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Preface 
 
 One of the best ways to learn computational economics is to do computational 
economics.  One of the best ways to do computational economics is to begin with 
existing models and modify them as you experiment with them.  This is the approach 
used in this book.  
 In each chapter an economic model is presented.  First the economics and 
mathematics of the model is discussed and then the computational form of the model is 
analyzed.  This process enables one to learn the economics and the mathematics of the 
problem area as well as the computational methods that are used in that area.  For 
example, in the economic growth area we make use of a Ramsey type model.  The 
economics of growth theory are first discussed along with the equations that model this 
process.  Then the software representation of the model is presented so that the reader can 
see how the model can be solved on a computer.  The student can then modify the model 
in order to analyze its sensitivity to various parameters and functional specifications.  In 
the process of experimenting with the model one can gain an improved understanding of 
both the software and of the economic modeling.  
 This book grew out of undergraduate and graduate level courses on computational 
economics taught by us at the University of Texas, ISEG (Argentina) and the University 
of Amsterdam.  Also, a number of teaching assistants and undergraduate students 
participated in the development of chapters, notably Daniel Gaynor and Genevieve 
Solomon. 
 This book is intended for use by advanced undergraduates and professional 
economists and even, as a first exposure to Computational Economics, for graduate 
students.  We expect the development in coming years of undergraduate courses with a 
focus on economic modeling along the lines outlined in this book.  Also, we envisage the 
development of a two course sequence in Computational Economics in graduate 
programs.  The introductory course would have a broad economic modeling focus with 
an approach similar to that used in some chapters of this book.  The second course would 
focus on algorithms and numerical methods. 
 Part of our motivation for writing this book is spelled out in a couple of 
paragraphs that are taken from a paper the three of us wrote with the title “Computational 
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Economics: Help for the Underestimated Undergraduate”. 1   These comments – though 
written for that paper – apply equally as well to this book. 
 

“The ubiquitous personal computer has filtered deeply through the lives of 
college undergraduates; however undergraduate education in economics 
has so far failed to take full advantage of this sweeping change.  We are 
underestimating the learning ability and insufficiently challenging a whole 
generation of undergraduate students in economics.   Our thesis is that 
computational economics offers a way to improve this situation and to 
bring new life into the teaching of economics in colleges and universities. 
 
With its early focus on algorithms, computational economics seemed well-
suited for a relatively small group of graduate students and unlikely to 
have much impact on undergraduates.    However, that is changing as we 
are discovering that computational economics provides an opportunity for 
some students to move away from too much use of the lecture-exam 
paradigm and more use of a laboratory-paper paradigm in teaching 
undergraduate economics.   This opens the door for more creative activity 
on the part of the students by giving them models developed by previous 
generations and challenging them to modify those models.   The 
modifications can be altering the models to make them applicable to the 
student’s interest or finding weaknesses in the model that can be 
strengthened by changes in the structure of the model.  In the process the 
students become much more involved in their own education.” 

 
 The organization of the chapters in the book reflects primarily the outline of the 
courses at the University of Texas.  The aim is to let the students find an area of 
computational economics that interest them and to pursue that area.   Since some of the 
students are interested in microeconomics, others in macroeconomics and others in 
finance an effort is made to give a quick and broad exposure to models across a range of 
fields early in the semester.   Then the range is covered again later in the semester in 
greater depth.   The book is structured to follow this pattern.   In Part I there is a “once 
over lightly” treatment of computational economics examples from a number of fields.  
This is then repeated in greater depth and complexity in Part II.  Part III covers an 
                                                 
1 Kendrick, Mercado and Amman (2005). 
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advanced area that is of special interest to the authors, namely the solution of 
macroeconomic models with stochastic control methods. 
 We would like to thank Alan Manne, Manfred Gilli and other reviewers for 
comments on earlier drafts of this book that helped us to substantially improve it.  Also, 
we want to thank Provost Sheldon Ekland-Olson and Dean Brian Roberts of the 
University of Texas for funding which was used to support preparation of some of the 
materials in this book.   In addition, we would like to thank Peter Dougherty of the 
Princeton University Press for his encouragement of the development of this book over a 
period of many years. 

Thanks are due to a number of undergraduate and graduate students who took the 
computational economics courses at the University of Texas and contributed ideas and 
models which added to the quality of several of the chapters and who helped to create and 
maintain the web sites, viz.  Pichit Akrathit, Joe Breedlove, Michael Evanchik, Shyam 
Gouri-Suresh, Miwa Hattori, Carter Hemphill, Kyle Hood, Seung-Rae Kim, Kevin Kline, 
Paul Maksymonko, Juan Carlos Navarro and Huber Salas.
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Introduction 
 
 One can think of learning computational economics by following one of three 
different routes - via computational methods, via mathematical methods or via economic 
areas.  The computational methods route would focus on the use of a particular computer 
software system like MATLAB or Mathematica and teach the students the capabilities of 
those languages with examples from economics.  The mathematical route would focus on 
algorithms to solve various classes of mathematical models such as linear or nonlinear 
programming models, differential or difference equations, and dynamic programming 
models and provide examples of the use of each kind of model in economics.  The 
economic areas approach would focus on microeconomics, macroeconomics, finance, 
game theory, environmental economics etc. and teach the students how to formulate and 
solve economic models in each of these areas.   For this book we have chosen the last of 
these three approaches. 
 Thus this is a book about computational economics, but also about economic 
modeling.  As a student approaches a new area of interest we want to help him or her first 
think through the economics of the subject.   Then we develop this economics into a 
mathematical model.    Finally we specify the mathematical model as a computational 
model in a particular software system.   We believe that this process can be greatly 
facilitated by encouraging the students to follow Professor Paul Samuelson’s advice and 
“stand on the shoulders” of those who have gone before.  This is done by beginning from 
subject areas and problems that other economists have studied and learning how the 
economics was converted to mathematics and then to computational models in those 
areas.    
 Therefore this book is organized around economic topics rather than around 
mathematical or computational topics.   However, we did not put all the microeconomics 
in the first section, then the macroeconomics etc.   Rather the book is divided into two 
rounds of relatively simple models and then more complex models as was discussed 
above in the Preface.   
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Software Systems 
 
 Students who begin studying computational economics frequently ask the 
question, “What programming language should I learn?” 2  The answer given in this book 
is to first become acquainted with a number of high-level languages such as GAMS, 
Mathematica, MATLAB and Duali as well as the Solver in Excel and the Access 
database software.    Moreover, it is useful to become acquainted with each of these 
software systems in the midst of solving the kind of economic models that are naturally 
developed in each of these systems.    Then later one can dig deeper into one or more of 
the software systems and gain some level of mastery of it while writing a short mid-term 
paper, a term paper or doing research.  At a still later stage, students who find that they 
have a continuing interest in computational economics would be well advised to progress 
to lower level languages such as Visual Basic, Fortran, C, C++, C# or Java. 
 There are different types of software paradigms, each of them more or less 
suitable to represent specific types of models.  In this book, we present a selected set of 
high-level software systems, each corresponding to a specific paradigm. 
 We start the book with relatively simple models represented in Excel 
(“spreadsheet paradigm”) as a way of beginning with a software paradigm that is well 
known and accessible to almost everybody, since this software system is available on 
most PC’s.  Excel is useful to solve small models that do not involve simultaneous 
systems of equations; however, is not well designed for vector-matrix operations.   For 
this type of operations we will use MATLAB later in the book.   However, Excel has a 
nonlinear optimization solver which can handle constrained optimization problems and is 
very handy to set up and solve interesting models such as a Ramsey type model of 
economic growth and a small neural net.    

Also, early in the book we introduce Access (“relational database paradigm”), 
which like Excel is a very accessible software system.  Access is well suited to develop 
relatively simple relational databases and its use is illustrated with a prototype U.S. 
database. 
 The “set driven” paradigm is introduced with GAMS.  This software system, 
particularly well suited to deal with medium and large size models involving from tens to 
hundreds of variables and equations, allows us to specify problems in an organized and 
compact way, defining sets to be used as indexes, and specifying scalars, parameters, 
variables and equations in a parsimonious way.  We solve with GAMS models of 
                                                 
2  For a discussion of some of the software systems used in economics see Amman and Kendrick (1999b). 
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transportation, financial planning, general equilibrium, macroeconomics and global 
warming. 
 The “vector matrix” paradigm is introduced with MATLAB.  This software 
system is useful to deal with models or problems involving intensive use of vector and 
matrix operations, cell arrays and data structures, and also to deal with problems of 
recursive structure requiring intensive use of “loops”.  We use MATLAB to solve 
problems of portfolio optimization, genetic algorithms, agent-based models and dynamic 
programming.  
 The “symbolic math” paradigm is introduced with Mathematica.  This software 
system is particularly powerful to solve symbolic algebra and calculus problems, and we 
use it to represent partial equilibrium and game theoretic problems. 
 Finally, in a Special Topics Section in Part III of the book, and by means of 
macroeconomic applications we introduce Duali, a “dialog box driven” software 
designed to solve stochastic control and dynamic policy analysis problems.  The basic 
code of this software is written in C, and contains a variety of simple and complex 
quadratic linear dynamic programming algorithms. 
 Most economics departments and economics students already have many software 
systems available on their computers and hopefully will also have the ability to acquire 
most of the rest of those used in this book.  We have provided in our web site at 
   http://www.eco.utexas.edu/compeco
the input files for the economic models that are used in this book.   Also, this web site 
contains pointers to software sources, supporting books and user guides.  In an effort to 
keep student cost down, we have endeavored to keep most of the models used in this 
book small enough that they can be solved with the student versions of the software 
systems. 
 With the exception of Duali, all of the software systems we use are commercial 
products.   In contrast, the Duali software is academic software which is under 
development by two of us (Kendrick and Amman) and has no support staff or help desk.    
It is designed to greatly reduce the learning curve for developing dynamic deterministic 
and stochastic optimization models and is a most useful starting point into economic 
research in these areas.   However, it is early in its stages of development and must be 
used with caution. 
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Introduction 

Numerical Methods 
  

In this book we present not only a variety of models and software paradigms, but 
also introductions to diverse numerical methods needed to solve them.   As with the 
software systems, we think that is useful to become acquainted with each of those 
numerical methods in the midst of solving the kind of economic models that are naturally 
involved with each of these methods. 

A number of the models presented in the book are solved with linear 
programming methods or nonlinear optimization methods based on gradient and/or 
Newton methods.   Thus we provide an introduction to these methods in appendices at the 
end of the book.   Other methods are introduced directly in particular chapters.  Neural 
nets are applied to a stock price prediction problem, Monte Carlo methods are applied to 
a portfolio selection problem and genetic algorithms are applied to an evolutionary game 
and to a portfolio selection problem.  Quadratic linear dynamic programming is 
illustrated with a simple macroeconomic policy analysis application.  Finally, the Fair 
and Taylor iterative method to solve rational expectations models, together with the 
Amman and Kendrick method to solve optimal control models with forward looking 
variables is applied to a prototype macro model developed by Taylor. 
 
Teaching Methods 
 
 A description of the teaching methods used in the computational economics 
courses at the University of Texas will help the reader to understand the way in which the 
materials in this book have been developed.   One aspect of these courses is that they 
have a weekly cycle.   As was described above, the first class each week is on the 
economic theory and mathematical model of the subject for the week.  The second class 
is on the computational methods used to solve the model.   The third class of the week is 
not in a lecture room but rather in a computer laboratory where the students are ask to 
solve the base model and then to modify (and solve) the model several times in order to 
study its structure and operation.   One week after the computer laboratory class the 
students are asked to turn in a short paper a few pages in length that describes their own 
experiments with the model during the week and the results obtained.   The weekly 
teaching cycle is reflected in this book with some suggested experiments listed at the end 
of each chapter.   However, the students are encouraged to strike out on their own – a 
process which enhances both enjoyment and learning. 
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Since the emphasis in these computational economics courses is on creativity, 
there is both a mid-term paper and a final paper.   The students are asked in the mid-term 
paper to modify one of the models from the course or to select an existing model from the 
GAMS library or another similar source and then to make minor improvements in the 
model.  In the final paper they are asked to carry this process forward and make major 
modifications to an existing model or to create a model of their own. 
 Several alternative approaches to the one used in this book are available for the 
study of computational economics.  However, until now most books in this field have 
focused on graduate level instruction while we are hoping to be helpful to both 
undergraduates and graduate students.  For an approach using the GAMS software 
exclusively and focusing on linear and nonlinear programming methods see Thompson 
and Thore (1992).  For approaches using numerical methods see Judd (1998) who uses 
several computer languages or Miranda and Fackler (2002) who use MATLAB.  Varian 
(1993a) and (1996) presents a variety of models in Mathematica.  For a web site that 
supports a course on applied macroeconomics using computational methods taught by 
Prof. Harris Dellas at the University of Bern that is somewhat similar to the approach 
taken in this book see 
 http://www.vwi.unibe.ch/amakro/Lectures/computer/
For books that focus on numerical methods in macroeconomics with some applications in 
MATLAB see Marimon and Scott (1999) and Adda and Cooper (2003).   For a book with 
a collection of articles that consider a variety of numerical methods to solve 
macroeconomic models see Hughes Hallett and McAdam (1999).   For a handbook with a 
collection of articles about computational economics see Amman, Kendrick and Rust 
(1996).   Also, you are encouraged to browse the Internet site of the Society for 
Computational Economics at 
    http://comp-econ.org
where you will find information about meetings, journals and book series. 
 Given the array of materials that are becoming available for teaching 
computational economics, we are hopeful that courses in this field will become a part of 
the core curriculum in both undergraduate and graduate education in economics as 
happened before with Mathematical Economics and Econometrics.  Moreover, we hope 
our book will motivate and help instructors in those areas to offer courses in 
Computational Economics.  We are aware of courses in Computational Economics that 
have been offered in recent years at Stanford, Yale, Maryland, Ohio State, Bern, Harvard 
and Texas and believe that some of these courses will migrate toward the core as courses 
are added at other universities. 
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Chapter 1 

Growth Model in Excel 
 
 
 Most economists are familiar with the spreadsheet and even with the database 
capabilities of the Excel software, but fewer are aware that Excel also contains powerful 
solution procedures for solving both linear and nonlinear programming problems.    
Because the Excel interface is so familiar to many and because the specification of 
programming problems in Excel is relatively straightforward, there are times when Excel 
is the software of choice for solving certain types of optimization problems.    In 
particular, when the models are small enough that the set driven nature of GAMS does 
not give it an advantage over Excel, it may be advantageous to solve optimization 
problems in Excel.  To illustrate this we will use a one-sector growth model of the type 
that is widely used in the economics literature. 

The model we will use is the famous Ramsey model of economic growth.  Models 
of this type have been widely used in the economic growth literature.  In particular, we 
will follow the versions developed by Chakravarty (1962) and Taylor and Uhlig (1990).  
We will employ a finite horizon version with a terminal capital stock constraint.   
 The model will first be introduced in a mathematical form and then in a 
computational form. 3   The essential economics of the simple growth model used 
in this chapter is a trade-off between consumption and investment.  More 
consumption in a time period means more utility in that time period but less 
investment and therefore less capital stock and less production in future time 
periods.   So the key elements of the model are the production function with 
capital being used to produce output, the capital accumulation relationship with 
investment creating new capital and the utility function with consumption 
resulting in utility. 
 

                                                 
3 Most models used in this book cannot be solved analytically so numerical methods are required.  

However, even when analytical solutions can be obtained, as shown later in Appendix J, it is still useful to 

obtain numerical solutions so that the code can be checked on simple models.  Then the numerical methods 

can be used with more confidence when they are applied to more complex models that cannot be solved 

analytically. 
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1   Mathematical Form 
 
 The production side of the economy is specified in a stylized form by 
means of an aggregate production function 
 
(1)  t tY Kαθ=  

where 
  = output in period tY t  

 θ  = a technology parameter 
 t  = the capital stock in periodK  t  

 α  = exponent of capital in the production function 
 
This is the widely used Cobb-Douglas form of a production function except that 
function usually includes both capital and labor inputs.   However, for the sake of 
simplicity, the production function in this model includes only capital. 
 Consider next the capital accumulation constraint 
 
(2)      1t t tK K Y+ = + − tC

 

t

where 
 t  = consumption in period t C

 
which says that the capital stock next period will be the same as this period plus 
the difference between output and consumption which is saving or investment.  
For the moment depreciation of the capital stock is ignored though you might 
want to add that to the model in an experiment. 
 Also, the production function (1) can be substituted into the capital 
accumulation equation (2) to obtain the equation 
 
(3)  1t t tK K Kαθ+ = + −C

 

 

 
In addition, the model has an initial condition that specifies the size of the capital 
stock in the initial period. 
 
(4)  0     given.K
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 The model also includes a terminal condition that fixes a minimum 
amount of capital that must be left to the next generation after the time horizon 
covered by the model. 
 
(5)  *

NK K≥  

where 
  *  = a lower bound on the amount of capital required in theK  

           terminal period, . N
 
 Finally, the model has a criterion function that is the discounted value of 
the utility that is obtained from consumption over all of the periods covered by the 
model.    It is written in two steps.   First the utility in each period is defined as 
 

(6)  ( ) ( )
( )11

1t tU C C τ

τ
−=

−
 

where 
  C riod t as a function of consumption  

 

( )tU = the utility in pe

     in that period 
τ  = a parameter in the utility function4

hen the sum of the discounted utilities is specified as 

(7)     C

where 

 
T
 

( )
1

0

N
t

t
t

J Uβ
−

=

= ∑  

 =  the criterion value J  

 1 = the discount factor =  β
1 ρ+

 

  ρ  = the discount rate 

and the substitution of Eq. (6) into Eq. (7) yields the criterion function 

                                                 
4 This is a popular form of the utility function which is known as the “constant elasticity of intertemporal 

substitution” function.  Roughly speaking, think of the elasticity of intertemporal substitution as measuring 

the degree of substitutability between consumption “today” and “tomorrow” or, in geometric terms, 

measuring  the curvature of the indifference curves corresponding to consumption at any two points in 

time.  For this function, the elasticity of substitution is constant and equal to 1/τ . 
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(8)  
( )

( )
1

1

0 1 t
t

1N
tJ C τβ

−

τ
−

= −

 
 In summary, t

=∑  

he model consists of the criterion function (8), the capital 
ccumulation equation (3) and the initial and terminal conditions (4) and (5) and 

can be stated as f

, )NC − to maximize 

8)     

a
ind 

 
0( , ,C C   1 1

 

( )
( )

1
1

0

1
1

N
t

t
t

J C τβ
τ

−
−

=

=
−∑  (

subject to 
 

1t t t tK K Kαθ+ = + −  (3)  C
(4)  0K     given. 
(5)  *

NK K≥  

  
 So the essential problem is to choose those levels of consumption, over the time 

 and 
 

n future years. 
 This growth model is a nonlinear programming problem because of the 
nonlinearities in the criterion function (8) and the capital accumulation equation (3).   It 
can be stated and solved rather nicely in Excel as is discussed below. 

periods covered by the model that strike the right balance between consumption
investment.  Lower consumption in any given period means less utility in that period but
more savings and therefore larger capital stocks and more production i
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2.  Computational Form 
 
 Consider first a spreadsheet layout of the model as shown in Figure 1.1 below.  
The corresponding Excel file is in the book web page. 
 

 
 
Figure 1.1 Growth Model in Excel with Total Utility Highlighted 
 
Notice first that the model horizon covers time periods numbered from zero through nine
so that period zero will be the initial period and period nine will be the terminal peri
The rows below the time periods d

 
od.   

isplays the  
consum

 production, 
 capital stock,
 utility,   

in each time period.    All of these values are calculated when the model is solved and we 
shall show shortly how the calculations are structured.   However, for now look only at 

ption, tC   

tY  
 tK  

( )tU C
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the cell below the "Total" label, i.e. cell L12, which is highlighted in the bottom right 
corner of the spreadsheet.   It contains the value 9.97; however, we are not so much 
interested in that value as in how it is obtained.    Look at the formula bar at the top of the 
spreadsheet which contains the expression 
    SUM (B12:J12) 

This indicates that this cell contains the sum of the utility values for periods zero through 
eight which are contained in the cells B12 through J12. 
 Actually, the value in each of the cells B12 through J12 is not, strictly speaking, 
the utility for each period but rather the discounted utility for each period.   This is 
illustrated in Figure 1.2 below.    
 

 
 
Figure 1.2 The Calculation of Discounted Utility in Each Period 
 
The cell D12 in the utility row is highlighted and the expression which is used to 
calculate the value in that cell is displayed in the formula bar as 

ider it one piece at a time.  Begin with 
  = beta^D4*(1/(1-tau))*D5^(1-tau) 

This is complicated so lets cons
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  beta^D4 

This means that beta is raised to the power of the number in cell D4.  This makes use of 
the “naming” capability for constants in Excel and is equivalent to .  The number B17^D4

in cell D4 is two so this term becomes 
  2β  

which is the discount factor squared.   Beta is defined in line 17 of the spreadsheet as .98.
Also, since   

   

1
1

β
ρ

=
+

   

we can infer that the discount rate, ρ , is equal to about .02. 

 Next consider the term 
  (1/(1-tau))*D5^(1-tau) 

which can be rewritten as 

  11 tau−5
1

D
tau−

 

and since the cell D5 contains consumption we can further rewrite this expression as 

 11
1 tC τ

τ
−

−
  

which is the same as the utility function in Eq. (6) above.    So, the cell D12 contains the 

 

mathematics 
11 

1
t

tC τβ −  

tau

 0.5. 
ary, line 12 of the ulate the discounted utility 

τ−
eter  of the utility function which is the discounted utility for period t.  Also, the param

is defined in line 16 of the spreadsheet as being equal to
spreadsheet is used to calc In summ

in each period and then to sum those values so as to obtained the total discounted utility 
in cell L12.    Thus the criterion function for the model is contained in line 12. 
 Next consider the constraints of the model.  Begin with the expression for 
production which is illustrated in Figure 1.3 below. 
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Figure 1.3 The Calculation of Production in Each Period 
 
In this figure cell D6 is highlighted and the formula bar contains the expression 
  theta*D9^alpha 

which is the same as Eq. (1) above for production, i.e. 
  t tY Kαθ=  

since cell D9 contains the capital stock for period t and theta is defined near the bottom 
of the spreadsheet in line 19 as being equal to 0.3 and alpha is defined in line 18 as being 
equal to 0.33. 
 Next consider the expression for the capital accumulation constraint which is 
shown in Figure 1.4 below where cell D9 is highlighted. 
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Figure 1.4 The Capital Accumulation Constraint 
 
The expression in the formula bar this time, which is 
 C9 + theta*C9^alpha - C5 

contains at its core the expression for production which we just developed above, i.e. 
theta*C9^alpha 

So we can translate the entire expression as 
 

since row 9 contains the capital stock figures and row 5 contains the consumption figures.    
As you can see, by comparing the expression above to the capital accumulation constraint 
in Eq. (2) above with the time periods each decreased by one period, i.e. 
 1−

the timing in the spreadsheet calculations is slightly off for production but that slight 
timing error may make the spread slightly easier to specify so we will leave the error for 
the time being. 
 Also, notice at the end of row 9 in the spreadsheet that there is a target capital 
stock.   We will discuss this in detail when we describe how the model is actualy solved 

 

1 1t t tK Y C− −+ −  

1 1t t t tK K Y C− −= + −  
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in Excel.  However, before we do that it is necessay to indicate how the initial condition 
for capital stock is specified.   This is shown below in Figure 1.5 where cell B9 is 
highlighted. 
 

 
 
 Figure 1.5 The Initial Capital Stock 
 
When cell B9 is highlighted the fomula bar does not show a mathematical expression l
those shown in the other cells in line 9, but rather just the n

ike 
umber 7.   This is the initial 

. (4) 

s which are 
w lets separate the two by looking again at 

r l 

capital stock which was specified in the mathematical statement of the models in Eq
as 
  0K    given 

So the initial capital stock is given and it has been specified as equal to 7 in this version 
of the model.   
 The tour of the model in Excel given above is slightly confusing because it 
discusses both the data elements which the user must provide and the variable
calcuated when the spreadsheet is solved.    No
Figure 1.5.    The user must supply the time period numbe s in row 4, the initial capita
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stock in cell B9 and the parameter values tau, beta, alpha and theta in cells B16 
through B19.   Also, the user must supply the terminal capital stock target in cell L9.
Excel will compute all the rest.   Then why are all those other numbers shown in Figure 
1.5?    Those other numbers have all been comp

   

uted the last time the model was solved 

ting 

and will be updated if you alter one of the inputs mentioned above and then solve the 
model again. 
 So lets consider next how the model is solved.  This is accomplished by selec
the Tools menu and the Solver option from that menu.   When you do this the dialog box 
in Figure 1.6 will appear.5

 

 
 
Figure 1.6 Solver Dialog Box 
 
Consider first the top line in this dialog box in the section called "Set Ta et Cell".  The 
dit box to the right of this capiton indicates that cell L12 has been chosen.    This 

ty on the right hand side of  the utility line in the 
readsheet.   Just beneath this the user can specify whether the value in the cell is to be 

maxim

t provide the best trade off between utility in that period 
nd saving which becomes future capital stocks and permits more production later.   

                                              

rg
e
corresponds to the total discounted utili
sp

ized or minimized.    In the growth model at hand we are seeking to maximize the 
total discounted utility so "Max" is selected.   
 The next line is used to specify which cells are to be changed while seaching for 
the solution to the model.   In the growth model we are solving for the values of 
consumption in each period tha
a

   
 In case the dialog box does not appear, see Appendix C. 5
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Therefore, we specify here that the variables to be used in search for the optimum are 
those in cells B5 to J5 which are the consumption values. 
 Next consider the box that is labelled "Subject to the Constraints" in which 
appears the constraint 
  K9 >= L9 

Since cell K9 contains the capital stock for period 9 and cell L9 contains the target capita
stock, this constraint requires that the terminal period capital stock which i

l 
s computed by 

e model be greater than or equal to the user specified target which in this case is set to 
onds to the 

athemati

th
9.1, that is 30% higher than the intitial capital stock.  This corresp
m cal constraint in Eq. (5) above, i.e. 
  *

NK K≥  
w  is the capital stock in the terminal period a  is thehere nd  target capital stock. 

N ify all of the capital 
ccumula eet as constraints.  Rather they are 
ffectively linked together by the mathematical expressions so it is necessay to include 

To solve the model one selects the Solve button in the Solver dialog box in Fig. 
el program next is the solution of the 

near rogramming model that is represented by the growth model.   A Newton 
 a conj ate gradient method can be used in Excel to solve the model.  A brief  

ssio  of nonlinear optimization methods is provided in App F at the end of the book. 
king o the Options button in the Solver dialog box will display the Solver 

ns d alog box shown in Figure 1.7. 

 NK  *K

 otice that it is not necessary in the Solver dialog box to spec
a tion constraints in line 9 of the spreadsh
e
only cell K9 when specifying the constraints.   
 
1.6.   What happens behind the scenes in the Exc
nonli  p
method or ug
discu n
 Clic n 
Optio i
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Figure 1.7 Solver Options Dialog Box 
 

In this dialog box you will be able to change different parameters - i.e. maximum 
time, number of iterations, precision, tolerance and convergence -  that allow you to 
control the performance of the nonlinear optimization method used by Excel.  Notice that 
the Assume Non-Negative option has been selected to constrain the solution values o
model to non-negative values. 
 
3.   Results 
 

f the 

When solving the growth model with the Excel Solver it is useful to remember the 
essential tradeoff in the model.   More consum eans more utility today.  

e investment today and 
is means more capital stock in the future and therefore more output and more 

consum

 
ption today m

However, less consumption today means more saving and mor
th

ption possibilities in the future. 
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 So the problem is to find just the right level of consumption in each time period 
given the parameters of the model.   The key parameters of the model are 
 
 ,β  beta discount factor    0.98 

 *K   target capital stock   9.1 
 ,θ  theta production function parameter 0.30 
 ,α  alpha production function exponent  0.33 
 0K   initial capital stock   7 
 ,τ  tau  utility function parameter  0.50 

 
The discount factor is the most intuitive of these parameters.  Recall that is is equal to 

(9) 1
1

β
ρ

=
+

 

Solving Eq. (9) for the discount rate, ρ , yields 

0) (1 1 1ρ
β

= −  

So when .98β =  
1 1 1.02 1.00 .02

0.98
ρ = − = − =  (11) 

and when .95β =  

(12) 1 1 1.052 1.00 .052
0.95

ρ = − = − =  

So to a reasonable approximation in the range of interest 
(1 1.003) β ρ≈ −  

Thus a discount rate of six percent or .06 implie  a discount factor of 0.94. 
 

s
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 Next consider that the criterion function in Eq. (8) includes the discount factor, β , 

raised to the power t , i.e. 

  
( )

( )1

0

1
1

N
t

t
t

J C τβ
τ

−

=

=
−∑  

and consider how tβ  varies with beta and t as shown in Table 1.1. 

 
  Values of tβ  Corresponding to Each Time Period 

ρ  β  Time Periods 
  0 1 2 3 4 5 
.02 .98 1.00 0.98 0.96 0.94 0.92 0.90 
.05 .95 1.00 0.95 0.90 0.86 0.81 0.77 
 
Table 1.1  Values of Discount Term 

Thus when the discount rate is 5 percent the term
 

 tβ  becomes smaller much faster as the 

time period increases than it does when the discount rate is 2 percent.   So when the 
discount rate is higher, future utility is "discounted" more heavily, i.e. given less weight 
in the criterion function.    Thus, if your discount rate is 2 percent you have relatively 
more interest in your consumption in future years than if your discount rate is 5 percent.   
 Therefore, altering beta is one of the interesting experiments to do with this 
model.   As you increase the discount rate (and therefore decrease the discount factor 
beta) you should expect to see more consumption early in the time horizon covered by 
the model.   An illustration of this  result is shown in Figure 1.8 that contains plot lines 
for three experiments corresponding to three different values of beta.  
 

 27
 



Chapter 1   Growth Model in Excel 
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Figure 1.8 Consumpt
 

A second key parameter of the model also plays a role in this matter of time 
preference of consumption and may affect your results in the experiments described 
above.   This parameter is the target capital stock, *K .   The relevant constraint of the 
model is Eq. (5), i.e. 
 
  *

NK K≥  

 
which requires that the capital stock in the terminal period exceed the target. 
thought of as a constraint which represents the interest of the next generation.   W
such a constraint, the optimal solution to the growth model will be to invest
nothing in the last years covered by the model and to make consumption very high 
those periods.   So a constraint of this sort is normally added to numerical growth m

There can be an interplay between the choice of discount rate an

  This can be 
ithout 

 little or 
in 
odels.    

d the choice of 
 the 

v me since 

he 
t of permitting more consumption with less 

investm nt and one would expect to see higher levels of both output and consumption in 
e model solution. 

the target capital stock.   If you choose a high target capital stock, then changes in
discount rate may not have much effect on the pattern of consumption o er ti
consumption must in any event be very low in order to insure that there is enough 
investment that the target capital stock can be met in the terminal period. 

One of the most straightforward experiments with the model is to increase t
initial capital stock.  This has the effec

e
th
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 If you alter the θ  parameter in the production function in Eq. (1), i.e. 

 
 

 t tY Kαθ=  

 
you are modifying the efficiency of the production process.   For example, if you increase 
θ  more output can be produced with the same capital stock and you should find higher
levels of both output and consumption in the model solution.   Similarly altering the 

 
α  

parameter affects the efficiency of the production process.    
 The last parameter that can be modified is τ  - a parameter in the utility functio
Intuition here is a little hard to come by, but as 

n.   
τ  approaches zero the utility funct

becomes linear and as 
ion 

τ  approaches one it becomes logarithmic so it may be useful to 
ink ofth  τ  as a param ter which affects the curv re of the utility function or the degree 

of dimi ishing marginal utility. 
 Notice that when you perform these experiments, if the changes you make in the 
parameter values are relatively small, the Excel solver will easily converge to a new 
solution.  This may not be the case for significant changes.  Thus in those model runs you 
may have to “guess” and provide new values for the sequence of consumption values to 
be used by the Excel solver as new starting values, or you may have to play with different 
Solver Options to control the solver performance.   

In contrast to numerical growth models, theoretical growth models are usually 
solved for infinite horizons and do not have a terminal capital stock target.  As an 
approximation to this, some numerical growth models are solved for much longer time 
horizons than the period of interest and the solution is used only for a shorter period.   
Thus if one is interested in a twenty year period the model might be solved for forty or 
sixty years so that the end conditions do not have much effect on the solution paths for 
the first twenty years.  When extending the time horizon, make sure that as you insert 
more columns to the Excel spreadsheet the equations of the model are copied in a proper 
maner, that the cell containing the sum of utilities is properly updated to cover the new 
range and that the specifications of the target cell, changing cell and the constraint are 
properly updated in the Solver dialog box.   
 An interesting experiment is to impose a terminal capital stock equal to the initial 
capital stock and solve the model for different time horizons.  The optimal capital stock 
path for an experiment like this is shown in Figure 1.9. 
 
 

e atu
n
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Figure 1.9 Capital Stock Paths 
 

7.150
7.200
7.250
7.300

es 

 point 

rever.  It can be shown (see Appendix J) that for this model 

We can see that optimal values for the capital stock first increase then decrease.  
If we keep extending the time horizon, we will generate a sequence of even higher arch
whose top parts will be flatter as they get closer to an upper limit value of about 10.5.  
This behavior is known at the “turnpike property”.  To understand this, we have to
out that a model like the one presented in this chapter has a steady-state solution, a 
solution that, given enough time, the consumption and capital stock levels would 
converge to and stay there fo
the steady state capital stock is 

 

(14)  

1
11

ssK
αβ

βαθ

−⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 

 
 Substituting the corresponding parameter values we obtain ssK = 10.559.  (To 

confirm that this is indeed a steady-state solution, you may want to impose this value as 
the initial and target capital stock values and solve the model with the Excel solver).   
Thus, any finite optimal path will tend to reach the steady state value, stay there or close 
to it as long as possible, and then leave it to go back to the target capital stock.   
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4.  Experiments 
 
 Computational economics is not a subject that is easy to learn with the traditional 

cture t solve the 

 and 
tage substantial structural changes can be made 

 the model so that it is more applicable to an economic situation of interest to the 

Perform a series of experiments by modifying one of the parameters 
discuss

le  and exam style of teaching.  Rather the crucial learning process is to firs
models that other scholars have used, then to repeatedly make minor modifications and 
solve the model again in order to gain a clear understanding of how the model works
its strengths and weaknesses.  At a later s
to
student. 
 

ed above and observing the effects on the paths for capital stocks, output 
and consumption. Though it might be interesting to change more than one 
parameter at a time it is usually better when you are first studying a model to only 
change one parameter at a time.  Save your results from one run to the next so that 
you can use Excel to plot the results across runs as in Figures 8 and 9. 
  A more challenging experiment that you may want to undertake (or may 
not want to undertake at this stage) is to treat the technology parameter ,θ  as 

stochastic. For example, you can define it as having a uniform distribution. To do 
so, you can use the Excel function RAND, which generates random numbers 
uniform

5.  Further Reading 
 

Jones (1998) provides a systematic introduction to growth models.  Azariadis 
(1993) and Barro and Sala-i-Martin (1995), at a more advanced level, present a variety of 
optimal growth Ramsey type models similar to the one developed in this chapter.  Aghion 
and Howitt (1997) present a systematic treatment of endogenous growth models.  Ros 
(2001) develops a presentation of growth models for developing countries.  Mercado, Lin 
and Kendrick (2003) present a GAMS version of a single-sector growth model like the 
one used in this chapter and a multi-sector optimal growth model in GAMS that is an 
extension of the Kendrick and Taylor (1971) model.   See Judd (1998) Ch. 13 for 
perturbation methods of solving growth models. 
 

 

ly distributed between zero and one.  Be aware that you should generate a 
random number for each time period. 
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Chapter 2 

Neural Nets in Excel 

Much of economics is about finding optimal variables given parameters which 
an behavior.   For example in the optimal growth model that we solved with 

al levels of the consumption and capital stock 
eters of the production function and the utility function.   

In this chapter we invert this duality.   We begin with the observed behavior and 
pt to find the parameters which permit the specified relationships to most closely fit 

e subject matter of econometrics and estimation.  However, we will 
ation that has not been in the mainstream of econometrics but 

being used to fit economic 

Neural networks models are suitable to deal with problems in which relationships 
ong variables are not well known.  Exam

 the Ford Motor Company.    We attempt to predict it by using the share 
panies - companies that provide inputs to automobile 

panies that produce competing vehicles.    
The central notion of neural net analysis is that we can use a set of observations 

rom the past to predict future relationships.   Thus we use the closing price of Ford stock 
ver a fourteen week period to "train" the model and then use the parameters 

                                              

 
 
 
describe hum
Excel the goal was to find the optim
variables given the param
 
attem
the data.   Such is th
be looking at a type of estim
that developed in other fields and is now increasingly 

ely neural nets. relationships - nam

am ples are problems in which information is 
incomplete or output results are only approximations, as compared to more structured 
problems handled for example with equation-based models.  Neural networks are 
particularly useful to deal with data sets whose underlying nonlinearities are not known 
in advance.6  Among the many possible applications are forecasting and identification of 
clusters of data attributes.   
 The example we will use here is typical of the applications of neural nets to 

ics and finance - how best to predict the future prices of a stock.7   The stock we econom
use is that of
price of a group of related com
production and com
 
f
each week o

   
ne of the strengths of neural net methods is that they may approximate any functional shape. 

ural nets are not necessarily a better way to predict stock prices than standard econometric methods; 

owever stock prices offer a clear and motivating example for many students, thus we use that example 

6 O
7 Ne

h

here. 
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which emerge from the training to predict the Ford stock price in the fifteenth and 
ixteenth week.   This is done in an Excel spreadsheet using the Solver that we first used 

in the g

t is 

ts: 

 

ard 

 “learn” or “adapt” assuming specific patterns which reflect the nature of those 
puts. 

tures.  Let’s look now in more detail 
t the elements, architecture and workings of a neural network as shown in Figure 2.1.  

s the 
ost commonly used. 

s
rowth model.   

 The chapter begins with an introduction to neural nets followed by the 
specification of an automobile stock price model.   Then we will introduce the data tha
used in the model, the representation of the model in Excel and the use of the Excel 
Solver to find the best parameter values. 
 
1. Neural Nets Models 
 

Neural networks (or, more properly, artificial neural networks) are inspired by, or 
up to a point analogous to, natural neural networks.  They have three basic componen
processing elements (called nodes or neurons), an interconnection topology and a 
learning scheme.  From a computational point of view, a neural network is a parallel
distributed processing system.  It processes input data through multiple parallel 
processing elements, which do not store any data or decision results as is done in stand
computing.  As successive sets of input data are processed, the network processing 
functions
in

There are many alternative network architec
a
This is known as backpropagation or as a feed forward model.  This type of model i
m
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igure 2.1 Neural Net Layers 

 three neurons, one intermediate 
yer with two neurons (usually named the “hidden layer”) and one output layer with just 

 A k  component of the network is the neuron, an elementary processing 
ain parts: a 

ombination function and an activation function (Figure 2.2).  The combination function 
 net nput to the neuron, usually as a weighted sum of the inputs.  The 

ctivation function is a function that generates output given the net input.   

 
 
 
 
 
 
 
 
 
Figure 2.2 Activation and Combination Functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
F
 
 

This is a simple network with one input layer with
la
one neuron. ey
unit which generates output given inputs.  It is composed of two m
c
computes the  i
a
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OUTPUT  
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It is standard procedure to constrain the output of a neuron to be within an  
interval (0,1).  To do so, different functional forms can be used for the activation 
function, such as logistic functions, sigmoid functions, etc.  Also, a threshold may be 
used to determine when the neuron will “fire” an output as the activation function yields 
a value above that threshold.  Input layer neurons receive data (“signals”) from outside 
and in general transmit them to the next layer without processing them.  Output layer 
neurons return data to the outside, and are sometimes set to apply their combination 
functions only. 

The learning process of the network consists of choosing values of the weights so 
s to achieve a desired mapping from inputs to outputs.  This is done by feeding the 

aring the output (or outputs, in case of having more 
an one network output) to a known target, computing the corresponding error and 

ometi

on of the combination function for the output layer as 

q

j
tja

1
 

,   is the hidden node value in period for node   

a
network with a set of inputs, comp
th
s mes applying an error function.  Then weights are modified to improve the 
performance.  To do this, a variety of methods can be employed, such as the Newton 
method or the conjugate gradient methods in Excel that are to be discussed later in this 
chapter. 
 
2.  The Automobile Stock Market Model 
 
We begin with the specificati
 

 (1)    ∑+= jty 0 θθ
=

 
where y  is the output in period t tja t jt  

q  hidden nodes.  In our model the  variables 

n 
tyand the jθ  's are parameters.  There are 

will be the share price of the Ford Motor Company stock in each of the fourteen weeks i
1997.   

The θ 's are among the parameters which we are seeking to find.   The tja , which 

are the values in time period t  at hidden node , are given by the expression 

i=⎝ ⎠

j

 

(2)    
jq

tj ji ita S w x
⎛ ⎞

= ⎜ ⎟⎜ ⎟∑  
1
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where the itx  are the inputs at node  in period .  There are i t jq  inputs at hidden node 

. 
The

j
 itx  are the share prices of the other companies in our example.   The jiw  are 

e parameters at the jth hidden node for the ith input and are the second set of 
arameters that we are seeking to choose.   Thus, in summary, we are given the share 
rices of the other companies 

th
p

itx  and the share price of the Ford stock  and are seeking 

 find the parameters 
typ

to θ  and  which permit our functions to most closely fit the data. 
What functions are being used?   The first function in Eq. (1) is a linear function 

nd the second function in Eq. (2), the function S, is a sigmoid function.  The 
athematical form of this function is 

)    

w
 
a
m
 

1( )
1 zS z

e−=
+

 (3

 
One can quickly see by examination that this function evaluated at 0z =  is  
 

(4)  0

1 1(0)S −= =
1

1 1 1 2e
=

+ +
 

hat large negative values of  map to near zero, i.e. 

(5)  

 
and t  z
 

5

1( 5) .007
1

S
e

− = =
+

 

and that large positive values of z  map to approximately one, i.e. 
 

5

1(5S(6)  ) .993
1 e−= =
+

 

tion  the s ape shown in Figure 2.3 below. 
 
So the func  has h
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Figure 2.3 The S id F
 

This  is so es calle quash  it is 
ny da f num hich ra  from ver negat bers 
sitive numbers thi nction wi ose n bers to th o-one l 
ainta eir re izes.  
he e  we p here w oped reed his ex ple 

s shar  from tomot liers in 19
ethl eel 
wen  

 comp to m o Ford
hry
ene rs 
t the share price o
ord omp

t that time stock prices were quoted as fractions rather as decimals and the data in the 
etitors for the Ford Motor 

nd hidden node as is shown in Figure 2.4. 

 
igmo unction 

 function metim d the "s er" and quickly apparent why.   
Given a ta set o bers w nge y large ive num to very 
large po s fu ll map th um e zero-t  interva
while m ining th lative s   
 T xample resent as devel  by Joe B love.  T am
contain e prices  the au ive supp of Ford 97, i.e. 
 B ehem St
 O 's Glass
 Goodyear Tire and Rubber 
and the eting au akers t , i.e. 
 C sler 
 G ral Moto
to predic f the 
 F Motor C any. 
A
spreadsheet reflect this fact.  Also, the suppliers and comp

ompany have changed since 1997; however the example is useful as a starting place for C
learning about neural nets. 
 The effect from the suppliers is aggregated into one hidden node and the effect 

om the competitors is aggregated into the secofr
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Figure 2.4   A Neural Net for Ford Motor Company Share Prices 
 
 So for the example at hand 
 
(7)    3*

and 

(8)   

at1 at2

Bethlehem Owen Goodyear Chrysler GM 

x1 x2 x3 

y 

x4 x5 

1 11 1 12 2 13* *z w x w x w x= + +  

( )1 11* 1 12* 2 13* 3

1
1t w x w x w xa

e− + +
=

+
  

 
(9)   5  

and 

(10)   

2 21 4 22* *z w x w x= +   

( )2 21* 4 22* 5

1
1t w x w xa

e− +
=

+
  

Also 
(11)   2ta0 1 1 2ˆt ty aθ θ θ= + +  

   
Thus the optimization problem in Excel is to find the values of   
 
(12)   11 12 13 21 22 0 1 2, , , , , , ,w w w w w θ θ θ  
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Which minimize the square of the separation between the predicted and actual values of 
the s, i.e. 

(13)   

where  is the number of observations which is fourteen for the example. 
 
3.   The Data 
 

Closing stock prices for each week in the months of January, February and March 
of 1997 for Ford and for the three suppliers (Bethlehem, Owen and Goodyear) and the 
two competitors (Chrysler and GM) were used as shown in Table 2.1. 
 

Week Ford Bethlehem Owen Goodyear Chrysler GM 

y '

( )
2

1

ˆ
n

t t
t

Norm y y
=

= −∑  

n

Closing y x1 x2 x3 x4 x5 
Jan 3 32 1/2 9 1/4 42 1/2 52 3/8 34 5/8 57 7/8 
Jan 10 33 1/2 8 7/8 49 54 1/2 35 3/4 61 1/8 
Jan 17 33 9 48 5/8 55 34 3/8 60 1/8 
Jan 24 33 5/8 8 5/8 45 5/8 54 1/4 35 1/4 62 1/2 
Jan 31 32 1/8 8 3/8 46 5/8 54 1/2 34 7/8 59 
Feb 7 32 1/4 8 1/4 45 1/2 52 1/2 34 1/8 56 3/4 
Feb 14 32 3/4 7 3/4 44 3/4 53 5/8 34 1/2 58 3/4 
Feb 21 33 1/8 7 7/8 43 3/8 53 3/4 35 1/8 58 1/2 
Feb 28 32 7/8 8 1/4 42 3/8 52 3/4 34 57 7/8 
Mar 7 32 1/4 8 1/8 42 5/8 53 3/8 31 7/8 56 5/8 
Mar 14 32 1/8 8 1/2 42 1/2 53 7/8 30 1/2 58 
Mar 21 31 3/4 8 1/4 40 7/8 54 1/2 30 1/4 57 
Mar 27 30 7/8 8 1/2 40 1/8 54 1/4 30 1/4 56 1/4 
Mar 31 31 3/8 8 1/4 40 1/4 52 3/8 30 55 3/8 
 

able 2.1   Share Prices of Ford and Related Companies 

s mentioned above, at that time stock prices were listed as fractional numbers, rather 

T
 
A
than as decimal numbers, as is now the case. 
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4.   The Model Representation in Excel 
 
 Here we follow the representation of a neural net in Excel developed by Hans 

mman Breedlove. The 
put file for Excel for this example can be obtained from the book web site.   Once you 

A  and combine this with the model of Ford share prices of Joe 
in
have downloaded the file you can begin by opening it in Excel as is shown in Figure 2.5. 
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Figure 2.5 Spreadsheet for Neural Nets with Stock Prices 
 
 Skip down to the section on the data set beginning in line 17 and note that there 
are fourteen observations consisting of the weekly closing share price y for Ford shares 
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and the five inputs x1 through x5 for the other stocks.  These observations are aggregated 

 Exp(-(D20*D5 + E20*D6 + F20*D7))) 

re 
 

g 

ox. 

s.    
 

Output = theta0  +  theta1 * at1  +  theta2 * at2 

 
where the thetas are weights which are c imization and that are shown 
in the section on Output weights  he sp heet. 
 Next look at the Error c  Set

column is simply the difference  
 
   Error = y – Output Layer 

 
and the Norm column is the squar le  in th or column.   The elements in 

med up in cell M35 at the bottom of the column. 

 Tools:Solve 

using the sigmoid function into the hidden layers at1 and at2 using a formula like 
 
 at1 = 1 / (1 +

 
where the D5,D6 and D7 are weights that are to be solved for and the D20, E20 and F20 a
the observations x1, x2 and x3.  You can see this formula in the spreadsheet by selecting
the I20 cell and then looking at the expression in the formula bar at the top of the 
spreadsheet.  Alternatively, you can see all of the formulas in the spreadsheet by selectin
  Tools:Options:Views 

and then checking the  
  Formula  

b
 Now back to the Data Set section of the spreadsheet.   Check the column at2 
and you will find that it is similar to the column at1 except that it uses data from the 
input data for x4 and x5 to compute the second of the two hidden layer value
 Consider next the Output Layer column.  It is computed using an expression of
the form 
 
 

omputed in the opt
 near the top of t reads

olumn in the Data  section of the spreadsheet.  This 

e of the e ments e Err
the Norm column are sum
 
 Now we are ready for the optimization problem.  It is seen by selecting 
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and the following dialog box should appear.8

 

 
 
Figure 2.6 The Solver Dialog Box 
 
This dialog box indicates the optimization problem is to minimize the value in cell C15 
(which on inspection is set equal to M35 which in turn is the sum of the elements in the 
Norm column). 
 As was discussed earlier, the Excel Solver uses nonlinear optimization methods 
(Newton method or conjugate gradient method - see Appendix F).  The optimization is 
done by changing the elements in the cells D5:D12 until the minimum of the function is 

re shown in Table 2.2 below beginning with the number -2.712 
ment 70.94. 

obtained.   These cells a
and going down the value column to the ele
 

                                                 
8 In case the dialog box does not appear, see Appendix C. 
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Input weights value start 

vector w11 -2.712 -2.87

 w12 1.314 1.356

 w13 -0.478 -0.49

 w21 0.009 0.019

 w22 0.015 0.035

Output theta0 -61.31 -79.3

weights theta1 39.87 24.25

 theta2 70.94 93.77

 
Table 2.2 Parameters 
 
The column to the right which is labeled start shows the numbers that were originally 

lumn, selecting 
Tools:Solver 

nd then clicking on the Solve button to solve the optimization problem and see if the 
riginal values or converge to some others which have either a 

aller or larger norm. 
  

 
l 

us in 
Excel it may be advisable to use a number of different starting values in order to check 
for global convergence.  When there are many local optima global optimization 
algorithms such as genetic algorithms may be used to perform global exploration of the 
solution space – see the chapters on genetic algorithms or see Goldberg (1989).   
 Also, you can experiment by changing some data elements in the y and x columns 
either in an arbitrary manner or by looking up the share prices for these companies in 
another time period and seeing whether the parameter values have remained the same. 
 Finally the spread sheet contains some forecast in the section called 
Predictions.  These predictions are made for six weeks after the last week for which 

used when searching for the optimal parameters.   They are not used in the present 
calculations but are stored there only to indicate which starting values were used.   In fact 
each time the model is solved the numbers in the value column are used as the starting 
point and an effort is made to find values which will decrease the norm.  So for a first 
experiment you might try changing some of the elements in the value co
 
a
parameters return to the o
sm

A point of caution - at times the solution procedure will converge to a result with
a higher norm because neural net estimation problems are sometimes characterized by
nonconvexities and may have local optimal solutions that are not the same as the globa
optimal solution.  Sometimes the number of local solutions may be very large.  Th
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data was collected to 'fit' or 'train' the model.  Look at the formulas for cells B36 and C36 
at are shown in Table 2.3, which is shown below.   

Out-of-s

th
 

ample  

 Actual Predictions

4/4/1997 30 7/8 30.97

4/11/1997 32 1/4 30.04

4/18/1997 34 1/4 31.14

4/25/1997 34 1/4 31.16

5/2/1997 34 3/4 31.74

5/9/1997 36 5/8 31.87

Table 2.3   Predictions 
 
 If you select the cell just beneath the Prediction label you will see that the 
predictions use expressions like 
 
   = D10 +  D11*I36  +  D12*J36 

that translates to 
 
  Output = theta0 + theta1 

Note in particular that these predictions are do
* at1 + theta2 * at2 

ne from “out of sample” data, i.e. the data 
odel is not used to make the predictions.  Rather some elements of 

 

that is used to fit the m
the sample are reserved to test the model after it is fit to a subset of the data. 
 There is one other topic that needs to be mentioned about the Excel Solver.  Select 
  Tools:Solver:Options 

and the dialog box shown in Figure 2.7 will appear. 
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Figure 2.7 The Solver Options Dialog Box 
 
 You can use this dialog box to control the number of iterations which t
will use in trying to achieve convergence.   Keep the number of iterations low when you 
are first working with a new data set and then if convergence is not being achieved raise 
this number as necessary.   Also, a convergence value of 0.001 is probably close
for mos ser v

he Solver 

 enough 
 

setting to 0.01 in order to obtain convergen

Probably the most important element in the Solver Options Dialog Box is  Use 
.   In many neural net data sets the various series may be of very 

mple you might have an unemployment series with 
umbers of the size of 0.04 and a consumption series with numbers like 625.   In such a 

l 

t of the work you do, but you may require a loo  con ergence by lowering this
ce in 100 iterations.  On the other hand you 

may want to keep the convergence value at 0.001 and increase the number of iterations. 

Automatic Scaling

different magnitudes.   For exa
n
case it is wise to check the automatic scaling option.   If you do this, the Solver wil
automatically scale all of your series so that they are roughly of the same magnitude and 
thereby increase the probability that the Solver will be able to find an optimal set of 
parameter estimates. 
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5.  Experiments 
 
 There are two kinds of experiments which come to mind with this spreadsheet.  
As discussed above, at the simplest level you can change the data in the y and x columns 
and see how the weights and predictions change.  You could even use your own data of 

me kind for doing this.   Some students with greater interest in professional sports than 

s x6 a

et.   On the other hand this is a very good way to 

6.  Fu din

 

 a variety of models for economic and financial modeling.  

so
in the stock market have used offensive and defensive statistics from basketball teams to 
predict the point spread in playoffs.    
 Also, you can change the number of input series x1 thru x5 by adding series such 
a nd x7 for other automotive companies such as Toyota and Honda.   However, this 
is somewhat harder to do than the experiments discussed above since it involves making 
changes in the formulas in the spreadshe
really learn how a neural net is represented and solved in a spreadsheet. 
 
 

rther Rea g 
 

Sargent (1993) provides an introduction to neural nets.   Garson (1998) presents
an introduction to and a systematic coverage of the use neural networks in the social 
sciences.  Beltratti, Margarita and Terna (1996) also present an introduction to neural 
networks and develop
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Chapter 3 

Partial Equilibrium in Mathematica 
 
 

 It is customary to begin the study of microeconomics with market behavior in a 
partial equilibrium setting.  This is done by analyzing the determination of price and 
quantity in a single competitive market under the assumption that all other influences 
from the rest of the economy remain constant.  This study usually begins with the theory 
of the consumer and the derivation of demand curves and then proceeds to the theory of 
the firm and the derivation of supply curves.   Following this dema

et equilibrium.  This is the standard approach we will 
llow here.  We will mainly be interested in the derivation of analytical results and 

g for which Mathematica is a very useful tool due to 
s power to deal with symbolic mathematics problems and to its plotting capabilities.   

 

heir 
 

.  While many theoretical results are derived for very general forms of those 
nctions, in most examples, and also in applied work, it is common to work with a few 
nctional specifications.  Leontief and Cobb-Douglas functions are probably the most 

popular, and they can be used to represent preferences or technology.  In the following 
e will present each of them.  We will focus on the two-good case since this case can be 

oods and the results displayed analytically. 

nd and supply are 
brought together to study mark
fo
graphical representations, somethin
it

 
 
1.  Utility and Production Functions 
  
 The starting point of consumer theory is the specification of preferences and t
representations by means of a utility function, while the starting point of the theory of the
firm is the specification of technology and its representation by means of a production 
function
fu
fu

w
easily handled in graphical representations, though the results can be generalized to more 
g
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1.1  Leontief Function 

A Leontief function for a two good case is  

)  )
 

here  f is the function, and are parameters, and and  are interpreted as goods 

 we use the function  represent preferences as in consumer’s theory.  
lternatively, they may be interpreted as inputs if we use the function to represent 

is or 

isoquan

an 

e begin by assigning values to the parameters and .  In this case we assign 

the value 1 to both of them.  Start Mathematica and on the Untitled-1 window that opens 
type  

followe
 
followed by Shift-Enter  Mathematica acts as an interpreter and commands are 

ask 
 to postpone the processing while you proceed to enter another command on 

 use Shift-Enter at the end of the line you ask Mathematica to 
process all of the input since the last Shift-Enter.   Mathematica will then respond by 
converting your i
 

IN[1]:

 
 
 

( ) ( 221121 ,min, xaxaxxf =  (1

1a 2a 1x 2xw

consumed, if  to
A
technology as in the theory of the firm.  This function specifies that no substitution is 
possible between goods or between inputs.  The consumer will always spend all of h
her income in fixed proportions between the two goods, and a similar behavior will be 
displayed by the firm in connection with its inputs.  As we will see later, this will imply a 
peculiar form for the consumer’s indifference curves and for the firm’s production 

ts. 
 The graphical representation of a function like this in Mathematica is 
straightforward, and it is available in the Leontief.nb file in the book web site.  You c
begin with that notebook file if you are already somewhat familiar with Mathematica.  Or 
if you are a first-time Mathematica user, we recommended that you type in the 
commands.  The instructions for running Mathematica are in Appendix B.    

1a 2aW

a1 = 1 
d by Return and then 
a2 = 1 

processed one at a time.  When you use Return at the end of the line you effectively 
Mathematica
the next line.  When you

nput to  

= a1 = 1 
a2 = 1 
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The symbols IN[]:=   in Mathematica denote input and the other expressions are the 
input to be evaluated.  The output statements corresponding to the input are 
 

Out[1]:=  1 
Out[2]:=  1 

 
Thus M  

 

in[] 

 
IN[3]:= Leontief = Min[a1 x1, a2 x2] 

 
Notice that in Mathematica two symbols can be multiplied either by using the asterisk 
operator as a1*x1 or simply by juxtaposing the two symbols with a space between them 
as a1 x1.   When you finish typing the line above be sure to strike Shift-Enter.  This 
will yield the output 
 

OUT[3]:= Min[x1,x2] 
 
Notice that Mathematica replaced the parameters a1 and a2 with their numerical values 

f 1 while keeping everything else the same since the evaluation of the statement cannot 
yond this point. 

Next we ask Mathematica to generate a three-dimensional plot of the function 
within given numerical intervals for and sing the Mathematica function 

lot3D[f,{x,xmin,xmax},{y,ymin,ymax}] where f is the function to be plotted over 
um and maximum values.  So type 

athematica displays as output the result of the assignments.  Notice that separate
output is generated for each statement, no matter if we wrote the inputs in a single input 
prompt or in separate ones.  Notice also the sequential numbering of inputs and outputs. 
 The outputs of the previous evaluations are quite simple and redundant.  To avoid
the display of output, we could have added a semicolon “ ; ” at the end of the statement 
whose output we wanted to suppress.    
 Next we assign to the variable Leontief the corresponding Mathematica function 
M which yields the numerically smallest of its arguments.  
 

o
be carried out, for the time being, be
 

1x 2x  u

P

the variables x and y between their specified minim
 

IN[6]:= Plot3D[Leontief,{x1,0,1},{x2,0,1}] 
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Be careful not to misspell “Leontief” or Mathematica will give you more error messages 
be sure to end the line with Shift-Enter.  The resulting 

raph is shown in Figure 3.1  
 

than you care to see.  Also, 
g
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Figure 3.1  Leontief Function 
 

Finally, with the statement  
 

IN[8]:= ContourPlot[Leontief,{x1,0,1},{x2,0,1}] 

e obta
r’s indifference curves or, equivalently, the firm’s isoquants.  Contour plots 

atica are by default shaded, and regions with higher functional 

 

in the contour plot of the Leontief function shown in Figure 3.2, which show us w
the consume
produced by Mathem
values are lighter.  Contour curves for the Leontief function form ninety degree angles.  
Notice that the graph shows the kinks with some error as we get farther away from the 
origin. 
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Every time you run a program in Mathematica it is important to wipe out any 
value ameters and variables of the problem.  This could 

ave been achieved by adding the following statement at the beginning of the program 

N[]:= Clear[a1,a2,x1,x2,Leontief]; 

.2  Cobb-Douglas Function 

A Cobb-Douglas function with constant returns to scale (we use a special case) is  

)  = 2121, xxxxf  

er 

 
plays constant returns-to-scale.  Unlike the Leontief 

function, this function allows for smooth substitution between goods or between inputs.   
The Mathematica statements corresponding to the graphical representation of the 

Cobb-Douglas function are shown below and are available in the CobbDouglas.nb file in 
the book web site.  This time we recommend that you open the input files and use it to 

 
Figure 3.2 Leontief Function Contour Lines 
 
 
previous s associated with the par
h
 
I

 
1
 

 
ρ −1( ) ρ(2

 
where  f  is the function, 1x and 2x are goods or inputs, and ρ is a parameter.  In consum

theory ρ and 1- ρ represent the consumer’s expenditure shares on each good.  In the 
theory of the firm, since the two exponents of the inputs add up to one, it implies that the
technology the functions represent dis
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follow the discussion.  When you open the notebook file you will see a bunch or bra
on the right hand sid

ckets 
e of the window.  You can execute the program by selecting these 

rackets and striking Shift-Enter.  For example selecting the bracket opposite the lines 

Clear[

b
 

x1,x2, ρ ]; 

ρ  = 0

CD = x1^

.7; 

ρ    x2^(1- ρ ); 

nd striking Shift-Enter causes they lines to be processed and results in their being 
printed as 

Clear[x1,x2,

Plot3D[CD,{x1,0,1},{x2,0,1}] 

ContourPlot[CD,{x1,0,1},{x2,0,1}] 

 
A
re
 In[1]:= 

]; ρ

ρ  = 0 7;.  

CD = x1^ ρ    x2^(1- ρ ); 

,1}] 

ContourPlot[CD,{x1,0,1},{x2,0,1}] 

 to 

Plot3D[CD,{x1,0,1},{x2,0

 
with input prompt In[1]:= now showing.  In this way you can use the notebook files
modify the input and rerun the program.  For example you might have changed ρ  from

0.7 to 0.8 and then selec

 

ted the bracket to its right and type Shift-Enter.   Be aware 
owever, that only that part of the program covered by the bracket you selected will be 

lect one of the more inclusive 
ackets on the right before striking Shift-Enter. 

nted in the previous section.  We 
amed the function CD and we have assigned a value of 0.7 to the ρ parameter.  Unlike 
e program for the Leontief function, here we put all the statements together in one input 

nd suppressed output using semicolons at the end of the first three statements.  
at Mathematica allows you to enter Greek letter symbols like ρ.  To do so, and 

lso to enter formulas in a mathematical form instead of the text form we used here, you 
ption.   

 

h
rerun.  Therefore if you want to redo the plots you must se
br

The statements above follow the pattern prese
n
th
prompt, a
Notice th
a
have to use a palette you can access from the File/Palettes/BasicInput main menu o
 Figures 3 and 4 show the corresponding three dimensional and contour graphs.
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Figure 3.3 Cobb-Douglas Function 
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atica, you might close all the files you have 
 far t r computer desktop and give yourself a fresh 

art in the next section. 
 

 
Figure 3.4 Cobb-Douglas Function Contour Lines 
 
If you are following along with Mathem
opened so o reduce the clutter on you
st
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3.  Consumer Theory 
 

The standard theory of consumer’s behavior poses the problem faced by the 
consumer as one of maximizing utility subject to a budget constraint.  That is, given a 
bundle of goods, their prices and a certain amount of income, the consumer buys those 
goods according to her preferences while trying to maximize her utility, a quantity that is 
supposed to measure the level of consumer satisfaction. 
 In formal terms, and for a two-good example that can be easily generalized, the 
problem can be stated as 

3)   

 
( )1 2

1 1 2 2

max ,
subject to

u x x
p x p x m+ =

(   

here u is the utility function, and  are goods, and are prices and m is income. 

 with a Cobb-Douglas function.  Thus, using (2) the 
roblem above can be restated as 

 

 logs 

atica program of the consumer’s problem - available in the 
Consumer.nb file - by inputting the u unction  

 the budget constraint 

x2); 

on will see the usefulness of doing that. 

 
1x 2x 1p 2pw

 From now on we will work
p

(4)  
1

1 2

1 1 2 2

max
subject to

u x x
p x p x m

ρ ρ−=
+ =

 

 
 An equivalent but simpler expression of the utility function is obtained taking
 
(5)  1 2log log( ) (1 ) log ( )u x xρ ρ= + −  

 
 We start the Mathem

tility f
 
In[]:= logu = ρ Log[x1] + (1-ρ) Log[x2]; 

 

and
 
In[]:= bc = m - (p1 x1 + p2 

 
 Notice that we give a name to the budget constraint then assign to it all its 
elements.  We so
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The next step is to form the Lagrangian corresponding to the maximization 
problem.  Thus we write 

 
In[]:= eqL = L == logu + λ bc 

L the expression  
 bc.  The presence of the double equal symbol “==” indicates that the 

e L.  The corresponding output 
 the content of the variable eqL with the expressions for logu and bc being replaced by 

their definitions.9

Out[]= L =(m - p1 x1 - p2 x2)

 
 Notice that we assign to the variable eq
L == logu + λ

expression is an equation, not an assignment to the variabl
is

 
λ + ρ  Log[x1] + (1- ρ ) Log[x2]. 

in 

r write down the Lagrangian as 

 - p1 x1 - p2 x2)  

e output generated by Mathematica would be  
 

 deed, when evaluating the part of the input expression corresponding to 
ill replace the variable m with its definition.  

hen this part of the expression would become (p1 x1 + p2 x2  - p1 x1 - p2 x2).  
Thus, it would be equal to zero. It was to avoid this kind of problem that we defined the 

ariable bc in the way we did above. 

                                              

 
 If instead of writing the budget constraint in the way we did above, we write it 
a more standard way i.e. 
 
In[]:= m = p1 x1 + p2 x2; 

 
to late
 
In[]:= eqL = L m  logu + λ (m

 
th

Out[]= L m  ρ Log[x1] +  (1-ρ) Log[x2] 

 
In

(m - p1 x1 - p2 x2), Mathematica w
T

v

   

er.   

9 It is common in Lagrangian functions to put the objective term first followed by the lambda and the 

constraint.  However, given the sequence of commands we used, Mathematica does things in reverse ord

This causes no problem except making the output below slightly harder to comprehend at first. 
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 Once we form the Lagrangian, we compute the first order conditions of the 
problem as follows 
 
In[]:= foc1 = D[eqL, x1]  

foc2 = D[eqL, x2] 

foc3 = D[eqL, λ]  

The Mathematica function D computes the partial derivatives of a function.  In this 
case, we ask Mathematica to compute the partial derivatives of the expression eqL w.r.t. 
the variable of choice.  The corresponding outputs are   

 

Out[]= 0 

 
 

 

==  
x1

 

 Out[]= 0 == 

ρ
λp1 −−   

x2

ρ-1
λp2− +  

 

 
 t s formed by the first order conditions we can obtain 

 function Solve allows us to do so.  
and then the variables over 

hich they are solved. 
 
n[]:= Solve[{foc1,foc2,foc3},{x1,x2,λ}] 

The previous statement generates the output 

ut[]= 

 

 Out[]= 0 == m - p1 x1 - p2 x2 

 From he system of equation
the goods’ demand functions.  The Mathematica
Within this function, we first have to specify the equations 
w

I

  
 
 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ −

→→→
p2

ρmm
x2,

p1

ρm
x1,

m

1
λ  O

 
  Finally mand functions.  Since the standard 
procedure is to ertical axis, we 

 t

, we want to plot the good’s de
 plot quantities in the horizontal axis and prices in the v
he demand functions for the corresponding prices.   Starting with good 1, have to solve

the Mathematica statements are 
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In[]:= p1 = ρ m / x1; 

Plot[p1 /. {ρ → 0.7, m → 0.1}, 

        {x1,0.01,0.1},  

          AxesLabel → {"x1", "p1"}, 

          PlotLabel → "Demand Curve for x1"] 

 
 
  In the first line of the Plot[] function the replacement operator “/.” is used.   
This operator, whose general form is “expression /. rules”   applies a rule or list of 
rules in an attempt to transform each subpart of an expression.  In our case the 
transformation rules are  ρ → 0.7 and  m → 0.1 which are used to give particular values 

rite the arrows, you must type -> as a pair of 
een. 

the range for 

inimum and the maximum values for the plot.   Finally, the last two lines label the axes 
eans of the options AxesLabel and PlotLabel.  The plot 

.5. 

 

 

to  the parameters  ρ and m. To w
haracters, with no space in betwc

 The second line of the Plot function contains the specification of 
e horizontal axis, writing first the name of the corresponding variable then the th

m
and assign the plot a label by m

enerated is shown in Figure 3g
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p1 Demand Curve for x1

 
 

igure 3.5 Demand Curve for x1 

In an analogous way, we generate a plot for the demand function of good x2 

F
 
 
which is shown in Figure 3.6. 
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In[]:= p2 = 
 

(m - ρ m) / x2; 

Plot[p2 /. {ρ → 0.7, m → 0.1}, 

 {x1,0.01,0.1},          

          AxesLabel → {"x2", "p2"}, 

PlotLabel → "Demand Curve for x2"]           
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Figure 3.6 Demand Curve for x2 
 

 
3.  The Theory of the Firm 
 

The standard theory of firm’s behavior assumes that the main goal of the firm is 
aximize profits given technology and the prices of output and inputs.  To develop a 

simple example, let’s assume that the firm produces a single output  with price , 

sing labor L as a single input and whose price is the wage w.   Let’s assume also that the 
 where T and b are parameters and let’s denote 

In formal terms the problem of the firm can be stated as 

 
 

to m
1x 1p

u
bLTproduction function is of the form  

profits by π. 
 
 

(6)   1 1

1

max

subject to b

p x wL

x T L

π = −

=
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 Substituting the production function into the profit function we obtain the first 
problem - available in the Firm.nb file - 

n[]:= pi = p1 T L^b - w L; 
 

otice that we wrote pi instead of π since the Greek letter 

input for the Mathematica representation of the 
as 
 
I

πN  is a reserved symbol in 

Next we solve the first order condition of the problem for L.  By means of the D[ 
 funct e labor 

  
 
n[]:= Solve[D[pi,L]==0,L] 

The resulting output is the labor demand function 
 

Mathematica.   

] ion we compute the partial derivative of the profit function w.r.t. the variabl
then set the result equal to zero.  Finally, we nest this operation within a Solve[ ] 
function. 

I

  
 

⎪
⎬

⎪
⎩

⎨
⎪
⎬

⎪
⎩

⎨ ⎟⎟
⎠

⎜⎜
⎝

→
Tp1b

w
L  Out[]= 

⎭

⎪
⎫

⎪
⎧

⎭

⎪
⎫

⎪
⎧

⎞⎛ +b1-

1

  expression for the labor demand function to the temporary 
ariable tempL.  To do so we use the replacement operator “/.”.   The % symbol in the 

 contains only one solution.  Thus, tempL 
ill be equal to L where L is replaced by the solution generated in the previous output 

n 
rary 

 
In[]:= tempx1 = T tempL^b 

 
Next we assign the

v
statement below refers to the last result generated, and [[1]] which refers to the first 
solution from the output list, which in this case
w
line.  
  
In[]:= tempL = L /.%[[1]] 

 
 

Substituting tempL - that is, the labor demand function - into the productio
function in Eq. (6) we obtain the supply function for x1 which we assign to the tempo
variable tempx1.   
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The resulting output is 

 

Out[]= 

b

b1-

1

Tp1b

w
T

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +  

 
 Having obtained the good supply and the labor demand functions, we want to plot 

 axis respectively.  
ents we (1) create an 

 
 p1

In[]:= == tempx1; 

The result is the inverted good supply function where p1 appears as a function of 
1. 

them in the standard way, that is with price and wage in the vertical
e next two statemBegin with the good supply function.  In th

equation setting x1 equal to the expression contained in the temporary variable tempx1
and (2) assigning to the variable plotx1 the result of solving the equation for . 
 

 eqx1 = x1 

plotx1 = Solve[eqx1,p1] 

 
 
x

Out[]= }}
Tb

{{p1→  

 

T

b1−

⎟
⎠

⎜
⎝

⎠⎝

Finally, we assign the result above to the temporary variable tempp1, give 
ate the corresponding plot, obtaining the 

x1
w

b

1

⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎞

⎜
⎛

 
numerical values to the parameters and gener
graph shown in Figure 3.7. 
 
 
In[]:= tempp1 = p1 /. plotx1[[1]]; 

Plot[tempp1 /. {b → 0.4, T → 1, w → 100} , 

         {x1,0.01,0.1},  

          AxesLabel → {"x1", "p1"}, 

        PlotLabel → "Supply Curve for x1"] 
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In a similar way, with the statements below we generate the plot for the labor 
emand

Plot[tempw /.  {b → 0.4, T → 1, p1 → 1}, 

          {L,0.01,0.1},  

          AxesLabel → {"L", "w"}, 

 
Figure 3.7 Supply Curve for x1 
 
 
d  curve shown in Figure 3.8. 
 
In[]:= eqL = L == tempL; 

plotL = Solve[eqL, w]; 

tempw = w /. plotL[[1]] 

 

           PlotLabel → "Labor Demand Curve"] 

 
 
 
 

w
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Figure 3.8 Labor Demand Curve 
 
Now we are in a position to turn our attention to the market equilibrium. 
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3.  Market Equilibriu

Having derived demand and supply curves, it is time to put them together to 

equilibrium quantity when demand equals supply 
 

btaining as output 

m 
 
 
analyze the resulting market equilibrium.  We will do so for the case of good x1.  We 
begin from the corresponding demand and supply curves obtained in the previous 
sections with a slight modification: the variable p1 from the demand curve will be 
renamed p1d, while the variable p1 from the supply curve will be renamed p1s.   
 We begin the Mathematica representation of the model of partial market 
equilibrium - available in the MarketEquil.nb file - with the statements 
 
 
In[]:= p1d = ρ m / x1; 

p1s = w (((x1 / T)^(1 / b))^(1-b)) / (b T); 

 
 Then we solve for the 

 In[]:= equilx1 = Solve[p1d == p1s,x1] 
 
o
 

Out[]= }}
ρmb

{{x1 ⎟
⎟
⎠

⎜
⎜
⎝

→  

 
Then the equilibrium price can be obtained by substituting the solution for x1 into p1d
 
In[]:= equilp1 = p1d /. equilx1[[1]] 

wT
-b1/b- ⎞⎛

 

Out[]= 

 

ρ
ρmb

wT
m

b1/b-

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 

 
Next we assign values to the parameters and to the wage variable, and we 

compute the corresponding numerical values for the equilibrium quantity and price.  To 
do so, we write the variables equilx1 and equlp1 without semicolons, since Mathematica 
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will automatically replace each parameter with its value and perform the corresponding 
alculations.  

  0.

m = 0.1; 

 1;

w = 100; 

equilx1 

q ilp

6}} 

ut[]= 1.84601 

Finally we plot jointly the demand and supply curves, obtaining the graph shown 

Plot[{p1d, p1s},   

            {x1,0.01,0.1},  

] 

c
 
 

In[]:= ρ = 7; 

T =  

b = 0.4; 

 

e u 1 

 
Out[]= {{x1 → 0.037919

O

 
 
in Figure 3.9 
 
 
In[]:= 

            AxesLabel → {"x1", "p1"}, 

            PlotLabel → "Market for x1"
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4
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Figure 3.9 Market for x1 
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 Once we obtained the graphical representation of market equilibrium, it is 
interesting to perform some comparative static exercises.  To do so, we use a statemen
the form 

Plot[Evaluate[Table[ ] ] ] 

 
This statement nests three Mathematica functions.  The function  
 

t of 

Plot[Evaluate[Table[{p1d ,p1s },{T,1,1.2,0.1}]], 

      

, one corresponding to each value of the 

Table[expr, {i, imin, imax, di}] 

 
makes a list of the values of an expression expr with i running from imin to imax in 
steps of di..  The function  
 

Evaluate[expr] 

 
causes the expression expr to be evaluated.  Finally the function Plot[ ] is the one we 
have used before.  Thus, the statement below 
 
In[]:= 

      {x1,0.01,0.1},  

            AxesLabel → {"x1", "p1"}, 

            PlotLabel → "Market for x1"] 

 
will first generate a list of three elements
technology parameter T, then evaluate the expression in each element of the list, and 
finally generate the plot shown in Figure 3.10. 
 

2

4

0.02 0.04 0.06 0.08 0.1
x1

6

8
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Figure 3.10 Comparative Statics Changing Parameter T 
 
 Figure 3.11 shows the result of a similar experiment, but changing the demand 
function share parameter ρ in the following way 
 

{ρ,0.5,0.9,0.2} 
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Figure 3.11 Comparative Static Changing Parameter ρ 
 
 Finally, we perform the same comparative static exercise now with an animated 

→ {0,8}, 

.  

ou can control the 
 

plot using the following statement 
 
In[]:= Table[Plot[{p1d ,p1s }, 

           {x1,0.01,0.1},  

            PlotRange 

            AxesLabel → {"x1", "p1"}, 

            PlotLabel → "Market for x1"],{T,1,1.2,0.1}] 

 
 Notice that here we have a Plot[ ] function nested within a Table[ ]  function
Thus, the table will contain a sequence of plots controlled by the evolution of the T 
parameter.  The output of the statement will be such a sequence.  Double click on the first 
graph of the sequence and you will see the resulting animation.  Y
speed of the animation with the buttons that will appear at the bottom of the notebook. 
 Notice that here we fixed the range for the vertical axis with the option 
PlotRange.  Otherwise, each plot may generate variable values for that range, creating 
the false impression that the demand curve is shifting also (to see this, eliminate that 
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option from the statement and see what happens).  Also notice that if you perform othe
comparative static exercises changing any of the parame

r 
ters other than T, you may have 

e 
ffects the outcome of the comparative statics. 

Another popular function used to represent preferences or technology is the 
Constant Elast  (CES) function 
 

to adjust the PlotRange option accordingly as well as the range for x1, setting different 
minimum and/or maximum values. 
 
 
4.  Experiments 
 
 A simple set of experiments would be to perform more comparative static 
exercises changing some model parameters.  You may also want to add parameters to th
model (e.g. taxes) and see how this a
 

icity of Substitution

( ) ααα
2 )( xx +=  

1

121, xxf

 
 As we tions, you may want to 
generate the co pens as the parameter 

did we the Leontief and Cobb-Douglas func
αntour plot of this function and see what hap  goes 

from a value n

er theory and 
e th the core of most 

micro s in 
Math
 

ear zero to one near minus infinity.  
 Finally, you may want to develop an analysis analogous to the one we did in this 
chapter substituting the CES function for the Cobb-Douglas function. 
 
 
5.  Further Readings 
 
 For an introduction to Mathematica see Wolfram (2003).  Consum
th eory of the firm as well as competitive market equilibrium are at 

economics textbooks.  Later in this book we will deal with duopoly model
ematica and general equilibrium models in GAMS. 
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Transportation in GAMS 

Tjalli
958) a number of whom won the Noble Prize in economics.   This kind of model is a 

 
 ship to each market in order to minimize the 

zig (1963)) for this chapter we use the fishing 

s).  In this model we seek to find the pattern of shipments from the 
anneries to markets which will have the least transportation cost while satisfying the 

fixed demand at the markets without shipping more from any cannery than its’ capacity. 
 

 
 
 The transportation problem was made famous among economists by the work of 

elson and Robert Solow ng Koopmans (1951) and of Robert Dorfman, Paul Samu
(1
most natural way to pose the problem of finding the most efficient place and manner of 
producing goods and shipping them to customers.   The model posits supplies of a good 
at a number of plants and demands for that good at a number of markets and seeks to find
the amount that each plant should
transportation cost.  Also, the transportation model is the foundation for much more 
elaborate linear programming industrial models such as those for steel, oil, aluminum, 
fertilizer and computers.  These models focus not only on transportation but also on 
production and investment.   

We begin with a mathematical representation of the transportation problem and 
then move to a discussion of how this model can be represented in the GAMS software. 
 
