
 6/12/2005
06:34

Computational Economics

David A. Kendrick

P. Ruben Mercado

Hans M. Amman

Contents

Introduction

Part I Once Over Lightly …
Growth

1. Growth Model in Excel
Finance

2. Neural Nets in Excel
Microeconomics

3. Partial Equilibrium in Mathematica
4. Transportation Model in GAMS

Database
 5. Database Systems in Access
Finance

6. Thrift in GAMS with Genevieve Solomon
7. Portfolio Model in MATLAB

Part II Once More …

Microeconomics
8. General Equilibrium Models in GAMS

Game Theory
9. Cournot Duopoly in Mathematica with Daniel Gaynor
10. Stackelberg Duopoly in Mathematica with Daniel Gaynor
11. Genetic Algorithms and Evolutionary Games in MATLAB

Finance
 12. Genetic Algorithms and Portfolio Models in MATLAB
Macroeconomics

13. Macroeconomics in GAMS
Agent-based Computational Economics

14. Agent-based Model in MATLAB
Environmental Economics
 15. Global Warming in GAMS

Contents

Dynamic Optimization
16. Dynamic Optimization in MATLAB

Part III Special Topic: Stochastic Control
Stochastic Control
 17. Stochastic Control in Duali
 18. Rational Expectations Macro in Duali

Appendices
 A. Running GAMS
 B. Running Mathematica
 C. Running the Solver in Excel
 D. Ordered Sets in GAMS
 E. Linearization and State-Space Representation of Hall and Taylor’s Model
 F. Introduction to Nonlinear Optimization Solvers
 G. Linear Programming Solvers
 H. The Stacking Method in GAMS
 I. Running MATLAB
 J. Obtaining the Steady-State of the Growth Model

References

Preface

 One of the best ways to learn computational economics is to do computational
economics. One of the best ways to do computational economics is to begin with
existing models and modify them as you experiment with them. This is the approach
used in this book.
 In each chapter an economic model is presented. First the economics and
mathematics of the model is discussed and then the computational form of the model is
analyzed. This process enables one to learn the economics and the mathematics of the
problem area as well as the computational methods that are used in that area. For
example, in the economic growth area we make use of a Ramsey type model. The
economics of growth theory are first discussed along with the equations that model this
process. Then the software representation of the model is presented so that the reader can
see how the model can be solved on a computer. The student can then modify the model
in order to analyze its sensitivity to various parameters and functional specifications. In
the process of experimenting with the model one can gain an improved understanding of
both the software and of the economic modeling.
 This book grew out of undergraduate and graduate level courses on computational
economics taught by us at the University of Texas, ISEG (Argentina) and the University
of Amsterdam. Also, a number of teaching assistants and undergraduate students
participated in the development of chapters, notably Daniel Gaynor and Genevieve
Solomon.
 This book is intended for use by advanced undergraduates and professional
economists and even, as a first exposure to Computational Economics, for graduate
students. We expect the development in coming years of undergraduate courses with a
focus on economic modeling along the lines outlined in this book. Also, we envisage the
development of a two course sequence in Computational Economics in graduate
programs. The introductory course would have a broad economic modeling focus with
an approach similar to that used in some chapters of this book. The second course would
focus on algorithms and numerical methods.
 Part of our motivation for writing this book is spelled out in a couple of
paragraphs that are taken from a paper the three of us wrote with the title “Computational

Preface

Economics: Help for the Underestimated Undergraduate”. 1 These comments – though
written for that paper – apply equally as well to this book.

“The ubiquitous personal computer has filtered deeply through the lives of
college undergraduates; however undergraduate education in economics
has so far failed to take full advantage of this sweeping change. We are
underestimating the learning ability and insufficiently challenging a whole
generation of undergraduate students in economics. Our thesis is that
computational economics offers a way to improve this situation and to
bring new life into the teaching of economics in colleges and universities.

With its early focus on algorithms, computational economics seemed well-
suited for a relatively small group of graduate students and unlikely to
have much impact on undergraduates. However, that is changing as we
are discovering that computational economics provides an opportunity for
some students to move away from too much use of the lecture-exam
paradigm and more use of a laboratory-paper paradigm in teaching
undergraduate economics. This opens the door for more creative activity
on the part of the students by giving them models developed by previous
generations and challenging them to modify those models. The
modifications can be altering the models to make them applicable to the
student’s interest or finding weaknesses in the model that can be
strengthened by changes in the structure of the model. In the process the
students become much more involved in their own education.”

 The organization of the chapters in the book reflects primarily the outline of the
courses at the University of Texas. The aim is to let the students find an area of
computational economics that interest them and to pursue that area. Since some of the
students are interested in microeconomics, others in macroeconomics and others in
finance an effort is made to give a quick and broad exposure to models across a range of
fields early in the semester. Then the range is covered again later in the semester in
greater depth. The book is structured to follow this pattern. In Part I there is a “once
over lightly” treatment of computational economics examples from a number of fields.
This is then repeated in greater depth and complexity in Part II. Part III covers an

1 Kendrick, Mercado and Amman (2005).

 5

Preface

advanced area that is of special interest to the authors, namely the solution of
macroeconomic models with stochastic control methods.
 We would like to thank Alan Manne, Manfred Gilli and other reviewers for
comments on earlier drafts of this book that helped us to substantially improve it. Also,
we want to thank Provost Sheldon Ekland-Olson and Dean Brian Roberts of the
University of Texas for funding which was used to support preparation of some of the
materials in this book. In addition, we would like to thank Peter Dougherty of the
Princeton University Press for his encouragement of the development of this book over a
period of many years.

Thanks are due to a number of undergraduate and graduate students who took the
computational economics courses at the University of Texas and contributed ideas and
models which added to the quality of several of the chapters and who helped to create and
maintain the web sites, viz. Pichit Akrathit, Joe Breedlove, Michael Evanchik, Shyam
Gouri-Suresh, Miwa Hattori, Carter Hemphill, Kyle Hood, Seung-Rae Kim, Kevin Kline,
Paul Maksymonko, Juan Carlos Navarro and Huber Salas.

 6

Introduction

 One can think of learning computational economics by following one of three
different routes - via computational methods, via mathematical methods or via economic
areas. The computational methods route would focus on the use of a particular computer
software system like MATLAB or Mathematica and teach the students the capabilities of
those languages with examples from economics. The mathematical route would focus on
algorithms to solve various classes of mathematical models such as linear or nonlinear
programming models, differential or difference equations, and dynamic programming
models and provide examples of the use of each kind of model in economics. The
economic areas approach would focus on microeconomics, macroeconomics, finance,
game theory, environmental economics etc. and teach the students how to formulate and
solve economic models in each of these areas. For this book we have chosen the last of
these three approaches.
 Thus this is a book about computational economics, but also about economic
modeling. As a student approaches a new area of interest we want to help him or her first
think through the economics of the subject. Then we develop this economics into a
mathematical model. Finally we specify the mathematical model as a computational
model in a particular software system. We believe that this process can be greatly
facilitated by encouraging the students to follow Professor Paul Samuelson’s advice and
“stand on the shoulders” of those who have gone before. This is done by beginning from
subject areas and problems that other economists have studied and learning how the
economics was converted to mathematics and then to computational models in those
areas.
 Therefore this book is organized around economic topics rather than around
mathematical or computational topics. However, we did not put all the microeconomics
in the first section, then the macroeconomics etc. Rather the book is divided into two
rounds of relatively simple models and then more complex models as was discussed
above in the Preface.

Introduction

Software Systems

 Students who begin studying computational economics frequently ask the
question, “What programming language should I learn?” 2 The answer given in this book
is to first become acquainted with a number of high-level languages such as GAMS,
Mathematica, MATLAB and Duali as well as the Solver in Excel and the Access
database software. Moreover, it is useful to become acquainted with each of these
software systems in the midst of solving the kind of economic models that are naturally
developed in each of these systems. Then later one can dig deeper into one or more of
the software systems and gain some level of mastery of it while writing a short mid-term
paper, a term paper or doing research. At a still later stage, students who find that they
have a continuing interest in computational economics would be well advised to progress
to lower level languages such as Visual Basic, Fortran, C, C++, C# or Java.
 There are different types of software paradigms, each of them more or less
suitable to represent specific types of models. In this book, we present a selected set of
high-level software systems, each corresponding to a specific paradigm.
 We start the book with relatively simple models represented in Excel
(“spreadsheet paradigm”) as a way of beginning with a software paradigm that is well
known and accessible to almost everybody, since this software system is available on
most PC’s. Excel is useful to solve small models that do not involve simultaneous
systems of equations; however, is not well designed for vector-matrix operations. For
this type of operations we will use MATLAB later in the book. However, Excel has a
nonlinear optimization solver which can handle constrained optimization problems and is
very handy to set up and solve interesting models such as a Ramsey type model of
economic growth and a small neural net.

Also, early in the book we introduce Access (“relational database paradigm”),
which like Excel is a very accessible software system. Access is well suited to develop
relatively simple relational databases and its use is illustrated with a prototype U.S.
database.
 The “set driven” paradigm is introduced with GAMS. This software system,
particularly well suited to deal with medium and large size models involving from tens to
hundreds of variables and equations, allows us to specify problems in an organized and
compact way, defining sets to be used as indexes, and specifying scalars, parameters,
variables and equations in a parsimonious way. We solve with GAMS models of

2 For a discussion of some of the software systems used in economics see Amman and Kendrick (1999b).

 8

Introduction

transportation, financial planning, general equilibrium, macroeconomics and global
warming.
 The “vector matrix” paradigm is introduced with MATLAB. This software
system is useful to deal with models or problems involving intensive use of vector and
matrix operations, cell arrays and data structures, and also to deal with problems of
recursive structure requiring intensive use of “loops”. We use MATLAB to solve
problems of portfolio optimization, genetic algorithms, agent-based models and dynamic
programming.
 The “symbolic math” paradigm is introduced with Mathematica. This software
system is particularly powerful to solve symbolic algebra and calculus problems, and we
use it to represent partial equilibrium and game theoretic problems.
 Finally, in a Special Topics Section in Part III of the book, and by means of
macroeconomic applications we introduce Duali, a “dialog box driven” software
designed to solve stochastic control and dynamic policy analysis problems. The basic
code of this software is written in C, and contains a variety of simple and complex
quadratic linear dynamic programming algorithms.
 Most economics departments and economics students already have many software
systems available on their computers and hopefully will also have the ability to acquire
most of the rest of those used in this book. We have provided in our web site at
 http://www.eco.utexas.edu/compeco
the input files for the economic models that are used in this book. Also, this web site
contains pointers to software sources, supporting books and user guides. In an effort to
keep student cost down, we have endeavored to keep most of the models used in this
book small enough that they can be solved with the student versions of the software
systems.
 With the exception of Duali, all of the software systems we use are commercial
products. In contrast, the Duali software is academic software which is under
development by two of us (Kendrick and Amman) and has no support staff or help desk.
It is designed to greatly reduce the learning curve for developing dynamic deterministic
and stochastic optimization models and is a most useful starting point into economic
research in these areas. However, it is early in its stages of development and must be
used with caution.

 9

http://www.eco.utexas.edu/compeco

Introduction

Numerical Methods

In this book we present not only a variety of models and software paradigms, but
also introductions to diverse numerical methods needed to solve them. As with the
software systems, we think that is useful to become acquainted with each of those
numerical methods in the midst of solving the kind of economic models that are naturally
involved with each of these methods.

A number of the models presented in the book are solved with linear
programming methods or nonlinear optimization methods based on gradient and/or
Newton methods. Thus we provide an introduction to these methods in appendices at the
end of the book. Other methods are introduced directly in particular chapters. Neural
nets are applied to a stock price prediction problem, Monte Carlo methods are applied to
a portfolio selection problem and genetic algorithms are applied to an evolutionary game
and to a portfolio selection problem. Quadratic linear dynamic programming is
illustrated with a simple macroeconomic policy analysis application. Finally, the Fair
and Taylor iterative method to solve rational expectations models, together with the
Amman and Kendrick method to solve optimal control models with forward looking
variables is applied to a prototype macro model developed by Taylor.

Teaching Methods

 A description of the teaching methods used in the computational economics
courses at the University of Texas will help the reader to understand the way in which the
materials in this book have been developed. One aspect of these courses is that they
have a weekly cycle. As was described above, the first class each week is on the
economic theory and mathematical model of the subject for the week. The second class
is on the computational methods used to solve the model. The third class of the week is
not in a lecture room but rather in a computer laboratory where the students are ask to
solve the base model and then to modify (and solve) the model several times in order to
study its structure and operation. One week after the computer laboratory class the
students are asked to turn in a short paper a few pages in length that describes their own
experiments with the model during the week and the results obtained. The weekly
teaching cycle is reflected in this book with some suggested experiments listed at the end
of each chapter. However, the students are encouraged to strike out on their own – a
process which enhances both enjoyment and learning.

 10

Introduction

Since the emphasis in these computational economics courses is on creativity,
there is both a mid-term paper and a final paper. The students are asked in the mid-term
paper to modify one of the models from the course or to select an existing model from the
GAMS library or another similar source and then to make minor improvements in the
model. In the final paper they are asked to carry this process forward and make major
modifications to an existing model or to create a model of their own.
 Several alternative approaches to the one used in this book are available for the
study of computational economics. However, until now most books in this field have
focused on graduate level instruction while we are hoping to be helpful to both
undergraduates and graduate students. For an approach using the GAMS software
exclusively and focusing on linear and nonlinear programming methods see Thompson
and Thore (1992). For approaches using numerical methods see Judd (1998) who uses
several computer languages or Miranda and Fackler (2002) who use MATLAB. Varian
(1993a) and (1996) presents a variety of models in Mathematica. For a web site that
supports a course on applied macroeconomics using computational methods taught by
Prof. Harris Dellas at the University of Bern that is somewhat similar to the approach
taken in this book see
 http://www.vwi.unibe.ch/amakro/Lectures/computer/
For books that focus on numerical methods in macroeconomics with some applications in
MATLAB see Marimon and Scott (1999) and Adda and Cooper (2003). For a book with
a collection of articles that consider a variety of numerical methods to solve
macroeconomic models see Hughes Hallett and McAdam (1999). For a handbook with a
collection of articles about computational economics see Amman, Kendrick and Rust
(1996). Also, you are encouraged to browse the Internet site of the Society for
Computational Economics at
 http://comp-econ.org
where you will find information about meetings, journals and book series.
 Given the array of materials that are becoming available for teaching
computational economics, we are hopeful that courses in this field will become a part of
the core curriculum in both undergraduate and graduate education in economics as
happened before with Mathematical Economics and Econometrics. Moreover, we hope
our book will motivate and help instructors in those areas to offer courses in
Computational Economics. We are aware of courses in Computational Economics that
have been offered in recent years at Stanford, Yale, Maryland, Ohio State, Bern, Harvard
and Texas and believe that some of these courses will migrate toward the core as courses
are added at other universities.

 11

http://www.vwi.unibe.ch/amakro/Lectures/computer/
http://comp-econ.org/

Part I

Once Over Lightly . . .

12

Chapter 1

Growth Model in Excel

 Most economists are familiar with the spreadsheet and even with the database
capabilities of the Excel software, but fewer are aware that Excel also contains powerful
solution procedures for solving both linear and nonlinear programming problems.
Because the Excel interface is so familiar to many and because the specification of
programming problems in Excel is relatively straightforward, there are times when Excel
is the software of choice for solving certain types of optimization problems. In
particular, when the models are small enough that the set driven nature of GAMS does
not give it an advantage over Excel, it may be advantageous to solve optimization
problems in Excel. To illustrate this we will use a one-sector growth model of the type
that is widely used in the economics literature.

The model we will use is the famous Ramsey model of economic growth. Models
of this type have been widely used in the economic growth literature. In particular, we
will follow the versions developed by Chakravarty (1962) and Taylor and Uhlig (1990).
We will employ a finite horizon version with a terminal capital stock constraint.
 The model will first be introduced in a mathematical form and then in a
computational form. 3 The essential economics of the simple growth model used
in this chapter is a trade-off between consumption and investment. More
consumption in a time period means more utility in that time period but less
investment and therefore less capital stock and less production in future time
periods. So the key elements of the model are the production function with
capital being used to produce output, the capital accumulation relationship with
investment creating new capital and the utility function with consumption
resulting in utility.

3 Most models used in this book cannot be solved analytically so numerical methods are required.

However, even when analytical solutions can be obtained, as shown later in Appendix J, it is still useful to

obtain numerical solutions so that the code can be checked on simple models. Then the numerical methods

can be used with more confidence when they are applied to more complex models that cannot be solved

analytically.

 13

Chapter 1 Growth Model in Excel

1 Mathematical Form

 The production side of the economy is specified in a stylized form by
means of an aggregate production function

(1) t tY Kαθ=

where
 = output in period tY t

 θ = a technology parameter
 t = the capital stock in periodK t

 α = exponent of capital in the production function

This is the widely used Cobb-Douglas form of a production function except that
function usually includes both capital and labor inputs. However, for the sake of
simplicity, the production function in this model includes only capital.
 Consider next the capital accumulation constraint

(2) 1t t tK K Y+ = + − tC

t

where
 t = consumption in period t C

which says that the capital stock next period will be the same as this period plus
the difference between output and consumption which is saving or investment.
For the moment depreciation of the capital stock is ignored though you might
want to add that to the model in an experiment.
 Also, the production function (1) can be substituted into the capital
accumulation equation (2) to obtain the equation

(3) 1t t tK K Kαθ+ = + −C

In addition, the model has an initial condition that specifies the size of the capital
stock in the initial period.

(4) 0 given.K

 14

Chapter 1 Growth Model in Excel

 The model also includes a terminal condition that fixes a minimum
amount of capital that must be left to the next generation after the time horizon
covered by the model.

(5) *

NK K≥

where
 * = a lower bound on the amount of capital required in theK

 terminal period, . N

 Finally, the model has a criterion function that is the discounted value of
the utility that is obtained from consumption over all of the periods covered by the
model. It is written in two steps. First the utility in each period is defined as

(6) () ()
()11

1t tU C C τ

τ
−=

−

where
 C riod t as a function of consumption

()tU = the utility in pe

 in that period
τ = a parameter in the utility function4

hen the sum of the discounted utilities is specified as

(7) C

where

T

()
1

0

N
t

t
t

J Uβ
−

=

= ∑

 = the criterion value J

 1 = the discount factor = β
1 ρ+

 ρ = the discount rate

and the substitution of Eq. (6) into Eq. (7) yields the criterion function

4 This is a popular form of the utility function which is known as the “constant elasticity of intertemporal

substitution” function. Roughly speaking, think of the elasticity of intertemporal substitution as measuring

the degree of substitutability between consumption “today” and “tomorrow” or, in geometric terms,

measuring the curvature of the indifference curves corresponding to consumption at any two points in

time. For this function, the elasticity of substitution is constant and equal to 1/τ .

 15

Chapter 1 Growth Model in Excel

(8)
()

()
1

1

0 1 t
t

1N
tJ C τβ

−

τ
−

= −

 In summary, t

=∑

he model consists of the criterion function (8), the capital
ccumulation equation (3) and the initial and terminal conditions (4) and (5) and

can be stated as f

,)NC − to maximize

8)

a
ind

0(, ,C C 1 1

()
()

1
1

0

1
1

N
t

t
t

J C τβ
τ

−
−

=

=
−∑ (

subject to

1t t t tK K Kαθ+ = + − (3) C
(4) 0K given.
(5) *

NK K≥

 So the essential problem is to choose those levels of consumption, over the time

 and

n future years.
 This growth model is a nonlinear programming problem because of the
nonlinearities in the criterion function (8) and the capital accumulation equation (3). It
can be stated and solved rather nicely in Excel as is discussed below.

periods covered by the model that strike the right balance between consumption
investment. Lower consumption in any given period means less utility in that period but
more savings and therefore larger capital stocks and more production i

 16

Chapter 1 Growth Model in Excel

2. Computational Form

 Consider first a spreadsheet layout of the model as shown in Figure 1.1 below.
The corresponding Excel file is in the book web page.

Figure 1.1 Growth Model in Excel with Total Utility Highlighted

Notice first that the model horizon covers time periods numbered from zero through nine
so that period zero will be the initial period and period nine will be the terminal peri
The rows below the time periods d

od.

isplays the
consum

 production,
 capital stock,
 utility,

in each time period. All of these values are calculated when the model is solved and we
shall show shortly how the calculations are structured. However, for now look only at

ption, tC

tY
 tK

()tU C

 17

Chapter 1 Growth Model in Excel

the cell below the "Total" label, i.e. cell L12, which is highlighted in the bottom right
corner of the spreadsheet. It contains the value 9.97; however, we are not so much
interested in that value as in how it is obtained. Look at the formula bar at the top of the
spreadsheet which contains the expression
 SUM (B12:J12)

This indicates that this cell contains the sum of the utility values for periods zero through
eight which are contained in the cells B12 through J12.
 Actually, the value in each of the cells B12 through J12 is not, strictly speaking,
the utility for each period but rather the discounted utility for each period. This is
illustrated in Figure 1.2 below.

Figure 1.2 The Calculation of Discounted Utility in Each Period

The cell D12 in the utility row is highlighted and the expression which is used to
calculate the value in that cell is displayed in the formula bar as

ider it one piece at a time. Begin with
 = beta^D4*(1/(1-tau))*D5^(1-tau)

This is complicated so lets cons

 18

Chapter 1 Growth Model in Excel

 beta^D4

This means that beta is raised to the power of the number in cell D4. This makes use of
the “naming” capability for constants in Excel and is equivalent to . The number B17^D4

in cell D4 is two so this term becomes
 2β

which is the discount factor squared. Beta is defined in line 17 of the spreadsheet as .98.
Also, since

1
1

β
ρ

=
+

we can infer that the discount rate, ρ , is equal to about .02.

 Next consider the term
 (1/(1-tau))*D5^(1-tau)

which can be rewritten as

 11 tau−5
1

D
tau−

and since the cell D5 contains consumption we can further rewrite this expression as

 11
1 tC τ

τ
−

−

which is the same as the utility function in Eq. (6) above. So, the cell D12 contains the

mathematics
11

1
t

tC τβ −

tau

 0.5.
ary, line 12 of the ulate the discounted utility

τ−
eter of the utility function which is the discounted utility for period t. Also, the param

is defined in line 16 of the spreadsheet as being equal to
spreadsheet is used to calc In summ

in each period and then to sum those values so as to obtained the total discounted utility
in cell L12. Thus the criterion function for the model is contained in line 12.
 Next consider the constraints of the model. Begin with the expression for
production which is illustrated in Figure 1.3 below.

 19

Chapter 1 Growth Model in Excel

Figure 1.3 The Calculation of Production in Each Period

In this figure cell D6 is highlighted and the formula bar contains the expression
 theta*D9^alpha

which is the same as Eq. (1) above for production, i.e.
 t tY Kαθ=

since cell D9 contains the capital stock for period t and theta is defined near the bottom
of the spreadsheet in line 19 as being equal to 0.3 and alpha is defined in line 18 as being
equal to 0.33.
 Next consider the expression for the capital accumulation constraint which is
shown in Figure 1.4 below where cell D9 is highlighted.

 20

Chapter 1 Growth Model in Excel

Figure 1.4 The Capital Accumulation Constraint

The expression in the formula bar this time, which is
 C9 + theta*C9^alpha - C5

contains at its core the expression for production which we just developed above, i.e.
theta*C9^alpha

So we can translate the entire expression as

since row 9 contains the capital stock figures and row 5 contains the consumption figures.
As you can see, by comparing the expression above to the capital accumulation constraint
in Eq. (2) above with the time periods each decreased by one period, i.e.
 1−

the timing in the spreadsheet calculations is slightly off for production but that slight
timing error may make the spread slightly easier to specify so we will leave the error for
the time being.
 Also, notice at the end of row 9 in the spreadsheet that there is a target capital
stock. We will discuss this in detail when we describe how the model is actualy solved

1 1t t tK Y C− −+ −

1 1t t t tK K Y C− −= + −

 21

Chapter 1 Growth Model in Excel

in Excel. However, before we do that it is necessay to indicate how the initial condition
for capital stock is specified. This is shown below in Figure 1.5 where cell B9 is
highlighted.

 Figure 1.5 The Initial Capital Stock

When cell B9 is highlighted the fomula bar does not show a mathematical expression l
those shown in the other cells in line 9, but rather just the n

ike
umber 7. This is the initial

. (4)

s which are
w lets separate the two by looking again at

r l

capital stock which was specified in the mathematical statement of the models in Eq
as
 0K given

So the initial capital stock is given and it has been specified as equal to 7 in this version
of the model.
 The tour of the model in Excel given above is slightly confusing because it
discusses both the data elements which the user must provide and the variable
calcuated when the spreadsheet is solved. No
Figure 1.5. The user must supply the time period numbe s in row 4, the initial capita

 22

Chapter 1 Growth Model in Excel

stock in cell B9 and the parameter values tau, beta, alpha and theta in cells B16
through B19. Also, the user must supply the terminal capital stock target in cell L9.
Excel will compute all the rest. Then why are all those other numbers shown in Figure
1.5? Those other numbers have all been comp

uted the last time the model was solved

ting

and will be updated if you alter one of the inputs mentioned above and then solve the
model again.
 So lets consider next how the model is solved. This is accomplished by selec
the Tools menu and the Solver option from that menu. When you do this the dialog box
in Figure 1.6 will appear.5

Figure 1.6 Solver Dialog Box

Consider first the top line in this dialog box in the section called "Set Ta et Cell". The
dit box to the right of this capiton indicates that cell L12 has been chosen. This

ty on the right hand side of the utility line in the
readsheet. Just beneath this the user can specify whether the value in the cell is to be

maxim

t provide the best trade off between utility in that period
nd saving which becomes future capital stocks and permits more production later.

rg
e
corresponds to the total discounted utili
sp

ized or minimized. In the growth model at hand we are seeking to maximize the
total discounted utility so "Max" is selected.
 The next line is used to specify which cells are to be changed while seaching for
the solution to the model. In the growth model we are solving for the values of
consumption in each period tha
a

 In case the dialog box does not appear, see Appendix C. 5

 23

Chapter 1 Growth Model in Excel

Therefore, we specify here that the variables to be used in search for the optimum are
those in cells B5 to J5 which are the consumption values.
 Next consider the box that is labelled "Subject to the Constraints" in which
appears the constraint
 K9 >= L9

Since cell K9 contains the capital stock for period 9 and cell L9 contains the target capita
stock, this constraint requires that the terminal period capital stock which i

l
s computed by

e model be greater than or equal to the user specified target which in this case is set to
onds to the

athemati

th
9.1, that is 30% higher than the intitial capital stock. This corresp
m cal constraint in Eq. (5) above, i.e.
 *

NK K≥
w is the capital stock in the terminal period a is thehere nd target capital stock.

N ify all of the capital
ccumula eet as constraints. Rather they are
ffectively linked together by the mathematical expressions so it is necessay to include

To solve the model one selects the Solve button in the Solver dialog box in Fig.
el program next is the solution of the

near rogramming model that is represented by the growth model. A Newton
 a conj ate gradient method can be used in Excel to solve the model. A brief

ssio of nonlinear optimization methods is provided in App F at the end of the book.
king o the Options button in the Solver dialog box will display the Solver

ns d alog box shown in Figure 1.7.

 NK *K

 otice that it is not necessary in the Solver dialog box to spec
a tion constraints in line 9 of the spreadsh
e
only cell K9 when specifying the constraints.

1.6. What happens behind the scenes in the Exc
nonli p
method or ug
discu n
 Clic n
Optio i

 24

Chapter 1 Growth Model in Excel

Figure 1.7 Solver Options Dialog Box

In this dialog box you will be able to change different parameters - i.e. maximum
time, number of iterations, precision, tolerance and convergence - that allow you to
control the performance of the nonlinear optimization method used by Excel. Notice that
the Assume Non-Negative option has been selected to constrain the solution values o
model to non-negative values.

3. Results

f the

When solving the growth model with the Excel Solver it is useful to remember the
essential tradeoff in the model. More consum eans more utility today.

e investment today and
is means more capital stock in the future and therefore more output and more

consum

ption today m

However, less consumption today means more saving and mor
th

ption possibilities in the future.

 25

Chapter 1 Growth Model in Excel

 So the problem is to find just the right level of consumption in each time period
given the parameters of the model. The key parameters of the model are

 ,β beta discount factor 0.98

 *K target capital stock 9.1
 ,θ theta production function parameter 0.30
 ,α alpha production function exponent 0.33
 0K initial capital stock 7
 ,τ tau utility function parameter 0.50

The discount factor is the most intuitive of these parameters. Recall that is is equal to

(9) 1
1

β
ρ

=
+

Solving Eq. (9) for the discount rate, ρ , yields

0) (1 1 1ρ
β

= −

So when .98β =
1 1 1.02 1.00 .02

0.98
ρ = − = − = (11)

and when .95β =

(12) 1 1 1.052 1.00 .052
0.95

ρ = − = − =

So to a reasonable approximation in the range of interest
(1 1.003) β ρ≈ −

Thus a discount rate of six percent or .06 implie a discount factor of 0.94.

s

 26

Chapter 1 Growth Model in Excel

 Next consider that the criterion function in Eq. (8) includes the discount factor, β ,

raised to the power t , i.e.

()

()1

0

1
1

N
t

t
t

J C τβ
τ

−

=

=
−∑

and consider how tβ varies with beta and t as shown in Table 1.1.

 Values of tβ Corresponding to Each Time Period

ρ β Time Periods
 0 1 2 3 4 5
.02 .98 1.00 0.98 0.96 0.94 0.92 0.90
.05 .95 1.00 0.95 0.90 0.86 0.81 0.77

Table 1.1 Values of Discount Term

Thus when the discount rate is 5 percent the term

 tβ becomes smaller much faster as the

time period increases than it does when the discount rate is 2 percent. So when the
discount rate is higher, future utility is "discounted" more heavily, i.e. given less weight
in the criterion function. Thus, if your discount rate is 2 percent you have relatively
more interest in your consumption in future years than if your discount rate is 5 percent.
 Therefore, altering beta is one of the interesting experiments to do with this
model. As you increase the discount rate (and therefore decrease the discount factor
beta) you should expect to see more consumption early in the time horizon covered by
the model. An illustration of this result is shown in Figure 1.8 that contains plot lines
for three experiments corresponding to three different values of beta.

 27

Chapter 1 Growth Model in Excel

0.300

0.320

0.340

0.360

C
on

su
m

pt
io bet 0.98

beta = 0.97

0.380

0.420

0 1 2 3 4 5 6 7 8

Time Period

n a =

beta = 0.99

ion Paths for Different Discount Factors

0.400

Figure 1.8 Consumpt

A second key parameter of the model also plays a role in this matter of time
preference of consumption and may affect your results in the experiments described
above. This parameter is the target capital stock, *K . The relevant constraint of the
model is Eq. (5), i.e.

 *

NK K≥

which requires that the capital stock in the terminal period exceed the target.
thought of as a constraint which represents the interest of the next generation. W
such a constraint, the optimal solution to the growth model will be to invest
nothing in the last years covered by the model and to make consumption very high
those periods. So a constraint of this sort is normally added to numerical growth m

There can be an interplay between the choice of discount rate an

 This can be
ithout

 little or
in
odels.

d the choice of
 the

v me since

he
t of permitting more consumption with less

investm nt and one would expect to see higher levels of both output and consumption in
e model solution.

the target capital stock. If you choose a high target capital stock, then changes in
discount rate may not have much effect on the pattern of consumption o er ti
consumption must in any event be very low in order to insure that there is enough
investment that the target capital stock can be met in the terminal period.

One of the most straightforward experiments with the model is to increase t
initial capital stock. This has the effec

e
th

 28

Chapter 1 Growth Model in Excel

 If you alter the θ parameter in the production function in Eq. (1), i.e.

 t tY Kαθ=

you are modifying the efficiency of the production process. For example, if you increase
θ more output can be produced with the same capital stock and you should find higher
levels of both output and consumption in the model solution. Similarly altering the

α

parameter affects the efficiency of the production process.
 The last parameter that can be modified is τ - a parameter in the utility functio
Intuition here is a little hard to come by, but as

n.
τ approaches zero the utility funct

becomes linear and as
ion

τ approaches one it becomes logarithmic so it may be useful to
ink ofth τ as a param ter which affects the curv re of the utility function or the degree

of dimi ishing marginal utility.
 Notice that when you perform these experiments, if the changes you make in the
parameter values are relatively small, the Excel solver will easily converge to a new
solution. This may not be the case for significant changes. Thus in those model runs you
may have to “guess” and provide new values for the sequence of consumption values to
be used by the Excel solver as new starting values, or you may have to play with different
Solver Options to control the solver performance.

In contrast to numerical growth models, theoretical growth models are usually
solved for infinite horizons and do not have a terminal capital stock target. As an
approximation to this, some numerical growth models are solved for much longer time
horizons than the period of interest and the solution is used only for a shorter period.
Thus if one is interested in a twenty year period the model might be solved for forty or
sixty years so that the end conditions do not have much effect on the solution paths for
the first twenty years. When extending the time horizon, make sure that as you insert
more columns to the Excel spreadsheet the equations of the model are copied in a proper
maner, that the cell containing the sum of utilities is properly updated to cover the new
range and that the specifications of the target cell, changing cell and the constraint are
properly updated in the Solver dialog box.
 An interesting experiment is to impose a terminal capital stock equal to the initial
capital stock and solve the model for different time horizons. The optimal capital stock
path for an experiment like this is shown in Figure 1.9.

e atu
n

 29

Chapter 1 Growth Model in Excel

6.900
6.950
7.000
7.050
7.100

C
ap

ita
l S

to
ck

6.800
6.850

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time Period

Figure 1.9 Capital Stock Paths

7.150
7.200
7.250
7.300

es

 point

rever. It can be shown (see Appendix J) that for this model

We can see that optimal values for the capital stock first increase then decrease.
If we keep extending the time horizon, we will generate a sequence of even higher arch
whose top parts will be flatter as they get closer to an upper limit value of about 10.5.
This behavior is known at the “turnpike property”. To understand this, we have to
out that a model like the one presented in this chapter has a steady-state solution, a
solution that, given enough time, the consumption and capital stock levels would
converge to and stay there fo
the steady state capital stock is

(14)

1
11

ssK
αβ

βαθ

−⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 Substituting the corresponding parameter values we obtain ssK = 10.559. (To

confirm that this is indeed a steady-state solution, you may want to impose this value as
the initial and target capital stock values and solve the model with the Excel solver).
Thus, any finite optimal path will tend to reach the steady state value, stay there or close
to it as long as possible, and then leave it to go back to the target capital stock.

 30

Chapter 1 Growth Model in Excel

4. Experiments

 Computational economics is not a subject that is easy to learn with the traditional

cture t solve the

 and
tage substantial structural changes can be made

 the model so that it is more applicable to an economic situation of interest to the

Perform a series of experiments by modifying one of the parameters
discuss

le and exam style of teaching. Rather the crucial learning process is to firs
models that other scholars have used, then to repeatedly make minor modifications and
solve the model again in order to gain a clear understanding of how the model works
its strengths and weaknesses. At a later s
to
student.

ed above and observing the effects on the paths for capital stocks, output
and consumption. Though it might be interesting to change more than one
parameter at a time it is usually better when you are first studying a model to only
change one parameter at a time. Save your results from one run to the next so that
you can use Excel to plot the results across runs as in Figures 8 and 9.
 A more challenging experiment that you may want to undertake (or may
not want to undertake at this stage) is to treat the technology parameter ,θ as

stochastic. For example, you can define it as having a uniform distribution. To do
so, you can use the Excel function RAND, which generates random numbers
uniform

5. Further Reading

Jones (1998) provides a systematic introduction to growth models. Azariadis
(1993) and Barro and Sala-i-Martin (1995), at a more advanced level, present a variety of
optimal growth Ramsey type models similar to the one developed in this chapter. Aghion
and Howitt (1997) present a systematic treatment of endogenous growth models. Ros
(2001) develops a presentation of growth models for developing countries. Mercado, Lin
and Kendrick (2003) present a GAMS version of a single-sector growth model like the
one used in this chapter and a multi-sector optimal growth model in GAMS that is an
extension of the Kendrick and Taylor (1971) model. See Judd (1998) Ch. 13 for
perturbation methods of solving growth models.

ly distributed between zero and one. Be aware that you should generate a
random number for each time period.

 31

Chapter 2

Neural Nets in Excel

Much of economics is about finding optimal variables given parameters which
an behavior. For example in the optimal growth model that we solved with

al levels of the consumption and capital stock
eters of the production function and the utility function.

In this chapter we invert this duality. We begin with the observed behavior and
pt to find the parameters which permit the specified relationships to most closely fit

e subject matter of econometrics and estimation. However, we will
ation that has not been in the mainstream of econometrics but

being used to fit economic

Neural networks models are suitable to deal with problems in which relationships
ong variables are not well known. Exam

 the Ford Motor Company. We attempt to predict it by using the share
panies - companies that provide inputs to automobile

panies that produce competing vehicles.
The central notion of neural net analysis is that we can use a set of observations

rom the past to predict future relationships. Thus we use the closing price of Ford stock
ver a fourteen week period to "train" the model and then use the parameters

describe hum
Excel the goal was to find the optim
variables given the param

attem
the data. Such is th
be looking at a type of estim
that developed in other fields and is now increasingly

ely neural nets. relationships - nam

am ples are problems in which information is
incomplete or output results are only approximations, as compared to more structured
problems handled for example with equation-based models. Neural networks are
particularly useful to deal with data sets whose underlying nonlinearities are not known
in advance.6 Among the many possible applications are forecasting and identification of
clusters of data attributes.
 The example we will use here is typical of the applications of neural nets to

ics and finance - how best to predict the future prices of a stock.7 The stock we econom
use is that of
price of a group of related com
production and com

f
each week o

ne of the strengths of neural net methods is that they may approximate any functional shape.

ural nets are not necessarily a better way to predict stock prices than standard econometric methods;

owever stock prices offer a clear and motivating example for many students, thus we use that example

6 O
7 Ne

h

here.

 32

Chapter 2 Neural Nets in Excel

which emerge from the training to predict the Ford stock price in the fifteenth and
ixteenth week. This is done in an Excel spreadsheet using the Solver that we first used

in the g

t is

ts:

ard

 “learn” or “adapt” assuming specific patterns which reflect the nature of those
puts.

tures. Let’s look now in more detail
t the elements, architecture and workings of a neural network as shown in Figure 2.1.

s the
ost commonly used.

s
rowth model.

 The chapter begins with an introduction to neural nets followed by the
specification of an automobile stock price model. Then we will introduce the data tha
used in the model, the representation of the model in Excel and the use of the Excel
Solver to find the best parameter values.

1. Neural Nets Models

Neural networks (or, more properly, artificial neural networks) are inspired by, or
up to a point analogous to, natural neural networks. They have three basic componen
processing elements (called nodes or neurons), an interconnection topology and a
learning scheme. From a computational point of view, a neural network is a parallel
distributed processing system. It processes input data through multiple parallel
processing elements, which do not store any data or decision results as is done in stand
computing. As successive sets of input data are processed, the network processing
functions
in

There are many alternative network architec
a
This is known as backpropagation or as a feed forward model. This type of model i
m

 33

Chapter 2 Neural Nets in Excel

igure 2.1 Neural Net Layers

 three neurons, one intermediate
yer with two neurons (usually named the “hidden layer”) and one output layer with just

 A k component of the network is the neuron, an elementary processing
ain parts: a

ombination function and an activation function (Figure 2.2). The combination function
 net nput to the neuron, usually as a weighted sum of the inputs. The

ctivation function is a function that generates output given the net input.

Figure 2.2 Activation and Combination Functions

F

This is a simple network with one input layer with
la
one neuron. ey
unit which generates output given inputs. It is composed of two m
c
computes the i
a

 O1

 H1 H2

 I1 I2 I3

OUTPUT

INPUT
LAYER

LAYER

HIDDEN
LAYER

W1 W2

COMBINATION
FUNCTION

ACTIVATION
FUNCTION

 34

Chapter 2 Neural Nets in Excel

It is standard procedure to constrain the output of a neuron to be within an
interval (0,1). To do so, different functional forms can be used for the activation
function, such as logistic functions, sigmoid functions, etc. Also, a threshold may be
used to determine when the neuron will “fire” an output as the activation function yields
a value above that threshold. Input layer neurons receive data (“signals”) from outside
and in general transmit them to the next layer without processing them. Output layer
neurons return data to the outside, and are sometimes set to apply their combination
functions only.

The learning process of the network consists of choosing values of the weights so
s to achieve a desired mapping from inputs to outputs. This is done by feeding the

aring the output (or outputs, in case of having more
an one network output) to a known target, computing the corresponding error and

ometi

on of the combination function for the output layer as

q

j
tja

1

, is the hidden node value in period for node

a
network with a set of inputs, comp
th
s mes applying an error function. Then weights are modified to improve the
performance. To do this, a variety of methods can be employed, such as the Newton
method or the conjugate gradient methods in Excel that are to be discussed later in this
chapter.

2. The Automobile Stock Market Model

We begin with the specificati

 (1) ∑+= jty 0 θθ
=

where y is the output in period t tja t jt

q hidden nodes. In our model the variables

n
tyand the jθ 's are parameters. There are

will be the share price of the Ford Motor Company stock in each of the fourteen weeks i
1997.

The θ 's are among the parameters which we are seeking to find. The tja , which

are the values in time period t at hidden node , are given by the expression

i=⎝ ⎠

j

(2)
jq

tj ji ita S w x
⎛ ⎞

= ⎜ ⎟⎜ ⎟∑
1

 35

Chapter 2 Neural Nets in Excel

where the itx are the inputs at node in period . There are i t jq inputs at hidden node

.
The

j
 itx are the share prices of the other companies in our example. The jiw are

e parameters at the jth hidden node for the ith input and are the second set of
arameters that we are seeking to choose. Thus, in summary, we are given the share
rices of the other companies

th
p

itx and the share price of the Ford stock and are seeking

 find the parameters
typ

to θ and which permit our functions to most closely fit the data.
What functions are being used? The first function in Eq. (1) is a linear function

nd the second function in Eq. (2), the function S, is a sigmoid function. The
athematical form of this function is

)

w

a
m

1()
1 zS z

e−=
+

 (3

One can quickly see by examination that this function evaluated at 0z = is

(4) 0

1 1(0)S −= =
1

1 1 1 2e
=

+ +

hat large negative values of map to near zero, i.e.

(5)

and t z

5

1(5) .007
1

S
e

− = =
+

and that large positive values of z map to approximately one, i.e.

5

1(5S(6)) .993
1 e−= =
+

tion the s ape shown in Figure 2.3 below.

So the func has h

 36

Chapter 2 Neural Nets in Excel

1.200

0.200

0.400

0.800

1.000

0.600

0.000
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

x

s(x)

Figure 2.3 The S id F

This is so es calle quash it is
ny da f num hich ra from ver negat bers
sitive numbers thi nction wi ose n bers to th o-one l
ainta eir re izes.
he e we p here w oped reed his ex ple

s shar from tomot liers in 19
ethl eel
wen

 comp to m o Ford
hry
ene rs
t the share price o
ord omp

t that time stock prices were quoted as fractions rather as decimals and the data in the
etitors for the Ford Motor

nd hidden node as is shown in Figure 2.4.

igmo unction

 function metim d the "s er" and quickly apparent why.
Given a ta set o bers w nge y large ive num to very
large po s fu ll map th um e zero-t interva
while m ining th lative s
 T xample resent as devel by Joe B love. T am
contain e prices the au ive supp of Ford 97, i.e.
 B ehem St
 O 's Glass
 Goodyear Tire and Rubber
and the eting au akers t , i.e.
 C sler
 G ral Moto
to predic f the
 F Motor C any.
A
spreadsheet reflect this fact. Also, the suppliers and comp

ompany have changed since 1997; however the example is useful as a starting place for C
learning about neural nets.
 The effect from the suppliers is aggregated into one hidden node and the effect

om the competitors is aggregated into the secofr

 37

Chapter 2 Neural Nets in Excel

y

Ford

Figure 2.4 A Neural Net for Ford Motor Company Share Prices

 So for the example at hand

(7) 3*

and

(8)

at1 at2

Bethlehem Owen Goodyear Chrysler GM

x1 x2 x3

y

x4 x5

1 11 1 12 2 13* *z w x w x w x= + +

()1 11* 1 12* 2 13* 3

1
1t w x w x w xa

e− + +
=

+

(9) 5

and

(10)

2 21 4 22* *z w x w x= +

()2 21* 4 22* 5

1
1t w x w xa

e− +
=

+

Also
(11) 2ta0 1 1 2ˆt ty aθ θ θ= + +

Thus the optimization problem in Excel is to find the values of

(12) 11 12 13 21 22 0 1 2, , , , , , ,w w w w w θ θ θ

 38

Chapter 2 Neural Nets in Excel

Which minimize the square of the separation between the predicted and actual values of
the s, i.e.

(13)

where is the number of observations which is fourteen for the example.

3. The Data

Closing stock prices for each week in the months of January, February and March
of 1997 for Ford and for the three suppliers (Bethlehem, Owen and Goodyear) and the
two competitors (Chrysler and GM) were used as shown in Table 2.1.

Week Ford Bethlehem Owen Goodyear Chrysler GM

y '

()
2

1

ˆ
n

t t
t

Norm y y
=

= −∑

n

Closing y x1 x2 x3 x4 x5
Jan 3 32 1/2 9 1/4 42 1/2 52 3/8 34 5/8 57 7/8
Jan 10 33 1/2 8 7/8 49 54 1/2 35 3/4 61 1/8
Jan 17 33 9 48 5/8 55 34 3/8 60 1/8
Jan 24 33 5/8 8 5/8 45 5/8 54 1/4 35 1/4 62 1/2
Jan 31 32 1/8 8 3/8 46 5/8 54 1/2 34 7/8 59
Feb 7 32 1/4 8 1/4 45 1/2 52 1/2 34 1/8 56 3/4
Feb 14 32 3/4 7 3/4 44 3/4 53 5/8 34 1/2 58 3/4
Feb 21 33 1/8 7 7/8 43 3/8 53 3/4 35 1/8 58 1/2
Feb 28 32 7/8 8 1/4 42 3/8 52 3/4 34 57 7/8
Mar 7 32 1/4 8 1/8 42 5/8 53 3/8 31 7/8 56 5/8
Mar 14 32 1/8 8 1/2 42 1/2 53 7/8 30 1/2 58
Mar 21 31 3/4 8 1/4 40 7/8 54 1/2 30 1/4 57
Mar 27 30 7/8 8 1/2 40 1/8 54 1/4 30 1/4 56 1/4
Mar 31 31 3/8 8 1/4 40 1/4 52 3/8 30 55 3/8

able 2.1 Share Prices of Ford and Related Companies

s mentioned above, at that time stock prices were listed as fractional numbers, rather

T

A
than as decimal numbers, as is now the case.

 39

Chapter 2 Neural Nets in Excel

4. The Model Representation in Excel

 Here we follow the representation of a neural net in Excel developed by Hans

mman Breedlove. The
put file for Excel for this example can be obtained from the book web site. Once you

A and combine this with the model of Ford share prices of Joe
in
have downloaded the file you can begin by opening it in Excel as is shown in Figure 2.5.

 40

Chapter 2 Neural Nets in Excel

Figure 2.5 Spreadsheet for Neural Nets with Stock Prices

 Skip down to the section on the data set beginning in line 17 and note that there
are fourteen observations consisting of the weekly closing share price y for Ford shares

 41

Chapter 2 Neural Nets in Excel

and the five inputs x1 through x5 for the other stocks. These observations are aggregated

 Exp(-(D20*D5 + E20*D6 + F20*D7)))

re

g

ox.

s.

Output = theta0 + theta1 * at1 + theta2 * at2

where the thetas are weights which are c imization and that are shown
in the section on Output weights he sp heet.
 Next look at the Error c Set

column is simply the difference

 Error = y – Output Layer

and the Norm column is the squar le in th or column. The elements in

med up in cell M35 at the bottom of the column.

 Tools:Solve

using the sigmoid function into the hidden layers at1 and at2 using a formula like

 at1 = 1 / (1 +

where the D5,D6 and D7 are weights that are to be solved for and the D20, E20 and F20 a
the observations x1, x2 and x3. You can see this formula in the spreadsheet by selecting
the I20 cell and then looking at the expression in the formula bar at the top of the
spreadsheet. Alternatively, you can see all of the formulas in the spreadsheet by selectin
 Tools:Options:Views

and then checking the
 Formula

b
 Now back to the Data Set section of the spreadsheet. Check the column at2
and you will find that it is similar to the column at1 except that it uses data from the
input data for x4 and x5 to compute the second of the two hidden layer value
 Consider next the Output Layer column. It is computed using an expression of
the form

omputed in the opt
 near the top of t reads

olumn in the Data section of the spreadsheet. This

e of the e ments e Err
the Norm column are sum

 Now we are ready for the optimization problem. It is seen by selecting

 42

Chapter 2 Neural Nets in Excel

and the following dialog box should appear.8

Figure 2.6 The Solver Dialog Box

This dialog box indicates the optimization problem is to minimize the value in cell C15
(which on inspection is set equal to M35 which in turn is the sum of the elements in the
Norm column).
 As was discussed earlier, the Excel Solver uses nonlinear optimization methods
(Newton method or conjugate gradient method - see Appendix F). The optimization is
done by changing the elements in the cells D5:D12 until the minimum of the function is

re shown in Table 2.2 below beginning with the number -2.712
ment 70.94.

obtained. These cells a
and going down the value column to the ele

8 In case the dialog box does not appear, see Appendix C.

 43

Chapter 2 Neural Nets in Excel

Input weights value start

vector w11 -2.712 -2.87

 w12 1.314 1.356

 w13 -0.478 -0.49

 w21 0.009 0.019

 w22 0.015 0.035

Output theta0 -61.31 -79.3

weights theta1 39.87 24.25

 theta2 70.94 93.77

Table 2.2 Parameters

The column to the right which is labeled start shows the numbers that were originally

lumn, selecting
Tools:Solver

nd then clicking on the Solve button to solve the optimization problem and see if the
riginal values or converge to some others which have either a

aller or larger norm.

l

us in
Excel it may be advisable to use a number of different starting values in order to check
for global convergence. When there are many local optima global optimization
algorithms such as genetic algorithms may be used to perform global exploration of the
solution space – see the chapters on genetic algorithms or see Goldberg (1989).
 Also, you can experiment by changing some data elements in the y and x columns
either in an arbitrary manner or by looking up the share prices for these companies in
another time period and seeing whether the parameter values have remained the same.
 Finally the spread sheet contains some forecast in the section called
Predictions. These predictions are made for six weeks after the last week for which

used when searching for the optimal parameters. They are not used in the present
calculations but are stored there only to indicate which starting values were used. In fact
each time the model is solved the numbers in the value column are used as the starting
point and an effort is made to find values which will decrease the norm. So for a first
experiment you might try changing some of the elements in the value co

a
parameters return to the o
sm

A point of caution - at times the solution procedure will converge to a result with
a higher norm because neural net estimation problems are sometimes characterized by
nonconvexities and may have local optimal solutions that are not the same as the globa
optimal solution. Sometimes the number of local solutions may be very large. Th

 44

Chapter 2 Neural Nets in Excel

data was collected to 'fit' or 'train' the model. Look at the formulas for cells B36 and C36
at are shown in Table 2.3, which is shown below.

Out-of-s

th

ample

 Actual Predictions

4/4/1997 30 7/8 30.97

4/11/1997 32 1/4 30.04

4/18/1997 34 1/4 31.14

4/25/1997 34 1/4 31.16

5/2/1997 34 3/4 31.74

5/9/1997 36 5/8 31.87

Table 2.3 Predictions

 If you select the cell just beneath the Prediction label you will see that the
predictions use expressions like

 = D10 + D11*I36 + D12*J36

that translates to

 Output = theta0 + theta1

Note in particular that these predictions are do
* at1 + theta2 * at2

ne from “out of sample” data, i.e. the data
odel is not used to make the predictions. Rather some elements of

that is used to fit the m
the sample are reserved to test the model after it is fit to a subset of the data.
 There is one other topic that needs to be mentioned about the Excel Solver. Select
 Tools:Solver:Options

and the dialog box shown in Figure 2.7 will appear.

 45

Chapter 2 Neural Nets in Excel

Figure 2.7 The Solver Options Dialog Box

 You can use this dialog box to control the number of iterations which t
will use in trying to achieve convergence. Keep the number of iterations low when you
are first working with a new data set and then if convergence is not being achieved raise
this number as necessary. Also, a convergence value of 0.001 is probably close
for mos ser v

he Solver

 enough

setting to 0.01 in order to obtain convergen

Probably the most important element in the Solver Options Dialog Box is Use
. In many neural net data sets the various series may be of very

mple you might have an unemployment series with
umbers of the size of 0.04 and a consumption series with numbers like 625. In such a

l

t of the work you do, but you may require a loo con ergence by lowering this
ce in 100 iterations. On the other hand you

may want to keep the convergence value at 0.001 and increase the number of iterations.

Automatic Scaling

different magnitudes. For exa
n
case it is wise to check the automatic scaling option. If you do this, the Solver wil
automatically scale all of your series so that they are roughly of the same magnitude and
thereby increase the probability that the Solver will be able to find an optimal set of
parameter estimates.

 46

Chapter 2 Neural Nets in Excel

5. Experiments

 There are two kinds of experiments which come to mind with this spreadsheet.
As discussed above, at the simplest level you can change the data in the y and x columns
and see how the weights and predictions change. You could even use your own data of

me kind for doing this. Some students with greater interest in professional sports than

s x6 a

et. On the other hand this is a very good way to

6. Fu din

 a variety of models for economic and financial modeling.

so
in the stock market have used offensive and defensive statistics from basketball teams to
predict the point spread in playoffs.
 Also, you can change the number of input series x1 thru x5 by adding series such
a nd x7 for other automotive companies such as Toyota and Honda. However, this
is somewhat harder to do than the experiments discussed above since it involves making
changes in the formulas in the spreadshe
really learn how a neural net is represented and solved in a spreadsheet.

rther Rea g

Sargent (1993) provides an introduction to neural nets. Garson (1998) presents
an introduction to and a systematic coverage of the use neural networks in the social
sciences. Beltratti, Margarita and Terna (1996) also present an introduction to neural
networks and develop

 47

Chapter 3

Partial Equilibrium in Mathematica

 It is customary to begin the study of microeconomics with market behavior in a
partial equilibrium setting. This is done by analyzing the determination of price and
quantity in a single competitive market under the assumption that all other influences
from the rest of the economy remain constant. This study usually begins with the theory
of the consumer and the derivation of demand curves and then proceeds to the theory of
the firm and the derivation of supply curves. Following this dema

et equilibrium. This is the standard approach we will
llow here. We will mainly be interested in the derivation of analytical results and

g for which Mathematica is a very useful tool due to
s power to deal with symbolic mathematics problems and to its plotting capabilities.

heir

. While many theoretical results are derived for very general forms of those
nctions, in most examples, and also in applied work, it is common to work with a few
nctional specifications. Leontief and Cobb-Douglas functions are probably the most

popular, and they can be used to represent preferences or technology. In the following
e will present each of them. We will focus on the two-good case since this case can be

oods and the results displayed analytically.

nd and supply are
brought together to study mark
fo
graphical representations, somethin
it

1. Utility and Production Functions

 The starting point of consumer theory is the specification of preferences and t
representations by means of a utility function, while the starting point of the theory of the
firm is the specification of technology and its representation by means of a production
function
fu
fu

w
easily handled in graphical representations, though the results can be generalized to more
g

48

Chapter 3 Partial Equilibrium in Mathematica

1.1 Leontief Function

A Leontief function for a two good case is

))

here f is the function, and are parameters, and and are interpreted as goods

 we use the function represent preferences as in consumer’s theory.
lternatively, they may be interpreted as inputs if we use the function to represent

is or

isoquan

an

e begin by assigning values to the parameters and . In this case we assign

the value 1 to both of them. Start Mathematica and on the Untitled-1 window that opens
type

followe

followed by Shift-Enter Mathematica acts as an interpreter and commands are

ask
 to postpone the processing while you proceed to enter another command on

 use Shift-Enter at the end of the line you ask Mathematica to
process all of the input since the last Shift-Enter. Mathematica will then respond by
converting your i

IN[1]:

() (221121 ,min, xaxaxxf = (1

1a 2a 1x 2xw

consumed, if to
A
technology as in the theory of the firm. This function specifies that no substitution is
possible between goods or between inputs. The consumer will always spend all of h
her income in fixed proportions between the two goods, and a similar behavior will be
displayed by the firm in connection with its inputs. As we will see later, this will imply a
peculiar form for the consumer’s indifference curves and for the firm’s production

ts.
 The graphical representation of a function like this in Mathematica is
straightforward, and it is available in the Leontief.nb file in the book web site. You c
begin with that notebook file if you are already somewhat familiar with Mathematica. Or
if you are a first-time Mathematica user, we recommended that you type in the
commands. The instructions for running Mathematica are in Appendix B.

1a 2aW

a1 = 1
d by Return and then
a2 = 1

processed one at a time. When you use Return at the end of the line you effectively
Mathematica
the next line. When you

nput to

= a1 = 1
a2 = 1

49

Chapter 3 Partial Equilibrium in Mathematica

The symbols IN[]:= in Mathematica denote input and the other expressions are the
input to be evaluated. The output statements corresponding to the input are

Out[1]:= 1
Out[2]:= 1

Thus M

in[]

IN[3]:= Leontief = Min[a1 x1, a2 x2]

Notice that in Mathematica two symbols can be multiplied either by using the asterisk
operator as a1*x1 or simply by juxtaposing the two symbols with a space between them
as a1 x1. When you finish typing the line above be sure to strike Shift-Enter. This
will yield the output

OUT[3]:= Min[x1,x2]

Notice that Mathematica replaced the parameters a1 and a2 with their numerical values

f 1 while keeping everything else the same since the evaluation of the statement cannot
yond this point.

Next we ask Mathematica to generate a three-dimensional plot of the function
within given numerical intervals for and sing the Mathematica function

lot3D[f,{x,xmin,xmax},{y,ymin,ymax}] where f is the function to be plotted over
um and maximum values. So type

athematica displays as output the result of the assignments. Notice that separate
output is generated for each statement, no matter if we wrote the inputs in a single input
prompt or in separate ones. Notice also the sequential numbering of inputs and outputs.
 The outputs of the previous evaluations are quite simple and redundant. To avoid
the display of output, we could have added a semicolon “ ; ” at the end of the statement
whose output we wanted to suppress.
 Next we assign to the variable Leontief the corresponding Mathematica function
M which yields the numerically smallest of its arguments.

o
be carried out, for the time being, be

1x 2x u

P

the variables x and y between their specified minim

IN[6]:= Plot3D[Leontief,{x1,0,1},{x2,0,1}]

50

Chapter 3 Partial Equilibrium in Mathematica

Be careful not to misspell “Leontief” or Mathematica will give you more error messages
be sure to end the line with Shift-Enter. The resulting

raph is shown in Figure 3.1

than you care to see. Also,
g

0
0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0
0.25
0.5

0.75

1

0
0.25

0.5

0.75

Figure 3.1 Leontief Function

Finally, with the statement

IN[8]:= ContourPlot[Leontief,{x1,0,1},{x2,0,1}]

e obta
r’s indifference curves or, equivalently, the firm’s isoquants. Contour plots

atica are by default shaded, and regions with higher functional

in the contour plot of the Leontief function shown in Figure 3.2, which show us w
the consume
produced by Mathem
values are lighter. Contour curves for the Leontief function form ninety degree angles.
Notice that the graph shows the kinks with some error as we get farther away from the
origin.

51

Chapter 3 Partial Equilibrium in Mathematica

0.6

0.8

1

0.2

0.4

0 0.2 0.4 0.6 0.8 1
0

Every time you run a program in Mathematica it is important to wipe out any
value ameters and variables of the problem. This could

ave been achieved by adding the following statement at the beginning of the program

N[]:= Clear[a1,a2,x1,x2,Leontief];

.2 Cobb-Douglas Function

A Cobb-Douglas function with constant returns to scale (we use a special case) is

) = 2121, xxxxf

er

plays constant returns-to-scale. Unlike the Leontief

function, this function allows for smooth substitution between goods or between inputs.
The Mathematica statements corresponding to the graphical representation of the

Cobb-Douglas function are shown below and are available in the CobbDouglas.nb file in
the book web site. This time we recommend that you open the input files and use it to

Figure 3.2 Leontief Function Contour Lines

previous s associated with the par
h

I

1

ρ −1() ρ(2

where f is the function, 1x and 2x are goods or inputs, and ρ is a parameter. In consum

theory ρ and 1- ρ represent the consumer’s expenditure shares on each good. In the
theory of the firm, since the two exponents of the inputs add up to one, it implies that the
technology the functions represent dis

52

Chapter 3 Partial Equilibrium in Mathematica

follow the discussion. When you open the notebook file you will see a bunch or bra
on the right hand sid

ckets
e of the window. You can execute the program by selecting these

rackets and striking Shift-Enter. For example selecting the bracket opposite the lines

Clear[

b

x1,x2, ρ];

ρ = 0

CD = x1^

.7;

ρ x2^(1- ρ);

nd striking Shift-Enter causes they lines to be processed and results in their being
printed as

Clear[x1,x2,

Plot3D[CD,{x1,0,1},{x2,0,1}]

ContourPlot[CD,{x1,0,1},{x2,0,1}]

A
re
 In[1]:=

]; ρ

ρ = 0 7;.

CD = x1^ ρ x2^(1- ρ);

,1}]

ContourPlot[CD,{x1,0,1},{x2,0,1}]

 to

Plot3D[CD,{x1,0,1},{x2,0

with input prompt In[1]:= now showing. In this way you can use the notebook files
modify the input and rerun the program. For example you might have changed ρ from

0.7 to 0.8 and then selec

ted the bracket to its right and type Shift-Enter. Be aware
owever, that only that part of the program covered by the bracket you selected will be

lect one of the more inclusive
ackets on the right before striking Shift-Enter.

nted in the previous section. We
amed the function CD and we have assigned a value of 0.7 to the ρ parameter. Unlike
e program for the Leontief function, here we put all the statements together in one input

nd suppressed output using semicolons at the end of the first three statements.
at Mathematica allows you to enter Greek letter symbols like ρ. To do so, and

lso to enter formulas in a mathematical form instead of the text form we used here, you
ption.

h
rerun. Therefore if you want to redo the plots you must se
br

The statements above follow the pattern prese
n
th
prompt, a
Notice th
a
have to use a palette you can access from the File/Palettes/BasicInput main menu o
 Figures 3 and 4 show the corresponding three dimensional and contour graphs.

53

Chapter 3 Partial Equilibrium in Mathematica

0
0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0
0.25
0.5

0.75

1

0
0.25

0.5

0.75

Figure 3.3 Cobb-Douglas Function

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

atica, you might close all the files you have
 far t r computer desktop and give yourself a fresh

art in the next section.

Figure 3.4 Cobb-Douglas Function Contour Lines

If you are following along with Mathem
opened so o reduce the clutter on you
st

54

Chapter 3 Partial Equilibrium in Mathematica

3. Consumer Theory

The standard theory of consumer’s behavior poses the problem faced by the
consumer as one of maximizing utility subject to a budget constraint. That is, given a
bundle of goods, their prices and a certain amount of income, the consumer buys those
goods according to her preferences while trying to maximize her utility, a quantity that is
supposed to measure the level of consumer satisfaction.
 In formal terms, and for a two-good example that can be easily generalized, the
problem can be stated as

3)

()1 2

1 1 2 2

max ,
subject to

u x x
p x p x m+ =

(

here u is the utility function, and are goods, and are prices and m is income.

 with a Cobb-Douglas function. Thus, using (2) the
roblem above can be restated as

 logs

atica program of the consumer’s problem - available in the
Consumer.nb file - by inputting the u unction

 the budget constraint

x2);

on will see the usefulness of doing that.

1x 2x 1p 2pw

 From now on we will work
p

(4)
1

1 2

1 1 2 2

max
subject to

u x x
p x p x m

ρ ρ−=
+ =

 An equivalent but simpler expression of the utility function is obtained taking

(5) 1 2log log() (1) log ()u x xρ ρ= + −

 We start the Mathem

tility f

In[]:= logu = ρ Log[x1] + (1-ρ) Log[x2];

and

In[]:= bc = m - (p1 x1 + p2

 Notice that we give a name to the budget constraint then assign to it all its
elements. We so

55

Chapter 3 Partial Equilibrium in Mathematica

The next step is to form the Lagrangian corresponding to the maximization
problem. Thus we write

In[]:= eqL = L == logu + λ bc

L the expression
 bc. The presence of the double equal symbol “==” indicates that the

e L. The corresponding output
 the content of the variable eqL with the expressions for logu and bc being replaced by

their definitions.9

Out[]= L =(m - p1 x1 - p2 x2)

 Notice that we assign to the variable eq
L == logu + λ

expression is an equation, not an assignment to the variabl
is

λ + ρ Log[x1] + (1- ρ) Log[x2].

in

r write down the Lagrangian as

 - p1 x1 - p2 x2)

e output generated by Mathematica would be

 deed, when evaluating the part of the input expression corresponding to
ill replace the variable m with its definition.

hen this part of the expression would become (p1 x1 + p2 x2 - p1 x1 - p2 x2).
Thus, it would be equal to zero. It was to avoid this kind of problem that we defined the

ariable bc in the way we did above.

 If instead of writing the budget constraint in the way we did above, we write it
a more standard way i.e.

In[]:= m = p1 x1 + p2 x2;

to late

In[]:= eqL = L m logu + λ (m

th

Out[]= L m ρ Log[x1] + (1-ρ) Log[x2]

In

(m - p1 x1 - p2 x2), Mathematica w
T

v

er.

9 It is common in Lagrangian functions to put the objective term first followed by the lambda and the

constraint. However, given the sequence of commands we used, Mathematica does things in reverse ord

This causes no problem except making the output below slightly harder to comprehend at first.

56

Chapter 3 Partial Equilibrium in Mathematica

 Once we form the Lagrangian, we compute the first order conditions of the
problem as follows

In[]:= foc1 = D[eqL, x1]

foc2 = D[eqL, x2]

foc3 = D[eqL, λ]

The Mathematica function D computes the partial derivatives of a function. In this
case, we ask Mathematica to compute the partial derivatives of the expression eqL w.r.t.
the variable of choice. The corresponding outputs are

Out[]= 0

==
x1

 Out[]= 0 ==

ρ
λp1 −−

x2

ρ-1
λp2− +

 t s formed by the first order conditions we can obtain

 function Solve allows us to do so.
and then the variables over

hich they are solved.

n[]:= Solve[{foc1,foc2,foc3},{x1,x2,λ}]

The previous statement generates the output

ut[]=

 Out[]= 0 == m - p1 x1 - p2 x2

 From he system of equation
the goods’ demand functions. The Mathematica
Within this function, we first have to specify the equations
w

I

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ −

→→→
p2

ρmm
x2,

p1

ρm
x1,

m

1
λ O

 Finally mand functions. Since the standard
procedure is to ertical axis, we

 t

, we want to plot the good’s de
 plot quantities in the horizontal axis and prices in the v
he demand functions for the corresponding prices. Starting with good 1, have to solve

the Mathematica statements are

57

Chapter 3 Partial Equilibrium in Mathematica

In[]:= p1 = ρ m / x1;

Plot[p1 /. {ρ → 0.7, m → 0.1},

 {x1,0.01,0.1},

 AxesLabel → {"x1", "p1"},

 PlotLabel → "Demand Curve for x1"]

 In the first line of the Plot[] function the replacement operator “/.” is used.
This operator, whose general form is “expression /. rules” applies a rule or list of
rules in an attempt to transform each subpart of an expression. In our case the
transformation rules are ρ → 0.7 and m → 0.1 which are used to give particular values

rite the arrows, you must type -> as a pair of
een.

the range for

inimum and the maximum values for the plot. Finally, the last two lines label the axes
eans of the options AxesLabel and PlotLabel. The plot

.5.

to the parameters ρ and m. To w
haracters, with no space in betwc

 The second line of the Plot function contains the specification of
e horizontal axis, writing first the name of the corresponding variable then the th

m
and assign the plot a label by m

enerated is shown in Figure 3g

0.02 0.04 0.06 0.08 0.1
x1

1

2

3

4

5

6

7

p1 Demand Curve for x1

igure 3.5 Demand Curve for x1

In an analogous way, we generate a plot for the demand function of good x2

F

which is shown in Figure 3.6.

58

Chapter 3 Partial Equilibrium in Mathematica

In[]:= p2 =

(m - ρ m) / x2;

Plot[p2 /. {ρ → 0.7, m → 0.1},

 {x1,0.01,0.1},

 AxesLabel → {"x2", "p2"},

PlotLabel → "Demand Curve for x2"]

0.02 0.04 0.06 0.08 0.1
x2

0.5

1

1.5

2

2.5

3

p2 Demand Curve for x2

Figure 3.6 Demand Curve for x2

3. The Theory of the Firm

The standard theory of firm’s behavior assumes that the main goal of the firm is
aximize profits given technology and the prices of output and inputs. To develop a

simple example, let’s assume that the firm produces a single output with price ,

sing labor L as a single input and whose price is the wage w. Let’s assume also that the
 where T and b are parameters and let’s denote

In formal terms the problem of the firm can be stated as

to m
1x 1p

u
bLTproduction function is of the form

profits by π.

(6) 1 1

1

max

subject to b

p x wL

x T L

π = −

=

59

Chapter 3 Partial Equilibrium in Mathematica

 Substituting the production function into the profit function we obtain the first
problem - available in the Firm.nb file -

n[]:= pi = p1 T L^b - w L;

otice that we wrote pi instead of π since the Greek letter

input for the Mathematica representation of the
as

I

πN is a reserved symbol in

Next we solve the first order condition of the problem for L. By means of the D[
 funct e labor

n[]:= Solve[D[pi,L]==0,L]

The resulting output is the labor demand function

Mathematica.

] ion we compute the partial derivative of the profit function w.r.t. the variabl
then set the result equal to zero. Finally, we nest this operation within a Solve[]
function.

I

⎪
⎬

⎪
⎩

⎨
⎪
⎬

⎪
⎩

⎨ ⎟⎟
⎠

⎜⎜
⎝

→
Tp1b

w
L Out[]=

⎭

⎪
⎫

⎪
⎧

⎭

⎪
⎫

⎪
⎧

⎞⎛ +b1-

1

 expression for the labor demand function to the temporary
ariable tempL. To do so we use the replacement operator “/.”. The % symbol in the

 contains only one solution. Thus, tempL
ill be equal to L where L is replaced by the solution generated in the previous output

n
rary

In[]:= tempx1 = T tempL^b

Next we assign the

v
statement below refers to the last result generated, and [[1]] which refers to the first
solution from the output list, which in this case
w
line.

In[]:= tempL = L /.%[[1]]

Substituting tempL - that is, the labor demand function - into the productio
function in Eq. (6) we obtain the supply function for x1 which we assign to the tempo
variable tempx1.

60

Chapter 3 Partial Equilibrium in Mathematica

The resulting output is

Out[]=

b

b1-

1

Tp1b

w
T

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

 Having obtained the good supply and the labor demand functions, we want to plot

 axis respectively.
ents we (1) create an

 p1

In[]:= == tempx1;

The result is the inverted good supply function where p1 appears as a function of
1.

them in the standard way, that is with price and wage in the vertical
e next two statemBegin with the good supply function. In th

equation setting x1 equal to the expression contained in the temporary variable tempx1
and (2) assigning to the variable plotx1 the result of solving the equation for .

 eqx1 = x1

plotx1 = Solve[eqx1,p1]

x

Out[]= }}
Tb

{{p1→

T

b1−

⎟
⎠

⎜
⎝

⎠⎝

Finally, we assign the result above to the temporary variable tempp1, give
ate the corresponding plot, obtaining the

x1
w

b

1

⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎞

⎜
⎛

numerical values to the parameters and gener
graph shown in Figure 3.7.

In[]:= tempp1 = p1 /. plotx1[[1]];

Plot[tempp1 /. {b → 0.4, T → 1, w → 100} ,

 {x1,0.01,0.1},

 AxesLabel → {"x1", "p1"},

 PlotLabel → "Supply Curve for x1"]

61

Chapter 3 Partial Equilibrium in Mathematica

0.02 0.04 0.06 0.08 0.1
x1

2

4

6

8
p1 Supply Curve for x1

In a similar way, with the statements below we generate the plot for the labor
emand

Plot[tempw /. {b → 0.4, T → 1, p1 → 1},

 {L,0.01,0.1},

 AxesLabel → {"L", "w"},

Figure 3.7 Supply Curve for x1

d curve shown in Figure 3.8.

In[]:= eqL = L == tempL;

plotL = Solve[eqL, w];

tempw = w /. plotL[[1]]

 PlotLabel → "Labor Demand Curve"]

w

0.02 0.04 0.06 0.08 0.1
L

3

Labor Demand Curve

4

5

6

Figure 3.8 Labor Demand Curve

Now we are in a position to turn our attention to the market equilibrium.

62

Chapter 3 Partial Equilibrium in Mathematica

3. Market Equilibriu

Having derived demand and supply curves, it is time to put them together to

equilibrium quantity when demand equals supply

btaining as output

m

analyze the resulting market equilibrium. We will do so for the case of good x1. We
begin from the corresponding demand and supply curves obtained in the previous
sections with a slight modification: the variable p1 from the demand curve will be
renamed p1d, while the variable p1 from the supply curve will be renamed p1s.
 We begin the Mathematica representation of the model of partial market
equilibrium - available in the MarketEquil.nb file - with the statements

In[]:= p1d = ρ m / x1;

p1s = w (((x1 / T)^(1 / b))^(1-b)) / (b T);

 Then we solve for the

 In[]:= equilx1 = Solve[p1d == p1s,x1]

o

Out[]= }}
ρmb

{{x1 ⎟
⎟
⎠

⎜
⎜
⎝

→

Then the equilibrium price can be obtained by substituting the solution for x1 into p1d

In[]:= equilp1 = p1d /. equilx1[[1]]

wT
-b1/b- ⎞⎛

Out[]=

ρ
ρmb

wT
m

b1/b-

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Next we assign values to the parameters and to the wage variable, and we

compute the corresponding numerical values for the equilibrium quantity and price. To
do so, we write the variables equilx1 and equlp1 without semicolons, since Mathematica

63

Chapter 3 Partial Equilibrium in Mathematica

will automatically replace each parameter with its value and perform the corresponding
alculations.

 0.

m = 0.1;

 1;

w = 100;

equilx1

q ilp

6}}

ut[]= 1.84601

Finally we plot jointly the demand and supply curves, obtaining the graph shown

Plot[{p1d, p1s},

 {x1,0.01,0.1},

]

c

In[]:= ρ = 7;

T =

b = 0.4;

e u 1

Out[]= {{x1 → 0.037919

O

in Figure 3.9

In[]:=

 AxesLabel → {"x1", "p1"},

 PlotLabel → "Market for x1"

6

8

2

4

0.02 0.04 0.06 0.08 0.1
x1

p1 Market for x1

Figure 3.9 Market for x1

64

Chapter 3 Partial Equilibrium in Mathematica

 Once we obtained the graphical representation of market equilibrium, it is
interesting to perform some comparative static exercises. To do so, we use a statemen
the form

Plot[Evaluate[Table[]]]

This statement nests three Mathematica functions. The function

t of

Plot[Evaluate[Table[{p1d ,p1s },{T,1,1.2,0.1}]],

, one corresponding to each value of the

Table[expr, {i, imin, imax, di}]

makes a list of the values of an expression expr with i running from imin to imax in
steps of di.. The function

Evaluate[expr]

causes the expression expr to be evaluated. Finally the function Plot[] is the one we
have used before. Thus, the statement below

In[]:=

 {x1,0.01,0.1},

 AxesLabel → {"x1", "p1"},

 PlotLabel → "Market for x1"]

will first generate a list of three elements
technology parameter T, then evaluate the expression in each element of the list, and
finally generate the plot shown in Figure 3.10.

2

4

0.02 0.04 0.06 0.08 0.1
x1

6

8
p1 Market for x1

65

Chapter 3 Partial Equilibrium in Mathematica

Figure 3.10 Comparative Statics Changing Parameter T

 Figure 3.11 shows the result of a similar experiment, but changing the demand
function share parameter ρ in the following way

{ρ,0.5,0.9,0.2}

6

8

0.02 0.04 0.06 0.08 0.1
x1

2

4

p1 Market for x1

Figure 3.11 Comparative Static Changing Parameter ρ

 Finally, we perform the same comparative static exercise now with an animated

→ {0,8},

.

ou can control the

plot using the following statement

In[]:= Table[Plot[{p1d ,p1s },

 {x1,0.01,0.1},

 PlotRange

 AxesLabel → {"x1", "p1"},

 PlotLabel → "Market for x1"],{T,1,1.2,0.1}]

 Notice that here we have a Plot[] function nested within a Table[] function
Thus, the table will contain a sequence of plots controlled by the evolution of the T
parameter. The output of the statement will be such a sequence. Double click on the first
graph of the sequence and you will see the resulting animation. Y
speed of the animation with the buttons that will appear at the bottom of the notebook.
 Notice that here we fixed the range for the vertical axis with the option
PlotRange. Otherwise, each plot may generate variable values for that range, creating
the false impression that the demand curve is shifting also (to see this, eliminate that

66

Chapter 3 Partial Equilibrium in Mathematica

option from the statement and see what happens). Also notice that if you perform othe
comparative static exercises changing any of the parame

r
ters other than T, you may have

e
ffects the outcome of the comparative statics.

Another popular function used to represent preferences or technology is the
Constant Elast (CES) function

to adjust the PlotRange option accordingly as well as the range for x1, setting different
minimum and/or maximum values.

4. Experiments

 A simple set of experiments would be to perform more comparative static
exercises changing some model parameters. You may also want to add parameters to th
model (e.g. taxes) and see how this a

icity of Substitution

() ααα
2)(xx +=

1

121, xxf

 As we tions, you may want to
generate the co pens as the parameter

did we the Leontief and Cobb-Douglas func
αntour plot of this function and see what hap goes

from a value n

er theory and
e th the core of most

micro s in
Math

ear zero to one near minus infinity.
 Finally, you may want to develop an analysis analogous to the one we did in this
chapter substituting the CES function for the Cobb-Douglas function.

5. Further Readings

 For an introduction to Mathematica see Wolfram (2003). Consum
th eory of the firm as well as competitive market equilibrium are at

economics textbooks. Later in this book we will deal with duopoly model
ematica and general equilibrium models in GAMS.

67

Chapter 4

Transportation in GAMS

Tjalli
958) a number of whom won the Noble Prize in economics. This kind of model is a

 ship to each market in order to minimize the

zig (1963)) for this chapter we use the fishing

s). In this model we seek to find the pattern of shipments from the
anneries to markets which will have the least transportation cost while satisfying the

fixed demand at the markets without shipping more from any cannery than its’ capacity.

 The transportation problem was made famous among economists by the work of

elson and Robert Solow ng Koopmans (1951) and of Robert Dorfman, Paul Samu
(1
most natural way to pose the problem of finding the most efficient place and manner of
producing goods and shipping them to customers. The model posits supplies of a good
at a number of plants and demands for that good at a number of markets and seeks to find
the amount that each plant should
transportation cost. Also, the transportation model is the foundation for much more
elaborate linear programming industrial models such as those for steel, oil, aluminum,
fertilizer and computers. These models focus not only on transportation but also on
production and investment.

We begin with a mathematical representation of the transportation problem and
then move to a discussion of how this model can be represented in the GAMS software.

1. Mathematical Representation

 As an example (adapted from Dant
industry with canneries in Seattle and San Diego and markets in New York, Chicago and
Topeka (Kansa
c

68

Chapter 4 Transportation Model in GAMS

The model is stated mathematically as:

sets For the
 I plants = {Seattle, San Diego}
 J markets = {New York, Chicago, Topeka}
find the
 ijx shipments from plant i to market j

to minimize the transportation cost

it shipped

 (1) ij ij

i I j J
z c x

∈ ∈

= ∑ ∑

where
 transportation cost from plant i to market j per unijc

The criterion function (1) is minimized subject to the constraints that no more be shipped
from each plant than its capacity

(2) ij i

j J
x a i I

∈

≤ ∈∑

where
 ia the capacity of plant i

and that no less be shipped to each market than its demand

(3) ij j

i I
x b j J≥ ∈∑

∈

while requiring that all the shipm

(4)

where
 b the demand at market j j

ents be non-negative.

0ijx i I j J≥ ∈ ∈

Next we turn to the representation of this model in GAMS.

