0 0 0 0 0
4= 0 0 0 0 0 -12 0
0 0 025 025 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0 |
[0 0 0000 0 | 0 0]
0 00 0 0 0 03333 0 0
000 00O 0 0 0
4=[0 0 0 00 0 0 B=| 0 1
000000 0 025 0
000000 0 0
1 00000 0 | i 0
[0 0.1666 0.1666 03333 0 0 O]
0 0 0 0 0 0 0
0 0 0 0 0 0 0
D, =[0 0 0 0 00 0
0 0 0 0 0 0 0
0 0 -1 0 0 0 0
0o 0 0 0 0 0 0]
0 0.1666 0.1666 03333 0 0 O]
0 0 0 0 0 0 0
0 0 0 0 0 0 0
D,=l0 0 0 0 00 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0o 0 0 0 0 0 0]

In Eq. (3.9), z.;1s a vector of exogenous variables, while C; is a matrix. They

are both equal to zero, since the model does not contain exogenous variables. Notice also
that ﬁ, is set equal to zero, since the model does not contain contemporaneous expected
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variables. Finally, we set equal to four the maximum number of decimals for parameter

values.
4. Dynamic Simulation

As a way of getting acquainted with some dynamic properties of the Taylor’s
model, we will analyze the dynamic evolution of the model for given changes in its
policy variables. The general problem to be solved in Duali is the one of finding the

controls (u):: to minimize a quadratic “tracking” criterion function J of the form

N-1

R AN ey (e A AR A Y |

t=0

subject to:
(3.9 x, =Ax, +Ax,_,+Bu,, +Cz +l§1xf/, + 152xf+m + 153xf+2/t
where variables and parameters were defined in the previous sections.

Though the Duali software is oriented toward solving optimization problems like
the one just presented, it can also handle standard simulations like the experiments to be
performed in this section where we will change the values of the policy variables to see
their dynamic impacts on the endogenous variables of the model. To do so, the weights
on the controls in the 4 matrix are set to relatively high values, while the weights on the
states in the W matrix are set to relatively small values. Then we define the desired paths
for the controls as equal to the policy change to be introduced. In this way we force the
system to respond to the pre-specified changes in the policy variables. In fact, what we
are doing is ignoring the optimization part of the solution method presented in the
previous section and using the Fair-Taylor method only to simulate the rational
expectations model.

We begin from the main menu shown in the Duali main window in Fig 2 below.

|EZ puali - (untitled)

File Edit Specification Data Solve Results  Transformations  Preferences  Character Help

Figure 18.2 Duali Main Window
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From the File option we open the file tay-sim.dui. In the

Specification:Stochastic Terms menu option, we see that the problem is set as

deterministic, as shown below.

Stochastic Terms
Stachastic Terms

Dreterministic

o

™ Stochastic with Additive Maise

7 Stochastic with Parameter Uncertainty
~

Stochastic with Measurement Ermraor

o]

Cancel

X

Figure 18.3 Stochastic Terms Dialog Box

We then select the Specification:Functional Form option and we obtain the dialog

box shown below.

Form Specifications

Criterion

Form
= Quadratic Tracking *
 Quadratic Form

Time Varying Elements
W State Priority Lambda Control Priority
+ Constant
 Terminal Diff *
 Time Yarying

+ Constant *

 Time ¥Yarying

xdes Desired States udes Desired Controls

+ Constant * Constant

 Time Yarying *

[ox ]

* Hequired Options Yhen Using the DUAL or DUALPC Code

T Time Varying *

Cancel

Swystem Equations

Form

 Regular®
= Pindyck

Forward Variables
 MNo*
* Yres

Time Varying Elements

Folicy to Parameter
* No ™

 Yes

z Exoqg Yariables
* Constant

 Time YWarying *

Figure 18.4 Form Specification Dialog Box
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On the Criterion side of the dialog box we see that the problem is a Quadratic-
Tracking problem with constant state and control priorities. Also the desired states and
controls are constant. They will all be set equal to zero, since later in the optimal control
experiment in the next section we will seek to minimize deviations of target variables
from means or secular trends. Also recall that the model variables are already expressed
in deviation form.

On the System Equations side of the dialog box in Fig. 18.4 we see that the
Pindyck form is selected, while the option Yes is also selected for Forward Variables,
there are no policy to parameter effects and the exogenous variables are constant.

From the Data:Size menu we obtain the dialog box below.

Model Size Ed
State Yariables Control Variables Exogenous Variables
K 2 1
Initial Period Terminal Period
|I] 10

Add for Forward Variables - -----
Maximum Lead Iteration Limit Conwvergence Tolerance
3 50 1.6E-12

If smaller than 6 decimal
digits enter in E format
Uncertain Parameters Monte Carlo Runs

- .

Add this as well for OLF and DUAL ----

Add for OLF - - - - - - ———— - - -

Observation YVariables

—

Figure 18.5 Model Size Dialog Box

The model is specified as containing seven state variables (in fact, six
contemporaneous and one lagged), two control variables and one exogenous variable, and

the simulation covers eleven periods. The Maximum Lead for forward variables is set as
equal to three. This is telling Duali that the model contains three D matrices, as seen in

Eq. (3.9) above. The Iteration Limit is set to 50 and the Convergence Tolerance to 1.6E-
12, that is, a very small number in exponential notation. Thus, if the sum of squared

difference between all the control variables in all time periods in one iteration and the

429



Chapter 18 Rational Expectations Macro in Duali

previous iteration is less than the convergence tolerance number, then the iterations are
halted and convergence is declared. Otherwise, if convergence is not achieved once the
iteration limit is reached, an error message is displayed.

Such a small convergence tolerance number will be necessary to perform
simulation experiments in which we will force the controls to follow given paths, thus
allowing them to experience very minor changes from period to period. Therefore, since
Duali computes convergence over changes in the controls, and given that we will allow
only minor changes in them, we need to impose a very small convergence tolerance
number to be able to run simulation experiments. Such a small number will not be
necessary in the optimal policy experiments to be introduced later in this chapter.

The Data: Acronyms menu option contains the assignment of labels to the model
variables and time periods. The Data:System Equations section contains the numerical
values for matrices 4,,4,, B,, C,, ﬁl, ﬁz and 153. The Data:Criterion section contains

the values for the /7 and 4 weighting matrices and the desired paths values for state and
control variables. We see that the weights on the controls in the 4 matrix are set to 99, a
relatively large value, while the weights on the states in the # matrix are set 1, a
relatively small number, and the desired paths for the controls are set equal to the policy
change to be introduced, i.e., to 0.01 for the experiment to follow. In this way we force
the system to respond to the pre-specified changes in the policy variables. Finally,
choosing the menu option Solve:QLP the problem is solved and the numerical results are
automatically displayed. The menu option Results allows us to define different display,
plotting and printing options. Also, for this and the other experiments in this chapter, it
will be convenient to set the display of results to four decimals. This can be done in the
Preferences:Results menu option, choosing the corresponding value in the Format
section.