 
1. Mathematical Representation 
  
 As an example (adapted from Dant
industry with canneries in Seattle and San Diego and markets in New York, Chicago and 
Topeka (Kansa
c
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The model is stated mathematically as: 
 

sets For the 
  I   plants = {Seattle, San Diego} 
  J  markets = {New York, Chicago, Topeka} 
find the  
  ijx  shipments from plant i  to market j  

to minimize the transportation cost 

it shipped 

 
 (1)  ij ij

i I j J
z c x

∈ ∈

= ∑ ∑  

where 
 transportation cost from plant i to market j per unijc   

The criterion function (1) is minimized subject to the constraints that no more be shipped 
from each plant than its capacity 
 
(2)  ij i

j J
x a i I

∈

≤ ∈∑  

where 
  ia  the capacity of plant i  

and that no less be shipped to each market than its demand 
 
(3)  ij j

i I
x b j J≥ ∈∑  

∈

 
 

while requiring that all the shipm
 
(4)  

where 
 b  the demand at market j  j

ents be non-negative. 

0ijx i I j J≥ ∈ ∈  

Next we turn to the representation of this model in GAMS. 
 
 
2. GAMS Representation 
 
 GAMS (General Algebraic Modeling System) was developed at the World Bank 
by Alexander Meeraus and his colleagues.   The user's guide for this system is by Brooke, 
Kendrick, Meeraus and Raman (1998).  GAMS was designed as a "set driven" high-level 
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language that would facilitate the development of linear and nonlinear programming 

 in a 

y 

a wide variety 
 

http://www.gams.com

models of industry, agriculture and finance.   Thus it was not necessary to write a 
separate equation for each commodity, time period, crop or equity but rather only to 
create equations and variables indexed over sets of commodities, time periods, crops, 
equities etc.   In this way a model with thousands of equations could be represented
GAMS statement with only a few set specifications, variables and equations - all of 
which might fit on a single page.   This not only decreased the tedious, labor-intensive 
part of model development but also substantially reduced the likelihood of errors in the 
model specification. 
 Also, GAMS has become widely used because of the ability to represent in it an
model that can be expressed in algebra.   In particular there are now many computable 
general equilibrium, agricultural and financial models in GAMS as well as 
of other types of economic models.    For a listing of several hundred GAMS models see
the GAMS library that comes with the software or access the library at  
 
These models can be downloaded and solved with the GAMS software.     
 Many readers of this book will be running GAMS on their home computers or in 
a computer laboratory in a university.    The instructions for fetching the input file and 
running the program on a personal computer are contained in Appendix A at the end of 

e book.     
ponding to the transportation problem is available at 

t.gms as well as in the GAMS library under 
 is misspelled in this filename.)  Also, an 
le in the GAMS User’s Guide, i.e. Brooke, 

The GAMS language uses a syntax that is reasonably close to mathematics.   For 

(5) 
∈ ∈

and in GAMS as 
 
 cost..   z =e= sum((i,j), c(i,j) * x(i,j)) ; 

 
 In mathematics equations are usually numbered while in GAMS they are named, 
thus equation (5) gets the name cost and the two dots after cost tell GAMS that the 

th
The GAMS program corres

the book web site under the name trnspor
that same name.  (Notice that “transport”
extended tutorial on this model is availab
Kendrick, Meeraus and Raman (1998). 
 
example the criterion function for the transportation model is written in mathematics as 
 

 ij ijz c x= ∑ ∑  
i I j J
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name has been completed and the equation is about to begin.  Also, GAMS has an 
ay of representing an equal sign, namely =e=.   The reason for this is that 

r-equal signs that will be 

ake a distinction between set names such as I 
ets such as i.   This results partly 

 programming languages, does not make a 
letters.   Thus one could imagine writing the 

 

 and the variable x 
ry in GAMS and the 

ting set names 

ltiplication with the 

y, the capacity constraint is written in mathematics as 

unusual w
GAMS also includes less-than-or-equal signs and greater-than-o
discussed below.   
 The GAMS language does not m
and the indices of the elements which belong to the s
from the fact that GAMS, unlike most
distinction between upper and lower case 
right hand side of the equation above in GAMS as  
 
  sum((I,J), c(i,j) * x(i,j)) ;

 
to indicate that the sum is over the sets I and J while the parameter c
are defined with the subscripts (i,j).   However, that is not necessa
user learns to read symbols like (i,j) in GAMS as sometimes represen
and sometimes representing indices.  

Finally, in mathematics the simple juxtaposition of two symbols like c  and x   
indicates that they are multiplied times one another while in GAMS, as in most other 
programming languages, it is necessary to explicitly indicate mu

terisk, i.e. *.   as
 Similarl
 
 (6)  ij i

j J
x a i I≤ ∈∑  

∈

and in GAMS as 

s it indicates that there 

 
 supply(i) ..  sum (j, x(i,j)) =l=  a(i) ; 

 
So here equation (6) gets the name supply and the (i) that follow

 one constraint of this type for each element in the set I , i.e. for each plant.  Thus the 
bols  play in 

o sign,

is
(i) next to the equation name in GAMS plays the same role as the sym i I∈

the mathematics.   Also notice that the less-than-or-equal-t  ≤  in mathematics 
=l= l l ot the number 1. 

 as stated above could be for a model with two plants 
d three markets or for a model with 50 plants and 200 markets since we have so far not 

becomes  where the  here indicates the letter  and n
 The transportation model
an
specified the sets I  and J  nor the parameters ,a b  and .   This is one of the powers of  c
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the GAMS language, i.e. one can write a model prototype which can be used for any of a 
umber of industries and then specialize it in the set specifications and the parameter 

ed in the GAMS language.  In this model 
ere are two plants and three markets.    The set of plants is specified in mathematics as 

  

n
definitions to a particular industry in a chosen country. 
 So consider next how the sets are specifi
th

{ },I Seattle San Diego= −   

The equivalent GAMS statement is 
  

d 

rameter 

 ego   600  / 

           b(j)  demand at market j in cases 
rk    325 

                  chicago     300 

hich it is defined, i.e. it is 
t necessary to include 
t is provided the 

ent names used in the input of the 
arameter do indeed belong to that set.    

 i = / seattle, san-diego / 

GAMS uses forward slashes as set delimiters while mathematics use braces.    
 Once the sets are specified then the data can be input using the parameter an
table keywords as shown below.  Consider first the use of the parameter keyword to 
input the capacity and demand data. 
 

     Pa
           a(i)  capacity of plant i in cases 
             /    seattle     350 
                 san-di
      

             /    new-yo

                  topeka      275  / ; 

      

Observe that the parameter “a” is followed by the set over w
written as “a(i)”.    As was mentioned earlier in the book, it is no
the set here; however it is a useful precaution because when the se
GAMS complier can check to be sure that all the elem
p
 Next consider the input of the distance data with the statement 
 

      Table d(i,j)  distance in thousands of miles 
                        new-york       chicago      topeka 
          seattle          2.5           1.7          1.8 
          san-diego        2.5           1.8          1.4  ; 

    
Here the table keyword is used to input the matrix of transportation distances between 
the markets and the plants.   
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 Next consider the scalar keyword that can be used to input a scalar quantity, in 
this case, f, which is freight cost per case per thousand miles. 

sand miles  /90/ ; 

st per 

case ; 

otice here that the new element c(i,j) is first declared with a parameter statement and 
y 

e 
 

 transformations which are 
erformed on that data before it become a part of the model equations. 

m the 
AMS library.  Notice that the distances in  above are listed as the same 

rk, i.e. 2,500 miles.   This can 
el and this can be confusing.   Therefore, 

se distances different.  For 
xample one might change the number for the Seattle to New York distance from 2.5 

 is 

 
     Scalar f  freight in dollars per case per thou

      
is scalar in turn can be used in a parameter statement to compute the transport coTh

case between each plant and market as shown below.    
 

 Parameter c(i,j) transport cost in thousands of dollars per 
                c(i,j) = f * d(i,j) / 1000 ; 

 

N
then defined with a mathematical statement in which f is multiplied by d and divided b
1000.   Here you see that the parameter keyword in GAMS is much more versatile than 
just being used to input vectors. 
 The computation of the c(i,j) parameter above illustrates one theme in the us
of the GAMS language.  The user is encouraged to enter the raw data for the model in the
GAMS statement and to show explicitly all the mathematical
p
 Consider a word of warning about the data for the transportation model fro
G Table d(i,j)

om Seattle to New York and from San Diego to New Yofr
cause multiple optimal solutions to the mod
when first using this model it is probably wise to make the
e
(thousand miles) to 2.7 (thousand miles).  
 Next consider the variables and equations part of the GAMS representation that
shown below. 
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      Variables 
           x(i,j)  shipment quantities in cases 
           z       total transportation costs in thousands of dollars ; 
      
      Positive Variable x ; 
      Equations 
 
 
          cost        define objective function 

lant i 
 ; 

) ; 

r 

          supply(i)   observe supply limit at p
           demand(j)   satisfy demand at market j
      
      cost ..        z  =e=  sum((i,j), c(i,j)*x(i,j)
      
      supply(i) ..   sum(j, x(i,j))  =l=  a(i) ; 
      
      demand(j) ..   sum(i, x(i,j))  =g=  b(j) ; 

 
The keyword Variables is used to declare the variables and in the process one indicates 
the sets over which the variables are defined.   For example the variable x  is defined fo
the set of plants I  and the set of markets J  so it is listed as  x(i,j).   The restrictio
that the shipment variables must be non-negative as shown in Equation (4) above is 
carried in the Positive Variable x statement.   
 The names of the equations are listed after the Equations keyword along with 
sets over which they are defined.   For example there is a supply equation for each pl
so that equation is defined as supply(i). 

n 

the 
ant 

      Solve transport using lp minimizing z ; 
x.m ; 

 The final statements in the GAMS specification are listed below. 
 

      Model transport /all/ ; 

      Display x.l, 
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The Model keyword is used to give the model a name - in this case transport - and t
indicate the equations which are included in the model.   One may either list a subset
the equation names here or if the model consists of all the equations listed above the
all keyword can be used.     The

o 
 of 
n the 

 model is then solved with the Solve, using and 

mming”, that is, a problem in which 
ne seeks to optimize a linear objective function subject to a set of linear constraints.  For 

o linear programming see Appendix G.  The  in the solve statement 
on to the model 

minimized.  Since the model contains indexed 
quations, GAMS will use a stacking method as discussed in Appendix H. 

evels for the shipment 
ariables, i.e. x.l and the marginal values x.m for these same variables be displayed in 

s. 
Learning all this syntax for a programming language may at first seem 

pli e 

 

 and finally the model and solve statements. 
 

to adjust to all the details but the overall structure and form of a GAMS 

listing of the model is presented below.  
 

minimizing keywords.   From a mathematical point of view, the transportation problem 
is a particular case of what is known as “linear progra
o
an introduction t lp

ming solver to compute the solutitells GAMS to use its linear program
and the z is the criterion value that is to be 
e
 Finally, the display statement requests that the activity l
v
table
 
com cated.  However, the structure of the model helps to simplify things.   Notice in th
complete GAMS statement of the model which follows this paragraph that the model is 
defined in steps 

  first the sets 
  then the parameters 
  then the variables 
  then the equations 

 

It takes a while 
representation of a model can be grasped quickly.   

The entire GAMS 
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$Title

       i   canning plants   / seattle, san-diego / 
       j   markets          / new-york, chicago, topeka / ; 

attle     350 
             san-diego   600  / 

 t market j in cases 

             chicago     300 

  Table d(i,j)  distance in thousands of miles 
                    new-york       chicago      topeka 
      seattle          2.5           1.7          1.8 
      san-diego        2.5           1.8          1.4  ; 

 Para

           c(i,j) = f * d(i,j) / 1000 ; 

  Variables 
 x(i,j)  shipment quantities in cases 

      z       total transportation costs in thousands of dollars ; 

 
  Equations 

 cost        define objective function 
      supply(i)   observe supply limit at plant i 
       demand(j)   satisfy demand at market j ; 

 cost ..        z  =e=  sum((i,j), c(i,j)*x(i,j)) ; 

m(j, x(i,j))  =l=  a(i) ; 

 demand(j) ..   sum(i, x(i,j))  =g=  b(j) ; 

  Model transport /all/ ; 
 
  Solve transport using lp minimizing z ; 
  Display x.l, x.m ; 

  A Transportation Problem (TRNSPORT,SEQ=1) 
 
  Sets 

 
  Parameters 
       a(i)  capacity of plant i in cases 
         /    se
 
       b(j)  demand a
         /    new-york    325 
 
              topeka      275  / ; 
 

 
  Scalar f  freight in dollars per case per thousand miles  /90/ ; 
 
 meter c(i,j)  transport cost in thousands of dollars per case ; 
 
 
 

      
 
  Positive Variable x ; 

      
 

 
 
 
  supply(i) ..   su
 
 
 

 76



Chapter 4   Transportation Model in GAMS 

 

 
This completes the discussion of the input for the model.  Next we turn to the way to 
solve the model and a discussion of the results. 
 
 
3. Results 
 
 As was discussed above, Appendix A contains instructions on how to access the 
*.gms file from the GAMS library, how to solve the model and how to examine the 
results by using the listing file, *.lst.   This last step can seem complicated at first because 

e GAMS output files contain a substantial amount of information about the structure of 
the model and its solution.   However, it is simple enough to jump around in the file to 
examine the key parts. 
 One should first locate the Solve Summary part of the output.  To do this search 
in the editor for the string "SOLVER STATUS".    When you do so you will see a section of 
the output that looks like 
 
 S O L V E      S U M M A R Y 
 
     MODEL   TRANSPORT           OBJECTIVE  Z          
     TYPE    LP                  DIRECTION  MINIMIZE 
     SOLVER  BDMLP               FROM LINE  70 
 
**** SOLVER STATUS     1 NORMAL COMPLETION          
**** MODEL STATUS      1 OPTIMAL                    
**** OBJECTIVE VALUE              153.6750 

 
Each time after you solve a GAMS model you should check this section of the output to 
be sure that the model was solved successfully.   The words NORMAL COMPLETION here 
indicate that is the case.   If the solution procedure was not successful you will find words 
like INFEASIBLE or UNBOUNDED.   Be on guard against the fact that the GAMS output will 
provide a solution to the model even when that solution is infeasible.   However, the 
solution provided would not be the optimal solution but rather the last one tried before it 
was determined that the solution was infeasible.   For this reason it is particularly 
important to check the SOLVER STATUS and MODEL STATUS after each run and before the 
solution variables are used. 

th
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 Next skip down the output across the sections labeled "---- EQU" until you get to 
e sections labeled "---- VAR" which looks like 

---- VAR X           shipment quantities in cases 
 
                      LOWER     LEVEL     UPPER    MARGINAL   
 

EATTLE  .CHICAGO       .      300.000     +INF       .          
EATTLE  .TOPEKA        .         .        +INF      0.036       
AN-DI

tle 

del that we were looking for.    These same results are shown a little further 
y 

 

an 
f the file and find the key results.   However, they will be 

th
 

SEATTLE  .NEW-YORK      .       50.000     +INF       .          
S
S
S EGO.NEW-YORK      .      275.000     +INF       .          
SAN-DIEGO.CHICAGO       .         .        +INF      0.009       
SAN-DIEGO.TOPEKA        .      275.000     +INF       .          

 
The interesting part here is the activity level of the shipment variables x in the column 
labeled LEVEL.   This shows, among other things, that 50 cases were shipped from Seat
to New York and 300 cases were shipped from Seattle to Chicago.   This is the solution 
of the mo
down in the output in a section labeled VARIABLE  X.L which is the result of the displa
statement in the GAMS input.  That output is shown below. 
 
----     72 VARIABLE  X.L           shipment quantities in cases 
 
             NEW-YORK     CHICAGO      TOPEKA 
 
SEATTLE        50.000     300.000 
SAN-DIEGO     275.000                 275.000 

 
 This table is somewhat easier to read than the default output and thus you can see
the reason that most GAMS input files end with a series of display statements.   These 
tables are easily found since they are at the end of the long GAMS output so the user c
quickly scroll to the bottom o
there only if you remember to add a display statement at the end of the GAMS input 
statement. 
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 There is just one other key piece of the GAMS output file which we should lo
at before we turn our at

ok 
tention elsewhere.   It is in the "---- EQU" section that we 

--- EQU DEMAND      satisfy demand at market j 

   MARGINAL   

 +INF      0.126       

terested in the MARGINAL column.   These values are called "shadow 
prices" or "dual" va and  import  m  They show us that 
for each additional em  New e objective function will have to 
increase by .225 bu  .1 cag d .126 at Topek These numbers are 
like prices and indicate that it is substantial nsive ply fish to New York 

an to Chicago or Topeka.  Similar numbers in electric power models can be used by 
s that are nearby or far away from 

lectric power generation facilities such as dams, nuclear plants or coal burning plants. 

. Experiments 

As a simple experiment, one might first change the number for the Seattle to New 

 above - and then solve the model again.   Or one 
ight d  

e effects on the optimal solution.   However, when changing 
e supply and demand parameters one must be careful to assure that the total supply is 

rwise the solution to the model will be 

skipped over earlier and that you can quickly find by scrolling back up to it or by 
searching for it with the editor.   The part of interest is the equation-wise output for the 
demand constraints that looks like 
 
-
 
         LOWER     LEVEL     UPPER    
 
NEW-YORK   325.000   325.000     +INF      0.225       
CHICAGO    300.000   300.000     +INF      0.153       
TOPEKA     275.000   275.000    

 
In this case we are in

riables  have ant economic eaning.  
unit of d and at York th
t by only 53 at Chi o an a.   

ly more expe to sup
th
regulators to determine the price of power in citie
e
 So in summary, when looking at the GAMS output you should first check to be 
sure that the problem was solved satisfactorily.   Then focus on the variables section and 
finally take a look at the equation section.   
 
4
 
 
York distance from 2.5 (thousand miles) to 2.7 (thousand miles) - to eliminate the 
multiple solution problem discussed
m ecrease the demand at one or more markets or increase the supply at one or more
plants in order to analyze th
th
greater than or equal to the total demand – othe
infeasible. 
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 A more complicated experiment is to add additional markets and/or plants.   This 

d changes in the parameter and table statements.    In the process one may 

 would be to add production cost at each plant.  This could 
e done by introducing a new parameter as follows: 

 
  Parameters 
       prodcost(i)  production cost of plant i per case 
         /    seattle     1
              san-diego   1

   cost ..     z  =e=  sum((i,j), c(i,j)*x(i,j)) ; 

to 
   cost ..     z  =e=  sum((i,j), (c(i,j) + prodcost(i))*x(i,j) ); 
 

hen the model can be used to analyze the effects of production differences at plants as 
 between pairs of plants and markets.   

If it is desirable to change the criterion from cost minimization to profit 
s 

and might be thought of in three segments with the total demand in 
market  being equal to the sales in the three segments, viz 

 

3

  
 for the market is om plify the notation in the 

helps one to learn quickly how the sets are specified and the ripple effect this has on 
require
switch the model from a focus on fish to steel or fertilizer or glass or computers or 
whatever industry is of interest. 
 Yet more complicated
b

5 
8  / ; 

 
Then the criterion function would also need to be changed from 
 

T
well as transportation cost differences

maximization this can be done by introducing prices at each market.   One way to do thi
is by approximating a nonlinear demand function with a piecewise linear function.  For 
example the dem

 j

1 2s s s s= + +  

jThe subscript itted here in order to sim

following development.   
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The revenue generated by sales at this one market could then be written 
 

1 1 2 2rev p s p s p= + + 3 3s  

 
while being careful t that th fo rice st segment is 
higher than the price nd nt that is, in turn, higher than the price in the 
third segment, i.e. 
 

3

o insure e parameters r the p  in the fir
 in the seco segme

1 2p p p> >     

 
and putting an upper bound on sales in each of the first two segments, i.e. 
 

1 1

2 2

s
s

β
β

≤
≤

 

 
where  is the upper bound in segment one and 1β 2β is t bound in segment 2.    

 
 Then the criterion value becomes the ization of profit which is revenue 

inus cost, that is 

he upper 

maxim
m
 

rev costπ = −  

kjs k=
 

where 
 

( )1 1 2 2 3 3j j j j j j
j J

rev p s p s p s
ε

= + +∑  

where 
 

price in the th segmenkjp k= t in market j

sales in the th segment in market j

 
and the cost includes the transportation and production cost. 
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5. Further Reading 
 
 In the 1970’s and 80’s there was a project at the World Bank under the leadership 

f Hollis Chenery and more directly of Ardy Stoutjesdijk which focused on the 
evelopment of a variety of industrial models for steel, fertilizer, pulp and paper and 
ther industries.   These models used the GAMS language which was under development 
t that time at the World Bank by Alexander Meeraus and his colleagues.    One of those 
odels, namely the one on the Mexican steel industry, is a logical follow-on to the model 

eveloped in this chapter, viz Kendrick, Meeraus and Alatorre (1984).   Also, there is a 
orter, more intuitive, chapter on this model in Kendrick (1990) and various versions of 
e model itself are available in the GAMS library. 

 

o
d
o
a
m
d
sh
th
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ess 

e way that both 
ory and personnel.   

ists 
ic activity 

 seems likely that this will change as a 
eir teeth on Mac's and PC's arrive on the 

 the use of relational database systems 

s in economics. 
d as sets of unrelated time series which 

ists" page on the Internet (see 
oeconomic databases and pull out the 

ay be a very 

me

l forms this would also serve the econometricians very well by permitting easy 

Databases in Acc
 
 
 Database systems have had very substantial impact on th

oduction, sales, inventbusinesses and government agencies manage pr
Curiously though, they have as yet had relatively little impact on the way econom

aintain the data which are used to measure the pulse of economdevelop and m
in both macro and micro economic settings.   It
new generation of economists who have cut th
scene.    
 This chapter provides an introduction to
using the Access software.    An example database developed by Kendrick (1982b) in 
Access is used to illustrate the potential for relational database system

ic data is organize At present most econom
are maintained by different agencies.   Thus to find the consumption data for the U.S. 

for Economeconomy one might go Bill Goffe's "Resources 
Goffe (2004)) and from there track down the macr

ption time series.   From an econometricians point of view this mconsum
serviceable system.   Thus to estimate a consumption function the user might download 
the time series for consumption, income, taxes and interest rates into a spreadsheet such 
as Excel or an estimation package.   Then disposable income would be calculated from 

e and taxes series.   Finally consumption would be regressed on disposable the incom
inco  and interest rates.    

However, there are many other uses of economic data than as inputs to regression  
packages.   Frequently the user does want to run a regression but rather to address a query 
that depends upon the relationships between the data.    If the data is stored and 
organized, not as a set of unrelated time series, but rather as a relational database, such 
queries can be answered quickly and easily.   Moreover, once the data were organized in 

tionarela
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control over aggregation and disaggregation and development of samples for use in 
estimation packages.   
 This chapter begins with an introduction to the terminology of database systems.    
The example database for the U.S. economy is outlined along with the specification of 
this data in the Access software.   Then the procedure for developing and using queries of 
the database is discussed. 
 
1. Domains, Relationships and Joins 
 
 The relationship is the key concept in database methodology.    Yet it is as simple 
as a table.   For example, consider a table which shows the locations and production 
levels of a set of plants as in Table 5.1. 
 

Plant City Commodity Output 
Inland Gary Steel 4 
ARCO Houston Oil 73 
Alcoa Rockdale Aluminum 125 

 
Table 5.1 Production Relationship 

lion tons of steel, the ARCO 
finery at Houston, Texas processed 73 thousand barrel of oil and the Alcoa aluminum 

melter uage of 

ip would be the sets of plants, cities, commodities and 

Production = { (Inland, Gary, Steel, 4) 
  (ARCO, Houston, Oil, 73) 
  (Alcoa, Rockdale, Aluminum, 125) } 

 
Thus the Inland Steel plant at Gary, Indiana produced 4 mil
re
s  at Rockdale, Texas produced 125 thousand tons of aluminum.   In the lang
database systems this table would be called a relationship of the form 
 
 Production (Plant, City, Commodity, Output) 
 
and the domains of the relationsh
output levels used in the database. 
 The Production relationship above would have three elements and each element 
would be a four-tuple, i.e. 
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o, in summary, the Production relationship is a set with elements, each of which is a 

Another key concept in relationship databases is that of the "join".   In order to 
lustra

S
tuple. 
 
il te a join we introduce two more relationships, City-State and State-Region as 
shown in Tables 5.2 and 5.3. 
 

City State 
Gary Indiana 
Houston Texas 
Rockdale Texas 

 
Table 5.2 City-State Relationship 
 

State Region 
Indiana Mid-West 
Texas Gulf-Coast 

 
Table 5.3 State-Region Relationship 
 
The City-State and State-Region relationships have a common "domain", i.e. State.  S
one can join these two relationships to create a new relationship which shows the region 

o 

of each city, i.e. 
City Region 
Gary Mid-West 
Houston Gulf-Coast 
Rockdale Gulf-Coast 

 
Table 5.4 City-Region Relationship 
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 Furthermore, one can then do an additional join of the Production and the City-
Region relationships using the common "City" domain to obtain a Regional Production 
relationship which is shown in Table 5.5. 
 

Region Commodity Plant Output 
Mid-West Steel Inland 4 
Gulf-Coast Oil ARCO 73 
Gulf-Coast Aluminum Alcoa 125 

 
Table 5.5 Regional Production Relationship 
 
This table could then be printed without the Plant domain to produce the desired result as 
shown in Table 5.6. 
 

Region Commodity Output 
Mid-West Steel 4 
Gulf-Coast Oil 73 
Gulf-Coast Aluminum 125 

 
able 5.6 Regional Production 

ll of this may seem like a lot of work to obtain a simple table.   However, notice that the 

production, 
ownership, labor relations, ownership, location and even politics in a single database. 

T
 
A
State-Region relationship can be modified independently of the others.   Thus an 
economist would be free to create his or her own regional aggregation scheme and 
develop queries based on that scheme. 
 
2. An Example Database 
 
 An example database for the U.S. economy from Kendrick (1982b) is provided in 
full in Appendix 5A at the end of this chapter.  The Access file is available on the book 
web site.  That database was created as a simple illustration of how a relational database 
might be constructed with data from the U.S. economy.  The purpose was not be 
comprehensive but rather to illustrate how one might fruitfully link together 
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 The U.S example database is a set of fourteen relationships which link together
commodities, productive units, plants, unions, companies, industries, sectors, cities, 
states, regions, governors and political parties in the fashion outlined in Figu

 

re 5.1. 

 

hich can be told about how these domains are linked is 

 cities which are in states which are in regions 
 states have governors who belong to political parties 

ng the relationships instead of the domains.   The 
puts to and outputs from production processes are described by 

ss, input-output coefficient) 
nd the level of production of each commodity by each process is given by 

ity, process, year, production level). 
he productive units which are used by each process are indicated in 

ive units in each plant are shown in 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 5.1 Links between the Domains in the Example Database 
 
 
The story w
 
   plants contain productive units in which processes are used to produce commodities 
   plants belong to corporations 
   plants have workers who belong to unions 
   plants belong to industries which belong to sectors 
   plants are located in
  
 
 The same story can be told usi
in
  Input-Output (commodity, proce
a
  Production (commod
T
  Capacity Use (process, productive unit, capacity coefficient) 
and the capacity of those product

Commodity Process Productive Unit Plant Union 

City 

Corporation 

Industry 

Sector State 

Region 

Governor Political Party 
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  Capacity (productive unit, plant, year, capacity level). 
The increase in this capacity in a given year at each plant is displayed in 
  Increment to Capacity (productive unit, plant, year, incremental capac
 

ity). 

The plants are owned by corporations 
  Ownership (plant, corporation). 
Also the plants have employees who belong to unions 
  Plant Employees (plant, union, number of employees). 
Moreover the plants belong to industries 
  Industry Composition (plant, industry) 
and the industries to sectors in the economy 
  Sector Composition (industry, sector). 
 
 The plants are located in cities 

 Plant Location (plant, city) 

 City Location (city, state) 

 State Governors (state, governor) 
who are affiliated with political parties 

 Party Affiliation (governor, party). 

One would not be able to tell such a simple story for a full and comprehensive 

s 
u see will contain 

 list of the tables (relationships) which makeup the database as is shown in Figure 5.2 
below. 
 
 

 
which are located in states  
 
which are in turn located in regions of the country 
  State Location (state, region). 
The states have governors 
 

 
 
 
database of the U.S. economy, but this simple story and small database serve well our 
purpose to introduce the use of relational databases in economics. 
 
3. Representation of the Example Database in the Access Software 
 
 We turn now to how this relational database is represented and used in the Acces
software.   When you open this database in Access the first window yo
a
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igure 5.2 Tables in the U.S. Economy Example Database 

Figure 5.2 shows the fourteen relationships which were discussed above.  

 them and then comparing 
em to

stions about the data in 
 

F
 
 
Unfortunately they are in alphabetically rather than the conceptual order used above.   
You can examine the tables one-by-one by double clicking on
th  the corresponding relationship in Appendix 5A.   In particular take a look at the 
Ownership and the Plant Employees tables since we will use both of them in the 
explanation of the query below. 
 The principal use of databases is to answer queries, i.e. que
the database.    First we will take a look at a couple of existing queries and how they are
specified in Access.  Select the "Queries" option in the objects bar on the “useco2000 : 
Database” window and you will see the display shown below in Figure 5.3. 
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Figure 5.3 Queries 
 
 This window shows that four queries have already been developed.  After you 
have seen how they work you will be in a position to develop queries of your own.  
Consider first the Employees of Corporations query.   Select it but be careful to single 
click on it rather than to double click.   This query answers the question of how many 
employees of each corporation are members of each union.   One cannot answer this 
question directly by looking at the individual tables; however the question can be 
answered by combining the information in the two relationships 
 
 Ownership (plant, corporation) 
 Plant Employees (plant, union, number of employees) 
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The first tells us which corporation owns each plant and the second tells us how many 
 combine the two we have a 

ew relationship which we call "Employees of Corporations" and that has the domains 

ther by using the common domain “plant”. 
 Look back to Fig. 5.3 above and notice that at the top of the Queries window there 

 a Design button in the toolbar.  Click that button and a window will open which shows 
. 

employees in each plant belong to each union.   Thus if we
n
 
 Employees of Corporations (union, corporation, number of employees) 
 
This is a "join" of the type we discussed at the beginning of the chapter since we are 
joining two relationships toge

is
the design of the query as in Figure 5.4
 

 
 
Figure 5.4 Design of the Employees of Corporations Query 
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The top part of this window includes the two relationships which are used in the query, 
namely Plant Employees and Ownership.  There is a small zigzag line which connects the 
plant domain in the two relationships.  This indicates that the join is to be performed over 
this domain.   You can move the Plant Employees and the Ownership table around by 
clicking on the label at the top and dragging the table.   This is a capability which will 
come in handy later when you begin designing your own queries. 
 The bottom half of the window in Fig. 5.4 contains a table in which you see listed 
the domains that will be in the new relationship that is created by the query.  Also there 
are check marks which allow you to suppress the display of any of the domains.   We 
need all of them for our query so leave all the check marks for the moment and close the 
query design window by clicking on the "x" in the upper right hand corner. 
 Now you will be back at the "Query" window.   Be sure that the Employees of 
Corporations query is still selected and then click on the Open button in the toolbar at the 
top of the dialog box.  The window which is shown in Fig. 5.5 will appear. 
 
 

 
 
Figure 5.5 Answer to the Employees of Corporations Query 
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 Notice here that the answer to a query is itself a relationship.   You can quickly 
see from the table that U. S. Steel has employees who belong to the machinists (IAM), 
teamsters (IBT) and steel workers (USA) unions.    Notice that there are also two lines in
the table which are almost identical 

 

 USA  ALCOA  0.5 
ALCOA  0.7 

his happens because there are two plants in the database which are owned by ALCOA, 
amely rs 

 can see that it is sometimes 
rm 

hat is 
 

   We will take the simplest case.   There are relationships 
n of states by region so use these two 

ities by region.   Thus we will use 

tionship which we will call 

in the 

Here you see the principles of designing your own query.   Begin by clicking on 
the Query object in the objects bar and without selecting any of the existing queries click 
on the "New" button in the toolbar at the top of the window.   When you do this the 
dialog box sho  wi  s w
 

 
  USA  
T
n  Rockdale and Point Comfort and there are members of the United Steel Worke
of America (USA) employed at both plants.   From this you
necessary to aggregate after a query is run before you have the answer in exactly the fo
you want. 
 Next try designing a query of your own.   We will use one the queries t
already available in the database so that you can see how it should come out in case yours
does not work out as it should.
for the location of cities by state and for the locatio
to create a relationship which show the locations of c
the two relationships 
 
 City Location (city, state) 
 State Location (state, region) 
 
to create a new rela
 
 City/Region2 (city, region) 
 
The name "City/Region2" is used to distinguish the query from the one already 
database called "City/Region1". 
 

wn in Figure 5.6 ll appear as hown belo . 
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Figure 5.6 New Query Dialog Box 
 
 Though you may find it useful to use one of the Wizards later lets do it by hand 
here.   So select the "Design View" option and click on OK.  The "Show Table" dialog 
box will appear as in Figure 5.7. 
 

 
 
F 5. w Table Dialog Box igure 7 Sho

 so click on it and 
 upper right hand corner of the dialog box.  The 

sign dialog box.   Next 
 "Show Table" dialog box the State Location table (scroll down to find it if 

necessary) and then click on the "Add" push button in the upper right hand corner of the 

 
 One of the tables we want to use in the query is City Location,
then click on the "Add" push button in the
City Location table will appear in the top half of the query de
select from the
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Show Table dialog box.   Then close the Show Table dialog box.  Once you have done 
this the window should look something like that shown in Figure 5.8. 
 

 
 
Figure 5.8 Designing a Query 
 
The City Location and State Location relationships should both be displayed in the top 

s is shown in Figure 5.8.    
Before we go further change the name of the query from the default to the choice 

.   
 allow you to rename the query.  Do so and 

then close that small dialog box and you will be back at Fig. 5.8. 
 The next step is to establish the join.  In Fig. 5.8 there is already a join between 
the ID's in the two tables but we do not want this.  So click on the line which connects the 
two relationships and strike the "Delete" key so that the line disappears. You may have 

half of the query design window a
 
discussed above of "City/Region2".   To do this select the File menu and the Save option
A small dialog box will appear which will
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trouble with this at first but keep trying until when you click on the line it becomes 
slightly darker to indicate that it has been selected.  Then you should be able to delete it 
by striking the "Delete" key. 

Next create hips by clicking 
on "state" in one of the tables and dragging to “state” in the other table.   Once you have 

 a join between the "state" domain in the two relations

done this the window should appear as shown in Fig. 5.9. 
 

 
 
Figure 5.9 A Join Between "State" in the Two Relationships 

ag line betwe tate" domains in the two relationships indicates that a 
our work on the top part of the design window 

ntion to the bottom part.   

 
So the zigz en the "s
join has been established.   This completes 
and we can now turn our atte
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 Begin by clicking in the first column at the "Field" row.  When you do so the 
lick cursor will appear there along with a small arrow in the right hand side of the box.  C

on this box to cause a drop-down window to appear as is shown in Fig. 5.10. 
 

 
 
Figure 5.10 Drop-Down Window for Filling in the Field  
 
 Since we want the "city" domain in this first field select the line "City 
Location.city" and the domain "city" will then appear in the box.  Repeat this process for 
the Field row in the next column but this time select "State Location.region" from the 
drop-down window.  Once you have done this the Query Design window should appear 
as is shown in Figure 5.11.   
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Figure 5.11 Completed Query Design 

pleted.   This undoubtedly seems like a long and 
ompli

e of the query which we have constructed.  To do 
is close the Query Design window by clicking on the "x" in the upper right hand corner.   
hen you do this the Query dialog box should appear as shown in Figure 5.12. 

 
The query design process is now com
c cated process but it goes very quickly once you have the hang of it. 
 Now we are ready to make us
th
W
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Figure 5.12 Query Dialog Box Showing the New Query "City/Region2" 

there was already a "city/region1" query which 
performs the same function and to which you can compare if you have had difficulties in 
some of the above steps.   However, for now ignore this and try the one we have created 
by clicking on"City/Region2" and then clicking on the "Open" push box in the upper left 
hand corner of the window.  When you do so the result of the query should appear as 
shown in Figure 5.13. 

 
Now the Query dialog box contains the new query which we have created 
"City/Region2".   As mentioned earlier 
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Figure 5.13 Results of the Query 
 
This is the desired result - a table which shows the region in which each city is located. 
 As was mentioned above this seems like much too much work to find out that 
Houston is in the Gulf Coast region.  However, once you have gained some facility with 
Access the point and click nature of the interface makes it an efficient way to develop 
queries.   Moreover when you have a large database with many relationships and much 
data the power of the methods becomes apparent.  
 
4. Examples 
 
 There are a number of examples of the use of this database given in Kendrick 
(1982b).  Here it will suffice to describe a couple of them. 
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 The first example is from the field on energy economics.   Imagine that as the 
hurricane season a ency m ment officials want to know the amount 
of refining capac lantic a ico co
corresponds to t  and G
to begin from the relationship 
  State n (state, region) 
and from there w ork bac
  C  (city, st
relationship and to the 
  Plant lo t, city
relationship.   Then we need to cap this off by using the 
  Capacity 
relationship. 
 If we do a join from  
city to city just a tate in the pr
new relationship

 Regional capacity (productive unit, region, year, capacity level) 
ation shown in Table 5.7 below. 

 

  Region   

pproached emerg anage
ity on the At nd Gulf of Mex asts.   This roughly 

he East-Coast ulf-Coast regions in the database so we clearly need 

locatio
e need to w kward with the  
ity location ate) 

cation (plan ) 

(productive unit, plant, year, capacity level) 

 plant to plant in the last two of these relationships and from
bove and then from state to s evious pair we will obtain a 
 which we call 

 
that will contain the inform
 

Productive Unit East Coast Gulf Coast Mid-West Units 

Blast Furnace 2.0  2.5 mty 

Steel Shop 2.35  2.8 mty 

Rolling Mill 1.9  2.4 mty 

Alumina Plant  0.8  mty 

Aluminum Plant  1.1  mty 

Primary Still  0.2  mbd 

Catalytic Cracker  0.23  mbd 

Auto Stamping   0.6 muy 

Auto Assembly Line   0.6 muy 

 
Table 5.7 Regional Capacity Relationship 
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Then from this table we can quickly see that that the Primary Still capacity (which is the 
best indicator o pacity) million b  the Coast 
region.   
 You can look at the imple his query in the database by going to the 
Query tab and then selecting the "prod unit/region/capacity" query.   In particular, it is 
useful to single click this query and then click on the "Design" button so that you can see 
how the four relationships are used in the query and how they are linked by plant, city 
and state to c red rel
 A sec  comes s.  From time to time Pres tial politics in 
the U.S. are affected by difficulties in a partic pl e pressure 
that the U.S. auto industry has felt from i e tim
campaign a presidential candidate asks for a list of Democratic governors whose states 
have more than 10,000 people em obile and steel industries. 
 Clearly for this query we need to work back from 
  ) 
to 
  vernors (g te) 

 

ty) 

 Plant employees (plant, union, number of employees) 
lationship while also making use of the 

e 

is table we could then assembly the data required to answer the query. 
These two examples provide an indication of how a relational database of the 

conomy might be used to provide quick answers to a wide variety of questions.   In most 
ases the answers to the questions could be provided in tables.   In other cases the results 
f the queries would be time series or cross sections of data which would then subjected 
 further econometric analysis. 

f the refinery ca  is 0.2 arrels a day in  Gulf 

mentation of t

reate the desi ationship. 
ond example  from politic iden

ular industry.  One exam e is th
mports at som es.  Suppose that in a 

ployed in the autom

Party affiliation (governor, party

State go overnor, sta
to
  City location (city, state) 
to  
  Plant location (plant, ci
Then we need to make use of the 
 
re
  Industry composition (plant, industry) 
relationship.   
 If we do all the required joins properly we should obtain a relationship which w
call 
  Employees by governor and party (industry, governor, party,  

number of employees) 
From th
 
e
c
o
to
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5. Experiments 
 
 A beginning exper t st of the two examples listed 
above; however, it is probably wise to begi mething simpler like the location of 
cities by region as describ i ing the steps in the book.   
 Once you gain som i simple joins you are encouraged to 
develop you own queries. ng r in the database are not sufficient, 
then you may want to add itional  be able to answer richer and 

ore interesting queries. 
ht want to develop your own database with data from financial 

arkets, labor relations or environmental economics as suits your interest.   If you have 
ad a summer job or an internship in a business or governmental agency you have likely 
ade use of some databases and might want to try your hand at developing a similar 

database in Access or some other relational database software. 
 
 
6. Fur g 
 
 The classic book on relational database systems is Date (1977).    To learn more 
about Access 2000 see Andersen (1999). 

iment might be o implement the la
n with so

ed above but do ng this without follow
e confidence w th doing 
  If the existi elationships 
 some add  ones in order to

m
 Finally, you mig
m
h
m

ther Readin
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Appendix  

An Example U.S. Economy Database 

 This appendix contai h ample U.S. economy 
database from Kendrick (198
 

 Process   

5A 

 
ns the relations ips from the ex
2b). 

 

Commodity Pig iron 

production 

Steel production 

pig iron intensive 

Steel production 

scrap intensive 

Rolling flat steel 

products 

Iron ore -1.6    

Pig iron 1.0 -0.9 -0.7  

Scrap iron  -0.4  -0.2 

Liquid steel  1.0 1.0 -1.2 

Scrap    0.2 

Flat steel    1.0 

 

 Alumina 

production 

Aluminu

production 

Primary 

distillation 

Catalytic 

cracking 

m 

Bauxite -1.4    

Alumina 1.0 -1.2   

Aluminum  1.0   

Crude oil   -1.0  

Distillate  0.2 -1.0  

Gasoline  0.3 0.6  

Jet fuel  0.1 0.2  

 

mping Auto assembly  Auto body sta

Flat steel -1.2  

Aluminum -0.2  

Auto bodies 1.0 -1.0 

Automobiles  1.0 

Table 5A.1 Input-Output 
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In the Input-Output relationship negative values indicate inputs and positive values 
outputs.  Thus in the pig iro tons of iron ore are used to produce 
1.0 tons of pig iron.  Then i xt ig iron is used along with 
0.2 tons of scrap to produce  li  activity analysis vectors here 
follow in the tradition of Tj o for an introduction to use of 

see Kendrick (1996). 
Thus a process is akin to a cook's recipe in that it provides a list of ingredients and 

how much is required of each as well as an ication of  the final product or products.  
However unlike the usual recipe for a cake,
multiple outputs, viz. the process abo or primary distillation in an oil refinery where 
crude oil input is transform
 

n production process 1.6 
n the ne column 0.9 tons of that p
 a ton of quid steel.  The
alling Koopmans (1951).  Als

activity analysis in economics 
 

ind
 a process may have a single input and 

ve f
ed into distillate, gasoline and jet fuel.  

 105



Chapter 5   Databases in Access 

 

  Process   

Commodity Pig iron 

production pig iron inte

Steel production 

scrap intensive 

Rolling flat steel 

products 

Steel production 

nsive 

Pig iron - mty 86.8    

Liquid steel - mty  53.0  55.5 

Scrap - mty   18.0  

Flat steel - mty   90.0  

 

tic  Alumina 

production 

Aluminum 

production 

Primary 

distillation 

Cataly

cracking 

Alumina - mty 20.0    

Aluminum - mty  16.0   

Distillate - tby   1.46  

Gasoline - tby   2.19 2.43 

Jet fuel - tby   0.73 0.73 

 

 Auto body stamping Auto assembly 

Auto bodies - muy 9.5  

Automobiles - muy  9.35 

 
Table 5A.2 Production 
Note: mty = million tons per year 
 tby = trillion barrels per year 

muy = m illion units per year 
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  Process   

Productive 

nit 

Pig iron 

production 

Steel production 

pig iron intensive 

Steel production 

scrap intensive 

Rolling flat steel 

products u

Blast furnace 1    

Steel shop  1 1  

Rolling mill    1 

 

 Alumina 

production 

Aluminum 

production 

Primary 

distillation 

Catalytic 

cracking 

Alumina plant 1    

Aluminum plant  1   

Primary still   1  

Catalytic cracker    1 

 

 Auto body stamping Auto assembly 

Auto stamping plant 1  

Auto assembly plant  1 

 
Table 5A  C.3 apacity Use 

o for steel production both use the same 
roductive unit, namely the steel shop. 

 
The Capacity Use relationship simply tells the productive unit in which each process 
runs.   Notice that substitute processes like the tw
p
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plant industry 

Sparrows Point steel 

Rockdale aluminum 

ARCO-Houston oil 

Point Comfort aluminum 

Inland-Gary steel 

Lansing automobile 

 
Table 5A.4 I stndu ry Composition 

industry sector 

 
 

steel primary metal 

aluminum primary metal 

oil petroleum and coal 

automobile transportation equipment 

 
Table 5A.5 Sector Composition 
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productive unit plant capacity level units 

blast furnace Sparrows Point 2.0 mty 

blast furnace Inland-Gary 2.5 mty 

steel shop Sparrows Point 2.35 mty 

steel shop Inland-Gary 2.8 mty 

rolling mill Sparrows Point 1.9 mty 

rolling mill Inland-Gary 2.4 mty 

alumina plant Point Comfort 0.8 mty 

aluminum plant Point Comfort 0.6 mty 

aluminum plant Rockdale 0.5 mty 

primary still ARCO-Houston 0.2 mbd 

catalytic cracker ARCO-Houston 0.23 mbd 

auto stamping plant Lansing 0.6 muy 

auto assembly line Lansing 0.6 muy 

 
Table 5A.6 Capacity 1980 
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productive unit plant increment to units

capacity 

 

alumina plant Point Comfort 0.5 mty 

aluminum plant Point Comfort 0.4 mty 

auto assembly line Lansing 0.0 muy 

auto stamping plant Lansing 0.0 muy 

blast furnace Sparrows Point 0.5 mty 

blast furnace Inland-Gary 0.0 mty 

catalytic cracker ARCO-Houston 0.12 mbd 

primary still ARCO-Houston 0.1 mbd 

rolling mill Sparrows Point 0.4 mty 

ste l e shop Sparrows Point 0.5 mty 

aluminum plant Rockdale 0.0 mty 

steel shop Inland-Gary 0.0 mty 

rolling mill Inland-Gary 0.0 mty 

 
 Increment to Capacity 1981 

Note:  mty = million tons per year 
mbd = million barrels per day 

lion units per year 

otion of investment which is a certain number of dollars spent on a new plant or pieces 
equipment.  Rather the investment above is defined as an increment to capacity and is 

output of the productive unit.  Thus the blast 
 increased by 0.5 million tons per year (an output) 

and the primary still at ARCO-Houston is increased by 0.1 million barrels per day (an 
ut). 

 
 

Table 5A.7

 
 muy = mil
 
 
 The table above is really about investment.  However, it differs from the usual 
n

measured in units of the principal input or 
furnace capacity at Sparrows Point is

inp
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plant corporation 

Sparrows Point United State Steel 

Rockdale ALCOA 

ARCO-Houston Atlantic Richfield Co. 

Point Comfort ALCOA 

Inland-Gary Inland Steel 

Lansing General Motors 

 
Table 5A.8 Ow ern ship 
 
 
 

   Union    

Plant OCAW UAW USA IBEW IBT IAM 

Sparrows Point   1.2  0.3 0.05 

Rockdale   0.5 0.05   

ARCO-Houston 0.4    0.01  

Point Comfort   0.7  0.2  

Inland-Gary   0.4    

Lansing  1.2     

 
Table 5A.9 Plant Employees (in thousands of employees) 

OCAW Oil, Chemical and Atomic Workers 
 UAW  United Auto Workers 
 USA  United Steel Workers of America 
 IBEW  International Brotherhood of Electrical Workers 
 IBT  International Brotherhood of Teamsters 
 IAM  International Association of Machinists 
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plant city 

Sparrows Point Sparrows Point 

Rockdale Rockdale 

ARCO-Houston Houston 

Point Comfort Point Comfort 

Inland-Gary Gary 

Lansing Lansing 

 
Table 5A.10 Plant Location 
 
 

city state 

Sparrows Point Maryland 

Rockdale Texas 

Houston Texas 

Point Comfort Texas 

Gary Indiana 

Lansing Michigan 

 
Table 5A.11 City Location 
 
 

state region 

Maryland East Coast 

Texas Gulf Coast 

Indiana Mid-West 

Michigan Mid-West 

 
Table 5A.12 State Location 
 

 112



Chapter 5   Databases in Access 

 

state governor 

Maryland Harry Hughes 

Texas William P. Clements, Jr. 

Indiana Otis R. Bowen 

Michigan William G. Milliken 

Table 5A.13 State Governors 

governor party 

 

Harry Hughes Democrat 

William P. Clements, r. Republican J

Otis R. Bowen Republican 

William G. Milliken Republican 

 
Table 5A.14 Party Affiliation 

mon domain? 
 Plant Location and City Location   are linked by   city 

   City L

   and   commodity 
Production and Capacity Use  are linked by   process 

  Capacity Use and Capacity   are linked by             productive unit 
are linked by  productive unit 

      and   plant 
  Capacity and Plant Employees  are linked by  plant 
  Increment to Capacity and  

Plant Employees         are linked by  plant 
Industry Composition and  

Plant Employees    are linked by   plant

 
Which relationships share a com
  

ocation and State Location and  
State Governor    are linked by   state 

   State Governor and Party Affiliation  are linked by   governor 
   Ownership and Plant   are linked by  corporation 
   Industry Composition and  
  Sector Composition    are linked by  industry 
  Input-Output and Production   are linked by   process 
   
  

  Increment to Capacity and Capacity  
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Chapter 6 

Thrift in GAMS 
with 

Genevieve Solomon 
 
 

 Many students face a tough financial problem – their expenses exceed their 
income.  Thus they must work to supplement their income and/or borrow money from 
student loan funds.   This familiar student situation provides a good setting to learn about 

ic personal financial planning models.    
such as stocks and bonds; however many 

liabilities in the form of credit card debt 

athematics f the Thrift Model 
 
 Consider a student who has a checking account as well as some money saved in 

ent bonds.    The dynamic equation for the bonds held by the student can be 

dynam
Some students have financial assets 

more students have few assets and substantial 
and student loans.  Thus we provide in this chapter a model in which a student can hold 
assets in either low interest bonds or higher interest stocks.  Also, the student can hold 
some assets in a checking account while paying living expenses out of that account and 
depositing earnings from part time work into the account.   If living expenses exceed 
earnings then the student must either draw down stock and bond assets or else borrow 

 a student loan fund at a lofrom w interest rate or from a credit card firm at a much higher 
interest rate.  

We begin the chapter with a simple version of the model with only bonds, 
checking accounts and student loans and then advance to a more complex model later in 

ter. the chap
 
1.  The M  o

governm
written as  
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(1) 1 (1 )t t t tSb rb Sb Xbc Xcb+ = + − +  

 
where 

Sb =

hus the stock of bonds next period is equal to the stock of bonds this period multiplied 
by one plus the in ) plus new 
bonds that are 
 As is sh sited in 
the student’s c nt can be 

ritten as 

lso, 
the form of a student loan equation that is the amount 

the students ow
 
(3) t

 
where 
 

 

 
stock of bonds

 
rate of interest on bonds

transfer from bonds to checking account
transfer from checking account to bonds

rb
Xbc
Xcb

=
=
=

 

 
T

( Xbc interest rate on the bonds minus bonds that are cashed 
purchased ( Xcb ).    

 bonds ( Xbc ) are depoown below, the proceeds from the sales of
hecking account.  Thus the equation for his or her checking accou

w
 
(2) 1 (1 )t t t tSc rc Sc Xbc Xcb+ = + + −  

 
where 
 

 
stock of funds in the checking account
rate of interest on funds in the checking account

Sc
rc

=
=

 

Likewise additional bonds can be purchased by withdrawing money from the checking 
account, Xcb . 
 The bond and checking accounts are both asset accounts for the student.   A
one can create a liability account in 

es to the bank.   This equation is 

1 (1 )t t tSsl rsl Ssl Xcsl Xslc+ = + − +  

stock of student loans
rate of interest on student loans

transfer from checking account to student loans
transfer from student loans to checking account

Ssl
rsl
Xcsl
Xslc

=
=
=
=
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In this equation Xcsl  is the amount that the student withdraws from his or her checking 

g two more terms so that 
 becomes 

 
(4)  tXcsl Xslc+  

nclude 
) be es 

 

) and the student loan equation (3) and can be written in matrix form as 

6
1 1 0 0 0 0

1 1 1 1 1 1
0 1 1 0 0 t

Xbc
Sb

account to repay student loans and Xslc  is the amount of money borrowed from the 
student’s loan account to deposit in the student’s checking account.   Given these 
additional flows to and from the student’s checking account we need to modify the 
checking account state equation from Eq. (2) above by includin
it

1t t t t+ (1 )Sc rc Sc Xbc Xcb= + + − − t

 
Also the student has a part-time job and deposits these wages, Wa , into the checking 
account and pays his or her living expenses, Le , from the account so we need to i
two more terms in the equations so that Eq. (4 com

(5)  1 (1 )t t t t t t t tSc rc Sc Xbc Xcb Xcsl Xslc Wa Le+ = + + − − + + −  

 
 The model then consists of the bond equation (1), the checking account equation 
(5
 

1 0 0rb Sb
( 0 1 0

Xcb Wa
Sc)

1
0 0 1 0

t t
t

rc Sc
Xcsl Le

Ssl

⎡ ⎤
−⎡ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − + − ⎢ ⎥⎢ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

r in vector difference equation form as 

t

+⎤ ⎡ ⎤ ⎡ ⎤

rsl Ssl
+

⎥ ⎢ ⎥ ⎢ ⎥ ⎢+⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎥ ⎢ ⎥ ⎢ ⎥= + +⎥ ⎢ ⎥ ⎢ ⎥

Xslc⎣ ⎦

 
o
 

1t t tx Ax Bu Cz= + +  (7)  +

 
where the state vectors tx , the control vector and the exogenous vector are defined  tu tz

as 
 

(8)  t

Sb

t

t

Xbc
Xcb

u
Xcsl
Xslc

⎡ ⎤
⎢ ⎥

x Sc
⎡ ⎤
⎢ ⎥= ⎢ ⎥   t

t

Wa
z

Le
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 ⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

   

t
Ssl⎢ ⎥⎣ ⎦
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and the matrices A , B  and C  are 
 

(9 0 1 0A rc) 
0 0 1

rb

rsl

+⎡ ⎤
⎢ ⎥
1 0 0

= +
⎢ ⎥+⎣ ⎦

1 1 1
0 0 1 1

−1 1 0 0 0 0
1 1
0 0

C
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 ⎢ ⎥  1B
⎡ ⎤
⎢ ⎥−= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
Difference equations models like Eq. (7) are frequently called “system” equations and are
widely used in engineering and in economics

 
 to represent dynamic systems.   Also, such 

ve a criterion function that is optimized subject to the system equations.   
A common form of the criterion function is the quadratic tracking function.  This 

ind of criterion function is different than the usual utility maximization criterion used in 
y or 

les and for the 

r multiple purposes such as purchasing a house or car, paying 
r college educations for children and providing retirement income.   Also, the 

individ  checking account.  So the 
esired time path for savings accounts, stock and bond holdings and for checking account 

rying and have a complicated shape.   Also, some goals may be 
ore important than others and thus have higher weights attached to them. 

terion function with only a single 
ate variable

models often ha
 
k
consumer theory, the cost minimization criterion sometimes used in production theor
the terminal wealth maximization sometimes used in portfolio models.  The quadratic 
tracking criterion function includes desired paths for the state variab
control variables and seeks to minimize the weighted squared separation between the 
desired paths and the optimal paths.  For example, an individual may wish to save over 
the course of a lifetime fo
fo

ual may want to be sure to keep a target amount in a
d
balances may be time-va
m

A static version of the quadratic tracking cri
 xst  and a single control variable  can be written 

 
u

(10)  ( ) ( )2 2J w x x u uλ= − + −  

where 

 
te variable

desired value of the control variable

 priority on the control variable

J

u

λ

=

=

=

 

criterion value
desired value of the stax =

 
 priority on the state variablew =
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 Since  and  w λ  are positive and the goal is to minimize , one wants to have the 

sired value .   Thus it is obvious that the criterion 

1)  

J
state variable x  be as close as possible to its desired value x  and the control variable u  
be as close as possible to its de  u
function in this case can be minimized by setting 
 
(1 x x u= =  u

owever, this is usually not possible because the state and control variables are related to 

se as possible to  and  as close as possible to .  Furthermore this 
adeof

 
H
one another through the system equation.  Thus, there is usually a trade-off between 
having x  as clo x u u
tr f is affected by the priority parameters w  and λ .   Thus if w  is large and λ  i
small the optimal solution will be to set x  close to x  and u  not so close to u . 
 The priority param

s 

e  and ters w λ  are also sometimes called penalty weights 
epending on whether one is thinking of them positively as priorities or negatively as 

penalties in a c th terms are used in this book 
and elsewhere 
 When t  control variable are not scalars but rather vectors 
Eq. (10) can be  
 

d
riterion function that is to be minimized.  Bo
in the literature. 
he state variable and the
 written in vector-matrix form as

( ) ( ) ( ) ( )J x x W x x u u u u′ ′= − − + − Λ −  (12)  

where 
 

  

state vector
control vector
desired value of the state vector
desired value of the control vector

x
u
x
u

=
=
=
=

 

W =  diagonal priority matrix for the state vector
 diagonal priority matrix for the control vector

Sb Sb

Λ =

 
Consider only the first term on the right hand side of Eq. (12).   For the case at hand it 
can be written as 

0 0Sb Sb wb
(13)  ( ) ( ) 0

0 0
0x x W x x Sc Sc wc Sc Sc

wslSsl Ssl Ssl Ssl

⎜ ⎟ ⎜ ⎟
′⎛ ⎞− ⎡ ⎛ ⎞−⎤
⎢ ⎥′− − = − −⎜ ⎟ ⎜ ⎟⎢ ⎥

⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎣ ⎦⎝ ⎠ ⎝ ⎠

 

where 
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priority for bonds
priority for checking account
priority for student loan account

wb
wc
wsl

=
=
=

 

   
Taking the transpose of the first vector on the right hand side of Eq. (13) and doing the 

atrix vector multiplication of the remaining matrix and vector in that equation yields 
 

(14)  

m

( ) ( ) ( )
( )⎡

( )
( )

b Sbwb S

x x W x x Sb Sb Sc Sc Ssl Ssl wc Sc Sc

Ssl

⎤−
⎢ ⎥

′ ⎢ ⎥−− − = − − −

wsl Ssl
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

or 
 

(15)  ( ) ( ) ( ) ( ) ( )2 22x x W x x wb Sb Sb′− − = − wc Sc Sc wsl Ssl Ssl+ − + −  

 
Since the W m uadratic form on the left hand side of Eq. (15) is 
equal to a weig fferences between each state variable and its 

alue w ective priorities. 

atrix is diagonal the q
hted sum of squares of the di

desired v ith the weights being the resp
From a similar set of mathematical statements it could be shown that the quadratic 

form in the control variables in Eq. (12) is  
 

(16)  
( ) ( ) ( ) ( )

( ) ( )
2 2

u u u u bc Xbc Xbc cb Xcb Xcb

csl Xcsl Xc l Xslc Xslc

λ λ

λ λ

− Λ − = − + −

+ − + −
 

where 

  

priority on transfers from bonds to checking
priority on transfe  from cking to bonds
priority on transfers from checking to student loan
priority on transfers from student loan to 

bc
cb
csl
slc

22

s slc

′

 chers
λ
λ
λ
λ

=
=
=
= checking

 

 
The priorities on the control variables in the λ  parameters work analogously to those o
the state variables, i.e

n 
. a large value for the pr ity indicates that the students wants to 

hold that control variable close to its desired v lues.   Of course, what really matters is 
not the absolute values of the  and 

ior
a

w λ  priorities but their values relative to one another.   
So the student who wants to assure that the state variables reach their desired values will 
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assign relatively high priorities to the state variables with the  parameters and relatively 
w priorities to the control variables with the 

w
λlo  parameters. 

 In sum n function for a single 
period as  
 

(17)  )

mary, we can write the quadratic tracking criterio

( ) ( ) ( ) (J x x W x x u u′ ′= − − + − Λ u u−  

 
However, we want to use this criterion function in a multiperiod model, therefore we 

8) 

need a dynamic version of Eq. (17) that can be written 
 

(1 ( ) ( ) ( ) ( ) ( ) ( )
1

0

1 1
2 2

N

N N N N N t t t t t t t t
t

J x x W x x x x W x x u u u u
−

=

⎡ ⎤′ ′ ′= − − + − − + − Λ −⎢ ⎥⎣ ⎦

It is c

∑  

 

ustomary to include the 1  fractions in the criterion function so
2

 that when the 

deriv adratic function are taken the first order conditions will not include a 
two.  een the priorities on the state variables in the 
termi  other time periods, .   This permits 

differ he terminal period than in other 
periods.  Also the control vector for the terminal period does not appear in the 

e

atives of this qu
 Also, a distinction is made betw
nal time period N , i.e. NW , and those in all W

ent priorities to be attached to the state variables in t
Nu

criterion since it do s not affect the state until period 1N +  and that period is not 
included in the model. 
 In summary the dynamic control theory model seeks to find the control variable
  ( )0 1 1, , , Nu u u −  

that will minimize the criterion function 
 

s 

( ) ( ) ( ) ( ) ( ) ( )
11 1

2

N

N N NJ x x
−

02N N t t t t t t t t
t

W x x x x W x x u u u u
=

⎡ ⎤′ ′ ′(19) = − − + − − + − Λ −⎢ ⎥⎣ ⎦∑  

 
subject to the s
 
(20) 

ystems equations (from Eq. (7)) 

1t t t tx A+ =

 
with the initial

x Bu Cz+ +  

 conditions 
 
(21) 0  givenx  
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The student financial model described above can be specified in this form using the state, 

(22)  

control and exogenous variable vectors. 
 

t

Xbc

t

t

Sb
x Sc= ⎢ ⎥   t

Ssl⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥ Xcb

u
Xcsl
Xslc

⎡ ⎤
⎢ ⎥
⎢ ⎥   t

t

z
Wa⎡ ⎤

=
⎢ ⎥ Le

= ⎢ ⎥
⎣ ⎦

 

⎢ ⎥
⎣ ⎦

 
and the matrices A , B  and C   
 

(23) 1 0A rc
⎡
⎢= +⎢ ⎥
⎢ ⎥⎣

 
1 0 0rb+ ⎤

⎥
1 1 0 0− 0 0

1 1
0 0

C
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 0
0 0 1 rsl+ ⎦

1 1 1 1
0 0 1 1

B
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎦

 
−⎣

 
with the exogenous variable ( )0 1 1, , , Nz z z − 0xand initial state   given. 

f Texas.  
a th hat it 

es to the bond and checking 
ccounts used above.   Also, the model incl o liabilities rather than one since the 

student can bo at most popular 
source of student support - a credit card account.   Thus the state vector for this model has 
five variables, 
 

(24)  
⎢ ⎥
⎢ ⎥

 where  Sc
Scc

 
2.   The Evanchik Model 
 

A model of this form was developed by Michael Evanchik (1998) when he was an 
undergraduate in the Computational Economics class at the University o
Evanchik’s model is slightly more complicated th n e model described above in t
includes three types of assets rather than two by adding equiti

udes twa
rrow not only from a student loan account but also from th

i.e. 

Sb⎡ ⎤ stock of bondsSb

tx ⎢ ⎥=
Se⎢ ⎥

⎢ ⎥ stock of equitiesSe
=
=

Sc
Scc

stock of funds in the checking account
stock of credit card loans

=
=

 

tSsl⎢ ⎥⎣ ⎦ stock of student loansSsl =
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 Correspondingly, the control vector include  more elements to permit a variety of 
transfers among these accounts

s
.   The control vector is 

(25)  

 
Xbe
Xbc

⎡ ⎤
⎢ ⎥

Xbcc
⎢ ⎥
⎢ ⎥

Xbsl
Xec

⎢ ⎥

tu
Xecc
Xesl

Xcacc
Xcsl
Xccsl

⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥⎦

 

here 

=

transfer from equitie ard account
er from equities to student loans

a  account

Xecc =

to student loan account
nt to student loan account

 

 

⎢ ⎥
⎢

= ⎢
⎢
⎢ ⎥
⎢
⎢
⎢
⎢
⎢⎣

w
transfer from bonds to equitiesXbe

Xbc
=

transfer from bonds to checking account

  

transfer from bonds to credit card account
transfer from bonds to student loans

transfer from equities to chec

Xbcc
Xbsl
Xec

=
=
= king account

s to credit c
transfXesl =

transfer from checking account to credit c rdXcacc =
transfer from checking accountXcsl =
transfer from credit card accouXccsl =
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There is one anomaly in the variable naming scheme abov which has been introduced
eliminate a source of confusion.  The transfer which would have been labeled Xccc  to be

e  to 
 

onsistent with all of the rest of the variable names has instead been labeled  to 
ecking account to the credit card account 

 this chapter, 
ears after 

y in the 
anchik model so that the exogenous variable vector for the model in this chapter is 

Sh =

 
 The GA the useful property that it is possible to 
put explicit up rol variables.  For example there are 
requently upp  boun  can borrow per semester from the 

n.  

Xcaccc
make it clear that the transfer is from the ch
rather than vice versa. 
 A GAMS version of the model was created by one of the authors of
Genevieve Solomon, while she was a student in the same class a couple of y
Michael Evanchik.   She added a third exogenous variable to the two alread
Ev
 

(26)  t

t

Wa
z Le

Sh

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 
wagesWa =

  living expensesLe =  
scholarship

MS version of the thrift model has 
per bounds on the state and cont

f
st

er ds on how much money a student
udent loan organization.   Also, credit cards frequently have upper bounds on the 

amount that a student can borrow.  
 
3. The Model in GAMS 
 
 The GAMS program corresponding to the thrift problem is available at the book 
web site.  The first step for the GAMS version of the model is to define the sets. There 
are four sets: state variables, control variables, exogenous variables and the time horizo
These sets are declared and defined in GAMS as follows:   
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Sets n  states     / Sb, Se, Sc, Scc, Ssl / 

c, 
, Xccsl/ 

in mathematics as 

     m  controls   /Xbe, Xbc, Xbcc, Xbsl, Xe
csl     Xecc, Xesl, Xcacc, X

     k  exogenous  / Wa, Le, Sh / 
     t  horizon    / 2000, 2001, 2002, 2003, 2004 / 

 

Notice here how sets are specified in the GAMS language.  In this model there are five 
state variables.    The set of states could be specified 
   { }, , , ,N Sb Se Sc Scc Ssl=  

The equivalent GAMS statement would be 
   n = / Sb, Se, Sc, Scc, Ssl / 

GAMS has forward slashes as set delimiters while mathematics has braces.   This means 
ou s ould be very careful not to use forward slashes in a GAMS model in text 
ents like "dollars/ton" since the slash will confuse the GAMS compiler and may 

     n  states     / Sb, Se, Sc, Scc, Ssl / 

r statements are used to declare and define the sets of controls variables m, 
exogenous variables k and the set of time periods t. 

Next three subsets of the time set are declared.  In many computer languages a 
ing” it.   That distinction is 

lso u he statements below are used to declare three sets that will be 
defin e elements in the set will be determined. 
 

     ti(t) initial period 

od and the terminal period sets will be important later for 

tire 

he systems equation q. (20) 

that y h
statem
result in an error.   Also, we include in the statement for the set of state variables the 
word “state” which is the text that is associated with the set n.   Thus the complete 
statement in GAMS for the set n is 

Also, simila

 
distinction is made between “declaring” an element and “defin
a sed here since t

hen thed later w

     tu(t) control horizon 

     tz(t) terminal period ; 

 
The control horizon, initial peri
the equations.  Also, in these three statements the (t) is used to indicate that the 
preceding set, viz. tu, is a subset of the set t. 

Here in the body of this chapter we will introduce the parts of the GAMS 
statement of the model one section at a time.   Later you may want to look at the en
GAMS statement of the model that is in Appendix 6A at the end of the chapter. 
 Next tables are created to represent the matrices in t s, E
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 A   (one plus interest rates) (5x5) 
 B   (direction of transfers) (5x10) 

exogenous variable signs) (5x3) 
 w   (state variable penalty matrix) (5x5) 

wn  (state variable penalty matrix for the terminal period) (5x5) 
  ontrol variable penalty matrix) (10x10) 

lias” statement as follows: 

 

 

summations for 
atrix operations in GAMS.  Also the aliases will be needed when matrices are 

The next part of the input defines the time subsets, tu, ti and tz of the full time 
set .  The first of these, tu, is the set of all time periods other than the terminal period 

ed with the GAMS statements 

es$(ord(t) lt card(t)); 

 two GAMS keywords ord and card that are operators 

in the s onsider a set  in mathematics 

 C   (

 
 lambda (c
 
In doing this we also need an “a
 

Alias (n,np), (m,mp) ; 

This alias statement simply makes a copy of the set n and calls it np (n prime) and of 
the set m and calls it mp (m prime).   This alias is necessary for setting up 
m
transposed in later equations.  
 

t

and is defin
 
 tu(t) = y

 

This statement makes use of
defined on sets.  “card” is an abbreviation for cardinal, which is the number of elements 

Set.  C
  
 { }, , ,S a b c d=  

” is an 
inal, which represents the ordinal position of each element in the set.  

hus the element  is in the third ordinal position in the set above. 
he G MS statement defining the set tu can be read, “tu is the set of elements 

hose ordinal position in the set t are strictly less than the cardinality of the set”.  Thus, 
recalling that the set t is 
 

tu =    / 2000, 2001, 2002, 2003, 2004 / 

 
The cardinality of this set is four since it has four elements.   In contrast “ord
abbreviation for ord

cT
 So t A
w
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we see that the set tu is 
 

 

i.e. it l the t element. 
The second of the subsets of t is the set ti, which is the initial time period only.  

ti(t) = yes$(ord(t) eq 1); 

2000”. 
 third ubset of t is defined with the GAMS statement 

n the set t that are not in the set tu and that is only the 
st element, namely “2004”. 

 ments of the full set and the three subsets are 
display  in the output file with the statement 

oing set manipulations in GAMS it is useful to display the results as a check 
gainst

tu =    / 2000, 2001, 2002, 2003 / 

 is al  elements in the set t except the las
 
It is defined with the GAMS statement 
 
 
 
Thus the set ti contains the element which is in the first position in the set t, namely 
“
 The  s
 
 tz(t) = not tu(t); 

 
Thus tz is the set of all elements i
la

Finally, just as a check, the ele
ed

 
 Display t, ti, tz, tu; 

 
When d
a  errors. 
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 Once the sets are specified, then the data can be input using the "table" and 
"parameter" keywords as shown below.  Consider first the use of the table keyword to 

put thein  A  matrix. 

Table a(n,np)  state vector matrix 

Sc                   1.01 
13 
      1.03 

tion b
ent names used in the input of the table do indeed belong to the 

pprop  columns of the table.   Thus if the user misspells an 

e absence of an explicit data entry in a 
ment of the matrix being set to zero.   So all the elements in the 

 

        Sb     Se     Sc      Scc     Ssl 
Sb     1.05 
Se            1.10 

Scc                           1.
Ssl                             

      

Observe that the parameter “a” is followed by the sets over which it is defined, i.e. it is 
written as “ seful a(n,np)”.    It is not necessary to include the sets here, however it is a u

ecause when the sets are provided the GAMS complier can check to be sure precau
that all the elem

riate sets for the rows anda
element in the table input GAMS will issue a warning.   

Following the name of the table and its set is a line of text, i.e. 
           state vector matrix 

The ability to use text like this phrase makes GAMS statements much easier to read and 
understand.  The convention in GAMS is that th
table results in that ele A  
matrix others than those on the diagonal are set equal to zero. 
 Recall that the diagonal elements in the A  matrix are one plus the appropriate 
interest rate.   So the interest rates on bonds is 5 percent, on equities is 10 percent and on 
checking accounts is only 1 percent.   (Of course bonds and equities have greater risk 
than checking accounts.  Comparative risk is not addressed in this model but is included 
in the models on portfolio selection used later in this book.)  One way to alter the model 
to better represent the financial condition of a given individual is to change the interest 
rates in this table to reflect the times and the person’s own financial situation.    

 127



Chapter 6   Thrift in GAMS 

 The input table for the B  matrix in GAMS is 
 

Table b(n,m)  control vector matrix 
ecc  X       Xbe   Xbc  Xbcc  Xbsl  Xec  X

Sb      -1    -1   -1    -1 
esl 

    -1    -1 
                
    -1          
          -1  

 

Scc      -1          1 
Ssl           -1    -1 

 
This table is too wide to fit on a single page so the “+” symbol is used between the two 
parts of the table in GAMS to indicate that additional columns of the table are input in a 
second set of rows. 
 Consider first only the first four columns of the 

Se       1                    -1
  1Sc             1             

Scc                -1           
Ssl                       -1    

+ 
       Xcacc Xcsl Xccsl 
Sb 
Se   
Sc       -1   -1 

B  matrix, which are all transfers 
out of the bond account.   The first two columns (  and ) are transfers to other 
assets, i.e. bonds to equities and bonds to the checking accou t.   Thus there is a minus 
one in the bonds row and a plus one in the equities row and the checking account row 
respectively.    The next two columns (  and ) are transfers from an asset 
account (bonds) to liability accounts (credit card and student loan respectively) so there is 
still a minus one in the bond row.  However, there are also minus ones in the credit card 
and student loan rows since these transfers have the effect of decreasing the amount of 
credit card debt or of student loan debt through the action of selling bonds to payoff some 
of these loan amounts. 

Xbe Xbc
n

Xbcc Xbsl
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 The input table for the C  matrix in GAMS is  
 

Table c(n,k)  exogenous vector matrix 
        Wa      Le      Sh 

 since wages and 
 are withdrawn from it. 

t next.  The matrix for 
 terminal period, , is 

trix 

s np are used.  This is not 
 that is used later in the 
riority for the checking 
olution that the checking 

 than will other 
ate variables to their respective desired values. 

Next comes the input for the  matrix that is the state variable priority matrix 

Scc                           200 
Ssl                                    1 

 

Sb 
Se 
Sc      1       -1       1 
Scc 
Ssl 

 
The only entries in this matrix are in the checking account row
scholarships are deposited in this account and living expenses
 The criterion function priorities (penalty matrices) are inpu

Wthe priorities for the state vectors for all periods other than the
 

Table w(n,np)  state vector matrix penalty ma
        Sb     Se     Sc      Scc     Ssl 
Sb     100 
Se             100 
Sc                    400 
Scc                           200 
Ssl                                    0 

 
This is a diagonal n n×  matrix; however the set  and its an lia
essential here but it makes it easier to understand the notation
specification of the criterion function in GAMS.     Since the p
account is set high at  one would expect to observe in the s400

sired value account state variable Sc  will track more closely to its de Sc
st

NW

for the terminal period N . 
 

Table wn(n,np)  terminal state vector matrix penalty matrix 
        Sb     Se     Sc      Scc     Ssl 
Sb      200 
Se             200 
Sc                    800 
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These values are set twice as high as the priorities for the state variables in all other time 
periods. 

This is followed by the input for the  Λ  matrix that is the control variable priority 

 set to 20 except for those for transfers from the bond account to 
the che

 

matrix for all time periods. 
 

Table lambda(m,mp) lambda matrix 
       Xbe  Xbc  Xbcc  Xbsl  Xec  Xecc Xesl  
Xbe    20 
Xbc          1 
Xbcc               20 
Xbsl                    20 
Xec                           20 
Xecc                                20 
Xesl                                     20 
 
+ 
         Xcacc     Xcsl     Xccsl 
Xcacc      1 
Xcsl                 1 
Xccsl                         20 

 
All of these priorities are

cking account, from the checking account to the credit card account and from the 
checking account to the student loan account.   Thus these three transfers are permitted to
deviate more from than their desired paths than are the other transfers. 
 Since the desired path for the state vector tx  ( tx  with a tilde over it) is time 

varying it can be conveniently input with a table statement. 
 

Table xtilde(n,t)  state vector desired paths 
 
      2000        2001         2002       2003        2004 
Sb 
Se 
Sc    1000        1000         1000        1000        1000 
Scc   2000        2000         2000        2000        2000 
Ssl 

 
Recall the GAMS convention that a blank input in a table is treated as a zero.   Therefore 
the desired path for bonds, equities and student loans are all set to zero.  It is desired that 
the checking account hold steady at about $1,000 and the student’s credit card debt also 
hold steady but at around $2,000. 
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 Also the desired path for the control vector tu  is time varying, so it can likewise 

be input with a table statement. 
 

Table utilde(m,t)  control vector desired paths 
 

Xbe 

nce this table in entirely blank the desired values for all the transfers in all time periods 

 

 0 
   Ssl   0 / 

 can think of the parameter keyword in GAMS as the way 
 input

s 

e 

          2000     2001     2002     2003 

Xbc 
Xbcc 
Xbsl 
Xec 
Xecc 
Xesl 
Xcacc 
Xcsl 
Xccsl 

 
Si
are set to zero. 
 After the matrices in the systems equations and criterion function are input with
table statements, the next step is to input the initial period values of the state vector.  
Since this is a vector it can be input with a parameter statement.  
 

Parameter 
        xinit(n)    initial value   /    
   Sb 4000 
   Se    0 
   Sc 1000 
   Scc  

 

As a first approximation, one
to  a vector of data and the table keyword as the way to input a matrix.   Thus the 
“xinit(n)” parameter was used above to input the vector that contains the initial value
of the state variables.    

So the student begins with $4,000 in bonds, no equities and $1,000 in his or her 
checking account.   Also the student does not initially have any credit card debt or student 
loan debt.  This vector is particularly useful in the experiments with this model since th
most obvious thing to do to tailor the model to an individual’s personal situation is to 
change the initial values for the state variables. 
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 Next comes the input for the exogenous variables tz that are time varying.      

Since this is a vector that changes over time it can be input with a table statement , i.e. 

    20000       20000 
h       0           0            0           0           0 

 

he stud  time job of $15,000 a year and has living 
 

 
he 

.

Variables   
 u(m,t)    control variable 
      j         criterion ; 
Positive Variables       
 x(n,t)   state variable ; 

 
Aside from the criterion variable j the only two sets of variables in the model are the 
control variables u and the state variables x.   The control variables can be either positive 
or negative.   For example if the variable  is positive it is a transfer from the bond 
account to the checking account and if it is negative it is a transfer from the checking 
account to the bond account.  On the other hand, the state variables must be positive.  For 
example Scc is a liability account and is the credit card debt of the student.  If this 
amount were negative it would mean that the student was lending money to his or her 
credit card company.   While some students might like to do that at 13 percent, it is 
unlikely that the credit card company would be willing to enter into such a deal.   
Therefore the restriction that the state variables must be positive is imposed in GAMS 
with the key words Positive Variables. 

                                                

 
Table z(k,t)  exogenous variables 
 
      2000        2001         2002        2003        2004 
Wa   15000       15000        15000       15000       15000 
Le   20000       20000        20000   
S

T ent has wages from his or her part
expenses of $20,000 a year and no scholarship help.  Therefore the student must borrow
approximately $5,000 a year or draw down his or her assets.  Like the initial conditions
this table is an obvious place for tailoring the model to an individual either by altering t
wages, living expenses and scholarship aid over time or inputting a pattern more closely 
related to the individual own situation with respect to these exogenous variables 10

 The variables are the next thing to be assigned in the GAMS program. 
 

Xbc

 
10 Thanks to one or our students, Vivek Shah, for helping to develop the time-varying exogenous variable 

version of the thrift model. 
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 Next the equations are declared in GAMS with the statements 
 

 Equations   criterion       criterion definition 
       

 
del are the single equation for the criterion 

nd five time 

Next the equations are defined, beginning with the criterion function.  Recall from 

       stateq(n,t)     state equation ; 

So the only sets of equations in this mo
function and the n t×  state equations.   Since there are five state variables a

riods then the model will have 25 state equations. pe
 
Eq. (19) that this equation is in three parts, the state variables for the terminal period, the 

he control variables for all other time state variables for all other time periods and t
periods, i.e. 
 