2. GAMS Representation

 GAMS (General Algebraic Modeling System) was developed at the World Bank
by Alexander Meeraus and his colleagues. The user's guide for this system is by Brooke,
Kendrick, Meeraus and Raman (1998). GAMS was designed as a "set driven" high-level

 69

Chapter 4 Transportation Model in GAMS

language that would facilitate the development of linear and nonlinear programming

 in a

y

a wide variety

http://www.gams.com

models of industry, agriculture and finance. Thus it was not necessary to write a
separate equation for each commodity, time period, crop or equity but rather only to
create equations and variables indexed over sets of commodities, time periods, crops,
equities etc. In this way a model with thousands of equations could be represented
GAMS statement with only a few set specifications, variables and equations - all of
which might fit on a single page. This not only decreased the tedious, labor-intensive
part of model development but also substantially reduced the likelihood of errors in the
model specification.
 Also, GAMS has become widely used because of the ability to represent in it an
model that can be expressed in algebra. In particular there are now many computable
general equilibrium, agricultural and financial models in GAMS as well as
of other types of economic models. For a listing of several hundred GAMS models see
the GAMS library that comes with the software or access the library at

These models can be downloaded and solved with the GAMS software.
 Many readers of this book will be running GAMS on their home computers or in
a computer laboratory in a university. The instructions for fetching the input file and
running the program on a personal computer are contained in Appendix A at the end of

e book.
ponding to the transportation problem is available at

t.gms as well as in the GAMS library under
 is misspelled in this filename.) Also, an
le in the GAMS User’s Guide, i.e. Brooke,

The GAMS language uses a syntax that is reasonably close to mathematics. For

(5)
∈ ∈

and in GAMS as

 cost.. z =e= sum((i,j), c(i,j) * x(i,j)) ;

 In mathematics equations are usually numbered while in GAMS they are named,
thus equation (5) gets the name cost and the two dots after cost tell GAMS that the

th
The GAMS program corres

the book web site under the name trnspor
that same name. (Notice that “transport”
extended tutorial on this model is availab
Kendrick, Meeraus and Raman (1998).

example the criterion function for the transportation model is written in mathematics as

 ij ijz c x= ∑ ∑
i I j J

 70

Chapter 4 Transportation Model in GAMS

name has been completed and the equation is about to begin. Also, GAMS has an
ay of representing an equal sign, namely =e=. The reason for this is that

r-equal signs that will be

ake a distinction between set names such as I
ets such as i. This results partly

 programming languages, does not make a
letters. Thus one could imagine writing the

 and the variable x
ry in GAMS and the

ting set names

ltiplication with the

y, the capacity constraint is written in mathematics as

unusual w
GAMS also includes less-than-or-equal signs and greater-than-o
discussed below.
 The GAMS language does not m
and the indices of the elements which belong to the s
from the fact that GAMS, unlike most
distinction between upper and lower case
right hand side of the equation above in GAMS as

 sum((I,J), c(i,j) * x(i,j)) ;

to indicate that the sum is over the sets I and J while the parameter c
are defined with the subscripts (i,j). However, that is not necessa
user learns to read symbols like (i,j) in GAMS as sometimes represen
and sometimes representing indices.

Finally, in mathematics the simple juxtaposition of two symbols like c and x
indicates that they are multiplied times one another while in GAMS, as in most other
programming languages, it is necessary to explicitly indicate mu

terisk, i.e. *. as
 Similarl

 (6) ij i

j J
x a i I≤ ∈∑

∈

and in GAMS as

s it indicates that there

 supply(i) .. sum (j, x(i,j)) =l= a(i) ;

So here equation (6) gets the name supply and the (i) that follow

 one constraint of this type for each element in the set I , i.e. for each plant. Thus the
bols play in

o sign,

is
(i) next to the equation name in GAMS plays the same role as the sym i I∈

the mathematics. Also notice that the less-than-or-equal-t ≤ in mathematics
=l= l l ot the number 1.

 as stated above could be for a model with two plants
d three markets or for a model with 50 plants and 200 markets since we have so far not

becomes where the here indicates the letter and n
 The transportation model
an
specified the sets I and J nor the parameters ,a b and . This is one of the powers of c

 71

Chapter 4 Transportation Model in GAMS

the GAMS language, i.e. one can write a model prototype which can be used for any of a
umber of industries and then specialize it in the set specifications and the parameter

ed in the GAMS language. In this model
ere are two plants and three markets. The set of plants is specified in mathematics as

n
definitions to a particular industry in a chosen country.
 So consider next how the sets are specifi
th

{ },I Seattle San Diego= −

The equivalent GAMS statement is

d

rameter

 ego 600 /

 b(j) demand at market j in cases
rk 325

 chicago 300

hich it is defined, i.e. it is
t necessary to include
t is provided the

ent names used in the input of the
arameter do indeed belong to that set.

 i = / seattle, san-diego /

GAMS uses forward slashes as set delimiters while mathematics use braces.
 Once the sets are specified then the data can be input using the parameter an
table keywords as shown below. Consider first the use of the parameter keyword to
input the capacity and demand data.

 Pa
 a(i) capacity of plant i in cases
 / seattle 350
 san-di

 / new-yo

 topeka 275 / ;

Observe that the parameter “a” is followed by the set over w
written as “a(i)”. As was mentioned earlier in the book, it is no
the set here; however it is a useful precaution because when the se
GAMS complier can check to be sure that all the elem
p
 Next consider the input of the distance data with the statement

 Table d(i,j) distance in thousands of miles
 new-york chicago topeka
 seattle 2.5 1.7 1.8
 san-diego 2.5 1.8 1.4 ;

Here the table keyword is used to input the matrix of transportation distances between
the markets and the plants.

 72

Chapter 4 Transportation Model in GAMS

 Next consider the scalar keyword that can be used to input a scalar quantity, in
this case, f, which is freight cost per case per thousand miles.

sand miles /90/ ;

st per

case ;

otice here that the new element c(i,j) is first declared with a parameter statement and
y

e

 transformations which are
erformed on that data before it become a part of the model equations.

m the
AMS library. Notice that the distances in above are listed as the same

rk, i.e. 2,500 miles. This can
el and this can be confusing. Therefore,

se distances different. For
xample one might change the number for the Seattle to New York distance from 2.5

 is

 Scalar f freight in dollars per case per thou

is scalar in turn can be used in a parameter statement to compute the transport coTh

case between each plant and market as shown below.

 Parameter c(i,j) transport cost in thousands of dollars per
 c(i,j) = f * d(i,j) / 1000 ;

N
then defined with a mathematical statement in which f is multiplied by d and divided b
1000. Here you see that the parameter keyword in GAMS is much more versatile than
just being used to input vectors.
 The computation of the c(i,j) parameter above illustrates one theme in the us
of the GAMS language. The user is encouraged to enter the raw data for the model in the
GAMS statement and to show explicitly all the mathematical
p
 Consider a word of warning about the data for the transportation model fro
G Table d(i,j)

om Seattle to New York and from San Diego to New Yofr
cause multiple optimal solutions to the mod
when first using this model it is probably wise to make the
e
(thousand miles) to 2.7 (thousand miles).
 Next consider the variables and equations part of the GAMS representation that
shown below.

 73

Chapter 4 Transportation Model in GAMS

 Variables
 x(i,j) shipment quantities in cases
 z total transportation costs in thousands of dollars ;

 Positive Variable x ;
 Equations

 cost define objective function

lant i
 ;

) ;

r

 supply(i) observe supply limit at p
 demand(j) satisfy demand at market j

 cost .. z =e= sum((i,j), c(i,j)*x(i,j)

 supply(i) .. sum(j, x(i,j)) =l= a(i) ;

 demand(j) .. sum(i, x(i,j)) =g= b(j) ;

The keyword Variables is used to declare the variables and in the process one indicates
the sets over which the variables are defined. For example the variable x is defined fo
the set of plants I and the set of markets J so it is listed as x(i,j). The restrictio
that the shipment variables must be non-negative as shown in Equation (4) above is
carried in the Positive Variable x statement.
 The names of the equations are listed after the Equations keyword along with
sets over which they are defined. For example there is a supply equation for each pl
so that equation is defined as supply(i).

n

the
ant

 Solve transport using lp minimizing z ;
x.m ;

 The final statements in the GAMS specification are listed below.

 Model transport /all/ ;

 Display x.l,

 74

Chapter 4 Transportation Model in GAMS

The Model keyword is used to give the model a name - in this case transport - and t
indicate the equations which are included in the model. One may either list a subset
the equation names here or if the model consists of all the equations listed above the
all keyword can be used. The

o
 of
n the

 model is then solved with the Solve, using and

mming”, that is, a problem in which
ne seeks to optimize a linear objective function subject to a set of linear constraints. For

o linear programming see Appendix G. The in the solve statement
on to the model

minimized. Since the model contains indexed
quations, GAMS will use a stacking method as discussed in Appendix H.

evels for the shipment
ariables, i.e. x.l and the marginal values x.m for these same variables be displayed in

s.
Learning all this syntax for a programming language may at first seem

pli e

 and finally the model and solve statements.

to adjust to all the details but the overall structure and form of a GAMS

listing of the model is presented below.

minimizing keywords. From a mathematical point of view, the transportation problem
is a particular case of what is known as “linear progra
o
an introduction t lp

ming solver to compute the solutitells GAMS to use its linear program
and the z is the criterion value that is to be
e
 Finally, the display statement requests that the activity l
v
table

com cated. However, the structure of the model helps to simplify things. Notice in th
complete GAMS statement of the model which follows this paragraph that the model is
defined in steps

 first the sets
 then the parameters
 then the variables
 then the equations

It takes a while
representation of a model can be grasped quickly.

The entire GAMS

 75

Chapter 4 Transportation Model in GAMS

$Title

 i canning plants / seattle, san-diego /
 j markets / new-york, chicago, topeka / ;

attle 350
 san-diego 600 /

 t market j in cases

 chicago 300

 Table d(i,j) distance in thousands of miles
 new-york chicago topeka
 seattle 2.5 1.7 1.8
 san-diego 2.5 1.8 1.4 ;

 Para

 c(i,j) = f * d(i,j) / 1000 ;

 Variables
 x(i,j) shipment quantities in cases

 z total transportation costs in thousands of dollars ;

 Equations

 cost define objective function
 supply(i) observe supply limit at plant i
 demand(j) satisfy demand at market j ;

 cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

m(j, x(i,j)) =l= a(i) ;

 demand(j) .. sum(i, x(i,j)) =g= b(j) ;

 Model transport /all/ ;

 Solve transport using lp minimizing z ;
 Display x.l, x.m ;

 A Transportation Problem (TRNSPORT,SEQ=1)

 Sets

 Parameters
 a(i) capacity of plant i in cases
 / se

 b(j) demand a
 / new-york 325

 topeka 275 / ;

 Scalar f freight in dollars per case per thousand miles /90/ ;

 meter c(i,j) transport cost in thousands of dollars per case ;

 Positive Variable x ;

 supply(i) .. su

 76

Chapter 4 Transportation Model in GAMS

This completes the discussion of the input for the model. Next we turn to the way to
solve the model and a discussion of the results.

3. Results

 As was discussed above, Appendix A contains instructions on how to access the
*.gms file from the GAMS library, how to solve the model and how to examine the
results by using the listing file, *.lst. This last step can seem complicated at first because

e GAMS output files contain a substantial amount of information about the structure of
the model and its solution. However, it is simple enough to jump around in the file to
examine the key parts.
 One should first locate the Solve Summary part of the output. To do this search
in the editor for the string "SOLVER STATUS". When you do so you will see a section of
the output that looks like

 S O L V E S U M M A R Y

 MODEL TRANSPORT OBJECTIVE Z
 TYPE LP DIRECTION MINIMIZE
 SOLVER BDMLP FROM LINE 70

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 153.6750

Each time after you solve a GAMS model you should check this section of the output to
be sure that the model was solved successfully. The words NORMAL COMPLETION here
indicate that is the case. If the solution procedure was not successful you will find words
like INFEASIBLE or UNBOUNDED. Be on guard against the fact that the GAMS output will
provide a solution to the model even when that solution is infeasible. However, the
solution provided would not be the optimal solution but rather the last one tried before it
was determined that the solution was infeasible. For this reason it is particularly
important to check the SOLVER STATUS and MODEL STATUS after each run and before the
solution variables are used.

th

 77

Chapter 4 Transportation Model in GAMS

 Next skip down the output across the sections labeled "---- EQU" until you get to
e sections labeled "---- VAR" which looks like

---- VAR X shipment quantities in cases

 LOWER LEVEL UPPER MARGINAL

EATTLE .CHICAGO . 300.000 +INF .
EATTLE .TOPEKA . . +INF 0.036
AN-DI

tle

del that we were looking for. These same results are shown a little further
y

an
f the file and find the key results. However, they will be

th

SEATTLE .NEW-YORK . 50.000 +INF .
S
S
S EGO.NEW-YORK . 275.000 +INF .
SAN-DIEGO.CHICAGO . . +INF 0.009
SAN-DIEGO.TOPEKA . 275.000 +INF .

The interesting part here is the activity level of the shipment variables x in the column
labeled LEVEL. This shows, among other things, that 50 cases were shipped from Seat
to New York and 300 cases were shipped from Seattle to Chicago. This is the solution
of the mo
down in the output in a section labeled VARIABLE X.L which is the result of the displa
statement in the GAMS input. That output is shown below.

---- 72 VARIABLE X.L shipment quantities in cases

 NEW-YORK CHICAGO TOPEKA

SEATTLE 50.000 300.000
SAN-DIEGO 275.000 275.000

 This table is somewhat easier to read than the default output and thus you can see
the reason that most GAMS input files end with a series of display statements. These
tables are easily found since they are at the end of the long GAMS output so the user c
quickly scroll to the bottom o
there only if you remember to add a display statement at the end of the GAMS input
statement.

 78

Chapter 4 Transportation Model in GAMS

 There is just one other key piece of the GAMS output file which we should lo
at before we turn our at

ok
tention elsewhere. It is in the "---- EQU" section that we

--- EQU DEMAND satisfy demand at market j

 MARGINAL

 +INF 0.126

terested in the MARGINAL column. These values are called "shadow
prices" or "dual" va and import m They show us that
for each additional em New e objective function will have to
increase by .225 bu .1 cag d .126 at Topek These numbers are
like prices and indicate that it is substantial nsive ply fish to New York

an to Chicago or Topeka. Similar numbers in electric power models can be used by
s that are nearby or far away from

lectric power generation facilities such as dams, nuclear plants or coal burning plants.

. Experiments

As a simple experiment, one might first change the number for the Seattle to New

 above - and then solve the model again. Or one
ight d

e effects on the optimal solution. However, when changing
e supply and demand parameters one must be careful to assure that the total supply is

rwise the solution to the model will be

skipped over earlier and that you can quickly find by scrolling back up to it or by
searching for it with the editor. The part of interest is the equation-wise output for the
demand constraints that looks like

-

 LOWER LEVEL UPPER

NEW-YORK 325.000 325.000 +INF 0.225
CHICAGO 300.000 300.000 +INF 0.153
TOPEKA 275.000 275.000

In this case we are in

riables have ant economic eaning.
unit of d and at York th
t by only 53 at Chi o an a.

ly more expe to sup
th
regulators to determine the price of power in citie
e
 So in summary, when looking at the GAMS output you should first check to be
sure that the problem was solved satisfactorily. Then focus on the variables section and
finally take a look at the equation section.

4

York distance from 2.5 (thousand miles) to 2.7 (thousand miles) - to eliminate the
multiple solution problem discussed
m ecrease the demand at one or more markets or increase the supply at one or more
plants in order to analyze th
th
greater than or equal to the total demand – othe
infeasible.

 79

Chapter 4 Transportation Model in GAMS

 A more complicated experiment is to add additional markets and/or plants. This

d changes in the parameter and table statements. In the process one may

 would be to add production cost at each plant. This could
e done by introducing a new parameter as follows:

 Parameters
 prodcost(i) production cost of plant i per case
 / seattle 1
 san-diego 1

 cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

to
 cost .. z =e= sum((i,j), (c(i,j) + prodcost(i))*x(i,j));

hen the model can be used to analyze the effects of production differences at plants as
 between pairs of plants and markets.

If it is desirable to change the criterion from cost minimization to profit
s

and might be thought of in three segments with the total demand in
market being equal to the sales in the three segments, viz

3

 for the market is om plify the notation in the

helps one to learn quickly how the sets are specified and the ripple effect this has on
require
switch the model from a focus on fish to steel or fertilizer or glass or computers or
whatever industry is of interest.
 Yet more complicated
b

5
8 / ;

Then the criterion function would also need to be changed from

T
well as transportation cost differences

maximization this can be done by introducing prices at each market. One way to do thi
is by approximating a nonlinear demand function with a piecewise linear function. For
example the dem

 j

1 2s s s s= + +

jThe subscript itted here in order to sim

following development.

 80

Chapter 4 Transportation Model in GAMS

The revenue generated by sales at this one market could then be written

1 1 2 2rev p s p s p= + + 3 3s

while being careful t that th fo rice st segment is
higher than the price nd nt that is, in turn, higher than the price in the
third segment, i.e.

3

o insure e parameters r the p in the fir
 in the seco segme

1 2p p p> >

and putting an upper bound on sales in each of the first two segments, i.e.

1 1

2 2

s
s

β
β

≤
≤

where is the upper bound in segment one and 1β 2β is t bound in segment 2.

 Then the criterion value becomes the ization of profit which is revenue

inus cost, that is

he upper

maxim
m

rev costπ = −

kjs k=

where

()1 1 2 2 3 3j j j j j j
j J

rev p s p s p s
ε

= + +∑

where

price in the th segmenkjp k= t in market j

sales in the th segment in market j

and the cost includes the transportation and production cost.

 81

Chapter 4 Transportation Model in GAMS

5. Further Reading

 In the 1970’s and 80’s there was a project at the World Bank under the leadership

f Hollis Chenery and more directly of Ardy Stoutjesdijk which focused on the
evelopment of a variety of industrial models for steel, fertilizer, pulp and paper and
ther industries. These models used the GAMS language which was under development
t that time at the World Bank by Alexander Meeraus and his colleagues. One of those
odels, namely the one on the Mexican steel industry, is a logical follow-on to the model

eveloped in this chapter, viz Kendrick, Meeraus and Alatorre (1984). Also, there is a
orter, more intuitive, chapter on this model in Kendrick (1990) and various versions of
e model itself are available in the GAMS library.

o
d
o
a
m
d
sh
th

 82

Chapter 5

ess

e way that both
ory and personnel.

ists
ic activity

 seems likely that this will change as a
eir teeth on Mac's and PC's arrive on the

 the use of relational database systems

s in economics.
d as sets of unrelated time series which

ists" page on the Internet (see
oeconomic databases and pull out the

ay be a very

me

l forms this would also serve the econometricians very well by permitting easy

Databases in Acc

 Database systems have had very substantial impact on th

oduction, sales, inventbusinesses and government agencies manage pr
Curiously though, they have as yet had relatively little impact on the way econom

aintain the data which are used to measure the pulse of economdevelop and m
in both macro and micro economic settings. It
new generation of economists who have cut th
scene.
 This chapter provides an introduction to
using the Access software. An example database developed by Kendrick (1982b) in
Access is used to illustrate the potential for relational database system

ic data is organize At present most econom
are maintained by different agencies. Thus to find the consumption data for the U.S.

for Economeconomy one might go Bill Goffe's "Resources
Goffe (2004)) and from there track down the macr

ption time series. From an econometricians point of view this mconsum
serviceable system. Thus to estimate a consumption function the user might download
the time series for consumption, income, taxes and interest rates into a spreadsheet such
as Excel or an estimation package. Then disposable income would be calculated from

e and taxes series. Finally consumption would be regressed on disposable the incom
inco and interest rates.

However, there are many other uses of economic data than as inputs to regression
packages. Frequently the user does want to run a regression but rather to address a query
that depends upon the relationships between the data. If the data is stored and
organized, not as a set of unrelated time series, but rather as a relational database, such
queries can be answered quickly and easily. Moreover, once the data were organized in

tionarela

83

Chapter 5 Databases in Access

control over aggregation and disaggregation and development of samples for use in
estimation packages.
 This chapter begins with an introduction to the terminology of database systems.
The example database for the U.S. economy is outlined along with the specification of
this data in the Access software. Then the procedure for developing and using queries of
the database is discussed.

1. Domains, Relationships and Joins

 The relationship is the key concept in database methodology. Yet it is as simple
as a table. For example, consider a table which shows the locations and production
levels of a set of plants as in Table 5.1.

Plant City Commodity Output
Inland Gary Steel 4
ARCO Houston Oil 73
Alcoa Rockdale Aluminum 125

Table 5.1 Production Relationship

lion tons of steel, the ARCO
finery at Houston, Texas processed 73 thousand barrel of oil and the Alcoa aluminum

melter uage of

ip would be the sets of plants, cities, commodities and

Production = { (Inland, Gary, Steel, 4)
 (ARCO, Houston, Oil, 73)
 (Alcoa, Rockdale, Aluminum, 125) }

Thus the Inland Steel plant at Gary, Indiana produced 4 mil
re
s at Rockdale, Texas produced 125 thousand tons of aluminum. In the lang
database systems this table would be called a relationship of the form

 Production (Plant, City, Commodity, Output)

and the domains of the relationsh
output levels used in the database.
 The Production relationship above would have three elements and each element
would be a four-tuple, i.e.

 84

Chapter 5 Databases in Access

o, in summary, the Production relationship is a set with elements, each of which is a

Another key concept in relationship databases is that of the "join". In order to
lustra

S
tuple.

il te a join we introduce two more relationships, City-State and State-Region as
shown in Tables 5.2 and 5.3.

City State
Gary Indiana
Houston Texas
Rockdale Texas

Table 5.2 City-State Relationship

State Region
Indiana Mid-West
Texas Gulf-Coast

Table 5.3 State-Region Relationship

The City-State and State-Region relationships have a common "domain", i.e. State. S
one can join these two relationships to create a new relationship which shows the region

o

of each city, i.e.
City Region
Gary Mid-West
Houston Gulf-Coast
Rockdale Gulf-Coast

Table 5.4 City-Region Relationship

 85

Chapter 5 Databases in Access

 Furthermore, one can then do an additional join of the Production and the City-
Region relationships using the common "City" domain to obtain a Regional Production
relationship which is shown in Table 5.5.

Region Commodity Plant Output
Mid-West Steel Inland 4
Gulf-Coast Oil ARCO 73
Gulf-Coast Aluminum Alcoa 125

Table 5.5 Regional Production Relationship

This table could then be printed without the Plant domain to produce the desired result as
shown in Table 5.6.

Region Commodity Output
Mid-West Steel 4
Gulf-Coast Oil 73
Gulf-Coast Aluminum 125

able 5.6 Regional Production

ll of this may seem like a lot of work to obtain a simple table. However, notice that the

production,
ownership, labor relations, ownership, location and even politics in a single database.

T

A
State-Region relationship can be modified independently of the others. Thus an
economist would be free to create his or her own regional aggregation scheme and
develop queries based on that scheme.

2. An Example Database

 An example database for the U.S. economy from Kendrick (1982b) is provided in
full in Appendix 5A at the end of this chapter. The Access file is available on the book
web site. That database was created as a simple illustration of how a relational database
might be constructed with data from the U.S. economy. The purpose was not be
comprehensive but rather to illustrate how one might fruitfully link together

 86

Chapter 5 Databases in Access

 The U.S example database is a set of fourteen relationships which link together
commodities, productive units, plants, unions, companies, industries, sectors, cities,
states, regions, governors and political parties in the fashion outlined in Figu

re 5.1.

hich can be told about how these domains are linked is

 cities which are in states which are in regions
 states have governors who belong to political parties

ng the relationships instead of the domains. The
puts to and outputs from production processes are described by

ss, input-output coefficient)
nd the level of production of each commodity by each process is given by

ity, process, year, production level).
he productive units which are used by each process are indicated in

ive units in each plant are shown in

Figure 5.1 Links between the Domains in the Example Database

The story w

 plants contain productive units in which processes are used to produce commodities
 plants belong to corporations
 plants have workers who belong to unions
 plants belong to industries which belong to sectors
 plants are located in

 The same story can be told usi
in
 Input-Output (commodity, proce
a
 Production (commod
T
 Capacity Use (process, productive unit, capacity coefficient)
and the capacity of those product

Commodity Process Productive Unit Plant Union

City

Corporation

Industry

Sector State

Region

Governor Political Party

 87

Chapter 5 Databases in Access

 Capacity (productive unit, plant, year, capacity level).
The increase in this capacity in a given year at each plant is displayed in
 Increment to Capacity (productive unit, plant, year, incremental capac

ity).

The plants are owned by corporations
 Ownership (plant, corporation).
Also the plants have employees who belong to unions
 Plant Employees (plant, union, number of employees).
Moreover the plants belong to industries
 Industry Composition (plant, industry)
and the industries to sectors in the economy
 Sector Composition (industry, sector).

 The plants are located in cities

 Plant Location (plant, city)

 City Location (city, state)

 State Governors (state, governor)
who are affiliated with political parties

 Party Affiliation (governor, party).

One would not be able to tell such a simple story for a full and comprehensive

s
u see will contain

 list of the tables (relationships) which makeup the database as is shown in Figure 5.2
below.

which are located in states

which are in turn located in regions of the country
 State Location (state, region).
The states have governors

database of the U.S. economy, but this simple story and small database serve well our
purpose to introduce the use of relational databases in economics.

3. Representation of the Example Database in the Access Software

 We turn now to how this relational database is represented and used in the Acces
software. When you open this database in Access the first window yo
a

 88

Chapter 5 Databases in Access

igure 5.2 Tables in the U.S. Economy Example Database

Figure 5.2 shows the fourteen relationships which were discussed above.

 them and then comparing
em to

stions about the data in

F

Unfortunately they are in alphabetically rather than the conceptual order used above.
You can examine the tables one-by-one by double clicking on
th the corresponding relationship in Appendix 5A. In particular take a look at the
Ownership and the Plant Employees tables since we will use both of them in the
explanation of the query below.
 The principal use of databases is to answer queries, i.e. que
the database. First we will take a look at a couple of existing queries and how they are
specified in Access. Select the "Queries" option in the objects bar on the “useco2000 :
Database” window and you will see the display shown below in Figure 5.3.

 89

Chapter 5 Databases in Access

Figure 5.3 Queries

 This window shows that four queries have already been developed. After you
have seen how they work you will be in a position to develop queries of your own.
Consider first the Employees of Corporations query. Select it but be careful to single
click on it rather than to double click. This query answers the question of how many
employees of each corporation are members of each union. One cannot answer this
question directly by looking at the individual tables; however the question can be
answered by combining the information in the two relationships

 Ownership (plant, corporation)
 Plant Employees (plant, union, number of employees)

 90

Chapter 5 Databases in Access

The first tells us which corporation owns each plant and the second tells us how many
 combine the two we have a

ew relationship which we call "Employees of Corporations" and that has the domains

ther by using the common domain “plant”.
 Look back to Fig. 5.3 above and notice that at the top of the Queries window there

 a Design button in the toolbar. Click that button and a window will open which shows
.

employees in each plant belong to each union. Thus if we
n

 Employees of Corporations (union, corporation, number of employees)

This is a "join" of the type we discussed at the beginning of the chapter since we are
joining two relationships toge

is
the design of the query as in Figure 5.4

Figure 5.4 Design of the Employees of Corporations Query

 91

Chapter 5 Databases in Access

The top part of this window includes the two relationships which are used in the query,
namely Plant Employees and Ownership. There is a small zigzag line which connects the
plant domain in the two relationships. This indicates that the join is to be performed over
this domain. You can move the Plant Employees and the Ownership table around by
clicking on the label at the top and dragging the table. This is a capability which will
come in handy later when you begin designing your own queries.
 The bottom half of the window in Fig. 5.4 contains a table in which you see listed
the domains that will be in the new relationship that is created by the query. Also there
are check marks which allow you to suppress the display of any of the domains. We
need all of them for our query so leave all the check marks for the moment and close the
query design window by clicking on the "x" in the upper right hand corner.
 Now you will be back at the "Query" window. Be sure that the Employees of
Corporations query is still selected and then click on the Open button in the toolbar at the
top of the dialog box. The window which is shown in Fig. 5.5 will appear.

Figure 5.5 Answer to the Employees of Corporations Query

 92

Chapter 5 Databases in Access

 Notice here that the answer to a query is itself a relationship. You can quickly
see from the table that U. S. Steel has employees who belong to the machinists (IAM),
teamsters (IBT) and steel workers (USA) unions. Notice that there are also two lines in
the table which are almost identical

 USA ALCOA 0.5
ALCOA 0.7

his happens because there are two plants in the database which are owned by ALCOA,
amely rs

 can see that it is sometimes
rm

hat is

 We will take the simplest case. There are relationships
n of states by region so use these two

ities by region. Thus we will use

tionship which we will call

in the

Here you see the principles of designing your own query. Begin by clicking on
the Query object in the objects bar and without selecting any of the existing queries click
on the "New" button in the toolbar at the top of the window. When you do this the
dialog box sho wi s w

 USA
T
n Rockdale and Point Comfort and there are members of the United Steel Worke
of America (USA) employed at both plants. From this you
necessary to aggregate after a query is run before you have the answer in exactly the fo
you want.
 Next try designing a query of your own. We will use one the queries t
already available in the database so that you can see how it should come out in case yours
does not work out as it should.
for the location of cities by state and for the locatio
to create a relationship which show the locations of c
the two relationships

 City Location (city, state)
 State Location (state, region)

to create a new rela

 City/Region2 (city, region)

The name "City/Region2" is used to distinguish the query from the one already
database called "City/Region1".

wn in Figure 5.6 ll appear as hown belo .

 93

Chapter 5 Databases in Access

Figure 5.6 New Query Dialog Box

 Though you may find it useful to use one of the Wizards later lets do it by hand
here. So select the "Design View" option and click on OK. The "Show Table" dialog
box will appear as in Figure 5.7.

F 5. w Table Dialog Box igure 7 Sho

 so click on it and
 upper right hand corner of the dialog box. The

sign dialog box. Next
 "Show Table" dialog box the State Location table (scroll down to find it if

necessary) and then click on the "Add" push button in the upper right hand corner of the

 One of the tables we want to use in the query is City Location,
then click on the "Add" push button in the
City Location table will appear in the top half of the query de
select from the

 94

Chapter 5 Databases in Access

Show Table dialog box. Then close the Show Table dialog box. Once you have done
this the window should look something like that shown in Figure 5.8.

Figure 5.8 Designing a Query

The City Location and State Location relationships should both be displayed in the top

s is shown in Figure 5.8.
Before we go further change the name of the query from the default to the choice

.
 allow you to rename the query. Do so and

then close that small dialog box and you will be back at Fig. 5.8.
 The next step is to establish the join. In Fig. 5.8 there is already a join between
the ID's in the two tables but we do not want this. So click on the line which connects the
two relationships and strike the "Delete" key so that the line disappears. You may have

half of the query design window a

discussed above of "City/Region2". To do this select the File menu and the Save option
A small dialog box will appear which will

 95

Chapter 5 Databases in Access

trouble with this at first but keep trying until when you click on the line it becomes
slightly darker to indicate that it has been selected. Then you should be able to delete it
by striking the "Delete" key.

Next create hips by clicking
on "state" in one of the tables and dragging to “state” in the other table. Once you have

 a join between the "state" domain in the two relations

done this the window should appear as shown in Fig. 5.9.

Figure 5.9 A Join Between "State" in the Two Relationships

ag line betwe tate" domains in the two relationships indicates that a
our work on the top part of the design window

ntion to the bottom part.

So the zigz en the "s
join has been established. This completes
and we can now turn our atte

 96

Chapter 5 Databases in Access

 Begin by clicking in the first column at the "Field" row. When you do so the
lick cursor will appear there along with a small arrow in the right hand side of the box. C

on this box to cause a drop-down window to appear as is shown in Fig. 5.10.

Figure 5.10 Drop-Down Window for Filling in the Field

 Since we want the "city" domain in this first field select the line "City
Location.city" and the domain "city" will then appear in the box. Repeat this process for
the Field row in the next column but this time select "State Location.region" from the
drop-down window. Once you have done this the Query Design window should appear
as is shown in Figure 5.11.

 97

Chapter 5 Databases in Access

Figure 5.11 Completed Query Design

pleted. This undoubtedly seems like a long and
ompli

e of the query which we have constructed. To do
is close the Query Design window by clicking on the "x" in the upper right hand corner.
hen you do this the Query dialog box should appear as shown in Figure 5.12.

The query design process is now com
c cated process but it goes very quickly once you have the hang of it.
 Now we are ready to make us
th
W

 98

Chapter 5 Databases in Access

Figure 5.12 Query Dialog Box Showing the New Query "City/Region2"

there was already a "city/region1" query which
performs the same function and to which you can compare if you have had difficulties in
some of the above steps. However, for now ignore this and try the one we have created
by clicking on"City/Region2" and then clicking on the "Open" push box in the upper left
hand corner of the window. When you do so the result of the query should appear as
shown in Figure 5.13.

Now the Query dialog box contains the new query which we have created
"City/Region2". As mentioned earlier

 99

Chapter 5 Databases in Access

Figure 5.13 Results of the Query

This is the desired result - a table which shows the region in which each city is located.
 As was mentioned above this seems like much too much work to find out that
Houston is in the Gulf Coast region. However, once you have gained some facility with
Access the point and click nature of the interface makes it an efficient way to develop
queries. Moreover when you have a large database with many relationships and much
data the power of the methods becomes apparent.

4. Examples

 There are a number of examples of the use of this database given in Kendrick
(1982b). Here it will suffice to describe a couple of them.

 100

Chapter 5 Databases in Access

 The first example is from the field on energy economics. Imagine that as the
hurricane season a ency m ment officials want to know the amount
of refining capac lantic a ico co
corresponds to t and G
to begin from the relationship
 State n (state, region)
and from there w ork bac
 C (city, st
relationship and to the
 Plant lo t, city
relationship. Then we need to cap this off by using the
 Capacity
relationship.
 If we do a join from
city to city just a tate in the pr
new relationship

 Regional capacity (productive unit, region, year, capacity level)
ation shown in Table 5.7 below.

 Region

pproached emerg anage
ity on the At nd Gulf of Mex asts. This roughly

he East-Coast ulf-Coast regions in the database so we clearly need

locatio
e need to w kward with the
ity location ate)

cation (plan)

(productive unit, plant, year, capacity level)

 plant to plant in the last two of these relationships and from
bove and then from state to s evious pair we will obtain a
 which we call

that will contain the inform

Productive Unit East Coast Gulf Coast Mid-West Units

Blast Furnace 2.0 2.5 mty

Steel Shop 2.35 2.8 mty

Rolling Mill 1.9 2.4 mty

Alumina Plant 0.8 mty

Aluminum Plant 1.1 mty

Primary Still 0.2 mbd

Catalytic Cracker 0.23 mbd

Auto Stamping 0.6 muy

Auto Assembly Line 0.6 muy

Table 5.7 Regional Capacity Relationship

 101

Chapter 5 Databases in Access

Then from this table we can quickly see that that the Primary Still capacity (which is the
best indicator o pacity) million b the Coast
region.
 You can look at the imple his query in the database by going to the
Query tab and then selecting the "prod unit/region/capacity" query. In particular, it is
useful to single click this query and then click on the "Design" button so that you can see
how the four relationships are used in the query and how they are linked by plant, city
and state to c red rel
 A sec comes s. From time to time Pres tial politics in
the U.S. are affected by difficulties in a partic pl e pressure
that the U.S. auto industry has felt from i e tim
campaign a presidential candidate asks for a list of Democratic governors whose states
have more than 10,000 people em obile and steel industries.
 Clearly for this query we need to work back from
)
to
 vernors (g te)

ty)

 Plant employees (plant, union, number of employees)
lationship while also making use of the

e

is table we could then assembly the data required to answer the query.
These two examples provide an indication of how a relational database of the

conomy might be used to provide quick answers to a wide variety of questions. In most
ases the answers to the questions could be provided in tables. In other cases the results
f the queries would be time series or cross sections of data which would then subjected
 further econometric analysis.

f the refinery ca is 0.2 arrels a day in Gulf

mentation of t

reate the desi ationship.
ond example from politic iden

ular industry. One exam e is th
mports at som es. Suppose that in a

ployed in the autom

Party affiliation (governor, party

State go overnor, sta
to
 City location (city, state)
to
 Plant location (plant, ci
Then we need to make use of the

re
 Industry composition (plant, industry)
relationship.
 If we do all the required joins properly we should obtain a relationship which w
call
 Employees by governor and party (industry, governor, party,

number of employees)
From th

e
c
o
to

 102

Chapter 5 Databases in Access

5. Experiments

 A beginning exper t st of the two examples listed
above; however, it is probably wise to begi mething simpler like the location of
cities by region as describ i ing the steps in the book.
 Once you gain som i simple joins you are encouraged to
develop you own queries. ng r in the database are not sufficient,
then you may want to add itional be able to answer richer and

ore interesting queries.
ht want to develop your own database with data from financial

arkets, labor relations or environmental economics as suits your interest. If you have
ad a summer job or an internship in a business or governmental agency you have likely
ade use of some databases and might want to try your hand at developing a similar

database in Access or some other relational database software.

6. Fur g

 The classic book on relational database systems is Date (1977). To learn more
about Access 2000 see Andersen (1999).

iment might be o implement the la
n with so

ed above but do ng this without follow
e confidence w th doing
 If the existi elationships
 some add ones in order to

m
 Finally, you mig
m
h
m

ther Readin

 103

Chapter 5 Databases in Access

Appendix

An Example U.S. Economy Database

 This appendix contai h ample U.S. economy
database from Kendrick (198

 Process

5A

ns the relations ips from the ex
2b).

Commodity Pig iron

production

Steel production

pig iron intensive

Steel production

scrap intensive

Rolling flat steel

products

Iron ore -1.6

Pig iron 1.0 -0.9 -0.7

Scrap iron -0.4 -0.2

Liquid steel 1.0 1.0 -1.2

Scrap 0.2

Flat steel 1.0

 Alumina

production

Aluminu

production

Primary

distillation

Catalytic

cracking

m

Bauxite -1.4

Alumina 1.0 -1.2

Aluminum 1.0

Crude oil -1.0

Distillate 0.2 -1.0

Gasoline 0.3 0.6

Jet fuel 0.1 0.2

mping Auto assembly Auto body sta

Flat steel -1.2

Aluminum -0.2

Auto bodies 1.0 -1.0

Automobiles 1.0

Table 5A.1 Input-Output

 104

Chapter 5 Databases in Access

In the Input-Output relationship negative values indicate inputs and positive values
outputs. Thus in the pig iro tons of iron ore are used to produce
1.0 tons of pig iron. Then i xt ig iron is used along with
0.2 tons of scrap to produce li activity analysis vectors here
follow in the tradition of Tj o for an introduction to use of

see Kendrick (1996).
Thus a process is akin to a cook's recipe in that it provides a list of ingredients and

how much is required of each as well as an ication of the final product or products.
However unlike the usual recipe for a cake,
multiple outputs, viz. the process abo or primary distillation in an oil refinery where
crude oil input is transform

n production process 1.6
n the ne column 0.9 tons of that p
 a ton of quid steel. The
alling Koopmans (1951). Als

activity analysis in economics

ind
 a process may have a single input and

ve f
ed into distillate, gasoline and jet fuel.

 105

Chapter 5 Databases in Access

 Process

Commodity Pig iron

production pig iron inte

Steel production

scrap intensive

Rolling flat steel

products

Steel production

nsive

Pig iron - mty 86.8

Liquid steel - mty 53.0 55.5

Scrap - mty 18.0

Flat steel - mty 90.0

tic Alumina

production

Aluminum

production

Primary

distillation

Cataly

cracking

Alumina - mty 20.0

Aluminum - mty 16.0

Distillate - tby 1.46

Gasoline - tby 2.19 2.43

Jet fuel - tby 0.73 0.73

 Auto body stamping Auto assembly

Auto bodies - muy 9.5

Automobiles - muy 9.35

Table 5A.2 Production
Note: mty = million tons per year
 tby = trillion barrels per year

muy = m illion units per year

 106

Chapter 5 Databases in Access

 Process

Productive

nit

Pig iron

production

Steel production

pig iron intensive

Steel production

scrap intensive

Rolling flat steel

products u

Blast furnace 1

Steel shop 1 1

Rolling mill 1

 Alumina

production

Aluminum

production

Primary

distillation

Catalytic

cracking

Alumina plant 1

Aluminum plant 1

Primary still 1

Catalytic cracker 1

 Auto body stamping Auto assembly

Auto stamping plant 1

Auto assembly plant 1

Table 5A C.3 apacity Use

o for steel production both use the same
roductive unit, namely the steel shop.

The Capacity Use relationship simply tells the productive unit in which each process
runs. Notice that substitute processes like the tw
p

 107

Chapter 5 Databases in Access

plant industry

Sparrows Point steel

Rockdale aluminum

ARCO-Houston oil

Point Comfort aluminum

Inland-Gary steel

Lansing automobile

Table 5A.4 I stndu ry Composition

industry sector

steel primary metal

aluminum primary metal

oil petroleum and coal

automobile transportation equipment

Table 5A.5 Sector Composition

 108

Chapter 5 Databases in Access

productive unit plant capacity level units

blast furnace Sparrows Point 2.0 mty

blast furnace Inland-Gary 2.5 mty

steel shop Sparrows Point 2.35 mty

steel shop Inland-Gary 2.8 mty

rolling mill Sparrows Point 1.9 mty

rolling mill Inland-Gary 2.4 mty

alumina plant Point Comfort 0.8 mty

aluminum plant Point Comfort 0.6 mty

aluminum plant Rockdale 0.5 mty

primary still ARCO-Houston 0.2 mbd

catalytic cracker ARCO-Houston 0.23 mbd

auto stamping plant Lansing 0.6 muy

auto assembly line Lansing 0.6 muy

Table 5A.6 Capacity 1980

 109

Chapter 5 Databases in Access

productive unit plant increment to units

capacity

alumina plant Point Comfort 0.5 mty

aluminum plant Point Comfort 0.4 mty

auto assembly line Lansing 0.0 muy

auto stamping plant Lansing 0.0 muy

blast furnace Sparrows Point 0.5 mty

blast furnace Inland-Gary 0.0 mty

catalytic cracker ARCO-Houston 0.12 mbd

primary still ARCO-Houston 0.1 mbd

rolling mill Sparrows Point 0.4 mty

ste l e shop Sparrows Point 0.5 mty

aluminum plant Rockdale 0.0 mty

steel shop Inland-Gary 0.0 mty

rolling mill Inland-Gary 0.0 mty

 Increment to Capacity 1981

Note: mty = million tons per year
mbd = million barrels per day

lion units per year

otion of investment which is a certain number of dollars spent on a new plant or pieces
equipment. Rather the investment above is defined as an increment to capacity and is

output of the productive unit. Thus the blast
 increased by 0.5 million tons per year (an output)

and the primary still at ARCO-Houston is increased by 0.1 million barrels per day (an
ut).

Table 5A.7

 muy = mil

 The table above is really about investment. However, it differs from the usual
n

measured in units of the principal input or
furnace capacity at Sparrows Point is

inp

 110

Chapter 5 Databases in Access

plant corporation

Sparrows Point United State Steel

Rockdale ALCOA

ARCO-Houston Atlantic Richfield Co.

Point Comfort ALCOA

Inland-Gary Inland Steel

Lansing General Motors

Table 5A.8 Ow ern ship

 Union

Plant OCAW UAW USA IBEW IBT IAM

Sparrows Point 1.2 0.3 0.05

Rockdale 0.5 0.05

ARCO-Houston 0.4 0.01

Point Comfort 0.7 0.2

Inland-Gary 0.4

Lansing 1.2

Table 5A.9 Plant Employees (in thousands of employees)

OCAW Oil, Chemical and Atomic Workers
 UAW United Auto Workers
 USA United Steel Workers of America
 IBEW International Brotherhood of Electrical Workers
 IBT International Brotherhood of Teamsters
 IAM International Association of Machinists

 111

Chapter 5 Databases in Access

plant city

Sparrows Point Sparrows Point

Rockdale Rockdale

ARCO-Houston Houston

Point Comfort Point Comfort

Inland-Gary Gary

Lansing Lansing

Table 5A.10 Plant Location

city state

Sparrows Point Maryland

Rockdale Texas

Houston Texas

Point Comfort Texas

Gary Indiana

Lansing Michigan

Table 5A.11 City Location

state region

Maryland East Coast

Texas Gulf Coast

Indiana Mid-West

Michigan Mid-West

Table 5A.12 State Location

 112

Chapter 5 Databases in Access

state governor

Maryland Harry Hughes

Texas William P. Clements, Jr.

Indiana Otis R. Bowen

Michigan William G. Milliken

Table 5A.13 State Governors

governor party

Harry Hughes Democrat

William P. Clements, r. Republican J

Otis R. Bowen Republican

William G. Milliken Republican

Table 5A.14 Party Affiliation

mon domain?
 Plant Location and City Location are linked by city

 City L

 and commodity
Production and Capacity Use are linked by process

 Capacity Use and Capacity are linked by productive unit
are linked by productive unit

 and plant
 Capacity and Plant Employees are linked by plant
 Increment to Capacity and

Plant Employees are linked by plant
Industry Composition and

Plant Employees are linked by plant

Which relationships share a com

ocation and State Location and
State Governor are linked by state

 State Governor and Party Affiliation are linked by governor
 Ownership and Plant are linked by corporation
 Industry Composition and
 Sector Composition are linked by industry
 Input-Output and Production are linked by process

 Increment to Capacity and Capacity

 113

Chapter 6

Thrift in GAMS
with

Genevieve Solomon

 Many students face a tough financial problem – their expenses exceed their
income. Thus they must work to supplement their income and/or borrow money from
student loan funds. This familiar student situation provides a good setting to learn about

ic personal financial planning models.
such as stocks and bonds; however many

liabilities in the form of credit card debt

athematics f the Thrift Model

 Consider a student who has a checking account as well as some money saved in

ent bonds. The dynamic equation for the bonds held by the student can be

dynam
Some students have financial assets

more students have few assets and substantial
and student loans. Thus we provide in this chapter a model in which a student can hold
assets in either low interest bonds or higher interest stocks. Also, the student can hold
some assets in a checking account while paying living expenses out of that account and
depositing earnings from part time work into the account. If living expenses exceed
earnings then the student must either draw down stock and bond assets or else borrow

 a student loan fund at a lofrom w interest rate or from a credit card firm at a much higher
interest rate.

We begin the chapter with a simple version of the model with only bonds,
checking accounts and student loans and then advance to a more complex model later in

ter. the chap

1. The M o

governm
written as

114

Chapter 6 Thrift in GAMS

(1) 1 (1)t t t tSb rb Sb Xbc Xcb+ = + − +

where

Sb =

hus the stock of bonds next period is equal to the stock of bonds this period multiplied
by one plus the in) plus new
bonds that are
 As is sh sited in
the student’s c nt can be

ritten as

lso,
the form of a student loan equation that is the amount

the students ow

(3) t

where

stock of bonds

rate of interest on bonds

transfer from bonds to checking account
transfer from checking account to bonds

rb
Xbc
Xcb

=
=
=

T

(Xbc interest rate on the bonds minus bonds that are cashed
purchased (Xcb).

 bonds (Xbc) are depoown below, the proceeds from the sales of
hecking account. Thus the equation for his or her checking accou

w

(2) 1 (1)t t t tSc rc Sc Xbc Xcb+ = + + −

where

stock of funds in the checking account
rate of interest on funds in the checking account

Sc
rc

=
=

Likewise additional bonds can be purchased by withdrawing money from the checking
account, Xcb .
 The bond and checking accounts are both asset accounts for the student. A
one can create a liability account in

es to the bank. This equation is

1 (1)t t tSsl rsl Ssl Xcsl Xslc+ = + − +

stock of student loans
rate of interest on student loans

transfer from checking account to student loans
transfer from student loans to checking account

Ssl
rsl
Xcsl
Xslc

=
=
=
=

 115

Chapter 6 Thrift in GAMS

In this equation Xcsl is the amount that the student withdraws from his or her checking

g two more terms so that
 becomes

(4) tXcsl Xslc+

nclude
) be es

) and the student loan equation (3) and can be written in matrix form as

6
1 1 0 0 0 0

1 1 1 1 1 1
0 1 1 0 0 t

Xbc
Sb

account to repay student loans and Xslc is the amount of money borrowed from the
student’s loan account to deposit in the student’s checking account. Given these
additional flows to and from the student’s checking account we need to modify the
checking account state equation from Eq. (2) above by includin
it

1t t t t+ (1)Sc rc Sc Xbc Xcb= + + − − t

Also the student has a part-time job and deposits these wages, Wa , into the checking
account and pays his or her living expenses, Le , from the account so we need to i
two more terms in the equations so that Eq. (4 com

(5) 1 (1)t t t t t t t tSc rc Sc Xbc Xcb Xcsl Xslc Wa Le+ = + + − − + + −

 The model then consists of the bond equation (1), the checking account equation
(5

1 0 0rb Sb
(0 1 0

Xcb Wa
Sc)

1
0 0 1 0

t t
t

rc Sc
Xcsl Le

Ssl

⎡ ⎤
−⎡ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − + − ⎢ ⎥⎢ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

r in vector difference equation form as

t

+⎤ ⎡ ⎤ ⎡ ⎤

rsl Ssl
+

⎥ ⎢ ⎥ ⎢ ⎥ ⎢+⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎥ ⎢ ⎥ ⎢ ⎥= + +⎥ ⎢ ⎥ ⎢ ⎥

Xslc⎣ ⎦

o

1t t tx Ax Bu Cz= + + (7) +

where the state vectors tx , the control vector and the exogenous vector are defined tu tz

as

(8) t

Sb

t

t

Xbc
Xcb

u
Xcsl
Xslc

⎡ ⎤
⎢ ⎥

x Sc
⎡ ⎤
⎢ ⎥= ⎢ ⎥ t

t

Wa
z

Le
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 ⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

t
Ssl⎢ ⎥⎣ ⎦

 116

Chapter 6 Thrift in GAMS

and the matrices A , B and C are

(9 0 1 0A rc)
0 0 1

rb

rsl

+⎡ ⎤
⎢ ⎥
1 0 0

= +
⎢ ⎥+⎣ ⎦

1 1 1
0 0 1 1

−1 1 0 0 0 0
1 1
0 0

C
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 ⎢ ⎥ 1B
⎡ ⎤
⎢ ⎥−= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Difference equations models like Eq. (7) are frequently called “system” equations and are
widely used in engineering and in economics

 to represent dynamic systems. Also, such

ve a criterion function that is optimized subject to the system equations.
A common form of the criterion function is the quadratic tracking function. This

ind of criterion function is different than the usual utility maximization criterion used in
y or

les and for the

r multiple purposes such as purchasing a house or car, paying
r college educations for children and providing retirement income. Also, the

individ checking account. So the
esired time path for savings accounts, stock and bond holdings and for checking account

rying and have a complicated shape. Also, some goals may be
ore important than others and thus have higher weights attached to them.

terion function with only a single
ate variable

models often ha

k
consumer theory, the cost minimization criterion sometimes used in production theor
the terminal wealth maximization sometimes used in portfolio models. The quadratic
tracking criterion function includes desired paths for the state variab
control variables and seeks to minimize the weighted squared separation between the
desired paths and the optimal paths. For example, an individual may wish to save over
the course of a lifetime fo
fo

ual may want to be sure to keep a target amount in a
d
balances may be time-va
m

A static version of the quadratic tracking cri
 xst and a single control variable can be written

u

(10) () ()2 2J w x x u uλ= − + −

where

te variable

desired value of the control variable

 priority on the control variable

J

u

λ

=

=

=

criterion value
desired value of the stax =

 priority on the state variablew =

 117

Chapter 6 Thrift in GAMS

 Since and w λ are positive and the goal is to minimize , one wants to have the

sired value . Thus it is obvious that the criterion

1)

J
state variable x be as close as possible to its desired value x and the control variable u
be as close as possible to its de u
function in this case can be minimized by setting

(1 x x u= = u

owever, this is usually not possible because the state and control variables are related to

se as possible to and as close as possible to . Furthermore this
adeof

H
one another through the system equation. Thus, there is usually a trade-off between
having x as clo x u u
tr f is affected by the priority parameters w and λ . Thus if w is large and λ i
small the optimal solution will be to set x close to x and u not so close to u .
 The priority param

s

e and ters w λ are also sometimes called penalty weights
epending on whether one is thinking of them positively as priorities or negatively as

penalties in a c th terms are used in this book
and elsewhere
 When t control variable are not scalars but rather vectors
Eq. (10) can be

d
riterion function that is to be minimized. Bo
in the literature.
he state variable and the
 written in vector-matrix form as

() () () ()J x x W x x u u u u′ ′= − − + − Λ − (12)

where

state vector
control vector
desired value of the state vector
desired value of the control vector

x
u
x
u

=
=
=
=

W = diagonal priority matrix for the state vector
 diagonal priority matrix for the control vector

Sb Sb

Λ =

Consider only the first term on the right hand side of Eq. (12). For the case at hand it
can be written as

0 0Sb Sb wb
(13) () () 0

0 0
0x x W x x Sc Sc wc Sc Sc

wslSsl Ssl Ssl Ssl

⎜ ⎟ ⎜ ⎟
′⎛ ⎞− ⎡ ⎛ ⎞−⎤
⎢ ⎥′− − = − −⎜ ⎟ ⎜ ⎟⎢ ⎥

⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎣ ⎦⎝ ⎠ ⎝ ⎠

where

 118

Chapter 6 Thrift in GAMS

priority for bonds
priority for checking account
priority for student loan account

wb
wc
wsl

=
=
=

Taking the transpose of the first vector on the right hand side of Eq. (13) and doing the

atrix vector multiplication of the remaining matrix and vector in that equation yields

(14)

m

() () ()
()⎡

()
()

b Sbwb S

x x W x x Sb Sb Sc Sc Ssl Ssl wc Sc Sc

Ssl

⎤−
⎢ ⎥

′ ⎢ ⎥−− − = − − −

wsl Ssl
⎢ ⎥

−⎢ ⎥⎣ ⎦

or

(15) () () () () ()2 22x x W x x wb Sb Sb′− − = − wc Sc Sc wsl Ssl Ssl+ − + −

Since the W m uadratic form on the left hand side of Eq. (15) is
equal to a weig fferences between each state variable and its

alue w ective priorities.

atrix is diagonal the q
hted sum of squares of the di

desired v ith the weights being the resp
From a similar set of mathematical statements it could be shown that the quadratic

form in the control variables in Eq. (12) is

(16)
() () () ()

() ()
2 2

u u u u bc Xbc Xbc cb Xcb Xcb

csl Xcsl Xc l Xslc Xslc

λ λ

λ λ

− Λ − = − + −

+ − + −

where

priority on transfers from bonds to checking
priority on transfe from cking to bonds
priority on transfers from checking to student loan
priority on transfers from student loan to

bc
cb
csl
slc

22

s slc

′

 chers
λ
λ
λ
λ

=
=
=
= checking

The priorities on the control variables in the λ parameters work analogously to those o
the state variables, i.e

n
. a large value for the pr ity indicates that the students wants to

hold that control variable close to its desired v lues. Of course, what really matters is
not the absolute values of the and

ior
a

w λ priorities but their values relative to one another.
So the student who wants to assure that the state variables reach their desired values will

 119

Chapter 6 Thrift in GAMS

assign relatively high priorities to the state variables with the parameters and relatively
w priorities to the control variables with the

w
λlo parameters.

 In sum n function for a single
period as

(17))

mary, we can write the quadratic tracking criterio

() () () (J x x W x x u u′ ′= − − + − Λ u u−

However, we want to use this criterion function in a multiperiod model, therefore we

8)

need a dynamic version of Eq. (17) that can be written

(1 () () () () () ()
1

0

1 1
2 2

N

N N N N N t t t t t t t t
t

J x x W x x x x W x x u u u u
−

=

⎡ ⎤′ ′ ′= − − + − − + − Λ −⎢ ⎥⎣ ⎦

It is c

∑

ustomary to include the 1 fractions in the criterion function so
2

 that when the

deriv adratic function are taken the first order conditions will not include a
two. een the priorities on the state variables in the
termi other time periods, . This permits

differ he terminal period than in other
periods. Also the control vector for the terminal period does not appear in the

e

atives of this qu
 Also, a distinction is made betw
nal time period N , i.e. NW , and those in all W

ent priorities to be attached to the state variables in t
Nu

criterion since it do s not affect the state until period 1N + and that period is not
included in the model.
 In summary the dynamic control theory model seeks to find the control variable
 ()0 1 1, , , Nu u u −

that will minimize the criterion function

s

() () () () () ()
11 1

2

N

N N NJ x x
−

02N N t t t t t t t t
t

W x x x x W x x u u u u
=

⎡ ⎤′ ′ ′(19) = − − + − − + − Λ −⎢ ⎥⎣ ⎦∑

subject to the s

(20)

ystems equations (from Eq. (7))

1t t t tx A+ =

with the initial

x Bu Cz+ +

 conditions

(21) 0 givenx

 120

Chapter 6 Thrift in GAMS

The student financial model described above can be specified in this form using the state,

(22)

control and exogenous variable vectors.

t

Xbc

t

t

Sb
x Sc= ⎢ ⎥ t

Ssl⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥ Xcb

u
Xcsl
Xslc

⎡ ⎤
⎢ ⎥
⎢ ⎥ t

t

z
Wa⎡ ⎤

=
⎢ ⎥ Le

= ⎢ ⎥
⎣ ⎦

⎢ ⎥
⎣ ⎦

and the matrices A , B and C

(23) 1 0A rc
⎡
⎢= +⎢ ⎥
⎢ ⎥⎣

1 0 0rb+ ⎤

⎥
1 1 0 0− 0 0

1 1
0 0

C
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 0
0 0 1 rsl+ ⎦

1 1 1 1
0 0 1 1

B
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎦

−⎣

with the exogenous variable ()0 1 1, , , Nz z z − 0xand initial state given.

f Texas.
a th hat it

es to the bond and checking
ccounts used above. Also, the model incl o liabilities rather than one since the

student can bo at most popular
source of student support - a credit card account. Thus the state vector for this model has
five variables,

(24)
⎢ ⎥
⎢ ⎥

 where Sc
Scc

2. The Evanchik Model

A model of this form was developed by Michael Evanchik (1998) when he was an
undergraduate in the Computational Economics class at the University o
Evanchik’s model is slightly more complicated th n e model described above in t
includes three types of assets rather than two by adding equiti

udes twa
rrow not only from a student loan account but also from th

i.e.

Sb⎡ ⎤ stock of bondsSb

tx ⎢ ⎥=
Se⎢ ⎥

⎢ ⎥ stock of equitiesSe
=
=

Sc
Scc

stock of funds in the checking account
stock of credit card loans

=
=

tSsl⎢ ⎥⎣ ⎦ stock of student loansSsl =

 121

Chapter 6 Thrift in GAMS

 Correspondingly, the control vector include more elements to permit a variety of
transfers among these accounts

s
. The control vector is

(25)

Xbe
Xbc

⎡ ⎤
⎢ ⎥

Xbcc
⎢ ⎥
⎢ ⎥

Xbsl
Xec

⎢ ⎥

tu
Xecc
Xesl

Xcacc
Xcsl
Xccsl

⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥⎦

here

=

transfer from equitie ard account
er from equities to student loans

a account

Xecc =

to student loan account
nt to student loan account

⎢ ⎥
⎢

= ⎢
⎢
⎢ ⎥
⎢
⎢
⎢
⎢
⎢⎣

w
transfer from bonds to equitiesXbe

Xbc
=

transfer from bonds to checking account

transfer from bonds to credit card account
transfer from bonds to student loans

transfer from equities to chec

Xbcc
Xbsl
Xec

=
=
= king account

s to credit c
transfXesl =

transfer from checking account to credit c rdXcacc =
transfer from checking accountXcsl =
transfer from credit card accouXccsl =

 122

Chapter 6 Thrift in GAMS

There is one anomaly in the variable naming scheme abov which has been introduced
eliminate a source of confusion. The transfer which would have been labeled Xccc to be

e to

onsistent with all of the rest of the variable names has instead been labeled to
ecking account to the credit card account

 this chapter,
ears after

y in the
anchik model so that the exogenous variable vector for the model in this chapter is

Sh =

 The GA the useful property that it is possible to
put explicit up rol variables. For example there are
requently upp boun can borrow per semester from the

n.

Xcaccc
make it clear that the transfer is from the ch
rather than vice versa.
 A GAMS version of the model was created by one of the authors of
Genevieve Solomon, while she was a student in the same class a couple of y
Michael Evanchik. She added a third exogenous variable to the two alread
Ev

(26) t

t

Wa
z Le

Sh

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

where
wagesWa =

 living expensesLe =
scholarship

MS version of the thrift model has
per bounds on the state and cont

f
st

er ds on how much money a student
udent loan organization. Also, credit cards frequently have upper bounds on the

amount that a student can borrow.

3. The Model in GAMS

 The GAMS program corresponding to the thrift problem is available at the book
web site. The first step for the GAMS version of the model is to define the sets. There
are four sets: state variables, control variables, exogenous variables and the time horizo
These sets are declared and defined in GAMS as follows:

 123

Chapter 6 Thrift in GAMS

Sets n states / Sb, Se, Sc, Scc, Ssl /

c,
, Xccsl/

in mathematics as

 m controls /Xbe, Xbc, Xbcc, Xbsl, Xe
csl Xecc, Xesl, Xcacc, X

 k exogenous / Wa, Le, Sh /
 t horizon / 2000, 2001, 2002, 2003, 2004 /

Notice here how sets are specified in the GAMS language. In this model there are five
state variables. The set of states could be specified
 { }, , , ,N Sb Se Sc Scc Ssl=

The equivalent GAMS statement would be
 n = / Sb, Se, Sc, Scc, Ssl /

GAMS has forward slashes as set delimiters while mathematics has braces. This means
ou s ould be very careful not to use forward slashes in a GAMS model in text
ents like "dollars/ton" since the slash will confuse the GAMS compiler and may

 n states / Sb, Se, Sc, Scc, Ssl /

r statements are used to declare and define the sets of controls variables m,
exogenous variables k and the set of time periods t.

Next three subsets of the time set are declared. In many computer languages a
ing” it. That distinction is

lso u he statements below are used to declare three sets that will be
defin e elements in the set will be determined.

 ti(t) initial period

od and the terminal period sets will be important later for

tire

he systems equation q. (20)

that y h
statem
result in an error. Also, we include in the statement for the set of state variables the
word “state” which is the text that is associated with the set n. Thus the complete
statement in GAMS for the set n is

Also, simila

distinction is made between “declaring” an element and “defin
a sed here since t

hen thed later w

 tu(t) control horizon

 tz(t) terminal period ;

The control horizon, initial peri
the equations. Also, in these three statements the (t) is used to indicate that the
preceding set, viz. tu, is a subset of the set t.

Here in the body of this chapter we will introduce the parts of the GAMS
statement of the model one section at a time. Later you may want to look at the en
GAMS statement of the model that is in Appendix 6A at the end of the chapter.
 Next tables are created to represent the matrices in t s, E

 124

Chapter 6 Thrift in GAMS

 A (one plus interest rates) (5x5)
 B (direction of transfers) (5x10)

exogenous variable signs) (5x3)
 w (state variable penalty matrix) (5x5)

wn (state variable penalty matrix for the terminal period) (5x5)
 ontrol variable penalty matrix) (10x10)

lias” statement as follows:

summations for
atrix operations in GAMS. Also the aliases will be needed when matrices are

The next part of the input defines the time subsets, tu, ti and tz of the full time
set . The first of these, tu, is the set of all time periods other than the terminal period

ed with the GAMS statements

es$(ord(t) lt card(t));

 two GAMS keywords ord and card that are operators

in the s onsider a set in mathematics

 C (

 lambda (c

In doing this we also need an “a

Alias (n,np), (m,mp) ;

This alias statement simply makes a copy of the set n and calls it np (n prime) and of
the set m and calls it mp (m prime). This alias is necessary for setting up
m
transposed in later equations.

t

and is defin

 tu(t) = y

This statement makes use of
defined on sets. “card” is an abbreviation for cardinal, which is the number of elements

Set. C

 { }, , ,S a b c d=

” is an
inal, which represents the ordinal position of each element in the set.

hus the element is in the third ordinal position in the set above.
he G MS statement defining the set tu can be read, “tu is the set of elements

hose ordinal position in the set t are strictly less than the cardinality of the set”. Thus,
recalling that the set t is

tu = / 2000, 2001, 2002, 2003, 2004 /

The cardinality of this set is four since it has four elements. In contrast “ord
abbreviation for ord

cT
 So t A
w

 125

Chapter 6 Thrift in GAMS

we see that the set tu is

i.e. it l the t element.
The second of the subsets of t is the set ti, which is the initial time period only.

ti(t) = yes$(ord(t) eq 1);

2000”.
 third ubset of t is defined with the GAMS statement

n the set t that are not in the set tu and that is only the
st element, namely “2004”.

 ments of the full set and the three subsets are
display in the output file with the statement

oing set manipulations in GAMS it is useful to display the results as a check
gainst

tu = / 2000, 2001, 2002, 2003 /

 is al elements in the set t except the las

It is defined with the GAMS statement

Thus the set ti contains the element which is in the first position in the set t, namely
“
 The s

 tz(t) = not tu(t);

Thus tz is the set of all elements i
la

Finally, just as a check, the ele
ed

 Display t, ti, tz, tu;

When d
a errors.

 126

Chapter 6 Thrift in GAMS

 Once the sets are specified, then the data can be input using the "table" and
"parameter" keywords as shown below. Consider first the use of the table keyword to

put thein A matrix.

Table a(n,np) state vector matrix

Sc 1.01
13
 1.03

tion b
ent names used in the input of the table do indeed belong to the

pprop columns of the table. Thus if the user misspells an

e absence of an explicit data entry in a
ment of the matrix being set to zero. So all the elements in the

 Sb Se Sc Scc Ssl
Sb 1.05
Se 1.10

Scc 1.
Ssl

Observe that the parameter “a” is followed by the sets over which it is defined, i.e. it is
written as “ seful a(n,np)”. It is not necessary to include the sets here, however it is a u

ecause when the sets are provided the GAMS complier can check to be sure precau
that all the elem

riate sets for the rows anda
element in the table input GAMS will issue a warning.

Following the name of the table and its set is a line of text, i.e.
 state vector matrix

The ability to use text like this phrase makes GAMS statements much easier to read and
understand. The convention in GAMS is that th
table results in that ele A
matrix others than those on the diagonal are set equal to zero.
 Recall that the diagonal elements in the A matrix are one plus the appropriate
interest rate. So the interest rates on bonds is 5 percent, on equities is 10 percent and on
checking accounts is only 1 percent. (Of course bonds and equities have greater risk
than checking accounts. Comparative risk is not addressed in this model but is included
in the models on portfolio selection used later in this book.) One way to alter the model
to better represent the financial condition of a given individual is to change the interest
rates in this table to reflect the times and the person’s own financial situation.

 127

Chapter 6 Thrift in GAMS

 The input table for the B matrix in GAMS is

Table b(n,m) control vector matrix
ecc X Xbe Xbc Xbcc Xbsl Xec X

Sb -1 -1 -1 -1
esl

 -1 -1

 -1
 -1

Scc -1 1
Ssl -1 -1

This table is too wide to fit on a single page so the “+” symbol is used between the two
parts of the table in GAMS to indicate that additional columns of the table are input in a
second set of rows.
 Consider first only the first four columns of the

Se 1 -1
 1Sc 1

Scc -1
Ssl -1

+
 Xcacc Xcsl Xccsl
Sb
Se
Sc -1 -1

B matrix, which are all transfers
out of the bond account. The first two columns (and) are transfers to other
assets, i.e. bonds to equities and bonds to the checking accou t. Thus there is a minus
one in the bonds row and a plus one in the equities row and the checking account row
respectively. The next two columns (and) are transfers from an asset
account (bonds) to liability accounts (credit card and student loan respectively) so there is
still a minus one in the bond row. However, there are also minus ones in the credit card
and student loan rows since these transfers have the effect of decreasing the amount of
credit card debt or of student loan debt through the action of selling bonds to payoff some
of these loan amounts.

Xbe Xbc
n

Xbcc Xbsl

 128

Chapter 6 Thrift in GAMS

 The input table for the C matrix in GAMS is

Table c(n,k) exogenous vector matrix
 Wa Le Sh

 since wages and
 are withdrawn from it.

t next. The matrix for
 terminal period, , is

trix

s np are used. This is not
 that is used later in the
riority for the checking
olution that the checking

 than will other
ate variables to their respective desired values.

Next comes the input for the matrix that is the state variable priority matrix

Scc 200
Ssl 1

Sb
Se
Sc 1 -1 1
Scc
Ssl

The only entries in this matrix are in the checking account row
scholarships are deposited in this account and living expenses
 The criterion function priorities (penalty matrices) are inpu

Wthe priorities for the state vectors for all periods other than the

Table w(n,np) state vector matrix penalty ma
 Sb Se Sc Scc Ssl
Sb 100
Se 100
Sc 400
Scc 200
Ssl 0

This is a diagonal n n× matrix; however the set and its an lia
essential here but it makes it easier to understand the notation
specification of the criterion function in GAMS. Since the p
account is set high at one would expect to observe in the s400

sired value account state variable Sc will track more closely to its de Sc
st

NW

for the terminal period N .

Table wn(n,np) terminal state vector matrix penalty matrix
 Sb Se Sc Scc Ssl
Sb 200
Se 200
Sc 800

 129

Chapter 6 Thrift in GAMS

These values are set twice as high as the priorities for the state variables in all other time
periods.

This is followed by the input for the Λ matrix that is the control variable priority

 set to 20 except for those for transfers from the bond account to
the che

matrix for all time periods.

Table lambda(m,mp) lambda matrix
 Xbe Xbc Xbcc Xbsl Xec Xecc Xesl
Xbe 20
Xbc 1
Xbcc 20
Xbsl 20
Xec 20
Xecc 20
Xesl 20

+
 Xcacc Xcsl Xccsl
Xcacc 1
Xcsl 1
Xccsl 20

All of these priorities are

cking account, from the checking account to the credit card account and from the
checking account to the student loan account. Thus these three transfers are permitted to
deviate more from than their desired paths than are the other transfers.
 Since the desired path for the state vector tx (tx with a tilde over it) is time

varying it can be conveniently input with a table statement.

Table xtilde(n,t) state vector desired paths

 2000 2001 2002 2003 2004
Sb
Se
Sc 1000 1000 1000 1000 1000
Scc 2000 2000 2000 2000 2000
Ssl

Recall the GAMS convention that a blank input in a table is treated as a zero. Therefore
the desired path for bonds, equities and student loans are all set to zero. It is desired that
the checking account hold steady at about $1,000 and the student’s credit card debt also
hold steady but at around $2,000.

 130

Chapter 6 Thrift in GAMS

 Also the desired path for the control vector tu is time varying, so it can likewise

be input with a table statement.

Table utilde(m,t) control vector desired paths

Xbe

nce this table in entirely blank the desired values for all the transfers in all time periods

 0
 Ssl 0 /

 can think of the parameter keyword in GAMS as the way
 input

s

e

 2000 2001 2002 2003

Xbc
Xbcc
Xbsl
Xec
Xecc
Xesl
Xcacc
Xcsl
Xccsl

Si
are set to zero.
 After the matrices in the systems equations and criterion function are input with
table statements, the next step is to input the initial period values of the state vector.
Since this is a vector it can be input with a parameter statement.

Parameter
 xinit(n) initial value /
 Sb 4000
 Se 0
 Sc 1000
 Scc

As a first approximation, one
to a vector of data and the table keyword as the way to input a matrix. Thus the
“xinit(n)” parameter was used above to input the vector that contains the initial value
of the state variables.

So the student begins with $4,000 in bonds, no equities and $1,000 in his or her
checking account. Also the student does not initially have any credit card debt or student
loan debt. This vector is particularly useful in the experiments with this model since th
most obvious thing to do to tailor the model to an individual’s personal situation is to
change the initial values for the state variables.

 131

Chapter 6 Thrift in GAMS

 Next comes the input for the exogenous variables tz that are time varying.

Since this is a vector that changes over time it can be input with a table statement , i.e.

 20000 20000
h 0 0 0 0 0

he stud time job of $15,000 a year and has living

he

.

Variables
 u(m,t) control variable
 j criterion ;
Positive Variables
 x(n,t) state variable ;

Aside from the criterion variable j the only two sets of variables in the model are the
control variables u and the state variables x. The control variables can be either positive
or negative. For example if the variable is positive it is a transfer from the bond
account to the checking account and if it is negative it is a transfer from the checking
account to the bond account. On the other hand, the state variables must be positive. For
example Scc is a liability account and is the credit card debt of the student. If this
amount were negative it would mean that the student was lending money to his or her
credit card company. While some students might like to do that at 13 percent, it is
unlikely that the credit card company would be willing to enter into such a deal.
Therefore the restriction that the state variables must be positive is imposed in GAMS
with the key words Positive Variables.

Table z(k,t) exogenous variables

 2000 2001 2002 2003 2004
Wa 15000 15000 15000 15000 15000
Le 20000 20000 20000
S

T ent has wages from his or her part
expenses of $20,000 a year and no scholarship help. Therefore the student must borrow
approximately $5,000 a year or draw down his or her assets. Like the initial conditions
this table is an obvious place for tailoring the model to an individual either by altering t
wages, living expenses and scholarship aid over time or inputting a pattern more closely
related to the individual own situation with respect to these exogenous variables 10

 The variables are the next thing to be assigned in the GAMS program.

Xbc

10 Thanks to one or our students, Vivek Shah, for helping to develop the time-varying exogenous variable

version of the thrift model.

 132

Chapter 6 Thrift in GAMS

 Next the equations are declared in GAMS with the statements

 Equations criterion criterion definition

del are the single equation for the criterion

nd five time

Next the equations are defined, beginning with the criterion function. Recall from

 stateq(n,t) state equation ;

So the only sets of equations in this mo
function and the n t× state equations. Since there are five state variables a

riods then the model will have 25 state equations. pe

Eq. (19) that this equation is in three parts, the state variables for the terminal period, the

he control variables for all other time state variables for all other time periods and t
periods, i.e.

(19) () () () () () ()
1

0

1 N

t t t t t t t t
t

x x W x x u u u u
−

=

1
2 2N N N N NJ x x W x x ⎡ ⎤′ ′+ − − + − Λ −′= − − ⎢ ⎥⎣ ⎦∑

 the first part, i.e. the state variables in the terminal time
r-matrix form, as

Consider for the moment only
period. This can be written with indices, rather than in vecto

() ()1(27)
2 i I j J

iN iN iN jN jNJ x x w x x− −

tement

..

np)*(x(np,tz) - xtilde(np,tz)))

n, criterion, and the two dots (..)
llowing the name signal to the GAMS compiler that the name has been completed and

∈ ∈
∑= ∑

is, in turn, can be represented in GAMS with the staTh

criterion
j =e=
 .5*sum((tz,n,np),
 (x(n,tz) - xtilde(n,tz))*wn(n,

This code begins with the name of the equatio
fo
the equation itself is to follow.
 The sum in the mathematics in Eq. (27) is over the two sets I and J while t

 in GAMS has only a single
he

 only over two
sum in GAMS is over three sets (tz,n,np). Since the set tz
element, namely the terminal period N in fact this sum in GAMS is really
sets. Recall that n is the set for the state variables, which are the stocks of bonds,

 133

Chapter 6 Thrift in GAMS

equities, checking account, credit card account and student loans. Also the set np in
S is the alias of the set n, i.e. it is a copy of the set.

the criterion function, namely the state variable for all periods
n in mathematics with indices as

8)

GAM
 The second part of
other than the terminal period is writte

() ()1(2
2 t Tu i I j J

it it it jt jtx x w x x− −∑∑ ∑

here

+ .5*sum((tu,n,np),

u, the set of all time periods other
al period, and n and np the state variable set and its alias.

ritten in mathematics with indices as

9)

∈ ∈ ∈

w
 set of all time peTu = riods except the terminal period

and this is written in GAMS as

 (x(n,tu) - xtilde(n,tu))*w(n,np)*(x(np,tu) - xtilde(np,tu)))

The sum here is indeed over the three sets, namely, t
than the termin

The final piece of the criterion function is w

() ()1
2 it it it jt jt

t Tu i I j J
u u u uλ

∈ ∈ ∈

− −∑∑ ∑ (2

and in GAMS as

 + .5*sum((tu,m,mp),
 (u(m,tu) - utilde(m,tu))*lambda(m,mp)*(u(mp,tu) - utilde(mp,tu))) ;

tu ntrol variable set m and its

In addition to the criterion function the only other equations in the model are

o this sum is over the time period set and also over the coS

alias mp.

those in the set of system equations. Recall that these equations are written
mathematically as

(20) 1t t t tx Ax Bu Cz= + + +

 134

Chapter 6 Thrift in GAMS

In GAMS they are written

t))) +
)) +

 sum(k, (c(n,k)*z(k,t)));

e name of the equation in GAMS is stateq and it is defined for the sets n and t+1.

t+1).. stateq(n,

 x(n,t+1) =e=
 sum(np,(a(n,np)*x(np,
 sum(m, (b(n,m)*u(m,t)

Th
Recall that the set t is

(30) { }2000,2001,2002,2003,2004T =

Then the set t+1 in GAMS is defined as the set t less the first element in the set, namely

1)

{ }2001,2002,2003,2004 (3

Thus stateq is defined over all time periods in the model except for the first time period.

Finally it is necessary to specify the initial conditions for the state variables of the
l with the GAMS statement

x.fx(n,ti) = xinit(n);

fix .fx is used in GAMS as an abbreviation for “fixed” . In this statement then
 vector x is fixed in period ti, which is the initial period, to the values in the
init which is the parameter vector that contains the initial conditions for the

odel.
ersion of the model, upper bounds on the

ed in GAMS statement.
e equations and before the Solve statement with upper
ample of this is shown below.

an upper
student loan.

mode

The suf
tethe sta

vector x
m
 Though it is not shown in the present v

tudent loan account can be includcredit card account and the s
This is done at the end of th
bounds on variables. An ex

x.up('Scc',t)=5000;
x.up('Ssl',t)=7000;

The means the upper bound for the variable . So is x.up x x.up('Scc',t)

bound on the credit card and the x.up('Ssl',t) is the upper bound on the
One can change these bounds to fit his or her own financial situation.

 135

Chapter 6 Thrift in GAMS

 Next a name is assigned to the model while also indicating the equations that are
cluded with the statement, in this case all of the equations

ed with a nonlinear
ogramming solver by minimizing j, the criterion function, i.e.

r an introduction to nonlinear optimization solvers see App. F and for a discussion of
r indexed model like this one see App. H.

 x and u is not the number one but rather the letter l and

odel it is also possible to solve the model
inal wealth.

e end of the book contains instructions
 running GAMS. Recall from that discussion that examining the results from a GAMS

t because the GAMS output files contain a substantial
bout the structure of the model and its solution. However, it is

d in the file to examine the key parts.
First locate the Solve Summary part of the output. To do this search in the editor

 do so you will see a section of the output
at looks like

in

 Model track /all/ ;

This is followed by a statement directing that the model be solv
pr

 Solve track minimizing j using nlp ;

Fo
the stacking method in GAMS that is used fo

Finally a table of the results is obtained with the use of the statement

 Display x.l, u.l ;

The suffix “.l” on the variables
is used to indicate the activity level of the variable.
 Though it is not shown in the present m
y maximizing termb

4. Results

As was discussed above, Appendix A at th
on
run can seem complicated at firs

ount of information aam
simple enough to jump aroun

for the string " SOLVER STATUS". When you
th

 136

Chapter 6 Thrift in GAMS

 S O L V E S U M M A R Y

 MODEL track OBJECTIVE j
 TYPE NLP

*** SOLVER STATUS 1 NORMAL COMPLETION

 DIRECTION MINIMIZE
 SOLVER CONOPT FROM LINE 166

*
**** MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 1377722382.8446

As was discussed earlier, each time after you solve a GAMS model you should check this
section of the output to be sure that the model was solved successfully. The words
“NORMAL COMPLETION” here indicate that is the case. If the solution procedure
was not successful you will find words like "INFEASIBLE" or "UNBOUNDED".

 137

Chapter 6 Thrift in GAMS

 Next skip down the output across the sections labeled "---- EQU" until you get to
the section labeled "---- VAR x state variable" which looks like

---- VAR x state variable

 LOWER LEVEL UPPER MARGINAL

b .2000
b .2001 . 463.607 +INF .