Figure 18.6 below show the results of two experiments: a 1% unanticipated
permanent increase in the money supply (m) and a 1% unanticipated permanent increase
in government expenditure (g). That is, m and g increase by 0.01 at the first period of
each of the two experiments, and are kept at their new value from the second period
onwards. On the horizontal axes are the time periods. For y and p, the vertical axes
correspond to percent deviations from steady-state values, while for i and » the vertical
axes show percent points.”> Thus a value of 0.01 in the GDP graph means that GDP goes

33 Remember that in Taylor’s model, y and p are in logs, which is equivalent to percent deviations from

steady-state while i and r are not.
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from 600 to 606 billion dollars, while a value of 0.01 in the nominal interest rate graph

means that that rate changes from 5% to 6%.>*

GDP rice level
- (y) 0.04 P (p)
0035 + .
005 + ., 003 | T
0011 ¢ "\ 0.025 +
' N 0.02 +
0005 ”.‘ \\ 00]5 1
0 /\ 0011 |
0.005 +.,”
0005 b+ e
0 1.2 3 456 7 8 9D 0 1 2 3 4 5 6 7 8 9 D
‘ Doincr.inm = ------ %incr.in g‘ ‘ incr.inm - ------ Phincr.ing
nominal interest rate (i) real interest rate (r)
0.01 0.01
0.008 B R 0.008 + PR
. 0.006 + !
0.006 + J 0.004 1
0004 1 0002 1 .
0002 | 01 ;
- -0.002 + ;
0 20004 1 N\
-0.002 I e S [ -0.006 -
0 1. 2 3 4 5 6 7 8 9 D 0 1. 2 3 4 5 6 7 8 9 1
‘ Boincr.inm - ------ incr.ing ‘ ‘ incr.inm - ------ Bhincr.ing

Figure 18.6 Dynamic Simulations of Changes in Policy Variables

Here is how John Taylor explains the observed behavior of the model for the two
experiments:

“Monetary policy has an expected positive effect on output that dies out as prices
rise and real-money balances fall back to where they were at the start. Note that the real
interest rate drops more than the nominal rate because of the increase in expected
inflation that occurs at the time of the monetary stimulus. For this set of parameters the
nominal interest hardly drops at all; all the effect of monetary policy shows up in the real
interest rate. Fiscal policy creates a similar dynamic pattern for real output and for the
price level. Note, however, that there is a surprising “crowding-in” effect of fiscal policy
in the short run as the increase in the expectation of inflation causes a drop in the real

interest rate. Eventually the expected rate of inflation declines and the real interest rate

> Taylor (1993), Chapter 1, present graphs conveying the same information as the ones we show here.

However, he presents the results in levels.
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rises; in the long run, private spending in completely crowded out by government
255

spending.
5. Optimal Policy Analysis

We will now apply optimal control techniques to Taylor’s model. The problem is
to find the optimal paths for the policy variables given desired paths for the target
variables, and it can be stated in the same form as was done before at the beginning of
section 4. We will assume that the policy goal is to stabilize y, p, i and » around steady-
state values (that is, around zero). We will put high and equal weights on stabilizing y
and p, lower and equal weights on i and r, and even lower weights on the policy variables
m and g. The corresponding weighting matrices, shown below, will remain constant

through time.

100 25
(5.1) - 100 , A{ }
25

50
50

To perform a deterministic experiment, we will assume that the economy is going
through a recession provoked by a temporary adverse shock to y which brings it 4%
below its steady-state value. What would be, in this situation, the optimal paths for m
and g? What would be the optimal path for the state variables as compared with the
autonomous response of the system?

To perform this experiment in Duali, we use the file tay-qlp.dui that is
essentially the same as the one used in the previous section, with some modifications. In
the Data:Criterion section we see that the values of the W and 4 weighting matrices are
now set as in Eq. (5.1), while the desired paths for the controls are set to zero.

In order to implement the shock to y in the first simulation period we have to

introduce an artificial time-varying exogenous variable. That is, the shock will be

> Taylor (1993), page 25.
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defined as a first-period change in an arbitrary exogenous variable affecting the state

variable y only. To do so, in the Specifications:Functional Forms option, in the “z Exog

Variables” section the option Time Varying is now selected, as shown in the dialog box

below.

Form Specifications

Criterion

Form
* Quadratic Tracking *
" Quadratic Form

Time VYarying Elements
W State Priority Lambda Control Priority
+ Constant

i~ Terminal Diff * + Constant™

I~ Time ¥arying " Time ¥arying
xdes Desired States udes Desired Controls
* Constant = Constant

 Time Varying *  Time Varying *

lTl Cancel

* Required Options YWhen Using the DUAL or DUAL PC Code

System Equations

Form
" Hegular®
= Pindyck

Forward Variables
" Mo *
* Yes

Time Varying Elements

Policy to Parameter
+ Mo ™

 Yes

z Exog Yariables
" Constant

+ Time Varying =

Figure 18.7 Form Specifications Dialog Box

Then, in the Data:System Equations option we set the fourth element of the matrix

C;equal to 1 and set the first element of the exogenous variable z equal to -0.04 while

all the remaining elements are set to zero, as shown in the dialog boxes below.

Bl C1 Matrix [~ B | Mz cements
Edit I
OK Cancel
oK Cancel b
0 1 2 3
] | | g
W 1] 4 5 6 7
w 0 | o | o | o | o]
p [1] s o
Y 1 one | u| | u|
. 0
Lf 1]
xlow 0
w
< > -

Figure 18.8 C1 Matrix and ZT Elements Input Windows
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Notice also that this procedure is different from the one we used to implement an
analogous shock in the Hall and Taylor in Duali chapter. There, we applied the shock to
the initial value of the shocked variable, that is, we defined the shock in the Duali option
Data:System Equations:x0. We cannot do that here, since the variable of interest (y) does
not appear with lagged values in Taylor’s model.*®

Finally, we solve the problem choosing the menu option Solve:QLP. The graphs
in Fig. 18.9 below show the autonomous response of the system to a -0.04 unanticipated
transitory shock to y, and the behavior obtained when applying deterministic optimal

control (QLP) to face the same shock, that is, when actively using m and g as controls.

GDP rice level
0.01 W 0.001 P (p)
0.005 + ‘.
0 / - — 0 N
-0.005 ,\/_—\ -0.001 .
0014, V. '
005 | -0002
002 + -0.003 +
-0.025 + . \
003 L ¢ -0.004 + o
-0.035 L e S B e e -0.005 —tt—t—
0612 3 45 6 7 8 9D 0 1 2 3 4 5 6 7 8 9 D
m,gcontr. - ------ auton. m,gcontr. === ---- auton.
nominal interest rate (i) real interest rate (r)
0.002 0.002
0
-0.002 +.
-0.004 +
-0.006 1
-0.008 +
— -0.01 —t—t—t——t—t+—+—
0 1.2 3 4 5 6 7 8 9 0 1.2 3 4 5 6 7 8 9 D

m,gcontr. - ------ auton.

olicy variables
0.03 P y

0025
002 {4
005 1+
0014 *

0005 +_*
0 ’\-g._y

-0.005

Figure 18.9 Autonomous Response vs. Optimal Policy Experiment

>® We could use the option System Equations-x0 if, instead of shocking the variable “y”, we decide to

shock the contract wage, since the contract wage is the only variable with lagged values in Taylor’s model.
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We can observe how the behavior of the state variables under the optimal control
solution outperforms substantially the autonomous response of the system, reducing the
costs of getting the economy out of the recession. In order to generate that behavior, as
can be seen in the policy variables graph, the optimal policy mix relies on a 2.5%
transitory expansion in government expenditure during the first period, at the same time
that is also requires a small 0.5% transitory increase of the money supply during the first
period.

It may be surprising to find such a positive active policy role in the presence of
rational expectations since that specification is sometimes identified with the idea of
policy ineffectiveness. However, we have to remember that Taylor’s model contains a
built-in rigidity - a staggered contracts mechanism - that breaks down the ineffectiveness
of policy in the short-run.”’