(19) ( ) ( ) ( ) ( ) ( ) ( )
1

0

1 N

t t t t t t t t
t

x x W x x u u u u
−

=

1
2 2N N N N NJ x x W x x ⎡ ⎤′ ′+ − − + − Λ −′= − − ⎢ ⎥⎣ ⎦∑  

 the first part, i.e. the state variables in the terminal time 
r-matrix form, as 

 
Consider for the moment only
period.   This can be written with indices, rather than in vecto
 

( ) ( )1(27)  
2 i I j J

iN iN iN jN jNJ x x w x x− −  

tement 

.. 

np)*(x(np,tz) - xtilde(np,tz)) )  

n, criterion, and the two dots (..) 
llowing the name signal to the GAMS compiler that the name has been completed and 

∈ ∈
∑= ∑

 
is, in turn, can be represented in GAMS with the staTh

 
criterion
j =e=  
 .5*sum( (tz,n,np), 
 (x(n,tz) - xtilde(n,tz))*wn(n,

 
This code begins with the name of the equatio
fo
the equation itself is to follow. 
 The sum in the mathematics in Eq. (27) is over the two sets I  and J  while t

 in GAMS has only a single 
he 

 only over two 
sum in GAMS is over three sets (tz,n,np).   Since the set tz
element, namely the terminal period N  in fact this sum in GAMS is really
sets.  Recall that n is the set for the state variables, which are the stocks of bonds, 
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equities, checking account, credit card account and student loans.   Also the set np in 
S is the alias of the set n, i.e. it is a copy of the set. 

the criterion function, namely the state variable for all periods 
n in mathematics with indices as 

8)  

GAM
 The second part of 
other than the terminal period is writte
 

( ) ( )1(2
2 t Tu i I j J

it it it jt jtx x w x x− −∑∑ ∑  

here 
 

+ .5*sum( (tu,n,np), 

u, the set of all time periods other 
al period, and n and np the state variable set and its alias. 

ritten in mathematics with indices as 

9)  

∈ ∈ ∈

w
  set of all time peTu = riods except the terminal period

 
and this is written in GAMS as 
 

  (x(n,tu) - xtilde(n,tu))*w(n,np)*(x(np,tu) - xtilde(np,tu)) )  

 

The sum here is indeed over the three sets, namely, t
than the termin
 
The final piece of the criterion function is w
 

( ) ( )1
2 it it it jt jt

t Tu i I j J
u u u uλ

∈ ∈ ∈

− −∑∑ ∑  (2

 

and in GAMS as 
 
 + .5*sum( (tu,m,mp), 
  (u(m,tu) - utilde(m,tu))*lambda(m,mp)*(u(mp,tu) - utilde(mp,tu)) ) ; 

tu ntrol variable set m and its 

In addition to the criterion function the only other equations in the model are 

 
o this sum is over the time period set  and also over the coS

alias mp. 
 
those in the set of system equations.  Recall that these equations are written 
mathematically as 
 
(20)  1t t t tx Ax Bu Cz= + +  +
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In GAMS they are written 

t))) +  
)) +  

  sum(k, (c(n,k)*z(k,t))); 

e name of the equation in GAMS is stateq and it is defined for the sets n and t+1.   

 
t+1).. stateq(n,

 x(n,t+1) =e=  
  sum(np,(a(n,np)*x(np,
  sum(m, (b(n,m)*u(m,t)

 
Th
Recall that the set t is  
 
(30)  { }2000,2001,2002,2003,2004T =  

Then the set t+1 in GAMS is defined as the set t less the first element in the set, namely 

1)  
 

{ }2001,2002,2003,2004  (3

 
Thus stateq is defined over all time periods in the model except for the first time period. 

Finally it is necessary to specify the initial conditions for the state variables of the 
l with the GAMS statement 

x.fx(n,ti) = xinit(n);  

 

fix .fx is used in GAMS as an abbreviation for “fixed” .  In this statement then 
 vector x is fixed in period ti, which is the initial period, to the values in the 
init which is the parameter vector that contains the initial conditions for the 

odel. 
ersion of the model, upper bounds on the 

ed in GAMS statement.  
e equations and before the Solve statement with upper 
ample of this is shown below. 

an upper 
student loan.  

 
mode
 

The suf
tethe sta

vector x
m
 Though it is not shown in the present v

tudent loan account can be includcredit card account and the s
This is done at the end of th
bounds on variables.  An ex
 

x.up('Scc',t)=5000; 
x.up('Ssl',t)=7000; 

 
The  means the upper bound for the variable .  So  is x.up x x.up('Scc',t)

bound on the credit card and the x.up('Ssl',t) is the upper bound on the 
One can change these bounds to fit his or her own financial situation. 
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 Next a name is assigned to the model while also indicating the equations that are 
cluded with the statement, in this case all of the equations 

ed with a nonlinear 
ogramming solver by minimizing j, the criterion function, i.e. 

r an introduction to nonlinear optimization solvers see App. F and for a discussion of 
r indexed model like this one see App. H. 

 x and u is not the number one but rather the letter l and 

odel it is also possible to solve the model 
inal wealth.    

e end of the book contains instructions 
 running GAMS.  Recall from that discussion that examining the results from a GAMS 

t because the GAMS output files contain a substantial 
bout the structure of the model and its solution.   However, it is 

d in the file to examine the key parts. 
First locate the Solve Summary part of the output.  To do this search in the editor 

 do so you will see a section of the output 
at looks like 

in
 
 Model track  /all/ ; 

 
This is followed by a statement directing that the model be solv
pr
 
 Solve track minimizing j using nlp ; 

 
Fo
the stacking method in GAMS that is used fo

Finally a table of the results is obtained with the use of the statement 
 
 Display x.l, u.l ; 

 
The suffix “.l” on the variables
is used to indicate the activity level of the variable. 
 Though it is not shown in the present m
y maximizing termb

 
4. Results 
  

As was discussed above, Appendix A at th
on
run can seem complicated at firs

ount of information aam
simple enough to jump aroun
 
for the string " SOLVER STATUS".    When you
th
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               S O L V E      S U M M A R Y 
 
     MODEL   track               OBJECTIVE  j 
     TYPE    NLP   

*** SOLVER STATUS     1 NORMAL COMPLETION 

              DIRECTION  MINIMIZE 
     SOLVER  CONOPT              FROM LINE  166 
 
*
**** MODEL STATUS      2 LOCALLY OPTIMAL 
**** OBJECTIVE VALUE       1377722382.8446 

 

As was discussed earlier, each time after you solve a GAMS model you should check this 
section of the output to be sure that the model was solved successfully.   The words 
“NORMAL COMPLETION” here indicate that is the case.   If the solution procedure 
was not successful you will find words like "INFEASIBLE" or "UNBOUNDED".   
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 Next skip down the output across the sections labeled "---- EQU" until you get to 
the section labeled "---- VAR x  state variable" which looks like 

---- VAR x  state variable 
 

      LOWER     LEVEL     UPPER    MARGINAL 

b .2000
b .2001      .      463.607     +INF       . 

  -1.142E-9 
b .2003      .        2.981     +INF  -3.220E-9 

e .2001      .      405.341     +INF       EPS 
       39.804     +INF  -1.291E-9 

03      .       12.292     +INF  -2.918E-9 
04 +INF  18069.230 

c .2000 0.000 23323.625 
c .2001      .     1107.581     +INF  -1.062E-9 

    1766.529     +INF  -9.31E-10 
Scc.20
cc.20
cc.2004      .     2096.163     +INF       EPS 

         .         .    -2.421E+4 
sl.2001      .         .        +INF  39980.703 

NF  1.1896E-9 
NF  3.2469E-9 

ng p rt here is the activity level of the shipment variables x in the column 
 "LEVEL".   This shows, among other things, that there was 4000 in bonds in time 

e solution of the model that 
king for.    These same results are shown a little further down in the output in 

 

      
 
S   4000.000  4000.000  4000.000 4.2771E+5 
S
Sb .2002      .       17.262     +INF
S
Sb .2004      .         .        +INF  19101.665 
Se .2000      .         .         .    24584.643 
S
Se .2002    .  
Se .20
e .20S       .         .        
S   1000.000  1000.000  100
S
Sc .2002      .     1001.230     +INF  -1.495E-9 
Sc .2003      .      998.805     +INF  -3.380E-9 
Sc .2004      .      975.797     +INF       EPS 
Scc.2000      .         .         .    -4.280E+5 
Scc.2001      . 

02      .     1984.219     +INF       . 
03      .     1991.238     +INF       . S

S
Ssl.2000    .  
S
Ssl.2002      .     4018.936     +I
Ssl.2003      .     9371.548     +I
Ssl.2004      .    14850.699     +INF       . 
 
 

eresti aThe int
beledla

period 2000 and 463 in bonds in time period 2001.  This is th
we were loo
a section labeled "----    169 VARIABLE  x.L  state variable" which is the result 
of the display statement in the GAMS input.  That output is shown below. 
 

 138



Chapter 6   Thrift in GAMS 

----    169 VARIABLE  x.L  state variable 
 
           2000        2001        2002        2003        2004 
 
S  4000.000     463.607      17.262       2.9b    81 
e                  405.341      39.804      12.292 

0.00     1107.581    1001.230     998.805     975.797 
        1766.529    1984.219    1991.238    2096.163 

Ssl                            4018.936    9371.548   14850.699 
 

a  the end of the long GAMS output so the user can 
uickly scroll to the bottom of the file and find the key results.   However, they will be 

ember to add a display statement at the end of the GAMS input 
at the GAMS output you should first check to 

e sure th  solved satisfactorily.   Then focus on the variables section.  
R checking 

ccount and that the student has $15,000 per year in wages and $20,000 in living 

o borrows roughly $2,000 on her 

15,000 by the last period.  So in order to finance the $5,000 
ortfall each year over the four year period the student cashes in $4,000 in bonds, 

00 on her edit card and borrows about $15,000 from the student loan fund.   
Meanwhile the student continues to hold about $1,000 in her checking account in all time 

. 

S
Sc     100 0
Scc        

This table is somewhat easier to read than the default output and thus you can see the 
reason that most GAMS input files end with a series of display statements.   These tables 
are easily found since they re at
q
there only if you rem
statement.  So in summary, when looking 
b at the problem was

ecall that the student starts with $4,000 in bonds and $1,000 in her 
a
expenses.   Also, the desired path for the checking account is $1,000 and for the credit 
card account is $2,000. 

As the table of state variable results over time above shows, the bond account is 
drawn down in the first two periods and the student als
credit card.   Then in the third time period borrowing begins from the student loan 
account and reaches about $
sh
borrows $2,0 cr

periods
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 The transfers that are necessary to accomplish these results are shown in the 
control variable time paths below. 
 
----    169 VARIABLE  u.L  control variable 

    201.984    -124.453     -55.584     -51.622 

  82.078      20.062      11.086       6.544 
 155.683    -147.892    -215.696    -212.548 

ec       -37.151     160.543      69.351      64.660 
119. 06     144.515      66.670      58.166 

    -46.301     -23.439    -160.112    -160.927 

csl    4511.721 
ccsl      73.605    -167.954    -226.783    -219.093 

here is a transfer of $3,296 from the bond account to the checking account, Xbc, in the 
riod followed b a transfer of $721 in the second period.    Also there is a 

egative transfer of about -$1,600 from the checking account to the credit card account, 
he 

y a 

eriod 
$3,600 is transferred from the student loan account to the checking account 

imilar 

 

it and 
e 

should be modified to be realistic. 
 Finally the student may have very different desired paths for the state variables.   
For example she may want to keep the bond account constant over the time horizon 

 
             2000        2001        2002        2003 
 
Xbe   
Xbc      3296.649     721.808     275.338     260.756 
Xbcc     
Xbsl     
X
Xecc     - 9
Xesl  
Xcacc   -1655.095    -320.572     -53.610    -129.867 
X  -182.988   -3679.651   -4589.264   -
X

 

T
first time pe y 
n
Xcacc, in the first time period.   So this is actually a transfer of about $1,600 from t
credit card account to the student’s checking account.    This in turn is followed b
similar transfer of about $300 in the second time period. 
 Also, the borrowing from the student loan fund begins in the second time p
when about 
via the variable Xcsl.   This is followed by transfers of approximately $4,500 of a s
nature in the third and fourth time periods. 
 
5. Experiments 
 

The most useful experiment to do with this model is for the student to use it to 
take a rough look at his or her own finances during college and graduate school.   The 
most important steps to accomplish this are to change the initial conditions in xin
the wages, living expenses and scholarship aid in the exogenous variables, z.   Also, th
interest rates faced by the student are likely to be different than those used above and 
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covered by the model or she may want to limit credit borrowing to a smaller amoun
was used in the model above. 
 There are other interesting experiments one can do simply by including b

t than 

ounds on 

ower bound of $800 on the checking account.  In GAMS 
ode the bound would look like the following: 

 

xperiments are to increase the time horizon covered by the 
model say to about ten periods and thus to cover not only years in college but the first 
ears o loyment when paying back student debt may become a priority.  Another 

mizing the 

 learn 
ut GAMS and about financial planning.   

the variables.  For example, one can put a lower bound on the checking account.  Some 
students have accounts where they are supposed to keep at least a minimum balance, viz 
$800.   Thus one can place a l
c

 x.lo(‘Sc’,t)=800 
 
 More complicated e

y f emp
possibility is to solve the model by maximizing terminal wealth instead of mini
criterion function.  Some of these last three experiments require changes in the 
specification of the model and are more difficult; however, they are a good way to
more abo
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Appendix 6A 

The GAMS Statement of the Thrift Model 
*Student Finance Model in GAMS 
*By Genevieve Solomon 
*This version also has some modifications by David Kendrick 
 
 
Sets    n states  / Sb, Se, Sc, Scc, Ssl / 
        m controls  /Xbe,Xbc,Xbcc,Xbsl,Xec,Xecc,Xesl,Xcacc,Xcsl,Xccsl / 
      k ex
        t horizon  / 2000, 2001, 2002, 2003, 2004 / 

        ti(t) init
        tz(t) term

 
tu(t) 
i(t) = yes$(ord(t) eq 1); 

Table 

n,m)  control vector matrix 
 

Se       1                                   -1        -1       -1 
                            1 
        -1                            -1 

sl                                -1                           -1 
 
+ 

  ogenous  / Wa, Le, Sh / 

 
        tu(t) control horizon 

ial period 
inal period ; 

 
Alias (n,np), (m,mp) ; 

= yes$(ord(t) lt card(t)); 
t
tz(t) = not tu(t); 
Display t, ti, tz, tu; 
 

a(n,np)  state vector matrix 
 
        Sb     Se     Sc      Scc     Ssl 
Sb      1.05 
Se             1.10 
Sc                    1.01 
Scc                           1.13 
Ssl                                   1.04 
 
Table b(

       Xbe      Xbc     Xbcc      Xbsl      Xec      Xecc      Xesl 
Sb      -1      -1       -1        -1 

Sc               1
cc              S
S
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       Xcacc     Xcsl     Xccsl 
S
Se 
b 

Sc    

Table c(n,k)  exogenous vector matrix 
 
        Wa      Le      Sh 
Sb 
Se 
Sc      1   
Scc 
Ssl 
 
Table w(n,np)  state vector matrix penalty matrix 
 
        Sb     Se     Sc      Scc     Ssl 
Sb     100 

                           0 
 

terminal state vector matrix penalty matrix 
 
        Sb  
Sb     200 
Se             200 

 
       Xbe      Xbc     Xbcc      Xbsl      Xec      Xecc      Xesl 
Xbe    20 
Xbc              1 
Xbcc                     20 
Xbsl                               20 
Xec   
Xecc  

     20 

  -1        -1 
Scc     -1                  1 
Ssl               -1       -1 
 
 

    -1       1 

Se             100 
Sc                    400 
Scc                           200 
Ssl        

 
Table wn(n,np)  

   Se     Sc      Scc     Ssl 

Sc                    800 
Scc                           200 
Ssl                                   1 
 
Table lambda(m,mp) lambda matrix 

                                       20 
                                                20 

Xesl                                                        
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+ 
         Xcacc     Xcsl     Xccsl 
Xcacc      1 
Xcsl                 1 
Xccsl                        20 
 
 
Table xtilde(n,t)  state vector desired paths 
 

be 
bc 
Xbcc 
bsl 

arameter 

            Sb  4000 
     

       Ssl    0 / 

    0           0           0 

      2000        2001         2002        2003        2004 
Sb 
Se 
Sc    1000        1000         1000        1000        1000 
Scc   2000        2000         2000        2000        2000 
Ssl 
 
 
Table utilde(m,t)  control vector desired paths 
 
          2000     2001     2002     2003 
X
X

X
Xec 
Xecc 
Xesl 
Xcacc 
Xcsl 
Xccsl 
 
P
        xinit(n)   initial value   / 
 
        Se     0 
             Sc  1000 
             Scc    0 
 
 

     

Table z(k,t)  exogenous variables 
 
      2000        2001         2002        2003        2004 
Wa   15000       15000        15000       15000       15000 
Le   20000       20000        20000       20000       20000 
Sh       0           0        
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Variables               u(m,t)    control variable 
                        j         criterion ; 
 

j =e= 
     .5 sum( (tz,n,np), 
   np)*(x(np,tz) - xtilde(np,tz)) ) + 

     ) + 

     (u(m,tu) -utilde(m,tu))*lambda(m,mp)*(u(mp,tu) - utilde(mp,tu))); 
 
tateq(n,t+1

Model track /all/; 
 
.fx(n,ti) = xinit(n); 

Positive Variables      x(n,t)   state variable ; 
 
 
Equations       criterion       criterion definition 
                stateq(n,t)     state equation ; 
 
criterion.. 
 

 
* 

   (x(n,tz) - xtilde(n,tz))*wn(n,
 
      .5*sum( (tu,n,np), 
 (x(n,tu) - xtilde(n,tu))*w(n,np)*(x(np,tu) - xtilde(np,tu)) 
 
      .5*sum( (tu,m,mp), 
 

s
 

).. 

x(n,t+1) =e=  
      sum(np, (a(n,np)*x(np,t))) +  
      sum(m, (b(n,m)*u(m,t))) +  
      sum(k,(c(n,k)*z(k,t))); 
 
 
 

x
 
Solve track minimizing j using nlp; 
 
 
Display x.l, u.l; 

 145



 

Chapter 7 

The classic portfolio optimization problem, which was originally proposed by 
Markow  

 the 
off between stocks with high 

eans and greater risk with their higher variances and stocks with low means and low 
risk with lower ld consider building a diversified portfolio 
which contained stock ctions as represented by 
negative covariance el
 Our goal in thi  the optimal portfolio 
problem.  First, we wi  using a simple Monte Carlo optimization 
search program.  This rovide a simple introduction to the MATLAB 
programming languag ittle about a random search 
procedure for o

Then, we will e portfolio optimization problem using a 
MATLAB gradient optimization function.  However, this code makes use of the 

ilable to 
em.  

and and it 
on 

 
1. The Mathematics 

 is 

Portfolio Model in MATLAB 

 
 
 

itz (1952), was to consider both the mean and the variance of a portfolio by
maximizing the mean while minimizing the variance.   This was formulated as a 
quadratic programming problem to maximize a weighted sum of the mean and
negative of the variance.   Thus one could consider the trade
m

 variances.   Also, one cou
s that tended to move in opposite dire
ements.  

B to solves chapter is to use MATLA
ll solve the problem
 will be useful to p
e and at the same time to learn a l

ptimization.   
move on to solve th

Optimization Toolbox and not all users of MATLAB have this Toolbox ava
them.  Therefore, in Appendix 7C we provide a GAMS version of the same probl
Also, for some readers the GAMS version may be somewhat easier to underst
can thereby serve them as a useful entry ramp to the MATLAB gradient optimizati
program.11   

 
 Consider a vector whose elements are the fractions of the portfolio which
invested in each of the equities, i.e. 

                                                 
11 Also some readers may want to solve models of higher dimension than those used in this chapter 

odified versions of both the MATLAB code and the GAMS code i

with 

n order to compare the computational 

ds of the two software systems. 

m

spee
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1x

(1)   2

3

x x
x

⎡ ⎤

here 

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

w
ix  = the fraction of the portfolio invested in equity i 

 
r an example portfolio with three equities. fo

 
Also there is a vector µ  that contains the mean return on each of the equities, i.e. 

 

(2)   ⎥
⎤

⎢
⎢
⎡

=⎥
⎥
⎤

⎢
⎢
⎡

= 12
8

2

1

µ
µ

µ  
⎥
⎥
⎦⎢⎣⎥⎦⎢⎣ 153µ

where 
 iµ  = th n return on equity i 

wn 

We can  these two vectors, i.e. 
 

(3)  
⎡x

 
. 

 he variance for the portfolio is given in the covariance matrix , that is 
 

⎦

⎤

⎢⎣

⎡

−

−

⎥⎦

⎤

⎢⎣

⎡

24114

456

333231

131211

σσσ

σσσ

where 

e mea

 
Notice in this example that the second and third equities have the highest mean returns of 
12 and 15, respectively.  These data for the means in Eq. (2) and the covariances sho
below are for illustrative purposes and do not represent the return on particular equities or 
groups of equities. 

 then use the inner product of

 [ ] ⎥⎢=
1

' xx µµµµ  
⎤

⎥
⎥
⎦⎢

⎢
⎣ 3

2321

x

to obtain the mean return for the portfolio
T Σ

(4)  ⎥
⎥

⎢
⎢ −−=⎥

⎥
⎢
⎢=Σ 11175232221 σσσ  

⎥
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 ijσ  = the covariance of the returns on equities i and j 

 
ghest 
te that 

for 
y tends to 

ortfolio 
 cushion when the return on the first equity declines and the return on the 

second quity 
 he variance of the portfolio can then be written as  

 
The Markowitz model considers both the mean and the variance of a portfolio by 

aximizing the mean while minimizing the variance.  Using the components of the mean 
(5) one can write the criterion function for 

e model as to maximize  in  

Notice in this example that the second and third equities, which have the hi
mean returns, also have the highest variances of 17 and 24 respectively.   Also, no
the off-diagonal elements in the covariance matrix have different signs.  Thus, 
example, when the return on the first equity falls, the return on the second equit
rise since the covariance is -5.   Thus holding these two equities in the same p
provides a

 e rises. 
T

 

(5)  [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Σ

3

2

1

333231

232221

131211

321'
x
x
x

xxxxx
σσσ
σσσ
σσσ

 

m
and variance of the portfolio from Eqs. (3) and 

Jth
 

(6)  1
2

J x x xµ β′ ′= − Σ  

where 
 J  = criterion value 
 β  = subjective weight on the variance of the return on the portfolio 

 
The parameter β  provides the subjective weight on the variance.  Thus an indivi
with a high 

dual 
β  is risk averse and will choose a portfolio with equities which 

relatively small variances.  The one-half in this expression is commonly used
criterion functions; however it plays no essential role. 
 The constraint for this model simply requires that the fractions inves
the equities add to one, i.e. 
 

have 

 in quadratic 

ted in each of 

re 

(7)  1ix =∑  
i I∈

whe
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  = the set of equities I
 
Also there is a constraint which requires that the factions be nonnegative, i.e. 
 
(8)  0ix i I≥ ∈  

 
So, in summary, the model is to find those values of ix  that will maximize J in E

subject to the constraints in Eqs. (7) and (8). 
 The optimal portfolio model can also be posed in a related way that seeks 
the fractional equity holdings that will minimize the weighted risk subject to a
that the mean return on the portfolio should be above a specified le

q. (6) 

to find 
 constraint 

vel.   The criterion 
or this model is 

 

(9)  

function f

1
2

J yβ ′= Σ  y

here 
sted in each equity 

subje
 
(10) 

w
 y  = vector of fractions of portfolio inve

ct to 

 yµ θ′ ≥  

wher
 

e 
θ  = desired minimum mean-return on portfolio 

 
(11) 

 
 summary, this second version of the model is to find those values of  that will 

 key 

 1i
i I

y
∈

=∑  

 
(12)  0iy i I≥ ∈  

In i

minimize J  in Eq. (9) subject to the constraints in Eqs. (10) thru (12).  The
parameter in this formulation is 

y

θ , the desired minimum mean-return for the portf
As this parameter is increased the optimal portfolio will include more of the risky 
equities.     
 This completes the statement of the mathematics of the two

olio.   

 versions of the 
odels.   Next we turn to the computational statement of the models in MATLAB. m
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2. A Simple Monte Carlo Optimization Procedure in MATLAB  

TLAB 
arch procedure we have chosen 

 simple application to solve the first formulation of the Markowitz model.  This 
appli ts Paul Maksymonko, 

evin Kline, and Carter Hemphill.12  The optimization procedure includes the generation 
ulation of eight candidate portfolios in the first period.   The portfolio that 

rforms best is then selected and stored.  Then the next period portfolios are generated 
as ran s. 
 side loop is 
acros s.   These loops look 

mething like the following 

end 

Notice that the indentation in the code above makes it easy to see the 
ginning and ending of each of the “for” loops.   The indentation is not necessary 

for th
to rea

he fir eriods (or 
runs)
statem
 

        

 
In order to provide a good opportunity to learn both the basics of the MA

software and the basics of a Monte Carlo optimization se
a

cation is based on some programs developed by our studen
K
of a pop
pe

dom variations around that portfolio.  This process is repeated 100 time
 The out

 
The basic structure of the program is a set of two for loops. 

s time periods (or “runs”) and the inside loop is over candidate
so
 

nruns = 100 ;  popsize = 8;    
for k = 1:nruns; 
 for i = 1:popsize;  

… 
  end 

…           

 
 
be

e MATLAB compiler but can (and should) be used to make the code easier 
d. 

T st step in the code is to initialize the number of time p
 and umber of candida the n tes in each time period with the MATLAB 

ts en

                                         
12 The thod known as 

Geneti s.  We will not 

deal w

proach used here is more like an evolutionary algorithm (EA) in that it uses real numbers rather than the 

strings o

introduction to genetic algorithms in a chapter on that subject. 

y devel d some applications to be used as an introduction to anope  optimization me

on-convex problemc Algorithms, a method particularly useful when dealing with n

ith that method here, though the application we will present has a resemblance to that method.  The 

ap

f bits in that are used in many genetic algorithms (GA). Later in the book we will provide an 
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  nruns = 100;    popsize = 8;     

  
This is later followed by the main for loop in the program which is over the time 
periods

r n
e matching end 

atem eful when reading MATLAB code of this 
type t the code by looking for matching for and end 
statem  in a pseudo code outline of the structure of the 
program.   The code is called “pseudo” because it could not be run on a computer 
as it is 

nruns = 100 ;  popsize = 8;  
lio weights 

urns, variance costs and criterion values 
 select best portfolio 

r i = 1:popsize; 
ages) 

After pulation size are set the initialization section 
f the code is used to set the initial portfolio weights for each candidate. 

Then the k loop for the number of runs begins with the computation for 
that time period of the returns and the variance costs for each of the portfolios.   
These values are then used to calculate a vector which gives the criterion value 
which was obtained for each of the eight candidates.  This criterion vector is then 
examined to find the index of the candidate with the highest criterion value.  This 

 (or runs).   The structure of the for loop is 
 
  for k =1:nruns; 
   main body of the program 
  end 

 
So the time index in this model is k and it runs from 1 to the numbe  of ru s.  
Also note that each for loop in MATLAB extends until th
st ent is encountered.   Thus it is us

o examine the structure of 
ents.   This is shown below

but rather is intended to outline the basic structure of the program. 
 

initialize portfo
 
for k = 1:nruns; 
 generate ret

  
  fo

generate new random portfolio weights (percent
for each candidate 

  end 
             

end 
print and graph the sequence of best candidates  

 
 the number of runs and the po

o
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best portfolio is then used in the second, nested, i loop for the candidates the 
asis for the generation of the portfolio holding of the eight candidates in the next 

perio

best p
ith th

sectio f the

 

ean returns 
) an

beta = 2; 
'; 
 4 

        -5 17 -11 

const = 0.1; 

e used later to determine de degree of random variation around the 

ime period 
ent 

the portfolio weight matrix.  The function ones() generates a 
atrix of ones with three rows and a number of columns equal to the population 

size. lumn vectors with one portfolio each, all 

b
d.   

After the time period (or run) loop is repeated 100 times the sequence of 
ortfolios in each period is printed and plotted.   

W is overview of the program in mind consider next each of the 
ns o  code. 

 
3. Initialization of Counters, Parameters and Weights 
 

This section of the code contains the initialization of the counters for the
number of runs (nruns), the population size (popsize) and the parameters of the 
portfolio model (the risk aversion coefficient ( ), the vector of mbeta

(mu d the covariance matrix (sigma)).  
 

nruns = 100;  popsize = 8; 

mu = [8 12 15]
sigma = [6 -5 

         4 -11 24]; 

 
There is also a constant 
 

 
which will b
weights of the best candidate of a time period to generate the candidates of the 
next period. 

Finally, we create the vector of initial portfolios for the first t
with the statem

 
pwm = (1/3) * ones(3,popsize); 

 
Thus pwm stands for 
m

 Thus, pwm will contain eight co
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with weights set equal to 1/3.  Thus the initial pwm looks like 

= ⎢ ⎥  

Notice here that it is not necessary in MATLAB to first declare a variable 
 it.    Declarations are used in many program languages to 

ariable, viz. whether it is an integer or a floating point 
umber and whether it is a scalar or a multidimensional array.    Also, the 

sed to se aside enough space in memory to store the elements of 
 

 
'; 

hich  is both declared and defined by its context to 

the returns, variance cost and criterion 
alue for each portfolio.    

 
4. ation of Returns, Variance Costs and Criterion Values 

pret = pwm' * mu; 

 
wher e portfolio return for each of the 

pret

 
Generating the variance costs for every candidate requires the use of a short loop  
 

 
.33 .33 .33 .33 .33 .33 .33 .33

pwm
⎡ ⎤
⎢ ⎥.33 .33 .33 .33 .33 .33 .33 .33
.33 .33 .33 .33 .33 .33 .33 .33⎢ ⎥⎣ ⎦

 

and then define
determine the type of a v
n
declaration is u t 
the variable before the numerical values of each element are defined in a separate
statement in the language.   Thus, in the statement  

mu = [8 12 15]
 

 is used above, the variable muw
be a column vector with three elements.   The vector is input as a row vector but 
the transpose (') mark is used to convert it to a column vector. 
 The next step is the generation of 
v

Gener
 
 The returns for every candidate are generated with the statement 
 

e pret is an 8 element vector that contains th
eight candidates.  The original pwm matrix is 3 x 8 as we saw above; therefore, its 
transpose which is used in the statement above is 8 x 3.  This matrix in turn is 
multiplied by the 3 element column vector mu to yield the 8 element column 
vector . 

 153
 



Chapter 7   Portfolio Model in MATLAB 

for j = 1:popsize; 
      pvar(j) = 0.5 * beta * pwm(:,j)' * sigma * pwm(:,

end 
j); 

of the m n in pwm corresponds to one portfolio.  
s by the time the code has passed through this loop eight times the variance 

r all the candidates are neatly stored in the pvar vector which has eight 

 

pret and pvar each have eight elements.  Since the vector pvar is a 
 expression above.  Thus from the 

xpression above pcrit is an 8 element column vector with the criterion value for 
f th  portfolios.  Thus this vector can be used to find the best candidate.  Of 

ourse in the first pass through this part of the code all portfolios are the same so 
e

.   
 

Selection of the Best Portfolio 
    

s the highest rate of return.  
his is done with the stateme

 
[top topi] = max(pcrit); 

 
that uses the MATLAB function max to place in the scalar top the largest element 
in the t opi.  If there is 
more e um, this function will choose only one.  
  the set of portfolio 
weights used by this candidate with the statement 

 
The notation (:,j) in the matrix pwm refers to all the elements of the jth column 

atrix.  Remember that each colum
Thu
costs fo
elements (one for each candidate).   
 The criterion values for each candidate are just the difference between the 
portfolios returns and the variance costs and are computed with the statement 
 

pcrit = pret - pvar'; 

The vectors 
row vector it has to be transposed in the
e
each o e
c
the criterion values will be the same for all of th m. 

5. 
 
 The next step is to find the portfolio which ha

nt T

 vector pcri d the corresponding index in the scalar t an
 than on  maxim

The index is then used to put into the vector wnew

 
wnew = pwm(:,topi); 
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Recall that the matrix pwm has three rows (one for each asset class) and eight 
column

od 

p; 

 

These arrays c  best portfolio 
in each n and
 
6. 

The candidates for the next period are created as random variations around 
 candidate from the previous period.   The weights 

d in w to create eight new candidates. 

for i = 1:popsize-1; 

temp = w1 + w2 + w3; 
w1 = w1/temp; 

1 w2 w3]'; 
end 

 

be

e loop 

s (one for each candidate) so the effect of the statement above is to put the 
three elements from the topi column of the matrix into the vector wnew.   The 
portfolio weights for the best candidate and the criterion value in each time peri
k are then stored in the matrices wbest and pcritvec using the statements 
 

wbest(:,k) = wnew; 
       pcritvec(:,k) = to

an then be used at the bottom of the code to plot the
 ru  the corresponding criterion value. 

Random Generation of New Portfolios  
 

the portfolio weights of the best
from the best candidate have been stored in the vector wnew and that vector is 
use  the for loop belo
 

w1 = wnew(1) + rand * const; 
w2 = wnew(2) + rand * const; 
w3 = wnew(3) + rand * const; 

w2 = w2/temp; 
w3 = w3/temp; 
pwnew(:,i) = [w

 

The MATLAB random number generator, rand, for uniform distributions 
tween zero and one is used here and is multiplied by a constant.   This has the 

effect of adding a given amount to the portfolio weight for each equity.  The 
weights are then normalized so they add up to one.  The last statement in th
above, i.e. 

pwnew(:,j) = [w1;w2;w3]; 
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simply stores the weight vector for the jth candidate in the jth column of the n
portfolio weight matrix, 

ew 
pwnew.   Thus by the time the loop has been completed 

e por ew 

 

eeping the best solution from each run when generating the 

pwm = pwnew 

is used to replace the previous period matrix of portfolios by the newly generated  
matrix. he 
end that corresponds to the for loop across time periods. 

After the time period loop is completed the weights for the surviving 
candidate and the criterion values are printed with the simple statements 
 

wnew 

top 

 
The absence of a semicolon at the end of these statements dictates that the result 
will be printed.  Finally, the commands below generate a graph displaying the 
values of the three assets percentage holdings for the best candidate in each time 
period.  
  

xaxis = [1:1:nruns]';  
plot(xaxis,wsurv(:,:)); 
xlabel('Runs');  
ylabel('Weights');  
legend('w1', 'w2', 'w3');  

 

Also we have commented out an additional statement that can be used to 

th tfolio weights for the first seven candidates have been stored in the pwn
matrix. 
 The next step is to put the best portfolio from the previous run in the last
(eighth) column of the pwnew matrix using the statement 
 
      pwnew(:,popsize) = wnew ; 

 
This has the effect of k
new portfolios to be used for the next run. 
 Then the statement  
 

 

  Following this statement is the last end statement in the code.  This is t
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plot the criterion value for all runs.  It is 
 

%plot(xaxis,pcri

 
If you 

ogram. 
 contained below in Appendix 7A and is 

 under the name mcportfol.m.  The 

oint out that every time you run the program, 
en changing the number of runs or the population size, you should 

n out the old commands and workspace to avoid displaying spurious results.  
Command 

t you want to do this.  Then do the same for 
ry and for Clear Workspace. Alternatively, adding the 

ar the workspace. 
Figure 7.1 shows the sequence of weights of the best portfolios at each 

mal portfolio weights for this experiment correspond to the 

tvec(:,:)); 

want to obtain this plot simply remove the leading % sign and rerun the 
pr

The entire code of the program is
also available in the book web site
instructions for running MATLAB are in Appendix I. 

It is important to p
particularly wh
clea
To do so, go to Edit in the top MA

confirm with Yes tha
TLAB menu.  Then select Clear 

Window and 
Clear Command Histo
sentence 

 clear all;   
 

at the beginning of the program will cle
 
time period.   The opti
last time period and are:  w1 = 0.24, w2 = 0.43 and w3 = 0.33. 
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7.1 Best Portfolio at Each Time Period 

os close to the 

ch optimization routine is simple to program and 
lem is relatively effective in finding the optimal 

t it serves our purpose of introducing the MATLAB 
mplicated code that performs nicely on this simple 

However, to see the shortcoming of this simple code you can try solving 
the case where beta is set equal to zero.   In this case the solution will be a 
boundary solution since the optimal portfolio will be one in which the entire 
portfolio is placed in the one equity with the highest mean return.  The simple 
code above has a difficult time finding this solution but the more complex 
gradient method approach discussed in the next section finds that optimal solution 
with relative ease.  
  

 
Figure 
 
Notice for this particular model and starting conditions that portfoli
optimum are found within only about ten runs.     

This small random sear
mple probfor the particular exa

solution.  More importan
software with a relatively unco
problem.   
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7. The Markowitz Model B Optimization Function 
 
 
sing a MATLAB function from the Optimization Toolbox.   Therefore, before 

Toolbox.   
be used is fmincon.  It is designed to find the minimum of 

quality constraints would be (this function call is used only for 
necessarily work in a MATLAB program) 

ue of the criterion function at the optimum 
ame of the function from the Optimization 

  Toolbox 
func = the name of the user supplied function that returns 

x0 = a vector of starting values to be used in the search for 

 <= b 

use the fmincon function in this case the user would have to supply a function  

arting point in the search for the optimal value of the function.   Also, the user 

 Using a MATLA

We turn now to the solution of both versions of the Markowitz model 
u
beginning to work with this code, be sure that the version of MATLAB that you 
are using includes the Optimization 
 The function to 
a function f(x) with linear inequality and equality constraints and with nonlinear 
constraints.  Thus our model can be solved with a nonlinear optimization solver 

t has (see Appendix F).  A simplified version of this function call for a model tha
only linear ine
exposition and will not 
 

[x,fval] = fmincon(@func,x0,A,b) 

 

where 
 

x = the vector of optimal values 
fval = the val
fmincon = the n

  the criterion value for the function 

  the optimal value of the function 
A = the matrix for the linear inequalities  Ax
b = the vector for the linear inequalities Ax <= b 

 
To 

func  
 
that would return the value of the criterion function.   Also the user should 
provide a vector x0 of values that he or she thinks is close to the optimal value of 

ox function as the function.   This starting point is used by the Optimization Toolb
a st
must supply the A matrix and the b vector for the linear inequality 
 
  Ax <= b 
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that constrains the solution to the model. 

  A somewhat more complicated version of the call to fmincon would
include in addition to the linear inequalities also linear equalities and upper and 

[x,fval]=fmincon(@func,x0,A,b,Aeq,beq,lb,ub); 

the linear equalities Aeq x = beq 
lb = lower bound on the variables, i.e. lb <= x 

The actual call to fmincon is still more complicated in that it permits options to specify 
ar constraints and to pass the model parameters to the criterion function.  For the first 

rsion of the optimal portfolio model this function call is 

cri1,x0,A1,b1,Aeq,beq,lb,ub,nonlcon,options,beta, 

ition of the function at exit 
output = provides additional output from the function 
cri1 = the user supplied function that returns 

the criterion value for the first version 
f the model 

or of starting values to be used in the search for 
 

the matrix for the linear inequali ies  A1 x <= b1 
model 

1 = the vector for the linear ineq alities A1 x <= b1 
 for the first version of the model 

cification for the nonlinear constraints 
options = options to pass to the function 

 

lower bounds on the variables and would be of the form 
 

 

where 
 

 Aeq = the matrix for the linear equalities Aeq x = beq 
 beq = the vector for 
 
 ub = upper bound on the variables, i.e. x <= up 

 

 
nonline
ve
 
[x,fval,exitflag,output] 
         =fmincon(@d

 N,mu,sigma); 

 
where 
  

exitflag = provides info on the cond

d
  
  o
x0 = a vect
  the optimal value of the function

tA1 = 
  for the first version of the 

ub
 
nonlcon = spe

beta,N,mu,sigma = additional arguments to be passed to the function
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For the second version of the model, where we minimize the variance subject to a 
nstraint on the portfolio return, the call to the fmincon function is identical to the one above 

r for the set 
alities are designated respectively as A2 and b2. 

al portfolio model, which was 

tfolio.m.   Other than the call to the 

unction which returns the 
 the parameters 

co
except that the user supplied function is named dcri2 and that the matrix and vecto
of linear inequ

The MATLAB code for the optim
programmed by Miwa Hattori, is shown in Appendix 7B and is also available in 
the book web site under the name por
function fmincon, the rest of the code is devoted primarily to preparing the 
inputs to pass to the function and to providing the f

erion value.  So lets begin with the code to pass θ  and βcrit  and 

ber of equities in the portfolio, N.  This is written 

          

e is used to input the values of the mean-return vector 

the num
 

theta=10;  
beta=2;              

                N=3; 
 

The next section of the cod µ  and 

e c ariance matrix  and is 
 

mu=[8; 12; 15];   
sigma=[6  -5   4;    
      -5  17 -11; 
       4 -11  24]; 

 

Notice that each line of the vector mu is ended with a semicolon, so mu is input as a 
column vector.   

The next step is to provide the starting values that are to be used in the 
search for the optimum shares in the portfolio.    A reasonable starting point is to 
divide the portfolio equally among the three equities.   This is accomplished in the 
MATLAB code with the statements 
 

x0=ones(N,1)/N;        
y0=ones(N,1)/N;        

 

th ov Σ
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where 
 

x0 = the vector of starting values to be used in the search for 

y0 = the vector of starting values to be used in the search for 
 on 

n call ones(N,1) creates an N vector of ones.  All of the 
elements of this vector are then divided by N, so in our case with three equities 
the vec he same will 
e true for  which is used with the second version of the model. 

b1=[];               

e. the matrix A1 and the vector b1 are empty and can be ignored by the function.   
case in the second version of the model which minimizes 

e weighted variance subject to achieving at least a minimum mean return on the 
. 

  the optimal value of the function in the first version 
  of the model 

 the optimal value of the function in the second versi
  of the model 

 
The MATLAB function ones(m,n) is used to create an n by m matrix of ones.  So 
in this case the functio

tor x0 will have three elements all of which are 0.33.   Also t
b y0

 Next consider the linear inequality constraints for the two versions of the 
model.   The first version has only a linear equality constraint and no linear 
inequality constraints so this is input with the MATLAB statements 
 

A1=[];               

 
i.
However this is not the 
th
portfolio, i.e
 
(10)  yµ θ′ ≥  

 
However, since MATLAB expects the inequality in less-than-or-equal form it is 
necessary to m  by minus one to obtain ultiply the constraint through
 
(13)  yµ θ′− ≤ −  

 
Then the A2 matrix and the b2 vector for this constraint can be input to the code 

ith the statements 
 

A2 = -mu';  
b2 = -theta;            

w
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sed with 

 

straints for the two versions of the model are the same 

1

 1=∑  

he A matrix and b vector have the same structure for 
an be input with the statements 

e non-negativity 
 both versions of the 

options = optimset('MaxIter',60);  

 

Also, the options variable is used to set the maximum number of iterations for 
the nonlinear programming code to 60.  If the code has difficulty converging on 
the solution to your model it would be useful to raise this limit. 

Since the vector mu was input above as a column vector it must be transpo
the transpose operator ( ' ) here since we need it in the form of a row vector for this
constraint. 
 The equality con
and are of the form 
 
  i

i I
x

∈

=∑  

for the first version and 
 
 i

i I∈
y

for the second version.  So t
both versions of the model and c
 

Aeq = [1 1 1];       
Beq = 1;               

 
 The lower bounds on the variables are used to enforce th
constraints and there are no upper bounds so the bounds for
model are specified with the statements. 
 

lb=[0;0;0];        
ub=[]; 

 
 The final part of the model specification is the nonlinear constraints, of 
which there are none, so this is written 
 

nonlcon=[];          
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 With all this preparation done, one can now call the fmincon function for 

 

fval 

This  function for the 
first v at each point 

in 
criter

the first versions of the model and print the key results with the statements 
 
 [x,fval,exitflag,output] 
   = fmincon(@dcri1,x0,A1,b1,Aeq,beq,lb,ub,nonlcon,options,beta,

N,mu,sigma); 
 x 
 

 

MATLAB function will in turn call the user specified dcri1
ersion of the model to obtain the value of the criterion function 

x  the search for the optimum. Recall that for the first version of the model the 
ion function in matrix form is, from Eq. (6) above 

 

(6)  1
2

J x x xµ β′ ′

14) 

= − Σ  

which can be written in index form as  
 

 ( 1
2i i i ij j

i I i I j J
J x x xµ β σ

∈ ∈ ∈

= −∑ ∑∑  

 
This can be rearranged slightly by moving the β  and ix  to obtain 

 
1
2

(15) i
i I∈

i i ij j
i I j J

J x x xµ β σ
∈ ∈

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

 i the form dcri1 function below. 

function [z] = dcri1(x,beta,N,mu,sigma)  
z=0
for i=1:N; 
     temp=0; 

         temp=temp+BETA*sigma(i,j)*x(j); 

z=-z;      

 
which s  used in the 
 

; 

     for j=1:N; 

     end; 
     z=z+mu(i)*x(i)-0.5*x(i)*temp; 
end; 
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Notice at the top of the function that the fmincon function passes to the dcri
function the current point 

1 
x in the search for the optimum and the parameter of the 

roblem. 
e at the bottom f the function that the negative value of z is returned 

by the function.  The reason is that the fmincon function – as its name indicates – 
find the minimum value of a function.  Therefore to use it to find the 

aximum, as we need here, it is necessary to reverse the sign of the criterion 

An equivalent but more compact formulation that shows the power of 
putation could be 

function z = dcri1(x,beta,N,mu,sigma) ; 

a*x); 

ond version of the model, 
llowed by the command lines to print the results, is 

on,options,beta, 

 
val 

 
The d imilar to the dcri1 
funct

 

p
Notic  o

is used to 
m
value. 

MATLAB for matrix com
 
 

 z = -(mu'*x - 0.5*beta*x'*sigm
 

The call to the fmincon function for the sec
fo
 
[y,fval,exitflag,output] 
    =fmincon(@dcri2,y0,A2,b2,Aeq,beq,lb,ub,nonlc

N,mu,sigma); 
y
f

cri2 function for the second version of the model is s
ion except simpler since it does not contain the mu parameters. 

 
1 
2

Also it is not necessary to use the negative sign at the bottom of the function sinc
we are seeking a minimum in this case. 
 

J y yβ ′= Σ  

e 
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8. Experiments 
 
 The logical experiment to do with the Markowitz model is to change the 
β  risk preference parameter to see how the optimal portfolio changes.  As β  

increases one would expect the optimal portfolio to contain larger proportions of 

e off-

eriments to selectively change the signs of these elements and 
 results. 

utcomes of the 
inst the ones obtained with the optimization function.  You 

tcome of the Monte Carlo code.  Also, in the “random generation of new 
 number of 

is affects the convergence path of the best weights to 

rsion 

stocks with lower variances and – most likely – with lower mean returns.   
 Another useful experiment is to change the pattern of the signs of th
diagonal elements in the Σ  matrix.  In the original version used in this chapter 
there is a mixture of positive and negative off diagonal elements.   It would make 

expinteresting 
serve theob

 Finally, another useful experiment is to compare the o
Monte Carlo code aga
may want to increase the number of time periods and/or the population size, or 
change the value of the constant const, and see how these changes affects the 
ou
portfolios” section, you may want to divide the constant const by the
runs index k and see how th
the optimal portfolio. 
 Of course the reader may want to obtain data on a set of stocks and bonds 

a personal vewhich are of particular interest to him or her and thus develop 
of the optimal portfolio model.  

 
9. Further Reading 

 
For a variety of financial models in MATLAB see Brandimarte (2001).
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Appendix 7A 

o Portfolio Problem 

rogram name: mcportfol.m
ott Schwaitzberg  

clear all; 

%initialization of counters, parameters and weights; 
nruns = 100; popsize = 8;  
beta = 2; 
mu = [8 12 15]'; 
sigma = [6  -5   4 
        -5  17 -11 
         4 -11  24]; 
const = 0.1; 
pwm = (1/3) * ones(3,popsize); 
  
  
for k = 1:nruns; 
    % generation of vectors of returns, variance cost and crit function 
    pret = pwm' * mu; 
    for j = 1:popsize; 
        pvar(j) = 0.5 * beta * pwm(:,j)' * sigma * pwm(:,j); 
    end 
    pcrit = pret - pvar'; 
  
    % selection of the best portfolio; 
    [top topi] = max(pcrit); 
    wnew = pwm(:,topi); 
  

MATLAB Code for a Monte Carl
 
 
%Monte Carlo portfolio program; 

 %P
%Developed by Ruben Mercado with modifications by Sc
%and David Kendrick 
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 % store best portfolio and the optimal criterion value for each run 
    wbest(:,k) = wnew; 
    pcritvec(:,k) = top; 
  
    % random generation of popsize minus one new portfolios; 
    for i = 1:popsize-1; 
        w1 = wnew(1) + rand * const;
       w2 = wnew(2) + rand * const; 
        w3 = wnew(3) + rand * const; 
        temp = w1 + w2 + w3; 
        w1 = w1/temp; 
        w2 = w2/temp; 
        w3 = w3/temp; 
        pwnew(:,i) = [w1 w2 w3]'; 
    end 
  
    % put best portfolio for the run in the last column of the matrix 
    pwnew(:,popsize) = wnew ; 
    pwm = pwnew; 
end 
  
%print optimal weights and optimal criterion value 
wnew 
top 
  
%print and graph optimal weights and criterion value 
%wbest 
xaxis = [1:1:nruns]'; 
plot(xaxis,wbest(:,:)); 
xlabel('Runs'); 
ylabel('Weights'); 
legend('w1','w2','w3'); 
%plot(xaxis,pcritvec(:,:)); 
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Appendix 7B 

MATLAB Code for a Markowitz Optimal Portfolio Problem 
 
% Title: Quadratic-Linear Programming for Mean Variance Portfolio 
% Analysis 
% Program name: portfolio.m 
% by Miwa Hattori 
%   Implementation of the mean-variance portfolio selection models 
%   w

theta=10;     %   Minimum mean-return on portfolio under formulation 2. 

 

ialized to 1/N. 
  
% 

mization 
nction that solves a constrained nonlinear 

%    MINIMIZATION problem. See Help file for function "fmincon". 
%    fmincon finds a minimum of a multivariable function f(x)subject to 

 

A1=[]

ith two alternative formulations in Matlab: 
%   (1) maximizing expected mean return, net of variance costs and 
%   (2) minimizing the overall variance costs of portfolio. 
clear all; 
% 
%   Preliminaries 
% 

beta=2;       %   Subjective weight on returns variance of equities. 
N=3;          %   Number of available equity types. 
mu=[8; 12; 15];  %   Column vector of mean annual returns on equities 1 
                 %   through N (%). 
sigma=[6  -5   4;%   Table of covariances between returns on equities. 
      -5  17 -11; 
       4 -11  24]; 
  
% 
%   Provide initial "guesses" for portfolio vectors. 
% 
x0=ones(N,1)/N; %   Column vector of fractions of portfolio invested in
                %   equity i, initialized to 1/N. 
y0=ones(N,1)/N; %   Column vector of fractions of portfolio invested in 
                %   equity i, init

%   Constraints for opti
%   Matlab only has a fu

%             A*x<= b, Aeq*x= beq, lb<= x <=ub where x, b, beq, lb, and
%             ub are vectors, A and Aeq are murices. 
% 
  

;     %  Set of linear inequality constraints under formulation 1. 
b1=[];               
A2=-mu';   %  Set of linear inequality constraints under formulation 2: 
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b2=-theta; %   Desired minimum mean-return on portfolio y >= theta (%). 
Aeq=[1 1 1];   %   Set of linear equality constraints. 
beq=1;    % Fractions x(i) must add to 1, fractions y(i) must add to 1. 
lb=[0;0;0]; %   Non negativity constraints on x(i) and y(i) 
ub=[]; 
nonlcon=[];         %   Non linear constraints-- none in this problem. 
options=optimset('MaxIter',60); 

%   Definition of the criterion functions 
%       Functions dcri1, dcri2 are called.  See files dcri1.m, dcri2.m. 

fval 

y 

% Title: Quadratic-Linear Progr for Mean Variance Portfolio Analysis 
 dcri1.m 
 

% selection model. 
% Defines the expected mean return, net of variance costs, which is  

function z = dcri1(x,beta,N,mu,sigma);  
  
z=0; 
for i=1:N; 
    temp=0; 

    end; 
    z = z + mu(i)*x(i) - 0.5*x(i)*temp; 
end; 
  
z=-z;            
 
% Matlab only has a subrou to solve constrained MINIMIZATION problems. 
% We solve a maximization problem by minimizing the negative of the 
% objective function. 

 
% 

% 
[x,fval,exitflag,output]=fmincon(@dcri1,x0,A1,b1,Aeq,beq,lb,ub,nonlcon,
options,beta,N,mu,sigma); 
x 

[y,fval,exitflag,output]=fmincon(@dcri2,y0,A2,b2,Aeq,beq,lb,ub,nonlcon,
options,beta,N,mu,sigma); 

fval 
 
 

% Function Name:
% by Miwa Hattori 
% The first formulation of the crit function for mean-variance port 

% to be maximized. 
  

    for j=1:N; 
        temp = temp + beta*sigma(i,j)*x(j); 
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% Title: Quadratic-Linear Programming for Mean Variance Portfolio 
% Analysis 
% Function 
% by Miwa H
% The second formulation of the criterion function for mean-variance 
% portfolio selection model. 
% Defines the overall variance costs of portfolio to be minimized. 
  
function z 
  
z=0; 
for i=1:N; 
    temp=0;
    for j=1
        temp = temp + beta*sigma(i,j)*y(j); 
    end; 
    z = z + 0.5*y(i)*temp; 
end; 
 

     

Name: dcri2.m 
attori  

= dcri2(y,beta,N,mu,sigma);  

 
:N; 
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 Markowi ortfolio Problem 
 

specification would be “Set I” instead of “Set i” there is an argument for using the lower 
case specifica MS the symbols for sets 
are used wher set and where the 
mathematics would indicate an index.   Thus the mathematical statement of Eq. (7), i.e. 
 
(7)  

 
is written in G
 
     

 
Of course, since GAMS does not distinguish between upper and lower case letters it 
would be possible to write the GAMS statement as 
 

sum(I, x(i)) =e= 1.0 ; 

 
This might be more aesthetically pleasing but could also be more confusing. 
 Just beneath the set specification statement in GAMS is an Alias statement of the 
form 
 

Alias  (i,j) ; 

Appendix 7C 

GAMS Code for a tz Optimal P

The complete GAMS version of the model, which was programmed by  
Seung-Rae Kim, is at the end of this Appendix.   Here we will discuss the parts of 
the model.  The first part of the GAMS statement of the model is the specification 
for the set of equities 

 
Set i   equities   /equity1, equity2, equity3/; 

 
While it is more common in GAMS to use an upper case letter for the set so that the 

tion as is done here.   The argument is that in GA
 the mathematics of the model would indicate a e

1ix =∑  
i I∈

AMS as 

sum(i, x(i)) =e= 1.0 ; 
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This statement creates a set which is a copy of the set J I .   This kind of 
statement is used in GAMS when there is a double summation over the elements 
of a variable x  used in computing the variance of the 
portfolio in th
 Next t d for

(i,j) of the sort that is
is model. 

 data are input using the Scalar keywor  θ  and βhe , the 
Parameters keyword for the vector µ  and the Table keyword for the matrix 

as follows: 
 
Scalar  theta desired minimum mean-return on portfolio (%) / 10 / 
        beta  subjective weight on returns variance of equities / 2 /; 
 
 Parameters  mu(i) mean annual returns on equities (%) 
       / eq
         eq
         equity3   15 / ; 
 
 Tabl

Then the variables are defined using the keyword “Variables” 
 
Variables   

nvested in equity i in formulation 1 
    y(i) fraction of portfolio invested in equity i in formulation 2 
    criterion1  expected mean return on portfolio, net of variance cost 
    criterion2  variance-augmented total risk cost of portfolio ; 
 

Σ  

uity1    8 
uity2   12 

e sigma(i,j)  covariance matrix of returns on equities 
                   equity1   equity2   equity3    
         equity1      6        -5          4       
         equity2     -5        17        -11       
         equity3      4       -11         24 ; 

 

    x(i) fraction of portfolio i

Positive Variable x, y ; 
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Also, the Positive Variable statement is used in GAMS to enforce the non-
negati he 

1.0 
   desired minimum mean-return on portfolio y(i) 

            ysum    fractions y(i) must add to 1.0 ; 

 

Recall that the fter the last line above is crucial in GAMS.   It is easy 
to forget this  developing a model in GAMS; however, forgetting 
it usually results in errors in GAMS, since the compiler does not know where the 
list of equation names ends and the definition of the equations begins. 

e definitions of the equations beginning with the criterion 
function.   However, since GAMS uses index rather than matrix notation, it is 

e criterion function from Eq. (6) above, i.e. 

(6) 

vity constraints on the x and y variables.  Notice that the two versions of t
model using the x variables in the one version and the y variables in the other are 
being developed simultaneously in the GAMS statement of the models, rather 
than one after another.   
 Next comes the declaration of the equations with the statements 
 

Equations   dcri1   definition of criterion1 
            dcri2   definition of criterion2 

   fractions x(i) must add to             xsum 
            dmu  

 semicolon a
semicolon when

 Next are th

useful to restate the matrix form of th
 

 1
2

J x x xµ β′ ′

 (14)  

= − Σ  

in index form as  
 

1
2i i i ij j

i I i I j J
J x x xµ β σ= −∑ ∑∑  

ere 
∈ ∈ ∈

wh
 iµ  = the mean return on equity i 

ijσ  = the covariance of the returns on equities i and j 

 

                        -.5*sum(i, x(i)*sum(j, beta*sigma(i,j)*x(j))) ; 

 

This criterion is written in GAMS as 
 
dcri1..  criterion1 =e= sum(i, mu(i)*x(i)) 
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Here we see the use of the alias I  and sets for the double summation.  
e ion function for the second version of the model which is 

written in matrix form as 
 

J
Similarly th criter

(9)  1
2

J y yβ ′= Σ  

becomes 
 
dcri2..  criterion2 =e= .5*sum(i, y(i)*sum(j, beta*sigma(i,j)*y(j

 
in the GAMS statement. 

The rest of the constraints for the two versions of the model are stated in 
GAMS as 
 

  xsum..     sum(i, x(i)) =e=
  

))) ; 

 1.0 ; 
dmu..      sum(i, mu(i)* y(i)) =g= theta ; 

  ysum..     sum(i, y(i)) =e= 1.0 ; 

 
The first and third constraints above require that the fractional portfolio holdings 
add to one.   The middle constraint containing the θ  parameter is the restriction 
on the portfolio return in the second version of the model. 
 

  Model portfolio1  / dcri1, xsum / ; 
  Model portfolio2  / dcri2, dmu, ysum / ; 
 
  Solve portfolio1 using nlp maximizing criterion1; 
  Solve portfolio2 using nlp minimizing criterion2; 

 
Here we see a good example in GAMS of the use of Model statements to specify 
different versions of a model that can then be solved one after another with two 
different Solve statements.   The two models are actually quadratic programming 
models; however, GAMS does not have a specialized solver for this purpose and 
the nonlinear programming solver called by the keyword nlp is appropriate.  For 
an introduction to this type of solver see Appendix F.  

Below is the complete GAMS code for the Markowitz problem.  The 
GAMS library has a variety of optimal portfolio models which may be of interest 
to the reader.  They are called PORT and QP1 thru QP6.  The PORT model was 

The last part of the GAMS statement for the two versions of the model is 
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created by the Control Data Corporati odels were created by 
Erwin Kalvel   
 
 
$Title A Quadratic-Linear Program for Mean-Variance Portfolio Analysis 
* Program by Seung-Rae Kim 
 
$Ontext 
These are mean-variance portfolio selection models with two 
alternative
formulations in GAMS: (1) maximizing expected mean return, net of 
variance costs, & (2) minimizing the overall variance costs of 
portfolio. 
$Offtext 
 
 Set i   equities   /equity1, equity2, equity3/; 
 Alias   (i,j) ; 
 
 Scalar  theta desired minimum mean-return on portfolio (%) / 10 / 
         beta  subjective weight on returns variance of equities / 2 /; 
 
 Parameters  mu(i) mean annual returns on equities (%) 
       / eq
         eq
         eq
 
 Table sigma(i,j)  covariance matrix of returns on equities 
                   equity1   equity2   equity3    
         equity1      6        -5          4        
         equity2     -5        17        -11       
         eq
 

po ested in equity i in formulation 1 
    y(i) fraction of portfolio invested in equity i in formulation 2 

ance-augmented total risk cost of portfolio ; 
 

 must add to 1.0 
            dmu     desired minimum mean-return on portfolio y(i) 
            ysum    fractions y(i) must add to 1.0 ; 

on and the QP m
en at the GAMS Corporation.  ag

s 

uity1    8 
uity2   12 
uity3   15 / ; 

uity3      4       -11         24 ; 

 Variables   
    x(i) fraction of rtfolio inv

    criterion1  expected mean return on portfolio, net of variance cost 
    criterion2  vari

 Positive Variable x, y ; 
 
 Equations  dcri1   definition of criterion1 
            dcri2   definition of criterion2 
            xsum    fractions x(i)

 176
 



Chapter 7   Portfolio Model in MATLAB 

 
 dcri1..  criterion1 =e= sum(i, mu(i)*x(i))-.5*sum(i, x(i)*sum(j, 
                           beta*sigma(i,j)*x(j))) ; 
 dcri2..  criterion2 =e= .5*sum(i, y(i)*sum(j, beta*sigma(i,j)*y(j))) ; 
 
 xsum..     sum(i, x(i)) =e= 1.0 ; 
 dmu..      sum(i, mu(i)*y(i)) =g= theta ; 
 ysum..     sum(i, y(i)) =e= 1.0 ; 
 
 Model portfolio1  / dcri1, xsum / ; 
 Model portfolio2  / dcri2,  ysum
 

 nlp maximizing criterion1; 
 Solve portfolio2 using nlp minimizing criterion2; 

 dmu,  / ; 

 Solve portfolio1 using
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Once More . . . 
 

178 



 

 
 

Chapter 8 

General Equilibrium Models in GAMS 
 

dels is a particularly demanding topic in 
ics, since it involves the study of interdependence.  It implies a move to the realm 

 multiple heterog

oduce SAM based and Johansen style Computable General 
Equilibri esent models in a sequence reflecting mainly their 
computa lexity in terms of degree of non-linearity and size.  The order of the 
sequence recedence of one type of model over the 
others, o

 
 
1.  Input-Output Model 
 

A good starting point for the study of interdependence in economics is the well 
known In eered by Nobel prize winner Wassily Leontief  (1953).  
One of th ls of this type of model is the determination of direct and indirect levels 
of production to satisfy a given increase in final demand. 

Consider an economy with three industries (1, 2 and 3).  Each of them produces a 
single output, using as inputs part of its own production as well as part of the output from 

 
The analysis of economy-wide mo

econom
of eneous agents, sectors and institutions interacting in complex ways.  
While there are some analytical methods and results available to help us in such endeavors, 
computational methods become necessary when we move to medium or large size models 
or when we deal with particularly complex ones.   

This chapter provides an introduction to the art of economy-wide modeling.  We 
present a sequence of small models, we show how to implement them in GAMS and we 
perform some experiments and suggest other experiments.  We start with an Input-Output 
model in which quantities produced are determined given technology and demand levels.  
We follow with a Production Prices model that determines relative prices given technology 
and a distributive variable.  Then we move to a General Equilibrium model in which prices 

ined simultaneously given technology, preferences and and quantities are determ
endowments.  Finally, we intr

 We will prum models. 
tional comp
 does not mean historical or theoretical p

 ranking of practical relevance. r a

put-Output model pion
e main goa
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the other that each industry plays a dual role since it is both a 
supplier of inputs and a user of outputs.  Imagine that each product in this economy is also 
used to s rs.  In formal terms, we 
can represent the economy just described as follows 

 

(1)  23 3 2

33 3 3

 industries.  It is clear, then, 

atisfy an exogenously given level of demand from consume

 2 21 1 22 2

1 11 1 12 2x a x a x 13 3 1a x d

3 31 1 32 2

x a x a x a x d
x a x= + a x a x d

+
+

+ +
 

 
where th nput-output coefficients (the 

intermediate requirements from industry i per unit of output of industry  j), and the d’s are 
the levels  consumers.13  In matrix notation, we can write Eq. (1) 
as 
 
(2)     

= + +
= + +

e x´s are production levels, the ija are the i

 of final demand from the

x Ax d= +  
 
where x i ands and A is the 
input-out

A iven an example input-output 
coefficie
  

oduction, d is the vector of final dems the vector of levels of pr
put coefficients matrix.   
 question can be posed for this economy.  G
nts matrix 

0.3 0.2 0.2⎡ ⎤
0.1 0.4 0.5
0.4 0.1 0.2

A ⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and an example vector of final demands 

4
5
3

d
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

                                                 
13 One of the attractive features of input-output models is that in principle the data that is used to compute the 

coefficients in the model can be obtained directly from sources such as the manufacturing censuses done in 

many countries. 
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what will be the required level of total production of each industry (direct and indirect) to 
 vector?  The GAMS representation of this problem is 

$TITLE IO-1 
* Input-Outp
 
SCALARS 
d1 final dem
d2 final dem
d3 final dem
 
VARIABLES 
x1 productio
x2 productio
x3 productio
j  performan
 

 
MODEL IO /jd, eqx1, eqx2, eqx3/; 
SOLVE IO MAXIMIZING J USING LP; 
DISPLAY x1.l, x2.l, x3.l; 

he GAMS files for this and the other models in this chapter are in the book web site under 
the nam

satisfy that final demand
 

ut Model 

and for x1  /4/ 
and for x2  /5/ 
and for x3  /3/; 

n level industry 1 
n level industry 2 
n level industry 3 
ce index; 

EQUATIONS 
eqx1 
eqx2 
eqx3 
jd performance index definition; 
  
jd..    j =E= 0; 
eqx1.. x1 =E= 0.3*x1 + 0.2*x2 + 0.2*x3 + d1; 
eqx2.. x2 =E= 0.1*x1 + 0.4*x2 + 0.5*x3 + d2; 
eqx3.. x3 =E= 0.4*x1 + 0.1*x2 + 0.2*x3 + d3; 

 

T
es listed in each $TITLE statement.  Note that in this model, as discussed in 

Appendix H “The Stacking Method in GAMS”, in order to solve a system of simultaneous 
equations in GAMS it is necessary to add an additional variable (j) and equation (jd) and 
to maximize or minimize the added variable.   As is discussed in that appendix, GAMS has 
procedures for optimizing but not for solving simultaneous equations.  Therefore, the 
method for solving simultaneous equations in this software system is to add to the model an 
additional variable – j in this case – and an additional equation – jd in this case.   Then the 
additional variable is maximized or minimized in order to find the solution to the model. 

Using this method the solution obtained is 
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1x 2 316.821, 23.744, 15.128.x x= = =  

(3) 

 
There are analytical methods available to deal with this problem.14 Indeed, the 

analytical solution is obtained by solving Eq. (2) to obtain 
 
   ( ) 1x I A d−= −  

 
where I is the identity matrix.15  This formula can be easily handled for small models.  
However, computational methods will be required to perform the matrix inversion as soon 
as one moves to larger models.  And these methods will become unavoidable as we move 

 more complex problems.  For example, imagine now that we have some restriction, like 
a capacity constraint, on the maximum level of production of some products (say 
to

2 22x ≤  
and ) and we want to know the maxim al dem roduct 1 ) 
that the economy can satis d  be easily 

handled in GAMS.  Here is the corresponding GAMS representation of the problem   
 

O-2 
put Model wit restrictions

S 
l de 2  /5/ 
al d mand for x3  /; 

VE VARIABLES 
tion level indust

x2 production level industry 2 
ion level industry 3 
emand for x1; 

 
VARIABLES 
j  performance index; 
 

                                                

3 14x ≤ ( 1dum level of fin and of p
fy, given the final emand levels d2  and 3d .  This can

$TITLE I
* Input-Out h  
 
SCALAR
d2 fina mand for x
d3 fin e /3
 
POSITI
x1 produc ry 1 

x3 product
d1 final d

 
14 See for example Chiang (1984) for an introduction to these methods. 
15 Also, it is necessary that the  I-A matrix be non-singular. 
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EQUATIONS 
eqx1 
eqx2 
eqx3 

jd performance index definition; 
 
jd..    j =E= d1; 
eqx1.. x1 =E= 0. 2*  
eqx2.. x2 =E= 0.1*x1 + 0.4*x2 + 0.5*x3 + d2; 
eqx3.. x3 =E= 0.4*x1 + 0.1*x2 + 0.2*x3 + d3; 
res1.. x2 =L= 22; 
res2.. x3 =L= 14; 

O MAXIMIZING j USI G LP; 
DISPLAY x1.l, x2.l, x3.l, d1.l; 

 
Notice efine and add two equations (res1 and res2) corresponding to the 

restrictions, s mance index 

res1 restriction 1 
res2 restriction 2 

3*x1 + 0. x2 + 0.2*x3 + d1; 

 
MODEL IO /all/; 
SOLVE I N

 that we d
et the perfor j  equal t , and define  as a variable (no longer 

as a scalar).  Also, to avoid negative values that make no economic sense we define all 
variables exc mance index as positive variables.  Solving the problem, we 
obtain 

 
43, 22, 13.571, 2.786x x d= = =  

 
in contrast wi iginal solution of 
 

16.821, 23.744, 15.128, 4x x d= = = =  

 
Thus the level of final demand for good 1 is lower once the restrictions are in place and we 
can achieve only 2.786.   This is lower than in the original case since we set the values of 
the restrictions below the solution levels previously obtained.  On the contrary, if the 
econom e “bottlenecks” up to 30 for 

1do 1d

ept the perfor

1 14.1x = 2 3 1

th our or

1 2 3 1x

2x  and 20 for 3xy is able to lift thos , the demand of 
could be satisfied would be 1 7.8d = .goods produced by sector 1 that  
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2.  Production Prices Model  
 

So far we have been dealing with a model with two main types of agents 
(consumers and industries), in which their interrelations are linear and where, given a 
technology (the input-output coefficients matrix) we determine quantities produced n
demanded.  Implicitly, relative prices are taken as given.  We will move now to a nonlinear 
model in which pric

 a d/or 

es are determined given technology and a distributive variable.  This 
type of

 us to 

e cost 

rite 
 

(4)     p

 model was pioneered by David Ricardo (1817) at the beginning of the nineteenth 
century and later formalized by Piero Sraffa (1972).  One of its main goals is to allow
study issues of income distribution between wages and profits.   
 Let’s define  
 

v = value of intermediate inputs  
π  = profits  
w = wag
p = price.   
 

We can then w

v wπ+ + = . 

  
 This equation simply requires that the total cost, that is the sum of the three 
elements n 
assuming  times the value of the intermediate inputs 
we have 
 
(5)     

 of cost, namely intermediate goods, capital and labor is equal to the price.  The
 that profits are equal to the profit rate r

v v r w p+ + =  

or 
 
(6) p(1 )v r w+ + =  

 
Then using the input output coefficients for the intermediate inputs, a simple three-good 
production prices model can be formalized as  
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(7)  
) (1 )a p a p r l w p+ + + + =

 
The a’s a at subscripts of these coefficients 
are rever trix corresponding 
to input-output Leontief type models.  This is so because here we determine prices given 
technolo given technology.16   The l’s 
are also i efficients indicating the quantity of labor required for the 
production of one unit of product.  In addition the

11 1(a p 21 2 31 3 1 1

 ( ) (1 )a p a p a p r l w p+ + + + =  12 1 22 2 32 3 2 2

13 1 23 2 33 3 3 3( ) (1 )a p a p a p r l w p+ + + + =

re, as before, input-output coefficients.  Notice th
sed, that is, the input-output matrix is the transpose of the A ma

gy, while in Leontief models we determine quantities 
nput-output co

p ’s are relative prices, w is the wage per 

unit of la o be uniform for the whole economy) and r is the profit rate.  The 
profit rat ery industry, implying that we are dealing with a long run 
situation s the same profit no matter the industry.  Otherwise there 
would be a low rate to industries with a higher rate 
until that rate equalizes across industries. 
 T iables and three equations.  Since all prices are relative 
prices, we need to choose one of them as a numeraire in order for all the other price-like 
variables to be expressed in terms of it.  We can do this by fixing one variable (say, one 
price).17  Once we have done this, to close the system of equations we are still left with a 
degree of w and r.  We can thus fix, for example, the wage w.18   

A GAMS representation of this model is provided below, where we have chosen a 
particular set of values for the input-output coefficients, and where we set  and w = 

0.  

                          

bor (assumed t
e is the same for ev
 in which capital earn
 capital movements from industries with 

he model above has five var

 freedom regarding 

1 1p =

 

                       
16  To learn his, see Passinetti (1977). 
17 For Sraff  of the numeraire involved other issues dating back to Ricardo.  Facing a change in the 

relative pri ll when the change originated in the conditions 

affecting th nditions of production of the commodity being used as 

numeraire. lem, Sraffa built a numeraire that takes the form of a restriction 

involving s del variables.  This is a complex theoretical issue and we will not deal with it here.  

See Sraffa
18 Classica um subsistence 

level of the d that w was the outcome of the bargaining 

process bet

 more about t

a, the choice

ce of a commodity, Ricardo wanted to be able to te

e production of that commodity or in the co

  To solve in part that prob

ome of the mo

 (1972). 

l economists like Ricardo used to consider that w was determined by the minim

 labor force.  More modern approaches have considere

ween workers’ unions and industrialists’ unions. 
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$TITLE ProdPri 
duction Prices Model 

 

j  performance index; 

eqp1 

jd performance index definition; 

eqp1.. (0.3*p1 + 0.1*p2 + 0.4*p3) * (1+r) + L1 * w =E= p1; 
.4*p2 + 0.1*p3) * (1+r) + L2 * w =E= p2; 

1+r) + L3 * w =E= p3; 
 

0; 

MODEL PP1 /all/; 
IZING J USING NLP; 

p3.l, w.l, r.l; 

Notice th  the statements 

are used 
 The solution for bserve what happens as we decrease 
r.  To do es, that is, we substitute   
.fx = 0.25  (and later r.fx=0.20, etc) for  w.fx = 0 in the GAMS representation 

rofit 

* Pro
 
SCALARS 
L1 /0.2/
L2 /0.5/ 
L3 /0.3/; 
 
VARIABLES 
p1 
p2 
p3 
w 
r 

 
EQUATIONS 

eqp2 
eqp3 

 
jd..    j =E= 0; 

eqp2.. (0.2*p1 + 0
eqp3.. (0.2*p1 + 0.5*p2 + 0.2*p3) * (

w.fx = 
p1.fx = 1; 

SOLVE PP1 MAXIM
DISPLAY p1.l, p2.l, 
 

at
w.fx = 0; 
p1.fx = 1; 

to fix w and p1. 
r is 0.25.  It is interesting to o

 so, we now set r equal to different fixed valu
r

above.  We will find that there is an inverse relationship between the wage w and the p
rate r, such as the one shown in Table 8.1. 
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r w 

0.25 0.000 
0.20 0.157 
0.15 0.270 
0.10 0.389 
0.05 0.515 
0.00 0.648 

 
Table 8.1 Wages and Profits 
 

In this example, not only wages, but also prices go up as r decreases.  However, in 
general, prices can go either way - some may go up, others down.  However, if we choose 
w as the numeraire, we will observe that as r increases, all prices in

l wage will decrease no matter the weights used t
crease, indicating that 

he rea o compute the corresponding wage 

.  General Equilibrium Model  

s we considered first a quantity model and then a price model.  
hich quantities and prices are determined simultaneously.  

re pioneered by Leon Walras (1834-1910) (cf. 
e conomics, Augustus M. Kelley Publishers (1969)) and 

eneralized by Nobel Prize winners Kenneth Arrow (Arrow and Hahn (1971)) and Gerard 
 of general equilibrium modeling is the study of 

nges in prices and quantities when technology, preferences or endowments change. 
Imagine that we have a very simple economy, with only one production sector, two 

s old.  The production sector produces a single good 

t
deflator.  

 
 

3
 

In the previous two section
Here we move to a model in w
General equilibrium models of this type we
Walras, L., El ments of Pure E
g
Debreu (1986).  One of the main goals
cha

factors of production and a single hou eh
sq (output supply) with a Cobb-Douglas constant returns to scale production technology 

derived combining the production function with the assumption of profit maximizing 
behavior.  Labor and capital supplies (

using two inputs: labor and capital.  Technical progress (b) can affect total factor 
productivity.  The corresponding labor and capital demand functions (  and ) are dl dk

sl and sk ) are given exogenously.  The single 

household provides labor and capital  in exchange for the corresponding wage (w) and 
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profit (r),  spending all its income (y) in the demand for the single good ( ).  So far, we 

good markets, and we impose market clearing 
itions specifying that supply equals demand.  The model equations are listed below19

 
(8) 

dq

have three markets: labor, capital and 
cond
 
production function  (Cobb-Douglas) 

1a a
s d dq b l k −=                             

 
labor demand, supply and market clearing   

)    

 

(9 s
d w

a q p
l = ,      s sl l= ,         s dl l=  

 
capital demand, supply and market clearing 

                                                 
 capital demand fun s, we  maximize the profit function  

 

19 To obtain the expressions for the labor and ction

   dds krlwqp −−=π  

 

subject to the production function 

ds

rofit function, the first or r conditions are 

I)  

 
aa klbq −= 1  d

 

Substituting the production function into the p de

 

011 =−=
∂
∂ −− wklbap
l

a
d

a
d

d

π  

II)  

 

0)1( =−−=
∂
∂ − rklbap
k

a
d

a
d

d

π  

 

Substituting the production function into I and II and rearranging terms we obtain, respectively, the labor and 

capital demand functions 

 

w
pqa

l s
d =      and     

r
pqa

k s
d

)1( −
=  
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(1 ) s

d
a q p

k
r

−
= s sk k= ,        s dk k=  (10)    ,      

 
household income 
(11)                                 d dy w l r k= +       

good demand 

(12)                                            d
yq
p

=  

ood market clearing 
                

g
(13)                 s dq q=  

 
This simple model has 10 variables and 10 equati nso .  However, one of them is 

redundant, since “Walras law” establishes that for n-markets we need n-1 equilibrium 
o l is model determines relative prices (p, w and r), we need to 

fix one of them as the numeraire.  Thus, by choosing one price as the numeraire (say we fix 
p = 1)    and deleting the corresponding good market clearing equation (

conditi ns on y.  Also, since th

s dq q= ), we are 

left wit

he GAMS representation of the model is shown below.  Arbitrary, but reasonable, 
numbers have ameters and for the labor and capital stocks. 
 

$TIT
  
SCAL
a labor share / 0.7 / 
b technology parameter / 1.2 /; 
 
POSI
qs g
qd g
ld labor demand 
ls labor supply 
kd capital demand 
ks capital supply 
p pr
w wage 
r pr
y in

h a 9-variable 9-equation well-defined model.  We do not consider the performance 
index j (that is used in the GAMS representation below) in the variable count nor the 
performance index definition in the equation count. 

T
been chosen for the par

LE SIMPLEGE 

ARS 

TIVE VARIABLES 
ood supply 
ood demand 

ice 

ofit 
come; 

 189
 



Chapter 8 General Equilibrium Models in GAMS  

 
VARI
j  p
 
EQUA
eqs good supply equation (production function) 
eqd 
eld 
els 
ekd capital demand equation 
eks capital supply equation 
ey  income equation 
eml 
emk 
jd performance index definition; 
 
jd..
 
eqs..     qs =E= b * ld**a * kd**(1-a); 
eld.
els.
eml..     ld =E= ls; 
ekd..     kd =E= (1-a)* qs * p / r; 
eks..     ks =E= 1; 
emk..     kd =E= ks; 
ey..       y =E= w * ld + r * kd; 
eqd.
 