 -1.142E-9
b .2003 . 2.981 +INF -3.220E-9

e .2001 . 405.341 +INF EPS
 39.804 +INF -1.291E-9

03 . 12.292 +INF -2.918E-9
04 +INF 18069.230

c .2000 0.000 23323.625
c .2001 . 1107.581 +INF -1.062E-9

 1766.529 +INF -9.31E-10
Scc.20
cc.20
cc.2004 . 2096.163 +INF EPS

 . . -2.421E+4
sl.2001 . . +INF 39980.703

NF 1.1896E-9
NF 3.2469E-9

ng p rt here is the activity level of the shipment variables x in the column
 "LEVEL". This shows, among other things, that there was 4000 in bonds in time

e solution of the model that
king for. These same results are shown a little further down in the output in

S 4000.000 4000.000 4000.000 4.2771E+5
S
Sb .2002 . 17.262 +INF
S
Sb .2004 . . +INF 19101.665
Se .2000 . . . 24584.643
S
Se .2002 .
Se .20
e .20S . .
S 1000.000 1000.000 100
S
Sc .2002 . 1001.230 +INF -1.495E-9
Sc .2003 . 998.805 +INF -3.380E-9
Sc .2004 . 975.797 +INF EPS
Scc.2000 . . . -4.280E+5
Scc.2001 .

02 . 1984.219 +INF .
03 . 1991.238 +INF . S

S
Ssl.2000 .
S
Ssl.2002 . 4018.936 +I
Ssl.2003 . 9371.548 +I
Ssl.2004 . 14850.699 +INF .

eresti aThe int
beledla

period 2000 and 463 in bonds in time period 2001. This is th
we were loo
a section labeled "---- 169 VARIABLE x.L state variable" which is the result
of the display statement in the GAMS input. That output is shown below.

 138

Chapter 6 Thrift in GAMS

---- 169 VARIABLE x.L state variable

 2000 2001 2002 2003 2004

S 4000.000 463.607 17.262 2.9b 81
e 405.341 39.804 12.292

0.00 1107.581 1001.230 998.805 975.797
 1766.529 1984.219 1991.238 2096.163

Ssl 4018.936 9371.548 14850.699

a the end of the long GAMS output so the user can
uickly scroll to the bottom of the file and find the key results. However, they will be

ember to add a display statement at the end of the GAMS input
at the GAMS output you should first check to

e sure th solved satisfactorily. Then focus on the variables section.
R checking

ccount and that the student has $15,000 per year in wages and $20,000 in living

o borrows roughly $2,000 on her

15,000 by the last period. So in order to finance the $5,000
ortfall each year over the four year period the student cashes in $4,000 in bonds,

00 on her edit card and borrows about $15,000 from the student loan fund.
Meanwhile the student continues to hold about $1,000 in her checking account in all time

.

S
Sc 100 0
Scc

This table is somewhat easier to read than the default output and thus you can see the
reason that most GAMS input files end with a series of display statements. These tables
are easily found since they re at
q
there only if you rem
statement. So in summary, when looking
b at the problem was

ecall that the student starts with $4,000 in bonds and $1,000 in her
a
expenses. Also, the desired path for the checking account is $1,000 and for the credit
card account is $2,000.

As the table of state variable results over time above shows, the bond account is
drawn down in the first two periods and the student als
credit card. Then in the third time period borrowing begins from the student loan
account and reaches about $
sh
borrows $2,0 cr

periods

 139

Chapter 6 Thrift in GAMS

 The transfers that are necessary to accomplish these results are shown in the
control variable time paths below.

---- 169 VARIABLE u.L control variable

 201.984 -124.453 -55.584 -51.622

 82.078 20.062 11.086 6.544
 155.683 -147.892 -215.696 -212.548

ec -37.151 160.543 69.351 64.660
119. 06 144.515 66.670 58.166

 -46.301 -23.439 -160.112 -160.927

csl 4511.721
ccsl 73.605 -167.954 -226.783 -219.093

here is a transfer of $3,296 from the bond account to the checking account, Xbc, in the
riod followed b a transfer of $721 in the second period. Also there is a

egative transfer of about -$1,600 from the checking account to the credit card account,
he

y a

eriod
$3,600 is transferred from the student loan account to the checking account

imilar

it and
e

should be modified to be realistic.
 Finally the student may have very different desired paths for the state variables.
For example she may want to keep the bond account constant over the time horizon

 2000 2001 2002 2003

Xbe
Xbc 3296.649 721.808 275.338 260.756
Xbcc
Xbsl
X
Xecc - 9
Xesl
Xcacc -1655.095 -320.572 -53.610 -129.867
X -182.988 -3679.651 -4589.264 -
X

T
first time pe y
n
Xcacc, in the first time period. So this is actually a transfer of about $1,600 from t
credit card account to the student’s checking account. This in turn is followed b
similar transfer of about $300 in the second time period.
 Also, the borrowing from the student loan fund begins in the second time p
when about
via the variable Xcsl. This is followed by transfers of approximately $4,500 of a s
nature in the third and fourth time periods.

5. Experiments

The most useful experiment to do with this model is for the student to use it to
take a rough look at his or her own finances during college and graduate school. The
most important steps to accomplish this are to change the initial conditions in xin
the wages, living expenses and scholarship aid in the exogenous variables, z. Also, th
interest rates faced by the student are likely to be different than those used above and

 140

Chapter 6 Thrift in GAMS

covered by the model or she may want to limit credit borrowing to a smaller amoun
was used in the model above.
 There are other interesting experiments one can do simply by including b

t than

ounds on

ower bound of $800 on the checking account. In GAMS
ode the bound would look like the following:

xperiments are to increase the time horizon covered by the
model say to about ten periods and thus to cover not only years in college but the first
ears o loyment when paying back student debt may become a priority. Another

mizing the

 learn
ut GAMS and about financial planning.

the variables. For example, one can put a lower bound on the checking account. Some
students have accounts where they are supposed to keep at least a minimum balance, viz
$800. Thus one can place a l
c

 x.lo(‘Sc’,t)=800

 More complicated e

y f emp
possibility is to solve the model by maximizing terminal wealth instead of mini
criterion function. Some of these last three experiments require changes in the
specification of the model and are more difficult; however, they are a good way to
more abo

 141

Chapter 6 Thrift in GAMS

Appendix 6A

The GAMS Statement of the Thrift Model
*Student Finance Model in GAMS
*By Genevieve Solomon
*This version also has some modifications by David Kendrick

Sets n states / Sb, Se, Sc, Scc, Ssl /
 m controls /Xbe,Xbc,Xbcc,Xbsl,Xec,Xecc,Xesl,Xcacc,Xcsl,Xccsl /
 k ex
 t horizon / 2000, 2001, 2002, 2003, 2004 /

 ti(t) init
 tz(t) term

tu(t)
i(t) = yes$(ord(t) eq 1);

Table

n,m) control vector matrix

Se 1 -1 -1 -1
 1
 -1 -1

sl -1 -1

+

 ogenous / Wa, Le, Sh /

 tu(t) control horizon

ial period
inal period ;

Alias (n,np), (m,mp) ;

= yes$(ord(t) lt card(t));
t
tz(t) = not tu(t);
Display t, ti, tz, tu;

a(n,np) state vector matrix

 Sb Se Sc Scc Ssl
Sb 1.05
Se 1.10
Sc 1.01
Scc 1.13
Ssl 1.04

Table b(

 Xbe Xbc Xbcc Xbsl Xec Xecc Xesl
Sb -1 -1 -1 -1

Sc 1
cc S
S

 142

Chapter 6 Thrift in GAMS

 Xcacc Xcsl Xccsl
S
Se
b

Sc

Table c(n,k) exogenous vector matrix

 Wa Le Sh
Sb
Se
Sc 1
Scc
Ssl

Table w(n,np) state vector matrix penalty matrix

 Sb Se Sc Scc Ssl
Sb 100

 0

terminal state vector matrix penalty matrix

 Sb
Sb 200
Se 200

 Xbe Xbc Xbcc Xbsl Xec Xecc Xesl
Xbe 20
Xbc 1
Xbcc 20
Xbsl 20
Xec
Xecc

 20

 -1 -1
Scc -1 1
Ssl -1 -1

 -1 1

Se 100
Sc 400
Scc 200
Ssl

Table wn(n,np)

 Se Sc Scc Ssl

Sc 800
Scc 200
Ssl 1

Table lambda(m,mp) lambda matrix

 20
 20

Xesl

 143

Chapter 6 Thrift in GAMS

+
 Xcacc Xcsl Xccsl
Xcacc 1
Xcsl 1
Xccsl 20

Table xtilde(n,t) state vector desired paths

be
bc
Xbcc
bsl

arameter

 Sb 4000

 Ssl 0 /

 0 0 0

 2000 2001 2002 2003 2004
Sb
Se
Sc 1000 1000 1000 1000 1000
Scc 2000 2000 2000 2000 2000
Ssl

Table utilde(m,t) control vector desired paths

 2000 2001 2002 2003
X
X

X
Xec
Xecc
Xesl
Xcacc
Xcsl
Xccsl

P
 xinit(n) initial value /

 Se 0
 Sc 1000
 Scc 0

Table z(k,t) exogenous variables

 2000 2001 2002 2003 2004
Wa 15000 15000 15000 15000 15000
Le 20000 20000 20000 20000 20000
Sh 0 0

 144

Chapter 6 Thrift in GAMS

Variables u(m,t) control variable
 j criterion ;

j =e=
 .5 sum((tz,n,np),
 np)*(x(np,tz) - xtilde(np,tz))) +

) +

 (u(m,tu) -utilde(m,tu))*lambda(m,mp)*(u(mp,tu) - utilde(mp,tu)));

tateq(n,t+1

Model track /all/;

.fx(n,ti) = xinit(n);

Positive Variables x(n,t) state variable ;

Equations criterion criterion definition
 stateq(n,t) state equation ;

criterion..

*

 (x(n,tz) - xtilde(n,tz))*wn(n,

 .5*sum((tu,n,np),
 (x(n,tu) - xtilde(n,tu))*w(n,np)*(x(np,tu) - xtilde(np,tu))

 .5*sum((tu,m,mp),

s

)..

x(n,t+1) =e=
 sum(np, (a(n,np)*x(np,t))) +
 sum(m, (b(n,m)*u(m,t))) +
 sum(k,(c(n,k)*z(k,t)));

x

Solve track minimizing j using nlp;

Display x.l, u.l;

 145

Chapter 7

The classic portfolio optimization problem, which was originally proposed by
Markow

 the
off between stocks with high

eans and greater risk with their higher variances and stocks with low means and low
risk with lower ld consider building a diversified portfolio
which contained stock ctions as represented by
negative covariance el
 Our goal in thi the optimal portfolio
problem. First, we wi using a simple Monte Carlo optimization
search program. This rovide a simple introduction to the MATLAB
programming languag ittle about a random search
procedure for o

Then, we will e portfolio optimization problem using a
MATLAB gradient optimization function. However, this code makes use of the

ilable to
em.

and and it
on

1. The Mathematics

 is

Portfolio Model in MATLAB

itz (1952), was to consider both the mean and the variance of a portfolio by
maximizing the mean while minimizing the variance. This was formulated as a
quadratic programming problem to maximize a weighted sum of the mean and
negative of the variance. Thus one could consider the trade
m

 variances. Also, one cou
s that tended to move in opposite dire
ements.

B to solves chapter is to use MATLA
ll solve the problem
 will be useful to p
e and at the same time to learn a l

ptimization.
move on to solve th

Optimization Toolbox and not all users of MATLAB have this Toolbox ava
them. Therefore, in Appendix 7C we provide a GAMS version of the same probl
Also, for some readers the GAMS version may be somewhat easier to underst
can thereby serve them as a useful entry ramp to the MATLAB gradient optimizati
program.11

 Consider a vector whose elements are the fractions of the portfolio which
invested in each of the equities, i.e.

11 Also some readers may want to solve models of higher dimension than those used in this chapter

odified versions of both the MATLAB code and the GAMS code i

with

n order to compare the computational

ds of the two software systems.

m

spee

 146

Chapter 7 Portfolio Model in MATLAB

1x

(1) 2

3

x x
x

⎡ ⎤

here

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

w
ix = the fraction of the portfolio invested in equity i

r an example portfolio with three equities. fo

Also there is a vector µ that contains the mean return on each of the equities, i.e.

(2) ⎥
⎤

⎢
⎢
⎡

=⎥
⎥
⎤

⎢
⎢
⎡

= 12
8

2

1

µ
µ

µ
⎥
⎥
⎦⎢⎣⎥⎦⎢⎣ 153µ

where
 iµ = th n return on equity i

wn

We can these two vectors, i.e.

(3)
⎡x

.

 he variance for the portfolio is given in the covariance matrix , that is

⎦

⎤

⎢⎣

⎡

−

−

⎥⎦

⎤

⎢⎣

⎡

24114

456

333231

131211

σσσ

σσσ

where

e mea

Notice in this example that the second and third equities have the highest mean returns of
12 and 15, respectively. These data for the means in Eq. (2) and the covariances sho
below are for illustrative purposes and do not represent the return on particular equities or
groups of equities.

 then use the inner product of

 [] ⎥⎢=
1

' xx µµµµ
⎤

⎥
⎥
⎦⎢

⎢
⎣ 3

2321

x

to obtain the mean return for the portfolio
T Σ

(4) ⎥
⎥

⎢
⎢ −−=⎥

⎥
⎢
⎢=Σ 11175232221 σσσ

⎥

 147

Chapter 7 Portfolio Model in MATLAB

 ijσ = the covariance of the returns on equities i and j

ghest
te that

for
y tends to

ortfolio
 cushion when the return on the first equity declines and the return on the

second quity
 he variance of the portfolio can then be written as

The Markowitz model considers both the mean and the variance of a portfolio by

aximizing the mean while minimizing the variance. Using the components of the mean
(5) one can write the criterion function for

e model as to maximize in

Notice in this example that the second and third equities, which have the hi
mean returns, also have the highest variances of 17 and 24 respectively. Also, no
the off-diagonal elements in the covariance matrix have different signs. Thus,
example, when the return on the first equity falls, the return on the second equit
rise since the covariance is -5. Thus holding these two equities in the same p
provides a

 e rises.
T

(5) []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Σ

3

2

1

333231

232221

131211

321'
x
x
x

xxxxx
σσσ
σσσ
σσσ

m
and variance of the portfolio from Eqs. (3) and

Jth

(6) 1
2

J x x xµ β′ ′= − Σ

where
 J = criterion value
 β = subjective weight on the variance of the return on the portfolio

The parameter β provides the subjective weight on the variance. Thus an indivi
with a high

dual
β is risk averse and will choose a portfolio with equities which

relatively small variances. The one-half in this expression is commonly used
criterion functions; however it plays no essential role.
 The constraint for this model simply requires that the fractions inves
the equities add to one, i.e.

have

 in quadratic

ted in each of

re

(7) 1ix =∑
i I∈

whe

 148

Chapter 7 Portfolio Model in MATLAB

 = the set of equities I

Also there is a constraint which requires that the factions be nonnegative, i.e.

(8) 0ix i I≥ ∈

So, in summary, the model is to find those values of ix that will maximize J in E

subject to the constraints in Eqs. (7) and (8).
 The optimal portfolio model can also be posed in a related way that seeks
the fractional equity holdings that will minimize the weighted risk subject to a
that the mean return on the portfolio should be above a specified le

q. (6)

to find
 constraint

vel. The criterion
or this model is

(9)

function f

1
2

J yβ ′= Σ y

here
sted in each equity

subje

(10)

w
 y = vector of fractions of portfolio inve

ct to

 yµ θ′ ≥

wher

e
θ = desired minimum mean-return on portfolio

(11)

 summary, this second version of the model is to find those values of that will

 key

 1i
i I

y
∈

=∑

(12) 0iy i I≥ ∈

In i

minimize J in Eq. (9) subject to the constraints in Eqs. (10) thru (12). The
parameter in this formulation is

y

θ , the desired minimum mean-return for the portf
As this parameter is increased the optimal portfolio will include more of the risky
equities.
 This completes the statement of the mathematics of the two

olio.

 versions of the
odels. Next we turn to the computational statement of the models in MATLAB. m

 149

Chapter 7 Portfolio Model in MATLAB

2. A Simple Monte Carlo Optimization Procedure in MATLAB

TLAB
arch procedure we have chosen

 simple application to solve the first formulation of the Markowitz model. This
appli ts Paul Maksymonko,

evin Kline, and Carter Hemphill.12 The optimization procedure includes the generation
ulation of eight candidate portfolios in the first period. The portfolio that

rforms best is then selected and stored. Then the next period portfolios are generated
as ran s.
 side loop is
acros s. These loops look

mething like the following

end

Notice that the indentation in the code above makes it easy to see the
ginning and ending of each of the “for” loops. The indentation is not necessary

for th
to rea

he fir eriods (or
runs)
statem

In order to provide a good opportunity to learn both the basics of the MA

software and the basics of a Monte Carlo optimization se
a

cation is based on some programs developed by our studen
K
of a pop
pe

dom variations around that portfolio. This process is repeated 100 time
 The out

The basic structure of the program is a set of two for loops.

s time periods (or “runs”) and the inside loop is over candidate
so

nruns = 100 ; popsize = 8;
for k = 1:nruns;
 for i = 1:popsize;

…
 end

…

be

e MATLAB compiler but can (and should) be used to make the code easier
d.

T st step in the code is to initialize the number of time p
 and umber of candida the n tes in each time period with the MATLAB

ts en

12 The thod known as

Geneti s. We will not

deal w

proach used here is more like an evolutionary algorithm (EA) in that it uses real numbers rather than the

strings o

introduction to genetic algorithms in a chapter on that subject.

y devel d some applications to be used as an introduction to anope optimization me

on-convex problemc Algorithms, a method particularly useful when dealing with n

ith that method here, though the application we will present has a resemblance to that method. The

ap

f bits in that are used in many genetic algorithms (GA). Later in the book we will provide an

 150

Chapter 7 Portfolio Model in MATLAB

 nruns = 100; popsize = 8;

This is later followed by the main for loop in the program which is over the time
periods

r n
e matching end

atem eful when reading MATLAB code of this
type t the code by looking for matching for and end
statem in a pseudo code outline of the structure of the
program. The code is called “pseudo” because it could not be run on a computer
as it is

nruns = 100 ; popsize = 8;
lio weights

urns, variance costs and criterion values
 select best portfolio

r i = 1:popsize;
ages)

After pulation size are set the initialization section
f the code is used to set the initial portfolio weights for each candidate.

Then the k loop for the number of runs begins with the computation for
that time period of the returns and the variance costs for each of the portfolios.
These values are then used to calculate a vector which gives the criterion value
which was obtained for each of the eight candidates. This criterion vector is then
examined to find the index of the candidate with the highest criterion value. This

 (or runs). The structure of the for loop is

 for k =1:nruns;
 main body of the program
 end

So the time index in this model is k and it runs from 1 to the numbe of ru s.
Also note that each for loop in MATLAB extends until th
st ent is encountered. Thus it is us

o examine the structure of
ents. This is shown below

but rather is intended to outline the basic structure of the program.

initialize portfo

for k = 1:nruns;
 generate ret

 fo

generate new random portfolio weights (percent
for each candidate

 end

end
print and graph the sequence of best candidates

 the number of runs and the po

o

 151

Chapter 7 Portfolio Model in MATLAB

best portfolio is then used in the second, nested, i loop for the candidates the
asis for the generation of the portfolio holding of the eight candidates in the next

perio

best p
ith th

sectio f the

ean returns
) an

beta = 2;
';
 4

 -5 17 -11

const = 0.1;

e used later to determine de degree of random variation around the

ime period
ent

the portfolio weight matrix. The function ones() generates a
atrix of ones with three rows and a number of columns equal to the population

size. lumn vectors with one portfolio each, all

b
d.

After the time period (or run) loop is repeated 100 times the sequence of
ortfolios in each period is printed and plotted.

W is overview of the program in mind consider next each of the
ns o code.

3. Initialization of Counters, Parameters and Weights

This section of the code contains the initialization of the counters for the
number of runs (nruns), the population size (popsize) and the parameters of the
portfolio model (the risk aversion coefficient (), the vector of mbeta

(mu d the covariance matrix (sigma)).

nruns = 100; popsize = 8;

mu = [8 12 15]
sigma = [6 -5

 4 -11 24];

There is also a constant

which will b
weights of the best candidate of a time period to generate the candidates of the
next period.

Finally, we create the vector of initial portfolios for the first t
with the statem

pwm = (1/3) * ones(3,popsize);

Thus pwm stands for
m

 Thus, pwm will contain eight co

 152

Chapter 7 Portfolio Model in MATLAB

with weights set equal to 1/3. Thus the initial pwm looks like

= ⎢ ⎥

Notice here that it is not necessary in MATLAB to first declare a variable
 it. Declarations are used in many program languages to

ariable, viz. whether it is an integer or a floating point
umber and whether it is a scalar or a multidimensional array. Also, the

sed to se aside enough space in memory to store the elements of

';

hich is both declared and defined by its context to

the returns, variance cost and criterion
alue for each portfolio.

4. ation of Returns, Variance Costs and Criterion Values

pret = pwm' * mu;

wher e portfolio return for each of the

pret

Generating the variance costs for every candidate requires the use of a short loop

.33 .33 .33 .33 .33 .33 .33 .33

pwm
⎡ ⎤
⎢ ⎥.33 .33 .33 .33 .33 .33 .33 .33
.33 .33 .33 .33 .33 .33 .33 .33⎢ ⎥⎣ ⎦

and then define
determine the type of a v
n
declaration is u t
the variable before the numerical values of each element are defined in a separate
statement in the language. Thus, in the statement

mu = [8 12 15]

 is used above, the variable muw
be a column vector with three elements. The vector is input as a row vector but
the transpose (') mark is used to convert it to a column vector.
 The next step is the generation of
v

Gener

 The returns for every candidate are generated with the statement

e pret is an 8 element vector that contains th
eight candidates. The original pwm matrix is 3 x 8 as we saw above; therefore, its
transpose which is used in the statement above is 8 x 3. This matrix in turn is
multiplied by the 3 element column vector mu to yield the 8 element column
vector .

 153

Chapter 7 Portfolio Model in MATLAB

for j = 1:popsize;
 pvar(j) = 0.5 * beta * pwm(:,j)' * sigma * pwm(:,

end
j);

of the m n in pwm corresponds to one portfolio.
s by the time the code has passed through this loop eight times the variance

r all the candidates are neatly stored in the pvar vector which has eight

pret and pvar each have eight elements. Since the vector pvar is a
 expression above. Thus from the

xpression above pcrit is an 8 element column vector with the criterion value for
f th portfolios. Thus this vector can be used to find the best candidate. Of

ourse in the first pass through this part of the code all portfolios are the same so
e

.

Selection of the Best Portfolio

s the highest rate of return.
his is done with the stateme

[top topi] = max(pcrit);

that uses the MATLAB function max to place in the scalar top the largest element
in the t opi. If there is
more e um, this function will choose only one.
 the set of portfolio
weights used by this candidate with the statement

The notation (:,j) in the matrix pwm refers to all the elements of the jth column

atrix. Remember that each colum
Thu
costs fo
elements (one for each candidate).
 The criterion values for each candidate are just the difference between the
portfolios returns and the variance costs and are computed with the statement

pcrit = pret - pvar';

The vectors
row vector it has to be transposed in the
e
each o e
c
the criterion values will be the same for all of th m.

5.

 The next step is to find the portfolio which ha

nt T

 vector pcri d the corresponding index in the scalar t an
 than on maxim

The index is then used to put into the vector wnew

wnew = pwm(:,topi);

 154

Chapter 7 Portfolio Model in MATLAB

Recall that the matrix pwm has three rows (one for each asset class) and eight
column

od

p;

These arrays c best portfolio
in each n and

6.

The candidates for the next period are created as random variations around
 candidate from the previous period. The weights

d in w to create eight new candidates.

for i = 1:popsize-1;

temp = w1 + w2 + w3;
w1 = w1/temp;

1 w2 w3]';
end

be

e loop

s (one for each candidate) so the effect of the statement above is to put the
three elements from the topi column of the matrix into the vector wnew. The
portfolio weights for the best candidate and the criterion value in each time peri
k are then stored in the matrices wbest and pcritvec using the statements

wbest(:,k) = wnew;
 pcritvec(:,k) = to

an then be used at the bottom of the code to plot the
 ru the corresponding criterion value.

Random Generation of New Portfolios

the portfolio weights of the best
from the best candidate have been stored in the vector wnew and that vector is
use the for loop belo

w1 = wnew(1) + rand * const;
w2 = wnew(2) + rand * const;
w3 = wnew(3) + rand * const;

w2 = w2/temp;
w3 = w3/temp;
pwnew(:,i) = [w

The MATLAB random number generator, rand, for uniform distributions
tween zero and one is used here and is multiplied by a constant. This has the

effect of adding a given amount to the portfolio weight for each equity. The
weights are then normalized so they add up to one. The last statement in th
above, i.e.

pwnew(:,j) = [w1;w2;w3];

 155

Chapter 7 Portfolio Model in MATLAB

simply stores the weight vector for the jth candidate in the jth column of the n
portfolio weight matrix,

ew
pwnew. Thus by the time the loop has been completed

e por ew

eeping the best solution from each run when generating the

pwm = pwnew

is used to replace the previous period matrix of portfolios by the newly generated
matrix. he
end that corresponds to the for loop across time periods.

After the time period loop is completed the weights for the surviving
candidate and the criterion values are printed with the simple statements

wnew

top

The absence of a semicolon at the end of these statements dictates that the result
will be printed. Finally, the commands below generate a graph displaying the
values of the three assets percentage holdings for the best candidate in each time
period.

xaxis = [1:1:nruns]';
plot(xaxis,wsurv(:,:));
xlabel('Runs');
ylabel('Weights');
legend('w1', 'w2', 'w3');

Also we have commented out an additional statement that can be used to

th tfolio weights for the first seven candidates have been stored in the pwn
matrix.
 The next step is to put the best portfolio from the previous run in the last
(eighth) column of the pwnew matrix using the statement

 pwnew(:,popsize) = wnew ;

This has the effect of k
new portfolios to be used for the next run.
 Then the statement

 Following this statement is the last end statement in the code. This is t

 156

Chapter 7 Portfolio Model in MATLAB

plot the criterion value for all runs. It is

%plot(xaxis,pcri

If you

ogram.
 contained below in Appendix 7A and is

 under the name mcportfol.m. The

oint out that every time you run the program,
en changing the number of runs or the population size, you should

n out the old commands and workspace to avoid displaying spurious results.
Command

t you want to do this. Then do the same for
ry and for Clear Workspace. Alternatively, adding the

ar the workspace.
Figure 7.1 shows the sequence of weights of the best portfolios at each

mal portfolio weights for this experiment correspond to the

tvec(:,:));

want to obtain this plot simply remove the leading % sign and rerun the
pr

The entire code of the program is
also available in the book web site
instructions for running MATLAB are in Appendix I.

It is important to p
particularly wh
clea
To do so, go to Edit in the top MA

confirm with Yes tha
TLAB menu. Then select Clear

Window and
Clear Command Histo
sentence

 clear all;

at the beginning of the program will cle

time period. The opti
last time period and are: w1 = 0.24, w2 = 0.43 and w3 = 0.33.

 157

Chapter 7 Portfolio Model in MATLAB

0 10 20 30 40 50 60 70 80 90 100

0.4

0.35

0.2

0.25

0.3

0.45
s

gh
t

W
ei

Runs

w2

w3

w1

7.1 Best Portfolio at Each Time Period

os close to the

ch optimization routine is simple to program and
lem is relatively effective in finding the optimal

t it serves our purpose of introducing the MATLAB
mplicated code that performs nicely on this simple

However, to see the shortcoming of this simple code you can try solving
the case where beta is set equal to zero. In this case the solution will be a
boundary solution since the optimal portfolio will be one in which the entire
portfolio is placed in the one equity with the highest mean return. The simple
code above has a difficult time finding this solution but the more complex
gradient method approach discussed in the next section finds that optimal solution
with relative ease.

Figure

Notice for this particular model and starting conditions that portfoli
optimum are found within only about ten runs.

This small random sear
mple probfor the particular exa

solution. More importan
software with a relatively unco
problem.

 158

Chapter 7 Portfolio Model in MATLAB

7. The Markowitz Model B Optimization Function

sing a MATLAB function from the Optimization Toolbox. Therefore, before

Toolbox.
be used is fmincon. It is designed to find the minimum of

quality constraints would be (this function call is used only for
necessarily work in a MATLAB program)

ue of the criterion function at the optimum
ame of the function from the Optimization

 Toolbox
func = the name of the user supplied function that returns

x0 = a vector of starting values to be used in the search for

 <= b

use the fmincon function in this case the user would have to supply a function

arting point in the search for the optimal value of the function. Also, the user

 Using a MATLA

We turn now to the solution of both versions of the Markowitz model
u
beginning to work with this code, be sure that the version of MATLAB that you
are using includes the Optimization
 The function to
a function f(x) with linear inequality and equality constraints and with nonlinear
constraints. Thus our model can be solved with a nonlinear optimization solver

t has (see Appendix F). A simplified version of this function call for a model tha
only linear ine
exposition and will not

[x,fval] = fmincon(@func,x0,A,b)

where

x = the vector of optimal values
fval = the val
fmincon = the n

 the criterion value for the function

 the optimal value of the function
A = the matrix for the linear inequalities Ax
b = the vector for the linear inequalities Ax <= b

To

func

that would return the value of the criterion function. Also the user should
provide a vector x0 of values that he or she thinks is close to the optimal value of

ox function as the function. This starting point is used by the Optimization Toolb
a st
must supply the A matrix and the b vector for the linear inequality

 Ax <= b

 159

Chapter 7 Portfolio Model in MATLAB

that constrains the solution to the model.

 A somewhat more complicated version of the call to fmincon would
include in addition to the linear inequalities also linear equalities and upper and

[x,fval]=fmincon(@func,x0,A,b,Aeq,beq,lb,ub);

the linear equalities Aeq x = beq
lb = lower bound on the variables, i.e. lb <= x

The actual call to fmincon is still more complicated in that it permits options to specify
ar constraints and to pass the model parameters to the criterion function. For the first

rsion of the optimal portfolio model this function call is

cri1,x0,A1,b1,Aeq,beq,lb,ub,nonlcon,options,beta,

ition of the function at exit
output = provides additional output from the function
cri1 = the user supplied function that returns

the criterion value for the first version
f the model

or of starting values to be used in the search for

the matrix for the linear inequali ies A1 x <= b1
model

1 = the vector for the linear ineq alities A1 x <= b1
 for the first version of the model

cification for the nonlinear constraints
options = options to pass to the function

lower bounds on the variables and would be of the form

where

 Aeq = the matrix for the linear equalities Aeq x = beq
 beq = the vector for

 ub = upper bound on the variables, i.e. x <= up

nonline
ve

[x,fval,exitflag,output]
 =fmincon(@d

 N,mu,sigma);

where

exitflag = provides info on the cond

d

 o
x0 = a vect
 the optimal value of the function

tA1 =
 for the first version of the

ub

nonlcon = spe

beta,N,mu,sigma = additional arguments to be passed to the function

 160

Chapter 7 Portfolio Model in MATLAB

For the second version of the model, where we minimize the variance subject to a
nstraint on the portfolio return, the call to the fmincon function is identical to the one above

r for the set
alities are designated respectively as A2 and b2.

al portfolio model, which was

tfolio.m. Other than the call to the

unction which returns the
 the parameters

co
except that the user supplied function is named dcri2 and that the matrix and vecto
of linear inequ

The MATLAB code for the optim
programmed by Miwa Hattori, is shown in Appendix 7B and is also available in
the book web site under the name por
function fmincon, the rest of the code is devoted primarily to preparing the
inputs to pass to the function and to providing the f

erion value. So lets begin with the code to pass θ and βcrit and

ber of equities in the portfolio, N. This is written

e is used to input the values of the mean-return vector

the num

theta=10;
beta=2;

 N=3;

The next section of the cod µ and

e c ariance matrix and is

mu=[8; 12; 15];
sigma=[6 -5 4;
 -5 17 -11;
 4 -11 24];

Notice that each line of the vector mu is ended with a semicolon, so mu is input as a
column vector.

The next step is to provide the starting values that are to be used in the
search for the optimum shares in the portfolio. A reasonable starting point is to
divide the portfolio equally among the three equities. This is accomplished in the
MATLAB code with the statements

x0=ones(N,1)/N;
y0=ones(N,1)/N;

th ov Σ

 161

Chapter 7 Portfolio Model in MATLAB

where

x0 = the vector of starting values to be used in the search for

y0 = the vector of starting values to be used in the search for
 on

n call ones(N,1) creates an N vector of ones. All of the
elements of this vector are then divided by N, so in our case with three equities
the vec he same will
e true for which is used with the second version of the model.

b1=[];

e. the matrix A1 and the vector b1 are empty and can be ignored by the function.
case in the second version of the model which minimizes

e weighted variance subject to achieving at least a minimum mean return on the
.

 the optimal value of the function in the first version
 of the model

 the optimal value of the function in the second versi
 of the model

The MATLAB function ones(m,n) is used to create an n by m matrix of ones. So
in this case the functio

tor x0 will have three elements all of which are 0.33. Also t
b y0

 Next consider the linear inequality constraints for the two versions of the
model. The first version has only a linear equality constraint and no linear
inequality constraints so this is input with the MATLAB statements

A1=[];

i.
However this is not the
th
portfolio, i.e

(10) yµ θ′ ≥

However, since MATLAB expects the inequality in less-than-or-equal form it is
necessary to m by minus one to obtain ultiply the constraint through

(13) yµ θ′− ≤ −

Then the A2 matrix and the b2 vector for this constraint can be input to the code

ith the statements

A2 = -mu';
b2 = -theta;

w

 162

Chapter 7 Portfolio Model in MATLAB

sed with

straints for the two versions of the model are the same

1

 1=∑

he A matrix and b vector have the same structure for
an be input with the statements

e non-negativity
 both versions of the

options = optimset('MaxIter',60);

Also, the options variable is used to set the maximum number of iterations for
the nonlinear programming code to 60. If the code has difficulty converging on
the solution to your model it would be useful to raise this limit.

Since the vector mu was input above as a column vector it must be transpo
the transpose operator (') here since we need it in the form of a row vector for this
constraint.
 The equality con
and are of the form

 i

i I
x

∈

=∑

for the first version and

 i

i I∈
y

for the second version. So t
both versions of the model and c

Aeq = [1 1 1];
Beq = 1;

 The lower bounds on the variables are used to enforce th
constraints and there are no upper bounds so the bounds for
model are specified with the statements.

lb=[0;0;0];
ub=[];

 The final part of the model specification is the nonlinear constraints, of
which there are none, so this is written

nonlcon=[];

 163

Chapter 7 Portfolio Model in MATLAB

 With all this preparation done, one can now call the fmincon function for

fval

This function for the
first v at each point

in
criter

the first versions of the model and print the key results with the statements

 [x,fval,exitflag,output]
 = fmincon(@dcri1,x0,A1,b1,Aeq,beq,lb,ub,nonlcon,options,beta,

N,mu,sigma);
 x

MATLAB function will in turn call the user specified dcri1
ersion of the model to obtain the value of the criterion function

x the search for the optimum. Recall that for the first version of the model the
ion function in matrix form is, from Eq. (6) above

(6) 1
2

J x x xµ β′ ′

14)

= − Σ

which can be written in index form as

 (1
2i i i ij j

i I i I j J
J x x xµ β σ

∈ ∈ ∈

= −∑ ∑∑

This can be rearranged slightly by moving the β and ix to obtain

1
2

(15) i
i I∈

i i ij j
i I j J

J x x xµ β σ
∈ ∈

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 i the form dcri1 function below.

function [z] = dcri1(x,beta,N,mu,sigma)
z=0
for i=1:N;
 temp=0;

 temp=temp+BETA*sigma(i,j)*x(j);

z=-z;

which s used in the

;

 for j=1:N;

 end;
 z=z+mu(i)*x(i)-0.5*x(i)*temp;
end;

 164

Chapter 7 Portfolio Model in MATLAB

Notice at the top of the function that the fmincon function passes to the dcri
function the current point

1
x in the search for the optimum and the parameter of the

roblem.
e at the bottom f the function that the negative value of z is returned

by the function. The reason is that the fmincon function – as its name indicates –
find the minimum value of a function. Therefore to use it to find the

aximum, as we need here, it is necessary to reverse the sign of the criterion

An equivalent but more compact formulation that shows the power of
putation could be

function z = dcri1(x,beta,N,mu,sigma) ;

a*x);

ond version of the model,
llowed by the command lines to print the results, is

on,options,beta,

val

The d imilar to the dcri1
funct

p
Notic o

is used to
m
value.

MATLAB for matrix com

 z = -(mu'*x - 0.5*beta*x'*sigm

The call to the fmincon function for the sec
fo

[y,fval,exitflag,output]
 =fmincon(@dcri2,y0,A2,b2,Aeq,beq,lb,ub,nonlc

N,mu,sigma);
y
f

cri2 function for the second version of the model is s
ion except simpler since it does not contain the mu parameters.

1
2

Also it is not necessary to use the negative sign at the bottom of the function sinc
we are seeking a minimum in this case.

J y yβ ′= Σ

e

 165

Chapter 7 Portfolio Model in MATLAB

8. Experiments

 The logical experiment to do with the Markowitz model is to change the
β risk preference parameter to see how the optimal portfolio changes. As β

increases one would expect the optimal portfolio to contain larger proportions of

e off-

eriments to selectively change the signs of these elements and
 results.

utcomes of the
inst the ones obtained with the optimization function. You

tcome of the Monte Carlo code. Also, in the “random generation of new
 number of

is affects the convergence path of the best weights to

rsion

stocks with lower variances and – most likely – with lower mean returns.
 Another useful experiment is to change the pattern of the signs of th
diagonal elements in the Σ matrix. In the original version used in this chapter
there is a mixture of positive and negative off diagonal elements. It would make

expinteresting
serve theob

 Finally, another useful experiment is to compare the o
Monte Carlo code aga
may want to increase the number of time periods and/or the population size, or
change the value of the constant const, and see how these changes affects the
ou
portfolios” section, you may want to divide the constant const by the
runs index k and see how th
the optimal portfolio.
 Of course the reader may want to obtain data on a set of stocks and bonds

a personal vewhich are of particular interest to him or her and thus develop
of the optimal portfolio model.

9. Further Reading

For a variety of financial models in MATLAB see Brandimarte (2001).

 166

Chapter 7 Portfolio Model in MATLAB

Appendix 7A

o Portfolio Problem

rogram name: mcportfol.m
ott Schwaitzberg

clear all;

%initialization of counters, parameters and weights;
nruns = 100; popsize = 8;
beta = 2;
mu = [8 12 15]';
sigma = [6 -5 4
 -5 17 -11
 4 -11 24];
const = 0.1;
pwm = (1/3) * ones(3,popsize);

for k = 1:nruns;
 % generation of vectors of returns, variance cost and crit function
 pret = pwm' * mu;
 for j = 1:popsize;
 pvar(j) = 0.5 * beta * pwm(:,j)' * sigma * pwm(:,j);
 end
 pcrit = pret - pvar';

 % selection of the best portfolio;
 [top topi] = max(pcrit);
 wnew = pwm(:,topi);

MATLAB Code for a Monte Carl

%Monte Carlo portfolio program;

 %P
%Developed by Ruben Mercado with modifications by Sc
%and David Kendrick

 167

Chapter 7 Portfolio Model in MATLAB

 % store best portfolio and the optimal criterion value for each run
 wbest(:,k) = wnew;
 pcritvec(:,k) = top;

 % random generation of popsize minus one new portfolios;
 for i = 1:popsize-1;
 w1 = wnew(1) + rand * const;
 w2 = wnew(2) + rand * const;
 w3 = wnew(3) + rand * const;
 temp = w1 + w2 + w3;
 w1 = w1/temp;
 w2 = w2/temp;
 w3 = w3/temp;
 pwnew(:,i) = [w1 w2 w3]';
 end

 % put best portfolio for the run in the last column of the matrix
 pwnew(:,popsize) = wnew ;
 pwm = pwnew;
end

%print optimal weights and optimal criterion value
wnew
top

%print and graph optimal weights and criterion value
%wbest
xaxis = [1:1:nruns]';
plot(xaxis,wbest(:,:));
xlabel('Runs');
ylabel('Weights');
legend('w1','w2','w3');
%plot(xaxis,pcritvec(:,:));

 168

Chapter 7 Portfolio Model in MATLAB

Appendix 7B

MATLAB Code for a Markowitz Optimal Portfolio Problem

% Title: Quadratic-Linear Programming for Mean Variance Portfolio
% Analysis
% Program name: portfolio.m
% by Miwa Hattori
% Implementation of the mean-variance portfolio selection models
% w

theta=10; % Minimum mean-return on portfolio under formulation 2.

ialized to 1/N.

%

mization
nction that solves a constrained nonlinear

% MINIMIZATION problem. See Help file for function "fmincon".
% fmincon finds a minimum of a multivariable function f(x)subject to

A1=[]

ith two alternative formulations in Matlab:
% (1) maximizing expected mean return, net of variance costs and
% (2) minimizing the overall variance costs of portfolio.
clear all;
%
% Preliminaries
%

beta=2; % Subjective weight on returns variance of equities.
N=3; % Number of available equity types.
mu=[8; 12; 15]; % Column vector of mean annual returns on equities 1
 % through N (%).
sigma=[6 -5 4;% Table of covariances between returns on equities.
 -5 17 -11;
 4 -11 24];

%
% Provide initial "guesses" for portfolio vectors.
%
x0=ones(N,1)/N; % Column vector of fractions of portfolio invested in
 % equity i, initialized to 1/N.
y0=ones(N,1)/N; % Column vector of fractions of portfolio invested in
 % equity i, init

% Constraints for opti
% Matlab only has a fu

% A*x<= b, Aeq*x= beq, lb<= x <=ub where x, b, beq, lb, and
% ub are vectors, A and Aeq are murices.
%

; % Set of linear inequality constraints under formulation 1.
b1=[];
A2=-mu'; % Set of linear inequality constraints under formulation 2:

 169

Chapter 7 Portfolio Model in MATLAB

b2=-theta; % Desired minimum mean-return on portfolio y >= theta (%).
Aeq=[1 1 1]; % Set of linear equality constraints.
beq=1; % Fractions x(i) must add to 1, fractions y(i) must add to 1.
lb=[0;0;0]; % Non negativity constraints on x(i) and y(i)
ub=[];
nonlcon=[]; % Non linear constraints-- none in this problem.
options=optimset('MaxIter',60);

% Definition of the criterion functions
% Functions dcri1, dcri2 are called. See files dcri1.m, dcri2.m.

fval

y

% Title: Quadratic-Linear Progr for Mean Variance Portfolio Analysis
 dcri1.m

% selection model.
% Defines the expected mean return, net of variance costs, which is

function z = dcri1(x,beta,N,mu,sigma);

z=0;
for i=1:N;
 temp=0;

 end;
 z = z + mu(i)*x(i) - 0.5*x(i)*temp;
end;

z=-z;

% Matlab only has a subrou to solve constrained MINIMIZATION problems.
% We solve a maximization problem by minimizing the negative of the
% objective function.

%

%
[x,fval,exitflag,output]=fmincon(@dcri1,x0,A1,b1,Aeq,beq,lb,ub,nonlcon,
options,beta,N,mu,sigma);
x

[y,fval,exitflag,output]=fmincon(@dcri2,y0,A2,b2,Aeq,beq,lb,ub,nonlcon,
options,beta,N,mu,sigma);

fval

% Function Name:
% by Miwa Hattori
% The first formulation of the crit function for mean-variance port

% to be maximized.

 for j=1:N;
 temp = temp + beta*sigma(i,j)*x(j);

 170

Chapter 7 Portfolio Model in MATLAB

% Title: Quadratic-Linear Programming for Mean Variance Portfolio
% Analysis
% Function
% by Miwa H
% The second formulation of the criterion function for mean-variance
% portfolio selection model.
% Defines the overall variance costs of portfolio to be minimized.

function z

z=0;
for i=1:N;
 temp=0;
 for j=1
 temp = temp + beta*sigma(i,j)*y(j);
 end;
 z = z + 0.5*y(i)*temp;
end;

Name: dcri2.m
attori

= dcri2(y,beta,N,mu,sigma);

:N;

 171

Chapter 7 Portfolio Model in MATLAB

 Markowi ortfolio Problem

specification would be “Set I” instead of “Set i” there is an argument for using the lower
case specifica MS the symbols for sets
are used wher set and where the
mathematics would indicate an index. Thus the mathematical statement of Eq. (7), i.e.

(7)

is written in G

Of course, since GAMS does not distinguish between upper and lower case letters it
would be possible to write the GAMS statement as

sum(I, x(i)) =e= 1.0 ;

This might be more aesthetically pleasing but could also be more confusing.
 Just beneath the set specification statement in GAMS is an Alias statement of the
form

Alias (i,j) ;

Appendix 7C

GAMS Code for a tz Optimal P

The complete GAMS version of the model, which was programmed by
Seung-Rae Kim, is at the end of this Appendix. Here we will discuss the parts of
the model. The first part of the GAMS statement of the model is the specification
for the set of equities

Set i equities /equity1, equity2, equity3/;

While it is more common in GAMS to use an upper case letter for the set so that the

tion as is done here. The argument is that in GA
 the mathematics of the model would indicate a e

1ix =∑
i I∈

AMS as

sum(i, x(i)) =e= 1.0 ;

 172

Chapter 7 Portfolio Model in MATLAB

This statement creates a set which is a copy of the set J I . This kind of
statement is used in GAMS when there is a double summation over the elements
of a variable x used in computing the variance of the
portfolio in th
 Next t d for

(i,j) of the sort that is
is model.

 data are input using the Scalar keywor θ and βhe , the
Parameters keyword for the vector µ and the Table keyword for the matrix

as follows:

Scalar theta desired minimum mean-return on portfolio (%) / 10 /
 beta subjective weight on returns variance of equities / 2 /;

 Parameters mu(i) mean annual returns on equities (%)
 / eq
 eq
 equity3 15 / ;

 Tabl

Then the variables are defined using the keyword “Variables”

Variables

nvested in equity i in formulation 1
 y(i) fraction of portfolio invested in equity i in formulation 2
 criterion1 expected mean return on portfolio, net of variance cost
 criterion2 variance-augmented total risk cost of portfolio ;

Σ

uity1 8
uity2 12

e sigma(i,j) covariance matrix of returns on equities
 equity1 equity2 equity3
 equity1 6 -5 4
 equity2 -5 17 -11
 equity3 4 -11 24 ;

 x(i) fraction of portfolio i

Positive Variable x, y ;

 173

Chapter 7 Portfolio Model in MATLAB

Also, the Positive Variable statement is used in GAMS to enforce the non-
negati he

1.0
 desired minimum mean-return on portfolio y(i)

 ysum fractions y(i) must add to 1.0 ;

Recall that the fter the last line above is crucial in GAMS. It is easy
to forget this developing a model in GAMS; however, forgetting
it usually results in errors in GAMS, since the compiler does not know where the
list of equation names ends and the definition of the equations begins.

e definitions of the equations beginning with the criterion
function. However, since GAMS uses index rather than matrix notation, it is

e criterion function from Eq. (6) above, i.e.

(6)

vity constraints on the x and y variables. Notice that the two versions of t
model using the x variables in the one version and the y variables in the other are
being developed simultaneously in the GAMS statement of the models, rather
than one after another.
 Next comes the declaration of the equations with the statements

Equations dcri1 definition of criterion1
 dcri2 definition of criterion2

 fractions x(i) must add to xsum
 dmu

 semicolon a
semicolon when

 Next are th

useful to restate the matrix form of th

 1
2

J x x xµ β′ ′

 (14)

= − Σ

in index form as

1
2i i i ij j

i I i I j J
J x x xµ β σ= −∑ ∑∑

ere
∈ ∈ ∈

wh
 iµ = the mean return on equity i

ijσ = the covariance of the returns on equities i and j

 -.5*sum(i, x(i)*sum(j, beta*sigma(i,j)*x(j))) ;

This criterion is written in GAMS as

dcri1.. criterion1 =e= sum(i, mu(i)*x(i))

 174

Chapter 7 Portfolio Model in MATLAB

Here we see the use of the alias I and sets for the double summation.
e ion function for the second version of the model which is

written in matrix form as

J
Similarly th criter

(9) 1
2

J y yβ ′= Σ

becomes

dcri2.. criterion2 =e= .5*sum(i, y(i)*sum(j, beta*sigma(i,j)*y(j

in the GAMS statement.

The rest of the constraints for the two versions of the model are stated in
GAMS as

 xsum.. sum(i, x(i)) =e=

))) ;

 1.0 ;
dmu.. sum(i, mu(i)* y(i)) =g= theta ;

 ysum.. sum(i, y(i)) =e= 1.0 ;

The first and third constraints above require that the fractional portfolio holdings
add to one. The middle constraint containing the θ parameter is the restriction
on the portfolio return in the second version of the model.

 Model portfolio1 / dcri1, xsum / ;
 Model portfolio2 / dcri2, dmu, ysum / ;

 Solve portfolio1 using nlp maximizing criterion1;
 Solve portfolio2 using nlp minimizing criterion2;

Here we see a good example in GAMS of the use of Model statements to specify
different versions of a model that can then be solved one after another with two
different Solve statements. The two models are actually quadratic programming
models; however, GAMS does not have a specialized solver for this purpose and
the nonlinear programming solver called by the keyword nlp is appropriate. For
an introduction to this type of solver see Appendix F.

Below is the complete GAMS code for the Markowitz problem. The
GAMS library has a variety of optimal portfolio models which may be of interest
to the reader. They are called PORT and QP1 thru QP6. The PORT model was

The last part of the GAMS statement for the two versions of the model is

 175

Chapter 7 Portfolio Model in MATLAB

created by the Control Data Corporati odels were created by
Erwin Kalvel

$Title A Quadratic-Linear Program for Mean-Variance Portfolio Analysis
* Program by Seung-Rae Kim

$Ontext
These are mean-variance portfolio selection models with two
alternative
formulations in GAMS: (1) maximizing expected mean return, net of
variance costs, & (2) minimizing the overall variance costs of
portfolio.
$Offtext

 Set i equities /equity1, equity2, equity3/;
 Alias (i,j) ;

 Scalar theta desired minimum mean-return on portfolio (%) / 10 /
 beta subjective weight on returns variance of equities / 2 /;

 Parameters mu(i) mean annual returns on equities (%)
 / eq
 eq
 eq

 Table sigma(i,j) covariance matrix of returns on equities
 equity1 equity2 equity3
 equity1 6 -5 4
 equity2 -5 17 -11
 eq

po ested in equity i in formulation 1
 y(i) fraction of portfolio invested in equity i in formulation 2

ance-augmented total risk cost of portfolio ;

 must add to 1.0
 dmu desired minimum mean-return on portfolio y(i)
 ysum fractions y(i) must add to 1.0 ;

on and the QP m
en at the GAMS Corporation. ag

s

uity1 8
uity2 12
uity3 15 / ;

uity3 4 -11 24 ;

 Variables
 x(i) fraction of rtfolio inv

 criterion1 expected mean return on portfolio, net of variance cost
 criterion2 vari

 Positive Variable x, y ;

 Equations dcri1 definition of criterion1
 dcri2 definition of criterion2
 xsum fractions x(i)

 176

Chapter 7 Portfolio Model in MATLAB

 dcri1.. criterion1 =e= sum(i, mu(i)*x(i))-.5*sum(i, x(i)*sum(j,
 beta*sigma(i,j)*x(j))) ;
 dcri2.. criterion2 =e= .5*sum(i, y(i)*sum(j, beta*sigma(i,j)*y(j))) ;

 xsum.. sum(i, x(i)) =e= 1.0 ;
 dmu.. sum(i, mu(i)*y(i)) =g= theta ;
 ysum.. sum(i, y(i)) =e= 1.0 ;

 Model portfolio1 / dcri1, xsum / ;
 Model portfolio2 / dcri2, ysum

 nlp maximizing criterion1;
 Solve portfolio2 using nlp minimizing criterion2;

 dmu, / ;

 Solve portfolio1 using

 177

Part II

Once More . . .

178

Chapter 8

General Equilibrium Models in GAMS

dels is a particularly demanding topic in
ics, since it involves the study of interdependence. It implies a move to the realm

 multiple heterog

oduce SAM based and Johansen style Computable General
Equilibri esent models in a sequence reflecting mainly their
computa lexity in terms of degree of non-linearity and size. The order of the
sequence recedence of one type of model over the
others, o

1. Input-Output Model

A good starting point for the study of interdependence in economics is the well
known In eered by Nobel prize winner Wassily Leontief (1953).
One of th ls of this type of model is the determination of direct and indirect levels
of production to satisfy a given increase in final demand.

Consider an economy with three industries (1, 2 and 3). Each of them produces a
single output, using as inputs part of its own production as well as part of the output from

The analysis of economy-wide mo

econom
of eneous agents, sectors and institutions interacting in complex ways.
While there are some analytical methods and results available to help us in such endeavors,
computational methods become necessary when we move to medium or large size models
or when we deal with particularly complex ones.

This chapter provides an introduction to the art of economy-wide modeling. We
present a sequence of small models, we show how to implement them in GAMS and we
perform some experiments and suggest other experiments. We start with an Input-Output
model in which quantities produced are determined given technology and demand levels.
We follow with a Production Prices model that determines relative prices given technology
and a distributive variable. Then we move to a General Equilibrium model in which prices

ined simultaneously given technology, preferences and and quantities are determ
endowments. Finally, we intr

 We will prum models.
tional comp
 does not mean historical or theoretical p

 ranking of practical relevance. r a

put-Output model pion
e main goa

179

Chapter 8 General Equilibrium Models in GAMS

the other that each industry plays a dual role since it is both a
supplier of inputs and a user of outputs. Imagine that each product in this economy is also
used to s rs. In formal terms, we
can represent the economy just described as follows

(1) 23 3 2

33 3 3

 industries. It is clear, then,

atisfy an exogenously given level of demand from consume

 2 21 1 22 2

1 11 1 12 2x a x a x 13 3 1a x d

3 31 1 32 2

x a x a x a x d
x a x= + a x a x d

+
+

+ +

where th nput-output coefficients (the

intermediate requirements from industry i per unit of output of industry j), and the d’s are
the levels consumers.13 In matrix notation, we can write Eq. (1)
as

(2)

= + +
= + +

e x´s are production levels, the ija are the i

 of final demand from the

x Ax d= +

where x i ands and A is the
input-out

A iven an example input-output
coefficie

oduction, d is the vector of final dems the vector of levels of pr
put coefficients matrix.
 question can be posed for this economy. G
nts matrix

0.3 0.2 0.2⎡ ⎤
0.1 0.4 0.5
0.4 0.1 0.2

A ⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and an example vector of final demands

4
5
3

d
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

13 One of the attractive features of input-output models is that in principle the data that is used to compute the

coefficients in the model can be obtained directly from sources such as the manufacturing censuses done in

many countries.

 180

Chapter 8 General Equilibrium Models in GAMS

what will be the required level of total production of each industry (direct and indirect) to
 vector? The GAMS representation of this problem is

$TITLE IO-1
* Input-Outp

SCALARS
d1 final dem
d2 final dem
d3 final dem

VARIABLES
x1 productio
x2 productio
x3 productio
j performan

MODEL IO /jd, eqx1, eqx2, eqx3/;
SOLVE IO MAXIMIZING J USING LP;
DISPLAY x1.l, x2.l, x3.l;

he GAMS files for this and the other models in this chapter are in the book web site under
the nam

satisfy that final demand

ut Model

and for x1 /4/
and for x2 /5/
and for x3 /3/;

n level industry 1
n level industry 2
n level industry 3
ce index;

EQUATIONS
eqx1
eqx2
eqx3
jd performance index definition;

jd.. j =E= 0;
eqx1.. x1 =E= 0.3*x1 + 0.2*x2 + 0.2*x3 + d1;
eqx2.. x2 =E= 0.1*x1 + 0.4*x2 + 0.5*x3 + d2;
eqx3.. x3 =E= 0.4*x1 + 0.1*x2 + 0.2*x3 + d3;

T
es listed in each $TITLE statement. Note that in this model, as discussed in

Appendix H “The Stacking Method in GAMS”, in order to solve a system of simultaneous
equations in GAMS it is necessary to add an additional variable (j) and equation (jd) and
to maximize or minimize the added variable. As is discussed in that appendix, GAMS has
procedures for optimizing but not for solving simultaneous equations. Therefore, the
method for solving simultaneous equations in this software system is to add to the model an
additional variable – j in this case – and an additional equation – jd in this case. Then the
additional variable is maximized or minimized in order to find the solution to the model.

Using this method the solution obtained is

 181

Chapter 8 General Equilibrium Models in GAMS

1x 2 316.821, 23.744, 15.128.x x= = =

(3)

There are analytical methods available to deal with this problem.14 Indeed, the

analytical solution is obtained by solving Eq. (2) to obtain

 () 1x I A d−= −

where I is the identity matrix.15 This formula can be easily handled for small models.
However, computational methods will be required to perform the matrix inversion as soon
as one moves to larger models. And these methods will become unavoidable as we move

 more complex problems. For example, imagine now that we have some restriction, like
a capacity constraint, on the maximum level of production of some products (say
to

2 22x ≤
and) and we want to know the maxim al dem roduct 1)
that the economy can satis d be easily

handled in GAMS. Here is the corresponding GAMS representation of the problem

O-2
put Model wit restrictions

S
l de 2 /5/
al d mand for x3 /;

VE VARIABLES
tion level indust

x2 production level industry 2
ion level industry 3
emand for x1;

VARIABLES
j performance index;

3 14x ≤ (1dum level of fin and of p
fy, given the final emand levels d2 and 3d . This can

$TITLE I
* Input-Out h

SCALAR
d2 fina mand for x
d3 fin e /3

POSITI
x1 produc ry 1

x3 product
d1 final d

14 See for example Chiang (1984) for an introduction to these methods.
15 Also, it is necessary that the I-A matrix be non-singular.

 182

Chapter 8 General Equilibrium Models in GAMS

EQUATIONS
eqx1
eqx2
eqx3

jd performance index definition;

jd.. j =E= d1;
eqx1.. x1 =E= 0. 2*
eqx2.. x2 =E= 0.1*x1 + 0.4*x2 + 0.5*x3 + d2;
eqx3.. x3 =E= 0.4*x1 + 0.1*x2 + 0.2*x3 + d3;
res1.. x2 =L= 22;
res2.. x3 =L= 14;

O MAXIMIZING j USI G LP;
DISPLAY x1.l, x2.l, x3.l, d1.l;

Notice efine and add two equations (res1 and res2) corresponding to the

restrictions, s mance index

res1 restriction 1
res2 restriction 2

3*x1 + 0. x2 + 0.2*x3 + d1;

MODEL IO /all/;
SOLVE I N

 that we d
et the perfor j equal t , and define as a variable (no longer

as a scalar). Also, to avoid negative values that make no economic sense we define all
variables exc mance index as positive variables. Solving the problem, we
obtain

43, 22, 13.571, 2.786x x d= = =

in contrast wi iginal solution of

16.821, 23.744, 15.128, 4x x d= = = =

Thus the level of final demand for good 1 is lower once the restrictions are in place and we
can achieve only 2.786. This is lower than in the original case since we set the values of
the restrictions below the solution levels previously obtained. On the contrary, if the
econom e “bottlenecks” up to 30 for

1do 1d

ept the perfor

1 14.1x = 2 3 1

th our or

1 2 3 1x

2x and 20 for 3xy is able to lift thos , the demand of
could be satisfied would be 1 7.8d = .goods produced by sector 1 that

 183

Chapter 8 General Equilibrium Models in GAMS

2. Production Prices Model

So far we have been dealing with a model with two main types of agents
(consumers and industries), in which their interrelations are linear and where, given a
technology (the input-output coefficients matrix) we determine quantities produced n
demanded. Implicitly, relative prices are taken as given. We will move now to a nonlinear
model in which pric

 a d/or

es are determined given technology and a distributive variable. This
type of

 us to

e cost

rite

(4) p

 model was pioneered by David Ricardo (1817) at the beginning of the nineteenth
century and later formalized by Piero Sraffa (1972). One of its main goals is to allow
study issues of income distribution between wages and profits.
 Let’s define

v = value of intermediate inputs
π = profits
w = wag
p = price.

We can then w

v wπ+ + = .

 This equation simply requires that the total cost, that is the sum of the three
elements n
assuming times the value of the intermediate inputs
we have

(5)

 of cost, namely intermediate goods, capital and labor is equal to the price. The
 that profits are equal to the profit rate r

v v r w p+ + =

or

(6) p(1)v r w+ + =

Then using the input output coefficients for the intermediate inputs, a simple three-good
production prices model can be formalized as

 184

Chapter 8 General Equilibrium Models in GAMS

(7)
) (1)a p a p r l w p+ + + + =

The a’s a at subscripts of these coefficients
are rever trix corresponding
to input-output Leontief type models. This is so because here we determine prices given
technolo given technology.16 The l’s
are also i efficients indicating the quantity of labor required for the
production of one unit of product. In addition the

11 1(a p 21 2 31 3 1 1

 () (1)a p a p a p r l w p+ + + + = 12 1 22 2 32 3 2 2

13 1 23 2 33 3 3 3() (1)a p a p a p r l w p+ + + + =

re, as before, input-output coefficients. Notice th
sed, that is, the input-output matrix is the transpose of the A ma

gy, while in Leontief models we determine quantities
nput-output co

p ’s are relative prices, w is the wage per

unit of la o be uniform for the whole economy) and r is the profit rate. The
profit rat ery industry, implying that we are dealing with a long run
situation s the same profit no matter the industry. Otherwise there
would be a low rate to industries with a higher rate
until that rate equalizes across industries.
 T iables and three equations. Since all prices are relative
prices, we need to choose one of them as a numeraire in order for all the other price-like
variables to be expressed in terms of it. We can do this by fixing one variable (say, one
price).17 Once we have done this, to close the system of equations we are still left with a
degree of w and r. We can thus fix, for example, the wage w.18

A GAMS representation of this model is provided below, where we have chosen a
particular set of values for the input-output coefficients, and where we set and w =

0.

bor (assumed t
e is the same for ev
 in which capital earn
 capital movements from industries with

he model above has five var

 freedom regarding

1 1p =

16 To learn his, see Passinetti (1977).
17 For Sraff of the numeraire involved other issues dating back to Ricardo. Facing a change in the

relative pri ll when the change originated in the conditions

affecting th nditions of production of the commodity being used as

numeraire. lem, Sraffa built a numeraire that takes the form of a restriction

involving s del variables. This is a complex theoretical issue and we will not deal with it here.

See Sraffa
18 Classica um subsistence

level of the d that w was the outcome of the bargaining

process bet

 more about t

a, the choice

ce of a commodity, Ricardo wanted to be able to te

e production of that commodity or in the co

 To solve in part that prob

ome of the mo

 (1972).

l economists like Ricardo used to consider that w was determined by the minim

 labor force. More modern approaches have considere

ween workers’ unions and industrialists’ unions.

 185

Chapter 8 General Equilibrium Models in GAMS

$TITLE ProdPri
duction Prices Model

j performance index;

eqp1

jd performance index definition;

eqp1.. (0.3*p1 + 0.1*p2 + 0.4*p3) * (1+r) + L1 * w =E= p1;
.4*p2 + 0.1*p3) * (1+r) + L2 * w =E= p2;

1+r) + L3 * w =E= p3;

0;

MODEL PP1 /all/;
IZING J USING NLP;

p3.l, w.l, r.l;

Notice th the statements

are used
 The solution for bserve what happens as we decrease
r. To do es, that is, we substitute
.fx = 0.25 (and later r.fx=0.20, etc) for w.fx = 0 in the GAMS representation

rofit

* Pro

SCALARS
L1 /0.2/
L2 /0.5/
L3 /0.3/;

VARIABLES
p1
p2
p3
w
r

EQUATIONS

eqp2
eqp3

jd.. j =E= 0;

eqp2.. (0.2*p1 + 0
eqp3.. (0.2*p1 + 0.5*p2 + 0.2*p3) * (

w.fx =
p1.fx = 1;

SOLVE PP1 MAXIM
DISPLAY p1.l, p2.l,

at
w.fx = 0;
p1.fx = 1;

to fix w and p1.
r is 0.25. It is interesting to o

 so, we now set r equal to different fixed valu
r

above. We will find that there is an inverse relationship between the wage w and the p
rate r, such as the one shown in Table 8.1.

 186

Chapter 8 General Equilibrium Models in GAMS

r w

0.25 0.000
0.20 0.157
0.15 0.270
0.10 0.389
0.05 0.515
0.00 0.648

Table 8.1 Wages and Profits

In this example, not only wages, but also prices go up as r decreases. However, in
general, prices can go either way - some may go up, others down. However, if we choose
w as the numeraire, we will observe that as r increases, all prices in

l wage will decrease no matter the weights used t
crease, indicating that

he rea o compute the corresponding wage

. General Equilibrium Model

s we considered first a quantity model and then a price model.
hich quantities and prices are determined simultaneously.

re pioneered by Leon Walras (1834-1910) (cf.
e conomics, Augustus M. Kelley Publishers (1969)) and

eneralized by Nobel Prize winners Kenneth Arrow (Arrow and Hahn (1971)) and Gerard
 of general equilibrium modeling is the study of

nges in prices and quantities when technology, preferences or endowments change.
Imagine that we have a very simple economy, with only one production sector, two

s old. The production sector produces a single good

t
deflator.

3

In the previous two section
Here we move to a model in w
General equilibrium models of this type we
Walras, L., El ments of Pure E
g
Debreu (1986). One of the main goals
cha

factors of production and a single hou eh
sq (output supply) with a Cobb-Douglas constant returns to scale production technology

derived combining the production function with the assumption of profit maximizing
behavior. Labor and capital supplies (

using two inputs: labor and capital. Technical progress (b) can affect total factor
productivity. The corresponding labor and capital demand functions (and) are dl dk

sl and sk) are given exogenously. The single

household provides labor and capital in exchange for the corresponding wage (w) and

 187

Chapter 8 General Equilibrium Models in GAMS

profit (r), spending all its income (y) in the demand for the single good (). So far, we

good markets, and we impose market clearing
itions specifying that supply equals demand. The model equations are listed below19

(8)

dq

have three markets: labor, capital and
cond

production function (Cobb-Douglas)

1a a
s d dq b l k −=

labor demand, supply and market clearing

)

(9 s
d w

a q p
l = , s sl l= , s dl l=

capital demand, supply and market clearing

 capital demand fun s, we maximize the profit function

19 To obtain the expressions for the labor and ction

 dds krlwqp −−=π

subject to the production function

ds

rofit function, the first or r conditions are

I)

aa klbq −= 1 d

Substituting the production function into the p de

011 =−=
∂
∂ −− wklbap
l

a
d

a
d

d

π

II)

0)1(=−−=
∂
∂ − rklbap
k

a
d

a
d

d

π

Substituting the production function into I and II and rearranging terms we obtain, respectively, the labor and

capital demand functions

w
pqa

l s
d = and

r
pqa

k s
d

)1(−
=

 188

Chapter 8 General Equilibrium Models in GAMS

(1) s

d
a q p

k
r

−
= s sk k= , s dk k= (10) ,

household income
(11) d dy w l r k= +

good demand

(12) d
yq
p

=

ood market clearing

g
(13) s dq q=

This simple model has 10 variables and 10 equati nso . However, one of them is

redundant, since “Walras law” establishes that for n-markets we need n-1 equilibrium
o l is model determines relative prices (p, w and r), we need to

fix one of them as the numeraire. Thus, by choosing one price as the numeraire (say we fix
p = 1) and deleting the corresponding good market clearing equation (

conditi ns on y. Also, since th

s dq q=), we are

left wit

he GAMS representation of the model is shown below. Arbitrary, but reasonable,
numbers have ameters and for the labor and capital stocks.

$TIT

SCAL
a labor share / 0.7 /
b technology parameter / 1.2 /;

POSI
qs g
qd g
ld labor demand
ls labor supply
kd capital demand
ks capital supply
p pr
w wage
r pr
y in

h a 9-variable 9-equation well-defined model. We do not consider the performance
index j (that is used in the GAMS representation below) in the variable count nor the
performance index definition in the equation count.

T
been chosen for the par

LE SIMPLEGE

ARS

TIVE VARIABLES
ood supply
ood demand

ice

ofit
come;

 189

Chapter 8 General Equilibrium Models in GAMS

VARI
j p

EQUA
eqs good supply equation (production function)
eqd
eld
els
ekd capital demand equation
eks capital supply equation
ey income equation
eml
emk
jd performance index definition;

jd..

eqs.. qs =E= b * ld**a * kd**(1-a);
eld.
els.
eml.. ld =E= ls;
ekd.. kd =E= (1-a)* qs * p / r;
eks.. ks =E= 1;
emk.. kd =E= ks;
ey.. y =E= w * ld + r * kd;
eqd.

*lower bounds to avoid division by zero

l;

ABLES
erformance index;

TIONS

good demand equation
labor demand equation
labor supply equation

labor market clearing
capital market clearing

 j =E= 0;

. ld =E= a * qs * p / w;

. ls =E= 2;

. qd =E= y / p;

p.lo = 0.001; w.lo = 0.001; r.lo = 0.001;

*numeraire
p.fx = 1;

MODEL SIMPLEGE /all/;
SOLVE SIMPLEGE MAXIMIZING J USING NLP;
DISPLAY qs.l, qd.l, ld.l, ls.l, kd.l, ks.l, p.l, w.l, r.l, y.

 190

Chapter 8 General Equilibrium Models in GAMS

he solution values are

qs.L = 1.949 good supply

qd.L = 1.949 good demand

L = 2.000 l an

ls.L = 2.000 labor supply

kd.L = 1.000 capital demand

ks.L = 1.000 capital supply

p.L = 1.000 price

w.L = .682 wag

r.L = 0.585 profit

y.L = 949 inc

It is important to perform some basic checks on the workings of the model. For

and in
antity variables

should rem

the General Equilibrium model
what is like to deal with more than a handful

 are known in the literature as Computable
General Equilibrium (CGE) models. We will later go back to a small model to illustrate the
application of a linearization technique useful when dealing with relatively large nonlinear
models. The material in the remainder of this chapter is considerably more difficult than in
the previous sections. Also, the exposition moves at a more rapid pace.

T

ld. abor dem d

 0 e

 1. ome

instance, since we assumed market clearing, we have to verify that supply equals dem
each m rket. Also, when increasing the value of the numeraire, all qua

ain the same, while nominal variables (prices and income) should increase
proportionally. Notice that this model, as the other models previously introduced, are
models of the “real” side of the economy, in the sense that money is not explicitly included
in them. Also, the result that real variables remain the same while nominal variables
change in proportion to the numeraire can be interpreted as meaning that money is neutral
in this model.

4. Computable General Equilibrium Models

So far we have presented very small models. However, applied economy-wide
models tend to be large, thus making the use of computational techniques unavoidable. In

ction we will introduce a slightly larger model than this se
presented in section three, to have a flavor of
of variables and equations. Models like this

 191

Chapter 8 General Equilibrium Models in GAMS

4.1 A SAM Based Model

 on a Social Accounting Matrix (SAM). This model was

develop
el pri

g
 columns pay rows and where each column adds up to the same number as

the corresponding row.

ors
 Labor Capital

Households
 Rural Urban

Sectors
 Food Clothing

We move now to a two-sector, two-factor and two-household model to illustrate
how to build a CGE model based

ed by Arne Drud at the World Bank and is discussed in Kendrick (1990).20

Following the research of Nob ze winner Richard Stone (1961), a SAM
contains information on the flow of goods and payments between institutions in the
economy. In Table 8.2 we present a simple SAM where the table should be read followin
the principle that

 Fact

Factors
 Labor
 Capital

75 85
50 60

Households
 Rural
 Urban

90 30
70 80

Sectors
 Food
 Clothing

60 65
60 85

Table 8.2 A Simple SAM

20 Drud implemented the model in Hercules, a system which allowed the modeler to develop CGE models by

providing basic information in the form of Social Accounting Matrices and by choosing from a menu the

functional forms for production functions and demand functions. Hercules is no longer in use; however

GAMS now provides a solver (MPSGE) which performs similar functions to those of Hercules (see

www.gams.com). These types of systems for model representation are very useful and especially time saving

for the experienced modeler. However, here we will present a direct GAMS representation of the Drud model

which is more suitable to introduce beginners to basic issues in computational model building.

 192

Chapter 8 General Equilibrium Models in GAMS

For example, the food industry pays 75 to labor and 50 to capital. Labor pays 90 to rural
households and 70 to urban households. Urban households spend 65 on food and 85 on
lothing.

 be constructed using a country’s official statistics such us the
ational accounts. Based on the table above, Drud built the model shown in Table 8.3.

c
 Usually, a SAM can
n

 Quantity

q

Price, Share
 or Payment

p

Price-Quantity

pq

Sectors
 Output

 Input

fsa

s s fs
f

q b c= ∏

fs s s
fs

a q p
c =

fp

s s sy p q=

fs f fst p c=

Factors
 Income

 Transfer

hf hf ft a q=

f f fy p q=

Household
 Consumption

 CPI

sh sht a qh=

sha

h s
s

p p=∏

sh st p csh=

hh hy p q=

Linkage
 Sectors
 Factors
 Households

s sh

h
y t= ∑

f f
s

y t= s∑

h h
f

y t= f∑

Table 8.3 Drud’s Model

 193

Chapter 8 General Equilibrium Models in GAMS

The model contains three key types of variables: price (p), quantity (q) and income
(ll of them with a single subscript since they apply to a single institution (subscript f
indicates factor, h household and s sector). There are also two additional types of variables:
payment (t) and commodity (c), with two subscripts since they represent flows of goods
and payment. The subscripts on the pa follow the SAM convention:
payments are from columns to rows (i.

y), a

yment variables
e.

 t
fst indicates payment from sector s to factor f).

Commodity flows f ntion (i.e.c ollow the more common forward subscript conve fsc
indicates the flow of factor f to sector s, while shc is the flow of purchased goods from

sector s to household h).
The output-quantity equations specify production functions with a Cobb-Douglas

technology where b is a technology t-quantity equations are the
corresponding factor demand equations derived from the production functions and
imposin rural
a

s and 36 equations. Take the amount of
l or an
n

t

parameter. The inpu

g a zero profit condition. The CPI-price equations are price indexes for the
nd urban households respectively. The a ´s are share parameters derived from the SAM.

When expanded, the model has 38 variable
ab d capital as given (that is, as exogenous variables). Choose one price as the
umeraire (say we fix () 1urbanp =). Delete the corresponding market clearing equation (in

his case, deleting the linkage equation () (,)urban urban f
f

y t= ∑ will do the job). Then we are

odel with 36 endogenous variables and 36 equations. The GAMS left with a m
representation of this model is show

al/

b('food') = 1.2; b('clothing') = 1;

n below.

$TITLE SAM
options limrow = 4;

SETS
i general index /labor, capital, rural, urban, food, clothing/
s(i) sectors /food, clothing/
f(i) factors /labor, capit
h(i) households /rural, urban/;
ALIAS (i,ip);
ALIAS (i,iq);

PARAMETERS
b(s) technical coefficients
a(i,ip) share coefficients;

 194

Chapter 8 General Equilibrium Models in GAMS

TABLE sam(i,ip)
 labor capital rural urban food clothing
labor 75 85
capital 50 60
rural 90 30
urban 70 80

etfs(f,s).. t(f,s) =E= p(f) * c(f,s);

food 60 65
clothing 60 85 ;

a(i,ip)= sam(i,ip) / sum(iq, sam(iq,ip));
DISPLAY a;

POSITIVE VARIABLES
p(i) price
q(i) quantity
y(i) income
t(i,ip) payment
c(i,ip) commodity ;

VARIABLES
j performance index;

EQUATIONS
eph(h)
eqs(s)
eys(s)
eyf(f)
eyh(h)
etfs(f,s)
ethf(h,f)
etsh(s,h)
eetsh(s,h)
ecfs(f,s)
eeys(s)
eeyf(f)
eeyh(h)
jd performance index definition;

* performance index equation
jd.. j =E= 0;

*sectors
eqs(s).. q(s) =E= b(s)* prod(f, c(f,s)**a(f,s));
ecfs(f,s).. c(f,s) =E= a(f,s) * q(s) * p(s) / p(f);
eys(s).. y(s) =E= p(s) * q(s);

 195

Chapter 8 General Equilibrium Models in GAMS

*factors
eyf(f).. y(f) =E= p(f) * q(f);
ethf(h,f).. t(h,f)=E= a(h,f) * y(f);
*households
etsh(s,h).. t(s,h) =E= a(s,h) * y(h);
eph(h).. p(h)=E= prod(s, p(s)**a(s,h));
eetsh(s,h).. t(s,h)=E= p(s) * c(s,h);
eyh(h).. y(h) =E= p(h) * q(h);
*linkage
eeys(s).. y(s) =E= sum(h,t(s,h));
eeyf(f).. y(f) =E= sum(s,t(f,s));
eeyh('rural').. y('rural') =E= sum(f,t('rural',f));
*notice that we eliminate one linkage equations(Walras law)

*initial values to facilitate solver convergence
p.l(i) = 1; q.l(i) = 1; y.l(i) = 1;

wer b und to avoid d n by zero
o(f) = ;

wer bounds to avoid undefined derivative in exp functions
p.lo(s) = 0.001; c.lo(f,s) = 0.001;

*exogenous variables
q.fx('labor') = 2; q.fx('capital') = 1;

*numeraire
p.fx('urban') = 1;

MODEL SAMDK /all/;
option iterlim = 10000;
SOLVE SAMDK MAXIMIZING J USING NLP;

PARAMETER REPORT;
REPORT(i, "price") = p.l(i);
REPORT(i, "quantity") = q.l(i);
REPORT(i, "income") = y.l(i);

DISPLAY REPORT; DISPLAY t.l, c.l;

 The GAMS representation is similar to the simple General Equilibrium model
presented before. Here we make use of sets and subsets as indices, we use the ALIAS
command to redefine an index so we can use it to index a matrix, we input the SAM as a
table under the PARAMETER section, and we define indexed variables and equations. Notice

*lo
p.l

*lo

o ivisio
 0.001

 196

Chapter 8 General Equilibrium Models in GAMS

that, in order to have a more compact representation, we were able to use a general index
“i” for variables, and later work with subsets of variables, but we did not do so for
equations. GAMS does not admit the use of subsets as indices of equations.
 As in the previous example, we should check that only nominal variables change
(proportionally) when we change the numeraire.

4.2 A Johansen Style Model

CGE models tend to be large and nonlinear. As they grow in size, obtaining

convergence (that is, a numerical solution) is likely to become more difficult. An
alternative is to switch to a model representation pioneered by Leif Johansen (1960).
Johansen style models are solved in a linearized form where all the variables are rates of
growth. This method consists in transforming all the variables in the model into percentage
changes with respect to a base case.

For example, given an expression in levels like

(14) X a Y Z=

if we first take logs, we obtain

(15) log log log logX a Y Z= + +

and totally differentiating

(16) (log) (log) (log) (log)d X d a d Y d Z= + +

that is (since is a constant)

(17)

 a

dX dY dZ
X Y Z

= +

or

(18) x y z= +

where x variables are percentage deviations.21 In a similar fashion, we can
transf

, y and z
orm

ative derivation without us21 An altern ing logs is as follows:

 197

Chapter 8 General Equilibrium Models in GAMS

(19) bX a Y=

into

(20) x b y= .

Thus for an expression like

(21) X Y Z= +

we totally differentiate

(22) dX dY dZ= +

then divide by the right hand side variable

(23) dX dY dZ
X X X

= +

Then multiply and divide each term on the right hand side by the variable in its numerator
and rearrange to obtain

(24) dX dY Y dZ Z
X Y X Z X

= +

or

 dX Y dY Z dZ
X X Y X Z

= +

or

(25) y zx s y s z= +

dX YZda aZdY aYdZ

dX aZdY aYdZ

dX aZdY aYdZ

X X X
dX dY dZ

X Y Z

= + +

= +

= +

= +

 198

Chapter 8 General Equilibrium Models in GAMS

where and are the sharesys zs y
Y Ys
X Y Z

= =
+

 and z
Z Zs
X Y Z

= =
+

.

In short, the transformation of a model in levels into one in percentage changes can,

in many cases, be achieved by applying some simple rules. Given X, Y and Z as variables
in levels, a and b as parameters and x, y and z as variables in percentage deviations, some
useful rules are

(26) X a Y Z= becomes x y z= +

(27) bX a Y= becomes x b y=

(28) X Y Z= + becomes y zx s y s z= +

where and are the sharesys zs y
Ys

Y Z
=

+
 and z

Zs
Y Z

=
+

.