More generally, rational expectations will tend to increase the degree of
controllability of an economic system, unless the particular structure and/or parameter
values of the model imply a complete neutralization of the policy variables effects.”®
Indeed, not only can the policy-maker influence the economy through past and current
controls, but he can also affect the economic system through the pre-announcement of
future control values. However, for these announcements to have a positive effect on the
economic performance, they have to be credible, that is, the policy-maker has to be
committed to carry them out.” These issues have led some researchers to focus their
policy analysis on the evaluation of alternative rules that policymakers are presumed to
follow. Two of the most influential researchers engaged in this type of work are John
Taylor and Michael Woodford.*

For example, using the Taylor model, we may be interested in evaluating the
performance of a monetary policy rule in which the monetary authority, having as an

implicit target the stabilization of the price level, changes the money stock in an inverse

" To learn about the role of nominal and real “rigidities” in macroeconomic models, see Blanchard and
Fischer (1989).

¥ See Holly and Hughes-Hallett (1989), Chapter 7.

%9 Lack of credibility may lead to problems of “time inconsistency”. See Holly and Hughes-Hallett (1989),
Chapter 8; and Blanchard and Fischer (1989), Chapter 11. For an appraisal of the practical importance of
this issue, see Blinder (1997).

5 See Taylor (1998) and Woodford (2003).
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proportion to the changes in the price level. In formal terms, a simple rule of that type

can be written as

(5.2) m,=a,p,

where m is the money stock, p is the price level, and a, is a negative constant coefficient

which in control theory is called the feedback gain coefficient. Our goal will be to
evaluate how the variance of the price level changes as the absolute value of the a,

coefficient increases, that is, as the monetary authority responds more strongly to changes
in the price level, when the model is shocked by an additive noise.

To perform these experiments in Duali we use the file tay-hcfr.dui.
In the Specification:Stochastic Tems option, the problem is defined as stochastic with

additive noise, as shown in the dialog box below.

Stochastic Terms El

Stochastic Terms

Dreterministic

~
* Stochastic with Additive Moise

" Stochasztic with Parameter Uncertainty
—~

Stochagtic with Measurement Emor

Ok | Cancel

Figure 18.10 Stochastic Terms Dialog Box

In a similar fashion as in the Quadratic Linear Problem above, in the
Specifications:Functional Forms option, in the “z Exog Variables” section the option
Time Varying is selected. But here we have to do so in order to be able to define the
source of random terms. Then, in the Specification:Source of Random Terms option, the
Generate Internally option is selected as shown in the dialog box below, indicating that
Duali’s random numbers generator will be used to generate the shocks. Also, in the
Noise Terms for All Periods section, the System Equations option is selected, indicating
that the shocks will be applied to the system equations only.
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Sournce of Random Terms |§|

Source of HRandom Terms
T Head In

= Generate internally

If generated internally . . .
Initial Values

[ Uncertain Parameters

or I Certain But Different From Mean
[~ Uncertain State YWariables - if meas error

Moise Terms for All Periods

I Swstemnm Equations

I Measurement Equations
I Time-VYarnving Parameter Eq Cancel

Figure 18.11 Sources of Random Terms Dialog Box

In the Specification:Options Monte Carlo option, we can select the starting period
for the calculation of the variance of state and control variables over time. As shown in

the dialog box below, we selected period zero as the starting period.

Options: Monte Carlo

X]

Starting Period for Calculation of “ariance Ower Time

Starting Period for State Yariables Starting Period for Caontral W ariables

B L) 0 =

ak. I Cancel |

Figure 18.12 Monte Carlo Options Dialog Box

In the Data:Size option, we now have to specify the number of Monte Carlo runs.
As shown in the dialog box below, we chose 1000.

437



Chapter 18 Rational Expectations Macro in Duali

Model Size

State Variables Control Yariab

¥ |2
Initial Period Terminal Perio
o |1 o

Add for Forward Yariables
Maximum Lead

e

Add for OLF

Iteration Limit

Uncertain Parameters

Add this as well for OLF and DUAL - - - -

Observation Yariables

ovservan

Monte Carlo Runs

3]

les Ex=ogenous Yariables

i

d

Conwvergence Tolerance

o.00o1

If smaller than 6 decimal
digits enter in E format

Figure 18.13 Model Size Dialog Box

The next step is to define the variance of the shocks to be applied to the model

during the Monte Carlo runs. We will perform ex

periments in which the shocks will be

applied to the contract wage equation only. To do so, as shown in the dialog boxes

below, we first select, in the Data: Additive Noise

Terms option, the Q, Additive Noise

Covariance option. This selection will cause the display of the Q covariance matrix of

the additive noise terms. There we assign the value 0.1 to the diagonal element

corresponding to the contract wage variable x™ . All the other values should be zeroes.

However, having zeroes in the diagonal of the Q matrix will cause problems when Duali

tries to find its inverse during the solution of the problem. Thus, we assign very small

values (0.00001) to the remaining diagonal elements.

Stoch Elem: Additive NMoises

= 0. additve Hoise Cowvarl

iance

7 SIS, Additive Moise Terms

T

Cancel

Figure 18.14 Additive Noise Terms Dialog Box
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Hl Q Matrix
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Figure 18.15 Q Matrix Input Window

Having defined the stochastic structure of the simulations, we now have to define
and assign values to the feedback rule to be evaluated. The mathematical form of this

rule was defined earlier in Eq. (11) of the Dynamic Optimization chapter as

u, =Gx, +g,

Thus to modify the feedback rule we need to change the elements in either the feedback
gain matrix G or the feedback gain vector g. To do so, we select the Data:Handcrafted

Feedback Rule option. As shown in the dialog box below, we select the capital G option,

which is the feedback gain matrix of the rule to be applied in the experiments. We leave
the small g option blank, since it corresponds to a vector of constant terms that are absent

from the specific rule we will evaluate as defined in Eq. (5.2) above, i.e.

(52) mt = arpt
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G and g for Handcrafted Feedback Rule r5_<|

* G - Handorafted Feedback Rule

" g - Handcrafted Feedback Ruls

Figure 18.16 G and g Dialog Box

When making the selection of G, the corresponding window will be displayed as

shown below. We see that the value -0.1 is the only one assigned. It corresponds to the
value of the a, coefficient in Eq. (5.2). We also see that more complex rules could be

easily defined by assigning values to other cells in the matrix.

Bl G Handcrafted Fb Rule Matrix

Edit
OK Cancel e
WO w p W
m L] L] -0.1 L]
L] a a a L]
i r =lowr
m 1] a a
L] a a 1]
e
< >

Figure 18.17 Feedback Gain Matrix G Input Window

Having defined the stochastic structure of the experiments to be performed, and
the rule to be evaluated, we are now ready to move on to the selection of the solution
method and the storage and display of results. We first select the Solve:Compare Print
option. We will obtain a dialog box which displays several solution methods. We could
select some or all of them in case we want to perform experiments comparing their
relative performance. Since that is not our goal here, we just select the HFCR,

Handcrafted Feedback Rule option as shown in the dialog box below.
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" Method <]

[w HCFR. Handcrafted Feedback Rule

CE. Certainty Equivalence

CEWwW O, Certainty Equiv wlo Updating

—
—

[ OLF. Open Loop Feedback

[ OLIN. Open Loop Feedback with Insight
—

DUaL, Adaptive [not pet implemented]

] I Cancel

Figure 18.18 Method Dialog Box

When doing so, we will be asked to provide a debug file name, for example we
could use the name tay-hcfr.dbg. This file will contain the simulation results. After
providing the file name, a dialog box containing many options related to the generation of
results will be displayed, as shown in the dialog box below. Given the nature of our
experiment, we will keep all the options blank except two. In the Averages section, we
will select the Average Average over Monte Carlo Runs and the Average Variance over

Monte Carlo Runs options.