*lower bounds to avoid division by zero 

l; 

ABLES 
erformance index; 

TIONS 

good demand equation 
labor demand equation 
labor supply equation 

labor market clearing 
capital market clearing 

       j =E= 0; 

.     ld =E= a * qs * p / w; 

.     ls =E= 2; 

.     qd =E= y / p; 

p.lo = 0.001;  w.lo = 0.001;  r.lo = 0.001; 
 
*numeraire 
p.fx = 1; 
 
MODEL SIMPLEGE /all/; 
SOLVE SIMPLEGE MAXIMIZING J USING NLP; 
DISPLAY qs.l, qd.l, ld.l, ls.l, kd.l, ks.l, p.l, w.l, r.l, y.
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he solution values are 

qs.L  =   1.949  good supply 

qd.L  =   1.949  good demand 

L  =   2.000  l an

ls.L  =   2.000  labor supply 

kd.L  =   1.000  capital demand 

ks.L  =   1.000  capital supply 

p.L   =   1.000  price 

w.L   = .682  wag

r.L   =   0.585  profit 

y.L   = 949  inc

 
It is important to perform some basic checks on the workings of the model.  For 

and in 
antity variables 

should rem

the General Equilibrium model 
what is like to deal with more than a handful 

 are known in the literature as Computable 
General Equilibrium (CGE) models.  We will later go back to a small model to illustrate the 
application of a linearization technique useful when dealing with relatively large nonlinear 
models.  The material in the remainder of this chapter is considerably more difficult than in 
the previous sections.   Also, the exposition moves at a more rapid pace. 

T
 

ld. abor dem d 

  0 e 

   1. ome 

 
instance, since we assumed market clearing, we have to verify that supply equals dem
each m rket.  Also, when increasing the value of the numeraire, all qua

ain the same, while nominal variables (prices and income) should increase 
proportionally.   Notice that this model, as the other models previously introduced, are 
models of the “real” side of the economy, in the sense that money is not explicitly included 
in them.  Also, the result that real variables remain the same while nominal variables 
change in proportion to the numeraire can be interpreted as meaning that money is neutral 
in this model. 
 
 
4.  Computable General Equilibrium Models 
 

So far we have presented very small models.  However, applied economy-wide 
models tend to be large, thus making the use of computational techniques unavoidable.  In 

ction we will introduce a slightly larger model than this se
presented in section three, to have a flavor of 
of variables and equations.  Models like this
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4.1 A SAM Based Model   
 

 
 on a Social Accounting Matrix (SAM).  This model was 

develop
el pri

g 
 columns pay rows and where each column adds up to the same number as 

the corresponding row.  
 

ors 
 Labor     Capital

Households 
 Rural     Urban

Sectors 
 Food   Clothing 

We move now to a  two-sector, two-factor and two-household model to illustrate
how to build a CGE model based

ed by Arne Drud at the World Bank and is discussed in Kendrick (1990).20

Following the research of Nob ze winner Richard Stone (1961), a  SAM 
contains information on the flow of goods and payments between institutions in the 
economy.  In Table 8.2 we present a simple SAM where the table should be read followin
the principle that

 
 Fact

Factors 
    Labor 
    Capital 

 
 

  
75 85 
50        60 

Households    
    Rural 
    Urban 

90 30 
70         80 

Sectors 
    Food 
    Clothing 

  
60 65 
60         85 

 

 
Table 8.2 A Simple SAM 
 

                                                 
20 Drud implemented the model in Hercules, a system which allowed the modeler to develop CGE models by 

providing basic information in the form of Social Accounting Matrices and by choosing from a menu the 

functional forms for production functions and demand functions. Hercules is no longer in use; however 

GAMS now provides a solver (MPSGE) which performs similar functions to those of Hercules (see 

www.gams.com). These types of systems for model representation are very useful and especially time saving 

for the experienced modeler. However, here we will present a direct GAMS representation of the Drud model 

which is more suitable to introduce beginners to basic issues in computational model building. 
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For example, the food industry pays 75 to labor and 50 to capital.  Labor pays 90 to rural 
households and 70 to urban households.  Urban households spend 65 on food and 85 on 
lothing. 

 be constructed using a country’s official statistics such us the 
ational accounts.  Based on the table above, Drud built the model shown in Table 8.3. 

 

c
 Usually, a SAM can
n

 
 Quantity 

 
q 
 

Price, Share
 or Payment

p 

Price-Quantity 
 

pq 

Sectors     
   Output 
 
    Input 

 
fsa

s s fs
f

q b c= ∏  

fs s s
fs

a q p
c =

  

fp

s s sy p q=  

 
fs f fst p c=  

Factors 
    Income 
     
    Transfer 
 

  
 
 

hf hf ft a q=  

 
f f fy p q=  

Household 
     Consumption 
 
     CPI 
 

  
sh sht a qh=  

 
sha

h s
s

p p=∏

 
sh st p csh=  

 
hh hy p q=  

Linkage 
    Sectors 
    Factors 
    Households 
 

  
s sh

h
y t= ∑  

f f
s

y t= s∑  

h h
f

y t= f∑  

 

 
Table 8.3 Drud’s Model 
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The model contains three key types of variables: price (p), quantity (q) and income 
( ll of them with a single subscript since they apply to a single institution (subscript f 
indicates factor, h household and s sector).  There are also two additional types of variables: 
payment (t) and commodity (c), with two subscripts since they represent flows of goods 
and payment.  The subscripts on the pa  follow the SAM convention: 
payments are from columns to rows (i.

y), a

yment variables
e. 

 t
fst  indicates payment from sector s to factor f).  

Commodity flows f ntion (i.e.c  ollow the more common forward subscript conve  fsc  
indicates the flow of factor f to sector s, while shc  is the flow of purchased goods from 

sector s to household h).  
The output-quantity equations specify production functions with a Cobb-Douglas 

technology where b is a technology t-quantity equations are the 
corresponding factor demand equations derived from the production functions and 
imposin rural 
a

s and 36 equations.  Take the amount of 
l or an
n

t

parameter.  The inpu

g a zero profit condition.  The CPI-price equations are price indexes for the 
nd urban households respectively.  The a ´s are share parameters derived from the SAM. 

When expanded, the model has 38 variable
ab d capital as given (that is, as exogenous variables). Choose one price as the 
umeraire (say we fix ( ) 1urbanp = ).  Delete the corresponding market clearing equation (in 

his case, deleting the linkage equation ( ) ( , )urban urban f
f

y t= ∑ will do the job).  Then we are 

odel with 36 endogenous variables and 36 equations.  The GAMS left with a m
representation of this model is show
 

al/ 

b('food') = 1.2;  b('clothing') = 1; 
 

n below. 

$TITLE SAM 
options limrow = 4; 
 
SETS 
i general index /labor, capital, rural, urban, food, clothing/ 
s(i) sectors /food, clothing/ 
f(i) factors /labor, capit
h(i) households /rural, urban/; 
ALIAS (i,ip); 
ALIAS (i,iq); 
 
PARAMETERS 
b(s) technical coefficients 
a(i,ip) share coefficients; 
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TABLE sam(i,ip) 
           labor capital rural urban food clothing 
labor                                 75      85 
capital                               50      60 
rural      90     30 
urban      70     80 

 

 

etfs(f,s).. t(f,s) =E= p(f) * c(f,s); 

food                      60    65 
clothing                  60    85             ; 
 
a(i,ip)= sam(i,ip) / sum(iq, sam(iq,ip)); 
DISPLAY a; 
 
POSITIVE VARIABLES 
p(i) price 
q(i) quantity 
y(i) income 
t(i,ip) payment 
c(i,ip) commodity ; 
 
VARIABLES 
j  performance index; 

EQUATIONS 
eph(h)
eqs(s) 
eys(s) 
eyf(f) 
eyh(h) 
etfs(f,s) 
ethf(h,f) 
etsh(s,h) 
eetsh(s,h) 
ecfs(f,s) 
eeys(s) 
eeyf(f) 
eeyh(h) 
jd performance index definition; 
 
* performance index equation 
jd..    j =E= 0; 
 
*sectors 
eqs(s)..      q(s) =E= b(s)* prod(f, c(f,s)**a(f,s)); 
ecfs(f,s).. c(f,s) =E= a(f,s) * q(s) * p(s) / p(f); 
eys(s)..      y(s) =E= p(s) * q(s); 
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*factors 
eyf(f)..      y(f) =E= p(f) * q(f); 
ethf(h,f)..  t(h,f)=E= a(h,f) * y(f); 
*households 
etsh(s,h)..       t(s,h) =E= a(s,h) * y(h); 
eph(h)..             p(h)=E= prod(s, p(s)**a(s,h)); 
eetsh(s,h)..       t(s,h)=E= p(s) * c(s,h); 
eyh(h)..            y(h) =E= p(h) * q(h); 
*linkage 
eeys(s)..             y(s) =E= sum(h,t(s,h)); 
eeyf(f)..             y(f) =E= sum(s,t(f,s)); 
eeyh('rural').. y('rural') =E= sum(f,t('rural',f)); 
*notice that we eliminate one linkage equations(Walras law) 
 
*initial values to facilitate solver convergence 
p.l(i) = 1;  q.l(i) = 1;  y.l(i) = 1; 

wer b und to avoid d n by zero 
o(f) = ; 

wer bounds to avoid undefined derivative in exp functions 
p.lo(s) = 0.001;  c.lo(f,s) = 0.001; 
 
*exogenous variables  
q.fx('labor') = 2;  q.fx('capital') = 1; 
 
*numeraire 
p.fx('urban') = 1; 
 
MODEL SAMDK /all/; 
option iterlim = 10000; 
SOLVE SAMDK MAXIMIZING J USING NLP; 
 
PARAMETER REPORT; 
REPORT(i, "price") = p.l(i); 
REPORT(i, "quantity") = q.l(i); 
REPORT(i, "income") = y.l(i); 
 
DISPLAY REPORT;  DISPLAY t.l, c.l; 

 
 The GAMS representation is similar to the simple General Equilibrium model 
presented before.  Here we make use of sets and subsets as indices, we use the ALIAS 
command to redefine an index so we can use it to index a matrix, we input the SAM as a 
table under the PARAMETER section, and we define indexed variables and equations.  Notice 

 
*lo
p.l
 
*lo

o ivisio
 0.001
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that, in order to have a more compact representation,  we were able to use a general index 
“i”  for variables,  and later work with subsets of variables, but we did not do so for 
equations.  GAMS does not admit the use of subsets as indices of equations.   
 As in the previous example, we should check that only nominal variables change 
(proportionally) when we change the numeraire.   
 
4.2  A Johansen Style Model 

 
CGE models tend to be large and nonlinear.  As they grow in size, obtaining 

convergence (that is, a numerical solution) is likely to become more difficult.  An 
alternative is to switch to a model representation pioneered by Leif Johansen (1960).  
Johansen style models are solved in a linearized form where all the variables are rates of 
growth.  This method consists in transforming all the variables in the model into percentage 
changes with respect to a base case.   

For example, given an expression in levels like 
 
(14)     X a Y Z=  

if we first take logs, we obtain 
 
(15)    log log log logX a Y Z= + +  

and totally differentiating 
 
(16)    (log ) (log ) (log ) (log )d X d a d Y d Z= + +  

that is (since  is a constant) 
 

(17)     

 a

dX dY dZ
X Y Z

= +  

or 
 
(18)     x y z= +  

 
where x   variables are percentage deviations.21  In a similar fashion, we can 
transf

, y and z
orm 

                                                 
ative derivation without us21 An altern ing logs is as follows: 
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(19)     bX a Y=  

into 
 
(20)     x b y= . 

 
Thus for an expression like 

 
(21)     X Y Z= +  

we totally differentiate 
 
(22)     dX dY dZ= +  

 
then divide by the right hand side variable 
 

(23)     dX dY dZ
X X X

= +  

 
Then multiply and divide each term on the right hand side by the variable in its numerator 
and rearrange to obtain 
 

(24)     dX dY Y dZ Z
X Y X Z X

= +  

or 

     dX Y dY Z dZ
X X Y X Z

= +  

or 
 
(25)     y zx s y s z= +  

 

                                                                                                                                                     

 

dX YZda aZdY aYdZ

dX aZdY aYdZ

dX aZdY aYdZ

X X X
dX dY dZ

X Y Z

= + +

= +

= +

= +
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where and  are the sharesys zs  y
Y Ys
X Y Z

= =
+

 and z
Z Zs
X Y Z

= =
+

. 

 
In short, the transformation of a model in levels into one in percentage changes can, 

in many cases, be achieved by applying some simple rules.  Given X, Y  and Z as variables 
in levels, a and b as parameters and x, y and z as variables in percentage deviations, some 
useful rules are 

 
(26)    X a Y Z=       becomes  x y z= +  

 
(27)    bX a Y=       becomes  x b y=  

 
(28)    X Y Z= +       becomes  y zx s y s z= +   

 

where and  are the sharesys zs  y
Ys

Y Z
=

+
 and z

Zs
Y Z

=
+

. 

 
Applying these rules to the simple General Equilibrium model presented in Section 

3 and interpreting each variable not as levels but as percentage changes with respect to a 
base case, we obtain the following GAMS representation 

 
$TITLE JohansenGE 
 
SCALARS 
a labor share / 0.7 / 
 
VARIABLES 
qs good supply 
qd good demand 
ld labor demand 
ls labor supply 
kd capital demand 
ks capital supply 
p price 
w wage 
r profit 
y income 
j  performance index; 
 
EQUATIONS 
eqs good supply equation (production function) 
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eqd good demand equation 
eld labor demand equation 
els labor supply equation 
ekd capital demand equation 
eks capital supply equation 
ey  income equation 
eml labor market clearing 
emk capital market clearing 
jd performance index definition; 
 
jd..       j =E= 0; 
 
eqs..     qs =E= ld * a + kd *(1-a); 
eld..     ld =E= qs + p - w; 
els..     ls =E= 0; 
eml..     ld =E= ls; 
ekd..     kd =E= qs + p - r; 
eks..     ks =E= 0; 
emk..     kd =E= ks; 
ey..       y =E= (0.7)*(w + ld)+ 0.3 *(r + kd); 
eqd..     qd =E= y - p; 
 
*numeraire 
p.fx = 0; 
 
MODEL JOHANSENGE /all/; 
SOLVE JOHANSENGE MAXIMIZING J USING LP; 
DISPLAY qs.l,qd.l,ld.l,ls.l,kd.l,ks.l,p.l,w.l,r.l,y.l; 

 

 Notice that we eliminated the b parameter from the scalars section, since we do not 
use it here.  Also, notice that since percentage changes can be positive or negative, we no 
longer define the model variables as positive variables as we did in the version of the model 
where variables where in levels.  Finally, notice that the values of the stock of labor and 
capital and the numeraire are equal to zero, since they are percentage changes.  The 0.7 and 
0.3 coefficients that appear in equation “ey” are the corresponding share parameters 
obtained when applying the third rule.  Finally, we solve the model invoking a Linear 
Programming solver, since the problem is a linear one. 

An interesting exercise is to compare the results of the nonlinear model in levels 
versus the linear model in percentage changes for a given change in an exogenous variable.  
For example, say we increase the stock of capital by 20 percent.  This means that in the 
nonlinear model k goes from 1 to 1.2, while in the linear model it goes from zero to 0.2.  
The results are shown in Table 8.4. 
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 The Nonlinear 

Model 

The Linearized 

Model 

variable solution  k = 1 

solution  k = 1.2 

percentage 

change 

percentage change 

     

q 1.949 2.059 5.6 6 

l 2 2 0 0 

k 1 1.2 20 20 

w 0.682 0.721 5.7 6 

r 0.585 0.515 -12 -14 

y 1.949 2.059 5.6 6 

 
Table 8.4 Comparison of Nonlinear and Linearized Models 

 
The differences between the last two columns give us an idea of the approximation 

error of the linearized solution.  We should expect this error to be larger the greater the 
change in the exogenous variables.  Also, notice that if we simultaneously change the value 
of more than one exogenous variable for the linear version, the superposition principle will 
apply: the combined effect of changes in more than one exogenous variable will be equal to 
the sum of the individual effects 

As we said above, solving nonlinear models may become problematic as they grow 
in size.  The problem we just linearized using Johansen’s technique is a very small one, and 
we used it to provide a simple illustration of the methodology.  For an application to a 
larger model you are referred to Kendrick (1990), who provides a Johansen style GAMS 
representation of a version of the ORANI model developed by Dixon, Parmenter, Sutton 
and Vincent (1982) in Project Impact in Australia.  
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6.  Experiments 
 

For the input-output model in Section 1 you may perform experiments changing the 
levels of final demand, the values of some input-output coefficients or the nature of the 
capacity constraint restrictions. 

For the production prices model in Section 2, an interesting experiment would be to 
pick one price as the numeraire (say 1 1p = ) and a technology such that the proportions 

between labor costs and total input costs is the same for each industry, that is, when the 
input-output coefficients are proportional for all industries.  For instance, when the input-
output matrix is 

 

    
0.05 0.025 0.1
0.1 0.05 0.2
0.2 0.1 0.4

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
and the labor coefficients vector is 
 

1/ 7
2 / 7
4 / 7

L
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
you will observe that prices will not change as r and w change in an inverse relationship. 

For the small general equilibrium model in Section 3 the economy-wide effects of 
technological progress can be simulated by increasing the value of the b parameter.  Also, 
you could change the supply of labor or the supply of capital and see how the wage and the 
profit levels are affected.  If you do so, you will observe that quantities do not change, only 
the wage and the profit rate do.  Quantities would change if you specified elastic labor and 
capital supply functions, instead of the fixed supplies assumed in the model.  Also, we 
imposed the market clearing condition in all three markets.  However, it may well be the 
case that that condition may not be appropriate for some markets because they are in 
“disequilibrium”.  That may happen, for example, because their prices are exogenously 
fixed.  For such cases we should follow an appropriate modeling strategy such as the ones 
proposed, for example, by Malinvaud (1977).   

Finally, for the SAM based CGE model in Section 4.1, you can perform interesting 
experiments by changing the amount of labor or capital or the technology parameters.  
Notice that you could also change the share parameters by changing some numbers in the 
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SAM.  If you do so, remember to maintain the corresponding balance between rows and 
columns.  Also, an interesting exercise would be to expand the model to incorporate foreign 
trade as in Kendrick (1990).  
 
7.  Further Readings 
 

Dervis, de Melo and Robinson (1982) and Dixon, Powell, Parmenter and Wilcoxen 
(1992) provide extended textbook presentations of the different types of models introduced 
in this chapter.  For historical and analytical presentations of input-output and production 
prices models see Pasinetti (1977) and for CGE models see Dixon and Parmenter (1996).  
Shoven and Walley (1992) deal extensively with neoclassical type CGE models, while 
Taylor (1990) presents neo-structuralist type CGE models.  Roland-Holst, Reinert and 
Shiells (1994) provide an analysis of the North American Free Trade Area.  Lofgren, Lee 
Harris and Robinson (2002) develop a standard CGE model in GAMS.  For the use of a 
dynamic CGE model in a control context to study income distribution changes, see Paez 
(1999).  For an approach to solving dynamic CGE models with stochastic control theory 
methods see Kim (2004). 
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Chapter 9 

urnot Duopoly in Mathematica 

with 

 the market structures of pure 
mpetition and of monopoly.  However, most real world examples are in the domain of 

ly competitive markets 
r monopoly markets is that in an oligopoly market there is an interdependency of actions 

e of a given firm will affect 
nd be affected by the choices of the other firms.  This issue of interdependency does not 

y of influencing (or being 

 which has the ability to influence the market price and 
erefore the choices of its competitors. 

 are 
alled games and game theory is the study of these multi-player decision problems22.  We 

Co
 

Daniel Gaynor 
 

 Students of economics are introduced first to
co
oligopolies that lie between these two extremes. 
 What distinguishes oligopolistic markets from either pure
o
between firms.  By interdependency, we mean that the choic
a
exist in purely competitive markets or in monopolistic markets.   
 In a purely competitive industry, firms are assumed to be too small to influence 
the market price and therefore the action of one firm has no wa
influenced by) the actions of another firm.  Alternatively, a monopolist has tremendous 
influence over the market price, but as a monopolist, the firm has no other firms whose 
actions it can influence.  In an oligopolistic industry, there are two or more firms 
competing in the market, each of
th
 Problems involving interdependency of actions between multiple players
c
will use the Mathematica programming language to solve several alternative game 
theoretic models of oligopoly market structure.  All of these models will be called 
quantity games since the strategic choice of the firms will be quantity.  Alternative 

                                                 
22 For a more comprehensive introduction to game theory see Gibbons (1992).  Some of the examples used 

in the following are drawn from Gibbons' text. 
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models of price competition, like the Bertrand model in which each player chooses a 

e 
couraged to do in the Experiments 

 
 models.   

 these individual areas should 
enhance the learning of the other two areas.  However, the material covered in all three of 
these areas is kept at an introductory level and no previous knowledge is required.  We 
begin with a short introduction to game theory as a means of introducing the tools and 
terminology that are required for our oligopoly models.  Then we will examine two 
popular models of oligopoly market behavior using Mathematica to derive their results 
and discuss the intuition of the solutions.   In this chapter we will discuss the Cournot 
model and in the next chapter the Stackelberg model. 
 
1.  Game Theory 

 
By identifying our oligopoly markets as games, we have already gone further than 

 models.  After all, game theory tells 
s how we can represent a game as well as how one should approach solving a game.  In 

There are many types of gam eful to distinguish between a few.  To 
ential move.  In a simultaneous 

ove game, all of the players choose their actions simultaneously without observing each 
ther’s

ooses an action, and then a 
cond player chooses an action only after observing the first player’s action. 

A second classification of games is complete information versus incomplete information 
games.  All of the games presented in this chapter are complete information games or 
games in which no firm has private information about itself that other firms do not have 

price, will be discussed briefly, but not modeled.  We will focus here on two-firm 
oligopoly models, called duopolies, but the models can easily be extended to incorporat
a larger number of firms (which the student is en
section).   
 While all of the problems discussed here can be solved with pen and paper, the
use of Mathematica opens the door to the solution of substantially more complex
 The three topics covered here are game theory, oligopoly market structure and the 
Mathematica programming language.  Expertise in any of

 
 
you might think towards modeling and solving these
u
addition to introducing some basic concepts of game theory, this section will discuss a 
very simple but popular game called the Prisoners Dilemma.  The Prisoners Dilemma 
game is an extremely valuable tool because there is a direct parallel between this simple 
game and the oligopoly games we plan to solve. 
 es, but it is us
begin, games can be either simultaneous move or sequ
m
o  actions.  In a sequential move game there is an order to the play.  More precisely, 
a sequential move game is dynamic in that one player ch
se
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access to.  Finally, it will be helpful to distinguish between games with discrete strategy 
th continuous strategy choices.     

e normal form (usually a two-way table, appropriate for 
multa ve form (usually a game tree, more appropriate 

ion of a 
multa s that constitute normal-form representation 

me, 2) the strategies (or actions) that 
re available to each of the players, and 3) the payoffs that each player would receive for 

 

 
                                                   Player II 

 Mum Fink 

choices versus games wi
 The first step in approaching a game is representing the game.  There are two 
ways of representing a game: th
si neous move games) and the extensi
for sequential move games).  We adopt here the normal-form representat
si neous play game.  The three element
of a game are: 1) the players participating in the ga
a
each possible combination of strategies chosen by the players.  For two-player games in
which the strategy choices are discrete, normal-form games can be represented in table 
format as the Prisoners Dilemma game in Table 9.123. 

Mum -1 , -1 -9 ,  0 

 Pl
ay

er
 I 

Fink  0 , -9 -6 , -6 

 
Table 9.1 The Prisoners’ Dilemma Game 
 

Notice that Figure 9.1 completely represents the Prisoners Dilemma game 
ccording to our definition of a normal-form representation.  First there are two players 

II.  Second, Player I can choose between the 
layer II can choose between the strategies Mum 

pends one year in jail (1 unit of negative utility).  If each 

                                                

 
a
involved in the game - Player I and Player 
strategies Mum and Fink and similarly P
or Fink.  Finally, the payoffs from each of the possible combinations of Player I/Player II 
strategies are represented by the table’s payoff matrix.  For example if Player I plays 
Mum and Player II plays Fink, then Player I receives a payoff of negative nine (or nine 
years in jail) and Player II receives a more favorable payoff of zero. 
 The story of the Prisoners Dilemma game is as follows.  Two suspects of a crime 
are detained by the authorities and interrogated separately.  Each player can either offer 
no information (Mum) or can blame the crime on the other player (Fink).  Furthermore, 
prisoners must choose their strategies without observing each other’s choice.  If both 
players choose Mum each only s

 
23 See Gibbons (1992), p. 3. 
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blames the other (Fink, Fink) then each spends six years in jail.  If one player Finks and 
e oth  Mum, then the player who finks goes free and the player who 

of a game’s players constitute a Pure Strategy Nash 
24 if each player's chosen strategy is the 

best response to the strategies played by all of the other players.  In other words, a Nash 
 given his 

ept of Nash equilibrium strategies to the Prisoners Dilemma we 
idering how Player II would best respond to 
nt, Player II could also play Mum and 

end a year in jail or Player II could play Fink and go free.  So Player II’s best response 

nstitute 

m, in order to be a Nash equilibrium it must also be the case that 
Mum is Player I’s best response to Player II playing Fink.  However, we see that if Player 
II Finks, Player I’s best response is to Fink as well.  Continuing with this logic you will 

me is for both players to fink 

nd 

 
d each player's payoff for every possible combination of players’ 

rategies.  A forth element which we will see is important in sequential move games is 
determining the order of play.  These are necessary for characterizing and solving any 
game.  Finally, our simple example illustrated the solution concept that we will employ in 
our oligopoly problems - the pure strategy Nash equilibrium.  The intuition of Nash 

                                                

th er player chooses
chose Mum spends nine years in jail. 
 In order to solve the Prisoners Dilemma, we adopt the notion of Nash Equilibrium 
Strategies.  The strategies 
equilibrium (called Nash equilibrium here-after)

equilibrium occurs when every player chooses his strategy optimally
opponents’ chosen strategies. 
 Applying the conc
can find the Nash equilibrium.  Begin by cons
Player I playing the strategy Mum.  In this eve
sp
to Player I choosing Mum is Fink.  Therefore, the strategy (Mum, Mum) does not 
constitute a Nash equilibrium. 
 Does Player I choosing Mum and Player II choosing Fink (Mum, Fink) co
a Nash equilibrium?  The answer is no, because while Fink is Player II’s best response to 
Player I playing Mu

find that the only Pure Strategy Nash Equilibrium for this ga
on each other (Fink, Fink). 
 Through this example, we have barely scratched the surface of game theory.  
However, we have addressed a few of the basics that will allow us to better understa
oligopoly market structure.  First, we know the three elements that constitute a 
simultaneous game are: the players of the game, the strategies (or choices) available to
each of these players, an
st

 
24 In game theory there is a distinction between Pure Strategy Nash equilibria and Mixed Strategy 

equilibria.  This is a distinction that is beyond the scope of this chapter except to note that by Nash 

equilibria we mean Pure Strategy Nash equilibria. 
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equilibrium is that each player is choosing his best response or reaction to all of the other 
players’ choices. 
 
2.  Static Models of Oligopoly Markets 
 
 Because models of oligopoly markets depend on how firms interact, 
characteristics of the environment in which they interact, and potentially many other 
factors, there is no single model of oligopoly market structure.  The correct model will 
depend on the characteristics of the industry being modeled.  We focus here on two "one-
shot" quantity games that are the foundations for many more sophisticated models of 
ligopoly markets.  These models are one-shot in the sense that the game is only played a 

single time, not repeatedly played every period.  They are referred to as quantity games 
because the strategic choices of the firms’ are their respective outputs (or quantities).  As 
we will see, quantity games have an interesting characteristic that we will exploit: If the 
quantity choices are assumed to be continuous, then the payoffs will also be continuous.  
Natural alternatives to quantity games are pricing games.  Models of price competition 
have a winner take all aspect where the firm who has the lowest price captures the entire 
market (and the market is split in the event of a tie).  Therefore, while the strategic 
variable price is continuous, the payoffs (profits) are discontinuous.  We do not consider 
pricing models except to note that the solutions to such games will vary significantly 
from the quantity games considered here.   
 
3.  Cournot Competition 
 
 The first model of oligopoly market structure that we will study is the model of 
Cournot quantity competition named for the French mathematician, Augustin Cournot.  
Cournot first presented the model in his book, Researches into the Mathematical 
Principles of the Theory of Wealth, published in 1838 one hundred and twelve years 
before John Nash formalized the concept of Nash equilibrium strategies. 

To make the problem more tractable, but without loss of generality, we will 
ssume that the industry is a duopoly.  Our story of a Cournot duopoly market is as 

follows: There is a market consisting of two firms producing a homogenous good each at 
a constant (not necessarily the same) marginal cost.  We assume that each firm knows its 
own cost as well as its competitor's cost and that they also know the market's demand 
function  

o

a
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( )Q f p=      

w  is quantity andhere  is price.   Also we assume that they can derive the inverse 

mand

 Q  p

de  functions  
    ( )p g Q=  

T blem faced by these twohe pro  firms is that each must choose the quantity that it will 
competitor's output choice, and let the market 

term s each firm to anticipate, when choosing its own 

 desc
ame.  To do so we need to identify the three necessary 

gredi wo firms who we will denote Firm 1 and 
rm 2  choice. As noted, the firms’ strategic 

hoice is quantity, which is assumed to be a continuous non-negative variable.  Finally, 
arns 

tity and the quantity chosen by the other firm. 
 To solve this game we will apply the same solution concept we used to solve the 
Prisoners' Dilemma game.  A pure strategy Nash equilibrium for this Cournot game is a 
set of quantities  
    

supply to the market without observing its 
de ine the price.  This require
quantity, how the other firm will behave. 
 The game ribed above is a one-shot simultaneous move game and as such can 
be represented as a normal form g
in ents.  First, we have the players; the t
Fi .   Next, we must identify the firms’ strategic
c
the payoffs to each of the players in the game is simply the profit that this firm e
given its choice of quan

( )* *
1 2,Q Q  

in which each of the firms chooses its profit maximizing output given its forecasted 
output choice of the other firm, and each firm's forecast of the other firm's output is 
correct.  Recall that in the discrete strategy prisoners' dilemma game, finding the Nash 
equilibrium required us to consider each possible combination of strategies.  However, in 

e Cournot game each firm has a continuum of possible strategy choices and therefore 
ere are an infinite number of possible combinations of players' strategies.  Fortunately, 

an generalize the strategic behavior of the firms by 
eriving what we will call a reaction (or alternatively a best response) function.  As we 

te.  The program illustrates strategic behavior and the 
 

 

th
th
in the continuous Cournot model, we c
d
will see, calculus permits us to do this because our firms' payoffs (their profits) are 
continuous functions of their own quantity choice as well as the other firm's quantity.  To 
see this more clearly, we will begin with a Mathematica program (react.nb) that is 
available on the book web si
solution to the Cournot model graphically.  The focus of this experiment is to familiarize
the reader with the concept of a reaction function and to understand its connection to 
determining Nash equilibria.   The instructions for running Mathematica are in Appendix
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B.   Turn to that appendix and run the react.nb file if you prefer to follow along th
Mathematica code while you are reading the rest of this chapter. 
 The first step in building the graphical model of the Cournot game is to model the
industry characteristics.  Because the market is a duopoly, total market quantity, Q , is the 
sum of firm 1's output choice, 1Q , and firm 2's output choice, 2Q , i.e. 

 

e 

 

ica for assigning names to expressions (or assigning values to variables).  It 
does not define a formula or equation.  To create an equation, you must use two 

nsecutive equal signs (==).  Also note the use of the semicolon at the end of the above 
micolon is used to suppress the display of output created by 

nput statement.   
ify at this time is the 

nctio l form  In all of our 
odels we assume that the inverse demand curve is linear, i.e. 

Price = a – b*Q 

her we 
nsider firm 1's or firm 2's optimization problem first.  Therefore we will consider firm 

 first. 
 Firm 2's profits are equal to the difference between the revenue from selling the 
quantity Q2 and the cost of selling this quantity.  Revenue is firm 2's own quantity (Q2) 
multiplied by the market price, i.e.  
 
(3)    

(1)  1 2Q Q Q= +  

 
This simple assignment is made in Mathematica with the following input statement 
 
 IN[]:= Q = Q1 + Q2; 

 

The symbols  IN[]:=  are the Mathematica prompt for input and the expression Q = Q1 + 

Q2;  is the user’s input. It is important to note that the equal sign in the input is used in 
Mathemat

co
command.  The se
Mathematica for each i
 The other general market characteristic that we must spec
fu na  for the inverse market demand faced by the duopolists. 
m
 
(2)  Price a bQ= −  

or in Mathematica 
 IN[]:= 

 

Because the Cournot game is a simultaneous choice game, it does not matter whet
co
2's problem

( )2 2 2Profit PriceQ c= −
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where  is firm 2’s constant unit cost.  This can be written in Mathematica as 

 IN[]:= eqPr2 = Profit2 == Q2(P[Q1,Q2] - c2) ; 

Notice that the price, P, is a function of the quantity decisions of the two firms, i.e. Q1 

's 
 have used the string 

owever, Mathematica 
es not recognize the functional dependency.  Rather it just treats P[Q1,Q2] as string of 

This is the general representation of firm 2's profits.  However, because we have 
, we want to replace the 

neral form of the price function with the linear demand specified in the earlier 

ituting in a 

 

Mathematically we obtain an expression for the profit of the second firm by 

 

2c

 

 

and Q2.  The above statement creates a formula named eqPr2 that defines Profit2 (firm 2's 
profits) to be equal to Q2 multiplied by the difference between market price and the firm
marginal cost.  We
   P[Q1,Q2] 

here to indicate that the price is a function of both Q1 and Q2; h
do
characters.    
 
specified that our industry is subject to a linear demand curve
ge
Mathematica statement  
  Price = a - bQ  
While the practice of defining a generalized profit function and then subst
specific functional form may seem cumbersome, it is a good programming practice 
because it allows us to change the functional form of our market demand by editing a
single Mathematica statement. 
 
substitution of Eq. (2) into Eq. (3) to obtain 

(4)  [ ]2 2 2Q a bQ= − −Profit c  

 (1) in
 
and then substituting Eq. to Eq. (4) to obtain 
 
(5)  ( )2 2 1 2 2Profit Q a⎡= b Q Q c ⎤− + −⎣ ⎦  

 

211 



Chapter 9   Cournot Duopoly in Mathematica 

 These steps are accomplished in Mathematica in the following way.  First the 
substitution of the specific linear demand function for the general form is done with the 
Mathematica statement 
 
 IN[]:= eqPr2 = Expand[% /. P[Q1,Q2] -> Price] 

In Mathematica, % refers to the last result generated (and  %% refers to the 2nd to last 
result generated etc.) and /. is the replacement identifier.  So the above statement takes 

e original profit equation (named eqPr2) and replaces the general form of the demand 
equation P[Q1,Q2] with our explicit linear inverse demand expression "Price" which is 

ecified above (Price = a – b*Q).  Since no semicolon is used at the end of the 
tution. 

 OUT[]:= Profit2 == Q2 (a - c2 - b (Q1 + Q2)) 

ation for firm 2's profits or payoff as a function of the firms' 
uantities. 

 

)  

 

th

sp
statement above, the output statement gives the result of this substi
 

 

This output is the equ
q

To find firm 2's profit maximizing behavior, we take the derivative of its profit  
function, Eq. (5), with respect to its choice variable, 2Q , and set the expression equal to 

zero, i.e. 
 

( ) ( )2
2 1 2 2(6

2Q∂
Profit 0a c b Q Q Q b∂

= − − + + − =    

ive, 

eqPr2

 OUT[]:= 0 == a - c2 - b Q2 - b (Q1 + Q2) 

 

 
In our Mathematica program this is accomplished below by defining a new equation, 
which we will name focPr2 (first order condition for profit of firm 2).  It is the derivat
D[ ], of firm 2's profit (payoff) function with respect to its choice of its own quantity Q2. 
 
 IN[]:= focPr2 = D[eqPr2, Q2] 

 

his will produce the following output that is the derivative of equation  (after the T
substitution) with respect to Q2. 
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This first order condition implicitly describes firm 2's optimal behavior.  However, we 
ant to find an explicit solution for describing firm 2's optimal behavior.  

This is done by solving the first order condition in Eq. (6) for Q2, i.e. 
 
(7)  1

or 

)  

w
 

2 22bQ a c bQ= − −  

2 1
2 2

a c bQQ
b

− −
=  (8

 
This is accomplished in Mathemati e statement to solve the first order 
ondition for Q2 and then naming the output temp2.  It is helpful to note that the output 

from a solve statement is a list of solutions.  Consequently, temp2 is the name of the list 
of solutions.  In the case below, the list temp2 has only one solution and therefore a 
single element. 
 
 IN[]:= temp2 = Solve[focPr2, Q2] 

 OUT[]:= {{Q2 -> 
a - c2 - b Q1

2 b

ca by using the Solv
c

  }} 

 

 It is clear from the first order condition above that firm 2's optimal choice of Q2 
ill depend on firm 1's optimal choice Q1.  This is the key to game theoretic problems; 

ill do.  Because firm 2's choice of Q2 is 
 function of firm 1's choice of Q1, we call the expression above firm 2's “Best Response” 

or “Reaction Function”.  As its name implies, this function dictates how firm 2 chooses 
Q2 as a best response (or in reaction) to firm 1's choice of Q1.  In the simply linear case, 
we can solve for firm 2's best response quantity (R2[Q1]) explicitly. 
 In the next line of code, we create an expression called React2 (firm 2's reaction 
function) that represents firm 2's optimal response (R2[Q1]) to firm 1's quantity choice 
Q1.   
 
 IN[]:= React2 = R2[Q1] == Q2 /. temp2[[1]] 

 OUT[]:= R2[Q1] == 
a - c2- b Q1

2 b

w
each party must consider what the other parties w
a

  

 

The right hand side of this expression is simply the solution for Q2 that we found above.  
In other words, R2[Q1] is equal to Q2 where Q2 is replaced ( /. ) by the first solution ( 

213 



Chapter 9   Cournot Duopoly in Mathematica 

[[1]] ) from the output list "temp2".  R2[Q1] is just another name for Q2 that reflects the 
fact that this quantity is chosen in response to Q1. 
 We conclude our examination of firm 2's behavior in the Cournot Duopoly model 
by graphing the reaction function for firm 2 that has been derived from the model above. 
 
 IN[]:= 

 reactPlot =  

 Plot[{Q2 /. Solve[focPr2 /. {a -> 1, b -> 1, c2 -> .5},Q2][[1]]}, 

     {Q1, 0, .55}, 

     PlotStyle->{RGBColor[1,0,0],Thickness[0.010]}, 

     PlotLabel->"Reaction Curve" ] 

t 

inimum 

e 
s an 

Our identification of firm 2's reaction equation has shown that in the linear demand case 
we can find such an expression by solving the first order condition, focPr2, for Q2.  
Therefore, this line of code tells Mathematica that we want to plot the values of the 
variable Q2, where an expression for Q2 is found from solving the first order condition of 
firm 2's profit function for the variable Q2, i.e. 
 
   Solve[focPr2, Q2]   

 

      PlotRange -> {0, .55}, 

 

      AxesLabel->{"Q1","Q2"}, 

 

 

This rather messy looking Mathematica command creates a plot that we name reactPlo
using the Plot command. The syntax for the Plot command is  
 
 Plot[f, {x, xmin, xmax}, option -> value]  
 
where f is the expression to be plotted, the list {x, xmin, xmax} specifies the m
and maximum values that the variable in the expression takes, and  option -> value 
statements are used to set any display attributes of the graph.   
 Starting from the second line of code above following the IN[]:= statement, th
Plot[] command is used to create the plot.  The function, f that we want to plot i
expression that represents the values that Q2 takes - expressed in terms of the variable Q1 
and the model's parameters, i.e. 
 
 Q2 /. Solve[focPr2 /. {a -> 1, b -> 1, c2 -> .5},Q2][[1]] 
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Within this solve statement there is a replacement command (/.) followed by a list ( {,} ) 
of replacements.  These replacements specify the specific numerical values the mode
parameters are assumed to take in this example. 

ls 

The next line of this plot command {Q1,0,.55} specifies the range of values for 
de specify display 

l the plot color and 
ickness, axes labels, and plot labels.  The resulting plot shows what quantity, Q2, is firm 

Figure 9.1 Reaction Curve of Q 1

Thus if firm 1 chooses Q1 irm two's optimal reaction is to choose Q2 = 0.1.  
 Next we turn to the optimization problem for firm 1.  It solves a problem that is 
identical to firm 2’s except for the fact that firm 1 solves for his own quantity Q1 and has 
a marginal cost of c1.  The solution to firm 1's reaction function is 
 
 OUT[]:= R1[Q2] == 

a - c1- b Q2
2 b

 
the variable Q1 in the expression for Q2.  The remaining lines of co
options for the Mathematica plot.  Options are used to contro
th
2's best response to any given quantity of by firm 1 (Q1). 
 

 
 to Q   2

 
 = 0.3 then f

 . 

 

 We can plot this relationship for firm 1 assuming the same parameter values and 
over the same interval of values as we did with firm 2. 
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IN[]:=  

 reactPlot =  

 Plot[{Q2 /. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .5}, Q2][[1]]}, 

      {Q1, 0, .55}, 

      PlotRange -> {0, .55}, 

      PlotStyle->{RGBColor[0,0,1],Thickness[0.001]}, 

      AxesLabel->{"Q1","Q2"}, 

     PlotLabel->"Reaction Curve"] 

In the graphical illustration of the Cournot solution shown below we are assuming that 
 = c2 = 0.5).  This plot shows what quantity, Q1, 

firm 1's best response to any given quantity choice by firm 2 (Q2). 

 respond to it 
mpetitors various cho  Nash equilibria, a 

tegies in which each firm is choosing an 
tput that is a best response to the other firm's output choice.  Or more succinctly, at a 

efore looking at this 
aphically, however, ple 

Cournot model.  The simplest and most intuitive way to investigate this consideration is 
with another Mathematica plot. 

 

 

the firms have identical cost structures (c1

is 
 

 
 Figure 9.2  Reaction Curve of Q1 to Q2

 
 At this point we have plots showing how each firm should best
co ices of output.  According to our definition of
Nash equilibrium of this game is a set of stra
ou
Nash equilibrium, both players will be on their reaction functions.  B

it is useful to see how the costs affect the solutions to our simgr
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 IN[]:= 

 reactPlot =  

   Plot[{Q2 /. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .5}, Q2][[1]], 

/. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .6}, Q2][[1]]},  

 {Q1, 0, .55}, 

  PlotStyle->{ 

  {RGBColor[0,0,1],Thickness[0.001],}, 

 PlotLabel->"Reaction Curves"] 

otice the syntax of the Mathematica statement above.  Because we are plotting two 
reaction functions the first element in the Plot[] command becomes a list of expressions 
f1, f2} where the first element in the list is firm 1's reaction function when its 
arginal cost is 0.5 and the second is firm 1's reaction plot when its own marginal cost is 

  RGBColor[0,0,1], Thickness[0.001] 

indicates that the first plot will be a solid blue line25 which is 0.001 thick and 
  RGBColor[0,0,1], Dashing[{.03,.02}] 

indicates that the second line will be blue and have dashes of length .03 and spacing of 
.02.  With the above statement we create a graphic that plots firm 1's reaction curve with 
the original parameter specifications and a marginal cost of 0.5 and then contains a 
second dashed plot that shows firm 1's reaction curve with a slightly higher marginal cost 
of 0.6.   The color will show only in some printings of this book but will show in the 
online plot. 
 

                                                

    Q2 

 

  PlotRange -> {0, .55}, 

  {RGBColor[0,0,1],Thickness[0.001],Dashing[{.03,.02}]} 

  }, 

 AxesLabel->{"Q1","Q2"},  

 

 

N

{

m
0.6.  In the above,  

 
25 Syntax: RGBColor[red, green, blue] where color intensities range from zero to one. 
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Figure 9.3 Sensitivity Analysis for the Reaction Curve of Q1 to Q2

 
 
F is graphical sensitivity analysis of firm 1's reaction functions we can see t
higher unit costs, in the dashed line, will shift a firm's reaction function downward.  That 

rom th hat 

, for a given output y will be decreased 
e that firm 2's marginal cost, c2, 

tion since the Mathematica variable c2 does 
not appear in firm 1's reaction function.  Similarly, firm 1's marginal cost has no effect on 

m 2's reaction function. 
e how each firm will choose its 

's 
oice of Q1 we could solve firm two's reaction function for its optimal choice of Q2.  

 solve firm one's reaction function for 
its optimal choice of Q1.  The difficulty with the Cournot game is that the players 
simultaneously choose their respective quantities.  Therefore, the solution to the 
simultaneous move Cournot game is found by solving both firms' reaction functions 
simultaneously for the quantities Q1 and Q2.  Intuitively, the Nash equilibrium solution to 
the Cournot game has each firm choosing its best response quantity in reaction to the 
hypothesized quantity of the other firm26.  To show the graphical solution to the Cournot 
model we plot both firms' reaction functions in a graph. 
 

                                                

is choice by firm 2, firm 1's best response quantit
for higher values of its own marginal cost.  It is easy to se
will have no effect on firm 1's reaction func

fir
 Our plots of the firms' reaction functions illustrat
optimal quantity in response to the quantity choice of the other firm.  If we knew firm 1
ch
Similarly, if we knew firm 2's choice Q2 we could

 
26 See Gibbons (1992), p. 62. 
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 IN[]:=  

 reactPlot =  

 Plot[{Q2 /. Solve[focPr1 /.{a -> 1, b -> 1, c1 -> .5}, Q2][[1]], 

            Q2 /. Solve[focPr2 /.{a -> 1, b -> 1, c2 -> .5}, Q2][[1]]}, 

     PlotRange -> {0, .55}, 

    {RGBColor[0,0,1],Thickness[0.001]}, 

ness[0.010]} 

       }, 

     PlotLabel->"Reaction Curves"] 

The Mathematica statement given above produces a graph showing the 

.4 Th

ction functions intersect, each firm is choosing their 
tput given their belief about the other firm's output choice 

d each of the firm's beliefs about the other is correct.  This is the definition of a Pure 

f the react.nb Mathematica file.  While the graphical 
odel above illustrates the behavior of the Cournot game's players in an intuitive way 

onstrates how the Nash equilibrium is determined, we desire more from 
our model than intuition.  The next Mathematica program (cournot.nb) is a model of the 
same Cournot duopoly.  But in addition to a graphical solution, we will derive the 

      {Q1, 0, .55}, 

 

      PlotStyle-> { 

         {RGBColor[1,0,0],Thick

 

      AxesLabel->{"Q1","Q2"}, 

 

 
 
equilibrium strategies. 
 

 
Figure 9 e Two Reaction Curves 
 
At the point where the two firms' rea
respective profit maximizing ou
an
Strategy Nash equilibrium. 
 This completes our use o
m
and clearly dem
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analytic solution to this problem.  Solving for the Cournot-Nash quantities will perm
to determine the market supply and consequently the market price.  In addition, with the 
Nash equilibrium quantities and the corresponding market price we can derive the firms' 
profit levels.  All of this

it us 

 information is useful if we want to make comparisons between 
models of different market structures. 

ion just as in the 
r identifying the firms' reaction functions, rather than 

ing a plot to find the Cournot-Nash solution, we will solve for the optimal quantities 
rium strategy set was 

defined by the intersection of the two firm all that our 
definition of a Nash equilibrium requires that all players simultaneously give their best 

sponse to each other’s choices.  Clearly, the Nash equilibrium strategies can be found 
by simultaneously solving the set of reaction functions for the models strategic output 
choices.  

To solve for the optimal quantities we add the following Mathematica statement, 
 

IN[]:=  

command renames each of the firms' reaction quantities Ri[Qj] with the 
firm’s actual chosen quantity Qi and then solves the two equations simultaneously for the 
choice variables Q1 and Q2.  The resulting output from the command is the Nash 
equilibrium strategy. 

 In the file cournot.nb we derive each firm's reaction funct
previous model.  However, afte
us
directly.  Recall from our graphical example that the Nash equilib

s' reaction functions.  Also rec

re

 

 

 cournotQ =  

 Simplify[Solve[{React1 /. R1[Q2] -> Q1,  

       React2 /. R2[Q1] -> Q2},{Q1, Q2}]] 

 
The above 

 
 OUT[]:= {{Q1 -> 

a - 2 c1 + c2
3 b  , Q2 -> 

a + c1 - 2 c2
3 b  }} 

 

220 



Chapter 9   Cournot Duopoly in Mathematica 

In order to save these results we create two new Mathematica variables, Q1c and Q2c for 
ach of the respective firms Cournot quantities. 

ion of the previous Mathematica output and 
similarly for Q2c. 
 In a similar manner we derive and store the Cournot market output, the Cournot 

arket price, firm 1's profits, and firm 2's profits respectively. 

 IN[]:= Qcour = Q /.{Q1 -> Q1c, Q2 -> Q2c} 

e
 

 IN[]:= Q1c = Q1 /.%[[1]] ; 

 IN[]:= Q2c = Q2 /.%%[[1]] ; 

 
The interpretation of these statements is; Q1c is defined as the variable Q1 where Q1 is 
replaced with the values from the first solut

m
 

 

 OUT[]:= 
a + c1 - 2 c2

3 b  + 
a - 2 c1 + c2

3 b   

 

In the above statement, the Cournot market output, Qcour, is defined to be the market 
e the Q1 with firm 1's 

lace Q2 with firm 2's Cournot quantity Q2c. 
The Cournot market price, Pcour, is found by substituting the firms' Cournot 

emand function Price 
start of the program, i.e. 

output, Q, which was defined to be Q1 + Q2 where we replac
Cournot quantity Q1c and rep
 
outputs, Q1c and Q2c, in place of Q1 and Q2 into the inverse d
which was defined at the 
  
 IN[]:= Pcour = Simplify[Price /.{Q1 -> Q1c, Q2 -> Q2c}] 

 

 OUT[]:= 
a + c1 + c2

3   

 
The Mathematica Simplify command is used in the above input statement to provid
simplified output expression. 

e a 
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 With the market price determined, calculating firms' profits is straightforwar
Firm 1's Cournot profit, designated pie1c, is the firm's Cournot output, Q1c, multiplied by 
the difference between the price and firm 1's unit cost, i.e. (Pcour – c1).  
 
 IN[]:= pie1c = Simplify[Q1c*(Pcour - c1)] 

 

d.  

OUT[]:= 
(a - 2 c1 + c2)

2
 9 b   

2c. 

IN[]:= pie2c = Simplify[Q2c*(Pcour - c2)] 

 
A similar expression calculates firm 2's Cournot level of profits, pie
 
 

 

 OUT[]:= 
(a + c1 - 2 c2)

2

9 b   

 
4.  Experiments 

In this chapter we develop a series of experiments that cover many of the aspects 
der is the use of 

and another is to consider modeling alternative market 

.  Further Reading 

r 
e 

y problem, namely the 

 

of the models presented.   However, one set of experiments to consi
alternative cost functions 
structures. 
 
5
 
For an introduction to Mathematica see Wolfram (2003).  For a more comprehensive 
introduction to game theory see Gibbons (1992).  Some of the examples used in this 
chapter are drawn from that book so the reader will find continuity between this chapte
and Gibbons book.  For an introduction to the use of Mathematica in game theory se
Dickhaut and Kaplan (1993).  For a study on the use of Mathematica to simulate the 
effects of mergers among noncooperative oligopolists see Froeb and Werden (1996). 
 
We turn next to a different approach to solving the oligopol
Stackelberg Leadership model. 
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Chapter 10 

Stackelberg Duopoly in Mathematica 
 

with 

Daniel Gaynor 
 

 
Stackelberg quantity games are similar to Cournot games in that both are quantity 

petitions27.  In the Stackelberg game, however, firms do not choose quantities 
ultaneously.  Rather, this is a two-stage model in which a dominant firm (or 

Stackelberg leader) moves first by choosing its level of output in the first stage.  After 
observing the leader's move the other firm chooses its best response output in the second 
stage.  As we will see, the sequential play will require a different methodology and 
produce different results than those of the simultaneous move Cournot game.   
 
1.  The Stackelberg Leadership Model 
 
 As is typical with sequential games, we will solve the Stackelberg game 
backwards.  Thus we begin to solve the problem by characterizing how the Stackelberg 

erg leader's choice of quantity.  An intuition 
r this backward approach is that in order for the Stackelberg leader to make an optimal 

ecisio ill 
s 

on and then anticipate firm 2’s second period 
response when making its own output choice in the first period. 

                                                

 
com
sim

follower (firm 2) will respond to the Stackelb
fo
d n about his output choice, he must first consider how the Stackelberg follower w
respond to his choice in the second period.  Because firm 1, our Stackelberg leader, ha
the same information as firm 2, the follower, firm 1 can solve firm 2's optimization 
problem just as well as firm 2 can.  Therefore, the Stackelberg leader will solve for the 
Stackelberg follower's reaction functi

 
27 See Varian (1993b), pp. 448-454. 
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 In this model we use the same specification for market demand that was used in 
pendix 

 

 
rpreted as firm 2's best response to firm 1's hypothesized output Q1.  In 

the Stackelberg game, firm 2 knows Q1 for certain since it observed Q1 at the end of stage 
1.  Therefore, firm 2 will respond to firm 1's observed output Q1 by producing:  
 
 IN[]:=  Q2s = Simplify[R2[Q1] /. Solve[React2, R2[Q1]] [[1]] ] 

 

 OUT[]:= 
a - c2 - b Q1

2 b

the Cournot model.  See the Mathematica file stack.nb that, as is discussed in Ap
B, is accessed in the same way as the previous Mathematica files.  The model of the
Stackelberg follower's 2nd period behavior is identical to firm 2's behavior in the Cournot 
model with only a subtle difference.  Recall from the Cournot game that firm 2's reaction
function was inte

 . 

 
It is important to recognize that in the statement above R2[Q1] is a reaction function for 
firm 2, named React2, which is the same reaction function for firm 2 that was found in 
the Cournot game.  Since firm 2, the Stackelberg follower, has already observe firm 1's 
utput choice, Q1, firm 2 will best respond by choosing the output Q2s.   

The Mathematica statement takes firm 2's reaction equation in the form  

eft hand side = right hand side) that is named , and transforms it into an 

lberg 
s replaced (/.) with the 

expression representing the solution for the variable R2[Q1] from firm 2's reaction 
equation, React2.  The Solve command finds the expression for the variable R2[Q1] and 
the Simplify command is used again to simplify the output expression.  The [[1]] term 
in the input statement tells Mathematica to use the first solution found by the Solve 
command.  Although there is a unique solution to the above Solve statement, this term is 
still required. 

o
 
  lhs == rhs  
(l React2

expression, named Q2s, which can later be substituted into firm 1's optimization problem.   
This is accomplished by defining an expression for the output of firm 2 in the Stacke
game, Q2s, to be equal to the variable R2[Q1] where R2[Q1] i
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 After solving firm 2's optimization problem, we step back to the first stage and 
solve the Stackelberg leader's (firm 1's) optimization problem.  As we did in the Cournot 
Model, we begin by specifying the general form of firm 1's profit function and then 
replace the general demand function with our specific linear demand function.  
 
 IN[]:= eqPr1 = pie1s == Q1*(P[Q1,Q2]-c1)  

 OUT[]:= pie1s == Q1 (-c1 + P[Q1, Q2]) 

 

 IN[]:= eqPr1 = %/. P[Q1,Q2] -> Price  

 OUT[]:= pie1s == Q1 (a - c1 - b (Q1 + Q2)) 

 
However, at this point the model makes a departure from the Cournot model.  Because 
firm 1 can solve for firm 2's best response quantity as well as firm 2 can, firm 1 will 
anticipate firm 2's reaction to any choice of Q1.  Therefore, firm 1 can substitute firm 2's 

action output (which expresses firm 2's optimal choice of Q2 as a function of firm 1's 
uantity Q1) in place of Q2 leaving a profit function for firm 1 which is a function of only 

and 

eqPr1 = Simplify[%/. Q2 -> Q2s]  

 

re
q
its own quantity.  This is accomplished with the following comm
 
 IN[]:= 

 

OUT[]:= pie1s == 
Q1(a - 2 c1  + c2 - b Q1)

2   

 
ent redefines the The above input statem equation for the profits of firm 1 (eqPr1) to be 

tion from the previous output statement with the variable Q2 replaced with the 
Q2s which was calculated earlier.  At this point the equation representing 

the Stackelberg leader’s profits is only a function of its own quantity choice, Q1. 
 Observing the previous output statement, it is easy to see that the Stackelberg 
leader's optimal choice of quantity can then be found by differentiating the profit function 
above with respect to that firms’ choice of quantity Q1.  The Mathematica statement 
below uses the derivative command, D[], to differentiate firm 1's profit equation, eqPr1, 
with respect to the variable Q1. 
 

 IN[]:= focPr1 = Simplify[D[eqPr1, Q1]]  

 

 OUT[]:= 0 == a/2 – c1 + c2/2 – b Q1. 

the equa
expression for 
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The Stackelberg leader's output choice, Q1, can then be found by solving the 

above first order condition for the va tatement below, the Solve 
command finds this expression for th plifies the expression, and then 
nam .  
The solution to the Stackelberg game has the Stackelberg leader (firm 1) choosing its 
optimal quantity:  
 

 IN[]:= Q1s = Simplify[Q1 /.Solve[focPr1, Q1][[1]]]  

 

 OUT[]:= 
a - 2 c1 + c2

 2 b

 
riable Q1.  In the s
e variable Q1, sim

es the expression Q1s (the optimal quantity of firm 1 playing the Stackelberg game)

  

 

Firm 2 (the follower) then takes firm 1's quantity choice as given and reacts by choosing:  
 
 IN[]:= Q2s = Simplify[Q2s /. Q1 ->Q1s]  

 

 OUT[]:= 
a + 2 c1 - 3 c2

 4 b   

 

The above statement simply takes the expression for Q2s and replaces the variable Q1 
with our expression for Q1s in terms of the models parameters.   
 The resulting market quantity and market price are then calculated by substituting 
the firms' optimal quantities into the quantity and price equations.  

 IN[]:= Qstack = Q /. {Q1 -> Q1s, Q2 -> Q2s}  

 

 

 OUT[]:= 
3 a - 2 c1 - c2

 4 b   

 

 IN[]:= Pstack = Simplify[Price /. Q -> %]  

 

 OUT[]:= 
a + 2 c1 + c2

 4   

 

The syntax for the expressions above corresponds with the syntax for the expressions 
representing Cournot market output and price found earlier. 
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 output, 

y the difference between unit price and firm 1's unit cost  
(Pstack – c1).  
 

 IN[]:= pie1s = Simplify[Q1s*(Pstack – c1)]  

 

 OUT[]:= 
(a - 2 c1 + c2)

2

 8 b

Once again, with the market price determined, it is possible to calculate firms' 
profits.  Firm 1's Stackelberg profits, designated pie1s, is the firm's Stackelberg
Q1s, multiplied b

  

  

 IN[]:= pie2s = Simplify[Q2s*(Pstack – c2)]  

 

 
Similarly, firm 2's profits from playing a Stackelberg game, pie2s, are; 

 OUT[]:= 
(a + 2 c1 - 3 c2)

2

 16 b    

 
 
2.  Comparison of Cournot and Stackelberg Models 
 
 In this final section we look at a Mathematica program that considers alternative 
oligopoly models and asks how our model specification might affect our predicted 

 different solutions but to impress upon the reader the importance of 
choosing the correct model for the industry.  Does the industry you want to model have a 
dominant firm that appears to lead the industry?  If so, it might be more appropriate to 
model this industry as a Stackelberg oligopoly rather than a Cournot oligopoly.  Do the 
firms in the industry produce a nearly homogenous good?  If not, neither the Cournot nor 
the Stackelberg models will likely be an appropriate choice for modeling. 
 For the purposes of this experiment, we look at a duopoly industry with the same 
linear demand curve as in the previous programs.  The only variation is that in the current 
model we make an additional simplifying assumption.  In addition to our previous 
assumption that firms have constant marginal costs of production, we now assume that 
these costs are the same for both firms (c1 =  c2 = c).  Because of this assumption, the 
reader should be warned that our purpose is not to propose any quantitative differences 
between the models (although some qualitative differences will become apparent).  

solutions.  The point of this experiment is not only to illustrate that different models will 
generally lead to
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Rathe  

turn to our now familiar models of Cournot and 
Stackelberg Competition and ask: How do the predictions from these models differ from 
ea
 In order to account for the c ghtly different 
approach to the general setup for th athematica programs.   
 
 In[]:= SetAttributes[a, Constant]  

 SetAttributes[c, Constant]  

 

 In[]:= Clear[a,b,c,temp1,temp2];  

 Clear[Q,Q1,Q2,eqPr1,eqPr2,focPr1,focPr2,R2,pie1c,pie2c];  

 

 In[]:= Price = a - 

 

 and our specification of our inverse demand 
tionship.  Noticeably absent, however, is the definition of market quantity as the sum 

of firm 1's output and firm 2's output (Q his omission is intentional because 
we first want to consider the collusive (m tcome.  This requires that we model 
the industry not as a duopoly, but rather a ly and then divide the monopoly 
outcome between the firms. 

r our purpose is to drive home the message that modeling oligopoly markets is an
art and a science.  Modeling is the science.  Choosing the right model is the art.  
 We investigate this special case of symmetric costs (i.e. marginal costs are the 
same constant number for all firms) by considering three alternative models' solutions.  
Our benchmark solution will be the collusive monopoly outcome.  Unlike the non-
cooperative Cournot and Stackelberg games, the collusive outcome assumes that the two 
firms agree to behave as a monopoly industry by restricting market output to the 
monopoly level with each firm producing half of the monopoly market output thereby 
splitting monopoly market profits.  We use this as our benchmark because it is the most 
profitable possible outcome.  We then re

ch other and how different are they from the collusive outcome? 
ollusive outcome, we take a sli
is program than in the other M

 SetAttributes[b, Constant]  

b*(Q) ;  

Notice that the setup still contains the SetAttributes commands, the Clear commands 
to clear any previously stored values,
rela

 = Q1 + Q2).  T
onopoly) ou
s a monopo
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lish this, we develop an expression for the monopolists profit function. 
 
 

 

   eqPrM

 

 OUT[]:= Profi

 

Differ

 IN[]:= focPrM = D[eqP

 

 OUT[]:= 0 == a - c - 2 b

 

Then solve for the profit maximizing market quantity and name this quantity Qm,. 

 IN[]:= Qm = Simplify[Q/. Solve[focPrM,Q][[1]]] 

 

 OUT[]:= 
a - c
 2 b

As noted above, solving for the collusive outcome amounts to solving for the 
monopoly market output and then distributing this output evenly between the firms.  To 
accomp

IN[]:= eqPrM = ProfitM == Q(P[Q] - c) ;  

 = Expand[%/. P[Q] -> Price]  

tM == Q (a - c - b Q) 

entiate the profit function with respect to the choice variable, quantity (Q). 
 

rM, Q]  

 Q 

 

  

 
Because we assume that this collusive market output is distributed evenly between the 
duopolists, simply divide the market output, Qm., by two in order to find each firm's 
output. 
 
 IN[]:= Q1m = Qm/2 

 OUT[]:= 
a - c
 4 b   

 

 IN[]:= Q2m = Qm/2 

 OUT[]:= 
a - c
 4 b   
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 We complete the Collusive Solution section of the code by calculating the 
collusive market price, Pmon, and the collusive profits of one of the representative firms 
(pie1m).  Because both firms are assumed to split the market evenly, profits will be equal 

irms. 
 

Qm]  

 OUT[]:= 
a + c

between the two f

 IN[]:= Pmon = Simplify[Price /. Q -> 

 2   

 

 IN[]:= pie1m = Simplify[Q1m*(Pmon - c)]  

 OUT[]:= 
(a - c)

2

 8 b   

 
Before continuing on to the Cournot and Stackelberg models we need to insert the 
definition for total market quan d; 
 
 ]:=  = Q1 + Q

 
 The next two sections of code model the Cournot Game and then the Stackelberg 

d their associated code are nearly identical to the 
Cournot and Stackelberg models considered earlier with the noted exception that the 
consta

 
ke some analytic and graphic comparisons between 

the co
et 

 term 
t input statement below is (Qcour/Qm) – 1 

 

 

tity that we had earlier omitte

IN[ Q 2 ; 

Duopoly Game.  These models an

nt marginal cost of production is now the same for both firms (and is denoted c in 
the code). 
 In the last section of this code we take a closer look at the solutions to the models
of our symmetric cost industry and ma

llusive, the Cournot and the Stackelberg outcomes. 
 The first set of comparisons that we make considers the overall size of the mark
that the alternative models predict.  The N in the first input statement below is a 
Mathematica operator to return a numerical value.   Also by the precedence rules the
in the firs

 IN[]:= sizeQc = N[(Qcour/Qm-1)*100]  

 OUT[]:= 33.3333 

 

 IN[]:= sizeQs = N[(Qstack/Qm-1)*100]  

 Out[]:= 50. 
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symm el 

 

 

 IN[]:= sizeQ1c = N[(Q1c/Q1m-1)*100]  

  

 

Q1s/Q1m-1)*100]  

 OUT[]:= 100. 

 IN[]:= sizeQ2s = N[(Q2s/Q2m-1)*100]  

 OUT[]:= 0 

 
from 

uce 33.3% 
tatements 

 
mmetric costs industry we find that the 

Stacke

 
The first statement above compares the size of the Cournot market output in our 

etric cost model with the collusive outcome and shows that in the Cournot mod
output is 33.3% larger than the most profitable collusive market size.  The second input 
statement above makes a similar comparison between the Stackelberg market output and 
the collusive market size and shows that the Stackelberg market output is even larger –
50% larger than the collusive market size. 
 The next set of statements compares the size of the individual firms' outputs that 
the alternative models predict. 

 OUT[]:= 33.3333 

IN[]:= sizeQ2c = N[(Q2c/Q2m-1)*100]  

 OUT[]:= 33.3333 

  

 IN[]:= sizeQ1s = N[(

 

The first two input statements above compare firm 1's and firm 2's market output 
the Cournot game against their collusive output levels and show that both prod
more in the Cournot model than the collusive outcome.  The last two input s
making similar comparisons of the firms' market outputs from the Stackelberg game
against their collusive output.  In our sy

lberg leader (firm 1) produces twice the collusive output and the Stackelberg 
follower (firm 2) produces the same output as in the collusive game. 
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 hown that the collusive (monopoly) outcome has the 
ow clear that 

odel has the largest market size and consequently the lowest market 
price. l unclear is how industry and firms' profits compare.  The first set of 

monopoly 

 

Here we find that the Cournot profits for both firms are 11.1% lower than the profits that 
e firms were to collude by acting as a monopolist.   

ofits.  

 ie1s = N[(pie1s/pie1m-1)*100]  

s = N[(pie2s/pie2m-1)*100]  

 

berg 
these 

lterna nd firm 2 respectively.  Notice that industry profits for 
y.  

n they were in the 
ourn ving less industry profits in the Stackelberg game, 

we fin  leader (firm 1) is able to achieve higher profits in than in the 
rg 

 d Stackelberg profits are the same for firm 1, why doesn't 
e-shot 

 its collusive share.  It is left to the 

At this point we have s
smallest market size and therefore the highest market price.  Similarly it is n
the Stackelberg m

  What is stil
Mathematica statements below compare Cournot profits to the collusive shared 
profits.   
 

 IN[]:= sizePie1c = N[(pie1c/pie1m-1)*100]  

 OUT[]:= -11.1111 

IN[]:= sizePie2c = N[(pie2c/pie2m-1)*100]  

 OUT[]:= -11.1111 

 

would be achieved if th
 The next set of statements compares the Stackelberg profits to collusive pr
  
 IN[]:= sizePies = N[((pie1s + pie2s)/(2*pie1m)-1)*100]  

 OUT[]:= -25. 

IN[]:= sizeP

 OUT[]:= 0 

 IN[]:= sizePie2

OUT[]:= -50. 

 
The first statistic (that we call sizePies) compares industry profits of the Stackel
and collusive outcomes.  The other input statements compare the profits between 
a tive outcomes for firm 1 a
this Stackelberg game are 25% lower than the monopoly profit level for the industr
Therefore, industry profits are lower in the Stackelberg game tha
C ot game.  However, despite ha

d that the Stackelberg
Cournot game.  In fact, in this symmetric cost industry, we find that the Stackelbe
leader earns the same profits as in the collusive outcome.   

Given that collusive an
the Stackelberg leader produce at half the monopoly output?   Because in such a on
game, firm 2 would cheat and produce more than
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reader to show what quantity firm 2 would produce after observing firm 1 produce half 
onopoly market output.  

  The results presented above are also summarized in the Mathematica program 
with a series of pie charts. 
 

 
 

igur
 
 

de 
d 

the m

 
F e 10.1 Pie Charts for Output and Profit 

The Mathematica code that generates these sets of pie charts and the plots that 
follow is longer and more complicated than the code statements used throughout this 
paper and therefore omitted here to avoid confusing the reader.  However, all of the co
is presented in the files and the adventurous reader is encouraged to study it with the ai
of a Mathematica reference manual. 
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 co The program combine.nb ncludes with a series of plots illustrating the 

olutions to the Cournot and Stackelberg game.  The first of these plots (Fig. 10.2) 
ar to a geographic 

for different combinations of output by 

el of profits 
ves shift towards their respective axis.  In the plot above, firm 2's 

rm 1's isoprofit curves are blue. 

s
represents the firms' isoprofit curves.  This is a contour mapping (simil
map) that shows how the two firms' profits vary 
the two firms.   
 

 
Figure 10.2 Contour Maps of Two Firms’ Profits  
 

erent level of profits and the lev Each isoprofit curve represents a diff
increase as the cur
isoprofit curves are red and fi
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 In the final plot, the isoprofit curves are combined with the plot of the react
functions that we considered earlier.  
 

ion 

3.  E

ects 
 

 
Figure 10.3 Isoprofit Curves Combined with Reaction Function 
 

xperiments 
 

In this chapter we develop a series of experiments that cover many of the asp
of the models presented.   However, one set of experiments is to consider m
alternative market structures. 
 
 

odeling
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B 

enetic algorithms are search procedures based on the logic of natural selection and 
genet ividuals 

f characters, 
rvives to 
rough a 

is 
esent an example from this field, namely an iterated prisoner’s dilemma 

problem  genetic algorithms and evolutionary 
games using very simple examples.  Next we show how to work with binary 
representations in MATLAB.  Then we present a basic MATLAB program and perform 

re sophisticated MATLAB program of genetic algorithms which 
uilds on the one in this chapter will be presented later in the Genetic Algorithms and 

B chapter.   
 

There are different types of genetic algorithms.  Here we will introduce one of the 
most co l population, and 
then w cts, crosses, mutates and 
replace  we reach the required 
precision after a number of generations.  In this section we will present a simple example.  

e will later suggest ways of introducing more complex procedures. 

Chapter 11 

Genetic Algorithms and Evolutionary Games in MATLA
 

G
ics.  The central concept of genetic algorithms is “survival”.    A group of ind

- each one represented, for their computational implementation, by a string o
usually based on a binary code - compete with one another and the “most fit” su
give birth to a next generation of related individuals.   This process continues th
number of generations leaving at the end the “most fit” individual.    

One application of genetic algorithms is to evolutionary game theory.  In th
chapter we pr

.28  First we illustrate some basic concepts of

some experiments.  A mo
b
Portfolio Model in MATLA

 
1. Introduction to Genetic Algorithms 
 
 

mmonly used. The algorithm starts with the generation of the initia
e have a repetitive process that evaluates the fitness, sele

l be stopped whens the old population.  This process wil

W

                                                 
28 The use of this example was initially motivated by the work of our student Shyam Gouri Suresh. 
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Let’s assume that we start from a given initial population of only four indiv
Each individual’s characte

iduals.  
ristics are represented by a string of five binary digits 

(chrom
n 

1) 00000 

3) 11010 

number 

osomes).  
Initial populatio

2) 10101 

4) 11100 
 
We are all used to dealing with decimal representation of numbers.  For example, a 
like 142 (one hundred and forty two) is constructed in the following way 

 
( ) ( ) ( )2 1 01 10 4 10 2 10+ + =

100 4 2 142+ + =
. 

 
A binary representation works in a sim  but with a different base: two instead of 

n.  Th e second individual in the initial population 
nce 

ilar way,
us, a string of characters such as thte

above, i.e. 10101, can be interpreted as representing the number 21 (twenty one), si
 

( ) ( ) ( ) ( ) ( )4 3 2 1 01 2 0 2 1 2 0 2 1 2
16 0 4 0 1 21

+ + + + =

+ + + + =
 

 
The usefulness of this kind of representation will be appreciated soon in the crossover and 

utation steps.   m
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Given the initial population, we need some fitness criteria in order to select the 
 

s assume here that the fittest individuals will be those with the 
r characteristics (their “chromosomes”).   

Thus, the third and fourth individuals in the initial population above would be selected for 
  This couple will have four children which 

 generation of individuals.  Each new individual will be 
re will be a crossover of the last two genes in the 

strings of the selected couple as follows  

    Couple          Crossover                                            
10             11000           

         
                           

 
ssover results.  That is 

er    Mutation  

11110          11110 

 
olumn above, the second generation ordered in an ascendant way 

Generation 2 
1) 11000 
2) 11001 
3) 11110 
4) 11111 

“best” individuals.  This criterion depends on the specific problem under consideration, and
athematical function to be applied to each individual.   For it is usually represented by a m

the sake of simplicity, let’
highest numerical values associated with thei

reproduction, and they would form a couple.
will replace the entire previous
generated in the following way: first the

 
                                                 

3) 110
4) 11100             11110  

                     

and then there will be a mutation of the last gene for each of the cro
 

                                                     Crossov
11000          11000 

                 11001 

                  11111 

Thus, from the mutation c
according to numerical value, will be 
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We now select again the two fittest individuals, obviously the third and fourth.  
hen we can again apply the same crossover and mutation procedures.  The result is shown 

below. 
 

                                                 11111 

4) 11111             11110            11110 
                                                 11111 

 
Thus, the third generation, ordered in ascendant way according to numerical value, 

Generation 3 
10 

2) 11110 

Observe that we have reached the highest possible values for the third and fourth 
individuals, wh generation.  Actually, if we 

peat the crossover, m ind that all the 
ave 

roblem.  
sented above is simple; yet it provides a basis from which we can 

troduce several modifications to have an idea of what the actual practice in the field of 
genetic algorit e of the population could be larger or the 

ring of characters corresponding to each individual could be longer.  The initial 
oned above, 

fitness 
he 

to form 
 fittest 

e 
neration, as well as the mutating genes, which we 

rbitrarily chose to be only and always the last one.  

T

                                         Couple          Crossover    Mutation  

3) 11110             11111            11110 

is 

1) 111

3) 11111 
4) 11111 

 

ich will be selected as the parents of the next 
utation and selection steps from now on, we will fre

next generations will be identical to generation 3.  Thus, we can conclude that we h
reached an optimum, that is, the fittest individual given the characteristics of our p
 The example pre
in

hms is like.  For example, the siz
st
population could be generated stochastically.  The fitness criteria, as we menti
could be of a different nature from the one used here, and represented by a specific 
function.   Given a larger population, more than one couple could be selected to be t
parents of the next generation.  To this end, a stochastic procedure could be used 
couples out of a pool, also determined with some degree of randomness, of the
individuals.   The crossover point - the last two genes in our example - could also b
randomly determined at each ge
a
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 Before esent a simple example of an 
evolutionary game and later introduce a number of MATLAB functions that can be used for 

 
. A Simple Example of Evolutionary Game 

 a game in which strategies evolve through a process of 
ynamic selection.  As an example, we will present here a simple version of the game 

known as itera soner’s dilemma was introduced and 
nalyzed earlier in the Cournot Duopoly in Mathematica chapter.  Our game will have the 

representation shown in Table 11.1, where D means defect and C means cooperate. 
 

  Player II 
 D C 

we introduce the code for our model, we will pr

manipulating binary representations. 
 

2
 

An evolutionary game is
d

ted prisoner’s dilemma.  The pri
a

                     

D 1 , 1 5 , 0 

 Pl
ay

er
 I 

C 0 , 5 3 , 3 

 
Table 11.1 Game Representation 

 
Thus if the two individuals cooperate with one another they will each receive a gain 

of three but if t f only one.   In contrast, if 
Player I decides to cooperate but Player II defects, then Player I will make a gain of zero 
nd Player II will make a gain of five. 

e generations 
duals.  Each individual will be represented by a chromosome of 24 bit length.  

.  Thus, 
ence of 

ithin a given generation, each individual will play 24 times against each member 
of her generati ategy implied by her chromosomes, and her resulting 
payoffs will be accumulated.  At the end of each generation round, the two individuals with 

neration.   
Children will be born out of the crossover and mutation of parents’ chromosomes.  The 
process will be repeated for a number of generations. 

hey both defect they will each receive a gain o

a
We will assume that this game will be played many times by successiv

of indivi
Each gene of the chromosome will represent an action (0 for defect, 1 for cooperate)
each individual chromosome will be interpreted as a strategy, which is a sequ
actions.   

W
on following the str

the highest accumulated payoffs will be selected to be the parents of the next ge

240 



Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB  

Notice that, given the simple formulation of this iterated game, individuals will not 
think and act s llow their strategies regardless of their 
opponent’s actions.  In this sense they are very stubborn and simple-minded agents. 

 for 
olve in such a way 

that only defectors will survive?  That is, will the selective evolution of the population 
generate an ou ld be reached by rational and strategic-

inking players which, by the way, implies that everybody will be worse-off than in the 

3. Work  Representations in MATLAB 

When using binary variables to code genetic algorithms, the key concept to 
t the variables can be specified as integers but can also be 
s of binary variables.  Then for example, the integer 25 would be 
-bit b

trategically.  They will just fo

However, we know that the most efficient individual action for the prisoner’s 
dilemma game is to defect, and that the unique Nash equilibrium is (D,D).  The question
our experiments is: Would this population of simple-minded agents ev

tcome similar to the one that wou
th
case in which everybody cooperates? 
 
 

ing with Binary
 

keep in mind is tha
thought of as string
represented in an 8 inary string as 

00011001  
that is as 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 6 5 4 3 2 1 00 2 0 2 0 2 1 2 1 2 0 2 0 2 1 2+ + + + + + +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 128 0 64 0 32 1 16 1 8 0 4 0 2 1 1= + + + + + + +   

 25=  
Thus we can create an integer variable in the program, say genepool = 25 ,and 

r’s strategy (or, as we will see in the Genetic 
Algorithms and Portfolio Models chapter, an economic variable such as the 

 portfolio) and at the same time manipulate it as a 
it string in a genetic algorithm code.    

o manipulate the binary 
presentations of numbers. The functions dec2bin, bitor, bitand, bitshift and 

c algorithm code in this chapter and in the Genetic 
lgorithms and Portfolio Models chapter. 

use that to represent both a playe

percentage weight of an asset in a
b

MATLAB provides a variety of functions t
re
bitcmp are used in the geneti
A
 The function dec2bin converts a decimal integer to a binary string. For 
example, the statement 

x = dec2bin(6); 
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returns the binary string 110 which corresponds to the decimal number six, while 
x = dec2bin(6,8);  

returns a binary representation of the decimal number six with at least eight 
characters, that is 

00000110. 
 The function bitor returns the decimal bit-wise OR of two nonnegative 

.  That is, it compares bit-to-bit each binary position of the two 
umbers generating a 1 whenever it finds the combination (1,1), (1,0) or (0,1) and 

generating a 0 when it finds the combination (0,0).  For example, the 4-bit 
representation of the numbers 7 and 9 are respectively   

0111 and 1001  
and the bitwise OR operation on these numbers yields 1111, which corresponds to 

 bit-wise AND of two nonnegative integer 
it the binary representation of two numbers generates a 

r (1,0) and generates a 1 when it 

 The function   
x = bitshift(A,k);  

turns the val  by k bits (to the left when k is 
ositive, to the righ es in the new spaces). 