Applying these rules to the simple General Equilibrium model presented in Section

3 and interpreting each variable not as levels but as percentage changes with respect to a
base case, we obtain the following GAMS representation

$TITLE JohansenGE

SCALARS
a labor share / 0.7 /

VARIABLES
qs good supply
qd good demand
ld labor demand
ls labor supply
kd capital demand
ks capital supply
p price
w wage
r profit
y income
j performance index;

EQUATIONS
eqs good supply equation (production function)

 199

Chapter 8 General Equilibrium Models in GAMS

eqd good demand equation
eld labor demand equation
els labor supply equation
ekd capital demand equation
eks capital supply equation
ey income equation
eml labor market clearing
emk capital market clearing
jd performance index definition;

jd.. j =E= 0;

eqs.. qs =E= ld * a + kd *(1-a);
eld.. ld =E= qs + p - w;
els.. ls =E= 0;
eml.. ld =E= ls;
ekd.. kd =E= qs + p - r;
eks.. ks =E= 0;
emk.. kd =E= ks;
ey.. y =E= (0.7)*(w + ld)+ 0.3 *(r + kd);
eqd.. qd =E= y - p;

*numeraire
p.fx = 0;

MODEL JOHANSENGE /all/;
SOLVE JOHANSENGE MAXIMIZING J USING LP;
DISPLAY qs.l,qd.l,ld.l,ls.l,kd.l,ks.l,p.l,w.l,r.l,y.l;

 Notice that we eliminated the b parameter from the scalars section, since we do not
use it here. Also, notice that since percentage changes can be positive or negative, we no
longer define the model variables as positive variables as we did in the version of the model
where variables where in levels. Finally, notice that the values of the stock of labor and
capital and the numeraire are equal to zero, since they are percentage changes. The 0.7 and
0.3 coefficients that appear in equation “ey” are the corresponding share parameters
obtained when applying the third rule. Finally, we solve the model invoking a Linear
Programming solver, since the problem is a linear one.

An interesting exercise is to compare the results of the nonlinear model in levels
versus the linear model in percentage changes for a given change in an exogenous variable.
For example, say we increase the stock of capital by 20 percent. This means that in the
nonlinear model k goes from 1 to 1.2, while in the linear model it goes from zero to 0.2.
The results are shown in Table 8.4.

 200

Chapter 8 General Equilibrium Models in GAMS

 The Nonlinear

Model

The Linearized

Model

variable solution k = 1

solution k = 1.2

percentage

change

percentage change

q 1.949 2.059 5.6 6

l 2 2 0 0

k 1 1.2 20 20

w 0.682 0.721 5.7 6

r 0.585 0.515 -12 -14

y 1.949 2.059 5.6 6

Table 8.4 Comparison of Nonlinear and Linearized Models

The differences between the last two columns give us an idea of the approximation

error of the linearized solution. We should expect this error to be larger the greater the
change in the exogenous variables. Also, notice that if we simultaneously change the value
of more than one exogenous variable for the linear version, the superposition principle will
apply: the combined effect of changes in more than one exogenous variable will be equal to
the sum of the individual effects

As we said above, solving nonlinear models may become problematic as they grow
in size. The problem we just linearized using Johansen’s technique is a very small one, and
we used it to provide a simple illustration of the methodology. For an application to a
larger model you are referred to Kendrick (1990), who provides a Johansen style GAMS
representation of a version of the ORANI model developed by Dixon, Parmenter, Sutton
and Vincent (1982) in Project Impact in Australia.

 201

Chapter 8 General Equilibrium Models in GAMS

6. Experiments

For the input-output model in Section 1 you may perform experiments changing the
levels of final demand, the values of some input-output coefficients or the nature of the
capacity constraint restrictions.

For the production prices model in Section 2, an interesting experiment would be to
pick one price as the numeraire (say 1 1p =) and a technology such that the proportions

between labor costs and total input costs is the same for each industry, that is, when the
input-output coefficients are proportional for all industries. For instance, when the input-
output matrix is

0.05 0.025 0.1
0.1 0.05 0.2
0.2 0.1 0.4

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and the labor coefficients vector is

1/ 7
2 / 7
4 / 7

L
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

you will observe that prices will not change as r and w change in an inverse relationship.

For the small general equilibrium model in Section 3 the economy-wide effects of
technological progress can be simulated by increasing the value of the b parameter. Also,
you could change the supply of labor or the supply of capital and see how the wage and the
profit levels are affected. If you do so, you will observe that quantities do not change, only
the wage and the profit rate do. Quantities would change if you specified elastic labor and
capital supply functions, instead of the fixed supplies assumed in the model. Also, we
imposed the market clearing condition in all three markets. However, it may well be the
case that that condition may not be appropriate for some markets because they are in
“disequilibrium”. That may happen, for example, because their prices are exogenously
fixed. For such cases we should follow an appropriate modeling strategy such as the ones
proposed, for example, by Malinvaud (1977).

Finally, for the SAM based CGE model in Section 4.1, you can perform interesting
experiments by changing the amount of labor or capital or the technology parameters.
Notice that you could also change the share parameters by changing some numbers in the

 202

Chapter 8 General Equilibrium Models in GAMS

SAM. If you do so, remember to maintain the corresponding balance between rows and
columns. Also, an interesting exercise would be to expand the model to incorporate foreign
trade as in Kendrick (1990).

7. Further Readings

Dervis, de Melo and Robinson (1982) and Dixon, Powell, Parmenter and Wilcoxen
(1992) provide extended textbook presentations of the different types of models introduced
in this chapter. For historical and analytical presentations of input-output and production
prices models see Pasinetti (1977) and for CGE models see Dixon and Parmenter (1996).
Shoven and Walley (1992) deal extensively with neoclassical type CGE models, while
Taylor (1990) presents neo-structuralist type CGE models. Roland-Holst, Reinert and
Shiells (1994) provide an analysis of the North American Free Trade Area. Lofgren, Lee
Harris and Robinson (2002) develop a standard CGE model in GAMS. For the use of a
dynamic CGE model in a control context to study income distribution changes, see Paez
(1999). For an approach to solving dynamic CGE models with stochastic control theory
methods see Kim (2004).

 203

Chapter 9

urnot Duopoly in Mathematica

with

 the market structures of pure
mpetition and of monopoly. However, most real world examples are in the domain of

ly competitive markets
r monopoly markets is that in an oligopoly market there is an interdependency of actions

e of a given firm will affect
nd be affected by the choices of the other firms. This issue of interdependency does not

y of influencing (or being

 which has the ability to influence the market price and
erefore the choices of its competitors.

 are
alled games and game theory is the study of these multi-player decision problems22. We

Co

Daniel Gaynor

 Students of economics are introduced first to
co
oligopolies that lie between these two extremes.
 What distinguishes oligopolistic markets from either pure
o
between firms. By interdependency, we mean that the choic
a
exist in purely competitive markets or in monopolistic markets.
 In a purely competitive industry, firms are assumed to be too small to influence
the market price and therefore the action of one firm has no wa
influenced by) the actions of another firm. Alternatively, a monopolist has tremendous
influence over the market price, but as a monopolist, the firm has no other firms whose
actions it can influence. In an oligopolistic industry, there are two or more firms
competing in the market, each of
th
 Problems involving interdependency of actions between multiple players
c
will use the Mathematica programming language to solve several alternative game
theoretic models of oligopoly market structure. All of these models will be called
quantity games since the strategic choice of the firms will be quantity. Alternative

22 For a more comprehensive introduction to game theory see Gibbons (1992). Some of the examples used

in the following are drawn from Gibbons' text.

204

Chapter 9 Cournot Duopoly in Mathematica

models of price competition, like the Bertrand model in which each player chooses a

e
couraged to do in the Experiments

 models.

 these individual areas should
enhance the learning of the other two areas. However, the material covered in all three of
these areas is kept at an introductory level and no previous knowledge is required. We
begin with a short introduction to game theory as a means of introducing the tools and
terminology that are required for our oligopoly models. Then we will examine two
popular models of oligopoly market behavior using Mathematica to derive their results
and discuss the intuition of the solutions. In this chapter we will discuss the Cournot
model and in the next chapter the Stackelberg model.

1. Game Theory

By identifying our oligopoly markets as games, we have already gone further than

 models. After all, game theory tells
s how we can represent a game as well as how one should approach solving a game. In

There are many types of gam eful to distinguish between a few. To
ential move. In a simultaneous

ove game, all of the players choose their actions simultaneously without observing each
ther’s

ooses an action, and then a
cond player chooses an action only after observing the first player’s action.

A second classification of games is complete information versus incomplete information
games. All of the games presented in this chapter are complete information games or
games in which no firm has private information about itself that other firms do not have

price, will be discussed briefly, but not modeled. We will focus here on two-firm
oligopoly models, called duopolies, but the models can easily be extended to incorporat
a larger number of firms (which the student is en
section).
 While all of the problems discussed here can be solved with pen and paper, the
use of Mathematica opens the door to the solution of substantially more complex
 The three topics covered here are game theory, oligopoly market structure and the
Mathematica programming language. Expertise in any of

you might think towards modeling and solving these
u
addition to introducing some basic concepts of game theory, this section will discuss a
very simple but popular game called the Prisoners Dilemma. The Prisoners Dilemma
game is an extremely valuable tool because there is a direct parallel between this simple
game and the oligopoly games we plan to solve.
 es, but it is us
begin, games can be either simultaneous move or sequ
m
o actions. In a sequential move game there is an order to the play. More precisely,
a sequential move game is dynamic in that one player ch
se

205

Chapter 9 Cournot Duopoly in Mathematica

access to. Finally, it will be helpful to distinguish between games with discrete strategy
th continuous strategy choices.

e normal form (usually a two-way table, appropriate for
multa ve form (usually a game tree, more appropriate

ion of a
multa s that constitute normal-form representation

me, 2) the strategies (or actions) that
re available to each of the players, and 3) the payoffs that each player would receive for

 Player II

 Mum Fink

choices versus games wi
 The first step in approaching a game is representing the game. There are two
ways of representing a game: th
si neous move games) and the extensi
for sequential move games). We adopt here the normal-form representat
si neous play game. The three element
of a game are: 1) the players participating in the ga
a
each possible combination of strategies chosen by the players. For two-player games in
which the strategy choices are discrete, normal-form games can be represented in table
format as the Prisoners Dilemma game in Table 9.123.

Mum -1 , -1 -9 , 0

 Pl
ay

er
 I

Fink 0 , -9 -6 , -6

Table 9.1 The Prisoners’ Dilemma Game

Notice that Figure 9.1 completely represents the Prisoners Dilemma game
ccording to our definition of a normal-form representation. First there are two players

II. Second, Player I can choose between the
layer II can choose between the strategies Mum

pends one year in jail (1 unit of negative utility). If each

a
involved in the game - Player I and Player
strategies Mum and Fink and similarly P
or Fink. Finally, the payoffs from each of the possible combinations of Player I/Player II
strategies are represented by the table’s payoff matrix. For example if Player I plays
Mum and Player II plays Fink, then Player I receives a payoff of negative nine (or nine
years in jail) and Player II receives a more favorable payoff of zero.
 The story of the Prisoners Dilemma game is as follows. Two suspects of a crime
are detained by the authorities and interrogated separately. Each player can either offer
no information (Mum) or can blame the crime on the other player (Fink). Furthermore,
prisoners must choose their strategies without observing each other’s choice. If both
players choose Mum each only s

23 See Gibbons (1992), p. 3.

206

Chapter 9 Cournot Duopoly in Mathematica

blames the other (Fink, Fink) then each spends six years in jail. If one player Finks and
e oth Mum, then the player who finks goes free and the player who

of a game’s players constitute a Pure Strategy Nash
24 if each player's chosen strategy is the

best response to the strategies played by all of the other players. In other words, a Nash
 given his

ept of Nash equilibrium strategies to the Prisoners Dilemma we
idering how Player II would best respond to
nt, Player II could also play Mum and

end a year in jail or Player II could play Fink and go free. So Player II’s best response

nstitute

m, in order to be a Nash equilibrium it must also be the case that
Mum is Player I’s best response to Player II playing Fink. However, we see that if Player
II Finks, Player I’s best response is to Fink as well. Continuing with this logic you will

me is for both players to fink

nd

d each player's payoff for every possible combination of players’

rategies. A forth element which we will see is important in sequential move games is
determining the order of play. These are necessary for characterizing and solving any
game. Finally, our simple example illustrated the solution concept that we will employ in
our oligopoly problems - the pure strategy Nash equilibrium. The intuition of Nash

th er player chooses
chose Mum spends nine years in jail.
 In order to solve the Prisoners Dilemma, we adopt the notion of Nash Equilibrium
Strategies. The strategies
equilibrium (called Nash equilibrium here-after)

equilibrium occurs when every player chooses his strategy optimally
opponents’ chosen strategies.
 Applying the conc
can find the Nash equilibrium. Begin by cons
Player I playing the strategy Mum. In this eve
sp
to Player I choosing Mum is Fink. Therefore, the strategy (Mum, Mum) does not
constitute a Nash equilibrium.
 Does Player I choosing Mum and Player II choosing Fink (Mum, Fink) co
a Nash equilibrium? The answer is no, because while Fink is Player II’s best response to
Player I playing Mu

find that the only Pure Strategy Nash Equilibrium for this ga
on each other (Fink, Fink).
 Through this example, we have barely scratched the surface of game theory.
However, we have addressed a few of the basics that will allow us to better understa
oligopoly market structure. First, we know the three elements that constitute a
simultaneous game are: the players of the game, the strategies (or choices) available to
each of these players, an
st

24 In game theory there is a distinction between Pure Strategy Nash equilibria and Mixed Strategy

equilibria. This is a distinction that is beyond the scope of this chapter except to note that by Nash

equilibria we mean Pure Strategy Nash equilibria.

207

Chapter 9 Cournot Duopoly in Mathematica

equilibrium is that each player is choosing his best response or reaction to all of the other
players’ choices.

2. Static Models of Oligopoly Markets

 Because models of oligopoly markets depend on how firms interact,
characteristics of the environment in which they interact, and potentially many other
factors, there is no single model of oligopoly market structure. The correct model will
depend on the characteristics of the industry being modeled. We focus here on two "one-
shot" quantity games that are the foundations for many more sophisticated models of
ligopoly markets. These models are one-shot in the sense that the game is only played a

single time, not repeatedly played every period. They are referred to as quantity games
because the strategic choices of the firms’ are their respective outputs (or quantities). As
we will see, quantity games have an interesting characteristic that we will exploit: If the
quantity choices are assumed to be continuous, then the payoffs will also be continuous.
Natural alternatives to quantity games are pricing games. Models of price competition
have a winner take all aspect where the firm who has the lowest price captures the entire
market (and the market is split in the event of a tie). Therefore, while the strategic
variable price is continuous, the payoffs (profits) are discontinuous. We do not consider
pricing models except to note that the solutions to such games will vary significantly
from the quantity games considered here.

3. Cournot Competition

 The first model of oligopoly market structure that we will study is the model of
Cournot quantity competition named for the French mathematician, Augustin Cournot.
Cournot first presented the model in his book, Researches into the Mathematical
Principles of the Theory of Wealth, published in 1838 one hundred and twelve years
before John Nash formalized the concept of Nash equilibrium strategies.

To make the problem more tractable, but without loss of generality, we will
ssume that the industry is a duopoly. Our story of a Cournot duopoly market is as

follows: There is a market consisting of two firms producing a homogenous good each at
a constant (not necessarily the same) marginal cost. We assume that each firm knows its
own cost as well as its competitor's cost and that they also know the market's demand
function

o

a

208

Chapter 9 Cournot Duopoly in Mathematica

()Q f p=

w is quantity andhere is price. Also we assume that they can derive the inverse

mand

 Q p

de functions
 ()p g Q=

T blem faced by these twohe pro firms is that each must choose the quantity that it will
competitor's output choice, and let the market

term s each firm to anticipate, when choosing its own

 desc
ame. To do so we need to identify the three necessary

gredi wo firms who we will denote Firm 1 and
rm 2 choice. As noted, the firms’ strategic

hoice is quantity, which is assumed to be a continuous non-negative variable. Finally,
arns

tity and the quantity chosen by the other firm.
 To solve this game we will apply the same solution concept we used to solve the
Prisoners' Dilemma game. A pure strategy Nash equilibrium for this Cournot game is a
set of quantities

supply to the market without observing its
de ine the price. This require
quantity, how the other firm will behave.
 The game ribed above is a one-shot simultaneous move game and as such can
be represented as a normal form g
in ents. First, we have the players; the t
Fi . Next, we must identify the firms’ strategic
c
the payoffs to each of the players in the game is simply the profit that this firm e
given its choice of quan

()* *
1 2,Q Q

in which each of the firms chooses its profit maximizing output given its forecasted
output choice of the other firm, and each firm's forecast of the other firm's output is
correct. Recall that in the discrete strategy prisoners' dilemma game, finding the Nash
equilibrium required us to consider each possible combination of strategies. However, in

e Cournot game each firm has a continuum of possible strategy choices and therefore
ere are an infinite number of possible combinations of players' strategies. Fortunately,

an generalize the strategic behavior of the firms by
eriving what we will call a reaction (or alternatively a best response) function. As we

te. The program illustrates strategic behavior and the

th
th
in the continuous Cournot model, we c
d
will see, calculus permits us to do this because our firms' payoffs (their profits) are
continuous functions of their own quantity choice as well as the other firm's quantity. To
see this more clearly, we will begin with a Mathematica program (react.nb) that is
available on the book web si
solution to the Cournot model graphically. The focus of this experiment is to familiarize
the reader with the concept of a reaction function and to understand its connection to
determining Nash equilibria. The instructions for running Mathematica are in Appendix

209

Chapter 9 Cournot Duopoly in Mathematica

B. Turn to that appendix and run the react.nb file if you prefer to follow along th
Mathematica code while you are reading the rest of this chapter.
 The first step in building the graphical model of the Cournot game is to model the
industry characteristics. Because the market is a duopoly, total market quantity, Q , is the
sum of firm 1's output choice, 1Q , and firm 2's output choice, 2Q , i.e.

e

ica for assigning names to expressions (or assigning values to variables). It
does not define a formula or equation. To create an equation, you must use two

nsecutive equal signs (==). Also note the use of the semicolon at the end of the above
micolon is used to suppress the display of output created by

nput statement.
ify at this time is the

nctio l form In all of our
odels we assume that the inverse demand curve is linear, i.e.

Price = a – b*Q

her we
nsider firm 1's or firm 2's optimization problem first. Therefore we will consider firm

 first.
 Firm 2's profits are equal to the difference between the revenue from selling the
quantity Q2 and the cost of selling this quantity. Revenue is firm 2's own quantity (Q2)
multiplied by the market price, i.e.

(3)

(1) 1 2Q Q Q= +

This simple assignment is made in Mathematica with the following input statement

 IN[]:= Q = Q1 + Q2;

The symbols IN[]:= are the Mathematica prompt for input and the expression Q = Q1 +

Q2; is the user’s input. It is important to note that the equal sign in the input is used in
Mathemat

co
command. The se
Mathematica for each i
 The other general market characteristic that we must spec
fu na for the inverse market demand faced by the duopolists.
m

(2) Price a bQ= −

or in Mathematica
 IN[]:=

Because the Cournot game is a simultaneous choice game, it does not matter whet
co
2's problem

()2 2 2Profit PriceQ c= −

210

Chapter 9 Cournot Duopoly in Mathematica

where is firm 2’s constant unit cost. This can be written in Mathematica as

 IN[]:= eqPr2 = Profit2 == Q2(P[Q1,Q2] - c2) ;

Notice that the price, P, is a function of the quantity decisions of the two firms, i.e. Q1

's
 have used the string

owever, Mathematica
es not recognize the functional dependency. Rather it just treats P[Q1,Q2] as string of

This is the general representation of firm 2's profits. However, because we have
, we want to replace the

neral form of the price function with the linear demand specified in the earlier

ituting in a

Mathematically we obtain an expression for the profit of the second firm by

2c

and Q2. The above statement creates a formula named eqPr2 that defines Profit2 (firm 2's
profits) to be equal to Q2 multiplied by the difference between market price and the firm
marginal cost. We
 P[Q1,Q2]

here to indicate that the price is a function of both Q1 and Q2; h
do
characters.

specified that our industry is subject to a linear demand curve
ge
Mathematica statement
 Price = a - bQ
While the practice of defining a generalized profit function and then subst
specific functional form may seem cumbersome, it is a good programming practice
because it allows us to change the functional form of our market demand by editing a
single Mathematica statement.

substitution of Eq. (2) into Eq. (3) to obtain

(4) []2 2 2Q a bQ= − −Profit c

 (1) in

and then substituting Eq. to Eq. (4) to obtain

(5) ()2 2 1 2 2Profit Q a⎡= b Q Q c ⎤− + −⎣ ⎦

211

Chapter 9 Cournot Duopoly in Mathematica

 These steps are accomplished in Mathematica in the following way. First the
substitution of the specific linear demand function for the general form is done with the
Mathematica statement

 IN[]:= eqPr2 = Expand[% /. P[Q1,Q2] -> Price]

In Mathematica, % refers to the last result generated (and %% refers to the 2nd to last
result generated etc.) and /. is the replacement identifier. So the above statement takes

e original profit equation (named eqPr2) and replaces the general form of the demand
equation P[Q1,Q2] with our explicit linear inverse demand expression "Price" which is

ecified above (Price = a – b*Q). Since no semicolon is used at the end of the
tution.

 OUT[]:= Profit2 == Q2 (a - c2 - b (Q1 + Q2))

ation for firm 2's profits or payoff as a function of the firms'
uantities.

)

th

sp
statement above, the output statement gives the result of this substi

This output is the equ
q

To find firm 2's profit maximizing behavior, we take the derivative of its profit
function, Eq. (5), with respect to its choice variable, 2Q , and set the expression equal to

zero, i.e.

() ()2
2 1 2 2(6

2Q∂
Profit 0a c b Q Q Q b∂

= − − + + − =

ive,

eqPr2

 OUT[]:= 0 == a - c2 - b Q2 - b (Q1 + Q2)

In our Mathematica program this is accomplished below by defining a new equation,
which we will name focPr2 (first order condition for profit of firm 2). It is the derivat
D[], of firm 2's profit (payoff) function with respect to its choice of its own quantity Q2.

 IN[]:= focPr2 = D[eqPr2, Q2]

his will produce the following output that is the derivative of equation (after the T
substitution) with respect to Q2.

212

Chapter 9 Cournot Duopoly in Mathematica

This first order condition implicitly describes firm 2's optimal behavior. However, we
ant to find an explicit solution for describing firm 2's optimal behavior.

This is done by solving the first order condition in Eq. (6) for Q2, i.e.

(7) 1

or

)

w

2 22bQ a c bQ= − −

2 1
2 2

a c bQQ
b

− −
= (8

This is accomplished in Mathemati e statement to solve the first order
ondition for Q2 and then naming the output temp2. It is helpful to note that the output

from a solve statement is a list of solutions. Consequently, temp2 is the name of the list
of solutions. In the case below, the list temp2 has only one solution and therefore a
single element.

 IN[]:= temp2 = Solve[focPr2, Q2]

 OUT[]:= {{Q2 ->
a - c2 - b Q1

2 b

ca by using the Solv
c

 }}

 It is clear from the first order condition above that firm 2's optimal choice of Q2
ill depend on firm 1's optimal choice Q1. This is the key to game theoretic problems;

ill do. Because firm 2's choice of Q2 is
 function of firm 1's choice of Q1, we call the expression above firm 2's “Best Response”

or “Reaction Function”. As its name implies, this function dictates how firm 2 chooses
Q2 as a best response (or in reaction) to firm 1's choice of Q1. In the simply linear case,
we can solve for firm 2's best response quantity (R2[Q1]) explicitly.
 In the next line of code, we create an expression called React2 (firm 2's reaction
function) that represents firm 2's optimal response (R2[Q1]) to firm 1's quantity choice
Q1.

 IN[]:= React2 = R2[Q1] == Q2 /. temp2[[1]]

 OUT[]:= R2[Q1] ==
a - c2- b Q1

2 b

w
each party must consider what the other parties w
a

The right hand side of this expression is simply the solution for Q2 that we found above.
In other words, R2[Q1] is equal to Q2 where Q2 is replaced (/.) by the first solution (

213

Chapter 9 Cournot Duopoly in Mathematica

[[1]]) from the output list "temp2". R2[Q1] is just another name for Q2 that reflects the
fact that this quantity is chosen in response to Q1.
 We conclude our examination of firm 2's behavior in the Cournot Duopoly model
by graphing the reaction function for firm 2 that has been derived from the model above.

 IN[]:=

 reactPlot =

 Plot[{Q2 /. Solve[focPr2 /. {a -> 1, b -> 1, c2 -> .5},Q2][[1]]},

 {Q1, 0, .55},

 PlotStyle->{RGBColor[1,0,0],Thickness[0.010]},

 PlotLabel->"Reaction Curve"]

t

inimum

e
s an

Our identification of firm 2's reaction equation has shown that in the linear demand case
we can find such an expression by solving the first order condition, focPr2, for Q2.
Therefore, this line of code tells Mathematica that we want to plot the values of the
variable Q2, where an expression for Q2 is found from solving the first order condition of
firm 2's profit function for the variable Q2, i.e.

 Solve[focPr2, Q2]

 PlotRange -> {0, .55},

 AxesLabel->{"Q1","Q2"},

This rather messy looking Mathematica command creates a plot that we name reactPlo
using the Plot command. The syntax for the Plot command is

 Plot[f, {x, xmin, xmax}, option -> value]

where f is the expression to be plotted, the list {x, xmin, xmax} specifies the m
and maximum values that the variable in the expression takes, and option -> value
statements are used to set any display attributes of the graph.
 Starting from the second line of code above following the IN[]:= statement, th
Plot[] command is used to create the plot. The function, f that we want to plot i
expression that represents the values that Q2 takes - expressed in terms of the variable Q1
and the model's parameters, i.e.

 Q2 /. Solve[focPr2 /. {a -> 1, b -> 1, c2 -> .5},Q2][[1]]

214

Chapter 9 Cournot Duopoly in Mathematica

Within this solve statement there is a replacement command (/.) followed by a list ({,})
of replacements. These replacements specify the specific numerical values the mode
parameters are assumed to take in this example.

ls

The next line of this plot command {Q1,0,.55} specifies the range of values for
de specify display

l the plot color and
ickness, axes labels, and plot labels. The resulting plot shows what quantity, Q2, is firm

Figure 9.1 Reaction Curve of Q 1

Thus if firm 1 chooses Q1 irm two's optimal reaction is to choose Q2 = 0.1.
 Next we turn to the optimization problem for firm 1. It solves a problem that is
identical to firm 2’s except for the fact that firm 1 solves for his own quantity Q1 and has
a marginal cost of c1. The solution to firm 1's reaction function is

 OUT[]:= R1[Q2] ==

a - c1- b Q2
2 b

the variable Q1 in the expression for Q2. The remaining lines of co
options for the Mathematica plot. Options are used to contro
th
2's best response to any given quantity of by firm 1 (Q1).

 to Q 2

 = 0.3 then f

 .

 We can plot this relationship for firm 1 assuming the same parameter values and
over the same interval of values as we did with firm 2.

215

Chapter 9 Cournot Duopoly in Mathematica

IN[]:=

 reactPlot =

 Plot[{Q2 /. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .5}, Q2][[1]]},

 {Q1, 0, .55},

 PlotRange -> {0, .55},

 PlotStyle->{RGBColor[0,0,1],Thickness[0.001]},

 AxesLabel->{"Q1","Q2"},

 PlotLabel->"Reaction Curve"]

In the graphical illustration of the Cournot solution shown below we are assuming that
 = c2 = 0.5). This plot shows what quantity, Q1,

firm 1's best response to any given quantity choice by firm 2 (Q2).

 respond to it
mpetitors various cho Nash equilibria, a

tegies in which each firm is choosing an
tput that is a best response to the other firm's output choice. Or more succinctly, at a

efore looking at this
aphically, however, ple

Cournot model. The simplest and most intuitive way to investigate this consideration is
with another Mathematica plot.

the firms have identical cost structures (c1

is

 Figure 9.2 Reaction Curve of Q1 to Q2

 At this point we have plots showing how each firm should best
co ices of output. According to our definition of
Nash equilibrium of this game is a set of stra
ou
Nash equilibrium, both players will be on their reaction functions. B

it is useful to see how the costs affect the solutions to our simgr

216

Chapter 9 Cournot Duopoly in Mathematica

 IN[]:=

 reactPlot =

 Plot[{Q2 /. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .5}, Q2][[1]],

/. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .6}, Q2][[1]]},

 {Q1, 0, .55},

 PlotStyle->{

 {RGBColor[0,0,1],Thickness[0.001],},

 PlotLabel->"Reaction Curves"]

otice the syntax of the Mathematica statement above. Because we are plotting two
reaction functions the first element in the Plot[] command becomes a list of expressions
f1, f2} where the first element in the list is firm 1's reaction function when its
arginal cost is 0.5 and the second is firm 1's reaction plot when its own marginal cost is

 RGBColor[0,0,1], Thickness[0.001]

indicates that the first plot will be a solid blue line25 which is 0.001 thick and
 RGBColor[0,0,1], Dashing[{.03,.02}]

indicates that the second line will be blue and have dashes of length .03 and spacing of
.02. With the above statement we create a graphic that plots firm 1's reaction curve with
the original parameter specifications and a marginal cost of 0.5 and then contains a
second dashed plot that shows firm 1's reaction curve with a slightly higher marginal cost
of 0.6. The color will show only in some printings of this book but will show in the
online plot.

 Q2

 PlotRange -> {0, .55},

 {RGBColor[0,0,1],Thickness[0.001],Dashing[{.03,.02}]}

 },

 AxesLabel->{"Q1","Q2"},

N

{

m
0.6. In the above,

25 Syntax: RGBColor[red, green, blue] where color intensities range from zero to one.

217

Chapter 9 Cournot Duopoly in Mathematica

Figure 9.3 Sensitivity Analysis for the Reaction Curve of Q1 to Q2

F is graphical sensitivity analysis of firm 1's reaction functions we can see t
higher unit costs, in the dashed line, will shift a firm's reaction function downward. That

rom th hat

, for a given output y will be decreased
e that firm 2's marginal cost, c2,

tion since the Mathematica variable c2 does
not appear in firm 1's reaction function. Similarly, firm 1's marginal cost has no effect on

m 2's reaction function.
e how each firm will choose its

's
oice of Q1 we could solve firm two's reaction function for its optimal choice of Q2.

 solve firm one's reaction function for
its optimal choice of Q1. The difficulty with the Cournot game is that the players
simultaneously choose their respective quantities. Therefore, the solution to the
simultaneous move Cournot game is found by solving both firms' reaction functions
simultaneously for the quantities Q1 and Q2. Intuitively, the Nash equilibrium solution to
the Cournot game has each firm choosing its best response quantity in reaction to the
hypothesized quantity of the other firm26. To show the graphical solution to the Cournot
model we plot both firms' reaction functions in a graph.

is choice by firm 2, firm 1's best response quantit
for higher values of its own marginal cost. It is easy to se
will have no effect on firm 1's reaction func

fir
 Our plots of the firms' reaction functions illustrat
optimal quantity in response to the quantity choice of the other firm. If we knew firm 1
ch
Similarly, if we knew firm 2's choice Q2 we could

26 See Gibbons (1992), p. 62.

218

Chapter 9 Cournot Duopoly in Mathematica

 IN[]:=

 reactPlot =

 Plot[{Q2 /. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .5}, Q2][[1]],

 Q2 /. Solve[focPr2 /.{a -> 1, b -> 1, c2 -> .5}, Q2][[1]]},

 PlotRange -> {0, .55},

 {RGBColor[0,0,1],Thickness[0.001]},

ness[0.010]}

 },

 PlotLabel->"Reaction Curves"]

The Mathematica statement given above produces a graph showing the

.4 Th

ction functions intersect, each firm is choosing their
tput given their belief about the other firm's output choice

d each of the firm's beliefs about the other is correct. This is the definition of a Pure

f the react.nb Mathematica file. While the graphical
odel above illustrates the behavior of the Cournot game's players in an intuitive way

onstrates how the Nash equilibrium is determined, we desire more from
our model than intuition. The next Mathematica program (cournot.nb) is a model of the
same Cournot duopoly. But in addition to a graphical solution, we will derive the

 {Q1, 0, .55},

 PlotStyle-> {

 {RGBColor[1,0,0],Thick

 AxesLabel->{"Q1","Q2"},

equilibrium strategies.

Figure 9 e Two Reaction Curves

At the point where the two firms' rea
respective profit maximizing ou
an
Strategy Nash equilibrium.
 This completes our use o
m
and clearly dem

219

Chapter 9 Cournot Duopoly in Mathematica

analytic solution to this problem. Solving for the Cournot-Nash quantities will perm
to determine the market supply and consequently the market price. In addition, with the
Nash equilibrium quantities and the corresponding market price we can derive the firms'
profit levels. All of this

it us

 information is useful if we want to make comparisons between
models of different market structures.

ion just as in the
r identifying the firms' reaction functions, rather than

ing a plot to find the Cournot-Nash solution, we will solve for the optimal quantities
rium strategy set was

defined by the intersection of the two firm all that our
definition of a Nash equilibrium requires that all players simultaneously give their best

sponse to each other’s choices. Clearly, the Nash equilibrium strategies can be found
by simultaneously solving the set of reaction functions for the models strategic output
choices.

To solve for the optimal quantities we add the following Mathematica statement,

IN[]:=

command renames each of the firms' reaction quantities Ri[Qj] with the
firm’s actual chosen quantity Qi and then solves the two equations simultaneously for the
choice variables Q1 and Q2. The resulting output from the command is the Nash
equilibrium strategy.

 In the file cournot.nb we derive each firm's reaction funct
previous model. However, afte
us
directly. Recall from our graphical example that the Nash equilib

s' reaction functions. Also rec

re

 cournotQ =

 Simplify[Solve[{React1 /. R1[Q2] -> Q1,

 React2 /. R2[Q1] -> Q2},{Q1, Q2}]]

The above

 OUT[]:= {{Q1 ->

a - 2 c1 + c2
3 b , Q2 ->

a + c1 - 2 c2
3 b }}

220

Chapter 9 Cournot Duopoly in Mathematica

In order to save these results we create two new Mathematica variables, Q1c and Q2c for
ach of the respective firms Cournot quantities.

ion of the previous Mathematica output and
similarly for Q2c.
 In a similar manner we derive and store the Cournot market output, the Cournot

arket price, firm 1's profits, and firm 2's profits respectively.

 IN[]:= Qcour = Q /.{Q1 -> Q1c, Q2 -> Q2c}

e

 IN[]:= Q1c = Q1 /.%[[1]] ;

 IN[]:= Q2c = Q2 /.%%[[1]] ;

The interpretation of these statements is; Q1c is defined as the variable Q1 where Q1 is
replaced with the values from the first solut

m

 OUT[]:=
a + c1 - 2 c2

3 b +
a - 2 c1 + c2

3 b

In the above statement, the Cournot market output, Qcour, is defined to be the market
e the Q1 with firm 1's

lace Q2 with firm 2's Cournot quantity Q2c.
The Cournot market price, Pcour, is found by substituting the firms' Cournot

emand function Price
start of the program, i.e.

output, Q, which was defined to be Q1 + Q2 where we replac
Cournot quantity Q1c and rep

outputs, Q1c and Q2c, in place of Q1 and Q2 into the inverse d
which was defined at the

 IN[]:= Pcour = Simplify[Price /.{Q1 -> Q1c, Q2 -> Q2c}]

 OUT[]:=
a + c1 + c2

3

The Mathematica Simplify command is used in the above input statement to provid
simplified output expression.

e a

221

Chapter 9 Cournot Duopoly in Mathematica

 With the market price determined, calculating firms' profits is straightforwar
Firm 1's Cournot profit, designated pie1c, is the firm's Cournot output, Q1c, multiplied by
the difference between the price and firm 1's unit cost, i.e. (Pcour – c1).

 IN[]:= pie1c = Simplify[Q1c*(Pcour - c1)]

d.

OUT[]:=
(a - 2 c1 + c2)

2
 9 b

2c.

IN[]:= pie2c = Simplify[Q2c*(Pcour - c2)]

A similar expression calculates firm 2's Cournot level of profits, pie

 OUT[]:=
(a + c1 - 2 c2)

2

9 b

4. Experiments

In this chapter we develop a series of experiments that cover many of the aspects
der is the use of

and another is to consider modeling alternative market

. Further Reading

r
e

y problem, namely the

of the models presented. However, one set of experiments to consi
alternative cost functions
structures.

5

For an introduction to Mathematica see Wolfram (2003). For a more comprehensive
introduction to game theory see Gibbons (1992). Some of the examples used in this
chapter are drawn from that book so the reader will find continuity between this chapte
and Gibbons book. For an introduction to the use of Mathematica in game theory se
Dickhaut and Kaplan (1993). For a study on the use of Mathematica to simulate the
effects of mergers among noncooperative oligopolists see Froeb and Werden (1996).

We turn next to a different approach to solving the oligopol
Stackelberg Leadership model.

222

Chapter 10

Stackelberg Duopoly in Mathematica

with

Daniel Gaynor

Stackelberg quantity games are similar to Cournot games in that both are quantity

petitions27. In the Stackelberg game, however, firms do not choose quantities
ultaneously. Rather, this is a two-stage model in which a dominant firm (or

Stackelberg leader) moves first by choosing its level of output in the first stage. After
observing the leader's move the other firm chooses its best response output in the second
stage. As we will see, the sequential play will require a different methodology and
produce different results than those of the simultaneous move Cournot game.

1. The Stackelberg Leadership Model

 As is typical with sequential games, we will solve the Stackelberg game
backwards. Thus we begin to solve the problem by characterizing how the Stackelberg

erg leader's choice of quantity. An intuition
r this backward approach is that in order for the Stackelberg leader to make an optimal

ecisio ill
s

on and then anticipate firm 2’s second period
response when making its own output choice in the first period.

com
sim

follower (firm 2) will respond to the Stackelb
fo
d n about his output choice, he must first consider how the Stackelberg follower w
respond to his choice in the second period. Because firm 1, our Stackelberg leader, ha
the same information as firm 2, the follower, firm 1 can solve firm 2's optimization
problem just as well as firm 2 can. Therefore, the Stackelberg leader will solve for the
Stackelberg follower's reaction functi

27 See Varian (1993b), pp. 448-454.

223

Chapter 10 Stackelberg Duopoly in Mathematica

 In this model we use the same specification for market demand that was used in
pendix

rpreted as firm 2's best response to firm 1's hypothesized output Q1. In

the Stackelberg game, firm 2 knows Q1 for certain since it observed Q1 at the end of stage
1. Therefore, firm 2 will respond to firm 1's observed output Q1 by producing:

 IN[]:= Q2s = Simplify[R2[Q1] /. Solve[React2, R2[Q1]] [[1]]]

 OUT[]:=
a - c2 - b Q1

2 b

the Cournot model. See the Mathematica file stack.nb that, as is discussed in Ap
B, is accessed in the same way as the previous Mathematica files. The model of the
Stackelberg follower's 2nd period behavior is identical to firm 2's behavior in the Cournot
model with only a subtle difference. Recall from the Cournot game that firm 2's reaction
function was inte

 .

It is important to recognize that in the statement above R2[Q1] is a reaction function for
firm 2, named React2, which is the same reaction function for firm 2 that was found in
the Cournot game. Since firm 2, the Stackelberg follower, has already observe firm 1's
utput choice, Q1, firm 2 will best respond by choosing the output Q2s.

The Mathematica statement takes firm 2's reaction equation in the form

eft hand side = right hand side) that is named , and transforms it into an

lberg
s replaced (/.) with the

expression representing the solution for the variable R2[Q1] from firm 2's reaction
equation, React2. The Solve command finds the expression for the variable R2[Q1] and
the Simplify command is used again to simplify the output expression. The [[1]] term
in the input statement tells Mathematica to use the first solution found by the Solve
command. Although there is a unique solution to the above Solve statement, this term is
still required.

o

 lhs == rhs
(l React2

expression, named Q2s, which can later be substituted into firm 1's optimization problem.
This is accomplished by defining an expression for the output of firm 2 in the Stacke
game, Q2s, to be equal to the variable R2[Q1] where R2[Q1] i

224

Chapter 10 Stackelberg Duopoly in Mathematica

 After solving firm 2's optimization problem, we step back to the first stage and
solve the Stackelberg leader's (firm 1's) optimization problem. As we did in the Cournot
Model, we begin by specifying the general form of firm 1's profit function and then
replace the general demand function with our specific linear demand function.

 IN[]:= eqPr1 = pie1s == Q1*(P[Q1,Q2]-c1)

 OUT[]:= pie1s == Q1 (-c1 + P[Q1, Q2])

 IN[]:= eqPr1 = %/. P[Q1,Q2] -> Price

 OUT[]:= pie1s == Q1 (a - c1 - b (Q1 + Q2))

However, at this point the model makes a departure from the Cournot model. Because
firm 1 can solve for firm 2's best response quantity as well as firm 2 can, firm 1 will
anticipate firm 2's reaction to any choice of Q1. Therefore, firm 1 can substitute firm 2's

action output (which expresses firm 2's optimal choice of Q2 as a function of firm 1's
uantity Q1) in place of Q2 leaving a profit function for firm 1 which is a function of only

and

eqPr1 = Simplify[%/. Q2 -> Q2s]

re
q
its own quantity. This is accomplished with the following comm

 IN[]:=

OUT[]:= pie1s ==
Q1(a - 2 c1 + c2 - b Q1)

2

ent redefines the The above input statem equation for the profits of firm 1 (eqPr1) to be

tion from the previous output statement with the variable Q2 replaced with the
Q2s which was calculated earlier. At this point the equation representing

the Stackelberg leader’s profits is only a function of its own quantity choice, Q1.
 Observing the previous output statement, it is easy to see that the Stackelberg
leader's optimal choice of quantity can then be found by differentiating the profit function
above with respect to that firms’ choice of quantity Q1. The Mathematica statement
below uses the derivative command, D[], to differentiate firm 1's profit equation, eqPr1,
with respect to the variable Q1.

 IN[]:= focPr1 = Simplify[D[eqPr1, Q1]]

 OUT[]:= 0 == a/2 – c1 + c2/2 – b Q1.

the equa
expression for

225

Chapter 10 Stackelberg Duopoly in Mathematica

The Stackelberg leader's output choice, Q1, can then be found by solving the

above first order condition for the va tatement below, the Solve
command finds this expression for th plifies the expression, and then
nam .
The solution to the Stackelberg game has the Stackelberg leader (firm 1) choosing its
optimal quantity:

 IN[]:= Q1s = Simplify[Q1 /.Solve[focPr1, Q1][[1]]]

 OUT[]:=
a - 2 c1 + c2

 2 b

riable Q1. In the s
e variable Q1, sim

es the expression Q1s (the optimal quantity of firm 1 playing the Stackelberg game)

Firm 2 (the follower) then takes firm 1's quantity choice as given and reacts by choosing:

 IN[]:= Q2s = Simplify[Q2s /. Q1 ->Q1s]

 OUT[]:=
a + 2 c1 - 3 c2

 4 b

The above statement simply takes the expression for Q2s and replaces the variable Q1
with our expression for Q1s in terms of the models parameters.
 The resulting market quantity and market price are then calculated by substituting
the firms' optimal quantities into the quantity and price equations.

 IN[]:= Qstack = Q /. {Q1 -> Q1s, Q2 -> Q2s}

 OUT[]:=
3 a - 2 c1 - c2

 4 b

 IN[]:= Pstack = Simplify[Price /. Q -> %]

 OUT[]:=
a + 2 c1 + c2

 4

The syntax for the expressions above corresponds with the syntax for the expressions
representing Cournot market output and price found earlier.

226

Chapter 10 Stackelberg Duopoly in Mathematica

 output,

y the difference between unit price and firm 1's unit cost
(Pstack – c1).

 IN[]:= pie1s = Simplify[Q1s*(Pstack – c1)]

 OUT[]:=
(a - 2 c1 + c2)

2

 8 b

Once again, with the market price determined, it is possible to calculate firms'
profits. Firm 1's Stackelberg profits, designated pie1s, is the firm's Stackelberg
Q1s, multiplied b

 IN[]:= pie2s = Simplify[Q2s*(Pstack – c2)]

Similarly, firm 2's profits from playing a Stackelberg game, pie2s, are;

 OUT[]:=
(a + 2 c1 - 3 c2)

2

 16 b

2. Comparison of Cournot and Stackelberg Models

 In this final section we look at a Mathematica program that considers alternative
oligopoly models and asks how our model specification might affect our predicted

 different solutions but to impress upon the reader the importance of
choosing the correct model for the industry. Does the industry you want to model have a
dominant firm that appears to lead the industry? If so, it might be more appropriate to
model this industry as a Stackelberg oligopoly rather than a Cournot oligopoly. Do the
firms in the industry produce a nearly homogenous good? If not, neither the Cournot nor
the Stackelberg models will likely be an appropriate choice for modeling.
 For the purposes of this experiment, we look at a duopoly industry with the same
linear demand curve as in the previous programs. The only variation is that in the current
model we make an additional simplifying assumption. In addition to our previous
assumption that firms have constant marginal costs of production, we now assume that
these costs are the same for both firms (c1 = c2 = c). Because of this assumption, the
reader should be warned that our purpose is not to propose any quantitative differences
between the models (although some qualitative differences will become apparent).

solutions. The point of this experiment is not only to illustrate that different models will
generally lead to

227

Chapter 10 Stackelberg Duopoly in Mathematica

Rathe

turn to our now familiar models of Cournot and
Stackelberg Competition and ask: How do the predictions from these models differ from
ea
 In order to account for the c ghtly different
approach to the general setup for th athematica programs.

 In[]:= SetAttributes[a, Constant]

 SetAttributes[c, Constant]

 In[]:= Clear[a,b,c,temp1,temp2];

 Clear[Q,Q1,Q2,eqPr1,eqPr2,focPr1,focPr2,R2,pie1c,pie2c];

 In[]:= Price = a -

 and our specification of our inverse demand
tionship. Noticeably absent, however, is the definition of market quantity as the sum

of firm 1's output and firm 2's output (Q his omission is intentional because
we first want to consider the collusive (m tcome. This requires that we model
the industry not as a duopoly, but rather a ly and then divide the monopoly
outcome between the firms.

r our purpose is to drive home the message that modeling oligopoly markets is an
art and a science. Modeling is the science. Choosing the right model is the art.
 We investigate this special case of symmetric costs (i.e. marginal costs are the
same constant number for all firms) by considering three alternative models' solutions.
Our benchmark solution will be the collusive monopoly outcome. Unlike the non-
cooperative Cournot and Stackelberg games, the collusive outcome assumes that the two
firms agree to behave as a monopoly industry by restricting market output to the
monopoly level with each firm producing half of the monopoly market output thereby
splitting monopoly market profits. We use this as our benchmark because it is the most
profitable possible outcome. We then re

ch other and how different are they from the collusive outcome?
ollusive outcome, we take a sli
is program than in the other M

 SetAttributes[b, Constant]

b*(Q) ;

Notice that the setup still contains the SetAttributes commands, the Clear commands
to clear any previously stored values,
rela

 = Q1 + Q2). T
onopoly) ou
s a monopo

228

Chapter 10 Stackelberg Duopoly in Mathematica

lish this, we develop an expression for the monopolists profit function.

 eqPrM

 OUT[]:= Profi

Differ

 IN[]:= focPrM = D[eqP

 OUT[]:= 0 == a - c - 2 b

Then solve for the profit maximizing market quantity and name this quantity Qm,.

 IN[]:= Qm = Simplify[Q/. Solve[focPrM,Q][[1]]]

 OUT[]:=
a - c
 2 b

As noted above, solving for the collusive outcome amounts to solving for the
monopoly market output and then distributing this output evenly between the firms. To
accomp

IN[]:= eqPrM = ProfitM == Q(P[Q] - c) ;

 = Expand[%/. P[Q] -> Price]

tM == Q (a - c - b Q)

entiate the profit function with respect to the choice variable, quantity (Q).

rM, Q]

 Q

Because we assume that this collusive market output is distributed evenly between the
duopolists, simply divide the market output, Qm., by two in order to find each firm's
output.

 IN[]:= Q1m = Qm/2

 OUT[]:=
a - c
 4 b

 IN[]:= Q2m = Qm/2

 OUT[]:=
a - c
 4 b

229

Chapter 10 Stackelberg Duopoly in Mathematica

 We complete the Collusive Solution section of the code by calculating the
collusive market price, Pmon, and the collusive profits of one of the representative firms
(pie1m). Because both firms are assumed to split the market evenly, profits will be equal

irms.

Qm]

 OUT[]:=
a + c

between the two f

 IN[]:= Pmon = Simplify[Price /. Q ->

 2

 IN[]:= pie1m = Simplify[Q1m*(Pmon - c)]

 OUT[]:=
(a - c)

2

 8 b

Before continuing on to the Cournot and Stackelberg models we need to insert the
definition for total market quan d;

]:= = Q1 + Q

 The next two sections of code model the Cournot Game and then the Stackelberg

d their associated code are nearly identical to the
Cournot and Stackelberg models considered earlier with the noted exception that the
consta

ke some analytic and graphic comparisons between

the co
et

 term
t input statement below is (Qcour/Qm) – 1

tity that we had earlier omitte

IN[Q 2 ;

Duopoly Game. These models an

nt marginal cost of production is now the same for both firms (and is denoted c in
the code).
 In the last section of this code we take a closer look at the solutions to the models
of our symmetric cost industry and ma

llusive, the Cournot and the Stackelberg outcomes.
 The first set of comparisons that we make considers the overall size of the mark
that the alternative models predict. The N in the first input statement below is a
Mathematica operator to return a numerical value. Also by the precedence rules the
in the firs

 IN[]:= sizeQc = N[(Qcour/Qm-1)*100]

 OUT[]:= 33.3333

 IN[]:= sizeQs = N[(Qstack/Qm-1)*100]

 Out[]:= 50.

230

Chapter 10 Stackelberg Duopoly in Mathematica

symm el

 IN[]:= sizeQ1c = N[(Q1c/Q1m-1)*100]

Q1s/Q1m-1)*100]

 OUT[]:= 100.

 IN[]:= sizeQ2s = N[(Q2s/Q2m-1)*100]

 OUT[]:= 0

from

uce 33.3%
tatements

mmetric costs industry we find that the

Stacke

The first statement above compares the size of the Cournot market output in our

etric cost model with the collusive outcome and shows that in the Cournot mod
output is 33.3% larger than the most profitable collusive market size. The second input
statement above makes a similar comparison between the Stackelberg market output and
the collusive market size and shows that the Stackelberg market output is even larger –
50% larger than the collusive market size.
 The next set of statements compares the size of the individual firms' outputs that
the alternative models predict.

 OUT[]:= 33.3333

IN[]:= sizeQ2c = N[(Q2c/Q2m-1)*100]

 OUT[]:= 33.3333

 IN[]:= sizeQ1s = N[(

The first two input statements above compare firm 1's and firm 2's market output
the Cournot game against their collusive output levels and show that both prod
more in the Cournot model than the collusive outcome. The last two input s
making similar comparisons of the firms' market outputs from the Stackelberg game
against their collusive output. In our sy

lberg leader (firm 1) produces twice the collusive output and the Stackelberg
follower (firm 2) produces the same output as in the collusive game.

231

Chapter 10 Stackelberg Duopoly in Mathematica

 hown that the collusive (monopoly) outcome has the
ow clear that

odel has the largest market size and consequently the lowest market
price. l unclear is how industry and firms' profits compare. The first set of

monopoly

Here we find that the Cournot profits for both firms are 11.1% lower than the profits that
e firms were to collude by acting as a monopolist.

ofits.

 ie1s = N[(pie1s/pie1m-1)*100]

s = N[(pie2s/pie2m-1)*100]

berg
these

lterna nd firm 2 respectively. Notice that industry profits for
y.

n they were in the
ourn ving less industry profits in the Stackelberg game,

we fin leader (firm 1) is able to achieve higher profits in than in the
rg

 d Stackelberg profits are the same for firm 1, why doesn't
e-shot

 its collusive share. It is left to the

At this point we have s
smallest market size and therefore the highest market price. Similarly it is n
the Stackelberg m

 What is stil
Mathematica statements below compare Cournot profits to the collusive shared
profits.

 IN[]:= sizePie1c = N[(pie1c/pie1m-1)*100]

 OUT[]:= -11.1111

IN[]:= sizePie2c = N[(pie2c/pie2m-1)*100]

 OUT[]:= -11.1111

would be achieved if th
 The next set of statements compares the Stackelberg profits to collusive pr

 IN[]:= sizePies = N[((pie1s + pie2s)/(2*pie1m)-1)*100]

 OUT[]:= -25.

IN[]:= sizeP

 OUT[]:= 0

 IN[]:= sizePie2

OUT[]:= -50.

The first statistic (that we call sizePies) compares industry profits of the Stackel
and collusive outcomes. The other input statements compare the profits between
a tive outcomes for firm 1 a
this Stackelberg game are 25% lower than the monopoly profit level for the industr
Therefore, industry profits are lower in the Stackelberg game tha
C ot game. However, despite ha

d that the Stackelberg
Cournot game. In fact, in this symmetric cost industry, we find that the Stackelbe
leader earns the same profits as in the collusive outcome.

Given that collusive an
the Stackelberg leader produce at half the monopoly output? Because in such a on
game, firm 2 would cheat and produce more than

232

Chapter 10 Stackelberg Duopoly in Mathematica

reader to show what quantity firm 2 would produce after observing firm 1 produce half
onopoly market output.

 The results presented above are also summarized in the Mathematica program
with a series of pie charts.

igur

de
d

the m

F e 10.1 Pie Charts for Output and Profit

The Mathematica code that generates these sets of pie charts and the plots that
follow is longer and more complicated than the code statements used throughout this
paper and therefore omitted here to avoid confusing the reader. However, all of the co
is presented in the files and the adventurous reader is encouraged to study it with the ai
of a Mathematica reference manual.

233

Chapter 10 Stackelberg Duopoly in Mathematica

 co The program combine.nb ncludes with a series of plots illustrating the

olutions to the Cournot and Stackelberg game. The first of these plots (Fig. 10.2)
ar to a geographic

for different combinations of output by

el of profits
ves shift towards their respective axis. In the plot above, firm 2's

rm 1's isoprofit curves are blue.

s
represents the firms' isoprofit curves. This is a contour mapping (simil
map) that shows how the two firms' profits vary
the two firms.

Figure 10.2 Contour Maps of Two Firms’ Profits

erent level of profits and the lev Each isoprofit curve represents a diff
increase as the cur
isoprofit curves are red and fi

234

Chapter 10 Stackelberg Duopoly in Mathematica

 In the final plot, the isoprofit curves are combined with the plot of the react
functions that we considered earlier.

ion

3. E

ects

Figure 10.3 Isoprofit Curves Combined with Reaction Function

xperiments

In this chapter we develop a series of experiments that cover many of the asp
of the models presented. However, one set of experiments is to consider m
alternative market structures.

odeling

235

B

enetic algorithms are search procedures based on the logic of natural selection and
genet ividuals

f characters,
rvives to
rough a

is
esent an example from this field, namely an iterated prisoner’s dilemma

problem genetic algorithms and evolutionary
games using very simple examples. Next we show how to work with binary
representations in MATLAB. Then we present a basic MATLAB program and perform

re sophisticated MATLAB program of genetic algorithms which
uilds on the one in this chapter will be presented later in the Genetic Algorithms and

B chapter.

There are different types of genetic algorithms. Here we will introduce one of the
most co l population, and
then w cts, crosses, mutates and
replace we reach the required
precision after a number of generations. In this section we will present a simple example.

e will later suggest ways of introducing more complex procedures.

Chapter 11

Genetic Algorithms and Evolutionary Games in MATLA

G
ics. The central concept of genetic algorithms is “survival”. A group of ind

- each one represented, for their computational implementation, by a string o
usually based on a binary code - compete with one another and the “most fit” su
give birth to a next generation of related individuals. This process continues th
number of generations leaving at the end the “most fit” individual.

One application of genetic algorithms is to evolutionary game theory. In th
chapter we pr

.28 First we illustrate some basic concepts of

some experiments. A mo
b
Portfolio Model in MATLA

1. Introduction to Genetic Algorithms

mmonly used. The algorithm starts with the generation of the initia
e have a repetitive process that evaluates the fitness, sele

l be stopped whens the old population. This process wil

W

28 The use of this example was initially motivated by the work of our student Shyam Gouri Suresh.

236

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

Let’s assume that we start from a given initial population of only four indiv
Each individual’s characte

iduals.
ristics are represented by a string of five binary digits

(chrom
n

1) 00000

3) 11010

number

osomes).
Initial populatio

2) 10101

4) 11100

We are all used to dealing with decimal representation of numbers. For example, a
like 142 (one hundred and forty two) is constructed in the following way

() () ()2 1 01 10 4 10 2 10+ + =

100 4 2 142+ + =
.

A binary representation works in a sim but with a different base: two instead of

n. Th e second individual in the initial population
nce

ilar way,
us, a string of characters such as thte

above, i.e. 10101, can be interpreted as representing the number 21 (twenty one), si

() () () () ()4 3 2 1 01 2 0 2 1 2 0 2 1 2
16 0 4 0 1 21

+ + + + =

+ + + + =

The usefulness of this kind of representation will be appreciated soon in the crossover and

utation steps. m

237

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

Given the initial population, we need some fitness criteria in order to select the

s assume here that the fittest individuals will be those with the
r characteristics (their “chromosomes”).

Thus, the third and fourth individuals in the initial population above would be selected for
 This couple will have four children which

 generation of individuals. Each new individual will be
re will be a crossover of the last two genes in the

strings of the selected couple as follows

 Couple Crossover
10 11000

ssover results. That is

er Mutation

11110 11110

olumn above, the second generation ordered in an ascendant way

Generation 2
1) 11000
2) 11001
3) 11110
4) 11111

“best” individuals. This criterion depends on the specific problem under consideration, and
athematical function to be applied to each individual. For it is usually represented by a m

the sake of simplicity, let’
highest numerical values associated with thei

reproduction, and they would form a couple.
will replace the entire previous
generated in the following way: first the

3) 110
4) 11100 11110

and then there will be a mutation of the last gene for each of the cro

 Crossov
11000 11000

 11001

 11111

Thus, from the mutation c
according to numerical value, will be

238

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

We now select again the two fittest individuals, obviously the third and fourth.
hen we can again apply the same crossover and mutation procedures. The result is shown

below.

 11111

4) 11111 11110 11110
 11111

Thus, the third generation, ordered in ascendant way according to numerical value,

Generation 3
10

2) 11110

Observe that we have reached the highest possible values for the third and fourth
individuals, wh generation. Actually, if we

peat the crossover, m ind that all the
ave

roblem.
sented above is simple; yet it provides a basis from which we can

troduce several modifications to have an idea of what the actual practice in the field of
genetic algorit e of the population could be larger or the

ring of characters corresponding to each individual could be longer. The initial
oned above,

fitness
he

to form
 fittest

e
neration, as well as the mutating genes, which we

rbitrarily chose to be only and always the last one.

T

 Couple Crossover Mutation

3) 11110 11111 11110

is

1) 111

3) 11111
4) 11111

ich will be selected as the parents of the next
utation and selection steps from now on, we will fre

next generations will be identical to generation 3. Thus, we can conclude that we h
reached an optimum, that is, the fittest individual given the characteristics of our p
 The example pre
in

hms is like. For example, the siz
st
population could be generated stochastically. The fitness criteria, as we menti
could be of a different nature from the one used here, and represented by a specific
function. Given a larger population, more than one couple could be selected to be t
parents of the next generation. To this end, a stochastic procedure could be used
couples out of a pool, also determined with some degree of randomness, of the
individuals. The crossover point - the last two genes in our example - could also b
randomly determined at each ge
a

239

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

 Before esent a simple example of an
evolutionary game and later introduce a number of MATLAB functions that can be used for

. A Simple Example of Evolutionary Game

 a game in which strategies evolve through a process of
ynamic selection. As an example, we will present here a simple version of the game

known as itera soner’s dilemma was introduced and
nalyzed earlier in the Cournot Duopoly in Mathematica chapter. Our game will have the

representation shown in Table 11.1, where D means defect and C means cooperate.

 Player II
 D C

we introduce the code for our model, we will pr

manipulating binary representations.

2

An evolutionary game is
d

ted prisoner’s dilemma. The pri
a

D 1 , 1 5 , 0

 Pl
ay

er
 I

C 0 , 5 3 , 3

Table 11.1 Game Representation

Thus if the two individuals cooperate with one another they will each receive a gain

of three but if t f only one. In contrast, if
Player I decides to cooperate but Player II defects, then Player I will make a gain of zero
nd Player II will make a gain of five.

e generations
duals. Each individual will be represented by a chromosome of 24 bit length.

. Thus,
ence of

ithin a given generation, each individual will play 24 times against each member
of her generati ategy implied by her chromosomes, and her resulting
payoffs will be accumulated. At the end of each generation round, the two individuals with

neration.
Children will be born out of the crossover and mutation of parents’ chromosomes. The
process will be repeated for a number of generations.

hey both defect they will each receive a gain o

a
We will assume that this game will be played many times by successiv

of indivi
Each gene of the chromosome will represent an action (0 for defect, 1 for cooperate)
each individual chromosome will be interpreted as a strategy, which is a sequ
actions.

W
on following the str

the highest accumulated payoffs will be selected to be the parents of the next ge

240

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

Notice that, given the simple formulation of this iterated game, individuals will not
think and act s llow their strategies regardless of their
opponent’s actions. In this sense they are very stubborn and simple-minded agents.

 for
olve in such a way

that only defectors will survive? That is, will the selective evolution of the population
generate an ou ld be reached by rational and strategic-

inking players which, by the way, implies that everybody will be worse-off than in the

3. Work Representations in MATLAB

When using binary variables to code genetic algorithms, the key concept to
t the variables can be specified as integers but can also be
s of binary variables. Then for example, the integer 25 would be
-bit b

trategically. They will just fo

However, we know that the most efficient individual action for the prisoner’s
dilemma game is to defect, and that the unique Nash equilibrium is (D,D). The question
our experiments is: Would this population of simple-minded agents ev

tcome similar to the one that wou
th
case in which everybody cooperates?

ing with Binary

keep in mind is tha
thought of as string
represented in an 8 inary string as

00011001
that is as
 () () () () () () () ()7 6 5 4 3 2 1 00 2 0 2 0 2 1 2 1 2 0 2 0 2 1 2+ + + + + + +

() () () () () () () ()0 128 0 64 0 32 1 16 1 8 0 4 0 2 1 1= + + + + + + +

 25=
Thus we can create an integer variable in the program, say genepool = 25 ,and

r’s strategy (or, as we will see in the Genetic
Algorithms and Portfolio Models chapter, an economic variable such as the

 portfolio) and at the same time manipulate it as a
it string in a genetic algorithm code.

o manipulate the binary
presentations of numbers. The functions dec2bin, bitor, bitand, bitshift and

c algorithm code in this chapter and in the Genetic
lgorithms and Portfolio Models chapter.

use that to represent both a playe

percentage weight of an asset in a
b

MATLAB provides a variety of functions t
re
bitcmp are used in the geneti
A
 The function dec2bin converts a decimal integer to a binary string. For
example, the statement

x = dec2bin(6);

241

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

returns the binary string 110 which corresponds to the decimal number six, while
x = dec2bin(6,8);

returns a binary representation of the decimal number six with at least eight
characters, that is

00000110.
 The function bitor returns the decimal bit-wise OR of two nonnegative

. That is, it compares bit-to-bit each binary position of the two
umbers generating a 1 whenever it finds the combination (1,1), (1,0) or (0,1) and

generating a 0 when it finds the combination (0,0). For example, the 4-bit
representation of the numbers 7 and 9 are respectively

0111 and 1001
and the bitwise OR operation on these numbers yields 1111, which corresponds to

 bit-wise AND of two nonnegative integer
it the binary representation of two numbers generates a

r (1,0) and generates a 1 when it

 The function
x = bitshift(A,k);

turns the val by k bits (to the left when k is
ositive, to the righ es in the new spaces).

turns the bit complement of A in the form of an n-bit floating point integer, i.e.
each 0 is repla , the statement

x = bitcmp(28,5);

where 1
and thus the function returns the decimal value 3.

integer numbers
n

the decimal representation 15. Thus the statement
x = bitor(7,9);

returns the number 15.
 The function bitand returns the
numbers. Comparing bit-to-b
0 whenever it finds the combination (0,0) or (0,1) o
finds the combination (1,1). Thus the statement
 x = bitand(7,9);

returns the decimal number 1.
bitshift

re ue of the nonnegative integer A shifted
t when k is negative and filled with zerop

For example, when A = 14 its binary representation is 01110. Thus the statement
 x = bitshift(14,1);

corresponds to the binary representation 11100 and returns the decimal value 28. If
the shift causes x to overflow, the overflowing bits are dropped.
 Finally, the function bitcmp

x = bitcmp(A,n);

re
ced with a 1 and vice versa. Thus

28 is represented with 5 binary digits as 11100 and its complement is 0001

242

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

4. verview of the MATLAB Code

here is a Genetic Algorithm and Direct Search Toolbox for use with MATLAB
and

the user can directly specify some overall characteristics of his or her problem (i.e.
opulation size, fitness criteria, number of generations, etc.) without having to pay special

attention to the f the genetic algorithm. However, to
rovide an opportunity to learn some basic concepts about genetic algorithms and to go

in the Portfolio Model
hapter, we are basing this chapter on a genetic algorithm code initially developed by one

of our students
While in an earlier chapter we introduced relatively simple MATLAB programs,

 MATLAB functions and uses
number of M-files. MATLAB has two kinds of M-files that can be written by users: (1)

o accept input

them, and return
one or more output variables. The nam ain program we will present here is
gagame.m, i.e onary game problem. This program and all

e functions it calls are available in the book web page.
 of the program, shown below, consists of three main parts. The

rst part contains the initialization of counters and parameters and a function call to
initialize the p a for loop across generations that in turn
contains several function calls. Finally, the third part contains commands to print and

O

T
which includes routines for solving optimization problems using genetic algorithms,
where
p

 workings and implementation o
p
deeper into learning the MATLAB software we introduced earlier
c

, Huber Salas.

here we advance to a program that calls a number of built-in
a
scripts which do not accept input arguments and (2) functions that d
arguments.29 They contain a series of statements and can be stored in an independent
MATLAB file. The functions receive a number of input variables, process

e of the m
. it is a genetic algorithm evoluti

th
 The basic structure
fi

opulation. The second part is

graph the main results.

29 For a discussion of MATLAB M-files see the manual “Getting Started with MATLAB” in the MATLAB

Help menu options.

243

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

% initialization of counters and parameters;
opsize = 8;

% generation of chromosome strings of initial population
enepool= initpoprand_gagame(popsize);

 % computation of fitness function and fittest individual

[fit, bestind, bestfit] = fitness_gagame(genepool,popsize,clen);
wbest(k) = bestind;

 % sele

[parent0,parent1] = parentsdet(fit,genepool);

[child0,child1] = crossover(clen,parent0,parent1);

 % mutation of children chromosome strings
 for h
 child0mut = mutation(pmut,clen,child0);

) = child0mut;
 child1mut = mutation(pmut,clen,child1);
 genenew(h+1) = child1mut;
 end
 genepool = genenew;

len)
best = fbest / (clen * (popsize - 1));

xaxis = [1:1:nruns]';

lot(xaxis,fbest);

on of counters and parameters section we set the number of
ize. We also set the length of the

chromosome string and the probability of a child mutation pmut.
e vector

nruns = 100; p
clen = 24; pmut = 0.5;

g

for k = 1:nruns;

 fbest(k) = bestfit;

ction of parents;

 % crossover of parents chromosome strings

= 1:2:popsize;

 genenew(h

end

% print and graph fittest individual;
dec2bin(wbest(nruns),c
f

figure(1);

plot(xaxis,wbest);
figure(2);
xaxis = [1:1:nruns]';
p

In the initializati

runs nruns and the population size pops
clen

We then call the function inipoprand_gagame to initialize th

244

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

genepool which will contain a number of individuals equal to the population size,
-bit chromosome string. So, in our example,

it chromosomes with an element for each of the eight
individuals in the population.

Then we move on to the main for loop in the program, running from 1 to the
ber of runs. This loop contains a sequence of function calls. It starts with a call

l

crossover

children (chil e
trings the t

ements of

through mutations of their chromosomes. Half of the new generation will come out

child1 h

mutation his has the effect of generating two mutated
mosome representations are stored in subsequent cells

genenew vector.

ent

mosome string of
the fitte

each individual represented by a 24
genepool is a vector of 24 b

num
to the fitness_gagame function to compute the fitness function for each individua
and to select the fittest individual, which at each run will be stored in the kth
element of the vector wbest while the corresponding criterion value will be stored
in the kth element of the vector fbest. Thus, at the end of the runs, these vectors
will contain the sequence of optimal chromosome strings and optimal criterion
values respectively.

N tion ext the func parentsdet, using the fitness function previously
computed, will select two parents (parent0 and parent1) who will form a couple.
This is followed by a call to the function which will generate two

d0 and child1) as the product of the crossover of the chromosom
of wo parents. s

Next comes a for loop whose index goes from 1 to popsize in incr
two. In this loop, out of the two newborn children a new generation will be created

of mutations of the first child (child0) and the other half will come out of
mutations of the second child (). At every pass through the loop the

 is called twice. Tfunction
children, and their 24-bit chro
of the

Once the new generation is created, the new vector genenew replaces the old
vector genepool and the main loop of the program starts over again.

After the main loop goes through the established number of runs, the
statem

dec2bin(wbest(nruns),clen)

prints the last element of the vector which contains the chrowbest

st individual. Then the statement

245

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

fbest = fbest / (clen * (popsize - 1));

is used ptimal criterion value at each run.
Notice t (clen * (popsize – 1)) is a scalar so that
the div ion operation is repeated for each element in the vector. Finally, the vector

t out that
ularly when changing the number of

generations or the population size, you should clean out the old commands and

at
you want to do this. Then do the same for Clear Command History and for Clear
Workspace.

We will now present each function in detail.

.1 Initpoprand_gagame

This function is simple in that all it does is to assign a random number to
each in

 dec2bin(genepool(k1), clen)
end

e function is initpoprand_gagame, that the arguments

 to compute the average value of the o
 is a vector and here that fbes

is
of fittest individuals wbest and the vector of optimal criterion values fbest are
plotted.

 This provides an overview of the program. It is important to poin
every time you run the program, partic

workspace to avoid displaying spurious results. To do so, go to Edit in the top
MATLAB menu. Then select Clear Command Window and confirm with Yes th

5. Functions

5

dividual string of chromosomes. Thus the MATLAB code for this
initialization function is

function genepool= initpoprand_gagame(popsize,clen);
for k1 = 1:popsize;
 genepool(k1) = ceil(rand * (2^clen)-1)));

The header statement for the function, i.e.

function genepool = initpoprand_gagame(popsize,clen);

tells us that the name of th

246

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

popsize and clen will be passed to the function and the result genepool will be
returned by the function.

Then a loop going from 1 to popsize is used to assign a random value to
each element of the genepool vector. The statement

genepool(k1) = ceil(rand * (2^clen)-1)));

assigns to each element of the vector the ceiling (the nearest higher integer value) of
the result of multiplying the variable rand (a zero-one uniform distribution random
number generator) times the number (2^clen)-1. This last number will be equal
to the highest possible value represented with a binary string of length equal to
clen. For example, if clen equals three, that number will be equal to two to the
power of three, i.e. eight, minus one. Thus the number is seven, whose binary

oes not play an essential role in the function since it only serves to print a binary
representation ses. Since there is no semicolon at

e end, this statement will return and print the 24-bit binary representation of each
elemen

TLAB function, unlike the cases of for loops or conditional if
statements.

e

 tains the game to be played and a
rocedure to select the fittest individual which is similar to the one used in the

portfolio chapter earlier in the book. The first part of the function consists of three
nested loops: the first one for player1, the second one for player2, and the third one
for games. Thus, each player selected in the first loop will play against each other
player selected in the second loop. These two players will play 24 games, playing
in each game the action determined by the corresponding gene in their chromosome
sequence. The statements for the first part of the function are shown below.

representation is 111.
The statement

dec2bin(genepool(k1),clen)

d

of genepool for debugging purpo
th

t of genepool. Finally, notice that an end statement is not necessary at the
end of a MA

5.2 Fitness_gagam

This fitness_gagame function con
p

247

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

function [fit,bestind,bestfit] = fitness_gagame(genepool,popsize,clen);
payoffs(1,popsize) = 0;
% Loop for player1
for k1 = 1:popsize;
 strategyp1 = genepool(k1);

 % Loop for opponents (player2)
 for k2 = 1:popsize;
 strategyp2 = genepool(k2);

 if (k1 ~= k2)
 mask = 1;

%Loop for games
 for k3 = 1:clen;

 actionp2 = bitand(strategyp2,mask);
 mask = bitshift(mask,1);
 % defect, defect

 if (actionp1 == 0) & (actionp2 > 0)
 payoffs(k1) = payoffs(k1) + 5;
 end
 % cooperate, cooperate
 if (actionp1 > 0) & (actionp2 > 0)
 payoffs(k1) = payoffs(k1) + 3;
 end
 end % end loop games

 end % end if

 end % end loop opponents

end % end loop player1

 actionp1 = bitand(strategyp1,mask);

 if (actionp1 == 0) & (actionp2 == 0)
 payoffs(k1) = payoffs(k1) + 1;
 end
 % cooperate, defect
 if (actionp1 > 0) & (actionp2 == 0)
 payoffs(k1) = payoffs(k1) + 0;
 end
 % defect, cooperate

248

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

 The function begins with the statement

This is followed by the beginning of the k1 loop for player 1. The statement
at the beginning of this loop

strategyp1 = genepool(k1);

and the statement at the beginning of the loop for player 2

s

bit binary
representation will be

00000000 00000000 00000001

 Remember that the function bitand returns the bit-wise AND of two
onnegative integer numbers. Thus, comparing bit-to-bit the binary representation

it finds the combination (0,0) or (0,1) or
ds the combination (1,1). Thus the temporary

ariables and will contain the first gene of each player’s
chromo

payoffs(1,popsize) = 0;

which initializes to zero a vector that will contain the accumulated payoffs of
player1.

strategyp2 = genepool(k2);

assign to the temporary variables strategyp1 and strategyp2 the chromosome
of player 1 and player 2 respectively, that is the strategies each player will play.
 Next, at the beginning of the loop for games, the statements

actionp1 = bitand(strategyp1,mask);
actionp2 = bitand(strategyp2,mask);

select the actions to be played at each game out the strategies of each player. The
variable mask was previously initialized with the value 1. Thus, its 24-

n
of two numbers, it generates a 0 whenever
(1,0) and generates a 1 when it fin
v actionp1 actionp2

some, that is the first action to be played in the first game. For example, if
the chromosome of player 1 is

249

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

01010101 11111111 00001111

the result of the bitand operation will be

00000000 00000000 0

and the content of the actionp1 variable will be the number 1, so that the player
will cooperate. The statement

s

s
t
g
p

if (actionp1 == 0) & (actionp2 > 0)
payoffs(k1) = payoffs(k1) + 5;

add 5 to the element of the payoffs vector corresponding to the game being
played.
 Once the main loop of the function - the loop for player 1 - is completed for
all players, the second part of the function selects the fittest individual in the
generation, which is the one with the highest payoffs. It begins with the statement

fit = payoffs;

to assign the variable payoffs to the temporary variable fit. The statement

0000001

mask = bitshift(mask,1);

hifts the mask one position to the left, resulting in

00000000 00000000 00000010

Thus, at each pass of the loop, the number 1 will shift one position to the left
o that the next action will be selected. The remaining of the loop for games, i.e.
he k3 loop, accumulates the payoffs for player 1 depending on the result of the
ame. Each of the four possible outcomes is evaluated. For example, in the case
layer 1 plays 0 (defect) and player 2 plays 1 (cooperate) the sentences

% defect, cooperate

250

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

[top topi] = max(fit);

then returns the value (top) and the index (topi) corresponding to the maximum value in
the fitness vector fit. Finally, the topi index is used to assign to the “best individual”
vector, bestind, the corresponding chromosome with the statement

bestind = genepool(topi);

while the corresponding value of the criterion function vector is assigned to the variable
bestfit with the statement

bestfit = top;

With the fitness now determined we turn next to the selection of parents.

5.3 Parentsdet

 T
t
s select the two individuals with the
h ghest c

f
[
p
fit(topi) = 0;
[
parent1 = genepool(topi);

 As in the previous function, the statement

[top topi] = max(fit);

returns the index topi corresponding to the maximum value of the fit vector that is the
f test individual. Using that index, the corresponding chromosome string of the first
p nd parent, we set to zero the

he parentsdet (parents deterministic) function is a simple deterministic function
hat selects the two individuals that will be the parents of a new generation. The simple
election method used in the present function will be to
i riterion value or fitness.

unction [parent0,parent1] = parentsdet(fit,genepool);
top topi] = max(fit);
arent0 = genepool(topi);

top topi] = max(fit);

it
arent is stored in the variable parent0. To select the seco

251

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

fitness value of the previous maximum and proceed in the same manner as before now to
select the second parent (parent1). We will see later, in the chapter Genetic Algorithms
and Portfolio Model in MATLAB, in the parentsrand function, how to implement a more
s cedure for parent selection in which more fit parents have a
“higher chance” of generating off springs.

5.4 Crossover

some information of the two parents to
c e will consider here only the case of a single crossover. The
function code is shown below.

function [child0,child1] = crossover(clen,parent0,parent1);
c ossov
m ska =
f r k =
 mas
 mas
end
child0 = bitor (bitand(parent0, maska),
 bitand(parent1,bitcmp(maska,clen)));
child1 = bitor (bitand(parent1, maska), bitand(parent0,

 T

Remem the individual
(24 bits). Then, multiplying clen times the uniform zero-one random number
g erato sing the crossover point. Since that
point has to be an integer number, we apply the function ceil to the result which
rounds off the result to the nearest higher integer.
 Next we assign the initial value 1 to the mask variable maska.

00000000 00000000 00000001

Then we pass through a loop that goes from 1 to the crossover point. At

ophisticated random pro

The crossover mixes the chromo
reate two children. W

r = ceil(rand*(clen));
a 1;
o 1:(crossov-1)

ka = bitshift(maska,1);
 ka = maska + 1;

 cmp(maska,clen))); bit

o determine the crossover point we use the statement

crossov = ceil(rand *(clen));

ber that the clen variable contains the chromosome length of

en r function and we are randomly choor

252

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

e

and we add the value one to the result, thus switching the rightmost bit from zero to
o

00000000 00000000 00000011

T

child0 = bitor (bitand(parent0, maska),
 bitand(parent1, bitcmp(maska,clen)));

For example, consider the case where parent0 has the chromosome string

00010001 00010001 00010001

I

w

and create the chromosome string

00000000 00000001 00010001

Also assume that parent1 has the following chromosome string

ach pass, we shift the 1 one position to the left

00000000 00000000 00000010

ne.

hus if the crossover point was 12, we will end up with the mask

00000000 00001111 11111111

Next we generate the first child with the statement

n this case the statement

bitand(parent0, maska)

ould apply the mask

00000000 00001111 11111111

10001000 10001000 10001000

253

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

T

,clen)));

would apply the complement of maska, that is

11111111 11110000 00000000

to parent1 with the bitand operation to obtain

10001000 10000000 00000000

01 00010001

w

w romosome string of the first child (child0). The second child
is obtain of the parents in the
corresponding statement.

5

 on function generates a random mutation in a single bit of the
chromosome string of a child. The code is shown below.

f
t
i

 tt = bitshift(tt,idx);
 temp = bitand(child,bitcmp(tt,clen));

hus the statement

bitand(parent1, bitcmp(maska

Finally, the application of the bitor function to the chromosome strings

00000000 000000
10001000 10000000 00000000

ill generate the result

10001000 10000001 00010001

hich will be the ch
ed in a similar fashion, reversing the position

.5 Mutation

The mutati

unction f = mutation(pmut,clen,child)
t = 1;
f (rand < pmut)
 idx = round(rand*(clen-1));

254

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

 if(temp==child)
 child = child + tt;
 else

end
f = child;

Recall that is the probability of a child mutation. The variable is initially
s
c
where the mutation will occur. It is determined by rounding off the randomly
generated location using the zero-one uniform random variable rand and the length
of the chromosom
 C dex variable is set to three. Also,
r ift function call

shifts th ree positions to the left so that it becomes

a ourth position. Then the mutation is
done wi

a lt is stored it in the temp variable. C irst just the bitcmp part of
this state

 11111111 11111111 11110111

T
o

hanged
w
w

 child = temp;
 end

pmut tt

et to one and will be bit shifted to create the mutation at the desired point in the
hromosome. The scalar integer idx is the index of the location that is one less than

e clen less one.
onsider for example a case where the in

ecall that the variable tt is set to one. Thus the bitsh

tt = bitshift(tt,idx);

e binary variable thtt

1000

nd the mutation is going to be done in the f
th the statement

 temp = bitand(child,bitcmp(tt,clen));

nd the resu onsider f
ment. It yields the 24-bit complement to the tt variable, which is

hen the bitand operation is applied to this bit string and the child variable to
btain the mutated string, which is stored in the temp variable.