Debug Print Options for OLF

Summary] Inputs ] Intermediates] Fesults Averages ]

tMonte Carlo Results
tMoments Over Monte Carlo Rung

Regular Transpose
Average M ks Over Ti
s B I nten oments Ower Time
Control [~ munt [ ntam Average Regular Transpose
Yariance - may require substantial BARM Chate R W i e
State [ nant [~ ntun
Cortral [ merme [ nmcsm
Contral - [ mant [ ntwm Wariance
Arrays of Monte Carlo Results for « and u State I nxnme I mexn
Far this to work you must alzo select Contral | mxnme [ nmcs=m

one of the 4 variance boxes above
[ For debugging - May produce a large print file.

tMoments Across Time of Moments Owver Mc Runs
Axerage Average over Monte Carlo Runs Sum of Squared Differences
v foeeg foeg over MC Runs .
[ Al far "Surn of Squared Differences"
Ayvgerage Vanance over Monte Carlo Buns

v Awgiar aver MC Runs

Ok | Cancel

Figure 18.19 Debug Print Dialog Box
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We are then ready to perform our experiment. Once we click the OK button, the
Monte Carlo runs will begin. Since we are performing 1000 runs, it may take a while
before results are displayed. Two dialog boxes like the ones shown below will appear
while Duali is running (one after the other). We should just dismiss them by clicking the
OK button, since they display results corresponding to experiments with cross

comparison of methods, something we are not interested in here.

Method Count _ Average Criterion Yalues

HCFR =0, CE = 0, CEWO =0, OLF = 0, ©LIN =0 HCFR =0, CE=0, CEWO =0, OLF =0, ©OLIN=10

Figure 18.20 Method Count and Average Criterion Value Windows

We exit from Duali and then open the debug file, tay-hcfr.dbg as we named it
above, with an editor. Since we have performed a large number of Monte Carlo runs, the
output will be quite large since it will display some basic results corresponding to each
run. Moving down to the end of the output, our results of interest are just the following

ones:

AvgVarXsTimeHcfr
0.0924 0.0168 0.0168 0.0129 0.0003
AvgVarXsTimeHcfr

0.0089 0.0825

AvgVarUsTimeHcfr

0.0002 0.0000

AvgVarXsTimeHcfr means the average variance of the state variables across time
for the handcrafted feedback rule solution method. We see that there are seven results,
each one corresponding to an element of the transpose of the state variable vector as
defined in Eq. (3.10) above that is:

(5.3) x' :[xcw Wt pt yt l.t rt xltcw]

t t
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Thus, our result of interest is the third one to the right in the first row (0.0168) since it
corresponds to the average variance of the price level variable. AvgVarUsTimeHcfr
contains the results corresponding to the control variables, so the first one (0.0002) the
one corresponding to the variance of the lagged money supply stock is the one of interest
to us.

These results considered by themselves are not very informative. However, we

can repeat the experiment for different values of the a, coefficient to obtain a

comparative performance. Table 18.1 below shows the results of ten experiments.

d, | Variance of p | Variance of m
-0.1 0.0168 0.0002
-0.2 0.0156 0.0006
-0.3 0.0158 0.0014
-0.4 0.0157 0.0024
-0.5 0.0155 0.0038
-0.6 0.0150 0.0053
-0.7 0.0154 0.0072
-0.8 0.0149 0.0093
-0.9 0.0145 0.0113

-1 0.0143 0.0138

Table 18.1 Comparative Rules Experiments

We can see that as the absolute value of the feedback gain coefficient a, increases,
the variance of the price level tends to decrease, while the variance of the money stock
increases. That is, a stronger response of the monetary authority to changes in the price
level reduces the variance of that variable but at the cost of an increased variance of the
policy tool. A natural question to be asked is what would be the optimal rule, in this
case, 1.e. the optimal level of the feedback gain coefficient. If the only concern is the
variance of the price level, the response is easy: it will be the highest possible absolute
value. However, if the variance of the money stock is also a concern, relative priorities

should be explicit.
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6. Experiments

As a first and relatively simple experiment, you can perform optimal policy
experiments like the one presented in Figure 18.6, changing the priorities on state and
control variables. Then, you can also change the nature of the initial shock.

Alternatively you can specify different handcrafted feedback rules to perform
experiments like the one presented in Figure 18.9. For example, you may want to specify
a rule in which the money supply is a function of output instead of the price level. Or
you may want to design more complex rules, with money supply and government
spending as controls and one or more state variables as target variables.

Finally, you may also define a rule in which the real interest rate - instead of the
money supply (as was the case in the experiment presented in this chapter) - is used to
respond to changes in prices. This type of rule is typically used by many researchers -
e.g. Taylor (1998) and Woodford (2003) to discuss monetary policy rules in the U.S. To
do so, notice that you will have to redefine the interest rate as a control variable and the
money supply as a state variable, since when the interest rate is used as a control, the
money supply becomes an endogenous variable. Since this is a substantial change in the

model structure, it may require you to start from scratch to input the new model in Duali.

7. Further Reading

The prototype Taylor model presented in this chapter, together with U.S. and
multicountry extended econometric versions of it are developed in Taylor (1993). Holly
and Hughes-Hallett (1989, Chapter 7) provide an introduction to the application of
optimal control techniques to rational expectations models. Amman and Kendrick
(1996), (1999c¢), (2000), (2003) develop optimal control techniques and applications for a
variety of rational expectations models. Taylor (1998) and Woodford (2003) provide a
wide treatment of the application of policy rules to rational expectations models. For a
useful starting point to coming abreast of recent work on the recent variety of optimizing
trend-deviation macroeconomic models see Kozicki and Tinsley (2002).

For discussion of the robust control approach to stochastic control see
Deissenberg (1987), Rustem (1992), Hansen and Sargent (2001) and Rustem and Howe
(2002)
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Appendix A
Running GAMS

This appendix provides the details for running the GAMS software on a PC. In
order to use GAMS with other input files substitute the appropriate file name for
trnsport.gms in the following. For help and information about obtaining GAMS go the
GAMS Development Corporation web site at

http://www.gams.com

There is a student version of GAMS that can be downloaded and that can solve all or
almost all of the models used in this book. It the model is too large, usually a small
change in the number of time periods or some other set is sufficient to reduce the size so
that it will run on the student version.

= Go to the book web site at

http://www.eco.utexas.edu/compeco

and to the “Input Files for Chapters in the Book™ section of the web site. Right
click on the trnsport.gms filename and select the “Save Target As ...” option
in order to save the file in your preferred directory.

=  Chose Programs from the Start menu and then chose GAMS and gamside. Chose
Open from the File menu, navigate to the trnsport.gms file and open it for
editing. Notice in the complete GAMS statement of the model that, as is the usual
case in GAMS, the model is defined in steps

first the sets

then the parameters
then the variables
then the equations

and finally the model and solve statements.
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= Solve the model by choosing Run from the File menu and then check the solution
log to be sure that you have
SOLVER STATUS: 1 NORMAL COMPLETION
and
MODEL STATUS: 1 OPTIMAL

Then close the log file window.

=  Click on the trnsport.1st file window and scroll through this listing file to see
the solution. Note that the *.1st file extension used here is an abbreviation for a

“listing” of the output file.

Notice that the GAMS output has the following structure:

Echo Print: shows a listing of the input file with the line numbers added.

Error Messages: in the case of errors in the input file, they will be signaled by GAMS
with “****” on the leftmost part of the corresponding line of input where the error was
found, and with “$number” just below the part of the line of input where the error is
located, where “number” will contain a specific error code. Then, at the end of the list of

the input file, GAMS will display the explanation of each of the error codes found.

Equation Listing: shows each equation of the model with the corresponding values for

sets, scalars and parameters.

Column Listing: shows a list of the equations’ individual coefficients classified by

columns.

Model Statistics: shows information such as model number of equations, number of

variables, etc.

Solve Summary: shows information such as solver and model status at the end of the
GAMS run, etc.

Solution Listing: shows the solution values for each equation and variable in the model.