 

turns the bit complement of A in the form of an n-bit floating point integer, i.e. 
each 0 is repla , the statement 

x = bitcmp(28,5);  

where 1 
and thus the function returns the decimal value 3. 

integer numbers
n

the decimal representation 15.  Thus the statement 
x = bitor(7,9); 

returns the number 15. 
 The function bitand returns the
numbers. Comparing bit-to-b
0 whenever it finds the combination (0,0) or (0,1) o
finds the combination (1,1).  Thus the statement 
 x = bitand(7,9); 

returns the decimal number 1. 
bitshift

re ue of the nonnegative integer A shifted
t when k is negative and filled with zerop

For example, when A = 14 its binary representation is 01110.  Thus the statement 
 x = bitshift(14,1); 

corresponds to the binary representation 11100 and returns the decimal value 28. If
the shift causes x to overflow, the overflowing bits are dropped. 
 Finally, the function bitcmp 

x = bitcmp(A,n); 

re
ced with a 1 and vice versa. Thus

28 is represented with 5 binary digits as 11100 and its complement is 0001
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4. verview of the MATLAB Code  
 

here is a Genetic Algorithm and Direct Search Toolbox for use with MATLAB 
and 

the user can directly specify some overall characteristics of his or her problem (i.e. 
opulation size, fitness criteria, number of generations, etc.) without having to pay special 

attention to the f the genetic algorithm.  However, to 
rovide an opportunity to learn some basic concepts about genetic algorithms and to go 

in the Portfolio Model 
hapter, we are basing this chapter on a genetic algorithm code initially developed by one 

of our students
While in an earlier chapter we introduced relatively simple MATLAB programs, 

 MATLAB functions and uses 
number of M-files.  MATLAB has two kinds of M-files that can be written by users: (1) 

o accept input 

them, and return 
one or more output variables.  The nam ain program we will present here is 
gagame.m, i.e onary game problem.  This program and all 

e functions it calls are available in the book web page. 
 of the program, shown below, consists of three main parts.  The 

rst part contains the initialization of counters and parameters and a function call to 
initialize the p  a for loop across generations that in turn 
contains several function calls.  Finally, the third part contains commands to print and 

           

O

T
which includes routines for solving optimization problems using genetic algorithms, 
where 
p

 workings and implementation o
p
deeper into learning the MATLAB software we introduced earlier 
c

, Huber Salas.  

here we advance to a program that calls a number of built-in
a 
scripts which do not accept input arguments and (2) functions that d
arguments.29  They contain a series of statements and can be stored in an independent 
MATLAB file.  The functions receive a number of input variables, process 

e of the m
. it is a genetic algorithm evoluti

th
 The basic structure
fi

opulation.  The second part is

graph the main results.  
 

                                      
29 For a discussion of MATLAB M-files see the manual “Getting Started with MATLAB” in the MATLAB 

Help menu options. 

243 



Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB  

% initialization of counters and parameters; 
opsize = 8;  

% generation of chromosome strings of initial population 
enepool= initpoprand_gagame(popsize); 

 
 % computation of fitness function and fittest individual 

[fit, bestind, bestfit] = fitness_gagame(genepool,popsize,clen); 
wbest(k) = bestind; 

  
 % sele

[parent0,parent1] = parentsdet(fit,genepool); 
 

[child0,child1] = crossover(clen,parent0,parent1); 
  
 % mutation of children chromosome strings 
 for h 
     child0mut = mutation(pmut,clen,child0);     

) = child0mut; 
     child1mut = mutation(pmut,clen,child1);     
     genenew(h+1) = child1mut; 
 end 
   genepool = genenew; 

len) 
best = fbest / (clen * (popsize - 1)); 

xaxis = [1:1:nruns]'; 

lot(xaxis,fbest); 

on of counters and parameters section we set the number of 
ize.  We also set the length of the 

chromosome string  and the probability of a child mutation pmut. 
e vector 

nruns = 100;   p
clen = 24;     pmut = 0.5; 
 

g
  
for k = 1:nruns; 
 

 
 
      fbest(k) = bestfit; 

ction of parents; 
 
 
 % crossover of parents chromosome strings 
 

= 1:2:popsize; 

     genenew(h

 
end 
 
% print and graph fittest individual; 
dec2bin(wbest(nruns),c
f
 
figure(1); 

plot(xaxis,wbest); 
figure(2); 
xaxis = [1:1:nruns]'; 
p

 
In the initializati

runs nruns and the population size pops
clen

We then call the function inipoprand_gagame to initialize th
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genepool which will contain a number of individuals equal to the population size, 
-bit chromosome string.   So, in our example, 

it chromosomes with an element for each of the eight 
individuals in the population.   

Then we move on to the main for loop in the program, running from 1 to the 
ber of runs.  This loop contains a sequence of function calls.  It starts with a call 

l 

crossover

children (chil e 
trings  the t

ements of 

through mutations of their chromosomes.  Half of the new generation will come out 

child1 h

mutation his has the effect of generating two mutated 
mosome representations are stored in subsequent cells 

genenew vector.   

ent 
 

mosome string of 
the fitte

each individual represented by a 24
genepool is a vector of 24 b

num
to the fitness_gagame function to compute the fitness function for each individua
and to select the fittest individual, which at each run will be stored in the kth 
element of the vector wbest while the corresponding criterion value will be stored 
in the kth element of the vector fbest. Thus, at the end of the runs, these vectors 
will contain the sequence of optimal chromosome strings and optimal criterion 
values respectively. 

N tion ext the func parentsdet, using the fitness function previously 
computed, will select two parents (parent0 and parent1) who will form a couple.  
This is followed by a call to the function  which will generate two 

d0 and child1) as the product of the crossover of the chromosom
of wo parents. s

Next comes a for loop whose index goes from 1 to popsize in incr
two.  In this loop, out of the two newborn children a new generation will be created 

of mutations of the first child (child0) and the other half will come out of 
mutations of the second child ( ).   At every pass through the  loop the 

 is called twice.  Tfunction 
children, and their 24-bit chro
of the 

Once the new generation is created, the new vector genenew replaces the old 
vector genepool and the main loop of the program starts over again. 

After the main loop goes through the established number of runs, the 
statem

dec2bin(wbest(nruns),clen) 

 
prints the last element of the vector  which contains the chrowbest

st individual.  Then the statement 
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fbest = fbest / (clen * (popsize - 1)); 

 
is used ptimal criterion value at each run.  
Notice t (clen * (popsize – 1)) is a scalar so that 
the div ion operation is repeated for each element in the vector.  Finally, the vector 

t out that 
ularly when changing the number of 

generations or the population size, you should clean out the old commands and 

at 
you want to do this.  Then do the same for Clear Command History and for Clear 
Workspace. 

We will now present each function in detail. 

.1  Initpoprand_gagame 

This function is simple in that all it does is to assign a random number to 
each in

  dec2bin(genepool(k1), clen) 
end 

e function is initpoprand_gagame, that the arguments 

 to compute the average value of the o
 is a vector and here that fbes

is
of fittest individuals wbest and the vector of optimal criterion values fbest are 
plotted. 

 This provides an overview of the program.  It is important to poin
every time you run the program, partic

workspace to avoid displaying spurious results.  To do so, go to Edit in the top 
MATLAB menu.  Then select Clear Command Window and confirm with Yes th

 
 

5. Functions 
 
5
 
 

dividual string of chromosomes.  Thus the MATLAB code for this 
initialization function is 
 

function genepool= initpoprand_gagame(popsize,clen); 
for k1 = 1:popsize; 
  genepool(k1) = ceil(rand * (2^clen)-1))); 

 
The header statement for the function, i.e. 

 
function genepool = initpoprand_gagame(popsize,clen); 

 
tells us that the name of th
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popsize and clen will be passed to the function and the result genepool will be 
returned by the function. 

Then a loop going from 1 to popsize is used to assign a random value to 
each element of the genepool vector.   The statement 

 
genepool(k1) = ceil(rand * (2^clen)-1))); 

 
assigns to each element of the vector the ceiling (the nearest higher integer value) of 
the result of multiplying the variable rand (a zero-one uniform distribution random 
number generator) times the number (2^clen)-1.  This last number will be equal 
to the highest possible value represented with a binary string of length equal to 
clen.   For example, if clen equals three, that number will be equal to two to the 
power of three, i.e. eight, minus one.  Thus the number is seven, whose binary 

oes not play an essential role in the function since it only serves to print a binary 
representation ses.  Since there is no semicolon at 

e end, this statement will return and print the 24-bit binary representation of each 
elemen

TLAB function, unlike the cases of for loops or conditional if 
statements.  
 

e 

 tains the game to be played and a 
rocedure to select the fittest individual which is similar to the one used in the 

portfolio chapter earlier in the book.  The first part of the function consists of three 
nested loops: the first one for player1, the second one for player2, and the third one 
for games.  Thus, each player selected in the first loop will play against each other 
player selected in the second loop.  These two players will play 24 games, playing 
in each game the action determined by the corresponding gene in their chromosome 
sequence.  The statements for the first part of the function are shown below.   

representation is 111.   
The statement  
 
dec2bin(genepool(k1),clen) 

 
d

of genepool for debugging purpo
th

t of genepool.  Finally, notice that an end statement is not necessary at the 
end of a MA

 
5.2 Fitness_gagam
 

This fitness_gagame function con
p
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function [fit,bestind,bestfit] = fitness_gagame(genepool,popsize,clen); 
payoffs(1,popsize) = 0; 
% Loop for player1  
for k1 = 1:popsize; 
    strategyp1 = genepool(k1); 
    
    % Loop for opponents (player2) 
    for k2 = 1:popsize; 
    strategyp2 = genepool(k2); 
     
        if (k1 ~= k2) 
            mask = 1; 
           

%Loop for games 
            for k3 = 1:clen;     

           actionp2 = bitand(strategyp2,mask); 
           mask = bitshift(mask,1); 
                % defect, defect 

               if (actionp1 == 0) & (actionp2 > 0) 
                   payoffs(k1) = payoffs(k1) + 5; 
                end 
                % cooperate, cooperate 
                if (actionp1 > 0) & (actionp2 > 0) 
                    payoffs(k1) = payoffs(k1) + 3; 
                end 
            end % end loop games 
         

  end % end if 
         
    end % end loop opponents 
 
end % end loop player1 
 
 
 

            actionp1 = bitand(strategyp1,mask); 
 
 

                if (actionp1 == 0) & (actionp2 == 0) 
                    payoffs(k1) = payoffs(k1) + 1; 
                end 
                % cooperate, defect 
                if (actionp1 > 0) & (actionp2 == 0) 
                    payoffs(k1) = payoffs(k1) + 0; 
                end 
                % defect, cooperate 
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 The function begins with the statement 

This is followed by the beginning of the k1 loop for player 1.  The statement 
at the beginning of this loop 
 

strategyp1 = genepool(k1); 

 
and the statement at the beginning of the loop for player 2 
 

s 

bit binary 
representation will be  
 

00000000 00000000 00000001 
 
 Remember that the function bitand returns the bit-wise AND of two 
onnegative integer numbers. Thus, comparing bit-to-bit the binary representation 

it finds the combination (0,0) or (0,1) or 
ds the combination (1,1).  Thus the temporary 

ariables  and  will contain the first gene of each player’s 
chromo

 
payoffs(1,popsize) = 0; 

 
which initializes to zero a vector that will contain the accumulated payoffs of 
player1.   

strategyp2 = genepool(k2); 

 
assign to the temporary variables strategyp1 and  strategyp2 the chromosome
of player 1 and player 2 respectively, that is the strategies each player will play. 
 Next, at the beginning of the loop for games, the statements 
 

actionp1 = bitand(strategyp1,mask); 
actionp2 = bitand(strategyp2,mask); 

 
select the actions to be played at each game out the strategies of each player.  The 
variable mask  was previously initialized with the value 1.  Thus, its 24-

n
of two numbers, it generates a 0 whenever 
(1,0) and generates a 1 when it fin
v actionp1 actionp2

some, that is the first action to be played in the first game.  For example, if 
the chromosome of player 1 is  
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01010101 11111111 00001111 
 
the result of the bitand operation will be 
 

00000000 00000000 0
 
and the content of the actionp1 variable will be the number 1, so that the player 
will cooperate.  The statement 
 

 
s
 

 
 
s
t
g
p
 

if (actionp1 == 0) & (actionp2 > 0) 
payoffs(k1) = payoffs(k1) + 5; 

 
add 5 to the element of the payoffs  vector corresponding to the game being 
played. 
 Once the main loop of the function - the loop for player 1 - is completed for 
all players, the second part of the function selects the fittest individual in the 
generation, which is the one with the highest payoffs.  It begins with the statement 

fit = payoffs; 

 
to assign the variable payoffs to the temporary variable fit.  The statement  

0000001 

mask = bitshift(mask,1); 

hifts the mask one position to the left, resulting in  

00000000 00000000 00000010 

Thus, at each pass of the loop, the number 1 will shift one position to the left 
o that the next action will be selected.  The remaining of the loop for games, i.e. 
he k3 loop, accumulates the payoffs for player 1 depending on the result of the 
ame.  Each of the four possible outcomes is evaluated.  For example, in the case 
layer 1 plays 0 (defect) and player 2 plays 1 (cooperate) the sentences 

% defect, cooperate 
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[top topi] = max(fit); 

 
then returns the value (top) and the index (topi) corresponding to the maximum value in 
the fitness vector fit.  Finally, the topi index is used to assign to the “best individual” 
vector, bestind, the corresponding chromosome with the statement 
 

bestind = genepool(topi); 

 
while the corresponding value of the criterion function vector is assigned to the variable 
bestfit with the statement  
 

bestfit = top; 

 
With the fitness now determined we turn next to the selection of parents. 
 
5.3 Parentsdet     
 
 T
t
s  select the two individuals with the 
h ghest c
 
f
[
p
fit(topi) = 0; 
[
parent1 = genepool(topi); 

 
 As in the previous function, the statement 
 
[top topi] = max(fit); 

 
returns the index topi corresponding to the maximum value of the fit  vector that is the 
f test individual.   Using that index, the corresponding chromosome string of the first 
p nd parent, we set to zero the 

he parentsdet (parents deterministic) function is a simple deterministic function 
hat selects the two individuals that will be the parents of a new generation.   The simple 
election method used in the present function will be to
i riterion value or fitness. 

unction [parent0,parent1] = parentsdet(fit,genepool);  
top topi] = max(fit); 
arent0 = genepool(topi); 

top topi] = max(fit); 

it
arent is stored in the variable parent0. To select the seco
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fitness value of the previous maximum and proceed in the same manner as before now to 
select the second parent (parent1).  We will see later, in the chapter Genetic Algorithms 
and Portfolio Model in MATLAB, in the parentsrand function, how to implement a more 
s cedure for parent selection in which more fit parents have a 
“higher chance” of generating off springs. 
 
5.4 Crossover 
 

some information of the two parents to 
c e will consider here only the case of a single crossover.  The 
function code is shown below. 

 
function [child0,child1] = crossover(clen,parent0,parent1); 
c ossov
m ska =
f r k =
    mas
   mas
end 
child0 = bitor (bitand(parent0, maska), 
    bitand(parent1,bitcmp(maska,clen))); 
child1 = bitor (bitand(parent1, maska), bitand(parent0, 
 

 T
 

 
Remem  the individual 
(24 bits).  Then, multiplying clen times the uniform zero-one random number 
g erato sing the crossover point. Since that 
point has to be an integer number, we apply the function ceil to the result which 
rounds off the result to the nearest higher integer. 
 Next we assign the initial value 1 to the mask variable maska.  
 

00000000 00000000 00000001 
 

Then we pass through a loop that goes from 1 to the crossover point.  At 

ophisticated random pro

The crossover mixes the chromo
reate two children. W

r  = ceil(rand*(clen)); 
a  1; 
o  1:(crossov-1) 

ka = bitshift(maska,1); 
 ka = maska + 1; 

 cmp(maska,clen)));   bit

 
o determine the crossover point we use the statement  

crossov = ceil(rand *(clen)); 

ber that the clen variable contains the chromosome length of

en r function and we are randomly choor
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e

and we add the value one to the result, thus switching the rightmost bit from zero to 
o
 

00000000 00000000 00000011 
 
T
 

 
 
 
child0 = bitor (bitand(parent0, maska),  
                bitand(parent1, bitcmp(maska,clen))); 

 
For example, consider the case where parent0 has the chromosome string 
 

00010001 00010001 00010001 
 
I
 

 
w
 

 
and create the chromosome string 
 

00000000 00000001 00010001 
 

Also assume that parent1 has the following chromosome string 
 

ach pass, we shift the 1 one position to the left  
 

00000000 00000000 00000010 
 

ne.   

hus if the crossover point was 12, we will end up with the mask 

00000000 00001111 11111111 

Next we generate the first child with the statement  

n this case the statement 

bitand(parent0, maska) 

ould apply the mask   

00000000 00001111 11111111 

10001000 10001000 10001000 
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T
 

,clen))); 

 
would apply the complement of maska, that is  
 

11111111 11110000 00000000 
 
to parent1 with the bitand operation to obtain 
 

10001000 10000000 00000000 
 
 
 

01 00010001 

 
w
 

 
w romosome string of the first child (child0).  The second child 
is obtain of the parents in the 
corresponding statement.   
 
5
 
 on function generates a random mutation in a single bit of the 
chromosome string of a child.  The code is shown below. 
 
f
t
i
 
    tt = bitshift(tt,idx); 
    temp = bitand(child,bitcmp(tt,clen)); 

hus the statement 

bitand(parent1, bitcmp(maska

Finally, the application of the bitor function to the chromosome strings 

00000000 000000
10001000 10000000 00000000 

ill generate the result 

10001000 10000001 00010001 

hich will be the ch
ed in a similar fashion, reversing the position 

.5 Mutation 

The mutati

unction f = mutation(pmut,clen,child) 
t = 1; 
f (rand < pmut) 
   idx = round(rand*(clen-1)); 
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    if(temp==child) 
        child = child + tt; 
    else 
 
 
end 
f = child; 

 
Recall that  is the probability of a child mutation.  The  variable is initially 
s
c
where the mutation will occur.  It is determined by rounding off the randomly 
generated location using the zero-one uniform random variable rand and the length 
of the chromosom
 C dex variable is set to three.  Also, 
r ift function call 
 

 

 
shifts th ree positions to the left so that it becomes 

a ourth position.  Then the mutation is 
done wi
 

 
a lt is stored it in the temp variable.  C irst just the bitcmp part of 
this state
 
  11111111 11111111 11110111 
 
T
o

hanged 
w
w

       child = temp; 
   end 

pmut tt

et to one and will be bit shifted to create the mutation at the desired point in the 
hromosome.  The scalar integer idx is the index of the location that is one less than 

e clen less one.  
onsider for example a case where the in

ecall that the variable tt is set to one.  Thus the bitsh

tt = bitshift(tt,idx); 

e  binary variable thtt

1000 
 

nd the mutation is going to be done in the f
th the statement 

      temp = bitand(child,bitcmp(tt,clen)); 

nd the resu onsider f
ment.   It yields the 24-bit complement to the tt variable, which is 

hen the bitand operation is applied to this bit string and the child variable to 
btain the mutated string, which is stored in the temp variable.    

The bitand operation produces the desired mutation if the bit to be c
as a one.  However, it does not produce the correct result if the bit to be changed 
as a zero.  Therefore it is necessary to add the following lines of code  

255 



Chapter 11 Genetic Algorithms and Evolutionary Games in MATLAB  

 
 if(temp==child) 
  child=child+tt; 
 

 
In the case where the bit to be changed was a zero the bitand operation above will 
have produced no change in the chromosome and it is necessary to accomplish that 
b  addin
r

s s 
t t. 
 t equal to the child variable - as 
occurs when the bit to be changed is a one - then it is only necessary to set the 
c

 iscussion of the mutation function and indeed the 
discussion of all the functions and leaves us free to turn our attention to the results 
obtained
  
 
6
 

Figure 11.1 below shows the results of running the main program gagame.m with a 
n on size of 8, starting from a random initial 
population.  The first graph shows the decimal representation of the chromosome of the 
fittest in  converges 
t
 

 
 t.  The 
s erage payoffs.  We can see how 
these payoffs converge to a value near one, which is the value corresponding to the Nash 
equilibri
 

else 
  child=temp; 
      end 

y g an integer amount tt to the variable.   In our case the binary 
epresentation of the tt variable was 

1000 
o its integer value is 16.   Then when 16 is added to the child variable it produce
he desired mutation by changing the zero bit in the fourth location to a one bi

On the other hand if the temp variable is no

hild variable equal to the temp variable. 
This completes the d

 by using the program. 

. Results 

umber of runs equal to 100 and a populati

dividual at each run.  We can observe that after about ten runs this value
o zero and stays there.  This corresponds to the chromosome 

00000000 00000000 00000000. 

Thus, the optimal strategy that results from the simulation is to always defec
econd graph shows the evolution of the corresponding av

um of the game. 
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Figure 11.1 Evolutionary Ga
 
 Figure 11.2 shows the results of an experiment in which the initial population is 
com
 

 
T  have to replace the 

statemen
 

ffs
er

ag

posed entirely of cooperators.  That is, individuals with a chromosome equal to  

11111111 11111111 11111111  

o run this experiment, in the initpoprand.m function we
t  

genepool(k1) = ceil(rand * (2^clen)-1); 
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w
 

g

 

ith the statement 

enepool(k1) =  (2^clen)-1; 
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Figure 11.2 Evolutionary Game with Initial Population of Cooperators 
 
 
 We can see in Fig. 2 that the results converge, at a slower pace than in the previous 
experiments, to the same outcome.  The fittest individuals will be defectors, born out of 
mutations and successive selections across generations.  Interestingly, a population of all 

er
ag

e 
P

ay
of
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cooperators, thus achieving the higher possible payoffs, when suffering even mild 
mutations such as the ones implied by our MATLB code, will end up transformed into one 
of all de
 
 
8
 

riments with this genetic algorithm would be to change the 
n  the 
outcome.  You may also want to try an experiment in which the initial population is 
c  see if they ever become all cooperators. 

t of experiments will be to introduce further 
r de to move closer to the actual practice in the field of genetic 
algorithms, such as the random selection of parents and the selection of more than 
o e coup
e
M

e 
f  on 
the part of players.  Instead of being taken regardless of the opponent’s actions, a 
player’s actions will be determined for example as reactions to the opponent past 
behavior (Axelrod (1997)).  Also it would be interesting to explore the evolutionary 
dynamics of a s on in which each individual plays the 
prisoner’s dilemma with her neighbors (Nowak and May (1992) and (1993)).   

f
w
to cooperation or even displays complex patterns of cyclical behavior. 

Since th  these models may be more demanding 
than the one presented in this chapter, before moving in this direction  you are 
e
m chniques which may be useful to program problems 
o  this nature.  
 
 

fectors with an inferior standard of living. 

. Experiments 

The simplest expe
umber of model iterations and/or population size to see how this affects

omposed of all defectors and
A more challenging se

efinements in the co

n le to be the parents of the next generation.  Before doing so, you are 
ncouraged to read the chapter Genetic Algorithms and Portfolio Model in 
ATLAB where these refinements are introduced. 

 More interesting experiments that would get you closer to the practice in th
iled of evolutionary games involve some sort of strategic thinking and behavior

patial model of local interacti

In both these cases - more sophisticated strategies or local interaction - it is 
ound that the evolutionary behavior differs from the convergence to all defectors 
e found in this chapter.  Indeed, it is usually the case that the evolution converges 

e MATLAB representation of

ncouraged to read the chapter on Agent-Based Models in MATLAB to learn about 
ore sophisticated modeling te

f
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8
 

A classic reference in the genetic algorithms literature is Goldberg (1989).  
For introductions to evolutionary games see the Stanford Encyclopedia of 
Philosophy (2005) and Axelrod (1997).  

. Further Reading 
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B 

solve the Markowitz problem: first a Monte 
thod then a MATLAB gradient optimization function.  Here 

 based on the one we presented earlier in the Genetic 

ization space and are less likely to be trapped by local 
ures. 

he MATLAB Code  

 earlier chapter as to find 
 in  

 

Chapter 12 

Genetic Algorithms and Portfolio Models in MATLA
 

In this chapter we present an example that builds on the Markowitz optimal 
portfolio model we used earlier in the Portfolio Model in MATLAB chapter.  In that 

ethods to chapter we used two different m
Carlo optimization search me

orithmwe will use a genetic alg
Algorithms and Evolutionary Games in MATLAB chapter. 

First we solve the same convex problem we solved in the Portfolio Model chapter.  
It has a unique global maximum - given the quadratic nature of the criterion function to 
be optimized.  Later in this chapter we will introduce a more difficult but more realistic 
problem by means of including brokerage fees which may result in non-convexities and 
thus in a number of local maxima.  It is for this kind of problems that genetic algorithms 
are particularly useful since they are global optimization algorithms.  They perform a 

loration of the optimglobal exp
minima or maxima than is the case for other standard optimization proced

  
 
1. Overview of t
 

Remember that the Markowitz problem was stated in an
Jx to maximize 

 

(1)  1
2

J x x xµ β′ ′

bject to the constraints 
 

= − Σ  

su

(2)  1i
i I

x
∈

=∑  

 
(3)  0ix i I≥ ∈  
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w
 J  = criterion value 
 

here 

β  = subjective weight on the variance of the return on the portfolio 

ix  = the fraction of the portfolio invested in equity i 

I  = the set of equities  
 

1

2

3

x
x x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
15
12

3

2

µ
µµ  

⎤⎡⎤⎡ 81µ

⎦⎢⎣ −⎥⎦⎢⎣ 24114333231 σσσ

 
 we will present to solve the Markowitz problem is 

i.e. it is a genetic algorithm portfolio problem.  This program and all the 

am 
pter.  

 of 
 and parameters and a function call to initialize the population.  The second part 

 a the 
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⎥

The name of the main program
gaportfol1.m, 

functions it calls are available in the book web page. 
 The basic structure of the program, shown below, is analogous to the progr
gagame.m presented earlier in the Genetic Algorithms and Evolutionary Games cha
The program consists of three main parts.  The first part contains the initialization
counters
is for loop across generations that in turn contains several function calls.  Finally, 
third part contains commands to print and graph the main results.  
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% initialization of counters and parameters; 
nruns = 100;   popsize = 8;  
 
beta = 2;   
mu = [8 12 15]'; 
sigma = [6 -5  4; 
        -5 17 -11; 
         4 -11 24]; 
 
num = 3;   clen = num * 8;   pmut = 0.5; 
 
% generation of chromosome strings of initial population 
genepool= initpopdet(popsize); 
  
for k = 1:nruns; 
  

% transformation of chromosome string into normalized n-asset        

pwm = normport(genepool
 

 

  selection of parents; 
arent1] = parentsdet(fit,genepool); 

 % crossover of parents chromosome strings 

 

 
% portfolio 

,popsize,clen,num);  
 

% computation of fitness function and fittest individual 
[fit, bestind, bestfit] = 
   fitness_gaportfol(pwm,mu,popsize,beta,sigma); 

 wbest(:,k) = bestind; 
      fbest(k) = bestfit; 
  

%
 [parent0,p
  

 [child0,child1] = crossover(clen,parent0,parent1); 
  
 % mutation of children chromosome strings 
 for h = 1:2:popsize; 
     child0mut = mutation(pmut,clen,child0);     
     genenew(h) = child0mut; 
     child1mut = mutation(pmut,clen,child1);     
     genenew(h+1) = child1mut; 

end 
    genepool= genenew; 
end 
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% print and graph optimal weights and criterion; 
wbest 
fbest 
figure(1); 
xaxis = [1:1:nruns]'; 
plot(xaxis,wbest(:,:)); 
figure(2); 
xaxis = [1:1:nruns]'; 
plot(xaxis,fbest(:,:)); 

 
In the initialization of counters and parameters section we set the number of 

runs nruns, the population size popsize, the parameters of the portfolio model 
he risk aversion coefficient beta, the vector of mean returns mu and the 

f assets num.  We also set the 
ngth of the chromosome string clen to be used to represent each portfolio as 

 

e, 
ght 

  
Then we move on to the main for loop in the program, running from 1 to 

the number of runs.  This loop contains a sequence of function calls.  It starts with 
 call to the function normport to transform each 24-bit chromosome string 

d weight three-asset 
ortfolio.  The vector genepool may be thought of either as (1 x popsize) vector 

t 
he (3 x popsize) 

ortfoli ain, in each column, the normalized 
eights of each three-asset portfolio.   

n to compute the 
 individual (each portfolio) and to select the fittest 

l be stored in the kth column of the matrix wbest 
value will be stored in the kth element of the 

trix and vector will contain 
lios and optimal criterion values respectively. 

tion parentsdet, using the fitness function previously 

(t
variance-covariance matrix sigma) and the number o
le
equal to the number of assets num times eight, that is, 24 bits.  Finally, we set the 
probability of a child mutation pmut. 

We then call the function inipopdet to initialize the vector genepool
which will contain a number of portfolios equal to the population size, each 
portfolio represented by a 24-bit chromosome string.   So, in our exampl
genepool is a vector of 24 bit chromosomes with an element for each of the ei
individuals in the population. 

a
corresponding to a portfolio into an equivalent normalize
p
of integers or as a (1 x popsize) vector of 24 bit strings.  Thus the normpor
function transforms the (1 x popsize) vector genepool into t
p o weight matrix pwm which will cont
w

Next follows a call to the fitness_gaportfol functio
fitness function for each
individual, which at each run wil

 corresponding criterion while the
vector fbest. Thus, at the end of the runs, these ma
the sequence of optimal portfo

Next the func
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computed, will select two parents (parent0 and parent1) who will form a 
ed by a call to the function crossover which will generate 

 out 

4.1  In

 

ily compare results.   However, the 
function is made more complicated by the necessity to represent a row vector of 
the three weights, i.e. 
 

couple.  This is follow
two children (child0 and child1) as the product of the crossover of the 
chromosome strings of the two parents. 

Next comes a for loop whose index goes from 1 to popsize in increments 
of two.  In this loop, out of the two newborn children a new generation will be 
created through mutations of their chromosomes.  Half of the new generation will 
come out of mutations of the first child (child0) and the other half will come
of mutations of the second child (child1).   At every pass through the loop the 
function mutation is called which generates a mutated child, and its 24-bit 
chromosome representation is stored in a cell of the genenew vector.  Once the 
new generation is created, the new vector genenew replaces the old vector 

 and the main loop of the progragenepool m starts over again. 
Finally, once the main loop goes through the established number of runs, the 

matrix of fittest individuals wbest and the vector of optimal criterion values 
fbest are printed and plotted. 

 This provides an overview of the program.  It is important to point out that 
every time you run the program, particularly when changing the number of 
generations or the population size, you should clean out the old commands and 
workspace to avoid displaying spurious results.  To do so, go to Edit in the top 
MATLAB menu.  Then select Clear Command Window and confirm with Yes 
that you want to do this.  Then do the same for Clear Command History and for 
Clear Workspace. 

We will now present each function in detail. 
 
 

4. Functions 
 

itpopdet 
 

This function is simple in that all it does is to assigns the same portfolio 
weights (33%) to each asset in each portfolio as in the experiments performed in 
the Portfolio Model chapter so that we can eas
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 [33  33  33] 
 

with a single 24 bit string such that each 8 bit segment of the string represents the 
number 33, i.e. 00100001.   Thus the 24 bit string is 
 

00100001 00100001 00100001  
 
This string has ones in the positions 0, 5, 8, 13, 16 and 21 (counting from the right 
to left beginning with zero).   Therefore the integer value of this string is 
 

   ( ) ( ) ( ) ( ) ( ) ( )21 16 13 8 5 01 2 1 2 1 2 1 2 1 2 1 2+ + + + +  

 
w = 2^21+2^16+2^13+2^8+2^5+2^0; 

Thus the MATLAB for this initialization function is 
 

dec2bin(w,24) 

dec2bin(w,24) 

ppears.  It does not play an essential role in the function since it only serves to 
no 

y 
So 

 

function genepool = initpopdet(popsize); 
w = 2^21+2^16+2^13+2^8+2^5+2^0; 

genepool = w * ones(1,popsize); 

 
The header statement for the function, i.e. 
 

function genepool = initpopdet(popsize); 

 
tells us that the name of the function is initpopdet, that the argument popsize 
will be passed to the function and the result genepool will be returned by the 
function. 

After w is defined in the first statement in the function, the statement 
 

 
a
print a binary representation of w for debugging purposes.  Since there is 
semicolon at the end, this statement will return and print the 24-bit binary 
representation of w.  Finally, a (1 x popsize) vector of ones will be multiplied b
the previously created cell w to obtain the initial population vector genepool.   
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in the case at hand genepool is a vector of eight 24 bit strings.   Finally, notice 
that an end statement is not necessary at the end of the function. 

We will see later, in the initpoprand_gaportfol function, how to 
replace this rudimentary function by a more sophisticated random procedure to 
initialize the population.   
 
4.2 Normport 
 
 responding to each 
portfol
represe popsize genepool into the (3 
x pops column, the 
normal dd to one) of each three-asset 

ortfol e complete function is listed below. 

for i = 1:popsize; 

sk = is is 2^n minus one 

num-j+1) = bitand(genetemp(i),mask); 

     end 
port/sum(port); 

d 

ts in the 
rtion of the portfolio held in each 

.  Since eight bits permits us to specify integers from 0 to 255 we will 

n = ceil(clen/num); 

This function takes the 24-bit chromosome string cor
io and creates an equivalent normalized three-asset portfolio 

 ) vector ntation.  Thus, it transforms the (1 x
ize) portfolio weight matrix pwm which will contain, in each 
ized weights (that is, the weights will a

p io.  Th
 
function pwm = normport(genepool,popsize,clen,num); 
genetemp = genepool; 

n = ceil(clen/num); 
ma  2^n-1;    % note that th
port = zeros(1,num); 

     for j = 1:num 
        port(
        genetemp(i)= bitshift(genetemp(i),-n); 

port = 
pwm(:,i) = port';  

en

 
 Since we are using a chromosome with 24 bits and have 3 asse
portfolio, we have eight bits to specify the propo
of the assets
have an accuracy of about half a percent in the solution to the portfolio problem.   
So the first step after creating the temporary variable genetemp is to determine 
the number of bits, n, used for each equity by dividing the chromosome length by 
the number of equities.  This is done with the statement 
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where ceil is a MATLAB function that returns an integer that is the ceiling, i.e. 
the round off of a decimal to the nearest integer greater than the number.  Also 
recall that clen is the chromosome length, 24, and num is the number of assets in 
the portfolio, 3, so in our case this becomes ceil(24/3) or eight.   This statement 
assures that there will be an integer number of bits to represent the percentage of 
each stock held in the portfolio. 
 The next step is to pull out the n bits in the chromosome that correspond to 
the proportion for each equity.  This is done by creating a mask in which the 
lower order n elements are ones and all other bits are zero.  This is done with the 
statement 
 

mask = 2^n-1; 

eep in mind the precedence rules so this is  minus one.   Thus in our case 
ith n 

pick off eight bit sections of 
the chromosome. 
 The next step is to initialize the vector which carries the percentage 
allocation of elements in the portfolio.   In our case this is a three element vector 
of integers that is initialized with the statement 
 

port = zeros(1,num); 

 
This vector is then used in a for j loop over the number of equities in the 
portfoli

end 
 
The mask variable is used on each pass through the for loop to put the lower 

 
K 2n

w equal to 8, mask is an integer variable with value 255 and its binary 
representation is the 24-bit string 
 

00000000 00000000 11111111 
 

So we can use a bitand operation with this mask to 

o to get the bit string for each element in the portfolio as follows 
 

for j=1:num 
    port(num-j+1) = bitand(genetemp(i),mask); 
    genetemp(i) = bitshift(genetemp(i),-n); 
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order eight bit section of the chromosome into the variable port.  Also in each 
pass the chromosome is shifted to the right by eight bits and filled with zeroes in 
the left most eight bits using the bitshift operation. 
 Thus if we begin with a chromosome like the following 
 

00000110 11000000 11100111 
 
The first pass through the loop would put the bit string 
 

00000000 00000000 11100111 
 
into the variable port(3) and the second pass would put the bit string 
 

00000000 00000000 11000000 
 
into the variable port(2), etc. 
 Since the port variables are now integers with values between zero and 
255 they must be normalized by the sum of their values to convert them to 
percentages of the portfolio.  This is done with statement 
 

port = port/sum(port); 

 
 Finally, the transposed of the three-element vector port is stored in the 
corresponding column of the matrix pwm with the statement 
 

pwm(:,i) = port'; 
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4.3 Fitness_gaportfol 

ilar to the one used in 
in the book.  

= 
e,beta,sigma); 

ze; 
beta * pwm(:,j)' * sigma * pwm(:,j); 

egins with a statement to compute the vector of returns pret as the 
t of the portfolios times the corresponding returns.  Then statements are 

r of portfolio variance costs pvar and the 
, or fitness vector fit. So in our case the 

h of the 
pulation. 

ement  

[top topi] = max(fit); 

 
en ret ue in 

 
 his fitness_gaportfol function uses a procedure simT
the Portfolio Model chapter earlier 
 
function [fit,bestind,bestfit] 

wm,mu,popsizfitness_gaportfol(p
mu; pret = pwm' * 

j = 1:popsifor 
    pvar(j) = 0.5 * 
end 
fit = pret - pvar'; 
[top topi] = max(fit); 
bestind = pwm(:,topi); 
bestfit = top; 

 
 It b
produc
included to compute the vecto
corresponding criterion function vector
vector fit is an 8 element vector that provides the fitness level for eac
individuals in the po

The stat
 

th urns the value (top) and the index (topi) corresponding to the maximum val
the fitness vector fit.  Finally, the topi index is used to assign to the “best individual” 
vector, bestind, the corresponding normalized three-asset vector with the statement 
 

bestind = pwm(:,topi); 

 
while the corresponding value of the criterion function vector is assigned to the variable 
bestfit with the statement  
 

bestfit = top; 
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W e fitness now determined we turn next to the selection of parents, crossover and
mutation. 
 
4.5 Parentsdet, Crossover and Mutation 
 

ith th  

e 12.1 below shows the results of running the main program gaportfol.m 
ith a number of runs equal to 100 and a population size of 8.  The optimal values of the 

portfol hich is 
slightly odels. 
 

 These functions are exactly the same as the ones used in the Genetic Algorithms 
and Evolutionary Games chapter.  They even have the same variable names.  Thus they 
can be used by both the program in that chapter and the programs in this chapter. 
 
 
 
5. Results 
 
 Figur
w

io weights for the last run are w1 = 0.26, w2 = 0.42 and w3 = 0.32, w
btained in the earlier chapter on portfolio m different than the results we o
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Figure 12.1 Genetic Algorithm Portfolio Example 
 
 We can see how, after starting from initial values equal to 0.33 the weights 
converge to the optimal values.  We can see also how the criterion value converges to a 
value of 9.44. 
 

ite
rio

n
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6. Refinements 
 
 The program gaportfol1.m and its functions give us a basic idea of the work 
with genetic algorithms.   However, some of its functions are quite rudimentary and they 
do not take us beyond what we learnt in the chapter on Genetic Algorithms and 
Evolutionary Games.  In this section we will introduce some alternative and more 
sophisticated functions and main program structure.  They can also be used to develop a 
more sophisticated version of the gagame.m program presented in the Genetic Algorithms 
and Evolutionary Games chapter. 
 
6.1 Initpoprand_gaportfol 
 
 With the initpopdet function we generated, in a deterministic way, an initial 

ector of portfolios all with the same weights.  However, it is customary in the field of 
 initial population randomly.  To do so, we will 

troduce the initpoprand_gaportfol function shown below.  In the chapter on Genetic 
mly -

resent 

unction genepool = initpoprand_gaportfol(clen,popsize);  

ze); 
or j = 1:popsize 
    fo

end 

on is j 
or 

lso the i loop runs from 1 to clen which is the number of 
inary elements in the chromosome.  In the present case this is 24. 

v
genetic algorithms to generate the
in
Algorithms and Evolutionary Games we also generated the initial population rando
in the initpoprand_gagame function - but with a different procedure.  Here we p
an alternative.   
 
f
mask = 1; 
genepool = zeros(1,popsi
f

r i = 1:clen 
        if (rand < 0.5) 
            genepool(j)= bitor(genepool(j),mask); 
        end 
        genepool(j) = bitshift(genepool(j),1); 
    end 
    genepool(j) = bitshift(genepool(j),-1); 

 
The key elements of this function are a set of two nested for loops and an 

if statement.  The index of the for loop over individuals in the populati
and the index over the bits in the binary representation of the chromosome f
each individual is i.   A
b
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 Also each bit in the chromosome for individual j will be modified, i.e. 
bability one half since rand is a zero-one 

niform distribution random number generator. 

 code is the bitor operation. 
e know from the above that genepool(j) has been initialized to zero and the 

ariable mask has been initialized to one, therefore the bitor operation applied to 
ese two strings will yield 

 
 00000000 00000000 00000001 
 
on the first pass through the i loop if the call to rand yields a value that is less 
than 0.5.   Also we know that this will occur half the time. 
 Then following the if statement the operation bitshift is used to shift 
the binary string genepool one position to the left and to put a zero in the right 
most (lowest order) position.   Thus after the bitshift operation the string above 
becomes 
 
 0000000 00000000 00000010 
 
Thus in the i loop the bits in the genepool(j) string are considered one by one 
and changed from  to  with probability 0.5.  Finally, one can see in the above 
code that  bitshift  is used to move the bit string one step back to the right after 
the end of the i loop.  Otherwise the last bit in the string will always be equal to 
zero.    
 To use this function, we have to substitute in the program gaportfol.m the 
following statement for the call to the function initpopdet in the “generation of 
chromosome string of initial population” section 
 

genepool = initpoprand_gaportfol(clen,popsize); 

 
 Figure 12.2 shows the results of running program gaportfol2.m, which is 
program gaportfol1.m with this function. 
 
 

switched from zero to one with pro
u

 Next focus for the moment only on the portion inside the for loop for the 
number of bits.  The key element in this segment of
W
v
th

 0 1
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Figure 12.2 Genetic Algorithm with Initpoprand_gaportfol Function 
   

The optimal portfolio weights are here w1 = 0.24, w2 = 0.43 and w3 = 0.33, 
which is slightly different than the results obtained in the earlier chapter on portfolio 
models.   Also, as expected, the path of the optimal weights starts from random locations 
instead of starting from the 0.33 value as in Figure 12.1.  The criterion value, after 
decreasing during the initial runs, converges to a value of 9.45. 
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6.2 Parentsrand   
 
 In programs gaportfol1.m and gaportfol2.m we used the function parentsdet 
to select the two parents of a new generation.  That was a deterministic procedure where 
we picked as parents the two individuals with the highest and next to the highest value of 
the fitness function.  However, the usual practice in the genetic algorithms field is to 

troduin ce some randomness in the selection of parents.  The function parentsrand 
(parents random) we will present in this section is a first step in that direction. 

The method to be used can be thought of as a cross between a pie chart 
and a roulette wheel.   Consider a case in which there are five individuals in the 
population and all five have the same fitness level of 40.   We could then use a pie 
chart to represent the percentage of the total fitness of the population of 200 
which is held by each individual as shown in Figure 12.3.    
 

1
2
3
4
5

 
 
Figure 12.3 A Balanced Pie Chart / Roulette Wheel 
 
One could also think of this pie chart as a roulette wheel which is spun each time 

 be selected.   Since all the slices of the pie are the same size the 
ity of each individual being selected as a mate would be the same. 

ons er instead a case in which the fitness of each of the five 
ay 20, 60, 30, 20, and 70.    Then the pie chart 

rce age of the total fitness held by each of the individuals 
Figure 2.4. 

a mate is to
probabil
 However, c id
individuals is different, s
representing the pe nt
would look like  1
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1
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4
5

 
 
Figure 12.4 An Unbalanced Pie Chart / Roulette Wheel 

oulet  wheel is spun there would be decidedly 
different probabilities that each individual would be chosen. 

 
cumfit = sum(fit); 
val = 0; 

d * cumfit; 

  (j < opsize)) 
    val = val + fit(j); 
    j = j + 1; 
end 
f = genepool(j); 

 
 The variable cumfit is the cumulative value of the individual fitness 
variables, i.e. the sum of the fitness levels of the members of the population.  The 
variable val is used to move around the roulette wheel as it is spun and the 
ariable spin_val carries the information about how far the roulette wheel travels 

s.  The variable rand provides a number from the zero to one 

um of the fitness levels.   However, the slices of the roulette wheel are not all the 
same si

 
In this case each time the r te

 The function code is shown below. 
 
function f = parentsrand(fit,popsize,genepool);

spin_val = ran
j = 1; 
while ((val < spin_val) &  p

v
before it stop
interval of a uniform distribution Therefore each time the roulette function is 
called spin_val takes on a different value that ranges uniformly from zero to the 
s

ze; rather they represent the relative fitness of the individuals.  So more fit 
individuals are more likely to be chosen. 
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 The selection occurs in the while loop which repeats until the variable 
val exceeds spin_val or until the loop index j exceeds the population size.  
Also, each time through the loop the variable val is augmented by the fitness 
level of individual j.   After the completion of the while loop the index of the 
selecte

h 

 parentsrand in the “selection of 
parents

l 
functio

d individual is then used to select the corresponding chromosome string 
from the vector gen and this information is transferred to the variable f whic
will be the output of the function.   
 One thing to notice about this procedure is that it is “sampling with 
replacement”, i.e. when a mate is chosen that individual is not removed from the 
population but rather is left in the population and is eligible to be chosen on 
subsequent calls to the function. 

To use this function, we have to replace in the program gaportfol.m the call to 
the function parentsdet with the call to the function

” section in the following two statements: 
 

parent0 = parentsrand(fit,popsize,genepool); 
parent1 = parentsrand(fit,popsize,genepool); 

 
Figure 12.5 shows the results of running program gaportfol3.m, which is 

program gaportfol1.m with this function and also using the initpoprand_gaportfo
n as explained in the previous section. 
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Figure 12.5 Genetic Algorithm with parentsrand and initpoprand_gaportfol 
   

 patterns of optimal portfolio weights and criterion values, at 
variance with Figures 1 and 2, are very unstable.  Why?  The reason may be that here we 
are choosing the two parents with some randomness, while in the other two cases we 
always chose the two best performing individuals and with them formed a couple.  This 
result is important to make the point that genetic algorithms are designed to perform a 
wide exploration of the solution space.  Thus, they usually work with large populations 

We see here that the
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and a large number of runs.  If we increase those values we will observe some 
performance improvement, i.e. with 100 runs as before but now with a population of 500 
instead of 8.  However, before doing so it will be convenient to adjust the program 
gaportfol3.m to widen the pool of best couples as we will see in the next section.      
 
6.3 Selecting More Than One “Best” Couple 
 
 In the program gaportfol3.m we introduced randomness in the 
initialization of the population and in the selection of parents.  However, we kept 
using the same procedure we used in the previous programs for the process of 
parents selection, that is, we just selected the couple with the highest criterion 
value to give birth to the entire new generation.  However, to make a better use of 
the random selection of parents process introduced in the previous section, that is, 
to widen the search space of an optimum thus reducing the changes of being 
trapped in a local optimum, it may be convenient to obtain the new generation of 
children from more than just one couple.  This can be accomplished, for example, 
by extending the range of the children’s generation loop in the “mutation of 
children chromosome strings” section from program gaportfol3.m 
 

   for h = 1:2:popsize; 

ely to include also the calls to 
the parentsrand and crossover functions. 
 

% mutation of children chromosome strings 
 
     child0mut = mutation(pmut,clen,child0);     
     genenew(h) = child0mut; 
     child1mut = mutation(pmut,clen,child1);     
     genenew(h+1) = child1mut; 
 end 

 
to make it cover the two previous sections also, nam
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for h = 1:2:popsize; 
 % selection of parents; 

= parentsrand(fit,popsize,genepool); 
      parent1 = parentsrand(fit,popsize,genepool); 

 
 % crossover of parents’ chromosome strings 

  [child0,child1] = crossover(clen,parent0,parent1); 
  

 % mutation of children chromosome strings 
     child0mut = mutation(pmut,clen,child0);     
     genenew(h) = child0mut; 
     child1mut = mutation(pmut,clen,child1);     
     genenew(h+1) = child1mut; 

 
 

 
experim nt with program gaportfol4.m, which incorporates this change, and for 
100 runs with a population of 500. 
 

 
  parent0 
 
 
 

 
 
 
 
 
     end 

  
With this change, at each pass of the loop, each “best” couple randomly 

selected in the “selection of parents” section will give birth to only two children 
who in time will experience mutations.  Figure 12.6 below shows the result of an

e
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Figure 12.6 Example with Many “Best” Couples 
 
 We e

erion values follow a more discernible pattern, but it is still more unstable 
than in Figures 1 and 2.  However, as we said above, the risk of being trapped in a 
local optimum in the case a number of them exists is expected to be lower. 
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7. A More Difficult Portfolio Problem 
 

So far we have been working with a Markowitz type portfolio 
problem with a quadratic criterion function.  This is by nature a 

.  However, genetic algorithms are usually 
s, that may have a number of local 

e difficult for local optimization methods such as gradient or Newton 
al optimization methods such as genetic 

  In the previous convex problem the criterion (fitness) value was the mean 

it minus the 
okerage fee.   

d 

portfoli

 with the fitnessnc function.  This function has two 
main parts.  The first one, dealing with the portfolio redistribution, is shown 
below.   

optimization 
convex problem with a single optimum

 to solve more complex problememployed
optima and b
methods to solve, but easier for glob
algorithms.30

return (revenue) minus the variance cost, ignoring the brokerage cost for 
purchasing equities.  In this problem we change that to the prof
variance cost where the profit is the mean return less the br
Moreover we use a realistic form of the brokerage fee that includes both a fixe
and a marginal cost for the purchase of each type of equity.   This has the effect of 

ber of making the average cost of purchasing equities decline with the num
equities purchases and this in turn raises the possibility that the optimization 
problem may have local optima.  Also we have imposed the restriction that the 
individual must purchase a percentage above some lower bound of each type of 
equity.  Thus if the selection of parents, crossovers and mutations generate a 

o in which one or more equities are below the lower bound this amount is 
reset to zero and the small amount is redistributed to the other stocks. 

The code itself for this second problem is similar to that for the problem in 
the previous section with the exception of the fitness_gaportfol function 
which will now be replaced

                                                 
30 For some other approaches to global optimization see Goffe (1996) and Tucci (2002). 
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function [fit,b
fitnessnc(pwm,mu,popsize,beta,sigma,num); 

estind,bestfit] = 

acum = acum + pwm(i,j); 
      

   end 
     
    for i = 
        if c nter
            if cond(i,j) == 1; 
                pwm(i,j) = pwm(i,j) + (acum / counter); 
           nd 
       end 
    end 
     
end 

 
 

 here is a main  loop, running across portfolios from 1 to popsize - the 
population size  and t h portfolio from 1 to num - the 

 as 
ith the sam  dimensions as the variable pwm.  It is initialized with 

ones an

lio whose amount is above the lower bound.  
The variable acum will contain the accumulated amount of stocks below the lower bound 
in each portfolio. 

 
% Portfolio Redistribution  
for j = 1:popsize; 
    
    cond = ones(num,popsize); 
    counter = num; 
    acum = 0; 
    
    for i = 1:num; 
        if pwm(i,j) < 0.1 
            

      pwm(i,j) = 0; 
            cond(i,j) = 0; 
            counter = counter - 1; 
        end 
 

1:  num;
ou  > 0 

 
 

e

T for

wo inside loops running across eac -
number of equities.  The main loop begins by defining three auxiliary variables that will 
be reset at each pass of the loop through each portfolio.  The variable cond is defined
comprised of ones and w e

d will be used to mark with ones those equities whose amount is above the 
allowed lower bound and with zeroes otherwise.  The variable counter will be used to 
count the number of equities in each portfo
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 lio is 
 

 

io is decreased in one unit.  
The second inside loop begins by checking that the variable counter is different 

from zero to la conditional statement checks 
f the correspo  the lower bound.  In 

ding proportional am

% Computation of portfolio returns and best portfolio 
fc = 0.2 * ones(1,num); 
mc = 0
pret = pwm' * mu; 

wm(:,j); 
end 
for j 
    pbrok(j) = fc * cond(:,j) + mc * pwm(:,j); 

bestind = pwm(:,topi); 
bestfi

 
fc = 0.2 * ones(1,num); 
mc = 0

 
Thus in these vectors we allow for different fixed costs and marginal costs for the 
various types of equities.  However, we have treated these costs as the same for 

The first inside loop follows.  When the amount of an equity in the portfo
below the lower bound - set to 0.1 in the present example - that amount is accumulated to
be later redistributed.  Then, that equity’s participation in the portfolio is set to zero and
marked with a zero in its corresponding location in the cond matrix.  Finally, the counter 
of the number of equities above the lower bound in the portfol
 

ter avoid a possible division by zero.  Then a 
i
th

nding equity is marked with a one, thus being above
is case, the correspon ount of previously accumulated stocks to be 

redistributed is added to that equity.  
 The second main part of the function, dealing with the computation of portfolio 
returns and the selection of the best portfolio is shown below.  It is very similar to the 
fitness_gaportfol function corresponding to the convex example, with some minor 
differences. 
 

 

.05 * ones(1,num); 

for j = 1:popsize; 
    pvar(j) = 0.5 * beta * pwm(:,j)' * sigma * p

= 1:popsize; 

end 
fit = pret - pvar' - pbrok'; 
[top topi] = max(fit); 

t = top; 

 
   The first difference is that it is necessary to define vectors of fixed and 

marginal cost terms for the brokerages fees.  This is done in the initialization 
section of the function with the statements 

.05 * ones(1,num); 
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across equities in the present example.  We have purposely made the fixed cost 
relatively large lihood that the problem will have local 
optima.   Then st for each portfolio with the loop 

 
here pwm  is the matrix containing each vector of portfolio weights and where 

cond is t
quities above the lower bound and zeros otherwise.  Thus, the fixed cost will be 

charged on portfolios above the lower bound only.  Finally, as in the 
fitness_gaportfol function, we compute the fitness of each individual (now 
including the brokerage cost) and select the fittest one.   

aportfol4.m, we have to replace the previous fitness_gaportfol function 

 the result of running the program gaportfol5.m. 
 

 in order to increase the like
 we compute the brokerage co

 
for j = 1:popsize; 
    pbrok(j) = fc * cond(:,j) + mc * pwm(:,j); 
end 

w
he matrix containing each vector of portfolio marks, with ones for 

e

To solve this nonconvex example we use a modified version of the 
program gaportfol4.m, which we will name gaportfol5.m.  In the 
“computation of fitness function and fittest individual” section of the 
g

call with the statement 
 
[fit, bestind, bestfit] = 

    fitnessnc(pwm,mu,popsize,beta,sigma,num); 

 
Figure 12.7 shows
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change

Figure 12.7 Nonconvex Problem 
 
 The results are similar to those shown in Figure 12.6.  However, they may 

 significantly if we introduce substantial changes in the fixed costs and/or 
in the equities lower bound.    
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8. Experiments 
 

Just as in the Portfolio Model chapter, the simplest experiments with this 
genetic algorithm code are to change the means and/or variances of the portfolio 
and/or the brokerage costs and see how the weights of the best portfolios change 
in response.  Another simple experiment would be to change the number of model 
iterations and/or population size to see how this affects the outcome. 

A more interesting set of experiments will be to introduce further 
refinements in the code to move closer to the actual practice in the field of genetic 
algorithms.  A first refinement would be to introduce mutations in more than one 
bit in the children’s chromosomes in the mutation function.  A second 
refinement would be to introduce more than a single crossover point in the 
crossover function.   
 
 
9. 

 
For financial applications, see Bauer (1994).  
 
 
 
 

Further Reading 
 

A classic reference in the genetic algorithm literature is Goldberg (1989). 
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Chapter 13 

mic models study the behavior of economic systems from an 
aggregate point of view.  They try to capture the interdependence between consumption 
and investment expenditure, fiscal and monetary policy variables, the price level, the 
aggregate supply and the level of employment.  From a modeling point of view, we can 
say that there are three main classes of macroeconomic models: standard models, rational 
expectations models and intertemporal optimization models.  Standard models like the 
one used in this chapter, which are also known as IS-LM models, specify aggregate 
relationships to explain the behavior of macroeconomic variables.  Also, they usually 

sume

, those agents are assumed to make use of all the available information, 
including the model of the economy that policymakers use to model their behavior.  
Finally, intertemporal optimization models share with rational expectations models the 
same assumptions in connection with expectation formation, but try to base their 
modeling of macroeconomic behavior on more explicit “microfoundations”.  
 IS-LM models are the backbone of almost all introductory and intermediate 
macroeconomics textbooks and have been for a long time the main workhorse in the field 
f empirical macroeconomics, as is the case, for example, of the Fair model 

          

Macroeconomics in GAMS31

 
 
 
 Macroecono

as  that economic agents form expectations in an adaptive way.  Rational 
expectations models also work with aggregate relationships, but they assume that the 
economic agents display forward looking behavior.  That is, in order to form 
expectations

o

                                       
31  This chapter draws extensively on both the verbal and the mathematical development in Mercado, 

Kendrick and Amman (1998).  Kluwer Academic Publishers have kindly granted us permission to reuse 

here substantial materials from our previously published paper. 
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(http://fairmodel.econ.yale.edu/).32  An example of a well-known rational expectations 
model is the Taylor (1993) model.  Finally, intertemporal optimization models are still 
relatively small and are not used very much in large scale empirical applications or policy 
analysi

ssumption regarding expectations formation.  For example, models with backward 
looking expectations, like those in the standard-type IS-LM model to be presented in this 
hapter, are solved using a given set of initial conditions for the lagged variables and 

not the 
e 

1.  Th

l 
 

 

my together with an 
“expectations augmented” Phillips Curve, that is, the aggregate supply.  The Hall and 
Taylor model contains the equations, variables and parameters listed below.   

 
Equations 
IS-LM  
(1)  GDP identity  

s.  They are mainly used for teaching at the graduate level, for experimental 
purposes or for policy analysis exercises at a relatively small scale.  One of the most 
influential models of this type is the one by Rotemberg and Woodford (1997).  
 The solution methods of the models mentioned above critically depend on the 
a

c
paths for policy and exogenous variables.  As we will see later in the book, this is 
case for rational expectations and intertemporal optimization models, since they share th
assumption of forward looking behavior and present what is technically known as “two-
point boundary value problems”.  To be solved they require both initial and terminal 
conditions or specific iterative procedures. 
 

e Hall and Taylor Model 
 
In this chapter we will introduce the Hall and Taylor (1997) model, a well known 

textbook standard model, and we will illustrate how to represent and simulate this mode
in GAMS.  This is a twelve-equation nonlinear dynamic model for an open economy with
flexible exchange rates.  It is well suited to teach simulation and policy analysis at the
undergraduate level.  The core of this model can be seen as a standard IS-LM-Open 
Economy sub-model for the aggregate demand of the econo

Y C I G X= + + +  
( )1dY t= −  (2)  Disposable Income Y

(3)  Consumption  
(4)  Investment  

                                                

dC a bY= +  
I e dR= −  

 
32 The antecedents of these models go back to the work of Keynes (1936) and Hicks (1937). 
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M P kY hR= −  (5)  Money Demand  

 
Expectations Augmented Phillips Curve 

)  Expected Inflation 1 2
eπ απ βπ− −= +  (6

(7)  Inflation Rate  ( ){ }NN
e YYf 1 −+= −ππ Y/  

( )1 1P P π−= +  (8)  Price Level  

 
Foreign Account 
(9)  Real Exchange Rate WE P P q vR= +  
(10) Net Exports  WX g mY nE P P= − −  

 
Government Deficit and Unemployment 
(11) Government Deficit dG G tY= −  

(12) Unemployment Rate ( ){ }N N NU U Y Y Yµ= − −  

 
Endogenous Variables                           Policy Variables 
C :  Consumption       G :  Government Expenditure 

X ployment 

;  e = 1000;   f  = 0.8;   g = 600;  h = 1000;  k = 0.1583; 
 = 0.1;  n = 100;  q = 0.75;   t = 0.1875;   v = 5;  α =0.4;  β =0.2;  µ = 0.33; 

E :  Nominal Exchange Rate                 M :  Money Stock 
       (foreign currency / domestic currency) 
Gd: Government Deficit  
I :   Investment 
P :  Domestic Price Level      
R :  Real Interest Rate      Exogenous Variables 
U : Unemployment Rate      P :  Foreign Price Levw el 

 :  Net Exports                  UN: “Natural” Rate of Unem
Y :  GDP                   YN:  Potential GDP 
Yd:  Disposable Income   
π :  Inflation Rate  
πe : Expected Inflation 
 
Parameters 
 a = 220;  b = 0.7754;  d = 2000
m
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The model is dynamic - all variables without subscripts correspond to time “t”,  

al shocks may affect real variables in 

 (1) is an 
s the sum of its main components: 

 and net exports (exports minus imports).  
 GDP net of taxes.  Eq. (3) is a standard 

rrent income.  Eq. (4) 
 Eq. (5) 

and for 
ative function of the interest rate (the opportunity cost of 

ng assets).    
s augmented Phillips curve.  Eq. (6) 

gives the expected inflation as tion in the last two periods 
sitive function of the expected 

al GDP in the previous year 
eated economy thus inflationary 

ationary pressure.   Eq (8) just defines 
ction of the price level the previous year and the inflation rate. 

inal 
n increase 
rency.  Eq. (9) 

e times the domestic price 
level divided the forei  the interest rate.  Thus, for 

st rate (implicitly assuming that the interest rate in 
e) will cause capital inflows and an appreciation of 
 as a function of GDP and the real exchange rate.  

le exports do not change as much.  
hange.  The real exchange rate is the relative price between 

s.   
overnment deficit and the unemployment 

f the model.     

those with “-1”  subscripts correspond to “t-1”, and so on.  Also the model is nonlinear - 
nonlinearities appear in equation (5), (8), (9) and (10).   As we will see later, its dynamic 
behavior displays the “natural rate” property:  nomin
the short-run, but not in the long run.  

 
Eqs. (1) to (5) are standard in most macroeconomics textbooks.  Eq.

identity that states that GDP always equal
consumption, investment, government spending
Eq. (2) determines disposable income as equal to
consumption function in which current consumption depends on cu
determines investment as an inverse function of the real interest rate.  Finally,
defines real money balances as a positive function of income (money dem
transaction purposes) and a neg
holding money instead of interest beari

 Eqs. (6) to (8) correspond to an expectation
 a function of the past infla

(years).  Eq. (7) determines the inflation rate as a po
inflation rate and the GDP gap (the difference between actu

tential GDP).  A positive gap means an overhand po
pressure.  A negative gap means recession thus defl
the price level as a fun

Eqs. (9) and (10) are foreign account equations.  Notice that the nom
 aexchange rate E is defined as foreign currency / domestic currency.  Thus

(decrease) in E is a nominal appreciation (depreciation) of the domestic cur
determines the real exchange rate (the nominal exchange rag

gn price level) as a positive function of
example, an increase in the US intere
the rest of the world remains the sam
the dollar.  Eq. (10) gives net exports
Changes in GDP affect the demand for imports whi
Thus net exports will c
domestic and foreign products.  Thus its changes will affect imports and export

Finally, Eqs. (11) and (12) give the g
rate, and they have not feedbacks on the rest o
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It is usual to develop a compact graphical representation of a model like this in 
ate supply graph.  To 

0), then Eqs. 
 the resulting equation for the interest rate we 

 

3) 

two graphs: and IS-LM graph and an aggregate demand-aggreg
derive the IS schedule we substitute Eq. (2) into Eq. (3), Eq. (9) into Eq. (1
(3), (4) and (10) into Eq. (1).  Solving
obtain  

G
nvd

Y
nvd

mtb
nvd

nqgeaR
+

+
+

+−−
−

+
−++

=
1)(1  (1

 
 This equation shows R as a function of Y (given G) and represents all the 
combinations of interest rate and income for which spending balances.  To derive the LM 

lve for R Eq. (5), obtaining schedule we just so
 
 

(14) 
Phh
MYkR 1

−=  

 
as a function of Y (given M and P) and represents all 
ome for which the money market is in equilibrium.  

edules in the (R,Y) space is shown in 
es, the IS curve will be downward slopping 

.  The intersection of the two schedules 
d income. 

 

 

This equation also shows R 
combinations of interest rate and inc
Finally, the graphical representation of both sch
Figure 13.1.  Given the model coefficient valu
and the LM curve will be upward slopping

andetermines the equilibrium interest rate 

 
 IS LM 

Y

R 

 
 

RO 

YO 

 

 
 
 
 
 

Figure 13.1 IS-LM Graph 
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The aggregate demand (AD) schedule represents the IS-LM part of the model in a 
ople will 

g Eqs. (13) and (14) and 
e result, given the values of the model coefficients, is a downward slopping nonlinear 

e 13.2.  The aggregate supply 
Eqs. (6), (7) and (8).  To 

pture its behavior, we represent it in the (P,Y) space by means of two lines.  The YN 
atural” 
rizontal 

 

 

e terms.  An increase in the money 
pply will bring about disequilibrium in the money market, shifting the LM schedule to 

 

different space: the price level (P) and income (Y) space.  It shows how much pe
demand at a given level or prices.  It can be obtained combinin
th
schedule with P as a function of Y as shown below in Figur
is an Expectations Augmented Phillips Curve embodied in 
ca
vertical line represents the long-run aggregate supply that is the potential or “n
income level, which is assumed to be constant in the short-run.  Finally, the ho

e or “price line” (P) represents the short-run aggregate supply, which is supposed to be lin
perfectly elastic, though in other textbook presentations it is assumed to be upward 
slopping.  Figure 13.2 shows the graphical representation of aggregate demand and 

pply. su
 

 
P  AD YN

 
 

 
 
 
 YYO

PO P 

Figure 13.2 Aggregate Demand - Aggregate Supply Graph 
 
The analysis of the effects of an increase in the money supply (M) will help us to 

understand the workings of the model in qualitativ
su
the right, thus bringing down R and increasing Y.  This implies that the AD schedule also
shifts to the right, as it is shown in Figure 13.3.  
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Figure 13.3 Qualitative Effects of an Increase in the Money Supply 

 prices are sticky, thus the economy moves from point A to point 
.  However, in the medium run, since there is a positive GDP gap, the inflation rate 

becomes positive and prices begin to increase, as can be seen in equation (7).    
 
(7)  Inflation Rate  

 
 
 
 
 
 
 

 
 

 
In the short run

B

( ){ }1 /e
N Nf Y Y Yπ π −= + − . 

 
This process continues given that agents’ expectations will change due to past changes in 
the inflation rate, as shown in equation (6). 

 
(6)  Expected Inflation 1 2

eπ απ βπ− −= + . 

 
As prices increase, real money balances decrease (see equation (5) below) shifting the 
LM schedule to the left.   
 

(5)  Money Demand  M P kY hR= − . 

 
Finally, the economy moves from point B to point C.  We can see then that the increase 
in the money supply was neutral in the long-run with respect to real variables, but not in 
the short-run. 
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2.  The Hall and Taylor Model in GAMS 
 

Different strategies can be fo is confronted with the problem of 
solving and performing policy experiments with a model like this.  In the following, we 
will review some of t

Usually, the first step in the analysis of a model like Hall and Taylor’s is to find 
e steady-state values of the endogenous variables for a given set of constant values of 

ver 
 

the 

 
 

he chapter 

ods 

 

le such notation.  Finally, 
e list  below does not include all the variable names or equations names that are in 

llowed when one 

hem. 

th
the policy and exogenous variables.  This requires the transformation of the model from 
dynamic to static.  Solving a nonlinear system of equations, even when it is static, is not 
easy.  In general, we have to rely on numerical techniques which may or may not deli
a solution, even if it exists, depending on the initial conditions provided.  However, the
model of our interest does not contain many or very strong nonlinearities, making 
task of finding a solution relatively easy.   

To solve for the steady-state, we have to eliminate all time subscripts and solve
the resulting static nonlinear model.  This does not present any challenge to GAMS users,
even for beginners.  Since this model is relatively straightforward we will not discuss it 
further here but rather turn our attention to the dynamic nonlinear model that is of greater 
interest.   The file for this model is htsim.gms on the web site.  It is also contained in 
Appendix 11A at the end of this chapter.   We will discuss here in the body of t
two unusual aspects of the GAMS representations of this model.   However, before doing 
so it is useful to look at the main SET specification of the model, namely 

 
SETS  T    EXTENDED HORIZON     / 0*15 / 

 
Thus the model includes sixteen time periods – zero, one, two through fifteen.   Also, 
keep in mind that GAMS is not case specific and one will find the set of time peri
specified in the GAMS statement at times as T and at other times as t; however they are 
the same. 

Next we consider the way the dynamic variables and equations of the Hall and 
Taylor model are represented in GAMS.   This is shown below.   Note that to avoid
notational conflicts in the GAMS statement, the mathematical parameters e, g, m and t 
have been renamed as ee, gg, mm and tax, respectively.  Also, variables and parameters 
names denoted with Greek symbols in the mathematical statement of the model will be 
renamed in the GAMS statement, since GAMS does not hand
th ing
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the GAMS version of the model, but rather only a few.   The list below does however, 
ontain all the equations. 

 

(t)        gdp 

   ...

+2)  =E=  q  + v * R(t+2) ; 
eq10(t+2)..  X(t+2)   =E=   gg - mm*Y(t+2) - n*(E(t+2)*P(t+2)/Pw(t+2)); 

,  the 

and the

s 
pi(t-2) -1 -2 t

c

VARIABLES 
Y
Yd(t)       disposable income 

 
EQUATIONS 
eq1(t)     gdp identity 
eq2(t)     disposable income 
    ...; 
 
eq1(t+2)..   Y(t+2)   =E=   C(t+2) + I(t+2) + G(t+2) + X(t+2) ; 
eq2(t+2)..   Yd(t+2)  =E=    (1 - tax) * Y(t+2) ; 
eq3(t+2)..   C(t+2)   =E=    a + b * Yd(t+2) ; 
eq4(t+2)..   I(t+2)   =E=    ee - d * R(t+2) ; 
eq5(t+2)..   M(t+2) / P(t+2)  =E=   k * Y(t+2) - h * R(t+2) ; 
eq6(t+2)..   piex(t+2)=E=    alpha * pi(t+1) + beta * pi(t) ; 
eq7(t+2)..   pi(t+2)  =E=    piex(t+2) + f*(Y(t+1)-Yn(t+2))/Yn(t+2) ; 
eq8(t+2)..   P(t+2)   =E=    P(t+1) * (1 + pi(t+2)) ; 
eq9(t+2)..   E(t+2) * P(t+2) / Pw(t

eq11(t+2)..  Gd(t+2)  =E=    G(t+2) - tax * Y(t+2) ; 
eq12(t+2)..  U(t+2)   =E=    Un(t+2) - mu*(Y(t+2)-Yn(t+2))/Yn(t+2) ; 

 
Notice that all variables and equations are defined over the set t.  However

model  equations are specified over the set t+2 and contain variables defined over the 
sets t+2,  t+1 and t, instead of following the corresponding original indices t, t-1 and 
t-2 respectively.  This is due to the way in which GAMS handles the assignment of 
values to lagged variables. 

For example, we could define the set t as: 
 

SETS t /0,1,2,3/ 

 
n write equation 6 with time subscripts as in its original formulation: 

 
 

eq6(t)..   piex(t) =E=    alpha * pi(t-1) + beta * pi(t-2) ; 

 
Then, when solving the model, GAMS would assign the default value zero to expression
like pi(t-1) and , since  and  do not belong to the set .  Therefore, we 
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would not be able to assign to the inflation rate initial values other than zero, even if we 
wished to do s

Thus, when de ng lagged variables in GAMS, we follow 
the following rule of t or a solution horizon of duration t, specify equations 
starting from the longe . lor’s model, the longest lag is equal to 2.   
Notice how we e aining lags - eqs. 6, 7 and 8 - where we 

 subscripts equal to t, t+1 and t+2.  At the same time, in equations 
ables have subscripts equal to (t+2).   By operating in this 

way we “keep” the first two time periods (t and t+1) free to assign initial values and let 
GAMS find a solution for the remaining periods.  More details on this are provided in 
Append

aylor’s model, besides 
defining – as we did above – the extended horizon for simulations, we have to provide 
initial conditions for output and inflation.   

SETS  t   EXTENDED HORIZON  / 0*15 /  

bsets t0 and t1 and assign to them, respectively, the 
first and second elements of the t set  - that is, the elements in the “ordinal 1” and 

S statement 

can be read as “assign to the set t0 the elements of the set t such that the ordinal position 
f elem r in GAMS can be read as a “such that” 

 

o.  
aling w iniith models conta
humb:  f
st lag

the model equations cont
  In Hall and Tay

 wrot
have variables with
containing no lags, all vari

ix D. 
To complete the GAMS specification of Hall and T

 

 t0(t)      PERIOD ZERO 
 t1(t)      PERIOD ONE; 
 t0(t) = YES$(ORD(t) EQ 1); 
 t1(t) = YES$(ORD(t) EQ 2); 

 
With this specification, we are defining a fifteen-period time index as the set t.   

Then, we declare and define the su

“ordinal 2” places.  Thus the GAM
 

 t0(t) = YES$(ORD(t) EQ 1); 
 

o ent  is equal to one”.  Thet  $ operato
operator in this context. 

 The specification for the sets t0 and t1 used above is useful in case one decides 
to change the extension of the simulation horizon, since we would not have to change the
definition of the initial conditions subsets. 
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In the same way, we can also define terminal conditions subsets.  These 
conditi ls containing rational expectations, as we will see 
later in
last per writ for example, tf(t) and tf1(t) 
-  of the
 

); 
 =  YES$(ORD(t) EQ (CARD(t) - 1)); 

 
where, as before, ORD(t) means “ordinal” and where CARD(t) means the cardinality, i.e. 

ext we turn our attention from the specification of the dynamics of the model in 
GAMS

vels.   

 the statements that are used for monetary policy.  They are 
 

s for shock 1    / 4*15 / ; 

 

that cre  over which the policy change is defined and 
 

Mper(TS1) = 0.0 ; 

 
that sets the percentage change.   Thus to create a solution where the money supply is 3 
percent above the base level in periods 4 thru 15 one would modify the statement above 
to  

Mper(TS1) = 0.03 ; 

 
Alternatively, the user might want to have two periods in which the policies were above 
and then below that the base level.   This would be done by first creating the two sets of 
time periods with GAMS statements of the form 
 

SETS 
TSPER1(T) Quarters in period 1    / 5*8 /  
TSPER2(T) Quarters in period 2    / 10*13 / ; 

 

ons become necessary in mode
 the book.  For instance, terminal conditions for the last and the previous-to-the-
iod can be ten by defining two new subsets  - 
 set  and then at dding the following two expressions: 

tf(t)  
(t)

 =  YES$(ORD(t) EQ CARD(t)
tf1

the number of elements in the set. 
 N

 to the specification of the policy variable time paths.   This is unusual in that the 
policy variables are specified in percent deviations from base levels rather than in le
This is accomplished by providing statements which set the percent difference.  An 
example is

SETS 
TS1(T) period

ates a set TS1
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Follow

Mper(TSPER2) = -0.02 ; 

 

Then the money supply would be 3 percent above the base level in quarters 5 thru 8 and 2 
percent below the base level in quarters 10 thru 12.   However, when doing this be careful 
not to use quarters beyond those included in the set T. 

The initial conditions for output and inflation are defined as: 
 

  Y.fx(t1) = ini1;   Pi.fx(t0) = ini2;   Pi.fx(t1) = ini3; 

 
where t0 and t1 mean “period 0” and “period 1” respectively, “.fx ” tells GAMS to 
keep the assigned values fixed during the execution of the program and ini1 to ini3 are 
given initial values.  
 In this model, in order to solve a system of equations in GAMS, it will be 
necessary to add an additional variable (J) and an additional equation (JD) and to 

d variable.  Thus the SOLVE statement will be 

lso, since the model contains indexed equations a stacking method is used in GAMS as 
uss ce Hall and Taylor’s is a nonlinear model, we have 

to invoke a nonlinear programming (NLP) solver.   For an introduction to this type of 
solvers

licy 
mic 

solution

ition and then increase the money supply by 10% 
and a s ernment 
expenditure by 10%.  Both increases are assumed to take place in period four and be 
perman .4 shows the 

lution paths for income, the inflation rate, the interest rate and the nominal exchange 

ed by statements to set the percent deviations, i.e. 
Mper(TSPER1) = 0.03 ; 

maximize or minimize the adde
 
 SOLVE NONLDYN MINIMIZING J USING NLP; 
 

A
disc ed in Appendix H.  Finally, sin

 see Appendix F. 
To perform simulations with this model we change the values of the po

variables or the parameter values, as discussed above, and compare the different dyna
 paths obtained for the endogenous variables.   
The graphical analysis we performed earlier gave us a useful representation of the 

qualitative behavior of the key variables of the economy.  However, to deal with more 
variables and to obtain precise quantitative results, we have to simulate the model 
computationally.  Figure 13.4 displays the results of two experiments: a first experiment 
where we start from an equilibrium pos

econd experiment where we start from equilibrium and we increase gov

ent, that is, once they happen they are not reversed.  Figure 13
so
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rate.  The value of the variables between periods zero and three corresponds to the model 
steady state values.  The continuous line corresponds to the money supply experiment, 
while the dotted line corresponds to the government expenditure experiment.  GDP 

 
values are in billions of dollars.  For the real interest rate and the inflation rate a value of 
0.01 corresponds to 1%.  The nominal exchange rate values correspond to an index value
set equal to one in the steady state.  
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Figure 13.4 Effects of a 10% increase in the Money Supply and in Gov. Expenditure 

n observe how, as expected, the change in money supply has short-run but 
o long-run real effects, while the change in government expenditure has short and long-

so see how the trajectories to the new equilibrium positions are 
oscillat ,

The y policy can be seen in the 
results in Fig. 4.   Consider the case where money supply is increased by 10% as is shown 
in the solid lines.   This has the effect at first of decreasing the interest rate as in shown in 
the upp  r t rate in turn causes an increase in 

vestment and therefore GDP as shown in the upper left hand graph.   As GDP increases 
above p  

 
We ca

n
run real effects.  We can al

ory  with temporary over and under-shooting of the final equilibrium positions. 
 essential elements of the function of monetar

er ight diagram.   The decrease in the interes
in

otential, inflation increases as shown in the bottom left hand graph.   The increase
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in inflation raises the price level and this has the effect of decreasing the real money 
supply in the money demand equation 

 
(5)  M P kY hR= − . 

 
This in  

te then decreases investment and 
erefore GDP begins to fall in period 5 as shown in the upper left hand graph.  This 

potential GDP level and inflation 
returns to zero. 
 

ential GDP, or a change in the foreign price level.33  You 
ay also want to change the tax rate, which in the program is defined as a scalar, or any 

other model parameter.34  
Having learned how to perform model simulations, we can now move to the realm 

of optimal policy analysis.  This analysis is, in a way, the reverse of simulation.  Instead 
of determining the paths of the endogenous variables given values for the policy 
                                                

 turn causes an increase in the real interest rate beginning in period 5 as shown in
the upper right hand graph.   The rise in the interest ra
th
oscillatory process continues until GDP returns to the 

In the GAMS program htsim.gms you will also find ways of changing more 
policy or exogenous variables to perform other experiments.  For example, you will be 
able to simulate a change in pot
m

 
33 If you change the foreign price level, you will notice that the nominal exchange rate also changes in an 

opposite and neutralizing way so that nothing else happens.  From Eq. (9) we know that the real exchange 

rate is determined by the interest rate.  We also know that the domestic price level is sticky in the short run. 