The bitand operation produces the desired mutation if the bit to be c
as a one. However, it does not produce the correct result if the bit to be changed
as a zero. Therefore it is necessary to add the following lines of code

255

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

 if(temp==child)
 child=child+tt;

In the case where the bit to be changed was a zero the bitand operation above will
have produced no change in the chromosome and it is necessary to accomplish that
b addin
r

s s
t t.
 t equal to the child variable - as
occurs when the bit to be changed is a one - then it is only necessary to set the
c

 iscussion of the mutation function and indeed the
discussion of all the functions and leaves us free to turn our attention to the results
obtained

6

Figure 11.1 below shows the results of running the main program gagame.m with a
n on size of 8, starting from a random initial
population. The first graph shows the decimal representation of the chromosome of the
fittest in converges
t

 t. The
s erage payoffs. We can see how
these payoffs converge to a value near one, which is the value corresponding to the Nash
equilibri

else
 child=temp;
 end

y g an integer amount tt to the variable. In our case the binary
epresentation of the tt variable was

1000
o its integer value is 16. Then when 16 is added to the child variable it produce
he desired mutation by changing the zero bit in the fourth location to a one bi

On the other hand if the temp variable is no

hild variable equal to the temp variable.
This completes the d

 by using the program.

. Results

umber of runs equal to 100 and a populati

dividual at each run. We can observe that after about ten runs this value
o zero and stays there. This corresponds to the chromosome

00000000 00000000 00000000.

Thus, the optimal strategy that results from the simulation is to always defec
econd graph shows the evolution of the corresponding av

um of the game.

256

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Runs

pr
es

en
ta

tio
n

of
 C

hr
om

os
om

e
D

ec
im

al
 R

e

0 10 20 30 40 50 60 70 80 90 100
1

2.5

1.5

2

Runs

me with Random Initial Population

A
v

e
P

ay
o

Figure 11.1 Evolutionary Ga

 Figure 11.2 shows the results of an experiment in which the initial population is
com

T have to replace the

statemen

ffs
er

ag

posed entirely of cooperators. That is, individuals with a chromosome equal to

11111111 11111111 11111111

o run this experiment, in the initpoprand.m function we
t

genepool(k1) = ceil(rand * (2^clen)-1);

257

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

w

g

ith the statement

enepool(k1) = (2^clen)-1;

0 10 20 30 40 50 60 70 80 90 100

14

16

18
x 10

6

10

12

0

2

4

6

8

Runs

D
l R

e
at

io
n

o
ro

m
os

om
e

f C
h

pr
es

en
t

ec
im

a

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

Runs

A
v

fs

Figure 11.2 Evolutionary Game with Initial Population of Cooperators

 We can see in Fig. 2 that the results converge, at a slower pace than in the previous
experiments, to the same outcome. The fittest individuals will be defectors, born out of
mutations and successive selections across generations. Interestingly, a population of all

er
ag

e
P

ay
of

258

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

cooperators, thus achieving the higher possible payoffs, when suffering even mild
mutations such as the ones implied by our MATLB code, will end up transformed into one
of all de

8

riments with this genetic algorithm would be to change the
n the
outcome. You may also want to try an experiment in which the initial population is
c see if they ever become all cooperators.

t of experiments will be to introduce further
r de to move closer to the actual practice in the field of genetic
algorithms, such as the random selection of parents and the selection of more than
o e coup
e
M

e
f on
the part of players. Instead of being taken regardless of the opponent’s actions, a
player’s actions will be determined for example as reactions to the opponent past
behavior (Axelrod (1997)). Also it would be interesting to explore the evolutionary
dynamics of a s on in which each individual plays the
prisoner’s dilemma with her neighbors (Nowak and May (1992) and (1993)).

f
w
to cooperation or even displays complex patterns of cyclical behavior.

Since th these models may be more demanding
than the one presented in this chapter, before moving in this direction you are
e
m chniques which may be useful to program problems
o this nature.

fectors with an inferior standard of living.

. Experiments

The simplest expe
umber of model iterations and/or population size to see how this affects

omposed of all defectors and
A more challenging se

efinements in the co

n le to be the parents of the next generation. Before doing so, you are
ncouraged to read the chapter Genetic Algorithms and Portfolio Model in
ATLAB where these refinements are introduced.

 More interesting experiments that would get you closer to the practice in th
iled of evolutionary games involve some sort of strategic thinking and behavior

patial model of local interacti

In both these cases - more sophisticated strategies or local interaction - it is
ound that the evolutionary behavior differs from the convergence to all defectors
e found in this chapter. Indeed, it is usually the case that the evolution converges

e MATLAB representation of

ncouraged to read the chapter on Agent-Based Models in MATLAB to learn about
ore sophisticated modeling te

f

259

Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB

8

A classic reference in the genetic algorithms literature is Goldberg (1989).
For introductions to evolutionary games see the Stanford Encyclopedia of
Philosophy (2005) and Axelrod (1997).

. Further Reading

260

B

solve the Markowitz problem: first a Monte
thod then a MATLAB gradient optimization function. Here

 based on the one we presented earlier in the Genetic

ization space and are less likely to be trapped by local
ures.

he MATLAB Code

 earlier chapter as to find
 in

Chapter 12

Genetic Algorithms and Portfolio Models in MATLA

In this chapter we present an example that builds on the Markowitz optimal
portfolio model we used earlier in the Portfolio Model in MATLAB chapter. In that

ethods to chapter we used two different m
Carlo optimization search me

orithmwe will use a genetic alg
Algorithms and Evolutionary Games in MATLAB chapter.

First we solve the same convex problem we solved in the Portfolio Model chapter.
It has a unique global maximum - given the quadratic nature of the criterion function to
be optimized. Later in this chapter we will introduce a more difficult but more realistic
problem by means of including brokerage fees which may result in non-convexities and
thus in a number of local maxima. It is for this kind of problems that genetic algorithms
are particularly useful since they are global optimization algorithms. They perform a

loration of the optimglobal exp
minima or maxima than is the case for other standard optimization proced

1. Overview of t

Remember that the Markowitz problem was stated in an
Jx to maximize

(1) 1
2

J x x xµ β′ ′

bject to the constraints

= − Σ

su

(2) 1i
i I

x
∈

=∑

(3) 0ix i I≥ ∈

261

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

w
 J = criterion value

here

β = subjective weight on the variance of the return on the portfolio

ix = the fraction of the portfolio invested in equity i

I = the set of equities

1

2

3

x
x x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
15
12

3

2

µ
µµ

⎤⎡⎤⎡ 81µ

⎦⎢⎣ −⎥⎦⎢⎣ 24114333231 σσσ

 we will present to solve the Markowitz problem is

i.e. it is a genetic algorithm portfolio problem. This program and all the

am
pter.

 of
 and parameters and a function call to initialize the population. The second part

 a the

⎥
⎥
⎤

⎢
⎢
⎡

−−
−

=⎥
⎥
⎤

⎢
⎢
⎡

=Σ 11175
456

232221

131211

σσσ
σσσ

⎥

The name of the main program
gaportfol1.m,

functions it calls are available in the book web page.
 The basic structure of the program, shown below, is analogous to the progr
gagame.m presented earlier in the Genetic Algorithms and Evolutionary Games cha
The program consists of three main parts. The first part contains the initialization
counters
is for loop across generations that in turn contains several function calls. Finally,
third part contains commands to print and graph the main results.

262

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

% initialization of counters and parameters;
nruns = 100; popsize = 8;

beta = 2;
mu = [8 12 15]';
sigma = [6 -5 4;
 -5 17 -11;
 4 -11 24];

num = 3; clen = num * 8; pmut = 0.5;

% generation of chromosome strings of initial population
genepool= initpopdet(popsize);

for k = 1:nruns;

% transformation of chromosome string into normalized n-asset

pwm = normport(genepool

 selection of parents;
arent1] = parentsdet(fit,genepool);

 % crossover of parents chromosome strings

% portfolio

,popsize,clen,num);

% computation of fitness function and fittest individual
[fit, bestind, bestfit] =
 fitness_gaportfol(pwm,mu,popsize,beta,sigma);

 wbest(:,k) = bestind;
 fbest(k) = bestfit;

%
 [parent0,p

 [child0,child1] = crossover(clen,parent0,parent1);

 % mutation of children chromosome strings
 for h = 1:2:popsize;
 child0mut = mutation(pmut,clen,child0);
 genenew(h) = child0mut;
 child1mut = mutation(pmut,clen,child1);
 genenew(h+1) = child1mut;

end
 genepool= genenew;
end

263

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

% print and graph optimal weights and criterion;
wbest
fbest
figure(1);
xaxis = [1:1:nruns]';
plot(xaxis,wbest(:,:));
figure(2);
xaxis = [1:1:nruns]';
plot(xaxis,fbest(:,:));

In the initialization of counters and parameters section we set the number of

runs nruns, the population size popsize, the parameters of the portfolio model
he risk aversion coefficient beta, the vector of mean returns mu and the

f assets num. We also set the
ngth of the chromosome string clen to be used to represent each portfolio as

e,
ght

Then we move on to the main for loop in the program, running from 1 to

the number of runs. This loop contains a sequence of function calls. It starts with
 call to the function normport to transform each 24-bit chromosome string

d weight three-asset
ortfolio. The vector genepool may be thought of either as (1 x popsize) vector

t
he (3 x popsize)

ortfoli ain, in each column, the normalized
eights of each three-asset portfolio.

n to compute the
 individual (each portfolio) and to select the fittest

l be stored in the kth column of the matrix wbest
value will be stored in the kth element of the

trix and vector will contain
lios and optimal criterion values respectively.

tion parentsdet, using the fitness function previously

(t
variance-covariance matrix sigma) and the number o
le
equal to the number of assets num times eight, that is, 24 bits. Finally, we set the
probability of a child mutation pmut.

We then call the function inipopdet to initialize the vector genepool
which will contain a number of portfolios equal to the population size, each
portfolio represented by a 24-bit chromosome string. So, in our exampl
genepool is a vector of 24 bit chromosomes with an element for each of the ei
individuals in the population.

a
corresponding to a portfolio into an equivalent normalize
p
of integers or as a (1 x popsize) vector of 24 bit strings. Thus the normpor
function transforms the (1 x popsize) vector genepool into t
p o weight matrix pwm which will cont
w

Next follows a call to the fitness_gaportfol functio
fitness function for each
individual, which at each run wil

 corresponding criterion while the
vector fbest. Thus, at the end of the runs, these ma
the sequence of optimal portfo

Next the func

264

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

computed, will select two parents (parent0 and parent1) who will form a
ed by a call to the function crossover which will generate

 out

4.1 In

ily compare results. However, the
function is made more complicated by the necessity to represent a row vector of
the three weights, i.e.

couple. This is follow
two children (child0 and child1) as the product of the crossover of the
chromosome strings of the two parents.

Next comes a for loop whose index goes from 1 to popsize in increments
of two. In this loop, out of the two newborn children a new generation will be
created through mutations of their chromosomes. Half of the new generation will
come out of mutations of the first child (child0) and the other half will come
of mutations of the second child (child1). At every pass through the loop the
function mutation is called which generates a mutated child, and its 24-bit
chromosome representation is stored in a cell of the genenew vector. Once the
new generation is created, the new vector genenew replaces the old vector

 and the main loop of the progragenepool m starts over again.
Finally, once the main loop goes through the established number of runs, the

matrix of fittest individuals wbest and the vector of optimal criterion values
fbest are printed and plotted.

 This provides an overview of the program. It is important to point out that
every time you run the program, particularly when changing the number of
generations or the population size, you should clean out the old commands and
workspace to avoid displaying spurious results. To do so, go to Edit in the top
MATLAB menu. Then select Clear Command Window and confirm with Yes
that you want to do this. Then do the same for Clear Command History and for
Clear Workspace.

We will now present each function in detail.

4. Functions

itpopdet

This function is simple in that all it does is to assigns the same portfolio
weights (33%) to each asset in each portfolio as in the experiments performed in
the Portfolio Model chapter so that we can eas

265

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

 [33 33 33]

with a single 24 bit string such that each 8 bit segment of the string represents the
number 33, i.e. 00100001. Thus the 24 bit string is

00100001 00100001 00100001

This string has ones in the positions 0, 5, 8, 13, 16 and 21 (counting from the right
to left beginning with zero). Therefore the integer value of this string is

 () () () () () ()21 16 13 8 5 01 2 1 2 1 2 1 2 1 2 1 2+ + + + +

w = 2^21+2^16+2^13+2^8+2^5+2^0;

Thus the MATLAB for this initialization function is

dec2bin(w,24)

dec2bin(w,24)

ppears. It does not play an essential role in the function since it only serves to
no

y
So

function genepool = initpopdet(popsize);
w = 2^21+2^16+2^13+2^8+2^5+2^0;

genepool = w * ones(1,popsize);

The header statement for the function, i.e.

function genepool = initpopdet(popsize);

tells us that the name of the function is initpopdet, that the argument popsize
will be passed to the function and the result genepool will be returned by the
function.

After w is defined in the first statement in the function, the statement

a
print a binary representation of w for debugging purposes. Since there is
semicolon at the end, this statement will return and print the 24-bit binary
representation of w. Finally, a (1 x popsize) vector of ones will be multiplied b
the previously created cell w to obtain the initial population vector genepool.

266

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

in the case at hand genepool is a vector of eight 24 bit strings. Finally, notice
that an end statement is not necessary at the end of the function.

We will see later, in the initpoprand_gaportfol function, how to
replace this rudimentary function by a more sophisticated random procedure to
initialize the population.

4.2 Normport

 responding to each
portfol
represe popsize genepool into the (3
x pops column, the
normal dd to one) of each three-asset

ortfol e complete function is listed below.

for i = 1:popsize;

sk = is is 2^n minus one

num-j+1) = bitand(genetemp(i),mask);

 end
port/sum(port);

d

ts in the
rtion of the portfolio held in each

. Since eight bits permits us to specify integers from 0 to 255 we will

n = ceil(clen/num);

This function takes the 24-bit chromosome string cor
io and creates an equivalent normalized three-asset portfolio

) vector ntation. Thus, it transforms the (1 x
ize) portfolio weight matrix pwm which will contain, in each
ized weights (that is, the weights will a

p io. Th

function pwm = normport(genepool,popsize,clen,num);
genetemp = genepool;

n = ceil(clen/num);
ma 2^n-1; % note that th
port = zeros(1,num);

 for j = 1:num
 port(
 genetemp(i)= bitshift(genetemp(i),-n);

port =
pwm(:,i) = port';

en

 Since we are using a chromosome with 24 bits and have 3 asse
portfolio, we have eight bits to specify the propo
of the assets
have an accuracy of about half a percent in the solution to the portfolio problem.
So the first step after creating the temporary variable genetemp is to determine
the number of bits, n, used for each equity by dividing the chromosome length by
the number of equities. This is done with the statement

267

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

where ceil is a MATLAB function that returns an integer that is the ceiling, i.e.
the round off of a decimal to the nearest integer greater than the number. Also
recall that clen is the chromosome length, 24, and num is the number of assets in
the portfolio, 3, so in our case this becomes ceil(24/3) or eight. This statement
assures that there will be an integer number of bits to represent the percentage of
each stock held in the portfolio.
 The next step is to pull out the n bits in the chromosome that correspond to
the proportion for each equity. This is done by creating a mask in which the
lower order n elements are ones and all other bits are zero. This is done with the
statement

mask = 2^n-1;

eep in mind the precedence rules so this is minus one. Thus in our case
ith n

pick off eight bit sections of
the chromosome.
 The next step is to initialize the vector which carries the percentage
allocation of elements in the portfolio. In our case this is a three element vector
of integers that is initialized with the statement

port = zeros(1,num);

This vector is then used in a for j loop over the number of equities in the
portfoli

end

The mask variable is used on each pass through the for loop to put the lower

K 2n

w equal to 8, mask is an integer variable with value 255 and its binary
representation is the 24-bit string

00000000 00000000 11111111

So we can use a bitand operation with this mask to

o to get the bit string for each element in the portfolio as follows

for j=1:num
 port(num-j+1) = bitand(genetemp(i),mask);
 genetemp(i) = bitshift(genetemp(i),-n);

268

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

order eight bit section of the chromosome into the variable port. Also in each
pass the chromosome is shifted to the right by eight bits and filled with zeroes in
the left most eight bits using the bitshift operation.
 Thus if we begin with a chromosome like the following

00000110 11000000 11100111

The first pass through the loop would put the bit string

00000000 00000000 11100111

into the variable port(3) and the second pass would put the bit string

00000000 00000000 11000000

into the variable port(2), etc.
 Since the port variables are now integers with values between zero and
255 they must be normalized by the sum of their values to convert them to
percentages of the portfolio. This is done with statement

port = port/sum(port);

 Finally, the transposed of the three-element vector port is stored in the
corresponding column of the matrix pwm with the statement

pwm(:,i) = port';

269

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

4.3 Fitness_gaportfol

ilar to the one used in
in the book.

=
e,beta,sigma);

ze;
beta * pwm(:,j)' * sigma * pwm(:,j);

egins with a statement to compute the vector of returns pret as the
t of the portfolios times the corresponding returns. Then statements are

r of portfolio variance costs pvar and the
, or fitness vector fit. So in our case the

h of the
pulation.

ement

[top topi] = max(fit);

en ret ue in

 his fitness_gaportfol function uses a procedure simT
the Portfolio Model chapter earlier

function [fit,bestind,bestfit]

wm,mu,popsizfitness_gaportfol(p
mu; pret = pwm' *

j = 1:popsifor
 pvar(j) = 0.5 *
end
fit = pret - pvar';
[top topi] = max(fit);
bestind = pwm(:,topi);
bestfit = top;

 It b
produc
included to compute the vecto
corresponding criterion function vector
vector fit is an 8 element vector that provides the fitness level for eac
individuals in the po

The stat

th urns the value (top) and the index (topi) corresponding to the maximum val
the fitness vector fit. Finally, the topi index is used to assign to the “best individual”
vector, bestind, the corresponding normalized three-asset vector with the statement

bestind = pwm(:,topi);

while the corresponding value of the criterion function vector is assigned to the variable
bestfit with the statement

bestfit = top;

270

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

W e fitness now determined we turn next to the selection of parents, crossover and
mutation.

4.5 Parentsdet, Crossover and Mutation

ith th

e 12.1 below shows the results of running the main program gaportfol.m
ith a number of runs equal to 100 and a population size of 8. The optimal values of the

portfol hich is
slightly odels.

 These functions are exactly the same as the ones used in the Genetic Algorithms
and Evolutionary Games chapter. They even have the same variable names. Thus they
can be used by both the program in that chapter and the programs in this chapter.

5. Results

 Figur
w

io weights for the last run are w1 = 0.26, w2 = 0.42 and w3 = 0.32, w
btained in the earlier chapter on portfolio m different than the results we o

271

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

0 10 20 30 40 50 60 70 80 90 100
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

w2

gh
ts

W
ei

w3

Runs

w1

0 10 20 30 40 50 60 70 80 90 100
9.05

9.45

9.1

9.15

9.2

9.25

9.3

9.35

9.4

Runs

C
r

Figure 12.1 Genetic Algorithm Portfolio Example

 We can see how, after starting from initial values equal to 0.33 the weights
converge to the optimal values. We can see also how the criterion value converges to a
value of 9.44.

ite
rio

n

272

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

6. Refinements

 The program gaportfol1.m and its functions give us a basic idea of the work
with genetic algorithms. However, some of its functions are quite rudimentary and they
do not take us beyond what we learnt in the chapter on Genetic Algorithms and
Evolutionary Games. In this section we will introduce some alternative and more
sophisticated functions and main program structure. They can also be used to develop a
more sophisticated version of the gagame.m program presented in the Genetic Algorithms
and Evolutionary Games chapter.

6.1 Initpoprand_gaportfol

 With the initpopdet function we generated, in a deterministic way, an initial

ector of portfolios all with the same weights. However, it is customary in the field of
 initial population randomly. To do so, we will

troduce the initpoprand_gaportfol function shown below. In the chapter on Genetic
mly -

resent

unction genepool = initpoprand_gaportfol(clen,popsize);

ze);
or j = 1:popsize
 fo

end

on is j
or

lso the i loop runs from 1 to clen which is the number of
inary elements in the chromosome. In the present case this is 24.

v
genetic algorithms to generate the
in
Algorithms and Evolutionary Games we also generated the initial population rando
in the initpoprand_gagame function - but with a different procedure. Here we p
an alternative.

f
mask = 1;
genepool = zeros(1,popsi
f

r i = 1:clen
 if (rand < 0.5)
 genepool(j)= bitor(genepool(j),mask);
 end
 genepool(j) = bitshift(genepool(j),1);
 end
 genepool(j) = bitshift(genepool(j),-1);

The key elements of this function are a set of two nested for loops and an

if statement. The index of the for loop over individuals in the populati
and the index over the bits in the binary representation of the chromosome f
each individual is i. A
b

273

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

 Also each bit in the chromosome for individual j will be modified, i.e.
bability one half since rand is a zero-one

niform distribution random number generator.

 code is the bitor operation.
e know from the above that genepool(j) has been initialized to zero and the

ariable mask has been initialized to one, therefore the bitor operation applied to
ese two strings will yield

 00000000 00000000 00000001

on the first pass through the i loop if the call to rand yields a value that is less
than 0.5. Also we know that this will occur half the time.
 Then following the if statement the operation bitshift is used to shift
the binary string genepool one position to the left and to put a zero in the right
most (lowest order) position. Thus after the bitshift operation the string above
becomes

 0000000 00000000 00000010

Thus in the i loop the bits in the genepool(j) string are considered one by one
and changed from to with probability 0.5. Finally, one can see in the above
code that bitshift is used to move the bit string one step back to the right after
the end of the i loop. Otherwise the last bit in the string will always be equal to
zero.
 To use this function, we have to substitute in the program gaportfol.m the
following statement for the call to the function initpopdet in the “generation of
chromosome string of initial population” section

genepool = initpoprand_gaportfol(clen,popsize);

 Figure 12.2 shows the results of running program gaportfol2.m, which is
program gaportfol1.m with this function.

switched from zero to one with pro
u

 Next focus for the moment only on the portion inside the for loop for the
number of bits. The key element in this segment of
W
v
th

 0 1

274

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

Runs

W
ei

gh
ts

w2

w3

w1

0 10 20 30 40 50 60 70 80 90 100
8.95

9

9.05

9.1

9.15

9.2

9.25

9.3

9.35

9.4

9.45

Runs

C
rit

er
io

n

Figure 12.2 Genetic Algorithm with Initpoprand_gaportfol Function

The optimal portfolio weights are here w1 = 0.24, w2 = 0.43 and w3 = 0.33,
which is slightly different than the results obtained in the earlier chapter on portfolio
models. Also, as expected, the path of the optimal weights starts from random locations
instead of starting from the 0.33 value as in Figure 12.1. The criterion value, after
decreasing during the initial runs, converges to a value of 9.45.

275

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

6.2 Parentsrand

 In programs gaportfol1.m and gaportfol2.m we used the function parentsdet
to select the two parents of a new generation. That was a deterministic procedure where
we picked as parents the two individuals with the highest and next to the highest value of
the fitness function. However, the usual practice in the genetic algorithms field is to

troduin ce some randomness in the selection of parents. The function parentsrand
(parents random) we will present in this section is a first step in that direction.

The method to be used can be thought of as a cross between a pie chart
and a roulette wheel. Consider a case in which there are five individuals in the
population and all five have the same fitness level of 40. We could then use a pie
chart to represent the percentage of the total fitness of the population of 200
which is held by each individual as shown in Figure 12.3.

1
2
3
4
5

Figure 12.3 A Balanced Pie Chart / Roulette Wheel

One could also think of this pie chart as a roulette wheel which is spun each time

 be selected. Since all the slices of the pie are the same size the
ity of each individual being selected as a mate would be the same.

ons er instead a case in which the fitness of each of the five
ay 20, 60, 30, 20, and 70. Then the pie chart

rce age of the total fitness held by each of the individuals
Figure 2.4.

a mate is to
probabil
 However, c id
individuals is different, s
representing the pe nt
would look like 1

276

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

1
2
3
4
5

Figure 12.4 An Unbalanced Pie Chart / Roulette Wheel

oulet wheel is spun there would be decidedly
different probabilities that each individual would be chosen.

cumfit = sum(fit);
val = 0;

d * cumfit;

 (j < opsize))
 val = val + fit(j);
 j = j + 1;
end
f = genepool(j);

 The variable cumfit is the cumulative value of the individual fitness
variables, i.e. the sum of the fitness levels of the members of the population. The
variable val is used to move around the roulette wheel as it is spun and the
ariable spin_val carries the information about how far the roulette wheel travels

s. The variable rand provides a number from the zero to one

um of the fitness levels. However, the slices of the roulette wheel are not all the
same si

In this case each time the r te

 The function code is shown below.

function f = parentsrand(fit,popsize,genepool);

spin_val = ran
j = 1;
while ((val < spin_val) & p

v
before it stop
interval of a uniform distribution Therefore each time the roulette function is
called spin_val takes on a different value that ranges uniformly from zero to the
s

ze; rather they represent the relative fitness of the individuals. So more fit
individuals are more likely to be chosen.

277

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

 The selection occurs in the while loop which repeats until the variable
val exceeds spin_val or until the loop index j exceeds the population size.
Also, each time through the loop the variable val is augmented by the fitness
level of individual j. After the completion of the while loop the index of the
selecte

h

 parentsrand in the “selection of
parents

l
functio

d individual is then used to select the corresponding chromosome string
from the vector gen and this information is transferred to the variable f whic
will be the output of the function.
 One thing to notice about this procedure is that it is “sampling with
replacement”, i.e. when a mate is chosen that individual is not removed from the
population but rather is left in the population and is eligible to be chosen on
subsequent calls to the function.

To use this function, we have to replace in the program gaportfol.m the call to
the function parentsdet with the call to the function

” section in the following two statements:

parent0 = parentsrand(fit,popsize,genepool);
parent1 = parentsrand(fit,popsize,genepool);

Figure 12.5 shows the results of running program gaportfol3.m, which is

program gaportfol1.m with this function and also using the initpoprand_gaportfo
n as explained in the previous section.

278

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Runs

W
ei

gh
ts

w2

w1

w3

0 10 20 30 40 50 60 70 80 90 100
7.5

8

8.5

9

9.5

Runs

C
rit

er
io

n

Figure 12.5 Genetic Algorithm with parentsrand and initpoprand_gaportfol

 patterns of optimal portfolio weights and criterion values, at
variance with Figures 1 and 2, are very unstable. Why? The reason may be that here we
are choosing the two parents with some randomness, while in the other two cases we
always chose the two best performing individuals and with them formed a couple. This
result is important to make the point that genetic algorithms are designed to perform a
wide exploration of the solution space. Thus, they usually work with large populations

We see here that the

279

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

and a large number of runs. If we increase those values we will observe some
performance improvement, i.e. with 100 runs as before but now with a population of 500
instead of 8. However, before doing so it will be convenient to adjust the program
gaportfol3.m to widen the pool of best couples as we will see in the next section.

6.3 Selecting More Than One “Best” Couple

 In the program gaportfol3.m we introduced randomness in the
initialization of the population and in the selection of parents. However, we kept
using the same procedure we used in the previous programs for the process of
parents selection, that is, we just selected the couple with the highest criterion
value to give birth to the entire new generation. However, to make a better use of
the random selection of parents process introduced in the previous section, that is,
to widen the search space of an optimum thus reducing the changes of being
trapped in a local optimum, it may be convenient to obtain the new generation of
children from more than just one couple. This can be accomplished, for example,
by extending the range of the children’s generation loop in the “mutation of
children chromosome strings” section from program gaportfol3.m

 for h = 1:2:popsize;

ely to include also the calls to
the parentsrand and crossover functions.

% mutation of children chromosome strings

 child0mut = mutation(pmut,clen,child0);
 genenew(h) = child0mut;
 child1mut = mutation(pmut,clen,child1);
 genenew(h+1) = child1mut;
 end

to make it cover the two previous sections also, nam

280

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

for h = 1:2:popsize;
 % selection of parents;

= parentsrand(fit,popsize,genepool);
 parent1 = parentsrand(fit,popsize,genepool);

 % crossover of parents’ chromosome strings

 [child0,child1] = crossover(clen,parent0,parent1);

 % mutation of children chromosome strings
 child0mut = mutation(pmut,clen,child0);
 genenew(h) = child0mut;
 child1mut = mutation(pmut,clen,child1);
 genenew(h+1) = child1mut;

experim nt with program gaportfol4.m, which incorporates this change, and for
100 runs with a population of 500.

 parent0

 end

With this change, at each pass of the loop, each “best” couple randomly

selected in the “selection of parents” section will give birth to only two children
who in time will experience mutations. Figure 12.6 below shows the result of an

e

281

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

0 10 20 30 40 50 60 70 80 90 100
0.15

0.2

0.25

0.3

0.35

0.5

0.4

0.45
w2

Runs

W
ei

gh
ts

w1

w3

0 10 20 30 40 50 60 70 80 90 100
9.415

9.42

9.425

9.43

9.435

9.44

9.445

9.45

9.455

Runs

 see that the performance improves in the sense that the w ights and
the crit

C
rit

er
io

n

Figure 12.6 Example with Many “Best” Couples

 We e

erion values follow a more discernible pattern, but it is still more unstable
than in Figures 1 and 2. However, as we said above, the risk of being trapped in a
local optimum in the case a number of them exists is expected to be lower.

282

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

7. A More Difficult Portfolio Problem

So far we have been working with a Markowitz type portfolio
problem with a quadratic criterion function. This is by nature a

. However, genetic algorithms are usually
s, that may have a number of local

e difficult for local optimization methods such as gradient or Newton
al optimization methods such as genetic

 In the previous convex problem the criterion (fitness) value was the mean

it minus the
okerage fee.

d

portfoli

 with the fitnessnc function. This function has two
main parts. The first one, dealing with the portfolio redistribution, is shown
below.

optimization
convex problem with a single optimum

 to solve more complex problememployed
optima and b
methods to solve, but easier for glob
algorithms.30

return (revenue) minus the variance cost, ignoring the brokerage cost for
purchasing equities. In this problem we change that to the prof
variance cost where the profit is the mean return less the br
Moreover we use a realistic form of the brokerage fee that includes both a fixe
and a marginal cost for the purchase of each type of equity. This has the effect of

ber of making the average cost of purchasing equities decline with the num
equities purchases and this in turn raises the possibility that the optimization
problem may have local optima. Also we have imposed the restriction that the
individual must purchase a percentage above some lower bound of each type of
equity. Thus if the selection of parents, crossovers and mutations generate a

o in which one or more equities are below the lower bound this amount is
reset to zero and the small amount is redistributed to the other stocks.

The code itself for this second problem is similar to that for the problem in
the previous section with the exception of the fitness_gaportfol function
which will now be replaced

30 For some other approaches to global optimization see Goffe (1996) and Tucci (2002).

283

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

function [fit,b
fitnessnc(pwm,mu,popsize,beta,sigma,num);

estind,bestfit] =

acum = acum + pwm(i,j);

 end

 for i =
 if c nter
 if cond(i,j) == 1;
 pwm(i,j) = pwm(i,j) + (acum / counter);
 nd
 end
 end

end

 here is a main loop, running across portfolios from 1 to popsize - the
population size and t h portfolio from 1 to num - the

 as
ith the sam dimensions as the variable pwm. It is initialized with

ones an

lio whose amount is above the lower bound.
The variable acum will contain the accumulated amount of stocks below the lower bound
in each portfolio.

% Portfolio Redistribution
for j = 1:popsize;

 cond = ones(num,popsize);
 counter = num;
 acum = 0;

 for i = 1:num;
 if pwm(i,j) < 0.1

 pwm(i,j) = 0;
 cond(i,j) = 0;
 counter = counter - 1;
 end

1: num;
ou > 0

e

T for

wo inside loops running across eac -
number of equities. The main loop begins by defining three auxiliary variables that will
be reset at each pass of the loop through each portfolio. The variable cond is defined
comprised of ones and w e

d will be used to mark with ones those equities whose amount is above the
allowed lower bound and with zeroes otherwise. The variable counter will be used to
count the number of equities in each portfo

284

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

 lio is

io is decreased in one unit.
The second inside loop begins by checking that the variable counter is different

from zero to la conditional statement checks
f the correspo the lower bound. In

ding proportional am

% Computation of portfolio returns and best portfolio
fc = 0.2 * ones(1,num);
mc = 0
pret = pwm' * mu;

wm(:,j);
end
for j
 pbrok(j) = fc * cond(:,j) + mc * pwm(:,j);

bestind = pwm(:,topi);
bestfi

fc = 0.2 * ones(1,num);
mc = 0

Thus in these vectors we allow for different fixed costs and marginal costs for the
various types of equities. However, we have treated these costs as the same for

The first inside loop follows. When the amount of an equity in the portfo
below the lower bound - set to 0.1 in the present example - that amount is accumulated to
be later redistributed. Then, that equity’s participation in the portfolio is set to zero and
marked with a zero in its corresponding location in the cond matrix. Finally, the counter
of the number of equities above the lower bound in the portfol

ter avoid a possible division by zero. Then a
i
th

nding equity is marked with a one, thus being above
is case, the correspon ount of previously accumulated stocks to be

redistributed is added to that equity.
 The second main part of the function, dealing with the computation of portfolio
returns and the selection of the best portfolio is shown below. It is very similar to the
fitness_gaportfol function corresponding to the convex example, with some minor
differences.

.05 * ones(1,num);

for j = 1:popsize;
 pvar(j) = 0.5 * beta * pwm(:,j)' * sigma * p

= 1:popsize;

end
fit = pret - pvar' - pbrok';
[top topi] = max(fit);

t = top;

 The first difference is that it is necessary to define vectors of fixed and

marginal cost terms for the brokerages fees. This is done in the initialization
section of the function with the statements

.05 * ones(1,num);

285

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

across equities in the present example. We have purposely made the fixed cost
relatively large lihood that the problem will have local
optima. Then st for each portfolio with the loop

here pwm is the matrix containing each vector of portfolio weights and where

cond is t
quities above the lower bound and zeros otherwise. Thus, the fixed cost will be

charged on portfolios above the lower bound only. Finally, as in the
fitness_gaportfol function, we compute the fitness of each individual (now
including the brokerage cost) and select the fittest one.

aportfol4.m, we have to replace the previous fitness_gaportfol function

 the result of running the program gaportfol5.m.

 in order to increase the like
 we compute the brokerage co

for j = 1:popsize;
 pbrok(j) = fc * cond(:,j) + mc * pwm(:,j);
end

w
he matrix containing each vector of portfolio marks, with ones for

e

To solve this nonconvex example we use a modified version of the
program gaportfol4.m, which we will name gaportfol5.m. In the
“computation of fitness function and fittest individual” section of the
g

call with the statement

[fit, bestind, bestfit] =

 fitnessnc(pwm,mu,popsize,beta,sigma,num);

Figure 12.7 shows

286

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

0 10 20 30 40 50 60 70 80 90 100
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Runs

W
ei

w1

gh
ts

w2

w3

0 10 20 30 40 50 60 70 80 90 100
8.775

8.78

8.785

8.79

8.795

8.8

8.805

Runs

C
rit

er
io

n

change

Figure 12.7 Nonconvex Problem

 The results are similar to those shown in Figure 12.6. However, they may

 significantly if we introduce substantial changes in the fixed costs and/or
in the equities lower bound.

287

Chapter 12 Genetic Algorithms and Portfolio Models in MATLAB

8. Experiments

Just as in the Portfolio Model chapter, the simplest experiments with this
genetic algorithm code are to change the means and/or variances of the portfolio
and/or the brokerage costs and see how the weights of the best portfolios change
in response. Another simple experiment would be to change the number of model
iterations and/or population size to see how this affects the outcome.

A more interesting set of experiments will be to introduce further
refinements in the code to move closer to the actual practice in the field of genetic
algorithms. A first refinement would be to introduce mutations in more than one
bit in the children’s chromosomes in the mutation function. A second
refinement would be to introduce more than a single crossover point in the
crossover function.

9.

For financial applications, see Bauer (1994).

Further Reading

A classic reference in the genetic algorithm literature is Goldberg (1989).

288

Chapter 13

mic models study the behavior of economic systems from an
aggregate point of view. They try to capture the interdependence between consumption
and investment expenditure, fiscal and monetary policy variables, the price level, the
aggregate supply and the level of employment. From a modeling point of view, we can
say that there are three main classes of macroeconomic models: standard models, rational
expectations models and intertemporal optimization models. Standard models like the
one used in this chapter, which are also known as IS-LM models, specify aggregate
relationships to explain the behavior of macroeconomic variables. Also, they usually

sume

, those agents are assumed to make use of all the available information,
including the model of the economy that policymakers use to model their behavior.
Finally, intertemporal optimization models share with rational expectations models the
same assumptions in connection with expectation formation, but try to base their
modeling of macroeconomic behavior on more explicit “microfoundations”.
 IS-LM models are the backbone of almost all introductory and intermediate
macroeconomics textbooks and have been for a long time the main workhorse in the field
f empirical macroeconomics, as is the case, for example, of the Fair model

Macroeconomics in GAMS31

 Macroecono

as that economic agents form expectations in an adaptive way. Rational
expectations models also work with aggregate relationships, but they assume that the
economic agents display forward looking behavior. That is, in order to form
expectations

o

31 This chapter draws extensively on both the verbal and the mathematical development in Mercado,

Kendrick and Amman (1998). Kluwer Academic Publishers have kindly granted us permission to reuse

here substantial materials from our previously published paper.

289

Chapter 13 Macroeconomics in GAMS

(http://fairmodel.econ.yale.edu/).32 An example of a well-known rational expectations
model is the Taylor (1993) model. Finally, intertemporal optimization models are still
relatively small and are not used very much in large scale empirical applications or policy
analysi

ssumption regarding expectations formation. For example, models with backward
looking expectations, like those in the standard-type IS-LM model to be presented in this
hapter, are solved using a given set of initial conditions for the lagged variables and

not the
e

1. Th

l

my together with an
“expectations augmented” Phillips Curve, that is, the aggregate supply. The Hall and
Taylor model contains the equations, variables and parameters listed below.

Equations
IS-LM
(1) GDP identity

s. They are mainly used for teaching at the graduate level, for experimental
purposes or for policy analysis exercises at a relatively small scale. One of the most
influential models of this type is the one by Rotemberg and Woodford (1997).
 The solution methods of the models mentioned above critically depend on the
a

c
paths for policy and exogenous variables. As we will see later in the book, this is
case for rational expectations and intertemporal optimization models, since they share th
assumption of forward looking behavior and present what is technically known as “two-
point boundary value problems”. To be solved they require both initial and terminal
conditions or specific iterative procedures.

e Hall and Taylor Model

In this chapter we will introduce the Hall and Taylor (1997) model, a well known

textbook standard model, and we will illustrate how to represent and simulate this mode
in GAMS. This is a twelve-equation nonlinear dynamic model for an open economy with
flexible exchange rates. It is well suited to teach simulation and policy analysis at the
undergraduate level. The core of this model can be seen as a standard IS-LM-Open
Economy sub-model for the aggregate demand of the econo

Y C I G X= + + +
()1dY t= − (2) Disposable Income Y

(3) Consumption
(4) Investment

dC a bY= +
I e dR= −

32 The antecedents of these models go back to the work of Keynes (1936) and Hicks (1937).

290

Chapter 13 Macroeconomics in GAMS

M P kY hR= − (5) Money Demand

Expectations Augmented Phillips Curve

) Expected Inflation 1 2
eπ απ βπ− −= + (6

(7) Inflation Rate (){ }NN
e YYf 1 −+= −ππ Y/

()1 1P P π−= + (8) Price Level

Foreign Account
(9) Real Exchange Rate WE P P q vR= +
(10) Net Exports WX g mY nE P P= − −

Government Deficit and Unemployment
(11) Government Deficit dG G tY= −

(12) Unemployment Rate (){ }N N NU U Y Y Yµ= − −

Endogenous Variables Policy Variables
C : Consumption G : Government Expenditure

X ployment

; e = 1000; f = 0.8; g = 600; h = 1000; k = 0.1583;
 = 0.1; n = 100; q = 0.75; t = 0.1875; v = 5; α =0.4; β =0.2; µ = 0.33;

E : Nominal Exchange Rate M : Money Stock
 (foreign currency / domestic currency)
Gd: Government Deficit
I : Investment
P : Domestic Price Level
R : Real Interest Rate Exogenous Variables
U : Unemployment Rate P : Foreign Price Levw el

 : Net Exports UN: “Natural” Rate of Unem
Y : GDP YN: Potential GDP
Yd: Disposable Income
π : Inflation Rate
πe : Expected Inflation

Parameters
 a = 220; b = 0.7754; d = 2000
m

291

Chapter 13 Macroeconomics in GAMS

The model is dynamic - all variables without subscripts correspond to time “t”,

al shocks may affect real variables in

 (1) is an
s the sum of its main components:

 and net exports (exports minus imports).
 GDP net of taxes. Eq. (3) is a standard

rrent income. Eq. (4)
 Eq. (5)

and for
ative function of the interest rate (the opportunity cost of

ng assets).
s augmented Phillips curve. Eq. (6)

gives the expected inflation as tion in the last two periods
sitive function of the expected

al GDP in the previous year
eated economy thus inflationary

ationary pressure. Eq (8) just defines
ction of the price level the previous year and the inflation rate.

inal
n increase
rency. Eq. (9)

e times the domestic price
level divided the forei the interest rate. Thus, for

st rate (implicitly assuming that the interest rate in
e) will cause capital inflows and an appreciation of
 as a function of GDP and the real exchange rate.

le exports do not change as much.
hange. The real exchange rate is the relative price between

s.
overnment deficit and the unemployment

f the model.

those with “-1” subscripts correspond to “t-1”, and so on. Also the model is nonlinear -
nonlinearities appear in equation (5), (8), (9) and (10). As we will see later, its dynamic
behavior displays the “natural rate” property: nomin
the short-run, but not in the long run.

Eqs. (1) to (5) are standard in most macroeconomics textbooks. Eq.

identity that states that GDP always equal
consumption, investment, government spending
Eq. (2) determines disposable income as equal to
consumption function in which current consumption depends on cu
determines investment as an inverse function of the real interest rate. Finally,
defines real money balances as a positive function of income (money dem
transaction purposes) and a neg
holding money instead of interest beari

 Eqs. (6) to (8) correspond to an expectation
 a function of the past infla

(years). Eq. (7) determines the inflation rate as a po
inflation rate and the GDP gap (the difference between actu

tential GDP). A positive gap means an overhand po
pressure. A negative gap means recession thus defl
the price level as a fun

Eqs. (9) and (10) are foreign account equations. Notice that the nom
 aexchange rate E is defined as foreign currency / domestic currency. Thus

(decrease) in E is a nominal appreciation (depreciation) of the domestic cur
determines the real exchange rate (the nominal exchange rag

gn price level) as a positive function of
example, an increase in the US intere
the rest of the world remains the sam
the dollar. Eq. (10) gives net exports
Changes in GDP affect the demand for imports whi
Thus net exports will c
domestic and foreign products. Thus its changes will affect imports and export

Finally, Eqs. (11) and (12) give the g
rate, and they have not feedbacks on the rest o

292

Chapter 13 Macroeconomics in GAMS

It is usual to develop a compact graphical representation of a model like this in
ate supply graph. To

0), then Eqs.
 the resulting equation for the interest rate we

3)

two graphs: and IS-LM graph and an aggregate demand-aggreg
derive the IS schedule we substitute Eq. (2) into Eq. (3), Eq. (9) into Eq. (1
(3), (4) and (10) into Eq. (1). Solving
obtain

G
nvd

Y
nvd

mtb
nvd

nqgeaR
+

+
+

+−−
−

+
−++

=
1)(1 (1

 This equation shows R as a function of Y (given G) and represents all the
combinations of interest rate and income for which spending balances. To derive the LM

lve for R Eq. (5), obtaining schedule we just so

(14)
Phh
MYkR 1

−=

as a function of Y (given M and P) and represents all
ome for which the money market is in equilibrium.

edules in the (R,Y) space is shown in
es, the IS curve will be downward slopping

. The intersection of the two schedules
d income.

This equation also shows R
combinations of interest rate and inc
Finally, the graphical representation of both sch
Figure 13.1. Given the model coefficient valu
and the LM curve will be upward slopping

andetermines the equilibrium interest rate

 IS LM

Y

R

RO

YO

Figure 13.1 IS-LM Graph

293

Chapter 13 Macroeconomics in GAMS

The aggregate demand (AD) schedule represents the IS-LM part of the model in a
ople will

g Eqs. (13) and (14) and
e result, given the values of the model coefficients, is a downward slopping nonlinear

e 13.2. The aggregate supply
Eqs. (6), (7) and (8). To

pture its behavior, we represent it in the (P,Y) space by means of two lines. The YN
atural”
rizontal

e terms. An increase in the money
pply will bring about disequilibrium in the money market, shifting the LM schedule to

different space: the price level (P) and income (Y) space. It shows how much pe
demand at a given level or prices. It can be obtained combinin
th
schedule with P as a function of Y as shown below in Figur
is an Expectations Augmented Phillips Curve embodied in
ca
vertical line represents the long-run aggregate supply that is the potential or “n
income level, which is assumed to be constant in the short-run. Finally, the ho

e or “price line” (P) represents the short-run aggregate supply, which is supposed to be lin
perfectly elastic, though in other textbook presentations it is assumed to be upward
slopping. Figure 13.2 shows the graphical representation of aggregate demand and

pply. su

P AD YN

 YYO

PO P

Figure 13.2 Aggregate Demand - Aggregate Supply Graph

The analysis of the effects of an increase in the money supply (M) will help us to

understand the workings of the model in qualitativ
su
the right, thus bringing down R and increasing Y. This implies that the AD schedule also
shifts to the right, as it is shown in Figure 13.3.

294

Chapter 13 Macroeconomics in GAMS

295

Figure 13.3 Qualitative Effects of an Increase in the Money Supply

 prices are sticky, thus the economy moves from point A to point
. However, in the medium run, since there is a positive GDP gap, the inflation rate

becomes positive and prices begin to increase, as can be seen in equation (7).

(7) Inflation Rate

In the short run

B

(){ }1 /e
N Nf Y Y Yπ π −= + − .

This process continues given that agents’ expectations will change due to past changes in
the inflation rate, as shown in equation (6).

(6) Expected Inflation 1 2

eπ απ βπ− −= + .

As prices increase, real money balances decrease (see equation (5) below) shifting the
LM schedule to the left.

(5) Money Demand M P kY hR= − .

Finally, the economy moves from point B to point C. We can see then that the increase
in the money supply was neutral in the long-run with respect to real variables, but not in
the short-run.

R IS LMo P AD0 YN

YYO

P0

AD1

P1

A

C

B

LM1

RO

PO

YYO

Chapter 13 Macroeconomics in GAMS

2. The Hall and Taylor Model in GAMS

Different strategies can be fo is confronted with the problem of
solving and performing policy experiments with a model like this. In the following, we
will review some of t

Usually, the first step in the analysis of a model like Hall and Taylor’s is to find
e steady-state values of the endogenous variables for a given set of constant values of

ver

the

he chapter

ods

le such notation. Finally,
e list below does not include all the variable names or equations names that are in

llowed when one

hem.

th
the policy and exogenous variables. This requires the transformation of the model from
dynamic to static. Solving a nonlinear system of equations, even when it is static, is not
easy. In general, we have to rely on numerical techniques which may or may not deli
a solution, even if it exists, depending on the initial conditions provided. However, the
model of our interest does not contain many or very strong nonlinearities, making
task of finding a solution relatively easy.

To solve for the steady-state, we have to eliminate all time subscripts and solve
the resulting static nonlinear model. This does not present any challenge to GAMS users,
even for beginners. Since this model is relatively straightforward we will not discuss it
further here but rather turn our attention to the dynamic nonlinear model that is of greater
interest. The file for this model is htsim.gms on the web site. It is also contained in
Appendix 11A at the end of this chapter. We will discuss here in the body of t
two unusual aspects of the GAMS representations of this model. However, before doing
so it is useful to look at the main SET specification of the model, namely

SETS T EXTENDED HORIZON / 0*15 /

Thus the model includes sixteen time periods – zero, one, two through fifteen. Also,
keep in mind that GAMS is not case specific and one will find the set of time peri
specified in the GAMS statement at times as T and at other times as t; however they are
the same.

Next we consider the way the dynamic variables and equations of the Hall and
Taylor model are represented in GAMS. This is shown below. Note that to avoid
notational conflicts in the GAMS statement, the mathematical parameters e, g, m and t
have been renamed as ee, gg, mm and tax, respectively. Also, variables and parameters
names denoted with Greek symbols in the mathematical statement of the model will be
renamed in the GAMS statement, since GAMS does not hand
th ing

296

Chapter 13 Macroeconomics in GAMS

the GAMS version of the model, but rather only a few. The list below does however,
ontain all the equations.

(t) gdp

 ...

+2) =E= q + v * R(t+2) ;
eq10(t+2).. X(t+2) =E= gg - mm*Y(t+2) - n*(E(t+2)*P(t+2)/Pw(t+2));

, the

and the

s
pi(t-2) -1 -2 t

c

VARIABLES
Y
Yd(t) disposable income

EQUATIONS
eq1(t) gdp identity
eq2(t) disposable income
 ...;

eq1(t+2).. Y(t+2) =E= C(t+2) + I(t+2) + G(t+2) + X(t+2) ;
eq2(t+2).. Yd(t+2) =E= (1 - tax) * Y(t+2) ;
eq3(t+2).. C(t+2) =E= a + b * Yd(t+2) ;
eq4(t+2).. I(t+2) =E= ee - d * R(t+2) ;
eq5(t+2).. M(t+2) / P(t+2) =E= k * Y(t+2) - h * R(t+2) ;
eq6(t+2).. piex(t+2)=E= alpha * pi(t+1) + beta * pi(t) ;
eq7(t+2).. pi(t+2) =E= piex(t+2) + f*(Y(t+1)-Yn(t+2))/Yn(t+2) ;
eq8(t+2).. P(t+2) =E= P(t+1) * (1 + pi(t+2)) ;
eq9(t+2).. E(t+2) * P(t+2) / Pw(t

eq11(t+2).. Gd(t+2) =E= G(t+2) - tax * Y(t+2) ;
eq12(t+2).. U(t+2) =E= Un(t+2) - mu*(Y(t+2)-Yn(t+2))/Yn(t+2) ;

Notice that all variables and equations are defined over the set t. However

model equations are specified over the set t+2 and contain variables defined over the
sets t+2, t+1 and t, instead of following the corresponding original indices t, t-1 and
t-2 respectively. This is due to the way in which GAMS handles the assignment of
values to lagged variables.

For example, we could define the set t as:

SETS t /0,1,2,3/

n write equation 6 with time subscripts as in its original formulation:

eq6(t).. piex(t) =E= alpha * pi(t-1) + beta * pi(t-2) ;

Then, when solving the model, GAMS would assign the default value zero to expression
like pi(t-1) and , since and do not belong to the set . Therefore, we

297

Chapter 13 Macroeconomics in GAMS

would not be able to assign to the inflation rate initial values other than zero, even if we
wished to do s

Thus, when de ng lagged variables in GAMS, we follow
the following rule of t or a solution horizon of duration t, specify equations
starting from the longe . lor’s model, the longest lag is equal to 2.
Notice how we e aining lags - eqs. 6, 7 and 8 - where we

 subscripts equal to t, t+1 and t+2. At the same time, in equations
ables have subscripts equal to (t+2). By operating in this

way we “keep” the first two time periods (t and t+1) free to assign initial values and let
GAMS find a solution for the remaining periods. More details on this are provided in
Append

aylor’s model, besides
defining – as we did above – the extended horizon for simulations, we have to provide
initial conditions for output and inflation.

SETS t EXTENDED HORIZON / 0*15 /

bsets t0 and t1 and assign to them, respectively, the
first and second elements of the t set - that is, the elements in the “ordinal 1” and

S statement

can be read as “assign to the set t0 the elements of the set t such that the ordinal position
f elem r in GAMS can be read as a “such that”

o.
aling w iniith models conta
humb: f
st lag

the model equations cont
 In Hall and Tay

 wrot
have variables with
containing no lags, all vari

ix D.
To complete the GAMS specification of Hall and T

 t0(t) PERIOD ZERO
 t1(t) PERIOD ONE;
 t0(t) = YES$(ORD(t) EQ 1);
 t1(t) = YES$(ORD(t) EQ 2);

With this specification, we are defining a fifteen-period time index as the set t.

Then, we declare and define the su

“ordinal 2” places. Thus the GAM

 t0(t) = YES$(ORD(t) EQ 1);

o ent is equal to one”. Thet $ operato
operator in this context.

 The specification for the sets t0 and t1 used above is useful in case one decides
to change the extension of the simulation horizon, since we would not have to change the
definition of the initial conditions subsets.

298

Chapter 13 Macroeconomics in GAMS

In the same way, we can also define terminal conditions subsets. These
conditi ls containing rational expectations, as we will see
later in
last per writ for example, tf(t) and tf1(t)
- of the

);
 = YES$(ORD(t) EQ (CARD(t) - 1));

where, as before, ORD(t) means “ordinal” and where CARD(t) means the cardinality, i.e.

ext we turn our attention from the specification of the dynamics of the model in
GAMS

vels.

 the statements that are used for monetary policy. They are

s for shock 1 / 4*15 / ;

that cre over which the policy change is defined and

Mper(TS1) = 0.0 ;

that sets the percentage change. Thus to create a solution where the money supply is 3
percent above the base level in periods 4 thru 15 one would modify the statement above
to

Mper(TS1) = 0.03 ;

Alternatively, the user might want to have two periods in which the policies were above
and then below that the base level. This would be done by first creating the two sets of
time periods with GAMS statements of the form

SETS
TSPER1(T) Quarters in period 1 / 5*8 /
TSPER2(T) Quarters in period 2 / 10*13 / ;

ons become necessary in mode
 the book. For instance, terminal conditions for the last and the previous-to-the-
iod can be ten by defining two new subsets -
 set and then at dding the following two expressions:

tf(t)
(t)

 = YES$(ORD(t) EQ CARD(t)
tf1

the number of elements in the set.
 N

 to the specification of the policy variable time paths. This is unusual in that the
policy variables are specified in percent deviations from base levels rather than in le
This is accomplished by providing statements which set the percent difference. An
example is

SETS
TS1(T) period

ates a set TS1

299

Chapter 13 Macroeconomics in GAMS

Follow

Mper(TSPER2) = -0.02 ;

Then the money supply would be 3 percent above the base level in quarters 5 thru 8 and 2
percent below the base level in quarters 10 thru 12. However, when doing this be careful
not to use quarters beyond those included in the set T.

The initial conditions for output and inflation are defined as:

 Y.fx(t1) = ini1; Pi.fx(t0) = ini2; Pi.fx(t1) = ini3;

where t0 and t1 mean “period 0” and “period 1” respectively, “.fx ” tells GAMS to
keep the assigned values fixed during the execution of the program and ini1 to ini3 are
given initial values.
 In this model, in order to solve a system of equations in GAMS, it will be
necessary to add an additional variable (J) and an additional equation (JD) and to

d variable. Thus the SOLVE statement will be

lso, since the model contains indexed equations a stacking method is used in GAMS as
uss ce Hall and Taylor’s is a nonlinear model, we have

to invoke a nonlinear programming (NLP) solver. For an introduction to this type of
solvers

licy
mic

solution

ition and then increase the money supply by 10%
and a s ernment
expenditure by 10%. Both increases are assumed to take place in period four and be
perman .4 shows the

lution paths for income, the inflation rate, the interest rate and the nominal exchange

ed by statements to set the percent deviations, i.e.
Mper(TSPER1) = 0.03 ;

maximize or minimize the adde

 SOLVE NONLDYN MINIMIZING J USING NLP;

A
disc ed in Appendix H. Finally, sin

 see Appendix F.
To perform simulations with this model we change the values of the po

variables or the parameter values, as discussed above, and compare the different dyna
 paths obtained for the endogenous variables.
The graphical analysis we performed earlier gave us a useful representation of the

qualitative behavior of the key variables of the economy. However, to deal with more
variables and to obtain precise quantitative results, we have to simulate the model
computationally. Figure 13.4 displays the results of two experiments: a first experiment
where we start from an equilibrium pos

econd experiment where we start from equilibrium and we increase gov

ent, that is, once they happen they are not reversed. Figure 13
so

300

Chapter 13 Macroeconomics in GAMS

rate. The value of the variables between periods zero and three corresponds to the model
steady state values. The continuous line corresponds to the money supply experiment,
while the dotted line corresponds to the government expenditure experiment. GDP

values are in billions of dollars. For the real interest rate and the inflation rate a value of
0.01 corresponds to 1%. The nominal exchange rate values correspond to an index value
set equal to one in the steady state.

real interest rate (R)

0.1

0.12
GD P (Y)

6200

6300

5700

5800

5900

6000

6100

0 2 4 6 8 10 12 14

10% incr. in M 10% incr. in G

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10% incr. in M 10% incr. in G

inf lat io n (π)

-0.02

no minal exchange rate (E)

0

-0.01

0

0 2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

10% incr. in M 10% incr. in G

0.2

0.4
0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.8
1

1.2
1.4

10% incr. in M 10% incr. in G

Figure 13.4 Effects of a 10% increase in the Money Supply and in Gov. Expenditure

n observe how, as expected, the change in money supply has short-run but
o long-run real effects, while the change in government expenditure has short and long-

so see how the trajectories to the new equilibrium positions are
oscillat ,

The y policy can be seen in the
results in Fig. 4. Consider the case where money supply is increased by 10% as is shown
in the solid lines. This has the effect at first of decreasing the interest rate as in shown in
the upp r t rate in turn causes an increase in

vestment and therefore GDP as shown in the upper left hand graph. As GDP increases
above p

We ca

n
run real effects. We can al

ory with temporary over and under-shooting of the final equilibrium positions.
 essential elements of the function of monetar

er ight diagram. The decrease in the interes
in

otential, inflation increases as shown in the bottom left hand graph. The increase

301

Chapter 13 Macroeconomics in GAMS

in inflation raises the price level and this has the effect of decreasing the real money
supply in the money demand equation

(5) M P kY hR= − .

This in

te then decreases investment and
erefore GDP begins to fall in period 5 as shown in the upper left hand graph. This

potential GDP level and inflation
returns to zero.

ential GDP, or a change in the foreign price level.33 You
ay also want to change the tax rate, which in the program is defined as a scalar, or any

other model parameter.34
Having learned how to perform model simulations, we can now move to the realm

of optimal policy analysis. This analysis is, in a way, the reverse of simulation. Instead
of determining the paths of the endogenous variables given values for the policy

 turn causes an increase in the real interest rate beginning in period 5 as shown in
the upper right hand graph. The rise in the interest ra
th
oscillatory process continues until GDP returns to the

In the GAMS program htsim.gms you will also find ways of changing more
policy or exogenous variables to perform other experiments. For example, you will be
able to simulate a change in pot
m

33 If you change the foreign price level, you will notice that the nominal exchange rate also changes in an

opposite and neutralizing way so that nothing else happens. From Eq. (9) we know that the real exchange

rate is determined by the interest rate. We also know that the domestic price level is sticky in the short run.

Thus a change in the foreign price level has to be compensated by a change in the nominal exchange rate.

You will observe a similar behavior, but in the long run, in the case of a change in the money supply. Since

this change affects the domestic price level but not the real interest rate in the long run, thus the nominal

exchange rate will change to compensate the change in the domestic price level. Only in the case of a

permanent change in the real interest rate (i.e. due to a change in government spending) will the nominal

exchange rate and the domestic price level not move in a compensatory way.
34 Hall and Taylor’s textbook comes with a “black box” software named Macrosolve which allows you to

perform experiments with the model changing some policy or exogenous variables. The GAMS program

presented in this chapter replicates many results from Macrosolve. A change in the tax rate, since it is a

model parameter, will change the steady-state solution of the model, as would be the case with any other

model parameter such as the marginal propensity to consume, etc. However, for the particular experiment

of changing the tax rate, Macrosolve gives steady-state invariant results. Our GAMS program doesn’t.

Thus, for that particular experiment, in case you wish to compare results, you will find that they differ.

Notice that there is nothing wrong in one case or the other, just two different simulation methods.

302

Chapter 13 Macroeconomics in GAMS

variables, we now want to determine the optimal path for the policy variables given target
target variables. This can easily be done by adding a loss
o the model and by redefining the policy variables of

interest as endogenous variables. For example, in the GAMS statement above, we can
ing quadratic loss function for the previous JD equation and the Loss

variable for the previous J variable, i.e.

Loss.. Loss =E= 0.5 * sum(t, Wy * POWER((Y(t)-Ytar(t)), 2)
ER((P(t)-Ptar(t)), 2);

here Ytar and Ptar are pre-specified target values for output and the price level and

ights on the deviations from target values of output and the price

ome normalization on the
weig
from ual to 1 and then obtain the corresponding normalized Wp

, or Wy = 1 and Wp =
1800000, etc. For a full discussion of weighting procedures see Park (1997).

If we now redefine, for example, the money supply M(t) as an endogenous
ble “Loss”, we will

obtain the corresponding optimal path for M(t). This is a typical and basic experiment in
 this analysis can be made more sophisticated in a variety of

so, it may be convenient to move from GAMS to a more specialized software such as
Duali. We will do that later in this book.

f

paths and relative weights for
uation tfunction as an extra eq

substitute the follow

eq
 + Wp * POW

w
where Wy and Wp are we
level respectively.

Since the variables entering the loss function (GDP and the price level) are
red in different units, it is convenient to impose smeasu

hts. For instance, if Ytar is 6000 and Ptar is 1, then to equally penalize deviations
 target we could set Wy eq

as:
Wp = 60002 / 12 = 3600000.

 Then, if we decide to penalize deviations from Ytar twice as much as for
= 2 and Wp = 3600000deviations from Ptar, we will choose Wy

variable and we ask GAMS to solve the model minimizing the varia

policy analysis. However,
ways, for example by introducing stochastic elements and learning mechanisms. To do

3. Experiments

In this chapter we simulated the effects of permanent changes in the money
supply and in government expenditure. You may want to simulate temporary changes,
that is, changes that last for only a few periods. To be acquainted with the dynamics o

303

Chapter 13 Macroeconomics in GAMS

the Hall and Taylor model, you should continue performing simulations of shocks to th
model exogenous variables, i.e. potential GDP or the foreign price level, asking yourself
if the observed effects make economic sense.

e

o the
s,

so that it becomes

You may want to expand the model allowing for shocks to the domestic price
level. This price shock may have different sources: changes in the price of an input t
economy (i.e. oil), a wage increase passed on by firms in the form of increased price
etc. You can represent it as an exogenous variable Z added to Eq. (7)

 (){ } ZYYYf NN
e +−+= − /1ππ

 hus, this shock will be a shift factor in the short-run aggregate supply or
horizon perly introduce this new variable in the GAMS

have to define it as a parameter in the same fashion as we did potential
GDP or the foreign price level and add it to the corresponding equation. You may want
to try experiments in which this variable changes only temporarily. Notice also that this
variable will be implicitly defined in percentage changes and not in levels.

Also, you may try to introduce changes in the model policy variables in order to
counteract shocks to exogenous variables to bring the economy back to the initial
quilibrium position, particularly in connection with the values of real variables. This is

a rudim
erform a more sophisticated policy analysis shocking the economy with diverse shocks

T
tal price line. Notice that to pro

program you will

e
entary but useful way of undertaking policy analysis. Finally, you may want to

p
and working with a loss function as suggested at the end of this chapter, or you may
decide to move on to the Macroeconomics in Duali chapter in this book where that kind
of analysis is performed with a more specialized software.

304

Chapter 13 Macroeconomics in GAMS

Appendix 13A

Hall and Taylor in GAMS

$TITLE htsim: HALL-TAYLOR SIMULATION
OPTION
OPTION
OPTION LIMCO
OPTION SOLPRINT = OFF;
$OFFSY

* SECTION 1 : DEFINITION OF PARAMETER VALUES FOR THE ORIGINAL
* NONLINEAR HALL-TAYLOR MODEL

.1875 /
v

eff. on 2 lagged inflation / 0.2 /
mu elast. of empl. wrt GDP / 0.33 / ;

**
 DEFINITION OF TEMPORAL HORIZON FOR SIMILATION
**

* If y

 T1(T) = YES$(ORD(T) EQ 2);
 DISPLAY T0, T1;

 SYSOUT = OFF;
 LIMROW = 7;

L = 0;

MXREF OFFSYMLIST

SCALARS
a minimum consumption / 220 /
b marg prop to consume / 0.7754 /
d interest elast of invest. / 2000 /
ee maximum investment / 1000 /
f coeff. on excess aggr dem. / 0.8 /
gg maximum net exports / 600 /
h interest elast of mon dem. / 1000 /
k income elast of money dem. / 0.1583 /
mm income elast of net exp / 0.1 /
n real ex rate elast of net exp / 100 /
q constant / 0.75 /
tax tax rate / 0

 constant / 5 /
alpha coeff. on 1 lagged inflation / 0.4 /
beta co

*
* SECTION 2:

ou change the extension of the horizon, make the necessary
* adjustments in the section of shocks' definition (Section 3)

SETS T EXTENDED HORIZON / 0*15 /
 T0(T) PERIOD ZERO
 T1(T) PERIOD ONE ;

 T0(T) = YES$(ORD(T) EQ 1);

305

Chapter 13 Macroeconomics in GAMS

* SECTION 3 : DEFINITION OF CHANGES IN POLICY AND EXOGENOUS VARIABLES

PARAME
* definition of policy and exogenous variables (in percentage changes)
Mper(T) money stock (in % change)
Gper(T) Gov. expenditure (in % change)
Ynper(T) potential GDP (in % change)
Pwper(T) foreign prices (in % change)
* definition of policy and exogenous variables (in levels)
M(T) money stock (in levels)
G(T) Gov. expenditure (in levels)
Yn(T) potential GDP (in levels)
Pw(T) foreign prices (in levels) ;
 default values for policy and exogenous variables
Mper(T

SETS
TS1(T) periods for shock 1 / 4*15 / ;
Mper(TS1) = 0.0 ;
**
* CHANGE IN GOVERNMENT EXPENDITURE
**
SETS
TS2(T) periods for shock 2 / 4*15 / ;
Gper(TS2) = 0.0;

hat the natural rate of

 unemployment remains the same)

Ynper(TS3) = 0.0;

ANGE IN FOREIGN PRICES

SETS
TS4(T) periods for shock 4 / 4*15 / ;
Pwper(TS4) = 0.0;
* Transformation of shocks in % changes into shocks in levels
M(TS1) = 900 * (1 + Mper(TS1)) ;
G(TS2) = 1200 * (1 + Gper(TS2)) ;
Yn(TS3) = 6000 * (1 + Ynper(TS3)) ;
Pw(TS4) = 1 * (1 + Pwper(TS4)) ;

TERS

*
) = 0 ; Gper(T) = 0 ; Ynper(T) = 0 ; Pwper(T) = 0 ;

M(T) = 900 ; G(T) = 1200 ; Yn(T) = 6000 ; Pw(T) = 1 ;

* CHANGE IN MONEY SUPPLY

* CHANGE IN POTENTIAL GNP (notice t
*

SETS
TS3(T) periods for shock 3 / 4*15 / ;

* CH

306

Chapter 13 Macroeconomics in GAMS

* reporting policy and exogenous variables values
PARAMETER REPORTEX POLICY AND EXOGENOUS VARIABLES VALUES;
 REPORTEX(T,"Money") = M(T);
 REPORTEX(T,"Gov. Exp.") = G(T);
 REPORTEX(T,"Pot. GDP") = Yn(T);
 REPORTEX(T,"Fgn Price") = Pw(T);

* SECTION 4: COMPUTATION OF SOLUTION

PARAMETERS
Un(T) natural rate of unemployment ;
Un(T) = 0.05 ;

VARIABLES

Yd(T) disposable income
C(T) consumption
I(T) investment
R(T) interest rate
P(T) price level
pi(T) inflation rate
piex(T) expected inflation rate
E(T) nominal exchange rate
X(T)

EQUATIONS
eq1(T)
eq2(T)
eq3(T) consumption
eq4(T) investment
eq5(T)
eq6(T)
eq7(T)
eq8(T) price level
eq9(T)
eq10(T) net exports
eq11(T) government deficit
eq12(T) unemployment rate
JD performance index ;

Y(T) gdp

 net exports
Gd(T) government deficit
U(T) unemployment rate
J performance index

 gdp identity
 disposable income

 money demand
 expected inflation
 inflation rate

 real exchange rate

307

Chapter 13 Macroeconomics in GAMS

JD..
=E= C) + I(t+2) + G(t+2) + X(t+2) ;

eq2(t+2).. Yd(t+2) =E= (1 - tax) * Y(t+2) ;

3(t+2).. C(t+2) =E= a + b * Yd(t+2) ;

eq6(t+2).. piex(t+2)=E= alpha * pi(t+1) + beta * pi(t) ;

eq7(t+2).. pi(t+2) =E= piex(t+2) + f*(Y(t+1)-Yn(t+2))/Yn(t+2) ;

eq8(t+2).. P(t+2) =E= P(t+1) * (1 + pi(t+2)) ;

eq9(t+2).. E(t+2) * P(t+2) / Pw(t+2) =E= q + v * R(t+2) ;

eq10(t

 U(t+2) =E= Un(t+2) - mu*(Y(t+2)-Yn(t+2))/Yn(t+2) ;

**
 In w

ts to a same variable undo the previous ones
**

* Guess of initial values for the solution algorithm.
 Wit oblem may be declared "infeasible"

 R.L(T+2) = 0.09 ; Y.L(T+2) = 6500 ; E.L(T+2) = 1.2; C.L(T+2) = 4500 ;

-state values for lagged endogenous variables

 J =E= 0 ;
eq1(t+2).. Y(t+2) (t+2

eq

eq4(t+2).. I(t+2) =E= ee - d * R(t+2) ;

eq5(t+2).. M(t+2) / P(t+2) =E= k * Y(t+2) - h * R(t+2) ;

+2).. X(t+2) =E= gg - mm*Y(t+2) - n*(E(t+2)*P(t+2)/Pw(t+2));

eq11(t+2).. Gd(t+2) =E= G(t+2) - tax * Y(t+2) ;
eq12(t+2)..

*
* hat follows, we assign initial variables' values and lower bounds
* WARNING: The order of declaration of assignments is very important
* Successive assignmen
*

* hout them, the pr
* That is, the algorithm will converge to a solution from some initial
* positions but not from others
* This is common in nonlinear problems

 I.L(T+2) = 900 ; X.L(T+2) = -100 ; Gd.L(T+2) = 75 ; U.L(T+2) = 0.07 ;
 Yd.L(T+2)= 4875 ; pi.L(T+2) = 0.1 ; piex.L(T+2)=0.2 ; P.L(T+2) = 1.1 ;

* lower bound for p, to avoid division by zero
 P.LO(T+2) = 0.0001 ;

* fixing initial steady
 P.FX(T1) = 1 ; pi.FX(T0) = 0 ; pi.FX(T1) = 0 ; Y.FX(T1) = 6000 ;

308

Chapter 13 Macroeconomics in GAMS

MODEL NONLDYN /eq1, eq2, eq3, eq4, eq5, eq6,

 eq7, eq8, eq9, eq10, eq11, eq12, JD / ;

SOLVE NONLDYN MINIMIZING J USING NLP;

* Reporting solution values
PARAMETER REPORTS SOLUTION VALUES IN LEVELS;
 REPO

 REPORTS(T,"Unemploy") = U.L(T);

* Showing final results
DISPLAY REPORTEX;
DISPLAY REPORTS;

RTS(T,"GDP") = Y.L(T);
 REPORTS(T,"Inflation") = pi.L(T);
 REPORTS(T,"Int.Rate") = R.L(T);
 REPORTS(T,"Exch.Rate") = E.L(T);
 REPORTS(T,"Gov.Def") = Gd.L(T);

309

Chapter 14

conomics.
f multiple heterogeneous agents interacting

omic agents has a long tradition in
nt-based modeling departs from it in a number of ways. For example,

eling a market economy, the standard neoclassical competitive general
equilibrium approach usually assumes that agents have fixed preferences, perfect and
comple

f

lly

 a number of more realistic characteristics and behaviors, i.e. changing
prefere

obert Axtell (1996). This is a
model designed to simulate a variety of social phenomena such as population dynamics,

 trade, group formation, combat and
transmi n

nd
res and

ell arrays that we will explain below - will suffice. However, more sophisticated
simulations may require the use of object oriented programming techniques, something
also available in MATLAB - see “MATLAB Classes and Objects” in the “Programming
and Data Types” section of the MATLAB help navigator - as well as in lower level object
oriented programming languages such as C++, C# or Java.

Agent-based Model in MATLAB

 Agent-based Computational Economics is one of the newer fields in e
Agent-based models simulate the behavior o
in a variety of ways. While the modeling of econ
economics, age
when mod

te information, no reproductive behavior, and also that trade is organized by a
central auctioneer that given all agents preferences and endowments computes the set o
equilibrium prices. Thus, agents are price-takers and do not engage in trade at prices
other than those given by the central auctioneer. Also space, that is geography, is usua
an absent dimension in that approach. In contrast, agent-based models allow agents to
display

nces, bounded rationality and memory, imperfect and incomplete information, and
local trade - agents may interact with neighbors in a geographically defined space and
prices emerge from these decentralized interactions.
 In this chapter we will introduce a famous agent-based model known as the
Sugarscape model, developed by Joshua M. Epstein and R

migration, interaction with the environment,
ssion of culture. We will learn how to represent and simulate the simplest versio

of this model in MATLAB. To do this, the knowledge of basic MATLAB operations a
data types - vectors and matrices, with the addition of data types named structu
c

310

Chapter 14 Agent-based Model in MATLAB

1. arscape Model: Introduction

 be
though cities located near one another like Dallas and Fort Worth in

exas or Minneapolis and St. Paul in Minnesota. There is an original distribution of

ers

at each location work with varying degrees of efficiency and thus have different costs.
hey thus require different levels of revenues in order to continue to make a profit. Their

profit e es to

 revenue location. However, some of the franchise owners scout longer distances
way fr ent store than others.

rscape model consists of two main elements: a terrain
where events unfold named “sugarscape”, which contains the spatial distribution of a
eneralized resource named “sugar” which can be thought of as the customer potential or

n

 metabolism level is like the profit of the enterprise in each period.
his profit is accumulated as wealth from period to period; however, if the wealth level

goes to e agent dies, i.e. goes out of business. Thus, the agents are
haracterized by a set of fixed states (genetic characteristics such as metabolism and

 is represented by a two-dimensional coordinate grid or lattice. At
very point of the grid given by the coordinates (x,y) there is a sugar level. Thus, we can
asily represent the sugarscape in MATLAB by means of a matrix. For example, if we

n

The Sug

The version of the classic Sugarscape model that we use in this chapter can
t of as two major

T
stores of a certain type in this terrain; for example, coffee houses such as Starbucks or
perhaps mailing and business services stores such as UPS Stores. The franchise own

T
ach period is added to their accumulated wealth; however, if this wealth go

zero the franchise is shut down. The surviving franchise owners each period look around
for a nearby location that would be more favorable and move the store if they find a
higher
a om their pres

More formally, the Suga

g
revenue level at that location. The agents have metabolism levels and must eat to
survive. This metabolism may be thought of as the cost of running the business in each
period. Thus the difference between the sugar that the agents obtain at their location i
each period and their
T

 zero in any period th
c
length of vision) and variable states (such as location and wealth) and move around the
sugarscape following simple rules of behavior.

The sugarscape
e
e
want to create and display a (50x50) sugarscape with a level of sugar equal to 4 units i
the southwest quadrant and a level of 2 units elsewhere, we can do it with the following
statements

 311

Chapter 14 Agent-based Model in MATLAB

for i = 1: 50;
 1: 50;
f (i >

for j =
i 25 & j < 25)

s(i,j) = 4;
else

s(i,j) = 2;
end

end
 end
 image(s);

In the statements above image(s) is a MATLAB function that displays the array s.

Figure 14.1 below shows the result, where the lighter region corresponds to the
value 4 and the darker region corresponds to the value 2.

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

Figure 14.1 Sugarscape with Two Levels of Sugar

present agents, we can use another data type available in MATLAB called a
structure. A structure is an array with “data containers” named “fields”. These fields can
contain any kind of data. For example, let’s assume that every agent is characterized by
two states: active, which signals if the agent is alive or not, with values equal to 1 and 0
respectively, and metabolism, that is the amount of sugar each agent has to eat per time
period to survive. The statements

To re

 312

Chapter 14 Agent-based Model in MATLAB

 str.metabolism = 4;

create t r containing two fields. If we use the statements

 ctive = 1;
 ism = 3;

then a_ with two fields. Let’s assume that we want to create and
display a random population of agents - say all those for whom the corresponding value
from a

the

nd < 0.2)

j).active = 1; %put an agent on this location

 else
str(i,j).active = 0; %keep this location empty

j).metabolism = 0;

end

ements we can create a structure with 2,500 elements, each with two
fields.

 we can do it with the
followi ve into the a
matrix, and where the MATLAB function spy(a) displays all the nonzero elements in
matrix

d
y(a);

a_str.active = 1;
a_

he simple 1x1 structure a_st

a_str(2).a
a_str(2).metabol

 becomes a 1x2 arraystr

[0,1] uniform distribution is lower than 0.2 - on a 50x50 grid. Also, we will
assume that there can only be one agent on each location. We can achieve this with
following statements

for i = 1:50;

50; for j = 1:
 if (ra
 a_str(i,

a_str(i,j).metabolism = 3;

 a_
a_str(i,

 end

end

With these stat

If we want to display the location of every agent on the grid,
ng statements, where we transfer the elements of the field acti

a.

for i = 1:50;
 for j = 1:50;
 a(i,j) = a_str(i,j).active;
 end
en
sp

 313

Chapter 14 Agent-based Model in MATLAB

The result, with a number of agents equal to 474, is shown in Figure 14.2 below,
where nz means the number of non-zero elements.

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 474
Figure

 troduced the basic building blocks of the Sugarscape model
and its LAB representation, we can move on to a more detailed presentation.

east portion of the grid, and the other in the northw t these two
mountains are symmetric. Thus, for a 50x50 grid, we will assume that one peak of the
sugarscape is approximately on the (0.75 * 50, 0.25 * 50) coordinate, while the other is
on the (0.25 * 50, 0.75 * 50) coordinate. From the peaks down, the level of sugar at each
location will follow decreasing paths.

We will also specify a very simple growback rule for the sugarscape:

Sugarscape rule Grow back to full capacity immediately.

14.2 Agents Locations

Now that we have in
MAT

2. The Sugarscape Model

Next we present a more complex topography for the sugarscape and also more

complex agent characteristics. We will also define rules that will govern the
autonomous growth of sugar in the sugarscape and the movement of the agents on it.

We will assume that the sugarscape is characterized by two mountains of sugar,
one in the south est, and tha

∞G :

 314

Chapter 14 Agent-based Model in MATLAB

Thus, a grows back to its initial level. The
symbol mount of sugar (revenue)

grows b) use a variety of such rules.
 ugarscape is what in geometry is know as a Torus,
or in a sponds to the surface of a donut. This means, for
exampl o the south on column 6, after reaching row 50 will
appear on the sugarscape from the north in the coordinate (1,6), and an agent moving to
the east on row 6, after reaching column 50 will appear on the sugarscape from the west
on the coordinate (6,1). Analogous patterns will be followed by agents moving north or

see. We will
ssume

can not see in diagonal directions. The level of vision is the maximum number of sites
each ag n are genetic characteristics
random
 the sugarscape and wealth,
with th e that agents are
random simulation. Each agent will
start its life with a level of wealth equal to the level of sugar in the sugarscape location
were it
 will govern the behavior of each agent on the
sugarscap

Agent m

- Look out as far as vision permits in the four principal directions and identify
the unoccupied site(s) having the most sugar

lue appears on multiple sites then select the nearest one

 sugar is collected, the agent’s wealth is incremented by the sugar collected

nd decremented by its metabolic rate. An agent lives forever, unless its wealth is below
its metabolic rate. In this case, it dies and is removed from the sugarscape. In principle,

t each run of the model, the level of sugar
 ∞G here is a fancy way to specify how rapidly the a

ack in each time period. Epstein and Axtell (1996
 We will also assume that the s
more familiar way, that it corre
e, that an agent moving t

west.
 Turning now to the agents, we will assume that each agent has four
characteristics, two of them fixed and the other two variable. The fixed ones are
metabolism - the amount of sugar the agent has to consume at each time period to stay
alive - and vision - the number of sites in the sugarscape each agent can
a that agents can see only in four directions: north, south, east and west. Thus, they

ent can see in a given direction. Metabolism and visio
 distributed among agents. ly

The variable characteristics of agents are location on
e later understood as the agents stock of sugar. We will assum
ly born around the sugarscape at the beginning of the

 was born.
We will specify a rule that

e:

ovement rule M:

- If the greatest sugar va
- Move to this site
- Collect all the sugar at this new position

Once
a

 315

Chapter 14 Agent-based Model in MATLAB

all agents should apply this rule simultaneously. However, since the simulation is run on

 step one of the rule, that is, the order in which
each agent searches the four directions.

ape
 MATLAB representation.