(134

Each solution value is listed with four pieces of information, where a dot “.” means a
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value of zero, EPS a value near zero, and +INF and —INF mean plus or minus infinite

respectively:

LOWER (the lower bound)

LEVEL (the solution level value)

UPPER (the upper bound)

MARGINAL (the solution marginal value; it corresponds, for linear or nonlinear
programming problems, to the increase in the objective value due to a unit increase in the

corresponding constraint)

Report Summary: shows the count of rows or columns that are infeasible, non-optimal or

unbounded.
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Running Mathematica
Mathematica is a widely available commercial software system. A web site for

information about it is

http://www.wolfram.com

= Choose Programs from the Start menu and then choose Mathematica. Wait for a
few seconds, and a new window with a menu bar in its upper part will appear.
The content of this window will be a white sheet called Notebook, which is like a
document in a standard word processor. If you specified a file when opening

Mathematica, this file will be displayed.

= Select Getting Started from the Help menu (located in the upper right corner of
the Mathematica window) and read the information that will appear in the "Info
dialog box". To begin practicing with Mathematica, perform the calculations
suggested in the section "Doing Calculations". While doing this, you will
appreciate the basic way of working with Mathematica, i.e. your Notebook will
successively display your inputs and the corresponding outputs. You may also
notice that on the right side of your Notebook, a hierarchy of brackets appears.
Each of them defines a cell (or a group of cells) which are the basic units of
organization in a Notebook. As you will quickly realize, cells can be
hierarchically arranged (as in set and subsets). There are different kinds of cells:
they can contain text, Mathematica input, Mathematica output, or graphs, etc.
Different small characters within each bracket identify the kind of cell. Here are

some basic things you can do with cells:

o To edit a cell (that is, to be able to work with it) just click on its bracket.
o To edit a group of cells, just click and drag on their brackets.

o To find out or change the kind of cell, edit the cell, select "Style" in the main

menu and choose your option.
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To divide or merge cells, take the cursor to the division/insertion point of your

choice, select "Cell" in the main menu and choose your options.

To run a portion of a program contained in a cell of group of cells, just edit the

cells and select Action-Evaluate in the main menu (or just press “Shift-Enter”)

Finally, to save your Notebook, select "File" in the main menu and choose your

options.

Go to the book web site at http://www.eco.utexas.edu/compeco and then to the

“Input Files for Chapters in the Book” section of the web site. Right click on the
Leontief.nb filename and select the “Save Target As ...” option in order to save

the file in your preferred directory.
Go to “File” menu and click Open to open the file.

To run an input command or a cell containing a series of commands, click on the
bracket on the right of it and hit Shift+Return (hold the shift key and hit Return at
the same time). The output will be displayed following the input, unless there is a
“;”” at the end of the input command line (*‘;” suppresses the output). You can run
multiple cells by highlighting the corresponding brackets with your mouse and

hitting Shirt+Return once.

Modify commands and re-run them sequentially, cell after cell, so that you can

see the changes in the corresponding outputs.

If you either select the outer most bracket and press Shift-Enter, or go to the
Kernel menu, choose Evaluation, and Evaluate Notebook, you will re-run the
complete program. If your program is large this may take a few minutes and it
may be difficult for you to track down the results of your modifications. On the
other hand, sometimes your modifications may require an updating of previous
results, a clearing of previous values or a change of attributes (and the Clear
command or the SetAttributes command are usually at the beginning of the
program). In these cases you may need to re-run the complete program to avoid

errors or spurious results.
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Running the Solver in Excel
Download the file for the growth model or for the neural net from the book web
site. Your version of Excel may not have the Solver option available by default. To

check this look for the Solver option on the Tools menu. If you don’t find it, click Add-
Ins, check Solver Add-in, and click OK. Then look in the Tools menu again.

450



Appendix D
Ordered Sets in GAMS

As was discussed above in the chapter on Macroeconomics in GAMS, the
definition of lagged indices for variables in GAMS may be somewhat problematic if it is
not done with care. For example, if the variables “w” and “z”” were defined over a set “t”
(i.e. w(t) and z(t)) such as

t=1{0,1,2,3}
then an expression like
eq(t).. w(t) =E= z(t-1)
will result in the following equations being generated by GAMS
eq(0).. w(0)=E=0;
eq(1).. w(1)=E=z(0);
eq(2).. w(2) =E=z(1);
eq(3).. w(3) =E=z(2);

Thus, it will cause GAMS to assign the value zero to the first element of w(t), since the
element “z(-1)” of the variable “z” is not defined. We do not want this to happen, since
it will be a source of confusion at the time of assigning initial values for lagged variables
and also for the interpretation of solution values corresponding to the initial periods of the
solution horizon.

To be sure about the results of the dynamic specifications in GAMS, every time
one writes a program involving dynamic variables it is advisable to set OPTION
LIMROW equal to the maximum number of periods involved in the solution of the
model. This will tell GAMS to print a detailed equation-by-equation solution report
which will allow one to check period-by-period the evolution of the time indices for each
variable within each equation. It is particularly important to check the specification of
the equation for the first few and the last few time periods. For example, here is how the
corresponding GAMS output looks for equation “eq6” in the chapter on Macroeconomics
in GAMS.

eq6(t+2).. piex(t+2) =E= alpha * pi(t+1) + beta * pi(t) ;
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when Hall and Taylor’s model is solved for a time horizon of 7 periods - that is, for a “t”
set equal to {0,1, ..., 5,6}.

---- EQ6 =E= expected inflation

EQ6(2).. - 0.2*PI(0) - 0.4*PI(1) + PIEX(2) =E=0;
EQ6(3).. - 0.2*PI(1) - 0.4*PI(2) + PIEX(3) =E=0;
EQ6(4).. - 0.2*PI(2) - 0.4*PI(3) + PIEX(4) =E=0;
EQ6(5).. - 0.2*PI(3) - 0.4*PI(4) + PIEX(5) =E=0;
EQ6(6).. - 0.2*PI(4) - 0.4*PI(5) + PIEX(6) =E=0;

Notice that eq6(t+2) goes from periods 2 to 6, while pi(t) goes from 0 to 4, pi(t+1)
from 1 to 5 and piex(t+2) from 2 to 6. This means that the effective solution horizon for
the model was equal to 5 periods, 2 less than the number of elements of the set “t”.

For further details see the chapter on “Set as Sequences: Ordered Sets” in

the GAMS User’s Guide at www.gams.com
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Linearization and State-Space Representation of Hall and
Taylor’s Model

The linearization method that we will use is known as Johansen’s method — see
Johansen (1960). It involves transforming all the variables in the model into percentage
changes with respect to a base case. We introduced this method in the chapter on
General Equilibrium Models. There we learned that there are some rules, analogous to
differentiation, which simplify the task of linearizing a model. We will apply those rules
here.

Remember that since the Hall and Taylor model is a dynamic model, all its
variables have an explicit or implicit time subscript. It is important to understand that the
percentage changes of each variable will be changes with respect to a baseline case (the
point of linearization) and not with respect to “the previous period”. If our baseline case
is the steady-state and, say, X, takes the value 0.01, this means that the variable X, at

time #+4, is 1% higher than its steady-state value. It does not mean that X, is 1%
higher than X ..

The steady-state solution for Hall and Taylor’s original nonlinear model in levels
is: Y=6000, R = 0.05, plev=1 and E =1. These steady-state values correspond to the
following values for policy and exogenous variables: M =900, G = 1200, YN = 6000 and
plevw = 1. We will pick the steady-state solution as our baseline or point of linearization.