Thus a change in the foreign price level has to be compensated by a change in the nominal exchange rate.  

You will observe a similar behavior, but in the long run, in the case of a change in the money supply.  Since 

this change affects the domestic price level but not the real interest rate in the long run, thus the nominal 

exchange rate will change to compensate the change in the domestic price level.  Only in the case of a 

permanent change in the real interest rate (i.e. due to a change in government spending) will the nominal 

exchange rate and the domestic price level not move in a compensatory way.   
34 Hall and Taylor’s textbook comes with a “black box” software named Macrosolve which allows you to 

perform experiments with the model changing some policy or exogenous variables.  The GAMS program 

presented in this chapter replicates many results from Macrosolve.  A change in the tax rate, since it is a 

model parameter, will change the steady-state solution of the model, as would be the case with any other 

model parameter such as the marginal propensity to consume, etc.  However, for the particular experiment 

of changing the tax rate, Macrosolve gives steady-state invariant results.  Our GAMS program doesn’t.  

Thus, for that particular experiment, in case you wish to compare results, you will find that they differ.  

Notice that there is nothing wrong in one case or the other, just two different simulation methods.  
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variables, we now want to determine the optimal path for the policy variables given target 
target variables.  This can easily be done by adding a loss 
o the model and by redefining the policy variables of 

interest as endogenous variables.  For example, in the GAMS statement above, we can 
ing quadratic loss function for the previous JD equation and the Loss 

variable for the previous J variable, i.e. 

Loss..  Loss  =E=  0.5  *  sum(t,  Wy * POWER((Y(t)-Ytar(t)), 2 )   
ER((P(t)-Ptar(t)), 2 ); 

 
here Ytar and Ptar are pre-specified target values for output and the price level and 

ights on the deviations from target values of output and the price 

ome normalization on the 
weig
from ual to 1 and then obtain the corresponding normalized Wp 

 

, or Wy = 1 and Wp = 
1800000, etc.  For a full discussion of weighting procedures see Park (1997). 

If we now redefine, for example, the money supply M(t) as an endogenous 
ble “Loss”, we will 

obtain the corresponding optimal path for M(t).  This is a typical and basic experiment in 
 this analysis can be made more sophisticated in a variety of 

so, it may be convenient to move from GAMS to a more specialized software such as 
Duali.  We will do that later in this book.   

 

f 

paths and relative weights for 
uation tfunction as an extra eq

substitute the follow

 
eq
                     +  Wp * POW

w
where Wy and Wp are we
level respectively. 

Since the variables entering the loss function (GDP and the price level) are 
red in different units, it is convenient to impose smeasu

hts.  For instance, if Ytar is 6000 and Ptar is 1, then to equally penalize deviations 
 target we could set Wy eq

as: 
Wp = 60002 / 12 = 3600000. 

  Then, if we decide to penalize deviations from Ytar twice as much as for 
= 2 and Wp = 3600000deviations from Ptar, we will choose Wy 

variable and we ask GAMS to solve the model minimizing the varia

policy analysis.  However,
ways, for example by introducing stochastic elements and learning mechanisms.  To do 

 
3.  Experiments 
 

In this chapter we simulated the effects of permanent changes in the money 
supply and in government expenditure.  You may want to simulate temporary changes, 
that is, changes that last for only a few periods.  To be acquainted with the dynamics o
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the Hall and Taylor model, you should continue performing simulations of shocks to th
model exogenous variables, i.e. potential GDP or the foreign price level, asking yourself
if the observed effects make economic sense.   

e 
 

o the 
s, 

so that it becomes 
 

You may want to expand the model allowing for shocks to the domestic price 
level.  This price shock may have different sources: changes in the price of an input t
economy (i.e. oil), a wage increase passed on by firms in the form of increased price
etc.  You can represent it as an exogenous variable Z added to Eq. (7) 

 ( ){ } ZYYYf NN
e +−+= − /1ππ   

 
 hus, this shock will be a shift factor in the short-run aggregate supply or 
horizon perly introduce this new variable in the GAMS 

have to define it as a parameter in the same fashion as we did potential 
GDP or the foreign price level and add it to the corresponding equation.  You may want 
to try experiments in which this variable changes only temporarily.  Notice also that this 
variable will be implicitly defined in percentage changes and not in levels. 

Also, you may try to introduce changes in the model policy variables in order to 
counteract shocks to exogenous variables to bring the economy back to the initial 
quilibrium position, particularly in connection with the values of real variables.  This is 

a rudim
erform a more sophisticated policy analysis shocking the economy with diverse shocks 

T
tal price line.  Notice that to pro

program you will 

e
entary but useful way of undertaking policy analysis.  Finally, you may want to 

p
and working with a  loss function as suggested at the end of this chapter, or you may 
decide to move on to the Macroeconomics in Duali chapter in this book where that kind 
of analysis is performed with a more specialized software.  
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Appendix 13A 

Hall and Taylor in GAMS 
 
$TITLE   htsim:   HALL-TAYLOR SIMULATION 
OPTION
OPTION
OPTION LIMCO
OPTION SOLPRINT = OFF; 
$OFFSY
*********************************************************************** 
* SECTION 1 :  DEFINITION OF PARAMETER VALUES FOR THE ORIGINAL 
*                          NONLINEAR  HALL-TAYLOR MODEL 
*********************************************************************** 

.1875 / 
v     

eff. on 2 lagged inflation     / 0.2 / 
mu      elast. of empl. wrt GDP          / 0.33 /  ; 

********************************************************************** 
 DEFINITION OF TEMPORAL HORIZON FOR SIMILATION 
****************************************************** 

* If y

       T1(T) = YES$(ORD(T) EQ 2); 
       DISPLAY T0, T1; 

 SYSOUT = OFF; 
 LIMROW = 7; 

L = 0; 

MXREF OFFSYMLIST 

SCALARS 
a       minimum consumption              / 220 / 
b       marg prop to consume             / 0.7754 / 
d       interest elast of invest.        / 2000 / 
ee      maximum investment               / 1000 / 
f       coeff. on excess aggr dem.       / 0.8 / 
gg      maximum net exports              / 600 / 
h       interest elast  of mon  dem.     / 1000 / 
k       income elast  of money dem.      / 0.1583 / 
mm      income elast  of net exp         / 0.1 / 
n       real ex  rate elast  of net exp  / 100 / 
q       constant                         / 0.75 / 
tax     tax rate                         / 0

  constant                         / 5 / 
alpha   coeff. on 1 lagged inflation     / 0.4 / 
beta    co

 
*
*  SECTION 2:    
*****************

ou change the extension of the horizon, make the necessary 
* adjustments in the section of shocks' definition  (Section 3) 
 
SETS  T    EXTENDED HORIZON     / 0*15 / 
       T0(T) PERIOD ZERO 
       T1(T) PERIOD ONE ; 
 
       T0(T) = YES$(ORD(T) EQ 1); 
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*  SECTION  3 : DEFINITION OF CHANGES IN POLICY AND EXOGENOUS VARIABLES 
*********************************************************************** 
PARAME
*  definition of policy and exogenous variables (in percentage changes) 
Mper(T)        money stock  (in % change) 
Gper(T)        Gov. expenditure (in % change) 
Ynper(T)       potential GDP (in % change) 
Pwper(T)       foreign prices (in % change) 
*  definition of policy and exogenous variables (in levels) 
M(T)     money stock (in levels) 
G(T)     Gov. expenditure (in levels) 
Yn(T)    potential  GDP (in levels) 
Pw(T)    foreign prices (in levels)  ; 
  default values for policy and exogenous variables 
Mper(T

******
SETS 
TS1(T) periods for shock 1    / 4*15 / ; 
Mper(TS1) = 0.0 ; 
**************************************** 
* CHANGE IN GOVERNMENT EXPENDITURE 
**************************************** 
SETS 
TS2(T) periods for shock 2    / 4*15 / ; 
Gper(TS2) = 0.0; 

*********************** 
hat the natural rate of 

                          unemployment remains the same) 
******

Ynper(TS3) = 0.0; 
**************************** 

ANGE IN FOREIGN PRICES 
******
SETS 
TS4(T) periods for shock 4    / 4*15 / ; 
Pwper(TS4) = 0.0; 
*  Transformation of shocks in % changes into shocks in levels 
M(TS1) =   900 * (1 + Mper(TS1)) ; 
G(TS2) =  1200 * (1 + Gper(TS2)) ; 
Yn(TS3) = 6000 * (1 + Ynper(TS3)) ; 
Pw(TS4) =    1 * (1 + Pwper(TS4)) ; 

TERS 

*
) = 0 ;   Gper(T) = 0 ;  Ynper(T) = 0 ;  Pwper(T) = 0 ; 

M(T) = 900 ;    G(T) = 1200 ;  Yn(T) = 6000 ;  Pw(T) = 1 ; 
****************************** 
* CHANGE IN MONEY SUPPLY 

************************ 

************************************
*  CHANGE IN POTENTIAL GNP (notice t
*

***************************************************** 
SETS 
TS3(T) periods for shock 3    / 4*15 / ; 

*  CH
********************** 
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* reporting policy and exogenous variables values 
PARAMETER REPORTEX  POLICY AND EXOGENOUS VARIABLES VALUES; 
  REPORTEX(T,"Money") = M(T); 
  REPORTEX(T,"Gov. Exp.") = G(T); 
  REPORTEX(T,"Pot. GDP") = Yn(T); 
  REPORTEX(T,"Fgn Price") = Pw(T); 
 
*********************************************************************** 
* SECTION 4:  COMPUTATION OF SOLUTION 
*********************************************************************** 
PARAMETERS 
Un(T)          natural rate of unemployment ; 
Un(T) = 0.05 ; 
 
VARIABLES 

Yd(T)         disposable income 
C(T)          consumption 
I(T)          investment 
R(T)          interest rate 
P(T)          price level 
pi(T)         inflation rate 
piex(T)       expected inflation rate 
E(T)          nominal exchange rate 
X(T)  

 
EQUATIONS 
eq1(T)
eq2(T)
eq3(T)      consumption 
eq4(T)      investment 
eq5(T)
eq6(T)
eq7(T)
eq8(T)      price level 
eq9(T)
eq10(T)     net exports 
eq11(T)     government deficit 
eq12(T)     unemployment rate 
JD          performance index ; 
 

Y(T)          gdp 

        net exports 
Gd(T)         government deficit 
U(T)          unemployment rate 
J             performance index 

      gdp identity 
      disposable income 

      money demand 
      expected inflation 
      inflation rate 

      real exchange rate 
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JD..  
=E=   C ) + I(t+2) + G(t+2) + X(t+2) ; 

eq2(t+2)..   Yd(t+2)  =E=    (1 - tax) * Y(t+2) ; 
 
3(t+2)..   C(t+2)   =E=    a + b * Yd(t+2) ; 

eq6(t+2)..   piex(t+2)=E=    alpha * pi(t+1) + beta * pi(t) ; 
 
eq7(t+2)..   pi(t+2)  =E=    piex(t+2) + f*(Y(t+1)-Yn(t+2))/Yn(t+2) ; 
 
eq8(t+2)..   P(t+2)   =E=    P(t+1) * (1 + pi(t+2)) ; 
 
eq9(t+2)..   E(t+2) * P(t+2) / Pw(t+2)  =E=  q  + v * R(t+2) ; 
 
eq10(t

  U(t+2)   =E=    Un(t+2) - mu*(Y(t+2)-Yn(t+2))/Yn(t+2) ; 
 
********************************************************************** 
 In w

ts to a same variable undo the previous ones 
********************************************************************** 
 
*  Guess of initial values for the solution algorithm. 
  Wit oblem may be declared "infeasible" 

 
 R.L(T+2) = 0.09 ; Y.L(T+2) = 6500 ; E.L(T+2) = 1.2; C.L(T+2) = 4500 ; 

-state values for lagged endogenous variables 

 

       J =E= 0 ; 
eq1(t+2)..   Y(t+2)   (t+2
 

eq
 
eq4(t+2)..   I(t+2)   =E=    ee - d * R(t+2) ; 
 
eq5(t+2)..   M(t+2) / P(t+2)  =E=   k * Y(t+2) - h * R(t+2) ; 
 

+2)..  X(t+2)   =E=   gg - mm*Y(t+2) - n*(E(t+2)*P(t+2)/Pw(t+2)); 
 
eq11(t+2)..  Gd(t+2)  =E=    G(t+2) - tax * Y(t+2) ; 
eq12(t+2)..

*
* hat follows, we assign initial variables' values and lower bounds 
* WARNING: The order of declaration of assignments is very important 
*      Successive assignmen
*

* hout them, the pr
*  That is, the algorithm will converge to a solution from some initial 
*  positions but not from others 
*  This is common in nonlinear problems 

 I.L(T+2) = 900 ;  X.L(T+2) = -100 ; Gd.L(T+2) = 75 ; U.L(T+2) = 0.07 ; 
 Yd.L(T+2)= 4875 ; pi.L(T+2) = 0.1 ; piex.L(T+2)=0.2 ; P.L(T+2) = 1.1 ; 
 
* lower bound for p, to avoid  division by zero 
 P.LO(T+2) = 0.0001 ; 
 
* fixing initial steady
 P.FX(T1) = 1 ;  pi.FX(T0) = 0 ;  pi.FX(T1) = 0 ; Y.FX(T1) = 6000 ; 
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MODEL NONLDYN  /eq1, eq2, eq3, eq4, eq5, eq6, 
      
 

          eq7, eq8, eq9, eq10, eq11, eq12, JD / ; 

SOLVE NONLDYN MINIMIZING J USING NLP; 
 
* Reporting solution values 
PARAMETER REPORTS SOLUTION VALUES IN LEVELS; 
  REPO

  REPORTS(T,"Unemploy")     = U.L(T); 
 
* Showing final results 
DISPLAY REPORTEX; 
DISPLAY REPORTS; 
 

RTS(T,"GDP")          = Y.L(T); 
  REPORTS(T,"Inflation")    = pi.L(T); 
  REPORTS(T,"Int.Rate")     = R.L(T); 
  REPORTS(T,"Exch.Rate")    = E.L(T); 
  REPORTS(T,"Gov.Def")      = Gd.L(T); 
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Chapter 14 

conomics.  
f multiple heterogeneous agents interacting 

omic agents has a long tradition in 
nt-based modeling departs from it in a number of ways.  For example, 

eling a market economy, the standard neoclassical competitive general 
equilibrium approach usually assumes that agents have fixed preferences, perfect and 
comple

f 

lly 

 a number of more realistic characteristics and behaviors, i.e. changing 
prefere  

obert Axtell (1996).  This is a 
model designed to simulate a variety of social phenomena such as population dynamics, 

 trade, group formation, combat and 
transmi n 

nd 
res and 

ell arrays that we will explain below - will suffice.  However, more sophisticated 
simulations may require the use of object oriented programming techniques, something 
also available in MATLAB - see “MATLAB Classes and Objects” in the “Programming 
and Data Types” section of the MATLAB help navigator - as well as in lower level object 
oriented programming languages such as C++, C# or Java.   
    

Agent-based Model in MATLAB 

 
 
 Agent-based Computational Economics is one of the newer fields in e
Agent-based models simulate the behavior o
in a variety of ways.  While the modeling of econ
economics, age
when mod

te information, no reproductive behavior, and also that trade is organized by a 
central auctioneer that given all agents preferences and endowments computes the set o
equilibrium prices.  Thus, agents are price-takers and do not engage in trade at prices 
other than those given by the central auctioneer.  Also space, that is geography, is usua
an absent dimension in that approach. In contrast, agent-based models allow agents to 
display

nces, bounded rationality and memory, imperfect and incomplete information, and
local trade - agents may interact with neighbors in a geographically defined space and 
prices emerge from these decentralized interactions.  
 In this chapter we will introduce a famous agent-based model known as the 
Sugarscape model, developed by Joshua M. Epstein and R

migration, interaction with the environment,
ssion of culture. We will learn how to represent and simulate the simplest versio

of this model in MATLAB.  To do this, the knowledge of basic MATLAB operations a
data types - vectors and matrices, with the addition of data types named structu
c
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1. arscape Model: Introduction   
 

 be 
though cities located near one another like Dallas and Fort Worth in 

exas or Minneapolis and St. Paul in Minnesota.  There is an original distribution of 
 
ers 

at each location work with varying degrees of efficiency and thus have different costs.  
hey thus require different levels of revenues in order to continue to make a profit.  Their 

profit e es to 

 revenue location.   However, some of the franchise owners scout longer distances 
way fr ent store than others. 

rscape model consists of two main elements: a terrain 
where events unfold named “sugarscape”, which contains the spatial distribution of a 
eneralized resource named “sugar” which can be thought of as the customer potential or 

 
n 

 metabolism level is like the profit of the enterprise in each period.  
his profit is accumulated as wealth from period to period; however, if the wealth level 

goes to e agent dies, i.e. goes out of business.  Thus, the agents are 
haracterized by a set of fixed states (genetic characteristics such as metabolism and 

 is represented by a two-dimensional coordinate grid or lattice. At 
very point of the grid given by the coordinates (x,y) there is a sugar level.  Thus, we can 
asily represent the sugarscape in MATLAB by means of a matrix. For example, if we 

n 

The Sug

The version of the classic Sugarscape model that we use in this chapter can
t of as two major 

T
stores of a certain type in this terrain; for example, coffee houses such as Starbucks or
perhaps mailing and business services stores such as UPS Stores.   The franchise own

T
ach period is added to their accumulated wealth; however, if this wealth go

zero the franchise is shut down. The surviving franchise owners each period look around 
for a nearby location that would be more favorable and move the store if they find a 
higher
a om their pres

More formally, the Suga

g
revenue level at that location.  The agents have metabolism levels and must eat to 
survive.  This metabolism may be thought of as the cost of running the business in each
period.  Thus the difference between the sugar that the agents obtain at their location i
each period and their
T

 zero in any period th
c
length of vision) and variable states (such as location and wealth) and move around the 
sugarscape following simple rules of behavior. 

The sugarscape
e
e
want to create and display a (50x50) sugarscape with a level of sugar equal to 4 units i
the southwest quadrant and a level of 2 units elsewhere, we can do it with the following 
statements 
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for i = 1: 50; 
 1: 50;  
f (i >

 

for j =
i  25 & j < 25) 

s(i,j) = 4; 
else  

s(i,j) = 2; 
end 

end 
 end 
 image(s); 

  
In the statements above image(s) is a MATLAB function that displays the array s. 

Figure 14.1 below shows the result, where the lighter region corresponds to the 
value 4 and the darker region corresponds to the value 2. 
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Figure 14.1 Sugarscape with Two Levels of Sugar  

present agents, we can use another data type available in MATLAB called a 
structure.  A structure is an array with “data containers” named “fields”.  These fields can 
contain any kind of data.   For example, let’s assume that every agent is characterized by 
two states: active, which signals if the agent is alive or not, with values equal to 1 and 0 
respectively, and metabolism, that is the amount of sugar each agent has to eat per time 
period to survive. The statements  

 

 
To re
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 str.metabolism = 4; 

 
create t r containing two fields.  If we use the statements 

 ctive = 1; 
 ism = 3; 

 
then a_  with two fields.  Let’s assume that we want to create and 
display a random population of agents - say all those for whom the corresponding value 
from a 

the 

 
nd < 0.2) 

j).active = 1; %put an agent on this location 

        else 
str(i,j).active = 0; %keep this location empty 

j).metabolism = 0; 

end 

ements we can create a structure with 2,500 elements, each with two 
fields.  

 we can do it with the 
followi ve into the a 
matrix, and where the MATLAB function spy(a) displays all the nonzero elements in 
matrix 

d 
y(a); 

a_str.active = 1; 
a_

he simple 1x1 structure a_st
 
a_str(2).a
a_str(2).metabol

 becomes a 1x2 arraystr

[0,1] uniform distribution is lower than 0.2 - on a 50x50 grid.  Also, we will 
assume that there can only be one agent on each location.  We can achieve this with 
following statements 

 
for i = 1:50; 

50;    for j = 1:
        if (ra
            a_str(i,

a_str(i,j).metabolism = 3;         

            a_
a_str(i,

   end      
    
end 

 
With these stat

 
If we want to display the location of every agent on the grid,
ng statements, where we transfer the elements of the field acti

a.  
 
for i = 1:50; 
    for j = 1:50; 
 a(i,j) = a_str(i,j).active; 
    end 
en
sp
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The result, with a number of agents equal to 474, is shown in Figure 14.2 below, 
where nz means the number of non-zero elements. 
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nz = 474  
Figure 
 
 troduced the basic building blocks of the Sugarscape model 
and its LAB representation, we can move on to a more detailed presentation. 

east portion of the grid, and the other in the northw t these two 
mountains are symmetric. Thus, for a 50x50 grid, we will assume that one peak of the 
sugarscape is approximately on the (0.75 * 50, 0.25 * 50) coordinate, while the other is 
on the (0.25 * 50, 0.75 * 50) coordinate.  From the peaks down, the level of sugar at each 
location will follow decreasing paths. 

We will also specify a very simple growback rule for the sugarscape: 
 

Sugarscape rule  Grow back to full capacity immediately. 

 

14.2 Agents Locations 

Now that we have in
MAT

 
2. The Sugarscape Model 

 
Next we present a more complex topography for the sugarscape and also more 

complex agent characteristics.   We will also define rules that will govern the 
autonomous growth of sugar in the sugarscape and the movement of the agents on it. 

We will assume that the sugarscape is characterized by two mountains of sugar, 
one in the south est, and tha

∞G :
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Thus, a  grows back to its initial level.  The 
symbol mount of sugar (revenue) 

grows b ) use a variety of such rules. 
 ugarscape is what in geometry is know as a Torus, 
or in a sponds to the surface of a donut.  This means, for 
exampl o the south on column 6, after reaching row 50 will 
appear on the sugarscape from the north in the coordinate (1,6), and an agent moving to 
the east on row 6, after reaching column 50 will appear on the sugarscape from the west 
on the coordinate (6,1).  Analogous patterns will be followed by agents moving north or 

see.  We will 
ssume

can not see in diagonal directions.  The level of vision is the maximum number of sites 
each ag n are genetic characteristics 
random
 the sugarscape and wealth, 
with th e that agents are 
random  simulation. Each agent will 
start its life with a level of wealth equal to the level of sugar in the sugarscape location 
were it
 will govern the behavior of each agent on the 
sugarscap
 
Agent m

- Look out as far as vision permits in the four principal  directions and identify 
the unoccupied site(s) having the most sugar 

lue appears on multiple sites then select the nearest one 

 
 sugar is collected, the agent’s wealth is incremented by the sugar collected 

nd decremented by its metabolic rate.  An agent lives forever, unless its wealth is below 
its metabolic rate.  In this case, it dies and is removed from the sugarscape.  In principle, 

t each run of the model, the level of sugar
 ∞G  here is a fancy way to specify how rapidly the a

ack in each time period.  Epstein and Axtell (1996
  We will also assume that the s
more familiar way, that it corre
e, that an agent moving t

west.  
 Turning now to the agents, we will assume that each agent has four 
characteristics, two of them fixed and the other two variable.  The fixed ones are 
metabolism - the amount of sugar the agent has to consume at each time period to stay 
alive - and vision - the number of sites in the sugarscape each agent can 
a  that agents can see only in four directions: north, south, east and west. Thus, they 

ent can see in a given direction.  Metabolism and visio
 distributed among agents.   ly

The variable characteristics of agents are location on 
e later understood as the agents stock of sugar. We will assum
ly born around the sugarscape at the beginning of the

 was born.     
We will specify a rule that 

e: 

ovement rule M:  

- If the greatest  sugar va
- Move to this site 
- Collect all the sugar at this new position 

Once
a
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all agents should apply this rule simultaneously.  However, since the simulation is run on 

 step one of the rule, that is, the order in which 
each agent searches the four directions.   

ape 
 MATLAB representation. 

3. The Sugarscape Model in MATLAB 

n consists of a main program named sugarscape1.m 
re available from the book web site.  Below is 

a serial computer, only one agent will be active at any instant. In this case, it is 
recommended to randomize agents’ order of movement, and we will do this in the 
MATLAB code.  We will also randomize

Having presented the building blocks of the simplest version of the Sugarsc
model, we now turn to its
 

 
The MATLAB representatio

and a number of functions, all of which a
the code of the main program.  
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%Initialize model parameters 
nruns = 6;  
size = 50; %even number 
metabolismv = 4; 
visionv = 6; %set always smaller than size 
maxsugar = 20; 
 
%Initialize sugarscape and display  

e agents population  
itagents(size, s, visionv, metabolismv); 

Main loop (runs) 

 

% 

   for j = randperm(size); 
            if (a_str(i,j).active == 1) %is there an agent on this 

%location? 
                %Agent explores sugarscape in random directions and 

tion 
               temps = s(i,j);  

    tempi = i;   
    tempj = j;        

                for k = a_str(i,j).vision : -1 : 1;   
                    [temps, tempi, tempj] = 

          

nd 

;                 

f runs, the size of the sugarscape, the maximum value of metabolism and vision of the 
agents, and the maximum level of sugar in the sugarscape.  Then follows a call to the 

s = initsugarscape(nruns, size, maxsugar); 
 
%Initializ
_str = ina
 
 
%
for runs = 1:nruns; 
    % Display agents’ locations  
    dispagentloc(a_str, size, nruns, runs);
     

% Select agents in a random order and move around the sugarscape  
% following rule M 

     for i = randperm(size);  
     

%selects best loca
 

see(i,j,k,a_str,s,size,temps,tempi,tempj);        
                end  
                %Agent moves to best location, updates sugar stock a

%eats sugar 
                a_str = moveagent(a_str, s, i, j, temps, tempi, tempj)
            end       % if  
        end           % for j 
    end               % for i 
end                   % for runs   

 
The program begins with the initialization of the model parameters - the number 

o
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function named initsugarscape, which will return a matrix named s containing the 
sugar levels in the sugarscape.  Next a call to the function initagents returns the data 
structure a_str which will contain the agents’ population. 

  Then follows the main loop of the program corresponding to the number of runs 
- each run represents a time period - of the simulation.  At each pass of the loop, the 
locations of the agents on the sugarscape are displayed as a way of visualizing their 
movements. This is achieved by calling the function dispagentloc.  

 Then each agent, in a random order, explores the sugarscape, selects the best 
location, updates its wealth and eats sugar to survive.  This section of the program begins 
with the following statements.  

 
for i = randperm(size);  

       for j = randperm(size); 
              

 The randperm(n) function performs a random permutation of the elements of the 
rm(size) MATLAB function creates a vector with a 

size  and performs a random permutation of those 
lements.  Thus, once the two for loops - one for i and the other for j - are completed, 

ts will have moved but in a random order.  The conditional 

if (a_str(i,j).active == 1) %is there an agent on this location? 

a 1  the 
field ac  

 

nother location looking for an active agent.  The agent’s rule of movement is 
e

set (1,2,…,n).  Thus the randpe
ber of elements equal to num

e
the whole population of agen
 

 
checks if there is an active agent in the (i,j) location being examined, where in

tive of the agent data structure denotes that there is an agent, while a 0 denotes
the opposite.  Then, if there is an active agent in the location, the program proceeds to
apply the agent’s rule of movement, while if that is not the case it proceed to examine 
a
implemented with the statem nts below 
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%Agent explores sugarscape in random directions and  

                

 

                 
%Agent moves to best location, updates sugar stock and  
%eats sugar 
a_str = moveagent(a_str, s, i, j, temps, tempi, tempj);                  

 
 The statements begin with the setting of three temporary variables.  The variable 
temps contains the level of sugar in the agent’s current location, while tempi and tempj 
contain the location’s coordinates.  Then follows a loop that goes from the agent’s 
maximum level of vision to 1, in decrements of one unit.   At each pass of this loop, the 
function see is called.  This function will see around the agent’s neighborhood in the 
north, south, east and west directions, from the farthest position the agent can see to its 
immediate surroundings, and will return the maximum level of sugar in the variable 
temps and its location coordinates in the variables tempi and tempj respectively.  
Finally, once the loop is completed, the function moveagent is called to move the agent 
to the new location and to update its stock of wealth.   

From this overview of the main program we turn next to descriptions of the 
functions.  

 
3. Functions 
 
3.1 Initsugarscape 

The “initsugarscape” function initializes the level of sugar at each location of the 
sugarscape.  To better understand the procedure used, we will begin with simpler 
examples.  Suppose that we want to generate an 11x11sugarscape s1 with a single 
mountain with a peak in the center.  The corresponding statements are shown below, 
where i and j are the matrix coordinates varying from 1 to 11.  The vectors x and y are 
two identical eleven-element vectors containing the values [-5 -4 -3 -2 -1 0 1 2 3 4 5]. 

 
 

%selects best location 
temps = s(i,j);   
tempi = i;   
tempj = j; 

for k = a_str(i,j).vision : -1 : 1;   
      [temps, tempi, tempj] =   

see(i,j,k,a_str,s,size,temps,tempi,tempj);                 
end 
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%Generate sugarscape with one peak in the center 
x = -5:5; 
y = -5:5; 
maxsugar = 20; 
for i = 1:11; 
    for j = 1:1
        if (x(i) == 0 & y(j) == 0) 
            s1(i,j) = maxsugar;  

 else 
     s1(i,j) = maxsugar / (abs(x(i)) + abs(y(j))); 

       end 
    end 
end 

 
The value of each element in the s1 matrix is computed dividing the given 

maximum level of sugar by the sum of the absolute value of the corresponding elements 
in the x and y vectors as shown below: 

s1(i,j) = maxsugar / (abs(x(i)) + abs(y(j)));  
where a

garscape, will be equal to maxsugar - making 
 minor adjustment to avoid the division by zero.  And the values on the corners - i.e. 
s1(1,1) - will be equal to (maxsugar/10).  All the other values would be, in a decreasing 
order, between maxsugar and (maxsugar/10) as shown in Figure 14.3 below. 

1; 

       
       

bs is the absolute value.  The peak of the mountain will be where the 
corresponding elements of the x and y vectors equal zero.  Thus, the value of s1(6,6), 
which will be located at the center of the su
a
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Figure 14.3 Sugarscape with a Center Peak 
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 of 

x

k of
ow.

Now, if we want to generate a sugarscape with a peak in the southeast instead
the center, the values of x and y should be shifted to 

 
 = [-9  -8  -7  -6  -5  -4  -3  -2  -1  0  1] 

and  
                                  y = [-3  -2  -1    0   1    2   3   4   5  6  7]. 
 
In this case, the pea  the sugarscape will be in the s1(10,4) location, as shown 

in Figure 14.4 bel  
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Figure 14.4 Sugarscape with a South-West Peak 

 
 level of sugar at each location of the 

sugarscape.  This particular function will generate a topography characterized by two 
mountains of sugar, one in the southwest portion of the grid, and the other in the 
northea

e 
of the 

ust described.  
 

The initsugarscape function initializes the

st. These two mountains are symmetric.  From the peaks down, the level of sugar 
will follow decreasing paths. The function code is available in file initsugarscape.m,  

This function begins by generating a sugarscape s1 containing a single peak in th
southwest.  To do so, the “Generate sugarscape with one southwest peak” section 
function, reproduced below, applies a similar procedure to the one j
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%Generate sugarscape with one south west peak 
x = -ceil(0.75*size) : size-ceil(0.75*size)-1;  

   for j = 1:size; 
    if (x(i) == 0 & y(j) == ) 
        s1(i,j) = maxsugar;

        else 
            s1(i,j) = maxsugar / (abs(x(i)) + abs(y(j))); 
       end 
    e
end 

 
For e e equal to 50, it begins by generating a 50-element 
x.

 
x = -ceil(0.75*size) : size - ceil(0.75*size) - 1;  

 
o x will be a 50 element vector 

with th

y = -ceil(0.25*size) : size-ceil(0.25*size)-1; 
 
for i = 1:size; 
 
     0
      

nd 

xample, for a value of siz
vector   The statement 

 

is used to create a 50 element vector of integers as follows.  The values in the vector 
begin at minus the ceiling of the product (0.75 * 50), i.e. the next integer above 37.5,
namely -38.  They end at the value (50 - 38 -1), i.e. 11.  S

e values 
 
[ ]38, 37, , 1,0,1, ,10,11− − −  

 
lue zero will be in the 39th position of the x vector.  In a similar way  

tor y, which goes from -13 to 36, is generated with the value zero in its 14th 
osition.   

After doing this, each element of the sugarscape matrix s1 is generated. The result 
ill be a sug  i.e. in the southwest corner 

of the array. 

 posing 

Thus, the va
the vec
p

w arscape with a peak in the s1(39,14) location,

 
 

Once the first mountain is generated, a symmetric one is obtained by trans
the matrix s1 with the statement 
 

s2 = s1'; 
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 323

generates the two-peak sugarscape. The following two statements 
maxrow = max(s); 
max(maxrow) 

e the row containing the maximum value in the matrix  and print the maximum 
ter maxsugar at the 

e maximum for the peaks in  and s2.  
the 

value of the corresponding cell in the symmetric matrix, which will be a low value given 

e

. 

s 

square akes the image square.  The result is the figure with two centers of economic 
activity as shown below. 

 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 14.5 Two-peak Sugarscape 

 Then, the statement 
s = s1 + s2; 

comput s

value in this row.  This may seem redundant, since we set the parame
beginning of the program.  That value is indeed th s1

But the peaks in s will be a bit higher since to each original peak we will be adding 

its distance from the peak.  
 The final statements below display the image of th  sugarscape shown in Fig. 
14.5.  

figure(1); 
imagesc(s); 
axis square; 
 

The statement figure(1) generates a figure where an image will be displayed
The statement imagesc(s) scales the data in matrix s to the full range of colors and 
displays the corresponding image of the sugarscape matrix s. Finally, the statement axi

 m
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Next we turn from the code for the sugarscape to the code for the agents. 
 
3.2 Initagents  

The function “initagents” generates a random initial population of agents. Its code 
 shown below. 

 
function a_str = initagents(size, s, visionv, metabolismv); 
for i = 1:size; 

r j = 1:size; 

           an agent on this location 
          l(rand * metabolismv); 
       
         

          
       0; 
            a_str(i,j).vision = 0; 
            a_str(i,j).wealth = 0;     
       end 

fo out agents is stored in the data structure a_str with four fields.  
he field active contains a 1 or 0 depending of the situation of the agent in a specific 

location (active, that is alive; or inactive, that is dead). A location with an inactive agent 
is treated in the main program and other functions as an empty location. If the values 

ent is 

domly 
etween 1 and the maximum level of each characteristic.   The MATLAB 

nction ceil is used to round the randomly created vision and metabolism variables 
o the next integer.  The field we  is initialized as equal to the amount of sugar in 

the location of the sugarscape where the agent was born. 
 

is

    fo
        if (rand < 0.2) 
  a_str(i,j).active = 1; %put
  a_str(i,j).metabolism = cei
     a_str(i,j).vision = ceil(rand * visionv); 
    a_str(i,j).wealth = s(i,j); 
        else 
  a_str(i,j).active = 0; %keep this location empty 
     a_str(i,j).metabolism = 

 
    end 
end 

 
The in rmation ab

T

generated by the uniform distribution MATLAB function rand are below 0.2, an ag
born. 

The fields metabolism and vision contain the corresponding integers ran
distributed b
fu
up t alth
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3.3 Dispagentloc (display agent location) 
This simple function transforms the field agent from the agents data structure 

into a matrix named a and displays agents’ locations, since MATLAB does not allows 
y that field directly.  The code of the function is shown below.   

 
unction a = dispagentloc(a_str, size, nruns, runs); 

end 
figure(2); 
subplot(ceil(sqrt(nruns)),ceil(sqrt(nruns)),runs), spy(a); 
axis square; 

he statement figure(2) tells MATLAB to display a second figure with the agent’s 

Consider next the line of code 
 

lot(ceil(sqrt(nrun ),ceil(sqrt(nruns)),runs), spy(s); 
 

ice that this one line contains two separate MATLAB statements, i.e. the function 
alls 

subplot() 

u  plots 
e active pane.  These statements thus allow us to display multiple images in a single 

as the images of agents’ locations in successive runs of the program. The 
MATLAB function 

subplo

r 
 ru qual to 

one to displa

f
for i = 1:size; 
    for j = 1:size; 
 a(i,j) = a_str(i,j).active; 
    end 

 
T
locations - remember that a first figure was created before to display the sugarscape. 
 

subp s)

and not
c
 

and 
spy() 

 
The call to s bplot divides the window into a number of panes and the call to spy
th
figure such 

 
t(m,n,p); 

 
creates an axes in the pth pane of a figure divided into an m-by-n matrix of rectangula
panes. For example, if we set the number of ns parameter in the main program e
8, then the statement  
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subplot(ceil(sqrt(nruns)),ceil(sqrt(nruns)),nruns), spy(s); 

here ceil(sqrt(nruns) is the ceiling (i.e. the integer above) the square root of the 
number of runs, will divide the figure (window) into a matrix with 3 rows and 3 columns 
of panes to accommodate the images of the agent’s locations in successive runs. 
 
3.4 See

 
 

e

ts 
ery 
r in 

r a 
k (i,j) ine the 

k,j).  If (i+k <= size), where size is the dimension of the sugarscape, 
. However if (i+k > size), we have to remember that in Section 2 

ined 
will be (i+k-size, j).  For example, if we start from the location (48,2) with k = 6, 

 location to b .  Thus, to summarize, we could write the 
neighbor  a function that will check the level of 

sugar in the location . 

f (i + k > size) 
    u = i + k - size; 
    v = j; 
    neighbor(u,v); 
else     
    u = i + k; 
    v = j; 
    neighbor(u,v); 
end 
 

 
w

 and Neighbor 
The see and neighbor functions explore the neighborhood an agent can see

according to its level of vision in four directions - north, south, east and west - each
direction selected in a random order.  R member that the location coordinates of the 
agent are given by (i,j) and that the agent’s level of vision is equal to k. For each 
integer between k and 1 - that is, going from the outermost part of the neighborhood to i
center - the function will check the level of sugar in each of the four directions. Ev
time the level of sugar in a location being examined is greater than the level of suga
the agent’s location, the level and coordinates of the higher value found will be stored in 
the temporary variables temps, tempi and tempj respectively.  Thus, at the end of the 
exploration, these variables will contain the highest level of sugar found and its location.  

Imagine that we begin by exploring the neighborhood in the south direction fo
vel of vision equal to  and from the location . Thus, we want to examle

location (i+
there is no problem
above we define the sugarscape as a Torus. Then, in this case the location to be exam

then the e examined will be (4,2)
following pseudo code, where  will be

(u,v)

 
i
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Now, in the case when we want to examine the north direction, the code should be 
 
if (i - k < 1) %or equivalently if(k - i > -1) 
    u = i - k + size; 

j; 

else     
    u = i - k; 
    v = j; 
    n
end 
 

Analogous codes could be written for the cases of the east and west directions. 
assing all the four cases. That is, 

mething of the form  

    u = (3); 
    v = (4); 
    neighbor(u,v); 

; 
    v = (6); 
    neighbor(u,v); 

 

  i+k  j]; 

j+k]; 
j-k]; 

 

LAB object named “cell array”. A cell array is an 
array whose elements are also arrays.  For our case, think of it as a matrix whose 
elemen l array of 
dimension 1x4 whose elements are the vectors south, north, east and west. Notice that the 

 braces. 

c{1} = south; c{2} = north; c{3} = east; c{4} = west; 

    v = 
    neighbor(u,v);   

eighbor(u,v); 

However, we want to write a general code encomp
so

 
if ( (1) > (2) ) 

else     
    u = (5)

end 

To do so, we proceed as follows. We define the following four vectors, each with 
six elements: 

 
south = [i+k  size  i+k-size  j      
north = [k-i  -1    i-k+size  j        i-k  j]; 
east  = [j+k  size  i         j+k-size  i   
west  = [k-j  -1    i         j-k+size  i   

Next we make use of a MAT

ts are vectors instead of numbers. The following statements create a cel

indexes of a cell array are between
 
 

 327



Chapter 14   Agent-based Model in MATLAB 

 

Now, for example, if we want to access the third element of the north vector, we 
can do it using a double indexing notation such as  

 

 
Then, a general code to explore the neighborhood of an agent, selecting four 

 manner, can be written as: 

for m = randperm(4); 
 if (c{m}(1) > c{m}(2)) 

  [temps, tempi, tempj] =   
neighbor(u,v,a_str,s,temps,tempi,tempj);    

    u = c{m}(5); 
        v = c{m}(6); 
        [temps, tempi, tempj] = 

bor(u,v,a_str,s,temps,tempi,tempj);      
end  

end 

 the north cases and you should get the same 

We turn now to explain the workings of the neighbor function, which is a very 
es as inputs, among 

 arguments, the variables temps, tempi, and tempj and returns the same  as 
outputs.  Remember that temps contains the level of sugar in a given location and tempi 
nd tempj contain the coordinates of the location.  The code of the neighbor function is 

c{2}(3); 

directions of search in a random
 

        u = c{m}(3); 
        v = c{m}(4); 

 else     
    

neigh
 

 
To check this go through the south and then
results as those shown above. 

simple one.  As can be seen in the code above this function receiv
other  variables

a
shown below. 
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function [temps, tempi, tempj] = 

a_str(u,v).active  0) 
    if (s(u,v) >= temps) 
        temps = s(u,v); 

end  
end 

ation is free so that an agent can 
  If that is the case, it hecks to see whether or not the level of sugar in the 

 location of the sugarscape is greater than or equal to the one previously found and 
so, it puts the new level found in the temps variable, and 
ates in the variables tempi and tempj. 

 To conclude this section, we reproduce below the entire code of the see function. 

= [j+k  size  i  j+k-size  i  j+k]; 
est  = [k-j  -1  i  j-k+size  i  j-k]; 
 
c{1} = south;  c{2} = north;  c{3} = east;  c{4} = west; 
 
or m = randperm(4); 

        v = c{m}(4); 

neighbor(u,v,a_str,s,temps,tempi,tempj); 
 
if ( ==

        tempi = u; 
        tempj = v; 
    

 
Thus, the function first checks whether the (u,v) loc
move there.  c
(u,v)

stored in the variable temps.  If 
its corresponding (u,v) coordin

 
function [temps, tempi, tempj] = 
see(i,j,k,a_str,s,size,temps,tempi,tempj); 
 
south = [i+k  size  i+k-size  j  i+k  j]; 
north = [k-i  -1  i-k+size  j  i-k  j]; 
east  
w

f
 if (c{m}(1) > c{m}(2)) 
        u = c{m}(3); 

        [temps, tempi, tempj] = 
neighbor(u,v,a_str,s,temps,tempi,tempj);    

 else     
        u = c{m}(5); 
        v = c{m}(6); 
        [temps, tempi, tempj] = 

neighbor(u,v,a_str,s,temps,tempi,tempj);      
 end 
end 
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3.5 Moveagent 
 Once the neighborhood of the agent has been examined, it is time to move the 
gent to the best location found, update its wealth and let it eat sugar. This is what the 
moveagent function shown below does. 

 
function a_str = moveagent(a_str, s, i, j, temps, tempi, tempj);  
 

temps > s(i,j)) 
    % Agent moves to best location and updates wealth 

tempi,tempj) = a_str(i j); 
    %Set old location to unoccupied 
    a_str(i,j).active = 0;  
   a_str(i,j).vision = 0;  

   a_str(i,j).wealth = 0; 
ate wealth at new location 
tempi,tempj).wealth = a_str empi,tempj).wealth + temps - 

a_str(tempi,tempj).metabolism; 

str(tempi,tempj).wealth <= 0) 
     a_str(tempi,tempj).active = 0;  
      a_str(tempi,tempj).vision = 0;  
    a_str(tempi,tempj).metabolism = 0;  

wealth = 0; 

lse 
    % Agent stays in position and updates wealth 

i,j).wealth = a_str(i,j).wealth + temp - 
a_str(i,j).metabolism; 

    if (a_str(i,j).wealth <= 0) 
    a_str(i,j).active = 0;  
     a_str(i,j).vision = 0;  

      

new and better location than the ne previously occupied by the agent is 
und, that is, if the statement below is true 

if (temps > s(i,j)) 

a

if (

    a_str( ,

 
    a_str(i,j).metabolism = 0;  
 
    % upd
    a_str( (t

    % if wealth is less than zero set location to unoccupied 
    if (a_

 
      a_str(tempi,tempj).
    end 
e

    a_str( s 

 
 
     a_str(i,j).metabolism = 0;  

a_str(i,j).wealth = 0; 
    end 
end 

 
 If a  o
fo
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then the agent moves to the new location whose coordinates are stored in the variables 
set to unoccupied, and the agent’s wealth is updated 

dding to its previous wealth the amount of sugar found in the new location and 
the sugar to be consumed according to its metabolic rate.  If the resulting 

vel of wealth is less or equal than zero then the agent dies and all its fields are set to 
  

In the case that no better location was found, the agent stays into place, updates its 
eats sugar. Again, if the resulting level of wealth is less or equal to zero, the 

garscape given the topography, the growback rule  and the agents’ rule of 

M.  The agents’ locations for six successive runs, for a maximum vision of 6 
maximum metabolism equal to 4, are shown in Figure 14.6 below.  The order of 

esponding to the successive ru  goes from left to right then down to the next 

tempi and tempj. The old location is 
a
subtracting 
le
zero.
 
wealth and 
agent dies. 
 
4. Results 
 
 
su

We are now ready to analyze the behavior of the population of agents in the 
∞G

movement 
and a 
graphs corr ns
row. 
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igure 14.6 Agents’ Locations for Six Runs 

n there is a total population of 538 agents (nz 
means non-zero elements) randomly distributed on the sugarscape.  As one would expect, 
during each run some agents die and others move toward the peaks of the sugarscape. 
For this experiment, the average metabolism of the population goes from 3.5 in the first 
run to 2 in the sixth run while the average vision goes from 3.5 to 3.8. Thus, as one 
should expect, lower metabolism and higher vision increase the chances of survival. We 
can see also that the population tends to reach a stable size and spatial configuration.  

Figure 14.7 below shows the carrying capacity of the sugarscape - that is what 
population size the sugarscape can support - as a function of the maximum level of vision 
and metabolism of the agents.  For each level of vision and metabolism, the average 
value of ten simulations of six runs each is presented.  We can observe how a larger 
vision and a smaller metabolism tend to increase the carrying capacity of the sugarscape. 
 

F
 
 We can observe that in the first ru
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directio e: 

how different growback rules affect the 

 You may also try to work with agents with finite lives, where their maximum age 
is a random integer drawn from a given interval [a,b].  Then, you may introduce an agent 
replacement rule such as the following one 

metabolism = 1 

C
ar

ry
in

g 
C

 = 3 

Figure 14.7 Carrying Capacity 
 
 
5. Experiments 
 
 A simple experiment would be to add moving cost proportional to the distance 
moved.   This will tend to slow down the convergence to the hilltop locations.  

Also, the Sugarscape model can be extended in a number of ways so that many 
experiments of increasing grade of complexity can be performed.  A first step in that 

n would be to replace the Sugarscape rule G  used above with the following on

 
Sugarscape growback rule 1G : At each lattice position, sugar grows back at a rate of α  

units pe

∞

r time interval up to the capacity at that position.  
 
 To introduce this rule, you may want to start by transforming the sugarscape 
matrix s into a structure with two fields, one containing the capacity and the other the 
current level of sugar. Then, you can check 
results.  
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Agent replacement rule  : When an agent dies it is replaced by an agent of age 0 

having

Epstein and Axtell (1996) present a number of rules for pollution formation, agent 
nt inheritance, trade, credit, etc., that can be implemented in the Sugarscape 

model. To learn about the specifics of these rules you are referred to their book.  

tell 

/es/dynamics/sugarscape/default.htm

],[ baR

 random genetic attributes, random position on the sugarscape, random initial 
endowment, and a maximum age randomly selected from the range [a,b]. 
 
 
mating, age

 
6. Further Reading 
 
 For a comprehensive presentation of the Sugarscape model see Epstein and Ax
(1996).  See also the web page of the Sugarscape model at the Brookings Institution at 
www.brook.edu  .  For an online guide to agent-
based modeling see Axelrod and Tesfatsion (2004).   For an approach to estimating agent 
based models see Gilli and Winker (2003). 

For a recent conference keynote address on agent based modeling and an 
application to finance see LeBaron (2004).  Also see his survey paper on agent based 
omputational finance (LeBaron (2005)) which will appear in the Judd and Tesfatsion 

(2005) volume containing many state-of-the-art papers on agent based modeling.   For a 
comprehensive site with resources on Agent-Based Computational Economics, see the 

eb site developed by Leigh Tesfatsion at www.econ.iastate.edu/tesfatsi/ace.htm

c

w  .   For a 
eling as an approach to economic theory, see Tesfatsion 

005).  
 

review of agent-based mod
(2
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 The basic economics and chemistry of global warming are that an increase in 
output causes an increase in  emission which in turn causes an increase in the 
concentration of  in the atmosphere.   This increase in  concentration permits 

the sun’s rays to come into the earth’s atmosphere but captures some of them as they are 
reflected back thereby increasing the temperature of the earth.  The increased temperature 
results in a decrease in output.  Several of the elements in this chain of causation are 
controversial; however this simple line of reasoning is a useful place to begin. 

In this chapter we use the classic global warming model of Nordhaus (1992) to 
study the dynamics of global warming.   A simple flowchart for that model, reflecting the 
discussion above, is shown in Figure 15.1. 
 

 
Figure 15.1 Basic Flowchart of Global Warming 
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Economic policy can be us cycle.   The most common 

intervention is a “carbon” tax whic ssil fuels like coal, oil and 
nat
gas n 

wever the tax also decreases the efficiency of the economy, 

Thus the basic structure of this dynamic mode ic externality 
 stock variable, i.e. the  concentration, and the policy variable is used to control a 

 

 similar to 

 

ed in intervene in this 
h raises the price of fo

ural gas and thereby decreases the effective emission of 2CO  and other greenhouse 
es.  This decreases the CO concentration and therefore the temperature.   This in tur2

tends to increase output.    Ho
thereby providing a tendency to decrease output.   This tradeoff is shown in Figure 15.2.  

l is one in which the econom
is a 2

flow, namely the CO  emissions. 
CO

2

 

Figure 15.2 Policy Interventions with a Carbon Tax 
 
 
The tradeoff was embedded by Nordhaus in a one-sector growth model,

the Excel growth model used earlier in this book, thereby creating an economic model of 
global warming.  However, he developed the model in GAMS rather than in Excel as is 
discussed in the following sections.   We begin with a discussion of the model in
mathematics and then turn to a discussion of the model in GAMS. 

 

Output, Q 

Emissions, E 

CO2 Concentration, M 

Carbon Tax 

Temperature, T 
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1.   The Mathematical Model 

n function which is in the classic 
 written 

 
The best place to start is with the productio

Cobb-Douglas form with output produced by capital and labor.   This function is
 

(1)  ( ) ( ) ( ) ( ) ( )Q t t A t K t L t 1γ γ−= Ω  

where 
( )Q t = output in period t   

 ( )tΩ = climate impacts (see below) 

 ( )A t = technology in period t  

 ( )K t = capital in period t  

 ( )L t = labor force in period t   

 γ = elasticity of output with respect to capital  

 
The unusual aspect of this production function is the presence of the Ω  term which is 

nges on output and (2) the efficiency-loss 
r in more detail, in this model no 
ion. 

 the 

used (1) to model the impact of temperature cha
effects of the carbon tax.   Also, as we will see late
distinction is made between labor force and populat

We will return to a discussion of  term later; however for now lets move on 
odeled with the 

Ω
to the effect of output on greenhouse gas emissions (mostly 2CO ) that is m

equation 
 
(2)  ( ) ( ) ( ) ( )1E t t t Q tµ σ= −⎡ ⎤  ⎣ ⎦

where 
 = green house gas emissions 

 = emission control rate – the fractional reduction of emissions 
( )E t

( )tµ

 ( )tσ = ratio of greenhouse gas emissions to output 

 
Theµ  variable is the percentage of greenhouse gas emissions which is prevented from 

ion of devices to reduce the 
he carbon 

h reduces the use of fossil fuels and thereby the 
fective emissions.  

entering the atmosphere.  So it might be thought of as the act
2CO  in the smoke from the tall stacks of power plants or to sequester t

underground or underwater before it enters the atmosphere.   Alternatively, it can be 
viewed as a proxy for a carbon tax whic
ef
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Next consider the effect of the emissions on the concentration in the 2CO 

atmosphere, which is modeled with the equation 
 

(3)  ( ) ( ) ( ) ( )1 1MM t E t M tβ δ= + − −  

where 
 ( )M t = 2CO  concentration relative to pre-industrial times  

 β = marginal atmospheric retention ratio 
 Mδ = rate of transfer from the rapidly mixing reservoirs to the deep ocean  

 
The two parameters in this equation ( β  and Mδ ) divide the non-intervention optimist 
from the intervention pessimi ing.  The st on global warm β  parameter is the proportion 

 Theof emissions that add to the CO concentration in the atmosphere.  2  Mδ  parameter is 
a measure of the atmosphere’s ability to breakdown the f2CO .  I  Mδ  is large, then the 
decay rate of 2CO  in the atmosphere is high and that mitigates the effect of higher 
emission rates.  So the optimists like to believe that β  is small and Mδ  is large. 

The increase in the atmospheric concentration of 2CO  in Eq. (3) in turn drives 

changes in temperature.   This is done in two steps in the model.  In the first step the 
increase in atmospheric concentration M increases the f rm  in the equation 

 
orcing te  F

( )
( )

logM t⎡ ⎤
⎢ ⎥590(4)  ( ) 4.1

log 2
F t FO t= +⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

er greenhouse gases 

) models the effect of the 

ate exogenous term 
. 

mperature is 
oken into two separate variables in this model – (1) the temperature of the atmosphere 

 

where 
 ( )F t = forcing term of greenhouse gas concentration on temperature 

( )FO t = exogenous forcing from oth

 
2CO  This first term on the right hand side of Eq. (4

concentration on the forcing term.   The equation also includes a separ
for the effects of all other greenhouse gases on the forcing term
 The forcing term then influences the temperature.  However, te
br
and upper oceans and (2) the temperature of the deep oceans.  For simplicity of 

the temperature of the exposition, we will refer to the first of these two as just 
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atmosphere, though the reader should keep in mind that it is actually the temperature of 

d also the two 
 temperature 

the atmosphere and the upper oceans. 
The forcing term F drives the temperature of the atmosphere an

temperatures have feedback effects on one another.  The expression for the
of the atmosphere is 
 

(5) ( ) ( ) ( ) ( ) ( )2
1 1 1 1

11 1 1RT t T t F t T t T tλ
⎧⎛ ⎞ ⎛ ⎞⎪= − + − − − − ( )2 1T t

R τ
⎪− −
⎫

1 2

⎡ ⎤⎬⎨⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠

 

where 
ture of the atmosphere and upper oceans 

ture of the deep oceans 
 

⎝ ⎠⎩ ⎭

 ( )1T t = tempera

 ( )T t = tempera2

1R = thermal capacity of the atmosphere and upper oceans 
 2R = thermal capacity of the deep oceans 
 ( )F t = radiative forcing in the atmosphere from green house gases 

 λ = the climate feedback parameter 

2

1
τ = the transfer rate from the upper layer to the lower layer 

mplicated at first; however, taking it piece by piece makes it 
onsider first a simpler version of Eq. (5) with only the lagged 

term and the  term, i.e. 

 
This function appears co
easier to understand.   C 1T  

F
 

( ) ( ){ }(6) ( ) ( )1 1
11T t T t
R

= − + ⎜
⎝ ⎠

1
1

1F t T tλ
⎞

− −⎟  

uation of the temperature of the atmosphere driven by the 
ted by the climate feedback parameter

⎛

This is just a dynamic eq
forcing term and mitiga λ .   The other term in Eq. 

ature  and the deep oceans  1T(5) is the difference between the atmosphere temper
mperature , i.e. 2Tte

 

(7) ( ) ( )2 1 1R T t T t
⎛ ⎞

− − − −⎡ ⎤1 2
2τ

⎣ ⎦⎜ ⎟
⎝ ⎠

Thus, because of the negative sign in front of the term in Eq. (7), the greater the 
difference between the two temperatures the less the atmosphere temperature will 
increase from one period to the next.  So if the deep ocean is much cooler than the 
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atmosphere it will absorb heat and result in less increase in the atmosphere temperature.   
This can also be seen in the equation re of the deep oceans, i.e. 
 

(8)  

 for the temperatu

( ) ( ) ( ) ( )2
2 2 1 2

2 2

11 1RT t T t T t T t
R τ

1
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
In this case there is a positive effect of the temperature difference between the two layers.  
Thus an increase in the difference between the atmosphere and deep oceans temperatures 
in period  results in a more rapid increase in the deep ocean temperature in period . 
 Next we need to close the loop of causation in the model from temperature back 
to output.   First, recall the use of the 

1t − t

Ω  term in the production function in Eq. (1), i.e. 
 
(1)  ( ) ( ) ( ) ( ) ( )1Q t t A t K t L tγ γ−= Ω  

 
The  term in the Nordhaus model is driven by the  variable which is defined as 
 

(9)  

Ω d

( ) ( ) 2
1

1 3
T td t a ⎡ ⎤= ⎢ ⎥⎣ ⎦

 

where 
 = fractional loss of global output from greenhouse warming 
  = a constant 

 
Thus, as the temperature of the atmosphere rises, the fractional loss of global output 
increases in a nonlinear way. 
 The  term, in turn, appears in the denominator of the 

( )d t

1a

d Ω  term as follows 
 

(10)  ( ) ( )
( )

1
1

TC t
t

d t
−

Ω =
+

 

where 
 = fractional cost to global output from green house gas emission controls 

 
So as temperature increases the  term increases and thus the 

( )TC t

d Ω  term decreases and 
output declines.  Also, the definition of the Ω  term includes the term  which 
represents the efficiency loss in output that is caused by the use of the carbon taxes.   This 
loss is represented in the model with the equation 

 TC
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(11)  

 
Thus as

( ) ( ) 2

1
bTC t b tµ=  

 the carbon tax increases and µ , the fractional reduction of emissions, increases 

the efficiency loss term TC increases.  Also, from Eq. (10), as this loss increases the Ω  
term decreases.    

So in summary, the Ω  term is indirectly affected by two variables, µ  and T  – 

both of which cause it to fall as they increase.   The first variables is the fractional 
reduction of emissions, µ , operating through the TC  variable and the second is 
temperature, T , operating through the d variable.  However, theµ  and T  variables are 

related in an inverse fashion to one another in the model.  As the carbon tax underlying 
µ  increases the temperature T  declines.    This is the essential tradeoff in the model – 

higher carbon taxes reduce emissions, decrease temperature and increase output; 
however, they also impose efficiency loss on the economy and thus reduce output. 

 the model.  This comes from the 
 model is basically a one-sector growth model of the Ramsey type that was 

modele

There is also a second basic tradeoff at work in
fact that this

d in Excel earlier in this book.   The tradeoff in the growth model is between 
consumption and investment and is embodied in the equations 
 
(12)  ( ) ( ) ( )Q t C t I t= +  

 
(13)  ( ) ( ) ( ) ( )1 1KK t K t I tδ= − − +  

where 
 ( )C t = total consumption in period t  

 ( ) t  I t = investment in period 
 Kδ = rate of depreciation of the capital stock 

 
Thus as consumption rises investment must fall and as investment falls capital 
accumulation declines and thus output declines.     
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This is in turn linked to the criterion function of the model which is to maximize 
discounted utility 
 

(14)                    
( )

( ) ( ) ( )
1

max , 1
T

t

c t t
U c t P t ρ −

⎡ ⎤⎣ ⎦ =

+⎡ ⎤⎣ ⎦∑  

 
where 
 [ ]U = utility function 

 = population in period 

 
( )P t t  

ρ = pure rate of social time preference 
 = per capita consumption in period 

 
Also, the utility in each period is a nonlinear function of per capita consumption 
(actually, in this model, it is consumption per member of the labor force)  

where the utility function is the same general form as was used in the growth 
model 

( )c t t  

 
(15)  ( ) ( ) ( )/c t C t L t=  

in Excel, i.e. 
 

(16)  ( ) ( ) ( ) ( ){ } ( )1
, 1 / 1U c t L t L t c t

α
α

−
= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 
In summary, this tradeoff is that as total consumption increases it increases per capit
consumption and thus utility; however this is achieved by reducing investment and thus 
capital accumulation and thus reduces future output. 

a 

 

e begin with the criterion function and continue with the constraints 
 

Criterion Function (from Eq. 14) 

1c t t

This completes the statement of the model.   However, since the model is 
somewhat long it is useful to restate it in a summary fashion. 
 
2.   The Model in Summary 
 

W

(17)                    ( ) ( ) ( )max , 1
T

tU c t L t
( )

ρ −

⎡ ⎤⎣ ⎦ =

 

+⎡ ⎤⎣ ⎦∑  
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Utility Function (  16) 
(18)  

from Eq.

( ) ( ) ( ) ( ){ } (1
, 1 / 1L c t

α )U c t t L t α
−

−⎡ ⎤⎣ ⎦= −⎡ ⎤⎣ ⎦  

 

(19)  
Production Function (from Eq. 1) 

( ) ( ) ( ) ( ) ( )1Q t t A t K t L tγ γ−= Ω  

 
Output Division (from Eq. 12) 
(20)  

Per Capita Consumption (from Eq. 15) 
(21)  

 
Capital Accumulation  Eq. 13) 
(22) 

( ) ( ) ( )Q t C t I t= +  

 

( ) ( ) ( )/c t C t L t=  

 (from
 ( ) ( ) ( ) ( )1 1KK t K t I tδ= − − +  

 
Emissi
(23)  

ons (from Eq. 2) 
( ) ( ) ( ) ( )1E t t t Q tµ σ= −⎡ ⎤⎣ ⎦  

 
 Concentration (from Eq. 3) 2

(24)  ( ) ( ) ( )
CO

( )1 1MM t E t M tβ δ= + − −  

 
Temperature in the Atmosphere and Upper Oceans (from Eq. 5) 

(25) ( ) ( ) ( ) ( ) ( ) ( )2
1 1 1 1 2

1 2

11 1 1 1RT t T t F t T t T t T t
R

λ
τ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − − − − − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
Temperature in the Deep Oceans (from Eq.  8) 

(26)  ( ) ( ) ( ) )2
2 2 1

11 1 1RT t T t T t
τ

(2
2 2

T t
R

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠⎩ ⎭

 
Forcing Term (from Eq. 4) 

7)  

⎝ ⎠
 

( )
( )

( )
log

5904.1
log 2

M t

F t FO t

⎡ ⎤
⎢ ⎥

= +⎢ ⎥
⎢ ⎥

(2

⎢⎣ ⎥⎦
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Fra ut Froctional Loss of Outp m Greenhouse Warming (from Eq. 9) 

8)  ( ) ( ) 2
1

1 3
T td t a ⎡ ⎤= ⎢ ⎥⎣ ⎦

 (2

 
Fractional Cost to Output from Controls – Carbon Taxes (from Eq. 11) 

 and Emission Control Impact (from Eq. 10) 

(30) 

( ) ( ) 2

1
bTC t b tµ=  (29)  

 
Climate

( )
( )

1
1

TC t
 ( )t −

Ω =
d t+

 

 
3.   Th  
 

d 

e Model in GAMS

The GAMS representation of Nordhaus’s DICE model is in the file dice.gms an
is listed in Appendix 15A.   This implementation of the model uses 40 time periods each 
of which are ten years long, thus the model covers a time horizon of 400 years.   It is not 
uncommon in dynamic models to have more than one year per time period; however, it 
does require some adjustments.   For example, the capital accumulation equations is 
changed from 

 
  ( ) ( ) ( ) ( )1 1KK t K t I tδ= − − +  

to 
 
 0

 
ince the depreciation rate is annual it is necessary to raise it to a power that is equal to 

f years per time period.   Also, the flow variables, like investment in this 
quation, are in annual terms and must be multiplied by the number of years per time 

 of the model are in a 
ightly different form than in the mathematics used above.   In particular, the production 

 the emission equations used in the GAMS statement are obtained by 
substitution of some equations. 

( ) ( ) ( ) ( )101 1 1KK t K t I tδ= − − +   

S
the number o
e
period in order to use them appropriately in accumulation equations.    

Also, some of the other equations in the GAMS statement
sl
function and
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  production function is created by substituting Eqs. (28) The and (29) into Eq. (30) 
 obtain 

1)  

to
 

( ) ( )
( )

2

1
2(3

1
11 3a+ ⎢ ⎥⎣ ⎦

or  

1 bb t
t

T t

µ−
Ω =

⎡ ⎤
 

2)  ( ) ( )
( )

2

1

21
1

1

1 9

bb t
t

a T t

µ−
Ω =

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (3

 
nd Eq. (32) is substituted into Eq. (19) i.e. 

 
9)  

A

( ) ( ) ( ) ( ) ( )1Q t t A t K t L tγ γ−= Ω  (1

to obtain 

( ) ( )(33)  
( )

( ) ( ) ( )
2

111 bb t
Q t A t K t L t

a 21
11 9 T t

γ γµ −−
=

⎛⎜
⎝ ⎠

 

arranged to obtain 

⎞+ ⎟

 
and then re
 

(34)  ( ) ( ) ( ) ( ) ( )
( )

2
1 11 bb t

Q t A t L t K tγ γ µ−

21
11 9

a T t

⎡ ⎤
⎢ ⎥−

= ⎢ ⎥
⎛ ⎞⎢ ⎥+ ⎜ ⎟
⎝ ⎠⎣ ⎦

 

 
m of the production function used in the GAMS statement. 

sed in the
which is the for

Also, the emissions equation u  GAMS representation is obtained by 
using Eq. (23), i.e. 
 

( ) ( ) ( ) ( )1E t t tµ σ= −⎡ ⎤⎣ ⎦  (35)  Q t

and sub
 

stituting the production function from Eq. (19) into it to obtain 
 
(36)  ( ) ( ) ( ) ( ) ( ) ( ) ( )11E t t t t A t K t L tγ γµ σ −= − Ω⎡ ⎤⎣ ⎦  
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Then Eq. (36) is rearranged to obtain 
 
(37)  ( ) ( ) ( ) ( ) ( ) ( ) ( )11E t t t t A t L t K tγ γσ µ −= − Ω⎡ ⎤⎣ ⎦  

 
and Ω  to set to one to obtain 
 

 ( ) ( ) ( ) ( ) ( ) ( )11E t t t A t L t K tγ γσ µ −= −(38) ⎡ ⎤⎣ ⎦  

 
This last step of setting Ω  to one is surprising so the user may want to restore a non-
unitary Ω  to that equation in the GAMS representation.    
 The parameter σ  is treated as time varying in the equation 
 
(39)  ( ) ( )

0
g t

with 

0) 

t e σσ σ=  

( )0 1 at

a
 ( ) gg t σ⎛(4 e δ

σ δ
−⎞= −

⎝ ⎠
 

here 
  

⎜ ⎟

w
0σ  = initia -equivalent emission-GNP ratio 

provement of energy efficiency 
 

l 2CO

( )g tσ  = cumulative im
 0gσ  = growth of σ  per decade 

  aδ  = decline rate of technological change per decade 

 
vity parameter in the production function is treated in a 

similar ns 

(41) 

The total factor producti
 fashion with the equatio
 

( ) ( )
0

ag tA t = A e  

with 

( )0 1 ata(42)  ( )a
a

g t eδ= −g δ−⎛ ⎞⎜ ⎟
⎝ ⎠

 

where 
  0A  = initial level of total factor productivity 

( )ag t  = growth rate of productivity from 0  to T  
  0ag  = initial growth rate of technology per decade 
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 Also the rate of growth of the labor force is treated in the same way with the 
equatio
 

3) 

ns 

 ( ) ( )(4 0
Lg tL t L e=  

with 

4)  ( ) ( )0 1 LtL
L

L

gg t e δ

δ
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (4

where 
   = 1965 world population in mill

 = growth rate of labor from t
  = growth rate o opulat  per de de 

 
Finally the exogenous forcing term for other greenhouse gases is set using the 

 

 in 

ith GAMS models, you are encouraged do so and to take a look at 
Append

0L ions 

( )Lg t  0  t  o 

0Lg  f p ion ca

 
equations 

(45) 
( )
( )

20.2604 0.125 0.0034 15

1.42 15

FO t t t for t

FO t for t

= + − <

= ≥
 

 
Thus this term increases in a quadratic way from 0.2604 to 1.42 over the first fifteen 
years and then remains constant at 1.42. 
 If you have already read the previous chapters in this book dealing with models
GAMS, particularly the dynamic models, the GAMS representation of the Nordhaus 
model provided in Appendix15A will seem familiar terrain.   If you have not read the 
previous chapters w

ix H on Stacking Method in GAMS and Appendix F on Introduction to Nonlinear 
Optimization Solvers. 
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4.   Results 
 

In the 1992 Science article Nordhaus compares five solutions of the model, which 
are shown in Table 15.1.  The first solution is a “no-controls” result in which µ  is set 

 
Base Value Dollar Difference Percent Difference 

 

Case Policy 
1 No-controls 731.694 0 0.000 
2 Optimal Policy 731.893 199 0.027 
3 Stabilize emissions 726.531 -5163 -0.706 
4 Stabilize climate 701.764 -29930 -4.091 
5 Geoengineering 735.787 4093 0.559 

 
Table 15.1 Solutions of the Model 

to zero, i.e. there is no removal of emissions relative to the uncontrolled level.  The 
tion is
nt in total discounted utility ove

The third solution is to fix emissions at around 10% above the uncontrolled level 
95.  This requires setting

 

second solu  the full optimal control solution that provides a slight (0.027%) 
improveme r the horizon covered by the model.   

 µafter 19  equal to 0.1 after 1995 and can be implemented in 

the GAMS statement of the model by using a MIU.FX statement before the SOLVE 
statement.   As is seen in Table 1 this results in a decrease in total discounted utility by 

ths of a percent.   
A more drastic policy is to stabilize climate as is shown in the fourth solution.  

This solution limits the temperature increase to  per decade after 1985 with an 
upper limit of a total increase of  from 1990.    This results in a decrease of about 4 
ercent in total discounted utility relative to the uncontrolled solution. 

considers the effects on introducing a hypothetical technology 
that provides costless mitigation of climate change.   Examples cited by Nordhaus include 

the ocean with iron to accelerate carbon 
questration. 

about seven-ten

0.2 C
1.5 C

p
The final solution 

shooting smart mirrors into space or seeding 
se
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5.   Experiments 
 

The obvious experiments with this model are to attempt to replicate some of the 
t.  

 of parameter  in Eq. (28).    
solutions shown in Table 1; however, there are a number of other experiments of interes
One such experiment is to decrease the size 1a

 

(28)  ( ) ( ) 2
1

1
Td t a ⎡= ⎢ 3

t ⎤
⎥⎣ ⎦

 

agnitude of 
e Russians seem 

 have concluded that because of the northerly location of most of their country that 
s might actually result in increase

eter 

 
This experiment recognizes that there is considerable controversy about the m
the effect of increases in temperature on economic output.   In fact, som
to
slight temperature increase s rather than in decreases of 
national GDP. 

Another experiment would be to increase the param Mδ  in the 

4)  

2CO   

concentration equation  
 

( ) ( ) ( ) ( )1 1MM t E t M tβ δ= + − −  (2

 
to reflect a feeling that the atmosphere is able to breakdown more of the than the 

riginal parameter value reflects. 

.   Further Reading 

As was mentioned above, this chapter is based on the article by Nordhaus in 
cience

e RICE model by 
ordhaus and Boyer (2000).   For a model that is used to analyze the costs of CO2 

Manne and Richels (1992).   For an alternative to the IPCC CO2 
mission projections see Eckaus (1994).   For a general equilibrium model approach to 

For a model that uses the GAMS software and focuses on the role of the 
s in global warming - particularly India and China - see Duraiappah 

(1993).   For particular reference to the effects of greenhouse gases in agriculture and 

2CO

o
 
6
 

S  in 1992 about the DICE model.   That model has the virtue of being relatively 
simple and is thus useful for this chapter.  For a later model see th
N
emissions limits see 
e
the analysis of reducing carbon emissions see Blitzer, Eckaus, Lahiri and Meeraus 
(1992). 

developing countrie
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forestry see McCarl and Schneider (2001).  For a discussion of climate policy c
after the Kyoto treaty see McKibbin and Wilcoxen (2002). 

For an example of the analysis of water pollution control with a GAMS model see 
Letson (1992).

hange 

   Those interested in environmental models for various sectors of the 
conomy can finds models of the plastics sector in China, the pulp and paper sector in 

livestock sector in Botswana in Duraiappah 
003). 

e
India, the shrimp industry in Thailand and the 
(2
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Appendix 15A 

The GAMS Representation of the Global Warming Model 
 
offsymxref offsymlist 
 Expl y 1991 

scalars bet     elasticity of marginal utility          /0/ 

195/ 

       ga0     initial growth rate for technology per decade   /0.15/ 
        dela    decline rate of technological change per year   /0.11/ 
       sig0    co2-equivalent emissions-gnp ratio      /0.519/ 

    dk      depreciation rate on capital per year /0.10/ 
       gama    capital elasticity in production function       /0.25/ 

      co2-equivalent concentrations 196  billions t c /677/ 
        tl0     lower stratum temperature (c) 1965      /0.10/ 
        t0      atmospheric temperature (c) 1965        /0.2/ 

   /8.519/ 

       c1      climate-equation coefficient for upper level    /0.226/ 
m     climate eedback factor /1.41/ 

       c3      transfer coefficient upper to lower stratum     /0.440/ 

e vi
 /0.0133/ 

       b1      intercept control cost function /0.0686/ 
      exponent of c trol cost function       /2.887/ 

nsversality coeff carbon ($ per unit)  / - 9.0 / 
        phite   transversality coeff temperature ($ per unit)/ - 7000 / 
 

$
* aining the DICE, Cowles Foundation Discussion Paper, Januar
* The calibration is to a 60-period run for the transversality 
* 
sets    t               time periods     /1*40/ 
        tfirst(t)       first period 
        tlast(t)        last period 
 

        r       rate of social time preference per year /0.03/ 
        gl0     growth rate of population per decade    /0.223/ 
        dlab    decline rate of population growth per decade    /0.
        deltam  removal rate carbon per decade  /0.0833/ 
 

 
        gsigma  growth of sigma per decade      / - 0.1168 / 
    
 
        m0 5

        atret   marginal atmosphere retension rate      /0.64/ 
        q0      1965 world gross output trillion 89 US$ 
        ll0     1965 world population million   /3369/ 
        k0      1965 value capital trillion 1989 US$    /16.03/ 
 
        la f
 
        c4      transfer coefficient for lower level    /0.02/ 
        a0      initial lev l of total factor producti ty   /0.00963/ 
        a1     damage coeff for co2 doubling(fraction GWP)  
 
        b2 on
        phik    transversality coeff capital ($ per unit)        /140/ 
        phim    tra
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parameters      l(t)    level of population and labour 
                al(t)   level of total factor productivity 
                sigma(t)        co2-equvalent-emissions output ratio 
                rr(t)   discount factor 
                ga(t)   growth rate of productivity from 0 to t 
                forcoth(t) exogenous forcing for other greenhouse gases 
                gl(t)   growth rate of labour 0 to t 
                gsig(t) cumulative improvement of energy-efficiency 
                dum(t)  dummy variable 0 except last period ; 

ast(t)  = yes$(ord(t) eq card(t)); 

        gl(t) = (gl0/dlab)*(1-exp(-dlab*(ord(t)-1))); 
        l(t)  = ll0*exp(gl(t)); 
        ga(t) = (ga0/dela)*(1-exp(-dela*(ord(t)-1))); 
 

)  = (1+r)**(10*(1-ord(t))); 
 
        forcoth(t)  =  1.42; 
        forcoth(t)$(ord(t) lt 15) = 0.2604 + 0.125*ord(t)  
                                    - 0.0034*ord(t)**2; 
 
variables       miu(t)  emission control rate GHGs 
                forc(t) radiative forcing, W per m2 
               te(t)   temperature, atmosphere C 
               tl(t)   temperature, lower ocean C 

          m(t)    co2 equivalent concentration bill t 

                c(t)    consumption trillion US$ 
                k(t)    capital stock trillion US$ 
               cpc(t)  per-capita consumption 1000s US$ 

r raction of GWP 
               ri(t)   real interest rate per annum 
                trans(t)        transversality variable last period 
                y(t)    output 
 
                utility; 

 
        tfirst(t) = yes$(ord(t) eq 1); 
        tl
        display tfirst, tlast; 
 

        al(t) = a0*exp(ga(t)); 
        gsig(t) = (gsigma/dela)*(1-exp(-dela*(ord(t)-1))); 
        sigma(t) = sig0*exp(gsig(t)); 
 
        dum(t) = 1$(ord(t) eq card(t)); 
        rr(t

 
 
      
                e(t)    co2 equivalent emissions bill t 

 
                pcy(t)  per-capita income 1000s US$ 
                i(t)    investment trillion US$ 
                s(t)    savings ate as f
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posit
 

ive variables miu, e, te, m, y, c, k, i; 

equations       util    objective function 
                yy(t)   output equation 
                cc(t)   consumption equation 
                kk(t)   capital balance equation 
                kk0(t)  initial condition for k 
                kc(t)   terminal condition for k 
                cpce(t) per-capita consumption definition 
                pcye(t) per-capita income definition 
                ee(t)   emissions process 
                seq(t)  savings rate equation 

re 

 Equations of the model 

..        k(t+1) =l= (1-dk)**10*k(t) + 10*i(t) ; 
first)..  k(tfirst) =e= k0 ; 

c(tlast)..     r*k(tlast) =l= i(tlast) ; 

                    (1 - miu(t))*al(t)*l(t)**(1 - gama)*k(t)**gama ; 
t)..      forc(t) =e= 4.1*(log(m(t)/590)/log(2)) + forcoth(t) ; 

mm0(tfirst)..   m(tfirst) =e= m0 ; 
mm(t+1)..       m(t+1) =e= 590 + atret*e(t) + (1-deltam)*(m(t) - 590) ; 

+ )..      te(t+1) =e= te(t)+c1*(forc(t)-lam*t (t) 
                           - c3*(te(t)-tl(t))) ; 

)..      tl(t+1) =e= tl(t) + c4*(te(t) - tl(t)); 
 
yy(t)..         y(t) =e= al(t)*l(t)**(1-gama)*k(t)**gama 
                         *(1-b1*(miu(t)**b2))/(1+(a1/9)*sqr(te(t))); 
seq(t)..        s(t) =e= i(t)/(.001+y(t)) ; 
rieq(t)..       ri(t) =e= gama*y(t)/k(t) - (1-(1-dk)**10)/10 ; 
 

                rieq(t) interest rate equation 
                force(t)  radiative forcing equation 
                mm(t)   co2 distribution equation 
                mm0(t)  initial condition for m 
                tte(t)  temperature-climate equation for atmosphe
                tte0(t)  initial condition for atmospheric temperature 
                tle(t)  temperature-climate equation for lower oceans 
                transe(t) transversality condition 
                tle0(t) initial condition for lower ocean ; 
 
*
 
kk(t)  
kk0(t  
k
 
ee(t)..         e(t) =g= 10*sigma(t)* 
 
force(

 
tte0(tfirst)..  te(tfirst) =e= t0 ; 
tte(t 1 e
 
tle0(tfirst)..  tl(tfirst) =e= tl0 ; 
tle(t+1
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cc(t)..         c(t) =e= y(t) - i(t) ; 
cpce(t)..       cpc(t) =e= c(t)*1000/l(t) ; 
pcye(t)..       pcy(t) =e= y(t)*1000/l(t) ; 
 
transe(tlast).. trans(tlast) =e= rr(tlast) *(phik*k(tlast) 

                           + phim *m(tlast)+phite*te(tlast)); 
 
util..          utility =e= sum(t,10*rr(t)*l(t)*log(c(t)/l(t)) 

er and lower bou s; general conditions imposed for stability 
 
miu.up(t) = 0.99; 
miu.lo
.lo(t) = 1; 

p(t) = 20; 
t) = 600 ; 

c.lo(t) = 2; 

x('1') = 0.0; 
x('2') = 0.0; 

miu.fx('3') = 0.0; 

tion options 

n iterlim = 99999; 
n reslim = 99999; 

option solprint = off; 

model 
solve 

      

                            /0.55+trans(t)*dum(t)); 
 
* Upp nd

(t) = 0.01; 
k
te.u
m.lo(

 
* Upper and lower bounds for historical constraints 
 
miu.f
miu.f

 
* Solu
 
optio
optio

option limrow = 0; 
option limcol = 0; 
 

co2 /all/ ; 
co2 maximising utility using nlp ; 

 
* Display of results 
 
display y.l, c.l, s.l, k.l, miu.l, e.l, m.l, te.l, forc.l, ri.l ; 
display cc.m, ee.m, kk.m, mm.m, tte.m, cpc.l, tl.l, pcy.l, i.l ; 
display sigma, rr, l, al, dum, forcoth ; 
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Chapter 16 

Dynamic Optimization in MATLAB 

al path of policy variables in 
 for GDP or the inflation rate; to model the 

the optimal path of investment in order to 
aximi

te time 
ynamic p hnique particularly suited for  computational implementation 
iven its r .  Specifically, we will deal with a special case of dynamic 

ization that is known as the Quadratic Linear Problem (QLP), a very popular kind 
ize an intertemporal quadratic objective function 

aints that hold as equalities.35 36  The QLP is used here 
o well adapted and widely used for the types of 

stochastic m rogress to.  We have already dealt with a QLP earlier in 
the book in the chapter on Thrift in GAMS.  However, in that chapter we did not exploit 
the recursive nature of the typical Q

 
 Dynamic optimization encompasses a group of mathematical techniques used in 
economics to model the intertemporal behavior of economic agents under the assumption 
of forward looking optimizing behavior.  For example, it can be used to model the 

aker who tries to determine the optimbehavior of a policym
order to achieve some specified targets

s that are assumed to choose behavior of firm
m ze intertemporal profits or their present value; to model the behavior of 
consumers who are assumed to face intertemporal choices between present and future 
consumption; etc. 
 In general terms, dynamic optimization deals with the problem of obtaining a 
sequence of optimal choices under given dynamic constraints.  Calculus of variations, 
optimal control and dynamic programming are the most commonly used techniques for 
dynamic optimization.  In this chapter, we will focus on what is known as discre
d rogramming, a tec
g ecursive structure
optim
of problem in which the goal is to optim

ic linear constrsubject to dynam
for a deterministic model because it is als

odels that we will p

LP.  There, we solved the problem with nonlinear 

                                                 
35 Though the choice of the quadratic criterion can be somewhat limiting many nonlinear models can be 

ly approximated by QLP models and then solved with successive approximations. 

dynamic models in which there are inequalities, mathematical programming methods like those used 

ith GAMS in the chapter on global warming are more appropriate than the Riccati methods discussed in 

noise terms and 

useful
36 For 

w

this chapter.  On the other hand the quadratic linear control theory models with equality constraints are 

most useful when one wants to deal with stochastic elements in the form of additive 

uncertain parameters. 
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programming in GAMS.  That approach can easily deal with inequality constraints; 
 does not use a recursive solution method.  Rather cking” method 

which transforms a dynamic problem into a larger static one. 
hapter we A   which uses a vector-matrix paradigm more 

suitable to deal with the standard QLP since, as we will see below, the solution of these 
problems involves a series of vector and matrix operations.  We have already introduced 

rlier chapters.  In Appendix 16A we provide the listing and in the book 
ile for the MATLAB representation of the m e will 

evelop in this chapter.  This code was based on an earlier code in GAUSS by Hans 
mma

ef introduction to the mathematics of QLP.  Then, as 
 simple example, a small macroeconometric model is introduced.   Finally, the model is 

TLAB and solved.  