3. The Sugarscape Model in MATLAB

n consists of a main program named sugarscape1.m
re available from the book web site. Below is

a serial computer, only one agent will be active at any instant. In this case, it is
recommended to randomize agents’ order of movement, and we will do this in the
MATLAB code. We will also randomize

Having presented the building blocks of the simplest version of the Sugarsc
model, we now turn to its

The MATLAB representatio

and a number of functions, all of which a
the code of the main program.

 316

Chapter 14 Agent-based Model in MATLAB

%Initialize model parameters
nruns = 6;
size = 50; %even number
metabolismv = 4;
visionv = 6; %set always smaller than size
maxsugar = 20;

%Initialize sugarscape and display

e agents population
itagents(size, s, visionv, metabolismv);

Main loop (runs)

%

 for j = randperm(size);
 if (a_str(i,j).active == 1) %is there an agent on this

%location?
 %Agent explores sugarscape in random directions and

tion
 temps = s(i,j);

 tempi = i;
 tempj = j;

 for k = a_str(i,j).vision : -1 : 1;
 [temps, tempi, tempj] =

nd

;

f runs, the size of the sugarscape, the maximum value of metabolism and vision of the
agents, and the maximum level of sugar in the sugarscape. Then follows a call to the

s = initsugarscape(nruns, size, maxsugar);

%Initializ
_str = ina

%
for runs = 1:nruns;
 % Display agents’ locations
 dispagentloc(a_str, size, nruns, runs);

% Select agents in a random order and move around the sugarscape
% following rule M

 for i = randperm(size);

%selects best loca

see(i,j,k,a_str,s,size,temps,tempi,tempj);
 end
 %Agent moves to best location, updates sugar stock a

%eats sugar
 a_str = moveagent(a_str, s, i, j, temps, tempi, tempj)
 end % if
 end % for j
 end % for i
end % for runs

The program begins with the initialization of the model parameters - the number

o

 317

Chapter 14 Agent-based Model in MATLAB

function named initsugarscape, which will return a matrix named s containing the
sugar levels in the sugarscape. Next a call to the function initagents returns the data
structure a_str which will contain the agents’ population.

 Then follows the main loop of the program corresponding to the number of runs
- each run represents a time period - of the simulation. At each pass of the loop, the
locations of the agents on the sugarscape are displayed as a way of visualizing their
movements. This is achieved by calling the function dispagentloc.

 Then each agent, in a random order, explores the sugarscape, selects the best
location, updates its wealth and eats sugar to survive. This section of the program begins
with the following statements.

for i = randperm(size);

 for j = randperm(size);

 The randperm(n) function performs a random permutation of the elements of the
rm(size) MATLAB function creates a vector with a

size and performs a random permutation of those
lements. Thus, once the two for loops - one for i and the other for j - are completed,

ts will have moved but in a random order. The conditional

if (a_str(i,j).active == 1) %is there an agent on this location?

a 1 the
field ac

nother location looking for an active agent. The agent’s rule of movement is
e

set (1,2,…,n). Thus the randpe
ber of elements equal to num

e
the whole population of agen

checks if there is an active agent in the (i,j) location being examined, where in

tive of the agent data structure denotes that there is an agent, while a 0 denotes
the opposite. Then, if there is an active agent in the location, the program proceeds to
apply the agent’s rule of movement, while if that is not the case it proceed to examine
a
implemented with the statem nts below

 318

Chapter 14 Agent-based Model in MATLAB

%Agent explores sugarscape in random directions and

%Agent moves to best location, updates sugar stock and
%eats sugar
a_str = moveagent(a_str, s, i, j, temps, tempi, tempj);

 The statements begin with the setting of three temporary variables. The variable
temps contains the level of sugar in the agent’s current location, while tempi and tempj
contain the location’s coordinates. Then follows a loop that goes from the agent’s
maximum level of vision to 1, in decrements of one unit. At each pass of this loop, the
function see is called. This function will see around the agent’s neighborhood in the
north, south, east and west directions, from the farthest position the agent can see to its
immediate surroundings, and will return the maximum level of sugar in the variable
temps and its location coordinates in the variables tempi and tempj respectively.
Finally, once the loop is completed, the function moveagent is called to move the agent
to the new location and to update its stock of wealth.

From this overview of the main program we turn next to descriptions of the
functions.

3. Functions

3.1 Initsugarscape

The “initsugarscape” function initializes the level of sugar at each location of the
sugarscape. To better understand the procedure used, we will begin with simpler
examples. Suppose that we want to generate an 11x11sugarscape s1 with a single
mountain with a peak in the center. The corresponding statements are shown below,
where i and j are the matrix coordinates varying from 1 to 11. The vectors x and y are
two identical eleven-element vectors containing the values [-5 -4 -3 -2 -1 0 1 2 3 4 5].

%selects best location
temps = s(i,j);
tempi = i;
tempj = j;

for k = a_str(i,j).vision : -1 : 1;
 [temps, tempi, tempj] =

see(i,j,k,a_str,s,size,temps,tempi,tempj);
end

 319

Chapter 14 Agent-based Model in MATLAB

%Generate sugarscape with one peak in the center
x = -5:5;
y = -5:5;
maxsugar = 20;
for i = 1:11;
 for j = 1:1
 if (x(i) == 0 & y(j) == 0)
 s1(i,j) = maxsugar;

 else
 s1(i,j) = maxsugar / (abs(x(i)) + abs(y(j)));

 end
 end
end

The value of each element in the s1 matrix is computed dividing the given

maximum level of sugar by the sum of the absolute value of the corresponding elements
in the x and y vectors as shown below:

s1(i,j) = maxsugar / (abs(x(i)) + abs(y(j)));
where a

garscape, will be equal to maxsugar - making
 minor adjustment to avoid the division by zero. And the values on the corners - i.e.
s1(1,1) - will be equal to (maxsugar/10). All the other values would be, in a decreasing
order, between maxsugar and (maxsugar/10) as shown in Figure 14.3 below.

1;

bs is the absolute value. The peak of the mountain will be where the
corresponding elements of the x and y vectors equal zero. Thus, the value of s1(6,6),
which will be located at the center of the su
a

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11

Figure 14.3 Sugarscape with a Center Peak

 320

Chapter 14 Agent-based Model in MATLAB

 of

x

k of
ow.

Now, if we want to generate a sugarscape with a peak in the southeast instead
the center, the values of x and y should be shifted to

 = [-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1]

and
 y = [-3 -2 -1 0 1 2 3 4 5 6 7].

In this case, the pea the sugarscape will be in the s1(10,4) location, as shown

in Figure 14.4 bel

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11

Figure 14.4 Sugarscape with a South-West Peak

 level of sugar at each location of the

sugarscape. This particular function will generate a topography characterized by two
mountains of sugar, one in the southwest portion of the grid, and the other in the
northea

e
of the

ust described.

The initsugarscape function initializes the

st. These two mountains are symmetric. From the peaks down, the level of sugar
will follow decreasing paths. The function code is available in file initsugarscape.m,

This function begins by generating a sugarscape s1 containing a single peak in th
southwest. To do so, the “Generate sugarscape with one southwest peak” section
function, reproduced below, applies a similar procedure to the one j

 321

Chapter 14 Agent-based Model in MATLAB

%Generate sugarscape with one south west peak
x = -ceil(0.75*size) : size-ceil(0.75*size)-1;

 for j = 1:size;
 if (x(i) == 0 & y(j) ==)
 s1(i,j) = maxsugar;

 else
 s1(i,j) = maxsugar / (abs(x(i)) + abs(y(j)));
 end
 e
end

For e e equal to 50, it begins by generating a 50-element
x.

x = -ceil(0.75*size) : size - ceil(0.75*size) - 1;

o x will be a 50 element vector

with th

y = -ceil(0.25*size) : size-ceil(0.25*size)-1;

for i = 1:size;

 0

nd

xample, for a value of siz
vector The statement

is used to create a 50 element vector of integers as follows. The values in the vector
begin at minus the ceiling of the product (0.75 * 50), i.e. the next integer above 37.5,
namely -38. They end at the value (50 - 38 -1), i.e. 11. S

e values

[]38, 37, , 1,0,1, ,10,11− − −

lue zero will be in the 39th position of the x vector. In a similar way

tor y, which goes from -13 to 36, is generated with the value zero in its 14th
osition.

After doing this, each element of the sugarscape matrix s1 is generated. The result
ill be a sug i.e. in the southwest corner

of the array.

 posing

Thus, the va
the vec
p

w arscape with a peak in the s1(39,14) location,

Once the first mountain is generated, a symmetric one is obtained by trans
the matrix s1 with the statement

s2 = s1';

 322

Chapter 14 Agent-based Model in MATLAB

 323

generates the two-peak sugarscape. The following two statements
maxrow = max(s);
max(maxrow)

e the row containing the maximum value in the matrix and print the maximum
ter maxsugar at the

e maximum for the peaks in and s2.
the

value of the corresponding cell in the symmetric matrix, which will be a low value given

e

.

s

square akes the image square. The result is the figure with two centers of economic
activity as shown below.

Figure 14.5 Two-peak Sugarscape

 Then, the statement
s = s1 + s2;

comput s

value in this row. This may seem redundant, since we set the parame
beginning of the program. That value is indeed th s1

But the peaks in s will be a bit higher since to each original peak we will be adding

its distance from the peak.
 The final statements below display the image of th sugarscape shown in Fig.
14.5.

figure(1);
imagesc(s);
axis square;

The statement figure(1) generates a figure where an image will be displayed
The statement imagesc(s) scales the data in matrix s to the full range of colors and
displays the corresponding image of the sugarscape matrix s. Finally, the statement axi

 m

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

Chapter 14 Agent-based Model in MATLAB

Next we turn from the code for the sugarscape to the code for the agents.

3.2 Initagents

The function “initagents” generates a random initial population of agents. Its code
 shown below.

function a_str = initagents(size, s, visionv, metabolismv);
for i = 1:size;

r j = 1:size;

 an agent on this location
 l(rand * metabolismv);

 0;
 a_str(i,j).vision = 0;
 a_str(i,j).wealth = 0;
 end

fo out agents is stored in the data structure a_str with four fields.
he field active contains a 1 or 0 depending of the situation of the agent in a specific

location (active, that is alive; or inactive, that is dead). A location with an inactive agent
is treated in the main program and other functions as an empty location. If the values

ent is

domly
etween 1 and the maximum level of each characteristic. The MATLAB

nction ceil is used to round the randomly created vision and metabolism variables
o the next integer. The field we is initialized as equal to the amount of sugar in

the location of the sugarscape where the agent was born.

is

 fo
 if (rand < 0.2)
 a_str(i,j).active = 1; %put
 a_str(i,j).metabolism = cei
 a_str(i,j).vision = ceil(rand * visionv);
 a_str(i,j).wealth = s(i,j);
 else
 a_str(i,j).active = 0; %keep this location empty
 a_str(i,j).metabolism =

 end
end

The in rmation ab

T

generated by the uniform distribution MATLAB function rand are below 0.2, an ag
born.

The fields metabolism and vision contain the corresponding integers ran
distributed b
fu
up t alth

 324

Chapter 14 Agent-based Model in MATLAB

3.3 Dispagentloc (display agent location)
This simple function transforms the field agent from the agents data structure

into a matrix named a and displays agents’ locations, since MATLAB does not allows
y that field directly. The code of the function is shown below.

unction a = dispagentloc(a_str, size, nruns, runs);

end
figure(2);
subplot(ceil(sqrt(nruns)),ceil(sqrt(nruns)),runs), spy(a);
axis square;

he statement figure(2) tells MATLAB to display a second figure with the agent’s

Consider next the line of code

lot(ceil(sqrt(nrun),ceil(sqrt(nruns)),runs), spy(s);

ice that this one line contains two separate MATLAB statements, i.e. the function
alls

subplot()

u plots
e active pane. These statements thus allow us to display multiple images in a single

as the images of agents’ locations in successive runs of the program. The
MATLAB function

subplo

r
 ru qual to

one to displa

f
for i = 1:size;
 for j = 1:size;
 a(i,j) = a_str(i,j).active;
 end

T
locations - remember that a first figure was created before to display the sugarscape.

subp s)

and not
c

and
spy()

The call to s bplot divides the window into a number of panes and the call to spy
th
figure such

t(m,n,p);

creates an axes in the pth pane of a figure divided into an m-by-n matrix of rectangula
panes. For example, if we set the number of ns parameter in the main program e
8, then the statement

 325

Chapter 14 Agent-based Model in MATLAB

subplot(ceil(sqrt(nruns)),ceil(sqrt(nruns)),nruns), spy(s);

here ceil(sqrt(nruns) is the ceiling (i.e. the integer above) the square root of the
number of runs, will divide the figure (window) into a matrix with 3 rows and 3 columns
of panes to accommodate the images of the agent’s locations in successive runs.

3.4 See

e

ts
ery
r in

r a
k (i,j) ine the

k,j). If (i+k <= size), where size is the dimension of the sugarscape,
. However if (i+k > size), we have to remember that in Section 2

ined
will be (i+k-size, j). For example, if we start from the location (48,2) with k = 6,

 location to b . Thus, to summarize, we could write the
neighbor a function that will check the level of

sugar in the location .

f (i + k > size)
 u = i + k - size;
 v = j;
 neighbor(u,v);
else
 u = i + k;
 v = j;
 neighbor(u,v);
end

w

 and Neighbor
The see and neighbor functions explore the neighborhood an agent can see

according to its level of vision in four directions - north, south, east and west - each
direction selected in a random order. R member that the location coordinates of the
agent are given by (i,j) and that the agent’s level of vision is equal to k. For each
integer between k and 1 - that is, going from the outermost part of the neighborhood to i
center - the function will check the level of sugar in each of the four directions. Ev
time the level of sugar in a location being examined is greater than the level of suga
the agent’s location, the level and coordinates of the higher value found will be stored in
the temporary variables temps, tempi and tempj respectively. Thus, at the end of the
exploration, these variables will contain the highest level of sugar found and its location.

Imagine that we begin by exploring the neighborhood in the south direction fo
vel of vision equal to and from the location . Thus, we want to examle

location (i+
there is no problem
above we define the sugarscape as a Torus. Then, in this case the location to be exam

then the e examined will be (4,2)
following pseudo code, where will be

(u,v)

i

 326

Chapter 14 Agent-based Model in MATLAB

Now, in the case when we want to examine the north direction, the code should be

if (i - k < 1) %or equivalently if(k - i > -1)
 u = i - k + size;

j;

else
 u = i - k;
 v = j;
 n
end

Analogous codes could be written for the cases of the east and west directions.
assing all the four cases. That is,

mething of the form

 u = (3);
 v = (4);
 neighbor(u,v);

;
 v = (6);
 neighbor(u,v);

 i+k j];

j+k];
j-k];

LAB object named “cell array”. A cell array is an
array whose elements are also arrays. For our case, think of it as a matrix whose
elemen l array of
dimension 1x4 whose elements are the vectors south, north, east and west. Notice that the

 braces.

c{1} = south; c{2} = north; c{3} = east; c{4} = west;

 v =
 neighbor(u,v);

eighbor(u,v);

However, we want to write a general code encomp
so

if ((1) > (2))

else
 u = (5)

end

To do so, we proceed as follows. We define the following four vectors, each with
six elements:

south = [i+k size i+k-size j
north = [k-i -1 i-k+size j i-k j];
east = [j+k size i j+k-size i
west = [k-j -1 i j-k+size i

Next we make use of a MAT

ts are vectors instead of numbers. The following statements create a cel

indexes of a cell array are between

 327

Chapter 14 Agent-based Model in MATLAB

Now, for example, if we want to access the third element of the north vector, we
can do it using a double indexing notation such as

Then, a general code to explore the neighborhood of an agent, selecting four

 manner, can be written as:

for m = randperm(4);
 if (c{m}(1) > c{m}(2))

 [temps, tempi, tempj] =
neighbor(u,v,a_str,s,temps,tempi,tempj);

 u = c{m}(5);
 v = c{m}(6);
 [temps, tempi, tempj] =

bor(u,v,a_str,s,temps,tempi,tempj);
end

end

 the north cases and you should get the same

We turn now to explain the workings of the neighbor function, which is a very
es as inputs, among

 arguments, the variables temps, tempi, and tempj and returns the same as
outputs. Remember that temps contains the level of sugar in a given location and tempi
nd tempj contain the coordinates of the location. The code of the neighbor function is

c{2}(3);

directions of search in a random

 u = c{m}(3);
 v = c{m}(4);

 else

neigh

To check this go through the south and then
results as those shown above.

simple one. As can be seen in the code above this function receiv
other variables

a
shown below.

 328

Chapter 14 Agent-based Model in MATLAB

function [temps, tempi, tempj] =

a_str(u,v).active 0)
 if (s(u,v) >= temps)
 temps = s(u,v);

end
end

ation is free so that an agent can
 If that is the case, it hecks to see whether or not the level of sugar in the

 location of the sugarscape is greater than or equal to the one previously found and
so, it puts the new level found in the temps variable, and
ates in the variables tempi and tempj.

 To conclude this section, we reproduce below the entire code of the see function.

= [j+k size i j+k-size i j+k];
est = [k-j -1 i j-k+size i j-k];

c{1} = south; c{2} = north; c{3} = east; c{4} = west;

or m = randperm(4);

 v = c{m}(4);

neighbor(u,v,a_str,s,temps,tempi,tempj);

if (==

 tempi = u;
 tempj = v;

Thus, the function first checks whether the (u,v) loc
move there. c
(u,v)

stored in the variable temps. If
its corresponding (u,v) coordin

function [temps, tempi, tempj] =
see(i,j,k,a_str,s,size,temps,tempi,tempj);

south = [i+k size i+k-size j i+k j];
north = [k-i -1 i-k+size j i-k j];
east
w

f
 if (c{m}(1) > c{m}(2))
 u = c{m}(3);

 [temps, tempi, tempj] =
neighbor(u,v,a_str,s,temps,tempi,tempj);

 else
 u = c{m}(5);
 v = c{m}(6);
 [temps, tempi, tempj] =

neighbor(u,v,a_str,s,temps,tempi,tempj);
 end
end

 329

Chapter 14 Agent-based Model in MATLAB

3.5 Moveagent
 Once the neighborhood of the agent has been examined, it is time to move the
gent to the best location found, update its wealth and let it eat sugar. This is what the
moveagent function shown below does.

function a_str = moveagent(a_str, s, i, j, temps, tempi, tempj);

temps > s(i,j))
 % Agent moves to best location and updates wealth

tempi,tempj) = a_str(i j);
 %Set old location to unoccupied
 a_str(i,j).active = 0;
 a_str(i,j).vision = 0;

 a_str(i,j).wealth = 0;
ate wealth at new location
tempi,tempj).wealth = a_str empi,tempj).wealth + temps -

a_str(tempi,tempj).metabolism;

str(tempi,tempj).wealth <= 0)
 a_str(tempi,tempj).active = 0;
 a_str(tempi,tempj).vision = 0;
 a_str(tempi,tempj).metabolism = 0;

wealth = 0;

lse
 % Agent stays in position and updates wealth

i,j).wealth = a_str(i,j).wealth + temp -
a_str(i,j).metabolism;

 if (a_str(i,j).wealth <= 0)
 a_str(i,j).active = 0;
 a_str(i,j).vision = 0;

new and better location than the ne previously occupied by the agent is
und, that is, if the statement below is true

if (temps > s(i,j))

a

if (

 a_str(,

 a_str(i,j).metabolism = 0;

 % upd
 a_str((t

 % if wealth is less than zero set location to unoccupied
 if (a_

 a_str(tempi,tempj).
 end
e

 a_str(s

 a_str(i,j).metabolism = 0;

a_str(i,j).wealth = 0;
 end
end

 If a o
fo

 330

Chapter 14 Agent-based Model in MATLAB

then the agent moves to the new location whose coordinates are stored in the variables
set to unoccupied, and the agent’s wealth is updated

dding to its previous wealth the amount of sugar found in the new location and
the sugar to be consumed according to its metabolic rate. If the resulting

vel of wealth is less or equal than zero then the agent dies and all its fields are set to

In the case that no better location was found, the agent stays into place, updates its
eats sugar. Again, if the resulting level of wealth is less or equal to zero, the

garscape given the topography, the growback rule and the agents’ rule of

M. The agents’ locations for six successive runs, for a maximum vision of 6
maximum metabolism equal to 4, are shown in Figure 14.6 below. The order of

esponding to the successive ru goes from left to right then down to the next

tempi and tempj. The old location is
a
subtracting
le
zero.

wealth and
agent dies.

4. Results

su

We are now ready to analyze the behavior of the population of agents in the
∞G

movement
and a
graphs corr ns
row.

 331

Chapter 14 Agent-based Model in MATLAB

0

0 50

0

20

40

0 50

20

n

40

z = 538 nz = 384
0 50

0

20

40

nz = 331

0 50

0

20

40

nz = 326
0 50

0

20

40

nz = 321
0 50

0

20

40

nz = 317

igure 14.6 Agents’ Locations for Six Runs

n there is a total population of 538 agents (nz
means non-zero elements) randomly distributed on the sugarscape. As one would expect,
during each run some agents die and others move toward the peaks of the sugarscape.
For this experiment, the average metabolism of the population goes from 3.5 in the first
run to 2 in the sixth run while the average vision goes from 3.5 to 3.8. Thus, as one
should expect, lower metabolism and higher vision increase the chances of survival. We
can see also that the population tends to reach a stable size and spatial configuration.

Figure 14.7 below shows the carrying capacity of the sugarscape - that is what
population size the sugarscape can support - as a function of the maximum level of vision
and metabolism of the agents. For each level of vision and metabolism, the average
value of ten simulations of six runs each is presented. We can observe how a larger
vision and a smaller metabolism tend to increase the carrying capacity of the sugarscape.

F

 We can observe that in the first ru

 332

Chapter 14 Agent-based Model in MATLAB

1 2 3 4 5 6 7 8
250

300

55

350

400

450

500

0

Vision

ap
ac

ity metabolism = 2

metabolism

directio e:

how different growback rules affect the

 You may also try to work with agents with finite lives, where their maximum age
is a random integer drawn from a given interval [a,b]. Then, you may introduce an agent
replacement rule such as the following one

metabolism = 1

C
ar

ry
in

g
C

 = 3

Figure 14.7 Carrying Capacity

5. Experiments

 A simple experiment would be to add moving cost proportional to the distance
moved. This will tend to slow down the convergence to the hilltop locations.

Also, the Sugarscape model can be extended in a number of ways so that many
experiments of increasing grade of complexity can be performed. A first step in that

n would be to replace the Sugarscape rule G used above with the following on

Sugarscape growback rule 1G : At each lattice position, sugar grows back at a rate of α

units pe

∞

r time interval up to the capacity at that position.

 To introduce this rule, you may want to start by transforming the sugarscape
matrix s into a structure with two fields, one containing the capacity and the other the
current level of sugar. Then, you can check
results.

 333

Chapter 14 Agent-based Model in MATLAB

Agent replacement rule : When an agent dies it is replaced by an agent of age 0

having

Epstein and Axtell (1996) present a number of rules for pollution formation, agent
nt inheritance, trade, credit, etc., that can be implemented in the Sugarscape

model. To learn about the specifics of these rules you are referred to their book.

tell

/es/dynamics/sugarscape/default.htm

],[baR

 random genetic attributes, random position on the sugarscape, random initial
endowment, and a maximum age randomly selected from the range [a,b].

mating, age

6. Further Reading

 For a comprehensive presentation of the Sugarscape model see Epstein and Ax
(1996). See also the web page of the Sugarscape model at the Brookings Institution at
www.brook.edu . For an online guide to agent-
based modeling see Axelrod and Tesfatsion (2004). For an approach to estimating agent
based models see Gilli and Winker (2003).

For a recent conference keynote address on agent based modeling and an
application to finance see LeBaron (2004). Also see his survey paper on agent based
omputational finance (LeBaron (2005)) which will appear in the Judd and Tesfatsion

(2005) volume containing many state-of-the-art papers on agent based modeling. For a
comprehensive site with resources on Agent-Based Computational Economics, see the

eb site developed by Leigh Tesfatsion at www.econ.iastate.edu/tesfatsi/ace.htm

c

w . For a
eling as an approach to economic theory, see Tesfatsion

005).

review of agent-based mod
(2

 334

 The basic economics and chemistry of global warming are that an increase in
output causes an increase in emission which in turn causes an increase in the
concentration of in the atmosphere. This increase in concentration permits

the sun’s rays to come into the earth’s atmosphere but captures some of them as they are
reflected back thereby increasing the temperature of the earth. The increased temperature
results in a decrease in output. Several of the elements in this chain of causation are
controversial; however this simple line of reasoning is a useful place to begin.

In this chapter we use the classic global warming model of Nordhaus (1992) to
study the dynamics of global warming. A simple flowchart for that model, reflecting the
discussion above, is shown in Figure 15.1.

Figure 15.1 Basic Flowchart of Global Warming

Chapter 15

Global Warming in GAMS

2CO

2CO 2CO

Output, Q

Emissions, E

CO2 Concentration, M

Temperature, T

335

Chapter 15 Global Warming in GAMS

Economic policy can be us cycle. The most common

intervention is a “carbon” tax whic ssil fuels like coal, oil and
nat
gas n

wever the tax also decreases the efficiency of the economy,

Thus the basic structure of this dynamic mode ic externality
 stock variable, i.e. the concentration, and the policy variable is used to control a

 similar to

ed in intervene in this
h raises the price of fo

ural gas and thereby decreases the effective emission of 2CO and other greenhouse
es. This decreases the CO concentration and therefore the temperature. This in tur2

tends to increase output. Ho
thereby providing a tendency to decrease output. This tradeoff is shown in Figure 15.2.

l is one in which the econom
is a 2

flow, namely the CO emissions.
CO

2

Figure 15.2 Policy Interventions with a Carbon Tax

The tradeoff was embedded by Nordhaus in a one-sector growth model,

the Excel growth model used earlier in this book, thereby creating an economic model of
global warming. However, he developed the model in GAMS rather than in Excel as is
discussed in the following sections. We begin with a discussion of the model in
mathematics and then turn to a discussion of the model in GAMS.

Output, Q

Emissions, E

CO2 Concentration, M

Carbon Tax

Temperature, T

 336

Chapter 15 Global Warming in GAMS

1. The Mathematical Model

n function which is in the classic
 written

The best place to start is with the productio

Cobb-Douglas form with output produced by capital and labor. This function is

(1) () () () () ()Q t t A t K t L t 1γ γ−= Ω

where
()Q t = output in period t

 ()tΩ = climate impacts (see below)

 ()A t = technology in period t

 ()K t = capital in period t

 ()L t = labor force in period t

 γ = elasticity of output with respect to capital

The unusual aspect of this production function is the presence of the Ω term which is

nges on output and (2) the efficiency-loss
r in more detail, in this model no
ion.

 the

used (1) to model the impact of temperature cha
effects of the carbon tax. Also, as we will see late
distinction is made between labor force and populat

We will return to a discussion of term later; however for now lets move on
odeled with the

Ω
to the effect of output on greenhouse gas emissions (mostly 2CO) that is m

equation

(2) () () () ()1E t t t Q tµ σ= −⎡ ⎤ ⎣ ⎦

where
 = green house gas emissions

 = emission control rate – the fractional reduction of emissions
()E t

()tµ

 ()tσ = ratio of greenhouse gas emissions to output

Theµ variable is the percentage of greenhouse gas emissions which is prevented from

ion of devices to reduce the
he carbon

h reduces the use of fossil fuels and thereby the
fective emissions.

entering the atmosphere. So it might be thought of as the act
2CO in the smoke from the tall stacks of power plants or to sequester t

underground or underwater before it enters the atmosphere. Alternatively, it can be
viewed as a proxy for a carbon tax whic
ef

 337

Chapter 15 Global Warming in GAMS

Next consider the effect of the emissions on the concentration in the 2CO

atmosphere, which is modeled with the equation

(3) () () () ()1 1MM t E t M tβ δ= + − −

where
 ()M t = 2CO concentration relative to pre-industrial times

 β = marginal atmospheric retention ratio
 Mδ = rate of transfer from the rapidly mixing reservoirs to the deep ocean

The two parameters in this equation (β and Mδ) divide the non-intervention optimist
from the intervention pessimi ing. The st on global warm β parameter is the proportion

 Theof emissions that add to the CO concentration in the atmosphere. 2 Mδ parameter is
a measure of the atmosphere’s ability to breakdown the f2CO . I Mδ is large, then the
decay rate of 2CO in the atmosphere is high and that mitigates the effect of higher
emission rates. So the optimists like to believe that β is small and Mδ is large.

The increase in the atmospheric concentration of 2CO in Eq. (3) in turn drives

changes in temperature. This is done in two steps in the model. In the first step the
increase in atmospheric concentration M increases the f rm in the equation

orcing te F

()
()

logM t⎡ ⎤
⎢ ⎥590(4) () 4.1

log 2
F t FO t= +⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

er greenhouse gases

) models the effect of the

ate exogenous term
.

mperature is
oken into two separate variables in this model – (1) the temperature of the atmosphere

where
 ()F t = forcing term of greenhouse gas concentration on temperature

()FO t = exogenous forcing from oth

2CO This first term on the right hand side of Eq. (4

concentration on the forcing term. The equation also includes a separ
for the effects of all other greenhouse gases on the forcing term
 The forcing term then influences the temperature. However, te
br
and upper oceans and (2) the temperature of the deep oceans. For simplicity of

the temperature of the exposition, we will refer to the first of these two as just

 338

Chapter 15 Global Warming in GAMS

atmosphere, though the reader should keep in mind that it is actually the temperature of

d also the two
 temperature

the atmosphere and the upper oceans.
The forcing term F drives the temperature of the atmosphere an

temperatures have feedback effects on one another. The expression for the
of the atmosphere is

(5) () () () () ()2
1 1 1 1

11 1 1RT t T t F t T t T tλ
⎧⎛ ⎞ ⎛ ⎞⎪= − + − − − − ()2 1T t

R τ
⎪− −
⎫

1 2

⎡ ⎤⎬⎨⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠

where
ture of the atmosphere and upper oceans

ture of the deep oceans

⎝ ⎠⎩ ⎭

 ()1T t = tempera

 ()T t = tempera2

1R = thermal capacity of the atmosphere and upper oceans
 2R = thermal capacity of the deep oceans
 ()F t = radiative forcing in the atmosphere from green house gases

 λ = the climate feedback parameter

2

1
τ = the transfer rate from the upper layer to the lower layer

mplicated at first; however, taking it piece by piece makes it
onsider first a simpler version of Eq. (5) with only the lagged

term and the term, i.e.

This function appears co
easier to understand. C 1T

F

() (){ }(6) () ()1 1
11T t T t
R

= − + ⎜
⎝ ⎠

1
1

1F t T tλ
⎞

− −⎟

uation of the temperature of the atmosphere driven by the
ted by the climate feedback parameter

⎛

This is just a dynamic eq
forcing term and mitiga λ . The other term in Eq.

ature and the deep oceans 1T(5) is the difference between the atmosphere temper
mperature , i.e. 2Tte

(7) () ()2 1 1R T t T t
⎛ ⎞

− − − −⎡ ⎤1 2
2τ

⎣ ⎦⎜ ⎟
⎝ ⎠

Thus, because of the negative sign in front of the term in Eq. (7), the greater the
difference between the two temperatures the less the atmosphere temperature will
increase from one period to the next. So if the deep ocean is much cooler than the

 339

Chapter 15 Global Warming in GAMS

atmosphere it will absorb heat and result in less increase in the atmosphere temperature.
This can also be seen in the equation re of the deep oceans, i.e.

(8)

 for the temperatu

() () () ()2
2 2 1 2

2 2

11 1RT t T t T t T t
R τ

1
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

In this case there is a positive effect of the temperature difference between the two layers.
Thus an increase in the difference between the atmosphere and deep oceans temperatures
in period results in a more rapid increase in the deep ocean temperature in period .
 Next we need to close the loop of causation in the model from temperature back
to output. First, recall the use of the

1t − t

Ω term in the production function in Eq. (1), i.e.

(1) () () () () ()1Q t t A t K t L tγ γ−= Ω

The term in the Nordhaus model is driven by the variable which is defined as

(9)

Ω d

() () 2
1

1 3
T td t a ⎡ ⎤= ⎢ ⎥⎣ ⎦

where
 = fractional loss of global output from greenhouse warming
 = a constant

Thus, as the temperature of the atmosphere rises, the fractional loss of global output
increases in a nonlinear way.
 The term, in turn, appears in the denominator of the

()d t

1a

d Ω term as follows

(10) () ()
()

1
1

TC t
t

d t
−

Ω =
+

where
 = fractional cost to global output from green house gas emission controls

So as temperature increases the term increases and thus the

()TC t

d Ω term decreases and
output declines. Also, the definition of the Ω term includes the term which
represents the efficiency loss in output that is caused by the use of the carbon taxes. This
loss is represented in the model with the equation

 TC

 340

Chapter 15 Global Warming in GAMS

(11)

Thus as

() () 2

1
bTC t b tµ=

 the carbon tax increases and µ , the fractional reduction of emissions, increases

the efficiency loss term TC increases. Also, from Eq. (10), as this loss increases the Ω
term decreases.

So in summary, the Ω term is indirectly affected by two variables, µ and T –

both of which cause it to fall as they increase. The first variables is the fractional
reduction of emissions, µ , operating through the TC variable and the second is
temperature, T , operating through the d variable. However, theµ and T variables are

related in an inverse fashion to one another in the model. As the carbon tax underlying
µ increases the temperature T declines. This is the essential tradeoff in the model –

higher carbon taxes reduce emissions, decrease temperature and increase output;
however, they also impose efficiency loss on the economy and thus reduce output.

 the model. This comes from the
 model is basically a one-sector growth model of the Ramsey type that was

modele

There is also a second basic tradeoff at work in
fact that this

d in Excel earlier in this book. The tradeoff in the growth model is between
consumption and investment and is embodied in the equations

(12) () () ()Q t C t I t= +

(13) () () () ()1 1KK t K t I tδ= − − +

where
 ()C t = total consumption in period t

 () t I t = investment in period
 Kδ = rate of depreciation of the capital stock

Thus as consumption rises investment must fall and as investment falls capital
accumulation declines and thus output declines.

 341

Chapter 15 Global Warming in GAMS

This is in turn linked to the criterion function of the model which is to maximize
discounted utility

(14)
()

() () ()
1

max , 1
T

t

c t t
U c t P t ρ −

⎡ ⎤⎣ ⎦ =

+⎡ ⎤⎣ ⎦∑

where
 []U = utility function

 = population in period

()P t t

ρ = pure rate of social time preference
 = per capita consumption in period

Also, the utility in each period is a nonlinear function of per capita consumption
(actually, in this model, it is consumption per member of the labor force)

where the utility function is the same general form as was used in the growth
model

()c t t

(15) () () ()/c t C t L t=

in Excel, i.e.

(16) () () () (){ } ()1
, 1 / 1U c t L t L t c t

α
α

−
= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

In summary, this tradeoff is that as total consumption increases it increases per capit
consumption and thus utility; however this is achieved by reducing investment and thus
capital accumulation and thus reduces future output.

a

e begin with the criterion function and continue with the constraints

Criterion Function (from Eq. 14)

1c t t

This completes the statement of the model. However, since the model is
somewhat long it is useful to restate it in a summary fashion.

2. The Model in Summary

W

(17) () () ()max , 1
T

tU c t L t
()

ρ −

⎡ ⎤⎣ ⎦ =

+⎡ ⎤⎣ ⎦∑

 342

Chapter 15 Global Warming in GAMS

Utility Function (16)
(18)

from Eq.

() () () (){ } (1
, 1 / 1L c t

α)U c t t L t α
−

−⎡ ⎤⎣ ⎦= −⎡ ⎤⎣ ⎦

(19)
Production Function (from Eq. 1)

() () () () ()1Q t t A t K t L tγ γ−= Ω

Output Division (from Eq. 12)
(20)

Per Capita Consumption (from Eq. 15)
(21)

Capital Accumulation Eq. 13)
(22)

() () ()Q t C t I t= +

() () ()/c t C t L t=

 (from
 () () () ()1 1KK t K t I tδ= − − +

Emissi
(23)

ons (from Eq. 2)
() () () ()1E t t t Q tµ σ= −⎡ ⎤⎣ ⎦

 Concentration (from Eq. 3) 2

(24) () () ()
CO

()1 1MM t E t M tβ δ= + − −

Temperature in the Atmosphere and Upper Oceans (from Eq. 5)

(25) () () () () () ()2
1 1 1 1 2

1 2

11 1 1 1RT t T t F t T t T t T t
R

λ
τ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − − − − − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

Temperature in the Deep Oceans (from Eq. 8)

(26) () () ())2
2 2 1

11 1 1RT t T t T t
τ

(2
2 2

T t
R

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠⎩ ⎭

Forcing Term (from Eq. 4)

7)

⎝ ⎠

()
()

()
log

5904.1
log 2

M t

F t FO t

⎡ ⎤
⎢ ⎥

= +⎢ ⎥
⎢ ⎥

(2

⎢⎣ ⎥⎦

 343

Chapter 15 Global Warming in GAMS

Fra ut Froctional Loss of Outp m Greenhouse Warming (from Eq. 9)

8) () () 2
1

1 3
T td t a ⎡ ⎤= ⎢ ⎥⎣ ⎦

 (2

Fractional Cost to Output from Controls – Carbon Taxes (from Eq. 11)

 and Emission Control Impact (from Eq. 10)

(30)

() () 2

1
bTC t b tµ= (29)

Climate

()
()

1
1

TC t
 ()t −

Ω =
d t+

3. Th

d

e Model in GAMS

The GAMS representation of Nordhaus’s DICE model is in the file dice.gms an
is listed in Appendix 15A. This implementation of the model uses 40 time periods each
of which are ten years long, thus the model covers a time horizon of 400 years. It is not
uncommon in dynamic models to have more than one year per time period; however, it
does require some adjustments. For example, the capital accumulation equations is
changed from

 () () () ()1 1KK t K t I tδ= − − +

to

 0

ince the depreciation rate is annual it is necessary to raise it to a power that is equal to

f years per time period. Also, the flow variables, like investment in this
quation, are in annual terms and must be multiplied by the number of years per time

 of the model are in a
ightly different form than in the mathematics used above. In particular, the production

 the emission equations used in the GAMS statement are obtained by
substitution of some equations.

() () () ()101 1 1KK t K t I tδ= − − +

S
the number o
e
period in order to use them appropriately in accumulation equations.

Also, some of the other equations in the GAMS statement
sl
function and

 344

Chapter 15 Global Warming in GAMS

 production function is created by substituting Eqs. (28) The and (29) into Eq. (30)
 obtain

1)

to

() ()
()

2

1
2(3

1
11 3a+ ⎢ ⎥⎣ ⎦

or

1 bb t
t

T t

µ−
Ω =

⎡ ⎤

2) () ()
()

2

1

21
1

1

1 9

bb t
t

a T t

µ−
Ω =

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (3

nd Eq. (32) is substituted into Eq. (19) i.e.

9)

A

() () () () ()1Q t t A t K t L tγ γ−= Ω (1

to obtain

() ()(33)
()

() () ()
2

111 bb t
Q t A t K t L t

a 21
11 9 T t

γ γµ −−
=

⎛⎜
⎝ ⎠

arranged to obtain

⎞+ ⎟

and then re

(34) () () () () ()
()

2
1 11 bb t

Q t A t L t K tγ γ µ−

21
11 9

a T t

⎡ ⎤
⎢ ⎥−

= ⎢ ⎥
⎛ ⎞⎢ ⎥+ ⎜ ⎟
⎝ ⎠⎣ ⎦

m of the production function used in the GAMS statement.

sed in the
which is the for

Also, the emissions equation u GAMS representation is obtained by
using Eq. (23), i.e.

() () () ()1E t t tµ σ= −⎡ ⎤⎣ ⎦ (35) Q t

and sub

stituting the production function from Eq. (19) into it to obtain

(36) () () () () () () ()11E t t t t A t K t L tγ γµ σ −= − Ω⎡ ⎤⎣ ⎦

 345

Chapter 15 Global Warming in GAMS

Then Eq. (36) is rearranged to obtain

(37) () () () () () () ()11E t t t t A t L t K tγ γσ µ −= − Ω⎡ ⎤⎣ ⎦

and Ω to set to one to obtain

 () () () () () ()11E t t t A t L t K tγ γσ µ −= −(38) ⎡ ⎤⎣ ⎦

This last step of setting Ω to one is surprising so the user may want to restore a non-
unitary Ω to that equation in the GAMS representation.
 The parameter σ is treated as time varying in the equation

(39) () ()

0
g t

with

0)

t e σσ σ=

()0 1 at

a
 () gg t σ⎛(4 e δ

σ δ
−⎞= −

⎝ ⎠

here

⎜ ⎟

w
0σ = initia -equivalent emission-GNP ratio

provement of energy efficiency

l 2CO

()g tσ = cumulative im
 0gσ = growth of σ per decade

 aδ = decline rate of technological change per decade

vity parameter in the production function is treated in a

similar ns

(41)

The total factor producti
 fashion with the equatio

() ()
0

ag tA t = A e

with

()0 1 ata(42) ()a
a

g t eδ= −g δ−⎛ ⎞⎜ ⎟
⎝ ⎠

where
 0A = initial level of total factor productivity

()ag t = growth rate of productivity from 0 to T
 0ag = initial growth rate of technology per decade

 346

Chapter 15 Global Warming in GAMS

 Also the rate of growth of the labor force is treated in the same way with the
equatio

3)

ns

 () ()(4 0
Lg tL t L e=

with

4) () ()0 1 LtL
L

L

gg t e δ

δ
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (4

where
 = 1965 world population in mill

 = growth rate of labor from t
 = growth rate o opulat per de de

Finally the exogenous forcing term for other greenhouse gases is set using the

 in

ith GAMS models, you are encouraged do so and to take a look at
Append

0L ions

()Lg t 0 t o

0Lg f p ion ca

equations

(45)
()
()

20.2604 0.125 0.0034 15

1.42 15

FO t t t for t

FO t for t

= + − <

= ≥

Thus this term increases in a quadratic way from 0.2604 to 1.42 over the first fifteen
years and then remains constant at 1.42.
 If you have already read the previous chapters in this book dealing with models
GAMS, particularly the dynamic models, the GAMS representation of the Nordhaus
model provided in Appendix15A will seem familiar terrain. If you have not read the
previous chapters w

ix H on Stacking Method in GAMS and Appendix F on Introduction to Nonlinear
Optimization Solvers.

 347

Chapter 15 Global Warming in GAMS

4. Results

In the 1992 Science article Nordhaus compares five solutions of the model, which
are shown in Table 15.1. The first solution is a “no-controls” result in which µ is set

Base Value Dollar Difference Percent Difference

Case Policy
1 No-controls 731.694 0 0.000
2 Optimal Policy 731.893 199 0.027
3 Stabilize emissions 726.531 -5163 -0.706
4 Stabilize climate 701.764 -29930 -4.091
5 Geoengineering 735.787 4093 0.559

Table 15.1 Solutions of the Model

to zero, i.e. there is no removal of emissions relative to the uncontrolled level. The
tion is
nt in total discounted utility ove

The third solution is to fix emissions at around 10% above the uncontrolled level
95. This requires setting

second solu the full optimal control solution that provides a slight (0.027%)
improveme r the horizon covered by the model.

 µafter 19 equal to 0.1 after 1995 and can be implemented in

the GAMS statement of the model by using a MIU.FX statement before the SOLVE
statement. As is seen in Table 1 this results in a decrease in total discounted utility by

ths of a percent.
A more drastic policy is to stabilize climate as is shown in the fourth solution.

This solution limits the temperature increase to per decade after 1985 with an
upper limit of a total increase of from 1990. This results in a decrease of about 4
ercent in total discounted utility relative to the uncontrolled solution.

considers the effects on introducing a hypothetical technology
that provides costless mitigation of climate change. Examples cited by Nordhaus include

the ocean with iron to accelerate carbon
questration.

about seven-ten

0.2 C
1.5 C

p
The final solution

shooting smart mirrors into space or seeding
se

 348

Chapter 15 Global Warming in GAMS

5. Experiments

The obvious experiments with this model are to attempt to replicate some of the
t.

 of parameter in Eq. (28).
solutions shown in Table 1; however, there are a number of other experiments of interes
One such experiment is to decrease the size 1a

(28) () () 2
1

1
Td t a ⎡= ⎢ 3

t ⎤
⎥⎣ ⎦

agnitude of
e Russians seem

 have concluded that because of the northerly location of most of their country that
s might actually result in increase

eter

This experiment recognizes that there is considerable controversy about the m
the effect of increases in temperature on economic output. In fact, som
to
slight temperature increase s rather than in decreases of
national GDP.

Another experiment would be to increase the param Mδ in the

4)

2CO

concentration equation

() () () ()1 1MM t E t M tβ δ= + − − (2

to reflect a feeling that the atmosphere is able to breakdown more of the than the

riginal parameter value reflects.

. Further Reading

As was mentioned above, this chapter is based on the article by Nordhaus in
cience

e RICE model by
ordhaus and Boyer (2000). For a model that is used to analyze the costs of CO2

Manne and Richels (1992). For an alternative to the IPCC CO2
mission projections see Eckaus (1994). For a general equilibrium model approach to

For a model that uses the GAMS software and focuses on the role of the
s in global warming - particularly India and China - see Duraiappah

(1993). For particular reference to the effects of greenhouse gases in agriculture and

2CO

o

6

S in 1992 about the DICE model. That model has the virtue of being relatively
simple and is thus useful for this chapter. For a later model see th
N
emissions limits see
e
the analysis of reducing carbon emissions see Blitzer, Eckaus, Lahiri and Meeraus
(1992).

developing countrie

 349

Chapter 15 Global Warming in GAMS

forestry see McCarl and Schneider (2001). For a discussion of climate policy c
after the Kyoto treaty see McKibbin and Wilcoxen (2002).

For an example of the analysis of water pollution control with a GAMS model see
Letson (1992).

hange

 Those interested in environmental models for various sectors of the
conomy can finds models of the plastics sector in China, the pulp and paper sector in

livestock sector in Botswana in Duraiappah
003).

e
India, the shrimp industry in Thailand and the
(2

 350

Chapter 15 Global Warming in GAMS

Appendix 15A

The GAMS Representation of the Global Warming Model

offsymxref offsymlist
 Expl y 1991

scalars bet elasticity of marginal utility /0/

195/

 ga0 initial growth rate for technology per decade /0.15/
 dela decline rate of technological change per year /0.11/
 sig0 co2-equivalent emissions-gnp ratio /0.519/

 dk depreciation rate on capital per year /0.10/
 gama capital elasticity in production function /0.25/

 co2-equivalent concentrations 196 billions t c /677/
 tl0 lower stratum temperature (c) 1965 /0.10/
 t0 atmospheric temperature (c) 1965 /0.2/

 /8.519/

 c1 climate-equation coefficient for upper level /0.226/
m climate eedback factor /1.41/

 c3 transfer coefficient upper to lower stratum /0.440/

e vi
 /0.0133/

 b1 intercept control cost function /0.0686/
 exponent of c trol cost function /2.887/

nsversality coeff carbon ($ per unit) / - 9.0 /
 phite transversality coeff temperature ($ per unit)/ - 7000 /

$
* aining the DICE, Cowles Foundation Discussion Paper, Januar
* The calibration is to a 60-period run for the transversality
*
sets t time periods /1*40/
 tfirst(t) first period
 tlast(t) last period

 r rate of social time preference per year /0.03/
 gl0 growth rate of population per decade /0.223/
 dlab decline rate of population growth per decade /0.
 deltam removal rate carbon per decade /0.0833/

 gsigma growth of sigma per decade / - 0.1168 /

 m0 5

 atret marginal atmosphere retension rate /0.64/
 q0 1965 world gross output trillion 89 US$
 ll0 1965 world population million /3369/
 k0 1965 value capital trillion 1989 US$ /16.03/

 la f

 c4 transfer coefficient for lower level /0.02/
 a0 initial lev l of total factor producti ty /0.00963/
 a1 damage coeff for co2 doubling(fraction GWP)

 b2 on
 phik transversality coeff capital ($ per unit) /140/
 phim tra

 351

Chapter 15 Global Warming in GAMS

parameters l(t) level of population and labour
 al(t) level of total factor productivity
 sigma(t) co2-equvalent-emissions output ratio
 rr(t) discount factor
 ga(t) growth rate of productivity from 0 to t
 forcoth(t) exogenous forcing for other greenhouse gases
 gl(t) growth rate of labour 0 to t
 gsig(t) cumulative improvement of energy-efficiency
 dum(t) dummy variable 0 except last period ;

ast(t) = yes$(ord(t) eq card(t));

 gl(t) = (gl0/dlab)*(1-exp(-dlab*(ord(t)-1)));
 l(t) = ll0*exp(gl(t));
 ga(t) = (ga0/dela)*(1-exp(-dela*(ord(t)-1)));

) = (1+r)**(10*(1-ord(t)));

 forcoth(t) = 1.42;
 forcoth(t)$(ord(t) lt 15) = 0.2604 + 0.125*ord(t)
 - 0.0034*ord(t)**2;

variables miu(t) emission control rate GHGs
 forc(t) radiative forcing, W per m2
 te(t) temperature, atmosphere C
 tl(t) temperature, lower ocean C

 m(t) co2 equivalent concentration bill t

 c(t) consumption trillion US$
 k(t) capital stock trillion US$
 cpc(t) per-capita consumption 1000s US$

r raction of GWP
 ri(t) real interest rate per annum
 trans(t) transversality variable last period
 y(t) output

 utility;

 tfirst(t) = yes$(ord(t) eq 1);
 tl
 display tfirst, tlast;

 al(t) = a0*exp(ga(t));
 gsig(t) = (gsigma/dela)*(1-exp(-dela*(ord(t)-1)));
 sigma(t) = sig0*exp(gsig(t));

 dum(t) = 1$(ord(t) eq card(t));
 rr(t

 e(t) co2 equivalent emissions bill t

 pcy(t) per-capita income 1000s US$
 i(t) investment trillion US$
 s(t) savings ate as f

 352

Chapter 15 Global Warming in GAMS

posit

ive variables miu, e, te, m, y, c, k, i;

equations util objective function
 yy(t) output equation
 cc(t) consumption equation
 kk(t) capital balance equation
 kk0(t) initial condition for k
 kc(t) terminal condition for k
 cpce(t) per-capita consumption definition
 pcye(t) per-capita income definition
 ee(t) emissions process
 seq(t) savings rate equation

re

 Equations of the model

.. k(t+1) =l= (1-dk)**10*k(t) + 10*i(t) ;
first).. k(tfirst) =e= k0 ;

c(tlast).. r*k(tlast) =l= i(tlast) ;

 (1 - miu(t))*al(t)*l(t)**(1 - gama)*k(t)**gama ;
t).. forc(t) =e= 4.1*(log(m(t)/590)/log(2)) + forcoth(t) ;

mm0(tfirst).. m(tfirst) =e= m0 ;
mm(t+1).. m(t+1) =e= 590 + atret*e(t) + (1-deltam)*(m(t) - 590) ;

+).. te(t+1) =e= te(t)+c1*(forc(t)-lam*t (t)
 - c3*(te(t)-tl(t))) ;

).. tl(t+1) =e= tl(t) + c4*(te(t) - tl(t));

yy(t).. y(t) =e= al(t)*l(t)**(1-gama)*k(t)**gama
 (1-b1(miu(t)**b2))/(1+(a1/9)*sqr(te(t)));
seq(t).. s(t) =e= i(t)/(.001+y(t)) ;
rieq(t).. ri(t) =e= gama*y(t)/k(t) - (1-(1-dk)**10)/10 ;

 rieq(t) interest rate equation
 force(t) radiative forcing equation
 mm(t) co2 distribution equation
 mm0(t) initial condition for m
 tte(t) temperature-climate equation for atmosphe
 tte0(t) initial condition for atmospheric temperature
 tle(t) temperature-climate equation for lower oceans
 transe(t) transversality condition
 tle0(t) initial condition for lower ocean ;

*

kk(t)
kk0(t
k

ee(t).. e(t) =g= 10*sigma(t)*

force(

tte0(tfirst).. te(tfirst) =e= t0 ;
tte(t 1 e

tle0(tfirst).. tl(tfirst) =e= tl0 ;
tle(t+1

 353

Chapter 15 Global Warming in GAMS

cc(t).. c(t) =e= y(t) - i(t) ;
cpce(t).. cpc(t) =e= c(t)*1000/l(t) ;
pcye(t).. pcy(t) =e= y(t)*1000/l(t) ;

transe(tlast).. trans(tlast) =e= rr(tlast) *(phik*k(tlast)

 + phim *m(tlast)+phite*te(tlast));

util.. utility =e= sum(t,10*rr(t)*l(t)*log(c(t)/l(t))

er and lower bou s; general conditions imposed for stability

miu.up(t) = 0.99;
miu.lo
.lo(t) = 1;

p(t) = 20;
t) = 600 ;

c.lo(t) = 2;

x('1') = 0.0;
x('2') = 0.0;

miu.fx('3') = 0.0;

tion options

n iterlim = 99999;
n reslim = 99999;

option solprint = off;

model
solve

 /0.55+trans(t)*dum(t));

* Upp nd

(t) = 0.01;
k
te.u
m.lo(

* Upper and lower bounds for historical constraints

miu.f
miu.f

* Solu

optio
optio

option limrow = 0;
option limcol = 0;

co2 /all/ ;
co2 maximising utility using nlp ;

* Display of results

display y.l, c.l, s.l, k.l, miu.l, e.l, m.l, te.l, forc.l, ri.l ;
display cc.m, ee.m, kk.m, mm.m, tte.m, cpc.l, tl.l, pcy.l, i.l ;
display sigma, rr, l, al, dum, forcoth ;

 354

Chapter 16

Dynamic Optimization in MATLAB

al path of policy variables in
 for GDP or the inflation rate; to model the

the optimal path of investment in order to
aximi

te time
ynamic p hnique particularly suited for computational implementation
iven its r . Specifically, we will deal with a special case of dynamic

ization that is known as the Quadratic Linear Problem (QLP), a very popular kind
ize an intertemporal quadratic objective function

aints that hold as equalities.35 36 The QLP is used here
o well adapted and widely used for the types of

stochastic m rogress to. We have already dealt with a QLP earlier in
the book in the chapter on Thrift in GAMS. However, in that chapter we did not exploit
the recursive nature of the typical Q

 Dynamic optimization encompasses a group of mathematical techniques used in
economics to model the intertemporal behavior of economic agents under the assumption
of forward looking optimizing behavior. For example, it can be used to model the

aker who tries to determine the optimbehavior of a policym
order to achieve some specified targets

s that are assumed to choose behavior of firm
m ze intertemporal profits or their present value; to model the behavior of
consumers who are assumed to face intertemporal choices between present and future
consumption; etc.
 In general terms, dynamic optimization deals with the problem of obtaining a
sequence of optimal choices under given dynamic constraints. Calculus of variations,
optimal control and dynamic programming are the most commonly used techniques for
dynamic optimization. In this chapter, we will focus on what is known as discre
d rogramming, a tec
g ecursive structure
optim
of problem in which the goal is to optim

ic linear constrsubject to dynam
for a deterministic model because it is als

odels that we will p

LP. There, we solved the problem with nonlinear

35 Though the choice of the quadratic criterion can be somewhat limiting many nonlinear models can be

ly approximated by QLP models and then solved with successive approximations.

dynamic models in which there are inequalities, mathematical programming methods like those used

ith GAMS in the chapter on global warming are more appropriate than the Riccati methods discussed in

noise terms and

useful
36 For

w

this chapter. On the other hand the quadratic linear control theory models with equality constraints are

most useful when one wants to deal with stochastic elements in the form of additive

uncertain parameters.

355

Chapter 16 Dynamic Optimization in MATLAB

programming in GAMS. That approach can easily deal with inequality constraints;
 does not use a recursive solution method. Rather cking” method

which transforms a dynamic problem into a larger static one.
hapter we A which uses a vector-matrix paradigm more

suitable to deal with the standard QLP since, as we will see below, the solution of these
problems involves a series of vector and matrix operations. We have already introduced

rlier chapters. In Appendix 16A we provide the listing and in the book
ile for the MATLAB representation of the m e will

evelop in this chapter. This code was based on an earlier code in GAUSS by Hans
mma

ef introduction to the mathematics of QLP. Then, as
 simple example, a small macroeconometric model is introduced. Finally, the model is

TLAB and solved.

. Introduction to Dynamic Programming

The dynamic programming approach, developed by Richard Bellman (1957), can
ustrated with a simple example. The diagram in Figure 16.1 represents different

 node to applying a specific action u to move from one node to

nc et example, we can interpret the nodes as towns and the actions as
means of transportation (car, plane, train, etc.). Each town has associated a cost (e.g.

om and board). Also each means of transportation has a cost associated to it. The

we are at.

however, it it uses a “sta

In this c turn to M TLAB

MATLAB in ea
web site we provide the f odel w
d
A n and was created in MATLAB by Huber Salas and Miwa Hattori.

This chapter begins with a bri
a
input to MA

1

be ill
ways of going from 11x 41x

another. As a co r e

ro
problem is to find the minimum cost path or, more precisely in the case of dynamic
programming, a feedback rule to determine the optimal action u as a function of the node

 356

Chapter 16 Dynamic Optimization in MATLAB

Figure 16.1 Dynamic Programming Example

In a more general formulation, we can think of the diagram in Figure 16.1 as
representing the time path of a system that can be driven from one state (node) to another

anipulating controls (the u oing back to a more concrete example, now in time
nd not in space as above, you can think of a macroeconomic example in which the state

st for society, to drive inflation down, or the GDP level up, facing
 numb

To solve the problem, the dynamic programming approach uses a recursive
method that works backwards. For the example at hand, the method works as follows.

1) Compute the cost J of each segment in the last stage (that is, add the cost of and

the cost of the corresponding u). There are obviously three values:

;

by m ’s). G
a
variable is the inflation rate, or alternatively the level of GDP, and the control variable is
the money supply. The problem would be the one faced by the monetary authority
trying, at a minimum co
a er of alternative economic paths to achieve that goal.

41x

5),(4131 =xxJ 32 41(,) 4J x x = ; 2),(4133 =xxJ

2) Compute the cost of each feasible optimal sequence of segments from the ..2x nodes:

X11 = 0

X21 = 3

X22 = 1

X23 = 2

X31 = 4

u = 1

u = 2

u = 2

X32 =2

X33 = 3

X41 = 1

u = 2

u = 1

u = 2

u = 4

u = 3

u = 1

u = 1

 357

Chapter 16 Dynamic Optimization in MATLAB

),(4121 xxJ = min{),(4131 xxJ + cost of segment),(3121 xx ;
),(4132 xxJ + cost of segment),(3221 xx }

 = min{5+6; 4+3} = 7

which implies that the optimal sequence of controls to go from to is [,
ce is [] (the

e) wit , while for is [with

23x

xxJ = min{ xxJ + cost of segment ;

41 + cost of segment
 xxJ + cost of segment xx }

 is

tions we find problems in which we represent an
 economy as a whole as a system of state variables that

evolves em can be manipulated by means of a set of control
or maximize) an intertemporal cost (or value) function. A

in which the cost function is quadratic and the economic
rol case,

ls

21x 41x),(3221 xxu
),(4122 xx),(3322 xxu ,),(4133 xxu),(4132 xxu]. Obviously, the optimal sequen

only feasibl h 7),(4122 =xxJ),(4123 xx),(3323 xxu),(4133 xxu]
6)41 =xJ .

3) Compute the cost of the optimal feasible sequence of segments from 11x :

,(

),(4111 21

 ,(22 xxJ
),(41),(2111 xx
)),(2211 xx ;
),(4123 2311

 = min{7+5; 7+2; 6+4} = 9

Thus the optimal sequence of controls for the problem

),(

[),(22xxu ,),(3322 xxu ,),(4133 xxu]. 11

2. A Simple Quadratic Linear Problem

 In most economic applica
economic agent, institution or the

 through time. This syst
variable ze (s in order to minimi

e very typical problem is on
system is represented by linear equations. For a very simple one-state one-cont
the problem is expressed as one of finding the contro () 1

0
−
=

N
kku to minimize a quadratic

criterion function J of the form:

(1) ∑=
N

kxJ 21

=k 02

on:

subject to the dynamic equati

 358

Chapter 16 Dynamic Optimization in MATLAB

(2) kk k ubxax +=+1

= con
a = state parameter

o

e st
ransforms the original optimization problem into a sequence of sub-problems. Its

rucial along the minimum-cost path
om a minal period of the problem. For QLP, the cost-to-go

is a qua rticular
problem

)

and the initial condition

(3) x 0

where:

 x = state variable
u trol variable

b = control parameter

As we already know, the dynamic programming approach w rks by solving the

problem backward in time, determining optimal feedback rules for choosing the control
vector as a function of th ate vector at each stage - each time period - of the problem.
Thus it t
c notion is the optimal cost-to-go, which is the cost

given time period to the terfr
dratic function of the state of the system at time k, which for our pa
 is

2(4
2 kk

1)(xxJ =∗

Starting from the terminal period, the cost is

2

2
1)(xx =∗

NNJ .

(5)

 The optimal cost-to-go at period N-1 will be the minimum of the optimal cost-to-
go at state Nx in time N and the cost incurred in time period N-1

(){ }11)(min)1(

1
−−

∗∗ +=−
−

NNu
xLNJNJ

N

 (8)

 359

Chapter 16 Dynamic Optimization in MATLAB

where is the cost function J for N-1 in Eq. (1). Thus we have

)

1NL −

⎭
⎬
⎫

⎩
⎨
⎧ +=− −

∗

−

2
1

2

2
1

2
1min)1(

1
NNu

xxNJ
N

 (9

To carry on the minimization we need, in Eq. (9), all variables expressed at time

(10)

N-1. Substituting Eq. (2) for Nx into (9) and expanding we obtain

⎭
⎬
⎫

⎩
⎨
⎧ +++=− −−−−−

∗

−

2
1

22
111

22
1 2

1
2
1

2
1min)1(

1
NNNNNu

xbuabuxaxNJ
N

The first order condition for the minimization is

1)

{ } 0)1(−∂ ∗ NJ(1 2

11
1

=+=
∂ −−

−

buabx
u NN

N

Solving (11) for we obtain a feedback rule that gives us the optimal control

(12)

1−Nu

as a function of the state

 111 −−− = NNN xGu

here Gw 1−N , known as the feedback gain coefficient, is

(13)
b
aGN −=−1

 If we repeat the procedure for)2(−∗ NJ , etc., we will observe that a general form

r the feedback rule emerges

4)

fo

kkkk x
b
axGu −== (1

Thus, the feedback rule (14) tells us what the optimal action to take is at each

point in time depending of the state of the system. For our particular problem the
edbacfe k gain coefficient is a constant. However, as we will se later, this is not the case

 360

Chapter 16 Dynamic Optimization in MATLAB

for more general problems.
 To obtain the solution paths for the controls and the states, we have to start from

the initial condition (3) to obtain the optimal control from Eq. (14). Then we can solve
Eq. (2) to ob al state and go back to Eq. (14) to obtain the optimal
control and so on. Thus we can see that the solution paths are obtained from a “forward
loop”. Knowing the optimal states, we can compute the corresponding criterion value
from Eq. (1).

m we
.

We begin by initializing the problem for four periods (from zero to three), and we assign
values ndition. We also set to zero what will be the
vectors containing the optimal states and controls, the variable sum which will contain

e criterion value, and the index variable .

zeros(1,t); x = zeros(1,t);
sum = 0; k = 0;

 forward loop.

 u(1,k+1) = uopt;
new;

ent of the initial condition to the xold variable,
k <= t. At each pass, the values of the feedback gain

coefficient glarge, the optimal control uopt and the optimal state xnew are computed
and stored in the corresponding positions of vectors x and u, and the corresponding value
of the criterion function is computed and added to the sum variable. Finally, the results
are printed, previously transposing the vectors so that the results are displayed in colums.

tain the next optim

 The MATLAB representation of the solution procedure of the simple proble
presented is straightforward, and it is available in the book web site in file qlpsimple.m

for the parameters and the initial co

th k

t = 3; a = 0.7; b = -0.3; x0 = -1;
u =

Next we write the

xold = x0;
while k <= t;
 glarge = - a / b;
 uopt = glarge * xold;
xnew = a * xold + b * uopt;
sum = sum + 0.5 * xold^2;

 x(1,k+1) = xold;

 xold = x
 k = k+1;

end;

 The loop begins with the assigm
and it will run as long as

 361

Chapter 16 Dynamic Optimization in MATLAB

u = u'
x = x'
Criterion = sum

 values for the optimThe solution al states and controls are shown in Table 16.1.

k x u

0 -1 -2.3333

1 0 0

2 0 0

3 0 0

Table 16.1 Optimal States and Controls

Notice that the value of x is driven to zero in just one period and with a single
ol action. Even if we extend the number of periods, and whatever initial condition

e use, just one single control action will suffice. Why? The answer lies in the fact that
tion to be minimized. Thus, there is

o cost associated to the use of the control and this one can immediately jump to any

ill be included into the criterion function. Moreover, both the state variable and the
control variable will have associated specific weights in the function to represent relative
priorities in terms of the cost of having the state variable off-target versus the cost of
using the control.

In the next section we will present a more comprehensive and general problem. It
will be a many-state many-control problem. There will be weights on states and controls
and also cross terms in the criterion function. And the system of equations will contain
constant terms. We will see that the main logic to obtain a solution is the same we used

ch as Riccati
atrice d loop together
ith a forward loop similar to the one we presented in this section.

contr
w
the control variable is not a part of the criterion func
n
necessary value to bring the state variable to zero. However, in most cases this variable
w

in this section. However, some new elements will appear as a part of it su
m s and vectors, and the solution procedure will involve a backwar
w

 362

Chapter 16 Dynamic Optimization in MATLAB

3. A More General Quadratic Linear Problem

Quadratic Linear Problem (QLP) has linear system equations and a quadratic

 The
criterion and may be written as find

() 1
0
−
=

N
kku

to minimize the criterion

(15) ∑
−

=
⎟
⎠
⎞

⎝
′

0 222 k
kkuλ

m equations

⎜
⎛ +Λ′+′+′+′+′+′=

1 111 N

kkkkkkkkkkkNNNNN uuuFxxwxWxxwxWxJ

subject to the syste

(16) cBuAxx kkk ++=+1 1,,1,0 −= Nk

 k

k

x state vector
control vector

W state vector priority matrix
F cross state control priority matrix

and c parameter matrices and vectors

=
=
=
= −

=

 ion

means the set of control vectors from period zero through period N - 1, that is
) . Period N is the terminal period of the model. Thus the problem is to

 the ime p in each period for the time periods from 0
 - 1 o min hile starting at the initial conditions (17)

and the initial conditions

17) x given (0

where

k

ku

, ,
k control vector priority matrix

A B
Λ =

Also the notat

() 1
0
−
=

N
kku

(u 12

find t aths for the control var
10 ,,,, −Nuuu

m iables
o N t imize the quadratic form (15) wt

 363

Chapter 16 Dynamic Optimization in MATLAB

and following the difference equations (16). The derivation of the solution for this model
is described in detail in Chapter 2 of Kendrick (1981). Here we will provide an o
the procedure.
 We know that for QLP, the cost-to-go is a quadratic function of the state of t
system at tim

utline of

he
e k, which for our problem is

(18)

kkkkkkk vxpxKxxJ ++′=∗ '

2
1)(

where kK and kp are called the Riccati matrix and vector respectively, and where is a

scalar. Starting from the terminal period we have

kv

(19) NNNNNNN xxJ
2

)(vxpxK ++′=∗ '1 .

 the terminal period is

 From Eq. (15), the cost at

(20) 1
2 N N N N Nx W x w x′ ′+

hat 0=NvThus, from Eqs. (19) and (20) we obtain the result t and the terminal

onditions

1)

c

 NN WK =(2

2)

 NN wp =(2 .

 The optimal cost-to-go at period N-1 will be the minimum of the optimal cost-to-

go at state Nx in time N and the cost incurred in time period N-1

(23) () () (){ }

1N−

* *
1 1 11 min ,N N Nu

J N J N L x u− − −− = +

where L is the cost function J for N-1 in Eq. (15). Analogously, the optimal cost-to-

N-2 will be

 1N−

go at period

(24) () () (){ }

2

* 2 minJ N − = *
2 2 21 ,

N
N N Nu

J N L x u
−

− − −− +

 364

Chapter 16 Dynamic Optimization in MATLAB

and so on. Carrying out the corresponding substitutions in Eqs. (23) and (24),
inimi

feedback rule

5)

m zing, solving the first order conditions with respect to the control vectors and
rearranging, we will observe the emergence of a general solution which has the form of a

 kkkk gxGu += (2

where

6)

[] []AKBFBKBG kkkkk 1
1

1 +
−

+ ′+Λ′+′−= (2

7) [] ()[]kkkkkk pcKBBKBg λ++′Λ′+′−= ++

−
+ 11

1
1 (2

and where the expressions for the Riccati matrix and vector are

[] [] []AKBFBKBFBKAWAKAK kkkkkkk 1
1

111 +
−

+++ ′+′Λ′+′+′−+′= (28)

[] [] ()[] () kkkkkkkkkk wpcKApcKBBKBFBKAp ++′+++′Λ′+′+′−= ++++

−
++ 1111

1
11 λ . (29)

These equations look formidable but they essentially involve only the matrices and vector

,A B and c from the system equations (16) and the matrices W and Λ from the criterion
on) in addition to the lead values of the Riccati mafuncti (15 trix 1kK + and the Riccati

vector 1kp + .

To obtain the solution paths for the controls and the states, we have to start at the
end and work backward. We will follow that procedure here by beginning with the

hile solving for the Riccati
atrices and vectors. Then we will use the initial conditions, the feedback rule and the

system equations to solve forward in time while computing the state and control

 Thus we begin by integrating backward in time starting with the terminal

0)

terminal conditions and working back to the initial period w
m

variables.

conditions

(3 NN

WK =

(31) NN wp =

 365

Chapter 16 Dynamic Optimization in MATLAB

The backward integration is done by solving the Riccati matrix and vector equations

(32)

[] [] []AKBFBKBFBKAWAKAK kkkkkkk 1
1

111 +
−

+++ ′+′Λ′+′+′−+′=

(3 [] []3) ()[] () wp +

and solved in a very straightforward
way. Using Eqs. (30) thru (33) the procedure is to begin with which is obtained from
Eq. (30). This matrix is then used first in Eq (32 to compute

kkkkkkkkkk pcKApcKBBKBFBKA +′+++′Λ′+′+′−= ++++
−

++ 1111
1

11 λ

 As will be shown later in the computational section of this chapter, these
calculations can be programmed into MATLAB

NK
) 1NK − , then is used in

that equation again to compute
1NK −

2NK − etc until the matrix has been computed. A
milar procedure is used to calculate the Riccati vectors

0K

kpsi using Eqs. (31) and (33).

 ectors have been computed, then a forward
integra he feedback gain matrix and vector from

Eqs. (2 xpressions, i.e.

Once all the Riccati matrices and v
kG kgtion loop is started. In this loop t

6) and (27) are computed for each time period using those e

[] [](34) AKBFBKBG kkkkk 11 ++ ′+Λ′+′−=

1−

and

(35) [] ()[]kkkkkk +++ 111 pcKBBKBg λ++′Λ′+′−=

These e
omplicated but are easily programmed and solved in MATLAB.

 The feedback gain matrix and vector are then used in the feedback rule

(36)

ong with the initial condition,

−1

xpressions - like those for the Riccati matrix and vector above are somewhat
c

kkkk gxGu +=

al 0x , to compute the control vector, . This value and
the initial state,

0u

0x , are then used in the system equations from Eq. (16) i.e.

)

(37 cBuAxx kkk ++=+1

 366

Chapter 16 Dynamic Optimization in MATLAB

1xto compute the value of the state vector for the next period, . Then the process is

repeated beginning with Eqs. (34) and (35) and using Eqs. (36) and (37) until the control
vectors, ku , and the state vectors, kx , have been computed for all time periods.

 Also, in each pass through the forward loop the crite

rion value for that period is
omputed and added to the amount already accumulated using part of the criterion

ion, which is shown here in the tracking version rather than in the quadratic form,
i.e.,37

c
funct

(38) () () () ()kkkkkkkkkk uuuuxxWxx ~~
2
1~~

2
1

−Λ′−+−′

where
k

−

x desired state vector=

ku desired control vector=

 We shall see shortly how intuitive it is to represent the mathematics of the

es of

n

orm

us Eq. (15) becomes:

(39)

solution procedure in MATLAB. Before doing so, we will comment on other typ
problems and solution procedures that arise when we move from the deterministic
framework of the standard QLP problem to an environment in which uncertainty is take
into account.
 The simplest way of introducing uncertainty is by assuming that it takes the f
of additive uncertainty. That is, assuming that the system of linear equations is shocked
in each period by additive noise. When we do this, the mathematical representation of
the QLP problem is modified in two ways. First, the objective function is now an
expected value, th

{ }
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ′+Λ′+′+′+′+′+′= ∑

−

=

1

0 2
1

2
1

2
1 N

k
kkkkkkkkkkkkkNNNNN uuuuFxxwxWxxwxWxEJE λ

where E is the mathematical expectation operator. Second, the system of equations now
has an additive noise term denoted by kξ , that is:

37 Later in the chapter we discuss the transformation of the quadratic tracking version of the criterion

nction to the quadratic form. fu

 367

Chapter 16 Dynamic Optimization in MATLAB

(40) k1k k kx Ax Bu c ξ+ = + + +

with

j =

 However, it can be shown that the solution procedure for this stochastic problem
is the same as the one for the QLP problem (Eqs. (30) to (36)).38 This is why the
solution procedure when additive uncertainty is present is named Certainty Equivalent
(CE). Notice that this does not mean that the observed optimal paths for the states and
the controls will be the same in a QLP and a CE simulation, since in the CE simulation

e system of equations will be shocked by additive noise at each time period.
 Consider now the case of multiplicative uncertainty. In this case, we have
information about the variances and covariances of the dynamic equations parameters
(matrices A, B and vector c) and we want to exploit that knowledge when computing the
optimal values of the controls to be applied period after period. In formal terms
equations (39) and (40) still characterize the problem. However, it can be shown that the
solution procedure is now somewhat different from the one corresponding to Eqs. (30)
thru (36). Indeed, the expectations operator will appear now in those equations, as shown
in Eqs. (43) - (46) below.

(41)
(42)

(43)

{ } { } '0 0
j k

k k k k kE E Q Eξ ξ ξ ξ ξ
≠

⎧ ⎫′= = ⎨ ⎬
⎩ ⎭

th

NN WK =

NN wp =

{ } { }[] { }[] { }[]AKBEFBKBEFBKAEWAKAEK kkkkkkk 1
1

111 +
−

+++ ′+′Λ′+′+′−+′=

(44)

{ }[] { }[] { } { } { } { } kkkkktkkkk wpAEcKAEpBEcKBEBKBEFBKAEp +′+′+⎥⎦
⎤

⎢⎣
⎡ +′+′Λ′+′+′−= ++++

−
++ 1111

1
11 λ

(45) ⎤⎦

 (46) 1 k

{ } { }1
1 1k k k k kG E B K B F E B K A

−

+ +′ ′ ′= − + Λ +⎡ ⎤ ⎡⎣ ⎦ ⎣

{ } { } { }1
1 1k k k k kg E B K B E B K c E B p λ

−

+ + +
⎡ ⎤′′ ′ ′= − + Λ + +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

38 See Kendrick (1981), Ch. 5.

 368

Chapter 16 Dynamic Optimization in MATLAB

 Notice that there are now several terms involving the expectations of matrix
products. To compute these expe apter 6 in Kendrick (1981) we
have to proceed as follows. In gen

7)

terministic. Thus

ctations, following Ch
eral terms, define:

D A KB′≡ (4

, A and B are random and K is dewhere D, A, K, B are all matrices

(48) { } { }E D E A KB′= .

A single element in D is ijd . Then:

(49) { } { }ij i jE d E a Kb′=

where is the ith column of A and is the jth column of B. It can be shown that

(50) j b aE d E a E b tr K′

 ia jb

{ } { }() { }
j iij i K ⎡ ⎤= + Σ⎣ ⎦

where

(51) { { } { } }j i ib a E a
j ib a jE b E ′⎡Σ = − ⎤ −⎡ ⎤⎣ ⎦⎦

or the jth column of B and the ith column of A and

⎣

[]tr ⋅ is the covariance matrix f is the

, the sum of the diagonal elements of the matrix in brackets.
al paths for the controls and the states, we have to apply Eqs.

(41) thru (46) in the same manner with backward and forward loops as we did for the
se presented earlier.

ure like the one presented above is used to solve a problem in
uncertainty is present, we say that we have an Open Loop Feedback
em (OLF w/o update). Why do we say “without update”? In more

ons like the ones to be presented in Section 4 of the next chapter, given
iances and covariances of the state equations parameters, we can
g process. To do so, in each time period of the solution a

projection-updating mechanism - usually a Kalman filter - is added to the solution

trace operator, i.e.
To obtain the optim

deterministic QLP ca
 When a proced
which multiplicative

lwithout update prob
complex simulati
the knowledge of the var
consider a passive learnin

 369

Chapter 16 Dynamic Optimization in MATLAB

method of the optimization problem in order to obtain, in each period, updated values of
 of their variance-covariance matrix. You will have a better
 Section 4 of the next chapter. Details of the mathematical

omic
ples

l be introduced in the next chapter using Duali, a high-level software especially
ese types of problems.

4. The Macroeconomic Model

 The model is based on the work of Chow (1967) and Abel (1975) and is a very
l with two state variables and two control variables that was used early in the

control literature to perform some policy experiments. It was not chosen because of its
 i AB and thus

int to handle the more complex and realistic models like the
o chapters. The two state variables are

e model when estimated with data for the period 1954-II to
orted in Kendrick (1982a), is

)

Notice that the model exhibits "crowding out" behavior since the sign on the government
expenditure variable in the investment equation is negative.
 The model can be written in the notation of the system equations (16) above as

next period parameters and
 of this once you get toidea

form of these procedures are in Kendrick (1981) (2002).
In the following we turn to the MATLAB representation of the QLP solution

procedure. Before doing so, in the next section we will introduce a small macroecon
model to use as an example. CE, OLF and parameter updating procedures and exam
wil
designed to deal with th

simple mode

nice properties but rather because t is very easy to implement in MATL
provides a good starting po
ones to be presented in the next tw

 C = consumptionk
 kI = investment

and the control variables are

 = government expenditures kG

kM = money supply

The reduced form of th

1963-IV as rep

1 0.914 0.016 0.305 0.424 59.437k k k k kC C I G M+ = − + + − (52
(53) 1 0.097 .424 0.101 1.459 184.766k k k k kI C I G M+ = + − + −

 370

Chapter 16 Dynamic Optimization in MATLAB

1,,1,0 −= Nk(16) Axx kk cBu +=+1 k +

with

⎥
⎦

⎤
⎢
⎣

⎡
=

k

k
k I

C
x k

k
k

G
u

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0.097 0.424

A
0.914 0.016−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0.305 0.424
0.101 1.459

B ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

e model are given by the values of consumption and
estment respectively in 1964-I as

(54) =

of the form

59.437
184.766

c
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

 The initial conditions for th
inv

387.9⎡ ⎤
0 85.3⎢ ⎥

⎣ ⎦
x

 The criterion for the model is

(55) () ()~ˆ~1 ′
NNNNN xxWxxJ

2
−−=

 + () () () ()∑
−

⎥⎦
⎤

⎢
=

⎡ −Λ′−+−′−
1 ~ˆ~

2
1~ˆ~1N

kkkkkkkkkk uuuuxxWxx

 "tracking function" since it is minimized by having the optimal state and
trol vectors

⎣0 2k

This is called a
con kx and track as closely as possible the desired state and control vectors uk

kx and ku . So the decision maker chooses the optimal time paths for the desired states

 controls and then solves the model to compute the optimal controls which come as
esired paths while satisfying the dynamic relationships in the

 to the criterion which was discussed in the mathematics section

)

and
close as possible to these d

tem equations (16). sys
 Compare Eq (55)
of this chapter, i.e. Eq. (15)

∑
=

⎟
⎠
⎞

⎜
⎝

(15
−

′+Λ′+′+′+′+′+′=
0 2

1
22 k

kkkkkkkkkkkkkNNNNN uuuuFxxwxWxxwxWxJ λ

⎛1 11 N

 371

Chapter 16 Dynamic Optimization in MATLAB

Equations (55) and (15) are imilar since they are both quadratic functions. In fact Eq.
 form of Eq. (15) by expanding the quadratic terms. This

).