Thus, the expressions in the sum rule in the General Equilibrium Models chapter for

X=Y+Z

becomes
X*=s5Y*+s Z*

where X*, Y * and Z* are percentage deviations of the corresponding level variables
and s, and s, are the shares

S,

s, =———and s, =——"—.
YSS +ZSS Y +Z

13 29

where the subscript “ss” means “steady-state value”.
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The original twelve-equation model contains the equations listed below:
IS-LM

(1) GDP identity Y=C+I+G+X
(2) Disposable Income Y =(1-1)Y

(3) Consumption C=a+bY*

(4) Investment I =e—dR

(5) Money Demand M/P=kY —hR

Expectations Augmented Phillips Curve

(6) Expected Inflation n°=ar  + pr,
(7) Inflation Rate r=r +f{()[1 -Y, )/YN}
(8) Price Level P=P (1+7)

Foreign Sector
(9) Real Exchange Rate EP/P, =q+VR

(10) Net Exports X =g-mY-nEP/P,

Government Deficit and Unemployment
(11) Government Deficit G,=G-tY

(12) Unemployment Rate U =U,, — ,u{(Y— Y, )/YN}

To obtain the equation for Y *(that is, GDP percent deviation from steady-state),

we substitute egs. (2), (3), (4) and (10) into eq. (1). Linearizing, we obtain

(e.l) Y* =-sa,R*-sa,plev*-sa E*+ sb,G*+ sc,plevw*

where®!

aux = (1 - (B (1-1)-n)

sa, = (d R )/(auxY)

sa, = (n E_ plevw, plev. )/(aux plevw,’Y.)
sa,, = (n plev, plevw, E_)/(aux plevwY.)
sb, = G /(aux Y)

sc, = (n E, plev, plevw,)/(aux plevw, Y.)

81 The reason why we define the coefficients as sa;,, etc., will become clear below, when we write the

model in matrix notation.

454



Appendix E Linearization and State Space Representation
To derive the equation for R * (Real Interest Rate), linearizing and re-arranging

eq. (5) we obtain

(e.2) R*=-sa, Y*-sa,, plev*+ sb,, M *

where
say, =-(k Y.)/(h R,); sa,,=-M_ plev_/(h plevss2 R.); sb,,=-M_/(h plev  R).
To obtain the equation for plev * (Domestic Price Level), substitute equation (6)

(6) n’=ar  +pr,

into equation (7)

(7) r=x+f{(Y, -1/ Y}
to get
(e.3) n=arx,+ Pr,+ f(Y, - YN)/YN

This expression combines variables in levels and variables in rates of growth. To
avoid the confusion that may arise from working with percentage changes of rates of
growth, we proceed as follows. Taking into account that the percent deviation of a
variable is, for small deviations, approximately equal to its corresponding log difference,

we can write
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(c.4) (Y.,- YN)/YN ~In Y, -In YN

Now, we can re-write eq. (8), i.e.

P=P (1+7)
1+7r=i
-1
P-P,
=
P
as
(e.5) 7 = (plev - plev_ )/ plev_,

and applying the same property as above, we can write

(e.6) 7 =In plev-In plev

and then

(e.7) 7, = In plev_ - In plev,
(e.8) 7, = In plev, - In plev ,

Now, substituting (e.4) and (e.6)-(e.8) into (e.3) and linearizing we obtain

(.9) plev*=sal, Y *  + sal,, plev* | + sa2,, plev* , + sa3,; plev* . + sc, YN*

where
sal, = f; saly, = 1+a; sa2,;= B-a; sa3,;,=-f; sc;,=-f.

Finally, to derive the equation for £ * (Nominal Exchange Rate), linearizing eq.

(9) we obtain

(e.10) E*= -sa,, R*-sa, plev*+ sc,, plevw*

where
sa,, =-v plevw R _/(plev, E); sa,=1; sc,=1.
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Since variables G, (Government deficit) and U (unemployment rate) do not have any

“feedback” with the other equations in the model, we can ignore eqgs. (11) and (12). In

summary, the four equations of our model are (e.1), (e.2), (e.9) and (e.10), i.e.

(e.l) Y* =-sa,R*-sa,plev*-sa, E*+ sb,G*+ sc,plevw*
(e.2) R*=-sa, Y*-sa, plev*+ sb, M*
(e.9) plev*=sal, Y *  + sal,, plev* | + sa2,, plev* , + sa3,, plev* . + sc,, YN *

(e.10) E*= -sa,, R*-sa, plev*+ sc,, plevw*

Notice that since in this linearized representation all variables are in percent deviations,
their steady-state values will all be zeroes.

Writing our structural model in matrix notation, we obtain

(e.11) SAX = SAlX , + S4A2X, + SA3X, + SBU + SC V
where:
Y*
X: R * U: M* V: YN N
plev G plevw
E*
and
1 sa, sa; sa, 0 0 0 0
sa,, 1 sd,, 0 0 0 0
S4=|"" 2 SAl =
0 0 1 0 sal;, 0 saly; O
0 sa, sa; 1 0 0 0 O
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00 0 O 00 O0 O
00 0 O 00 0 ©0
0 0 sa2,; O 0 0 sa3;; O
00 0 O 00 0 O
0 sb, 0 sc,
sby, 0 0 0
SB = SC =
0 0 sc;, 0
0 0 0 scyy

We have obtained above a structural model which is, of course, a simultaneous
system of equations. To obtain its reduced form, we have to get rid of this simultaneity
and to express each endogenous variable as only a function of policy, exogenous and pre-
determined variables. This can be done easily.

From equation (e.11) the reduce form can be obtained as

(e12) X = RAIX , + RA2X, + RA3X, + RBU + RCV

where:
RAl = SA™' SA1l; RA2 = SA™' S42; RA3 = SA™' SA3; RB= SA™' SB; RC = SA4™' SC

Equation (e.12) is a third-order system difference equation (the maximum lag is equal to
3). It is necessary to reduce it to a first order system that is called the “state-space”
representation.” For instance, to analyze some dynamic properties of the linearized
model, we have to know its characteristic roots, and these are equal to the eigenvalues of
the matrix of the first order version (matrix 4 below). ® Also, to determine the model
controllability or to perform policy experiments with Duali, the input model has to be in
state-space form. To make this transformation, we augment the state variable by taking

the following steps. We define the new vectors XL_; and XLL_; as

52 The concept of state-space goes beyond this, but we will not deal with it here.

83 See Mercado and Kendrick (1999).
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* r *

xlY, Y,
xIR’, R,
(e.13) XL | = L | =X = .
xlplev plev.,
| xIE”, ] i E, |
L oxiy’ ] oy, ] Y
xlIR’, xIR, R,

(e.14) XLL | = L | =X, = =X, = .

xlplev_, xlplev, plev_,

| xIE, | | XIE, | | E,

Then, re-write (e.12) as
(e.15) X = RAIX | + RA2XL, + RA3XLL, + RBU + RCV
Define the augmented state vector x
X
(e.16) x=| XL |,
XLL
re-write (e.13) and (e.14) as
(e.15) XL = X |
(e.16) XLL = XL, =X,
and finally transform (e.15) into its state-space representation as
(e.17) x=Ax, +BU +CV
where U and V are the same as above, where
RAl RA2 RA3 RB RC
0 1 0 0
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and where / is a (4x4) identity matrix and 0 are (4x4) and (4x2) matrices of zeros as
appropriate.

In Hall and Taylor’s model, the policy variables contemporaneously affect the
model’s endogenous variables, and this is also true for its “state-space” representation. In
order to obtain a proper state-state representation, that is, one in which the control
variables also appear with one lag, we have to assume that there is a one-period delay
between a policy decision and its implementation. Then, we can substitute M., for M,
and G.;” for G'. We will also assume that the exogenous variables YN and plevw affect
the system with one lag instead of contemporaneously. Expressing the model in this way,
we can make use of many results from the optimal control literature, which works with
models with one-lag controls. Also, the Duali software works in this way.