.  Introduction to Dynamic Programming 
 

The dynamic programming approach, developed by Richard Bellman (1957), can 
ustrated with a simple example.  The diagram in Figure 16.1 represents different 

 node  to  applying a specific action u to move from one node to 

nc et  example, we can interpret the nodes as towns and the actions as 
means of transportation (car, plane, train, etc.).  Each town has associated a cost (e.g. 

om and board).  Also each means of transportation has a cost associated to it.  The 

we are at. 

however, it it uses a “sta

In this c  turn to M TLAB

MATLAB in ea
web site we provide the f odel w
d
A n and was created in MATLAB by Huber Salas and Miwa Hattori. 

This chapter begins with a bri
a
input to MA

 
1

be ill
ways of going from 11x 41x

another.  As a co r e

ro
problem is to find the minimum cost path or, more precisely in the case of dynamic 
programming, a feedback rule to determine the optimal action u as a function of the node 
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Figure 16.1 Dynamic Programming Example 
 

In a more general formulation, we can think of the diagram in Figure 16.1 as 
representing the time path of a system that can be driven from one state (node) to another 

anipulating controls (the u oing back to a more concrete example, now in time 
nd not in space as above, you can think of a macroeconomic example in which the state 

st for society, to drive inflation down, or the GDP level up, facing 
 numb

To solve the problem, the dynamic programming approach uses a recursive 
method that works backwards.  For the example at hand, the method works as follows. 

1)  Compute the cost J of each segment in the last stage (that is, add the cost of  and 

the cost of the corresponding u).  There are obviously three values: 
 

;     

 

by m ’s).  G
a
variable is the inflation rate, or alternatively the level of GDP, and the control variable is 
the money supply.  The problem would be the one faced by the monetary authority 
trying, at a minimum co
a er of alternative economic paths to achieve that goal.  

 
41x

5),( 4131 =xxJ 32 41( , ) 4J x x = ;       2),( 4133 =xxJ  

 
2)  Compute the cost of each feasible optimal sequence of segments from the ..2x nodes: 

 

X11 = 0 

X21 = 3

X22 = 1

X23 = 2

X31 = 4

u = 1 

u = 2 

u = 2 

X32 =2 

X33 = 3

X41 = 1 

u = 2 

u = 1 

u = 2 

u = 4 

u = 3 

u = 1 

u = 1 
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),( 4121 xxJ  = min{ ),( 4131 xxJ + cost of segment ),( 3121 xx ;     
     ),( 4132 xxJ + cost of segment ),( 3221 xx } 

                  = min{5+6;  4+3} = 7     
                  

which implies that the optimal sequence of controls to go from  to  is  [ , 
ce  is [ ] (the 

e) wit , while for  is [  with 

23x

xxJ  = min{ xxJ + cost of segment ;  

41 + cost of segment 
      xxJ + cost of segment xx } 

 is  

tions we find problems in which we represent an 
 economy as a whole as a system of state variables that 

evolves em can be manipulated by means of a set of control 
or maximize) an intertemporal cost (or value) function.  A 

in which the cost function is quadratic and the economic 
rol case, 

ls

21x 41x ),( 3221 xxu
 ),( 4122 xx ),( 3322 xxu , ),( 4133 xxu),( 4132 xxu ]. Obviously, the optimal sequen

only feasibl h 7),( 4122 =xxJ ),( 4123 xx ),( 3323 xxu ),( 4133 xxu ]
6)41 =xJ . 

 
3)  Compute the cost of the optimal feasible sequence of segments from 11x : 

 

,(

),( 4111 21

                              ,( 22 xxJ
),( 41 ),( 2111 xx
) ),( 2211 xx ; 
),( 4123 2311

                   = min{7+5; 7+2; 6+4} = 9 
             
Thus the optimal sequence of controls for the problem

),(

 
[ ),( 22xxu , ),( 3322 xxu , ),( 4133 xxu ].         11

 
2.  A Simple Quadratic Linear Problem 
 
   In most economic applica
economic agent, institution or the

 through time.  This syst
variable ze (s in order to minimi

e very typical problem is on
system is represented by linear equations.  For a very simple one-state one-cont
the problem is expressed as one of finding the contro  ( ) 1

0
−
=

N
kku  to minimize a quadratic 

criterion function J of the form:  
 

(1)         ∑=
N

kxJ 21
    

=k 02

on: 

 

subject to the dynamic equati
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(2) kk         k ubxax +=+1  

 

                                        

= con
a = state parameter 

o
 

e st
ransforms the original optimization problem into a sequence of sub-problems.  Its 

rucial along the minimum-cost path 
om a minal period of the problem.  For QLP, the cost-to-go 

is a qua rticular 
problem

)  

and the initial condition 

 

(3) x  0

where: 

 x = state variable 
u trol variable  

b = control parameter 
            
As we already know, the dynamic programming approach w rks by solving the 

problem backward in time, determining optimal feedback rules for choosing  the control
vector as a function of th ate vector at each stage - each time period -  of the problem.  
Thus it t
c notion is the optimal cost-to-go, which is the cost 

given time period to the terfr
dratic function of the state of the system at time k, which for our pa
 is 

2(4
2 kk

 

1)( xxJ =∗  

Starting from the terminal period, the cost is 

 

 
2

2
1)( xx =∗

NNJ . 

 

(5) 

 
 The optimal cost-to-go at period N-1 will be the minimum of the optimal cost-to-
go at state Nx  in time N and the cost incurred in time period N-1 

 
( ){ }11)(min)1(

1
−−

∗∗ +=−
−

NNu
xLNJNJ

N

 (8) 
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where  is the cost function J for N-1 in Eq. (1).  Thus we have 

)  

1NL −

 

⎭
⎬
⎫

⎩
⎨
⎧ +=− −

∗

−

2
1

2

2
1

2
1min)1(

1
NNu

xxNJ
N

 (9

 
To carry on the minimization we need, in Eq. (9), all variables expressed at time 

(10) 

N-1.  Substituting Eq. (2) for Nx  into (9) and expanding we obtain 

 
 

⎭
⎬
⎫

⎩
⎨
⎧ +++=− −−−−−

∗

−

2
1

22
111

22
1 2

1
2
1

2
1min)1(

1
NNNNNu

xbuabuxaxNJ
N

 

 
The first order condition for the minimization is 

1)  

 
{ } 0)1( −∂ ∗ NJ(1 2

11
1

=+=
∂ −−

−

buabx
u NN

N

 

Solving (11) for  we obtain a feedback rule that gives us the optimal control 

 
(12) 

 
1−Nu 

as a function of the state 

 111 −−− = NNN xGu  

 
here Gw 1−N , known as the feedback gain coefficient, is  

 

(13)  
b
aGN −=−1  

  
 If we repeat the procedure for )2( −∗ NJ , etc., we will observe that a general form 

r the feedback rule emerges 
 

4)  

fo

kkkk x
b
axGu −==  (1

 
Thus, the feedback rule (14) tells us what the optimal action to take is at each 

point in time depending of the state of the system.  For our particular problem the 
edbacfe k gain coefficient is a constant.  However, as we will se later, this is not the case 
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for more general problems. 
 To obtain the solution paths for the controls and the states, we have to start from 

the initial condition (3) to obtain the optimal control from Eq. (14). Then we can solve 
Eq. (2) to ob al state and go back to Eq. (14) to obtain the optimal 
control and so on.  Thus we can see that the solution paths are obtained from a “forward 
loop”.  Knowing the optimal states, we can compute the corresponding criterion value 
from Eq. (1).   

m we 
.  

We begin by initializing the problem for four periods (from zero to three), and we assign 
values ndition.  We also set to zero what will be the 
vectors containing the optimal states and controls, the variable sum  which will contain 

e criterion value, and the index variable . 

zeros(1,t);   x = zeros(1,t); 
sum = 0; k = 0; 

 

  forward loop.    
 

  u(1,k+1) = uopt; 
new; 

   

ent of the initial condition to the xold variable, 
k <= t.  At each pass, the values of the feedback gain 

coefficient glarge, the optimal control uopt and the optimal state xnew are computed 
and stored in the corresponding positions of vectors x and u, and the corresponding value 
of the criterion function is computed and added to the sum variable.  Finally, the results 
are printed, previously transposing the vectors so that the results are displayed in colums.   

tain the next optim

 The MATLAB representation of the solution procedure of the simple proble
presented is straightforward, and it is available in  the book web site in file qlpsimple.m

for the parameters and the initial co

th k

 
t = 3;   a = 0.7;   b = -0.3;   x0 = -1; 
u = 

Next we write the

xold = x0; 
while k <= t;     
  glarge = - a / b; 
  uopt = glarge * xold; 
xnew = a * xold + b * uopt; 
sum = sum + 0.5 * xold^2; 

  x(1,k+1) = xold; 

  xold = x
  k = k+1; 

end;                         

 
 The loop begins with the assigm
and it will run as long as 
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u = u'                         
x = x'                         
Criterion = sum                

 
  values for the optimThe solution al states and controls are shown in Table 16.1. 
 

k x u 

0 -1 -2.3333 

1 0 0 

2 0 0 

3 0 0 

 
Table 16.1 Optimal States and Controls 

Notice that the value of x is driven to zero in just one period and with a single 
ol action.  Even if we extend the number of periods, and whatever initial condition 

e use, just one single control action will suffice.  Why?  The answer lies in the fact that 
tion to be minimized.  Thus, there is 

o cost associated to the use of the control and this one can immediately jump to any 

ill be included into the criterion function.  Moreover, both the state variable and the 
control variable will have associated specific weights in the function to represent relative 
priorities in terms of the cost of having the state variable off-target versus the cost of 
using the control.  

In the next section we will present a more comprehensive and general problem.  It 
will be a many-state many-control problem.  There will be weights on states and controls 
and also cross terms in the criterion function.  And the system of equations will contain 
constant terms.  We will see that the main logic to obtain a solution is the same we used 

ch as Riccati 
atrice d loop together 
ith a forward loop similar to the one we presented in this section.    

 

contr
w
the control variable is not a part of the criterion func
n
necessary value to bring the state variable to zero.  However, in most cases this variable 
w

in this section.   However, some new elements will appear as a part of it su
m s and vectors, and the solution procedure will involve a backwar
w
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3.  A  More General Quadratic Linear Problem 

Quadratic Linear Problem (QLP) has linear system equations and a quadratic 
 
 The 
criterion and may be written as find 
 

( ) 1
0
−
=

N
kku  

to minimize the criterion 
 

(15)  ∑
−

=
⎟
⎠
⎞

⎝
′

0 222 k
kkuλ  

m equations 

⎜
⎛ +Λ′+′+′+′+′+′=

1 111 N

kkkkkkkkkkkNNNNN uuuFxxwxWxxwxWxJ

 
subject to the syste
 
(16)  cBuAxx kkk ++=+1   1,,1,0 −= Nk     

 

 

 k

k

x state vector
control vector

W state vector priority matrix
F cross state control priority matrix

and c parameter matrices and vectors

=
=
=
= −

=

 

 ion 
 
     

means the set of control vectors from period zero through period N - 1, that is 
) .  Period N  is the terminal period of the model.  Thus the problem is to 

 the ime p in each period for the time periods from 0  
 - 1 o min hile starting at the initial conditions (17) 

and the initial conditions 
 
17)  x  given      ( 0

 
where 

k

ku

 

, ,
k control vector priority matrix

A B
Λ =

 
Also the notat

( ) 1
0
−
=

N
kku

 

(u 12

find  t aths for the control var
10 ,,,, −Nuuu

m iables 
o N   t imize the quadratic form (15) wt
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and following the difference equations (16).  The derivation of the solution for this model
is described in detail in Chapter 2 of Kendrick (1981).  Here we will provide an o
the procedure. 
 We know that for QLP, the cost-to-go is a quadratic function of the state of t
system at tim

 
utline of 

he 
e k, which for our problem is 

(18)                                      

 

kkkkkkk vxpxKxxJ ++′=∗ '

2
1)(  

 
where kK  and kp  are called the Riccati matrix and vector respectively, and where  is a 

scalar.  Starting from the terminal period we have 
 

kv

(19)                                   NNNNNNN xxJ
2

)( vxpxK ++′=∗ '1 . 

 the terminal period is  
 
 From Eq. (15), the cost at

(20)                                         1
2 N N N N Nx W x w x′ ′+    

 
hat 0=NvThus, from Eqs. (19) and (20) we obtain the result t  and the terminal 

onditions 
 

1)                                                

c

 NN WK =(2          

2)                                                
 

 NN wp =(2 .            

 The optimal cost-to-go at period N-1 will be the minimum of the optimal cost-to-
 

go at state Nx  in time N and the cost incurred in time period N-1 

 
(23)                         ( ) ( ) ( ){ }

1N−

 

* *
1 1 11 min ,N N Nu

J N J N L x u− − −− = +   

where L  is the cost function J for N-1 in Eq. (15).  Analogously, the optimal cost-to-

N-2 will be  

 1N−

go at period 
 
(24)                        ( ) ( ) ( ){ }

2

* 2 minJ N − = *
2 2 21 ,

N
N N Nu

J N L x u
−

− − −− +   
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and so on.  Carrying out the corresponding substitutions in Eqs. (23) and (24), 
inimi

feedback rule 

5)                                         

m zing,  solving the first order conditions with respect to the control vectors and 
rearranging, we will observe the emergence of a general solution which has the form of a 

 
 kkkk gxGu +=  (2

 
where  

6)          
 

[ ] [ ]AKBFBKBG kkkkk 1
1

1 +
−

+ ′+Λ′+′−=  (2

 
7)  [ ] ( )[ ]kkkkkk pcKBBKBg λ++′Λ′+′−= ++

−
+ 11

1
1  (2

 
and where the expressions for the Riccati matrix and vector are 
 

[ ] [ ] [ ]AKBFBKBFBKAWAKAK kkkkkkk 1
1

111 +
−

+++ ′+′Λ′+′+′−+′=  (28) 

 
[ ] [ ] ( )[ ] ( ) kkkkkkkkkk wpcKApcKBBKBFBKAp ++′+++′Λ′+′+′−= ++++

−
++ 1111

1
11 λ . (29) 

 
These equations look formidable but they essentially involve only the matrices and vector 

,A B  and c  from the system equations (16) and the matrices W  and Λ  from the criterion 
on ) in addition to the lead values of the Riccati mafuncti (15 trix 1kK +  and the Riccati 

vector 1kp + .     

To obtain the solution paths for the controls and the states, we have to start at the 
end and work backward.  We will follow that procedure here by beginning with the 

hile solving for the Riccati 
atrices and vectors.   Then we will use the initial conditions, the feedback rule and the 

system equations to solve forward in time while computing the state and control 

 Thus we begin by integrating backward in time starting with the terminal 

0)   
       

terminal conditions and working back to the initial period w
m

variables. 

conditions 
 
(3 NN

 
WK =

(31) NN wp =  
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The backward integration is done by solving the Riccati matrix and vector equations 

(32) 
 

[ ] [ ] [ ]AKBFBKBFBKAWAKAK kkkkkkk 1
1

111 +
−

+++ ′+′Λ′+′+′−+′=  

 
(3 [ ] [ ]3) ( )[ ] ( ) wp +  

and solved in a very straightforward 
way.  Using Eqs. (30) thru (33) the procedure is to begin with  which is obtained from 
Eq. (30).  This matrix is then used first in Eq (32  to compute 

kkkkkkkkkk pcKApcKBBKBFBKA +′+++′Λ′+′+′−= ++++
−

++ 1111
1

11 λ

 
 As will be shown later in the computational section of this chapter, these 
calculations can be programmed into MATLAB 

NK
) 1NK − , then  is used in 

that equation again to compute 
1NK −

2NK −  etc until the  matrix has been computed.   A 
milar procedure is used to calculate the Riccati vectors 

0K

kpsi  using Eqs. (31) and (33). 

 ectors have been computed, then a forward 
integra he feedback gain matrix  and vector  from 

Eqs. (2 xpressions, i.e. 

Once all the Riccati matrices and v
kG kgtion loop is started.   In this loop t

6) and (27) are computed for each time period using those e
 

[ ] [ ](34)  AKBFBKBG kkkkk 11 ++ ′+Λ′+′−=  

 

1−

and 
 
(35)  [ ] ( )[ ]kkkkkk +++ 111 pcKBBKBg λ++′Λ′+′−=  

 
These e
omplicated but are easily programmed and solved in MATLAB.     

 The feedback gain matrix and vector are then used in the feedback rule  
 
(36)  

 
ong with the initial condition,

−1

xpressions - like those for the Riccati matrix and vector above are somewhat 
c

kkkk gxGu +=  

al  0x , to compute the control vector, .    This value and 
the initial state, 

0u

0x , are then used in the system equations from Eq. (16) i.e. 

)  

   

 
(37 cBuAxx kkk ++=+1  
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1xto compute the value of the state vector for the next period, .   Then the process is 

repeated beginning with Eqs. (34) and (35) and using Eqs. (36) and (37) until the control 
vectors, ku , and the state vectors, kx , have been computed for all time periods.  

 Also, in each pass through the forward loop the crite

 

rion value for that period is 
omputed and added to the amount already accumulated using part of the criterion 

ion, which is shown here in the tracking version rather than in the quadratic form, 
i.e.,37

c
funct

 

(38)  ( ) ( ) ( ) ( )kkkkkkkkkk uuuuxxWxx ~~
2
1~~

2
1

−Λ′−+−′  

where 
k

−

x desired state vector=
 

ku desired control vector=

 
 We shall see shortly how intuitive it is to represent the mathematics of the 

es of 

n 

orm 

us Eq. (15) becomes: 
 
 
(39)   

solution procedure in MATLAB.  Before doing so, we will comment on other typ
problems and solution procedures that arise when we move from the deterministic 
framework of the standard QLP problem to an environment in which uncertainty is take
into account. 
 The simplest way of introducing uncertainty is by assuming that it takes the f
of additive uncertainty.  That is, assuming that the system of linear equations is shocked 
in each period by additive noise.  When we do this, the mathematical representation of 
the QLP problem is modified in two ways.  First, the objective function is now an 
expected value,  th

{ }
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ′+Λ′+′+′+′+′+′= ∑

−

=

1

0 2
1

2
1

2
1 N

k
kkkkkkkkkkkkkNNNNN uuuuFxxwxWxxwxWxEJE λ  

 
where E is the mathematical expectation operator.  Second, the system of equations now 
has an additive noise term denoted by kξ , that is: 

 

                                                 
37 Later in the chapter we discuss the transformation of the quadratic tracking version of the criterion 

nction to the quadratic form. fu
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(40)      k1k k kx Ax Bu c ξ+ = + + +  

with 

j =

 However, it can be shown that the solution procedure for this stochastic problem 
is the same as the one for the QLP problem (Eqs. (30) to (36)).38   This is why the 
solution procedure when additive uncertainty is present is named Certainty Equivalent 
(CE).  Notice that this does not mean that the observed optimal paths for the states and 
the controls will be the same in a QLP and a CE simulation, since in the CE simulation 

e system of equations will be shocked by additive noise at each time period. 
 Consider now the case of multiplicative uncertainty.  In this case, we have 
information about the variances and covariances of the dynamic equations parameters 
(matrices A, B and vector c) and we want to exploit that knowledge when computing the 
optimal values of the controls to be applied period after period.  In formal terms 
equations (39) and (40) still characterize the problem.  However, it can be shown that the 
solution procedure is now somewhat different from the one corresponding to Eqs. (30) 
thru (36).  Indeed, the expectations operator will appear now in those equations, as shown 
in Eqs. (43) - (46) below.   
 
(41)   
(42) 

 
(43) 

{ } { } '0 0
j k

k k k k kE E Q Eξ ξ ξ ξ ξ
≠

⎧ ⎫′= = ⎨ ⎬
⎩ ⎭

 

th

NN WK =

NN wp =  

{ } { }[ ] { }[ ] { }[ ]AKBEFBKBEFBKAEWAKAEK kkkkkkk 1
1

111 +
−

+++ ′+′Λ′+′+′−+′=  

 
(44)   

{ }[ ] { }[ ] { } { } { } { } kkkkktkkkk wpAEcKAEpBEcKBEBKBEFBKAEp +′+′+⎥⎦
⎤

⎢⎣
⎡ +′+′Λ′+′+′−= ++++

−
++ 1111

1
11 λ

 
(45)   ⎤⎦

 

 (46)   1 k

{ } { }1
1 1k k k k kG E B K B F E B K A

−

+ +′ ′ ′= − + Λ +⎡ ⎤ ⎡⎣ ⎦ ⎣  

{ } { } { }1
1 1k k k k kg E B K B E B K c E B p λ

−

+ + +
⎡ ⎤′′ ′ ′= − + Λ + +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 

                                                 
38 See Kendrick (1981), Ch. 5. 
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 Notice that there are now several terms involving the expectations of matrix 
products.   To compute these expe apter 6 in Kendrick (1981) we 
have to proceed as follows. In gen

7) 

terministic.  Thus 

ctations, following Ch
eral terms, define: 

 
D A KB′≡  (4

 
, A and B are random and K is dewhere D, A, K, B are all matrices

 
(48) { } { }E D E A KB′= . 

 
A single element in D is ijd .  Then: 

 
(49) { } { }ij i jE d E a Kb′=  

 
where  is the ith column of A and  is the jth column of B.  It can be shown that 

(50) j b aE d E a E b tr K′

 ia jb

 

{ } { }( ) { }
j iij i K ⎡ ⎤= + Σ⎣ ⎦  

 
where 
 

(51) { { } { } }j i ib a E a
j ib a jE b E ′⎡Σ = − ⎤ −⎡ ⎤⎣ ⎦⎦  

 
or the jth column of B and the ith column of A and 

⎣

[ ]tr ⋅  is the covariance matrix f is the 

, the sum of the diagonal elements of the matrix in brackets.  
al paths for the controls and the states, we have to apply  Eqs. 

(41) thru (46) in the same manner with backward and forward loops as we did for the 
se presented earlier.  

ure like the one presented above is used to solve a problem in 
uncertainty is present, we say that we have an Open Loop Feedback 
em (OLF w/o update).  Why do we say “without update”?   In more 

ons like the ones to be presented in Section 4 of the next chapter, given 
iances and covariances of the state equations parameters, we can 
g process.  To do so, in each time period of the solution a 

projection-updating mechanism - usually a Kalman filter - is added to the solution 

trace operator, i.e.
To obtain the optim

deterministic QLP ca
 When a proced
which multiplicative 

lwithout update prob
complex simulati
the knowledge of the var
consider a passive learnin
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method of  the optimization problem in order to obtain, in each period, updated values of 
 of their variance-covariance matrix.  You will have a better 
 Section 4 of the next chapter.  Details of the mathematical 

omic 
ples 

l be introduced in the next chapter using Duali, a high-level software especially 
ese types of problems. 

4.  The Macroeconomic Model 

 The model is based on the work of Chow (1967) and Abel (1975) and is a very 
l with two state variables and two control variables that was used early in the 

control literature to perform some policy experiments.   It was not chosen because of its 
 i AB and thus 

int to handle the more complex and realistic models like the 
o chapters.  The two state variables are 

e model when estimated with data for the period 1954-II to 
orted in Kendrick (1982a), is 

) 
   

 
Notice that the model exhibits "crowding out" behavior since the sign on the government 
expenditure variable in the investment equation is negative. 
 The model can be written in the notation of the system equations (16) above as 

next period parameters and
 of this once you get toidea

form of these procedures are in Kendrick (1981) (2002). 
In the following we turn to the MATLAB representation of the QLP solution 

procedure.  Before doing so, in the next section we will introduce a small macroecon
model to use as an example.  CE, OLF and parameter updating procedures and exam
wil
designed to deal with th
 

 

simple mode

nice properties but rather because t is very easy to implement in MATL
provides a good starting po
ones to be presented in the next tw
 
 C   = consumptionk  
 kI    = investment 

 
and the control variables are 
 

  = government expenditures kG 

kM  =  money supply  

 
The reduced form of th

1963-IV as rep
 

1 0.914 0.016 0.305 0.424 59.437k k k k kC C I G M+ = − + + −  (52
(53) 1 0.097 .424 0.101 1.459 184.766k k k k kI C I G M+ = + − + −  
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1,,1,0 −= Nk(16)  Axx kk cBu   +=+1 k +   

   

with 

⎥
⎦

⎤
⎢
⎣

⎡
=

k

k
k I

C
x k

k
k

G
u

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    

 

  
0.097 0.424

A
0.914 0.016−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  
0.305 0.424
0.101 1.459

B ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

           

e model are given by the values of consumption and 
estment respectively in 1964-I as 

(54)  =  

of the form 

59.437
184.766

c
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

 
 The initial conditions for th
inv
 

387.9⎡ ⎤
0 85.3⎢ ⎥

⎣ ⎦
x

 
 The criterion for the model is 
 

(55) ( ) ( )~ˆ~1 ′
NNNNN xxWxxJ

2
−−=  

  + ( ) ( ) ( ) ( )∑
−

⎥⎦
⎤

⎢
=

⎡ −Λ′−+−′−
1 ~ˆ~

2
1~ˆ~1N

kkkkkkkkkk uuuuxxWxx   

 "tracking function" since it is minimized by having the optimal state and 
trol vectors

⎣0 2k

 
This is called a
con  kx  and  track as closely as possible the desired state and control vectors uk

kx  and ku .   So the decision maker chooses the optimal time paths for the desired states 

 controls and then solves the model to compute the optimal controls which come as 
esired paths while satisfying the dynamic relationships in the 

 to the criterion which was discussed in the mathematics section 

)  

and
close as possible to these d

tem equations (16). sys
 Compare Eq (55)
of this chapter, i.e. Eq. (15) 
 

∑
=

⎟
⎠
⎞

⎜
⎝

(15
−

′+Λ′+′+′+′+′+′=
0 2

1
22 k

kkkkkkkkkkkkkNNNNN uuuuFxxwxWxxwxWxJ λ  

 

⎛1 11 N
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Equations (55) and (15) are imilar since they are both quadratic functions.  In fact Eq. 
 form of Eq. (15) by expanding the quadratic terms.  This 

). 

) 

 s
) can be transformed to the(55

results in the following relationship between the matrices of Eqs. (15) and (55
 
(56 kk

 xWw

WW ˆ=  

(57) kkk
~ˆ−=  

0=F  (58) 
(59) kk Λ=Λ ˆ  

kkk u~Λ̂−=λ  (60) 

 
 In the MATLAB statement we will input the data using the matrices and vectors 
in the tracking function (55) and then compute the matrices and vectors for the quadratic 
form (15) that was used to derive the algorithm which is implemented in the code. 
 The data for Eq. (55) which are taken from  Kendrick (1982a) are as follows: 
 

(61) 

 

(62) 

 
These two equations indicate that the desired paths for both the states and controls grow 
at approximately 3 percent per year or 0.75 percent per quarter over the time horizon 
covered by the model. 
 The priorities (penalty weights) in the objective function (55) are given below. 
 

(63)   

( )
387.9

1.0075
85.3

k
kx ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

( )
110.4

1.0075
147.17

k
ku ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

6.25 0ˆ
0 100NW ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0.0625 0ˆ
0 1kW ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

(64) 

 
All of these priorities are the same (relative to the square of the size of the variables) 
except those for the terminal state variables in  where the priorities are 100 times as 

1 0ˆ
0 0.444k
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

 

ˆ
NW
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great.   This is done to represent the fact that politicians usually care more about the state 
of the economy in the period just befor than they do at other times. 
 This completes the statement of the model.   Now we are ready to incorporate 
both the mathematics and the model into the MATLAB representation. 
 
5.  The MATLAB
 
 In this section we discuss the MATLAB representation a few statements at a time.  
The complete listing is in Appendix 16A.  The code statement is begun with the 
dimensions of the model.   This version has seven time periods, two state variables and 
two control variables. 
 

t = 7; n = 2; m = 2; 

 
One of the nice features of the MATLAB language in comparison to older languages 
such as Fortran and C is that the dimensioning of matrices is done automatically by the 
code.  Therefore it is not necessary to use something like 
 
  Dimension A(2,2), B(2,2), c(2,1) 

 
Rather one can just input the matrices  and 

e an election 

 Representation 

A B  and the vector  as shown below and 
the MATLAB system takes care of the memory management.   
 

a = [0.914 -0.016;  
          0.097  0.424]; 

b = [0.305 0.424;  
         -0.101 1.459]; 

c = [-59.437;   
         -184.766]; 

Notice that the semicolon is used to mark the end of a row in the matrix input. 
 Likewise we can input the initial conditions, 

 c

0x , for the state and the base values 

for the desired states and controls as vectors.   The base values for the states are called 
xtar to indicate that they represent target values for the states, x .   Likewise for the 
control targets which are called utar.    
 

x0 = [387.9;       
        85.3]; 

xtar = [387.9;   
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         85.3]; 
utar = [110.4;  

        147
 

Finally the criterion function matrices are input. 
 

.17]; 

 

w = [0.0625 0;   
       0    1]; 

wn = [6.25  0;   
        0  100]; 

f = [0   0;    
          0   0]; 

lambda = [1    0;  
           0  0.444]; 

 
 Now all the data have been input and we are ready to start the matrix Riccati loop.   
In preparation for doing so we need to initialize the Riccati matrix 1kK +  and vector 1kp + .   
These are called kold and pold to distinguish them from kK and kp which will be called 

knew and pnew respectively.   Since the Riccati loop proceeds from the last time period 
toward the first, period 1k +  values are the old values and period k  values are the new 
values. 
 

%   The Riccati Loop 
 

kold = wn;                    %   Boundary condition 
pold = -wn*xtar*(1.0075)^t;   %   Boundary condition 

 
Recall from Eqs (18) and (19), which were the terminal conditions for the Riccati 
equations, that  
 
(30) NN WK =   
(31) NN wp =   

  
Also remember that we need to use input data for the tracking function Eq. (55) and 
transform it for use in quadratic form Eq. (15).  Thus we need to use the transformations 
from Eqs. (56) and (57) which become for the terminal period 
 
(56) 

(57) 
NN WW ˆ=  

NNN xWw ~ˆ−=  
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s 

 
(65) 

(66) 

 Substitution of Eq. (56) into Eq. (30) and Eq. (57) into Eq. (31) yield

NN WK ˆ=  

NNN xWp ~ˆ−=  

 
In Eq. (66) the desired value for the state is based on the initial period target values 
grown over the time horizon covered by the model at a rate of 3 percent per year or 0.75
percent per quarter so that 

 

 
(67) ( ) 0

~0075.1~ xx N
N =  

 
 Substitution of Eq. (67) into Eq. (66) then provides the relationship which is used 
in the MATLAB representation namely 
 
(68) ( )N

NN xWp 0075.1~ˆ
0−=  

 
This is written in MATLAB as 
 

pold = -wn*xtar*(1.0075)^t;   %   Boundary condition 

       
where t is the number of time periods in the MATLAB representation. 
 Next we need to compute and store the Riccati matrices  and for all time 

periods as we integrate backward from the terminal time period to the initial time period.   
So we need to store a series of (n,n) matrices.   We do this by using a three dimensional 
matrix with dimensions (n,n,t) for the Riccati matrices and (n,t) for the Riccati 
vectors 

kK

kK

kp  .  This is specified in MATLAB with the statements. 

 
kstore = zeros(n,n,t);      % storage for dynamic Riccati matrices 
pstore = zeros(n,t);        % storage for dynamic Riccati vectors 

 
So kstore will be our place to store all the Riccati matrices and pstore will be used to 
store the Riccati vectors.    These matrices are filled with zeroes as they are created and 
later we will replace the zeros with the computed values. 
 Also, we need to create a place to store the optimal controls and states and that is 
accomplished with the MATLAB statements below.   Here again the arrays are filled 
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with zeroes as they are created and then will be filled with the computed values later.  
This is done with the following statements. 
 

u = zeros(m,t+1); 
x = zeros(n,t+1); 
 

 

old; 

 
 This completes all the set up required before we began the backward recursion to 
compute the Riccati matrices and vectors.    The loop itself is begun with the MATLAB 
statements 
 

k = t-1; 
while k >= 1; 

 
Here the running index k is going to be used for time periods.  It is initialized to t-1 
because we have already done the calculations for the terminal period t and are ready to 
do them for period t-1.    Then the while command is used to indicate that the loop 
operation should continue so long as k is greater than or equal to 1.   Later on at the 
bottom of this loop we will find the statements 
 
   k = k-1; 

end;                        %   End of the Riccati loop 

 
that decrease k by one each time the calculation passes thorough the loop.   Also the end 
statement indicates the point to which the calculation jumps once the condition in the 
while statement no longer holds true. 

The time dimension of these arrays is set to t+1 rather than to t to accommodate
the fact that the x array must holds values for period zero as well as for the last period. 

As a final step before we begin the backward recursion we need to store the 
terminal values of kold in the matrix t of kstore and pold in column t of pstore. 

 
kstore(:,:,t) = kold(:,:); 
pstore(1:n,t) = p
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 The next step is to compute the desired paths for the state and control vectors 
which are called utark and xtark for  target and u x  target respectively for all the time 
periods.    Those variables are then used in turn in Eqs. (57) and (60), i.e.  
 
(57) kkk xWw ~ˆ−=  

(60) kkk u~Λ̂−=λ  

 
to compute kw  which is called wsmall and kλ  which is called lambdas.  

   
  utark = (1.0075^k).*utar;   %   Time dependent targets 
  xtark = (1.0075^k).*xtar; 
  wsmall = -w*xtark; 
  lambdas = -lambda*utark; 

 
 Now we are finally in position to compute the Riccati matrix using Eq. (32) 
 
(32) [ ] [ ] [ ]AKBFBKBFBKAWAKAK ′= kkkkkkk 1111 ++++

 
The representation in MATLAB of this equation is 
 
knew = a'*kold*a+w-(a'*kold*b+f)*inv(b'*kold*b+lambda')*(f'+b'*kold

 
This is a good demonstration of the power of MATLAB to represent a complex 
expression in a form that is very close to the mathematical representation.  The 
diff

1− ′+′Λ′+′+′−+  

*a); 

erences between the mathematical and MATLAB representations are quickly 
pparent.   For the inverse of a matrix enclosed in parentheses mathematics uses 

while MATLAB uses the function inv( ).   MATLAB does not include the Greek 
alphabet so the m

( ) 1−  a

athematical symbol Λ  is represented in MATLAB as lambda.  Also, as 
was discussed earlier, the Riccati matrices kK and 1kK +  are represented as knew and 

kold, respectively.
 Similarly s in mathematics is 
 

(33) 
[

  
the equation for the Riccati vector

[ ] [ ]kkkk BKBFBKAp Λ′+′+′−= −
++

1
11

( ) ] ( )KB′
 

kkkkkk wpcKApc ++′+++ ++++ 1111 λ
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and its on is 
 
  pnew=  
  -(a'*kold*b+f)*inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas)+... 

the 

n be placed in the storage arrays that 
ces and vectors for all time periods, i.e. 

 kstore(:,:,k) = knew(:,:); 
 pstore(1:n,k) = pnew; 

Now we are at the bottom of the backward loop and, as promised above, this loop 
is ended with a statement to decrease k by one and then to end the while loop. 
  

k = k-1; 
d; 

  
 No sooner do we finish to backward loop than it is time to start the forward loop 
with the statements. 
 

k = 0; 
xold = x0; 

ark; 
   lambdas = -lambda*utark; 

 

MATLAB representati

 
             a'*(kold*c+pold)+wsmall; 

 

Note that the ... notation is use in MATLAB to signal to the complier that the rest of 
equation continues on the following line. 
 Having now used kold and pold we need to transfer knew and pnew respectively 
to them for use in the next pass through the while loop.   This is done with  
 
  kold = knew;                %   Setup next period 
  pold = pnew; 

 
Then the Riccati matrix and vector for period k ca
hold these matri
 
 
 

 
 

en

sum = 0; 
 

while k <= t-1; 
    utark = (1.0075^k).*utar; 
    xtark = (1.0075^k).*xtar; 
 
    wsmall = -w*xt
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A tiali  a
th w

fter k is set to zero the state vector is ini zed using x0 nd then the desired paths for 
e states and controls are computed and used to calculate  and k kλ  which are 

presented in MATLAB as wsmall and lambdas.    Notice that the while loop this time 
ses a less than or equal to.   At the bottom of this forward while loop we find the 

statements 

k = k+1; 
end; 

 
that increment the k and provide the close for the while loop. 
 Now we are to the stage where we want to make use of the Riccati matrices and 
vectors which we computed and stored away in the backward loop.    

  kold(:,:) = kstore(:,:,k+1); 
  pold = pstore(1:n,k+1); 

 
The elements for the Riccati matrix are pulled from storage in kstore and the Riccati 
vector are pulled from pstore.   

Once the  matrix is available in kold it can be used in the computation of the 
feedback gain m , as described in Eq. (34) 

(34)  

re
u

 

 

kK
atrix, kG

 
[ ] [ ]AKBFBKBG kkkkk 1

1
1 +

−
+ ′+Λ′+′−=  

 
The MATLAB representation of this mathematical expression is 
 
   glarge = -inv(b'*kold*b+lambda')*(f'+b'*kold*a); 

Here again we see how closely the mathematical and MATLAB representations parallel 
one another and how much this aids the user in being sure that the mathematics of the 
solution procedure are correctly mimicked in the computer code. 
 Similarly the mathematical expression for the feedback gain vector is 
 
(35)  

 

[ ] ( )[ ]kkkkkk pcKBBKBg λ++′Λ′+′−= ++
−

+ 11
1

1  

 
and the MATLAB representation is 
 
  gsmall = -inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas); 
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 Once the feedback gain matrix and vector have been computed they can be used 
in the feedback rule (36) along with the state vector kx  to compute the control vector . 

 
   

 ku

 
(36)  kkkk gxGu +=  

uopt = glarge*xold + gsmall; 

 
 Finally, the system equation (37) is used along with kx  and ku  to compute 1kx +   

 
(37)  cBuAxx kkk ++=+1  

 
   xnew = a*xold + b*uopt + c; 
 

 Next we need to compute the portion of the cost terms in the criterion function 
that are incurred during period k.   This is done with the mathematical expression 
 

  ( ) ( ) ( ) ( )kkkkkkkkkk uuuuxxWxx ~~
2
1~~

2
1

−Λ′−+−′−  (38)

and the corresponding MATLAB expression 
 
  sum = sum + 0.5*(xold-xtark)'*w*(xold-xtark) + 0.5*(uopt-... 
      utark)'*lambda*(uopt-utark); 

 

The variable sum was set to zero at the top of the forward loop and is added to with each 
pass through the loop. 
 

Then the values of the state and control vectors are stored  
 
   x(1:n,k+1) = xold; 
   u(1:m,k+1 )= uopt; 

 
and xold is set to xnew for the next pass through the forward loop.  Also the k index is 
incremented. 
 
   xold = xnew; 
   k = k+1; 
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Then the forward loop is closed with the statement 
 

end; 

 
 One more small bit of clean up is required before we are through with the 
computations.  We need to store the last state vector and to add on the portion of the cost 
function for the terminal period.   This is done using a portion of the mathematics from 
Eq. (55), i.e. 
 

( ) ( )NNNNN xxWxx ~ˆ~
2
1

−′−  

These two steps are represented in MATLAB as 
 

x(1:n,t+1) = xold; 
utark = (1.0075^k).*utar; 
xtark = (1.0075^k).*xtar; 
sum = sum + 0.5*(xold-xtark)'*wn*(xold-xtark); 

 ted 

solution procedure and model.   While it is nice to learn to code a few lines at a time, it is 
not nice to view it that way after you have gained some familiarity with it.   Therefore 
Appendix 16A includes the complete listing of the MATLAB input file. 
  
 
6.  Experiments 
 
 The macroeconomic model used as an example here is delightfully small while 
you are learning how to represent and solve it in MATLAB, but after you have used it for 

 
The results for the optimal controls, states and criterion value are then prin

with the statements 
 

u = u';                 %   The optimal control vector 
u 
x = x';                 %   The optimal state vector 
x 
Criterion = sum         %   The value of the criterion function 

 
 In the preceding we have shown almost all the lines of the MATLAB code for this 
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a bit you will discover that it has sharp limitations.   Therefore, it is suggested that y
modify it according to your taste while you are experimenting with it. 
 One limitation is that the coefficients on th

ou 

e control variable are so small that 
there is

 

 not much latitude to alter the state variable paths.   
 
(52) 1 0.914 0.016 0.305 0.424 59.437k k k k kC C I G M+ = − + + −  
(53)    1 0.097 .424 0.101 1.459 184.766k k k k kI C I G M+ = + − + −  

The coefficients of kG  in Eqs. (52) and (53) are 0.305 and -0.101 respectively.    So you 

might want to increase the magnitude of these coefficients in order to make the model 
more responsive to fiscal policy.   Alternatively, if you want more clout for monetary 
policy you might increase the size of the coefficients on M . 

Also, some of you will not like the fact that government spending 'crowds out' 
investment, so you may want to change the coefficient on government expenditure in the 
investm nt equation from negative to positive. 
 Econometricians will be somewhat dismayed that we are suggesting that 
coefficients be altered since these are, after all, estimated from data and should not be 
changed willy-nilly.   While we agree that one should be careful about empirical work, 
the spirit here is to learn about the dynamic response of the model.   The estimation of 

is model on data from different time periods will indeed yield different parameter 
cification will also result in changes in the parameter 

alues.    So for purposes of this kind of experiment we would encourage the user to try 
some p d 

ese limitations, the model is reasonably good for becoming 
acquainted with the use of optimal control theory to determined macroeconomics 
policies.   For this purpose the user is encouraged to alter either the desired paths of states 
and controls or to alter the priorities  and 

e

th
estimates and small changes in spe
v

arameter modifications in order to see how that changes the optimal state an
control variables. 
 Aside from th

kW kΛ  to see how this affects the results.   For 

example, some users will want to assign high priority to consumption and others will 
prefer to do so for investment.    Some users will want to change the desired path for 
government expenditures so that it declines rather than rises and then provide a high 
priority weight in the (1,1) element in kΛ  to insure that this result is obtained.   Some 

sers will want to insure that the economy follows the desired paths in all periods and 
es only on the terminal period to be sure that 

the economy is in good shape just before the next election.   
 

u
others will want instead to use high prioriti
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7.  Fu

 or a general treatment of dynamic programming methods and their applications 
to economics see Sargent (1987) and Adda and Cooper (2003).  More advanced 
treatments can be found in Bertsekas (1995) and Stokey and Lucas (1989).  For detailed 
derivations of the QLP, CE and OLF procedures and for projection-updating 
mechanisms, see Kendrick (1981) (2002).    For a book on econometric and financial 
analysis with GAUSS, a language that is similar to MATLAB and which is widely used 
in econometrics, see Lin (2001). 
 

rther Readings 
 

F
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Appendix 16A 

MATLAB Representation of the Abel Model 
 

% Title: Quadratic-Linear Tracking problem for Abel 
% Program name: qlpabel.m 
  
% Based on the Chapter 4 of Stochastic Control for Economic Models 
% example by David Kendrick. 
% GAUSS version by Hans Amman, modified to MATLAB by Huber Salas 
% with subsequent changes by Miwa Hattori and David Kendrick 
% to implement a deterministic, 
% two-control version of the Abel (1975) model (Jan 2005) 
  
 Computes the optimal cost-to-go, control and state vectors. 

%   Preliminaries 

a = [0

x0 = [

      
w = [0

%
  
% 

% 
t = 7; n = 2; m = 2; 
  
  

.914 -0.016;  
    0.097  0.424]; 
b = [0.305 0.424;  
    -0.101 1.459]; 
c = [-59.437;   
    -184.766]; 

387.9;       
       85.3]; 
xtar = [387.9;   
       85.3]; 
utar = [110.4;  

 147.17]; 
.0625 0;   

         0  1]; 
wn = [6.25 0;   
       0 100]; 
f = [0 0;    
     0 0]; 
lambda = [1    0;  
          0 0.444]; 
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% storage for dynamic Riccati vectors 
  
u = zeros(m,t+1); 
x = zeros(n,t+1); 
  
kstore(:,:,t) = kold(:,:); 
pstore(1:n,t) = pold; 
  
  
k = t-1; 
while k >= 1; 

 
 xtark = (1.0075^k).*xtar; 
  wsmall = -w*xtark; 
  lambdas = -lambda*utark; 
  
  knew = a'*kold*a+w- 
 (a'*kold*b+f)*inv(b'*kold*b+lambda')*(f'+b'*kold*a); 
                            %   Computing the Riccati matrices 
  pnew = 
   -(a'*kold*b+f)*inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas)+... 
             a'*(kold*c+pold)+wsmall; 
                           %   Computing the tracking equation 

  pold = pnew; 
  kstore(:,:,k) = knew(:,:); 
  pstore(1:n,k) = pnew; 
  k = k-1; 
end;                        %   End of the Riccati loop 
  
  

% 
%   The Riccati Loop 
% 
kold = wn;                    %   Boundary condition 
pold = -wn*xtar*(1.0075)^t;   %   Boundary condition 
  
kstore = zeros(n,n,t);      % storage for dynamic Riccati matrices 
pstore = zeros(n,t);        

  utark = (1.0075^k).*utar;   %   Time dependent targets
 

 
  
  kold = knew;                %   Setup next period 
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% 
%   The Forward loop 
% 
k = 0; 
xold = x0; 
sum = 0; 
  
while k <= t-1; 
  utark = (1.0075^k).*utar; 
  xtark = (1.0075^k).*xtar; 
  
  wsmall = -w*xtark;
  lamb

')*(f'+b'*kold*a); 
  gsmall = -inv(b'*kold*b+lambda')*(b'*(kold*c+pold)+lambdas); 
   
  uopt = glarge*xold+gsmall; 
  xnew = a*xold+b*uopt+c; 
  sum = sum+0.5*(xold-xtark)'*w*(xold-xtark) 

     +0.5*(uopt-utark)'*lambda*(uopt-utark); 
   
  x(1:n,k+1) = xold; 
  u(1:m,k+1) = uopt; 
  xold = xnew; 
  k = k+1; 
  

of the forward loop 
 
  
% 
%   The Last Period 
% 
x(1:n,t+1) = xold; 
utark = (1.0075^k).*utar; 
xtark = (1.0075^k).*xtar; 
sum = sum+0.5*(xold-xtark)'*wn*(xold-xtark); 
  

 
das = -lambda*utark; 

  
  kold(:,:) = kstore(:,:,k+1); 
  pold = pstore(1:n,k+1); 
   
  glarge = -inv(b'*kold*b+lambda

end;                        %   End 
 

 386



Chapter 16 Dynamic Optimization in MATLAB 

% 
%   Print the solution 
% 
u = u';                       %   The optimal control vector 
u 
  
x = x';                       %   The optimal state vector 
x  
  
Criterion = sum               %   The value of the criterion function 
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Special Topic: Stochastic Control 
 
 

This third part of the book is different than the first two.   The first two parts 
covered a wide variety of topics in a way that provides an introduction to the 
comput

 

 
99d)).  

w-entry cost way to begin work in this field.   However, the Duali software 
represe

e.  In 
f 

 

nclude 
al 
 

ith care since it can cause one to 
lose not only Duali input files but also input files for other applications that are running 
concurrently with Duali.     

On the other hand, this software has been used successfully by many 
undergraduate and graduate students in classes at the University of Texas and has 
provided an easy “on ramp” for many students into the field of stochastic control.   In 
addition, it has been used by a number of graduate students in developing some parts of 
their Ph.D. dissertation research.  Therefore, we suggest that if you decide to move 
forward into this part of the book the gains may be substantial, but you should proceed 
with considerable caution.    

ational methods used in those fields.   In contrast, this part zeroes in on a narrow 
area of computational economic research that is of particular interest to us.   The area is
the application of stochastic control theory methods to macroeconomic stabilization 
models.   In the past we have done three kinds of work in this area: analytical (viz. 
Mercado (2004)), computational with the MATLAB software (viz. Amman and Kendrick
(2003)) and computational with the Duali software (viz Amman and Kendrick (19
Here we focus on the third of these three types of research since the Duali software 
provides a lo

nts a sharp contrast to the software used in the first two parts of this book.  The 
software systems used earlier in the book are all high quality commercial softwar
contrast, the Duali software is experimental software that is under development by two o
us (Amman and Kendrick). 

The Duali software is intended to provide a point and click interface for a
stochastic control program that can be used to solve models with a quadratic tracking 
criterion function, linear systems equations and stochastic specifications that may i
additive and multiplicative noise terms, measurement errors and uncertainty about initi
conditions.  It is not a commercial product and has not had the extensive testing that is a
part of such products.   Rather it is an academic piece of software for which there is no 
support staff or help line.  Also, the software has not yet even reached the “beta” stage 
and thus is prone to crashes.  It therefore must be used w

389 



Part III   Special Topic: Stochastic Control 

If you choose to go forward, it is best to begin by making use of the User’s Guide 
for the Duali software which can be found by going to the book web site at 

 
http://www.eco.utexas.edu/compeco
 

and proceeding to the Software section of the web site.   The User’s Guide will introduce 
you to the capabilities of Duali and take you through the steps to setup and solve a simple 
macroeconomic model.   Once you have done that, the material in this third part of the 
book will follow logically. 
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Chapter 17 

Stochastic Control in Duali39

 
In an earlier chapter we presented the Hall and Taylor macroeconomic model, a 

standard nonlinear dynamic model for an open economy with flexible exchange rates.  
There we represented and simulated the model in GAMS, and we also introduced a basic 
form of optimal policy analysis.  Working with the same model, in this chapter we will 
take some steps forward in the realm of policy analysis providing an introduction to the 
field of stochastic control.  

A stochastic control problem can be posed as one in which a policymaker, 
manipulating a set of control variables, tries to influence the dynamics of an economic 

stem in order to achieve some targets.  For example, in a macroeconomic setting, the 
 policy variables such as the money stock or 

government expenditure - to influence the behavior of the economy in order to maintain 
some ta

el is usually represented in state-space form, that is, as 
a first-order system of dynamic equations.  The policymaker has an objective function - 
usually a quadratic one - which specifies the target variables, the desired paths and the 
relative weights put on the achievement of each target. 

The solution of deterministic and stochastic control problems quickly becomes 
very involved. Thus, to make our task feasible, we have to rely on computational 
methods and specialized software.  Duali40 is software that can receive as inputs the 
desired paths and corresponding weights for target and policy variables and the state-
space representation of the economic model.   It can then be used to generate simulation 
results and to compute the optimal policy rule and the implied solution paths for policy 
and target variables using the methods described earlier in the chapter on Dynamic 

                                                

sy
policymaker may use some controls -

rget variables such as unemployment and inflation as close as possible to their 
desired paths.  The economic mod

 
39 This Chapter draws extensively on both the verbal and mathematical development in Mercado and 

Kendrick (1999).  Kluwer Academic Publishers have kindly granted us permission to reuse here substantial 

aterials from our previously published paper.  

ken when doing the experiments in this 

book wh h use Duali.  If you have not already read about the Duali software in the introduction to this part 

of the book, please go back and do so. 

m
40 See Amman and Kendrick (1999a).  Special care should be ta

ic
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Optimization.  In what follows, we will use Duali to perform first deterministic
stochastic control experiments with the state-space representation of Hall and Taylor’
model. 

 and then 
s 

 
1. The Hall and Taylor Model in State-Space Form 
   
 Much undergraduate study of macroeconomics makes use of dynamic nonlinear 
models in levels; for example the levels of government expenditure and the money 
supply are used to determine the levels of consumption, investment, output, interest rates 
and net exports.   In contrast, much empirical macroeconomic research centers on 
dynamic linear models in percentage deviations of variables from their steady state 
values.   In these empirical models one alters the percent deviation of government 

oney supply from their steady state levels and analyzes the 
rates and net exports 

o types of models is 

expenditures and the m
resulting deviations of consumption, investment, output, interest 
from their steady state levels.   However, the bridge between these tw
frequently not clear. 
 Therefore, for this chapter we have begun with the dynamic nonlinear Hall and 
Taylor model in levels that we used with GAMS earlier in the book and have transformed 
it into a linearized model in percentage deviations of variables from their steady state 
values in a similar fashion to the approach we used in the chapter that includes the 
Johansen type CGE model.  Also, we will use here a four-equation linear version of the 
original Hall and Taylor twelve-equation nonlinear model which will capture the 
essential behavior of the original model.  Thus, our four-equation model’s variables will 
be 
 

Endogenous Variables 
*Y        =  GDP                                                         
*R        =  Real Interest Rate                                    

*plev   =  Domestic Price Level 

ominal Exchange
 

Policy Variables                                                   

*E        =  N  Rate  

*M        =  Money Stock                                       
        =  Government Expenditure                     *G
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Exogenous Variables 
*plevw     =  Foreign Price Level 

         =  Potential GDP 
 
The asterisks indicate “percent deviations”, for example,  is the percent deviation of 
output from its steady state value.  This variable structure is one of the most common 
ways in which textbook macroeconomic models are presented.  To transform the original 
twelve-equation nonlinear model we first collapsed it, by equation substitution, into a 
four-equation version.  We then linearized these equations and represented the resulting 
model in matrix form.  Next we solved the model for its reduced form representation, 
obtaining a third-order system of difference equations.  Finally, we reduced that system 
to a first-order system, that is, to its state-space form.  Details on these transformations 
are provided in Appendix E. 
 

k

*YN

*Y

The model’s state-space representation is 
    
(1)  1k k kx Ax Bu Cz+ = + +  

 
where s an augmented state vector defined as 
 

x i

X
x XL

XLL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

where  
*

*

*

*

Y
R

X
plev

E

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and where XL and XLL are equal to the vector X lagged once and twice respectively. We 
define the x vector in this way by augmenting the original state vector w

 order to reduce the linearized model from a third-order representation to a first-order 
he exogenous 

variables vector are defined as  
 

ith lagged values 
in
representation (see Kendrick (2002), Ch. 2).  The control vector and t
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*

*

M
u

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

     
*

*

YN
z

plevw
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

. 
 

Also, the parameter matrices in the system equations are 
 

 
0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0
0

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0

A

− −

− −

− −

− −

=

0 0 0 0 0 0 1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

           

 

0.346 0 0.606 0 0 0 0.087 0 0 0 0.087 0
7.811 0 13.669 0 0 0 1.953 0 0 0 1.953 0
0.8 0 1.4 0 0 0 0.2 0 0 0 0.2 0

1.154 0 2.019 0 0 0 0.288 0 0 0 0.288 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0⎢
⎢ ⎥

0.433 0.231
9.763 4.386

0 0
2.442 1.097

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

B

−

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.346 0
7.811 0
0.800 0
1.154 1

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

C

−

−

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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where each of these matrices values is derived from the corresponding combination of 
parame r values in the original twelve-equation nonlinear Hall and Taylor model.   See 
Append

In an earlier chapter we used GAMS to study the responses of Hall and Taylor’s 
model to changes in the policy variables. Optimal policy analysis employs a sort of 
“reverse” analysis. It begins by posing this question: how should policy variables be set 
in order for the target variables to follow pre-specified paths?  

The most popular way of stating this problem is as a Quadratic Linear Problem 
(QLP). We have already introduced this type of problem in the Thrift Model chapter and 
the Dynamic Optimization chapter.  In formal terms, we express our problem here as one 
of finding the controls  to minimize a quadratic “tracking” criterion function J of the 

rm:  

(2)

te
ix E for these derivations. 

 
2. Introduction to Optimal Policy Analysis Methods with Duali 

 

( )u t
N
=0

fo
 

 ( )1' ' 'N

kJ x x W x x x x W x x u u u u
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − − + − Λ − ⎦∑  
02 2N N N N N k k k k k k k k k

k=
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

 

subject to the state-state representation of the economic model given by Eq. (1), where 

1 1

x and u  are desired paths for the state and controls variables respectively and W and Λ  

are weighting matrices for states and controls respectively.   

The quadratic nature of the criterion function implies that deviations above and 
elow target are penalized equally, and that large deviations are more than proportionally 

criterion function is not 
e only possible one, but is the most popular.41

s 

b
penalized relative to small deviations.  This particular form of the 
th

For simplicity in the following we will drop the asterisk from the variables.  Thu
we will use , ,Y R plev  and E  instead of *Y , *R , *plev  and *E  to indicate the state 

variables.  However, we are referring to the variables as percent deviations rather than as 
levels. 

                                                 
41 For a discussion of the properties of different criterion functions, see Blanchard and Fischer (1989), 

Chapter 11. 
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We will assume that the policy goal is to stabilize Y, R, plev and E around steady-
state values (that is, around zero).  High and equal weights42 will be put on stabilizing Y
and plev, lower and equal weights on R and E, and even lower and equal weights on the

 
 

olicy variables M and G.  Neither the desired paths nor the weighting matrices (shown 
elow)

                  

0
0

W

⎥

⎢ ⎥=

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     

p
b  will vary with time.   

 
100

50
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥100

50⎢ ⎥
⎢ ⎥

0⎢
⎢ ⎥

0
0

0
0

0

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

25
25⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Λ  

 
Let’s assume, for example, that the economy is going through a recession 

provoked by a temporary adverse shock to net exports that causes Y to be 4% below its 
steady-state value.  Given the weight structure adopted above, what would be the optimal 
paths for government expenditure (G) and the money supply (M) in order to bring the 
economy back to its steady-state?  How do the optimal paths for the state variables 
compare against what would be the autonomous response of the system to that kind of 
shock?  To answer these questions, we perform two experiments: (1) an experiment to 
obtain the optimal paths and (2) an experiment to get the autonomous response of the 

                                                 
42 There is a conceptual difference between the weights used here and those that arises when the variables 

of interest are in levels rather than in percent deviations and also where the variables are expressed in 

different units of measurement. For instance,  if GDP is measured in dollars and prices are measured by an 

arbitrary price index,  equal weights on these two variables will probably imply different policy priorities 

d vice versa. Since all variables in the state-space representation of Hall and Taylor’s model are in 

percent deviations from steady-state, weighs and priorities can be considered as equivalent within certain 

limits. However, it should be clear that, for example, an interest rate 50% below steady-state values is 

something feasible, while a level of GDP 50% below steady-state is not. In such a case, there is not an 

analogy between weights and priorities. See Park (1997).   

an
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economy.  To run this simulation, use program ht-01.dui making the appropriate 
changes. (See the “Model Description” item in the “Specification” menu in Duali once 
the ht-01.dui file is opened in the application.) 

To perform the first experiment in Duali, we have to set the problem as a 
deterministic one, set all the desired paths for states and controls equal to zero, impose 

 corresponding weights on states and controls, set an initial value for Y equal to -0.0
and solve the problem.  Let’s see in more detail how to do this. 

Below is the initial screen of the Duali software.  The File and Edit menus are 
standard.  The Specification and Data menus contain sub-menus related to the structure of 
the problem to be solved.  The Solve menu presents options for different solution 
methods and the Results menu enables one to display the tables and graphs of the results.  
The Transformations menu contains several options to change the original structure of the 
problem enu contains options related to the format of the display 
of resu

the 4, 

, and the Preferences m
lts and to some specific types of experiments.  
 

 
 
Figure 17.1 Duali Main Window 
 

We begin by opening the ht-01.dui file using the File menu.  Then select 
Specification:Stochastic Terms and notice that the problem is set as deterministic, as 
shown in Fig. 17. 2. 

 
 
Figure 17.2 Stochastic Terms Dialog Box 

 

 397
 



Chapter 17   Stochastic Control in Duali 

Then, from the Specification:Functional Form option we obtain the dialog box 
shown below. 

 

 
 

 
In Fig. 17. 3 look at the Criterion side of the dialog box and at the Form section in 

that side.  There one can see that the problem is a Quadratic-Tracking problem.  In fact, 
we will try to minimize deviations of target variables from zero, since the model 
variables are already expressed in percent deviations from steady-state values.  The W 
State Priority and Lambda Control Priority sections show that the weights on state and 
control variables will be constant, that is, the same value for all periods.  Desired state 
and control variables will also be constant (all zeroes).  The right hand side of the dialog 
box shows the specification for the System Equations.  In particular, the Form section 
shows that the problem is written in (1) regular form, that is the standard state-space 
representation, (2) it does not contain forward variables (as will be the case of models 
with rational expectations discussed later) and (3) the policy variables do not affect the 

odel parameters in this particular model.  Finally, the exogenous variables remain 

rom the Data:Size menu we obtain the dialog box below. 

Figure 17.3 Form Specifications Dialog Box 

m
constant over the time periods. 

F
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Figure 17.4 Model Size Dialog Box 

  
The model is specified as containing twelve state variables (actually, four 

poraneous and eight lagged), two control variables and two exogenous variables

e assignment of labels to the model 
variables an

 

ts on the state 
variables, very high and equal weights on the controls and, as in the first experiment 
above, set an initial value for Y equal to -0.04.  This has the effect of leaving the state 
variables free to take on any values while restricting the policy variables not to deviate 
from their steady state values. 

contem , 
and the simulation covers sixteen periods. 

cronyms menu option contains thThe Data:A
d to the time periods.  The Data:Equations section contains the numerical 

values for matrices A, B, C and for the initial state variable values while the 
Data:Criterion section contains the values for the W and Λ weighting matrices and the 
desired paths values for state and control variables.  

Choosing the menu option Solve:QLP the problem is solved as a Quadratic Linear 
Problem using the solution procedure described in the chapter on Dynamic Optimization.  
The numerical results are then displayed automatically.  The Results menu options allow
us to define different display, plotting and printing options.   

The results of this experiment to obtain the optimal states are shown in Figure 
17.5.  Also, the graphs in that figure show the autonomous state and control paths.  In 
order to obtain the autonomous path of the system we impose zero weigh
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The vertical axes in Fig. 17. 5 show the percent deviations from steady-state 
values while the horizontal axes show the time periods.  In these plots a value of 0.02 
means “2% above steady-state”.  It does not mean “2% increase with respect to the 
previous period”.  Thus, a 10% permanent increase in eans that the money stock is 
increased by 0.1 at th stant ne l from then on.  
Since all variables (endogenous, policy and exogenous) are in percent deviations, their 
steady-state values are all zeroes. 

M m
e initial period and kept con at the w leve

 
GD P  (Y) real interest  rate (R )
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Figure 17.5 Autonomous Response vs. Optimal Control Experiments     

 
The optimal solution paths for the states outperform the autonomous responses of 

the system for all four target variables.  This comes as no surprise, though it may not 
always be the case.  Indeed, remember that the optimal solutions are obtained from the 
minimization of an overall loss function.  On some occasions, depending on the weight 
structure, it may be better to not do as well as the autonomous response for some targets 
in order to obtain more valuable gains from others.  
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Why does the autonomous path of the economy display the observed behavior? 
Here is how Hall and Taylor explain it: 43

“With real GDP below potential GDP after the drop in net exports, the price level 
ill begin to fall. Firms will have found that the demand for their products has fallen off 

 cut their prices (...).  The lower price level causes the interest rate to 
ll.44 With a lower interest rate, investment spending and net exports will increase.45 The 
creas

 

 

e 

w
and they will start to
fa
in e in investment and net exports will tend to offset the original decline in net 
exports.  This process of gradual price adjustment will continue as long as real GDP is
below potential GDP.”  

What explains the observed optimal path of the four variables of interest?  We can
see in Fig. 17. 5 that Y is brought up very quickly, going from 4% below steady-state to 
3% above steady-state and then decays slowly to its steady-state value.  This performanc
could be attributed to the more than 6% increase in G that can be observed in the optimal 
policy variables’ paths (Figure 17.6).   

 
Optimal M  and G

0.05
0.06
0.07

-0.02
-0.01

0
0.01
0.02
0.03
0.04

0 2 4 6 8 10 12 14

Optimal M Optimal G

 
 
Figure 17.6 Optimal Policy Variables Paths 

. 17. 5, R experiences almost no variation when compared to the 
big drop of almost 35% implied by the autonomous behavior of the system.  Once again, 
the incr

 
Meanwhile in Fig

ease in G puts an upward pressure on the interest rate, thus keeping it from 

                                                 
43 Hall and Taylor (1997), page 232.  
44 Since less money is demanded by people for transactions purposes.  
45 Since the price level  falls much less than the real interest rate during the first periods of the adjustm

the nominal exchange rate has to fall too, as can be derived from equation 9 in the original Hall and 

Taylor’s model. This implies that the real exchange rate will fall, then causing net exports (see equation 10) 

ent, 

to rise.  
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falling.  Finally, the nominal exchange rate has to go up to compensate for the fall in
prices, given that the real interest rate does not change much.

 
 

 we put the same weights on both variables, 
govern ts 

ables that 
the pol  

depict the trade-off between the standard deviations of Y and plev in Hall and Taylor’s 
model when, as above, Y is shocked by a negative 4% in period zero.  To obtain the 
corresponding policy frontier, we have to vary the relative weights on Y and plev, 
perform one simulation for each weight combination and compute the corresponding 
standard deviations.  The results of six such experiments, keeping the same weights on 
the remaining states and controls as in the above simulation, are shown in Table 17.1 and 
Figure 17.7. 

 

 
Table 17.1 Optimal Policy Frontier 
 

                                                

We can also see in Fig. 17. 6 that monetary policy plays a minor role when 
compared to fiscal policy.46  Even though

ment expenditure appears to be more effective in bringing the economy out of i
recession given the weight structure we put on the target variables. 

It is interesting to analyze the different combinations of behavior of vari
icy maker can achieve given a model and a criterion function.  The curve showing

those combinations is known as the policy frontier.47  For instance, we may want to 

 
46 Notice that the optimal values for the policy variables are computed for periods 0 to 14 only. Given that 

we are working with a state-space representation of the model, policy variables can only influence the next 

period state variables. That is, the controls at period 0 are chosen, with a feedback-rule,  as a function of 

period 0 states, but they determine  period 1 states, and so on. See Kendrick (1981). 
47 See Hall and Taylor (1997), Chapter 17. 

Experiment Weight on Y Weigh on plev STD Y STD plev 

1 100 0 0.0479 0.0500 

2 80 20 0.0489 0.0466 

3 60 40 0.0499 0.0440 

4 40 60 0.0509 0.0419 

5 20 80 0.0520 0.0401 

6 0 100 0.0531 0.0386 
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          Policy Frontier for Y and plev
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Figure 17.7 Optimal Policy Frontier Graph 

 
The policy frontier for Y and plev is clearly shown in the graph above, where each 

diamond represents the result of an experiment.  The higher the weight on Y relative to 
that of plev, the lower its standard deviation, and vice versa.  The flatness of the curve 
indicates that it is easier to achieve a reduction in the percent deviation from target fo
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plev than for Y.  Of course, shape and location of this particular policy frontier are
conditional on the weight structure imposed on the model’s other variables.  For exam
if we increase the weigh on the policy variables, the policy frontier will shift up and to 
the right, farther away from the origin (the (0,0) point of zero deviations for Y and plev).  
This will be due to the more restricted possibilities for actively using the policy variables 
to reach the targets for Y and plev.   
 
 
3.  Stochastic Control 
 
 We will now begin to take uncertainty into account.  Indeed, macroeconomic 
models are only empirical approximations to reality.  Thus, we want to consider that there
are random shocks hitting the economy every time period (additive uncertainty),  that th
model parameters are just estimated values with associates variances and covariances  
(multiplicative uncertainty),  and that the actual values of the model’s variables and initial 
conditions are never known with certainty  (measurement error). 48

                                                 
48 See Kendrick (1981).  
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 Stochastic control methods artificially generate a dynamic stochastic environment 
through random shocks generation.  They use specific procedures for choosing the 
optima ere is 

 
specific mechanisms of updating of parameter estimates.  In that way, these methods 

perform sophisticated simulations.  
In this section, we will perform experiments incorporating some forms of additive 

and multiplicative uncertainty into Hall and Taylor’s model.  We will proceed in three 
  First, we will analyze the differences in qualitative behavior of the policy variables 

e different procedures for choosing their optimal values are used (specifically, 
rsus OLF /o upd te).  Second, we will compare the quantitative performances of 
 and OLF proced res within artificially generated stochastic environments 

including passive learning mechanisms.  Finally, we will compute an optimal policy 
r.      

o William Brainard (1969) showed that, for a static model, the existence 
of parameter uncertainty causes the optimal policy variable to be used in a more 
conservative way as compared to the case of no parameter uncertainty.   However, this 
finding cannot be translated to the case of dynamic models.  The existence of dynamics 
makes the ore complex and opens new possibilities for policy 
managem of the earliest applications of an OLF procedure in a dynamic setting 
was by Tinsley, Craine and Havenner (1974).   Some analytical results have been 
provided by Chow (1973), Turnovsky (1975), Shupp (1976), Craine (1979) and more 
recently by Mercado and Kendrick (2000) and Mercado (2004) in connection with the 
qualitative behavior of the policy variables when the OLF procedure is used in a model 

ith one state and one or two controls.  There are no straightforward theoretical results 
ntrols.  

As shown  earlier in the chapter on Dynamic Optimization, the procedure for 
 controls in the presence of parameter uncertainty (OLF) differs from the 

st r Q t lent” (CE) in that in the first 
ase the variances and covariances associated with the model parameters have to be taken 

l values for each period policy variables: Certainty Equivalence (CE) when th
additive uncertainty only, Open Loop Feedback (OLF) when there is parameter 
uncertainty, and DUAL (adaptive control) when there is active learning.  Also there are

allow us to 

steps.
when som
CE ve w a
the CE u

frontie
Years ag

 situation much m
ent.   One 

w
for the case of models with several states and co

choosing the
andard dete ministic LP procedure or its “certain y equiva

c
into account.  
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To illustrate some possible outcomes, and to show a first contrast between 
patterns of behavior generated by QLP and OLF w/o update procedures49, we will 
perform an experiment with Hall and Taylor’s model.  As in the previous section, we will
assume that Y is 4% below its steady-state value at time zero and we will keep the same 
weight structure and desired paths.  We will also assume that there is uncertainty in 
connection with six out of the eight control parameters in the B matrix, and that the 
standard deviation of each of these parameters is equal to 20%.  

To carry out the experiment, we use the program ht-02.dui.  This program is 
basically the same as ht-01.dui, with some changes that we discuss below.   From th
Specification:Stochastic Terms option we see that the problem is set a wi

 

e 
s stochastic th 

aramep ter uncertainty. 
  

 
 
Figure 17.8 Stochastic Terms Dialog Box 

 
Then, from the Data:Size option, we see that we defined 6 uncertain parameters 

and use 1 Monte Carlo run, as shown in the dialog box below. 
 
 
 

                                                 
49 For a detailed discussion of the OLF without update procedure see Ch. 5 “Open Loop Feedback without 

Update” in Amman and Kendrick (1999a). 
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Figure 17.9 Model Size Dialog Box 

 
From the Specification:Source of Random Terms main menu option, we select the 

Read In  option, as shown below. 
 

 
 
Figure 17.10 Source of Random Terms Dialog Box 
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However, we set those random terms all equal to zero.  To do so, we go to the 
Data:Additive Noise Terms main menu option and, as shown below, select the XSIS
option. 

 

 

 
 

 17.11 Stochastic Elements Additive Noises Dialog Box 
  

hen doing so, a dialog box containing the matrix of additive noise terms will display, 

ion related to the uncertain parameter is provided in Duali by means 
f one vector and two matrices.  The theta vector of the initial values of uncertain 

tains the uncertain parameters values.   The matrix that indicates 
hich parameters in the model are treated as uncertain (ITHN) provides a mapping from 

the position in the TH0 vector to position in the system equations matrices.   The first 
ector) 
eter 

in the matrix.   Finally, SITT0 is the variance-covariance matrix corresponding to the 
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W
and we will see that all its element are set to zero. 

The informat
o
parameters (TH0) con
w

column indicates the matrix  (0 for the A matrix, 1 for the B matrix and 2 for the c v
and the second and third columns indicate the row and column number of the param

uncertain parameters. 
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SITT0

0 00749
0 00213

3 81264
076947

0 23853
0 04813⎣

⎢
⎢
⎢
⎢ ⎦

⎥
⎥
⎥
⎥

.
.

  
All three matrices will remain constant during the simulation.  The elements in SITT
computed by taking 20% of the corresponding element in TH0 and then squaring  the 
result. Thus, for the b

=

⎡
⎢
⎢
⎢
⎢

⎤
⎥
⎥
⎥
⎥

.
.

.
.

, 

 

0 are 

 
[(0.2) (0.433)]2 = 0.00749. 

 

r matrix 

 
 

11 coefficient this is  

From the Data:Parameter Uncertainty menu option we obtain the dialog box 
hen selecting each of the first three options, the corresponding vector obelow.   W

will be displayed. 

 
 
Figure 17.12 Stochastic Elements Uncertain Parameters Dialog Box 

 
The graphs below in Figure 17.13 show the results obtained for government 

expenditure and for the money supply when selecting the main menu option  Solve: OLF 
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(w/o update).  They also contrast these results with those corresponding to the 
eterministic (QLP) solution as obtained in section 2 of this chapter using the program d
ht-01.dui. 
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 Figure 17.13 Optim
 

al Policy Variables Paths (QLP vs. OLF w/o update) 

s can be seen in the graphs above, the use of government expenditure is slightly more 
“cautio

e money supply, which is used “more aggressively” with OLF w/o update.  Thus, we 
how going from a univariate to a multivariate setting may have important 

consequences, as is also the case of a change from static to dynamic models. 
t is interesting to explore the f increasing the level of uncertainty 

 parameter’s corresponding to one of the policy variables.  For example, let’s 
hat we now doub  the standard deviation of the parameters corresponding to 
ent expenditure (parameters b1 from 0.00213 to 0.00853, b22 from 0.76947 to 
and b42 from 0.04813 to 0.19254 while leaving the other elements of SITT0 
ed) i.e. in reasing the variance of these three parameters that are associated with 

government expenditures from 20% to 40%. Then, the SITT0 matrix becomes:    
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⎤
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⎥
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⎥
⎥
⎥
⎥

.
.

.
.

.
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A
us” with the OLF w/o update procedure in the first few periods.  This is in line 

with the Brainard result mentioned before.  However, the reverse is true for the case of 
th
can see 

I consequences o
of the model
assume t le
governm 2 

3.07791 
unchang c

SITT0

0 00749
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0 23853
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⎢
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⎢
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The graphs below contrast the behavior of the policy variables for this experiment 

(named OLF w/o update-B) against their behavior shown by the same variables in the 
experiment analyzed above (named, as above, OLF w/o update).  To run this experiment, 
use file ht-02.dui, introducing the corresponding changes in the SITT0 matrix. 
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Figure 17.14 Optimal Policy Variables Paths (Increased Uncertainty) 

 
As one could expect, the increase in the relative uncertainty of government 

expenditure parameters induces a more cautious use of that policy variable, at least 
the first periods.  At the same time the money supply, now with a relatively lower 

associated uncertainty, is used more actively, also during the first periods.  Though these 
findings seem plausible, they do not reflect any theoretical result, since such results are 
not yet available.  As with the previous experiment, we could perhaps find different 

 
4. Stochastic Control with Parameter Updating 
 

We will now move towards a more complex stochastic environment.  As in the 
previous section, we will assume that that some of the model parameters are uncertain, 
but now we will also assume that the model is constantly shocked by additive noise, that 
the true model is not known to the policy maker, and also that a passive-learning process 
takes place.  We will perform several Monte Carlo runs to contrast the performance of 
two procedures: CE and OLF. 

during 

results for a different model. 
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 The general structure of each Monte Carlo run will be as follows.  At time zero, a 
vector of model parameters will be drawn from a normal distribution whose mean and 
variances are those of matrices TH0 and SITT0.  Then, at each time “t”, we will have: 

 1) random generation of a vector of an additive shocks 
 2) computation of the optimal controls for periods k to N (terminal period) 

3) propagation of the system one period forward (from period k to period k+1)                                     
applying the vector of controls (for period k only) computed in step 2. 

4) updating of the next period parameter estimates (both means and  
     variance-covariance elements) 
 
For choosing the optimal control at each period (step 2) we will use either a 

Certainty Equivalence (CE) procedure or, alternatively, an Open Loop Feedback 
procedure (OLF).  For the projection-updating mechanism (step 4) we will use a Kalman 
filter.   

Thus, each Monte Carlo run begins with a vector of parameter estimates that is 
different from their “true” value.  Using this parameter vector, the policy maker computes 
(with a CE or an OLF procedure) the optimal values of the controls, and then she applies 
those values corresponding to time k only.  However, the response of the economic 

ment from time k to time k+1) will be gene d by the 
computer using the “true” parameter values which are unknown to the policy maker.  
Then, at period k+1 a new observation is made of the state vector, which is used to 
compute updated parameter estimates with a Kalman filter.  After a number of time 
eriods, the sequence of updated estimates should begin to converge to their “true” value. 