)

 s
) can be transformed to the(55

results in the following relationship between the matrices of Eqs. (15) and (55

(56 kk

 xWw

WW ˆ=

(57) kkk
~ˆ−=

0=F (58)
(59) kk Λ=Λ ˆ

kkk u~Λ̂−=λ (60)

 In the MATLAB statement we will input the data using the matrices and vectors
in the tracking function (55) and then compute the matrices and vectors for the quadratic
form (15) that was used to derive the algorithm which is implemented in the code.
 The data for Eq. (55) which are taken from Kendrick (1982a) are as follows:

(61)

(62)

These two equations indicate that the desired paths for both the states and controls grow
at approximately 3 percent per year or 0.75 percent per quarter over the time horizon
covered by the model.
 The priorities (penalty weights) in the objective function (55) are given below.

(63)

()
387.9

1.0075
85.3

k
kx ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

()
110.4

1.0075
147.17

k
ku ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

6.25 0ˆ
0 100NW ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0.0625 0ˆ
0 1kW ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

(64)

All of these priorities are the same (relative to the square of the size of the variables)
except those for the terminal state variables in where the priorities are 100 times as

1 0ˆ
0 0.444k
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

ˆ
NW

 372

Chapter 16 Dynamic Optimization in MATLAB

great. This is done to represent the fact that politicians usually care more about the state
of the economy in the period just befor than they do at other times.
 This completes the statement of the model. Now we are ready to incorporate
both the mathematics and the model into the MATLAB representation.

5. The MATLAB

 In this section we discuss the MATLAB representation a few statements at a time.
The complete listing is in Appendix 16A. The code statement is begun with the
dimensions of the model. This version has seven time periods, two state variables and
two control variables.

t = 7; n = 2; m = 2;

One of the nice features of the MATLAB language in comparison to older languages
such as Fortran and C is that the dimensioning of matrices is done automatically by the
code. Therefore it is not necessary to use something like

 Dimension A(2,2), B(2,2), c(2,1)

Rather one can just input the matrices and

e an election

 Representation

A B and the vector as shown below and
the MATLAB system takes care of the memory management.

a = [0.914 -0.016;
 0.097 0.424];

b = [0.305 0.424;
 -0.101 1.459];

c = [-59.437;
 -184.766];

Notice that the semicolon is used to mark the end of a row in the matrix input.
 Likewise we can input the initial conditions,

 c

0x , for the state and the base values

for the desired states and controls as vectors. The base values for the states are called
xtar to indicate that they represent target values for the states, x . Likewise for the
control targets which are called utar.

x0 = [387.9;
 85.3];

xtar = [387.9;

 373

Chapter 16 Dynamic Optimization in MATLAB

 85.3];
utar = [110.4;

 147

Finally the criterion function matrices are input.

.17];

w = [0.0625 0;
 0 1];

wn = [6.25 0;
 0 100];

f = [0 0;
 0 0];

lambda = [1 0;
 0 0.444];

 Now all the data have been input and we are ready to start the matrix Riccati loop.
In preparation for doing so we need to initialize the Riccati matrix 1kK + and vector 1kp + .
These are called kold and pold to distinguish them from kK and kp which will be called

knew and pnew respectively. Since the Riccati loop proceeds from the last time period
toward the first, period 1k + values are the old values and period k values are the new
values.

% The Riccati Loop

kold = wn; % Boundary condition
pold = -wn*xtar*(1.0075)^t; % Boundary condition

Recall from Eqs (18) and (19), which were the terminal conditions for the Riccati
equations, that

(30) NN WK =
(31) NN wp =

Also remember that we need to use input data for the tracking function Eq. (55) and
transform it for use in quadratic form Eq. (15). Thus we need to use the transformations
from Eqs. (56) and (57) which become for the terminal period

(56)

(57)
NN WW ˆ=

NNN xWw ~ˆ−=

 374

Chapter 16 Dynamic Optimization in MATLAB

s

(65)

(66)

 Substitution of Eq. (56) into Eq. (30) and Eq. (57) into Eq. (31) yield

NN WK ˆ=

NNN xWp ~ˆ−=

In Eq. (66) the desired value for the state is based on the initial period target values
grown over the time horizon covered by the model at a rate of 3 percent per year or 0.75
percent per quarter so that

(67) () 0

~0075.1~ xx N
N =

 Substitution of Eq. (67) into Eq. (66) then provides the relationship which is used
in the MATLAB representation namely

(68) ()N

NN xWp 0075.1~ˆ
0−=

This is written in MATLAB as

pold = -wn*xtar*(1.0075)^t; % Boundary condition

where t is the number of time periods in the MATLAB representation.
 Next we need to compute and store the Riccati matrices and for all time

periods as we integrate backward from the terminal time period to the initial time period.
So we need to store a series of (n,n) matrices. We do this by using a three dimensional
matrix with dimensions (n,n,t) for the Riccati matrices and (n,t) for the Riccati
vectors

kK

kK

kp . This is specified in MATLAB with the statements.

kstore = zeros(n,n,t); % storage for dynamic Riccati matrices
pstore = zeros(n,t); % storage for dynamic Riccati vectors

So kstore will be our place to store all the Riccati matrices and pstore will be used to
store the Riccati vectors. These matrices are filled with zeroes as they are created and
later we will replace the zeros with the computed values.
 Also, we need to create a place to store the optimal controls and states and that is
accomplished with the MATLAB statements below. Here again the arrays are filled

 375

Chapter 16 Dynamic Optimization in MATLAB

with zeroes as they are created and then will be filled with the computed values later.
This is done with the following statements.

u = zeros(m,t+1);
x = zeros(n,t+1);

old;

 This completes all the set up required before we began the backward recursion to
compute the Riccati matrices and vectors. The loop itself is begun with the MATLAB
statements

k = t-1;
while k >= 1;

Here the running index k is going to be used for time periods. It is initialized to t-1
because we have already done the calculations for the terminal period t and are ready to
do them for period t-1. Then the while command is used to indicate that the loop
operation should continue so long as k is greater than or equal to 1. Later on at the
bottom of this loop we will find the statements

 k = k-1;

end; % End of the Riccati loop

that decrease k by one each time the calculation passes thorough the loop. Also the end
statement indicates the point to which the calculation jumps once the condition in the
while statement no longer holds true.

The time dimension of these arrays is set to t+1 rather than to t to accommodate
the fact that the x array must holds values for period zero as well as for the last period.

As a final step before we begin the backward recursion we need to store the
terminal values of kold in the matrix t of kstore and pold in column t of pstore.

kstore(:,:,t) = kold(:,:);
pstore(1:n,t) = p

 376

Chapter 16 Dynamic Optimization in MATLAB

 The next step is to compute the desired paths for the state and control vectors
which are called utark and xtark for target and u x target respectively for all the time
periods. Those variables are then used in turn in Eqs. (57) and (60), i.e.

(57) kkk xWw ~ˆ−=

(60) kkk u~Λ̂−=λ

to compute kw which is called wsmall and kλ which is called lambdas.

 utark = (1.0075^k).*utar; % Time dependent targets
 xtark = (1.0075^k).*xtar;
 wsmall = -w*xtark;
 lambdas = -lambda*utark;

 Now we are finally in position to compute the Riccati matrix using Eq. (32)

(32) [] [] []AKBFBKBFBKAWAKAK ′= kkkkkkk 1111 ++++

The representation in MATLAB of this equation is

knew = a'*kold*a+w-(a'*kold*b+f)*inv(b'*kold*b+lambda')*(f'+b'*kold

This is a good demonstration of the power of MATLAB to represent a complex
expression in a form that is very close to the mathematical representation. The
diff

1− ′+′Λ′+′+′−+

*a);

erences between the mathematical and MATLAB representations are quickly
pparent. For the inverse of a matrix enclosed in parentheses mathematics uses

while MATLAB uses the function inv(). MATLAB does not include the Greek
alphabet so the m

() 1− a

athematical symbol Λ is represented in MATLAB as lambda. Also, as
was discussed earlier, the Riccati matrices kK and 1kK + are represented as knew and

kold, respectively.
 Similarly s in mathematics is

(33)
[

the equation for the Riccati vector

[] []kkkk BKBFBKAp Λ′+′+′−= −
++

1
11

()] ()KB′

kkkkkk wpcKApc ++′+++ ++++ 1111 λ

 377

Chapter 16 Dynamic Optimization in MATLAB

and its on is

 pnew=
 -(a'*kold*b+f)*inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas)+...

the

n be placed in the storage arrays that
ces and vectors for all time periods, i.e.

 kstore(:,:,k) = knew(:,:);
 pstore(1:n,k) = pnew;

Now we are at the bottom of the backward loop and, as promised above, this loop
is ended with a statement to decrease k by one and then to end the while loop.

k = k-1;
d;

 No sooner do we finish to backward loop than it is time to start the forward loop
with the statements.

k = 0;
xold = x0;

ark;
 lambdas = -lambda*utark;

MATLAB representati

 a'*(kold*c+pold)+wsmall;

Note that the ... notation is use in MATLAB to signal to the complier that the rest of
equation continues on the following line.
 Having now used kold and pold we need to transfer knew and pnew respectively
to them for use in the next pass through the while loop. This is done with

 kold = knew; % Setup next period
 pold = pnew;

Then the Riccati matrix and vector for period k ca
hold these matri

en

sum = 0;

while k <= t-1;
 utark = (1.0075^k).*utar;
 xtark = (1.0075^k).*xtar;

 wsmall = -w*xt

 378

Chapter 16 Dynamic Optimization in MATLAB

A tiali a
th w

fter k is set to zero the state vector is ini zed using x0 nd then the desired paths for
e states and controls are computed and used to calculate and k kλ which are

presented in MATLAB as wsmall and lambdas. Notice that the while loop this time
ses a less than or equal to. At the bottom of this forward while loop we find the

statements

k = k+1;
end;

that increment the k and provide the close for the while loop.
 Now we are to the stage where we want to make use of the Riccati matrices and
vectors which we computed and stored away in the backward loop.

 kold(:,:) = kstore(:,:,k+1);
 pold = pstore(1:n,k+1);

The elements for the Riccati matrix are pulled from storage in kstore and the Riccati
vector are pulled from pstore.

Once the matrix is available in kold it can be used in the computation of the
feedback gain m , as described in Eq. (34)

(34)

re
u

kK
atrix, kG

[] []AKBFBKBG kkkkk 1

1
1 +

−
+ ′+Λ′+′−=

The MATLAB representation of this mathematical expression is

 glarge = -inv(b'*kold*b+lambda')*(f'+b'*kold*a);

Here again we see how closely the mathematical and MATLAB representations parallel
one another and how much this aids the user in being sure that the mathematics of the
solution procedure are correctly mimicked in the computer code.
 Similarly the mathematical expression for the feedback gain vector is

(35)

[] ()[]kkkkkk pcKBBKBg λ++′Λ′+′−= ++
−

+ 11
1

1

and the MATLAB representation is

 gsmall = -inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas);

 379

Chapter 16 Dynamic Optimization in MATLAB

 Once the feedback gain matrix and vector have been computed they can be used
in the feedback rule (36) along with the state vector kx to compute the control vector .

 ku

(36) kkkk gxGu +=

uopt = glarge*xold + gsmall;

 Finally, the system equation (37) is used along with kx and ku to compute 1kx +

(37) cBuAxx kkk ++=+1

 xnew = a*xold + b*uopt + c;

 Next we need to compute the portion of the cost terms in the criterion function
that are incurred during period k. This is done with the mathematical expression

 () () () ()kkkkkkkkkk uuuuxxWxx ~~
2
1~~

2
1

−Λ′−+−′− (38)

and the corresponding MATLAB expression

 sum = sum + 0.5*(xold-xtark)'*w*(xold-xtark) + 0.5*(uopt-...
 utark)'*lambda*(uopt-utark);

The variable sum was set to zero at the top of the forward loop and is added to with each
pass through the loop.

Then the values of the state and control vectors are stored

 x(1:n,k+1) = xold;
 u(1:m,k+1)= uopt;

and xold is set to xnew for the next pass through the forward loop. Also the k index is
incremented.

 xold = xnew;
 k = k+1;

 380

Chapter 16 Dynamic Optimization in MATLAB

Then the forward loop is closed with the statement

end;

 One more small bit of clean up is required before we are through with the
computations. We need to store the last state vector and to add on the portion of the cost
function for the terminal period. This is done using a portion of the mathematics from
Eq. (55), i.e.

() ()NNNNN xxWxx ~ˆ~
2
1

−′−

These two steps are represented in MATLAB as

x(1:n,t+1) = xold;
utark = (1.0075^k).*utar;
xtark = (1.0075^k).*xtar;
sum = sum + 0.5*(xold-xtark)'*wn*(xold-xtark);

 ted

solution procedure and model. While it is nice to learn to code a few lines at a time, it is
not nice to view it that way after you have gained some familiarity with it. Therefore
Appendix 16A includes the complete listing of the MATLAB input file.

6. Experiments

 The macroeconomic model used as an example here is delightfully small while
you are learning how to represent and solve it in MATLAB, but after you have used it for

The results for the optimal controls, states and criterion value are then prin

with the statements

u = u'; % The optimal control vector
u
x = x'; % The optimal state vector
x
Criterion = sum % The value of the criterion function

 In the preceding we have shown almost all the lines of the MATLAB code for this

 381

Chapter 16 Dynamic Optimization in MATLAB

a bit you will discover that it has sharp limitations. Therefore, it is suggested that y
modify it according to your taste while you are experimenting with it.
 One limitation is that the coefficients on th

ou

e control variable are so small that
there is

 not much latitude to alter the state variable paths.

(52) 1 0.914 0.016 0.305 0.424 59.437k k k k kC C I G M+ = − + + −
(53) 1 0.097 .424 0.101 1.459 184.766k k k k kI C I G M+ = + − + −

The coefficients of kG in Eqs. (52) and (53) are 0.305 and -0.101 respectively. So you

might want to increase the magnitude of these coefficients in order to make the model
more responsive to fiscal policy. Alternatively, if you want more clout for monetary
policy you might increase the size of the coefficients on M .

Also, some of you will not like the fact that government spending 'crowds out'
investment, so you may want to change the coefficient on government expenditure in the
investm nt equation from negative to positive.
 Econometricians will be somewhat dismayed that we are suggesting that
coefficients be altered since these are, after all, estimated from data and should not be
changed willy-nilly. While we agree that one should be careful about empirical work,
the spirit here is to learn about the dynamic response of the model. The estimation of

is model on data from different time periods will indeed yield different parameter
cification will also result in changes in the parameter

alues. So for purposes of this kind of experiment we would encourage the user to try
some p d

ese limitations, the model is reasonably good for becoming
acquainted with the use of optimal control theory to determined macroeconomics
policies. For this purpose the user is encouraged to alter either the desired paths of states
and controls or to alter the priorities and

e

th
estimates and small changes in spe
v

arameter modifications in order to see how that changes the optimal state an
control variables.
 Aside from th

kW kΛ to see how this affects the results. For

example, some users will want to assign high priority to consumption and others will
prefer to do so for investment. Some users will want to change the desired path for
government expenditures so that it declines rather than rises and then provide a high
priority weight in the (1,1) element in kΛ to insure that this result is obtained. Some

sers will want to insure that the economy follows the desired paths in all periods and
es only on the terminal period to be sure that

the economy is in good shape just before the next election.

u
others will want instead to use high prioriti

 382

Chapter 16 Dynamic Optimization in MATLAB

7. Fu

 or a general treatment of dynamic programming methods and their applications
to economics see Sargent (1987) and Adda and Cooper (2003). More advanced
treatments can be found in Bertsekas (1995) and Stokey and Lucas (1989). For detailed
derivations of the QLP, CE and OLF procedures and for projection-updating
mechanisms, see Kendrick (1981) (2002). For a book on econometric and financial
analysis with GAUSS, a language that is similar to MATLAB and which is widely used
in econometrics, see Lin (2001).

rther Readings

F

 383

Chapter 16 Dynamic Optimization in MATLAB

Appendix 16A

MATLAB Representation of the Abel Model

% Title: Quadratic-Linear Tracking problem for Abel
% Program name: qlpabel.m

% Based on the Chapter 4 of Stochastic Control for Economic Models
% example by David Kendrick.
% GAUSS version by Hans Amman, modified to MATLAB by Huber Salas
% with subsequent changes by Miwa Hattori and David Kendrick
% to implement a deterministic,
% two-control version of the Abel (1975) model (Jan 2005)

 Computes the optimal cost-to-go, control and state vectors.

% Preliminaries

a = [0

x0 = [

w = [0

%

%

%
t = 7; n = 2; m = 2;

.914 -0.016;
 0.097 0.424];
b = [0.305 0.424;
 -0.101 1.459];
c = [-59.437;
 -184.766];

387.9;
 85.3];
xtar = [387.9;
 85.3];
utar = [110.4;

 147.17];
.0625 0;

 0 1];
wn = [6.25 0;
 0 100];
f = [0 0;
 0 0];
lambda = [1 0;
 0 0.444];

 384

Chapter 16 Dynamic Optimization in MATLAB

% storage for dynamic Riccati vectors

u = zeros(m,t+1);
x = zeros(n,t+1);

kstore(:,:,t) = kold(:,:);
pstore(1:n,t) = pold;

k = t-1;
while k >= 1;

 xtark = (1.0075^k).*xtar;
 wsmall = -w*xtark;
 lambdas = -lambda*utark;

 knew = a'*kold*a+w-
 (a'*kold*b+f)*inv(b'*kold*b+lambda')*(f'+b'*kold*a);
 % Computing the Riccati matrices
 pnew =
 -(a'*kold*b+f)*inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas)+...
 a'*(kold*c+pold)+wsmall;
 % Computing the tracking equation

 pold = pnew;
 kstore(:,:,k) = knew(:,:);
 pstore(1:n,k) = pnew;
 k = k-1;
end; % End of the Riccati loop

%
% The Riccati Loop
%
kold = wn; % Boundary condition
pold = -wn*xtar*(1.0075)^t; % Boundary condition

kstore = zeros(n,n,t); % storage for dynamic Riccati matrices
pstore = zeros(n,t);

 utark = (1.0075^k).*utar; % Time dependent targets

 kold = knew; % Setup next period

 385

Chapter 16 Dynamic Optimization in MATLAB

%
% The Forward loop
%
k = 0;
xold = x0;
sum = 0;

while k <= t-1;
 utark = (1.0075^k).*utar;
 xtark = (1.0075^k).*xtar;

 wsmall = -w*xtark;
 lamb

')*(f'+b'*kold*a);
 gsmall = -inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas);

 uopt = glarge*xold+gsmall;
 xnew = a*xold+b*uopt+c;
 sum = sum+0.5*(xold-xtark)'*w*(xold-xtark)

 +0.5*(uopt-utark)'*lambda*(uopt-utark);

 x(1:n,k+1) = xold;
 u(1:m,k+1) = uopt;
 xold = xnew;
 k = k+1;

of the forward loop

%
% The Last Period
%
x(1:n,t+1) = xold;
utark = (1.0075^k).*utar;
xtark = (1.0075^k).*xtar;
sum = sum+0.5*(xold-xtark)'*wn*(xold-xtark);

das = -lambda*utark;

 kold(:,:) = kstore(:,:,k+1);
 pold = pstore(1:n,k+1);

 glarge = -inv(b'*kold*b+lambda

end; % End

 386

Chapter 16 Dynamic Optimization in MATLAB

%
% Print the solution
%
u = u'; % The optimal control vector
u

x = x'; % The optimal state vector
x

Criterion = sum % The value of the criterion function

 387

Part III

Special Topic: Stochastic Control

388

Special Topic: Stochastic Control

This third part of the book is different than the first two. The first two parts
covered a wide variety of topics in a way that provides an introduction to the
comput

99d)).

w-entry cost way to begin work in this field. However, the Duali software
represe

e. In
f

nclude
al

ith care since it can cause one to
lose not only Duali input files but also input files for other applications that are running
concurrently with Duali.

On the other hand, this software has been used successfully by many
undergraduate and graduate students in classes at the University of Texas and has
provided an easy “on ramp” for many students into the field of stochastic control. In
addition, it has been used by a number of graduate students in developing some parts of
their Ph.D. dissertation research. Therefore, we suggest that if you decide to move
forward into this part of the book the gains may be substantial, but you should proceed
with considerable caution.

ational methods used in those fields. In contrast, this part zeroes in on a narrow
area of computational economic research that is of particular interest to us. The area is
the application of stochastic control theory methods to macroeconomic stabilization
models. In the past we have done three kinds of work in this area: analytical (viz.
Mercado (2004)), computational with the MATLAB software (viz. Amman and Kendrick
(2003)) and computational with the Duali software (viz Amman and Kendrick (19
Here we focus on the third of these three types of research since the Duali software
provides a lo

nts a sharp contrast to the software used in the first two parts of this book. The
software systems used earlier in the book are all high quality commercial softwar
contrast, the Duali software is experimental software that is under development by two o
us (Amman and Kendrick).

The Duali software is intended to provide a point and click interface for a
stochastic control program that can be used to solve models with a quadratic tracking
criterion function, linear systems equations and stochastic specifications that may i
additive and multiplicative noise terms, measurement errors and uncertainty about initi
conditions. It is not a commercial product and has not had the extensive testing that is a
part of such products. Rather it is an academic piece of software for which there is no
support staff or help line. Also, the software has not yet even reached the “beta” stage
and thus is prone to crashes. It therefore must be used w

389

Part III Special Topic: Stochastic Control

If you choose to go forward, it is best to begin by making use of the User’s Guide
for the Duali software which can be found by going to the book web site at

http://www.eco.utexas.edu/compeco

and proceeding to the Software section of the web site. The User’s Guide will introduce
you to the capabilities of Duali and take you through the steps to setup and solve a simple
macroeconomic model. Once you have done that, the material in this third part of the
book will follow logically.

390

Chapter 17

Stochastic Control in Duali39

In an earlier chapter we presented the Hall and Taylor macroeconomic model, a

standard nonlinear dynamic model for an open economy with flexible exchange rates.
There we represented and simulated the model in GAMS, and we also introduced a basic
form of optimal policy analysis. Working with the same model, in this chapter we will
take some steps forward in the realm of policy analysis providing an introduction to the
field of stochastic control.

A stochastic control problem can be posed as one in which a policymaker,
manipulating a set of control variables, tries to influence the dynamics of an economic

stem in order to achieve some targets. For example, in a macroeconomic setting, the
 policy variables such as the money stock or

government expenditure - to influence the behavior of the economy in order to maintain
some ta

el is usually represented in state-space form, that is, as
a first-order system of dynamic equations. The policymaker has an objective function -
usually a quadratic one - which specifies the target variables, the desired paths and the
relative weights put on the achievement of each target.

The solution of deterministic and stochastic control problems quickly becomes
very involved. Thus, to make our task feasible, we have to rely on computational
methods and specialized software. Duali40 is software that can receive as inputs the
desired paths and corresponding weights for target and policy variables and the state-
space representation of the economic model. It can then be used to generate simulation
results and to compute the optimal policy rule and the implied solution paths for policy
and target variables using the methods described earlier in the chapter on Dynamic

sy
policymaker may use some controls -

rget variables such as unemployment and inflation as close as possible to their
desired paths. The economic mod

39 This Chapter draws extensively on both the verbal and mathematical development in Mercado and

Kendrick (1999). Kluwer Academic Publishers have kindly granted us permission to reuse here substantial

aterials from our previously published paper.

ken when doing the experiments in this

book wh h use Duali. If you have not already read about the Duali software in the introduction to this part

of the book, please go back and do so.

m
40 See Amman and Kendrick (1999a). Special care should be ta

ic

391

Chapter 17 Stochastic Control in Duali

Optimization. In what follows, we will use Duali to perform first deterministic
stochastic control experiments with the state-space representation of Hall and Taylor’
model.

 and then
s

1. The Hall and Taylor Model in State-Space Form

 Much undergraduate study of macroeconomics makes use of dynamic nonlinear
models in levels; for example the levels of government expenditure and the money
supply are used to determine the levels of consumption, investment, output, interest rates
and net exports. In contrast, much empirical macroeconomic research centers on
dynamic linear models in percentage deviations of variables from their steady state
values. In these empirical models one alters the percent deviation of government

oney supply from their steady state levels and analyzes the
rates and net exports

o types of models is

expenditures and the m
resulting deviations of consumption, investment, output, interest
from their steady state levels. However, the bridge between these tw
frequently not clear.
 Therefore, for this chapter we have begun with the dynamic nonlinear Hall and
Taylor model in levels that we used with GAMS earlier in the book and have transformed
it into a linearized model in percentage deviations of variables from their steady state
values in a similar fashion to the approach we used in the chapter that includes the
Johansen type CGE model. Also, we will use here a four-equation linear version of the
original Hall and Taylor twelve-equation nonlinear model which will capture the
essential behavior of the original model. Thus, our four-equation model’s variables will
be

Endogenous Variables
*Y = GDP
*R = Real Interest Rate

*plev = Domestic Price Level

ominal Exchange

Policy Variables

*E = N Rate

*M = Money Stock
 = Government Expenditure *G

 392

Chapter 17 Stochastic Control in Duali

Exogenous Variables
*plevw = Foreign Price Level

 = Potential GDP

The asterisks indicate “percent deviations”, for example, is the percent deviation of
output from its steady state value. This variable structure is one of the most common
ways in which textbook macroeconomic models are presented. To transform the original
twelve-equation nonlinear model we first collapsed it, by equation substitution, into a
four-equation version. We then linearized these equations and represented the resulting
model in matrix form. Next we solved the model for its reduced form representation,
obtaining a third-order system of difference equations. Finally, we reduced that system
to a first-order system, that is, to its state-space form. Details on these transformations
are provided in Appendix E.

k

*YN

*Y

The model’s state-space representation is

(1) 1k k kx Ax Bu Cz+ = + +

where s an augmented state vector defined as

x i

X
x XL

XLL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

where
*

*

*

*

Y
R

X
plev

E

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and where XL and XLL are equal to the vector X lagged once and twice respectively. We
define the x vector in this way by augmenting the original state vector w

 order to reduce the linearized model from a third-order representation to a first-order
he exogenous

variables vector are defined as

ith lagged values
in
representation (see Kendrick (2002), Ch. 2). The control vector and t

 393

Chapter 17 Stochastic Control in Duali

*

*

M
u

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

*

*

YN
z

plevw
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.

Also, the parameter matrices in the system equations are

0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0
0

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0

A

− −

− −

− −

− −

=

0 0 0 0 0 0 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.346 0 0.606 0 0 0 0.087 0 0 0 0.087 0
7.811 0 13.669 0 0 0 1.953 0 0 0 1.953 0
0.8 0 1.4 0 0 0 0.2 0 0 0 0.2 0

1.154 0 2.019 0 0 0 0.288 0 0 0 0.288 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0⎢
⎢ ⎥

0.433 0.231
9.763 4.386

0 0
2.442 1.097

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

B

−

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.346 0
7.811 0
0.800 0
1.154 1

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

C

−

−

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 394

Chapter 17 Stochastic Control in Duali

where each of these matrices values is derived from the corresponding combination of
parame r values in the original twelve-equation nonlinear Hall and Taylor model. See
Append

In an earlier chapter we used GAMS to study the responses of Hall and Taylor’s
model to changes in the policy variables. Optimal policy analysis employs a sort of
“reverse” analysis. It begins by posing this question: how should policy variables be set
in order for the target variables to follow pre-specified paths?

The most popular way of stating this problem is as a Quadratic Linear Problem
(QLP). We have already introduced this type of problem in the Thrift Model chapter and
the Dynamic Optimization chapter. In formal terms, we express our problem here as one
of finding the controls to minimize a quadratic “tracking” criterion function J of the

rm:

(2)

te
ix E for these derivations.

2. Introduction to Optimal Policy Analysis Methods with Duali

()u t
N
=0

fo

 ()1' ' 'N

kJ x x W x x x x W x x u u u u
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − − + − Λ − ⎦∑
02 2N N N N N k k k k k k k k k

k=
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

subject to the state-state representation of the economic model given by Eq. (1), where

1 1

x and u are desired paths for the state and controls variables respectively and W and Λ

are weighting matrices for states and controls respectively.

The quadratic nature of the criterion function implies that deviations above and
elow target are penalized equally, and that large deviations are more than proportionally

criterion function is not
e only possible one, but is the most popular.41

s

b
penalized relative to small deviations. This particular form of the
th

For simplicity in the following we will drop the asterisk from the variables. Thu
we will use , ,Y R plev and E instead of *Y , *R , *plev and *E to indicate the state

variables. However, we are referring to the variables as percent deviations rather than as
levels.

41 For a discussion of the properties of different criterion functions, see Blanchard and Fischer (1989),

Chapter 11.

 395

Chapter 17 Stochastic Control in Duali

We will assume that the policy goal is to stabilize Y, R, plev and E around steady-
state values (that is, around zero). High and equal weights42 will be put on stabilizing Y
and plev, lower and equal weights on R and E, and even lower and equal weights on the

olicy variables M and G. Neither the desired paths nor the weighting matrices (shown
elow)

0
0

W

⎥

⎢ ⎥=

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

p
b will vary with time.

100

50
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥100

50⎢ ⎥
⎢ ⎥

0⎢
⎢ ⎥

0
0

0
0

0

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

25
25⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Λ

Let’s assume, for example, that the economy is going through a recession

provoked by a temporary adverse shock to net exports that causes Y to be 4% below its
steady-state value. Given the weight structure adopted above, what would be the optimal
paths for government expenditure (G) and the money supply (M) in order to bring the
economy back to its steady-state? How do the optimal paths for the state variables
compare against what would be the autonomous response of the system to that kind of
shock? To answer these questions, we perform two experiments: (1) an experiment to
obtain the optimal paths and (2) an experiment to get the autonomous response of the

42 There is a conceptual difference between the weights used here and those that arises when the variables

of interest are in levels rather than in percent deviations and also where the variables are expressed in

different units of measurement. For instance, if GDP is measured in dollars and prices are measured by an

arbitrary price index, equal weights on these two variables will probably imply different policy priorities

d vice versa. Since all variables in the state-space representation of Hall and Taylor’s model are in

percent deviations from steady-state, weighs and priorities can be considered as equivalent within certain

limits. However, it should be clear that, for example, an interest rate 50% below steady-state values is

something feasible, while a level of GDP 50% below steady-state is not. In such a case, there is not an

analogy between weights and priorities. See Park (1997).

an

 396

Chapter 17 Stochastic Control in Duali

economy. To run this simulation, use program ht-01.dui making the appropriate
changes. (See the “Model Description” item in the “Specification” menu in Duali once
the ht-01.dui file is opened in the application.)

To perform the first experiment in Duali, we have to set the problem as a
deterministic one, set all the desired paths for states and controls equal to zero, impose

 corresponding weights on states and controls, set an initial value for Y equal to -0.0
and solve the problem. Let’s see in more detail how to do this.

Below is the initial screen of the Duali software. The File and Edit menus are
standard. The Specification and Data menus contain sub-menus related to the structure of
the problem to be solved. The Solve menu presents options for different solution
methods and the Results menu enables one to display the tables and graphs of the results.
The Transformations menu contains several options to change the original structure of the
problem enu contains options related to the format of the display
of resu

the 4,

, and the Preferences m
lts and to some specific types of experiments.

Figure 17.1 Duali Main Window

We begin by opening the ht-01.dui file using the File menu. Then select
Specification:Stochastic Terms and notice that the problem is set as deterministic, as
shown in Fig. 17. 2.

Figure 17.2 Stochastic Terms Dialog Box

 397

Chapter 17 Stochastic Control in Duali

Then, from the Specification:Functional Form option we obtain the dialog box
shown below.

In Fig. 17. 3 look at the Criterion side of the dialog box and at the Form section in

that side. There one can see that the problem is a Quadratic-Tracking problem. In fact,
we will try to minimize deviations of target variables from zero, since the model
variables are already expressed in percent deviations from steady-state values. The W
State Priority and Lambda Control Priority sections show that the weights on state and
control variables will be constant, that is, the same value for all periods. Desired state
and control variables will also be constant (all zeroes). The right hand side of the dialog
box shows the specification for the System Equations. In particular, the Form section
shows that the problem is written in (1) regular form, that is the standard state-space
representation, (2) it does not contain forward variables (as will be the case of models
with rational expectations discussed later) and (3) the policy variables do not affect the

odel parameters in this particular model. Finally, the exogenous variables remain

rom the Data:Size menu we obtain the dialog box below.

Figure 17.3 Form Specifications Dialog Box

m
constant over the time periods.

F

 398

Chapter 17 Stochastic Control in Duali

Figure 17.4 Model Size Dialog Box

The model is specified as containing twelve state variables (actually, four

poraneous and eight lagged), two control variables and two exogenous variables

e assignment of labels to the model
variables an

ts on the state
variables, very high and equal weights on the controls and, as in the first experiment
above, set an initial value for Y equal to -0.04. This has the effect of leaving the state
variables free to take on any values while restricting the policy variables not to deviate
from their steady state values.

contem ,
and the simulation covers sixteen periods.

cronyms menu option contains thThe Data:A
d to the time periods. The Data:Equations section contains the numerical

values for matrices A, B, C and for the initial state variable values while the
Data:Criterion section contains the values for the W and Λ weighting matrices and the
desired paths values for state and control variables.

Choosing the menu option Solve:QLP the problem is solved as a Quadratic Linear
Problem using the solution procedure described in the chapter on Dynamic Optimization.
The numerical results are then displayed automatically. The Results menu options allow
us to define different display, plotting and printing options.

The results of this experiment to obtain the optimal states are shown in Figure
17.5. Also, the graphs in that figure show the autonomous state and control paths. In
order to obtain the autonomous path of the system we impose zero weigh

 399

Chapter 17 Stochastic Control in Duali

The vertical axes in Fig. 17. 5 show the percent deviations from steady-state
values while the horizontal axes show the time periods. In these plots a value of 0.02
means “2% above steady-state”. It does not mean “2% increase with respect to the
previous period”. Thus, a 10% permanent increase in eans that the money stock is
increased by 0.1 at th stant ne l from then on.
Since all variables (endogenous, policy and exogenous) are in percent deviations, their
steady-state values are all zeroes.

M m
e initial period and kept con at the w leve

GD P (Y) real interest rate (R)

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02

0 2 4 6 8 10 12 14

0.03
0.04

Autonomous Optimal

-0.4

-0.3

-0.2

-0.1

0

0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.2

Autonomous Optimal

price level (plev)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0 2 4 6 8 10 12 14

Autonomous Optimal

no minal exchange rate

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04

0 2 4 6 8 10 12 14

Autonomous Optimal

Figure 17.5 Autonomous Response vs. Optimal Control Experiments

The optimal solution paths for the states outperform the autonomous responses of

the system for all four target variables. This comes as no surprise, though it may not
always be the case. Indeed, remember that the optimal solutions are obtained from the
minimization of an overall loss function. On some occasions, depending on the weight
structure, it may be better to not do as well as the autonomous response for some targets
in order to obtain more valuable gains from others.

 400

Chapter 17 Stochastic Control in Duali

Why does the autonomous path of the economy display the observed behavior?
Here is how Hall and Taylor explain it: 43

“With real GDP below potential GDP after the drop in net exports, the price level
ill begin to fall. Firms will have found that the demand for their products has fallen off

 cut their prices (...). The lower price level causes the interest rate to
ll.44 With a lower interest rate, investment spending and net exports will increase.45 The
creas

e

w
and they will start to
fa
in e in investment and net exports will tend to offset the original decline in net
exports. This process of gradual price adjustment will continue as long as real GDP is
below potential GDP.”

What explains the observed optimal path of the four variables of interest? We can
see in Fig. 17. 5 that Y is brought up very quickly, going from 4% below steady-state to
3% above steady-state and then decays slowly to its steady-state value. This performanc
could be attributed to the more than 6% increase in G that can be observed in the optimal
policy variables’ paths (Figure 17.6).

Optimal M and G

0.05
0.06
0.07

-0.02
-0.01

0
0.01
0.02
0.03
0.04

0 2 4 6 8 10 12 14

Optimal M Optimal G

Figure 17.6 Optimal Policy Variables Paths

. 17. 5, R experiences almost no variation when compared to the
big drop of almost 35% implied by the autonomous behavior of the system. Once again,
the incr

Meanwhile in Fig

ease in G puts an upward pressure on the interest rate, thus keeping it from

43 Hall and Taylor (1997), page 232.
44 Since less money is demanded by people for transactions purposes.
45 Since the price level falls much less than the real interest rate during the first periods of the adjustm

the nominal exchange rate has to fall too, as can be derived from equation 9 in the original Hall and

Taylor’s model. This implies that the real exchange rate will fall, then causing net exports (see equation 10)

ent,

to rise.

 401

Chapter 17 Stochastic Control in Duali

falling. Finally, the nominal exchange rate has to go up to compensate for the fall in
prices, given that the real interest rate does not change much.

 we put the same weights on both variables,
govern ts

ables that
the pol

depict the trade-off between the standard deviations of Y and plev in Hall and Taylor’s
model when, as above, Y is shocked by a negative 4% in period zero. To obtain the
corresponding policy frontier, we have to vary the relative weights on Y and plev,
perform one simulation for each weight combination and compute the corresponding
standard deviations. The results of six such experiments, keeping the same weights on
the remaining states and controls as in the above simulation, are shown in Table 17.1 and
Figure 17.7.

Table 17.1 Optimal Policy Frontier

We can also see in Fig. 17. 6 that monetary policy plays a minor role when
compared to fiscal policy.46 Even though

ment expenditure appears to be more effective in bringing the economy out of i
recession given the weight structure we put on the target variables.

It is interesting to analyze the different combinations of behavior of vari
icy maker can achieve given a model and a criterion function. The curve showing

those combinations is known as the policy frontier.47 For instance, we may want to

46 Notice that the optimal values for the policy variables are computed for periods 0 to 14 only. Given that

we are working with a state-space representation of the model, policy variables can only influence the next

period state variables. That is, the controls at period 0 are chosen, with a feedback-rule, as a function of

period 0 states, but they determine period 1 states, and so on. See Kendrick (1981).
47 See Hall and Taylor (1997), Chapter 17.

Experiment Weight on Y Weigh on plev STD Y STD plev

1 100 0 0.0479 0.0500

2 80 20 0.0489 0.0466

3 60 40 0.0499 0.0440

4 40 60 0.0509 0.0419

5 20 80 0.0520 0.0401

6 0 100 0.0531 0.0386

 402

Chapter 17 Stochastic Control in Duali

 Policy Frontier for Y and plev

0.035

0.04

0.035 0.04 0.045 0.05 0.055 0.06 0.065

plev Deviations from Target (STD error)

Y
 D

Figure 17.7 Optimal Policy Frontier Graph

The policy frontier for Y and plev is clearly shown in the graph above, where each

diamond represents the result of an experiment. The higher the weight on Y relative to
that of plev, the lower its standard deviation, and vice versa. The flatness of the curve
indicates that it is easier to achieve a reduction in the percent deviation from target fo

0.045

0.05

0.055

0.06

0.065

ev
ia

tio
ns

 fr
om

 T
ar

ge
t

(S
TD

 e
rro

r)

r

ple,

e

plev than for Y. Of course, shape and location of this particular policy frontier are
conditional on the weight structure imposed on the model’s other variables. For exam
if we increase the weigh on the policy variables, the policy frontier will shift up and to
the right, farther away from the origin (the (0,0) point of zero deviations for Y and plev).
This will be due to the more restricted possibilities for actively using the policy variables
to reach the targets for Y and plev.

3. Stochastic Control

 We will now begin to take uncertainty into account. Indeed, macroeconomic
models are only empirical approximations to reality. Thus, we want to consider that there
are random shocks hitting the economy every time period (additive uncertainty), that th
model parameters are just estimated values with associates variances and covariances
(multiplicative uncertainty), and that the actual values of the model’s variables and initial
conditions are never known with certainty (measurement error). 48

48 See Kendrick (1981).

 403

Chapter 17 Stochastic Control in Duali

 Stochastic control methods artificially generate a dynamic stochastic environment
through random shocks generation. They use specific procedures for choosing the
optima ere is

specific mechanisms of updating of parameter estimates. In that way, these methods

perform sophisticated simulations.
In this section, we will perform experiments incorporating some forms of additive

and multiplicative uncertainty into Hall and Taylor’s model. We will proceed in three
 First, we will analyze the differences in qualitative behavior of the policy variables

e different procedures for choosing their optimal values are used (specifically,
rsus OLF /o upd te). Second, we will compare the quantitative performances of
 and OLF proced res within artificially generated stochastic environments

including passive learning mechanisms. Finally, we will compute an optimal policy
r.

o William Brainard (1969) showed that, for a static model, the existence
of parameter uncertainty causes the optimal policy variable to be used in a more
conservative way as compared to the case of no parameter uncertainty. However, this
finding cannot be translated to the case of dynamic models. The existence of dynamics
makes the ore complex and opens new possibilities for policy
managem of the earliest applications of an OLF procedure in a dynamic setting
was by Tinsley, Craine and Havenner (1974). Some analytical results have been
provided by Chow (1973), Turnovsky (1975), Shupp (1976), Craine (1979) and more
recently by Mercado and Kendrick (2000) and Mercado (2004) in connection with the
qualitative behavior of the policy variables when the OLF procedure is used in a model

ith one state and one or two controls. There are no straightforward theoretical results
ntrols.

As shown earlier in the chapter on Dynamic Optimization, the procedure for
 controls in the presence of parameter uncertainty (OLF) differs from the

st r Q t lent” (CE) in that in the first
ase the variances and covariances associated with the model parameters have to be taken

l values for each period policy variables: Certainty Equivalence (CE) when th
additive uncertainty only, Open Loop Feedback (OLF) when there is parameter
uncertainty, and DUAL (adaptive control) when there is active learning. Also there are

allow us to

steps.
when som
CE ve w a
the CE u

frontie
Years ag

 situation much m
ent. One

w
for the case of models with several states and co

choosing the
andard dete ministic LP procedure or its “certain y equiva

c
into account.

 404

Chapter 17 Stochastic Control in Duali

To illustrate some possible outcomes, and to show a first contrast between
patterns of behavior generated by QLP and OLF w/o update procedures49, we will
perform an experiment with Hall and Taylor’s model. As in the previous section, we will
assume that Y is 4% below its steady-state value at time zero and we will keep the same
weight structure and desired paths. We will also assume that there is uncertainty in
connection with six out of the eight control parameters in the B matrix, and that the
standard deviation of each of these parameters is equal to 20%.

To carry out the experiment, we use the program ht-02.dui. This program is
basically the same as ht-01.dui, with some changes that we discuss below. From th
Specification:Stochastic Terms option we see that the problem is set a wi

e
s stochastic th

aramep ter uncertainty.

Figure 17.8 Stochastic Terms Dialog Box

Then, from the Data:Size option, we see that we defined 6 uncertain parameters

and use 1 Monte Carlo run, as shown in the dialog box below.

49 For a detailed discussion of the OLF without update procedure see Ch. 5 “Open Loop Feedback without

Update” in Amman and Kendrick (1999a).

 405

Chapter 17 Stochastic Control in Duali

Figure 17.9 Model Size Dialog Box

From the Specification:Source of Random Terms main menu option, we select the

Read In option, as shown below.

Figure 17.10 Source of Random Terms Dialog Box

 406

Chapter 17 Stochastic Control in Duali

However, we set those random terms all equal to zero. To do so, we go to the
Data:Additive Noise Terms main menu option and, as shown below, select the XSIS
option.

 17.11 Stochastic Elements Additive Noises Dialog Box

hen doing so, a dialog box containing the matrix of additive noise terms will display,

ion related to the uncertain parameter is provided in Duali by means
f one vector and two matrices. The theta vector of the initial values of uncertain

tains the uncertain parameters values. The matrix that indicates
hich parameters in the model are treated as uncertain (ITHN) provides a mapping from

the position in the TH0 vector to position in the system equations matrices. The first
ector)
eter

in the matrix. Finally, SITT0 is the variance-covariance matrix corresponding to the

b
b

9 763

2 442
1097

12

21

41

42

= −

= −
=⎣

⎢
⎢

⎢
⎢
⎢ ⎦

⎥
⎥

⎥
⎥
⎥

.

.
. ⎣

⎢
⎢

⎢
⎢
⎢ ⎦

⎥
⎥

⎥
⎥
⎥

1 2 1

1 4 1
1 4 2

,

Figure

W
and we will see that all its element are set to zero.

The informat
o
parameters (TH0) con
w

column indicates the matrix (0 for the A matrix, 1 for the B matrix and 2 for the c v
and the second and third columns indicate the row and column number of the param

uncertain parameters.

(3)

b
b

0 433
0 231

11 =
=

⎡
⎢

⎤
⎥

.
.

⎡
⎢

⎤
⎥

1 1 1
1 1 2

TH
b

0
4 38622

=
=⎢

⎢
⎥
⎥. ⎢

⎢
⎥
⎥1 2 2

b , ITHN =

 407

Chapter 17 Stochastic Control in Duali

SITT0

0 00749
0 00213

3 81264
076947

0 23853
0 04813⎣

⎢
⎢
⎢
⎢ ⎦

⎥
⎥
⎥
⎥

.
.

All three matrices will remain constant during the simulation. The elements in SITT
computed by taking 20% of the corresponding element in TH0 and then squaring the
result. Thus, for the b

=

⎡
⎢
⎢
⎢
⎢

⎤
⎥
⎥
⎥
⎥

.
.

.
.

,

0 are

[(0.2) (0.433)]2 = 0.00749.

r matrix

11 coefficient this is

From the Data:Parameter Uncertainty menu option we obtain the dialog box
hen selecting each of the first three options, the corresponding vector obelow. W

will be displayed.

Figure 17.12 Stochastic Elements Uncertain Parameters Dialog Box

The graphs below in Figure 17.13 show the results obtained for government

expenditure and for the money supply when selecting the main menu option Solve: OLF

 408

Chapter 17 Stochastic Control in Duali

(w/o update). They also contrast these results with those corresponding to the
eterministic (QLP) solution as obtained in section 2 of this chapter using the program d
ht-01.dui.

mo ney supply (M)

-0.014
-0.012
-0.01

-0.008
-0.006
-0.004
-0.002

0
0.002
0.004

0 2 4 6 8 10 12 14

QLP OLF w/o update

go vernment expe
0.08

nditure (G)

-0.02

0

0.02

0.04

0.06

0 2 4 6 8 10 12 14

QLP OLF w/o update

 Figure 17.13 Optim

al Policy Variables Paths (QLP vs. OLF w/o update)

s can be seen in the graphs above, the use of government expenditure is slightly more
“cautio

e money supply, which is used “more aggressively” with OLF w/o update. Thus, we
how going from a univariate to a multivariate setting may have important

consequences, as is also the case of a change from static to dynamic models.
t is interesting to explore the f increasing the level of uncertainty

 parameter’s corresponding to one of the policy variables. For example, let’s
hat we now doub the standard deviation of the parameters corresponding to
ent expenditure (parameters b1 from 0.00213 to 0.00853, b22 from 0.76947 to
and b42 from 0.04813 to 0.19254 while leaving the other elements of SITT0
ed) i.e. in reasing the variance of these three parameters that are associated with

government expenditures from 20% to 40%. Then, the SITT0 matrix becomes:

(4)

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.
.

.
.

.
.

A
us” with the OLF w/o update procedure in the first few periods. This is in line

with the Brainard result mentioned before. However, the reverse is true for the case of
th
can see

I consequences o
of the model
assume t le
governm 2

3.07791
unchang c

SITT0

0 00749
0 00853

3 81264
3 07791

0 23853
0 19254

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

 409

Chapter 17 Stochastic Control in Duali

The graphs below contrast the behavior of the policy variables for this experiment

(named OLF w/o update-B) against their behavior shown by the same variables in the
experiment analyzed above (named, as above, OLF w/o update). To run this experiment,
use file ht-02.dui, introducing the corresponding changes in the SITT0 matrix.

go vernment expenditure (G)

-0.02

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14

OLF-B OLF w/o update

mo ney supply (M)

-0.02

-0.015

-0.01

-0.005

0

0.005

0 2 4 6 8 10 12 14

OLF-B OLF w/o update

Figure 17.14 Optimal Policy Variables Paths (Increased Uncertainty)

As one could expect, the increase in the relative uncertainty of government

expenditure parameters induces a more cautious use of that policy variable, at least
the first periods. At the same time the money supply, now with a relatively lower

associated uncertainty, is used more actively, also during the first periods. Though these
findings seem plausible, they do not reflect any theoretical result, since such results are
not yet available. As with the previous experiment, we could perhaps find different

4. Stochastic Control with Parameter Updating

We will now move towards a more complex stochastic environment. As in the
previous section, we will assume that that some of the model parameters are uncertain,
but now we will also assume that the model is constantly shocked by additive noise, that
the true model is not known to the policy maker, and also that a passive-learning process
takes place. We will perform several Monte Carlo runs to contrast the performance of
two procedures: CE and OLF.

during

results for a different model.

 410

Chapter 17 Stochastic Control in Duali

 The general structure of each Monte Carlo run will be as follows. At time zero, a
vector of model parameters will be drawn from a normal distribution whose mean and
variances are those of matrices TH0 and SITT0. Then, at each time “t”, we will have:

 1) random generation of a vector of an additive shocks
 2) computation of the optimal controls for periods k to N (terminal period)

3) propagation of the system one period forward (from period k to period k+1)
applying the vector of controls (for period k only) computed in step 2.

4) updating of the next period parameter estimates (both means and
 variance-covariance elements)

For choosing the optimal control at each period (step 2) we will use either a

Certainty Equivalence (CE) procedure or, alternatively, an Open Loop Feedback
procedure (OLF). For the projection-updating mechanism (step 4) we will use a Kalman
filter.

Thus, each Monte Carlo run begins with a vector of parameter estimates that is
different from their “true” value. Using this parameter vector, the policy maker computes
(with a CE or an OLF procedure) the optimal values of the controls, and then she applies
those values corresponding to time k only. However, the response of the economic

ment from time k to time k+1) will be gene d by the
computer using the “true” parameter values which are unknown to the policy maker.
Then, at period k+1 a new observation is made of the state vector, which is used to
compute updated parameter estimates with a Kalman filter. After a number of time
eriods, the sequence of updated estimates should begin to converge to their “true” value.

As in the previous section, we will assume that there is uncertainty in connection
with six of the control parameters in the B matrix, and that the standard deviation of each
of these parameters is equal to 20%. Then, matrices TH0, SITT0 and ITHN will be the

ll also assume that GDP (Y) and the price level (plev) are hit by
additive shocks with 2% standard deviation, while the real interest rate (R) and the
nominal exchange rate (E) experience shocks with 5% standard deviation. Thus, the
variance-covariance matrix of additive noises (Q), will be as follows:50

system (its forward move rate

p

same as in Eq (3). We wi

50 We want the shocks to affect contemporaneous variables only, and not their lagged values. However, if

we set to zero the elements of the Q matrix corresponding to lagged variables, Duali will give us an error

message. That is why we set those elements equal to the minimum possible value (0.000000001).

 411

Chapter 17 Stochastic Control in Duali

⎢
⎢
⎢

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

−

−

0 0004
0 0025

25
0 1

0 1
0 1

9

9

9

.
.

.

.
.

()

()

()

ll perform 100 Monte Carlo runs to compare the performance of the CE
procedure against the OLF procedure. To do so, we will use the file ht-03.dui. This
file is s ilar to the ht-02.dui file used in the previous sections, with some
modifications. If we select the Data:Additive Noise Terms:Additive Noise Covariance
menu o

Q =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

0 0004
0 00

.
.

⎢
⎢
⎢
⎢
⎢
⎢

⎥
⎥

−

−

−

−

−

0 1
0 1

0 1
0 1

0 1

9

9

9

9

9

.
.

.
.

.

()

()

()

()

()

We wi

im

ptions we will see the Q matrix shown above. In the Specification:Data:Size
menu option we have to specify the number of Monte Carlo runs. That option is set to 3.
It may be better to make a first run like this with a small number of Monte Carlo runs to
gain familiarity with the procedure. However, to perform a more serious experiment, we
set it equal to 100. Be aware that this may take some minutes to run, depending on the
computer. Then, in the Specification:Source of Random Terms option, we check the
options (1) Generate Internally, (2) Uncertain Parameters and (3) System Equations as
shown in the dialog box below.

 412

Chapter 17 Stochastic Control in Duali

Figure 17.15 Source of Random Terms Dia

log Box

We then chose the Solve:Compare Print option, obtaining a dialog box like the
one shown below where we see that the options CE and OLF have been selected.

Figure 17.16 Method Dialog Box

 to provide a debug file name. After doing

, a dialog box like the one shown below will be displayed.
When we click OK, we will be asked

so

 413

Chapter 17 Stochastic Control in Duali

Figure 17.17 Debug Print Options Dialog Box

In this dialog box we have many options to build a very detailed solution report

with summary, intermediate and final results, among other things. We just check the
“Only results summary” option, leaving all the others blank and then click OK. Duali
will start solving the problem. In the meantime, two dialog boxes named Method Count
nd Average Criterion Values will be displayed. We click OK for each of them. Finally,

 will be stored in the file we specified as the debug
rint file. It is best to exit from Duali before examining the results file in an editor.

When doing Monte Carlo runs in Duali it is important to look for the results in the debug
print file and not in the Display results on line since the Display numbers are only for the
last Monte Carlo run and not for the averages across all the runs.

a
once the run is completed, the results
p

 414

Chapter 17 Stochastic Control in Duali

The results in the debug print file corresponding to our 100 Monte Carlo runs are
shown in Table 17.2.

lence,
not only in connection with the average criterion value, but also in terms of the number of
Monte Carlo runs with the lowest criterion. As can be appreciated in the graph below,
where each diamond represents the value of the criterion function for one Monte Carlo
run, most of the diamonds are close to the 45 degree line, indicating a similar
performance for both procedures. There are no significant outliers that could be
introducing a bias in the computed average criterion values.

 CE OLF
Average Criterion Value 5.60 5.59
Runs with Lowest Criterion 47 53

Table 17.2 Monte Carlo Results

The Open Loop Feedback procedure does slightly better than the Certainty Equiva

 Scatter Diagram Value of Criterion Function
- CE versus OLF

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Open Loop Feedback

C
er

ta
in

ty
 E

qu
iv

al
en

ce

Figure 17.18 Scatter Diagram Value of Criterion Function

These results are against what one would intuitively expect, since in the presence

of parameter uncertainty OLF might be expected to do not only slightly but significantly
better than CE. However, we have to mention that there are no theoretical results yet
developed in connection with the relative performance of CE versus OLF. The
experimental results are conditioned on the model structure, its parameter mean and
variance values, and may well change (in any direction) in a different context. For

 415

Chapter 17 Stochastic Control in Duali

example, working with a different model Amman and Kendrick (1999d) find OLF results
that are substantially better than the CE results. Also, Lee (1998) obtains similar results

 a substantially larger model.

5. Experiments

 In Section 2 of this chapter we analyzed the autonomous and optimal policy
responses to a negative shock in net exports. You may want to analyze other shocks
implying different initial conditions for the model endogenous variables. Or you may
analyze the effects of changes in the exogenous variables and the corresponding optimal
policy responses. Also, you may want to put a very high weight (priority) on the money
supply or government expenditure so that in fact only one policy variable will be use to
control the system. Then, you may contrast these cases against the analysis performed in
this chapter in which both controls were assigned equal weights. Finally, you may want
to assign different sets of equal values to the weights on the control variables for the
experiment presented in this chapter, to observe the displacement effects that these
changes have on the optimal policy frontier.

In Section 3 of this chapter we analyzed the optimal response of the policy
articular, we

creased the relative uncertainty of government expenditure parameters and we found
that this induced a more cautious use of that policy variable during the first periods. You
may want to continue increasing the level of uncertainty of those parameters and see the
pattern of responses in the policy variables. Or you may increase the relative uncertainty
of the money supply parameters.

6. Further Reading

For one of the first applications of control theory methods to macroeconomics
models see Pindyck (1973). Chow (1975) provides an introduction to the analysis and
control of dynamic economic systems. Kendrick (1981) presents a systematic treatment
of stochastic control for economic models, with particular focus on passive and active
learning methods. Holly and Hughes-Hallett (1989) also present a systematic treatment
of optimal control methods, with special treatment of expectations and uncertainty.
Sengupta and Fanchon (1997) present methods and a wide range of applications of
control theory in economics. Chiarella and Flaschel (2000) provide a nonlinear dynamics

from

variables when parameter uncertainty was taken into account. In p
in

 416

Chapter 17 Stochastic Control in Duali

approach to macroeconomics. For a related global dynamics approach to analyzing
overlapping generation models see Gomis and Haro (2003).

 Kendrick (2005) reviews the historical development and likely future paths in the
ics.

For a most interesting visual approach to the use of control theory methods in
econom

field of stochastic control in econom

ics that uses the Simulink system with MATLAB see Herbert and Bell (1997).
For an observer approach to control methods in economics see Herbert (1998).

Amman and Kendrick (1999a) provide a users’ guide to Duali, with a variety of
tutorial level chapters dealing with different control methods and models.

 417

Chapter 18

Rational Expectations Macro in Duali

 In macroeconomics, the way in which expectations are modeled has a significant
effect on model solution and simulation strategies. Some macroeconomic models include
the assumption that economic agents form their expectations in a backward-looking
adaptive way. That is, in order to form expectations in connection with the likely future
value of a given macroeconomic variable, economic agents take into account the recent
evolution of that variable, and perhaps of other closely related variables. For example, in
the chapter on the Hall and Taylor Model in GAMS, we saw that the expected inflation
rate was obtained as a weighted sum of the observed inflation rates in the previous two
quarters. From a modeling point of view, that meant that contemporary model
expectational variables can be replaced by some combination of lagged variables.

In contrast, the assumption of rational expectations asserts that economic
 economic agents’ expectations about

ic models should embed the notion that
economic agents make use of all available information when forming their expectations.
Included in agents’ information set is thus the model of the economy that the modeler is
using to capture their behavior. This assumption has a significant impact in terms of
modeling and simulation since under it, agents’ expectations are a function of the whole
macroeconomic model solution while, at the same time, that solution is a function of
agents’ expectations. Also, model dynamics becomes more complex, since expectational
variables are “forward looking” variables that sometimes will display a “jumping”
behavior, instantaneously adjusting to changes in policy or exogenous variables. Finally,
policy analysis will also be more demanding, since policymakers will have to take into
account the agents’ anticipatory behavior to their policy announcements and actions.
 In this chapter, we will perform simulations and policy experiments in the Duali
software with John Taylor’s rational expectations model. This is a prototype one-country
model which is very useful as a training ground in the computational modeling of rational
xpectations. It is also a good introduction to the empirical multicountry models

outcomes are not systematically different from
those outcomes. This implies that macroeconom

e
developed by Taylor (1993).

418

Chapter 18 Rational Expectations Macro in Duali

1. John Taylor’s Closed Economy Model

John Taylor’s closed economy model is a small prototype linear model with

staggered contracts and rational expectations variables that generate an interesting pattern
of dynamic behavior. It contains the equations, variables and parameters listed below.

Equations

(1.1) ∑∑∑
=

+
=

+
−

=
+ ++=

2

0
3

2

0
3

1
2

0
3 ˆˆˆ

i
it

i
it

i
itt ypwx γδδ

∑
=

−=
2

0
3
1

i
itt xw (1.2)

tt wp θ= (1.3)
(1.4) tg
(1.5)
(1.6)

Variables

 = contract wage
 = average wage
 = price level
 = output

 = nominal interest rate
 = real interest rate
 = money stock
 = government expenditure51

where “^ ” means expectation through period t.

Parameters

t ty d r= − +

tttt yaibpm +−=−

tttt ppir +−= +1ˆ

x
w
p
y

i
r
m
g

δ = 0.5; γ = 1; θ = 1; = 1; = 4; = 1.2.

s from means or

secular trends.

a b d

The variables (all except ti and tr) are logarithms and are devi tiona

51 In the original Taylor model, government expenditure appears implicitly as a shift factor in Eq. (1.4).

Here, we make it an explicit variable in that equation.

 419

Chapter 18 Rational Expectations Macro in Duali

 Eq. (1.1) is a staggered-wage setting equation. It is supposed that a wage decision
lasts three years, with one third of the wages being negotiated each year. At any given
time t, the contract wage depends on expectations of the values at times t, t+1 and t+2 of
wages paid to other workers, the price level and real output. Eq. (1.2) gives the average
wage in the economy as the average of the contract wage in the current period and the
two previous periods. Eq. (1.3) reflects mark-up pricing behavior by firms, that is, prices
are set proportionally to the average wage. Eq. (1.4) defines a standard IS schedule,
while Eq. (1.5) is the money demand equation defining an LM schedule. Finally, Eq.
(1.6) gives the real interest rate as the nominal interest rate deflated by the rationally
expected inflation rate where the expected inflation rate is defined as

 The model has 6 equations and 6 endogenous variables. It contains two policy
variables: the money stock and government expenditure. The model is dynamic and
linear, and has the “natural rate” property, in the sense that nominal shocks may affect
real variables in the short-run, but not in the long run.

2. Solving Optimal Control Rational Expectations Problems in Duali

As a rational expectations model, Taylor’s model requires specific solution

methods different from those applied to standard models. Many methods have been
developed over the last two decades for solving rational expectations models. See for
example Blanchard and Kahn (1980), Wallis (1980), Fair and Taylor (1983), Anderson
and Moore (1985), Oudiz and Sachs (1985), Fisher, Holly and Hughes-Hallett (1986),
Pesaran (1987), Juillard (1996), Zadrozny and Chen (1999), Binder and Pesaran (2000),
and Sims (2002). Some of those methods are analytical and they usually involve, for the

d

models’ dynamic properties such as the computation of eigenvalues and the condition of
dynamic controllability become more involved in rational expectation models.

To solve optimal control problems containing rational expectations models, Duali
uses a dynamic programming algorithm like the one presented in the Dynamic
Optimization chapter, combined with the numerical method developed by Ray Fair and
John Taylor to solve rational expectations models. The Fair and Taylor (1983) method is
an iterative procedure that starts by solving the model for a set of arbitrary values -
usually zeroes - for the path of each forward looking variable. Then, after each iteration,

ttt pp −= +1ˆπ̂ .

case of linear models, the passage from the model structural form to a “pseudo-reduce
form” in which the expectational variables are no longer present. Other methods are
numerical. Also, as shown in Holly and Hughes-Hallett (1989) Ch. 7, the analysis of

 420

Chapter 18 Rational Expectations Macro in Duali

the values of the forward looking variables are updated with the solution values of the
corresponding endogenous variable in the previous iteration. The process stops when
onvergence is obtained, that is, when the difference between the forward variables

aller than a given tolerance value.
For example, suppose that we have a simple single equation model like the one

c
values in two successive iterations is sm

shown below, in which the future value of a variable (1tx +) is a function of its current
value (tx) and also of its future expected value conditioned on the information avail
at time t (

able

1
e
t tx +).

e
tttt bxaxx |11 ++ +=

Suppose also that the solution horizon covers only six periods, that a = 0.4, b =

 we use E to denote expected value.

0.1, and that the initial value for tx is one. The Excel spreadsheet in Figure 18.1 below

shows the results for the first four iterations, where

Figure 18.1: Fair-Taylor Method Example

Notice that four iterations of the model solution are shown in the spreadsheet and
that there are three columns of variables shown at each iteration, namely x(t+1), x(t)
and E(x(t+1)). The logic of the procedure is easy to follow. In the first iteration,
column D is set to zero. Given those values and the initial value for in cell C9, the

tx

 421

Chapter 18 Rational Expectations Macro in Duali

model is solved for each of the remaining five time periods. The results in column B are
then copied to column H in the second iteration and the model is solved again. The
results are copied from column F to column L and so on. Notice how fast the results
converge for this particular model and parameter values - the difference between columns
P and N in the fourth iteration is quite small. What makes the Fair and Taylor method
attractive is its simplicity, and the fact that it can be applied to multiple equation linear
and nonlinear models.

Duali contains a method developed by Amman and Kendrick (1996) to solve
optimal control problems with rational expectations. This procedure, which is described
below, uses the Fair and Taylor method as an intermediate step.

 The problem is expressed as one of finding the controls ()u t
N
=0 to minimize a

quadratic “tracking” criterion function J of the form:

[] [] [] [] [] []()(2.1)
⎩
⎨
⎧

−Λ−+−−+−−= ∑
⎭
⎬
⎫−

=

J

bject, as a constraint, to the state-space representation of the economic model, also known

as the regular form:

(2.2)

1

0

''' ~~~~
2
1~~

2
1 N

t
ttttttttttNNNNN uuuuxxWxxxxWxx

su

1 1 1 2
e e

t t t t t t t tx Ax Bu Cz D x D x+ + += + + + + 2

where x, u and z are state, control and exogenous variables respectively, and are

desired paths for the state and controls variables, and

x u

1
e
t tx + is a “forward looking”

ariable equal to the expected value of the state variable at period t+1 conditioned on the

 and are matrices. In this example,

the maximum lead for the forward looking variables is two periods, but it could of course

e larg

inistic

environment

(2.3)

v

1D 2Dinformation available at time t. Also A, B, C ,

b er.

 A way of formalizing the rational expectations hypothesis is, for a determ

11
e

tt tx x ++ =

and, for a stochastic environment and where E is the mathematical expectation operator

 422

Chapter 18 Rational Expectations Macro in Duali

(2.4) 11

e
t tt tx E x ++ =

Denote the expected value of the state variable at iteration v as 1

ev
t tx + . At the first

iteration - iteration zero - the Amman and Kendrick procedure begins by setting
0 0

11 0 for alle
tt tx x t++ = =

standard me
Optimization. The optim
solution - are denoted as

, and solving the resulting quadratic linear problem with a

thod such as the one presented earlier in the book in the chapter on Dynamic
al state variables for the solution obtained - the “no lead”

NLx . Then, the expected values of the forward looking variables
are set equal to the solution for this first iteration, that is:

(2.5) 1 1

1 21 2 and for all e NL e NL
t tt t t tx x x x+ ++ += = . t

corresponding to the first iteration is now:

(2.6)

 Thus, the system of equations

 1 1 1 1 1
1 1 21 2

e e
t t t t t t t tx Ax Bu Cz D x D x+ + += + + + +

Notice that the terms:

(2.7) 1 1
1 21 2

e e
t t t t tCz D x D x+ ++ +

are all known. This allows us to write the system of equations as:

(2.8) 1 1 1 1

1t t t tx Ax Bu Cz+ = + +

(2.9)

where:

[]1 2C C D D= and 1 1
1

1
2

t
e

t t t

e
t t

z
z x

x
+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

.

 Again, we have a quadratic linear problem which can be solved with standard

ethods. Once we do so, we will have another set of solution values for the state
forward-looking variables in the next

eration, and so on. The procedure will stop when convergence is obtained.

m
variables which will be used as the values of the
it

 423

Chapter 18 Rational Expectations Macro in Duali

3. The Taylor Model in Duali

 In the following we will focus on the implementation of Taylor’s model in Duali
to perform simulations and optimal policy analysis. First we will transform the model
equations to make them more suitable for a matrix representation. As presented in
Section 1, the model was:

(1.1) ∑∑∑
=

+
=

+
−

=
+ ++=

2

0
3

2

0
3

1
2

0
3 ˆˆˆ

i
it

i
it

i
itt ypwx γδδ

∑
=

−=
2

0
3
1

i
itt xw (1.2)

tt wp θ= (1.3)
(1.4) tg
(1.5)
(1.6)

, renaming some variables, and substituting the
orresponding numerical values for the model parameters, we obtain the model below.

+++ ttt

t ty d r= − +

tttt yaibpm +−=−

tttt ppir +−= +1ˆ

Expanding the summation signs

c

(3.1)
ˆ3.0ˆ61.0ˆ61.0

ˆ3.0ˆ61.0ˆ61.03.061.061.0 +++

+++

+++++= tttttt
cw
t

ypw

ypwypwx

222

111

(3.2) t
cw
tt xlxw 3.03.0 += cw

t
cw xl 13.0 −+

led here in Eqs.
(3.1) and (3.2) to avoid notational confusion with xt , which will be the vector of stacked

 Also notice that since in Taylor’s model
expectations are conditional on the information available at time t, we can write:

(3.8)

tt wp = (3.3)
(3.4) 12.1 −+−= ttt gry
(3.5) 125.025.025 −−+= tttt mpyi
(3.6) 1ˆ +−+= tttt ppir
(3.7) cw

t
cw
t xxl 1−=

Notice that x

.0

t
cw is the contract wage in Taylor’s model, which we re-labe

variables of the model matrix representation.

| | |, ,e e e
t t t t t t t t tw w p p y y= = =

 424

Chapter 18 Rational Expectations Macro in Duali

This is why the variables in the first three right-hand side terms in Eq. (3.1) are actual
values and not expected values, as is the case in the remaining terms.

In Eq. (3.2) there is a new variable xlt
cw which is defined in Eq. (3.7) as equal to

lagged xt
cw, that is, . Therefore, the variable in Eq. (3.2) will be equal to .

In this way, using the same method we employed in the Hall and Taylor in Duali chapter,
e produce a one-lag-order reduction of Eq. (1.2). Since this is the only lagged equation

t order model representation suitable to be used in
optimal control experiments.

trol variables in Eqs. (3.4)
nd (3.5) as mt-1 and gt-1, since Duali, as well as the optimal control literature, works with

one-lag policy variables.
We will now represent the model in what is known as the Pindyck or “I-A” form,

which is an equivalent representation to the form presented in Eq. (2.2). The Pindyck
form of Taylor’s model can be written as shown below in Eq. (3.9).52

(3.9)

where

t

t
cw
t

x
w

xt
cw
−1

cw
txl 1−

cw
tx 2−

w
in the model, we are left with a firs

In Eq. (3.5) we moved the interest rate i to the left-hand side to make its role as a
state variable explicit. Finally, in Taylor’s model, m and g appear as contemporaneous to
the endogenous variables. By assuming that there is a one period lag between a policy
decision and its implementation, we can redefine these two con
a

e
tt

e
tt

e
ttttttt xDxDxDzCuBxAxAx /23/12/11111110

ˆˆˆ
++−−− ++++++=

cw
t

t

tp
 (3.10) t tx y

i
r

xl

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

t

t

m
g

−

−

1⎡ ⎤
, 1tu − = ⎢ ⎥

⎣ ⎦
,

52 In Taylor’s model, expectations are conditioned on the information available at “t”. In Duali, when a

odel is written in the Pindyck form, expectations are conditioned at “t-1”. This change in the timing of

the information will not appear as problematic for the Taylor model, since Duali will replicate the results

obtained by the original Taylor simulations. However, different assumptions concerning the information

set timing may be relevant for other models.

m

 425

Chapter 18 Rational Expectations Macro in Duali

0
0 0 0 0 0 0 0A =

⎡ ⎤
⎢ ⎥

⎥
⎢ ⎥

0 0
0 0
0 0
0 1B =

0

0 0.1666 0.1666 0.3333 0 0 0
0.3333 0 0 0 0 0 0.3333

0 1 0 0 0 0 0
0 0 0 0 0 1.2 0
0 0 0.25 0.25 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0

A = −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 0 0 0
0 0 0 0 0 0 0.3333

⎡ ⎤

 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

0.25 0
0 0
0 0

−

0 0 0 0 0 0
⎢
⎢

⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0.1666 0.1666 0.3333 0 0 0
0 0 0 0 0 0 0
⎡ ⎤
⎢ ⎥

0 0 0 0 0 0 0

ˆ 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0

D =

−

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

In Eq. (3.9), zt-1 is a vector of exogenous variables, while C1 is a matrix. They

are both equal to zero, since the model does not contain exogenous variables. Notice also
that is set equal to zero, since the model does not contain contemporaneous expected

2

3

0 0.1666 0.1666 0.3333 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ˆ 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

D =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D1

 426

Chapter 18 Rational Expectations Macro in Duali

variables. Finally, we set equal to four the maximum number of decimals for parameter
alues.

ylor’s
en changes in its

olicy variables. The general problem to be solved in Duali is the one of finding the
controls to minimize a quadratic “tracking” criterion function J of the form

(2.1)

v

4. Dynamic Simulation

As a way of getting acquainted with some dynamic properties of the Ta

model, we will analyze the dynamic evolution of the model for giv
p

() 1

0

N

t
u −

=

[] [] [] [] [] []()
⎭
⎬
⎫

⎩
⎨
⎧

−Λ−+−− ~
t u+−−= ∑

−

=

1

0

''' ~~~
2
1~~

2
1 N

t
tttttttttNNNNN uuuxxWxxxxWxxJ

.9)

ed in this section where we will change the values of the policy variables to see
eir dynamic impacts on the endogenous variables of the model. To do so, the weights

on the controls et to relatively high values, while the weights on the
 the desired paths

for the controls y change to be introduced. In this way we force the
anges in the policy variables. In fact, what we

are doing is ignoring the optimization part of the solution method presented in the
previous section and using the Fair-Taylor method only to simulate the rational

We begin from the main menu shown in the Duali main window in Fig 2 below.

subject to:
 e

tt
e

tt
e

ttttttt xDxDxDzCuBxAxAx /23/12/11111110
ˆˆˆ

++−−− ++++++= (3

where variables and parameters were defined in the previous sections.

Though the Duali software is oriented toward solving optimization problems like
the one just presented, it can also handle standard simulations like the experiments to be
perform
th

 in the Λ matrix are s
states in the W matrix are set to relatively small values. Then we define

 as equal to the polic
system to respond to the pre-specified ch

expectations model.

Figure 18.2 Duali Main Window

 427

Chapter 18 Rational Expectations Macro in Duali

From the File option we open the file tay-sim.dui. In the

Specification:Stochastic Terms menu option, we see that the problem is set as
deterministic, as shown below.

Figure 18.3 Stochastic Term

 We then select the Specification:Functional Form option and we obtain the dialog
box shown below.

s Dialog Box

Figure 18.4 Form Specification Dialog Box

 428

Chapter 18 Rational Expectations Macro in Duali

 On the Criterion side of the dialog box we see that the problem is a Quadratic-
Tracking problem with constant state and control priorities. Also the desired states and
ontrol ntrol

y expressed

c s are constant. They will all be set equal to zero, since later in the optimal co
experiment in the next section we will seek to minimize deviations of target variables
from means or secular trends. Also recall that the model variables are alread
in deviation form.
 On the System Equations side of the dialog box in Fig. 18.4 we see that the
Pindyck form is selected, while the option Yes is also selected for Forward Variables,
there are no policy to parameter effects and the exogenous variables are constant.
 From the Data:Size menu we obtain the dialog box below.

Figure 18.5 Model Size Dialog Box

 The model is specified as containing seven state variables (in fact, six
contemporaneous and one lagged), two control variables and one exogenous variable, and
the simulation covers eleven periods. The Maximum Lead for forward va

riables is set as

equal t s seen in

is, a very small number in exponential notation. Thus, if the sum of squared
ifference between all the control variables in all time periods in one iteration and the

o three. This is telling Duali that the model contains three D̂ matrices, a

Eq. (3.9) above. The Iteration Limit is set to 50 and the Convergence Tolerance to 1.6E-
12, that
d

 429

Chapter 18 Rational Expectations Macro in Duali

previous iteration is less than the convergence tolerance number, then the iterations are
halted and convergence is declared. ergence is not achieved once the
iteration limit is reached, an error m .

Such a small convergence e necessary to perform
ulation experiments in which we will force the controls to follow given paths, thus

inor changes from period to period. Therefore, since
Duali computes convergence over changes in the controls, and given that we will allow
only minor changes in them, we need to impose a very small convergence tolerance
number to be able to run simulation experiments. Such a small number will not be
necessary in the optimal policy experiments to be introduced later in this chapter.
 The Data:Acronyms menu option contains the assignment of labels to the model
variables and time periods. The Data:System Equations section contains the numerical
values for matrices and . The Data:Criterion section contains

the values for the W and Λ weighting matrices and the desired paths values for state and
control variables. We see that the weights on the controls in the Λ matrix are set to 99, a
relatively large value, while the weights on the states in the W matrix are set 1, a
relatively small number, and the desired paths for the controls are set equal to the policy
cha
the
choosing the menu option Solve:QLP the problem is solved and the numerical results are
automa s to define different display,
plo g
will be the
Prefere
section

Figure 18.6 below show the results of two experiments: a 1% unanticipated
permanent increase in the money supply (m) and a 1% unanticipated permanent increase
in government t is, m and g increase by 0.01 at the first period of
each of the two experiments, and are kept at their new value from the second period

ime periods. For y and p, the vertical axes
hile for i and r the vertical

axes show percent points. Thus a value of 0.01 in the GDP graph means that GDP goes

 Otherwise, if conv
essage is displayed

 tolerance number will b
sim
allowing them to experience very m

0A , 1A , 1B , 1C , 1D̂ , 2D̂ 3D̂

nge to be introduced, i.e., to 0.01 for the experiment to follow. In this way we force
 system to respond to the pre-specified changes in the policy variables. Finally,

tically displayed. The menu option Results allows u
ttin and printing options. Also, for this and the other experiments in this chapter, it

 convenient to set the display of results to four decimals. This can be done in
nces:Results menu option, choosing the corresponding value in the Format
.

 expenditure (g). Tha

onwards. On the horizontal axes are the t
correspond to percent deviations from steady-state values, w

53

53 Remember that in Taylor’s model, y and p are in logs, which is equivalent to percent deviations from

steady-state while i and r are not.

 430

Chapter 18 Rational Expectations Macro in Duali

from
means to 6%.54

 600 to 606 billion dollars, while a value of 0.01 in the nominal interest rate graph
that that rate changes from 5%

GD P (y)

-0.005

0

0 1 2 3 4 5 6 7 8 9

0.005

0.015

0.02

10

price level (p)

0.01

1% incr. in m 1% incr. in g

0
0.005

0.01
0.015
0.02

0.025

0.04

0 1 2 3 4 5 6 7 8 9 10

0.03
0.035

1% incr. in m 1% incr. in g

real interest rate (r)

-0.006
-0.004
-0.002

no minal interest rate (i)

0.002
0.004

0.01

0

0.006

0.01

0.006
0.0080.008

0.002

0.004
0

-0.002
0 1 2 3 4 5 6 7 8 9 10

1% incr. in m 1% incr. in g

0 1 2 3 4 5 6 7 8 9 10

1% incr. in m 1% incr. in g

Figure 18.6 Dynamic Simulations of Changes in Policy Variables

Here is how John Taylor explains the observed behavior of the model for the two

an expected positive effect on output that dies out as prices
se and real-money balances fall back to where they were at the start. Note that the real

at occurs at the time of the monetary stimulus. For this set of parameters the
ominal interest hardly drops at all; all the effect of monetary policy shows up in the real

e
te, however, that there is a surprising “crowding-in” effect of fiscal policy

 the short run as the increase in the expectation of inflation causes a drop in the real
e

experiments:
“Monetary policy has

ri
interest rate drops more than the nominal rate because of the increase in expected
inflation th
n
interest rate. Fiscal policy creates a similar dynamic pattern for real output and for th
price level. No
in
interest rate. Eventually the expected rate of inflation declines and the real interest rat

54 Taylor (1993), Chapter 1, present graphs conveying the same information as the ones we show here.

However, he presents the results in levels.

 431

Chapter 18 Rational Expectations Macro in Duali

rises; in the long run, private spending in completely crowded out by government
spending.”55

5. Optimal Policy Analysis

ptimal control techniques to Taylor’s model. The problem is

to find the optimal paths for the policy variables given desired paths for the target

variables, and it can be stated in the same form as was done before at the beginning of

section 4. We will assume that the policy goal is to stabilize y, p, i and around steady-

ate values (that is, around zero). We will put high and equal weights on stabilizing y

m and g. The corresponding weighting matr shown below, will remain constant

through time.