Thus, in matrix notation, with numerical parameter values derived from the
corresponding original model parameter values, and where all the variables are percent
deviations from the steady-state, the state-space representation of Hall and Taylor’s

model can then be written as in equation (1) in the chapter on Stochastic Control in Duali.
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Introduction to Nonlinear Optimization Solvers

Solving nonlinear optimization problems usually requires the use of numerical
methods. In general, those methods consist of a “smart™ trial and error algorithm that is a
finite sequence of computational steps designed to look for convergence to a solution.
There is a variety of algorithms to solve nonlinear problems. Some of them are global
methods, in the sense that they perform a parallel exploration of many regions of the
optimization space. One example of this type of solution method is genetic algorithms.
Other methods are local methods, since they tend to focus on the exploration of a
particular region of the optimization space. In this appendix we will introduce two of the
most popular local methods: the gradient method and the Newton method. Varieties of
these methods are used by the solvers in Excel, GAMS and MATLAB. Before
introducing the gradient method and the Newton method, we begin with a simple
example.

Suppose that we are trying to find the maximum of a nonlinear function
(D y=f(x)

such as the one represented in Figure F.1 below.
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v

X, X, X, X, X,

Figure F.1 A Nonlinear Function

A simple and very rudimentary algorithm to find the solution could be as follows.
We choose an arbitrary initial value for x, such as x,in Figure F.1, and compute the

corresponding y, = f(x,). Then we increase that value by a constant magnitude / (we

name this magnitude the “search step”) that we also choose in an arbitrary way. For the
new value of x, that is x, , we compute the corresponding value of

(2) Y =f0x)=f(x, +h)

and we compare this value to the one obtained in the previous step. We continue to do
this as long as the differences between two successive values of y are positive (negative
for a minimization problem). As soon as we compute a difference with a negative sign
(in Figure F.1 this would correspond to x, ), we reverse the direction of the search. We
begin to move in the opposite direction along x (that is, subtracting / from x) and we use
for i a smaller value than the one we were using while we moved in the opposite

direction. We continue like this until we find again a difference between two successive
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values of y which is negative. We then again reverse the direction of the search and we
reduce once more the size of 4. And so on. We stop when the difference between two
successive values of y falls below a pre-established tolerance limit.

The gradient method and the Newton method are iterative methods like the one
presented above. However, they exploit local information about the form of the function.
That is, they use the function’s derivatives. To illustrate this we change to a multivariate
example. In this case we use the following equation to obtain each new value of the

vector x

3) X, =x, +hAx

where 4 is the search step - now always a positive value - and where Ax is the direction
of change which, as we will see, will be determined by the function’s derivatives.

The gradient method uses the first derivatives or gradient, which give us
information about how the function changes in the neighborhood of a given point. Its

basic framework is the well known first order Taylor approximation
4 S x0) = f(x,) + AV (x,)Ax

where Vf(x,) is the gradient vector. Notice that since 4 is supposed to be positive, the

best direction of motion will be

(5) Ax =Vf(x,)

for a maximization problem, since
(6) SO = f(x)+hV(f(x,)) > f(x,)

Also, for a minimization problem

(7) Ax =-=Vf(x,)
since
(8) S0 2 f(x)=hV(f(x,)) < f(x,).
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The basic framework of the Newton method is the second order Taylor

approximation
©) F ) = £+ RV (1, A+ A H (A

where H (x, ) 1s the second order derivative or Hessian which tells us how the slope of the

function changes in a neighborhood of a given point.

Assuming the Taylor expansion of a function f is a good global approximation to
that function, we will approximate the optimum value of f* by optimizing its Taylor
expansion. In our case, this is equivalent to saying that to determine the best direction of
motion Ax we have to optimize the expression (9). Differentiating (9) with respect to

Ax , making the result equal to zero and solving for Ax we obtain

(10 o VG
H(x,)

which will be the best direction of motion for Newton’s method.

Sometimes iterative methods like the ones presented above do not converge to a
solution after a finite number of iterations. This problem may be overcome by changing
the maximum number of iterations, or the size of the search step, or the tolerance limit or
the initial value of the search. Most solvers allow you to change these parameters.

Notice also, as is the general case for numerical methods dealing with nonlinear
optimization problems, that if there is more than one local optimum we will find only one
of them. Thus, we will never know for sure if the optimum we reached was a local or a
global one. A rough way of dealing with this problem is to solve the problem providing
the algorithm with alternative initial values of the search.

In this appendix we presented three numerical methods of increasing complexity.
Of course, the more complex ones make use of more information thus reducing, in
general, the number of steps to achieve convergence. However, those steps become more
complex, since they required the computation of a gradient or a Hessian. Then, there are
trade offs to be evaluated when choosing a solution method.

There are additional methods to solve nonlinear problems numerically - i.e.
conjugate gradient method, penalty function method, sequential quadratic programming,

etc. - a number of which extend, combine or mimic the ones introduced here. For a
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comprehensive presentation you are referred to Judd (1998) and Miranda and Fackler
(2002). The Excel Solver uses a conjugate gradient method or a Newton method.
GAMS uses a variety of methods, depending on the solver you choose or have set up as
the default nonlinear solver. The MATLAB solver used in the Portfolio Model in
MATLAB chapter and invoked by the fmincon function uses a sequential quadratic
programming method. For details on the specific methods used by Excel, GAMS and

MATLAB you are referred to their corresponding user’s and solver’s manuals.
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Linear Programming Solvers

A linear programming problem is one of maximizing a linear objective function
subject to a set of linear constraints. In economics, it is also frequently required that the
variables of the problems be nonnegative. Thus, in mathematical terms a linear

programming problem can be expressed as

max y =bx
st. Ax<k
x>0

where y is a scalar, x is a vector of variables, b and k are vectors of constants and 4 is a
matrix. If the problem is one of minimization, it can be written as one of maximizing the
objective function with a negative sign, and changing the direction of the inequalities by
multiplying both sides by minus one. To have an intuitive graphical representation of the

problem, suppose that we have a problem with two variables and three restrictions, i.e.

ap ap k,

xl k

X = , A=|a, a,, and k=|n,
X
2

a3 a3, ks

Thus, the problem can be represented as in Figure G.1 below.
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Constraint 1

Constraint 2

Constraint 3

v

Figure G.1 Feasible Solutions Set

We can see that the problem constraints define an area - the shaded one - that
contains all the feasible solutions. It is a closed, convex and lower-bounded set, also
known as a simplex. In Figure G.2 below we added the corresponding level curves of the
objective function. Since for this example

y=bx, +b,x,
then those level curves are given by
b
X, = A X,
b, b,

We will have one level curve for each value of y.
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X1

v

Figure G.2 Level Curves

We can see that the maximum feasible y will be y,. Generalizing, we can say

that the optimum value of a linear programming problem will be obtained at the point in
which a level curve is tangent to the simplex of feasible solutions. And this will always
happen at a vertex of the simplex. Notice also that multiple - actually an infinite number
- of solutions will be obtained when the level curve is tangent to a segment between two
vertices.

Thus, a solution method could be one that focuses on the evaluation of the
vertices of the simplex of feasible solutions. A rudimentary method would evaluate all
vertices and choose the one that generates the highest value - for a maximization problem
- of the objective function. However, the number of vertices grows very quickly as the
number of variables and constraints increases.