As in the previous section, we will assume that there is uncertainty in connection 
with six of the control parameters in the B matrix, and that the standard deviation of each 
of these parameters is equal to 20%.  Then, matrices TH0, SITT0 and ITHN will be the 

ll also assume that GDP (Y) and the price level (plev) are hit by 
additive shocks with 2% standard deviation, while the real interest rate (R) and the 
nominal exchange rate (E) experience shocks with 5% standard deviation.  Thus, the 
variance-covariance matrix of additive noises (Q), will be as follows:50

 
                                                

 

system (its forward move rate

p

same as in Eq (3).  We wi

 
50 We want the shocks to affect contemporaneous variables only, and not their lagged values. However, if 

we set to zero the elements of the Q matrix corresponding to lagged variables, Duali will give us an error 

message. That is why we set those elements equal to the minimum possible value (0.000000001). 
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ll perform 100 Monte Carlo runs to compare the performance of the CE 
procedure against the OLF procedure.  To do so, we will use the file ht-03.dui.  This 
file is s ilar to the ht-02.dui file used in the previous sections, with some 
modifications.   If we select the Data:Additive Noise Terms:Additive Noise Covariance 
menu o
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We wi

im

ptions we will see the Q matrix shown above.  In the Specification:Data:Size 
menu option we have to specify the number of Monte Carlo runs.  That option is set to 3.
It may be better to make a first run like this with a small number of Monte Carlo runs to 
gain familiarity with the procedure.  However, to perform a more serious experiment, we
set it equal to 100.  Be aware that this may take some minutes to run, depending on the 
computer.   Then, in the Specification:Source of Random Terms option, we check the 
options (1) Generate Internally, (2) Uncertain Parameters and (3) System Equations as 
shown in the dialog box below. 
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Figure 17.15 Source of Random Terms Dia

 
log Box 

We then chose the Solve:Compare Print option, obtaining a dialog box like the 
one shown below where we see that the options CE and OLF have been selected. 

 

 
 
Figure 17.16 Method Dialog Box 

 
 to provide a debug file name.   After doing 

, a dialog box like the one shown below will be displayed.  
When we click OK, we will be asked

so
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Figure 17.17 Debug Print Options Dialog Box 

 
In this dialog box we have many options to build a very detailed solution report 

with summary, intermediate and final results, among other things.  We just check the 
“Only results summary” option, leaving all the others blank and then click OK.  Duali 
will start solving the problem.   In the meantime, two dialog boxes named Method Count 
nd Average Criterion Values will be displayed.  We click OK for each of them.  Finally, 

 will be stored in the file we specified as the debug 
rint file.  It is best to exit from Duali before examining the results file in an editor.  

When doing Monte Carlo runs in Duali it is important to look for the results in the debug 
print file and not in the Display results on line since the Display numbers are only for the 
last Monte Carlo run and not for the averages across all the runs. 

a
once the run is completed, the results
p
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The results in the debug print file corresponding to our 100 Monte Carlo runs are 
shown in Table 17.2. 
 

lence, 
not only in connection with the average criterion value, but also in terms of the number of 
Monte Carlo runs with the lowest criterion.  As can be appreciated in the graph below, 
where each diamond represents the value of the criterion function for one Monte Carlo 
run, most of the diamonds are close to the 45 degree line, indicating a similar 
performance for both procedures.  There are no significant outliers that could be 
introducing a bias in the computed average criterion values.  

 

 CE OLF 
Average Criterion Value 5.60 5.59 
Runs with Lowest Criterion 47 53 

 
Table 17.2 Monte Carlo Results 
  
The Open Loop Feedback procedure does slightly better than the Certainty Equiva

  Scatter Diagram Value of Criterion       Function 
-  CE versus OLF
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Figure 17.18 Scatter Diagram Value of Criterion Function 

 
These results are against what one would intuitively expect, since in the presence 

of parameter uncertainty OLF might be expected to do not only slightly but significantly 
better than CE.  However, we have to mention that there are no theoretical results yet 
developed in connection with the relative performance of CE versus OLF.  The 
experimental results are conditioned on the model structure, its parameter mean and 
variance values, and may well change (in any direction) in a different context.  For 
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example, working with a different model Amman and Kendrick (1999d) find OLF results 
that are substantially better than the CE results.  Also, Lee (1998) obtains similar results 

 a substantially larger model. 
 
5. Experiments 
 
 In Section 2 of this chapter we analyzed the autonomous and optimal policy 
responses to a negative shock in net exports.  You may want to analyze other shocks 
implying different initial conditions for the model endogenous variables.  Or you may 
analyze the effects of changes in the exogenous variables and the corresponding optimal 
policy responses.  Also, you may want to put a very high weight (priority) on the money 
supply or government expenditure so that in fact only one policy variable will be use to 
control the system.  Then, you may contrast these cases against the analysis performed in 
this chapter in which both controls were assigned equal weights.  Finally, you may want 
to assign different sets of equal values to the weights on the control variables for the 
experiment presented in this chapter, to observe the displacement effects that these 
changes have on the optimal policy frontier.     

In Section 3 of this chapter we analyzed the optimal response of the policy 
articular, we 

creased the relative uncertainty of government expenditure parameters and we found 
that this induced a more cautious use of that policy variable during the first periods.  You 
may want to continue increasing the level of uncertainty of those parameters and see the 
pattern of responses in the policy variables.  Or you may increase the relative uncertainty 
of the money supply parameters.  
  
6. Further Reading 
 

For one of the first applications of control theory methods to macroeconomics 
models see Pindyck (1973).  Chow (1975) provides an introduction to the analysis and 
control of dynamic economic systems.  Kendrick (1981) presents a systematic treatment 
of stochastic control for economic models, with particular focus on passive and active 
learning methods.  Holly and Hughes-Hallett (1989) also present a systematic treatment 
of optimal control methods, with special treatment of expectations and uncertainty.  
Sengupta and Fanchon (1997) present methods and a wide range of applications of 
control theory in economics.  Chiarella and Flaschel (2000) provide a nonlinear dynamics 

from

 
variables when parameter uncertainty was taken into account.   In p
in
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approach to macroeconomics. For a related global dynamics approach to analyzing 
overlapping generation models see Gomis and Haro (2003). 

 Kendrick (2005) reviews the historical development and likely future paths in the 
ics. 

For a most interesting visual approach to the use of control theory methods in 
econom

 

field of stochastic control in econom

ics that uses the Simulink system with MATLAB see Herbert and Bell (1997).   
For an observer approach to control methods in economics see Herbert (1998). 

Amman and Kendrick (1999a) provide a users’ guide to Duali, with a variety of
tutorial level chapters dealing with different control methods and models. 
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Chapter 18 

Rational Expectations Macro in Duali 

 
 In macroeconomics, the way in which expectations are modeled has a significant 
effect on model solution and simulation strategies.  Some macroeconomic models include 
the assumption that economic agents form their expectations in a backward-looking 
adaptive way.  That is, in order to form expectations in connection with the likely future 
value of a given macroeconomic variable, economic agents take into account the recent 
evolution of that variable, and perhaps of other closely related variables.  For example, in 
the chapter on the Hall and Taylor Model in GAMS, we saw that the expected inflation 
rate was obtained as a weighted sum of the observed inflation rates in the previous two 
quarters.  From a modeling point of view, that meant that contemporary model 
expectational variables can be replaced by some combination of lagged variables.    

In contrast, the assumption of rational expectations asserts that economic 
 economic agents’ expectations about 

ic models should embed the notion that 
economic agents make use of all available information when forming their expectations.  
Included in agents’ information set is thus the model of the economy that the modeler is 
using to capture their behavior.  This assumption has a significant impact in terms of 
modeling and simulation since under it, agents’ expectations are a function of the whole 
macroeconomic model solution while, at the same time, that solution is a function of 
agents’ expectations.  Also, model dynamics becomes more complex, since expectational 
variables are “forward looking” variables that sometimes will display a “jumping” 
behavior, instantaneously adjusting to changes in policy or exogenous variables.  Finally, 
policy analysis will also be more demanding, since policymakers will have to take into 
account the agents’ anticipatory behavior to their policy announcements and actions.  
 In this chapter, we will perform simulations and policy experiments in the Duali 
software with John Taylor’s rational expectations model.  This is a prototype one-country 
model which is very useful as a training ground in the computational modeling of rational 
xpectations.  It is also a good introduction to the empirical multicountry models 

 

 

 
outcomes are not systematically different from
those outcomes.  This implies that macroeconom

e
developed by Taylor (1993). 
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1.  John Taylor’s Closed Economy Model 
 
John Taylor’s closed economy model is a small prototype linear model with 

staggered contracts and rational expectations variables that generate an interesting pattern 
of dynamic behavior.  It contains the equations, variables and parameters listed below. 

 
Equations 

(1.1) ∑∑∑
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−

=
+ ++=
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itt ypwx γδδ  

∑
=

−=
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3
1

i
itt xw  (1.2) 

tt wp θ=  (1.3) 
(1.4) tg
(1.5) 
(1.6) 

  
Variables    

 = contract wage     
 = average wage    
 = price level     
 = output 

 = nominal interest rate     
 = real interest rate 
 = money stock 
 = government expenditure51

 
where “^ ” means expectation through period t. 
 
Parameters 

t ty d r= − +  

tttt yaibpm +−=−  

tttt ppir +−= +1ˆ  

x
w
p
y

i
r
m
g

δ  =  0.5;    γ   =  1;    θ   =  1;    =  1;    =  4;     =  1.2. 

 
s from means or 

secular trends. 

                                                

a b d

The variables (all except ti  and tr ) are logarithms and are devi tiona

 
51 In the original Taylor model, government expenditure appears implicitly as a shift factor in Eq. (1.4). 

Here, we make it an explicit variable in that equation. 
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 Eq. (1.1) is a staggered-wage setting equation.  It is supposed that a wage decision 
lasts three years, with one third of the wages being negotiated each year.  At any given 
time t, the contract wage depends on expectations of the values at times t, t+1 and t+2 of 
wages paid to other workers, the price level and real output.  Eq. (1.2) gives the average 
wage in the economy as the average of the contract wage in the current period and the 
two previous periods.  Eq. (1.3) reflects mark-up pricing behavior by firms, that is, prices 
are set proportionally to the average wage.  Eq. (1.4) defines a standard IS schedule, 
while Eq. (1.5) is the money demand equation defining an LM schedule.  Finally, Eq. 
(1.6) gives the real interest rate as the nominal interest rate deflated by the rationally 
expected inflation rate where the expected inflation rate is defined as 

 The model has  6 equations and 6 endogenous variables.  It contains two policy 
variables: the money stock and government expenditure.  The model is dynamic and 
linear, and has the “natural rate” property, in the sense that nominal shocks may affect 
real variables in the short-run, but not in the long run.   
 
2. Solving Optimal Control Rational Expectations Problems in Duali  

 
As a rational expectations model, Taylor’s model requires specific solution 

methods different from those applied to standard models.   Many methods have been 
developed over the last two decades for solving rational expectations models.  See for 
example Blanchard and Kahn (1980), Wallis (1980), Fair and Taylor (1983), Anderson 
and Moore (1985), Oudiz and Sachs (1985), Fisher, Holly and Hughes-Hallett (1986), 
Pesaran (1987), Juillard (1996), Zadrozny and Chen (1999), Binder and Pesaran (2000), 
and Sims (2002).  Some of those methods are analytical and they usually involve, for the 

d 

models’ dynamic properties such as the computation of eigenvalues and the condition of 
dynamic controllability become more involved in rational expectation models.   

To solve optimal control problems containing rational expectations models, Duali 
uses a dynamic programming algorithm like the one presented in the Dynamic 
Optimization chapter, combined with the numerical method developed by Ray Fair and 
John Taylor to solve rational expectations models.  The Fair and Taylor (1983) method is 
an iterative procedure that starts by solving the model for a set of arbitrary values - 
usually zeroes - for the path of each forward looking variable.  Then, after each iteration, 

ttt pp −= +1ˆπ̂ . 

case of linear models, the passage from the model structural form to a “pseudo-reduce
form” in which the expectational variables are no longer present.  Other methods are 
numerical.  Also, as shown in Holly and Hughes-Hallett (1989) Ch. 7, the analysis of 
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the values of the forward looking variables are updated with the solution values of the 
corresponding endogenous variable in the previous iteration.  The process stops when 
onvergence is obtained, that is, when the difference between the forward variables 

aller than a given tolerance value.  
For example, suppose that we have a simple single equation model like the one 

c
values in two successive iterations is sm

shown below, in which the future value of a variable ( 1tx + ) is a function of its current 
value ( tx ) and also of its future expected value conditioned on the information avail
at time t (

able 

1  
e
t tx + ). 

e
tttt bxaxx |11 ++ +=  

 
Suppose also that the solution horizon covers only six periods, that a = 0.4,  b = 

 

 we use E to denote expected value. 
 

0.1,  and that the initial value for tx  is one.  The Excel spreadsheet in Figure 18.1 below

shows the results for the first four iterations, where

 
 
Figure 18.1: Fair-Taylor Method Example 
 

Notice that four iterations of the model solution are shown in the spreadsheet and 
that there are three columns of variables shown at each iteration, namely x(t+1), x(t) 
and E(x(t+1)).  The logic of the procedure is easy to follow.  In the first iteration, 
column D is set to zero.  Given those values and the initial value for  in cell C9, the 

 

tx
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model is solved for each of the remaining five time periods.  The results in column B are 
then copied to column H in the second iteration and the model is solved again.  The 
results are copied from column F to column L and so on.  Notice how fast the results 
converge for this particular model and parameter values - the difference between columns 
P and N in the fourth iteration is quite small.  What makes the Fair and Taylor method 
attractive is its simplicity, and the fact that it can be applied to multiple equation linear 
and nonlinear models. 

Duali contains a method developed by Amman and Kendrick (1996) to solve 
optimal control problems with rational expectations.  This procedure, which is described 
below, uses the Fair and Taylor method as an intermediate step.  

 The problem is expressed as one of  finding the controls ( )u t
N
=0  to minimize a 

  
quadratic “tracking” criterion function J of the form:  

[ ] [ ] [ ] [ ] [ ] [ ]( )(2.1) 
⎩
⎨
⎧

−Λ−+−−+−−= ∑
⎭
⎬
⎫−

=

J

bject, as a constraint, to the state-space representation of the economic model, also known 

as the regular form: 

 
(2.2)                           

1

0

''' ~~~~
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t
ttttttttttNNNNN uuuuxxWxxxxWxx  

 

su

1 1 1  2  
e e

t t t t t t t tx Ax Bu Cz D x D x+ + += + + + +  2

 
 
where x, u and z are state, control and exogenous variables respectively, and  are 

desired paths for the state and controls variables, and 

x u

1  
e
t tx +  is a “forward looking” 

ariable equal to the expected value of the state variable at period t+1 conditioned on the 

 and  are matrices.  In this example, 

the maximum lead for the forward looking variables is two periods, but it could of course 

e larg

inistic 

environment 

(2.3)                                                 

v

1D 2Dinformation available at time t.  Also  A, B, C , 

b er. 

 A way of formalizing the rational expectations hypothesis is, for a determ

11  
e

tt tx x ++ =   

 
and, for a stochastic environment and where E  is the mathematical expectation operator 
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(2.4)                                               11  

e
t tt tx E x ++ =  

 
Denote the expected value of the state variable at iteration v as 1  

ev
t tx + .  At the first 

iteration - iteration zero - the Amman and Kendrick procedure begins by setting 
0 0

11  0 for alle
tt tx x t++ = =

standard me
Optimization.  The optim
solution - are denoted as 

, and solving the resulting quadratic linear problem with a 

thod such as the one presented earlier in the book in the chapter on Dynamic 
al state variables for the solution obtained - the “no lead” 

NLx .  Then, the expected values of the forward looking variables 
are set equal to the solution for this first iteration, that is: 
 
(2.5)                               1 1

1 21  2   and     for all e NL e NL
t tt t t tx x x x+ ++ += = . t

corresponding to the first iteration is now: 

(2.6)    

 
 Thus, the system of equations 
 

                          1 1 1 1 1
1 1 21  2  

e e
t t t t t t t tx Ax Bu Cz D x D x+ + += + + + +  

  
Notice that the terms: 

(2.7)                                        1 1
1 21  2  

e e
t t t t tCz D x D x+ ++ +  

 
are all known.  This allows us to write the system of equations as: 
 
(2.8)                                        1 1 1 1

1t t t tx Ax Bu Cz+ = + +

(2.9)                          
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. 

 
 Again, we have a quadratic linear problem which can be solved with standard 

ethods.  Once we do so, we will have another set of solution values for the state 
forward-looking variables in the next 

eration, and so on.  The procedure will stop when convergence is obtained. 
 

m
variables which will be used as the values of the 
it
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3. The Taylor Model in Duali  
 
 In the following we will focus on the implementation of Taylor’s model in Duali 
to perform simulations and optimal policy analysis.  First we will transform the model 
equations to make them more suitable for a matrix representation.  As presented in 
Section 1, the model was: 
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(1.4) tg
(1.5) 
(1.6) 

, renaming some variables, and substituting the 
orresponding numerical values for the model parameters, we obtain the model below. 

+++ ttt

t ty d r= − +  

tttt yaibpm +−=−  

tttt ppir +−= +1ˆ  

 
Expanding the summation signs

c
 

(3.1)    
ˆ3.0ˆ61.0ˆ61.0

ˆ3.0ˆ61.0ˆ61.03.061.061.0 +++
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222

111  

(3.2)    t
cw
tt xlxw 3.03.0 += cw

t
cw xl 13.0 −+   

led here in Eqs. 
(3.1) and (3.2)  to avoid notational confusion with xt , which will be the vector of stacked 

 Also notice that since in Taylor’s model 
expectations are conditional on the information available at time t, we can write:  
 
(3.8)                                           

tt wp =  (3.3)     
(3.4)     12.1 −+−= ttt gry  
(3.5)     125.025.025 −−+= tttt mpyi  
(3.6)     1ˆ +−+= tttt ppir   
(3.7)    cw

t
cw
t xxl 1−=  

 
Notice that  x

.0

t
cw is the contract wage in Taylor’s model, which we re-labe

variables of the model matrix representation. 

| | |, ,e e e
t t t t t t t t tw w p p y y= = =  
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This is why the variables in the first three right-hand side terms in Eq. (3.1) are actual 
values and not expected values, as is the case in the remaining terms. 

In Eq. (3.2) there is a new variable  xlt
cw which is defined in Eq. (3.7) as equal to 

lagged xt
cw, that is, .  Therefore, the variable   in Eq. (3.2) will be equal to .  

In this way, using the same method we employed in the Hall and Taylor in Duali chapter, 
e produce a one-lag-order reduction of Eq. (1.2).  Since this is the only lagged equation 

t order model representation suitable to be used in 
optimal control experiments.    

 

trol variables in Eqs. (3.4) 
nd (3.5) as mt-1 and gt-1, since Duali, as well as the optimal control literature, works with 

one-lag policy variables.  
We will now represent the model in what is known as the Pindyck or “I-A” form, 

which is an equivalent representation to the form presented in Eq. (2.2).  The Pindyck 
form of Taylor’s model can be written as shown below in Eq. (3.9).52   
 
(3.9)              

where 
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w
in the model, we are left with a firs

In Eq. (3.5) we moved the interest rate i to the left-hand side to make its role as a 
state variable explicit.  Finally, in Taylor’s model, m and g appear as contemporaneous to
the endogenous variables.  By assuming that there is a one period lag between a policy 
decision and its implementation, we can redefine these two con
a

e
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52 In Taylor’s model, expectations are conditioned on the information available at “t”.  In Duali, when a 

odel is written in the Pindyck form, expectations are conditioned at “t-1”.  This change in the timing of 

the information will not appear as problematic for the Taylor model, since Duali will replicate the results 

obtained by the original Taylor simulations.  However, different assumptions concerning the information 

set timing may be relevant for other models. 

m
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In Eq. (3.9),  zt-1 is a vector of exogenous variables, while C1 is a matrix.  They 

are both equal to zero, since the model does not contain exogenous variables.  Notice also 
that  is set equal to zero, since the model does not contain contemporaneous expected 
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variables.  Finally, we set equal to four the maximum number of decimals for parameter 
alues.

ylor’s 
en changes in its 

olicy variables.  The general problem to be solved in Duali is the one of finding the 
controls  to minimize a quadratic “tracking” criterion function J of the form  

  

(2.1) 

v  
 
4. Dynamic Simulation 

 
As a way of getting acquainted with some dynamic properties of  the Ta

model, we will analyze the dynamic evolution of the model for giv
p
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ed in this section where we will change the values of the policy variables to see 
eir dynamic impacts on the endogenous variables of the model.  To do so, the weights 

on the controls et to relatively high values, while the weights on the 
 the desired paths 

for the controls y change to be introduced.  In this way we force the 
anges in the policy variables.  In fact, what we 

are doing is ignoring the optimization part of the solution method presented in the 
previous section and using the Fair-Taylor method only to simulate the rational 

We begin from the main menu shown in the Duali main window in Fig 2 below. 

subject to: 
 e

tt
e

tt
e

ttttttt xDxDxDzCuBxAxAx /23/12/11111110
ˆˆˆ

++−−− ++++++=  (3

 
where variables and parameters were defined in the previous sections. 

Though the Duali software is oriented toward solving optimization problems like
the one just presented, it can also handle standard simulations like the experiments to be 
perform
th

 in the Λ matrix are s
states in the W matrix are set to relatively small values.  Then we define

 as equal to the polic
system to respond to the pre-specified ch

expectations model.  

 

 
 
Figure 18.2 Duali Main Window 
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From the File option we open the file tay-sim.dui.  In the 

Specification:Stochastic Terms menu option, we see that the problem is set as 
deterministic, as shown below. 
 
 

 
 
Figure 18.3 Stochastic Term
 
 We then select the Specification:Functional Form option and we obtain the dialog 
box shown below. 
 

s Dialog Box 

 
 
Figure 18.4 Form Specification Dialog Box 
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 On the Criterion side of the dialog box we see that the problem is a Quadratic-
Tracking problem with constant state and control priorities.  Also the desired states and 
ontrol ntrol 

y expressed 

c s are constant.  They will all be set equal to zero, since later in the optimal co
experiment in the next section we will seek to minimize deviations of target variables 
from means or secular trends.  Also recall that the model variables are alread
in deviation form. 
 On the System Equations side of the dialog box in Fig. 18.4 we see that the 
Pindyck form is selected, while the option Yes is also selected for Forward Variables, 
there are no policy to parameter effects and the exogenous variables are constant. 
 From the Data:Size menu we obtain the dialog box below. 
 

 
 
Figure 18.5 Model Size Dialog Box 
 
 The model is specified as containing seven state variables (in fact, six 
contemporaneous and one lagged), two control variables and one exogenous variable, and
the simulation covers eleven periods.  The Maximum Lead for forward va

 
riables is set as 

equal t s seen in 

is, a very small number in exponential notation.  Thus, if the sum of squared 
ifference between all the control variables in all time periods in one iteration and the 

o three.  This is telling Duali that the model contains three D̂ matrices, a

Eq. (3.9) above.  The Iteration Limit is set to 50 and the Convergence Tolerance to 1.6E-
12, that 
d
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previous iteration is less than the convergence tolerance number, then the iterations are 
halted and convergence is declared. ergence is not achieved once the 
iteration limit is reached, an error m .   

Such a small convergence e necessary to perform 
ulation experiments in which we will force the controls to follow given paths, thus 

inor changes from period to period.  Therefore, since 
Duali computes convergence over changes in the controls, and given that we will allow 
only minor changes in them, we need to impose a very small convergence tolerance 
number to be able to run simulation experiments.  Such a small number will not be 
necessary in the optimal policy experiments to be introduced later in this chapter. 
 The Data:Acronyms menu option contains the assignment of labels to the model 
variables and time periods.  The Data:System Equations section contains the numerical 
values for matrices and .  The Data:Criterion section contains 

the values for the W and Λ weighting matrices and the desired paths values for state and 
control variables.  We see that the weights on the controls in the Λ matrix are set to 99, a 
relatively large value, while the weights on the states in the W matrix are set 1, a 
relatively small number, and the desired paths for the controls are set equal to the policy 
cha
the
choosing the menu option Solve:QLP the problem is solved and the numerical results are 
automa s to define different display, 
plo g
will be the 
Prefere
section

Figure 18.6 below show the results of two experiments: a 1% unanticipated 
permanent increase in the money supply (m) and a 1% unanticipated permanent increase 
in government t is, m and g increase by 0.01 at the first period of 
each of the two experiments, and are kept at their new value from the second period 

ime periods.  For y and p, the vertical axes 
hile for i and r the vertical 

axes show percent points.   Thus a value of 0.01 in the GDP graph means that GDP goes 

                                                

 Otherwise, if conv
essage is displayed

 tolerance number will b
sim
allowing them to experience very m

0A , 1A , 1B , 1C , 1D̂ , 2D̂ 3D̂

nge to be introduced, i.e., to 0.01 for the experiment to follow.  In this way we force 
 system to respond to the pre-specified changes in the policy variables.  Finally, 

tically displayed.  The menu option Results allows u
ttin  and printing options.  Also, for this and the other experiments in this chapter, it 

 convenient to set the display of results to four decimals.  This can be done in 
nces:Results menu option, choosing the corresponding value in the Format 
.  

 expenditure (g).  Tha

onwards.  On the horizontal axes are the t
correspond to percent deviations from steady-state values, w

53

 
53 Remember that in Taylor’s model, y and p are in logs, which is equivalent to percent deviations from 

steady-state while i and r are not.  
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from
means  to 6%.54

  

 600 to 606 billion dollars, while a value of 0.01 in the nominal interest rate graph 
that that rate changes from 5%

GD P  (y)
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Figure 18.6 Dynamic Simulations of Changes in Policy Variables 
 

Here is how John Taylor explains the observed behavior of the model for the two 

an expected positive effect on output that dies out as prices 
se and real-money balances fall back to where they were at the start.  Note that the real 

at occurs at the time of the monetary stimulus.  For this set of parameters the 
ominal interest hardly drops at all; all the effect of monetary policy shows up in the real 

e 
te, however, that there is a surprising “crowding-in” effect of fiscal policy 

 the short run as the increase in the expectation of inflation causes a drop in the real 
e 

experiments: 
“Monetary policy has 

ri
interest rate drops more than the nominal rate because of the increase in expected 
inflation th
n
interest rate.  Fiscal policy creates a similar dynamic pattern for real output and for th
price level.  No
in
interest rate.  Eventually the expected rate of inflation declines and the real interest rat

                                                 
54 Taylor (1993), Chapter 1, present graphs conveying the same information as the ones we show here. 

However, he presents the results in levels. 
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rises; in the long run, private spending in completely crowded out by government 
spending.”55  
 
5.  Optimal Policy Analysis  

ptimal control techniques to Taylor’s model.  The problem is 

to find the optimal paths for the policy variables given desired paths for the target 

variables, and it can be stated in the same form as was done before at the beginning of 

section 4.  We will assume that the policy goal is to stabilize y, p, i and  around steady-

ate values (that is, around zero).  We will put high and equal weights on stabilizing y 

m and g.  The corresponding weighting matr  shown below, will remain constant 

through time. 

 

(5.1)                                   ,    

  
To perform a deterministic experiment, we will assume that the economy is going 

through a recession provoked by a temporary adverse shock to 

 
We will now apply o

r

st

and p, lower and equal weights on i and r, and even lower weights on the policy variables 

ices,
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y  which brings it 4% 

below its steady-state value.  What would be, in this situation, the optimal paths for m 
and g?  What would be the optimal path for the state variables as compared with the 
autonomous response of the system? 
 To perform this experiment in Duali, we use the file tay-qlp.dui that is 
essentially the same as the one used in the previous section, with some modifications.  In 
the Data:Criterion section  we see that the values of the W and Λ weighting matrices are 
now set as in Eq. (5.1), while the desired paths for the controls are set to zero.    

In order to implement the shock to y in the first simulation period we have to 
introduce an artificial time-varying exogenous variable.  That is, the shock will be 

                                                 
55 Taylor (1993), page 25. 
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defined as a first-period change in an arbitrary exogenous variable affecting the state 
variable y only.  To do so, in the Spe nal Forms option, in the “z Exog 
Variables” section the option Time V cted, as shown in the dialog box 
below. 

cifications:Functio
arying is now sele

 

 

 Specifications Dialog Box 

Then, in the Data:System Equations option we set the fourth element of the matrix
ement of  the exogenous variable z equal to -0.04 while 

aining elements are set to zero, as shown in the dialog boxes below.  
 

 
Figure 18.7 Form
 

 
C1 equal  to 1 and set the first el
all the rem

    
 
Fig  
 

ure 18.8 C1 Matrix and ZT Elements Input Windows 
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Notice also that this procedure is different from the one we used to implement a
us shock in the Hall and Taylor in Duali chapter.  There, we appl

n 
analogo ied the shock to 
the n 
Dat es 
not appear with lagged values in Taylor’s model.   
 Finally, we solve the problem choosing the menu option Solve:QLP.  The graphs 
in Fig. 18.9 below show the autonomous response of the system to a -0.04  unanticipated 
transitory shock to y, and the behavior obtained when applying deterministic optimal 
control (QLP) to face the same shock, that is, when actively using m and g as controls. 
  

initial value of the shocked variable, that is, we defined the shock in the Duali optio
a:System Equations:x0.  We cannot do that here, since the variable of interest (y) do

56
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Figure 18.9 Autonomous Response vs. Optimal Policy Experiment 

                                                 
56 We could use the option System Equations-x0 if, instead of shocking the variable “y”, we decide to 

shock the contract wage, since the contract wage is the only variable with lagged values in Taylor’s model. 
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We can observe how the beh ariables under the optimal control 

solution outperforms substantially the aut , reducing the 
costs of getting the econo rate that behavior, as 
an be seen in the policy variables graph, the optimal policy mix relies on a 2.5% 
ansito

rst 

sence of 
rational expectations since that specification is sometimes identified with the idea of 
policy ineffectiveness. However, we have to remember that Taylor’s model contains a 
built-in rigidity - a staggered contracts mechanism - that breaks down the ineffectiveness 
of policy in the short-run.57

 More generally, rational expectations will tend to increase the degree of 
controllability of an economic system, unless the particular structure and/or parameter 
values of the model imply a complete neutralization of the policy variables effects.58 
Indeed, not only can the policy-maker influence the economy through past and current 
controls, but he can also affect the economic system through the pre-announcement of 
future control values.  However, for these announcements to have a positive effect on the 
economic performance,  they have to be credible, that is, the policy-maker has to be 
committed to carry them out.59  These issues have led some researchers to focus their 
policy analysis on the evaluation of alternative rules that policymakers are presumed to 
follow.  Two of the most influential researchers engaged in this type of work are John 
Taylor and Michael Woodford.60    
 For example, using the Taylor model, we may be interested in evaluating the 
performance of a monetary policy rule in which the monetary authority, having as an 
implicit target the stabilization of the price level, changes the money stock in an inverse 

                                                

avior of the state v
onomous response of the system

my out of the recession.  In order to gene
c
tr ry expansion in government expenditure during the first period, at the same time 
that is also requires a small 0.5% transitory increase of the money supply during the fi
period. 
 It may be surprising to find such a positive active policy role in the pre

 
57 To learn about the role of nominal and real “rigidities” in macroeconomic models, see Blanchard and 

Fischer (1989). 
58 See Holly and Hughes-Hallett (1989), Chapter 7. 
59 Lack of credibility may lead to problems of “time inconsistency”. See Holly and Hughes-Hallett (1989), 

Chapter 8; and Blanchard and Fischer (1989), Chapter 11. For an appraisal of the practical importance of 

this issue, see Blinder (1997). 
60 See Taylor (1998) and Woodford (2003).  
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proportion to the changes in the pric erms, a simple rule of that type 
can be written as 
 
(5.2)                                                      

e level.  In formal t

trt pam =  

 
 is the money stock,  p is the price level, and ra is a negative constant coef

which in control theory is called the feedback gain coefficient.  Our goal will be to 
evaluate how the variance of the price level changes as the absolute value of the ra  

coefficient increases, that is, as the m

where m ficient 

onetary authority responds more strongly to changes 
odel is shocked by an additive noise. 

ents in Duali we use the file tay-hcfr.dui.  

 

in the price level, when the m
 To perform these experim
In the Specification:Stochastic Tems option, the problem is defined as stochastic with 
additive noise, as shown in the dialog box below. 

 
 
Figure 18.10 Stochast

ks will be applied to the system equations only.  
  

ic Terms Dialog Box 
 
 In a similar fashion as in the Quadratic Linear Problem above, in the 
Specifications:Functional Forms option, in the “z Exog Variables” section the option 
Time Varying is selected.  But here we have to do so in order to be able to define the 
source of random terms.  Then, in the Specification:Source of Random Terms option, the 
Generate Internally option is selected as shown in the dialog box below, indicating that 
Duali’s random numbers generator will be used to generate the shocks.  Also, in the 
Noise Terms for All Periods section, the System Equations option is selected, indicating 
that the shoc
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Figure 18.11 Sources of Random Terms Dialog Box 
 
 In the Specification:Options Monte Carlo option, we can select the starting period 
for the calculation of the variance of state and control variables over time.   As shown in 
the dialog box below, we selected period zero as the starting period. 
 

 
 
Figure 18.12 Monte Carlo Options Dialog Box 
 
 In the Data:Size option, we now have to specify the number of Monte Carlo runs. 
As shown in the dialog box below, we chose 1000. 
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Figure 18.13 Model Size Dialog Box 
 

The next step is to define the variance of the shocks to be applied to the model 
during the Monte Carlo runs.  We will perform experiments in which the shocks will be 
applied to the contract wage equation only.  To do so, as shown in the dialog boxes 
below, we first select, in the Data:Additive Noise Terms option, the Q, Additive Noise 
Covariance option.  This selection will cause the display of the Q covariance matrix of 
the additive noise terms.  There we assign the value 0.1 to the diagonal element 
corresponding to the contract wage variable cwx . All the other values should be zeroes.  
However, having zeroes in the diagonal of the Q matrix will cause problems when Duali 
tries to find its inverse during the solution of the problem.  Thus, we assign very small 
values (0.00001) to the remaining diagonal elements. 

  

 
 
Figure 18.14 Additive Noise Terms Dialo  
 

g Box
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atrix nput Window 

cture of the simulations, we now have to define 
and assign values to the feedback rule to be evaluated.  The mathematical form of this 

Eq. (11) of the Dynamic Optim
 
           

 
Figure 18.15 Q M  I
 
 Having defined the stochastic stru

rule was defined earlier in ization chapter as 

                               kkk gxGu +k=  

 
Thus to modify the feedback rule we need to change the elements in either the feedback 
gain matrix or the feedback gain vector G g .  To do so, we select the Data:Handcrafted 

Feedback Rule option.  As shown in the dialog box below, we select the capital option, 
which is the feedback gain matrix of the rule to be applied in the experiments. W  leave 
the small 

G
e

g option blank, since it corresponds to a vector of constant terms that are absent 

from the specific rule we will evaluate as defined in Eq. (5.2) above, i.e. 
 
(5.2)                                                      trt pam =  
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Figure 18.16 G and g Dialog Box 
 
 When making the selection , the corresponding window will be displayed as of  
shown below.  We see that the value -0.1 is the only one assigned. It corresponds to the 
value of the   coefficient in Eq. (5.2). We also see that more complex rules could be 

easily defined by assigning values to other cells in the matrix. 

 G

ra

 

 
 
Figure 18.17 Feedback Gain Matrix G Input Window 
 
 Having defined the stochastic structure of the experiments to be performed, and 
the rule to be evaluated, we are now ready to move on to the selection of the solution 
method and the storage and display of results.  We first select the Solve:Compare Print 
option.  We will obtain a dialog box which displays several solution methods.  We could 
select some or all of them in case we want to perform experiments comparing their 
relative performance.  Since that is not our goal here, we just select the HFCR, 
Handcrafted Feedback Rule option as shown in the dialog box below. 
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Figure 18.18 Method Dialog Box 
 

n d ing so we w e asked to provide a debug file name, for example we 
could use the name tay-hcfr.dbg.  This file will contain the simulation results.  After 

ptio s related to the generation of 
sults will be displayed, as shown in the dialog box below.  Given the nature of our 

ptions blank except two.  In the Averages section, we 
 the Average Average over Monte Carlo Runs and the Average Variance over 

onte Carlo Runs options.  

 Whe o , ill b

providing the file name, a dialog box containing many o n
re
experiment, we will keep all the o
will select
M
 

 
Figure 18.19 Debug Print Dialog Box 

 441
 



Chapter 18   Rational Expectations Macro in Duali 

 
 We are then ready to perform our experiment.  Once we click the OK button, th
Monte Carlo runs will begin.  Since we are performing 1000 runs, it may take a while 
before results are displayed.  Two dialog boxes like the ones shown below will 

e 

appear 
while Duali is running (one after the other).  We should just dismiss them by clicking the 

ton, since they display results corresponding to experime
omparison of methods, something we are not interested in here. 

OK but nts with cross 
c
 

   
 
Figure 18.20 Method Count and Average Criterion Value Windows 
 
 We exit from Duali and then open the debug file, tay-hcfr

we have performed a large number of Monte Carlo runs, the 
.dbg as we named it 

ll be quite large since it will display some basic results corresponding to each 
run.  Moving down to the end of the output, our results of interest are just the following 
ones: 
 

AvgVarXsTimeHcfr  

 .0924  68   0.01 003  

AvgVarXsTimeHcfr  

                   0.0089   0.0825  

…. 

AvgVarUsTimeHcfr  

                   0.0002   0.0000 

 
 AvgVarXsTimeHcfr means the average variance of the state variables across time 
for the handcrafted feedback rule solution method.  We see that there are seven results, 
each one corresponding to an element of the transpose of the state variable vector as 
defined in Eq. (3.10) above that is: 
 
(5.3)                               

above, with an editor.  Since 
output wi

                  0  0.0168   0.01 29   0.0

][' cw
tttttt

cw
tt xlriypwxx =  
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Thus, our result of interest is the third one to the right in the first row (0.0168) since it 
corresponds to the average variance of the price level variable.  AvgVarUsTimeHcfr 
contains the results corresponding to the control variables, so the first one (0.0002) the 
one corresponding to the variance of the lagged money supply stock is the one of interest 
to us.   
 These results considered by themselves are not very informative.  However, we 
can repeat the experiment for different values of the  coefficient to obtain a 

comparative performance.  Table 18.1 below shows the results of ten experiments. 
 

 Variance of  p Variance of  m

ra

ra  

-0.1 0.0168 0.0002 

-0.2 0.0156 0.0006 

-0.3 0.0158 0.0014 

-0.4 0.0157 0.0024 

-0.5 0.0155 0.0038 

-0.6 0.0150 0.0053 

-0.7 0.0154 0.0072 

-0.8 0.0149 0.0093 

-0.9 0.0145 0.0113 

-1 0.0143 0.0138 

Table 18.1 Comparative Rules Experiments 
 
 We can see that as the absolute value of the feedback gain coefficient ar increases, 
the variance of the price level tends to decrease, while the variance of the money stock 
increases.  That is, a stronger response of the monetary authority to changes in the price 
level reduces the variance of that variable but at the cost of an increased variance of the 
policy tool.  A natural question to be asked is what would be the optimal rule, in this 
case, i.e. the optimal level of the feedback gain coefficient.  If the only concern is the 
ariance of the price level, the response is easy:  it will be the highest possible absolute 

value.  However, if the variance of the money stock is also a concern, relative priorities 
should be explicit.   
 

v
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6. Experiments 

ple experiment, you can perform optimal policy 
experiments like the one presented in Figure 18.6, changing the priorities on state and 
ontrol variables.  Then, you can also change the nature of the initial shock. 

Alternatively you can specify different handcrafted feedback rules to perform 
experiments like the one presented in Figure 18.9.  For example, you may want to specify 

e money supply is a function of output instead of the price level.  Or 
you may want to design more complex rules, with money supply and government 
spending as controls and one or more state variables as target variables. 

 you may also define a rule in which the real interest rate - instead of the 
money supply (as was the case in the experiment presented in this chapter) -  is used to 

spond to changes in prices.  This type of rule is typically used by many researchers  - 
) and Woodford (2003) to discuss monetary policy rules in the U.S.  To 

o so, notice that you will have to redefine the interest rate as a control variable and the 
e when the interest rate is used as a control, the 

oney supply becomes an endogenous variable.  Since this is a substantial change in the 
model structure, it may require you to start from scratch to input the new model in Duali. 

 

ted in this chapter, together with U.S. and 
rsions of it are devel r (1993).  Holly 

nd Hughes-Hallett (1989, Chapter 7) provide an introduction to the application of 
an and Kendrick 

996), (1999c), (2000), (2003) develop optimal control techniques and applications for a 
mo Taylor (1998) and Woodford (2003) provide a 

ide treatment of the application of policy rules to rational expectations models.  For a 
nt work on the recent variety of optimizing 

end-deviation macroeconomic models see Kozicki and Tinsley (2002). 
For discussion of the robust control approach to stochastic control see 

Deissenberg (1987), Rustem (1992), Hansen and Sargent (2001) and Rustem and Howe 
(2002) 
 

 
 As a first and relatively sim

c
 

a rule in which th

 Finally,

re
e.g. Taylor (1998
d
money supply as a state variable, sinc
m

 

7.  Further Reading 
 

The prototype Taylor model presen
multicountry extended econometric ve oped in Taylo
a
optimal control techniques to rational expectations models.  Amm
(1
variety of rational expectations dels.  
w
useful starting point to coming abreast of rece
tr
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Appendix A 

Running GAMS 
 
 This appendix provides the details for running the GAMS software on a PC.   In 
order to use GAMS with other input files substitute the appropriate file name for 
trnsport.gms in the following.  For help and information about obtaining GAMS go the 
GAMS Development Corporation web site at 
 http://www.gams.com
There is a student version of GAMS that can be downloaded and that can solve all or 
almost all of the models used in this book.   It the model is too large, usually a small 
change in the number of time periods or some other set is sufficient to reduce the size so 
that it will run on the student version. 

 Go to the book web site at 

http://www.eco.utexas.edu/compeco

      and to the “Input Files for Chapters in the Book” section of the web site.  Right 

      click on the trnsport.gms filename and select the “Save Target As …” option 

in order to save the file in your preferred directory. 

 Chose Programs from the Start menu and then chose GAMS and gamside.  Chose 
Open from the File menu, navigate to the trnsport.gms file and open it for 
editing.  Notice in the complete GAMS statement of the model that, as is the usual 
case in GAMS, the model is defined in steps 

 
  first the sets  

then the parameters  
then the variables 

  then the equations 
  and finally the model and solve statements. 
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 Solve the model by choosing Run from the File menu and then check the solution 
log to be sure that you have 
 
and 

 
a 

found, and with “$number” just below the part
contain a specific error code.  Then, at the end of the list of 

t file, GAMS will display the explanation of each of the error codes found. 

e corresponding values for 
eters. 

 
Column Listing:  shows a list of the equations’ individual coefficients classified by 
columns. 
 
Model Statistics: shows information such as model number of equations, number of 
variables, etc. 
 
Solve Summary: shows information such as solver and model status at the end of the 
GAMS run, etc. 
 
Solution Listing:  shows the solution values for each equation and variable in the model.  
Each solution value is listed with four pieces of information, where a dot  “.”  means a 

SOLVER STATUS: 1 NORMAL COMPLETION 

 MODEL STATUS: 1 OPTIMAL 
Then close the log file window. 

 Click on the trnsport.lst file window and scroll through this listing file to see
the solution.  Note that the *.lst file extension used here is an abbreviation for 
“listing” of the output file. 

 

Notice that the GAMS output has the following structure: 
 
Echo Print: shows a listing of the input file with the line numbers added.  
 
Error Messages: in the case of errors in the input file, they will be signaled by GAMS 
with “****” on the leftmost part of the corresponding line of input where the error was 

 of the line of input where the error is 
located, where “number” will 
the inpu
 

e model with thEquation Listing:  shows each equation of th
sets, scalars and param

 446
 



Appendix A  Running GAMS 

value of zero, EPS a value near zero, and +INF and –INF mean plus or minus infinite 
respectively: 
 
LOWER (the lower bound) 
LEVEL (the solution level value) 
UPPER (the upper bound) 
MARGINAL (the solution marginal value; it corresponds, for linear or nonlinear 
programming problems, to the increase in the objective value due to a unit increase in the 
corresponding constraint)  
 
Report Summary: shows the count of rows or columns that are infeasible, non-optimal or 
unbounded.  
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Appendix B 

Running Mathematica 
 
 Mathematica is a widely available commercial software system.   A web site for 
information about it is 
 http://www.wolfram.com
 

 
atica.  Wait for a 

Notebook  like a 
document in a standard word processor.  If you specified a file when opening 
Mathematica, this file will be displayed. 

 
ted from the Help menu (located in the upper right corner of 

the Mathematica window) and read the information that will appear in the "Info 
dialog 
suggested in the section 

of working with Mathematica, i.e. your Notebook will 
corresponding outputs.  You may also 

tebook, a hierarchy of brackets appears. 
Each of them defines a cell (or a group of cells) which are the basic units of 

 As you will quickly realize, cells can be 
ed (as in set and subsets).  There are different kinds of cells: 

ain text, Mathematica input, Mathematica output, or graphs, etc. 
Different small characters within each bracket identify the kind of cell. Here are 

o with cells: 

ble to work w acket. 

To edit a group of cells, just click and drag on their brackets. 

o To find out or change the kind of cell, edit the cell, select "Style" in the main 
ose your option. 

 Choose Programs from the Start menu and then choose Mathem
few seconds, and a new window with a menu bar in its upper part will appear.  
The content of this window will be a white sheet called , which is

 Select Getting Star

box".  To begin practicing with Mathematica, perform the calculations 
"Doing Calculations".  While doing this, you will 

appreciate the basic way 
successively display your inputs and the 
notice that on the right side of your No

organization in a Notebook.
hierarchically arrang
they can cont

some basic things you can d
 

o To edit a cell (that is, to be a ith it) just click on its br

o 

menu and cho
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o To divide or merge cells, take the cursor to the division/insertion point of your 

 portion of a program contained in a cell of group of cells, just edit the 
cells and select Action-Evaluate in the main menu (or just press “Shift-Enter”) 

o ile" in the main menu and choose your 
options. 

Go to

choice, select "Cell" in the main menu and choose your options. 

o To run a

 Finally, to save your Notebook, select "F

o  the book web site at http://www.eco.utexas.edu/compeco and then to the 
“Input Files for Chapters in the Book” section of the web site.  Right click on the 

o 

 a mmands, click on the 
bracket on the right of it and hit Shift+Return (hold the shift key and hit Return at 

t will be displayed following the input, unless there is a 
“ at the end of the input command line (“;” suppresses the output).  You can run 
multiple cells by highlighting the corresponding brackets with your mouse and 

o 

 
Kernel menu, choose Evaluation  and Evaluate Notebook  you will re-run the 
complete program.  If your program is large this may take a few minutes and it 
may be difficult for you to track down the results of your modifications.  On the 
other hand, sometimes your modifications may require an updating of previous 
results, a clearing of previous values or a change of attributes (and the Clear 

oid 

Leontief.nb filename and select the “Save Target As …” option in order to save 
the file in your preferred directory. 

o G to “File” menu and click Open to open the file. 

o To run an input command or a cell containing  series of co

the same time). The outpu
;” 

hitting Shirt+Return once.   

Modify commands and re-run them sequentially, cell after cell, so that you can 
see the changes in the corresponding outputs.  

o If you either select the outer most bracket and press Shift-Enter, or go to the
, ,

command or the SetAttributes command are usually at the beginning of the 
program).  In these cases you may need to re-run the complete program to av
errors or spurious results. 
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Appendix C 

Running the Solver in Excel 
 
 Download the file for the growth model or for the neural net from the book web 
site.   Your version of Excel may not have the Solver option available by default.  To 
check this look for the Solver option on the Tools menu.  If you don’t find it, click Add-

s, check Solver Add-in, and click OK.  Then look in the Tools menu again. In
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 a set “t” 

t = {0 ,2,3} 

then an expression like 
eq(t).. w(t) =E= z( 1) 

will result in the following equations being generated by GAMS      
eq(0)..  w(0) =E= 0; 

 
lement “z(-1)” of the variable “z”  is not defined.  We do not want this to happen, since 

it will be a source of confusion at the time of assigning initial values for lagged variables 
and also for the interpretation of solution values corresponding to the initial periods of the 
solution horizon.  

To be sure about the results of the dynamic specifications in GAMS, every time 
one wr   OPTION 

IMROW equal to the maximum number of periods involved in the solution of the 
model.  This will tell GAMS to print a detailed equation-by-equation solution report 
which will allow one to check period-by-period the evolution of the time indices for each 
variable within each equation.  It is particularly important to check the specification of 
the equation for the first few and the last few time periods.  For example, here is how the 
corresponding GAMS output looks for equation “eq6” in the chapter on Macroeconomics 
in GAMS.  

 
eq6(t+2)..   piex(t+2) =E=    alpha * pi(t+1) + beta * pi(t) ; 

 

Ordered Sets in GAMS 

As was discussed above in the chapter on Macroeconomics in GAMS, the 
definition of lagged indices for variables in GAMS may be somewhat problematic if it is 
not done with care.  For example, if the variables “w” and “z” were defined over
(i.e. w(t) and z(t)) such as  

,1

t-

eq(1)..  w(1) =E= z(0); 

eq(2)..  w(2) =E= z(1); 

eq(3)..  w(3) =E= z(2); 

 
Thus, it will cause GAMS to assign the value zero to the first element of w(t), since the 
e

ites a program involving dynamic variables it is advisable to set
L
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when Hall and Taylor’s model is solved for a time horizon of 7 periods - that is, for a “t” 
set equal to {0,1, … , 5,6}. 

 
---- EQ6         =E=  expected inflation 

EQ6(2)..  - 0.2*PI(0) - 0.4*PI(1) + PIEX(2) =E= 0 ;  

EQ6(3)..  - 0.2*PI(1) - 0.4*PI(2) + PIEX(3) =E= 0 ;  

EQ6(4)..  - 0.2*PI(2) - 0.4*PI(3) + PIEX(4) =E= 0 ;  

EQ6(5)..  - 0.2*PI(3) - 0.4*PI(4) + PIEX(5) =E= 0 ;  

EQ6(6)..  - 0.2*PI(4) - 0.4*PI(5) + PIEX(6) =E= 0 ;  

 
Notice that eq6(t+2) goes from periods 2 to 6, while pi(t) goes from 0 to 4, pi(t+1) 

from 1 to 5  and piex(t+2) from 2 to 6.  This means that the effective solution horizon for 
the model was equal to 5 periods, 2 less than the number of elements of the set “t”. 
 For further details see the chapter on “Set as Sequences: Ordered Sets” in 
the GAMS User’s Guide at www.gams.com
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Appendix E 
 

Linearization and State-Space Representation of Hall and 
Taylor’s Model 

   
 The linearization method that we will use is known as Johansen’s method – see 
Johansen (1960).  It involves transforming all the variables in the model into percentage 
changes with respect to a base case.  We introduced this method in the chapter on 
General Equilibrium Models.  There we learned that there are some rules, analogous to 
differentiation, which simplify the task of linearizing a model. We will apply those rules 
here. 
 Remember that since the Hall and Taylor model is a dynamic model, all its 
variables have an explicit or implicit time subscript.  It is important to understand that the 
percentage changes of each variable will be changes with respect to a baseline case (the 
point of linearization) and not with respect to “the previous period”.  If our baseline case 
is the steady-state and, say, *

4tX +    takes the value 0.01, this means that the variable X, at 
time t+4, is 1% higher than its steady-state value.  It does not mean that *

4tX +  is 1% 
higher than *

3tX + . 

The steady-state solution for Hall and Taylor’s original nonlinear model in levels 
v = 1 and E =1.  These steady-state values correspond to the 

llowing values for policy and exogenous variables: M = 900, G = 1200, YN = 6000 and 
levw = 1. We will pick the steady-state solution as our baseline or point of linearization. 

Thus, t

is:  Y = 6000, R = 0.05, ple
fo
p

he expressions in the sum rule in the General Equilibrium Models chapter for 
 
     X Y Z= +  

becomes 
     * * *y zX s Y s Z= +  

 
where *, *X Y  and *Z  are percentage deviations of the corresponding level variables 
and  and  are the shares ys zs

ss
y

ss s

Y
s

Y Z
=

+ s

 and ss
z

ss s

Z
s

Y Z
=

+ s

. 

 
where the subscript “ss”  means “steady-state value”. 
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 The original twelve-equation model contains the equations listed below: 
IS-LM 
(1)  GDP identity  Y C I G X= + + +  
(2)  Disposable Income ( )1dY t Y= −  

(3)  Consumption  dC a bY= +  
(4)  Investment  I e dR= −  

M P kY hR= −  (5)  Money Demand  

 
Expectations Augmented Phillips Curve 
(6)  Expected Inflation 1 2

eπ απ βπ− −= +  

( ){ }1 /e
N Nf Y Y Yπ π −= + −  (7)  Inflation Rate  

( )1 1P P π−= +  (8)  Price Level  

 
Foreign Sector 
(9)  Real Exchange Rate WE P P q vR= +  
(10) Net Exports  WX g mY nE P P= − −  

 
Government Deficit and Unemployment 
(11) Government Deficit dG G tY= −  

( ){ }N NU U Y Y Yµ= − −  (12) Unemployment Rate N

 
To obtain the equation for (that is, GDP percent deviation from steady-state), 

10) in
*Y

we substitute eqs. (2), (3), (4) and ( to eq. (1). Linearizing, we obtain 
 
(e.1) 12 13 14 12 12*   - *- *- *  *  *Y sa R sa plev sa E sb G sc plevw= + +   

where61

   (1 -  (   ( 1 -  ) -  ))aux b t n=  

12    (   ) /(  )ss sssa d R aux Y=  
2

13
2

14

  (      ) /(   )

   (      ) /(   
ss ss ss ss ss

ss ss ss

s n E plevw plev aux plevw Y

sa n plev plevw E aux ple=
 

 

) ss ss

a

vw Y

=

ss ss12
2

12

   /(  )       

   (     ) /(   )ss ss ss ss s

b G aux Y

sc n E plev plevw aux plevw Y

=

=
 

                                                

s

s

 
 The reason why we define the coefficients as sa12, etc., will become clear below, when we write the 

model in matrix notation. 

61
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 To derive the equation for *R (Real Interest Rate), linearizing and re-arranging
eq. (5) we obtain 
 
(e.2)   21 23 21* -  *-  *   *

 

R sa Y sa plev sb M= +     

where 
 

2
21 23 21-(  ) /(   );    -   /(    );    - /(    ).ss ss ss ss ss ss ss ss sssa k Y h R sa M plev h plev R sb M h plev R= = =

 

 

) 

6)  

 To obtain the equation for *plev (Domestic Price Level), substitute equation (6

 
(                 1 2

eπ απ βπ− −= +  

 
into equation (7) 
 

( ){ }1 /e
N Nf Y Y Yπ π −= + −  (7)         

 
to get 
 
(e.3)                    -1 -2 -1    (  -  ) /f Y YN YNπ απ βπ= + +  

 
 This expression combines variables in levels and variables in rates of growth.  To 
avoid the confusion that may arise from working with percentage changes of rates of 
growth, we proceed as follows.  Taking into account that the percent deviation of a 
variable is, for small deviations, approximately equal to its corresponding log difference, 
we can write 
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(e.4)    ln  Y YN− −1 1( -  ) /  ln  -YN YN Y≈  

 
Now, we can re-write eq. (8), i.e.  

 

    

( )1 1

1

P P
P
P

π

π

−= +

+ =  
1

P P
−

1

P
π −−
=

 as 
 
(e.5)             1 1  (  -  ) /plev plev plevπ − −=   

  
and applying the same property as above, we can write  

.6)                                            
 

 1ln  - ln  plev plevπ −≈  (e

and then 
 
(e.7)                                       -1 1 2 ln  -  ln  plev plevπ − −≈    
(e.8)       ln   -  ln    -2 2 3plev plevπ − −≈   

bstituting (e.4) and (e.6)-(e.8) into (e.3) and linearizing we obtain  

*

 
 Now, su
  
(e.9)   31 1 33 1 33 2 33 3 31* 1 *  1  *  2  *  3  *   plev sa Y sa plev sa plev sa plev sc YN− − − −= + + + +  

 
where 
                  31 33 33 331  ;   1  1  ;   2  -  ;   sa f sa sa s 313 -  ;    - .a sc fα β α= = + = β= =  

 
 Finally, to derive the equation for *E (Nominal E haxc nge Rate), linearizing eq. 

.10) 

(9) we obtain 
 
(e             42 43 42*  -  *-  *   *E sa R sa plev sc plevw= +   

 
where 
                                        42 43 42-     /(   );   1;   1.ss ss ss sssa v plevw R plev E sa sc= = =  
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 457
 

ny 

 

 
Since variables dG (Government deficit) and U (unemployment rate) do not have a

“feedback” with the other equations in the model, we can ignore eqs. (11) and (12).  In 
summary, the four equations of our model are (e.1), (e.2), (e.9) and (e.10), i.e.
 
(e.1)   12 13 14 12 12*   - *- *- *  *  *Y sa R sa plev sa E sb G sc plevw= + +   

 
(e.2)   21 23 21* -  *-  *   *R sa Y sa plev sb M= +     

 
(e.9)   3 31* 1 * *   *1 33 1 33 2 33 1  *  2  *  3  31plev sa Y sc YN−= +  

 

otice that since in this linearized representation all variables are in percent deviations, 
eir steady-state values will all be zeroes.    

riting our structural model in matrix notation, we obtain 
 
(e.11)  

 
where: 

       

and 
 

      

 

sa plev sa plev sa plev− − −+ + +

(e.10) 42 43 42*  -  *-  *   *E sa R sa plev sc plevw= +   

 
N
th

W

1 2 3     1    2    3         SA X SA X SA X SA X SB U SC V− − −= + + + +  

  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

*

*

*

*

E
plev
R
Y

X ⎥
⎦

⎤
⎢
⎣

⎡
=

*

*

G
M

U ⎥
⎦

⎤
⎢
⎣

⎡
=

*

*

plevw
YN

V  

SA

sa sa sa
sa sa

sa sa
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⎡

⎣

⎢
⎢
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⎢

⎤

⎦
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1 0
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332 0 0 0
0 0 0 0

a ⎥ ⎢
⎥ ⎢

33

2112

21

00
0 00

                           
0 0

scsb
sb

SB SC
s 31

42

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

2           2
0 0 3 0
0 0 0 0

0
00 0

SA SA
s sa

c
sc

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦ ⎣ ⎦

0 ⎢

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

                        

 
 We have obtained above a structural model which is, of course, a simultaneous 

stem of equations.  To obtain its reduced form, we have to get rid of this simultaneity 
and to express each endogenous variable as only a function of policy, exogenous and pre-
determined variables.  This can be done easily.  
 From equation (e.11) the reduce form can be obtained as 
 
(e.12)  

sy

1 2 3     1  2   3       X RA X RA X RA X RB U RC V= + + + +     − − −

 
where: 

1     1 1 1 11   1;   2   2;   3   3;     ;RA RC SA SC− − − − −= = =

 
Equ io
3).  It is e” 
represe arized 
mo , of 
the ma
control riments with Duali, the input model has to be in 
stat p
the foll tors XL-1 and XLL-1 as 
 

                              

SA SA RA SA SA RA SA SA RB SA SB= =

at n (e.12) is a third-order system difference equation (the maximum lag is equal to 
 necessary to reduce it to a first order system that is called the “state-spac
ntation.62  For instance, to analyze some dynamic properties of the line

del we have to know its characteristic roots, and these are equal to the eigenvalues 
trix of the first order version (matrix A below). 63   Also, to determine the model 
lability or to perform policy expe

e-s ace form.  To make this transformation, we augment the state variable by taking 
owing steps.  We define the new vec

                   
62 The concept of state-space goes beyond this, but we will not deal with it here. 
63 See Mercado and Kendrick (1999). 
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(e.13)                                  

2
*

1 2

* *
1 2

Y

R

* *
1

*

xlY

xlR
1 2* *

1 2

XL X
xlplev plev− −

− −

xlE E

−

− −

− −

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

  

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(e.14)                3* *
2 3

* * *
1 2 3

YxllY xlY

RxllR xlR
X

** *
31 2
** *
31 2

1 2*
1

XLL XL
xllplev xlp− −

− lev plev

xllE xlE E

−− −

−− −
−

− −

− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ = == = = ⎢ ⎥⎥⎢ ⎥ ⎢
⎢ ⎥⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Then, re-write (e.12) as 
  

 
1 1 1     1   2    3        X RA X RA XL RA XLL RB U RC V− − −(e.15)                 = + + + +  

efine the augmented state vector x 
 

 
D

(e.16)     
X

x XL
XLL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 , 

-write (e.13) and (e.14) as 

                                                    

re
 
(e.15)       1 XL X −=  
(e.16)                                                   1 2   XLL XL X− −= =  

 
and finally transform (e.15) into its state-space representation as 

  
 

 1           x A x B U C V−= + +  (e.17)  

 
where U and V are the same as above, where 
 

1 2 3
0 0    0    0

0 0 0 0

RA RA RA RB RC
A I B C

I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 ⎥
⎥
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and where I is a (4x4) identity matrix and 0 are (4x4) and (4x2) matrices of zeros as 
appropriate.  

In Hall and Taylor’s model, the policy ariables contempor v aneously affect the 
odel’s endogenous variables, and this is also true for its “state-space” representation.  In 

in a proper state-state representation, that is, one in which the control 
variables also appear with one lag, we have to assume that there is a one-period delay 

etween a policy decision and its implementation.  Then, we can substitute M-1
* for M*, 

* for G*.  We will also assume that the exogenous variables YN* and plevw* affect 
e system with one lag instead of contemporaneously.  Expressing the model in this way, 

 use of many results from the optimal control literature, which works with 
odels with one-lag controls.  Also, the Duali software works in this way. 

 
ing original model parameter values, and where all the variables are percent 

eviations from the steady-state,  the state-space representation of Hall and Taylor’s 
en be written as in equation (1) in the chapter on Stochastic Control in Duali.                               

m
order to obta

b
and G-1

th
we can make
m

Thus, in matrix notation, with numerical parameter values derived from the 
correspond
d
model can th
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Appendix F 

Introduction to Nonlinear Optimization Solvers 
 
 Solving nonlinear optimization problems usually requires the use of numerical 
methods.  In general, those methods consist of a “smart” trial and error algorithm that is a 
finite sequence of com
There is a variety of algorithm

putational steps designed to look for convergence to a solution.  
s to solve nonlinear problems.  Some of them are global 

methods, in the sense that they perform a parallel exploration of many regions of the 
ization space.  One example of this type of solution method is genetic algorithms.  

ther methods are local methods, since they tend to focus on the exploration of a 
gion of the op mization space.  In this appendix we will introduce two of the 

ost popular local methods:  the gradient method and the Newton method.  Varieties of 
ese m

Suppose that we are trying to find the maximum of a nonlinear function  
 

     

 
such as the one represented in Figure F.1 below. 
 

optim
O
particular re ti
m
th ethods are used by the solvers in Excel, GAMS and MATLAB.  Before 
introducing the gradient method and the Newton method, we begin with a simple 
example.   

(1)  = )(xfy
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A simple and very rudimentary algorithm to find the solution could be as follows.  
he 

ue by a constant magnitude h (we 

ame  also choose in an arbitrary way.  For the 

)     

 
is as long as the differences between two successive values of y are positive (negative 

n 

 direction along x (that is, subtracting h from x) and we use 
r h a smaller value than the one we were using while we moved in the opposite 

direction.  We continue like this until we find again a difference between two successive 

y

 
Figure F.1 A Nonlinear Function 
 

0x  1x 2x3x4x

 
We choose an arbitrary initial value for x, such as 0x in Figure F.1, and compute t
corresponding  )( 00 xfy = . Then we increase that val

n  this magnitude the “search step”) that we
new value of x, that is 1x , we compute the corresponding value of  

 
)()( 011 hxfxfy +==(2

 
and we compare this value to the one obtained in the previous step.  We continue to do
th
for a minimization problem).  As soon as we compute a difference with a negative sig
(in Figure F.1 this would correspond to 2x ), we reverse the direction of the search.  We 

begin to move in the opposite
fo
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values of y which is negative.  We then again reverse the direction of the search and we 
reduce once more the size of h.  And so on.  We stop when the difference between two
succes

 
sive values of y falls below a pre-established tolerance limit.    
The gradient method and the Newton method are iterative methods like the one 

f the function.  
strate this we change to a multivariate 

example.  In this case we use the following equation to obtain each new value of the 

)                                              

 
presented above.  However, they exploit local information about the form o
That is, they use the function’s derivatives.  To illu

vector x 
 

 xhxx nn ∆+=+1  (3

 
where h is the search step - now always a positive value - and where x∆  is the direction 
f change which, as we will see, will be determined by the function’s derivatives. 

ut how the function changes in the neighborhood of a given point.  Its 
asic framework is the well known first order Taylor approximation 

         

 is the gradient vector.  Notice that since h is supposed to be positive, the 

best direction of motion will be 
  

)                                                    

lem, since 

lso, for a minimization problem  

                 

)                           

o
The gradient method uses the first derivatives or gradient, which give us 

information abo
b

 
(4)                            xxfhxfxf nnn ∆∇+≅+ )()()( 1  

 
where )( nxf∇

 )( nxfx ∇=∆  (5

 
for a maximization prob
 
(6)                            )())(()()( 2

1 nnnn xfxfhxfxf >∇+≅+  

 
A
 
(7)                                  )( 0xfx −∇=∆  

 
since 
 

 )())(()()( 2
1 nnnn xfxfhxfxf <∇−≅+ . (8
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 The basic framework of the Newton method is the second order Taylor 
pproximation 

)                         

a
 

 xxHxhxxfhxfxf nnnn ∆∆+∆∇+≅+ )('(9
21

 
where )( 0xH is the second order derivative or Hess

)()()(  

ian which tells us how the slope of the 

nction changes in a neighborhood of a given point.  
 Assuming the Taylor expansion of a function  f  is a good global approximation to 
that function, we will approximate the optimum value of  f  by optimizing its Taylor 
expansion.  In our case, this is equivalent to saying that to determine the best direction of 

 

fu

motion x∆  we have to optimize the expression (9).  Differentiating (9) with respect to
x∆ , making the result equal to zero and solving for x∆  we obtain 

 

(10)                                              
)(
)(

n

n

xH
xfx ∇

−=∆  

 
which will be the best direction of motion for Newton’s method. 

 
g 

he tolerance limit or 
e initial value of the search.  Most solvers allow you to change these parameters. 

more than one local optimum we will find only one 
of them.  Thus, we will never know for sure if the optimum we reached was a local or a 
global one.  A rough way of dealing with this problem is to solve the problem providing 
the algorithm with alternative initial values of the search.      

In this appendix we presented three numerical methods of increasing complexity.  
f course, the more complex ones make use of more information thus reducing, in 

general, the number of steps to achieve convergence.  However, those steps become more 
complex, since they required the computation of a gradient or a Hessian.  Then, there are 
trade offs to be evaluated when choosing a solution method.   

ent method, penalty function method, sequential quadratic programming, 
etc. - a number of which extend, combine or mimic the ones introduced here.  For a 

Sometimes iterative methods like the ones presented above do not converge to a
solution after a finite number of iterations.  This problem may be overcome by changin
the maximum number of iterations, or the size of the search step, or t
th

Notice also, as is the general case for numerical methods dealing with nonlinear 
optimization problems, that if there is 

O

There are additional methods to solve nonlinear problems numerically - i.e. 
conjugate gradi
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comprehensive presentation you are referred to Judd (1998) and Miranda and Fackler 
(2002).  The Excel Solver uses a conjugate gradient method or a Newton method.  

AMS uses a variety of methods, depending on the solver you choose or have set up as 
the default nonlinear solver.  The MATLAB solver used in the Portfolio Model in 
MATLAB chapter and invoked by the fmincon function uses a sequential quadratic 
programming method.   For details on the specific methods used by Excel, GAMS and 

ATLAB you are referred to their corresponding user’s and solver’s manuals.      

G

M
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Appendix G 

Linear Programming Solvers 

= xby

mizing the 
s by 
f the 

⎣ 3231

aa

 
 A linear programming problem is one of maximizing a linear objective function 

aints.  In economics, it is also frequently required that the subject to a set of linear constr
variables of the problems be nonnegative.  Thus, in mathematical terms a linear 
programming problem can be expressed as 

 
max '

0
..

≥
≤

x
kAxts  

  
where y is a scalar, x is a vector of variables, b and k are vectors of constants and A is a 

atrix.  If the problem is one of minimization, it can be written as one of maxim
objective function with a negative sign, and changing the direction of the inequalitie
multiplying both sides by minus one.  To have an intuitive graphical representation o
problem, suppose that we have a problem with two variables and three restrictions, i.e. 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

x
x

x ,        
⎥
⎥
⎥

⎢
⎢
⎢
⎡

= 22

12

21

11

a
a

a
aA       and    

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= 2

1

k
k
k

k . 

⎦

⎤

3

 
Thus, the problem can be represented as in Figure G.1 below. 
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Constraint 1 

Constraint 2 

Constraint 3 

x2 

x1 

 
Figure G.1 Feasible Solutions Set 
 

nvex and lower-bounded set, also 
nown as a simplex.  In Figure G.2 below we added the corresponding level curves of the 

 We can see that the problem constraints define an area - the shaded one - that 
contains all the feasible solutions.  It is a closed, co
k
objective function.  Since for this example  
 

2211 xbxby +=  

 
then those level curves are given by 
 

1
2

1

2
2 x

b
b

b
yx −=  

 
We will have one level curve for each value of  y.   
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igure G.2 Level Curves 

We can see that the maximum feasible y will be .  Generalizing, we can say 

ys 
tice also that multiple - actually an infinite number 

of solutions will be obtained when the level curve is tangent to a segment between two 

 rudimentary method would evaluate all 
ertices and choose the one that generates the highest value - for a maximization problem 

as the 

 by the default GAMS solver BDMLP, is the 
erative procedure known as the simplex method.  Starting from a given vertex, this 

x2 

y2 

y1 

y0 

x1 

F
 
 

 1y

that the optimum value of a linear programming problem will be obtained at the point in 
which a level curve is tangent to the simplex of feasible solutions.  And this will alwa
happen at a vertex of the simplex.  No
- 
vertices. 

Thus, a solution method could be one that focuses on the evaluation of the 
vertices of the simplex of feasible solutions.  A
v
- of the objective function.  However, the number of vertices grows very quickly 
number of variables and constraints increases. 
 A more efficient method, used
it
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method looks for the best direction of motion toward another vertex.  To do so, it starts 
by transforming the inequality restrictions into equalities by means of the addition of new 
onnegative variables known as “slack variables”.  In our two-variable three-restriction 

 

n
example, this is equivalent to writing the new constraints as 
 
  

35232131

24222121

13212111

kxxaxa
kxxaxa
kxxaxa

=++
=++
=++

 

 
or in matrix notation  

[ ] kxIA =  

 
where I is a 3x3 identity matrix and where the vector x is now 
 

⎥⎦⎢⎣ 5x

 

⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎡

=

4

3

2

1

x
x
x
x

x . 

 Notice that the new matrix [ ]IA is a 3x5 matrix.  Thus, if we set to zero any two 

e matrix 
t.  Also that solution, which corresponds to the base of the tri-

imensional space spanned by those vectors, will be a vertex of the simplex of feasible 

.  To do so, we compute 

variables in x we will be left with a 3x3 matrix and a 3x3 system of linear equations.  
This system will have a solution if the corresponding row (columns) vectors in th
are linearly independen
d
solutions.  Thus, we will name that solution the “basic feasible solution”.   
 The next step in the simplex method is to evaluate the solution to check if we are 
at the optimum
 

NBx
y

∂
∂  

 
where NBx  are the non-basic variables.  If any one of these derivatives is greater than 

zero, we are not at the optimum since the objective function could be incremented by 
creasing the corresponding non-basic variable.  The next step is thus to move to another in
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vertex incorporating this variable into the base and deleting one of the variables 
previously in the base.  The selection of the basic variable to be deleted is more involved. 
Ideally

 
, we should delete the variable which constraints the most the potential increase in 

e objective expected from incorporation of the new basic variable.  To do so, the 

We then continue evaluating the objective function and incorporating-deleting 
ariables to the basic solution until we reach an optimum. 

8) and Silverberg and Suen (2001).  For details on GAMS linear 
rogramming solvers, see the corresponding GAMS Solvers manuals at 

th
constraints have to be re-written now with the basic variables as functions of the non-
basic ones, and the resulting system has to be analyzed.  
 
v
 For more detailed presentations of the simplex method, you are referred to Chiang 
(1984), Rardin (199
p
http://www.gams.com. 
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Appendix H 

The Stacking Method in GAMS 

As a compact way of writing a multi-equation model, GAMS allows us to write 

)1(..

max

byaxats

ywxwJ i
i

i

=+

+= ∑
=

 

eqj..       j =e= sum(i, w1 * x(i) + w2 * y(i)); 

 
 
indexed equations.  As seen in a number of chapters of this book those indexes may 
represent commodities, locations, time periods, etc. 

For example, the equations corresponding to a problem such as  
 

2

2

0
1

22221

11211

)2( byaxa ii

ii

=+

 
can be represented in GAMS as 
 

eq1(i)..    a11 * x(i) + a12 * y(i)) =e= b1;  

eq2(i)..    a21 * x(i) + a22 * y(i)) =e=  b2;  

 
 When the index set is { }0,1, 2i =  the model will be expanded and stacked in the 

 =e= w1*x(0) + w2*y(0) + w1*x(1) + w2*y(1) + w1*x(2) + w2*y(2) 

q1(1)..    a11 * x(1) + a12 * y(1)) =e= b1;  

)) =e= b1;  

q2(2)..    a21 * x(2) + a22 * y(2)) =e= b2; 

ith an objective function and two indexed 
quations and two variables  (x(i) and y(i)) and now we have a model with one 

he model, GAMS transforms a model of n indexed 

following way 
 
j

eq1(0)..    a11 * x(0) + a12 * y(0)) =e= b1;  

eq2(0)..    a21 * x(0) + a22 * y(0)) =e= b2; 
e

eq2(1)..    a21 * x(1) + a22 * y(1)) =e= b2; 
eq1(2)..    a11 * x(2) + a12 * y(2

e

 
 Notice that before we had a model w
e
objective function, six equations and six variables (x(0), x(1), x(2), y(0), y(1) 
and y(2)).  Thus, before solving t
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equations into one of n x card equations plus the objective function, where card indicates 

with n indexed equations and t time periods 
to an equivalent static model of n x t equations plus the objective function.  

 When, as in the chapters on General Equilibrium Models in GAMS and 
Macroeconomics in GAMS,  we are interested in solving a system of equations and not 
n optimization problem, we just set the objective function equal to any constant value 

  

solve model maximizing j using nlp; 

roduct 

the number of elements in the index set.  If the index denotes time periods, this is 
equivalent to transforming a dynamic model 
in

a
(i.e. j =e= 0;).  Thus, when executing the corresponding solver statement, i.e.
 

 
GAMS will expand and stack the system of equations and it will solve it as a by p
of a “pseudo-optimization”. 
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Appendix I 

Running MATLAB 
 
 This appendix provides the details for running the MATLAB software on a PC to 
solve the portfolio model.   In order to use MATLAB with other input files substitute the 

e for  in the following.  appropriate file nam mcportfol.m

 For help and information about obtaining MATLAB go to The MathWorks web 
site at 

http://www.mathworks.com 
 
 

 Go to the book web site at 

http://www.eco.utexas.edu/compeco

      and to the” Input Files for Chapters in the Book” section of the web site.  Right 

in order to save the file in your preferred directory. 

 In the Current Directory section of the main MATLAB window click on the icon 
that contains “…”  in order to browse to the folder where you stored the 
mcportfol.m file.  Then double click on the mcportfol.m filename. 

 A window that contains the mcportfol.m file will open.  In order to solve the 
model pull down the Debug menu and select the Run option.  A graph will appear 
showing the results of the runs. 

 In order to see the numerical results select the MATLAB main window and look 
in the Command Window section. 

 If you run a MATLAB program that uses a number of functions stored in separate 
r in 

odel chapter) make sure you download all those files in the 
same directory. 

      click on the mcportfol.m filename and select the “Save Target As …” option 

 Chose Programs from the Start menu and then chose MATLAB. 

files (such as the portfolio.m or the models in the genetic algorithm chapters o
the agent-based m
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Obtaining the Steady-State of the Growth Model 

  More detailed derivation steps can be 
found in Azariadis(1993), Sections 7.3 and 13.4. 

We begin by defining the utility function 

(1)  

 
Here we are interested in deriving the steady-steady solution of the model 

presented in the Growth in Excel chapter.

 
τ

τ
−

−
= 1

1
1)( tt CCu  

 
nd the production function 

)   

rowth in Excel chapter, the model we want to solve can 
e stated as find 

, , , )NC C C −   to maximize 

a
 

αθ tt KKf =)( .(2

 
Thus, as in the G

b
 

0 1 1(

 

(3)     ∑
=

∞

0

)(
t

tCuβ  

bject to 
 
(4)  
(5)      given. 

)  

= tJ

su

tttt CKfKK −+=+ )(1  

0K
[ ] 0)('lim =(6

∞→t

  
tion, (4) is the capital accum

tt
t KCuβ  

ulation equation and (5) is the 

nsversality condition (6), where is the derivative 

where (3) is the criterion func
initial condition.  Since we are now interested in deriving the steady-state solution of the 
model, we consider an infinite horizon problem.  Thus, instead of a fixed terminal 
ondition, we now impose the trac )(' tCu

of the utility function.   This condition states that the discounted lifetime utility is 
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maximal when the capital stock is zero or, in other terms, that at time t the present v
of capital tends to zero as time goes to infinity.  
 Re-arranging (4) and substituting for  in (3) we obtain  

alue 

tC

 

(7)  ∑
∞

=

here 

++

+=
0

1),(
t

tt
t KKvJ β  

 
w
 
(8)  [ ]( 11 )(), −+= tttt KKKfuK . 

er 

 

where  and are the partial derivatives of the function v and where 

tKv

 
Differentiating (7) w.r.t. to 1+tK  we obtain, for each time period t, the first-ord

condition 

(9)  0),(),( 211
1

12 =+ ++
+

+ tt
t

tt
t KKvKKv ββ  

 
1v 2v

 
(10)   [ ]1 1 'v f= + 1 1( ) '( )t tK u C+ +  

 
and  

(11)  . 

 
We now divide (9) by to obtain 

 
)(' 12 +−= tCuv

tβ 

 
(12)  021 =+ vvβ  

 
or, substituting (10) and (11) into (12) 

3)  
 

[ ]1 11 '( ) '( ) '(t t )tf K u C u Cβ + ++ =(1 . 

 Equation (13), together with equation (4)  
 
(4)  

 

tttt CKfKK −+=+ )(1  
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form a dynamical system that describes the evolution of the time paths for consumption 
and the capital stock.  Given the initial condition (5), this system has a solution for each 
terminal value of the capital stock.  The transversality condition (6) ensures that we pick, 
out of the many possible solutions, the optimum one.   
 To compute the steady-state, we eliminate the time subscripts from (13) and (4) to 
obtain, respectively 
 

(14)  
β
β−

=
1)(' Kf  

and 
 
(15)  . 

 
 Finally, to obtain the steady-state for the capital stock as in equation (14) in the 
Growth in Excel chapter, we substitute (2) into equation (14) above and solve for K, thus 
obtaining 
 

(16)  

)(KfC =

1
1

1 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

α

βαθ
β

ssK . 
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