(5.1) ,

To perform a deterministic experiment, we will assume that the economy is going

through a recession provoked by a temporary adverse shock to

We will now apply o

r

st

and p, lower and equal weights on i and r, and even lower weights on the policy variables

ices,

W =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0
0

100
100

50
50

0

Λ =
⎡

⎣
⎢

⎤

⎦
⎥

25
25

y which brings it 4%

below its steady-state value. What would be, in this situation, the optimal paths for m
and g? What would be the optimal path for the state variables as compared with the
autonomous response of the system?
 To perform this experiment in Duali, we use the file tay-qlp.dui that is
essentially the same as the one used in the previous section, with some modifications. In
the Data:Criterion section we see that the values of the W and Λ weighting matrices are
now set as in Eq. (5.1), while the desired paths for the controls are set to zero.

In order to implement the shock to y in the first simulation period we have to
introduce an artificial time-varying exogenous variable. That is, the shock will be

55 Taylor (1993), page 25.

 432

Chapter 18 Rational Expectations Macro in Duali

defined as a first-period change in an arbitrary exogenous variable affecting the state
variable y only. To do so, in the Spe nal Forms option, in the “z Exog
Variables” section the option Time V cted, as shown in the dialog box
below.

cifications:Functio
arying is now sele

 Specifications Dialog Box

Then, in the Data:System Equations option we set the fourth element of the matrix
ement of the exogenous variable z equal to -0.04 while

aining elements are set to zero, as shown in the dialog boxes below.

Figure 18.7 Form

C1 equal to 1 and set the first el
all the rem

Fig

ure 18.8 C1 Matrix and ZT Elements Input Windows

 433

Chapter 18 Rational Expectations Macro in Duali

Notice also that this procedure is different from the one we used to implement a
us shock in the Hall and Taylor in Duali chapter. There, we appl

n
analogo ied the shock to
the n
Dat es
not appear with lagged values in Taylor’s model.
 Finally, we solve the problem choosing the menu option Solve:QLP. The graphs
in Fig. 18.9 below show the autonomous response of the system to a -0.04 unanticipated
transitory shock to y, and the behavior obtained when applying deterministic optimal
control (QLP) to face the same shock, that is, when actively using m and g as controls.

initial value of the shocked variable, that is, we defined the shock in the Duali optio
a:System Equations:x0. We cannot do that here, since the variable of interest (y) do

56

price level (p)GD P (y)

-0.035
-0.03

-0.025
-0.02

-0.015

0 1 2 3 4 5 6 7 8 9 10

-0.01

0.005
0.01

-0.001

0

-0.005
0

-0.005

-0.004

-0.003

-0.002

0 1 2 3 4 5 6 7 8 9 10

0.001

m, g contr. auton.

m, g contr. auton.

real interest rate (r)no minal interest rate (i)

0

0.002

-0.006

-0.004

-0.002

-0.01

-0.008

0 1 2 3 4 5 6 7 8 9 10

-0.006

-0.004

-0.002

-0.01

-0.008

0 1 2 3 4 5 6 7 8 9 10

0

0.002

m, g contr. auton.

m, g contr. auton.

po licy variables

-0.005

0
0.005

0.01
0.015
0.02

0.025

0.03

0 1 2 3 4 5 6 7 8 9 10

m g

Figure 18.9 Autonomous Response vs. Optimal Policy Experiment

56 We could use the option System Equations-x0 if, instead of shocking the variable “y”, we decide to

shock the contract wage, since the contract wage is the only variable with lagged values in Taylor’s model.

 434

Chapter 18 Rational Expectations Macro in Duali

We can observe how the beh ariables under the optimal control

solution outperforms substantially the aut , reducing the
costs of getting the econo rate that behavior, as
an be seen in the policy variables graph, the optimal policy mix relies on a 2.5%
ansito

rst

sence of
rational expectations since that specification is sometimes identified with the idea of
policy ineffectiveness. However, we have to remember that Taylor’s model contains a
built-in rigidity - a staggered contracts mechanism - that breaks down the ineffectiveness
of policy in the short-run.57

 More generally, rational expectations will tend to increase the degree of
controllability of an economic system, unless the particular structure and/or parameter
values of the model imply a complete neutralization of the policy variables effects.58
Indeed, not only can the policy-maker influence the economy through past and current
controls, but he can also affect the economic system through the pre-announcement of
future control values. However, for these announcements to have a positive effect on the
economic performance, they have to be credible, that is, the policy-maker has to be
committed to carry them out.59 These issues have led some researchers to focus their
policy analysis on the evaluation of alternative rules that policymakers are presumed to
follow. Two of the most influential researchers engaged in this type of work are John
Taylor and Michael Woodford.60
 For example, using the Taylor model, we may be interested in evaluating the
performance of a monetary policy rule in which the monetary authority, having as an
implicit target the stabilization of the price level, changes the money stock in an inverse

avior of the state v
onomous response of the system

my out of the recession. In order to gene
c
tr ry expansion in government expenditure during the first period, at the same time
that is also requires a small 0.5% transitory increase of the money supply during the fi
period.
 It may be surprising to find such a positive active policy role in the pre

57 To learn about the role of nominal and real “rigidities” in macroeconomic models, see Blanchard and

Fischer (1989).
58 See Holly and Hughes-Hallett (1989), Chapter 7.
59 Lack of credibility may lead to problems of “time inconsistency”. See Holly and Hughes-Hallett (1989),

Chapter 8; and Blanchard and Fischer (1989), Chapter 11. For an appraisal of the practical importance of

this issue, see Blinder (1997).
60 See Taylor (1998) and Woodford (2003).

 435

Chapter 18 Rational Expectations Macro in Duali

proportion to the changes in the pric erms, a simple rule of that type
can be written as

(5.2)

e level. In formal t

trt pam =

 is the money stock, p is the price level, and ra is a negative constant coef

which in control theory is called the feedback gain coefficient. Our goal will be to
evaluate how the variance of the price level changes as the absolute value of the ra

coefficient increases, that is, as the m

where m ficient

onetary authority responds more strongly to changes
odel is shocked by an additive noise.

ents in Duali we use the file tay-hcfr.dui.

in the price level, when the m
 To perform these experim
In the Specification:Stochastic Tems option, the problem is defined as stochastic with
additive noise, as shown in the dialog box below.

Figure 18.10 Stochast

ks will be applied to the system equations only.

ic Terms Dialog Box

 In a similar fashion as in the Quadratic Linear Problem above, in the
Specifications:Functional Forms option, in the “z Exog Variables” section the option
Time Varying is selected. But here we have to do so in order to be able to define the
source of random terms. Then, in the Specification:Source of Random Terms option, the
Generate Internally option is selected as shown in the dialog box below, indicating that
Duali’s random numbers generator will be used to generate the shocks. Also, in the
Noise Terms for All Periods section, the System Equations option is selected, indicating
that the shoc

 436

Chapter 18 Rational Expectations Macro in Duali

Figure 18.11 Sources of Random Terms Dialog Box

 In the Specification:Options Monte Carlo option, we can select the starting period
for the calculation of the variance of state and control variables over time. As shown in
the dialog box below, we selected period zero as the starting period.

Figure 18.12 Monte Carlo Options Dialog Box

 In the Data:Size option, we now have to specify the number of Monte Carlo runs.
As shown in the dialog box below, we chose 1000.

 437

Chapter 18 Rational Expectations Macro in Duali

Figure 18.13 Model Size Dialog Box

The next step is to define the variance of the shocks to be applied to the model
during the Monte Carlo runs. We will perform experiments in which the shocks will be
applied to the contract wage equation only. To do so, as shown in the dialog boxes
below, we first select, in the Data:Additive Noise Terms option, the Q, Additive Noise
Covariance option. This selection will cause the display of the Q covariance matrix of
the additive noise terms. There we assign the value 0.1 to the diagonal element
corresponding to the contract wage variable cwx . All the other values should be zeroes.
However, having zeroes in the diagonal of the Q matrix will cause problems when Duali
tries to find its inverse during the solution of the problem. Thus, we assign very small
values (0.00001) to the remaining diagonal elements.

Figure 18.14 Additive Noise Terms Dialo

g Box

 438

Chapter 18 Rational Expectations Macro in Duali

atrix nput Window

cture of the simulations, we now have to define
and assign values to the feedback rule to be evaluated. The mathematical form of this

Eq. (11) of the Dynamic Optim

Figure 18.15 Q M I

 Having defined the stochastic stru

rule was defined earlier in ization chapter as

 kkk gxGu +k=

Thus to modify the feedback rule we need to change the elements in either the feedback
gain matrix or the feedback gain vector G g . To do so, we select the Data:Handcrafted

Feedback Rule option. As shown in the dialog box below, we select the capital option,
which is the feedback gain matrix of the rule to be applied in the experiments. W leave
the small

G
e

g option blank, since it corresponds to a vector of constant terms that are absent

from the specific rule we will evaluate as defined in Eq. (5.2) above, i.e.

(5.2) trt pam =

 439

Chapter 18 Rational Expectations Macro in Duali

Figure 18.16 G and g Dialog Box

 When making the selection , the corresponding window will be displayed as of
shown below. We see that the value -0.1 is the only one assigned. It corresponds to the
value of the coefficient in Eq. (5.2). We also see that more complex rules could be

easily defined by assigning values to other cells in the matrix.

 G

ra

Figure 18.17 Feedback Gain Matrix G Input Window

 Having defined the stochastic structure of the experiments to be performed, and
the rule to be evaluated, we are now ready to move on to the selection of the solution
method and the storage and display of results. We first select the Solve:Compare Print
option. We will obtain a dialog box which displays several solution methods. We could
select some or all of them in case we want to perform experiments comparing their
relative performance. Since that is not our goal here, we just select the HFCR,
Handcrafted Feedback Rule option as shown in the dialog box below.

 440

Chapter 18 Rational Expectations Macro in Duali

Figure 18.18 Method Dialog Box

n d ing so we w e asked to provide a debug file name, for example we
could use the name tay-hcfr.dbg. This file will contain the simulation results. After

ptio s related to the generation of
sults will be displayed, as shown in the dialog box below. Given the nature of our

ptions blank except two. In the Averages section, we
 the Average Average over Monte Carlo Runs and the Average Variance over

onte Carlo Runs options.

 Whe o , ill b

providing the file name, a dialog box containing many o n
re
experiment, we will keep all the o
will select
M

Figure 18.19 Debug Print Dialog Box

 441

Chapter 18 Rational Expectations Macro in Duali

 We are then ready to perform our experiment. Once we click the OK button, th
Monte Carlo runs will begin. Since we are performing 1000 runs, it may take a while
before results are displayed. Two dialog boxes like the ones shown below will

e

appear
while Duali is running (one after the other). We should just dismiss them by clicking the

ton, since they display results corresponding to experime
omparison of methods, something we are not interested in here.

OK but nts with cross
c

Figure 18.20 Method Count and Average Criterion Value Windows

 We exit from Duali and then open the debug file, tay-hcfr

we have performed a large number of Monte Carlo runs, the
.dbg as we named it

ll be quite large since it will display some basic results corresponding to each
run. Moving down to the end of the output, our results of interest are just the following
ones:

AvgVarXsTimeHcfr

 .0924 68 0.01 003

AvgVarXsTimeHcfr

 0.0089 0.0825

….

AvgVarUsTimeHcfr

 0.0002 0.0000

 AvgVarXsTimeHcfr means the average variance of the state variables across time
for the handcrafted feedback rule solution method. We see that there are seven results,
each one corresponding to an element of the transpose of the state variable vector as
defined in Eq. (3.10) above that is:

(5.3)

above, with an editor. Since
output wi

 0 0.0168 0.01 29 0.0

][' cw
tttttt

cw
tt xlriypwxx =

 442

Chapter 18 Rational Expectations Macro in Duali

Thus, our result of interest is the third one to the right in the first row (0.0168) since it
corresponds to the average variance of the price level variable. AvgVarUsTimeHcfr
contains the results corresponding to the control variables, so the first one (0.0002) the
one corresponding to the variance of the lagged money supply stock is the one of interest
to us.
 These results considered by themselves are not very informative. However, we
can repeat the experiment for different values of the coefficient to obtain a

comparative performance. Table 18.1 below shows the results of ten experiments.

 Variance of p Variance of m

ra

ra

-0.1 0.0168 0.0002

-0.2 0.0156 0.0006

-0.3 0.0158 0.0014

-0.4 0.0157 0.0024

-0.5 0.0155 0.0038

-0.6 0.0150 0.0053

-0.7 0.0154 0.0072

-0.8 0.0149 0.0093

-0.9 0.0145 0.0113

-1 0.0143 0.0138

Table 18.1 Comparative Rules Experiments

 We can see that as the absolute value of the feedback gain coefficient ar increases,
the variance of the price level tends to decrease, while the variance of the money stock
increases. That is, a stronger response of the monetary authority to changes in the price
level reduces the variance of that variable but at the cost of an increased variance of the
policy tool. A natural question to be asked is what would be the optimal rule, in this
case, i.e. the optimal level of the feedback gain coefficient. If the only concern is the
ariance of the price level, the response is easy: it will be the highest possible absolute

value. However, if the variance of the money stock is also a concern, relative priorities
should be explicit.

v

 443

Chapter 18 Rational Expectations Macro in Duali

6. Experiments

ple experiment, you can perform optimal policy
experiments like the one presented in Figure 18.6, changing the priorities on state and
ontrol variables. Then, you can also change the nature of the initial shock.

Alternatively you can specify different handcrafted feedback rules to perform
experiments like the one presented in Figure 18.9. For example, you may want to specify

e money supply is a function of output instead of the price level. Or
you may want to design more complex rules, with money supply and government
spending as controls and one or more state variables as target variables.

 you may also define a rule in which the real interest rate - instead of the
money supply (as was the case in the experiment presented in this chapter) - is used to

spond to changes in prices. This type of rule is typically used by many researchers -
) and Woodford (2003) to discuss monetary policy rules in the U.S. To

o so, notice that you will have to redefine the interest rate as a control variable and the
e when the interest rate is used as a control, the

oney supply becomes an endogenous variable. Since this is a substantial change in the
model structure, it may require you to start from scratch to input the new model in Duali.

ted in this chapter, together with U.S. and
rsions of it are devel r (1993). Holly

nd Hughes-Hallett (1989, Chapter 7) provide an introduction to the application of
an and Kendrick

996), (1999c), (2000), (2003) develop optimal control techniques and applications for a
mo Taylor (1998) and Woodford (2003) provide a

ide treatment of the application of policy rules to rational expectations models. For a
nt work on the recent variety of optimizing

end-deviation macroeconomic models see Kozicki and Tinsley (2002).
For discussion of the robust control approach to stochastic control see

Deissenberg (1987), Rustem (1992), Hansen and Sargent (2001) and Rustem and Howe
(2002)

 As a first and relatively sim

c

a rule in which th

 Finally,

re
e.g. Taylor (1998
d
money supply as a state variable, sinc
m

7. Further Reading

The prototype Taylor model presen
multicountry extended econometric ve oped in Taylo
a
optimal control techniques to rational expectations models. Amm
(1
variety of rational expectations dels.
w
useful starting point to coming abreast of rece
tr

 444

Appendix A

Running GAMS

 This appendix provides the details for running the GAMS software on a PC. In
order to use GAMS with other input files substitute the appropriate file name for
trnsport.gms in the following. For help and information about obtaining GAMS go the
GAMS Development Corporation web site at
 http://www.gams.com
There is a student version of GAMS that can be downloaded and that can solve all or
almost all of the models used in this book. It the model is too large, usually a small
change in the number of time periods or some other set is sufficient to reduce the size so
that it will run on the student version.

 Go to the book web site at

http://www.eco.utexas.edu/compeco

 and to the “Input Files for Chapters in the Book” section of the web site. Right

 click on the trnsport.gms filename and select the “Save Target As …” option

in order to save the file in your preferred directory.

 Chose Programs from the Start menu and then chose GAMS and gamside. Chose
Open from the File menu, navigate to the trnsport.gms file and open it for
editing. Notice in the complete GAMS statement of the model that, as is the usual
case in GAMS, the model is defined in steps

 first the sets

then the parameters
then the variables

 then the equations
 and finally the model and solve statements.

445

Appendix A Running GAMS

 Solve the model by choosing Run from the File menu and then check the solution
log to be sure that you have

and

a

found, and with “$number” just below the part
contain a specific error code. Then, at the end of the list of

t file, GAMS will display the explanation of each of the error codes found.

e corresponding values for
eters.

Column Listing: shows a list of the equations’ individual coefficients classified by
columns.

Model Statistics: shows information such as model number of equations, number of
variables, etc.

Solve Summary: shows information such as solver and model status at the end of the
GAMS run, etc.

Solution Listing: shows the solution values for each equation and variable in the model.
Each solution value is listed with four pieces of information, where a dot “.” means a

SOLVER STATUS: 1 NORMAL COMPLETION

 MODEL STATUS: 1 OPTIMAL
Then close the log file window.

 Click on the trnsport.lst file window and scroll through this listing file to see
the solution. Note that the *.lst file extension used here is an abbreviation for
“listing” of the output file.

Notice that the GAMS output has the following structure:

Echo Print: shows a listing of the input file with the line numbers added.

Error Messages: in the case of errors in the input file, they will be signaled by GAMS
with “****” on the leftmost part of the corresponding line of input where the error was

 of the line of input where the error is
located, where “number” will
the inpu

e model with thEquation Listing: shows each equation of th
sets, scalars and param

 446

Appendix A Running GAMS

value of zero, EPS a value near zero, and +INF and –INF mean plus or minus infinite
respectively:

LOWER (the lower bound)
LEVEL (the solution level value)
UPPER (the upper bound)
MARGINAL (the solution marginal value; it corresponds, for linear or nonlinear
programming problems, to the increase in the objective value due to a unit increase in the
corresponding constraint)

Report Summary: shows the count of rows or columns that are infeasible, non-optimal or
unbounded.

 447

Appendix B

Running Mathematica

 Mathematica is a widely available commercial software system. A web site for
information about it is
 http://www.wolfram.com

atica. Wait for a

Notebook like a
document in a standard word processor. If you specified a file when opening
Mathematica, this file will be displayed.

ted from the Help menu (located in the upper right corner of

the Mathematica window) and read the information that will appear in the "Info
dialog
suggested in the section

of working with Mathematica, i.e. your Notebook will
corresponding outputs. You may also

tebook, a hierarchy of brackets appears.
Each of them defines a cell (or a group of cells) which are the basic units of

 As you will quickly realize, cells can be
ed (as in set and subsets). There are different kinds of cells:

ain text, Mathematica input, Mathematica output, or graphs, etc.
Different small characters within each bracket identify the kind of cell. Here are

o with cells:

ble to work w acket.

To edit a group of cells, just click and drag on their brackets.

o To find out or change the kind of cell, edit the cell, select "Style" in the main
ose your option.

 Choose Programs from the Start menu and then choose Mathem
few seconds, and a new window with a menu bar in its upper part will appear.
The content of this window will be a white sheet called , which is

 Select Getting Star

box". To begin practicing with Mathematica, perform the calculations
"Doing Calculations". While doing this, you will

appreciate the basic way
successively display your inputs and the
notice that on the right side of your No

organization in a Notebook.
hierarchically arrang
they can cont

some basic things you can d

o To edit a cell (that is, to be a ith it) just click on its br

o

menu and cho

448

Appendix B Running Mathematica

o To divide or merge cells, take the cursor to the division/insertion point of your

 portion of a program contained in a cell of group of cells, just edit the
cells and select Action-Evaluate in the main menu (or just press “Shift-Enter”)

o ile" in the main menu and choose your
options.

Go to

choice, select "Cell" in the main menu and choose your options.

o To run a

 Finally, to save your Notebook, select "F

o the book web site at http://www.eco.utexas.edu/compeco and then to the
“Input Files for Chapters in the Book” section of the web site. Right click on the

o

 a mmands, click on the
bracket on the right of it and hit Shift+Return (hold the shift key and hit Return at

t will be displayed following the input, unless there is a
“ at the end of the input command line (“;” suppresses the output). You can run
multiple cells by highlighting the corresponding brackets with your mouse and

o

Kernel menu, choose Evaluation and Evaluate Notebook you will re-run the
complete program. If your program is large this may take a few minutes and it
may be difficult for you to track down the results of your modifications. On the
other hand, sometimes your modifications may require an updating of previous
results, a clearing of previous values or a change of attributes (and the Clear

oid

Leontief.nb filename and select the “Save Target As …” option in order to save
the file in your preferred directory.

o G to “File” menu and click Open to open the file.

o To run an input command or a cell containing series of co

the same time). The outpu
;”

hitting Shirt+Return once.

Modify commands and re-run them sequentially, cell after cell, so that you can
see the changes in the corresponding outputs.

o If you either select the outer most bracket and press Shift-Enter, or go to the
, ,

command or the SetAttributes command are usually at the beginning of the
program). In these cases you may need to re-run the complete program to av
errors or spurious results.

 449

Appendix C

Running the Solver in Excel

 Download the file for the growth model or for the neural net from the book web
site. Your version of Excel may not have the Solver option available by default. To
check this look for the Solver option on the Tools menu. If you don’t find it, click Add-

s, check Solver Add-in, and click OK. Then look in the Tools menu again. In

450

Appendix D

 a set “t”

t = {0 ,2,3}

then an expression like
eq(t).. w(t) =E= z(1)

will result in the following equations being generated by GAMS
eq(0).. w(0) =E= 0;

lement “z(-1)” of the variable “z” is not defined. We do not want this to happen, since

it will be a source of confusion at the time of assigning initial values for lagged variables
and also for the interpretation of solution values corresponding to the initial periods of the
solution horizon.

To be sure about the results of the dynamic specifications in GAMS, every time
one wr OPTION

IMROW equal to the maximum number of periods involved in the solution of the
model. This will tell GAMS to print a detailed equation-by-equation solution report
which will allow one to check period-by-period the evolution of the time indices for each
variable within each equation. It is particularly important to check the specification of
the equation for the first few and the last few time periods. For example, here is how the
corresponding GAMS output looks for equation “eq6” in the chapter on Macroeconomics
in GAMS.

eq6(t+2).. piex(t+2) =E= alpha * pi(t+1) + beta * pi(t) ;

Ordered Sets in GAMS

As was discussed above in the chapter on Macroeconomics in GAMS, the
definition of lagged indices for variables in GAMS may be somewhat problematic if it is
not done with care. For example, if the variables “w” and “z” were defined over
(i.e. w(t) and z(t)) such as

,1

t-

eq(1).. w(1) =E= z(0);

eq(2).. w(2) =E= z(1);

eq(3).. w(3) =E= z(2);

Thus, it will cause GAMS to assign the value zero to the first element of w(t), since the
e

ites a program involving dynamic variables it is advisable to set
L

451

Appendix D Ordered Sets in GAMS

when Hall and Taylor’s model is solved for a time horizon of 7 periods - that is, for a “t”
set equal to {0,1, … , 5,6}.

---- EQ6 =E= expected inflation

EQ6(2).. - 0.2*PI(0) - 0.4*PI(1) + PIEX(2) =E= 0 ;

EQ6(3).. - 0.2*PI(1) - 0.4*PI(2) + PIEX(3) =E= 0 ;

EQ6(4).. - 0.2*PI(2) - 0.4*PI(3) + PIEX(4) =E= 0 ;

EQ6(5).. - 0.2*PI(3) - 0.4*PI(4) + PIEX(5) =E= 0 ;

EQ6(6).. - 0.2*PI(4) - 0.4*PI(5) + PIEX(6) =E= 0 ;

Notice that eq6(t+2) goes from periods 2 to 6, while pi(t) goes from 0 to 4, pi(t+1)

from 1 to 5 and piex(t+2) from 2 to 6. This means that the effective solution horizon for
the model was equal to 5 periods, 2 less than the number of elements of the set “t”.
 For further details see the chapter on “Set as Sequences: Ordered Sets” in
the GAMS User’s Guide at www.gams.com

 452

Appendix E

Linearization and State-Space Representation of Hall and
Taylor’s Model

 The linearization method that we will use is known as Johansen’s method – see
Johansen (1960). It involves transforming all the variables in the model into percentage
changes with respect to a base case. We introduced this method in the chapter on
General Equilibrium Models. There we learned that there are some rules, analogous to
differentiation, which simplify the task of linearizing a model. We will apply those rules
here.
 Remember that since the Hall and Taylor model is a dynamic model, all its
variables have an explicit or implicit time subscript. It is important to understand that the
percentage changes of each variable will be changes with respect to a baseline case (the
point of linearization) and not with respect to “the previous period”. If our baseline case
is the steady-state and, say, *

4tX + takes the value 0.01, this means that the variable X, at
time t+4, is 1% higher than its steady-state value. It does not mean that *

4tX + is 1%
higher than *

3tX + .

The steady-state solution for Hall and Taylor’s original nonlinear model in levels
v = 1 and E =1. These steady-state values correspond to the

llowing values for policy and exogenous variables: M = 900, G = 1200, YN = 6000 and
levw = 1. We will pick the steady-state solution as our baseline or point of linearization.

Thus, t

is: Y = 6000, R = 0.05, ple
fo
p

he expressions in the sum rule in the General Equilibrium Models chapter for

 X Y Z= +

becomes
 * * *y zX s Y s Z= +

where *, *X Y and *Z are percentage deviations of the corresponding level variables
and and are the shares ys zs

ss
y

ss s

Y
s

Y Z
=

+ s

 and ss
z

ss s

Z
s

Y Z
=

+ s

.

where the subscript “ss” means “steady-state value”.

 453

Appendix E Linearization and State Space Representation

 The original twelve-equation model contains the equations listed below:
IS-LM
(1) GDP identity Y C I G X= + + +
(2) Disposable Income ()1dY t Y= −

(3) Consumption dC a bY= +
(4) Investment I e dR= −

M P kY hR= − (5) Money Demand

Expectations Augmented Phillips Curve
(6) Expected Inflation 1 2

eπ απ βπ− −= +

(){ }1 /e
N Nf Y Y Yπ π −= + − (7) Inflation Rate

()1 1P P π−= + (8) Price Level

Foreign Sector
(9) Real Exchange Rate WE P P q vR= +
(10) Net Exports WX g mY nE P P= − −

Government Deficit and Unemployment
(11) Government Deficit dG G tY= −

(){ }N NU U Y Y Yµ= − − (12) Unemployment Rate N

To obtain the equation for (that is, GDP percent deviation from steady-state),

10) in
*Y

we substitute eqs. (2), (3), (4) and (to eq. (1). Linearizing, we obtain

(e.1) 12 13 14 12 12* - *- *- * * *Y sa R sa plev sa E sb G sc plevw= + +

where61

 (1 - ((1 -) -))aux b t n=

12 () /()ss sssa d R aux Y=
2

13
2

14

 () /()

 () /(
ss ss ss ss ss

ss ss ss

s n E plevw plev aux plevw Y

sa n plev plevw E aux ple=

) ss ss

a

vw Y

=

ss ss12
2

12

 /()

 () /()ss ss ss ss s

b G aux Y

sc n E plev plevw aux plevw Y

=

=

s

s

 The reason why we define the coefficients as sa12, etc., will become clear below, when we write the

model in matrix notation.

61

 454

Appendix E Linearization and State Space Representation

 To derive the equation for *R (Real Interest Rate), linearizing and re-arranging
eq. (5) we obtain

(e.2) 21 23 21* - *- * *

R sa Y sa plev sb M= +

where

2
21 23 21-() /(); - /(); - /().ss ss ss ss ss ss ss ss sssa k Y h R sa M plev h plev R sb M h plev R= = =

)

6)

 To obtain the equation for *plev (Domestic Price Level), substitute equation (6

(1 2

eπ απ βπ− −= +

into equation (7)

(){ }1 /e
N Nf Y Y Yπ π −= + − (7)

to get

(e.3) -1 -2 -1 (-) /f Y YN YNπ απ βπ= + +

 This expression combines variables in levels and variables in rates of growth. To
avoid the confusion that may arise from working with percentage changes of rates of
growth, we proceed as follows. Taking into account that the percent deviation of a
variable is, for small deviations, approximately equal to its corresponding log difference,
we can write

 455

Appendix E Linearization and State Space Representation

(e.4) ln Y YN− −1 1(-) / ln -YN YN Y≈

Now, we can re-write eq. (8), i.e.

()1 1

1

P P
P
P

π

π

−= +

+ =
1

P P
−

1

P
π −−
=

 as

(e.5) 1 1 (-) /plev plev plevπ − −=

and applying the same property as above, we can write

.6)

 1ln - ln plev plevπ −≈ (e

and then

(e.7) -1 1 2 ln - ln plev plevπ − −≈
(e.8) ln - ln -2 2 3plev plevπ − −≈

bstituting (e.4) and (e.6)-(e.8) into (e.3) and linearizing we obtain

*

 Now, su

(e.9) 31 1 33 1 33 2 33 3 31* 1 * 1 * 2 * 3 * plev sa Y sa plev sa plev sa plev sc YN− − − −= + + + +

where
 31 33 33 331 ; 1 1 ; 2 - ; sa f sa sa s 313 - ; - .a sc fα β α= = + = β= =

 Finally, to derive the equation for *E (Nominal E haxc nge Rate), linearizing eq.

.10)

(9) we obtain

(e 42 43 42* - *- * *E sa R sa plev sc plevw= +

where
 42 43 42- /(); 1; 1.ss ss ss sssa v plevw R plev E sa sc= = =

 456

Appendix E Linearization and State Space Representation

 457

ny

Since variables dG (Government deficit) and U (unemployment rate) do not have a

“feedback” with the other equations in the model, we can ignore eqs. (11) and (12). In
summary, the four equations of our model are (e.1), (e.2), (e.9) and (e.10), i.e.

(e.1) 12 13 14 12 12* - *- *- * * *Y sa R sa plev sa E sb G sc plevw= + +

(e.2) 21 23 21* - *- * *R sa Y sa plev sb M= +

(e.9) 3 31* 1 * * *1 33 1 33 2 33 1 * 2 * 3 31plev sa Y sc YN−= +

otice that since in this linearized representation all variables are in percent deviations,
eir steady-state values will all be zeroes.

riting our structural model in matrix notation, we obtain

(e.11)

where:

and

sa plev sa plev sa plev− − −+ + +

(e.10) 42 43 42* - *- * *E sa R sa plev sc plevw= +

N
th

W

1 2 3 1 2 3 SA X SA X SA X SA X SB U SC V− − −= + + + +

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

*

*

*

*

E
plev
R
Y

X ⎥
⎦

⎤
⎢
⎣

⎡
=

*

*

G
M

U ⎥
⎦

⎤
⎢
⎣

⎡
=

*

*

plevw
YN

V

SA

sa sa sa
sa sa

sa sa

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
1 0

0 0 1 0
0 1

12 13 14

21 23

42 43
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0101
0000
0000

1
3331 sasa

SA

Appendix E Linearization and State Space Representation

332 0 0 0
0 0 0 0

a ⎥ ⎢
⎥ ⎢

33

2112

21

00
0 00

0 0

scsb
sb

SB SC
s 31

42

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 2
0 0 3 0
0 0 0 0

0
00 0

SA SA
s sa

c
sc

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦ ⎣ ⎦

0 ⎢

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 We have obtained above a structural model which is, of course, a simultaneous

stem of equations. To obtain its reduced form, we have to get rid of this simultaneity
and to express each endogenous variable as only a function of policy, exogenous and pre-
determined variables. This can be done easily.
 From equation (e.11) the reduce form can be obtained as

(e.12)

sy

1 2 3 1 2 3 X RA X RA X RA X RB U RC V= + + + + − − −

where:

1 1 1 1 11 1; 2 2; 3 3; ;RA RC SA SC− − − − −= = =

Equ io
3). It is e”
represe arized
mo , of
the ma
control riments with Duali, the input model has to be in
stat p
the foll tors XL-1 and XLL-1 as

SA SA RA SA SA RA SA SA RB SA SB= =

at n (e.12) is a third-order system difference equation (the maximum lag is equal to
 necessary to reduce it to a first order system that is called the “state-spac
ntation.62 For instance, to analyze some dynamic properties of the line

del we have to know its characteristic roots, and these are equal to the eigenvalues
trix of the first order version (matrix A below). 63 Also, to determine the model
lability or to perform policy expe

e-s ace form. To make this transformation, we augment the state variable by taking
owing steps. We define the new vec

62 The concept of state-space goes beyond this, but we will not deal with it here.
63 See Mercado and Kendrick (1999).

 458

Appendix E Linearization and State Space Representation

(e.13)

2
*

1 2

* *
1 2

Y

R

* *
1

*

xlY

xlR
1 2* *

1 2

XL X
xlplev plev− −

− −

xlE E

−

− −

− −

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(e.14) 3* *
2 3

* * *
1 2 3

YxllY xlY

RxllR xlR
X

** *
31 2
** *
31 2

1 2*
1

XLL XL
xllplev xlp− −

− lev plev

xllE xlE E

−− −

−− −
−

− −

− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ = == = = ⎢ ⎥⎥⎢ ⎥ ⎢
⎢ ⎥⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Then, re-write (e.12) as

1 1 1 1 2 3 X RA X RA XL RA XLL RB U RC V− − −(e.15) = + + + +

efine the augmented state vector x

D

(e.16)
X

x XL
XLL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 ,

-write (e.13) and (e.14) as

re

(e.15) 1 XL X −=
(e.16) 1 2 XLL XL X− −= =

and finally transform (e.15) into its state-space representation as

 1 x A x B U C V−= + + (e.17)

where U and V are the same as above, where

1 2 3
0 0 0 0

0 0 0 0

RA RA RA RB RC
A I B C

I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 ⎥
⎥

 459

Appendix E Linearization and State Space Representation

and where I is a (4x4) identity matrix and 0 are (4x4) and (4x2) matrices of zeros as
appropriate.

In Hall and Taylor’s model, the policy ariables contempor v aneously affect the
odel’s endogenous variables, and this is also true for its “state-space” representation. In

in a proper state-state representation, that is, one in which the control
variables also appear with one lag, we have to assume that there is a one-period delay

etween a policy decision and its implementation. Then, we can substitute M-1
* for M*,

* for G*. We will also assume that the exogenous variables YN* and plevw* affect
e system with one lag instead of contemporaneously. Expressing the model in this way,

 use of many results from the optimal control literature, which works with
odels with one-lag controls. Also, the Duali software works in this way.

ing original model parameter values, and where all the variables are percent

eviations from the steady-state, the state-space representation of Hall and Taylor’s
en be written as in equation (1) in the chapter on Stochastic Control in Duali.

m
order to obta

b
and G-1

th
we can make
m

Thus, in matrix notation, with numerical parameter values derived from the
correspond
d
model can th

 460

Appendix F

Introduction to Nonlinear Optimization Solvers

 Solving nonlinear optimization problems usually requires the use of numerical
methods. In general, those methods consist of a “smart” trial and error algorithm that is a
finite sequence of com
There is a variety of algorithm

putational steps designed to look for convergence to a solution.
s to solve nonlinear problems. Some of them are global

methods, in the sense that they perform a parallel exploration of many regions of the
ization space. One example of this type of solution method is genetic algorithms.

ther methods are local methods, since they tend to focus on the exploration of a
gion of the op mization space. In this appendix we will introduce two of the

ost popular local methods: the gradient method and the Newton method. Varieties of
ese m

Suppose that we are trying to find the maximum of a nonlinear function

such as the one represented in Figure F.1 below.

optim
O
particular re ti
m
th ethods are used by the solvers in Excel, GAMS and MATLAB. Before
introducing the gradient method and the Newton method, we begin with a simple
example.

(1) =)(xfy

 461

Appendix F Introduction to Nonlinear Optimization Solvers

 462

A simple and very rudimentary algorithm to find the solution could be as follows.
he

ue by a constant magnitude h (we

ame also choose in an arbitrary way. For the

)

is as long as the differences between two successive values of y are positive (negative

n

 direction along x (that is, subtracting h from x) and we use
r h a smaller value than the one we were using while we moved in the opposite

direction. We continue like this until we find again a difference between two successive

y

Figure F.1 A Nonlinear Function

0x 1x 2x3x4x

We choose an arbitrary initial value for x, such as 0x in Figure F.1, and compute t
corresponding)(00 xfy = . Then we increase that val

n this magnitude the “search step”) that we
new value of x, that is 1x , we compute the corresponding value of

)()(011 hxfxfy +==(2

and we compare this value to the one obtained in the previous step. We continue to do
th
for a minimization problem). As soon as we compute a difference with a negative sig
(in Figure F.1 this would correspond to 2x), we reverse the direction of the search. We

begin to move in the opposite
fo

Appendix F Introduction to Nonlinear Optimization Solvers

values of y which is negative. We then again reverse the direction of the search and we
reduce once more the size of h. And so on. We stop when the difference between two
succes

sive values of y falls below a pre-established tolerance limit.
The gradient method and the Newton method are iterative methods like the one

f the function.
strate this we change to a multivariate

example. In this case we use the following equation to obtain each new value of the

)

presented above. However, they exploit local information about the form o
That is, they use the function’s derivatives. To illu

vector x

 xhxx nn ∆+=+1 (3

where h is the search step - now always a positive value - and where x∆ is the direction
f change which, as we will see, will be determined by the function’s derivatives.

ut how the function changes in the neighborhood of a given point. Its
asic framework is the well known first order Taylor approximation

 is the gradient vector. Notice that since h is supposed to be positive, the

best direction of motion will be

)

lem, since

lso, for a minimization problem

)

o
The gradient method uses the first derivatives or gradient, which give us

information abo
b

(4) xxfhxfxf nnn ∆∇+≅+)()()(1

where)(nxf∇

)(nxfx ∇=∆ (5

for a maximization prob

(6))())(()()(2

1 nnnn xfxfhxfxf >∇+≅+

A

(7))(0xfx −∇=∆

since

)())(()()(2
1 nnnn xfxfhxfxf <∇−≅+ . (8

 463

Appendix F Introduction to Nonlinear Optimization Solvers

 The basic framework of the Newton method is the second order Taylor
pproximation

)

a

 xxHxhxxfhxfxf nnnn ∆∆+∆∇+≅+)('(9
21

where)(0xH is the second order derivative or Hess

)()()(

ian which tells us how the slope of the

nction changes in a neighborhood of a given point.
 Assuming the Taylor expansion of a function f is a good global approximation to
that function, we will approximate the optimum value of f by optimizing its Taylor
expansion. In our case, this is equivalent to saying that to determine the best direction of

fu

motion x∆ we have to optimize the expression (9). Differentiating (9) with respect to
x∆ , making the result equal to zero and solving for x∆ we obtain

(10)
)(
)(

n

n

xH
xfx ∇

−=∆

which will be the best direction of motion for Newton’s method.

g

he tolerance limit or
e initial value of the search. Most solvers allow you to change these parameters.

more than one local optimum we will find only one
of them. Thus, we will never know for sure if the optimum we reached was a local or a
global one. A rough way of dealing with this problem is to solve the problem providing
the algorithm with alternative initial values of the search.

In this appendix we presented three numerical methods of increasing complexity.
f course, the more complex ones make use of more information thus reducing, in

general, the number of steps to achieve convergence. However, those steps become more
complex, since they required the computation of a gradient or a Hessian. Then, there are
trade offs to be evaluated when choosing a solution method.

ent method, penalty function method, sequential quadratic programming,
etc. - a number of which extend, combine or mimic the ones introduced here. For a

Sometimes iterative methods like the ones presented above do not converge to a
solution after a finite number of iterations. This problem may be overcome by changin
the maximum number of iterations, or the size of the search step, or t
th

Notice also, as is the general case for numerical methods dealing with nonlinear
optimization problems, that if there is

O

There are additional methods to solve nonlinear problems numerically - i.e.
conjugate gradi

 464

Appendix F Introduction to Nonlinear Optimization Solvers

comprehensive presentation you are referred to Judd (1998) and Miranda and Fackler
(2002). The Excel Solver uses a conjugate gradient method or a Newton method.

AMS uses a variety of methods, depending on the solver you choose or have set up as
the default nonlinear solver. The MATLAB solver used in the Portfolio Model in
MATLAB chapter and invoked by the fmincon function uses a sequential quadratic
programming method. For details on the specific methods used by Excel, GAMS and

ATLAB you are referred to their corresponding user’s and solver’s manuals.

G

M

 465

Appendix G

Linear Programming Solvers

= xby

mizing the
s by
f the

⎣ 3231

aa

 A linear programming problem is one of maximizing a linear objective function

aints. In economics, it is also frequently required that the subject to a set of linear constr
variables of the problems be nonnegative. Thus, in mathematical terms a linear
programming problem can be expressed as

max '

0
..

≥
≤

x
kAxts

where y is a scalar, x is a vector of variables, b and k are vectors of constants and A is a

atrix. If the problem is one of minimization, it can be written as one of maxim
objective function with a negative sign, and changing the direction of the inequalitie
multiplying both sides by minus one. To have an intuitive graphical representation o
problem, suppose that we have a problem with two variables and three restrictions, i.e.

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

x
x

x ,
⎥
⎥
⎥

⎢
⎢
⎢
⎡

= 22

12

21

11

a
a

a
aA and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= 2

1

k
k
k

k .

⎦

⎤

3

Thus, the problem can be represented as in Figure G.1 below.

 466

Appendix G Linear Programming Solvers

Constraint 1

Constraint 2

Constraint 3

x2

x1

Figure G.1 Feasible Solutions Set

nvex and lower-bounded set, also
nown as a simplex. In Figure G.2 below we added the corresponding level curves of the

 We can see that the problem constraints define an area - the shaded one - that
contains all the feasible solutions. It is a closed, co
k
objective function. Since for this example

2211 xbxby +=

then those level curves are given by

1
2

1

2
2 x

b
b

b
yx −=

We will have one level curve for each value of y.

 467

Appendix G Linear Programming Solvers

 468

igure G.2 Level Curves

We can see that the maximum feasible y will be . Generalizing, we can say

ys
tice also that multiple - actually an infinite number

of solutions will be obtained when the level curve is tangent to a segment between two

 rudimentary method would evaluate all
ertices and choose the one that generates the highest value - for a maximization problem

as the

 by the default GAMS solver BDMLP, is the
erative procedure known as the simplex method. Starting from a given vertex, this

x2

y2

y1

y0

x1

F

 1y

that the optimum value of a linear programming problem will be obtained at the point in
which a level curve is tangent to the simplex of feasible solutions. And this will alwa
happen at a vertex of the simplex. No
-
vertices.

Thus, a solution method could be one that focuses on the evaluation of the
vertices of the simplex of feasible solutions. A
v
- of the objective function. However, the number of vertices grows very quickly
number of variables and constraints increases.
 A more efficient method, used
it

Appendix G Linear Programming Solvers

method looks for the best direction of motion toward another vertex. To do so, it starts
by transforming the inequality restrictions into equalities by means of the addition of new
onnegative variables known as “slack variables”. In our two-variable three-restriction

n
example, this is equivalent to writing the new constraints as

35232131

24222121

13212111

kxxaxa
kxxaxa
kxxaxa

=++
=++
=++

or in matrix notation

[] kxIA =

where I is a 3x3 identity matrix and where the vector x is now

⎥⎦⎢⎣ 5x

⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎡

=

4

3

2

1

x
x
x
x

x .

 Notice that the new matrix []IA is a 3x5 matrix. Thus, if we set to zero any two

e matrix
t. Also that solution, which corresponds to the base of the tri-

imensional space spanned by those vectors, will be a vertex of the simplex of feasible

. To do so, we compute

variables in x we will be left with a 3x3 matrix and a 3x3 system of linear equations.
This system will have a solution if the corresponding row (columns) vectors in th
are linearly independen
d
solutions. Thus, we will name that solution the “basic feasible solution”.
 The next step in the simplex method is to evaluate the solution to check if we are
at the optimum

NBx
y

∂
∂

where NBx are the non-basic variables. If any one of these derivatives is greater than

zero, we are not at the optimum since the objective function could be incremented by
creasing the corresponding non-basic variable. The next step is thus to move to another in

 469

Appendix G Linear Programming Solvers

vertex incorporating this variable into the base and deleting one of the variables
previously in the base. The selection of the basic variable to be deleted is more involved.
Ideally

, we should delete the variable which constraints the most the potential increase in

e objective expected from incorporation of the new basic variable. To do so, the

We then continue evaluating the objective function and incorporating-deleting
ariables to the basic solution until we reach an optimum.

8) and Silverberg and Suen (2001). For details on GAMS linear
rogramming solvers, see the corresponding GAMS Solvers manuals at

th
constraints have to be re-written now with the basic variables as functions of the non-
basic ones, and the resulting system has to be analyzed.

v
 For more detailed presentations of the simplex method, you are referred to Chiang
(1984), Rardin (199
p
http://www.gams.com.

 470

Appendix H

The Stacking Method in GAMS

As a compact way of writing a multi-equation model, GAMS allows us to write

)1(..

max

byaxats

ywxwJ i
i

i

=+

+= ∑
=

eqj.. j =e= sum(i, w1 * x(i) + w2 * y(i));

indexed equations. As seen in a number of chapters of this book those indexes may
represent commodities, locations, time periods, etc.

For example, the equations corresponding to a problem such as

2

2

0
1

22221

11211

)2(byaxa ii

ii

=+

can be represented in GAMS as

eq1(i).. a11 * x(i) + a12 * y(i)) =e= b1;

eq2(i).. a21 * x(i) + a22 * y(i)) =e= b2;

 When the index set is { }0,1, 2i = the model will be expanded and stacked in the

 =e= w1*x(0) + w2*y(0) + w1*x(1) + w2*y(1) + w1*x(2) + w2*y(2)

q1(1).. a11 * x(1) + a12 * y(1)) =e= b1;

)) =e= b1;

q2(2).. a21 * x(2) + a22 * y(2)) =e= b2;

ith an objective function and two indexed
quations and two variables (x(i) and y(i)) and now we have a model with one

he model, GAMS transforms a model of n indexed

following way

j

eq1(0).. a11 * x(0) + a12 * y(0)) =e= b1;

eq2(0).. a21 * x(0) + a22 * y(0)) =e= b2;
e

eq2(1).. a21 * x(1) + a22 * y(1)) =e= b2;
eq1(2).. a11 * x(2) + a12 * y(2

e

 Notice that before we had a model w
e
objective function, six equations and six variables (x(0), x(1), x(2), y(0), y(1)
and y(2)). Thus, before solving t

 471

Appendix H The Stacking Method in GAMS

equations into one of n x card equations plus the objective function, where card indicates

with n indexed equations and t time periods
to an equivalent static model of n x t equations plus the objective function.

 When, as in the chapters on General Equilibrium Models in GAMS and
Macroeconomics in GAMS, we are interested in solving a system of equations and not
n optimization problem, we just set the objective function equal to any constant value

solve model maximizing j using nlp;

roduct

the number of elements in the index set. If the index denotes time periods, this is
equivalent to transforming a dynamic model
in

a
(i.e. j =e= 0;). Thus, when executing the corresponding solver statement, i.e.

GAMS will expand and stack the system of equations and it will solve it as a by p
of a “pseudo-optimization”.

 472

Appendix I

Running MATLAB

 This appendix provides the details for running the MATLAB software on a PC to
solve the portfolio model. In order to use MATLAB with other input files substitute the

e for in the following. appropriate file nam mcportfol.m

 For help and information about obtaining MATLAB go to The MathWorks web
site at

http://www.mathworks.com

 Go to the book web site at

http://www.eco.utexas.edu/compeco

 and to the” Input Files for Chapters in the Book” section of the web site. Right

in order to save the file in your preferred directory.

 In the Current Directory section of the main MATLAB window click on the icon
that contains “…” in order to browse to the folder where you stored the
mcportfol.m file. Then double click on the mcportfol.m filename.

 A window that contains the mcportfol.m file will open. In order to solve the
model pull down the Debug menu and select the Run option. A graph will appear
showing the results of the runs.

 In order to see the numerical results select the MATLAB main window and look
in the Command Window section.

 If you run a MATLAB program that uses a number of functions stored in separate
r in

odel chapter) make sure you download all those files in the
same directory.

 click on the mcportfol.m filename and select the “Save Target As …” option

 Chose Programs from the Start menu and then chose MATLAB.

files (such as the portfolio.m or the models in the genetic algorithm chapters o
the agent-based m

 473

Appendix J

Obtaining the Steady-State of the Growth Model

 More detailed derivation steps can be
found in Azariadis(1993), Sections 7.3 and 13.4.

We begin by defining the utility function

(1)

Here we are interested in deriving the steady-steady solution of the model

presented in the Growth in Excel chapter.

τ

τ
−

−
= 1

1
1)(tt CCu

nd the production function

)

rowth in Excel chapter, the model we want to solve can
e stated as find

, , ,)NC C C − to maximize

a

αθ tt KKf =)(.(2

Thus, as in the G

b

0 1 1(

(3) ∑
=

∞

0

)(
t

tCuβ

bject to

(4)
(5) given.

)

= tJ

su

tttt CKfKK −+=+)(1

0K
[] 0)('lim =(6

∞→t

tion, (4) is the capital accum

tt
t KCuβ

ulation equation and (5) is the

nsversality condition (6), where is the derivative

where (3) is the criterion func
initial condition. Since we are now interested in deriving the steady-state solution of the
model, we consider an infinite horizon problem. Thus, instead of a fixed terminal
ondition, we now impose the trac)(' tCu

of the utility function. This condition states that the discounted lifetime utility is

 474

Appendix J Obtaining the Steady-State of the Growth Model

maximal when the capital stock is zero or, in other terms, that at time t the present v
of capital tends to zero as time goes to infinity.
 Re-arranging (4) and substituting for in (3) we obtain

alue

tC

(7) ∑
∞

=

here

++

+=
0

1),(
t

tt
t KKvJ β

w

(8) [](11)(), −+= tttt KKKfuK .

er

where and are the partial derivatives of the function v and where

tKv

Differentiating (7) w.r.t. to 1+tK we obtain, for each time period t, the first-ord

condition

(9) 0),(),(211
1

12 =+ ++
+

+ tt
t

tt
t KKvKKv ββ

1v 2v

(10) []1 1 'v f= + 1 1() '()t tK u C+ +

and

(11) .

We now divide (9) by to obtain

)(' 12 +−= tCuv

tβ

(12) 021 =+ vvβ

or, substituting (10) and (11) into (12)

3)

[]1 11 '() '() '(t t)tf K u C u Cβ + ++ =(1 .

 Equation (13), together with equation (4)

(4)

tttt CKfKK −+=+)(1

 475

Appendix J Obtaining the Steady-State of the Growth Model

form a dynamical system that describes the evolution of the time paths for consumption
and the capital stock. Given the initial condition (5), this system has a solution for each
terminal value of the capital stock. The transversality condition (6) ensures that we pick,
out of the many possible solutions, the optimum one.
 To compute the steady-state, we eliminate the time subscripts from (13) and (4) to
obtain, respectively

(14)
β
β−

=
1)(' Kf

and

(15) .

 Finally, to obtain the steady-state for the capital stock as in equation (14) in the
Growth in Excel chapter, we substitute (2) into equation (14) above and solve for K, thus
obtaining

(16)

)(KfC =

1
1

1 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

α

βαθ
β

ssK .

 476

 477

References

Abel, Andrew B. (1975), "A Comparison of Three Control Algorithms to the Monetarist-
Fiscalist Debate," Annals of Economic and Social Measurement, 4, 239-252.

Adda, J. and R. Cooper (2003), Dynamics Economics: Quantitative Methods and
Applications, The MIT Press, Cambridge, MA.

Aghion, P. and P. Howitt (1997), Endogenous Growth Theory, The MIT Press,
Cambridge, MA.

Amman, Hans M. and David A. Kendrick (1996), “Forward Looking Variables in
Deterministic Control”, Annals of Operations Research, 68, 141-159.

Amman, Hans and David A. Kendrick (1999a), The Duali/Dualpc Software for Optimal
Control Models: User’s Guide, Center for Applied Research in Economics, The Univ. of
Texas, Austin, Texas, TP92-03 (revised December 1999), available at
http://eco.utexas.edu/faculty/Kendrick.

Amman, Hans M. and David A. Kendrick (1999b), "Programming Languages in
Economics", Computational Economics, 14, 151-181

Amman, Hans M. and David A. Kendrick (1999c), "Linear Quadratic Optimization for
Models with Rational Expectations", Macroeconomic Dynamics, (1999) 3, 534-543.

Amman, Hans M. and David A. Kendrick (1999d), “Should Macroeconomic Policy
Makers Consider Parameter Covariances?”, Computational Economics, 14, 263-267.

Amman, Hans M. and David A. Kendrick (2000), "Stochastic Policy Design in a
Learning Environment with Rational Expectations", Journal of Optimization Theory and
Applications, 105, 509-520.

References

 478

Amman, Hans M. and David A. Kendrick (2003), “Mitigation of the Lucas Critique with
Stochastic Control Methods”, Journal of Economic Dynamics and Control, 27, 2035-
2057.

Amman, Hans M., David A. Kendrick and John Rust (1996), Handbook of
Computational Economics, Elsevier, Amsterdam.

Andersen, V. (1999), Access 2000: The Complete Reference, The McGraw-Hill
Companies, New York.

Anderson, Gary and George Moore (1985), “A Linear Algebraic Procedure for Solving
Linear Perfect Foresight Models”, Economic Letters, 17, 247-252.

Arrow, Kenneth and Frank Hahn (1971), General Competitive Analysis, Holden-Day,
San Francisco.

Axelrod, Robert (1997), The Complexity of Cooperation, Princeton University
Press, New Jersey

Axelrod, Robert and Leigh Tesfatsion (2004), “On-Line Guide for Newcomers to Agent-
Based Modeling in the Social Sciences”, at

HTUhttp://www.econ.iastate.edu/tesfatsi/abmread.htmUTH

Azariadis, C. (1993), Intertemporal Macroeconomics, Blackwell, Oxford, UK and
Cambridge, MA, USA.

Barro, R. and X. Sala-i-Martin (1995), Economic Growth, The MIT Press, Cambridge,
Mass.

Bauer, Richard J. (1994), Genetic Algorithms and Investment Strategies, John Wiley &
Sons, Inc., New York.

Bellman, Richard (1957), Dynamic Programming, Princeton University Press, Princeton,
N.J.

References

 479

Beltratti, A, S. Margarita and P. Terna (1996,) Neural Networks for Economic and
Financial Modeling, International Thompson Computer Press.

Bertsekas, D. (1995), Dynamic Programming and Optimal Control, Athena Scientific.

Binder, Michael and M. Hashem Pesaran (2000), “Solution of Finite Horizon
Multivariate Linear Rational Expectations Models with Sparse Linear Systems”, Journal
of Economic Dynamics and Control, 24, 325-346.

Blanchard, O and S. Fischer (1989), Lectures on Macroeconomics, The MIT Press,
Cambridge, Massachusetts.

Blanchard, O. J. and C. M. Kahn (1980), “The Solution of Linear Difference Models
under Rational Expectations”, Econometrica, 48, 1305-1311.

Blinder, A. (1997), “Distinguished Lecture on Economics in Government: What Central
Bankers Could Learn from Academics - and Vice Versa”, Journal of Economic
Perspectives, 11, Spring.

Blitzer, Charles R., Richard S. Eckaus, Supriya Lahiri and Alexander Meeraus (1992),
“The Potential for Reducing Carbon Emissions from Increased Efficiency: A General
Equilibrium Methodology”, Indian Economic Review, 27, 199-214.

Brandimarte, P. (2001), Numerical Methods in Finance: a MATLAB-Based Introduction,
John Wiley & Sons, Inc., New York.

Brooke, Anthony, David Kendrick, Alexander Meeraus and Ramesh Raman (1998),
GAMS, A User’s Guide, available from the GAMS Development Corporation at
HTUhttp://www.gams.comUTH.

Chakravarty, S. (1962), "Optimum Savings with a Finite Planning Horizon",
International Economic Review, 3, 338-355.

Chiang, A. (1984), Fundamental Methods of Mathematical Economics, Third Edition,
McGraw-Hill.

References

 480

Chiarella, Carl and Peter Flaschel (2000), The Dynamics of Keynesian Monetary Growth:
Macro Foundations, Cambridge University Press, Cambridge, UK.

Chow, Gregory (1967), Multiplier, Accelerator, and Liquidity Preference in the
Determination of National Income in the United States, The Review of Economics and
Statistics, XLIV, 1-15.

Chow, Gregory (1973), Effect of Uncertainty on Optimal Control Policies, International
Economic Review, 14, 632-645.

Chow, Gregory (1975), Analysis and Control of Dynamic Economic Systems, John Wiley
& Sons, New York.

Craine, Roger (1979), Optimal Monetary Policy with Uncertainty, Journal of Economic
Dynamics and Control, 1, 59-83.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey.

Date, C. J. (1977), An Introduction to Database Systems, 2P

nd
P ed., Addison-Wesley,

Reading, MA.

Debreu, Gerard (1986), Theory of Value: an Axiomatic Analysis of Economic
Equilibrium, Yale University Press, New Haven.

Deissenberg, Christophe (1987), “On the Minmax Lyapunov Stabilization of Uncertain
Economies,” Journal of Economic Dynamics and Control, 11, 229-234.

Dervis, Kemal, Jaime de Melo and Sherman Robinson (1982), General Equilibrium
Models for Development Policy, Cambridge University Press, Cambridge, UK.

Dickhaut, John and Todd Kaplan (1993), “A Program for Finding Nash Equilibrium”,
Ch. 7 in Varian (1993a).

Dixon, Peter, Brian Parmenter, John Sutton and D. P. Vincent (1982), ORANI: A
Multisectoral Model of the Australian Economy, North Holland, Amsterdam.

References

 481

Dixon, Peter and Brian Parmenter (1996) “Computable General Equilibrium Modelling
for Policy Analysis and Forecasting”, Chapter 1 in Amman, Kendrick and Rust (1996).

Dixon, Peter, Brian Parmenter, Alan Powell and Peter Wilcoxen (1992), Notes and
Problems in Applied General Equilibrium Analysis, North Holland, Amsterdam.

Dorfman, Robert, Paul Samuelson and Robert Solow (1958), Linear Programming and
Economic Analysis, McGraw-Hill Book Company, New York.

Duraiappah, Anantha K. (1993), Global Warming and Economic Development, Kluwer
Academic Publishers, Dordrecht, The Netherlands.

Duraiappah, Anantha K. (2003), Computational Models in the Economics of Environment
and Development, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Dutt, Amitava Krishna and Jaime Ros (eds) (2003), Development Economics and
Structuralist Macroeconomics: Essays in Honor of Lance Taylor, Edward Elgar
Publishing, Cheltenham, Glos, UK.

Eckaus, Richard S. (1994), “Potential CO2 Emissions: Alternatives to the IPCC
Projections” Mimeo M.I.T. Joint Program on the Science and Policy of Global Change.

Epstein, Joshua M. and Robert Axtell (1996), Growing Artificial Societies: Social
Science from the Bottom Up, The MIT Press, Cambridge, Massachusetts.

Evanchik, Michael (1998), “Student Finance Model in Duali”, term paper for
Computational Economics course, Dept. of Economics, Univ. of Texas, Austin, Texas.

Fair, Ray C. and John B. Taylor (1983), “Solution and Maximum Likelihood Estimation
of Dynamic Nonlinear Rational Expectations Models”, Econometrica, 51, 1169-1185.

Fisher, P. G., S. Holly and A. J. Hughes Hallett (1986), “Efficient Solution Techniques
for Dynamic Nonlinear Rational Expectations Models”, Journal of Economic Dynamics
and Control, 10, 139-145.

References

 482

Francois , J. F. and C. R. Shiells (1994) (eds), Modeling Trade Policy: Applied General
Equilibrium Assessments of North American Free Trade, Cambridge University Press,
Cambridge, UK.

Froeb, Luke M. and Gregory J. Werden (1996), “Simulating the Effects of Mergers
Among Noncooperative Oligopolists”, Ch. 8, pp. 177-195 in Varian (1996).

Garson, G. D. (1998), Neural Networks: An Introductory Guide for Social Scientists,
SAGE Publications.

Gibbons, Robert (1992), Game Theory for Applied Economists, Princeton University
Press, Princeton, New Jersey.

Gilli, Manfred and P. Winker (2003), “A Global Optimization Heuristic for Estimating
Agent Based Models”, Computational Statistics and Data Analysis, 42, 299-312.

Goffe, Bill (1996), “SIMANN: A Global Optimization Algorithm using Simulated
Annealing”, Studies in Nonlinear Dynamics and Econometrics, Vol. 1, Issue 3.

Goffe, Bill (2004), Resources for Economists on the Internet, a web site sponsored by the
American Economics Association at HTUhttp://www.rfe.orgUTH

Goldberg, D. (1989), Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Publishing Co., Reading, Mass.

Gomis, Pedro and A. Haro (2003), “Global Dynamics in Macroeconomics: An
Overlapping Generations Example”, Journal of Economic Dynamics and Control, 27,
1941-1995.

Hall, Robert E. and John B. Taylor (1997), Macroeconomics, 5P

th
P edition, W. W. Norton

& Company, New York.

Hansen, Lars Peter and Thomas J. Sargent (2001), Elements of Robust Control and
Filtering for Macroeconomics, draft downloaded from Sargents web site at
HTUwww.stanford.edu/~sargentUTH, version of 23 March.

References

 483

Herbert, Ric D. (1998), Observers and Macroeconomic Systems, Kluwer Academic
Publishers, Dordrecht, The Netherlands.

Herbert, R. D. and R. D. Bell (1997), Visualization in the Simulation and Control of
Economic Models, Computational Economics, 10, 107-118.

Hicks, John R. (1937), “Mr. Keynes and the Classics: A Suggested Interpretation”,
Econometrica, 5, 147-159.

Holly, S. and A. Hughes Hallett, (1989), Optimal Control, Expectations and
Uncertainty, Cambridge University Press, Cambridge, UK.

Hughes Hallett, Andrew and Peter McAdam (eds) (1999), Analysis in Macroeconomic
Modelling, Kluwer Academic Publishers, Boston and Dordrecht.

Johansen, Leif. (1960), A Multi-Sectoral Model of Economic Growth, North Holland
Publishing Company, Amsterdam.

Jones, C. (1998) Introduction to Economic Growth, W. W. Norton & Company, New
York.

Judd, Kenneth L. (1998), Numerical Methods in Economics, The MIT Press, Cambridge,
MA

Judd, Kenneth L. and Leigh Tesfatsion (2005), Handbook of Computational Economics
II: Agent-Based Computational Economics, Handbooks in Economics Series, North
Holland, Amsterdam (forthcoming).

Juillard, Michel (1996), “DYNARE: A Program for the Resolution and Simulation of
Dynamic Models with forward Variables through the Use of a Relaxation Algorithm”,
CEPREMAP Working Paper No. 9602, Paris.

Kendrick, David A. and Lance Taylor (1971), "Nonlinear Models for Economic
Planning", Ch. 1 in Hollis B. Chenery (ed), Studies in Development Planning, Harvard
University Press, Cambridge, Mass.

References

 484

Kendrick, David A. (1981), Stochastic Control for Economic Models, McGraw-Hill Book
Company, New York, see also Kendrick (2002).

Kendrick, David A. (1982a), “Caution and Probing in a Macroeconomic Model”, Journal
of Economic Dynamics and Control, 4, 149-170.

Kendrick, David A. (1982b), "A Relational Database for the U.S. Economy", Ch. 3 in
Charles P. Kindleberger and Guido di Tella, Economics in the Long View, Essays in
Honor of W. W. Rostow, The MacMillian Press Ltd., London, 3, pp. 63-82.

Kendrick, David A. (1990), Models for Analyzing Comparative Advantage, Kluwer
Academic Publishers, Dordrecht, The Netherlands.

Kendrick, David A. (1996), “Sectoral Economics”, Ch. 6 in Amman, Kendrick and Rust
(1996).

Kendrick, David A. (2002), Stochastic Control for Economic Models, Second Edition,
available at HTUhttp://www.eco.utexas.edu/faculty/KendrickUTH.

Kendrick, David A. (2005), “Stochastic Control for Economic Models: Past, Present and
the Paths Ahead,” Journal of Economic Dynamics and Control, 29, 3-30.

Kendrick, David A., Alexander Meeraus and Jaime Alatorre (1984), The Planning of
Investment Activities in the Steel Industry, The Johns Hopkins University Press,
Baltimore, Maryland.

Kendrick, David A., P. Ruben Mercado and Hans M. Amman (2005), “Computational
Economics: Help for the Underestimated Undergraduate”, forthcoming in Computational
Economics.

Keynes, John Maynard (1936), The General Theory of Employment, Interest and Money,
Macmillan, London.

Kim, Seung-Rae (2004), “Uncertainty, Political Preferences, and Stabilization: Stochastic
Control Using Dynamic CGE Models,” Computational Economics, 24, 97-116.

References

 485

Koopmans, Tjalling (1951), Activity Analysis of Production and Allocations, Cowles
Commission for Research in Economics, Monograph No. 13, John Wiley and Sons, New
York.

Kozicki, Sharon and Peter A. Tinsley (2002), “Dynamic Specifications in Optimizing
Trend Deviation Macro Models,” Journal of Economic Dynamics and Control, 26, 1585-
1612.

LeBaron, Blake (2005), “Agent Based Computational Finance”, forthcoming in Judd and
Tesfatsion (2005).

LeBaron, Blake (2004), “Evolving Long Run Investors in a Short Run World”, Keynote
address to the Society of Computational Economics Conference, University of
Amsterdam, The Netherlands, July.

Lee, Myong Hwal (1998), “Analysis of Optimal Macroeconomic Policy Design”, Ph.D.
Dissertation, Department of Economics, The University of Texas, Austin, Texas 78712.

Leontief, Wassily (1953), Studies in the Structure of the American Economy, Oxford
University Press, Oxford, UK.

Letson, David (1992), “Simulation of a Two-Pollutant, Two-Season Pollution Offsets
Systems for the Colorado River of Texas Below Austin,” Water Resources Research, 28,
1311-18.

Lin, Kuan Pin (2001), Computational Econometrics: GAUSS Programming for
Econometricians and Financial Analysts, ETEXT Publishing, available at
HTUhttp://www.etext.netUTH

Lofgren, H., R. Lee Harris and S. Robinson (2002), A Standard Computable General
Equilibrium (CGE) Model in GAMS, Microcomputers in Policy Research 5, International
Food Policy Institute, Washington D.C.

Malinvaud, Edmund (1977), The Theory of Unemployment Reconsidered, Basil
Blackwell.

References

 486

Manne, Alan S. and Richard G. Richels (1992), Buying Greenhouse Insurance: The
Economic Costs of CO2 Emission Limits, The MIT Press, Cambridge, MA.

Markowitz, Harry (1952), “Portfolio Selection”, The Journal of Finance, 7, 77-
91.

Marimon, Ramon and Andrew Scott (eds) (1999), Computational Methods for the
Study of Dynamic Economies, Oxford University Press, Oxford, UK.

McCarl, Bruce A. and Uwe A. Schneider (2001), “Greenhouse Gas Mitigation in U.S.
Agriculture and Forestry”, Science, 294, 2481-2482.

McKibbin, Warwick J. and Peter J. Wilcoxen (2002), Climate Change Policy After
Kyoto: Blueprint for a Realistic Approach, Brookings Institution, Washington, D.C.

Mercado, P. Ruben, David A. Kendrick and Hans Amman (1998), “Teaching
Macroeconomics with GAMS,” Computational Economics, 12, 125-149.

Mercado, P. Ruben and David A. Kendrick (1999), "Computational Methods for Macro
Policy Analysis: Hall and Taylor's Model in Duali", in Hughes Hallett and McAdam
(1999), Ch. 8, pp. 179-206.

Mercado, P. Ruben and David Kendrick (2000), “Caution in Macroeconomic Policy:
Uncertainty and the Relative Intensity of Policy”, Economics Letters, 68, 37-41.

Mercado, P. Ruben, Lihui Lin and David A. Kendrick (2003), “Modeling Economic
Growth with GAMS”, Chapter 2, pp. 31-51 in Dutt and Ros (2003).

Mercado, P. Ruben (2004), “The Timing of Uncertainty and the Intensity of Policy”,
Computational Economics, 23, 303-313.

Miranda, Mario J. and Paul L. Fackler (2002), Applied Computational Economics and
Finance, The MIT Press, Cambridge, MA.

Nordhaus, William D. (1992), “An Optimal Transition Path for Controlling Greenhouse
Gases”, Science, 258, 1315-1319.

References

 487

Nordhaus, W. and J. Boyer (2000), Warming the World: Economic Modeling of Global
Warming, The MIT Press, Cambridge, MA.

Nowak, Martin and Robert May (1992), “Evolutionary Games and Spatial
Chaos”, Nature, 359 (6398), 29, 826-829.

Nowak, Martin and Robert May (1993), “The Spatial Dilemmas of Evolution”,
International Journal of Bifurcation and Chaos, 3, 35-78.

Oudiz, G. and J. Sachs (1985), “International Policy Coordination in Dynamic
Macroeconomic Models”, in Willem H. Buiter and R. C. Marston, International
Economic Policy Coordination, Cambridge University Press, Cambridge, England.

Paez, Pedro (1999), An Optimal Control Framework for the Design of Alternative
Macroeconomic Policies, Ph.D. Dissertation, University of Texas, Austin, Texas.

Park, H. J. (1997), A Control Theory Analysis of Macroeconomic Policy Coordination by
the US, Japan and Korea, Ph.D. Dissertation, Department of Economics, The University
of Texas at Austin.

Passinetti, L. (1977), Lectures on the Theory of Production, Columbia University Press,
New York.

Pesaran, M. H. (1987), The Limits to Rational Expectations, Basil Blackwell, Oxford,
UK.

Pindyck, Robert S. (1973), Optimal Planning for Economic Stabilization, North-Holland,
Amsterdam.

Rardin, R. (1998), Optimization in Operations Research, Prentice Hall, Englewood
Cliffs, New Jersey.

Ricardo, David (1817), Principles of Political Economy and Taxation, Dover Books,
HTUhttp://store.yahoo.com/doverpublicationsUTH. An alternative source for this book is given
below.

References

 488

Ricardo, David (1951), Principles of Political Economy and Taxation, in The Works and
Correspondence of David Ricardo, Volume 1, Edited by P. Sraffa, Cambridge University
Press for the Royal Economic Society, Cambridge, UK.

Roland-Holst, D. W., K. A. Reinert, and C. R. Shiells (1994), “A General Equilibrium
Analysis of North American Economic Integration,” in: Francois and Shiells (1994).

Ros, J. (2001), Development Theory and the Economics of Growth, University of
Michigan Press, Ann Arbor, Michigan.

Rotemberg, J. and M. Woodford, (1997), “An Optimization-Based Econometric Model
for the Evaluation of Monetary Policy,” NBER Macroeconomic Annual, 12, 297-346.

Rustem, Berc (1992), “A Constrained Min-Max Algorithm for Rival Models of the Same
Economic System”, Math Programming, 53, 279-295.

Rustem, Berc and M. Howe (2002), Algorithms for Worst-Case Design with
Applications to Risk Management, Princeton University Press, Princeton, New Jersey.

Sargent, T. (1987), Dynamic Macroeconomic Theory, Harvard University Press,
Cambridge, MA.

Sargent, Thomas J. (1993), Bounded Rationality in Macroeconomics, Oxford University
Press, Oxford, United Kingdom.

Sengupta, J. and P. Fanchon (1997), Control Theory Methods in Economics, Kluwer
Academic Publishers, Boston.

Shoven, J. and J. Whalley, 1992, Applying General Equilibrium, Cambridge University
Press, Cambridge, UK.

Shupp, F. (1976), “Uncertainty and Optimal Stabilization Policy”, Journal of Public
Economics, 6, 243-253.

Silberberg, E. and W. Suen (2001), The Structure of Economics: A Mathematical
Analysis, McGraw-Hill, New York.

References

 489

Sims, Christopher A. (2002), “Solving Linear Rational Expectations Models”,
Computational Economics, 20, 1-20.

Sraffa, P. (1972), Production of Commodities by Means of Commodities, Cambridge
University Press, Cambridge, UK.

Stanford Encyclopedia of Philosophy (2005), entry on Evolutionary Game Theory,
HTUhttp://plato.stanford.edu/entries/game-evolutionary/UTH

Stokey, N. and R. Lucas (1989), Recursive Methods in Economic Dynamics, Harvard
University Press, Cambridge, MA.

Stone, J. R. N., (1961), Input-Output National Accounts, OECD, Paris.

Taylor, John B. (1993), Macroeconomic Policy in a World Economy, W. W. Norton &
Company, New York.

Taylor, John B. (1998), Monetary Policy Rules, University of Chicago Press, Chicago.

Taylor, John B. and Harald Uhlig (1990), "Solving Nonlinear Stochastic Growth Models:
A Comparison of Alternative Solution Methods", Journal of Business and Economic
Statistics, 8, 1-17.

Taylor, Lance (1990), Socially Relevant Policy Analysis: Structuralist Computable
General Equilibrium Models for the Developing World, The MIT Press, Cambridge,
MA.

Tesfatsion, L. (2005), “ACE: A Constructive Approach to Economic Theory,”
forthcoming in Judd and Tesfatsion (2005).

Thompson, Gerald L and Sten Thore (1992), Computational Economics, The Scientific
Press, South San Francisco, CA.

Tinsley, Peter, Roger Craine, and Arthur Havenner (1974), “On NEREF Solutions of
Macroeconomic Tracking Problems”, 3d NBER Stochastic Control Conf., Washington..

References

 490

Tucci, Marco (2002), “A Note on Global Optimization in Adaptive Control,
Econometrics and Macroeconomics”, Journal of Economic Dynamics and Control, 26,
1739-1764

Turnovsky, Stephen (1975), “Optimal Choice of Monetary Instrument in a Linear
Economic Model with Stochastic Coefficients”, Journal of Money, Credit and Banking,
7, 51-80.

Varian, Hal R. (1993a), Economic and Financial Modeling with Mathematica, Springer-
Verlag, New York

Varian, Hal R. (1993b), Intermediate Microeconomics: A Modern Approach, W.W.
Norton & Company, New York, New York.

Varian, Hal R. (1996), Computational Economics and Finance: Modeling and Analysis
with Mathematica, Springer-Verlag Publishers, Santa Clara, California.

Wallis, K. (1980), “Econometric Implications of the Rational Expectations Hypothesis”,
Econometrica, 48, no. 1.

Wolfram, Stephen (2003), The Mathematica Book, 5P

th
P ed., Wolfram Media.

Woodford, Michael (2003), Interest and Prices: Foundations of a Theory of Monetary
Policy, Princeton University Press, Princeton.

Zadrozny, Peter and Baoline Chen (1999), “Perturbation Solutions of Nonlinear Rational
Expectations Models”, presented at the Fifth International Conference of the Society of
Computational Economics, Boston College, June 1999.

 491

	Title
	Contents
	Preface
	Introduction
	Software Systems
	Numerical Methods
	Teaching Methods

	Part I: Once Over Lightly
	Chapter 1: Growth Model in Excel
	1 Mathematical Form
	2. Computational Form
	3. Results
	4. Experiments
	5. Further Reading

	Chapter 2: Neural Nets in Excel
	1. Neural Nets Models
	2. The Automobile Stock Market Model
	3. The Data
	4. The Model Representation in Excel
	5. Experiments
	6. Further Reading

	Chapter 3: Partial Equilibrium in Mathematica
	1. Utility and Production Functions
	1.1 Leontief Function
	1.2 Cobb-Douglas Function

	3. Consumer Theory
	3. The Theory of the Firm
	3. Market Equilibrium
	4. Experiments
	5. Further Readings

	Chapter 4: Transportation in GAMS
	1. Mathematical Representation
	2. GAMS Representation
	3. Results
	4. Experiments
	5. Further Reading

	Chapter 5: Databases in Access
	1. Domains, Relationships and Joins
	2. An Example Database
	3. Representation of the Example Database in the Access Soft
	4. Examples
	5. Experiments
	6. Further Reading
	Appendix 5A: An Example U.S. Economy Database

	Chapter 6: Thrift in GAMS
	1. The Mathematics of the Thrift Model
	2. The Evanchik Model
	3. The Model in GAMS
	4. Results
	5. Experiments
	Appendix 6A: The GAMS Statement of the Thrift Model

	Chapter 7: Portfolio Model in MATLAB
	1. The Mathematics
	2. A Simple Monte Carlo Optimization Procedure in MATLAB
	3. Initialization of Counters, Parameters and Weights
	4. Generation of Returns, Variance Costs and Criterion Value
	5. Selection of the Best Portfolio
	6. Random Generation of New Portfolios
	7. The Markowitz Model Using a MATLAB Optimization Function
	8. Experiments
	9. Further Reading
	Appendix 7A: MATLAB Code for a Monte Carlo Portfolio Problem
	Appendix 7B: MATLAB Code for a Markowitz Optimal Portfolio Problem
	Appendix 7C: GAMS Code for a Markowitz Optimal Portfolio Problem

	Part II: Once More...
	Chapter 8: General Equilibrium Models in GAMS
	1. Input-Output Model
	2. Production Prices Model
	3. General Equilibrium Model
	4. Computable General Equilibrium Models
	4.1 A SAM Based Model
	4.2 A Johansen Style Model

	6. Experiments
	7. Further Readings

	Chapter 9: Cournot Duopoly in Mathematica with Daniel Gaynor
	1. Game Theory
	2. Static Models of Oligopoly Markets
	3. Cournot Competition
	4. Experiments
	5. Further Reading

	Chapter 10: Stackelberg Duopoly in Mathematica with Daniel Gaynor
	1. The Stackelberg Leadership Model
	2. Comparison of Cournot and Stackelberg Models
	3. Experiments

	Chapter 11: Genetic Algorithms and Evolutionary Games in MATLAB
	1. Introduction to Genetic Algorithms
	2. A Simple Example of Evolutionary Game
	3. Working with Binary Representations in MATLAB
	4. Overview of the MATLAB Code
	5. Functions
	5.1 Initpoprand_gagame
	5.2 Fitness_gagame
	5.3 Parentsdet
	5.4 Crossover
	5.5 Mutation

	6. Results
	8. Experiments
	8. Further Reading

	Chapter 12: Genetic Algorithms and Portfolio Models in MATLAB
	1. Overview of the MATLAB Code
	4. Functions
	4.1 Initpopdet
	4.2 Normport
	4.3 Fitness_gaportfol
	4.5 Parentsdet, Crossover and Mutation

	5. Results
	6. Refinements
	6.1 Initpoprand_gaportfol
	6.2 Parentsrand
	6.3 Selecting More Than One “Best” Couple

	7. A More Difficult Portfolio Problem
	8. Experiments
	9. Further Reading

	Chapter 13: Macroeconomics in GAMS
	1. The Hall and Taylor Model
	2. The Hall and Taylor Model in GAMS
	3. Experiments
	Appendix 13A: Hall and Taylor in GAMS

	Chapter 14: Agent-based Model in MATLAB
	1. The Sugarscape Model: Introduction
	2. The Sugarscape Model
	3. The Sugarscape Model in MATLAB
	3. Functions
	3.1 Initsugarscape
	3.2 Initagents
	3.3 Dispagentloc (display agent location)
	3.4 See and Neighbor
	3.5 Moveagent

	4. Results
	5. Experiments
	6. Further Reading

	Chapter 15: Global Warming in GAMS
	1. The Mathematical Model
	2. The Model in Summary
	3. The Model in GAMS
	4. Results
	5. Experiments
	6. Further Reading
	Appendix 15A: The GAMS Representation of the Global Warming Model

	Chapter 16: Dynamic Optimization in MATLAB
	1. Introduction to Dynamic Programming
	2. A Simple Quadratic Linear Problem
	3. A More General Quadratic Linear Problem
	4. The Macroeconomic Model
	5. The MATLAB Representation
	6. Experiments
	7. Further Readings
	Appendix 16A: MATLAB Representation of the Abel Model

	Part III: Special Topic; Stochastic Control
	Special Topic: Stochastic Control
	Chapter 17: Stochastic Control in Duali
	1. The Hall and Taylor Model in State-Space Form
	2. Introduction to Optimal Policy Analysis Methods with Dual
	3. Stochastic Control
	4. Stochastic Control with Parameter Updating
	5. Experiments
	6. Further Reading

	Chapter 18: Rational Expectations Macro in Duali
	1. John Taylor’s Closed Economy Model
	2. Solving Optimal Control Rational Expectations Problems in
	3. The Taylor Model in Duali
	4. Dynamic Simulation
	5. Optimal Policy Analysis
	6. Experiments
	7. Further Reading

	Appendices
	Appendix A: Running GAMS
	Appendix B: Running Mathematica
	Appendix C: Running the Solver in Excel
	Appendix D: Ordered Sets in GAMS
	Appendix E: Linearization and State-Space Representation of Hall and Tay
	Appendix F: Introduction to Nonlinear Optimization Solvers
	Appendix G: Linear Programming Solvers
	Appendix H: The Stacking Method in GAMS
	Appendix I: Running MATLAB
	Appendix J: Obtaining the Steady-State of the Growth Model

	References