A more efficient method, used by the default GAMS solver BDMLP, is the
iterative procedure known as the simplex method. Starting from a given vertex, this

468



Appendix G Linear Programming Solvers

method looks for the best direction of motion toward another vertex. To do so, it starts
by transforming the inequality restrictions into equalities by means of the addition of new
nonnegative variables known as “slack variables”. In our two-variable three-restriction

example, this is equivalent to writing the new constraints as

a,,x, +a,x, +x; =k,
Ay X, +a,x, +x, =k,

a3 X, +azX, + X5 =k,

or in matrix notation
[41]x=k

where / is a 3x3 identity matrix and where the vector x is now

Notice that the new matrix [4 7] is a 3x5 matrix. Thus, if we set to zero any two

variables in x we will be left with a 3x3 matrix and a 3x3 system of linear equations.
This system will have a solution if the corresponding row (columns) vectors in the matrix
are linearly independent. Also that solution, which corresponds to the base of the tri-
dimensional space spanned by those vectors, will be a vertex of the simplex of feasible
solutions. Thus, we will name that solution the “basic feasible solution™.

The next step in the simplex method is to evaluate the solution to check if we are

at the optimum. To do so, we compute

oy
OX \g

where x,, are the non-basic variables. If any one of these derivatives is greater than

zero, we are not at the optimum since the objective function could be incremented by

increasing the corresponding non-basic variable. The next step is thus to move to another
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vertex incorporating this variable into the base and deleting one of the variables
previously in the base. The selection of the basic variable to be deleted is more involved.
Ideally, we should delete the variable which constraints the most the potential increase in
the objective expected from incorporation of the new basic variable. To do so, the
constraints have to be re-written now with the basic variables as functions of the non-
basic ones, and the resulting system has to be analyzed.

We then continue evaluating the objective function and incorporating-deleting
variables to the basic solution until we reach an optimum.

For more detailed presentations of the simplex method, you are referred to Chiang
(1984), Rardin (1998) and Silverberg and Suen (2001). For details on GAMS linear
programming solvers, see the corresponding GAMS Solvers manuals at

http://www.gams.com.
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The Stacking Method in GAMS

As a compact way of writing a multi-equation model, GAMS allows us to write
indexed equations. As seen in a number of chapters of this book those indexes may
represent commodities, locations, time periods, etc.

For example, the equations corresponding to a problem such as

2
maxJ = Zwlxi W, y,
i=0

st. (1) ayx; +a,y, =b,
(2) ayx; +ayy =b,

can be represented in GAMS as

eqj. . J =e= sum(i, wl * x(i) + w2 * y(i));
eql (i) .. all * x(i) + al2 * y(i)) =e= bl;
eg2 (i) .. a2l * x(i) + a22 * y(i)) =e= Db2;

When the index set is i = {O,l, 2} the model will be expanded and stacked in the

following way

J o =e= wl*x(0) + w2*y(0) + wl*x(1l) + w2*y(l) + wl*x(2) + w2*y(2)

eql (0) .. all * x(0) + al2 * y(0)) =e= bl;
eqg2 (0) .. a2l * x(0) + az22 * y(0)) =e= b2;
eql(l).. all * x(1) + al2 * y(l)) =e= bl;
eqg2 (1) .. a2l * x(1) + az22 * y(1l)) =e= b2;
eql(2) .. all * x(2) + al2 * y(2)) =e= bl;
eqg2(2) .. azl * x(2) + az22 * y(2)) =e= b2;

Notice that before we had a model with an objective function and two indexed
equations and two variables (x (i) and y (i)) and now we have a model with one
objective function, six equations and six variables (x (0), x (1), x(2), y(0), y(1)

and y(2)). Thus, before solving the model, GAMS transforms a model of » indexed
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equations into one of n x card equations plus the objective function, where card indicates
the number of elements in the index set. If the index denotes time periods, this is
equivalent to transforming a dynamic model with » indexed equations and ¢ time periods
into an equivalent static model of n x ¢ equations plus the objective function.

When, as in the chapters on General Equilibrium Models in GAMS and
Macroeconomics in GAMS, we are interested in solving a system of equations and not
an optimization problem, we just set the objective function equal to any constant value

(i.e. j =e= 0;). Thus, when executing the corresponding solver statement, i.e.

solve model maximizing j using nlp;

GAMS will expand and stack the system of equations and it will solve it as a by product

of a “pseudo-optimization”.
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Running MATLAB

This appendix provides the details for running the MATLAB software on a PC to
solve the portfolio model. In order to use MATLAB with other input files substitute the
appropriate file name for mcportfol.m in the following.

For help and information about obtaining MATLAB go to The MathWorks web
site at

http://www.mathworks.com

=  Go to the book web site at

http://www.eco.utexas.edu/compeco

and to the” Input Files for Chapters in the Book™ section of the web site. Right
click on the meportfol.m filename and select the “Save Target As ...” option
in order to save the file in your preferred directory.

= Chose Programs from the Start menu and then chose MATLAB.

= In the Current Directory section of the main MATLAB window click on the icon

2

that contains ““...” in order to browse to the folder where you stored the

mcportfol.m file. Then double click on the mcportfol.m filename.

= A window that contains the mcportfol.m file will open. In order to solve the
model pull down the Debug menu and select the Run option. A graph will appear

showing the results of the runs.

= In order to see the numerical results select the MATLAB main window and look

in the Command Window section.

= Ifyourun a MATLAB program that uses a number of functions stored in separate
files (such as the portfolio.m or the models in the genetic algorithm chapters or in
the agent-based model chapter) make sure you download all those files in the

same directory.
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Obtaining the Steady-State of the Growth Model

Here we are interested in deriving the steady-steady solution of the model
presented in the Growth in Excel chapter. More detailed derivation steps can be
found in Azariadis(1993), Sections 7.3 and 13.4.

We begin by defining the utility function

1 I-7
(1) u(C)=—C

and the production function

2) S(K)=0K.

Thus, as in the Growth in Excel chapter, the model we want to solve can
be stated as find

(G,),C,,-++,C,_,) to maximize

3 J=Y pu(c)
subject to

(4) Kt+1 = Kt + f(Kz) - Ct
%) K, given.

©) lim|5w'(C,) K, |= 0

where (3) is the criterion function, (4) is the capital accumulation equation and (5) is the
initial condition. Since we are now interested in deriving the steady-state solution of the

model, we consider an infinite horizon problem. Thus, instead of a fixed terminal
condition, we now impose the transversality condition (6), where u'(C,) is the derivative

of the utility function. This condition states that the discounted lifetime utility is
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maximal when the capital stock is zero or, in other terms, that at time ¢ the present value

of capital tends to zero as time goes to infinity.
Re-arranging (4) and substituting for C, in (3) we obtain

) T =Y KK,
where
(8) V(Kt’KH-l) = u[f(Kt) + Kt - Kt+l]'

Differentiating (7) w.r.t. to K,,, we obtain, for each time period ¢, the first-order

t+1

condition
) ﬂtvz (K,,K, )+ ﬂmvl (Kt+l’Kt+2) =0

where v, and v, are the partial derivatives of the function v and where

(10) v =[1+ (K, )]u'(C.,)
and
(11) v, =-u'(C,,).

We now divide (9) by ' to obtain
(12) pv, +v, =0
or, substituting (10) and (11) into (12)

(13) A1+ (K, D]u'(C) =u'(C,).

Equation (13), together with equation (4)

(4) Kt+l = Kt + f(Kt) o Ct
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form a dynamical system that describes the evolution of the time paths for consumption
and the capital stock. Given the initial condition (5), this system has a solution for each
terminal value of the capital stock. The transversality condition (6) ensures that we pick,
out of the many possible solutions, the optimum one.

To compute the steady-state, we eliminate the time subscripts from (13) and (4) to

obtain, respectively

1-p
14 "(K)=—"—
(14) S'(K) 5
and
(15) C=f(K).

Finally, to obtain the steady-state for the capital stock as in equation (14) in the
Growth in Excel chapter, we substitute (2) into equation (14) above and solve for K, thus

obtaining
1

_(1=8)
(16) K”_(ﬂcw) .
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